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Preface

The 15th Theory of Cryptography Conference (TCC 2017) was held during November
12–15, 2017, at Johns Hopkins University in Baltimore, Maryland. It was sponsored by
the International Association for Cryptographic Research (IACR). The general chair
of the conference was Abhishek Jain. We would like to thank him for his great work in
organizing the conference.

The conference received 150 submissions, of which the Program Committee
(PC) selected 51 for presentation (with three pairs of papers sharing a single presen-
tation slot per pair). Each submission was reviewed by at least three PC members, often
more. The 33 PC members (including PC chairs) were helped by 170 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised version of the 51 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent web-review software, and are
extremely grateful to him for writing, maintaining, and adding features to it, and for
providing fast and reliable technical support whenever we had any questions. Based on
the experience from previous years, we made extensive use of the interaction feature
supported by the review software, where PC members may directly and anonymously
interact with authors. This was used to clarify specific technical issues that arose during
reviews and discussions, such as suspected bugs or suggested simplifications. We felt
this approach helped us prevent potential misunderstandings and improved the quality
of the review process.

This was the fourth time TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, presented at TCC 2006: “Efficient Collision-Resistant
Hashing from Worst-Case Assumptions on Cyclic Lattices,” by Chris Peikert and Alon
Rosen, “for advancing the use of hard algebraic lattice problems in cryptography,
paving the way for major theoretical and practical advances.” The authors delivered an
invited talk at TCC 2017.

The conference also featured an invited talk by Cynthia Dwork.
We are greatly indebted to many people and organizations who were involved in

making TCC 2017 a success. First of all, a big thanks to the most important contrib-
utors: all the authors who submitted fantastic papers to the conference. Next, we would
like to thank the PC members for their hard work, dedication, and diligence in
reviewing and selecting the papers. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering
questions, often under time pressure. We thank Stefano Tessaro for organizing the
Program Committee meeting. For running the conference itself, we are very grateful to
the general chair, Abhishek Jain, and the people who helped him, including Anton



Dahbura, Revelie Niles, Jessica Finkelstein, Arka Rai Choudhuri, Nils Fleishhacker,
Aarushi Goel, and Zhengzhong Jin. For help with these proceedings, we thank Anna
Kramer, Alfred Hofmann, Abier El-Saeidi, Reegin Jeeba Dhason, and their staff at
Springer. We appreciate the sponsorship from the IACR, the Department of Computer
Science and the Information Security Institute at Johns Hopkins University, Microsoft
Research, IBM, and Google. Finally, we are thankful to the TCC Steering Committee
as well as the entire thriving and vibrant TCC community.

November 2017 Yael Kalai
Leonid Reyzin
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Abstract. We consider the problem of constant-round secure two-party
computation in the presence of active (malicious) adversaries. We present
the first protocol that has only a constant multiplicative communication
overhead compared to Yao’s protocol for passive adversaries and can be
implemented in the plain model by only making a black-box use of (par-
allel) oblivious transfer and a pseudo-random generator. This improves
over the polylogarithmic overhead of the previous best protocol. A simi-
lar result could previously be obtained only in an amortized setting, using
preprocessing, or by assuming bit-oblivious-transfer as an ideal primitive
that has a constant cost.

We present two variants of this result, one which is aimed at mini-
mizing the number of oblivious transfers and another which is aimed at
optimizing concrete efficiency. Our protocols are based on a novel com-
bination of previous techniques together with a new efficient protocol to
certify that pairs of strings transmitted via oblivious transfer satisfy a
global relation. The communication complexity of the second variant of
our protocol can beat the best previous protocols even for realistic values
of the circuit size and the security parameter. This variant is particularly
attractive in the offline-online setting, where the online cost is dominated
by a single evaluation of an authenticated garbled circuit, and can also
be made non-interactive using the Fiat-Shamir heuristic.

1 Introduction

Secure two-party computation allows two parties to perform a distributed com-
putation while protecting to the extent possible the secrecy of the inputs and
the correctness of the outputs. The most practical approach to constant-round
secure two-party computation is Yao’s garbling paradigm [49]. It is convenient
to describe Yao’s protocol for the case of computing deterministic two-party
functionalities, described by Boolean circuits, that deliver output to only one
party. (The general case can be easily reduced to this case.) We will refer to the
party who gets an output as the receiver and to the other party as the sender.
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 3–39, 2017.
https://doi.org/10.1007/978-3-319-70503-3_1
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The protocol proceeds by having the sender randomly generate an encoded ver-
sion of the circuit, referred to as a garbled circuit, together with pairs of input
keys, a pair for each input bit. It sends the garbled circuit to the receiver along
with the input keys corresponding to the sender’s inputs, and allows the receiver
to select its own input keys using oblivious transfer (OT). From the garbled
circuit and the selected input keys, the receiver can compute the output.

This simple version of Yao’s protocol is only secure in the presence of passive
(semi-honest) corruptions, since it allows a malicious sender to freely manipulate
the honest receiver’s output by sending a badly formed garbled circuit. Never-
theless, being the simplest protocol of its type, it serves as a benchmark for
the efficiency of secure two-party computation. Given a length-doubling pseudo-
random generator1 (PRG) G : {0, 1}κ → {0, 1}2κ, this protocol can be used
to evaluate a Boolean circuit C using O(κ|C|) bits of communication, O(|C|)
PRG invocations, and n OTs on pairs of κ-bit strings, where n is the length
of the receiver’s input. Obtaining security in the presence of active (malicious)
adversaries is much more challenging. To rule out practically inefficient solu-
tions that rely on general zero-knowledge proofs [13] or alternatively require
public-key operations for every gate in the circuit [12,28], it is useful to restrict
the attention to protocols that make a black-box use of a PRG, as well as a
constant-round parallel oblivious transfer (OT) protocol. The latter is in a sense
necessary, since parallel OT is an instance of secure computation. It is convenient
to abstract away from the use of an actual OT sub-protocol by casting protocols
in the OT-hybrid model, where the parties can invoke an ideal OT oracle. This
is justified by the fact that the cost of implementing the OTs is typically not
an efficiency bottleneck.2 In the following, we will refer to a protocol that only
makes a black-box use of a PRG (or a stronger “symmetric” primitive)3 and
OT (either a parallel OT protocol or an ideal OT oracle) as a black-box protocol.
Yao’s passively secure protocol is black-box in this sense.

Lindell and Pinkas [35] (following [39]) presented the first constant-round
black-box protocol that achieves simulation-based security against active adver-
saries. Their protocol replaces expensive (and non-black-box) zero-knowledge
proofs by an ad-hoc use of a “cut-and-choose” technique. Since then, a large
body of works attempted to improve the efficiency of such protocols both

1 Garbled circuits are often described and implemented using a pseudo-random func-
tion (PRF) F : {0, 1}κ ×{0, 1}κ → {0, 1}κ instead of a length doubling PRG G. Since
G can be implemented via two calls to F but the converse direction is not known,
formulating positive (asymptotic) results in terms of the number of PRG calls makes
them stronger.

2 The number of OTs used by such protocols is typically smaller than the circuit size.
Moreover, the cost of a large number of OTs can be amortized via efficient OT
extension [17,29].

3 It is sometimes helpful to replace the PRG by a stronger symmetric primitive, such
as symmetric encryption, a correlation-robust hash function [17], or even a random
oracle. While the main question we consider was open even when the use of such
stronger symmetric primitives is allowed, our main asymptotic results only require
a PRG.
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asymptotically and concretely (see, e.g., [19,42,47,48] and references therein).
The main goal of the present work is to minimize the asymptotic communication
complexity of this type of protocols.

In protocols that rely on the “cut-and-choose” technique, the sender sends
O(s) independent copies of the garbled circuit, for some statistical parameter
s, following which a subset chosen by the receiver is opened to demonstrate
correctness. The parameters in this approach have been sharpened, and the
best protocols can achieve sender simulation error of 2−s using only s copies
[15,34]. However, the multiplicative communication overhead4 in all these proto-
cols over Yao’s protocol is at least s, and similarly the cryptographic cost involves
at least Ω(s) PRG calls per gate, compared to O(1) in Yao’s protocol. Using
a different technique (see Sect. 1.2), the asymptotic communication overhead
has been improved to polylog(s) [19,20], at the cost of relying on heavy “non-
cryptographic” machinery (that includes linear-time encodable error-correcting
codes and routing networks) and poor concrete efficiency.

Towards minimizing the overhead of security in the presence of active adver-
saries, another line of works analyzed the amortized setting, where multiple eval-
uations of the same circuit are conducted by the two parties [16,38,42,44]. In this
setting, a recent work of Nielsen and Orlandi [42] shows how to protect Yao’s pro-
tocol against active adversaries with only a constant (amortized) multiplicative
communication overhead. Besides relying on a collision-resistant hash-function
(or even private information retrieval schemes for functions with large inputs),
the main caveat is that this approach only applies in the case of multiple circuit
evaluations, and moreover the number of evaluations must be bigger than the
size of the circuit.

Finally, a recent work of Wang et al. [48] obtains an actively secure ver-
sion of Yao’s protocol that can be instantiated to have constant communication
overhead in the OT-hybrid model. Unfortunately, this protocol requires Ω(κ)
separate bit-OT invocations for each gate of the circuit. As a result, its black-
box implementation in the plain model has Ω̃(κ) communication overhead over
Yao’s protocol.5 A similar overhead applies to the computational cost in the plain
model. We note that even in the bit-OT hybrid, the constant-overhead variant

4 Following the common convention in the secure computation literature, the multi-
plicative overhead considers the typical case where the circuit is (polynomially) big-
ger than the input length and the security parameter, and ignores low-order additive
terms that are asymptotically dominated by the circuit size when the circuit size is a
sufficiently large polynomial in the other parameters. Concretely, when we say that
the asymptotic multiplicative overhead is c(s), we mean that the communication
complexity can be bounded by c(s) · O(κ|C|) + |C|ε · poly(n, s, κ) for every constant
ε > 0.

5 There are no known protocols for realizing many instances of bit-OT in the plain
model with less than Ω̃(κ) bits per instance, except via a heavy use of public-key
cryptography for each OT instance [5,23] or polynomial-stretch local PRGs [22].
This is true even for passively secure bit-OT, even in the random oracle model, and
even when using the best known OT extension techniques [17,32].



6 C. Hazay et al.

of [48] inherits from [7,25] the use of heavy tools such as algebraic geometric
codes, and has poor concrete efficiency.

To conclude, prior to the present work there was no constant-round actively
secure protocol that makes a black-box use of oblivious transfer and symmetric
primitives and has a constant communication overhead over Yao’s protocol in
plain model. This state of affairs leaves the following question open:

What is the best achievable communication overhead of constant-round
“black-box” actively secure two-party protocols in the plain model compared
to Yao’s passively secure protocol? In particular, is constant multiplicative
overhead achievable?

As discussed above, it will be convenient to consider this question in the OT-
hybrid model. To ensure relevance to the plain model we will only consider a
“κ-bit string-OT” hybrid, where each ideal OT is used to transfer a string whose
length is at least κ (a computational security parameter) and the communication
cost also includes the communication with the OT oracle.

As a secondary goal, we will also be interested in minimizing the computa-
tional overhead. The computational cost of Yao’s protocol is dominated by a
constant number of PRG calls per gate.

1.1 Our Results

Our main result is an affirmative answer to the question of actively secure garbled
circuits with constant communication overhead. This is captured by the following
theorem.

Theorem 1.1 (Informal). Let κ denote a computational security parameter, s
a statistical security parameter, and n the length of the shorter input. Then, for
any constant ε > 0, there exists an actively secure constant-round two-party pro-
tocol ΠC for evaluating a Boolean circuit C with the following efficiency features
(ignoring lower order additive terms):

– It uses O(κ · |C|) bits of communication;
– It makes O(|C|) black-box calls to a length-doubling PRG of seed length κ;
– It makes n + O(s · |C|ε) calls to κ-bit string OT oracle, or alternatively

(n + |C|ε) · poly(κ) calls to any (parallel, constant-round) bit-OT protocol in
the plain model, assuming explicit constant-degree polynomially unbalanced
unique-neighbor expanders.6

Concrete Efficiency. The above result is focused on optimizing the asymptotic
communication complexity while using a small number of OTs. We also present
6 This assumption is needed for the existence of polynomial-stretch local s-wise PRGs.

It is a mild assumption (arguably more so than standard cryptographic assumptions)
that can be instantiated heuristically (see, e.g., [2,22,40]). One can dispense with this
assumption by allowing O(|C|) OTs of κ-bit strings, or using a stronger symmetric
primitive such as a correlation-robust hash function.
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a second variant of the main result which is geared towards concrete efficiency.
In this variant we do not attempt to minimize the number of string OTs, but
only attempt to minimize the complexity in the κ-bit string-OT hybrid. Efficient
OT extension techniques [17,29] can be used to get a similar complexity in the
plain model. An additional advantage of the second variant is that it avoids the
heavy machinery of linear-time encodable error-correcting codes and AG codes
that are used in the first variant. Eliminating the use of AG codes makes the
protocol realizable with polylogarithmic computational overhead compared to
Yao’s protocol (as opposed to Ω(s) computational overhead in the first variant,
which is incurred by applying the encoding of an AG code on a message of length
Ω(s)).

Optimizing our second variant, we get better concrete communication com-
plexity than the best previous protocols. For instance, for computational security
κ = 128 and statistical security s = 40 and sufficiently large circuits, our mul-
tiplicative communication overhead is roughly 7 (compared to 40 in optimized
cut-and-choose and roughly 10 in [48]). Similarly to [48], our technique is com-
patible with the standard Free XOR garbled circuit optimization [33], but not
with the “half-gate” optimization from [50]. Thus, for a fair comparison with the
best passively secure cut-and-choose based protocols in the random oracle model,
our overhead should be multiplied by 2. We leave the question of combining our
technique with half-gate optimizations for future work.

For the case of evaluating a single AES circuit, the communication complexity
of our optimized protocol is 3.39 MB, roughly half of that of [48]. Our concrete
efficiency advantages are even bigger when choosing bigger values of s. This is
needed for the non-interactive setting discussed below. See Sect. 6.2 (and also
Sect. 1.3) for a detailed concrete analysis of this variant of our construction and
comparison with the concrete efficiency of other recent protocols.

We note that, similarly to the protocol from [48], the second variant of our
protocol is particularly attractive in the offline-online setting. In this setting,
the overhead of handling active adversaries is mainly restricted to an input-
independent offline phase, where the concrete cost of the online phase is compa-
rable to the passively secure variant. Moreover, the amount of data the receiver
needs to store following the offline phase is comparable to a single garbled circuit.
This should be contrasted with (single-instance) cut-and-choose based protocols,
where only roughly half of the factor-s multiplicative communication overhead
can be moved to an offline phase [38].

Another useful feature of our protocol is that, following a function-
independent preprocessing, it can be made non-interactive in the sense of [20] by
using the Fiat-Shamir heuristic. In the non-interactive variant, the receiver can
post an “encryption” of its input and go offline, allowing the sender to evaluate a
circuit C on the inputs by sending a single message to the receiver. The protocol
from [48] cannot be made non-interactive in this sense.



8 C. Hazay et al.

1.2 Our Techniques

At a high level, our results combine the following main techniques. First, to break
the cut-and-choose barrier we apply an authenticated variant of the garbled
circuit construction, as was previously done in [20,48]. To eliminate selective
failure attacks by a malicious sender, we apply the multiparty circuit garbling
technique of Beaver, Micali, and Rogaway (BMR) [3], which was used for a
similar purpose in the two-party protocols of [37,48]. Finally, we crucially rely
on a new “certified oblivious transfer” protocol to prove in zero-knowledge that
pairs of strings transmitted via OT satisfy a global relation, providing a more
efficient alternative to a similar protocol from [20].

We now give a more detailed account of our techniques. Our starting point is
the work of Ishai, Kushilevitz, Ostrovsky, Prabhakaran, and Sahai [20] (IKOPS),
which obtained a “non-interactive” black-box protocol with polylogarithmic
communication overhead. More concretely, the IKOPS protocol only makes use
of parallel OTs and a single additional message from the sender to the receiver,
and its communication complexity is polylog(s) ·κ bits per gate. On a high-level,
the IKOPS protocol for a functionality circuit F can be broken into the following
three non-interactive reductions.

1. Reducing F to an NC0 functionality ̂F . The first step is to securely reduce
the computation of F to a single invocation of a related NC0 functionality ̂F
whose output length is O(κ · |F|). The functionality ̂F takes from the sender
a pair of keys for each wire and the purported PRG outputs on these keys. It
also takes from the receiver a secret key that is used to authenticate the infor-
mation provided by the sender. Note that ̂F is non-cryptographic and cannot
check that the given PRG outputs are consistent with the inputs. However,
the authentication ensures that the output of ̂F obtained by the receiver
commits the sender to unique values. If the receiver detects an inconsistency
with the authentication information during the garbled circuit evaluation, it
aborts. The protocol for F only invokes ̂F once, and only makes a black-box
use of the given PRG. In fact, two variants of this reduction are suggested
in [20]: one where ̂F authenticates every PRG output provided by the sender,
and one where only the color bits are authenticated.

2. Reducing ̂F to certified OT. The second step is an information-theoretic
protocol for ̂F using an ideal certified oblivious transfer (COT) oracle, namely
a parallel OT oracle in which the receiver is assured that the pairs of trans-
mitted strings (which also include strings it does not receive) satisfy some
global predicate. Such a protocol is obtained in two steps: (1) Start with a
non-interactive protocol for ̂F using a standard parallel OT oracle, where
the protocol is only secure in the presence of a passive sender and an active
receiver. (This is equivalent to an information-theoretic projective garbling
scheme [4] or decomposable randomized encoding [22] for ̂F .) (2) Use the
COT oracle to enforce honest behavior of the sender.

3. Reducing certified OT to parallel OT. The third step is an information-
theoretic protocol for COT using parallel OTs. This step is implemented using
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a variant of the “MPC-in-the-head” approach of [21], using a virtual MPC
protocol in which each transmitted OT string is received by a different party,
and an honest majority of servers is used to guarantee global consistency. The
COT protocol is inherently susceptible to a benign form of input-dependent
selective failure attacks, but these can be eliminated at a relatively low cost
by using a local randomization technique [20,31,35].

The main instance of the IKOPS protocol is based on the first variant of
̂F , which authenticates the PRG outputs. This protocol has a polylog(s) com-
munication overhead that comes from two sources. First, the implementation of
F given ̂F (Step 1 above) is subject to selective failure attacks by a malicious
sender. These attacks make the receiver abort if some disjunctive predicate of the
wire values is satisfied. (The second variant of ̂F from [20] is subject to more com-
plex selective failure predicates, and hence is not used for the main result.) Such
a disjunctive selective failure is eliminated in [19,20] by using leakage-resilient
circuits, which incur a polylogarithmic overhead. We eliminate this overhead by
defining an alternative NC0 functionality ̂F that introduces a BMR-style ran-
domization of the wire labels (as done in [37,48], but using the first variant of ̂F
from [20]). This requires ̂F to take O(|C|) random bits from the receiver, which
results in the protocol using O(|C|) OTs of O(κ)-bit strings. To reduce the num-
ber of OTs, we use a local s-wise PRG [40] to make the receiver’s input to ̂F
small while still ensuring that the probability of the receiver detecting failure
is essentially independent of its secret input. We note that the reduction in the
number of OTs is essential in order to get a protocol with constant communica-
tion overhead in the plain model by using only a (parallel) bit-OT protocol and
a PRG in a black box way.

Another source of polylogarithmic overhead in [20] comes from the COT
construction, which relies on perfectly secure honest-majority MPC protocols.
The best known protocols of this type have a polylogarithmic communication
overhead [9]. Our approach for reducing this overhead is to obtain an inter-
active variant of COT that can rely on any statistically secure honest-majority
MPC protocol, and in particular on ones with constant communication overhead
[7,8,26]. Our new COT protocol extends in a natural way the recent MPC-based
zero-knowledge protocol from [1].

The first variant of our protocol uses the above COT protocol for a consis-
tency predicate defined by Boolean circuits. As in [20], these boolean circuits
employ information-theoretic MACs based on linear-time encodable codes [46].
To compute such a predicate with constant communication overhead, we rely on
statistical honest-majority MPC based on algebraic geometric codes [7,21]. This
results in poor concrete efficiency and Ω(s) computational overhead.

The second variant of our protocol eliminates the above heavy machinery
and obtains good concrete efficiency by making the following two changes: (1)
using the second variant of the NC0 functionality ̂F for Step 1; (2) applying
COT for a predicate defined by an arithmetic circuit over a field of size 2O(s).
The latter change allows us to use simpler honest-majority MPC protocols for
arithmetic circuits over large fields. Such protocols are simpler than their Boolean
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analogues and have better concrete efficiency (see [26], Appendix C, and [1]).
Another advantage is polylogarithmic computational overhead. A disadvantage
of this approach is that the corresponding functionality ̂F does not allow us to
use an s-wise PRG for reducing the number of OTs. As a result, the protocol
requires O(|C|) OTs of O(κ)-bit strings.

1.3 Comparison with Wang et al. [48]

The recent results of [48] are the most relevant to our work. Like the second
variant of our protocol, the protocol from [48] uses a combination of: (1) an
“authenticated garbled circuit functionality” which is similar to the second vari-
ant from [20] that only authenticates the color bits, and (2) a BMR-style ran-
domization to defeat selective failure attacks. (In contrast, the first variant of
our protocol that we use to get our main asymptotic results relies on the first
variant of the functionality from [20] that authenticates the entire PRG outputs,
since in this variant the selective failure predicate is simple.) The main difference
between the second variant of our protocol and the protocol from [48] is in how
the NC0 functionality ̂F is securely realized against active adversaries. While the
work of [48] uses a “GMW-style” interactive protocol for realizing ̂F , we rely on
the non-interactive COT-based approach of IKOPS [20].

In slightly more detail, the protocol of [48] for evaluating ̂F first cre-
ates a large number of authenticated “AND triples” using a variant of the
“TinyOT” protocol [41]. Then, using the AND triples, the parties securely com-
pute ̂F . This protocol, which follows an optimized cut-and-choose approach, has
Ω(s/ log |C|) communication overhead. Alternatively, [48] also propose using a
protocol from [25] to make the communication overhead constant, but this only
holds in the bit-OT hybrid model that cannot be instantiated in the plain model
in our black-box model and leads to prohibitive concrete overhead. In contrast,
our protocols realize ̂F using a passively secure non-interactive protocol in the
κ-bit OT-hybrid, and apply an improved implementation of COT to achieve
security against active adversaries with constant communication overhead. The
good concrete efficiency of the second variant of our protocol is inherited from
a careful implementation of the passively secure protocol for ̂F and a sublinear-
communication implementation of COT (Table 1).

Table 1. Total concrete communication cost of computing a single instance of AES
circuit with κ = 128 and s = 40. The data about [43,48] was obtained from [48].

Protocol Total comm.

[43] 15.12 MB

[48] 6.29 MB

This work 3.39 MB
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2 Preliminaries

We assume functions to be represented by a Boolean circuit C (with AND, OR,
XOR gates of fan-in 2 and NOT gates), and denote the size of C by |C|. By
default we define the size to include the total number of gates, excluding NOT
gates but including input gates. In the context of protocols that employ the
FreeXOR garbled circuit optimization [33], the size does not include XOR gates.

We use a standard notion of secure two-party computation in the standalone
model, in the presence of static, adaptive corruptions. See AppendixA for details.

2.1 Local s-Wise PRGs

An s-wise pseudorandom generator (PRG) GsPRG : {0, 1}δ �→ {0, 1}n satisfies
the property that for a random r the bits in GsPRG(r) are s-wise independent,
in the sense that their projection to any s coordinates is a uniformly random
s-bit string. Standard constructions of such PRGs exist based on random (s−1)-
degree polynomials in a finite field. In our work, we will require s-wise PRGs that
additionally have the property of being computed by an NC0 circuit, namely ones
where every output bit depends on a constant number of input bits. Such “local”
s-wise PRGs can be based on unique-neighbor bipartite expander graphs [40].

In more detail, consider a bipartite expander graph with left degree d, such
that any subset of v ≤ s vertices on the left has at least 3

4vd neighbors on the
right. Then we associate every left vertex with an output bit and every right
vertex with an input bit. An s-wise PRG can now be obtained setting an output
bit as the XOR of its neighbors. If we further assume that the bipartite graph
has constant-degree d for the left vertices, we obtain an s-wise PRG that can be
computed by an NC0 circuit.

Some of our results require an s-wise PRGs with polynomial stretch. Con-
cretely, for every 0 < ε < 1 we need an explicit NC0 construction of an s-wise
PRG GsPRG from δ = O(nε + s) to n bits. (In fact, δ = O(nε) + sO(1) would
suffice for obtaining slightly weaker but qualitatively similar results.) Expander
graphs with the corresponding parameters are known to exist, and in fact a ran-
dom graphs has the required expansion property with high probability (cf. [19],
Theorem 2). While no provable explicit constructions are known, assuming the
existence of such an explicit construction (e.g., by using the binary expansion
of π) can be viewed as a mild assumption compared to standard cryptographic
assumptions. Some of our results rely such an assumption, which is necessary
for the existence of explicit polynomial-stretch local PRGs. See, e.g.,[2,22] for
further discussion.

2.2 Message Authentication Codes

Simple MAC for a Single Bit. Our first construction for message space {0, 1}
is a trivial MAC that picks two random strings {σ0, σ1} as the key and assigns
σb as the MAC for bit b ∈ {0, 1}.



12 C. Hazay et al.

Low-Depth MAC for Strings. We consider a second MAC that will allow
for a sender to authenticate a κ-bit string via a secure computation of an NC0

function to a receiver holding the MAC key. It is easy to see that if the MAC
itself is computable in NC0 then it can only have a constant soundness error.
To overcome this barrier, we follow the approach of [20,22] where the mes-
sage to be authenticated is first locally encoded. Since the NC0 computation
cannot compute the encoding, we will require from the sender to provide the
encoding to the NC0 functionality along with a proof, where both the MAC
computation given the encoding and the proof verification are done in NC0.
We will additionally require that the encoding procedure be efficient, since the
proof verification circuit size grows with the encoding circuit size. By rely-
ing on Spielman’s codes [46], we obtain an asymptotically optimal code that
can be encoded by linear-size circuits. More formally, such codes imply that
there exist constants 	lin, 	out, 	key such that for every length κ, there exists an
explicit linear-size circuit Enclin : {0, 1}κ → {0, 1}�inκ and an NC0 function family
{MACSK : {0, 1}�inκ → {0, 1}�outκ}

SK∈{0,1}�keyκ such that MACSK(Enclin(σ)) is a
2−κ information-theoretically secure MAC.

Special-Hiding Information-Theoretic MAC. For our concretely efficient
protocol, we will employ another simple information theoretic MAC. We formal-
ize the security requirement next and then present a construction.

Definition 2.1 (Special-hiding IT-MAC). Let F be a finite field. We say
that a family of functions H = {H : F� ×F → F} is ε-secure special-hiding if the
following two properties hold:

Privacy. For every x, x′ ∈ F
� and H ∈ H, the distributions H(x; r) and H(x′; r)

are identical for a random r ∈ F.
Unforgeability. For any x, r, x′, r′ such that (x, r) �= (x′, r′), we have: Pr

[H ← H : H(x; r) = H(x′, r′)] ≤ ε.

Proposition 2.1. Let 	 ∈ N. Define the family H = {Hw}w∈I where the index
set I includes all vectors (k0, . . . , k�) such that

∑�
i=0 ki �= 0 and the hash function

is defined as

H(k0,...,k�)((x1, . . . , x�), r) =
�

∑

i=0

ki · (r + xi)

where x0 is set to 0. Then H is a 1
|F| -secure special-hiding IT-MAC.

3 Framework for Actively Secure Garbled Circuits

In this section we present a general framework for designing an actively secure
two-party computation protocol for a functionality F given its Boolean circuit
representation. It is based on (and can capture) the approach of [20], but incor-
porates several additional ideas. The framework consists of the following steps:



Actively Secure Garbled Circuits 13

Step 1: Reduce F to a local ̂F . In this step, given a circuit for F and a
(computational) security parameter κ, we obtain an NC0 functionality ̂F and a
two-party protocol Π1 that securely realizes F in the ̂F-hybrid model with active
security. In Sect. 4 we describe two implementations of this step that combine
Yao-style garbling with BMR-style randomization. The protocol Π1 will have
the feature of invoking ̂F just once and making only a black-box use of a PRG.
Our first implementation of this step is used for our main asymptotic result and
the second for our concretely efficient protocol.

Step 2: Reduce ̂F to COT. In this step, we obtain an actively secure protocol
Π2 for ̂F where the parties have access to an augmented OT functionality we
refer to as certified oblivious transfer (COT). The COT functionality FCOT in its
core performs the parallel OT functionality but additionally assures the receiver
that the pairs of strings transmitted satisfy a global consistency predicate. This
step is implemented via two intermediate steps:

1. Start with a perfectly secure non-interactive protocol Π1.5 for ̂F using a stan-
dard parallel OT oracle, where security should only hold in the presence of a
passive sender and an active receiver. Such protocols were referred to in [20]
as NISC/OT protocols, and can be based on any decomposable randomized
encoding for ̂F [18,22] (which can also be viewed as a perfectly secure projec-
tive garbling scheme [4,49] or a private simultaneous messages protocol [10]
with 1-bit inputs). We exploit the simplicity of ̂F to get an efficient realization
of this step via the standard reduction from

(

n
1

)

-OT to
(

2
1

)

-OT [6].
2. Compile Π1.5 into a protocol Π2 in the FCOT-hybrid where the sender and

receiver rely on the COT oracle to perform the parallel OTs prescribed by
Π1.5 while assuring the receiver that the sender’s inputs to the parallel OT
oracle were constructed correctly according to Π1.5. To make the COT pred-
icate simpler, we allow it to be non-deterministic: the predicate depends on
an additional NP-witness provided by the sender. The receiver accepts the
selected strings if the witness used by an honest sender is valid, and rejects
(except with negligible probability) if there is no valid witness that satisfies
the global consistency predicate.

Step 3: Reduce COT to commit-and-prove and parallel-OT. We obtain
a constant-round protocol Π3 for the COT functionality in a hybrid model where
the parties have access to a commit-and-prove (C&P) oracle and a parallel-OT
oracle. Loosely speaking, the C&P functionality is a reactive functionality that
proceeds in two phases. In the first phase, the sender commits to an input, and
in the second phase it proves that this input satisfies some NP relation chosen
by the receiver.

Our implementation of COT in this step deviates from the approach of [20]
which relies on an information theoretic MPC protocol to simultaneously per-
form both the computations of the parallel OT and the “certification.” We
decouple the two by relying on the parallel OT and the C&P functionalities
individually in separate steps, which leads to an efficiency improvement over the
COT implementation of [20].
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Step 4: Reduce commit-and-prove to parallel-OT. Finally, we use a proto-
col Π4 to reduce the C&P functionality to parallel-OT via an MPC-in-the-head
approach [21]. Prior works [24,27] have shown how to realize C&P with sub-
linear communication using PCPs and CRHFs. We provide a leaner alternative
construction that realizes the C&P functionality in the parallel-OT hybrid with
constant communication overhead.7 This construction is a variant of the recent
sublinear zero-knowledge protocol from [1].

Input-dependent failures. A (standard) issue (also present in [20]) that we
have to address is that Step 2 will only achieve a slightly relaxed notion of
security where an active adversary corrupting the COT sender can cause an
input-dependent abort for the receiver.8 More precisely, a corrupted sender can
induce a disjunctive predicate (such as x3 ∨ x5 ∨ x7) on the receiver’s input
bits that if satisfied, will make the receiver abort. We refer to this as an input-
value disjunction (IVD) attack and the resulting abort as IVD-abort. The IVD
attack on Step 2 results in the final protocol (obtained by composing all 4 steps)
realizing a relaxed functionality that allows for similar IVD attacks on F (and
only such attacks). We address this issue as in [20] by precompiling F into
another functionality FIVD such that securely realizing F reduces to securely
realizing FIVD up to IVD attacks. Finally, for our concretely efficient protocol
we will rely on efficient variants of this reduction from [35,45] that increase the
length of the receiver’s input by a constant (≤4) factor and adds only XOR gates
in FIVD which can be handled efficiently via the Free XOR optimization [33]. An
alternative implementation of FIVD that increases the input length by only a
sublinear amount is given in [20].

4 Secure 2PC in NC0-Hybrid

In this section, we provide our compilation from an arbitrary 2PC functionality
F to a NC0 functionality ̂F and a protocol Π1 that securely realizes F in the
̂F-hybrid. We provide two such compilations which will be variants of analogous
constructions in [20]. Previous two-party protocols essentially have a sender who
creates and delivers a garbling to a receiver. In contrast, we modify the construc-
tions in [20] to incorporate additional randomization from the receiver inspired
by the BMR approach [3].

Overview. On a high-level, the BMR protocol proceeds in two phases: (1) First,
in an offline phase, the parties jointly compute a garbling of the circuit they wish
to evaluate on their inputs, and (2) in an online phase, the parties share keys
corresponding to their inputs and shares of the garbled circuit and output a
translation table. Each party then individually reconstructs the garbled circuit,

7 We remark that our protocol can be instantiated using ideal commitments (or even
one-way functions in the plain model), but we present a version based on OT as our
end goal is to design an efficient secure protocol which anyway requires OT.

8 For example, it can modify an honest sender’s strategy by setting some of the OT
inputs to ⊥, which will cause the receiver to abort for those values as inputs.



Actively Secure Garbled Circuits 15

evaluates the garbled circuit using the input keys and then obtains the result of
the computation. When instantiated in the two-party setting, the BMR protocol
differs from the standard Yao’s protocol [49] in that the garbling is constructed
jointly by both parties as opposed to just by one party in [49].

In slight more detail and restricting our discussion to the two-party setting,
both parties provide two keys for every wire in the circuit so that the keys for
the output wires of each gate are encrypted in each garbled row under both keys
associated with the input wires of this gate. A key difference between the BMR
and the Yao protocol is that the association of the keys with the actual values
remain hidden from both parties as both of them contribute shares (or masks)
that are combined to decide the association. This allows both parties to evaluate
the garbled circuit while maintaining privacy. One can model the offline phase
as a actively secure computation of a “garbling” functionality where parties
provide keys and masks for each wire. However, unless we assume some strong
form of a PRG (i.e. PRGs that can be computed by a constant-depth circuits),
the computation in the offline phase will not be a constant-depth circuit.

An important optimization considered in [37], observes that if the parties pro-
vide both the keys and PRG values under these keys as inputs in the offline phase,
then the garbling can be computed via an NC0 circuit over the inputs. How-
ever, such a functionality cannot guarantee the correctness of the PRG values
provided by corrupted parties. Nevertheless, [37] show that to achieve security
against active adversaries in the overall protocol, it suffices to securely compute
the NC0 functionality with active security. In other words, [37] demonstrate that
bad PRG values provided by corrupted parties do not affect the correctness or
privacy in the overall protocol. The key idea here is that a bad PRG value can at
most trigger an abort when the particular wire associated with the PRG value
assumes some particular value in the computation. However, since the associ-
ations of keys to values are randomized by both parties, the event of such an
abort will be independent of the true value associated with that wire. Using an
induction argument, it is possible to establish an invariant that if the evaluation
does not abort due to a bad PRG value then the computation will be correct
because the protocol guarantees correctness of the NC0 computation. Combining
the invariant with the key idea implies that the event of an abort is independent
of the actual honest parties’ inputs (as opposed to just the particular interme-
diate wire value) thereby guaranteeing privacy. Finally, [37] demonstrate that if
the evaluation path in the garbled circuit never hits a bad PRG value, then the
computation will be correct.

The IKOPS protocol [20], on the other hand, is an extension of the standard
Yao protocol where the garbling is computed by a sender and the keys are
delivered to a receiver via an OT protocol. As previously observed [35,36], it
must be ensured that an active sender does not create a bad garbled circuit.
In the IKOPS protocol, the authors show how to restrict the effects of such an
attack by introducing two variants of functionalities. In the first variant, the
NC0 functionality authenticates the PRG values that are input by the sender,
whereas in the second variant only the color bits (or point-and-permute bits) are
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authenticated. The high-level idea is that the authentication information makes
the sender commit to parts of the garbling and restricts the space of attacks
that can be carried out by the sender. Nevertheless, in both these variants, the
sender may still cause the receiver to abort depending on its input or the actual
wire values. To make the abort independent of the receiver’s input, the IKOPS
protocol incurs a polylog(κ) factor overhead as it precompiles the functionality
F to be immune to such attacks. Consequently, the resulting final protocol has
a polylog(κ) communication complexity overhead over the standard passively
secure Yao protocol.

Our new approach combines the benefits of the BMR protocol with the
IKOPS variants to achieve a protocol that achieves communication efficiency
with a constant overhead over the semi-honest Yao protocol. On a high-level, we
will continue to have a sender that provides the keys and PRG values to the gar-
bling functionality as in the IKOPS protocol, but will randomize the association
of keys to values following the BMR approach.

4.1 Variant 1: Authenticating PRG Values

In our first variant the functionality authenticates the PRG values submitted by
the sender for creating the garbling. Following [20], the functionality will receive
as input from the sender, for every garbled gate, keys and the PRG evaluations
under these keys and from the receiver it receives as input a MAC key SK that is
used to authenticate the PRG evaluations. The high-level idea here is to require
the receiver to verify whether the PRG values obtained during the evaluation of
the garbled circuit are consistent with authentication information received from
the functionality and letting it abort if the authentication fails. We deviate from
[20] by including additional randomization in the form of random bits supplied
by the receiver to randomize the association of key and values for each wire.

Formally, we establish the following Lemma.

Lemma 4.1 (AuthPRG Compiler). There exists a compiler AuthPRG that
given κ (PRG seed length), s (statistical security parameter) and a two-party
functionality F(x, y), expressed by a circuit C, outputs another two-party func-
tionality ̂F and protocol Π1 that securely realizes F in the ̂F-hybrid with the
following features:

– ̂F is represented by an NC0 circuit of size O(|C|κ). The receiver’s inputs to
̂F include its original input y to F and a string of length O(|C| + κ) that it
will choose uniformly at random.

– Π1 makes a single invocation to the ̂F oracle.
– Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ →

{0, 1}2κ.

Proof. We begin with a description of the compiled functionality ̂F = FAuthPRG

and then continue with our protocol description. If s > κ then the compiler sets
s = κ. This is because we require our simulation error to be only bounded by
2−s + ν(κ) for some negligible function ν(·).
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The NC0 Functionality ̂F = FAuthPRG. In more details, in this variant the
NC0 functionality FAuthPRG computes a BMR-style garbling for the functional-
ity F that is expressed by a set of wires W and a set of gates G, where only the
sender provides the keys and PRG values to be used for this generation. Namely,
the functionality obtains the parties’ respective inputs (x, y) to the function F
and shares for masking {λw}w∈W , as well as the PRG evaluations from the sender
and the authenticated information from the receiver, and creates the garbling
for all gates g ∈ G; the complete details can be found in Fig. 1.

Protocol 1 (Protocol Π1). The parties’s common input is a Boolean circuit
C, expressed by a set of wires W and a set of gates G.

Parameters: Let s be the statistical security parameter and κ be the compu-
tational security parameter. Let GPRG : {0, 1}κ → {0, 1}2κ be a PRG and let
(ECC,MAC) be a 2−κ secure MAC-scheme (cf. Sect. 2.2) where ECC = {Enclin :
{0, 1}κ → {0, 1}�inκ} and MAC = {MACSK : {0, 1}�inκ → {0, 1}�outκ}SK∈{0,1}�keyκ .

Convention for expressing PRG values. The number of random bits that
we need to extract from each key (acting as a seed to the PRG) depends on the
number of gates the wire associated with the key occurs as an input. In standard
garbling, if a wire occurs as input in T gates, then each key associated with the
wire will be used in 2T rows and in each row we will require κ (output key)
+	out (authentication information) +1 (point-and-permute bit) bits. In order to
describe our protocol succinctly we will employ a PRF-type definition: Fk(g, r)
will represent a unique portion of κ + 	out + 1 bits in the output of GPRG(k) that
is used for gate g in row r.

– Input: The sender is given input x and the receiver is given input y. Both par-
ties are given the security parameters 1κ, 1s and the description of a Boolean
circuit C.

– The sender’s input to FAuthPRG:
• Input x.
• For every wire w ∈ W , keys k0

w, k1
w sampled uniformly at random from

{0, 1}κ and a mask bit λS
w ← {0, 1} sampled uniformly at random.

• For every gate g ∈ G, input wire w ∈ W , point-and-permute bit b and
a row r, a tag τg,r

w,b,S (that will be used to generate the MAC tag for the
PRG value computed based on the key kb

w).
• For every gate g ∈ G, with input wires a and b, the PRG values, Fk0

a
(g, 0),

Fk0
a
(g, 1), Fk1

a
(g, 0), Fk1

a
(g, 1), Fk0

b
(g, 0), Fk0

b
(g, 1), Fk1

b
(g, 0), Fk1

b
(g, 1).

– The receiver’s input to FAuthPRG:
• Input y.
• A random seed β to an s-wise PRG GsPRG : {0, 1}κ �→ {0, 1}t.
• A MAC key SK ∈ {0, 1}γ2κ.

– The receiver’s outcome from FAuthPRG:
• {(R00

g , R01
g , R10

g , R11
g )}g∈G.

• kw||zw for every input wire w.
• The masked MAC for every PRG value, namely, τg,r

w,b,R.
• λw for every output wire.
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Functionality FAuthPRG

Let C represent the circuit that computes the functionality F and comprises of a set of
wires W and a set of gates G.

The sender’s inputs to the functionality are:
– Input x.
– For every wire w ∈ W (excluding output wires), keys k0

w, k1
w ← {0, 1}κ and

mask λS
w.

– For every gate g ∈ G with input wires a and b, the PRG val-
ues, F g,0

a,0 , F g,1
a,0 , F g,0

a,1 , F g,1
a,1 , F g,0

b,0 , F g,1
b,0 , F g,0

b,1 , F g,1
b,1 and their encodings under

Enclin, EF g,0
a,0 , EF g,1

a,0 , EF g,0
a,1 , EF g,1

a,1 , EF g,0
b,0 , EF g,1

b,0 , EF g,0
b,1 , EF g,1

b,1

– For every gate g, input wire w, b, r ∈ {0, 1}, a tag τg,r
w,b,S (that will be used to

generate the MAC tag for the PRG value computed based on the key kb
w).

The receiver’s inputs to the functionality are:
– Input y.
– A random seed β to an s-wise PRG GsPRG : {0, 1}κ {→� 0, 1}t.
– A MAC key SK ∈ {0, 1}�keyκ.

The functionality performs the following computations:
1. Compute the combined masks for every wire w ∈ W as λw = λS

w ⊕ λR
w ,

where λR
w is computed by choosing the wth bit in GsPRG(β).

2. For every gate g ∈ G with input wires a and b and output wire c, compute the
garbled table as follows:

R00
g = F g,0

a,0 ⊕ F g,0
b,0 ⊕ (k0

c ||0) ⊕
(
(λaλb ⊕ λc)(k

1
c ||1 ⊕ k0

c ||0)
)

R01
g = F g,1

a,0 ⊕ F g,0
b,1 ⊕ (k0

c ||0) ⊕
(
(λa ⊕ λaλb ⊕ λc)(k

1
c ||1 ⊕ k0

c ||0)
)

R10
g = F g,0

a,1 ⊕ F g,1
b,0 ⊕ (k0

c ||0) ⊕
(
(λb ⊕ λaλb ⊕ λc)(k

1
c ||1 ⊕ k0

c ||0)
)

R11
g = F g,1

a,1 ⊕ F g,1
b,1 ⊕ (k0

c ||0) ⊕
(
(1 ⊕ λa ⊕ λb ⊕ λaλb ⊕ λc)(k

1
c ||1 ⊕ k0

c ||0)
)

3. Send the receiver Rec the following values:
– {(R00

g , R01
g , R10

g , R11
g )}g∈G.

– (k0
w||0) ⊕

(
(λw ⊕ xi) ∧ (k1

w||1 ⊕ k0
w||0)

)
for every pair (w, i) where

the input wire w carries the ith bit of x.
– (k0

w||0)⊕
(
(λw ⊕yi)∧ (k1

w||1⊕k0
w||0)

)
for every pair (w, i) where the

input wire w carries the ith bit of y.
– The masked MAC for every PRG value, namely, τg,r

w,b,R = τg,r
w,b,S ⊕

MACSK(EF g,r
w,b).

– λw for every output wire.

Fig. 1. The offline functionality FAuthPRG.
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– In addition, the sender encrypts the mask used to mask the MAC values and
sends it to the receiver. Namely, it sends the ciphertext cg,r

w,b = Enckb
w
(τg,r

w,b,S) =
Fkb

w
(g||(2 + r)) ⊕ τg,r

w,b,S.
– Concluding the output. The receiver then proceeds to evaluate the garbled

circuit as follows: Let the gates be arranged in some topological order. We will
maintain the invariant that if the receiver has not aborted when it processes
some gate g with input wires a and b, then it possess keys ka and kb and
colors Λa and Λb.
Base case: For each input wire w ∈ W , the receiver obtains kw||zw, where

the key is kw and the color Λw is set to zw.
Induction step: Consider an arbitrary gate g ∈ G in the topological

sequence with input wires a and b and output wire c. By our induction
hypothesis, if the receiver has not yet aborted then it has keys ka, kb and
colors Λa and Λb. Then the receiver first checks the correctness of the
PRG values as follows:

• For α ∈ {0, 1}, compute τg,α
a,Λa,S = Decka

(cg,α
a,Λa

) = cg,α
a,Λa

⊕ Fka
(g‖(2 +

α)) and check if it equals

τg,α
a,Λa,R ⊕ MACSK(Fka

(g, α)).

If the checks fail, it aborts. Otherwise, it computes

kc||Λc = RΛaΛb
g ⊕ Fka

(g, Λa) ⊕ Fkb
(g, Λb).

Finally, if the receiver has not aborted, it possesses the colors Λw for every
output wire w ∈ W . It then outputs Λw ⊕ λw as the output on wire w for
every output wire.

Next, we provide another variant of our first compiler where we further reduce
the number of random bits input by the receiver to ̂F . This will be important
in our compilation as the number of bits input by the receiver to ̂F will directly
correspond to the number of calls made in the final protocol to the parallel OT
functionality.

Lemma 4.2 (AuthPRG2 Compiler). Suppose there exist explicit s-wise
PRGs in NC0 with O(s) seed size and an arbitrary polynomial stretch. Then there
exists a compiler AuthPRG2 that, given κ (PRG seed), s (statistical parameter),
ε (statistical PRG parameter) and a two-party functionality F(x, y) expressed
by a circuit C, outputs another two-party functionality ̂F and protocol Π1 that
securely realizes F in the ̂F-hybrid with the following features:

– ̂F is represented by an NC0 circuit of size O(|C|κ). The receiver’s inputs to
̂F include its original input y to F and a string of length O(|C|ε + s) that it
chooses uniformly at random.

– Π1 makes a single call to the ̂F oracle.
– Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ →

{0, 1}2κ.
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Moreover, any active corruption of the sender induces a disjunctive predicate P
on the random bits r input by the receiver to ̂F such that the receiver aborts
whenever P on the receiver’s input is satisfied.

4.2 Variant 2: Authenticating Color Bits

In the second variant, the parties submit their inputs to an NC0 functionality that
computes the garbled circuit. In this variant the color bits are encrypted within
each garbled row in an authenticated manner using an information-theoretic
MAC, where the MAC secret-key is chosen by the receiver. In contrast to the
protocol described in Sect. 4.1, the number of OTs in this protocol will be pro-
portional to the circuit’s size since the abort predicate cannot be viewed as
a disjunctive function any longer. On the other hand, the main advantage of
this variant will be that the NP relation between the OT inputs of the sender
and the sender’s inputs and randomness can be expressed by a constant-degree
arithmetic circuit over a large field. As we rely on an MPC protocol to boost
the security of the passive protocol to the active case by certifying that the OT
inputs of the sender satisfy the NP relation, we can rely on efficient MPC pro-
tocols for arithmetic circuits over large fields. In the full version we prove the
following Lemma.

Lemma 4.3 (AuthCol Compiler). There exists a compiler AuthCol that,
given κ (PRG seed length), s (statistical parameter) and a two-party determin-
istic functionality F(x, y) expressed by a circuit C, outputs another two-party
functionality ̂F and protocol Π1 that securely realizes F in the ̂F-hybrid with the
following features:

– ̂F is represented by an NC0 circuit of size O(|C|·(κ+s)). The receiver’s inputs
to ̂F include its original input y to F and a string of length W + 2s that it
will chosen uniformly at random where W = |C| is the number of distinct9

wires in the circuit.
– Π1 makes a single call to the ̂F oracle.
– Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ →

{0, 1}2κ.

The NC0 Functionality ̂F = FAuthCol. In this variant the NC0 functionality
FAuthCol computes a BMR-style garbling for some function F that is expressed
by a set of wires W and a set of garbled gates G, where only the sender provides
the keys and PRG values to be used for this generation. The main difference
over the NC0 functionality from Sect. 4.1 is that in this case the functionality
authenticates the color bits instead of the PRG values submitted by the sender,
where authentication is computed based on the receiver’s secret-key for an infor-
mation theoretic MAC (see Sect. 2.2). More concretely, the functionality obtains
the parties’ inputs (x, y) to the function F and masking {λw}w∈W , as well as

9 Wires as part of a fan out from a gate are considered the same wire.
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Functionality FAuthCol

The functionality runs with parties S, R and an adversary S. The parties’ joint input is
a Boolean circuit C, expressed by a set of wires W and a set of garbled gates G.

The sender’s inputs to the functionality are:
– Input x.
– For every wire w ∈ W , keys k0

w, k1
w ← {0, 1}κ and a mask λS

w.
– For every gate g ∈ G with input wires a and b, the PRG values

F g,0
a,0 , F g,1

a,0 , F g,0
a,1 , F g,1

a,1 , F g,0
b,0 , F g,1

b,0 , F g,0
b,1 , F g,1

b,1 .
The receiver’s inputs to the functionality are:

– Input y.
– For every wire w ∈ W , a mask λR

w .
– Two strings σ0, σ1 ← {0, 1}s.

The functionality performs the following computations:
1. Compute the combined masks for every wire w ∈ W as λw = λS

w ⊕ λR
w .

2. For every gate g ∈ G, compute the garbled table as follows:

R00
g = F g,0

a,0 ⊕ F g,0
b,0 ⊕ (k0

c ||σ0) ⊕
(
(λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0

c ||σ0)
)

R01
g = F g,1

a,0 ⊕ F g,0
b,1 ⊕ (k0

c ||σ0) ⊕
(
(λa ⊕ λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0

c ||σ0)
)

R10
g = F g,0

a,1 ⊕ F g,1
b,0 ⊕ (k0

c ||σ0) ⊕
(
(λb ⊕ λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0

c ||σ0)
)

R11
g = F g,1

a,1 ⊕ F g,1
b,1 ⊕ (k0

c ||σ0) ⊕
(
(1 ⊕ λa ⊕ λb ⊕ λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0

c ||σ0)
)

3. Send the receiver R the following values:
– {(R00

g , R01
g , R10

g , R11
g )}g∈G.

– (k0
w||σ0)⊕

(
(λw ⊕xi)∧(k1

w||σ1 ⊕k0
w||σ0)

)
for every pair (w, i) where

input wire w carries the ith bit of x.
– (k0

w||σ0)⊕
(
(λw ⊕yi)∧ (k1

w||σ1 ⊕k0
w||σ0)

)
for every pair (w, i) where

input wire w carries the ith bit of y.
– λw for every output wire.

Fig. 2. The offline functionality FAuthCol.

the PRG evaluations from the sender, and the authenticated information from
the receiver, and creates the garbling for all gates g ∈ G; the complete details
can be found in Fig. 2.

Protocol 2 (Protocol Π1). The parties’ common input is a Boolean circuit
C, expressed by a set of wires W and a set of gates G. Let s be the statistical
security parameter and κ be the computational security parameter. Let GPRG :
{0, 1}κ → {0, 1}2κ be a PRG and let {MACSK : {0, 1} → {0, 1}s}SK∈{0,1}2s be an
information theoretically secure MAC computable in NC0.
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– Input: The sender is given input x and the receiver is given input y. Both par-
ties are given the security parameters 1κ, 1s and the description of a Boolean
circuit C.

– The sender’s input to FAuthCol:
• Input x.
• For every wire w ∈ W , keys k0

w, k1
w sampled uniformly at random from

{0, 1}κ, and mask bit λS
w ← {0, 1} sampled uniformly at random.

• For every gate g ∈ G, with input wires a and b, PRG values, Fk0
a
(g, 0),

Fk0
a
(g, 1), Fk1

a
(g, 0), Fk1

a
(g, 1), Fk0

b
(g, 0), Fk0

b
(g, 1), Fk1

b
(g, 0), Fk1

b
(g, 1).

– The receiver’s input to FAuthCol:
• Input y.
• for every w ∈ W , a random mask bit λR

w ← {0, 1}.
• Two strings σ0, σ1 ← {0, 1}s chosen uniformly at random.

– The receiver’s outcome from FAuthCol:
• {(R00

g , R01
g , R10

g , R11
g )}g∈G.

• kw||zw for every input wire w.
• A mask λw for every output wire.

– Concluding the output. The receiver then proceeds to evaluate the garbled
circuit as follows: Let the gates be arranged in topological order. We will
maintain the invariant that if the receiver has not aborted when it processes
some gate g with input wires a and b, then it possess keys ka and kb and color
bits Λa and Λb.
Base case: For each input wire w ∈ W , the receiver holds an input key kw

and a color Λw that is set to 0 if zw = σ0, and set to 1 if zw = σ1. In case
the receiver does not have these values in the correct format, it aborts.

Induction step: Consider an arbitrary gate g ∈ G in the topological
sequence with input wires a and b and output wire c. By our induction
hypothesis, if the receiver has not yet aborted then it has keys ka, kb and
color bits Λa and Λb. Then the receiver computes

kc||zc = RΛaΛb
g ⊕ Fka

(g, Λa) ⊕ Fkb
(g, Λb).

If zc �∈ {σ0, σ1}, the receiver aborts. Otherwise it sets the color Λc such
that zc = σΛc

.
Finally, if the receiver has not aborted, it possesses the colors Λw for every
output wire w ∈ W . It then outputs Λw ⊕ λw as the output on wire w for
every output wire.

Claim 4.4 Let F a two-party functionality as above and assume that F is a
PRG. Then Protocol 2 securely computes F in the FAuthCol-hybrid.

We can modify all our variants to incorporate (by now standard) optimization
of Free XOR [33]. Implicit in this optimization is a mechanism that restricts the
space of keys sampled for the wires.



Actively Secure Garbled Circuits 23

5 Realizing FCOT in the Presence of IVD Attacks

In this section, we design our protocol that securely realizes the COT functional-
ity (cf. Fig. 3) with security in the presence of active adversaries up to IVD-abort.
On a high-level, we combine the MPC-in-the-head approach of [21] to “certify”
the inputs to the OT executions. A similar approach was taken in the work of
[20]. However, our approach significantly deviates from the previous approaches
in the following way:

– In the [20] approach, the receiver obtains the output of the individual OTs
by obtaining the view of the corresponding receivers in the MPC network. In
our approach, the sender and receiver first engage in the OT protocol as in a
normal OT execution and later a “zero-knowledge” proof for the correctness
of the values, that are transferred via the OT protocol, is provided. The
main savings of our approach is in the communication complexity. In the [20]
approach, the view of the receivers contain redundant information from each
of the servers and we avoid this redundancy.

Functionality FCOT−IVD

Functionality FCOT−IVD communicates with sender S and receiver R, and adversary S
and is parameterized by an NP relation R(·, ·) and integers m, n, κ.

1. Upon receiving input (P, {(s01, s
1
1)}j∈[m], w) from S where sb

j ∈ {0, 1}κ and
w ∈ {0, 1}poly(n,κ) it checks if the predicate P is a disjunction of literals and
records (P, s, w) if it is a disjunction where s = {(s01, s

1
1)}j∈[m].

2. Upon receiving (u1, . . . , um) from R where uj ∈ {0, 1}, record (u) where
u = (u1, . . . , um)). If there is no record from the sender the functionality
waits until it receives a message from S. If there is a record (s, w) then it sends
({s

uj

j }j∈[m], R(s, w)) to R only if P (u) 	= 1 and ⊥ if P (u) = 1.

Fig. 3. The certified oblivious transfer functionality with IVD.

We will describe our protocol Π3 in the (FOT,FCnP)-hybrid where FOT is the
parallel OT functionality and FCnP is a slight variant of the standard commit-
and-prove functionality that allows a sender to first commit to a witness w and
then, given a function H from the receiver and an image y from the sender,
delivers the output of the predicate H(w) = y; see Fig. 4 for the formal descrip-
tion.

Beside employing functionalities FOT and FCnP, our protocol uses a special-
hiding information theoretic MAC that preserves the properties of privacy and
unforgeability in a way that enforces the sender to properly commit to its inputs;
see Definition 2.1 for more details. More formally,
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Functionality FCnP

Functionality FCnP communicates with sender S and receiver R, and adversary S and
is parameterized by an NP relation R(·, ·) and integers n, κ.

Commit phase. Upon receiving input (z, w) from S where z =
{(sb

j , r
b
j)}j∈[m],b∈{0,1} and w ∈ {0, 1}poly(n,κ), record this message.

Prove phase. Upon receiving H from R, forward H to S. Upon receiving y from S,
check if there exists a record (z, w) that it received from S. Ignore if no such
record exists. Otherwise, send 1 to R only if H(z) = y and R(s, w) = 1 where
s = {(s01, s

1
1)}j∈[m]. Return 0 otherwise.

Fig. 4. The commit-and-prove functionality.

Protocol 3 (Protocol Π3 for realizing functionality FCOT−IVD).

– Inputs: The sender SCOT’s input is {(s0j , s
1
j )}j∈[m] and a witness w with

respect to some NP relation R, and the receiver RCOT’s input is b1, . . . , bm.
– The protocol:

1. SCOT
FOT←→ RCOT : The parties engage in m oblivious transfers in parallel

using FOT where SCOT uses ((s0j , r
0
j ), (s1j , r

1
j )) and RCOT uses bj, as their

respective inputs in the jth (j ∈ [m]) oblivious transfer execution, where
rb
j is a sufficiently long string. (Looking ahead, this string will serve as

the randomness for some MAC function H.)
2. SCOT

FCnP←→ RCOT : The sender commits to the witness ({(sb
j , r

b
j)}j∈[m],

b ∈ {0, 1}, w) by sending it to the FCnP functionality.
3. SCOT ← RCOT: The receiver chooses a random MAC key H ← H and

sends it to the sender via functionality FCnP.
4. SCOT → RCOT: The sender sends the MAC of every string, namely it

sends {H(sb
j ; r

b
j)}j∈[m],b∈{0,1} to RCOT. If the MACed value transmitted

for (suj

j , r
uj

j ) does not match H(suj

j ; ruj

j ) for some j ∈ [m], then RCOT

rejects.
5. SCOT

FCnP←→ RCOT : The sender and receiver interact via the FCnP function-
ality where SCOT submits {H(sb

j ; r
b
j)}j∈[m],b∈{0,1} and RCOT submits H.

FCnP checks if H was computed correctly on every pair (sb
j , r

b
j) committed

to before as part of the witness and if R({(s0j , s
1
j )}j∈[m], w). If both these

checks pass, it delivers 1 to RCOT and otherwise 0.

Since we can only realize a relaxed functionality FCOT−IVD that allows IVD
attacks, we need to understand how the attack propagates into the protocol
for F (the original functionality that the parties want to compute) in the
FCOT-hybrid. The key point is that the receiver’s inputs to FCOT in the lat-
ter protocol consist of either actual inputs y for F or independently random
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bits (for the BMR masking and MAC keys). Thus, any disjunctive predicate on
the receiver’s inputs to FCOT can be emulated by a (randomized) disjunctive
predicate on the receiver’s inputs y to F .

Theorem 5.1. Let H be a family of special-hiding MAC according to Defin-
ition 2.1 for κ-bit strings. Then Protocol 3 securely computes FCOT−IVD in the
(FOT,FCnP)-hybrid.

6 Putting it Together

In this section we instantiate our framework for two-party computation
by instantiating the computation of our two NC0 functionalities and the
information-theoretic MPC protocols and obtain different efficiency guarantees,
both in the asymptotic and concrete regimes. We use the following convention:

– We use κ and s for the computational and statistical security parameter
respectively.

– We use n to denote the input lengths of the parties and m to denote the
output length of the function F that the parties want to securely compute.

Both of our variants will have constant overhead communication complexity
over the passively secure Yao protocol. The second uses a large number of OTs
but has better concrete efficiency.

6.1 Variant 1: Asymptotically Optimal Construction

The first variant incurs communication complexity of O(|C|κ) bits in the κ-
bit string OT oracle. We first provide a basic result for this variant that will
employ O(|C|) calls to κ-bit string OT oracle. Next, by relying on an information-
theoretic PRG, we will be able to reduce the number of calls to n+O(s · |C|ε) for
an arbitrary constant ε > 0. Such information-theoretic PRGs exist assuming
explicit constant-degree unbalanced unique-neighbor expanders.

The basic result we obtain in this variant is the following theorem.

Theorem 6.1. There exists a protocol compiler that given κ (PRG seed length),
s (statistical security parameter), and a two-party deterministic functionality F
expressed as a Boolean circuit C : {0, 1}n ×{0, 1}n → {0, 1}m, outputs a protocol
ΠC that securely realizes F in the κ-bit string OT hybrid, namely using ideal
calls to κ-bit string OT. The protocol ΠC has the following efficiency features:

– It makes O(|C|)+ poly(log(|C|), s) black-box calls to a PRG GPRG : {0, 1}κ →
{0, 1}2κ.

– It makes O(|C| + s) calls to κ-bit string OT oracle.
– It communicates O(κ · |C|) + poly(log(|C|), log κ, s) bits.
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Remark 6.1. Recall that we require the distinguishing advantage to be bounded
by 2−s + ν(κ) for some negligible function ν(·). We state our asymptotic result
with s as a parameter as we would like to make the distinction between protocols
that achieve 2−s error versus negligible in s error. Furthermore, it allows us to
compare our protocols with prior works that achieve the same simulation error.
We remark that we can assume s < κ without loss of generality as we require
the distinguishing error to be bounded by a negligible function in κ and if s is
bigger than κ, we can let s = κ.

Proof of Theorem 6.1. We follow the framework described in Sect. 3.

1. Following an approach based on [35], we first transform the original func-
tionality F into a new functionality FIVD that will resist input-dependent
attack.

– The circuit size of ̂FIVD is O(κ · |C|+κ ·s) for any circuit C that computes
the original functionality F .

– The receiver’s input length in ̂FIVD is O(|C|)+O(max(n, s)) = O(|C|+s).
2. We next consider an information-theoretic protocol Π2 that realizes ̂FIVD

in the FCOT−IVD-hybrid (where functionality FCOT−IVD is defined in Sect. 5).
Such a protocol is obtained in two steps: (1) First, we take a non-interactive
protocol Π1.5 for ̂FIVD using a standard parallel OT oracle, where this protocol
only needs to be secure in the presence of a passive sender and an active
receiver. (which can also be viewed as a perfectly secure projective garbling
scheme [4,49] or a private simultaneous messages protocol [10] with 1-bit
inputs. See next variant for more details.) (2) We then use the FCOT−IVD

oracle to enforce honest behavior of the sender up to IVD attacks.
This protocol Π2 has the following features:

– The receiver’s input size is O(|C| + s).
– The sender’s algorithm makes O(|C| + s) black-box calls to a length-

doubling PRG GPRG : {0, 1}κ → {0, 1}2κ.
– The total length of the sender’s OT inputs across all OTs is O(κ·|C|+κ·s).

We remark that we only track the number of OTs and the sum total of the
lengths of the sender OT inputs as we can rely on a standard transformation
that takes nOT parallel OTs where the sum of OT input lengths is 	OT and
compile it to nOT parallel OTs with κ-bit inputs that will require the sender
to make � �OT

κ � calls to the underlying length doubling PRG GPRG and send
one additional message to the receiver of length 	OT. This transformation
simply requires the sender to use κ-bit keys sampled independent from a
semantically-secure encryption scheme as the OT sender inputs and send
encryptions of the corresponding inputs with that key.

3. We replace the oracle call to the FCOT−IVD in Π2 by replacing it with the
protocol Π3 from Sect. 5 in the (FOT,FCnP)-hybrid. Then we replace the oracle
call to FCnP with our protocol Π4 where we instantiate our MPC protocol
using a variant of the protocol from [8] further used in [21]. The resulting
protocol is in the FOT-hybrid and realizes FCOT−IVD against active adversaries.
The communication complexity of the protocol can be computed as follows:
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(a) The sender and receiver first engage in parallel OTs where they exe-
cute only the oblivious-transfer part of the COT protocol. This involves
O(|C| + s) inputs from the receiver and the sum total of the lengths of
the sender’s OT inputs across all OTs is O(κ · |C| + κ · s).

(b) The sender transmits a MAC of length s corresponding to each OT
input. There are totally O(|C| + s) strings transmitted via 1-out-of-2
OTs. Therefore, sending the MACs will require the sender to transmit
2 · s · O(|C| + s) = O(s · |C| + s2) bits.

(c) The NP-relation associated with FCnP is of size O(κ · C + κ · s) +
O(s · |C| + s2) = O(κ · C) + κ · poly(s). We can conclude the com-
munication complexity of the protocol realizing FCnP to be O(κ · C) +
poly(log |C|, log κ, s) and involves O(|C|)+poly(log |C|, s) calls to the PRG.

This compilation has the following efficiency features:

– The protocol makes O(|C|) + poly(log |C|, s) black-box calls to a length-
doubling PRG GPRG : {0, 1}κ → {0, 1}2κ.

– The protocol involves O(κ · |C|)+poly(log |C|, log κ, s) bits of communication.
– The protocol incurs O(|C| + s) calls to O(κ)-bit string OTs.

This concludes the proof of Theorem 6.1.
Based on Theorem 6.1, we obtain the first construction of actively secure

2PC protocol that achieves constant overhead communication complexity over
Yao’s passively secure protocol in a model where all parties have black-box access
to any protocol realizing the OT oracle. In contrast, prior works based on the
cut-and-choose paradigm induce a multiplicative overhead of Ω(s).

Next, we improve our construction from Theorem6.1 to one that requires
fewer calls to the OT oracle to something that is sublinear in the circuit size.
This is obtained by replacing the compilation from FIVD to ̂FIVD in Step 2 using
Lemma 4.2. This compilation results in ̂FIVD where the receiver’s input length is
n+O(s · |C|ε) assuming s-wise PRGs. Then we observe that the number of calls
made to the OT in our final protocol is equal to the receiver’s input length to
̂FIVD. We thus get the following corollary.

Corollary 6.2. Suppose there exist explicit s-wise PRGs in NC0 with O(s) seed
size and an arbitrary polynomial stretch. Then, for every ε > 0, there exists a
protocol compiler that, given (κ, s) and a functionality F expressed as a Boolean
circuit C : {0, 1}n × {0, 1}n → {0, 1}m, outputs a protocol ΠC that securely
realizes F in the κ-bit string OT hybrid with the following efficiency features:

– It makes O(|C|) + poly(log(|C|), s) black-box calls to a length-doubling PRG
GPRG : {0, 1}κ → {0, 1}2κ.

– It makes n + O(s · |C|ε) calls to a κ-bit string OT oracle.
– It communicates O(κ · |C|) + poly(log(|C|), log κ, s) bits.

Remark 6.2. As discussed in Footnote 6 and Sect. 2.1, the combinatorial assump-
tion about explicit s-wise PRGs is a seemingly mild assumption that was already
used in other contexts.
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This corollary provides the first black-box protocol that simultaneously
achieves asymptotically constant overhead communication complexity over Yao’s
passively secure protocol and requires sublinear (in circuit size) number of calls
to a OT protocol. In contrast, prior works have either obtained constant over-
head (e.g., [48], albeit in the bit-OT hybrid model) or a small number of calls to
the OT oracle (e.g., protocols based on cut-and-choose).

6.2 Variant 2: Concretely Efficient Variant

Our second variant will also achieve a communication complexity of O(κ · |C|)
bits and employ O(|C|) calls to a κ-bit string OT oracle. We will identity the
precise constant in the overhead. In this variant we will be able to incorporate
the FreeXOR optimization.

More precisely, we have the following theorem:

Theorem 6.3. There exists a protocol compiler that, given κ (PRG seed length),
s (statistical security parameter) and a functionality F(x, y) expressed as a cir-
cuit C : {0, 1}n×{0, 1}n → {0, 1}m, outputs a protocol ΠC which securely realizes
F in the κ-bit string OT-hybrid with the following features:

– The protocol makes |C| + 2 · s + max(4 · n, 8 · s) calls to κ-bit string OT.
– The protocol communicates (in bits)

(16 · κ + 26 · s) · |C| + 2 · s · (|C| + 2 · s + max(4 · n, 8 · s))

+ 8 · s1.5 ·
√

|C| · (55 · �κ/s� + 6 · κ + 73).

Proof of Theorem 6.3. The compilation takes as input a circuit C and security
parameter κ and proceeds by following the same approach as in our first variant
with the exception that we use our transformation in the FAuthCol-hybrid as
described in Sect. 4.2 and the MPC protocol instantiated above. More precisely,

1. We transform the original functionality F into FIVD that is resistant to IVD
attacks just as in the previous compilation. In our initial computation in this
section, we ignore the additive overhead that is incurred as a result of this
transformation. At the end of the section, we provide bounds for the additive
terms. The circuit size of FIVD will therefore be |C| and the recipe input
|C| + n + 2s.

2. Next, we compile FIVD to ̂FIVD using FAuthCol-hybrid as described in Sect. 4.2.
The NC0 functionality ̂FIVD has the following features:

– The receiver’s input size is |C|+2 ·s+max(4 ·n, 8 ·s) where max(4 ·n, 8 ·s)
is the length of the encoding of the receiver’s input following [35].

– The output length of the NC0 functionality is 4 · |C| · (κ + s). Note that
̂FIVD includes an additional n2 XOR gates compared to FIVD. These are
required to decode the receiver’s input before the computation begins.
We will not include these gates in our circuit size as we can rely on the
FreeXOR optimization.

We will compute the precise size in the next step.
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3. We next consider an information-theoretic protocol Π that realizes ̂FIVD in
the FCOT−IVD-hybrid. As before, this proceeds in two steps: (1) Take a non-
interactive protocol for ̂F using a parallel OT oracle, where the protocol only
needs to be secure in the presence of a passive sender and an active receiver.
(2) Use the FCOT−IVD oracle to enforce honest behavior of the sender up to
IVD attacks.

First, we compute the communication complexity of the passive protocol
that realizes the NC0 functionality in (1). Note that the computation of ̂FIVD

involves a computation with constant locality, in fact, at most 4 locality on
the receiver’s inputs. We recall from [6] that there is a NISC protocol in the
1-out-of-2d OT-hybrid to compute any function with locality d. This incurs
a communication cost of 2d+1 − 2 bits. Following this construction naively
results in a total communication complexity of 24+1 − 2 = 30 per output bit
for total of 30 · 4 · (κ + s) · |C| bits for computing ̂FIVD.

We tighten the analysis in two ways:

– First, we observe that each bit in the output of the NC0 functionality
we are computing can be expressed as a sum of monomials. This means
we can break the monomials into different sections where the locality of
each section is small. Then, we compute each section using the standard
approach prescribed above. Additionaly, to ensure privacy we will have
to mask the outputs each section with shares of 0.

– Certain monomials (or sum of monomials) appear in multiple expression
(for e.g., the four garbled rows share monomials as we describe below)
and we can compute the shared monomials only once.

The general formula for computing the garbled row (r1, r2) in gate g with
input wires a, b and output wire c is given by

Fk
r1
a

(g, r1, r1)⊕Fk
r2
b

(g, r1, r2)⊕[(λR
a ⊕λS

a ⊕r1)∧(λR
b ⊕λS

b ⊕r2)⊕λR
c ⊕λA

c ]∧(k0
c⊕k1

c )

Next, we consider the following monomials and explain how the first κ bits
of the four rows of a garbled gate can be computed from them.

M1 = [(λR
a ∧ λR

b ) ⊕ (λR
a ∧ λS

b ) ⊕ (λS
a ∧ λR

b ) ⊕ λA
c ] ∧ (k0

c ⊕ k1
c ) ⊕ R1

M2 = [λR
a ∧ (k0

c ⊕ k1
c )] ⊕ R2

M3 = [λR
b ∧ (k0

c ⊕ k1
c )] ⊕ R3

M4 = [λR
c ∧ (k0

c ⊕ k1
c )] ⊕ R3

We will also have the sender send the receiver the following four strings
(ciphertexts): For r1, r2 ∈ {0, 1}
cg,r1,r2 = Fk

r1
a

(g, r1, r1, 0)⊕Fk
r2
b

(g, r1, r2, 0)⊕R1 ⊕ (r1 ∧R2)⊕ (r2 ∧R3)⊕R4

In the evaluation, if the receiver obtains kr1
a and kr2

b , then it can obtain key
for the c wire by computing

cg,r1,r2 ⊕ M1 ⊕ (r1 ∧ M2) ⊕ (r2 ∧ M3) ⊕ M4
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By our preceding calculations, M1 is a monomial over two variable λR
a , λR

b

from the receiver and can be computed with overhead 6 per bit of the key.
The other three monomials involve only one variable from the receiver and
can be computed with overhead 2. Overall the communication of transmitting
this will be 6 ·κ + (2 + 2 + 2) ·κ as part of the oblivious-transfer and 4 · |C| ·κ
bits in the clear.

The next s bits which will encrypt the color bits can be computed analo-
gously, where each of the terms above will additionally involve a multiplicand
σ0 ⊕ σ1 from the receiver. Following a similar analysis the number of bits
transmitted will be 14 · s + (6 + 6 + 6) · s bits as part of the oblivious transfer
and 4 · |C| · s bits in the clear. We can improve this further because we can
compress the sender’s input to the OT when it is communicating strings that
are long and chosen uniformly random. For example, in the OTs involving
each bit of σ0⊕σ1 as receiver’s input, the sender’s input length is O(|C|). This
can be reduced to sending a PRG seed of length κ and the receiver expanding
it to O(|C|) bits. This reduces the cost to

2 · κ · s + 10 · s + (4 + 4 + 4) · s = 2 · κ · s + 22 · s

Looking ahead, in our final protocol we will employ protocol Π directly
as a sub-protocol. We will need two measures of complexity from this pro-
tocol. First, we need the communication complexity which we compute by
calculating the receiver’s input size (which translates to number of parallel
OT invocations) and the sums of the lengths of the sender’s inputs in all the
parallel OT. Second, we estimate the size of the global predicate defined by
the NISC/OT protocol which will dictate the complexity of our commit-and-
prove protocol in the next step.

Following the calculations described above, we can conclude that this pro-
tocol incurs the following costs:

– The receiver’s input size is |C| + 2s + max(4 · n, 8 · s).
– The sum total of the sender OT inputs is (12 · κ + 22 · s) · |C| + 2 · κ · s

bits.
– The length of the sender’s message is 4 · (κ + s) · |C|.
– The global predicate that will be the NP relation used in the FCOT−IVD

oracle can be expressed as an arithmetic circuit over the GF(2s) field. We
will only count the number of multiplication gates, as addition will be free.
Recall that the global predicate is required to enforce honest behavior of
the sender in Π. Given the sender inputs to the parallel OT, we compute
the size of the global predicate as follows:
Input size to NP relation. The witness to the NP statement includes
(1) the strings for the OT, the sum of the lengths of inputs of which are
(12·κ+22·s)·|C|+2·κ·s, (2) The PRF values which totals to 4·|C|·(κ+s),
and (3) for each wire w, λR

w, k0
w, k1

w that sums up |C| + 2|C| · κ.
Key part of the output. Consider one of the garbled rows for a gate
g with input wires a, b and output wire c. For very possible assignment
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(a1, a2, a3) of λR
a , λR

b , λR
c the first κ bits of a garbled row can be expressed

as
F a
prg + F b

prg + k0
c + fa1,a2,a3

g,row (λS
a , λS

b , λS
c ) · (k1

c − k0
c )

where F a
prg, F

b
prg, λ

S
a , λS

b , λS
c , k0

c , k1
c will be include in the witness for the

predicate. The function fa1,a2,a3
g,row can further be expressed as

c1 · λS
a · λS

b + c2 · λS
a + c3 · λS

b + c4 · λS
c + c5

for some coefficient c1 through c5 that will depend on the particular
assignment for λR

a , λR
b , λR

c .
Each garbled row can also be computed from the sender’s OT inputs

(again included in the witness) using only addition operations (this is
exactly the computation of the receiver once it receivers the OT outputs).
The predicate will check that the garbled row computed the two ways
are equal.

We only include the number of multiplication operations in our circuit
size. It suffices to compute the product of each of λS

a · λS
b , λS

a , λS
b , λS

c

with (k1
c − k0

c ) to compute all of fa1a2a3
g,row (where a1, a2, a3 ∈ {0, 1} and

row ∈ {1, 2, 3, 4}). Since we first split k0
c , k1

c into chunks of s bits, there
will be �κ

s � chunks and for each garbled row, the predicate will include
5 · �κ

s � multiplications per gate.
MAC part of the output. Again, for every combination of λR

w val-
ues, we compute the MAC part in two ways and check if they are equal.
However, we will not do this check for every garbled row, we will do this
for every column of the matrix where the MAC part of the garbled rows
across all gates are stacked up. Furthermore, as we describe below, it will
incur no additional multiplication gates.

As before, for very possible assignment (a1, a2, a3) of λR
a , λR

b , λR
c cor-

responding to a gate, the last s bits (i.e. the MAC part) of a garbled row
can be expressed as

F a
prg + F b

prg + σ0 + fa1,a2,a3
g,row (λS

a , λS
b , λS

c ) · (σ1 − σ0).

First, we observe that σ0 and σ1 are provided by the receiver. We consider
the computation of each bit of this string. For every position, i, if the it

bit of σ0 and σ1 − σ0 are b1 and b2 respectively, the result will be vb1b2
g,row,

where
vb1b2

g,row = F a
prg + F b

prg + b1 + fa1,a2,a3
g,row (λS

a , λS
b , λS

c ) · b2.

Since fa1,a2,a3
g,row was already computed in the previous part, the values

vb1b2
g,row can be achieved with no additional multiplication gates. We further

note that vb1b2
g,row is independent of the position in the MAC part.

Again, we can compute vb1b2
g,row using the sender OT input strings by

using only an addition operation for each position in the MAC part. We
can check for every position if this value matches the computation above
from the witness. There is no additional cost for this part.
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Binary constraints. The λS
w values need to be sampled from {0, 1}

and since we are operating in GF(2s) we need enforce this constraint.
This will require a single multiplication10 per wire for a total of |C|
multiplications. However, it will not affect the communication length and
only the computations that need to performed.
Combining the above, we have a total of |C| · 5 · ⌈

κ
s

⌉

multiplications.
4. As in our previous compilation, we replace the oracle call to FCOT−IVD in

Π with the protocol Π3 from Sect. 5 in the (FOT,FCnP)-hybrid. We then
replace the oracle call to FCnP with our protocol Π4 in the FOT-hybrid where
we instantiate our MPC protocol using [1]. The resulting protocol realizes
FCOT−IVD against static corruptions by active adversaries. This communica-
tion complexity of the protocol can be computed as follows:
(a) The sender communicates (12 · κ + 22 · s) · |C| + 2 · κ · s bits to the OT

functionality and 4 · (κ+ s) · |C| bits in a direct message to the receiver in
the first step of the protocol as part of the passively secure protocol for
realizing the ̂FIVD functionality.

(b) Transmitting a MAC for each OT input. We transmit a MAC value of
length s for each OT string independent of its length. There are 2 · (|C|+
2 ·s+max(4 ·n, 8 ·s)) strings transmitted via OTs. Therefore, sending the
MACs will require the sender to transmit 2 ·s ·(|C|+2 ·s+max(4 ·n, 8 ·s))
bits.

(c) The commit-and-prove protocol. The communication complexity of this
protocol can be bounded by 8 · s1.5 ·√I + 3 · M bits, where M represents
the number of field multiplications over GF(2s) involved in the compu-
tation of the NP-relation and I denotes the any additional witness bits
(involved only in additions). Our NP-relation can be expressed as an arith-
metic circuit over GF(2s), including the global predicate from the previous
step and an additional check to ensure that the MACs are correct. From
the previous step we know that the first part requires 5 · |C| · �κ

s � multipli-
cations for verifying the OT inputs whereas the second part, verifying the
MACs requires one multiplication per s bits of the OT sender inputs. This
results in �Γ/s� multiplications where Γ is the total length of OT sender
inputs. From the previous step, we know Γ = (12 ·κ+22 · s) · |C|+2 ·κ · s.
In addition, as part of the witness, the PRF values that are used only
for additions need to be included this sums up to 4 · |C| · (κ + s). For an
arithmetic circuit C we denote by |C| the number of multiplication gates.
Our proof length is given by

8 · s1.5 ·
√

4 · |C| · (κ + s) + 3 · |C| · (5 · �κ/s� + 12�κ/s� + 22 + 2 · κ · s)

= 8 · s1.5 ·
√

|C| · (55 · �κ/s� + 6 · κ + 73)

10 We express this as x2 − x = 0.



Actively Secure Garbled Circuits 33

Finally, the overall communication complexity of the protocol in the κ-bit string
OT-hybrid for circuits with more than 5000 AND gates is

(12 · κ + 22 · s) · |C| + 4 · (κ + s) · |C|
︸ ︷︷ ︸

passive NISC/OT communication

+ 2 · s · (|C| + 2 · s + max(4 · n, 8 · s))
︸ ︷︷ ︸

MAC for every OT input

+ 8 · s1.5 ·
√

|C| · (55 · �κ/s� + 6 · κ + 73)
︸ ︷︷ ︸

CnP protocol

.

In Table 2, we provide estimate communication cost incurred by our proto-
col. We set κ = 128 and s = 40 and 80. The communication cost for the OT
invocations were computed assuming an implementation based on the actively
secure OT extension protocol of [29] and can be bounded by 3 · (#OT ) · κ. Fur-
thermore, to accommodate arbitrary length strings for the sender’s inputs the
communication cost of OT is computed on κ′-bit strings from the sender, where
κ′ = 128 in practice, and longer strings are handled by transferring random keys
and encrypting the bigger strings via the keys.
Computational efficiency. In contrast to the concrete communication com-
plexity, which is implementation independent, the concrete computation cost is
sensitive to many implementation details. Although we have not implemented
our protocol, we believe that it can be reasonably fast. The parties engage in
O(|C|) instances of parallel OT execution which can be implemented efficiently
via OT-extensions [17,30]. Reconstructing the garbled circuit from the output of
the parallel OTs relies only on simple bitwise XOR operation on bit strings. The
computationally intensive part of the COT protocol is sharing several blocks of
secrets via packed secret-sharing and evaluating polynomials by both the sender
and the receiver. Since we instantiate our packed-secret sharing scheme over a
large finite field, this can be done efficiently via Fast Fourier Transforms. An
implementation of a similar FFT-based protocol is provided in [1]. Furthermore,
the communication complexity of the COT protocol is significantly smaller than
the overall communication (as can be seen in the calculations above). This allows
trading a slight increase in the communication cost for more significant improve-
ments in computational cost by using a larger number of FFTs on shorter blocks.

Non-interactive variant. With function independent preprocessing for gener-
ating random OTs between the sender and the receiver, we can make our pro-
tocol non-interactive in the sense of [20], namely implement the protocol with
one message from the receiver to the sender, followed by one message from the
sender to the receiver. At a high-level, this is done by executing the passively
secure information theoretic “Yao-style” protocol, followed by our commit and
prove protocol. By OT preprocessing we can make the passively secure NISC/OT
protocol a two-message protocol in the online phase. Our commit and prove pro-
tocol is public coin and can be made non-interactive via a standard Fiat-Shamir
transform [11]. However, in the non-interactive case, the statistical security para-
meter s becomes a computational parameter, since a malicious sender can just
try sampling 2s instances of its message until finding one that would lead the
receiver to accept a badly formed transcript. It is therefore needed in this case



34 C. Hazay et al.

Table 2. We give our total estimated communication cost of our concretely efficient
variant where κ = 128 and s = 40 and 80. We also provide our overhead over the
passively secure Yao protocol (with FreeXOR but no half-gate optimization).

Circuit size Comm. (MB)
(s = 40)

Overhead
(s = 40)

Comm. (MB)
(s = 80)

Overhead
(s = 80)

1024 0.71 11.33 1.07 17.16

2048 1.19 9.49 1.89 15.09

4096 2.12 8.46 3.16 12.65

6800 (AES) 3.39 8.16 4.80 11.56

8192 3.94 7.88 5.63 11.27

16384 7.53 7.53 10.46 10.46

32768 14.64 7.32 19.96 9.98

65536 28.76 7.19 38.74 9.69

131072 56.86 7.11 75.99 9.50

262144 112.85 7.05 150.05 9.38

524288 224.54 7.02 297.55 9.30

1048576 447.52 6.99 591.66 9.24

2097152 892.90 6.98 1178.65 9.21

4194304 1782.85 6.96 2350.87 9.18

6800 is the size of the AES circuit excluding XOR gates.

to use a larger value of s, say s = 80. A useful feature of non-interactive pro-
tocols is that the sender can use the same encrypted receiver input for multiple
evaluations.11

Offline-online variant. Our protocol is particularly attractive in the offline-
online setting. In an offline preprocessing phase, before the inputs are known,
the sender and the receiver can run the entire protocol except for the oblivious
transfers that depend on the receiver’s input. Following this offline interaction,
the receiver verifies that the information obtained from the sender is consistent,
and can then “compress” this information into a single authenticated garbled
circuit whose size is comparable to a standard garbled circuit. In an online phase,
once the inputs are known, the receiver uses a small number of OTs to obtain
the input keys, and performs garbled circuit evaluation and verification whose
total cost is comparable to a single garbled circuit evaluation.
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A Secure Two-Party Computation

We use a standard standalone definition of secure two-party computation proto-
cols. In this work, we only consider static corruptions, i.e. the adversary needs
to decide which party it corrupts before the execution begins. Following [14], we
use two security parameters in our definition. We denote by κ a computational
security parameter and by s a statistical security parameter that captures a
statistical error of up to 2−s. We assume s ≤ κ. We let F be a two-party func-
tionality that maps a pair of inputs of equal length to a pair of outputs. Without
loss of generality, our protocols only deliver output to one party (the receiver),
which can be viewed as a special case in which the other party’s output is fixed.

Let Π = 〈P0, P1〉 denote a two-party protocol, where each party is given an
input (x for P0 and y for P1) and security parameters 1s and 1κ. We allow honest
parties to be PPT in the entire input length (this is needed to ensure correctness
when no party is corrupted) but bound adversaries to time poly(κ) (this effec-
tively means that we only require security when the input length is bounded by
some polynomial in κ). We denote by REALΠ,A(z),Pi

(x, y, κ, s) the output of
the honest party Pi and the adversary A controlling P1−i in the real execution of
Π, where z is the auxiliary input, x is P0’s initial input, y is P1’s initial input, κ
is the computational security parameter and s is the statistical security parame-
ter. We denote by IDEALF,S(z),Pi

(x, y, κ, s) the output of the honest party Pi

and the simulator S in the ideal model where F is computed by a trusted party.
In some of our protocols the parties have access to ideal model implementation
of certain cryptographic primitives such as ideal oblivious-transfer (FOT) and we
will denote such an execution by REALFOT

Π,A(z),Pi
(x, y, κ, s).

Definition A.1. A protocol Π = 〈P0, P1〉 is said to securely compute a func-
tionality F in the presence of active adversaries if the parties always have the
correct output F(x, y) when neither party is corrupted, and moreover the fol-
lowing security requirement holds. For any probabilistic poly(κ)-time adversary
A controlling Pi (for i ∈ {0, 1}) in the real model, there exists a probabilistic
poly(κ)-time adversary (simulator) S controlling Pi in the ideal model, such that
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for every non-uniform poly(κ)-time distinguisher D there exists a negligible func-
tion ν(·) such that the following ensembles are distinguished by D with at most
ν(κ) + 2−s advantage:

– {REALΠ,A(z),Pi
(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗

– {IDEALF,S(z),Pi
(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗

Secure circuit evaluation. The above definition considers F to be an infi-
nite functionality, taking inputs of an arbitrary length. However, our protocols
(similarly to other protocols from the literature) are formulated for a finite func-
tionality F : {0, 1}n × {0, 1}n → {0, 1}m described by a Boolean circuit C.
Such protocols are formally captured by a polynomial-time protocol compiler
that, given security parameters 1κ, 1s and a circuit C, outputs a pair of cir-
cuits (P0, P1) that implement the next message function of the two parties in
the protocol (possibly using oracle calls to a cryptographic primitive or an ideal
functionality oracle). While the correctness requirement (when no party is cor-
rupted) holds for any choice of κ, s,C, the security requirement only considers
adversaries that run in time poly(κ). That is, we require indistinguishability (in
the sense of Definition A.1) between

– {REALΠ,A(z),Pi
(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗

– {IDEALF,S(z),Pi
(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗

where C is the class of boolean circuits that take two bit-strings as inputs and
output two bit-strings, x, y are of lengths corresponding to the inputs of C, F is
the functionality computed by C, and the next message functions of the parties
P0, P1 is as specified by the protocol compiler on inputs 1κ, 1s,C.
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Abstract. A garbling scheme is used to garble a circuit C and an input
x in a way that reveals the output C(x) but hides everything else. An
adaptively secure scheme allows the adversary to specify the input x
after seeing the garbled circuit. Applebaum et al. (CRYPTO ’13) showed
that in any garbling scheme with adaptive simulation-based security, the
size of the garbled input must exceed the output size of the circuit.
Here we show how to circumvent this lower bound and achieve signif-
icantly better efficiency under the minimal assumption that one-way
functions exist by relaxing the security notion from simulation-based
to indistinguishability-based.

We rely on the recent work of Hemenway et al. (CRYPTO ’16) which
constructed an adaptive simulation-based garbling scheme under one-
way functions. The size of the garbled input in their scheme is as large
as the output size of the circuit plus a certain pebble complexity of the
circuit, where the latter is (e.g.,) bounded by the space complexity of the
computation. By building on top of their construction and adapting their
proof technique, we show how to remove the output size dependence in
their result when considering indistinguishability-based security.

As an application of the above result, we get a symmetric-key func-
tional encryption based on one-way functions, with indistinguishability-
based security where the adversary can obtain an unbounded number of
function secret keys and then adaptively a single challenge ciphertext.
The size of the ciphertext only depends on the maximal pebble complex-
ity of each of the functions but not on the number of functions or their
circuit size.

1 Introduction

Garbled Circuits. A garbling scheme [Yao82,Yao86] can be used to garble a
circuit C and an input x to derive a garbled circuit ˜C and a garbled input
x̃. It’s possible to evaluate ˜C on x̃ and get the correct output C(x). However,
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the garbled values ˜C, x̃ should not reveal anything else beyond this. In many
applications, the garbled circuit ˜C can be computed in an off-line pre-processing
phase before the input is known and therefore we are not overly concerned with
the efficiency of this procedure. On the other hand, once the input x becomes
available in the on-line phase, creating the garbled input x̃ should be extremely
efficient. Therefore, the main efficiency measure that we consider here is the
on-line complexity of a garbling scheme, which is the time it takes to garble an
input x, and hence also a bound on the size of x̃.

Security of Garbled Circuits. There are several natural notions of garbled circuit
security that one can consider.

Firstly, we can consider either selective or adaptive security. For selective
security, we consider a scenario where the adversary chooses the circuit C and
the input x first and only then gets the garbled versions ˜C, x̃. For adaptive
security, we consider a scenario where the adversary first gets the garbled circuit
˜C and can then adaptively chooses the input x to be garbled. Adaptive security
is the natural notion in the on-line/off-line setting where we envision the garbled
circuit to be created first in an earlier stage before the input is selected.

Secondly, we can consider either simulation-based or indistinguishability-
based definitions of security. In the simulation-based setting, we require that the
garbled circuit and the garbled input can be simulated given only the output of
the computation and the topology of the circuit. In the indistinguishability-based
setting, we require that the adversary cannot distinguish between a garbling of
C0, x0 or C1, x1 as long as C0(x0) = C1(x1) and C0, C1 have the same topology.

Prior Work. Yao’s construction of garbled circuits under one-way functions
already achieves essentially optimal on-line complexity, where the time to garble
an input x and the size of x̃ are only linear in the input size |x|, independent of
the circuit size.1 However, it was only shown to satisfy selective simulation-based
security [LP09].

Recently, the work of Hemenway et al. [HJO+16] showed how to modify
Yao’s construction and get adaptive simulation-based security under one-way
functions. The on-line complexity of their scheme depends linearly on a certain
“pebble complexity” t of the circuit, its input size n and output size m. Further-
more, they showed that the pebble complexity t is upper bounded by the circuit
width which is in turn bounded by the space complexity of the computation.
The work of [JW16] also shows that even Yao’s original garbled circuit construc-
tion already achieves adaptive simulation-based security via reduction with a 2t

security loss as long as the mapping between output labels and the bits they
represent is only given in the garbled input.

In both of the above works, the online complexity is always at least as large
as the output size m. The work of Applebaum et al. [AIKW13] (see also [HW15])

1 More precisely, in Yao’s garbled circuits, the garbled input is of size |x| · poly(λ)
where λ is the security parameter. The work of Applebaum et al. [AIKW13] shows
how to reduce this to |x| + poly(λ) assuming stronger assumptions such as DDH,
RSA or LWE.
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gives a lower bound showing that this is inherent for adaptive simulation-secure
garbled circuits.

Our Results. In this work, we show how to construct adaptively secure garbling
schemes based on one-way functions, where the on-line complexity of our scheme
can be smaller than the output size of the circuit. This necessarily requires us to
give up on simulation-based security and instead we achieve indistinguishability-
based security. In more detail, we propose a new garbling scheme which builds on
top of the ideas of [HJO+16] but essentially removes the output size dependence
in their construction, making the on-line complexity only linear in the pebble
complexity t and the input size n, but independent of the output size m.

As an application of the above result, we consider the scenario where we
garble a circuit C which consists of many disjoint boolean sub-circuits C1, . . . , C�

which all take the same input x but do not share any other wires/gates except for
the input wires. In that case, although the output size of C is � (which we think
of as large) the pebble complexity of C is just t = max{ti} where ti denote the
pebble complexities of the individual circuits Ci, and therefore is independent
of the number of circuits �. We can also think of the above as allowing us to
construct an adaptively indistinguishable private-key functional encryption (FE)
scheme by thinking of the garbled versions of the circuits Ci as function secret
keys and the garbled input as a ciphertext. The size of the ciphertext is linear
in the size of the input x and the maximal pebble complexity of the individual
functions, which we can bound by their space complexity, but is independent of
the number of function secret keys � or even their circuit size.

Finally it bears mentioning that an adaptively indistinguishable scheme is
also adaptively secure under the simulation-based security definition for any
efficiently invertible function.2 Therefore for this class of functions our construc-
tion provides a simulation-based adaptively secure garbling scheme with online
complexity independent of the output size.

1.1 Our Techniques

Before we can explain our techniques, we first review Yao’s garbled circuit con-
struction, the issue with adaptive security and the technique of [HJO+16]. The
discussion below is adapted from [HJO+16].

Yao’s Scheme. First, let’s start by recalling Yao’s garbled circuits. For each
wire w in the circuit, we pick two keys k0

w, k1
w for a symmetric-key encryption

scheme. For each gate in the circuit computing a function g : {0, 1}2 → {0, 1}
and having input wires a, b and output wire c we create a garbled gate consisting
of 4 randomly ordered ciphertexts created as:

c0,0 = Enck0
a
(Enck0

b
(kg(0,0)

c )) c1,0 = Enck1
a
(Enck0

b
(kg(1,0)

c )),
c0,1 = Enck0

a
(Enck1

b
(kg(0,1)

c )) c1,1 = Enck1
a
(Enck1

b
(kg(1,1)

c ))
(1)

2 More generally, any function f for which, given any image element y it is possible
to efficiently find a canonical pre-image x.
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where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit ˜C
consists of all of the gabled gates, along with an output map

{k0
w → 0, k1

w → 1}
which maps the keys to the bits they represent for each output wire w. To garble
an n-bit value x = x1x2 · · · xn, the garbled input x̃ consists of the keys kxi

wi
for

the n input wires wi.
To evaluate the garbled circuit on the garbled input, it’s possible to decrypt

exactly one ciphertext in each garbled gate and get the key k
v(w)
w corresponding

to the bit v(w) going over the wire w during the computation C(x). Once the
keys for the output wires are computed, it’s possible to recover the actual output
bits by looking them up in the output map.

To prove the selective simulation-based security of Yao’s scheme, we have a
simulator that gets the output y = y1y2 · · · ym = C(x) and must produce ˜C, x̃.
The simulator picks random keys k0

1, k
1
w for each wire w just like the real scheme,

but it creates the garbled gates as follows:

c0,0 = Enck0
a
(Enck0

b
(k0

c )) c1,0 = Enck1
a
(Enck0

b
(k0

c )),
c0,1 = Enck0

a
(Enck1

b
(k0

c )) c1,1 = Enck1
a
(Enck1

b
(k0

c )) (2)

where all four ciphertext encrypt the same key k0
c . It then sets the output map

as {k0
w → yw, k1

w → 1−yw} by “programming it” so that the key k0
w corresponds

to the correct output bit yw for each output wire w. This defines the simulated
garbled circuit ˜C. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0

w for each input wire w. Note that, when evaluating the
simulated garbled circuit on the simulated garbled input, the adversary only
sees the keys k0

w for every wire w.

Proof of Security and Issues with Adaptivity. There are two main issues with
proving adaptive security of Yao’s construction.

The first issue is that, in the simulation-based security setting, the simulator
now cannot “program” the output map since it is given as part of the garbled
circuit before the output y1, . . . , ym is defined. This can be fixed by modifying
the construction and moving the output map from the garbled circuit to the
garbled input, at the cost of raising the on-line complexity to depend on the
output size. In the simulation-based setting we know this to be inherent, but
one could hope to avoid this in the indistinguishability-based setting.

The second and more serious issue is the sequence of hybrids used to prove
security. At a high level, the selective proof proceeds via a series of carefully
defined hybrid games that switch the distribution of one garbled gate at a time,
starting with the input level and proceeding up the circuit level by level. In
addition to the two modes of creating garbled gates defined above, we also define
an additional mode where the garbled gate is set to:

c0,0 = Enck0
a
(Enck0

b
(kv(c)

c )) c1,0 = Enck1
a
(Enck0

b
(kv(c)

c )),
c0,1 = Enck0

a
(Enck1

b
(kv(c)

c )) c1,1 = Enck1
a
(Enck1

b
(kv(c)

c ))
(3)
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where v(c) is the correct value of the bit going over the wire c during the compu-
tation of C(x). Let us give names to the three modes for creating garbled gates
that we defined above: (1) is called RealGate mode, (2) is called SimGate mode,
and (3) is called InputDepSimGate mode, since the way that it is defined depends
adaptively on the choice of the input x. The proof of selective security of Yao’s
garbled circuits proceeds in a sequence of hybrids where the way we garble a
gate goes from RealGate mode to InputDepSimGate mode to SimGate mode in
some carefully chosen order. The problem with adapting this technique to the
adaptive setting is that the InputDepSimGate mode is not (even syntactically)
well defined; in this mode the way that we garble the gate depends on the value
that the output wire takes on during the computation C(x) but in the adaptive
setting the input x is not yet defined when we create the garbled circuit.

The Technique of [HJO+16]. Essentially, the work of [HJO+16] proves adaptive
security by leveraging two ideas.

Firstly, they encrypt the entire Yao garbled circuit under an additional layer
of encryption using a special “somewhere equivocal encryption scheme”, and give
the decryption key as part of the garbled input. Such a scheme can be used to
create a simulated ciphertext given only some but not all of the plaintext blocks
(think of the unknown blocks as “holes”) and later create a secret key that
decrypts all the known blocks correctly but “plugs the holes” with arbitrarily
specified values. The size of the secret key only depends on the number of holes
and not the entire size of the plaintext. By leveraging this type of encryption,
they can define hybrid games where some of the gates are in InputDepSimGate
mode (which is not well defined when the circuit is created) by putting “holes”
in place of all such gates when creating the garbled circuit and then coming up
with a decryption key that opens the holes to the correct value when creating
the garbled input (at which point InputDepSimGate is well defined).

Secondly, the above idea requires the number of holes (and therefore the size
of the garbled input) to scale with the number of gates in InputDepSimGate mode
in any hybrid. Therefore, to get a non-trivial result, we need a sequence of hybrids
that minimizes the number of gates in InputDepSimGate mode at any point in time.
Recall that we start with all gates in RealGate mode and want to end with all gates
in SimGate mode. We are allowed to make the following changes:

– We can change a gate from RealGate to InputDepSimGate (and back) as long
as its predecessors are in InputDepSimGate mode (or it is at the input level).
This is because, in this case, only one of the keys for each input wire appears
in the game.

– We can change a gate from InputDepSimGate to SimGate (and back) as long as
all of its successors are in SimGate mode (or it is at the output level). This is
because the two keys associated with the output wire are used interchangeably
in the game.

The work of [HJO+16] connects the above with a pebbling game over the circuit,
where the goal is to change all the gates from RealGate to SimGate subject to
the above rules while minimizing the number of gates in InputDepSimGate mode
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at any point in time: this latter number is defined to be the pebble complexity
of the circuit. For example, they show that the pebble complexity of a circuit is
bounded by its width which in turn corresponds to the space complexity of the
computation. The size of the garbled input in their scheme is the maximum of
the pebble complexity of the circuit and the input/output size.

Our Construction and Proof Technique. One could hope to get rid of output
dependence in the construction of [HJO+16] by simply sending the output map
(the mapping between the keys of the output wires and the bits they represent)
with the garbled circuit rather than with the garbled input. Although we know
that such a construction cannot achieve adaptive simulation security, one could
conjecture it to achieve adaptive indistinguishability security. Unfortunately, we
do not know how to prove such a construction secure. Essentially, the issue is that
the only reason we can change output gates from InputDepSimGate to SimGate
in the proof of [HJO+16] is that we can “program” the output map after the
actual output of the computation is known; if the output map is sent with the
garbled circuit this is no longer possible. Instead, we come up with a modified
construction which we are able to prove secure.

Our new garbling construction leverages that of [HJO+16] and proceeds
as follows. To garble a circuit C we use the scheme of [HJO+16] and garble
two copies of C completely independently: we call the resulting garbled circuits
CL,CR. These are just Yao garbled circuits (without an output map) encrypted
under an additional layer of somewhere equivocal encryption. We choose one
of the two garbled circuits at random to be the “active” one: active ← {L,R}.
Then we merge the two garbled circuits by creating a layer of garbled “selection
gates” (s-gates): for each output bit i ∈ [m] we create an s-gate that takes the
i’th output wire from both garbled circuits, and outputs the value on the wire
coming from the active circuit (the output of the garbled s-gate is a bit in the
clear rather than a wire key). The garbled circuit consists of ˜C = (CL,CR, ˜sgate).
To garbled an input x we use the scheme of [HJO+16] to garble two copies of it
for the left and right garbled circuit. The evaluation procedure does the natural
thing by evaluating both CL,CR respectively, and using the output wire keys on
the garbled s-gates to recover the output bits in the clear. Ideas similar to the
use of two circuits along with a selection layer have appeared in prior works,
e.g., [PST14].

To prove security, we consider an adversary that chooses C0, C1, gets a gar-
bled version of Cb, then adaptively chooses x0, x1 such that C0(x0) = C1(x1),
and gets a garbled version of xb. We want to show that the adversary cannot dis-
tinguish between b = 0 and b = 1. We show security via the following sequence
of hybrids.

1. We start with the security game where the challenge bit is b = 0. In this
case, both CL,CR garble C0 and both garbled inputs correspond to x0. Let
active ∈ {L,R} be the identity of the active circuit. We use the notation
Cactive,Cpassive to denote the active and passive garbled circuits respectively.

2. We change the passive garbled circuit Cpassive and the garbled input for it
to be simulated. This change essentially follows the proof of [HJO+16]. In
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particular, we rely on the fact that the keys associated with the bits 0 and
1 for the output wires of Cpassive are used symmetrically by the s-gates (since
the s-gates are ignoring the output of the passive circuit) and therefore we
can safely change the garbled output gates of Cpassive from InputDepSimGate
to SimGate.

3. We change the passive garbled circuit Cpassive and the garbled input for it
from being simulated to being a garbling of C1, x1. This follows from the
same argument as the previous step.

4. We now modify the s-gates one-by-one to output the value of the passive
circuit instead of the active circuit. This is the most delicate part of the
proof. It essentially follows via a sequence of steps where, for each output
i ∈ [m], we use the proof strategy of [HJO+16] to change the i’th output
gate of both Cactive,Cpassive to be in InputDepSimGate mode. This means that
these garbled gates aren’t really created until the on-line phase when the
garbled input is given out. Furthermore, when they are created in the on-line
phase, each of these garbled gates only contains one key for the output wire
corresponding to the correct bit going over that wire during the computation
(either both corresponding to 0 or both to 1 since C0(x0) = C1(x1)). This
allows us to change the encrypted value in 2 out 4 of the ciphertexts in the
garbled s-gate so as to switch it from outputting the value of the active circuit
to the one of the passive circuit.

5. We now repeat steps 2 and 3 for Cactive to switch it from a garbling C0, x0,
to simulated, to a garbling of C1, x1. Finally, we are left with the original
security game with the challenge bit b = 1.

The above steps – except for step 4 – rely on the adaptive security of the
underlying garbling scheme in a blackbox manner. It remains an open problem
whether it is possible to show a more general transformation from garbled cir-
cuits with adaptive security (and maybe other natural properties) to garbled
circuits with indistinguishability based adaptive security and online complexity
independent of the output size.

2 Preliminaries

General Notation. For a positive integer n, we define the set [n] := {1, . . . , n}.
We use the notation x ← X for the process of sampling a value x according to
the distribution X. For a vector m = (m1,m2, · · · ,mn), and a subset P ⊂ [n],
we use (mi)i∈P to denote a vector containing only the values mi in positions
i ∈ P and ⊥ symbols in all other positions. We use (mi)i/∈P as shorthand for
(mi)i∈[n]\P .

Circuit Notation. A boolean circuit C consists of gates gate1, . . . , gateq and wires
w1, w2, . . . , wp. A gate is defined by the tuple gatei = (g, wa, wb, wc) where
g : {0, 1}2 → {0, 1} is the function computed by the gate, wa, wb are the
incoming wires, and wc is the outgoing wire. Although each gate has a unique
outgoing wire wc, this wire can be used as an incoming wire to several different
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gates and therefore this models a circuit with fan-in 2 and unbounded fan-out.
We let q denote the number of gates in the circuit, n denotes the number of input
wires and m denote the number of output wires. The total number of wires is
p = n + q (since each wire can either be input wire or an outgoing wire of some
gate). For convenience, we denote the n input wires by in1, . . . , inn and the m
output wires by out1, . . . , outm. For x ∈ {0, 1}n we write C(x) to denote the
output of evaluating the circuit C on input x.

Definition 1. Two distributions X and Y are (T, ε)-indistinguishable, denote
DT [X,Y ] = ε if for any probabilistic algorithm A, running in time T ,

|Pr [A(X) = 1] − Pr [A(Y ) = 1]| ≤ ε.

For two games Game and Game′ we say they are (T (λ), ε(λ))- indistin-
guishable, DT (λ) [Game,Game′] = ε(λ), if for any adversary A running in time
T (λ),

|Pr [GameA = 1] − Pr [Game′
A = 1]| ≤ ε(λ).

Let games Game(λ) and Game′(λ) be parametrized by the security parameter λ.
If for any polynomial function T (λ), there exists a negligible function ε(λ), such
that for all λ, DT (λ) [Game(λ),Game′(λ)] ≤ ε(λ), we say the two games are

computationally indistinguishable and denote this by Game(λ)
comp≈ Game′(λ).

We say C is leveled, if each gate has an associated level and any gate at level
l has incoming wires only from gates at level l − 1 and outgoing wires only to
gates at level l+1. We let the depth d denote the number of levels and the width
w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gatei = (g, wa, wb, wc).
We use Φ(C) to refer to the topology of a circuit - which indicates how gates
are connected, without specifying the function implement by each gate. In other
words, Φ(C) is the list of sanitized gate tuples ̂gatei = (⊥, wa, wb, wc) where the
function g that the gate implements is removed from the tuple.

3 Definitions

The bulk of this section defining what garbled circuits are and presenting Yao’s
construction, is taken verbatim from [HJO+16]. We now give a formal definition
of a garbling scheme. There are many variants of such definitions in the literature,
and we refer the reader to [BHR12] for a comprehensive treatment.

Definition 2. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit,
GInput,Eval) such that:

– ( ˜C, k) $← GCircuit(1λ, C): takes as input a security parameter λ, a circuit
C : {0, 1}n → {0, 1}m, and outputs the garbled circuit ˜C, and key k.

– x̃ ← GInput(k, x): takes as input, x ∈ {0, 1}n, and key k and outputs x̃.
– y = Eval( ˜C, x̃): given a garbled circuit ˜C and a garbled input x̃ output y ∈

{0, 1}m.
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Correctness. There is a negligible function ν such that for any λ ∈ N, any
circuit C and input x it holds that Pr[C(x) = Eval( ˜C, x̃)] = 1 − ν(λ), where
( ˜C, k) ← GCircuit(1λ, C), x̃ ← GInput(k, x).

Adaptive Security (Based on Simulation). There exists a PPT simulator
Sim = (SimC,SimIn) such that, for any PPT adversary A, there exists a negligible
function ε such that:

Pr[Expadaptive
A,GC,Sim(λ, 0) = 1] − Pr[Expadaptive

A,GC,Sim(λ, 1) = 1] ≤ ε(λ)

where the experiment Expadaptive
A,GC,Sim(λ, b) is defined as follows:

1. The adversary A specifies C and gets ˜C where ˜C is created as follows:
– if b = 0: ( ˜C, k) ← GCircuit(1λ, C),
– if b = 1: ( ˜C, state) ← SimC(1λ, Φ(C)).

2. The adversary A specifies x and gets x̃ created as follows:
– if b = 0, x̃ ← GInput(k, x),
– if b = 1, x̃ ← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

In other words, we say GC is adaptively secure if

DT (λ)

[

Expadaptive
GC,Sim (λ, 0),Expadaptive

GC,Sim (λ, 1)
]

= ε(λ).

Adaptive Security (Based on Indistinguishability). For any PPT adver-
sary A, there exists a negligible function ε such that:

Pr[Expadaptive
A,GC,Ind(λ, 0) = 1] − Pr[Expadaptive

A,GC,Ind(λ, 1) = 1] ≤ ε(λ)

where the experiment Expadaptive
A,Π,Ind(λ, b) is defined as follows:

1. A specifies two circuits C0, C1 of the same topology, and gets back ˜Cb ←
GCircuit(1λ, Cb).

2. A specifies x0, x1 such that C0(x0) = C1(x1) and gets x̃b ← GInput(k, xb).
3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

In other words, we say GC is adaptively indistinguishable if

DT (λ)

[

Expadaptive
GC,Ind (λ, 0),Expadaptive

GC,Ind (λ, 1)
]

= ε(λ).

On-line Complexity. The time it takes to garble an input x, (i.e., time com-
plexity of GInput(·, ·)) is the on-line complexity of the scheme. Clearly the on-line
complexity of the scheme gives a bound on the size of the garbled input x̃. Ideally,
the on-line complexity should be much smaller than the circuit size |C|.
Projective Scheme. We say a garbling scheme is projective if each bit of
the garbled input x̃ only depends on one bit of the actual input x. In other
words, each bit of the input, is garbled independently of other bits of the input.
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Projective schemes are essential for two-party computation where the garbled
input is transmitted using an oblivious transfer (OT) protocol. Our constructions
will be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition
may reveal the topology of the circuit C. However, there is a way to transform
any such garbling scheme into one that hides everything, including the topology
of the circuit, without a significant asymptotic efficiency loss. More precisely,
we rely on the fact that there is a function HideTopo(·) that takes a circuit C
as input and outputs a functionally equivalent circuit C ′, such that for any two
circuits C1, C2 of equal size, if C ′

1 = HideTopo(C1) and C ′
2 = HideTopo(C2),

then Φ(C ′
1) = Φ(C ′

2). An easy way to construct such function HideTopo is by
setting C ′ to be a universal circuit, with a hard-coded description of the actual
circuit C. Therefore, to get a topology-hiding garbling scheme, we can simply
use a topology-revealing scheme but instead of garbling the circuit C directly,
we garble the circuit HideTopo(C).

4 Construction of [HJO+16]

In our construction (presented in the following section), we will use the construc-
tion of [HJO+16], as a building block. Furthermore we will need the details of
this construction in order to proceed with the proof of security of our construc-
tion. Therefore in this section we present the construction of [HJO+16] which
consists of two simple steps: (1) garble the circuit using Yao’s garbling scheme;
(2) hide the garbled circuit (without the output tables) under an outer layer of
encryption instantiated with a somewhere-equivocal encryption scheme. In the
on-line phase, the garbled input consists of Yao’s garbled input plus the output
tables. Next we provide the formal description of the scheme of [HJO+16] which
contains the details of Yao’s garbling scheme.

Let C be a leveled boolean circuit with fan-in 2 and unbounded fan-out, with
inputs size n, output size m, depth d and width w. Let q denote the number of
gates in C. Recall that wires are uniquely identified with labels w1, w2, . . . , wp,
and a circuit C is specified by a list of gate tuples gate = (g, wa, wb, wc).
The topology of the circuit Φ(C) consists of the sanitized gate tuples ̂gatei =
(⊥, wa, wb, wc). For simplicity, we implicitly assume that Φ(C) is public and
known to the circuit evaluator without explicitly including it as part of the gar-
bled circuit ˜C. To simplify the description of our construction, we first describe
the procedure for garbling a single gate, that we denote by GarbleGate.

Let Γ = (Gen,Enc,Dec) be a CPA-secure symmetric-key encryption scheme
satisfying the special correctness property defined in AppendixA. GarbleGate is
defined as follows.

– g̃ ← GarbleGate(g, {kσ
a , kσ

b , kσ
c }σ∈{0,1}): This function computes 4 ciphertexts

cσ0,σ1 : σ0, σ1 ∈ {0, 1} as defined below and outputs them in a random order
as g̃ = [c1, c2, c3, c4].
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c0,0 ← Enck0
a
(Enck0

b
(kg(0,0)

c ))c0,1 ← Enck0
a
(Enck1

b
(kg(0,1)

c ))

c1,0 ← Enck1
a
(Enck0

b
(kg(1,0)

c ))c1,1 ← Enck1
a
(Enck0

b
(kg(1,1)

c ))

Let Π = (seKeyGen, seEnc, seDec, SimEnc, SimKey) be a somewhere-equivocal
symmetric-encryption scheme as defined in Appendix B. Recall that in this prim-
itive the plaintext is a vector of n blocks, each of which has s bits. In this con-
struction the following parameters are used: the vector size n = q is the number
of gates and the block size s = |g̃| is the size of a single garbled gate. The equiv-
ocation parameter t is defined by the strategy used in the security proof and will
be specified later. The garbling scheme is formally described in Fig. 1.

GCircuit(1λ, C)

1. Garble Circuit: //Yao’s scheme
– (Wires) kσ

wi
← Gen(1λ) for i ∈ [p], σ ∈ {0, 1}.

(Input wires) K = (k0
ini

, k1
ini

)i∈[n].
– (Gates) For gatei = (g, wa, wb, wc) in C:

g̃i ← GarbleGate g, {kσ
wa

, kσ
wb

, kσ
wc

}σ∈{0,1}
)

.

– (Output tables) For j ∈ [m]: ˜dj :=
[(

k0
outj → 0

)

,
(

k1
outj → 1

)]

.

2. Outer Encryption: key
$← seKeyGen(1λ), ˜C ← seEnc(key, (g̃1, . . . , g̃q)).

3. Output ˜C, k =
(

K, key, (˜dj)j∈[m]

)

.

GInput(x, k)

1. (Select input keys) Kx = kx1
in1

, . . . , kxn

inn

)

.

2. Output x̃ =
(

Kx, key, (˜dj)j∈[m]

)

.

Fig. 1. Adaptively secure garbling scheme: GCircuit and GInput functions. See Fig. 2
for function Eval.

4.1 Adaptive Simulator

The adaptive security simulator for [HJO+16] is essentially the same as the
selective security simulator for Yao’s scheme (as in [LP09]), with the only dif-
ference that the output table is sent in the on-line phase, and is computed
adaptively to map to the correct output. Note that the garbled circuit simulator
does not rely on the simulation properties of the somewhere equivocal encryption
scheme - these are only used in the proof of indistinguishability.

More specifically, the adaptive simulator (SimC,SimIn) works as follows.
In the off-line phase, SimC computes the garbled gates using procedure
GarbleSimGate, that generates 4 ciphertexts that encrypt the same output key.
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Eval( ˜C, x̃)

1. Parse x̃ = (K, key, (˜dj)j∈[m]).
2. Decrypt Outer Encryption: (g̃i)i∈q ← seDec(key, ˜C).
3. Evaluate Circuit:

– Parse K = (kin1 , . . . , kinn).
– For each level j = 1, . . . , d, and each ̂gatei = (⊥, wa, wb, wc) at level j:

• Let g̃i = [c1, c2, c3, c4]; for δ ∈ [4], let k′
wc

← Deckwa
(Deckwb

(cδ))
• If k′

wc
	= ⊥ then set kwc

:= k′
wc

.
4. Decrypt output: For j ∈ [m],

– parse ˜dj =
[

(k0
outj → 0), (k1

outj → 1)
]

, Set yj = b iff koutj = kb
outj .

5. Output y1, . . . , ym.

Fig. 2. Adaptively secure garbling scheme: Eval function.

More precisely,

– GarbleSimGate({kσ
wa

, kσ
wb

}σ∈{0,1}, k′
wc

) takes both keys for input wires wa, wb

and a single key for the output wire wc, that we denote by k′
wc

. It then
output g̃c = [c1, c2, c3, c4] where the ciphertexts, arranged in random order,
are computed as follows.
c0,0 ← Enck0

a
(Enck0

b
(k′

c))c1,0 ← Enck1
a
(Enck0

b
(k′

c))
c0,1 ← Enck0

a
(Enck1

b
(k′

c))c1,1 ← Enck1
a
(Enck0

b
(k′

c))

The simulator invokes GarbleSimGate on input k′
c = k0

c . It then encrypts the
garbled gates so obtained by using the honest procedure for the somewhere
equivocal encryption.

In the on-line phase, SimIn, on input y = C(x) adaptively computes the
output tables so that the evaluator obtains the correct output. This is easily
achieved by associating each bit of the output, yj , to the only key encrypted in
the output gate goutj , which is k0

outj . For the input keys, SimIn just sends keys
k0

ini
for each i ∈ [n]. The detailed definition of (SimC,SimIn) is provided in Fig. 3.

5 Our Construction

Let cGC = (cGCircuit, cGInput, cEval) be the adaptive garbling scheme of
[HJO+16], with simulator cSim = (cSimC, cSimIn). In this section we construct
a new garbling scheme, using cGC as a building block. See Fig. 5 for a formal
description of our construction. The new garbling scheme creates two copies of
the garbled circuit (called CL,CR). It chooses one at random to be the “active”
one (active = R or active = L). Then for each output bit i ∈ [m], it creates
a selection gate that takes the output wire i from both garbled circuits, and
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Simulator
SimC(1λ, Φ(C))

– (Wires) kσ
wi

← Gen(1λ) for i ∈ [p], σ ∈ {0, 1}.
– (Garbled gates) For each gate ˜gatei = (⊥, wa, wb, wc) in Φ(C):

g̃i ← GarbleSimGate ({kσ
wa

, kσ
wb

}σ∈{0,1}, k0
wc

).

– (Outer Encryption): key
$← seKeyGen(1λ), ˜C ← seEnc(key, g̃1, . . . , g̃q).

– Output ˜C, state = ({kσ
wi

}, key).

SimIn(y, state)

– Generate output table: ˜sdj ← [(kyj

outj → 0), (k1−yj

outj → 1)]j∈[m]. // ensures
k0

outj → yj

– Output x̃ = ((k0
ini

)i∈[n], key, ( ˜sdj)j∈[m]).

Fig. 3. Simulator for adaptive security.

selects the value on the wire coming from the active circuit. We call these selec-
tion gates, s-gates, to distinguish them from the output gates of the two original
garbled circuits. Let �b and rb be the output wires of CL and CR, then s-gate (for
each output bit) is defined as in Fig. 4.

sgateR sgateL

Enc�0(Encr1(1)) Enc�0(Encr1(0))
Enc�0(Encr0(0)) Enc�0(Encr0(0))
Enc�1(Encr1(1)) Enc�1(Encr1(1))
Enc�1(Encr0(0)) Enc�1(Encr0(1))

Fig. 4. s-gates. sgateL(sgateR) outputs the value associated with the wire coming form
CL, (CR).

Note that Cactive and Cpassive are encrypted Yao garbled circuits. But the
output wires and the output map are not encrypted and are part of the key k
which is an output of cGCircuit(·, ·).

6 Hybrid Games

Overview. We need to prove that Game0 = Expadaptive
A,NGC,Ind(λ, 0) and Game1 =

Expadaptive
A,NGC,Ind(λ, 1) are indistinguishable. Namely, we need to show a strategy to

move from Game0, where (Cpassive, Cactive) are both garbling of C0 and (xactive,
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N Garbling Scheme

NGCircuit(1λ, C).

1. active ← {L, R}. If active = L then passive = R else passive = L.
2. (CL, kL) ← cGCircuit(1λ, C) and

(CR, kR) ← cGCircuit(1λ, C)
3. Parse kα into

(

Kα, keyα, ( ˜cdα,i)i∈[m]

)

for α ∈ {L, R}
4. For i ∈ [m] let sgatei computed as sgateactive (Figure 4) with the ith

output wire of CR and CL as input. Let ˜sgate = (sgate1, . . . , sgatem)
5. ˜C :=

(

CL, CR, ˜sgate
)

.
6. kL := (KL, keyL), kR := (KR, keyR), k := (kL, kR).
7. Output ˜C, k.

NGInput(x, k)

1. (select keys) Kx
L = SelGInput(x, KL).

2. (select keys) Kx
R = SelGInput(x, KR).

3. x̃L = (Kx
L, keyL), x̃R = (Kx

R, keyR)
4. Output x̃ = (x̃L, x̃R)

NEval( ˜C, x̃)

1. {wα,i}i∈[m] := cEval (Cα, x̃α), for α ∈ {L, R}
2. Parse sgate1, . . . , sgatem ← ˜sgate.
3. Use keys {wα,i}i∈[m] to evaluate gates sgate1, . . . , sgatem and obtain y.
4. Output y.

Fig. 5. New garbling scheme

xpassive) are garblings of x0; to Game1 where (Cpassive, Cactive) are garbling of C1

and (xactive, xpassive) are garblings of x1.
At high-level, the proof strategy is the following: starting from Game0, (1)

first we change Cpassive, xpassive to be the garbling of C1, x1, (2) then we change
the selection gates so that they select outputs from Cpassive, (3) finally we change
Cactive, xactive to be the garbling of C1, x1.

For step (1) and (3), we switch from garbling C0, x0 to garbling C1, x1 by
using simulated circuits, namely first we change Cpassive into a simulated circuit,
and then we switch it into a real garbling of C1. Indistinguishability of this
steps follows directly from the adaptive simulation-based security of the under-
lying garbling scheme in a black-box manner (we discuss this next in Sect. 6.1).
Changing the selection gates (Step 2) instead requires a surgical proof, where we
selective simulate one output gate of Cpassive,Cactive at the time, and this enable us
to change (switch) the content of the selection gates, from selecting the output
of Cpassive instead of Cactive (or viceversa). Following the language of [HJO+16],
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this means that we need to place black pebbles on the output gates of circuits
Cpassive,Cactive. We discuss this in details in Lemma 3.

6.1 Hybrid Games Template

The hybrid games are parameterized by the distributions of Cactive, Cpassive, their
respective inputs xactive, xpassive and a flag α ∈ {active, passive} denoting the fact
that s-gates are selecting the output of Cα

For example the original Gameb is described as:

– Game0 =
((

cGCircuit(1λ, C0), x0),
(

cGCircuit(1λ, C0), x0

))

, active
)

– Game1 =
((

cGCircuit(1λ, C1), x1),
(

cGCircuit(1λ, C1), x1

))

, active
)

Note that when the active and passive garbled circuit distributions are the same,
it does not make a difference whether α = active or α = passive. However in our
hybrid argument we will sometimes set α = passive when these distributions are
different. We use cSimC(1λ, Φ(C)) to denote a simulated circuit. Since the simu-
lated garbling of any circuit only depends on its topology and not the function
it computes, the output of the simulation has the same distribution for C0 and
C1, thus for simplicity we write cSimC(1λ, Φ(C)).

Using this template we define 4 new hybrid games: HybA through HybD.
See Fig. 6. The changes in these hybrids follow a two-step simulate and switch
approach. In HybA the passive circuit is simulated. Note that the garbled input to
a simulated circuit is created independent of the input, therefore its distribution
does not change whether it’s x0 that is garbled or x1. In HybB the passive circuit
is switched from simulation to real garbling of C1. Now with both active and
passive circuits outputing the same value y = C0(x0) = C1(x1), we go to the
next hybrid. In HybC we change the content of the s-gates to output the passive
circuit. Then we turn the active circuit into a garbling of C1 with input x1, by
first simulating it (HybD) and then changing it to a garbling of C1 with input
x1 (Game1). The transitions from Game0 to HybA then to HybB are identical
to the ones going from Game1 to HybD and then to HybC. Thus we only prove
it once for Game0

comp≈ HybA
comp≈ HybB.

Hybrids
Cactive, xactive

Cpassive, xpassive

sgate outputs
Hybrids
Cactive, xactive

Cpassive, xpassive

sgate outputs

Game0
cGCircuit(1λ, C0), x0

cGCircuit(1λ, C0), x0

active
HybC
cGCircuit(1λ, C0), x0

cGCircuit(1λ, C1), x1

passive

HybA
cGCircuit(1λ, C0),x0

cSimC(1λ, Φ(C)),x1

active
HybD
cSimC(1λ, Φ(C)),x1

cGCircuit(1λ, C1),x1

passive

HybB
cGCircuit(1λ, C0),x0

cGCircuit(1λ, C1),x1

active
Game1
cGCircuit(1λ, C1),x1

cGCircuit(1λ, C1),x1

passive

Fig. 6. Hybrids.
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From Game0 to HybA. To prove this, we are going to need a special property
that is enjoyed by the garbling scheme cGC. We define the special property
below.

Definition 3 (Output-key Security). We say that an adaptively simulation-
secure garbling scheme is output-key secure if it is adaptively secure even when
the output keys (e.g., {wα,i}i∈[m]) –without the output mapping– are sent together

with the garbled circuit ˜C.

Proposition 1. Under the same assumptions as [HJO+16], the garbling scheme
cGC is adaptively secure and output-key secure.

[Proof Sketch]. Intuitively this is true because throughout the proof of security
for cGC we rely on the CPA security of the encryption scheme used to garble
the gates, to prove the adversary does not learn the content of any gates, before
getting the garbled input, and even after seeing the garbled input he can only
decipher one ciphertext from each garbled gate. During these reductions, we
can even let the adversary choose the keys encrypted in a garbled output gate
(as in the game for the CPA security, the adversary can choose any message to
be encrypted). Furthermore the output keys are not used as an encryption key
somewhere else in the same garbled circuit, therefore revealing the output key
does not jeopardize the adaptive security of cGC.

Now that we have defined the property above, we can prove the following
Lemma.

Lemma 1. If cGC is adaptively secure and output-key secure, then Game0 and
HybA are computationally indistinguishable.

Proof. If a PPT adversary A distinguishes Game0 and HybA with advantage ε,
we construct adversary B that breaks the adaptive security of cGC with the same
advantage ε. B will receive C0, C1 from A, and sends C0 to its challenger, and
gets back ˜C∗, which is ( ˜C∗, k) ← cGCircuit(1λ, C0) if b = 0 and ( ˜C∗, state) ←
cSimC(1λ, Φ(C)) if b = 1. B then sets (Cactive, k0) ← cGCircuit(1λ, C0) and
Cpassive = ˜C∗. Next, B creates the s-gates so that they would reveal the out-
put of Cactive. Note that B does not need the output map of ˜C∗ to create s-gates,
it only needs the keys encrypted in the output level gates of ˜C∗. Which we
assume are given as part of the garbled circuit, without jeopardizing the secu-
rity of cGC (due to output-key security). Finally B sends ˜C =

(

CL,CR, ˜sgate
)

to A and gets back x0, x1. B sends x0 to the challenger and gets back x̃∗ which
is x̃∗ ← cGInput(x0, k) if b = 0 and x̃∗ ← SimIn(C0(x0), state) if b = 1. The
reduction will set x̃active ← cGInput(x0, kactive), x̃passive = x̃∗ and sends (x̃L, x̃R)
to A and outputs A’s final output, b′. Note, since SimIn does not even take in the
input x1 or x0, it only gets the output of the computation in order to create the
appropriate output map. And in this application, the output wires are treated
the same way, regardless of whether they are mapped to 0 or 1, it doesn’t matter
which input is garbled by the simulator (Fig. 7).
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Reduction B
1. Receive C0, C1 from A.
2. active ← {L, R}. If active = L then passive = R else passive = L.
3. Send C0 to the challenger and get back ˜C∗.
4. Follow the steps for creating NGCircuit(1λ, C0) with one exception;

use ˜C∗ as Cpassive.

5. Send ˜C :=
(

CL, CR, ˜sgate
)

to A and receive x0, x1

6. Send x0 to the challenger and get back x̃∗.
7. (select keys) Kx0 = SelGInput(x0, Kactive).
8. x̃active = (Kx0 , keyactive), x̃passive = x̃∗

9. Send x̃ = (x̃L, x̃R) to A and receive b′ from A
10. Output b′

Fig. 7. Reduction of Lemma 1

Lemma 2. If cGC is adaptively secure and output-key secure, then HybA and
HybB are computationally indistinguishable.

Proof. It follows from a similar reduction to the one used in the proof of
Lemma 1, with the difference that C1, x1 are sent to the challenger instead of
C0, x0.

Lemmas 1 and 2 prove that:

Game0
comp≈ HybA

comp≈ HybB and HybC
comp≈ HybD

comp≈ Game1.

From HybB to HybC. Recall the distribution of hybrid HybB and HybC

– HybB =
((

cGCircuit(1λ, C0), x0),
(

cGCircuit(1λ, C1), x1

))

, active
)

– HybC =
((

cGCircuit(1λ, C0), x0),
(

cGCircuit(1λ, C1), x1

))

, passive
)

The difference between these two hybrids is only in the s-gates: instead of
selecting the output from Cactive (in HybB), now s-gates will select the output
from Cpassive (in HybC). Recall the description of s-gate in Fig. 4. Changing the
s-gates from active to passive entails changing 2 of the encryptions. In order
to argue that these changes are indistinguishable, we must rely on the CPA
security of the encryption. However the keys used to create these ciphertexts are
not independent, since they are used in the garbling of the output gates of CL

and CR. Therefore, if we want to change even one encryption, we need to remove
those keys from the correspondent gates in CL and CR. In other words, those
two gates need to be simulated. Now, in order to change one gate at the time
from real to simulated, we need to leverage the details of the proof provided in
[HJO+16].

Proof Strategy in [HJO+16]. We now give an overview of the proof strategy of
[HJO+16]; we rely on specific components of the strategy in our proof. For more
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details see AppendixC. In [HJO+16] hybrid games are parametrized by a circuit
configuration, that is, a vector indicating the way the gates are garbled. There
are three modes for how each gate can be garbled: RealGate, InputDepSimGate,
SimGate. There are also rules that allow one to indistinguishably move from one
configuration to another. These configurations/rules are summarized via a peb-
bling game where we associate RealGate mode to a gate not having a pebble on
it, InputDepSimGate mode is associated with a gate having a black pebble, and
SimGate mode is associated with a gate having a grey pebble. The indistinguisha-
bility rules are then translated to rules for the pebbling game:

Pebbling Rule A. We can place or remove a black pebble on a gate as long as
both predecessors of that gate have black pebbles on them (or the gate is an
input gate).

Pebbling Rule B. We can replace a black pebble with a grey pebble on a gate
as long as all successors of that gate have black or grey pebbles on them (or
the gate is an output gate).

We can follow the same rules for the two garbled circuits Cactive, Cpassive with
one major difference: we cannot replace a black pebble with a grey pebble on the
output gates (this part relied on the fact that the output map, which specified
the correspondence between wire keys at the output level and the bits they
correspond to, was only sent in the on-line phase; in our case this correspondence
is needed to create the s-gates in the off-line phase, at least for the active circuit).

We rely on one more property (*): if a gate has an output wire w which is
associated with keys k0

w, k1
w and we garble the gate in InputDepSimGate mode

then we only use one key (kb
w where b is the bit that the wire takes on during

the computation C(x)) when creating this garbled gate in the on-line phase.
Let us define C [γ, t] to be the class of circuits C such that we can place a

black pebble on any single output gate of C in γ pebbling steps and using at most
t black pebbles at each step. For the following lemma, theorem and corollaries,
assume:

1. The adversary selects C0, C1 ∈ C [γ, t].
2. Π = (seKeyGen, seEnc, seDec, SimEnc, SimKey) is a somewhere equivocal

encryption scheme with equivocation parameter t.
3. Γ = (Gen,Enc,Dec) is an encryption scheme secure under chosen double

encryption.

Lemma 3. HybB and HybC are computationally indistinguishable.

Proof. Let m be the output size of the circuits C0, C1 selected by the adversary.
For i = 1, . . . , m, we rely on the following sequence of sub-hybrids:

1. Via a sequence of sub-sub-hybrids, change the configurations of both Cactive

and Cpassive so that the i’th output gate is in InputDepSimGate mode (has a
black pebble on it). This follows using the same argument as in [HJO+16].
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2. Change the i’th s-gate from sgateactive to sgatepassive (see Fig. 4). This change
relies on property (*) and the CPA-security of the encryption scheme Γ used
to garble the gates. In particular, this change requires changing the contents of
the ciphertexts Enc�0(Encr1(?)) and Enc�1(Encr0(?)) in s-gate. However, since
C0(x0) = C1(x1) by property (*) the only keys that are used as plaintexts in
other garbled gates in this hybrid are either (�0, r1) or (�1, r0). In either case,
we can rely on encryption security to change the contents of the above two
ciphertexts.

3. Via a sequence of sub-sub-hybrids, change the configurations of both Cactive

and Cpassive back so that all gates are in RealGate mode (no pebbles). This is
the same as step 1 in reverse.

From Lemmas 1, 2, 3, it follows that Game0 and Game1 are computationally
indistinguishable which proves our main result, summarized in the following
theorem.

Theorem 1. Assuming the existence of one-way functions, NGC is adap-
tively indistinguishable with online complexity (n + t)poly(λ) for all circuits in
C [poly(λ), t].

Using the pebbling strategies from [HJO+16] summarized in AppendixD we
get the following bounds.

Lemma 4. Any circuit C of depth d, width w, with input size n and output size
m, is in the class C [γ, t] with either of the following two settings of γ, t:

◦ γ = 2(2d+1)m steps using t = 2d black pebbles.
◦ γ = 4 |C| steps using t = 2w black pebbles.

Plugging the above lemma into Theorem1 we get the following corollary.

Corollary 1. Assuming the existence of one-way functions, NGC is adaptively
indistinguishable with online complexity n · poly(λ) for all circuits with either
linear width w = O(n) or logarithmic depth d = O(log n).

Note that any computation which can be performed in linear space can be repre-
sented by a circuit with linear width. Therefore the above covers all linear space
computations.

7 Application: Private-Key Adaptively Secure
Functional Encryption

Overview. Our new garbling scheme can be used to implement a private-key
functional encryption [SW05,BSW11] based on one-way functions, with indis-
tinguishability based security where the adversary can obtain an unbounded
number of function secret keys and then adaptively a single challenge ciphertext
(the formal definition is provided in Sect. 7.1).
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In our scheme (described in Fig. 8), the functional keys are garbled circuits
computed according to (a slightly modified version of) NGCircuit, and the cipher-
text for a message m corresponds to the garbling of the input m. Since a single
garbled input should be used to evaluate multiple garbled circuits, we slightly
tweak the construction of our garbling scheme so to allow an initial state that is
used upon each invocation of the garbling function. We explain this modification
in greater length in Sect. 7.2.

7.1 Definition

A private-key functional encryption scheme Π, over a message space M =
{Mλ}λ and a circuit space C = {Cλ}λ is a tuple of PPT algorithms (Π.FE.Setup,
Π.FE.KeyGen, Π.FE.Enc, FE.Dec) defined as follows:

– Π.FE.Setup(1λ): The setup algorithm takes as input the unary representation
of the security parameter, and outputs a secret key MSK.

– Π.FE.KeyGen(MSK, C): The key-generation algorithm takes as input a secret
key MSK and a circuit C ∈ Cλ and outputs a functional key skC .

– Π.FE.Enc(MSK,m): The encryption algorithm takes as input a secret key
MSK and a message m ∈ Mλ and outputs a ciphertext CT.

– Π.FE.Dec(skC ,CT) The decryption algorithm takes as input a functional key
skC and a ciphertext CT, and outputs m ∈ Mλ ∪ {⊥}.

The correctness property requires that there exists a negligible function negl(·)
such that for all sufficiently large λ ∈ N , for every message m ∈ Mλ, and for
every circuit C ∈ Cλ it holds that:

Pr[FE.Dec(Π.FE.KeyGen(MSK, C),FE.Enc(MSK,m)) = C(m)] ≥ 1 − negl(λ)

where MSK = FE.Setup(1λ) and the probability is taken over the random choices
of all algorithms.

Many Functions Single Message Adaptive Security. For any PPT adver-
sary A, there exists a negligible function ε such that:

Pr[ExpPrivate−FE
A,Π,Ind (λ, 0) = 1] − Pr[ExpPrivate−FE

A,Π,Ind (λ, 1) = 1] ≤ ε(λ)

where the experiment ExpPrivate−FE
A, Ind (λ, b) is defined as follows:

1. Query. The adversary A specifies circuits C1, C2, . . .. It then obtain func-
tional keys sk1, sk2, . . . which are created as follow:

– Run MSK = Π.FE.Setup(1λ).
– Let q be the number of queries. ∀i ∈ [q], ski = Π.FE.KeyGen(MSK, Ci).

2. Challenge. The adversary A specifies messages m0,m1, such that for all
i ∈ [q], Ci(m0) = Ci(m1) and obtains CT, which is created as follows:

– CT = Π.FE.Enc(MSK,mb)
3. Output. Finally, the adversary outputs a bit b′, which is the output of the

experiment.
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7.2 Construction

Our private-key functional encryption scheme is depicted in Fig. 8. The FE.Setup
algorithm generates the keys that need to be shared by all garbled circuits. Such
keys are: (1) the keys for the input wires (i.e., KL,KR) (2) the keys for the outer
somewhere-equivocal encryption seEnc (i.e., keyL, keyR). The FE.Setup also sets
the flag active.

The FE.KeyGen algorithm generates a garbled circuit according to proce-
dure NGCircuit� which is a slight modification of NGCircuit (shown in Fig. 4)
that enables to use a single garbled input to evaluate many garbled circuits
generated at different times. The modifications are: (1) instead of running pro-
cedure GCircuit(1λ, C) (described in Fig. 1) – which would select fresh keys for
the input wires and for the outer encryption – it runs a slightly modified pro-
cedure GCircuit�(1λ, C, Input keys) which takes such keys as an external input;
(2) the encryption algorithm seEnc used in GCircuit, is also slightly modified so
that it allows blocks to be encrypted in a streaming fashion (that is, instead of
having a one-time encryption of n blocks, we allow for many encryptions, where
the total number of encrypted blocks is overall ≤N where N is an upperbound
(e.g., 2λ)). In AppendixB we discuss why this modification (that we call seEnc�)
follows naturally from the implementation of seEnc provided in [HJO+16].

The FE.Enc algorithm takes in input a message m and simply runs the pro-
cedure GInput(m, Input keys) to select the keys for m. The ciphertext then
consists of the keys for the garbled inputs, and the keys for the outer encryption
keyR, keyL. Note that the size of the ciphertext depends on the length of the
input and the length of the keys keyR, keyL for somewhere-equivocal encryption.
Finally the decryption algorithm simply consists of the evaluation of the garbled
circuits.

7.3 Security Proof

In this section we show that protocol in Fig. 8 is a private-key functional encryp-
tion scheme that is adaptively secure for many function queries and a single
message query (according to Sect. 7.1).

Let Game0, be the experiment ExpPrivate−FE
A,Π,Ind (λ, 0) where the adversary

receives encryption of m0, and let Game1 be the experiment ExpPrivate−FE
A,Π,Ind (λ, 1).

The proof of security consists of a sequence of hybrid games from Game0 to
Game1, and each hybrid is computational indistinguishable. We now argue that
this sequence of hybrids follows exactly the hybrids provided in the proof of
Theorem 1.

Recall that in the security experiment ExpPrivate−FE
A,Π,Ind (λ, b), A sends all function

queries C1, C2, . . . , Cq at the beginning in one-shot. Concretely, by instantiating
the experiment with Π, when A sends functional queries C1, C2, . . . , Cq, she
obtains:

Functional Keys:
(

[CL
1,CR

1,SG1], . . . , [CL
q,CR

q,SGq]
)

where SGj is the selection circuit ˜sgate associated to CL
j ,CR

j .
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Private-Key Functional Encryption Π.FE.Setup(λ).

1. Select active garbled circuit.
active ← {L, R}. If active = L then passive = R else passive = L.

2. Select keys for input wires:
(left circuits) KL =

(

k0,a
ini

, k1,a
ini

)

i∈[n]
,

(rigth circuits) KR =
(

k0,p
ini

, k1,p
ini

)

i∈[n]
.

with kσ,α
wi

← Gen(λ) for i ∈ [n], σ ∈ {0, 1}, α ∈ {L, R}.

3. Select keys for outer encryption:
(left/right circuits) keyL, keyR; where keyα

$← seKeyGen(λ), α ∈ {L, R}.

4. Output MSK := {KL, keyL, KR, keyR, active}.

Π.FE.KeyGen(MSK, C).

1. ˜C := NGCircuit�(C,MSK)
2. Ouput skC = ˜Cb.

FE.Dec(skC , CT).

1. Output m = NEval (skC , CT).

Π.FE.Enc(MSK, m).

1. x̃ = NGInput(m,MSK).
2. Output CT = x̃ = (Kx

L, keyL, Kx
R, keyR)

Fig. 8. Private-key FE

In the challenge phase, A receives the garbling of message mb. Specifically:
Ciphertext: x̃ = (KL, keyL,KR, keyR)

Now, note that, because the functional keys (i.e., the garbled circuits) are
sent all at once, and they will be evaluated with the same garbled input x̃, we
can conceptually think of C1, C2, . . . , Cq as disjoint sub-circuits (which have no
wires in common) of one big circuit C. Let us define C = [C1, C2, . . . , Cq].

Next, we observe that the garbling function NGCircuit� is such that garbling
circuits (C1, C2, . . . , Cq) one at the time will generate a garbled circuit which
is equivalent to the one obtained by garbling C as a single circuit. To see why,
note that the garbling function NGCircuit� operates by encrypting one gate at
the time, and only connected gates have correlated keys. As (C1, C2, . . . , Cq) are
disjoint, they are encrypted separately regardless of whether they are presented
as a single circuit C or as many independent circuits. Therefore, we can group
the view of adversary as follows:

C̃L = (CL
1, . . . ,CL

q)
C̃R = (CR

1, . . . ,CR
q)

SL = (SG1, . . . ,SGq)
x̃ = (KL, keyL,KR, keyR).
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Finally, recall that the flag active is set once and for all in FE.Setup (Fig. 8)
That is, either L = active and R = passive, or viceversa. Therefore, we can
further represent the view of the adversary as follows:

C̃active, x̃active

C̃passive, x̃passive

S

This view fits the template of high-level hybrids shown in Fig. 6. The exact
same arguments then follow to show that Game0 and Game1 are indistinguish-
able. In Gameb, x̃active and x̃passive are both garbling of mb.

Following the same template, the proof strategy is to move from Game0,
where x̃active and x̃passive are garbling of m0, to intermediate games where x̃passive

is a garbling of m1 and finally change x̃active into garbling of m1 and thus reaching
Game1.

Theorem 2. Assuming the existence of one-way functions, Π is a many func-
tions single message adaptive secure private-key functional encryption, for all
circuits in C [poly(λ), t], with ciphertext size (n+ t)poly(λ), where n is the length
of the plaintext.

Proof. It follows from the proof of Theorem 2 applied to the circuit C defined
above.

7.4 Extensions

We leave as an extension to consider a full adaptive security definition for func-
tional encryption where the adversary can choose the functional queries adap-
tively [ABSV15]. Concretely, this means that the adversary can choose functions
adaptively based on the garbled circuits received so far.

To prove security of our construction in this setting, one needs to prove that
the underlying garbling scheme (NGCircuit�,NGInput,NEval) satisfies a stronger
adaptivity property that we call many-time adaptive security. That is, in the
security experiment the adversary is allowed to adaptively ask for many garbled
circuits and then choose an single input to evaluate all of them.

Showing that (NGCircuit�,NGInput,NEval) achieves this stronger property
amounts to show that the underlying new somewhere-equivocal encryption
scheme (Definition 6) achieves a stronger security property where the adversary
can choose the plaintexts adaptively on the ciphertexts received so far.

A Symmetric-Key Encryption with Special Correctness
[LP09]

In our construction of the garbling scheme, we use a symmetric-key encryption
scheme Γ = (Gen,Enc,Dec) which satisfies the standard definition of CPA secu-
rity and an additional special correctness property below (this is a simplified
and sufficient variant of the property described in from [LP09]). We need this
property to ensure the correctness of our garbled circuit construction.
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Definition 4 (Special Correctness). A CPA-secure symmetric-key encryp-
tion Γ = (Gen,Enc,Dec) satisfies special correctness if there is some negligible
function ε such that for any message m we have:

Pr[Deck2(Enck1(m)) 	= ⊥ : k1, k2 ← Gen(1λ)] ≤ ε(λ).

Construction. Let F = {fk} be a family of pseudorandom functions where fk :
{0, 1}λ → {0, 1}λ+s, for k ∈ {0, 1}λ and s is a parameter denoting the message

length. Define Enck(m) = (r, fk(r) ⊕ m0λ) where m ∈ {0, 1}s, r
$← {0, 1}λ and

m0λ denotes the concatenation of m with a string of 0s of length λ. Define
Deck(c) which parses c = (r, z), computes w = z ⊕ fk(r) and if the last λ bits of
w are 0’s it outputs the first s bits of w, else it outputs ⊥.

It’s easy to see that this scheme is CPA secure and that it satisfies the special
correctness property.

Double Encryption Encryption Security. For convenience, we define a notion of
double encryption security, following [LP09]. This notion is implied by standard
CPA security but is more convenient to use in our security proof of garbled
circuit security.

Definition 5 (Double-encryption security). An encryption scheme Γ =
(Gen,Enc,Dec)

– is (T (λ), ε(λ))-secure under chosen double encryption if

DT (λ)

[

Expdouble(λ, 0),Expdouble(λ, 1)
]

= ε(λ).

– is secure under chosen double encryption if

Expdouble(λ, 0)
comp≈ Expdouble(λ, 1).

– is sub-exponentially secure if

∃ ν > 0, ∀ T (λ) ∈ poly(λ) DT (λ)

[
Expdouble(λ, 1),Expdouble(λ, 0)

]
≤ ε(λ) = 1/2λν

.

where the experiment Expdouble
A is defined as follows.

Experiment Expdouble
A (λ, b)

1. The adversary A on input 1λ outputs two keys ka and kb of length λ and two
triples of messages (x0, y0, z0) and (x1, y1, z1) where all messages are of the
same length.

2. Two keys k′
a, k′

b
$← Gen(1λ) are chosen.

3. AEnck′
a
(·),Enck′

b
(·) is given the challenge ciphertexts cx ← Encka

(Enck′
b
(xb)),

cy ← Enck′
a
(Enckb

(yb)), cz ← Enck′
a
(Enck′

b
(zb)) as well as oracle access to

Enck′
a
(·) and Enck′

b
(·).

4. A outputs b′ which is the output of the experiment.

The following lemma is essentially immediate - see [LP09] for a formal proof.

Lemma 5. If (Gen,Enc,Dec) is CPA-secure then it is secure under chosen dou-
ble encryption with the same security parameter.
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B Somewhere Equivocal Symmetric-Key Encryption
[HJO+16]

Definition 6. A somewhere equivocal encryption scheme with block-length s,
message-length n (in blocks), and equivocation-parameter t (all polynomials in
the security parameter) is a tuple of probabilistic polynomial algorithms Π =
(seKeyGen, seEnc, seDec, SimEnc, SimKey) such that:

– The key generation algorithm seKeyGen takes as input the security parameter
1λ and outputs a key: key ← seKeyGen(1λ).

– The encryption algorithm seEnc takes as input a vector of n messages m =
m1, . . . ,mn, with mi ∈ {0, 1}s, and a key key, and outputs ciphertext c ←
seEnc(key,m).

– The decryption algorithm seDec takes as input ciphertext c and a key key and
outputs a vector of messages m = m1, . . . ,mn. Namely, m ← seDec(key, c).

– The simulated encryption algorithm SimEnc takes as input a set of indexes
I ⊂ [n], such that |I| ≤ t, and a vector of n−|I| messages (mi)i/∈I and outputs
ciphertext c, and a state state. Namely, (state, c) ← SimEnc((mi)i/∈I , I).

– The simulated key algorithm SimKey, takes as input the variable state and
messages (mi)i∈I and outputs a key key′. Namely, key′ ← SimKey(state,
(mi)i∈I).

and satisfies the following properties:

Correctness. For every key ← seKeyGen(1λ), for every m ∈ {0, 1}s×n it holds
that:

seDec(key, (seEnc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) com-
puted via (c, state) ← SimEnc(m, ∅) and key ← SimKey(state, ∅) to be identical
to key ← seKeyGen(1λ) and c ← seEnc(key,m). In other words, simulation
when there are no holes (i.e., I = ∅) is identical to honest key generation and
encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ)
such that:

Pr[Expsimenc
A,Π (1λ, 0) = 1] − Pr[Expsimenc

A,Π (1λ, 1) = 1] ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π (1λ, b)

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, vector (mi)i/∈I ,
and a challenge index j ∈ [n] \ I. Let I ′ = I ∪ j.

2. – If b = 0, compute c as follows: (state, c) ← SimEnc((mi)i/∈I , I).
– If b = 1, compute c as follows: (state, c) ← SimEnc((mi)i/∈I′ , I ′).

3. Send c to the adversary A.
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4. The adversary A outputs the set of remaining messages (mi)i∈I .
– If b = 0, compute key as follows: key ← SimKey(state, (mi)i∈I).
– If b = 1, compute key as follows: key ← SimKey(state, (mi)i∈I′).

5. Send key to the adversary A.
6. A outputs b′ which is the output of the experiment.

In [HJO+16], a somewhere equivocal encryption is constructed from one-way
functions, proving the following theorem.

Theorem 3. Assuming the existence of one-way functions, there exists a some-
where equivocal encryption scheme for any polynomial message-length n, block-
length s, and equivocation parameter t, having key size t·s·poly(λ) and ciphertext
of size n · s bits.

Extension. Such construction naturally extends to a modified encryption algo-
rithm seEnc�, that instead of taking in input the entire vector m = m1, . . . ,mn,
it takes in input a few blocks that arrive in a streaming fashion. Namely, seEnc�

takes as input an upperbound N , a vector of j ≥ 1 messages m = m1, . . . ,mj ,
and a key key and it outputs j encryptions, while keeping a counter on the num-
ber of encryptions computed so far. The messages are encrypted as long as the
counter is less than the upper bound N .

To see why the implementation provided in [HJO+16] also supports the
modified version seEnc�, note that their encryption is performed by xoring the
output of a special pseudo-random function (PRF) with the plaintext. To encrypt
n blocks, one evaluates the PRF on inputs 1, 2, . . . , n and then xor the result
with the blocks. Naturally, one can encrypt any number of blocks at different
times. The construction will still work provided that the algorithm is stateful
and remembers the last index on which the PRF has been evaluated on (so that
the same PRF evaluation is not used twice).

Concering security, for our application it suffices that seEnc� satisfies the
same “non-adaptive” definition of security as in experiment Expsimenc where the
adversary needs to commit to the entire vector (mi)i/∈I in advance.

C Hybrid Games of [HJO+16]

Gate/Circuit Configuration. We start by defining a gate configuration. A gate
configuration is a pair (outer mode, garbling mode) indicating the way a gate
is computed. The outer encryption mode can be {EquivEnc,BindEnc} depend-
ing on whether the outer encryption contains a “hole” in place of that gate or
whether it is binding on that gate. The garbling mode can be {RealGate, SimGate,
InputDepSimGate} which corresponds to the distributions outlined in Fig. 9. We
stress that, if the garbling mode of a gate is InputDepSimGate then we require
that the outer encryption mode is EquivEnc. This means that there are 5 valid
gate configurations for each gate.

A circuit configuration simply consists of the gate configuration for each gate
in the circuit. More specifically, we represent a circuit configuration by a tuple
(I, (modei)i∈[q]) where
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RealGate

c0,0 ← Enck0
a
(Enck0

b
(k

g(0,0)
c ))

c0,1 ← Enck0
a
(Enck1

b
(k

g(0,1)
c ))

c1,0 ← Enck1
a
(Enck0

b
(k

g(1,0)
c ))

c1,1 ← Enck1
a
(Enck1

b
(k

g(1,1)
c ))

SimGate

c0,0 ← Enck0
a
(Enck0

b
(k0

c))

c0,1 ← Enck0
a
(Enck1

b
(k0

c))

c1,0 ← Enck1
a
(Enck0

b
(k0

c))

c1,1 ← Enck1
a
(Enck1

b
(k0

c))

InputDepSimGate

c0,0 ← Enck0
a
(Enck0

b
(k

v(c)
c ))

c0,1 ← Enck0
a
(Enck1

b
(k

v(c)
c ))

c1,0 ← Enck1
a
(Enck0

b
(k

v(c)
c ))

c1,1 ← Enck1
a
(Enck1

b
(k

v(c)
c ))

Fig. 9. Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate
(right). The value v(c) depends on the input x and corresponds to the bit going over
the wire c in the computation C(x).

– Set I ⊆ [q] contains the indices of the gates i whose outer mode is EquivEnc.
– The value modei ∈ {RealGate,SimGate, InputDepSimGate} describes the gar-

bling mode of gate i.

A valid circuit configuration is one where all indexes i such that modei =
InputDepSimGate satisfy i ∈ I.

The Hybrid Game Hyb(I, (modei)i∈[q]). Every valid circuit configuration
I, (modei)i∈[q] defines a hybrid game Hyb(I, (modei)i∈[q]) as specified formally
Fig. 10 and described informally below. The hybrid game consists of two proce-
dures: GCircuit′ for creating the garbled circuit ˜C and GInput′ for creating the
garbled input x̃ respectively. The garbled circuit is created by picking random
keys kσ

wj
for each wire wj . For each gate i, such that modei ∈ {RealGate,SimGate}

it creates a garbled gate g̃i using the corresponding distribution as described in
Fig. 9. The garbled circuit ˜C is then created by simulating the outer encryp-
tion using the values g̃i in locations i 	∈ I and “holes” in the locations I. The
garbled input is created by first sampling the garbled gates g̃i for each i such
that modei = InputDepSimGate using the corresponding distribution in Fig. 9
and using knowledge of the input x. Then the decryption key key is simulated
by plugging in the holes in locations I with the correctly sampled garbled gates
g̃i. There is some subtlety about how the input labels K[i] and the output label
maps ˜dj are created when computing x̃:

– If all of the gates having ini as an input wire are in SimGate mode, then
K[i] := k0

ini
else K[i] := kxi

ini
.

– If the unique gate having outj as an output wire is in SimGate mode, then we
give the simulated output map ˜dj := [(kyj

outj → 0), (k1−yj

outj
→ 1)] else the real

one ˜dj := [(k0
outj

→ 0), (k1
outj

→ 1)].

Real game and Simulated Game. By definition of adaptively secure gar-
bled circuits (Definition 2), the real game Expadaptive

A,GC,Sim(1λ, 0) is equivalent to
Hyb(I = ∅, (modei = RealGate)i∈[q]) and the simulated game Expadaptive

A,GC,Sim(1λ, 1)
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Game Hyb(I, (modei)i∈[q])

Garble Circuit C:

– Garble Gates
(Wires) kσ

wi
← Gen(1λ) for i ∈ [p], σ ∈ {0, 1}.

(Gates) For each gatei = (g, wa, wb, wc) in C.

– If modei = RealGate: run g̃i ← GarbleGate(g, {kσ
wa

, kσ
wb

, kσ
wc

}σ∈{0,1}).
– if modei = SimGate: run g̃i ← GarbleSimGate({kσ

wa
, kσ

wb
}σ∈{0,1}, k0

wc
).

– Outer Encryption.

1. (state, ˜C) ← SimEnc((g̃i)i/∈I , I).

2. Output ˜C.

Garble Input x:

(Compute adaptive gates)
For each i ∈ I s.t. modei = InputDepSimGate:

Let gatei = (gi, wa, wb, wc), and let v(c)
be the bit on the wire wc during the computation C(x).

Set g̃i ← GarbleSimGate((kσ
wa

, kσ
wb

)σ∈{0,1}, k
v(c)
wc ).

(Decryption key) key′ ← SimKey(state, (g̃i)i∈I)
(Output tables) Let y = C(x). For j = 1, . . . , m:
Let i be the index of the gate with output wire outj .

– If modei �= SimGate, set ˜dj := [(k0
outj → 0), (k1

outj → 1)],

– else, set ˜dj := [(k
yj
outj

→ 0), (k
1−yj
outj

→ 1)].

(Select input keys) For j = 1, . . . , n:

– If all gates i having inj as an input wire satisfy modei = SimGate, then
set K[i] := k0

ini
,

– else set K[i] := kxi
ini

.

Output x̃ := (K, key′, {˜dj}j∈[m]).

Fig. 10. The hybrid game.

is equivalent to Hyb(I = ∅, (modei = SimGate)i∈[q]). Therefore, the main aim is
to show that these hybrids are indistinguishable.3

C.1 Rules for Indistinguishable Hybrids

Next, we provide rules that allow us to move from one configuration to another
and prove that the corresponding hybrid games are indistinguishable. We define
three rules that allow us to do this. We define mode

def= (modei)i∈[q].

3 Note that, the games Hyb(· · · ) use the simulated encryption and key generation
procedures of the somewhere equivocal encryption, while the games Expadaptive

A,GC,Sim(1λ, b)
only use the real key generation and encryption procedures. However, by definition,
these are equivalent when I = ∅ (no “holes”).
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Indistinguishability Rule 1: Changing the Outer Encryption Mode
BindEnc ↔ EquivEnc. This rule allows to change the outer encryption of a single
gate. It says that one can move from a valid circuit configuration (I,mode) to
a circuit configuration (I ′,mode) where I ′ = I ∪ j. Thus one more gate is now
computed equivocally (and vice versa).

Lemma 6. Let (I,mode) be any valid circuit configuration, let j ∈ [q] \ I and
let I ′ = I ∪ j. Then Hyb(I,mode)

comp≈ Hyb(I ′,mode) are computationally indis-
tinguishable as long as Π = (seKeyGen, seEnc, seDec, SimEnc, SimKey) is a
somewhere equivocal encryption scheme with equivocation parameter t such that
|I ′| ≤ t.

Definition 7 (Predecessor/Successor/Sibling Gates [HJO+16]). Given
a circuit C and a gate j ∈ [q] of the form gatej = (g, wa, wb, wc) with incoming
wires wa, wb and outgoing wire wc:

– We define the predecessors of j, denoted by Pred(j), to be the set of gates
whose outgoing wires are either wa or wb. If wa, wb are input wires then
Pred(j) = ∅, else |Pred(j)| = 2.

– We define the successors of j, denoted by Succ(j) to be the set of gates that
contain wc as an incoming wire. If wc is an output wires then Succ(j) = ∅.

– We define the siblings of j, denoted by Siblings(j) to be the set of gates that
contain either wa or wb as an incoming wire.

Indistinguishability Rule 2. Changing the Garbling Mode RealGate ↔
InputDepSimGate. This rule allows us to change the mode of a gate j from
RealGate to InputDepSimGate as long as j ∈ I and that gatej = (g, wa, wb, wc)
has incoming wires wa, wb that are either input wires or are the outgoing wires
of some predecessor gates both of which are in InputDepSimGate mode.

Lemma 7. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and let
j ∈ I be an index such that modej = RealGate and for all i ∈ Pred(j): modei =
InputDepSimGate. Let mode′ = (mode′

i)i∈[q] be defined by mode′
i = modei for all

i 	= j and mode′
j = InputDepSimGate. Then the games Hyb(I,mode)

comp≈ Hyb

(I,mode′) are computationally indistinguishable as long as Γ = (Gen,Enc,Dec)
is an encryption scheme secure under chosen double encryption.

Indistinguishability Rule 3. Changing the Garbling Mode:
InputDepSimGate ↔ SimGate. This rule allows us to change the mode of a gate
j from InputDepSimGate to SimGate under the condition that all successor gates
i ∈ Succ(j) satisfy that modei ∈ {InputDepSimGate,SimGate}.

Lemma 8. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and
let j ∈ I be an index such that modej = InputDepSimGate and for all i ∈
Succ(j) we have modei ∈ {SimGate, InputDepSimGate}. Let mode′ = (mode′

i)i∈[q]

be defined by mode′
i = modei for all i 	= j and mode′

j = SimGate. Then the games
Hyb(I,mode) ≡ Hyb(I,mode′) are identically distributed.
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C.2 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration
(I,mode). We also gave 3 rules, which describe ways that allow us to indistin-
guishably move from one configuration to another. Now our goal is to use the
given rules so as to define a sequence of indistinguishable hybrid games that
takes us from the real game Hyb(I = ∅, (modei = RealGate)i∈[q]) to the simula-
tion Hyb(I = ∅, (modei = SimGate)i∈[q]).

Pebbling Game. We show that the problem of finding such sequences of hybrid
games can be captured by a certain type of pebbling game on the circuit C.
Each gate can either have no pebble, a black pebble, or a gray pebble on it (this
will correspond to RealGate, InputDepSimGate and SimGate modes respectively).
Initially, the circuit starts out with no pebbles on any gate. The game consist of
the following possible moves:

Rule A. We can place or remove a black pebble on a gate as long as both
predecessors of that gate have black pebbles (or the gate is an input gate).

Rule B. We can replace a black pebble with a gray one, only if successors of
that gate have black or gray pebbles on them (or the gate is an output gate).

A pebbling of a circuit C is a sequence of γ moves that follow rules A and B
and that end up with a gray pebble on every gate. We say that a pebbling uses
t black pebbles if this is the maximal number of black pebbles on the circuit at
any point in time during the game.

From Pebbling to Sequence of Hybrids. In next theorem we prove that any peb-
bling of a circuit C results in a sequence of hybrids that shows indistinguishability
of the real and simulated games. The number of hybrids is proportional to the
number of moves in the pebbling and the equivocation parameter is proportional
to the number of black pebbles it uses.

Theorem 4. Assume that there is a pebbling of the circuit C in γ moves.
Then there is a sequence of 2 · γ + 1 hybrid games, starting with the real
game Hyb(I = ∅, (modei = RealGate)i∈[q]) and ending with the simulated game
Hyb(I = ∅, (modei = SimGate)i∈[q]) such that any two adjacent hybrid games in
the sequence are indistinguishable by rules 1,2 or 3 from the previous section.
Furthermore if pebbling uses t∗ black pebbles then every hybrid Hyb(I,mode) in
the sequence satisfies |I| ≤ t∗. In particular, indistinguishability holds as long as
the equivocation parameter is at least t∗.

D Pebbling Strategies [HJO+16]

In this section we give two pebbling strategies for arbitrary circuit with width
w, depth d, and q gates. The first strategy uses O(q) moves and O(w) black
pebbles. The second strategy uses O(q2d) moves and O(d) black pebbles.
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Strategy 1. To pebble the circuit proceed as follows:

Pebble(C):
1. Put a black pebble on each gate at the input level (level 1).
2. For i = 1 to d − 1, repeat:

(a) Put a black pebble on each gate at level i + 1.
(b) For each gate at level i, replace the black pebble with a gray pebble.
(c) i ← i + 1.

3. For each gate at level d, replace the black pebble with a gray pebble.

This strategy uses γ = 2q moves and t∗ = 2w black pebbles.

Strategy 2. This is a recursive strategy defined as follows.

– Pebble(C):
For each gate i in C starting with the gates at the top level moving to the
bottom level:
1. RecPutBlack(C, i)
2. Replace the black pebble on gate i with a gray pebble.

– RecPutBlack(C, i): // Let LeftPred(C, i) and RightPred(C, i) be the two pre-
decessors of gate i in C.
1. If gate i is an input gate, put a black pebble on i and return.
2. Run RecPutBlack(C, LeftPred(C, i)), RecPutBlack(C,RightPred(C, i)).
3. Put a black pebble on gate i.
4. Run RecRemoveBlack(C, LeftPred(C, i)) and

RecRemoveBlack(C,RightPred(C, i)).
– RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead

of putting a black pebble on gate i, in steps 1 and 3, we remove it.

The above gives us a strategy to pebble any circuit with at most γ = q4d

moves and t = 2d black pebbles.
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Abstract. An Oblivious Parallel RAM (OPRAM) provides a general
method to simulate any Parallel RAM (PRAM) program, such that
the resulting memory access patterns leak nothing about secret inputs.
OPRAM was originally proposed by Boyle et al. as the natural paral-
lel counterpart of Oblivious RAM (ORAM), which was shown to have
broad applications, e.g., in cloud outsourcing, secure processor design,
and secure multi-party computation. Since parallelism is common in
modern computing architectures such as multi-core processors or cluster
computing, OPRAM is naturally a powerful and desirable building block
as much as its sequential counterpart ORAM is.

Although earlier works have shown how to construct OPRAM schemes
with polylogarithmic simulation overhead, in comparison with best
known sequential ORAM constructions, all existing OPRAM schemes
are (poly-)logarithmic factors more expensive. In this paper, we present
a new framework in which we construct both statistically secure and
computationally secure OPRAM schemes whose asymptotical perfor-
mance matches the best known ORAM schemes in each setting. Since an
OPRAM scheme with simulation overhead χ directly implies an ORAM
scheme with simulation overhead χ, our result can be regarded as pro-
viding a unifying framework in which we can subsume all known results
on statistically and computationally secure ORAMs and OPRAMs alike.
Particularly for the case of OPRAMs, we also improve the state-of-the-
art scheme by superlogarithmic factors.

To achieve the aforementioned results requires us to combine a variety
of techniques involving (1) efficient parallel oblivious algorithm design;
and (2) designing tight randomized algorithms and proving measure con-
centration bounds about the rather involved stochastic process induced
by the OPRAM algorithm.

Keywords: Oblivious parallel RAM · Oblivious RAM · Statistical and
computational security

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [17,18],
is a powerful primitive that allows oblivious accesses to sensitive data, such that
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access patterns during the computation reveal no secret information. Since its
original proposal [18], ORAM has been shown to be promising in various appli-
cation settings including secure processors [11,13,14,25,30], cloud outsourced
storage [19,32,33,40] and secure multi-party computation [15,16,20,22,24,37].

Although ORAM is broadly useful, it is inherently sequential and does not
support parallelism. On the other hand, parallelism is universal in modern archi-
tectures such as cloud platforms and multi-core processors. Motivated by this
apparent discrepancy, in a recent seminal work [3], Boyle et al. extended the
ORAM notion to the parallel setting. Specifically, they defined Oblivious Parallel
RAM (OPRAM), and demonstrated that any PRAM program can be simulated
obliviously while incurring roughly O(log4 N) blowup in running time when con-
suming the same number of CPUs as the PRAM where N is the total memory
size. The result by Boyle et al. [3] was later improved by Chen et al. [7], who
showed a logarithmic factor improvement, attaining O(log3 N) overhead.

However, we still know of no OPRAM algorithm whose performance can
“match” the state-of-the-art sequential counterparts [23,35,36]. In particular, in
the sequential setting, it is known that computationally secure ORAMs can be
constructed with O( log2 N

log log N ) simulation overhead [23], and statistically secure
ORAMs can be achieved with O(log2 N) simulation overhead [36] — these results
apply when assuming O(1) blocks of CPU private cache, and they hold for
general block sizes, as long as the block is large enough to store its own address.
Thus in comparison, state-of-the-art OPRAM schemes are at least a logarithmic
factor slower. We thus ask the question:

Can we construct an OPRAM scheme whose asymptotical performance
matches the best known sequential counterpart?

Our paper answers this question in the affirmative. To this end, we construct
the Circuit OPRAM framework — under this framework we demonstrate both
statistically and computationally secure ORAMs whose performance matches
the best known ORAM schemes in these respective settings. Our main results
are summarized in the following informal theorems.

Theorem 1 (Informal: statistically secure OPRAM). There exists a sta-
tistically secure OPRAM scheme that achieves O(log2 N) simulation overhead
for general block sizes and O(1) blocks of CPU cache.

Theorem 2 (Informal: computationally secure OPRAM). There exists
a computationally secure OPRAM scheme that achieves O( log2 N

log log N ) simulation
overhead for general block sizes and O(1) blocks of CPU cache.

In both the above theorems, an OPRAM simulation overhead of χ means the
following: suppose that the original PRAM consumes m CPUs and computes
a program in T time; then we can compile the PRAM into an OPRAM also
consuming m CPUs, but completes in χ·T time1. Since an OPRAM scheme with
1 Thus, by classical metrics of the parallel algorithms literature, an OPRAM scheme

with χ simulation overhead incurs a total work blowup and a parallel runtime blowup
of both χ in comparison with the original PRAM.
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χ simulation overhead immediately implies an ORAM scheme with χ simulation
overhead2 to — in some sense, our work provides a unifying framework under
which we subsume all known results for statistically secure and computationally
secure ORAMs and OPRAMs — and specifically for the case of OPRAM, we
improve best known results by at least a logarithmic factor.

For generality, we describe our construction in a way that supports the case of
varying number of CPUs, i.e., when the underlying PRAM consumes a different
number of CPUs in different PRAM steps — this is a desirable property phrased
in the original OPRAM work by Boyle et al. [3], although the subsequent work
by Chen et al. [7] fails to achieve it.

Last but not the least, we show that when the block size is sufficiently large,
our framework implies an OPRAM scheme with O(log N) simulation overhead
(when m is not too small) — also matching the best-known sequential ORAM
result for large block sizes [36].

1.1 Technical Highlights

Obtaining an OPRAM as tight as its sequential counterpart turns out to be
rather non-trivial. Part of the technical sophistication stems from the fact that
we did not find any generic method that can blackbox-compile an efficient ORAM
to an OPRAM scheme with matching overhead. As a result, our construction
requires opening up and building atop the Circuit ORAM scheme [36] (which is
a state-of-the-art ORAM scheme among others) in a non-blackbox manner3.

We follow the paradigm for constructing OPRAM schemes proposed by
Boyle et al. [3] and Chen et al. [7]. On a high level, we leverage a tree-based
ORAM scheme [31,36] but truncate the tree at a level with m nodes, thus
creating m disjoint subtrees. At this point, a simple approach that is taken
by earlier works [7] is to have a single CPU in charge of each subtree. When
a batch of m memory requests come in, each request will want to fetch data
from a random subtree. By a simple balls-and-bins argument, while each sub-
tree receives only O(1) requests in expectation, the most unlucky sub-tree will
need to serve super-logarithmically many requests (to obtain a negligible failure
probability). Thus the naive approach is to have each subtree’s CPU serve these
super-logarithmically many requests sequentially. After fetching the m blocks,
the OPRAM data structure must be maintained by remapping every fetched
block to a random new subtree. Again, although each subtree gets assigned O(1)
remapped blocks in expectation during this maintain stage, the most unlucky
subtree can obtain super-logarithmically many blocks. For obliviousness, it is
important that we hide from the adversary to which subtree each block gets
remapped. Unfortunately this also means that we cannot disclose how many
remapped blocks are received by each subtree — and thus previous works [7]
2 In other words, when m = 1 our scheme essentially is the same as Circuit ORAM.

Thus our work can also be viewed as a strict generalization of Circuit ORAM.
3 We did not build atop the Path ORAM [35] scheme since Path ORAM achieves the

same simulation overhead as Circuit ORAM [36] but consuming super-logarithmic
CPU cache rather than O(1).
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adopt the simple approach of padding: even when a subtree may receive only
1 remapped block, it still must perform dummy operations to pretend that it
receives superlogarithmically many blocks.

Thus, a primary reason that causes existing constructions [3,7] to be ineffi-
cient is the discrepancy between the average-case contention and the worst-case
contention associated with a subtree. In the above description, this discrepancy
reflects in both the request phase and the maintain phase. In both phases, each
subtree receives O(1) requests or blocks in expectation, but the worst-case can
be superlogarithmic (assuming negligible failure probability).

Thus the core of the question is how to avoid the blowup resulting from
the aforementioned average-case and worst-case discrepancy. We would like our
scheme to incur a cost that reflects the average-case contention, not the worst-
case. To achieve this, we need different techniques for the online request and
offline maintain phases respectively:

– For the request phase, it does not violate obliviousness to disclose how many
requests are received by each subtree, and thus the nature of the problem is
how to design an efficient parallel oblivious algorithm to serve all m requests in
parallel with m CPUs, and avoid any subtree’s CPU having to process super-
logarithmically many requests sequentially. As we will show in later sections,
the core of the problem is how to design an efficient and oblivious parallel
removal algorithm (referred to “simultaneous removal” in later sections) that
removes fetched blocks from the tree-paths — this is challenging since several
CPUs may read paths that overlap with one another, leading to possible write
contention.

– In the maintain phase, on the contrary, it would violate obliviousness to dis-
close how many remapped blocks are received by each subtree. Earlier schemes
achieve this by pretending to reroute superlogarithmically many blocks to
every subtree, thus always incurring the worst-case cost. Our idea is to
redesign the underlying stochastic process to avoid this padding-related loss.
To this end, we introduce a new technique called “lazy eviction”4, where we
do not route remapped blocks to their new subtrees immediately — instead,
with every operation, each subtree has a budget for receiving only a constant
number of remapped blocks; and the overflowing blocks that do not have a
chance to be rerouted to their assigned subtrees will remain in a “pool” data
structure whose size we shall bound with measure concentration techniques.

When we put these techniques together, we obtain on OPRAM scheme that
induces a stochastic process that is somewhat involved to reason about. Analyz-
ing this OPRAM-induced stochastic process and proving measure concentration
results (e.g., bounds on pool and stash sizes) are non-trivial challenges that we
have to overcome in this paper. Although we build on top of the Circuit ORAM
scheme in a non-blackbox manner, we wish to maximally reuse the (somewhat
involved) measure concentration results proven in the Circuit ORAM work [36]
4 Techniques similar in spirit has appeared in earlier ORAM [34] and OPRAM

works [7].
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(albeit in a non-blackbox manner). Thus, when we design our Circuit OPRAM
algorithm, we take care to ensure that the resulting randomized process is sto-
chastically dominated by that of the underlying Circuit ORAM algorithm (in
terms of overflows) — to this end, our algorithm tries to “imitate” the stochas-
tic behavior of Circuit ORAM in several places, e.g., in selecting which remapped
block gets priority to be rerouted back to its subtree. A rather technical part of
our proof is to show that the resulting OPRAM scheme is indeed stochastically
dominated by Circuit ORAM in terms of overflows.

1.2 Related Work

Closely related and independent works. Subsequent to our online technical report,
Nayak and Katz [26] also released a technical report that claimed seemingly sim-
ilar results. We stress that our construction is a log N ·poly log log N factor more
efficient than the work by Nayak and Katz — despite their paper’s title claiming
to achieve O(log2 N) overhead, their O(log2 N) overhead did not account for
the inter-CPU communication which is O(log3 Npoly log log N) in their scheme
assuming O(1) CPU cache — more specifically, Nayak and Katz’s scheme does
not improve the inter-CPU communication in comparison with Chen et al. [7]
(whereas we improve by a super-logarithmic factor); but they adopt a variant of
our simultaneous removal algorithm to improve the CPU-memory communica-
tion of Chen et al. [7].

In our paper, we adopt a more general and cleaner model than earlier and
concurrent OPRAM works [3,7,26], in that we assume that all inter-CPU com-
munication is routed through memory too. In this way, we use a single metric
called simulation overhead to characterize both CPU-memory cost and inter-
CPU communication. Using our metric, an OPRAM scheme with simulation
overhead χ means that both the CPU-memory cost and the inter-CPU commu-
nication have at most χ blowup in comparison with the original PRAM.

Below we review the line of works on constructing ORAMs and OPRAMs.

Oblivious RAM (ORAM). Oblivious RAM (ORAM) was initially proposed by
Goldreich and Ostrovsky [17,18] who showed that any RAM program can be
simulated obliviously incurring only O(α log3 N) runtime blowup, while achiev-
ing a security failure probability that is negligible in N . Numerous subse-
quent works [10,19,23,28,29,31,35,36,36–40] improved Goldreich and Ostro-
vsky’s seminal result in different application settings including cloud outsourcing,
secure processor, and secure multi-party computation.

Most of these schemes follow one of two frameworks: the hierarchical frame-
work, originally proposed by Goldreich and Ostrovsky [17,18], or the tree-based
framework proposed by Shi et al. [31]. To date, some of the (asymptotically)
best schemes include the following: (1) Kushilevitz et al. [23] showed a compu-
tationally secure ORAM scheme with O(log2 N/ log log N) runtime blowup for
general block sizes; and (2) Wang et al. construct Circuit ORAM [36], a statisti-
cally secure ORAM that achieves O(α log2 N) runtime blowup for general block
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sizes5 and O(α log N) runtime blowup for large enough blocks. At the time of
the writing, we are not aware of any approach that transforms a state-of-the-art
hierarchical ORAM such as Kushilevitz et al. [23] into an OPRAM scheme with
matching simulation overhead — even if this could be done, it still would not
be clear how to match the best known ORAM results for the statistical security
setting. Our work henceforth builds on top of the tree-based ORAM framework,
and specifically, Circuit ORAM [36].

On the lower bound side, Goldreich and Ostrovsky [17,18] demonstrated that
any ORAM scheme (with constant CPU cache) must incur at least Ω(log N)
runtime blowup. This well-known lower bound was recently shown to be tight
(under certain parameter ranges) by the authors of Circuit ORAM [36], who
showed a matching upper bound for sufficiently large block sizes. Goldreich and
Ostrovsky’s lower bound applies to OPRAM too since by our definition of sim-
ulation overhead, an OPRAM scheme with χ simulation overhead implies an
ORAM scheme with χ simulation overhead. We note that while the Goldreich
and Ostrovsky lower bound is quite general, it models each block as being opaque
— recently, an elegant result by Boyle and Naor [4] discussed the possibility of
proving a lower bound without this restriction. Specifically, they showed that
proving a lower bound without the block opaqueness restriction is as hard as
showing a superlinear lower bound on the sizes of certain sorting circuits. Fur-
ther, the Goldreich-Ostrovsky lower bound is also known not to hold when the
memory (i.e., ORAM server) is capable of performing computation [2,10] — in
this paper, we focus on the classical ORAM/OPRAM setting where the mem-
ory does not perform any computation besides storing and fetching data at the
request of the CPU.

Oblivious Parallel RAM (OPRAM). Given that many modern computing archi-
tectures support parallelism, it is natural to extend ORAM to the parallel set-
ting. As mentioned earlier, Boyle et al. [3] were the first to formulate the OPRAM
problem, and they constructed an elegant scheme that achieves O(α log4 N)
blowup both in terms of total work and parallel runtime. Their result was later
improved by Chen et al. [7] who were able to achieve O(α log3 N) blowup both in
terms of total work and parallel runtime under O(log2 N) blocks of CPU cache.
These results can easily be recast to the O(1) CPU cache setting by applying a
standard trick that leverages oblivious sorting to perform eviction [36,37]. We
note that Chen et al. [7] actually considered CPU-memory communication and
inter-CPU communication as two separate metrics, and their scheme achieves
O(α log2 N log log N) CPU-memory communication blowup, but O(α log3 N)
inter-CPU communication blowup. In this paper, we consider the more general

5 The term α is related to the ORAM’s failure probability. For the failure probability to
be negligible we can set α to be any super-constant function. Note that in this paper,
the new OPRAM techniques we introduce allow us to remove the super-constant
factor α and thus we achieve O(log2 N) overhead for general block sizes. Therefore,
strictly speaking, we improve the best-known results for statistical security [36] by
a super-constant factor. For sufficiently large block sizes, we achieve O(α log N)
simulation overhead, matching the sequential counterpart Circuit ORAM.



78 T.-H. Hubert Chan and E. Shi

PRAM model where all inter-CPU communication is implemented through CPU-
memory communication. In this case, the two metrics coalesce into one (i.e., the
maximum of the two).

Besides OPRAM schemes in the standard setting, Dachman-Soled et al. [9]
considered a variation of the problem (which they refer to as “Oblivious Network
RAM”) where each memory bank is assumed to be oblivious within itself, and the
adversary can only observe which bank a request goes to. Additionally, Nayak
et al. [27] show that for parallel computing models that are more restrictive
than the generic PRAM (e.g., the popular GraphLab and MapReduce models),
there exist efficient parallel oblivious algorithms that asymptotically outperform
known generic OPRAM. Some of the algorithmic techniques employed by Nayak
et al. [27] are similar in nature to those of Boyle et al. [3].

Subsequent work. In subsequent work, Chan et al. [5] consider a new model for
OPRAM, where the OPRAM has access to more CPUs than the original PRAM.
In that model, they characterize an OPRAM’s overhead using two metrics, total
work blowup and parallel runtime blowup (the latter metric also referred to as
depth blowup). Chan et al. show that any OPRAM scheme that treats block
contents as opaque must incur at least Ω(log m) depth blowup where m is the
number of CPUs of the original PRAM. Further, they devise non-trivial algo-
rithmic techniques that improves the depth of Circuit OPRAM (while preserving
total work) by recruiting the help of logarithmically many more CPUs. Further,
Chan et al. [5] show that their algorithm’s depth is tight in the parameter m
when the block size is sufficiently large.

2 Informal Overview of Our Results

In this section, we take several intermediate steps to design a basic Circuit
OPRAM construction. Specifically, we start out by reviewing the high-level idea
introduced earlier by Chen et al. [7]. Then, we point out why their scheme suffers
from an extra logarithmic blowup in performance in comparison with the best
known sequential algorithm. Having made these observations, we describe our
new techniques to avoid this blowup. For simplicity, in this section, we focus
on describing the basic, statistically secure Circuit OPRAM algorithm with a
fixed number of CPUs denoted m. In later formal sections, we will describe the
full scheme supporting the case of varying m, and additional techniques that
allow us to shave another log log N factor by leveraging a PRF to compress
the storage of the random position maps. Like in earlier ORAM/OPRAM works
[17–19,31,35,36], we will assume that the number of blocks N is also the security
parameter.

2.1 Background: Circuit ORAM

We review tree-based ORAMs [8,31,35,36] originally proposed by Shi et al. [31].
We specifically focus on describing the Circuit ORAM algorithm [36] which we
build upon.
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We assume that memory is divided into atomic units called blocks. We first
focus on describing the non-recursive version, in which the CPU stores in its local
cache a position map henceforth denoted as posmap that stores the position for
every block.

Data structures. The memory is organized in the form of a binary tree, where
every tree node is a bucket with a capacity of O(1) blocks. Buckets hold blocks,
where each block is either dummy or real. Throughout the paper, we use the
notation N to denote the total number of blocks. Without loss of generality,
we assume that N = 2L is a power of two. The ORAM binary tree thus has
height L.

Besides the buckets, there is also a stash in memory that holds overflowing
blocks. The stash is of size O(α log N), where α = ω(1) is a parameter related
to the failure probability. Just like buckets, the stash may contain both real and
dummy blocks. Henceforth, for convenience, we will often treat the stash as part
of the root bucket.

Main path invariant. The main invariant of tree-based ORAMs is that every
block is assigned to the path from the root to a randomly chosen leaf node.
Hence, the path for each block is indicated by the leaf identifier or the position
identifier, which is stored in the aforementioned position map posmap. A block
with virtual address i must reside on the path indicated by posmap[i].

Operations. We describe the procedures for reading or writing a block at virtual
address i.

– Read and remove. To read a block at virtual address i, the CPU looks up
its assigned path indicated by posmap[i], and reads this entire path. If the
requested block is found at some location on the path, the CPU writes a
dummy block back into the location. Otherwise, the CPU simply writes the
original block back. In both cases, the block written back is re-encrypted such
that the adversary cannot observe which block is removed.

– Remap. Once a block at virtual address i is fetched, it is immediately assigned
to a new path. To do this, a fresh random path identifier is chosen and
posmap[i] is modified accordingly. The block fetched is then written to the last
location in the stash (the last location is guaranteed to be empty except with
negligible probability at the end of each access). If this is a write operation,
the block’s contents may be updated prior to writing it back to the stash.

– Evict. Two paths (particularly, one to the left of the root and one to the right
of the root) are chosen for eviction according to an appropriate data inde-
pendent criterion. Specifically, for the remainder of the paper, we will assume
that the paths are chosen based on the deterministic reverse lexicographical
order algorithm adopted in earlier works [15,36], the choice of eviction path
is non-essential to the understanding of the algorithm (but matters to the
stochastic analysis).
For each path chosen (that includes the stash), the CPU performs an eviction
procedure along this path. On a high level, eviction is a maintenance oper-
ation that aims to move blocks along tree paths towards the leaves — and
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importantly, in a way that respects the aforementioned path invariant. The
purpose of eviction is to avoid overflow at any bucket.
Specifically in Circuit ORAM, this eviction operation involves making two
metadata scans of the eviction path followed by a single data block scan [36].

A useful property of Circuit ORAM’s eviction algorithm. For the majority of this
paper, the reader need not know the details of the eviction algorithm. However,
we point out a useful observation regarding Circuit ORAM’s eviction algorithm.

Fact 1 (Circuit ORAM eviction). Suppose Circuit ORAM’s eviction algo-
rithm is run once on some path denoted path[0..L], where by convention we use
path[0] to denote the root (together with the stash) and path[L] is the leaf in the
path. Then, for every height i ∈ {1, . . . , L}, it holds that at most one block moves
from path[0..i − 1] to path[i..L]. Further, if a block did move from path[0..i − 1]
to path[i..L], then it must be the block that can be evicted the deepest along the
eviction path (and if more than one such block exists, an arbitrary choice could
be made).

Jumping ahead, we stress that Fact 1 is why later we can evict exactly 1 block
to each subtree — in comparison, had we built on top of Path ORAM, we would
not be able to achieve the same.

Recursion. So far, we have assumed that the CPU can store the entire position
map posmap in its local cache. This assumption can be removed using a standard
recursion technique [31]. Specifically, instead of storing the position map in the
CPU’s cache, we store it in a smaller ORAM in memory — and we repeat this
process until the position map is of constant size.

As long as each block can store at least two position identifiers, each level of
the recursion will reduce the size of the ORAM by a constant factor. Therefore,
there are at most O(log N) levels of recursion. Several tree-based ORAM schemes
also describe additional tricks in parametrizing the recursion for larger block
sizes [35,36]. We will not describe these tricks in detail here, but later in the
full version [6] we will recast these tricks in our OPRAM context and describe
further optimizations for large block sizes.

Circuit ORAM performance. For general block sizes, Circuit ORAM achieves
O(α log N) blowup (in terms of bandwidth and the number of accesses) in the
non-recursive version, and O(α log2 N) blowup across all levels of recursion. The
CPU needs to hold only O(1) blocks at any point in time.

2.2 Warmup: The CLT OPRAM Scheme

We outline the elegant approach by Chen et al. [7] which achieves O(log3 N)
simulation overhead. Although Chen et al. [7]’s construction builds on top of
Path ORAM [35], we describe a (slightly improved) variant of their scheme [7]
that builds atop Circuit ORAM instead, but in a way that captures the core
ideas of Chen et al. [7].
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Suppose we start with Circuit ORAM [36], a state-of-the-art tree-based
ORAM. Circuit ORAM is sequential, i.e., supports only one access at a time
— but we now would like to support m simultaneous accesses. Without loss
of generality, we assume that m ≤ N throughout the paper. In our informal
overview, we often assume that m is not too small for convenience (more pre-
cisely we assume that m > ω(log log N) for our informal description), and we
deal with the case of small m in later technical sections.

Challenge for parallel accesses: write conflicts. A strawman idea for constructing
OPRAM is to have m CPUs perform m ORAM access operations simultaneously.
Reads are easy to handle, since the m CPUs can read m paths simultaneously.
The difficulty is due to write conflicts, which arise from the need for m CPUs
to (1) each remove a block from its bucket if it is the requested one; and (2) to
perform eviction after the reads. In particular, observe that the paths accessed
by the m CPUs overlap, and therefore it may be possible that two or more CPUs
will be writing the same location at the same time. It is obvious that if such write
conflicts are resolved arbitrarily where an arbitrary CPU wins, we will not be
able to maintain even correctness.

Subtree partitioning to reduce write contention. Chen et al.’s core idea is to
remove buckets from smaller heights of the Circuit ORAM tree, and start at a
height with m buckets. In this way, we can view the Circuit ORAM tree as m
disjoint subtrees — write contentions can only occur inside each subtree but not
across different subtrees.

Now since there are m CPUs in the original PRAM, each batch contains m
memory access requests — without loss of generality, we will assume that all of
these m requests are distinct — had it not been the case, it is easy to apply the
conflict resolution algorithm of Boyle et al. [3] to suppress duplicates, and then
rely on oblivious routing to route fetched results back to all m requesting CPUs.

Each of these m requests will look for its block in a random subtree indepen-
dently. By the Chernoff bound, each subtree receives O(α log N) requests with all
but negl(N) probability where α = ω(1) is any super-constant function. Chen
et al.’s algorithm proceeds as follows, where performance metrics are without
recursion.

1. Fetch. A designated CPU per subtree performs the read phase of these
O(α log N) requests sequentially, which involves reading up to O(α log N)
paths in the tree. Since each path is O(log N) in length, this incurs
O(α log2 N) parallel steps.

2. Route. Obliviously route the fetch results to the requesting CPUs. This incurs
O(log m) parallel steps with m CPUs.

3. Remap. Assign each fetched block to a random new subtree and a random leaf
within that subtree. Similarly, each subtree receives μ = O(α log N) blocks
with all but negl(N) probability. Now, adopt an oblivious routing procedure
to route exactly μ blocks back to each subtree, such that each tree receives
blocks destined for itself together with padded dummy blocks. This incurs
O(α log m log N) parallel steps with m CPUs.
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4. Evict. Each subtree CPU sequentially performs μ = O(α log N) evictions for
its own subtree. This incurs O(α log2 N) parallel steps with m CPUs.

Note that to make the above scheme work, Chen et al. [7] must assume that
each subtree CPU additionally stores an O(α log N)-sized stash that holds all
overflowing blocks that are destined for the particular subtree — we will get
rid of this CPU cache, such that each CPU only needs O(1) blocks of transient
storage and does not need any permanent storage.

Recursive version. The above performance metrics assumed that all CPUs get to
store, read, and update a shared position map for free. To remove this assump-
tion, we can employ the standard recursion technique of the tree-based ORAM
framework [31] to store this position map. We stress that when applying recur-
sion, we must perform conflict resolution at each recursion level to ensure that
all non-dummy requests have distinct addresses at each recursion level. The posi-
tion identifiers fetched at a position map level will be obliviously routed to the
fetch CPUs at the next recursion level.

Assuming that each block has size at least Ω(log N) bits, there can be
up to log N levels of recursion. Therefore, Chen et al.’s OPRAM scheme incurs
O(α log3 N) simulation overhead using the same number of CPUs as the original
PRAM.

2.3 Our Construction: Intuition

Why the CLT OPRAM is inefficient. First, we need to observe why the CLT
OPRAM [7] is inefficient. There are two fundamental reasons why the CLT
OPRAM scheme suffers from an extra log N factor in overhead.

1. During the fetch phase, a single CPU per subtree acts sequentially to fetch
all requests that belong to the subtree. Although on average, each subtree
receives O(1) requests, in the worst case a subtree may receive up to α log N
requests (to obtain negl(N) security failure). Since serving each request
involves reading a tree path of log N in length and then removing the block
fetched from the path, serving all α log N requests sequentially with a sin-
gle CPU would then require O(α log2 N) time — over all O(log N) recursion
levels, the blowup would then be O(α log3 N).

2. Similarly, during the eviction phase, a single CPU is in charge of performing
all evictions a subtree receives. Although on average, each subtree receives
O(1) evictions, in the worst case a subtree may receive up to α log N evictions
(to obtain negl(N) security failure). Similarly, to serve all α log N evictions
with a single CPU would require O(α log2 N) time — and after recursion, the
blowup would be O(α log3 N).

Therefore, the crux is how to improve the efficiency of the above two steps.
To this end, we need to introduce a few new ideas described below.

Simultaneous removal. Reading data from the m subtrees can be split into two
steps: (1) reading m paths to search for the m blocks requested; and (2) removing
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the m fetched blocks. Reading m paths can be parallelized trivially by having
m CPUs each read a path — note that it is safe to reveal how many requests go
to each subtree. Therefore, the crux is how to in parallel remove the m fetched
blocks from the respective tree paths. The challenge here is that the tree paths
may intersect — recall that each subtree may receive up to α log N requests in
the worst-case, and therefore the simultaneous removal algorithm must handle
potential write conflicts.

We detail our new simultaneous removal algorithm in Sect. 7.1.

Lazy eviction. The eviction stage is more tricky. Unlike the fetch phase where it
is safe to reveal which requests go to which subtrees, here it must be kept secret
from the adversary how many evictions each subtree receives. At first sight, it
would seem like it is necessary to pad the number of evictions per subtree to
α log N to hide the actual number of evictions each subtree receives.

Our idea is to perform eviction lazily. We perform only a single (possibly
dummy) eviction per subtree for each batch of m requests — for technical reasons
we will have 2m subtrees in total instead of m subtrees, since this makes evictions
on average faster than the rate of access. In particular, if there exists one or more
blocks wanting to be evicted to a subtree, a real eviction takes place; otherwise,
a dummy eviction takes place for the corresponding subtree.

Obviously, such lazy eviction would mean that some elements will be left over
and cannot be evicted back into the subtrees. Therefore, we introduce a new data
structure called a pool to store the leftover blocks that fail to be evicted. Later,
we will prove that the pool size is upper bounded by O(m+α log N) except with
negl(N) probability.

Due to the introduction of the pool, when a batch of requests come, we will
need to serve these requests not only from the subtrees, but also from the pool as
well — serving requests from the pool can be done in parallel through a standard
building block called oblivious routing [3].

Selection of eviction candidates and pool occupancy. Recall that during the evic-
tion stage, we would like to perform a single eviction per subtree. This would
require an oblivious algorithm to select eviction candidates from the pool and
route these candidates to the respective subtrees. Intuitively, if multiple blocks
in the pool are destined for a given subtree, we should select one that has a max-
imum chance of being evicted, since this can hopefully give us a tight bound on
the leftover blocks in the pool. As a result, suppose that a certain path denoted
path is being evicted for a certain subtree, we will select a block in the pool
that is deepest with respect to path for this subtree — as defined in the Cir-
cuit ORAM [36] work, this means that this block can legally reside in a deepest
height (i.e., closest to the leaf) in path.

It turns out that using this eviction candidate selection strategy, we can view
the union of the subtrees and the pool logically as a big Circuit ORAM tree —
where the subtrees represent heights log2(2m) or higher; and the pool repre-
sents smaller heights below log2(2m) as well as the stash of Circuit ORAM.
At this moment, it would seem like bounding on the pool occupancy would
directly translate to bounding blocks remaining in the smaller heights of Circuit
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ORAM — although there is one additional subtlety: in Circuit ORAM, we per-
form one access followed by one eviction, whereas here we perform a batch of m
accesses followed by a batch of m evictions. To handle this difference, we prove a
stochastic domination result, showing that such batched eviction can only reduce
the number of blocks in height log2(2m) or smaller than non-batched — in this
way, we can reuse Circuit ORAM’s stochastic analysis for bounding the pool
size.

2.4 Putting it Altogether

Putting the above ideas together would expose a few more subtleties. We give a
high-level overview of our basic construction below.

A pool and 2m subtrees: reduce write contention by partitioning. Following the
approach of Chen et al. [7], we reduce write contention by partitioning the Circuit
ORAM into 2m subtrees6. However, on top of Chen et al. [7], we additionally
introduce the notion of a pool, a data structure that we will utilize to amortize
evictions across time.

We restructure a standard Circuit ORAM tree in the following manner. First,
we consider a height with 2m buckets, which gives us 2m disjoint subtrees. All
buckets from smaller heights, including the Circuit ORAM’s stash, contain at
most O(m+α log N) blocks — we will simply store these O(m+α log N) blocks
in an unstructured fashion in memory, henceforth referred to as a pool.

Fetch. Given a batch of m memory requests, henceforth without loss of generality,
we assume that the m requests are for distinct addresses. This is because we can
adopt the conflict resolution algorithm by Boyle et al. [3] to suppress duplicates,
and after data has been fetched, rely on oblivious routing to send fetched data
to all request CPUs.

Now, we look up the requested blocks in two places, both the pool and the
subtrees:

– Subtree lookup: Suppose that the position labels of the m requests have been
retrieved (we will later show how to achieve this through a standard recursion
technique) — this defines m random paths in the 2m subtrees. We can now
have m fetch CPUs each read a path to look for a desired block. All fetched
blocks are merged into the central pool. Notice that at this moment, the
pool size has grown by a constant factor, but later in a cleanup step, we will
compress the pool back to its original size. Also, at this moment, we have
not removed the requested blocks from the subtrees yet, and we will remove
them later in the maintain phase.

– Pool lookup: At this moment, all requested blocks must be in the pool. Assum-
ing that m is not too small, we can now rely on oblivious routing to route
blocks back to each requesting CPU — and this can be completed in O(log N)
parallel steps with m CPUs. We will treat the case of small m separately later
in the paper.

6 Although we choose 2m for concreteness, any c ·m for a constant c > 1 would work.
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Maintain. In the maintain phase, we must (1) remove all blocks fetched from
the paths read; and (2) perform eviction on each subtree.

– Efficient simultaneous removals. After reading each subtree, we need to
remove up to μ := O(α log N) blocks that are fetched. Such removal opera-
tions can lead to write contention when done in parallel: since the paths read
by different CPUs overlap, up to μ := O(α log N) CPUs may try to write to
the same location in the subtree.
Therefore, we propose a new oblivious parallel algorithm for efficient simulta-
neous removal. Our algorithm allows removal of the m fetched blocks across
all trees in O(log N) time using m CPUs. We defer the detailed description
of this simultaneous removal algorithm to Sect. 7.

– Selection of eviction candidates and pool-to-subtree routing. At this moment,
we will select exactly one eviction candidate from the pool for each subtree. If
there exists one or more blocks in the pool to be evicted to a certain subtree,
then the deepest block with respect to the current eviction path will be chosen
(as mentioned later, eviction paths are chosen using a standard deterministic
order lexicographical ordering mechanism [15,36]). Otherwise, a dummy block
will be chosen for this subtree. Roughly speaking, using the above criterion
as a preference rule, we can rely on oblivious routing to route the selected
eviction candidate from the pool to each subtree. This can be accomplished
in O(log N) parallel steps with m CPUs assuming that m is not too small —
we defer the treatment of small m to later parts of the paper. The details of
this algorithm will be spelled out in the full version [6].

– Eviction. We then perform eviction over one tree path for every subtree where
the eviction path is selected using the standard deterministic lexicographically
order algorithm — since the details of eviction path selection are non-essential
to the understanding of our Circuit OPRAM, we refer the reader to earlier
works for a detailed exposition [15,36]. At the end of this step, each subtree
will output an eviction leftover block: the leftover block is dummy if the
chosen eviction candidate was successfully evicted into the subtree (or if the
eviction candidate was dummy to start with); otherwise the leftover block
is the original eviction candidate. All these eviction leftovers will be merged
back into the central pool.

– Pool cleanup. Notice that in the process of serving a batch of requests, the
pool size has grown — however, blocks that have entered the pool may be
dummy. In particular, we shall prove that the pool’s occupancy will never
exceed c · m + α log N for an appropriate constant c except with negl(N)
probability. Therefore, at the end of the maintain phase, we must compress
the pool back to c · m + α log N . Such compression can easily be achieved
through oblivious sorting in O(log N) parallel steps with m CPUs, assuming
that m is not too small. We defer the special treatment of small m to later
parts of the paper.

Recursion and performance. So far, we have assumed that a position map can
be stored and accessed by the CPUs for free. We can remove this assumption
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through a standard recursion technique [3,31]. Note that we need to perform
conflict resolution at all levels of recursion, and perform oblivious routing to
route the fetched position identifiers to the fetch CPUs at the next recursion
level. When we count all O(log N) recursion levels, the above basic construction
achieves O(log2 N) blowup when m is not too small — we defer the special-case
treatment of small m to later parts of the paper.

2.5 Extensions

Improve performance asymptotically with PRFs. In the full version [6], we will
describe additional techniques that allow us to improve the OPRAM’s blowup to
O( log2 N

log log N ) assuming the usage of a pseudo-random function (PRF) — of course,
the resulting scheme would then only have computational security rather than
statistical security. To this end, we rely on an elegant technique first proposed
by Fletcher et al. [12] that effectively “compresses” position labels by relying
on a PRF to compute the blocks’ leaf identifiers from “compressed counters”.
Fletcher et al.’s technique was designed for tree-based ORAMs — as we show
later in the paper, we need to make some adaptations to their algorithm to make
it work with OPRAMs.

Varying number of CPUs. Our overview earlier assumes that the original PRAM
always has the same number of CPUs in every time step, i.e., all batches of
memory requests have the same size. We can further extend our scheme for the
case when the number of PRAM CPUs varies over time. Below we briefly describe
the idea while leaving details to Sect. 7. Without loss of generality, henceforth we
assume that in every time step, the number of requests in a batch m is always a
power of 2 — if not, we can simply round it to the nearest power of 2 incurring
only O(1) penalty in performance.

Suppose that the OPRAM scheme currently maintains 2m̂ subtrees, but the
incoming batch has m > m̂ number of requests. In this case, we will immediately
adjust the number of subtrees to 2m. This can be done simply by merging more
heights of the tree into the pool.

The more difficult case is when the incoming batch contains less than m < m̂
requests. In this case, we need to decrease the number of subtrees. In the extreme
case when m drops from

√
N to 1, it will be too expensive to reconstruct up to

Θ(log N) heights of the ORAM tree.
Instead, we argue in Sect. 3.2 that without loss of generality, we may assume

that if m decreases, it may only decrease by a factor of 2. Hence, every time we
just need to halve the number of subtrees — and to achieve this we only need
to reconstruct one extra height of the big ORAM tree, which can be achieved
through oblivious sorting in O(log m̂) parallel steps with O(m̂) CPUs.

Results for large block sizes. Finally, we note that when the block size is N ε for
any constant 0 < ε < 1, Circuit OPRAM achieves O(log N) simulation overhead
when m ≥ α log log N . In light of Goldreich and Ostrovsky’s Ω(log N) lower
bound [17,18], Circuit OPRAM is therefore asymptotically optimal under large
block sizes.
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2.6 Paper Organization

The remainder of the paper will formally present the ideas described in this
section and describe additional results including

1. How to support the case when the number of CPUs varies over time (Sects. 5,
6, 7, and details in [6]);

2. Algorithmic details for the case of small m (Sects. 5, 6, 7, and details in [6]);
3. Additional techniques to improve the overhead of the scheme by a log log N

factor assuming the existence of PRFs and achieving computational (rather
than statistical) security in full version [6];

4. Detailed proofs (in full version [6]) where the security proof is somewhat
straightforward but the most technically involved part is to prove that Circuit
OPRAM’s stochastic process is dominated by that of Circuit ORAM such
that we can leverage Circuit ORAM’s stochastic analysis [36] for bounding
the pool and stash sizes of Circuit OPRAM; and

5. Interpretations of our results under larger block sizes and other relevant met-
rics in full version [6].

3 Preliminaries

3.1 Parallel Random-Access Machines

A parallel random-access machine (PRAM) consists of a set of CPUs and a
shared memory denoted mem indexed by the address space [N ] := {1, 2, . . . , N}.
In this paper, we refer to each memory word also as a block, and we use B to
denote the bit-length of each block.

We support a more general PRAM model where the number of CPUs in each
time step may vary. Specifically, in each step t ∈ [T ], we use mt to denote the
number of CPUs. In each step, each CPU executes a next instruction circuit
denoted Π, updates its CPU state; and further, CPUs interact with memory
through request instructions I(t) := (I(t)i : i ∈ [mt]). Specifically, at time step t,
CPU i’s instruction is of the form I

(t)
i := (op, addr, data), where the operation

is op ∈ {read,write} performed on the virtual memory block with address addr
and block value data ∈ {0, 1}B ∪ {⊥}. If op = read, then we have data = ⊥ and
the CPU issuing the instruction should receive the content of block mem[addr]
at the initial state of step t. If op = write, then we have data �= ⊥; in this case,
the CPU still receives the initial state of mem[addr] in this step, and at the end
of step t, the content of virtual memory mem[addr] should be updated to data.

Write conflict resolution. By definition, multiple read operations can be executed
concurrently with other operations even if they visit the same address. However,
if multiple concurrent write operations visit the same address, a conflict reso-
lution rule will be necessary for our PRAM be well-defined. In this paper, we
assume the following just like earlier OPRAM works [3,7]:
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– The original PRAM supports concurrent reads and concurrent writes
(CRCW) with an arbitrary, parametrizable rule for write conflict resolution.
In other words, there exists some priority rule to determine which write oper-
ation takes effect if there are multiple concurrent writes in some time step t.

– The compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, the design of our OPRAM con-
struction must ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule
is among the most powerful CRCW-PRAM model, whereas CREW is a much
weaker model. Our results are stronger if we allow the underlying PRAM to be
more powerful but the our compiled OPRAM uses a weaker PRAM model. For
a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [21].

CPU-to-CPU communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM
algorithm to be oblivious, the inter-CPU communication pattern must be obliv-
ious too. We stress that such inter-CPU communication can be emulated using
shared memory reads and writes. Therefore, when we express our performance
metrics, we assume that all inter-CPU communication is implemented with
shared memory reads and writes. In this sense, our performance metrics already
account for any inter-CPU communication, and there is no need to have separate
metrics that characterize inter-CPU communication. In contrast, Chen et al. [7]
defines separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each CPU
can only store O(1) memory blocks. Further, we assume for simplicity that the
runtime of the PRAM, and the number of CPUs activated in each time step
are fixed a priori and publicly known parameters. Therefore, we can consider a
PRAM to be a tuple

PRAM := (Π,N, T, (mt : t ∈ [T ])),

where Π denotes the next instruction circuit, N denotes the total memory size (in
terms of number of blocks), T denotes the PRAM’s total runtime, and mt denotes
the number of CPUs to be activated in each time step t ∈ [T ]. Henceforth, we
refer to the vector (m1, . . . , mT ) as the PRAM’s activation schedule as defined
by Boyle et al. [3].

Without loss of generality, we assume that N ≥ mt for all t. Otherwise, if
some mt > N , we can adopt a trivial parallel oblivious algorithm (through a
combination of conflict resolution and oblivious multicast) to serve the batch of
mt requests in O(log mt) parallel time with mt CPUs.

3.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs
are allowed to generate private, random numbers. For simplicity, we assume that
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a randomized PRAM has a priori known, deterministic runtime, and that the
CPU activation pattern in each time step is also fixed a priori and publicly
known.

Statistical and computational indistinguishability. Given two ensembles of distri-

butions {XN} and {YN} (parameterized with N), we use the notation {XN} ε(N)≡
{YN} to mean that for any (possibly computationally unbounded) adversary A,

∣

∣

∣Pr[A(x) = 1 |x $←XN ] − Pr[A(y) = 1 |y $←YN ]
∣

∣

∣ ≤ ε(N).

We use the notation {XN} ε(N)≡c {YN} to mean that for any non-uniform p.p.t.
adversary A,

∣

∣

∣Pr[A(1N , x) = 1 |x $←XN ] − Pr[A(1N , y) = 1 |y $←YN ]
∣

∣

∣ ≤ ε(N).

Oblivious PRAM (OPRAM). A randomized PRAM parametrized with total
memory size N is said to be statistically oblivious, iff there exists a negligible
function ε(·) such that for any inputs x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)≡ Addresses(PRAM, x1),

where Addresses(PRAM, x) denotes the joint distribution of memory accesses
made by PRAM upon input x. More specifically, for each time step t ∈ [T ],
Addresses(PRAM, x) includes the memory addresses requested by the set of active
CPUs St in time step t along with their CPU identifiers, as well as whether each
memory request is a read or write operation.

Similarly, a randomized PRAM parametrized with total memory size N is
said to be computationally oblivious, iff there exists a negligible function ε(·)
such that for any inputs x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)≡c Addresses(PRAM, x1)

Note the only difference from statistical security is that here the access pat-
terns only need to be indistinguishable to computationally bounded adversaries.
Henceforth we often use the notation OPRAM to denote a PRAM that satisfies
obliviousness.

In this paper, following the convention of most existing ORAM and OPRAM
works [17,18,23,35,36], we will require that the security failure probability be
negligible in the N , i.e., the PRAM’s total memory size.

Oblivious simulation and performance measures. We say that a given OPRAM
simulates a PRAM if for every input x ∈ {0, 1}∗, Pr[OPRAM(x) = PRAM(x)] =
1 where the probability is taken over the randomness consumed by the
OPRAM — in other words, we require that the OPRAM and PRAM output
the same outcome on any input x.
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Like in prior works on OPRAM [3,7], in this paper, we consider activation-
preserving oblivious simulation of PRAM. Specifically, let (m1, . . . , mT ) be
the original PRAM’s activation schedule, we require that the corresponding
OPRAM’s activation schedule to be

(m1)
χ
i=1, (m2)

χ
i=1, . . . , (mT )χ

i=1,

where χ is said to be the OPRAM’s simulation overhead (also referred to as
blowup). In other words, henceforth in the paper, we will simulate the i-th step of
the PRAM using mi CPUs — the same number as the original PRAM. Without
loss of generality, we will often assume O(mi) CPUs are available, since we can
always use one CPU to simulate O(1) CPUs with only constant blowup. As a
special case, when the number of CPUs is fixed for the PRAM, i.e., mi = m
for any i ∈ [T ], an oblivious simulation overhead of χ means that the OPRAM
needs to run in χ · T steps consuming m CPUs (same as the original PRAM)
where T is the runtime of the original PRAM.

An oblivious simulation overhead of χ also implies the OPRAM’s CPU-to-
memory bandwidth overhead is a factor of χ more than the original PRAM.
Since our model simulates all inter-CPU communication with memory-to-CPU
communication, an OPRAM with simulation overhead χ under our model imme-
diately implies that the inter-CPU communication is bounded by χ too. In this
sense, our metrics are stronger than those adopted in earlier work [7] which
treated CPU-to-memory communication and inter-CPU communication sepa-
rately — this makes our upper bound results more general.

Assumption on varying number of CPUs. Without loss of generality, henceforth
in the paper we may assume that in the original PRAM, the number of CPUs in
adjacent steps can increase arbitrarily, but may only decrease by a factor of 2. In
other words, we may assume that for any i ∈ [T − 1], mi+1 ≥ mi

2 . This assump-
tion is without loss of generality, since it is not hard to see that any PRAM where
the number of CPUs can vary arbitrarily can be simulated by a PRAM where the
number of CPUs can decrease by at most 1

2 in adjacent steps — and such simula-
tion preserves the PRAM’s total work and parallel runtime asymptotically. Such
a simulation is straightforward: if the original PRAM consumes more CPUs than
the simulated PRAM in the next step, then the simulated PRAM immediately
increases the number of CPUs to a matching number. If the original PRAM’s
consumes fewer CPUs than the simulated PRAM in the next step, the simulated
PRAM decreases its CPUs by at most a factor of 2 each time (and if there are
more CPUs in the simulation than needed by the PRAM, the additional CPUs
simply idle and perform dummy work).

4 Building Blocks

We now describe some standard or new building blocks that we use.

Oblivious sort. Parallel oblivious sort solves the following problem. The input is
an array denoted arr containing n elements and a total ordering over all elements.
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The output is a sorted array arr′ that is constructed obliviously. Parallel oblivious
sorting can be achieved in a straightforward way through sorting networks [1],
by using O(n) CPUs and consuming O(n log n) total work and O(log n) parallel
steps.

Oblivious conflict resolution. Oblivious conflict resolution solves the fol-
lowing problem: given a list of memory requests of the form In :=
{(opi, addri, datai)}i∈[m], output a new list of requests denoted Out also of length
m, such that the following holds:

– Every non-dummy entry in Out appears in In;
– Every address addr that appears in In appears exactly once in Out. Further,

if multiple entries in In have the address addr, the following priority rule is
applied to select an entry: (1) writes are preferred over reads; and (2) if there
are multiple writes, a parametrizable function priority is used to select an
entry.

We will use the standard parallel oblivious conflict resolution algorithm
described by Boyle et al. [3], which can accomplish the above in O(m log m)
total work and O(log m) parallel steps. More specifically, Boyle et al.’s conflict
resolution algorithm relies on a constant number of oblivious sorts and oblivious
aggregation.

Oblivious aggregation for a sorted array. Given an array Inp := {(ki, vi)}i∈[n]

of (key, value) pairs sorted in increasing order of the keys, we call all elements
with the same key a group. We say that index i ∈ [n] is a representative of
its group if it is the leftmost element of its group. Let Aggr be a commutative
and associative aggregation function and we assume that its output range can
be described by O(1) number of blocks. The goal of oblivious aggregation is to
output the following array:

Outpi :=

{

Aggr ({v : (k, v) ∈ Inp and k = ki}) , if i is a representative;
⊥, o.w.

Boyle et al. [3] and Nayak et al. [27] show that oblivious aggregation for a
sorted array of length n can be accomplished in O(log n) parallel time consuming
n CPUs.

When the input array has a maximum group size of k, we show that oblivious
aggregation can be accomplished in O(log k) parallel steps consuming O( n

log k )
CPUs. We defer the detailed description of the algorithm to the full version [6].

Oblivious routing. Oblivious routing solves the following problem. Suppose n
source CPUs each holds a data block with a distinct key (or a dummy block).
Further, n destination CPUs each holds a key and requests a data block identified
by its key. An oblivious routing algorithm routes the requested data block to the
destination CPU in an oblivious manner. Boyle et al. [3] showed that through a
combination of oblivious sorts and oblivious aggregation, oblivious routing can
be achieved in O(n log n) total work and O(log n) parallel runtime.
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In this paper, we sometimes also need a variant of the oblivious routing
algorithm, a source CPU gets informed in the end whether its block is successfully
routed to one or more destination CPUs. We elaborate how to modify Boyle
et al. [3]’s oblivious routing building block to accomplish this.

Oblivious bin packing. Oblivious bin packing is the following primitive. We are
given B bins each of capacity Z, and an input array of possibly dummy elements
where each real element is tagged with a destined bin number and priority value.
We wish to maximally pack each bin with elements destined for the bin — if
there are more than Z elements destined for a bin, the Z elements with the
highest priority should be chosen. Let n be the size of the input array, In the
end, the algorithm outputs an array of size B ·Z denoting the packed bins and an
array of size n denoting the remaining elements — both padded with dummies.

Let n̂ := max(n,B ·Z). We devise an algorithm for performing such oblivious
bin packing in O(log n̂) parallel steps consuming n̂ CPUs. The details of this
algorithm and a more formal definition of oblivious bin packing are deferred to
the full version [6].

5 Our Basic OPRAM Construction

We now describe our basic OPRAM construction.

5.1 Notations

Addresses in each recursion level. Recall that we reviewed the Circuit ORAM
construction earlier. Here we define some notations for expressing recursion lev-
els, including given each logical memory request, which metadata blocks to fetch
from each recursion level.

In the presentation below, we assume that each position map block can store
the position labels of γ blocks at the next recursion level, i.e., the branching
factor is denoted by γ. Given a logical address addr of a data block, we say
that its level-d prefix (denoted addr〈d〉) is the d most significant characters of
addr when expressed in base-γ format. Specifically, a block at address addr〈d〉

in recursion level d will store the position labels for the γ blocks at addresses
{(addr〈d〉||j) : j ∈ [γ]} in recursion level d + 1; we say that the level-(d + 1)
address (addr〈d〉||j) is the jth child of the level-d address addr〈d〉. For the special
case γ = 2, we sometimes refer to the level-(d + 1) addresses (addr〈d〉||0) and
(addr〈d〉||1) as the left child and the right child respectively of the level-d address
addr〈d〉.

Example 1. We give an example for γ = 2, i.e., when each position map block
can store exactly two position labels. Imagine that one of the memory requests
among the batch of m requests asks for the logical address (0101100)2 in binary
format. For this request,
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– A fetch CPU at recursion level 0 will look for the level-0 address (0∗), and the
fetched block will contain the position labels for the level-1 addresses (00∗)
and (01∗); and a corresponding fetch CPU at recursion level 1 will receive
the position label for the level-1 address (01∗).

– A fetch CPU at recursion level 1 will look for the level-1 address (01∗), and
the fetched block will contain the position labels for the level-2 addresses
(010∗) and (011∗); and a corresponding fetch CPU at the next recursion level
is to receive the position label for (010∗);

– This goes on until the final recursion level is reached. Except for the final
recursion level which stores actual data blocks, all other recursion levels store
position map blocks.

Here we focused on what happens for fetching one logical address (0101100)2 —
but keep in mind that there are m such addresses in a batch and thus the above
process is repeated m times in parallel.

Notations for varying number of CPUs. For simplicity, below we use m (omitting
the subscript t) to denote the number of CPUs of the present PRAM step; we
use the notation m̂ to denote the number of CPUs in the previous PRAM step.
Without loss of generality, we also assume that both m and m̂ are powers of 2,
since if not, we can always round it to the nearest power of 2 while incurring only
a constant factor blowup. Recall that due to our bounded change assumption
on the number of CPUs, we may also assume without loss of generality that
m ≥ m̂

2 . Therefore, if m < m̂ it must be the case that m := m̂
2 .

Our OPRAM scheme will try to maintain the following invariant: at the end
of a PRAM step with m CPUs, the OPRAM data structure will have exactly 2m
disjoint subtrees. Henceforth, we assume that at the beginning of the PRAM step
we are concerned about, there are exactly 2m̂ disjoint subtrees since m̂ denotes
the number of CPUs in the previous PRAM step.

Parameter α. Throughout the description, we use α = ω(1) to denote an appro-
priately small super constant function in N such that the failure probability is
at most 1

NΘ(α) , i.e., negligible in N .

5.2 Data Structures

Subtrees and overflowing pool. For each of the recursion levels, we maintain a
binary tree structure as in Circuit ORAM [36]. We refer the reader to Sect. 2.1 for
a review of the Circuit ORAM algorithm. However, instead of having a complete
tree, our OPRAM scheme truncates the tree at height 
 := log2(2m) containing
2m buckets. In this way, we can view the tree data structure as 2m disjoint
subtrees.

In the Circuit ORAM algorithm, all buckets with heights smaller than 

contain at most O(m+α log N) blocks. In our OPRAM scheme, these blocks are
treated as overflowing blocks, and they are held in an overflowing data structure
called a pool as described below.
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Position map. As in Circuit ORAM (see Sect. 2.1), each address addr is associated
with a random path in one of the subtrees, and the path is identified by a leaf
node. We use a position map posmap[addr] to store the position identifier for
address addr.

Our main path invariant states that a block with address addr must reside
on the path to the leaf posmap[addr] in one of the subtrees, or reside in the
overflowing pool. When block addr is accessed (via read or write), its position
posmap[addr] will be updated to a new leaf chosen uniformly and independently
at random. As in previous works [31,35,36], the position map is stored in a
smaller OPRAM recursively. We use the notation pos-OPRAMs to denote all
recursion levels for storing the position map, and we use data-OPRAM to denote
the top recursion level for storing data blocks.

5.3 Overview of One Simulated PRAM Step

To serve each batch of memory requests, a set of CPUs interact with memory
in two synchronized phases: in the fetch phase, the request CPUs receive the
contents of the requested blocks; in the second maintain phase, the CPUs col-
laborate to maintain the data structure to be ready for the next PRAM step.
The description below can be regarded as an expanded version of Sect. 2.4. In
particular, we now spell out what happens if mt varies over time. Further, it
turns out that for OPRAM, the recursion is somewhat more complicated than
ORAM, we also spell out all the details of the recursion — this choice is made
also partly in anticipation of the additional computational security techniques
described later in the full version [6] where it is somewhat important to not
treat the recursion as a blackbox like most earlier tree-based ORAM/OPRAM
works [3,7,8,35,36]. Our algorithm below employs several subroutines the details
of which will be expanded in Sects. 6 and 7 respectively.

Fetch phase. The fetch phase has an array of m addresses as input denoted
(addr1, . . . , addrm). Recall that at the beginning of the fetch phase, each recursion
level has 2m̂ disjoint subtrees, where m̂ is the number of active CPUs in the
previous PRAM step.

(i) Preparation: all recursion levels in parallel. For all recursion levels d :=
0, 1, . . . ,D in parallel, perform the following:
– Generate level-d prefix addresses. Write down the level-d prefixes of all

m requests addresses (addr1, . . . , addrm). Clearly, this step can be accom-
plished in O(1) parallel step with m CPUs.

– Conflict resolution. Given a list of m possibly dummy level-d addresses
denoted (addr〈d〉

1 , . . . , addr〈d〉
m ), we run an instance of the oblivious conflict

resolution algorithm to suppress duplicate requests (and pad the resulting
array with dummies). This step can be accomplished in O(log m) parallel
steps with m CPUs.

– Discover which children addresses are needed by the next recursion level.
Let Addr〈d〉 := {addr〈d〉

i }i∈[m] denote the list of level-d addresses after con-
flict resolution. Each of these m level-d addresses has γ children addresses
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in the next recursion level. By jointly examining Addr〈d〉 and Addr〈d+1〉,
recursion level d learns for each non-dummy addr

〈d〉
i ∈ Addr〈d〉, which

of its children are needed for the next recursion level (see Sect. 6.1 for
details of this subroutine). At the end of this step, each of the m level-
d addresses receives a bit vector containing γ bits, indicating whether
each child address is needed by the next recursion level. As mentioned
in Sect. 6.1, this can be accomplished through O(1) number of oblivious
sorts. Therefore, it takes m CPUs O(log m) steps to complete.

– Choose fresh position labels for the next recursion level. For any child
that is needed, recursion level d chooses a new position label for the
next recursion level. For recursion level d, the result of this step is a new
position array

{addr〈d〉
i , (nposj : j ∈ [γ])}i∈[m]

where nposj is a fresh random label in level d + 1 if addr〈d〉
i ||j is needed

in the next recursion level, otherwise nposj := ⊥. Later in our algorithm,
each recursion level d will inform the next recursion level d + 1 of the
chosen new position labels.
This step can be accomplished in O(γ) steps with m CPUs — for our
statistically secure OPRAM scheme, we shall assume γ = O(1).

– Pool lookup. We have m CPUs each of which now seeks to fetch the level-
d block at address addr〈d〉. The m CPUs first tries to fetch the desired
blocks inside the central pool; and at the end, the fetched blocks will be
marked as dummy in the pool.
If m ≥ α log log N , then we rely on an instance of the oblivious rout-
ing algorithm, such that each of these m CPUs will attempt to receive
the desired block from the pool. If m < α log log N , oblivious routing is
too expensive, instead we invoke a special-case algorithm for small m to
accomplish this in O(α log N) steps with m CPUs.
We defer the details of the algorithm to Sect. 6.

(ii) Fetch: level by level. Now, for each recursion level, m CPUs will each look for
a block in one of the subtrees. This step must be performed sequentially one
recursion level at a time since each recursion level must receive the position
labels from the previous level before looking for blocks in the subtrees.
For each recursion level d = 0, 1, . . . ,D in sequential order, we perform the
following:
– Receive position labels from previous recursion level. Unless d = 0 in which

case the position labels can be fetched in O(1) parallel step, each of the
m level-d addresses will receive a pair of position labels from the previous
recursion level denoted (pos, npos), where pos represents the tree path
to look for the desired block, and npos denotes a freshly chosen label to
be assigned to the block after the fetch is complete. This can be accom-
plished through an instance of oblivious routing consuming O(log m) par-
allel steps with m CPUs.
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– Subtree lookup. Now, each of the m CPUs receives an instruction of the
form (addr〈d〉, pos) that could be possibly dummy. Each CPU will now
read a tree path leading to the leaf node numbered pos, in search of the
block with logical address addr〈d〉 (but without removing the block). If
found, the CPU will remember the location where the block is found —
and this information will later be useful for the simultaneous removal step
that is part of the maintain phase. If a CPU receives a dummy instruction,
it simply scans through a randomly chosen path in a random subtree.
At this moment, each of the m CPUs has fetched the desired block either
from the pool or the tree path (or the CPU has fetched dummy if it
received a dummy instruction to start with). The fetched position labels
(as well as the new position labels chosen for the next recursion level) are
ready to be routed to the next recursion level.

(iii) Oblivious multicast: once per batch of requests. Finally, when the
data-OPRAM has fetched all requested blocks, we rely on a standard obliv-
ious routing algorithm (see Sect. 4) to route the resulting blocks to the
request CPUs. This step takes O(log m) parallel time with m CPUs.

Remark 1. Note that in the above exposition, we made explicit which steps
can be parallelized across recursion levels and which steps must be performed
sequentially across recursion levels — in particular, the level-to-level position
label routing must be performed sequentially across recursion levels since the
next recursion level must receive the position labels before learning which tree
paths to traverse. Although this distinction may not be very useful in this paper,
it will turn out to be important in a companion paper by Chan et al. [5], where
the authors further parallelize the level-to-level routing algorithm. In particular,
Chan et al. [5] introduce a new and better notion of an OPRAM’s “depth” by
assuming that the OPRAM can consume more CPUs than the original PRAM. In
this case, they show that an OPRAM’s depth can be made asymptotically smaller
by further parallelizing Circuit OPRAM’s level-to-level routing algorithm.

Maintain phase. All of the following steps are performed in parallel across all
recursion levels d = 0, 1, . . . ,D:

(i) Simultaneous removal of fetched blocks from subtrees. After each of the m
CPUs fetches its desired block from m tree paths, they perform a simulta-
neous removal procedure to remove the fetched blocks from the tree paths.
This step can be accomplished in O(log N) parallel steps using m CPUs.
We defer a detailed description of this new simultaneous removal subrou-
tine in Sect. 7.1.

(ii) Passing updated blocks to the pool. Each CPU updates the contents of the
fetched block — if the block belongs to a position map level, the block’s
content should now store the new position labels (for the next recursion
level) chosen earlier in the preparation phase. Further, each block will be
tagged with a new position label that indicates where the block can now
reside in the current recursion level — this position label was received ear-
lier from the previous recursion level during the fetch phase (recall that
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each recursion level chooses position labels for the next recursion level).
The updated blocks are merged into the pool. The pool temporarily
increases its capacity to hold these extra blocks, but the extra memory
will be released at the end of the maintain phase during a cleanup opera-
tion.

(iii) Increasing the number of subtrees if necessary. At this moment, if m > m̂,
i.e., if the number of CPUs has increased since the last PRAM step, then
we increase the number of subtrees to 2m, and merge all smaller heights of
the tree into the pool. If the number of CPUs has decreased (by a factor
of 2) since the last PRAM step, we will handle this case later.

(iv) Selection of eviction candidates. Following the deterministic, reverse-
lexicographical order eviction strategy of Circuit ORAM [36], we choose
the next 2m eviction paths (pretending that all subtrees are part of the
same big ORAM tree). The 2m eviction paths will go through 2m subtrees
henceforth referred to as evicting subtrees. If m has decreased (by a factor
of 2) since the last PRAM step, then not all subtrees are evicting subtrees.
We devise an eviction candidate selection algorithm that will output one
(possibly dummy) block to evict for each evicting subtree, as well as the
remainder of the pool (with these selected blocks removed). The block
selected for each evicting subtree is based on the deepest criterion with
respect to the current eviction path. When m ≥ α log log N , we rely on
oblivious sorting to accomplish this in O(log N) parallel steps with m
CPUs. When m < α log log N , oblivious sorting will be too expensive, so
we rely on a different algorithm to accomplish this step in O(α log N) par-
allel steps with m CPUs. We defer a detailed description of the algorithm
to Sect. 7.2.

(v) Eviction into subtrees. In parallel, for each evicting subtree, the eviction
algorithm of Circuit ORAM [36] is performed for the candidate block the
subtree has received. The straightforward strategy takes O(log N) parallel
steps consuming m CPUs.
After the eviction algorithm completes, if the candidate block fails to be
evicted into the subtree, it will be returned to the pool; otherwise if the
candidate block successfully evicts into the subtree, a dummy block is
returned to the pool.

(vi) Decreasing the number of subtrees if necessary. If m < m̂, this means that
the number of CPUs has decreased since the previous PRAM step. Also
note that in this case, by assumption, it must be the case that m = m̂

2 .
At this moment, we will halve the number of subtrees by reconstructing
one more height of the big Circuit ORAM tree containing 2m buckets. Let
Z be the bucket size of the ORAM tree. To reconstruct a height of size
2m, we must reconstruct 2m buckets each of size Z. This can be achieved
by repeating the eviction candidate selection algorithm Z number of times
(see Sect. 7.3 for details).

(vii) Cleanup. Finally, since the pool size has grown in the above process, we
perform a compression procedure to remove dummy blocks and compress
the pool back to c·m+α log N size. Probabilistic analysis (in full version [6])
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shows that the pool occupancy is bounded by c · m + α log N except with
negl(N) probability, and thus ensures that no real blocks are lost during
this reconstruction with all but negligible probability.
Again, if m ≥ α log log N , this can be accomplished through a simple
oblivious sort procedure in O(log N) steps with m CPUs. Else if m <
α log log N , we devise a different procedure to perform the pool cleanup
that completes in O(α log N) parallel steps consuming m CPUs.

6 Details of the Fetch Phase

The outline of the fetch phase was described in Sect. 5. Almost all steps are
self-explanatory as described in Sect. 5, and it remains to spell out only a couple
subroutines of the preparation stage.

6.1 Discovering Which Children Addresses are Needed

Recall that during the preparation stage, for each recursion level, each conflict
resolved address wants to learn which of its γ child addresses are needed by the
next recursion level. Henceforth we assume that γ = O(log N).

We can accomplish this task using the following algorithm. We use Addr〈d〉

to denote an array of size m that contain the conflict resolved (possibly dummy)
addresses for recursion level d.

For each recursion level d = 0, 1, . . . , D − 1 in parallel:

– Let X be the concatenation of Addr〈d〉 and Addr〈d+1〉 where each element addi-
tionally carries a tag denoting whether it comes from Addr〈d〉 or Addr〈d+1〉.

– Oblivious sort X such that the addresses from Addr〈d〉 always appear imme-
diately before its up to γ children addresses that come from Addr〈d+1〉 —
henceforth we say that these addresses share the same key. Let the resulting
array be X ′.

– Invoke an instance of the oblivious aggregation algorithm, such that each
address in X ′ that comes from Addr〈d〉 receives a (compacted) bit vector
indicating whether each of its γ children is needed in the next recursion level.
Notice that as long as γ := O(log N), the resulting bit vector can be packed
in a single block.

– For each element of the resulting array in parallel, if the element comes from
Addr〈d+1〉, mark it as dummy. Let the resulting array be denoted Y .

– Obliviously sort the resulting array Y such that all dummy elements are
pushed to the end. Output Y [1 : m].

Clearly, the above algorithm can be completed in O(log m) steps with m
CPUs.
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6.2 Fetching and Removing Blocks from the Pool

Recall that another step of the preparation stage is to look for desired blocks
from the pool and then remove any fetched block from the pool (by marking it
as dummy). To achieve this, we consider two cases — and recall that the pool
size is upper bounded by O(m+α log N) except with negligible probability (due
to our probabilistic analysis in the full version [6]).

– Case 1: m ≥ α log log N . In this case, we simply invoke an instance of the
oblivious routing algorithm (particularly, the variant that removes routed ele-
ments from the source array) to accomplish this. This step can be completed
in O(log N) parallel steps consuming m CPUs for an appropriately small
super-constant α = ω(1).

– Case 2: m < α log log N . In this case, oblivious sorting would be too expen-
sive. Therefore, we instead adopt the following algorithm. Recall that in this
case, the pool size is dominated by O(α log N).

• First, each of the m CPUs perform a linear scan of the pool to look for
its desired block.

• Next, all m CPUs perform a a pipelined linear scan of the pool. During
the linear scan, each CPU marks its fetched block (if any) as dummy. To
ensure no write conflicts, we require that CPU number i starts its scan
in the i-th step, i.e., in a pipelined fashion.

Clearly, the above algorithm can be accomplished in O(m + α log N) parallel
steps consuming m CPUs.

6.3 Performance of the Fetch Phase

Taking into account the cost of all steps of the fetch phase, we have the following
lemma.

Lemma 1 (Performance of the fetch phase). Suppose that the block size
B = Ω(log N). Then, to serve the batch of m requests, the fetch phase, over all
O(log N) levels of recursion, completes in O(log2 N) parallel steps with m CPUs
when m ≥ α log log N ; and in O(α log2 N) parallel steps when m < α log log N .

7 Details of the Maintain Phase

An overview of the maintain phase was provided in Sect. 5.3. It remains to spell
out the details of various subroutines needed by the maintain phase.

7.1 Simultaneous Removal of Fetched Blocks from Subtrees

Problem definition. Suppose that there are m fetch paths for each batch of m
memory requests. Simultaneous removal provides the following abstraction:

– Inputs: Each of m CPUs has a tuple of the form (pathidi, si) or ⊥. More
specifically, ⊥ denotes nothing to remove, or else
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• pathidi denotes the leaf identifier of a random tree path containing
O(log N) slots. In particular, a tree path contains O(log N) heights and
each height contains O(1) slots; and

• si denotes a slot in the tree path to remove a block from;
Note that each tree path is random such that each disjoint subtree may receive
at most α log N tree paths. Although the m paths, we are guaranteed that
all the non-dummy inputs of the m CPUs must correspond to distinct slots,
i.e., no two CPUs want to remove from the same slot.

– Outputs: Each of the m CPUs outputs an array of length O(log N), denoting
for each slot on its path: (1) whether the CPU is the representative CPU;
and (2) if so, whether the block in the slot needs removal. The outputs should
maintain the following invariants: every slot on the m input paths has exactly
one representative, and if some CPU wanted to remove the block in the slot,
then the representative is informed of the removal instruction.

Note that given the above output, each CPU simply carry out the instruction
for every physical slot it is representative for:

– if the instruction is to remove, the CPU reads the block and writes dummy
back;

– if the instruction is not to remove, the CPU reads the block and writes the
same block back;

– if the CPU is not a representative for this physical slot, do nothing for this
slot.

Simultaneous removal algorithm. We describe our simultaneous removal algo-
rithm below. We note that since all the fetch paths are already observable by
the adversary, it is okay for us to employ a non-oblivious propagation algorithm.

– Sorting fetch paths. All m CPUs write down their input tuple, forming an
array of size m. We now obliviously sort this array by their fetch path such
that the leftmost fetch path appears first, where the other of the fetch paths
are determined by the leaves they intersect. This step takes O(m log m) total
work and O(log m) parallel steps.

– Table creation. In parallel, fill out a table Q where each row corresponds to a
slot in the tree, and each column corresponds to a fetch path (in sorted order
from left to right). Specifically, Q[
][i] = 1 if the i-CPU wants to remove the
block in slot 
 on its fetch path; else Q[
][i] = 0. It is not hard to see that this
step can be completed in O(1) parallel steps with m log N CPUs.
Notice that since the m fetch paths may overlap, table Q may contain entries
that correspond to the same physical slot. However, since the fetch paths were
sorted from left to right, all entries corresponding to the same physical slot
must appear in consecutive locations in the same row. Further, it is not hard
to see that except with negligible probability, at most α log N entries in Q
correspond to the same physical slot (since each disjoint subtree receives at
most α log N fetch paths except with negligible probability).
Henceforth we say that Q[
][i] is a representative if Q[
][i] is the first occur-
rence of a physical slot in the row Q[
].
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– Oblivious aggregation. Now, for each row of the table Q, invoke an instance
of the oblivious aggregation algorithm (for bounded-size groups) such that
the representative of each group learns the OR of all entries belonging to the
group. As mentioned above, since the group size is bounded by α log N , we
can complete such oblivious aggregation in O(log log N) parallel steps with

m
log log N CPUs, or alternatively, in O(log N) steps with m

log N CPUs.
Therefore, over all rows of the table Q, this step completes in O(log N) parallel
steps with m CPUs.

7.2 Evictions

Recall that in the sequential Circuit ORAM [36], whenever a fetched (and possi-
bly updated) block is added to the root, two path evictions must be performed.
The goal of Circuit OPRAM is to simulate the stochastic process of Circuit
ORAM. However, since Circuit OPRAM does not maintain the tree structure
for lower heights of the tree, we only need to partially simulate Circuit ORAM’s
stochastic process for the O(m) disjoint subtrees that Circuit OPRAM does
maintain. Our algorithms described below make use of certain non-blackbox
properties of the Circuit ORAM algorithm [36]. In our description below, we
will point out these crucial properties as the need arises, without re-explaining
the entire Circuit ORAM construction [36].

Select 2m distinct eviction paths in 2m distinct subtrees. At this point, a batch
of m requests have been made, and m possibly dummy blocks have been fetched,
possibly update, and merged into the pool. As mentioned earlier, we now con-
sider the pool as a flattened data structure containing all the smaller levels of
the big Circuit ORAM tree as well as the stash. To simulate Circuit ORAM’s
stochastic process, at this point we must perform 2m evictions on 2m distinct
paths. We leverage Circuit ORAM’s deterministic, reverse-lexicographical order
for determining the next 2m eviction paths. The specifics of the eviction path
selection criterion is not important here, and the reader only needs to be aware
that this selection criterion is fixed a priori and data independent. For more
details on eviction path selection, we refer the reader to Circuit ORAM [36].

Fact 2. Observe that at this point, the number of disjoint subtrees is at least 2m.
Due to Circuit ORAM’s eviction path selection criterion, all 2m eviction paths
will not only be distinct, but also correspond to distinct subtrees — henceforth
we refer to these subtrees as evicting subtrees. For the special case when m stays
the same over time, all 2m subtrees are evicting subtrees, and exactly one path
is evicted in each subtree.

Select 2m eviction candidates. We will now leverage a special property of the
Circuit ORAM’s eviction algorithm described earlier by Fact 1 such that we
perform a “partial eviction” only on the subtrees maintained by our Circuit
OPRAM. Recall that Fact 1 says the following:
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– For Circuit ORAM’s eviction algorithm, at most one block passes from
path[: i] to path[i + 1 :] for each height i on the eviction path denoted path.
In this case we also say that the block passes through the boundary between
height i and height i + 1.

– Moreover, if a block does pass through the boundary between height i and
height i + 1, it must be the block that is deepest with respect to the eviction
path, where deepest is a criterion defined by Circuit ORAM [36]. Intuitively,
a block is deeper if it can reside in a bucket on the eviction path with higher
height. The reader can refer to Circuit ORAM [36] for details.

Therefore, we only need to elect one candidate block from the pool for each of
the 2m eviction paths on which we would like to perform eviction. We describe
an algorithm for performing such selection based on two different cases:

– Case 1: when m > α log log N . We devise an algorithm based on a constant
number of oblivious sorts. Since the pool contains O(m+α log N) blocks, this
algorithm completes in O(log N) parallel steps with m CPUs.
(a) In the beginning, each block in the pool is tagged with the block’s position

identifier. Now, for each block in the pool in parallel, compute and tag
the block with the additional metadata (treeid, priority) which will later
be used as a sort key:

• treeid denotes the block’s destined subtree if the destined subtree is
an evicting subtree, otherwise treeid := ⊥. All dummy blocks have
treeid := ⊥.

• priority denotes the block’s eviction priority within the subtree. The
block’s priority value can be computed based on the block’s position
identifier and the current eviction path (in the subtree identified by
treeid), a higher priority is assigned to blocks that can be reside deeper
(i.e., closer to leaf) along the eviction path. The definition of deep is
the same as in Circuit ORAM [36].

(b) Now, invoke an instance of the oblivious bin-packing algorithm, where
each evicting subtree can be regarded as a bin of capacity 1, and all the
blocks are balls tagged with its destination bin. We wish to place one ball
into each bin — if multiple balls are eligible for a bin, we prefer to place
the ball with a higher priority value. The output of the algorithm is one
(possibly dummy) eviction candidate for each evicting subtree, as well as
the remainder of the pool minus those chosen blocks.

– Case 2: when m ≤ α log log N . In this case, the pool contains
Θ(α log N) blocks, and performing oblivious sort will cause a total work of
Ω(log N log log N), which is too expensive if m is small. Instead, we perform
the following, which can be accomplished in O(α log N) parallel steps with
2m CPUs — below we describe the algorithm assuming 2m CPUs, but clearly
the algorithm also works with m CPUs since we can always have each CPU
simulate O(1) CPUs.
(a) Assign one CPU for each of the 2m eviction paths. Each CPU linearly

scans through the pool and selects the deepest element with respect to
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the eviction path. If no element is eligible for the current eviction path, a
dummy element is selected. Clearly, this incurs O(α log N) parallel steps.
This step outputs an array of 2m elements selected for eviction for each of
the 2m eviction paths. The rest of the algorithm will output the remainder
of the pool.

(b) In O(α log N + m) parallel steps, the 2m CPUs make a “pipelined linear
scan”, where CPU i starts its linear scan in the i-th step (note that this
avoids write conflicts). When each CPU is making a linear scan, if the
(real) block is what the CPU has selected for eviction, replace it with
dummy; otherwise, write the original block back.

(c) Output the resulting pool.

Evictions. At this point, each of the 2m eviction paths has received one can-
didate block (which can be dummy). Hence, these 2m evictions can be carried
out in parallel, each according to the (sequential) eviction algorithm of Circuit
ORAM [36]. More specifically, we first expand the capacity of each eviction path
by adding a bucket at the beginning of the path that holds the eviction candi-
date selected earlier; we call this the smallest bucket on the path. We then run
Circuit ORAM’s (sequential) eviction algorithm on each of these 2m (expanded)
paths in parallel.

At the end, the block in the smallest bucket on each eviction path is returned
to the pool. Note that if the eviction candidate has been successfully evicted
into the path, then the smallest block on the path would be dummy, and thus a
dummy block is returned to the pool. Doing this according to Circuit ORAM’s
eviction algorithm [36] takes O(log N) parallel runtime with 2m CPUs.

In a final cleanup step described later, we suppress a subset of the dummy
blocks in the pool such that the pool size will not keep growing.

7.3 Data Structure Cleanup

Adjusting the number of subtrees. If m̂ > m, i.e., the number of CPUs has
decreased (by a factor of 2 according to our assumption) since the last PRAM
step, we will halve the number of subtrees. This means that we must reconstruct
one more height of the big Circuit ORAM tree.

Let Z = O(1) be the bucket size of the ORAM tree. To reconstruct a height
of size 2m, we must reconstruct m̂ buckets each of size Z. To achieve this, we
invoke an instance of the oblivious bin packing algorithm, where we wish to
pack 2m buckets each of capacity Z. If a block can legally reside in a bucket by
Circuit ORAM’s path invariant, it is deemed eligible for a bucket. If more than
Z blocks are eligible for a bucket, we break ties arbitrarily. Such oblivious bin
packing can be completed in O(log m) parallel steps with m CPUs.

Although the reconstructed height of the big ORAM tree may contain differ-
ent blocks from the scenario had we maintained the whole tree from the start,
in the full version [6], we will show that the difference is in our favor in the sense
that it will not make the pool occupancy larger.
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Compress the pool. During the simulation of this PRAM step, the pool size has
enlarged by at most O(m). We now compress the pool size by removing a subset
of the dummy blocks. There are two cases — recall also that the pool size is
bounded by O(m + α log N) except with negligible probability which we shall
formally prove in the full version [6]:

– Case 1: m ≥ α log log N . In this case, we can perform such compression
through a simple oblivious sort operation that move all dummy blocks to
the end of the array representing the pool, and then truncating the array
retaining only the first c · m + α log N blocks for an appropriate constant c.
This can be completed in O(log N) parallel steps with m CPUs.

– Case 2: m < α log log N . In this case, oblivious sorting would be too expen-
sive. Instead, we perform compression by conducting a pipelined, partial bub-
ble sort. Let s = O(m + α log N) be the current pool size, and suppose that
we need to compress the array back to s′ := s − O(m) blocks. Recall that
a normal bubble sort of s elements would make s bubbling passes over the
array, where after the i-th pass, the largest i elements are at the end. Here we
make only O(m) bubbling passes where each CPU is in charge of O(1) passes.
The passes are performed in a pipelined fashion to avoid write conflicts. At
the end of this partial bubble sort, the last s − s′ blocks of the array may be
removed.
This is completed in O(m + α log N) parallel steps with m CPUs.

7.4 Performance of the Maintain Phase

Accounting for the cost of all of the above steps, we can easily derive the following
lemma for the performance of the maintain phase.

Lemma 2 (Performance of the maintain phase). Suppose that the block
size B = Ω(log N). Then, to serve the batch of m requests, the maintain phase,
over all O(log N) levels of recursion, completes in O(log2 N) parallel steps with
m CPUs when m ≥ α log log N ; and in O(α log2 N) parallel steps when m <
α log log N .

Deferred Materials

In the interest of space, we defer to our full online version [6] the following
addtional contents: (1) detailed proofs, (2) further optimizations for small m,
(3) how to reduce a log log factor relying on PRFs and achieving computational
security, and (4) extensions for large block sizes and non-uniform block sizes.
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2 Università di Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. In FOCS 2001 Barak et al. conjectured the existence of zero-
knowledge arguments that remain secure against resetting provers and
resetting verifiers. The conjecture was proven true by Deng et al. in FOCS
2009 under various complexity assumptions and requiring a polynomial
number of rounds. Later on in FOCS 2013 Chung et al. improved the
assumptions requiring one-way functions only but still with a polynomial
number of rounds.

In this work we show a constant-round resettably-sound resettable
zero-knowledge argument system, therefore improving the round com-
plexity from polynomial to constant. We obtain this result through the
following steps.

1. We show an explicit transform from any �-round concurrent zero-
knowledge argument system into an O(�)-round resettable zero-
knowledge argument system. The transform is based on techniques
proposed by Barak et al. in FOCS 2001 and by Deng et al. in FOCS
2009. Then, we make use of a recent breakthrough presented by
Chung et al. in CRYPTO 2015 that solved the longstanding open
question of constructing a constant-round concurrent zero-knowledge
argument system from plausible polynomial-time hardness assump-
tions. Starting with their construction Γ we obtain a constant-round
resettable zero-knowledge argument system Λ.

2. We then show that by carefully embedding Λ inside Γ (i.e., essen-
tially by playing a modification of the construction of Chung et al.
against the construction of Chung et al.) we obtain the first constant-
round resettably-sound concurrent zero-knowledge argument sys-
tem Δ.

3. Finally, we apply a transformation due to Deng et al. to Δ obtaining
a resettably-sound resettable zero-knowledge argument system Π,
the main result of this work.

While our round-preserving transform for resettable zero knowledge
requires one-way functions only, both Λ, Δ and Π extend the work of
Chung et al. and as such they rely on the same assumptions (i.e., fami-
lies of collision-resistant hash functions, one-way permutations and indis-
tinguishability obfuscation for P/poly, with slightly super-polynomial
security).

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 111–138, 2017.
https://doi.org/10.1007/978-3-319-70503-3_4
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1 Introduction

Private randomness is essential for many cryptographic tasks, including zero-
knowledge (ZK) proofs [24]. A natural question regards the possibility of having
ZK proofs in applications where the computing machine is stateless and not
equipped with a continuous source of randomness.

Resettable zero knowledge. The above question was put forth by Canetti et al. [8].
In particular, they considered a cheating verifier that mounts a reset attack,
where provers are forced to execute the protocol multiple times possibly on
the same inputs and random tapes, and without the ability to maintain states
between executions. These attacks include the case of stateless provers, as well as
provers implemented by devices that can physically be restored to their original
states (e.g., through cloning, battery replacement).

More specifically, in [8], Canetti et al. introduced the notion of resettable
zero knowledge (rZK), in which the zero-knowledge property is required to hold
even against cheating verifiers that can reset the provers to the initial states
therefore forcing them to play again with the same randomnesses. This notion
is closely related to concurrent zero knowledge (cZK) proposed earlier by Dwork
et al. [19] where a cheating verifier can engage in multiple possibly interleaving
concurrent executions (called sessions) of the protocol. rZK is at least as hard to
achieve as cZK since a resetting cheating verifier through specific reset strategies
can emulate interleaving concurrent executions. In [21] Garg et al. showed that
resettable statistical zero knowledge is possible for several interesting languages.

Round complexity of cZK and rZK. Constant-round cZK under plausible hard-
ness assumptions has been a long-standing challenging open question that
received a positive answer in the work of Chung et al. [11] by means of indistin-
guishability obfuscation (iO) [11]. Instead the situation for rZK is worse. Canetti
et al. in [8] constructed rZK proofs in the standard model relying on standard
cryptographic assumptions but with polynomial round complexity1.

The round complexity was then improved to poly-logarithmic in [29]. The
state of affair leaves the following open problem.

Open Problem 1: is there a construction for rZK with sub-logarithmic
rounds?

Resettably-sound zero knowledge. Barak et al. [3] considered the natural opposite
setting, called resettably-sound zero knowledge (rsZK) arguments, where sound-
ness is required to hold even against cheating provers that can reset the verifiers
forcing them to re-use the same random tapes. The standard zero-knowledge
property remains untouched. They showed a constant-round construction assum-
ing collision-resistant hash functions. The recent work of [12] reached optimal
round complexity and assumptions (i.e., 4 rounds and one-way functions).
1 In addition they proposed a mild setup assumption based on bare public keys showing

that it is sufficient for constant-round resettable zero knowledge. Follow up work
optimized round complexity and complexity assumptions for rZK with bare public
keys [16,17,31,34,35].
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The simultaneous resettability conjecture. Barak et al. in [3] conjectured the exis-
tence of a zero-knowledge argument that is secure simultaneously against reset-
ting verifiers and against resetting provers: a resettably-sound resettable zero-
knowledge argument system. The conjecture was proven true by Deng et al. [15]
that presented a construction with a polynomial number of rounds and assuming
collision-resistant hash functions and trapdoor permutations. The computational
assumptions have been improved to one-way functions [4,5,13,14,33], while the
barrier of the polynomial round complexity has remained untouched so far.

Open Problem 2: is there a construction for resettably-sound rZK with
sub-polynomial rounds?

We stress that by relaxing the security against resetting verifiers from zero
knowledge to witness indistinguishability, then constant-round simultaneous
resettability is possible. Indeed just 1 or 2 rounds (i.e., ZAPs) are needed to
obtain proofs, and a larger constant number of rounds is sufficient to obtain
arguments of knowledge [9].

1.1 Our Results

In this paper, we answer the above questions positively. In the main result we
construct a constant-round simultaneous resettable zero-knowledge argument
for NP. Our result requires the existence of families of collision-resistant hash
functions, one-way permutations and indistinguishability obfuscation (iO) for
P/poly (with slightly super-polynomial security). These assumptions are the
same as the ones in [11] that showed a constant-round concurrent zero-knowledge
argument for NP. Our result makes uses of the protocol of [11] twice in some
nested way. More precisely, the first time we use the protocol of [11] Γ is to
obtain a constant-round rZK argument Λ. Then we start again with Γ and we
modify it by using Λ (that is a modification of Γ ) as subprotocol in the oppo-
site direction (i.e., the verifier will prove something to the prover). Therefore we
roughly use the protocol of [11] against the protocol of [11] which is somehow
intriguing. This nested use of the protocol of [11] allows us to obtain a constant-
round resettably-sound concurrent zero-knowledge argument Δ. We can then
apply a compiler due to [15] to Δ therefore obtaining our main argument system
Π that is secure simultaneously against resetting provers and resetting verifiers
needing only a constant number of rounds.

We now give our formal theorems that specify the precise complexity
assumptions.

Theorem 1. Assuming the existence of one-way functions, than any �-round
concurrent zero-knowledge argument system can be transformed in a O(�)-round
resettable zero-knowledge argument system.

Theorem 2. Assuming the existence of collision-resistant hash functions, one-
way permutations and indistinguishability obfuscation for P/poly (with slightly
super-polynomial security), there exists a constant-round resettably-sound reset-
table zero-knowledge argument system for NP.
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1.2 Main Tools and Our New Techniques

Our constructions rely on new ideas as well as a combined use of several tech-
niques used in previous results on concurrent, resettable and resettably-sound
zero knowledge. We start by briefly describing the important tools that we use
along with our new techniques for our constructions.

Barak’s non-black-block protocol. The starting point is Barak’s non-black-box
zero-knowledge argument for NP [1] that works as follows. The prover P sends
a commitment c ∈ {0, 1}n of 0 to the verifier V . The verifier V then sends
a uniformly generated random string r ∈ {0, 1}2n. Finally, the prover gives
a witness-indistinguishable universal argument (WIUA) that x ∈ L or there
exists σ ∈ {0, 1}n such that c is a commitment of a program M such that
M(σ) = r2. The soundness follows from the binding of the commitment scheme
and the soundness of the WIUA as any program M committed by the cheating
prover does not have r in its support with overwhelming probability. For the
zero-knowledge property, the simulator uses the code of the adversary. Indeed it
commits to a program M corresponding to the code of V ∗, the cheating verifier.
Let σ be the commitment. We have that M(σ) = r and σ is short compared
to r.

Chung et al.’s constant-round cZK argument. In [11], Chung et al. construct a
constant-round cZK argument by using unique P-certificate systems [10] with
delegatable CRS generation and iO. Informally, a P-certificate system allows
an efficient prover to convince a verifier of the validity of any deterministic
polynomial-time computation M(x) = y using a certificate of fixed (polynomial)
length, independent of the size and the running time of M . The verifier can also
verify the certificate in fixed (polynomial) time, independent of the running time
of M . In a P-certificate system with delegatable CRS generation, the certificate
is generated using a common reference string (CRS) that can be computed by
using resources delegated by the verifier. More specifically, in this P-certificate
system, the P-certificate verifier generates public and private parameters, PP
and κ, and sends PP to the P-certificate prover. The P-certificate prover uses
the public parameter PP and the statement q = (M,x, y) to deterministically
compute a short digest d, whose length is independent of the length of q, and
sends it to the P-certificate verifier. The P-certificate verifier then computes the
CRS from d and κ. Finally, the P-certificate prover computes the certificate from
the CRS and q. The P-certificate system is unique if there exists at most one
accepted certificate for any statement and CRS.

The argument of [11] proceeds similarly to Barak’s argument with the fol-
lowing modifications. In the last step, instead of requiring the prover P to prove

2 Since the size of M may not be known in advance, the commitment is to the hash of
the program M using a hash function h sampled from a family of collision-resistant
hash functions chosen in the beginning of the protocol by the verifier. The soundness
is also based on the collision resistance of h.
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that x ∈ L or there exists σ such that c is a commitment to a program M such
that M(σ) = r, the prover provides a special-sound witness-indistinguishability
proof that x ∈ L or there exists a P-certificate π which certifies that M(σ) = r
for some short string σ. Additionally, P also commits and gives a WIUA proving
that either x ∈ L or there exists a P-certificate for the statement q = (M,σ, r)
before receiving the public parameter PP from V . Note that since the honest
prover of the protocol in [11] has a witness for x ∈ L, it can just ignore CRS,
d and q, and simply commit to zeroes. In order to allow the zero-knowledge
simulator (note that an honest prover will just use the witness for x ∈ L) to
compute the CRS from d and κ, the verifier sends an obfuscated program with κ
embedded inside, that allows the simulator to compute CRS from d committed
earlier. Finally, V also provides a zero-knowledge argument that the obfuscated
program is computed correctly.

The simulator does not know a witness for x ∈ L but is instead able to
commit to the code of the adversary. More formally, the simulator is divided
in two parts: S1, which takes a P-certificates πi in the i-th round as an input,
and interacts with the verifier V ∗, and S2 which, in the i-th round provides
P-certificates certifying that S1 on input (1, π1), . . . , (i − 1, πi−1) outputs mi.
Instead of committing to a program M , using the verifier V ∗’s code, such that
M(σ) = r for some short string σ, the simulator S = (S1, S2) commits to a
program ˜S1. The program, on input (1n, j, s), runs an interaction between S1

and V ∗ for j rounds using s as a seed to generate pseudorandom coins while
having an access to the oracle OVcert which provides P-certificates. This prevents
the nesting of concurrent sessions which may result in the blow-up in the run-
ning time as the expensive part of S consists in generating the P-certificates.
The simulator of the protocol in [11] can therefore succeed in the special-sound
witness-indistinguishability proof for the statement x ∈ L or there exists a P-
certificate π which certifies that ˜S

OVcert
1 (1n, j, s) = r for some short string (1n, j, s)

using the output from the oracle as a witness.

Deng, Goyal and Sahai’s transformation. In [15,25], Deng et al. construct
a hybrid resettably-sound and relaxed concurrent zero-knowledge argument
ΠDGS . Then they apply a series of transformations to achieve simultaneous
resettability.

Relaxed concurrent zero knowledge allows verifiers to interact in multiple
sessions with independent provers. However, the zero-knowledge property only
guarantees for “relaxed” concurrent verifiers whose random coins are fixed in
the beginning of each session, independently of sessions that start after that
session. Note that any concurrent zero-knowledge argument/proof is also relaxed
concurrent zero-knowledge as any relaxed concurrent verifier is also a concurrent
verifier.

Hybrid resettable soundness means that the verifier can be separated into
two parts, V1 and V2. V1 directly interacts with P , may relay some messages
between P and V2, and can be reset by a cheating prover. V2 only interacts with
V1, cannot be reset by a cheating prover, and is responsible to decide whether to
“accept” or “reject” the argument. Moreover, for each determining message (the
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first message V2 receives in the protocol), P cannot find two different messages
that P can convince V1 to pass to V2 in each round. We refer to [25] for a precise
definition. Note that any resettably-sound argument is also hybrid resettably
sound by letting V1 behave as V except that instead of accepting the argument,
it sends a message to V2, and V2 always accepts the argument when it receives
a message from V1.

The transformation of Deng et al. uses ZAPs and one-way functions to achieve
simultaneous resettability and only increases the round complexity by a constant
factor. However, the round complexity of ΠDGS is polynomial [15]. Thus, their
simultaneously resettable argument system also requires polynomial rounds.

Inapplicability of the transformation of [15] to the construction of Chung
et al. [11]. Intuitively, one may try to apply the transformation of [15] to the
constant-round concurrent zero-knowledge argument in [11] to get simultaneous
resettability. However, in order for the result of the transformation to be simulta-
neously resettable, it is required that the starting protocol be relaxed concurrent
zero-knowledge and hybrid resettably sound. While the protocol in [11] is concur-
rent zero-knowledge, which implies that it is relaxed concurrent zero-knowledge,
we argue that if the (non-resettable) ZK argument (proving that the obfuscated
program is computed correctly) is not zero-knowledge against resetting verifiers,
then the protocol can not be proved hybrid resettably sound. Two reasons follow
below.

1. Suppose in the extreme case that there exists an adversarial resetting prover
for the argument of [11] that runs a resetting adversary AZK in the (non-
resetting) zero-knowledge subprotocol in which the honest verifier proves that
the obfuscated program is computed correctly. Remember that the zero-
knowledge subprotocol could also be an argument of knowledge admitting
a black-box (rewinding) extractor. By managing to run AZK , the adversarial
resetting prover could succeed in extracting some relevant information (e.g.,
the secret parameter for P-certificate CRS generation, that is used in the
(non-resettable) ZK argument proven by the verifier to prover to guarantee
the correctness of the obfuscated program). However, according to the defin-
ition of hybrid resettable soundness, we need to consider two separate parts
of the verifier V = (V1, V2). One out of V1 and V2 will run as prover of the
ZK argument proving that the obfuscated program is generated correctly. If
the (non-resettable) ZK argument is played by V1 (as a prover), which can be
reset, the malicious prover of the protocol in [11] can run AZK to learn some
relevant information (.e.g, the secret parameter), and this can potentially be
used to generate a certificate for a false statement. On the other hand, if
the (non-resettable) ZK argument is played by V2 (as a prover) then since
the messages of the verifier of this argument are not fixed by a determining
message in the protocol of [11], we have that V2 can receive two different
messages for the same determining message, and thus, even in this case, the
protocol is not hybrid resettably sound.

2. The P-certificate generation in the protocol of [11] cannot be transformed
into a resettably-sound protocol using the techniques of [3]. This is because
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the P-certificate system is not public coin. Recall that the proof of resettable
soundness in [3] uses the reduction to the non-resettable case by starting (by
contradiction) with a (successful) resetting prover. If we repeat here the same
reduction, we have that the non-resetting prover runs all but one session by
simulating the verifier itself. Of course this requires to generate legit verifier
messages under reset attacks. When trying to send the legit verifier messages,
the non-resetting prover may send the obfuscated program of the real verifier
of the reduction to the resetting prover, and the resetting prover may reset
to the step after which it receives the public parameter for the P-certificate.
In that case, the non-resetting prover will not be able to generate a new
obfuscated program as specified in the protocol without knowing the secret
parameter.

Th. 6

Th. 7

Fig. 1. Our transformations of zero-knowledge argument systems

1.3 Our Approach

In order to get a constant-round resettably-sound concurrent zero-knowledge
argument system, we consider the protocol from [11] which is constant round
and concurrent zero knowledge, but not resettably sound. As discussed above,
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there are two main problems that separate the protocol of [11] from resettable
soundness: the non-resettable ZK argument for iO and the delegatable CRS gen-
eration of the P-certificate system, which cannot be generated without knowing
the secret parameter generated in the earlier step.

Solving the first problem. We resolve the first problem by constructing a constant-
round resettable ZK argument from the concurrent ZK argument of [11]. This
transformation is implicit in some previous works on the topic [3,15]. We explic-
itly present it here for completion (Fig. 1).

Unlike the concurrent verifier, the resetting verifier can exploit the reuse
of the random tape during the resetting attack by sending different messages in
order to extract additional information from the prover. We prevent such behav-
ior by requiring (1) the verifier to commit to its random tape using a statistically
binding commitment scheme and (2) to provide a zero-knowledge argument that
it actually uses the random tape it has committed to. Note that since the verifier
can reset the prover, a zero-knowledge argument without resettable soundness
cannot be used by the verifier to prove that the verifier uses the committed ran-
dom bits. Thus, the argument system needs to be resettably sound. In order to
preserve the round complexity, this subprotocol must be constant round. This
can be done using the 4-round resettably-sound zero-knowledge argument by
Chung et al. [12]. A similar technique has been used in [26] for resettably-secure
computation.

We note that the constant-round rsZK argument and the commitment scheme
can be constructed from one-way functions, which is assumed for the constant-
round concurrent zero-knowledge argument in [11]. Thus, applying this trans-
formation on the protocol does not require any extra assumption. It turns out
that the technique we use can be generalized to a compiler that works with any
concurrent ZK protocol. The round complexity of the resulting protocol only
increases by a constant factor.

Our compiler turning any concurrent ZK argument into a resettable ZK
argument works as follows. First, we replace the random coin used by the prover
to generate his messages with outputs of a PRF. This step allows a prover with
fixed random tape to send different messages when the resetting verifier changes
its messages after resetting similarly to the technique used in [3] against resetting
provers. Additionally, the verifier commits to its random coins used in each round
at the beginning of the protocol. After sending each message, the verifier gives
a constant-round resettably-sound ZK argument that it uses the random coins
committed in the first round. This modification ensures that the verifier follows
the protocol in every session.

Solving the second problem. In order to solve the second problem, we observe
that while the protocol of [11] is not public-coin, it is “almost public-coin”. By
almost public-coin, we mean that, beside the ZK argument which is replaced by
rZK argument above, there is only one message from the verifier that cannot be
generated independently as public-coin, but depends on a hidden randomness.
Thus, we modify the technique in [3] to resolve the problem in two steps as
follows (Fig. 1).
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First, we consider a modified version of the protocol of [11], in which we can
prove its (non-resettable) soundness. In this protocol, the round in which the
message from V cannot be generated with uniformly random coins is repeated
m times, where m = poly(n) is the upper bound on the running time of a
cheating prover P ∗. More specifically, after receiving the public parameter for
P-certificate, the prover for the modified protocol PS repeatedly commits to
and proves the validity of the digest d of his statement while the verifier VS

repeatedly replies with the obfuscated program verifying the committed value
and output the CRS for the P-certificate. PS then chooses which commitment
and obfuscated program pair PS will use to complete the protocol. Because of the
security of the iO, PS does not learn the secret parameter for the P-certificate
even after m repetitions. Thus, the resulting protocol is still sound.

Then we reduce the resettable soundness of the final protocol to the non-
resettable soundness of the above protocol with polynomial reduction in success
probability as follows. Given a resetting prover P ∗, we construct a non-resetting
prover P ∗

S by internally simulating P ∗ interaction with a verifier V , and ran-
domly choosing which of the m repetitions will lead to accepting transcript. For
other repetitions, P ∗

S will generate the parameters for P-certificate itself to get
around the non-public-coin situation. In the case that P ∗

S guesses the accept-
ing transcript correctly, which occurs with probability 1/m, it will convince the
verifier VS with the accepting transcript from the simulation.

1.4 Open Questions

Unlike the above compiler from concurrent ZK to resettable ZK, our construction
for resettably sound resettable zero knowledge uses in a non-black-box way the
protocol of [11].

Our work leaves open the natural questions of producing a generic round-
preserving transform from cZK to rZK, and of obtaining constant-round
resettably sound resettable zero knowledge under more standard complexity
assumptions.

2 Definitions

A polynomial-time relation R is a relation for which it is possible to verify in
time polynomial in |x| whether R(x,w) = 1. Let us consider an NP-language L
and denote by RL the corresponding polynomial-time relation such that x ∈ L
if and only if there exists w such that RL(x,w) = 1. We will call such a w a valid
witness for x ∈ L. Let λ denote the security parameter. A negligible function ν(λ)
is a non-negative function such that for any constant c < 0 and for all sufficiently
large λ, ν(λ) < λc. We will denote by Prr[X] the probability of an event X over
coins r, and Pr[X] when r is not specified. The abbreviation “PPT” stands for
probabilistic polynomial time. For a randomized algorithm A, let A(x; r) denote
running A on an input x with random coins r. If r is chosen uniformly at random
with an output y, we denote y ← A(x). For a pair of interactive Turing machines
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(P, V ), let 〈P, V 〉(x) denotes V ’s output after interacting with P upon common
input x. We say V accepts if 〈P, V 〉(x) = 1 and rejects if 〈P, V 〉(x) = 0. We
denote by view

P (w)
V (x,z) the view (i.e., its private coins and the received messages)

of V during an interaction with P (w) on common input x and auxiliary input
z. We will use the standard notion of computational indistinguishability [23].

We now give definitions for interactive proof/argument systems with all vari-
ants that are useful in this work.

Definition 1 (interactive proofs [24]). An interactive proof system for the
language L, is a pair of interactive Turing machines (P, V ) running on common
input x such that:

– Efficiency: P and V are PPT.
– Completeness: For every λ∈N and for every pair (x,w) such that RL(x,w)=

1,
Pr[〈P (w), V 〉(1λ, x) = 1] = 1.

– Soundness3: There exists a negligible function ν(·) such that for every pair of
interactive Turing machines (P ∗

1 , P ∗
2 )

Pr[(x, z) ← P ∗
1 (1λ) : x /∈ L ∧ 〈P ∗

2 , V 〉(1λ, x) = 1] < ν(λ).

In the above definition we can relax the soundness requirement by considering
P ∗ as PPT. In this case, we say that (P, V ) is an interactive argument system [7].

Definition 2 (zero-knowledge arguments [24]). Let (P, V ) be an interactive
argument system for a language L. We say that (P, V ) is zero knowledge (ZK)
if, for any probabilistic polynomial-time adversary V ∗, there exists a probabilis-
tic polynomial-time algorithm SV ∗ such for all auxiliary inputs z and all pairs
(x,w) ∈ RL the ensembles {viewP (w)

V ∗(x,z)} and {SV ∗(x, z)} are computationally
indistinguishable.

Suppose (P, V ) is used as a sub-protocol of another interactive protocol
(A1, A2) where A1 runs P and A2 runs V . We call a Turing machine A1

α a resid-
ual prover if A1

α runs A1 on inputs α = (α1, . . . , α�) from A2 up to and including
the �th round when A1 invokes P . A residual verifier A2

α is defined similarly by
switching A1 and A2. Note that the residual prover is invoked when simulating
V (for soundness) while the residual verifier is invoked when simulating P (for
zero-knowledge).

Definition 3 (resetting adversary [8]). Let (P, V ) be an interactive proof or
argument system for a language L, t = poly(λ), x̄ = x1, . . . , xt be a sequence of
common inputs and w̄ = w1, . . . , wt the corresponding witnesses (i.e., (xi, wi) ∈
RL) for i = 1, . . . , t. Let r1, . . . , rt be independent random tapes. We say that

3 This version of soundness given by [11] is slightly different from standard version
with one Turing machine P ∗. Separating them makes the proof cleaner while it is
still equivalent to the standard version.
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a PPT V ∗ is a resetting verifier if it concurrently interacts with an unbounded
number of independent copies of P by choosing for each interaction the value
i so that the common input will be xi ∈ x̄, and the prover will use witness
wi, and choosing j so that the prover will use rj as randomness, with i, j ∈
{1, . . . , t}. The scheduling or the messages to be sent in the different interactions
with P are freely decided by V ∗. Moreover we say that the transcript of such
interactions consists of the common inputs x̄ and the sequence of prover and
verifier messages exchanged during the interactions. We refer to view

P (w̄)
V ∗(x̄,z) as

the random variable describing the content of the random tape of V ∗ and the
transcript of the interactions between P and V ∗, where z is an auxiliary input
received by V ∗.

Definition 4 (resettable zero knowledge [8]). Let (P, V ) be an interactive
argument system for a language L. We say that (P, V ) is resettable zero knowl-
edge (rZK) if, for any PPT resetting verifier V ∗ there exists a expected proba-
bilistic polynomial-time algorithm SV ∗ such that the for all pairs (x̄, w̄) ∈ RL the
ensembles {viewP (w̄)

V ∗(x̄,z)} and {SV ∗(x̄, z)} are computationally indistinguishable.

The definition of concurrent zero knowledge can be seen as a relaxation of
the one of resettable zero knowledge. The adversarial concurrent verifier has
the same power of the resetting verifier except it can not ask the prover to run
multiple sessions with the same randomness.

Definition 5 (concurrent adversary). Let (P, V ) be an interactive proof
or argument system for a language L, t = poly(λ), x̄ = x1, . . . , xt be a
sequence of common inputs and w̄ = w1, . . . , wt the corresponding witnesses
(i.e., (xi, wi) ∈ RL) for i = 1, . . . , t. We say that a PPT V ∗ is a concurrent
verifier if it concurrently interacts with an unbounded number of independent
copies of P by choosing for each interaction the value i so that the common
input will be xi ∈ x̄, and the prover will use witness wi. Each copy of P runs
with independent randomness. The scheduling or the messages to be sent in the
different interactions with P are freely decided by V ∗. Moreover we say that the
transcript of such interactions consist of the common inputs x̄ and the sequence
of prover and verifier messages exchanged during the interactions. We refer to
view

P (w̄)
V ∗(x̄,z) as the random variable describing the content of the random tape

of V ∗ and the transcript of the interactions between P and V ∗, where z is an
auxiliary input received by V ∗.

Definition 6 (concurrent zero knowledge [19]). Let (P, V ) be an inter-
active argument system for a language L. We say that (P, V ) is concur-
rent zero knowledge (cZK) if, for any PPT concurrent verifier V ∗ there
exists a probabilistic polynomial-time algorithm SV ∗ such that the for all pairs
(x̄, w̄) ∈ RL the ensembles {viewP (w̄)

V ∗(x̄,z)} and {SV ∗(x̄, z)} are computationally
indistinguishable.

Definition 7 (witness indistinguishability [20]). Let L be a language in NP
and RL be the corresponding relation. An interactive argument (P, V ) for L is
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witness indistinguishable (WI) if for every verifier V ∗, every pair (w0, w1) such
that (x,w0) ∈ RL and (x,w1) ∈ RL and every auxiliary input z, the following
ensembles are computationally indistinguishable:

{viewP (w0)
V ∗(x,z)} and {viewP (w1)

V ∗(x,z)}.

Definition 8 (resettable WI [8]). Let L be a language in NP and RL be
the corresponding relation. An interactive argument (P, V ) for L is resettable
witness indistinguishable (rWI) if for every PPT resetting verifier V ∗ every
t = poly(λ), and every pair (w̄0 = (w0

1, . . . , w
0
t ), w̄1 = (w1

1, . . . , w
1
t )) such that

(xi, w
0
i ) ∈ RL and (xi, w

1
i ) ∈ RL for i = 1, . . . , t, and any auxiliary input z, the

following ensembles are computationally indistinguishable:

{viewP (w̄0)
V ∗(x̄,z)} and {viewP (w̄1)

V ∗(x̄,z)}.

In [18], a construction of 2-round resettable witness-indistinguishable proof
based on NIZK proofs has been shown, and then in [27], a non-interactive
resettable witness-indistinguishable proof has been shown by relying on specific
number-theoretic assumptions, and from iO [6].

Let us recall the definition of resettable soundness due to [3].

Definition 9 (resettably-sound arguments [3]). A resetting attack of a
cheating prover P ∗ on a resettable verifier V is defined by the following two-
step random process, indexed by a security parameter λ.

1. Uniformly select and fix t = poly(λ) random-tapes, denoted r1, . . . , rt, for
V , resulting in deterministic strategies V (j)(x) = Vx,rj

defined by Vx,rj
(α) =

V (x, rj , α),4 where x ∈ {0, 1}λ and j ∈ [t]. Each V (j)(x) is called an incar-
nation of V .

2. On input 1λ, machine P ∗ is allowed to initiate poly(λ)-many interactions
with the V (j)(x)’s. The activity of P ∗ proceeds in rounds. In each round P ∗

chooses x ∈ {0, 1}λ and j ∈ [t], thus defining V (j)(x), and conducts a complete
session with it.

Let (P, V ) be an interactive argument for a language L. We say that (P, V )
is a resettably-sound argument for L if the following condition holds:

– Resettable-soundness: For every polynomial-size resetting attack, the proba-
bility that in some session the corresponding V (j)(x) has accepted and x /∈ L
is negligible.

Definition 10 (commitment scheme). Given a security parameter 1λ, a
commitment scheme com is a two-phase protocol between two PPT interactive
algorithms, a sender S and a receiver R. In the commitment phase S on input

4 Here, V (x, r, α) denotes the message sent by the strategy V on common input x,
random-tape r, after seeing the message-sequence α.
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a message m interacts with R to produce a commitment c = com(m). In the
decommitment phase, S sends to R a decommitment information d such that R
accepts m as the decommitment of c.

Formally, we say that com is a perfectly binding commitment scheme if the
following properties hold:

Correctness:
• Commitment phase. Let c = com(m) be the commitment of the message m

given as output of an execution of com where S runs on input a message
m. Let d be the private output of S in this phase.

• Decommitment phase5. R on input m and d accepts m as decommitment
of c.

Statistical (resp. Computational) Hiding [30]: for any adversary (resp.
PPT adversary) A and a randomly chosen bit b ∈ {0, 1}, consider the follow-
ing hiding experiment ExpHidingb

A,com(λ):
• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that

are of the same length.
• S on input the message mb interacts with A to produce a commitment of

mb.
• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. PPT adversary) A, there exist a negligible function
ν, s.t.:

∣

∣

∣ Pr[ExpHiding0A,com(λ) = 1] − Pr[ExpHiding1A,com(λ) = 1]
∣

∣

∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com
generated during the commitment phase by a possibly malicious unbounded
(resp. malicious PPT) sender S∗ there exists a negligible function ν such that
S∗, with probability at most ν(λ), outputs two decommitments (m0, d0) and
(m1, d1), with m0 �= m1, such that R accepts both decommitments.
We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.

In this paper, we consider non-interactive perfectly binding computationally
hiding commitment schemes, which can be constructed from one-to-one one-way
functions [22]. Two-message statistically binding commitment schemes can be
obtained from one-way functions [28,32].

Definition 11 (pseudorandom function (PRF)). A family of functions
{fs}s∈{0,1}∗ is called pseudorandom if for all adversarial PPT machines A, for
every positive polynomial p(), and sufficiently large λ ∈ N, it holds that

|Pr[Afs(1λ) = 1] − Pr[AF (1λ) = 1]| ≤ 1
p(λ)

.

where |s| = n and F denotes a truly random function.

5 In this paper we consider a non-interactive decommitment phase only.
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Definition 12 (indistinguishability obfuscation). A uniform machine iO
is an indistinguishability obfuscator for a class of deterministic circuits {Cλ}λ∈N

if it satisfies the following:

– Correctness: For all security parameter λ∈N, for all C ∈Cλ, for all input x,

Pr[Λ ← iO(1λ, C) : Λ(x) = C(x)] = 1.

– Security: For every non-uniform PPT sampleable distribution D and adver-
sary A, there exists a negligible function ν such that for sufficiently large
λ ∈ N, if

Pr[(C1, C2, z) ← D : ∀x,C1(x) = C2(x)] > 1 − ν(λ),

then
Pr[(C1, C2, z) ← D : A(iO(1λ, C1), z) = 1]
−Pr[(C1, C2, z) ← D : A(iO(1λ, C2), z) = 1] ≤ ν(λ).

We say an iO is super-polynomially secure if there is a super-polynomial
function T such that the above condition holds for all adversary A running
in time at most T (λ).

Let RU = {((M,x, t), w) : M accepts (x,w) in t steps}, SU = {(M,x, t) :
∃w, ((M,x, t), w) ∈ RU} and RU (M,x, t) = {w : ((M,x, t), w) ∈ RU}. Let
TM (x,w) denote the number of steps made by M on input (x,w).

Definition 13 (universal argument [2]). A pair of interactive Turing
machines (P, V ) is called a universal argument system if it satisfies the following
properties:

– Efficient verification: There exists a polynomial p such that for any y =
(M,x, t), the total time spent by the (probabilistic) verifier V , on common
input y, is at most p(|y|). In particular, all messages exchanged in the proto-
col have length smaller than p(|y|).

– Completeness via a relatively efficient prover: For every ((M,x, t), w) ∈ RU ,

Pr[〈P (w), V 〉(M,x, t) = 1] = 1.

Furthermore, there exists a polynomial q such that for every ((M,x, t), w) ∈
RU , the total time spent by P (w), on common input (M,x, t), is at most
q(|M | + TM (x,w)) ≤ q(|M | + t).

– Computational soundness: For every polynomial-size circuit family { ˜Pn}n∈N,
and every (M,x, t) ∈ {0, 1}n \ SU , there exists a negligible function ν such
that

Pr[〈 ˜Pn, V 〉(M,x, t) = 1] < ν(n).

– Weak proof-of-knowledge property: For every positive polynomial p there
exists a positive polynomial p′ and a probabilistic polynomial-time oracle
machine E such that the following holds: for every polynomial-size circuit
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family { ˜Pn}n∈N, and every sufficiently long y = (M,x, t) ∈ {0, 1}∗, if
Pr[〈 ˜Pn, V 〉(y) = 1] > 1/p(|y|), then

Prr[∃w = w1 . . . wt ∈ RU (y),∀i ∈ [t], E ˜Pn
r (y, i) = wi] > 1/p′(|y|)

where E
˜Pn
r denotes the function defined by fixing the random-tape of E to r

and providing it with oracle access to ˜Pn.

By abusing the notation, we let E be the oracle machine, running in time
poly(n)·t, that extracts the whole witness. We call E a global proof-of-knowledge
extractor. Note that E is not necessarily polynomial time.

Definition 14 (witness-indistinguishable universal argument [2]). A
universal argument system, (P, V ), is called witness-indistinguishable (WIUA)
if, for every polynomial p, every polynomial-size circuit family {V ∗

n }n∈N, and
every three sequences 〈yn = (Mn, xn, tn)〉n∈N, 〈w1

n〉n∈N and 〈w2
n〉n∈N such that

|yn| = n, tn ≤ p(|xn|) and (yn, w1
n), (yn, w2

n) ∈ RU , the probability ensem-
bles {〈P (w1

n), V ∗
n 〉(yn)}n∈N and {〈P (w2

n), V ∗
n 〉(yn)}n∈N are computationally

indistinguishable.

Theorem 3 [2]. Assuming the existence of families of collision-resistant hash
functions, there exists a 4-round public-coin WIUA.

Definition 15 (special-sound witness-indistinguishable proof [11]). A 4-
round public-coin interactive proof for the language L ∈ NP with witness relation
RL is special-sound with respect to RL, if for any two transcripts (δ, α, β, γ) and
(δ′, α′, β′, γ′) such that the initial two messages, (δ, α) and (δ′, α′), are the same
but the challenges β and β′ are different, there is a deterministic procedure to
extract the witness from the two transcripts and runs in polynomial time. Special-
sound proofs with witness-indistinguishability (WISSP) for languages in NP can
be based on one-way functions.

Definition 16 (ZAP [25]). ZAPs are two round public coin witness indistin-
guishable proofs introduced by Dwork and Naor [18]. ZAPs further have the spe-
cial property that the first message (sent by the prover) can be reused for multiple
proofs. As noted in [3], any ZAP system already has the property of resettable
soundness. Furthermore, resettable witness indistinguishability property can be
obtained by applying the transformation in [8]. We refer to the resulting sys-
tem as an rZAP system having the property of resettable soundness as well as
resettable witness indistinguishability.

2.1 P-Certificate with Delegatable CRS Generation

For c ∈ N, let Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let TM (x) denote
the number of steps made by M on input x.

Definition 17 (P-certificate system [11]). A tuple of PPT algorithms
(Gen,Pcert, Vcert) is a P-certificate system in the CRS model if there exist poly-
nomials lCRS and lπ such that for c, λ ∈ N and q = (M,x, y) ∈ Lc.
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– CRS Generation: CRS ← Gen(1λ, c), where Gen runs in time poly(λ). The
length of CRS is bounded by lCRS(λ).

– Proof Generation: π ← Pcert(1λ, c, CRS, q), where Pcert runs in time poly(λ,
|x|, TM (x)) with TM (x) ≤ |x|c. The length of π is bounded by lπ(λ).

– Proof Verification: b = Vcert(1λ, c, CRS, q, π), where Vcert runs in time
poly(λ, |q|).

Completeness: For every c, d, λ ∈ N and q = (M,x, y) ∈ Lc such that |q| ≤ λd,

Pr[CRS ← Gen(1λ, c), π ← Pcert(1λ, c, CRS, q) : Vcert(1λ, c, CRS, q, π) = 1] = 1.

Strong soundness: There exists a super-polynomial function T (λ) = λω(1) and a
super-constant function C(λ) = ω(1) such that for every probabilistic algorithm
P ∗ with running time bounded by T (λ), there exists a negligible function ν such
that for every λ ∈ N and c ≤ C(λ),

Pr

⎡

⎣

(q, st) ← P ∗(1λ, c),
CRS ← Gen(1λ, c),
π ← P ∗(st, CRS)

: Vcert(1λ, c, CRS, q, π) = 1 ∧ q /∈ Lc

⎤

⎦ ≤ ν(λ).

A P-certificate system is two-message if the generation of the CRS Gen also
depends on the statement q, i.e. CRS ← Gen(1λ, c, q). The two-message P-
certificate system can be considered an interactive protocol as follows: the prover
sends q to the verifier; the verifier replies with CRS ← Gen(1λ, c, q); the prover
sends π ← Pcert(1λ, c, CRS, q); the verifier accepts if Vcert(1λ, c, CRS, q, π) = 1.

A two-message P-certificate system has a simple verification procedure if the
verification algorithm Vcert only depends on the security parameter 1λ, the CRS
and the proof π, i.e. it is independent of the statement q and the language index
c. In this case, we denote the verification by Vcert(1λ, CRS, π).

A P-certificate system is unique if for every λ, c ∈ N, CRS, q ∈ {0, 1}∗, there
exists at most one π ∈ {0, 1}∗ such that Vcert(1λ, c, CRS, q, π) = 1.

Note that the uniqueness of a P-certificate holds even against invalid CRS.

Definition 18 (delegatable CRS generation [11]). A two-message P-
certificate (Gen,Pcert,Vcert) has delegatable CRS generation if Gen consists of
three subroutines: SetUp, PreGen and CRSGen, and there exist polynomials ld
and lCRS satisfying the following properties:

– Parameters Generation: (PP,K) ← SetUp(1λ, c), where SetUp is probabilis-
tic and runs in time poly(λ). PP is a public parameter and K is a secret
parameter.

– Statement Processing: d = PreGen(PP, q), where PreGen is deterministic and
runs in time poly(λ, |q|) and the length of d is bounded by ld(λ) independent
of |q|.

– CRS Generation: κ ← CRSGen(PP,K, d), where CRSGen is probabilistic and
runs in time poly(λ) and the length of κ is bounded by lCRS(λ).

Gen outputs CRS = (PP, κ).
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Theorem 4 [11]. Assuming the existence of an indistinguishability obfusca-
tion for P/poly and an injective one-way function (that are super-polynomially
secure), there exists a (super-polynomially secure) two-message P-certificate sys-
tem with (strong) soundness, uniqueness and delegatable CRS generation.

3 Constant-Round Resettable Zero Knowledge

In [11], Chung et al. construct a constant-round concurrent ZK argument assum-
ing the existence of families of collision-resistant hash functions, one-way per-
mutations, and indistinguishability obfuscators for P/poly (with slightly super-
polynomial security). We present it here as follows:

Let com be a non-interactive perfectly binding computationally hiding com-
mitment scheme. As mentioned in [11], the protocol can be modified to work
with a 2-message statistically binding commitment scheme based on one-way
functions [28,32]. Let {Hn}n∈N be a family of collision-resistant hash functions.
Let (Gen,Pcert,Vcert) be a two-message P-certificate system with strong sound-
ness, uniqueness and delegatable CRS generation where Gen consists of subrou-
tines (SetUp,PreGen,CRSGen). Let D = D(n) be a super-constant function such
that D(n) ≤ C(n) for C(·) in Definition 17. Let (PUA, VUA) be a constant-round
public-coin WIUA. Let (PSS , VSS) be a constant-round public-coin WISSP. Let
(PZK , VZK) be a constant-round ZK argument.

Let Πn,c3,PP,K,ρCRSGen
and Π ′

n,c3,κ be programs defined as follows:

Πn,c3,PP,K,ρCRSGen
: on input (d, ρ)

1. If c3 �= com(d; ρ), output ⊥.
2. Output CRSGen(PP,K, d; ρCRSGen).

Π ′
n,c3,κ: on input (d, ρ)

1. If c3 �= com(d; ρ), output ⊥.
2. Output κ.

Let On
Vcert

be a (deterministic) P-certificate oracle which, on input CRS,
outputs a (unique) π such that Vcert(1n, CRS, π) = 1.

Let Emun be a deterministic polynomial-time machine which, on input
(S, y, σ), emulates the execution of the deterministic oracle machine S on input
y with access to the oracle On

Vcert
. Emun simulates On

Vcert
by, on input CRSi in the

ith call from S, checking if πi in σ = (π1, π2, . . .) satisfies Vcert(1n, CRSi, π) = 1.
If so, it returns πi to S, and halts otherwise.
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Constant-Round Concurrent Zero-Knowledge Argument Γ [11]

The prover P and the verifier V on common input 1n and x, and private
input w for P :

1. V sends h ← Hn to P .
2. P sends c1 = com(0; ρ1) to V .
3. V sends r ← {0, 1}4n to P .
4. P sends c2 = com(0; ρ2) to V .
5. P and V run (PUA, VUA) for the following statement: either x ∈ L or

there exists S, j ∈ [m], s ∈ {0, 1}n, σ, ρ1, ρ2 such that
– c1 = com(h(S); ρ1) and
– c2 = com(h(q); ρ2) where q = (Emun, (S, (1n, j, s), σ), r).

V rejects if VUA rejects.
6. V runs (PP,K) ← SetUp(1n,D) and sends PP to P .
7. P sends c3 = com(0; ρ3) to V .
8. P and V run (PUA, VUA) so that P proves to V that either x ∈ L or

there exists q, ρ2, ρ3 such that c2 = com(h(q); ρ2) and c3 = com(d; ρ3)
where d = PreGen(PP, q). V rejects if VUA rejects.

9. V computes ̂Π ← iO(Πn,c3,PP,K,ρCRSGen
) and sends ̂Π to P .

10. V and P run (PZK , VZK) so that V proves to P that there exist K,
ρSetUp, ρCRSGen, ρiO such that

– (PP,K) = SetUp(1n,D; ρSetUp) and
– ̂Π = iO(Πn,c3,PP,K,ρCRSGen

; ρiO).
P aborts if VZK rejects.

11. P sends c4 = com(0; ρ4) to V .
12. P and V run (PSS , VSS) so that P proves to V that either x ∈ L or there

exists d, ρ3, ρ4 such that c3 = com(d; ρ3) and c4 = com(CRS; ρ4) where
CRS = (PP, ̂Π(d, ρ3)). V rejects if VSS rejects.

13. P and V run (PSS , VSS) so that P proves to V that either x ∈ L or there
exists CRS, ρ4 and P -certificate π such that c4 = com(CRS; ρ4) and
Vcert(CRS, π) = accept. V accepts if VSS accepts. Otherwise, V rejects.

Theorem 5 [11]. Assuming the existence of families of collision-resistant hash
functions, one-way permutations, and indistinguishability obfuscators for P/poly
that are super-polynomially secure, there exists a constant-round concurrent zero-
knowledge argument for NP.

3.1 From Concurrent ZK to Resettable ZK

Let Γ = (PΓ , VΓ ) be an �-round concurrent ZK argument. We construct a O(�)-
round resettable ZK argument Λ as follows:
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Let com be a non-interactive perfectly binding computationally hiding com-
mitment scheme. Let (PrsZK , VrsZK) be a constant-round resettably-sound ZK
argument with the simulator SimrsZK .

Constant-Round Resettable Zero-Knowledge Argument Λ

The prover P and the verifier V on common input 1n and x, and private
input w for P :

1. V sending m0 = (com(r1), . . . , com(r�)) to P .
2. P chooses a random seed s for a pseudorandom function fs : {0, 1}∗ →

{0, 1}l(n) where l(n) is the upper bound on the size of random bits PΓ

needs in each round of Γ .
3. P and V run Γ with the following modifications:

– For each message mi that VΓ sends in the ith round of Γ , V and P
run (PrsZK , VrsZK) so that V proves to P that mi is computed using
random bits ri committed in m0 in the first round.

– For each message m′
i that PΓ sends in the ith round of Γ , P applies

fs to the transcript so far and uses the output as random bits to
compute m′

i.

3.2 Proofs

Lemma 1. Λ is a resettable ZK argument system.

Proof. First, we consider the protocol ΛF where we replace a pseudorandom
function fs by a truly random function F : {0, 1}∗ → {0, 1}l(n). We argue that
ΛF is indistinguishable from Λ by the reduction to the security of pseudorandom
function as follows. We construct an adversary APRF having access to an oracle
computing either fs or F such that APRF runs Λ (or ΛF ) with the following
modification: for each message m′

i sent by an honest P , APRF asks the oracle
using the transcript of the protocol up to that point as input; it then uses the
oracle output as the random bits to compute m′

i. Finally, APRF runs and outputs
the output of the distinguisher on the view of the protocol. Since APRF runs the
honest P from the beginning to the end, it has access to private parameters of P ,
and thus is able to finish the protocol. Thus, any non-uniform polynomial-size
verifiers must behave in the same way except with negligible probability.

Let V ∗
RES be a resetting verifier in ΛF . We construct a concurrent veri-

fier V ∗
CONC such that for any PCONC there exists PRES such that {viewPRES

V ∗
RES

}
and {viewPCONC

V ∗
CONC

} are computationally indistinguishable as follows: V ∗
CONC runs

V ∗
RES internally and delivers messages between V ∗

RES and PCONC while record-
ing the first message (commitments) of V ∗

RES and every message of PCONC .
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Whenever V ∗
RES resets PRES and sends the first message, V ∗

CONC checks if it
has been sent before. If so, V ∗

CONC resends the appropriate responses or continues
the session if necessary. Otherwise, V ∗

CONC starts a new session of PCONC . The
randomness used in this new session is indistinguishable from the randomness
PRES used by applying F to the new transcript (as m0 is different).

Claim. For a fixed seed s and m0, for each i ∈ [�], V ∗
r cannot find two different

messages mi,m
′
i in the ith round such that it can make PRES accepting the ith

resettably-sound ZK argument except with negligible probability.

Proof. Let the first round message m0 = (c1, . . . , c�). Assume for contradiction
that there exists i ∈ [�] such that V ∗

r can find mi �= m′
i and the corresponding

resettably-sound ZK argument that PRES accepts with non-negligible probabil-
ity. In such case, by the resettable soundness of the ZK argument, mi and m′

i are
both computed correctly with respect to the protocol ΛF using the randomness
committed in ci. In other words, there exists a deterministic polynomial-time
function μi such that mi and m′

i have the form mi = μi(ri) with ci = com(ri)
and m′

i = μi(r′
i) with ci = com(r′

i), for some ri �= r′
i. However, this implies

com(ri) = com(r′
i), which contradicts the perfectly binding of com. �

Thus, the transcript of the whole session depends only on s and m0. There-
fore, {viewPRES

V ∗
RES

} and {viewPCONC

V ∗
CONC

} are computationally indistinguishable. �

Lemma 2. Λ is sound.

Proof. Suppose there exists a cheating prover P ∗
RES that can prove a false

theorem x /∈ L with non-negligible probability. Consider the following hybrid
experiments:

Exp0: Run 〈P ∗
RES , VRES〉(1n, x).

Let Exp1,0 be the same as Exp0, and for i = 1, . . . , �,
Exp1,i: Similar to Exp1,i−1 except that the execution of PrsZK(ri) following

the message mi is replaced by the execution of Sim
P ∗

RES,i

rsZK where P ∗
RES,i is the

residual rsZK verifier (note that P ∗
RES runs VrsZK) who has received m0, . . . ,mi

as inputs. Assume for contradiction that there exists a distinguisher D for Exp1,i

and Exp1,i−1. We construct a distinguisher D′ for the (standard) zero-knowledge
property of (PrsZK , VrsZK) as follows. First, we generate r1, . . . , ri−1, ri+1, . . . , r�

uniformly and let c̃i = com(0). Then we produce the transcript for P ∗
RES as in

Λ except that we use c̃i instead of ci = com(ri). By the computational hiding of
com, P ∗

RES cannot distinguish c̃i from ci. Given either {viewPrsZK

VrsZK
} where VrsZK

is run by P ∗
RES,i or Sim

P ∗
RES,i

rsZK , we generate the rest of the transcript for protocol
Λ using rj generated earlier. Finally, D′ runs D on the entire transcript. In
either case, the transcript is computationally indistinguishable to either Exp1,i

or Exp1,i−1. Thus, D′ can break the zero-knowledge property of (PrsZK , VrsZK),
which is a contradiction. Hence, Exp1,i and Exp1,i−1 are indistinguishable.

Let Exp2,0 be the same as Exp1,�, and for i = 1, . . . , �,
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Exp2,i: Similar to Exp2,i−1 except that com(ri) in the first message m0 is
replaced by com(0). Consider the following reduction to the computational hiding
property of com: Acom sends ri and 0 to Scom; it passes the commitment from
Scom as the ith commitment in m0 of Exp2,i−1 (or Exp2,i); Acom can complete
the experiment as it does not need to know which message it commits using
SimrsZK ; Acom outputs the output of the experiment. The computational hiding
property implies that Exp2,i and Exp2,i−1 are indistinguishable.

Now we construct a cheating prover P ∗
CONC for Γ by running Exp2,� inter-

nally as follows: P ∗
CONC sends com(0) to P ∗

RES ; P ∗
c passes every messages from

P ∗
RES to VCONC ; P ∗

CONC passes every message from VCONC to P ∗
RES then runs

SimrsZK while P ∗
RES runs VrsZK . Thus, P ∗

CONC can prove a false theorem x /∈ L
with non-negligible probability, which contradicts the soundness of Γ . �
Theorem 6. Assuming one-way functions, there exists a compiler transforming
an �-round concurrent zero-knowledge argument to a O(�)-round resettable zero-
knowledge argument.

Proof. The resettable zero knowledge and soundness are proved in Lemmas 1
and 2, respectively. The completeness follows from the completeness of Γ by
inspection. For each round of Γ , P and V has to run additional O(1) rounds
for resettably-sound ZK protocol that V uses the committed random bits, and
1 extra round in the beginning. Thus, the round complexity is O(�). �
Corollary 1. Assuming the existence of families of collision-resistant hash
functions, one-way permutations, and indistinguishability obfuscators for
P/poly that are super-polynomially secure, there exists a constant-round reset-
table zero-knowledge argument for NP.

Proof. We instantiate Λ by letting Γ be the constant-round concurrent zero-
knowledge argument system of [11]. Perfectly binding com can be constructed
from one-way permutations. A constant-round resettably-sound ZK argument
can be constructed from one-way functions [12]. �

4 Concurrent ZK with Resettable Soundness

In this section, we construct a constant-round resettably-sound concurrent ZK
argument based on the constant-round cZK argument in [11]. We make use of
our constant-round rZK argument from the previous section (Corollary 1), the
technique used in [3] to add resettable soundness to a public-coin protocol, and
our new techniques to deal with non-public coin nature of the cZK protocol
in [11].

4.1 Construction

Let Γ be the constant-round concurrent ZK argument from [11] described in
Sect. 3. We construct a constant-round concurrent ZK argument with resettable
soundness Δ as follows:
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Let (PrZK , VrZK) be a constant-round resettable ZK argument with the sim-
ulator SimrZK . The verifier V chooses a random seed s for a pseudorandom
function fs : {0, 1}∗ → {0, 1}l(n), where l(n) is the upper bound on the size of
random bits V need in each round of Γ . Then P and V run Γ with the following
modifications. In Step 10, instead of running a ZK argument (PZK , VZK), V and
P run the resettable ZK argument (PrZK , VrZK). Additionally, for each message
m that V sends in Γ , V uses the output of fs applying to the transcript from
the protocol up to this point as random bits to compute m.

4.2 Proofs

Before we prove that the protocol above is a concurrent ZK argument with
resettable soundness, we consider another modification, Γ ′, of the protocol Γ
in [11]. First, P and V repeat Steps 7–9 for t times with V using the same
ρCRSGen for some t = poly(n). Let Steps 7j–9j denoted jth repeat of Steps 7–9.
Secondly, we remove the zero-knowledge proof in Step 10, and replace it with
“P chooses i ∈ [t] and sends i to V ”, and then P and V follows the rest of the
protocol ignoring Steps 7j–9j for j �= i.

Lemma 3. Γ ′ is a sound interactive argument.

Proof. We strictly follow the proof of soundness of Γ in [11] with a modification
necessary for the repetition of Steps 7–9. Assume for contradiction that there is a
non-uniform deterministic polynomial-time prover P ∗ and a positive polynomial
p such that for infinitely many n ∈ N, P ∗ can convince V to accept x /∈ L
with non-negligible probability 1/p(n). Let E be the global proof-of-knowledge
extractor of the WIUA (PUA, VUA), and E′ be the knowledge extractor of the
WISSP (PSS , VSS). We define the experiment Exp which runs 〈P ∗, V 〉(1n, x)
with the following addition:

– In Step 5, let P ∗
prefix1

be the residual WIUA prover who has received prefix1 =

(h, r) in Steps 1 and 3. Run w1 ← E
P ∗

prefix1
s1 , where s1 is uniform randomness.

If E fails, halt and output ⊥.
– In Step 7j, for j = 1, . . . , t, let P ∗

prefix2,j
be the residual WIUA prover who has

received prefix2,j consisting of h, r, WIUA messages, PP and ̂Πk in Steps 1,

3, 5, 6, 8k and 9k for k = 1, . . . , j − 1. Run w2,j ← E
P ∗

prefix2,j
s2,j , where s2,j is

uniform randomness. If E fails, halt and output ⊥.
– In Step 12, let P ∗

prefix3
be the residual WISSP prover who has received prefix3

consisting of h, r, WIUA messages, PP and ̂Πj in Steps 1, 3, 5, 6, 8j and 9j

for j = 1, . . . , t. Run w3 ← E
′P ∗

prefix3
s3 , where s3 is uniform randomness. If E′

fails, halt and output ⊥.
– In Step 13, let P ∗

prefix4
be the residual WISSP prover who has received prefix4

consisting of prefix3 and WISSP messages in Step 12. Run w4 ← E
′P ∗

prefix4
s4 ,

where s4 is uniform randomness. If E′ fails, halt and output ⊥.
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– If V rejects, output ⊥. Otherwise,
• Parse w1 = (S, j, s, σ, ρ1, ρ2). If w1 does not have this form, output ⊥.
• Let q = (Emun, (S, (1n, j, s), σ), r). For j = 1, . . . , t, if w2,j �= (q, ρ2,j , ρ3,j)

for some ρ2,j , ρ3,j , output ⊥.
• Let d = PreGen(PP, q). If w3 �= (d, ρ3,i, ρ4) for some ρ4 where i ∈ [t] is

chosen by P ∗ in Step 10, output ⊥.
• Let CRS = (PP, ̂Π(d, ρ3,i)). If w4 �= (CRS, ρ4, π) for some π, output ⊥.

– output (S, q, r).

By the weak proof-of-knowledge property of WIUA and special soundness of
WISSP, when P ∗ convinces V to accept x /∈ L, the extractors E and E′ succeed
in extracting the witnesses described above (instead of the actual witness of the
theorem) with non-negligible probability 1/p′(n). By perfectly binding property
of com and collision-resistance of H, the consistency check in the last step will
pass except with negligible probability ν(n). In this case, except with negligible
probability, c3,j sent in Step 7j is com(d; ρ3,j) for the same d = PreGen(PP, q) for
all j = 1, . . . , t. Otherwise, we can construct a cheating WIUA prover that com-
mits to c′ = com(d′; ρ′) with d′ �= PreGen(PP, q) with non-negligible probability
by randomly pick j ∈ [t] and commit to c′ = c3,j . This breaks the soundness
of WIUA. So, the only output of ̂Πj is CRSGen(PP,K, d, ρCRSGen) = κ for all
j = 1, . . . ,m except with negligible probability ν′(n). Thus, the probability that
Exp does not output ⊥ and every ̂Πj output the same κ is 1/p′(n)−ν(n)−ν′(n)
which is non-negligible. We call this event Good.

Now consider a series of experiments Exp′
j for j ∈ [t] defined as follows:

Exp′
0 = Exp, and Exp′

j differs from Exp′
j−1 in Step 9j where we replace ̂Πj ←

iO(Πn,c3,j ,PP,K,ρCRSGen
) with ̂Π ′

j ← iO(Π ′
n,c3,j ,κ) where κ = CRSGen(PP,K, d;

ρCRSGen). When Good occurs, by perfectly binding property of com, Π ′
n,c3,j ,κ and

Πn,c3,j ,PP,K,ρCRSGen
are functionally equivalent except with negligible probability.

In this case, Exp′
j−1 and Exp′

j are indistinguishable by the reduction to iO as
follows: DiO runs Exp′

j−1 (or Exp′
j) up to Step 8j and outputs Π ′

n,c3,j ,κ and
Πn,c3,j ,PP,K,ρCRSGen

and the state of the experiment z; up to receiving obfuscated
program ̂Π and z, AiO sends ̂Π to P ∗, continues the experiment until the end,
and outputs the output of the experiment. Thus, Exp′

j−1 and Exp′
j are indistin-

guishable by the security of iO. Hence, by hybrid argument, the probability of
Good event is non-negligible in Exp′

j for j = 1, . . . , t. Let Exp′ = Exp′
t.

Now suppose that Good and q is false occurs with non-negligible proba-
bility. Then we construct P ∗

Pcert that breaks the strong soundness of the P-
certificate system as follows: P ∗

Pcert runs Exp′ up to Step 5 where it extracts q
from w1. Up on receiving CRS = (PP, κ) where (PP,K) ← SetUp(1n,D) and
κ ← CRSGen(PP,K,PreGen(PP, q)), it continues Exp′ using PP and κ and out-
put π extracted from w4. If Good occurs, by the soundness of WISSP, P ∗

Pcert

succeeds and Vcert(CRS, π) = 1 except with negligible probability. Thus, P ∗
Pcert

contradicts the strong soundness of the P-certificate system. Hence, Good and
q is true occurs with non-negligible probability. We call this event Good′. By
averaging argument, there exists h such that Good′|h occurs with non-negligible
probability.
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Finally, consider Exp′′ where Exp′ is run twice with this h but with the
second execution replacing r in Step 3 by an independent random string r′.
With non-negligible probability, both executions succeed and output (S, q, r) and
(S′, q′, r′). Since c1 must be the same in both executions, S = S′ except with neg-
ligible probability by perfectly binding property of com and collision-resistance
of H. Since q = (Emun, (S, (1n, j, s), σ), r) and q′ = (Emun, (S, (1n, j′, s′), σ′), r′)
are true, we have SOn

Vcert (1n, j, s) = r and SOn
Vcert (1n, j′, s′) = r′. We have that

|(1n, j, s)| < 3n < 4n = |r| and |(1n, j′, s′)| < |r′|. However, the deterministic
machine SOn

Vcert predicts independent r and r′ with non-negligible probability.
This is information theoretically impossible as there are at most 23n possible
outputs for SOn

Vcert . Thus, we reach a contradiction.
As in the proof of soundness of Γ in [11], the WIUA global proof-of-knowledge

extractor E runs in super-polynomial time as a part of the witness q is of
super-polynomial size. Thus, the collision-resistant hash functions H, the com-
mitment scheme com and indistinguishability obfuscators iO need to be super-
polynomially secure. �

Now we can prove the main theorem of this section.

Theorem 7. Δ is a concurrent ZK argument with resettable soundness.

Proof. Since the rZK argument (PrZK , VrZK) is also a ZK argument and we only
further modify an honest verifier V , the concurrent zero-knowledge of Δ follows
directly from the concurrent zero-knowledge property of Γ . Now we consider the
protocol ΔF where we replace a pseudorandom function fs by a truly random
function F : {0, 1}∗ → {0, 1}l(n). We argue that ΔF is indistinguishable from
Δ by the reduction to the security of pseudorandom function as follows. Fix
x /∈ L and P ∗

RES that convinces a resettable verifier VRES to accept x /∈ L with
probability ε through protocol ΔF . We construct an adversary APRF having
access to an oracle computing either fs or F such that APRF runs Δ (or ΔF )
with the following modification: for each message m sent by an honest VRES ,
APRF asks the oracle using the transcript of the protocol up to that point as
input; it then uses the oracle output as the random bits to compute m. APRF

outputs the output of V . Since APRF runs the honest VRES from the beginning
to the end, it has access to private parameter K that V generates in Step 6, and
thus is able to compute the obfuscated program and rZK messages in Steps 9
and 10. Thus, any non-uniform polynomial-size provers must behave in the same
way except with negligible probability. Hence, the completeness follows from the
completeness of Γ .

We now show the resettable soundness of the protocol. Assume for contra-
diction that there is a non-uniform polynomial-time resetting prover P ∗

RES that
convinces a resettable verifier VRES to accept x /∈ L with probability ε through
protocol ΔF . We construct a polynomial-time (standard) prover P ∗

S , emulating
P ∗

RES , that convinces a (standard) verifier VS to accept the same x /∈ L through
protocol Γ ′ repeating Steps 7–9 for t times, where t = poly(n) is the total
number of messages sent by P ∗

RES . Let c be the number of (prover) rounds in Δ.
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The cheating prover P ∗
S proceeds as follows. First it uniformly selects

i1, . . . , ic ∈ {1, . . . , t}. It invokes P ∗
RES while emulating VRES . In the jth round

of ΔF , P ∗
S answers a message from P ∗

RES according to the following cases:

– If the prefix of the current session transcript is identical to a corresponding
prefix of a previous session, then P ∗

CONC answers by using the same answer
it has given in the previous session.

– Otherwise, P ∗
S either forwards the message to VS and then forwards the reply

it receives, or generates the reply itself according to the following conditions:
• If the message is c3 or WIUA in Steps 7j–8j, P ∗

S repeats its decision
whether to forward the message in Step 6. In other words, if P ∗

S forwards
the message in Step 6, it will forward this message. If it generates the reply
in Step 6 itself, it will generate the reply for this message as well. This is
because it can only generate an answer in Step 9i if it has generated the
answer in Step 6 of the same transcript (instead of passing to VS).

• If the message is i ∈ [t] in Step 10, P ∗
S does not forward the message, but

instead runs the simulator SimrZK with P ∗
RES corresponding to obfus-

cated program in Step 9i.
• If the index of the current message from P ∗

RES does not equal to ij selected
previously, P ∗

S generates a reply message using a uniformly selected ran-
dom bits.

• Otherwise, P ∗
S forwards the current message to VS and sends P ∗

RES a
reply it receives from VS .

In each case, P ∗
CONC records the messages from both sides for later use.

By the resettable zero-knowledge of (PrZK , VrZK), the probability of P ∗
RES

proving a false theorem x /∈ L only changes negligibly by running SimrZK instead
of PrZK . By the property of truly random function, the view of P ∗

RES is identical
to the distribution that P ∗

RES sees when interacting with an honest VRES . If
the chosen i1, . . . , ic equal the indices of the messages that correspond to the c
messages sent in a session in which P ∗

RES convinces VRES to accept x /∈ L, then
P ∗

S will also convince VS to accept x /∈ L by our construction of VRES . Thus,
the probability of VS accepting x /∈ L is at least ε/tc − ν(n) for some negligible
function ν. This probability is non-negligible. Therefore, it contradicts Lemma3.

�
Let Λ = (PrZK , VrZK) be the constant-round resettable ZK protocol

obtained in Corollary 1, we get the following corollary.

Corollary 2. Assuming the existence of families of collision-resistant hash
functions, one-way permutations, and indistinguishability obfuscators for P/poly
that are super-polynomially secure, there exists a constant-round resettably-sound
concurrent zero-knowledge argument for NP.

5 Simultaneous Resettable ZK

To obtain our main theorem, we apply a combination of the transformations in
Theorem 4 and 5 in Sect. 6, and Theorem 6 and 7 in Appendix C of [25] to our
protocol in Sect. 4 to obtain simultaneous resettability.
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More specifically, we combine three transformations in [25]:

– from resettably-sound (relaxed) concurrent zero-knowledge argument to
hybrid-sound hybrid-resettable zero-knowledge argument;

– from hybrid-sound zero-knowledge argument to resettably-sound zero-
knowledge argument while maintaining (hybrid) resettability;

– from hybrid-resettable zero-knowledge argument to resettable zero-knowledge
argument while maintaining (hybrid) resettable soundness.

We refer to Sect. 1 for an informal discussion and [25] for formal definitions of
relaxed concurrent zero-knowledge, hybrid resettability and hybrid soundness.

Theorem 8 (implied from [25]). Assuming the existence of ZAPs (i.e., 2-
round resettably-sound resettable witness-indistinguishable proof systems) and
family of pseudorandom functions, there exists a transformation from an �-round
resettably-sound concurrent zero-knowledge argument to a O(�)-round resettably-
sound resettable zero-knowledge argument.

Applying the transformations to the protocol Δ in Corollary 2 results in the
following theorem. Note that ZAPs can be constructed from iO and one-way
functions [6], which can then be transformed to have resettable soundness and
resettable witness indistinguishability. Furthermore, only the first transformation
is based on ZAPs while all of them assume pseudorandom functions.

Theorem 9. Assuming the existence of families of collision-resistant hash func-
tions, one-way permutations, and indistinguishability obfuscators for P/poly
that are super-polynomially secure, there exists a constant-round resettably-sound
resettable zero-knowledge argument for NP.
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Abstract. Non-malleable commitments are a central cryptographic
primitive that guarantee security against man-in-the-middle adversaries,
and their exact round complexity has been a subject of great interest.
Pass (TCC 2013, CC 2016) proved that non-malleable commitments with
respect to commitment are impossible to construct in less than three
rounds, via black-box reductions to polynomial hardness assumptions.
Obtaining a matching positive result has remained an open problem
so far.

While three-round constructions of non-malleable commitments have
been achieved, beginning with the work of Goyal, Pandey and Richel-
son (STOC 2016), current constructions require super-polynomial
assumptions.

In this work, we settle the question of whether three-round non-
malleable commitments can be based on polynomial hardness assump-
tions. We give constructions based on polynomial hardness of ZAPs, as
well as one out of DDH/QR/N th residuosity. Our protocols also satisfy
concurrent non-malleability.

1 Introduction

Non-malleable commitments are a fundamental primitive in cryptography, that
help prevent man-in-the-middle attacks. A man-in-the-middle (MIM) adver-
sary participates simultaneously in multiple protocol executions, using infor-
mation obtained in one execution to breach security of the other execution. To
counter such adversaries, the notion of non-malleable commitments was intro-
duced in a seminal work of Dolev et al. [7]. From their inception, non-malleable
commitments have been instrumental to building various several important
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non-malleable protocols, including but not limited to non-malleable proof sys-
tems and round-efficient constructions of secure multi-party computation.

A commitment scheme is a protocol between a committer C and receiver
R, where the committer has an input message m. Both parties engage in an
interactive probabilistic commitment protocol, and the receiver’s view at the end
of this phase is denoted by com(m). Later in a opening phase, the committer and
receiver interact again to generate a transcript, that allows the receiver to verify
whether the message m was actually committed to, during the commit phase. A
cryptographic commitment must be binding, that is, with high probability over
the randomness of the experiment, no probabilistic polynomial time committer
can claim to have used a different message m′ �= m in the commit phase. In
short, the commitment cannot be later opened to any message m′ �= m. A
commitment must also be hiding, that is, for any pair of messages (m,m′), the
distributions com(m) and com(m′) should be computationally indistinguishable.
Very roughly, a commitment scheme is non-malleable if for every message m,
no MIM adversary, intercepting a commitment protocol com(m) and modifying
every message sent during this protocol arbitrarily, is able to efficiently generate
a commitment to a message m̃ related to the original message m.

Round Complexity. The study of the round complexity of non-malleable com-
mitments has been the subject of a vast body of research over the past 25 years.
The original construction of non-malleable commitments of [7] was conceptually
simple, but it required logarithmically many rounds. Subsequently, Barak [2],
Pass [20], and Pass and Rosen [22] constructed constant-round protocols rely-
ing on non-black box techniques. Pass and Wee [23], Wee [24], Goyal [9], Lin
and Pass [17] and Goyal et al. [11] then gave several round-optimized constant-
round black-box constructions of non-malleable commitments based on various
sub-exponential or polynomial hardness assumptions.

More recently, there has been noteworthy progress in understanding the
exact amount of interaction necessary for non-malleable commitments. Pass [21]
showed an impossibility for constructing non-malleable commitments using 2
rounds of communication or less, via a black-box reduction to any “standard”
polynomial intractability assumption. Goyal et al. [13] constructed four round
non-malleable commitments in the standard model based on the existence of
one-way functions. Even more recently, Goyal et al. [12] constructed three round
non-malleable commitments (matching the lower bound of [21]) using quasi-
polynomially hard injective one-way functions, by exploiting properties of non-
malleable codes. Ciampi et al. [5] showed how to bootstrap the result of [12] to
obtain concurrent non-malleable commitments in three rounds assuming sub-
exponential one-way functions. In fact, in the sub-exponential hardness regime,
Khurana and Sahai [16] and concurrently Lin et al. [18] showed how to achieve
two-round non-malleable commitments from DDH and from time-lock puzzles,
respectively. Subsequently, [1] used these to obtain various concurrently secure
protocols in two or three rounds. All these works use complexity leveraging and
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therefore must inherently rely on super-polynomial hardness. This state of affairs
begs the following fundamental question:

“Can we construct round optimal non-malleable commitments from poly-
nomial assumptions?”

We answer this question in the affirmative, by giving an explicit construc-
tion of three-round non-malleable commitments, based on polynomial hardness
of any one out of the Decisional Diffie-Hellman, Quadratic Residuosity or N th

residuosity assumptions. We additionally assume ZAPs, which can be built from
trapdoor permutations [8], the decisional linear assumption on bilinear maps [14]
or indistinguishability obfuscation together with one-way functions [4]. Our con-
struction additionally satisfies concurrent (many-many) non-malleability.

Informal Theorem 1. Assuming polynomial DDH or QR or N th-residuosity,
and ZAPs, there exist three-round concurrent non-malleable commitments.

Related Work. Goyal et al. [10] recently constructed two-round non-malleable
commitments with respect to opening, secure against synchronizing adversaries,
from polynomial hardness of injective one-way functions. Their result is incompa-
rable to ours because they achieve a weaker notion of security (non-malleability
with respect to opening), in two rounds, but against only synchronizing
adversaries.

2 Technical Overview

We now describe the key technical roadblocks that arise in constructing non-
malleable commitments from polynomial hardness, and illustrate how we over-
come these hurdles.

As we already explained, proving non-malleability requires arguing that the
value committed by a man-in-the-middle adversary remain independent of the
value committed by an honest committer. This seems to inherently require
extraction (as also implicit in [21]): a reduction must successfully extract the
value committed by the MIM and use this value to contradict an assumption.
However, current constructions of non-malleable commitments in three rounds
based on polynomial assumptions [12] suffer from a problem known as over-
extraction. That is, they admit extractors which suffer from the following unde-
sirable issue: the extractor may sometimes extract a valid value from the MIM
even though the MIM committed to an invalid value. Non-malleable commit-
ments built using such extractors suffer from “selective abort”: a man-in-the-
middle can choose to commit to invalid values depending upon the value in the
honest commitment, and an over-extracting reduction may never even be able
to detect such attacks.

Non-synchronizing adversaries. Let us begin by considering a non-synchronizing
man-in-the-middle (MIM) adversary that interacts with an honest committer C
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in a left session, then tries to maul this message and commit to a related message
when interacting with an honest receiver R in a different (right) session. By non-
synchronizing, we mean that this MIM completes the entire left execution before
beginning the right session. Known protocols for achieving weaker notions of
non-malleability from polynomial hardness (these include the three-round sub-
protocol without the ZK argument from [13] which we will denote by Π, and the
basic three-round protocol from [12] which we will denote by Π ′) do not achieve
non-malleability with respect to commitment, even in this restricted setting1.

On the other hand, any extractable commitment is non-malleable in this
restricted setting of non-synchronizing adversaries. The reason is simple: Sup-
pose a non-synchronizing MIM managed to successfully maul the honest commit-
ment. For a fixed transcript of the honest commitment, a reduction can rewind
the MIM and use the extractor of the commitment scheme to extract the value
committed by the MIM. If this value is related to the value within the hon-
est commitment, this can directly be used to contradict hiding of the honestly
generated commitment.

The main technical goal of this paper is to find a way to bootstrap the basic
schemes Π,Π ′ to obtain non-malleability against general synchronizing and non-
synchronizing adversaries, while only relying on polynomial hardness.

Barrier I: Over-Extraction. A natural starting point, then, is to add extractabil-
ity to the schemes Π,Π ′, by using some variant of an AoK of committed values,
and within three rounds.

We cannot rely on witness indistinguishable (WI) arguments of knowledge,
since arguing hiding of the scheme would require allowing a committer to com-
mit to two witnesses to invoke WI security. Moreover, all existing constructions
of WI arguments with black-box proofs, involve a parallel repetition of constant-
soundness arguments. Now, a malicious committer could commit to two different
witnesses: and use one witness in some parallel executions of the WI argument,
and a different witness in some others. In this situation, even though the com-
mitment may be invalid, one cannot guarantee that an extractor will detect the
invalidity of the commitment, and over-extraction is possible. This is a known
problem with 3 round protocols based on one-one one-way functions.

On the other hand, very recently, new protocols have been constructed in situ-
ations unrelated to non-malleability, that do not suffer from over-extraction [15].
Assuming polynomial hardness of DDH or Quadratic Residuosity or N th residu-
osity, [15] demonstrated how to achieve arguments of knowledge in three rounds,
that do not over-extract and have a “weak” ZK property2.

However, the protocols of [15] guarantee privacy only when proving state-
ments that are chosen from a distribution, by a prover, exclusively in the
third round. On the other hand, both schemes Π,Π ′, and in fact most general

1 The basic protocol from [12] however, does achieve non-malleability against synchro-
nous adversaries.

2 Very roughly, this means that for every (malicious) PPT verifier and distinguisher D,
there exists a distinguisher-dependent simulator SimD, that can generate a simulated
proof.
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non-malleable commitment schemes follow a commit-challenge-response struc-
ture, where cryptography is necessarily used in the first round. Thus, the state-
ment being proved is already fully/partially decided in the first round, which
are incompatible withthe kind of statements that [15] allows proofs for. Thus
ideally, we would either like to inject non-malleability into the scheme of [15],
or we would like to give an argument of knowledge of the message committed
in the first round of Π,Π ′, that doesn’t overextract. The protocols of [15] are
unlikely to directly help us achieve these objectives, because of their restriction
to proving messages generated in the third round. However, before describing
how we solve this problem, we describe another technical barrier.

Barrier II: Composing Non-Malleability with Extraction. Many state-of-the-art
protocols for non-malleable commitments admit black-box proofs of security.
Naturally then, security reductions for these protocols must rely on rewind-
ing the adversary in order to prove non-malleability. This makes these proto-
cols notoriously hard to compose with other primitives that rely on rewinding.
More specifically, it is necessary to ensure that the knowledge extractor for the
extractable commitment does not interfere with the rewinding strategies used in
the proof of non-malleability, and vice-versa.

A relatively straightforward technique to get around this difficulty, used in [9,
11,13,17] is to arrange the protocol such that the non-malleable component and
the argument of knowledge appear in completely different rounds and do not
overlap. A more challenging method that does not add rounds, that is also used
in prior work [13], is to use “bounded-rewinding-secure” WIAoK’s while making
careful changes to the non-malleable commitment scheme.

Our Solution: First Attempt. Our first technical idea is to turn the problem
of incompatibility between non-malleability and arguments of knowledge on its
head, and try to use the same commitments to both argue non-malleability and
perform knowledge-extraction. In other words, the only extractable primitive
that we rely on will be a non-malleable commitment scheme. This is explained
in more detail below.

In the following, we will rely on non-malleable commitments with a weak
extraction property. Very roughly, we will require the existence of a probabilistic
“over”-extractor E parameterized by error ε (we will usually think of ε as being
inverse-polynomial). We will require given a PPT (synchronizing) man-in-the-
middle adversary and a transcript of an execution between the MIM and honest
committer, E “extracts” a value v such that if the value committed by the MIM
in the transcript is valid, then it equals v except with probability ε. Furthermore,
the extractor E does not rewind the honest execution. As noted in [9,12], this
already guarantees a flavor of non-malleability: since it is possible to extract the
value from the MIM while maintaining hiding of the honest commitment. The
weak extraction property is satisfied, even in the one-many setting (where the
MIM participates in multiple right executions) by the protocol Π. In the one-one
setting, this property is satisfied by Π ′.

We note that a non-malleable commitment satisfying the weak extraction
property is not an extractable commitment (and in particular, need not be
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non-malleable with respect to commitment), because E is allowed to output
a valid value even when the MIM committed to an incorrect/invalid value in the
transcript. Thus, a MIM may cheat for example, by generating a commitment
to an invalid value when the honest commitment is to 0, and to a valid value
when the honest commitment is to 1: and the extractor E may fail to observe the
difference. On the other hand, in order to achieve non-malleability with respect
to commitment, we will have to solve this problem and know when incorrectly
extracted a valid value even though the MIM committed to an invalid value.

Now in order to gain confidence in the correctness of the value we extract,
our scheme will have the committer generate two non-malleable commitments in
parallel, and give a WI argument that one of the two was correctly constructed.
This argument will satisfy a specific type of security under rewinding, and can be
constructed based on ZAPs and DDH in three rounds via [15]. For the purposes
of this overview, even though we don’t actually require a non-interactive proof,
assume that we use a non-interactive witness indistinguishable proof, NIWI [3,
14]. Let φ1 denote the protocol that results from committing to the message
twice using the non-malleable commitment scheme Π, and giving a NIWI proof
that one of the two was correctly computed.

This partial solution still leaves scope for over-extraction: how can we be
sure that the extractor does not output any valid value even when a malicious
committer could be committing to two different values within the non-malleable
commitments and using both witnesses for the WI?

Second Attempt. Since protocol φ1 also suffers from over-extraction, it may seem
like we made no progress at all. However, note that the same protocol can be
easily modified to a WIAoK (witness indistinguishable argument of knowledge):
by committing to a witness twice using Π and proving via NIWI that one of
the two non-malleable commitments is a valid commitment to a witness. Let us
call the resulting protocol φ2. At a high level, the protocol φ2 has the following
properties:

– Knowledge Extraction. φ2 is an argument of knowledge (which suffers
from over-extraction).

– Non-malleability. Weak non-malleability of Π implies a limited form of
non-malleability of the protocol φ2.

Third Attempt. In order to prevent over-extraction, we will need to force any
prover that generates a proof according to φ2 to use a unique witness in φ2. We
will now try to rely on three round “weak” zero-knowledge arguments of [15],
which are secure when used to prove cryptographic statements chosen by the
prover in the last round. These arguments also retain a limited type of security
under rewinding, which will help ensure that rewinding for extraction from the
non-malleable commitment does not interfere with simulation security.

Assume again, for the purposes of this overview, that these arguments satisfy
the standard notion of simulation for zero-knowledge, except that the statement
to be proved, must be chosen in the last round. Let us denote them by wzk.

We will now use wzk to set up a trapdoor for φ2. This trapdoor will include a
statistically binding commitment c1 using a non-interactive statistically binding
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commitment scheme com, and a wzk argument that c1 was generated correctly
as a commitment to 1. The trapdoor statement will be that c1 is a commitment
to 0. This trapdoor statement will serve as the ‘other’ witness for φ2.

Given these building blocks, our actual commitment scheme φ will have the
following structure:

– Trapdoor: The committer will generate commitment c1 to 1, via com in
the third round. In parallel, the committer will prove via wzk, that c1 was
correctly generated as a commitment to 1.

– Actual Commitment: The committer will also generate commitment c to
input message m, via com, only in the third round. In parallel the committer
will also run scheme φ2, proving that either c was correctly generated, or that
c1 was generated as a commitment to 0.

Note that the protocol φ2 as described is not delayed-input: the non-malleable
commitment Π requires an input (that is, the witness) in the first round, whereas
the witness for the statement is only decided in the third round. However, suffices
to use one-time pads to get this delayed-input property from φ2, by using the
two non-malleable commitments within φ2 to commit to random values r1, r2
and then sending in the last round, the messages r1 ⊕ w, r2 ⊕ w.

A simple (informal) description that captures the essence of our final pro-
tocol, φ, is in Fig. 1. The scheme φ is opened up into its components: two non-
malleable commitments and a WI argument. This scheme can be shown to be
computationally hiding by the privacy properties of φ, wzk and com.

Extraction. We first argue that the scheme in Fig. 1 is an extractable commit-
ment. We already discussed that there exists a knowledge extractor for φ2 that
extracts at least one out of γ1, γ2: which can then be used to extract the random-
ness r via z1, z2. All we need to argue is that this extractor does not over-extract.
However, soundness of wzk already forces a computational committer to set c1
as a commitment to 1, which means that there remains only one randomness
(the randomness used for committing to m), that the committer can use in
order to generate z1 or z2 in the WI. Extractability of this scheme is already
enough to guarantee security against non-synchronizing adversaries, even if such
adversaries simultaneously participate in several parallel executions.

Non-malleability. Now, we need to argue that the resulting scheme is concurrent
non-malleable with respect to commitment, when instantiated with Π from [13],
or is non-malleable with respect to commitment when instantiated with Π ′

from [12]. Since Π helps us obtain a more general result, we restrict the rest
of this overview to only consider the scheme Π.

At a very high level, the system φ2 behaves like a non-malleable witness indis-
tinguishable argument of knowledge. Like we already discussed, only relying on
the witness indistinguishability of φ2 gives rise to issues such as over-extraction.
It is here that the weak zero-knowledge argument helps: soundness of the weak
ZK argument ensures that any PPT MIM adversary interacting with the honest
committer, can generate c1 as a commitment to 0 with only negligible probabil-
ity. Thus, such a MIM is “forced” to use as witness, the actual randomness used
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C m ∈ {0, 1}n R

C γ1, γ2 ← {0, 1}n

C wzk R
C Π(γ1), Π(γ2)

R wzk C
R Π

C c1 = com(1; r) r ← {0, 1}n

C wzk R c1 1

C c = com(m; r′) r′ ← {0, 1}n

C Π(γ1), Π(γ2)
C z1 = (γ1 ⊕ r′), z2 = (γ2 ⊕ r′) R
C (c, m, r′, γ1, z1)

• c m r′

Π(γ1) γ1 z1 = γ1 ⊕ r′

• c m r′

Π(γ2) γ2 z2 = γ2 ⊕ r′

• c1 0 r Π(γ1)
γ1 z1 = γ1 ⊕ r

• c1 0 r Π(γ2)
γ2 z2 = γ2 ⊕ r

Fig. 1. A simplified description of the final non-malleable commitment scheme φ

to generate a commitment to his value, and will therefore will never commit to
an invalid value.

However, while formally arguing non-malleability, some subtle technical
issues arise that require careful analysis. For instance, the distinguisher-
dependent simulation strategy of weak ZK if used naively, only guarantees that
the view of the distinguisher remains indistinguishable under simulation. How-
ever, while arguing non-malleability, it is imperative to ensure that not just the
view, but the joint distribution of the view and the value committed by the MIM
remains indistinguishable under simulation. It is here that the over-extraction
property of Π helps: in hybrids where we must argue non-malleability while also
performing distinguisher-dependent simulation, we will use the extractor that is
guaranteed by the weak non-malleability of Π, to extract the value committed
by the MIM without having to rewind the left non-malleable commitment. This
helps us guarantee that the joint distribution of the view and values committed
by the MIM remains indistinguishable under simulation.

Our actual protocol is formalized in Sect. 4 and is identical to the protocol
described above, except the following modification: For technical reasons, in
our actual protocol, instead of masking the randomness r′ with γ, we mask it
with PRF(γ, α) for randomly chosen α. The committer must also send α to the
receiver. This is for similar reasons as [15]: the simulator for wzk sends many
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third protocol messages for the same fixed transcript of the first two messages,
and we require security to hold even in this setting.

On Rewinding Techniques in the Proof. The weak ZK protocol of [15] that we
use in this work, relies on the simulator rewinding the distinguisher. Because of
this, our actual proof of security relies on two sequential rewindings within a
three round protocol: one which rewinds to the end of the first round, and helps
extract values committed in the MIM executions, and the second that rewinds to
the end of the second round, in order to simulate the argument with respect to a
distinguisher. This requires careful indistinguishability arguments that take such
sequential rewindings into account, and can also be found in Sect. 4. We believe
that the careful use of two sets of rewindings within a three-round protocol is
another novel contribution of this work, and may be of independent interest.

In Sect. 3, we recall preliminaries and definitions, and in Sect. 4, we describe
our construction and provide a proof of non-malleability.

3 Preliminaries

We first recall some preliminaries that will be useful in our constructions.

3.1 Proofs and Arguments

Definition 1 (Delayed-Input Distributional ε-Weak Zero Knowledge)
[15]. An interactive argument (P, V ) for a language L is said to be delayed-input
distributional ε-weak zero knowledge if for every efficiently samplable distribu-
tion (Xn,Wn) on RL, i.e., Supp(Xn,Wn) = {(x,w) : x ∈ L ∩ {0, 1}n

, w ∈
RL(x)}, every non-adaptive PPT verifier V ∗, every z ∈ {0, 1}∗, every PPT dis-
tinguisher D, and every ε = 1/poly(n), there exists a simulator S that runs in
time poly(n, ε) such that:

∣
∣
∣
∣
∣

Pr
(x,w)←(Xn,Wn)

[D(x, z, viewV ∗ [〈P, V ∗(z)〉(x,w)] = 1
]

− Pr
(x,w)←(Xn,Wn)

[D(x, z,SV ∗,D(x, z)) = 1
]

∣
∣
∣
∣
∣
≤ ε(n),

where the probability is over the random choices of (x,w) as well as the random
coins of the parties.

Definition 2 (Weak Resettable Delayed-Input Distributional ε-Weak
Zero Knowledge) [15]. A three round delayed-input interactive argument
(P, V ) for a language L is said to be weak resettable distributional weak zero-
knowledge, if for every efficiently samplable distribution (Xn,Wn) on RL, i.e.,
Supp(Xn,Wn) = {(x,w) : x ∈ L ∩ {0, 1}n

, w ∈ RL(x)}, every non-adaptive
PPT verifier V ∗, every z ∈ {0, 1}∗, every PPT distinguisher D, and every
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ε = 1/poly(n), there exists a simulator S that runs in time poly(n, ε) and gen-

erates a simulated proof for instance x
$← Xn, such that over the randomness of

sampling (x,w) ← (Xn,Wn), Pr[b′ = b] ≤ 1
2 + ε(n) + negl(n) in the following

experiment, where the challenger C plays the role of the prover:

– At the beginning, (C, V ∗) receive the size of the instance, V ∗ receives auxiliary
input z, and they execute the first 2 rounds. Let us denote these messages by
τ1, τ2.

– Next, (C, V ∗) run poly(n) executions, with the same fixed first message τ1,
but different second messages chosen potentially maliciously by V ∗. In each
execution, C picks a fresh sample (x,w) ← (Xn,Wn), and generates a proof
for it according to honest verifier strategy.

– Next, C samples bit b
$← {0, 1} and if b = 0, for (x,w) $← (Xn,Wn) it

generates an honest proof with first two messages τ1, τ2, else if b = 1, for
x

$← Xn it generates a simulated proof with first two messages τ1, τ2 using
simulator S that has oracle access to V ∗,D.

– Finally, V ∗ sends its view to a distinguisher D that outputs b.

Imported Theorem 1 [15]. Assuming DDH/QR/N th residuosity, along with
ZAPs, there exist three-message arguments that satisfy delayed-input weak reset-
table distributional ε-weak zero knowledge/strong WI. In our protocols, we will
always use weak zero-knowledge/strong witness-indistinguishable arguments in
the “delayed-input” setting, that is, to prove statements that are chosen by the
prover only in the third round of the execution.

Definition 3 (Resettable Reusable WI Argument). We say that a two-
message delayed-input interactive argument (P, V ) for a language L is resettable
reusable witness indistinguisable, if for every PPT verifier V ∗, every z ∈ {0, 1}∗,
Pr[b = b′] ≤ 1

2 + negl(n) in the following experiment, where we denote the first
round message function by m1 = wi1(r1) and the second round message function
by wi2(x,w,m1, r2).

The challenger samples b
$← {0, 1}. V ∗ (with auxiliary input z) specifies

(m1
1, x

1, w1
1, w

1
2) where w1

1, w
1
2 are (not necessarily distinct) witnesses for x1.

V ∗ then obtains second round message wi2(x1, w1
b ,m1

1, r) generated with uni-
form randomness r. Next, the adversary specifies arbitrary (m2

1, x
2, w2

1, w
2
2), and

obtains second round message wi2(x2, w2
b ,m2

1, r). This continues m(n) = poly(n)
times for a-priori unbounded m, and finally V ∗ outputs b.

Remark 1. Note that ZAPs (more generally, any two-message WI) can be mod-
ified to obtain resettable reusable WI, by having the prover apply a PRF on
the verifier message and the instance to compute randomness for the proof. This
allows to argue, via a hybrid argument, that fresh randomness can be used for
each proof, and therefore perform a hybrid argument so that each proof remains
WI. In our construction, we will use resettable reusable ZAPs.
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3.2 Non-malleable Commitments

Throughout this paper, we will use n to denote the security parameter, and
negl(n) to denote any function that is asymptotically smaller than 1

poly(n) for any
polynomial poly(·). We will use PPT to describe a probabilistic polynomial time
machine. We will also use the words “rounds” and “messages” interchangeably.

We follow the definition of non-malleable commitments introduced by Pass
and Rosen [22] and further refined by Lin et al. [19] and Goyal [9] (which in
turn build on the original definition of [7]). In the real interaction, there is
a man-in-the-middle adversary MIM interacting with a committer C (where C
commits to value v) in the left session, and interacting with receiver R in the
right session. Prior to the interaction, the value v is given to C as local input.
MIM receives an auxiliary input z, which might contain a-priori information
about v. Let MIM〈C,R〉(value, z) denote a random variable that describes the
value ṽal committed by the MIM in the right session, jointly with the view of the
MIM in the full experiment. In the simulated experiment, a simulator S directly
interacts with R. Let Sim〈C,R〉(1n, z) denote the random variable describing the
value ṽal committed to by S and the output view of S. If the tags in the left and
right interaction are equal, the value ṽal committed in the right interaction, is
defined to be ⊥ in both experiments.

Definition 4 (Non-malleable Commitments w.r.t. Commitment). A
commitment scheme 〈C,R〉 is said to be non-malleable if for every PPT MIM,
there exists an expected PPT simulator S such that the following ensembles are
computationally indistinguishable:

{MIM〈C,R〉(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉(1
n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

The setting of concurrent non-malleability considers an adversary that par-
ticipates in multiple sessions with an honest committer, acting as receiver.
The adversary simultaneously participates in multiple sessions with an honest
receiver, acting as committer. In the left sessions, the MIM interacts with hon-
est committer(s) obtaining commitments to values m1,m2, . . . mpoly(n) (say, from
distribution val using tags t1, t2, tpoly(n) of its choice. In the right session, A inter-
acts with R attempting to commit to a sequence of related values m̃1, . . . m̃poly(n)

again using identities t̃1, . . . t̃poly(n). If any of the right commitments are invalid,
or undefined, their value is set to ⊥. For any i such that t̃i = tj for some j, set
m̃i (the value committed using that tag) to ⊥. Let MIM〈C,R〉(value, z) denote
a random variable that describes the values ṽal committed by the MIM in the
right sessions, jointly with the view of the MIM in the full experiment, when
the value is the joint distribution of values committed in the left sessions. In a
simulated execution, there is an expected polynomial time simulator that inter-
acts with the MIM and generates a distribution Sim consisting of the views and
values committed by the MIM. Then, the definitions of concurrent non-malleable
commitment scheme w.r.t. commitment, replacement and opening are defined as
above.
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Definition 5 (Concurrent Non-malleable Commitments w.r.t. Com-
mitment). A commitment scheme 〈C,R〉 is said to be concurrently non-
malleable if for every PPT MIM, there exists an expected PPT simulator S such
that the ensembles real and sim defined above are indistinguishable.

Definition 6 (One-Many Weak Non-malleable Commitments against
Synchronizing Adversaries). A statistically binding commitment scheme
〈C,R〉 is said to be one-many weak non-malleable against synchronizing adver-
saries, if there exists a probabilistic “over”-extractor E parameterized by ε, that
given a PPT synchronizing MIM which participates in one left session and
p = poly(n) right sessions, and given only the transcript of a main-thread inter-
action τ where the MIM interacts with an honest committer and honest receiver,
together with oracle access to the MIM, outputs a set of values v1, v2, . . . vp in
time poly(n, 1

ε ). These values are such that:

– For any j ∈ [p], if the jth commitment in τ is a commitment to a valid
message mj, then vj = mj over the randomness of the extractor and the
transcript, except with probability ε

p .
– For any j ∈ [p], if the jth commitment in τ is a commitment to some invalid

message (which we will denote by ⊥), then vj need not necessarily be ⊥.

Remark 2. By the union bound, the values output by the extractor are correct
for all p sessions in which the MIM committed to valid messages in the transcript
τ , except with probability ε.

This formalization helps us to abstract out the exact properties satisfied by
existing three-round schemes based on polynomial assumptions, which we can
rely on for our bootstrapping protocol. We note that this is an alternative way
of formalizing the requirement of “security against non-aborting adversaries”
from [6]. When invoking the security of non-malleable commitments in our proof,
the adversary will always be forced (via appropriate proofs) to not generate a
commitment to ⊥, except with negligible probability.

Instantiating one-many weak non-malleable commitments. The three-round sub-
protocol in the non-malleable commitment scheme from [13] (their basic con-
struction without the zero-knowledge argument of knowledge), based on injective
one-way functions, is a one-many weak non-malleable commitment according to
Definition 6. On the other hand, the basic protocol of [12] based on injective
one-way functions, that is only secure against synchronous adversaries, is a one-
one weak non-malleable commitment scheme against synchronizing adversaries
according to Definition 6.

4 Non-malleable Commitments w.r.t. Commitment

In this section, we describe a round-preserving way to transform one-many weak
non-malleable commitments against synchronous adversaries, to (one-many)
non-malleable commitments with respect to commitment. Our construction of
three round non-malleable commitments is described in Fig. 2.
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Πi = (nmci1, nmci2, nmci3) i ∈ {1, 2}
i

wi = (wi1,wi2)
wzk = (wzk1,wzk2,wzk3)

PRF(K, r) K r
com(·)

tag ∈ [n] n
m ∈ {0, 1}p tag

r1, r2, γ1, γ2

nmc11(γ1, r1, tag), nmc21(γ2, r2, tag) wzk1

(nmc12, nmc22) tag wi1,wzk2

r ← {0, 1}∗ c = com(m; r) R
r̂ ←{0, 1} c1 = com(1; r̂) c1

wzk3 ∃r̂ c1 = com(1; r̂)
nmc13(γ1, r1, tag) nmc23(γ2, r2, tag) R

{α1, α2} ← {0, 1}2n δ1 = PRF(γ1, α1) ⊕ r δ2 =
PRF(γ2, α2) ⊕ r wi2 Π1

Π1 γ1

r1 r = PRF(γ1, α1) ⊕ δ1 c = com(m; r)
c1 = com(0; r)

Π2 γ2

r2 r = PRF(γ2, α2) ⊕ δ2 c = com(m; r)
c1 = com(0; r)

m r
c m r

Fig. 2. Non-malleable commitment scheme φ

4.1 Proof of Security

We begin by proving that the scheme is statistically binding and computationally
hiding. We note that computational hiding is in fact, implied by non-malleability:
therefore as a warm up, we sketch the proof of hiding via a sequence of hybrid
experiments without giving formal reductions. In Theorem1, we prove formally
that not only is the view of a receiver indistinguishable between these hybrids, in
fact, the joint distribution of the view and values committed by a MIM interacting
with an honest committer remains indistinguishable between these hybrids.

Lemma 1. The protocol in Fig. 2 is a statistically binding, computationally hid-
ing, commitment scheme.
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Proof (Sketch). The statistical binding property follows directly from statistical
hiding property of the underlying commitment scheme com(·).

The computational hiding property follows from the hiding of com and nmc,
the weak zero-knowledge property of wzk, and the witness indistinguishability
of wi. Here, we sketch a proof of computational hiding. Note that computa-
tional hiding is implied by non-malleability, therefore the proof of Theorem1
can also be treated as a formal proof of hiding of the commitment scheme φ.
Let 〈Cφ(m; r),R〉 denote an execution where the committer uses input message
m and randomness R. We prove that the view of any malicious receiver R∗,
that is, viewR∗〈Cφ(m0; r),R∗〉 ≈c viewR∗〈Cφ(m1; r),R∗〉 for all m0,m1, via the
following sequence of hybrid experiments:

Hybridm0
: This hybrid corresponds to an interaction of C and R∗ where C uses

input message m0, that is, the output is viewR∗〈Cφ(m0; r),R∗〉.
Hybrid1: In this hybrid, the challenger behaves identically to Hybridm0

, except
that it generates nmc2 as a non-malleable commitment to a different random-
ness γ′

2 than the (uniform) randomness γ2 used to compute δ2. This hybrid is
indistinguishable from Hybrid0 because of the hiding of Π.

Hybrid2,D: In this hybrid, the challenger behaves identically to Hybrid1, except
that it outputs the transcript of an execution where the wzk argument is simu-
lated3. The challenger uses the simulation strategy of the weak zero-knowledge
argument wzk, which executes the last message of the protocol multiple times,
and learns the wzk challenge based on the distinguisher’s output. However, the
challenger continues to commit to m0 while generating a simulated wzk argu-
ment. By the simulation security of wzk, for any distinguisher D and any inverse
polynomial ε, there exists a polynomial time distinguisher-dependent simula-
tor/challenger such that Hybrid2,D is ε-indistinguishable from Hybrid1.

Hybrid3,D: In this hybrid, the challenger behaves identically to Hybrid2,D, except
that it sets c1 = com(0; r̂) for some randomness r̂, in the main thread. Note
that this is possible because the challenger is generating a simulated proof in
the output transcript. This hybrid is indistinguishable from Hybrid2,D by the
computational hiding property of com.

Hybrid4,D: In this hybrid, the challenger behaves identically to Hybrid3,D except
that in the output transcript, it sets δ2 = PRF(γ2, α2)⊕ r̂ where r̂ is the random-
ness used to generate c1 = com(0; r̂). Note that the committer is committing to
a different value γ′

2 in the protocol Π2, thus the key γ2 does not appear any-
where in the rest of the protocol. Therefore, this hybrid is indistinguishable from
Hybrid3,D by the security of the PRF.

Hybrid5,D: In this hybrid, the challenger behaves identically to Hybrid4,D except
that in all transcripts, it sets nmc2 as a non-malleable commitment to the same
3 Note that in all hybrid experiments, we will actually use the extended simulation

strategy of the weak ZK argument wzk as described in [15]– that is used for strong
witness indistinguishability, and where the simulator takes into account both mes-
sages m0 and m1 during simulation.



Round Optimal Concurrent Non-malleability 153

randomness γ′
2 that is used to compute δ2. This hybrid essentially “reverts” the

cheating performed in Hybrid1. Indistinguishability of this hybrid follows because
of the hiding of Π2.

Note that the transcript output by the challenger in this experiment is such
that Π1 is a valid non-malleable commitment to γ1 with randomness r1 AND
r = PRF(γ1, α1) ⊕ δ1 such that c = com(m; r). Additionally, Π2 is a valid non-
malleable commitment to γ2 with randomness r2 AND r̂ = PRF(γ2, α2) ⊕ δ2
such that c1 = com(0; r̂).

Hybrid6,D: In this hybrid, the challenger behaves the same was as Hybrid5,D,
except that it uses the second witness, (r2, γ2), to generate the argument wi in
the output transcript. This hybrid is indistinguishable from Hybrid5,D by the
reusable witness-indistinguishability of wi, that is, witness indistinguishability
in the setting where multiple proofs are provided for different statements, using
the same first two messages transcript.

Hybrid7,D: In this hybrid, the challenger behaves the same way as Hybrid6,D,
except that it uses the second witness, r2, γ2, to generate the arguments wi all
the “lookahead executions” of the simulation strategy, as well as in the output
transcript. That is, in every message that the challenger ever sends, it uses
the second witness instead of the first. This hybrid is indistinguishable from
Hybrid6,D by the reusable witness-indistinguishability of wi.

Hybrid8,D: In this hybrid, the challenger behaves the same way as Hybrid7,D,
except that in all transcripts, it sets nmc1 as a non-malleable commitment to a
different randomness γ′

1 than the one used to compute δ1. The view of a malicious
receiver in this hybrid is indistinguishable from Hybrid7,D by the hiding of the
non-malleable commitment Π1.

Hybrid9,D: In this hybrid, the challenger behaves the same way as Hybrid8,D,

except that in the output transcript, it sets δ1
$← {0, 1}∗, instead of setting

δ1 = PRF(γ1, α1)⊕r. Note that the committer is committing to a different value
γ′
1 in the protocol Π1, thus the key γ1 does not appear in the rest of the protocol.

Therefore, this hybrid is indistinguishable from Hybrid8,D by PRF security.

Hybrid10,D: In this hybrid, the challenger behaves the same way as Hybrid10,D
except that it replaces com(m0; r) with com(m1; r) in the output transcript. Note
that at this point, r is not used anywhere else in the protocol, and hence the
commitment can be obtained externally. This hybrid is indistinguishable from
Hybrid9,D by computational hiding of the non-interactive commitment.

At this point, we have successfully indistinguishably switched to an exper-
iment where the commitment is generated to message m1 instead of m0 in
the main transcript output by the challenger. Computational hiding follows by
repeating the above hybrids in reverse order, until in Hybridm1

, the challenger
generates an honest commitment to message m1. This completes the proof of
hiding, and we now prove that the scheme φ is an extractable commitment.

Lemma 2. There exists a PPT extractor E that given oracle access to any com-
mitter C∗, and a valid commitment transcript τ generated by C∗ participating in
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an execution of φ with an honest receiver R, outputs the value committed by C∗

in τ , with probability 1 − negl(n) over the randomness of R and E.

Proof. For any accepting commitment transcript generated by a committer, with
probability 1 − negl(n), because of adaptive soundness of wi, the ith extractable
commitment is generated as a valid extractable commitment to randomness ri,
such that PRF(ri, ai) ⊕ xi yields a valid witness for wi, for some i ∈ {1, 2}.
Furthermore, by soundness of wzk, c1 is a commitment to 1, and by statistical
binding of com, c1 cannot be a commitment to 0. Thus, the only possible valid
witness in wi, with overwhelming probability, must necessarily be a witness for
c, which is the actual commitment to the message.

We now argue that this witness can be extracted by a polynomial time extrac-
tor. This follows roughly because of the (over)-extraction property of Π and the
soundness of wi, similar to [15]. Specifically, we consider a committer that gen-
erates an accepting transcript with probability 1

poly(n) . Then, within n · poly(n)
rewindings, such a committer generates an expected n accepting transcripts.
Moreover, with overwhelming probability at least

√
n of the accepting tran-

scripts (in the lookahead threads) generate a valid commitment using scheme Π
for the same index i as the main thread. This allows for extraction of random-
ness r from the over-extracting commitment Πi. Next, the extractor checks the
extracted value r against c to ensure that r is the correct randomness that was
used to compute c. Note that this scheme does not suffer from over-extraction,
since by the soundness of wzk and wi, a malicious committer is always forced
to use the unique witness corresponding to the commitment c. Furthermore, an
extractor can extract with error at most ε by running in time poly(1/ε).

Next, we directly prove concurrent non-malleability of the resulting scheme
when instantiated with the basic protocol Π from [13]. The scheme can also be
instantiated with the protocol from [12], to yield one-one non-malleability.

Theorem 1. The protocol φ in Fig. 2, when instantiated with the one-many
weak non-malleable commitment Π from [13], is a concurrent non-malleable com-
mitment with respect to commitment according to Definition 5.

Proof. We first note that it suffices to argue non-malleability against one-
many adversaries, that participate in one left session and polynomial right ses-
sions. By [19], security against such adversaries already implies concurrent non-
malleability. Suppose the MIM opens p = poly(n) sessions on the right.

The proof of non-malleability against non-synchronizing adversaries, that
complete the left session before opening right sessions, follows directly because
φ is an extractable commitment, by Lemma 2. In other words, given a non-
synchronizing MIM adversary, there exists a reduction that runs an extractor to
extract the value committed by the MIM from the right execution(s) by rewind-
ing the adversary, and uses the view jointly with the values extracted from such a
malleating adversary to directly break hiding of the commitment in the left exe-
cution. Because of the non-synchronizing scheduling, the reduction can rewind
the MIM’s commitment and run the extractor of Lemma2 without rewinding the



Round Optimal Concurrent Non-malleability 155

honest commitment at all. This leads to a contradiction, ruling out the existence
of any PPT MIM adversary that successfully mauls the honest commitment.

It remains to argue non-malleability in the fully synchronizing setting (these
arguments directly combine to argue security against adversaries that are syn-
chronizing in some executions and non-synchronizing in others). We do this via
a sequence of hybrid experiments, relying on the non-malleability of Π, along
with various properties of other primitives used in the protocol. These hybrids
are all parameterized by an inverse polynomial error parameter ε, and sometimes
require the challenger to run in time poly(n, 1

ε ). Later, we will set ε to be signifi-
cantly smaller than the advantage of any distinguisher between MIM〈C,R〉(V1, z)
and MIM〈C,R〉(V2, z) (but ε will still be some inverse polynomial 1

poly(·) ), thereby
proving the lemma. We will use ã to denote message a sent in the right execution,
and a message a sent during the left execution will just be denoted by a.

Overview of Hybrid Experiments. Before describing the hybrid arguments
in detail, we provide an overview. The sequence of experiments follows the same
pattern as the proof of hiding, except that we now argue about the joint distri-
bution of the view and values committed by the MIM. Whenever the challenger
rewinds and generates lookahead threads to learn γ or to simulate the weak ZK,
the challenger always generates multiple lookahead threads where half commit
to value V1 and half to V2 (this is possible since the message is decided in the
last round), and combines information extracted using both V1, V2, like [15].

In the following hybrids, the challenger will never generate simulated wzk
proofs in any rewinding execution. The wzk proof will be carefully simulated
only in the main transcript (in some of the hybrids). Thus, by soundness of the
wi, the MIM will always commit to the witness for the commitment, by correctly
generating a non-malleable commitment to at least one of the γ values, in any
rewinding execution. Therefore, a rewinding extractor will correctly extract at
least one γ value committed by the MIM, with high probability. Furthermore,
when relying on the extractor of the non-malleable commitment scheme, we will
again generate a transcript for the extractor that does not contain any simulated
proofs – therefore, this extractor is guaranteed to correctly extract at least one
of the γ values committed by the MIM.

HybridV1
: The output of the first experiment, HybridV1

corresponds to the joint
distribution of the view and values committed by the MIM on input an honest
commitment to value V1.

Hybrid1: In the first hybrid, the challenger changes the left execution by first
sampling (γ2, γ′

2) independently and uniformly at random. The value committed
using the second non-malleable commitment Π2 is γ′

2, while the third message
δ2 = PRF(γ2, α2)⊕r is computed honestly using a different γ2. At this point, we
invoke soundness of the wi and wzk to argue that the MIM must commit to at
least one valid γ̃1

i or γ̃2
i in the main execution, for every i ∈ [p(n)]. Therefore, we

can invoke the extractor for Π2, to extract the joint distribution of the values
committed by the man-in-the-middle (MIM) in all right executions.
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By the property of the non-malleable commitment, when the MIM commits
to a valid value in the main execution, such an extractor will successfully extract
at least one of the committed values γ̃1

i or γ̃2
i from the ith right interaction, for

all i ∈ [p(n)]. Because of soundness of wi and wzk, this extracted value will
directly help recover the message committed by the MIM in this interaction.
Since this extractor operates without rewinding the left execution, if the joint
distribution of the view and values changes from Hybrid0 to Hybrid1, we obtain
a contradiction to the hiding of Π.

Hybrid2: In the next hybrid, the challenger modifies the left execution by gen-
erating an output view where the left execution contains a simulated weak ZK
argument. When applied naively, the simulation guarantee is that the view of
the MIM remains indistinguishable when provided a transcript with a simulated
proof. However, there are no guarantees about the MIM’s committed values.

In order to ensure that the joint distribution of committed values remains
indistinguishable, we modify the input to the distinguisher-dependent simulator.
That is, we modify the experiment so that, the challenger first rewinds the MIM
and extracts the joint distribution of values γ̃ committed by the MIM. Here, we
rely on the fact that Π is stand-alone extractable (with over-extraction). Note
that once extracted, these γ̃’s can be used to extract the messages committed
by the MIM in any transcript with the same fixed first two messages, with over-
whelming probability. The only situation in which the γ̃b

i extracted for some
execution i does not help recover the message committed by the MIM from tran-
script τ with the same fixed first message, is if the MIM uses a different witness
γ̃1−b

i in τ and uses γ̃b
i in all the rewinding executions. However, this event occurs

only with probability at most negl(n).
Upon extracting these values, with the same fixed first message, the chal-

lenger begins running the simulation strategy of weak ZK to output a main
transcript with a simulated proof. That is, the challenger uses the γ̃’s to extract
the joint distribution of the values committed by the MIM from any right exe-
cution, and runs the distinguisher-dependent simulator on a distinguisher that
obtains the joint distribution of the view output by the MIM, together with
these extracted values. Now, by the guarantee of distinguisher-dependent sim-
ulation, we have that the joint distribution remains indistinguishable between
Hybrid1 and Hybrid2. In our actual reduction, we require a special type of weak
resettable security of the weak ZK. Additional details are in the formal proof.

Hybrid3: In the next hybrid, the output transcript generated in the left execution,
consists of a commitment c1 = com(0; r̂) with uniform randomness r̂, instead of
c1 being a commitment to 1. This is allowed because the weak ZK proof is being
simulated by this point. The joint distribution of the view and values committed
do not change in this hybrid, because c1 is non-interactive, and thus can be
replaced in the main transcript, while rewinding the MIM and extracting the
joint distribution of the values committed by the MIM in all right executions.

Hybrid4: In this next hybrid, the challenger sets δ2 = PRF(γ2, α2) ⊕ r̂ (instead
of PRF(γ2, α2) ⊕ r), where r̂ is the randomness used to generate c1. Since the
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PRF key γ2 does not appear elsewhere in the protocol, the joint distribution
of the view and values committed do not change in this hybrid. This is δ2 can
be replaced in the main transcript, while rewinding the MIM and extracting the
joint distribution of the values committed by the MIM in all right executions.

Hybrid5: In this next hybrid, the challenger changes the non-malleable com-
mitment Π2 to commit to the same randomness γ2, that is used to compute
δ2 in all threads (instead of committing to a different γ′

2). In order to argue
indistinguishability of the view and committed values, we now rely on the non-
malleability of Π2. The challenger runs the extractor for Π2 on a transcript that
contains honestly generated wzk proofs: again by soundness, at least one of the
γ̃ values committed by the MIM in every execution is a valid commitment in the
main thread. Thus, the extractor outputs this value. Next, the challenger uses
this extracted value to recover the joint distribution of messages from transcripts
generated by the MIM. This helps the challenger generate an output transcript
with a simulated wzk proof, such that the joint distribution of the view of the
MIM and values committed remains indistinguishable.

Note that in this experiment, even though the left execution is rewound to
generate lookahead threads for distinguisher-dependent simulation, this rewind-
ing happens after the first two rounds have been fixed. Thus, the non-malleable
commitment used in the left execution is never rewound, and can be obtained
externally. If the joint distribution of view and values output by the extractor
for Π changes in this hybrid, then this contradicts hiding of Π. The argument of
indistinguishability again requires a specific ordering to generate the lookahead
threads for extracting the MIM’s committed values, and the lookahead threads
for simulation. Additional details can be found in the formal proof.

Hybrid6,Hybrid7: By the end of these hybrids, the challenger will behave the same
way as Hybrid5, except that it will use the second witness γ2 in all executions
(in the main as well as lookahead threads). For the main thread, for which
the witness is switched in Hybrid6, the challenger will use witness γ2, r̂, δ2, c1
to compute the wi. In the rewinding threads, for which the witness is switched
in Hybrid7, the challenger will use witness γ2, r, δ2, c. The joint distribution of
the view and value extracted remains indistinguishable because of the reusable
resettable security of wi allows for switching the witness even when multiple
proofs are given in the main as well as rewinding executions.

Hybrid8: In this hybrid, the challenger sets Π1 as a non-malleable commitment
to a different independently uniform randomness γ′

1, than the randomness γ that
is used to compute δ1 in all executions. The joint distribution of view and values
committed by the MIM remains indistinguishable by the non-malleability of Π.
The proof follows in a similar manner as of the indistinguishability of Hybrid5.

Hybrid9: In this hybrid, the challenger behaves similar to the previous hybrid
except setting δ1 to uniformly at random, only in the output transcript. Since
the key γ1 no longer appears elsewhere in the protocol, indistinguishability of
the view and committed values follows by security of the PRF.
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Hybrid10: In this hybrid, the challenger behaves similar to the previous hybrid,
except in the output transcript, it sets c as a commitment to value V2 instead
of to value V1. This is allowed because the randomness used to compute c in the
output transcript is not used elsewhere in the protocol. Indistinguishability of
the view and values committed by the MIM in this execution, follows by hiding
of the non-interactive commitment c.

At this point, the main transcript consists of a commitment to V2 instead
of to V1, while the lookahead transcripts are generated using both V1 and V2.
Now, following the same sequence of hybrids in reverse order, we get to a hybrid
experiment where the challenger generates an honest commitment to V2 in the
left execution. Thus, the joint distribution of the view and values committed by
the MIM remains indistinguishable between when the left commitment is to V1,
versus to V2, which is the guarantee required by the definition of non-malleability.

Hybrid Experiments. We now formally describe the hybrid arguments that
we use to prove non-malleability.

HybridV1
: This hybrid corresponds to an interaction of the challenger and the

MIM where the challenger uses input message V1 in the honest interaction. Let
MIM〈C,R〉(V1, z) denote the joint distribution of the view and values committed
by the MIM in this interaction.

Hybrid1: In this hybrid, the challenger behaves identically to HybridV1
, except

that it generates Π2 as a non-malleable commitment to a different randomness
γ′
2 chosen uniformly and independently at at random, from the randomness

γ2 that was used to compute δ2. Let MIM〈C,R〉(value, z)
Hybrid1

denote the joint
distribution of the view and values committed by the MIM in this interaction,
in all the right sessions.

Lemma 3. For any PPT distinguisher D with auxiliary information z,
|Pr[D(z,MIM〈C,R〉(V1, z)) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid1
) = 1]| ≤

ε + negl(n).

Proof. The proof of this lemma follows via a reduction to the weak non-
malleability of the scheme Π. More specifically, given a distinguisher D that
distinguishes MIM〈C,R〉(value, z)

Hybrid1
and MIM〈C,R〉(V1, z), we construct an

adversary AD against the weak one-many non-malleability of Π according to
Definition 6.

The adversary A participates in the experiment exactly as HybridV1
, except

that it samples γ2, γ
′
2

$← {0, 1}∗ and submits these to an external challenger. It
obtains externally, the messages of Π2, which are either a non-malleable com-
mitment to γ2 or to γ′

2. It complete the third message of the protocol using γ2
to compute δ2.

By the weak non-malleability of Π, there exists an extractor that runs in time
poly( 1ε ) and extracts the values committed by the MIM in all the non-malleable
commitments for all j ∈ [p], without rewinding the honest execution. Further,
this extractor has the property that it only extracts an incorrect value if the
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MIM is committing to ⊥ in the main thread in the honest execution, except with
error ε.

However, in both HybridV1
and Hybrid1, by the soundness of wi, the adversary

is guaranteed to generate at least one out of the two non-malleable commitments
(to γ̃1 or γ̃2) from each session, correctly in any execution, except with proba-
bility negl(n). Moreover, by soundness of wzk, the extracted value from at least
one of the non-malleable commitments generated by the MIM in each session,
will correspond to a witness for the commitment c, and therefore directly help
recover the value committed by the MIM in each right session.

A then samples a random main thread execution, and then just runs this
extractor to extract the values {γ̃1

i , γ̃2
i }i∈[n] committed by the MIM, and by

soundness of wi and wzk, at least one is correctly extracted. Depending upon
whether the challenge non-malleable commitment is to γ2 or γ′

2, the joint distrib-
ution of the view and value extracted by A corresponds to either MIM〈C,R〉(V1, z)
or MIM〈C,R〉(value, z)

Hybrid1
.

Therefore, if the joint distribution of the view and the values committed by
the MIM changes by more than ε between these executions, it can be used to
contradict the one-many weak non-malleability of Π. Thus, if

| Pr[D(z,MIM〈C,R〉(V1, z)) = 1]−Pr[D(z,MIM〈C,R〉(value, z)
Hybrid1

) = 1]| ≥ ε+
1

poly
(n),

then, |Pr[AD = 1|γ′] − Pr[AD = 1|γ]| ≥ 1
poly

(n).

This gives a contradiction, thus the distributions are indistinguishable upto
ε error.

We note that in Hybrid1, soundness of the wi and wzk arguments in the left as
well as right interactions is still maintained, thus a rewinding extractor always
successfully extracts the value committed by the MIM.

Hybrid2,D: In this hybrid, the challenger behaves similarly to Hybrid1, except that
it outputs the transcript of an execution where the distinguisher-dependent weak
zero-knowledge protocol wzk is simulated as follows. For simplicity of exposition,
we add some clearly demarcated analysis to the description of the experiment.

1. Run the execution until the MIM sends the first message for the right exe-
cution. With fixed first messages, φ1 and φ̃j

1 for j ∈ [p], run the rest of the
protocol as follows.

2. Send second messages φ̃j
2 for the right interactions, and wait for the MIM’s

response φ2. These will correspond to the first and second messages for the
main transcript.

3. With first two messages fixed as above, generate a lookahead thread as follows:
send the third message on behalf of the honest party, computed as a com-
mitment to V1 honestly as in Hybrid1 (this is later also repeated for V2). Let
{γ̃j

1, γ̃
j
2}j∈[p] denote the joint distribution of values committed by the MIM in

this execution. If the MIM produced an invalid transcript, abort. Otherwise,
continue.
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4. With the same fixed first messages, φ1 and φ̃j
1 for j ∈ [p], rewind the MIM

(1/ε2) times sending various second round challenge messages to the MIM
on behalf of honest receiver. When the MIM sends a challenge for the left
(honest) execution, complete the transcript as an honest commitment to V1

(this is later also repeated for V2), and wait for the MIM’s response.
Use these rewinding executions to extract the value committed in at least

one (or both) of the non-malleable commitments {γ̂j
1, γ̂

j
2}j∈[p] provided by the

MIM adversary, for each session.
Analysis. Whenever the MIM completes a right execution (that is, it does not
generate any invalid messages), by soundness of the WI and the weak ZK
argument, we have that with probability at least 1 − negl(n), at least one of
the non-malleable commitments were generated correctly in each execution.
Thus, by the same argument as used in the Lemma 3, with overwhelming
probability, the extractor runs in time poly( 1

ε2 ) and correctly extracts at least
one of the values committed by the MIM using the non-malleable commitment
in all executions, except with error at most ε2.

5. Repeat Steps 3 and 4, 1
ε4 times for both V1 and V2, and compute the union

of extracted values (by checking whenever a value was correctly extracted).
For each right session j ∈ [p], denote the values extracted by the challenger
by γ̃j

1, γ̃
j
2.

Analysis. At the end of this step, at least one value must be correctly extracted
for every right session, except with total failure probability at most ε2. More-
over, if for any right execution the extractor successfully extracted only one
value, then by a Markov argument, the MIM will continue to use the same
value as witness for the wi in all lookahead executions that we will create for
distinguisher-dependent simulation, except with probability at most ε2 (oth-
erwise, if the MIM used a different value as witness for the wi, then that value
would also be extracted with significant probability). Therefore, {γ̃j

1, γ̃
j
2}j∈[p]

can be used to recover the value committed by the MIM from any transcript
generated by the MIM with fixed first two messages φ1, φ̃

j
1, φ2, φ̃

j
2, except with

failure probability ε2.4

6. After completing the previous step, with the first message transcript fixed,
go back and again fix first two messages φ1, φ̃

j
1, φ̃

j
2, φ2. These will now remain

fixed for the rest of the experiment. Since these same first two round messages
were in fact fixed at the start of the protocol, by the weak resettable weak
ZK property of wzk, the simulation security of wzk holds with respect to the
partial transcript (φ1, φ2, φ̃

j
1, φ̃

j
2).

In particular, weak resettable security implies that indistinguishability
between real and simulated view must hold even against a distinguisher that
performed the rewindings in the previous step and obtained {γ̃j

1, γ̃
j
2}j∈[p].

Note that these values {γ̃j
1, γ̃

j
2}j∈[p] can now be used to extract the message

committed in the string c by the MIM from any transcript generated by the
MIM with fixed first two messages, except with error at most ε2 + negl(n).

4 Please refer to the full version for exact calculations and additional details.
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7. Next, run the distinguisher-dependent simulation strategy S of the weak zero-
knowledge argument, with error ε2, on the distinguisher D′ constructed as
follows. D′ is given the view of the MIM, together with auxiliary informa-
tion {γ̃j

1, γ̃
j
2}j∈[p]. On input the view of the MIM, it uses this information to

extract the value committed by the MIM from all its executions. It then runs
the distinguisher D on the joint distribution of the view and the extracted
values and mirrors the output of D.

Recall, that the distinguisher-dependent simulation strategy S of [15] gen-
erates several different third messages (corresponding to the same fixed mes-
sages (φ1, φ2, φ̃

j
1, φ̃

j
2)), while sampling fresh α1, α2 each time. Also note that

the output transcript still contains a commitment to V1, and is infact identical
to Hybrid1 except that it contains a simulated wzk argument.

Let MIM〈C,R〉(value, z)
Hybrid2,D

denote the joint distribution of the view and value
committed by the MIM when interacting with an honest committer in this hybrid.

Lemma 4. For any PPT distinguisher D with auxiliary information z,
|Pr[D(z,MIM〈C,R〉(value, z)

Hybrid2,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid1
) =

1]| ≤ ε + negl(n).

Proof. This claim follows by the weak resettable security of distinguisher-
dependent simulation: since MIM〈C,R〉(value, z)

Hybrid2,D
is the result of executing

distinguisher-dependent simulation against distinguisher D′, which itself runs
the distinguisher D on MIM〈C,R〉(value, z)

Hybrid1
. Note that the weak resettable

security experiment for distinguisher-dependent simulation allows the adversary
to obtain, in addition to a real/simulated main transcript, several “lookahead”
transcripts, where all lookahead transcripts contain honestly generated proofs,
that may all use the same first message of the argument.

In other words, we consider a reduction that first fixes the first two messages
of the honest and MIM execution corresponding to the main thread. Next, it
generates multiple lookahead threads, as allowed by the security experiment
of weak resettable wzk, using these threads to extract the values {γ̃j

1, γ̃
j
2}j∈[p]

committed by the MIM. In all these lookahead threads, the challenger generates
all messages on its own according to Hybrid1, except that it obtains the honestly
generated wzk proofs for these threads externally from a challenger for weak
resettable weak ZK.

Finally, the challenger flips a bit b, and if b = 0, it outputs an honestly
generated weak ZK argument for the main transcript. On the other hand, if
b = 1, it outputs a simulated argument (with error at most ε), while simulat-
ing the output of distinguisher D on input the view and values extracted from
the MIM. The reduction obtains this proof from the challenger and uses it to
complete the main transcript. Because of correctness of extracted values argued
in the analysis above, we note that if b = 0, the experiment corresponds to
running D on MIM〈C,R〉(value, z)

Hybrid1,D
and if b = 1, the experiment corre-

sponds to running the distinguisher D on MIM〈C,R〉(value, z)
Hybrid2,D

. Thus, if
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|Pr[D(z,MIM〈C,R〉(value, z)
Hybrid2,D

) = 1] − Pr[D(z,MIM〈C,R〉(value, z)
Hybrid1

) =

1]| > ε + negl(n), this gives a distinguisher against the weak resettable simu-
lation security of the weak ZK argument according to Definition 2, which is a
contradiction.

Hybrid3,D: In this hybrid, the challenger behaves identically to Hybrid2,D, except
that it sets c1 = com(0; r̂) by picking uniform randomness r̂, in the main tran-
script (instead of generating c1 as a commitment to 1). Note that this is possible
because the challenger is generating a simulated proof in the output transcript,
for the fact that c1 is a commitment to 1. Let MIM〈C,R〉(value, z)

Hybrid3,D
denote

the joint distribution of the view and values committed by the MIM when inter-
acting with the challenger in this hybrid.

Lemma 5. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid2,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid3,D
) = 1]| ≤

negl(n).

Proof. This hybrid is indistinguishable from Hybrid2 by the computational hid-
ing property of the non-interactive commitment scheme com. More formally,
consider a reduction R that behaves identically to Hybrid2,D, first extracting
{γ̃j

1, γ̃
j
2}j∈[p]. Next, it obtains the commitment c1 (only for the main thread

and not for any of the rewinding executions), externally, as either a commit-
ment to 0 or a commitment to 1, and uses this to complete the main tran-
script. It then uses the extracted values {γ̃j

1, γ̃
j
2}j∈[p] to recover the values

committed by the MIM in the main transcript. It outputs the joint distribu-
tion of the transcript and the values committed by the MIM to distinguisher
D. Then given a distinguisher D where: |Pr[D(z,MIM〈C,R〉(value, z)

Hybrid2,D
) =

1]−Pr[D(z,MIM〈C,R〉(value, z)
Hybrid3,D

) = 1]| ≥ 1
poly(n) , the reduction mirrors the

output of this distinguisher such that:

|Pr[R = 1|c1 = com(1; r)] − Pr[R = 1|c1 = com(0; r)]| ≥ 1
poly(n)

This is a contradiction to the hiding of com.

Hybrid4,D: In this hybrid, the challenger behaves identically to Hybrid3,D except
that in the output transcript, it sets δ2 = PRF(γ2, α2) ⊕ r̂ where r̂ is the ran-
domness used to generate c1 = com(0; r̂). Note that the committer is using PRF
key γ′

2 in the protocol Π2, thus the key γ2 does not appear anywhere else in the
rest of the protocol.

Let MIM〈C,R〉(value, z)
Hybrid4,D

denote the joint distribution of the view and
value committed by the MIM when interacting with an honest committer in this
hybrid.

Lemma 6. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid4,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid3,D
) = 1] ≤

negl(n).
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Proof. This hybrid is indistinguishable from Hybrid3,D by the security of the
PRF. More formally, consider a reduction R that behaves identically to Hybrid3,D
except that for all lookahead (recall that the distinguisher is rewound several
times) threads, it samples fresh α2 each time and obtains PRF(γ2, α2)⊕ r̂ exter-
nally from a PRF challenger.

Then, for the main thread it obtains the value δ2 externally as either
PRF(γ2, α2) ⊕ r̂, or PRF(γ2, α2) ⊕ r, where r is the randomness used generate
commitment c in the left execution, and r̂ is the randomness used to gener-
ate commitment c1. It uses the externally obtained δ2 to complete the main
transcript. It then uses the extracted values {γ̃j

1, γ̃
j
2}j∈[p] to obtain the values

committed by the MIM in the main transcript. It outputs the joint distribution
of the transcript and the values committed by the MIM to distinguisher D.

Given a distinguisher D where |Pr[D(z,MIM〈C,R〉(value, z)
Hybrid4,D

) = 1] −
Pr[D(z,MIM〈C,R〉(value, z)

Hybrid3,D
) = 1]| ≥ 1

poly(n) , the reduction can mirror the
output of this distinguisher to directly contradict the security of the PRF.

Hybrid5,D: In this hybrid, the challenger behaves identically to Hybrid4,D except
that it sets Π2 as a non-malleable commitment to the same randomness γ2 that
is used to compute δ2, for all executions.

This hybrid essentially “reverts” the changes performed in Hybrid1. Note that
the challenger in this hybrid, first extracts the values committed via the non-
malleable commitments provided by the MIM, and then rewinds the distinguisher
multiple times – however, the first two messages of the protocol are fixed at the
time of rewinding the distinguisher. In particular, for fixed nmc21 and nmc22, the
challenger gives the same response nmc23 for all the third messages it generates
while/before simulating wzk argument.

Since the main thread transcript output in this hybrid consists of a simulated
proof, indistinguishability of this hybrid is the most interesting to argue. We
prove that it follows by the weak non-malleability of Π2. It is important, for the
proof of non-malleability to go through, that the witness used by the prover in
the proof of WI in this hybrid, is always the randomness used to compute Π1

and never the randomness used to compute Π2 – because the messages of Π2

will be obtained externally. Moreover, recall that the proof of non-malleability
of the weak non-malleable commitment scheme Π requires a simulator-extractor
to “cheat” in the scheme Π2 in rewinding executions.

Note that the challenger in this hybrid, fixes the first two rounds for the
output transcript. Then, with the same fixed first round, it attempts to extract
the values (γ̃j

1, γ̃
j
2) committed by the MIM in the non-malleable commitments in

all right sessions. After extraction, it rewinds the distinguisher multiple times –
at this point the first two messages of the protocol are again the first two rounds
that were fixed prior to extraction. Note that the transcript output by the chal-
lenger in this experiment is such that Π1 is a valid non-malleable commitment to
γ1 with randomness r1 AND r = PRF(γ1, α1)⊕ δ1 such that c = com(m; r) (and
this is the witness used in wi). Additionally, Π2 is also a valid non-malleable
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commitment to γ2 with randomness r2 AND r̂ = PRF(γ2, α2) ⊕ δ2 such that
c1 = com(0; r̂). However, the witness used in wi is always Π1.

Let MIM〈C,R〉(value, z)
Hybrid5,D

denote the joint distribution of the view and
value committed by the MIM when interacting with an honest committer in this
hybrid.

Lemma 7. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid5,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid4,D
) = 1]| ≤

3ε + negl(n).

Proof. Recall that the challenger strategy in both Hybrid5,D and Hybrid4,D is as
follows: The challenger first generates and fixes the first two messages of the
main transcript φ1, φ̃

j
1, φ̃

j
2, φ2. It then rewinds the MIM multiple times with the

same fixed first message but different second round messages, to extract γ̃j
1, γ̃

j
2

for all j ∈ [n]. Finally, it runs the distinguisher-dependent simulation strategy
with partial transcript φ1, φ̃

j
1, φ̃

j
2, φ2 to output a main transcript with a simulated

proof.
The main difference between Hybrid4,D and Hybrid5,D is that the committer

commits to γ′
2 using Π2 in Hybrid4,D, and uses a different γ2 for the rest of

the protocol, whereas in Hybrid5,D, γ′
2 = γ2. However, both hybrids involve

the challenger rewinding the MIM (and consequently rewinding the left session)
several times in order to extract γ̃j

1, γ̃
j
2 for j ∈ [n]. In this rewinding situation,

invoking weak one-malleability of Π2 requires care.
Our first observation is that by the weak non-malleability of Π, there exists

an extractor that runs in time poly(1ε ) and extracts the values committed by the
MIM in all the non-malleable commitments for all j ∈ [p], without rewinding the
left execution. The reduction to one-many weak non-malleability of Π uses this
extractor and proceeds as follows:

1. The reduction begins by fixing the first two messages in the left and right
executions in the main thread. For these messages, it obtains an externally
generated non-malleable commitment to either γ′

2 = γ2 or γ′
2 chosen uni-

formly at random independent of γ2. The former corresponds to Hybrid5,D
and the latter to Hybrid4,D.

Instead of rewinding the MIM providing honestly generated transcripts in
the left interaction as is done in Hybrid5,D and Hybrid4,D, we will now con-
sider two sub-hybrids, Hybrid4,a,D and Hybrid5,a,D where the reduction uses
the extractor E for the non-malleable commitment to extract the values com-
mitted by the MIM without rewinding the left interaction. We will show that
the view and values extracted from these sub-hybrids will remain identical
to the view and value extracted via rewinding in Hybrid4,D and Hybrid5,D,
respectively. This will essentially follow because of correctness of extractor
E , and because of soundness of wi and wzk in the interactions from which
extraction occurs. We will also directly give a reduction proving that the
joint distribution of the views and values extracted must be indistinguishable
between these sub-hybrids.
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2. Recall that E extracts the values committed by the MIM in a main tran-
script, without rewinding the messages sent in the non-malleable commit-
ment in the left interaction (the extractor E may still rewind the MIM, only
in all such rewindings it will not need to rewind the left non-malleable com-
mitment, indeed it will suffice to generate “fake” third round messages for
the non-malleable commitment to γ2 – please refer to [13] for details on the
extraction procedure). It is important to note that the wzk simulation strat-
egy requires that the MIM’s committed values be extracted first, therefore we
cannot generate a simulated wzk argument without first extracting all values
γ̃j
1, γ̃

j
2 committed by the MIM.

3. Thus, in sub-hybrids Hybridi,a,D for i ∈ {4, 5}, the challenger just runs extrac-
tor E to extract the values {γ̃j

1, γ̃
j
2}j∈[n], instead of rewinding the left execu-

tion. E extracts the value committed in a main transcript without rewinding
the left execution. Thus, first the challenger generates a special main tran-
script for the extractor E as follows. It generates φ1, φ̃

j
1, φ̃

j
2, φ2 the same way

as Hybrid4,D, and then completes the third message by generating an honest
commitment to V1 (also repeated with V2), that is, giving an honestly gener-
ated wzk argument and using γ1 as witness for the wi5. It waits for the MIM to
generate the third messages for the right executions, and now feeds the tran-
script of the interaction to E (if the MIM aborts, the challenger just repeats
again with the same fixed first two messages, poly(1/ε) times). Whenever E
requests to rewind the MIM, the challenger rewinds the MIM, except that it
obtains the messages for the left commitment Π2 in all rewinding executions
from E . Further, recall that E has the property that it only extracts an incor-
rect value when the MIM is committing to ⊥ in the honest execution, except
with error ε, however, this is not true except with probability 1 − negl(n),
by soundness of wi and wzk. The MIM waits for E to output the extracted
values {γ̃j

1, γ̃
j
2}. Next, the MIM repeats this again (ε4 times, with same fixed

first two messages, waiting for the extractor to output (potentially different)
extracted values. Finally the challenger uses the union of these extracted val-
ues to complete the rest of the experiment according to Hybrid4,D.
Claim. The joint distribution of the views and values committed by the MIM
remain indistinguishable (with error at most ε + negl(n)) between Hybridi,D
and Hybridi,a,D for i ∈ {4, 5}.
Proof. Note that the special main transcript provided to E to facilitate extrac-
tion in the sub-hybrids, is distributed identically to the transcripts provided in
the lookahead executions for extraction in Hybrid4,D and Hybrid5,D. Addition-
ally, in all these executions, the challenger always provides honestly generated
proofs, thus the soundness of wi and wzk provided by the MIM is guaranteed
in all these executions. Therefore, the adversary is guaranteed to generate at
least one out of the two non-malleable commitments from each session cor-
rectly in any non-aborting execution, except with probability negl(n).

5 Note that the actual transcript that is output by the experiment must contain a sim-
ulated wzk argument: the transcript with the honest wzk argument is only generated
to facilitate extraction.
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Moreover, by soundness of wzk, the extracted value from at least one of
the non-malleable commitments generated by the MIM in the jth session, will
correspond to a witness for the commitment to γ̃1

j or γ̃2
j , directly allowing

to recover the message committed by the MIM in each non-aborting right
session (if only one γ̃j was extracted, w.h.p. the MIM continues to use the
same witness). By correctness of extraction from E and because of soundness
of wi and wzk in all rewinding executions as well as the special main exe-
cution, the joint distribution of views and value extracted via rewinding in
Hybridi,D is ε-indistinguishable from the distribution when A extracts using
E in Hybridi,a,D for i ∈ {4, 5}.

4. Next, keeping the first two messages of the transcript τ fixed, the challenger
outputs a main transcript with a simulated weak ZK argument, where the
simulation strategy runs on the distinguisher that obtains input the view of
the MIM as well as the value extracted in the previous step, in a similar man-
ner to Hybrid4,D.

If the joint distribution of the view and values committed by the MIM
between Hybrid4,a,D and Hybrid5,a,D are more than ε-distinguishable, there
exists a reduction to the hiding of the non-malleable commitment Π2, which
obtains the messages of Π2 externally to generate the first two round mes-
sages. In response to the MIM’s challenge for the left execution, it obtains the
third message of Π2 externally, and uses it to generate the special main tran-
script for E . Next, it runs the extractor E , which does not need to rewind Π2

in the left execution. Once it obtains {γ̃1
j , γ̃2

j }j∈[p] from E , it proceeds to run
the distinguisher-dependent simulation strategy. In this step, since the first
two messages for the main transcript have already been fixed, the challenger
can use the same third message Π3

2 that it obtained externally, to complete
the second non-malleable commitment in the left execution, in all third mes-
sages it generates in order to simulate the wzk argument by rewinding the
distinguisher.

Therefore, if the joint distribution of the view and the values committed
by the MIM changes by more than ε between Hybrid4,a,D and Hybrid5,a,D,
it can be used directly to contradict the hiding of Π2. That is, if |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid5,a,D
) = 1]−Pr[D(z,MIM〈C,R〉(value, z)

Hybrid4,a,D
) = 1]| ≥

ε + 1
poly (n),

then, |Pr[AD = 1|γ2 = γ′
2] − Pr[AD = 1|γ2 �= γ′

2]| ≥ 1
poly

(n).

This gives a contradiction, thus the distributions Hybrid4,D and Hybrid5,D are
indistinguishable upto at most 3ε-error.

Hybrid6,D: In this hybrid, the challenger behaves the same way as Hybrid5,D,
except that it uses the second witness, r2, γ2, to generate the witness-
indistinguishable argument wi in the output transcript.
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Lemma 8. For any PPT distinguisher D with auxiliary information z,
|Pr[D(z,MIM〈C,R〉(value, z)

Hybrid6,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid5,D
)

= 1]| ≤ ε + negl(n).

Proof. The proof of this lemma relies on the reusable resettable witness indis-
tinguishability of wi.

The reduction R samples all messages for the experiment according to
Hybrid5,D, except that it obtains WI proofs for all lookahead (rewinding) exe-
cutions externally from the challenger, by providing the first witness to the
challenger. In this experiment, note that some executions rewind the MIM to
the end of the first round, thus proofs for these executions are provided with
respect to new verifier messages generated by the MIM. Some other executions
(corresponding to weak ZK simulation strategy) rewind the MIM to the end
of the second round: thus different statements are proved in these executions,
corresponding to the same verifier message from the MIM, that is fixed before
the end of the second round. Thus, this experiment exactly corresponds to the
security game of resettable reusable WI.

For the main/output transcript generated during distinguisher-dependent
simulation, R samples all messages except the WI proof according to Hybrid5,D.
Note that the statement being proved in this transcript has two valid witnesses,
w1 = (r1, γ1 randomness r and commitment c) and w2 = (r2, γ2, randomness
r̂ and commitment c1), which are sampled by the reduction R. R forwards
the verifier message wi1 to the challenger, together with both witnesses, and
obtains wi2 that is generated using either witness w1 or w2. The reduction uses
this externally generated proof to complete the experiment. If w1 was used, the
experiment is identical to Hybrid5,D, otherwise it is identical to Hybrid6,D.

Note that in the experiment, R behaves according to Hybrid5,D or Hybrid6,D:
that is, it first extracts {γ̃j

1, γ̃
j
2}j∈[p]. It then uses the extracted values

{γ̃j
1, γ̃

j
2}j∈[p] to obtain the values committed by the MIM in the main tran-

script. It outputs the joint distribution of the transcript and the values com-
mitted by the MIM to distinguisher D. Given a distinguisher D where |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid6,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid5,D
) = 1]| ≥

1
poly(n) , the reduction mirrors the output of this distinguisher to directly con-
tradict the security of wi. Thus, the joint distribution in this hybrid is indistin-
guishable from Hybrid5,D by the resettable reusable witness-indistinguishability
of wi.

Hybrid7,D: In this hybrid, the challenger behaves the same way as Hybrid6,D,
except that it uses the second witness, r2, γ2, to generate the witness-
indistinguishable arguments wi in all the lookahead executions. That is, in every
message sent by the challenger, it uses the second witness instead of the first. This
hybrid is indistinguishable from Hybrid6,D by the resettable reusable witness-
indistinguishability of wi.
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Lemma 9. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid7,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid6,D
) = 1]| ≤

negl(n).

Proof. The proof of this lemma follows similarly to that of Lemma 8, by relying
on the resettable reusable witness-indistinguishability of wi. In this experiment,
note that some executions rewind the MIM to the end of the first round, thus
proofs for these executions are provided with respect to new verifier messages
generated by the MIM. Some other executions (corresponding to weak ZK sim-
ulation strategy) rewind the MIM to the end of the second round: thus different
statements are proved in these executions, corresponding to the same verifier
message from the MIM, that is fixed before the end of the second round. This
experiment exactly corresponds to the security game of resettable reusable WI.

That is, the reduction obtains WI proofs externally from the challenger by
providing both witnesses w1 = (r1, γ1, randomness r and commitment c) and
w2 = (r2, γ2, randomness r and commitment c). The challenger sends proofs that
are all generated either using witness w1 or all using witness w2. The reduction
completes the rest of the protocol according to Hybrid6,D, except using the exter-
nally generated proofs in the left execution. If the challenger used witness w1,
the game corresponds to Hybrid6,D otherwise it corresponds to Hybrid7,D.

Note that in the experiment, R behaves according to Hybrid6,D or Hybrid7,D:
that is, it first extracts {γ̃j

1, γ̃
j
2}j∈[p]. It then uses the extracted values

{γ̃j
1, γ̃

j
2}j∈[p] to obtain the values committed by the MIM in the main tran-

script. It outputs the joint distribution of the transcript and the values com-
mitted by the MIM to distinguisher D. Given a distinguisher D where |Pr[D(z,
MIM〈C,R〉(value, z)

Hybrid7,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid6,D
) = 1]| ≥

1
poly(n) , the reduction mirrors the output of this distinguisher to directly contra-
dict the resettable reusable security of wi.

We note that the changes made in Hybrid7,D and Hybrid6,D can be collapsed
into a single hybrid experiment relying on resettable reusable security of WI,
however we keep them separate for additional clarity – since the witness used in
the main transcript refers to Π2 and the randomness for c1 = com(0; r̂) while
the witness used in the lookahead transcripts refer to Π2 and the randomness
for c = com(V1; r). At this point, the value γ1 committed using the first non-
malleable commitment Π1 is not used as a witness in any of the WI proofs.

Hybrid8,D: In this hybrid, the challenger behaves the same way as Hybrid7,D,
except that in all transcripts, it sets Π1 as a non-malleable commitment to a
different randomness γ′

1 than the one used to compute δ1.

Lemma 10. For any PPT distinguisher D with auxiliary information z, |Pr[D
(z,MIM〈C,R〉(value, z)

Hybrid8,D
) = 1]−Pr[D(z,MIM〈C,R〉(value, z)

Hybrid7,D
) = 1]| ≤

ε + negl(n).
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Proof. The proof of this lemma is exactly the same as that of Lemma 7. The
joint distribution of the view and value committed by a malicious receiver in
Hybrid8,D is ε-indistinguishable from Hybrid7,D by the non-malleability of the
commitment Π1.

Hybrid9,D: In this hybrid, the challenger behaves the same way as Hybrid8,D,

except that in the output transcript, it sets δ1
$← {0, 1}∗, instead of setting

δ1 = PRF(γ1, α1) ⊕ r. Note that the committer is using PRF key γ′
1 in the

protocol Π1, thus the key γ1 does not appear in the rest of the protocol.

Lemma 11. For any PPT distinguisher D with auxiliary information z, |Pr[D
(z,MIM〈C,R〉(value, z)

Hybrid9,D
) = 1]−Pr[D(z,MIM〈C,R〉(value, z)

Hybrid8,D
) = 1]| ≤

negl(n).

Proof. The proof of this lemma is the same as that of Lemma 6, by relying on
the security of the PRF.

Hybrid10,D: In this hybrid, the challenger behaves the same way as Hybrid9,D
except that it replaces c = com(V1; r) with c = com(V2; r) in the output tran-
script. Note that in this transcript, the randomness r is not used elsewhere in
the protocol.

Lemma 12. For any PPT distinguisher D with auxiliary information z, |Pr[D
(z,MIM〈C,R〉(value, z)

Hybrid10,D
) = 1] − Pr[D(z,MIM〈C,R〉(value, z)

Hybrid9,D
) =

1]| ≤ negl(n).

Proof. This hybrid is indistinguishable from Hybrid9,D because of computational
hiding of the non-interactive commitment scheme com. More formally, consider
a reduction R that behaves identical to Hybrid9,D except that it obtains the com-
mitment c (only for the main thread and not for any of the lookahead threads),
externally, as either a commitment to V1 or a commitment to V2. This is allowed
because by the end of Hybrid9,D, the randomness used to generate this commit-
ment is not used anywhere else in the protocol.

Note that in the experiment, the reduction it first extracts {γ̃j
1, γ̃

j
2}j∈[p].

It then uses the extracted values {γ̃j
1, γ̃

j
2}j∈[p] to obtain the values commit-

ted by the MIM in the main transcript. It outputs the joint distribution
of the transcript and the values committed by the MIM to distinguisher D.
Then given distinguisher D where |Pr[D(z,MIM〈C,R〉(value, z)

Hybrid9,D
) = 1] −

Pr[D(z,MIM〈C,R〉(value, z)
Hybrid10,D

) = 1]| ≥ 1
poly(n) , The reduction mirrors the

output of this distinguisher such that:

|Pr[R = 1|c = com(V1; r)] − Pr[R = 1|c = com(V2; r)]| ≥ 1
poly(n)

This is a contradiction to the hiding of com.
At this point, we have successfully switched (with distinguishing advantage

at most Θ(ε) + negl(n)) to an experiment where the commitment is generated
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to message V2 instead of V1 in the transcript output by the challenger. However,
note that the wzk argument is still being simulated in this hybrid. Also note
that throughout these hybrids, lookahead threads for extraction will be gener-
ated according to both values V1 and V2. Non-malleability follows by repeating
the above hybrids in reverse order, until in HybridV2

, the challenger generates an
honest commitment to message V2m and. setting nε to be less than the distin-
guishing advantage of the given distinguisher D to arrive at a contradiction. By
invoking [19], this completes the proof of concurrent non-malleability.
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Abstract. We study the problem of constructing proof systems that
achieve both soundness and zero knowledge unconditionally (without
relying on intractability assumptions). Known techniques for this goal
are primarily combinatorial, despite the fact that constructions of inter-
active proofs (IPs) and probabilistically checkable proofs (PCPs) heavily
rely on algebraic techniques to achieve their properties.

We present simple and natural modifications of well-known ‘algebraic’
IP and PCP protocols that achieve unconditional (perfect) zero knowl-
edge in recently introduced models, overcoming limitations of known
techniques.

– We modify the PCP of Ben-Sasson and Sudan [BS08] to obtain zero
knowledge for NEXP in the model of Interactive Oracle Proofs
[BCS16,RRR16], where the verifier, in each round, receives a PCP
from the prover.

– We modify the IP of Lund et al. [LFKN92] to obtain zero knowledge
for #P in the model of Interactive PCPs [KR08], where the verifier
first receives a PCP from the prover and then interacts with him.

The simulators in our zero knowledge protocols rely on solving a prob-
lem that lies at the intersection of coding theory, linear algebra, and
computational complexity, which we call the succinct constraint detec-
tion problem, and consists of detecting dual constraints with polynomial
support size for codes of exponential block length. Our two results rely
on solutions to this problem for fundamental classes of linear codes:

– An algorithm to detect constraints for Reed–Muller codes of expo-
nential length. This algorithm exploits the Raz–Shpilka [RS05] deter-
ministic polynomial identity testing algorithm, and shows, to our
knowledge, a first connection of algebraic complexity theory with
zero knowledge.
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– An algorithm to de tect constraints for PCPs of Proximity of Reed–
Solomon codes [BS08] of exponential degree. This algorithm exploits
the recursive structure of the PCPs of Proximity to show that small-
support constraints are “locally” spanned by a small number of
small-support constraints.

Keywords: Probabilistically checkable proofs · Interactive proofs ·
Sumcheck · Zero knowledge · Polynomial identity testing

1 Introduction

The study of interactive proofs (IPs) [BM88,GMR89] that unconditionally
achieve zero knowledge [GMR89] has led to a rich theory, with connections
well beyond zero knowledge. For example, the class of languages with statis-
tical zero knowledge IPs, which we denote by SZK-IP, has complete problems
that make no reference to either zero knowledge or interaction [SV03,GV99] and
is closed under complement [Oka00,Vad99]. Despite the fact that all PSPACE
languages have IPs [Sha92], SZK-IP is contained in AM ∩ coAM, and thus NP
is not in SZK-IP unless the polynomial hierarchy collapses [BHZ87]; one con-
sequence is that Graph Non-Isomorphism is unlikely to be NP-complete. More-
over, constructing SZK-IP for a language is equivalent to constructing instance-
dependent commitments for the language [IOS97,OV08], and has connections
to other fundamental information-theoretic notions like randomized encodings
[AR16,VV15] and secret-sharing schemes [VV15].

Unconditional zero knowledge in other models behaves very differently. Ben-
Or et al. [BGKW88] introduced the model of multi-prover interactive proofs
(MIPs) and showed that all such proofs can be made zero knowledge uncon-
ditionally. The analogous statement for IPs is equivalent to the existence of
one-way functions, as shown by [GMR89,IY87,BGG+88] in one direction and
by [Ost91,OW93] in the other (unless BPP = PSPACE, in which case the
statement is trivial). Subsequent works not only established that all NEXP
languages have MIPs [BFL91], but also led to formulating probabilistically check-
able proofs (PCPs) and proving the celebrated PCP Theorem [FRS88,BFLS91,
FGL+96,AS98,ALM+98], as well as constructing statistical zero knowledge
PCPs [KPT97] and applying them to black-box cryptography [IMS12,IMSX15].

The theory of zero knowledge for these types of proofs, however, is not as
rich as in the case of IPs. Most notably, known techniques to achieve zero knowl-
edge MIPs or PCPs are limited, and come with caveats. Zero knowledge MIPs
are obtained via complex generic transformations [BGKW88], assume the full
power of the PCP Theorem [DFK+92], or support only languages in NP [LS95].
Zero knowledge PCPs are obtained via a construction that incurs polynomial
blowups in proof length and requires the honest verifier to adaptively query the
PCP [KPT97]. Alternative approaches are not known, despite attempts to find
them. For example, [IWY16] apply PCPs to leakage-resilient circuits, obtaining
PCPs for NP that do have a non-adaptive honest verifier but are only witness
indistinguishable.
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Even basic questions such as “are there zero-knowledge PCPs of quasilinear-
size?” or “are there zero-knowledge PCPs with non-adaptive honest verifiers?”
have remained frustratingly hard to answer, despite the fact the answers to these
questions are well understood when removing the requirement of zero knowledge.
This state of affairs begs the question of whether a richer theory about zero
knowledge MIPs and PCPs could be established.

The current situation is that known techniques to achieve zero knowledge
MIPs and PCPs are combinatorial, namely they make black-box use of an under-
lying MIP or PCP, despite the fact that most MIP and PCP constructions have
a rich algebraic structure arising from the use of error correcting codes based on
evaluations of low-degree polynomials. This separation is certainly an attractive
feature, and perhaps even unsurprising: while error-correcting codes are designed
to help recover information, zero knowledge proofs are designed to hide it.

Yet, a recent work by Ben-Sasson et al. [BCGV16] brings together linear
error correcting codes and zero knowledge using an algebraic technique that
we refer to as ‘masking’. The paper introduces a “2-round PCP” for NP that
unconditionally achieves zero knowledge and, nevertheless, has both quasilinear
size and a non-adaptive honest verifier. Their work can be viewed not only as
partial progress towards some of the open questions above, but also as studying
the power of zero knowledge for a natural extension of PCPs (“multi-round
PCPs” as discussed below) with its own motivations and applications [BCS16,
RRR16,BCG+17].

The motivation of this work is to understand the power of algebraic tools,
such as linear error correcting codes, for achieving zero knowledge uncondition-
ally (without relying on intractability assumptions).

1.1 Results

We present new protocols that unconditionally achieve soundness and zero
knowledge in recently suggested models that combine features of PCPs and
IPs [KR08,BCS16,RRR16]. Our protocols consist of simple and natural modifi-
cations to well-known constructions: the PCP of Ben-Sasson and Sudan [BS08]
and the IP for polynomial summation of Lund et al. [LFKN92]. By leveraging
the linear codes used in these constructions, we reduce the problem of achieving
zero knowledge to solving exponentially-large instances of a new linear-algebraic
problem that we call constraint detection, which we believe to be of independent
interest. We design efficient algorithms for solving this problem for notable linear
code families, along the way exploiting connections to algebraic complexity the-
ory and local views of linear codes. We now elaborate on the above by discussing
each of our results.

Zero knowledge for non-deterministic exponential time. Two recent
works [BCS16,RRR16] independently introduce and study the notion of an
interactive oracle proof (IOP), which can be viewed as a “multi-round PCP”.
Informally, an IOP is an IP modified so that, whenever the prover sends to
the verifier a message, the verifier does not have to read the message in full
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but may probabilistically query it. Namely, in every round, the verifier sends
the prover a message, and the prover replies with a PCP. IOPs enjoy better
efficiency compared to PCPs [BCG+17], and have applications to constructing
argument systems [BCS16] and IPs [RRR16].

The aforementioned work of [BCGV16] makes a simple modification to the
PCP of Ben-Sasson and Sudan [BS08] and obtains a 2-round IOP for NP that is
perfect zero knowledge, and yet has quasilinear size and a non-adaptive honest
verifier. Our first result consists of extending this prior work to all languages
in NEXP, positively answering an open question raised there. We do so by
constructing, for each time T and query bound b, a suitable IOP for NTIME(T )
that is zero knowledge against query bound b; the result for NEXP follows by
setting b to be super-polynomial.

The foregoing notion of zero knowledge for IOPs directly extends that for
PCPs, and requires showing the existence of an algorithm that simulates the
view of any (malicious and adaptive) verifier interacting with the honest prover
and making at most b queries across all oracles; here, ‘view’ consists of the
answers to queries across all oracles.1

Theorem 1 (informal). For every time bound T and query bound b, the com-
plexity class NTIME(T ) has 2-round Interactive Oracle Proofs that are perfect
zero knowledge against b queries, and where the proof length is Õ(T +b) and the
(honest verifier’s) query complexity is polylog(T + b).

The prior work of [BCGV16] was “stuck” at NP because their simulator runs
in poly(T + b) time so that T, b must be polynomially-bounded. In contrast, we
achieve all of NEXP by constructing, for essentially the same simple 2-round
IOP, a simulator that runs in time poly(q̃ + log T + log b), where q̃ is the actual
number of queries made by the malicious verifier. This is an exponential improve-
ment in simulation efficiency, and we obtain it by conceptualizing and solving a
linear-algebraic problem about Reed–Solomon codes, and their proximity proofs,
as discussed in Sect. 1.1.

In sum, our theorem gives new tradeoffs compared to [KPT97]’s result,
which gives statistical zero knowledge PCPs for NTIME(T ) with proof length
poly(T, b) and an adaptive honest verifier. We obtain perfect zero knowledge for
NTIME(T ), with quasilinear proof length and a non-adaptive honest verifier,
at the price of “2 rounds of PCPs”.

Zero knowledge for counting problems. Kalai and Raz [KR08] introduce
and study the notion of interactive PCPs (IPCPs), which “sits in between” IPs
and IOPs: the prover first sends the verifier a PCP, and then the prover and
verifier engage in a standard IP. IPCPs also enjoy better efficiency compared to
PCPs or IPs alone [KR08].

1 More precisely, while in a zero knowledge IP or MIP one is required to simulate the
entire transcript of interaction (with one or multiple provers), in a zero knowledge
IOP or PCP one is merely required to simulate answers to the oracle queries but
not the entire oracle.
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We show how a natural and simple modification of the sumcheck protocol of
Lund et al. [LFKN92] achieves perfect zero knowledge in the IPCP model, even
with a non-adaptive honest verifier. By running this protocol on the usual arith-
metization of the counting problem associated to 3SAT, we obtain our second
result, which is IPCPs for #P that are perfect zero knowledge against unbounded
queries. This means that there exists a polynomial-time algorithm that simulates
the view of any (malicious and adaptive) verifier making any polynomial number
of queries to the PCP oracle. Here, ‘view’ consists of answers to oracle queries
and the transcript of interaction with the prover. (In particular, this notion of
zero knowledge is a ‘hybrid’ of corresponding notions for PCPs and IPs.)

Theorem 2 (informal). The complexity class #P has Interactive PCPs that
are perfect zero knowledge against unbounded queries. The PCP proof length is
exponential, and the communication complexity of the interaction and the (honest
verifier’s) query complexity are polynomial.

Our construction relies on a random self-reducibility property of the sum-
check protocol (see Sect. 2.2 for a summary) and its completeness and sound-
ness properties are straightforward to establish. As in our previous result, the
“magic” lies in the construction of the simulator, which must solve the same
type of exponentially-large linear-algebraic problem, except that this time it is
about Reed–Muller codes rather than Reed–Solomon codes. The algorithm that
we give to solve this task relies on connections to the problem of polynomial
identity testing in the area of algebraic complexity theory, as we discuss further
below.

Goyal et al. [GIMS10] also study zero knowledge for IPCPs, and show how to
obtain IPCPs for NP that (i) are statistical zero knowledge against unbounded
queries, and yet (ii) each location of the (necessarily) super-polynomial size PCP
is polynomial-time computable given the NP witness. They further prove that
these two properties are not attainable by zero knowledge PCPs. Their construc-
tion consists of replacing the commitment scheme in the zero knowledge IP for
3-colorability of [GMW91] with an information-theoretic analogue in the IPCP
model. Our Theorem 2 also achieves zero knowledge against unbounded queries,
but targets the complexity class #P (rather than NP), for which there is no
clear analogue of property (ii) above.

Information-theoretic commitments also underlie the construction of zero
knowledge PCPs [KPT97]. One could apply the [KPT97] result for NEXP to
obtain zero knowledge PCPs (thus also IPCPs) for #P, but this is an indirect
and complex route (in particular, it relies on the PCP Theorem) that, moreover,
yields an adaptive honest verifier. Our direct construction is simple and natural,
and also yields a non-adaptive honest verifier.

We now discuss the common algebraic structure that allowed us to obtain
both of the above results. We believe that further progress in understanding these
types of algebraic techniques will lead to further progress in understanding the
power of unconditional zero knowledge for IOPs and IPCPs, and perhaps also
for MIPs and PCPs.
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Succinct constraint detection for Reed–Muller and Reed–Solomon
codes. The constructions underlying both of our theorems achieve zero knowl-
edge by applying a simple modification to well-known protocols: the PCP of
Ben-Sasson and Sudan [BS08] underlies our result for NEXP and the sumcheck
protocol of Lund et al. [LFKN92] underlies our result for #P.

In both of these protocols the verifier has access (either via a polynomial-
size representation or via a PCP oracle) to an exponentially-large word that
allegedly belongs to a certain linear code, and the prover ‘leaks’ hard-to-compute
information in the process of convincing the verifier that this word belongs to the
linear code. We achieve zero knowledge via a modification that we call masking :
the prover sends to the verifier a PCP containing a random codeword in this
code, and then convinces the verifier that the sum of these two (the original
codeword and this random codeword) is close to the linear code.2 Intuitively,
zero knowledge comes from the fact that the prover now argues about a random
shift of the original word.

However, this idea raises a problem: how does the simulator ‘sample’ an
exponentially-large random codeword in order to answer the verifier’s queries to
the PCP? Solving this problem crucially relies on solving a problem that lies at
the intersection of coding theory, linear algebra, and computational complexity,
which we call the constraint detection problem. We informally introduce it and
state our results about it, and defer to Sect. 2.2 a more detailed discussion of its
connection to zero knowledge.

Detecting constraints in codes. Constraint detection is the problem of deter-
mining which linear relations hold across all codewords of a linear code C ⊆ F

D,
when considering only a given subdomain I ⊆ D of the code rather than all of
the domain D. This problem can always be solved in time that is polynomial in
|D| (via Gaussian elimination); however, if there is an algorithm that solves this
problem in time that is polynomial in the subdomain’s size |I|, rather than the
domain’s size |D|, then we say that the code has succinct constraint detection;
in particular, the domain could have exponential size and the algorithm would
still run in polynomial time.

Definition 1 (informal). We say that a linear code C ⊆ F
D has succinct

constraint detection if there exists an algorithm that, given a subset I ⊆ D,
runs in time poly(log |F| + log |D| + |I|) and outputs z ∈ F

I such that∑
i∈I z(i)w(i) = 0 for all w ∈ C, or “no” if no such z exists. (In particular,

|D| may be exponential.)

We further discuss the problem of constraint detection in Sect. 2.1, and provide
a formal treatment of it in Sect. 4.1. Beyond this introduction, we shall use (and
achieve) a stronger definition of constraint detection: the algorithm is required
to output a basis for the space of dual codewords in C⊥ whose support lies in the
subdomain I, i.e., a basis for the space {z ∈ DI : ∀w ∈ C,

∑
i∈I z(i)w(i) = 0}.

2 This is reminiscent of the use of a random secret share of 0 to achieve privacy in
information-theoretic multi-party protocols [BGW88].



178 E. Ben-Sasson et al.

Note that in our discussion of succinct constraint detection we do not leverage
the distance property of the code C, but we do leverage it in our eventual
applications.

Our zero knowledge simulators’ strategy includes sampling a “random PCP”:
a random codeword w in a linear code C with exponentially large domain size
|D| (see Sect. 2.2 for more on this). Explicitly sampling w requires time Ω(|D|),
and so is inefficient. But a verifier makes only polynomially-many queries to w,
so the simulator has to only simulate w when restricted to polynomial-size sets
I ⊆ D, leaving open the possibility of doing so in time poly(|I|). Achieving such
a simulation time is an instance of (efficiently and perfectly) “implementing a
huge random object” [GGN10] via a stateful algorithm [BW04]. We observe that
if C has succinct constraint detection then this sampling problem for C has a
solution: the simulator maintains the set {(i, ai)}i∈I of past query-answer pairs;
then, on a new verifier query j ∈ D, the simulator uses constraint detection to
determine if wj is linearly dependent on wI , and answers accordingly (such linear
dependencies characterize the required probability distribution, see Lemma1).

Overall, our paper thus provides an application (namely, obtaining zero
knowledge simulators) where the problem of efficient implementation of huge
random objects arises naturally.

We now state our results about succinct constraint detection.

(1) Reed–Muller codes, and their partial sums. We prove that the family
of linear codes comprised of evaluations of low-degree multivariate polynomials,
along with their partial sums, has succinct constraint detection. This family is
closely related to the sumcheck protocol [LFKN92], and indeed we use this result
to obtain a PZK analogue of the sumcheck protocol (see Sect. 2.2), which yields
Theorem 2 (see Sect. 2.3).

Recall that the family of Reed–Muller codes, denoted RM, is indexed by
tuples n = (F,m, d), where F is a finite field and m, d are positive integers,
and the n-th code consists of codewords w : Fm → F that are the evaluation of
an m-variate polynomial Q of individual degree less than d over F. We denote
by ΣRM the family that extends RM with evaluations of all partial sums over
certain subcubes of a hypercube:

Definition 2 (informal). We denote by ΣRM the linear code family that is
indexed by tuples n = (F,m, d,H), where H is a subset of F, and where the
n-th code consists of codewords (w0, . . . , wm) such that there exists an m-variate
polynomial Q of individual degree less than d over F for which wi : Fm−i → F is
the evaluation of the i-th partial sum of Q over H, i.e., wi(α) =

∑
γ∈Hi Q(α,γ)

for every α ∈ F
m−i.

The domain size for codes in ΣRM is Ω(|F|m), but our detector’s running
time is exponentially smaller.

Theorem 3 (informal statement of Theorem 5). The family ΣRM has
succinct constraint detection: there is a detector algorithm for ΣRM that runs
in time poly(log |F| + m + d + |H| + |I|).
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We provide intuition for the theorem’s proof in Sect. 2.1 and provide the proof’s
details in Sect. 4.2; the proof leverages tools from algebraic complexity theory.
(Our proof also shows that the family RM, which is a restriction of ΣRM, has
succinct constraint detection.) Our theorem implies perfect and stateful imple-
mentation of a random low-degree multivariate polynomial and its partial sums
over any hypercube; our proof extends an algorithm of [BW04], which solves this
problem in the case of parity queries to boolean functions on subcubes of the
boolean hypercube.

(2) Reed–Solomon codes, and their PCPPs. Second, we prove that the
family of linear codes comprised of evaluations of low-degree univariate polyno-
mials concatenated with corresponding BS proximity proofs [BS08] has succinct
constraint detection. This family is closely related to quasilinear-size PCPs for
NEXP [BS08], and indeed we use this result to obtain PZK proximity proofs
for this family (see Sect. 2.2), from which we derive Theorem 1 (see Sect. 2.3).

Definition 3 (informal). We denote by BS-RS the linear code family indexed
by tuples n = (F, L, d), where F is an extension field of F2, L is a linear subspace
in F, and d is a positive integer; the n-th code consists of evaluations on L of
univariate polynomials Q of degree less than d, concatenated with corresponding
[BS08] proximity proofs.

The domain size for codes in BS-RS is Ω(|L|), but our detector’s running
time is exponentially smaller.

Theorem 4 (informal statement of Theorem 6). The family BS-RS has
succinct constraint detection: there is a detector algorithm for BS-RS that runs
in time poly(log |F| + dim(L) + |I|).
We provide intuition for the theorem’s proof in Sect. 2.1 and provide the proof’s
details in Sect. 4.3; the proof leverages combinatorial properties of the recursive
construction of BS proximity proofs.

2 Techniques

We informally discuss intuition behind our algorithms for detecting constraints
(Sect. 2.1), their connection to zero knowledge (Sect. 2.2), and how we derive our
results about #P and NEXP (Sect. 2.3). Throughout, we provide pointers to
the technical sections that contain further details.

2.1 Detecting Constraints for Exponentially-Large Codes

As informally introduced in Sect. 1.1, the constraint detection problem corre-
sponding to a linear code family C = {Cn}n with domain D(·) and alphabet
F(·) is the following: given an index n ∈ {0, 1}∗ and subset I ⊆ D(n), output a
basis for the space {z ∈ D(n)I : ∀w ∈ Cn,

∑
i∈I z(i)w(i) = 0}. In other words,
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for a given subdomain I, we wish to determine all linear relations that hold for
codewords in Cn restricted to the subdomain I.

If a generating matrix for Cn can be found in polynomial time, this problem
can be solved in poly(|n| + |D(n)|) time via Gaussian elimination (such an app-
roach was implicitly taken by [BCGV16] to construct a perfect zero knowledge
simulator for an IOP for NP). However, in our setting |D(n)| is exponential in
|n|, so the straightforward solution is inefficient. With this in mind, we say that
C has succinct constraint detection if there exists an algorithm that solves its
constraint detection problem in poly(|n|+ |I|) time, even if |D(n)| is exponential
in |n|.

The formal definition of succinct constraint detection is in Sect. 4.1. In the
rest of this section we provide intuition for two of our theorems: succinct con-
straint detection for the family ΣRM and for the family BS-RS. As will become
evident, the techniques that we use to prove the two theorems differ significantly.
Perhaps this is because the two codes are quite different: ΣRM has a simple and
well-understood algebraic structure, whereas BS-RS is constructed recursively
using proof composition.

From algebraic complexity to detecting constraints for Reed–Muller
codes and their partial sums. The purpose of this section is to provide
intuition about the proof of Theorem3, which states that the family ΣRM has
succinct constraint detection. (Formal definitions, statements, and proofs are in
Sect. 4.2.) We thus outline how to construct an algorithm that detects constraints
for the family of linear codes comprised of evaluations of low-degree multivari-
ate polynomials, along with their partial sums. Our construction generalizes
the proof of [BW04], which solves the special case of parity queries to boolean
functions on subcubes of the boolean hypercube by reducing this problem to a
probabilistic identity testing problem that is solvable via an algorithm of [RS05].

Below, we temporarily ignore the partial sums, and focus on constructing an
algorithm that detects constraints for the family of Reed–Muller codes RM, and
at the end of the section we indicate how we can also handle partial sums.

Step 1: phrase as linear algebra problem. Consider a codeword w : Fm → F

that is the evaluation of an m-variate polynomial Q of individual degree less
than d over F. Note that, for every α ∈ F

m, w(α) equals the inner product
of Q’s coefficients with the vector φα that consists of the evaluation of all dm

monomials at α. One can argue that constraint detection for RM is equivalent
to finding the nullspace of {φα}α∈I . However, “writing out” this |I|×dm matrix
and performing Gaussian elimination is too expensive, so we must solve this
linear algebra problem succinctly.

Step 2: encode vectors as coefficients of polynomials. While each vector
φα is long, it has a succinct description; in fact, we can construct an m-variate
polynomial Φα whose coefficients (after expansion) are the entries of φα, but has
an arithmetic circuit of only size O(md): namely, Φα(X) :=

∏m
i=1(1 + αiXi +

α2
i X

2
i +· · ·+αd−1

i Xd−1
i ). Computing the nullspace of {Φα}α∈I is thus equivalent

to computing the nullspace of {φα}α∈I .
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Step 3: computing the nullspace. Computing the nullspace of a set of poly-
nomials is a problem in algebraic complexity theory, and is essentially equivalent
to the Polynomial Identity Testing (PIT) problem, and so we leverage tools from
that area.3 While there are simple randomized algorithms to solve this problem
(see for example [Kay10, Lemma 8] and [BW04]), these algorithms, due to a
nonzero probability of error, suffice to achieve statistical zero knowledge but
do not suffice to achieve perfect zero knowledge. To obtain perfect zero knowl-
edge, we need a solution that has no probability of error. Derandomizing PIT
for arbitrary algebraic circuits seems to be beyond current techniques (as it
implies circuit lower bounds [KI04]), but derandomizations are currently known
for some restricted circuit classes. The polynomials that we consider are special:
they fall in the well-studied class of “sum of products of univariates”, and for
this case we can invoke the deterministic algorithm of [RS05] (see also [Kay10]).
(It is interesting that derandomization techniques are ultimately used to obtain
a qualitative improvement for an inherently probabilistic task, i.e., perfect sam-
pling of verifier views.)

The above provides an outline for how to detect constraints for RM. The
extension to ΣRM, which also includes partial sums, is achieved by considering
a more general form of vectors φα as well as corresponding polynomials Φα.
These polynomials also have the special form required for our derandomization.
See Sect. 4.2 for details.

From recursive code covers to detecting constraints for Reed–Solomon
codes and their PCPPs. The purpose of this section is to provide intuition
about the proof of Theorem 4, which states that the family BS-RS has succinct
constraint detection. (Formal definitions, statements, and proofs are in Sect. 4.3.)
We thus outline how to construct an algorithm that detects constraints for the
family of linear codes comprised of evaluations of low-degree univariate polyno-
mials concatenated with corresponding BS proximity proofs [BS08].

Our construction leverages the recursive structure of BS proximity proofs:
we identify key combinatorial properties of the recursion that enable “local”
constraint detection. To define and argue these properties, we introduce two
notions that play a central role throughout the proof:

A (local) view of a linear code C ⊆ F
D is a pair (D̃, C̃) such that D̃ ⊆ D and

C̃ = C|D̃ ⊆ F
D̃.

A cover of C is a set of local views S = {(D̃j , C̃j)}j of C such that D = ∪jD̃j .

Combinatorial properties of the recursive step. Given a finite field F,
domain D ⊆ F, and degree d, let C := RS[F,D, d] be the Reed–Solomon code

3 PIT is the following problem: given a polynomial f expressed as an algebraic cir-
cuit, is f identically zero? This problem has well-known randomized algorithms
[Zip79,Sch80], but deterministic algorithms for all circuits seem to be beyond cur-
rent techniques [KI04]. PIT is a central problem in algebraic complexity theory, and
suffices for solving a number of other algebraic problems. We refer the reader to
[SY10] for a survey.
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consisting of evaluations on D of univariate polynomials of degree less than d
over F; for concreteness, say that the domain size is |D| = 2n and the degree is
d = |D|/2 = 2n−1.

The first level of [BS08]’s recursion appends to each codeword f ∈ C an
auxiliary function π1(f) : D′ → F with domain D′ disjoint from D. Moreover,
the mapping from f to π1(f) is linear over F, so the set C1 := {f‖π1(f)}f∈C ,
where f‖π1(f) : D ∪ D′ → F is the function that agrees with f on D and with
π1(f) on D′, is a linear code over F. The code C1 is the “first-level” code of a
BS proximity proof for f .

The code C1 has a naturally defined cover S1 = {(D̃j , C̃j)}j such that each
C̃j is a Reed–Solomon code RS[F, D̃j , dj ] with 2dj ≤ |D̃j | = O(

√
d), that is, with

rate 1/2 and block length O(
√

d). We prove several combinatorial properties of
this cover:

– S1 is 1 -intersecting. For all distinct j, j′ in J , |D̃j ∩ D̃j′ | ≤ 1 (namely, the
subdomains are almost disjoint).

– S1 is O(
√

d)-local. Every partial assignment to O(
√

d) domains D̃j in the
cover that is locally consistent with the cover can be extended to a globally
consistent assignment, i.e., to a codeword of C1. That is, there exists κ =
O(

√
d) such that every partial assignment h : ∪κ

�=1 D̃j�
→ F with h|D̃j�

∈ C̃j�

(for each �) equals the restriction to the subdomain ∪κ
�=1D̃j�

of some codeword
f‖π1(f) in C1.

– S1 is O(
√

d)-independent. The ability to extend locally-consistent assign-
ments to “globally-consistent” codewords of C1 holds in a stronger sense:
even when the aforementioned partial assignment h is extended arbitrarily
to κ additional point-value pairs, this new partial assignment still equals the
restriction of some codeword f‖π1(f) in C1.

The locality property alone already suffices to imply that, given a subdomain
I ⊆ D ∪ D′ of size |I| <

√
d, we can solve the constraint detection problem on I

by considering only those constraints that appear in views that intersect I. But
C has exponential block length so a “quadratic speedup” does not yet imply
succinct constraint detection. To obtain it, we also leverage the intersection and
independence properties to reduce “locality” as follows.

Further recursive steps. So far we have only considered the first recursive
step of a BS proximity proof; we show how to obtain covers with smaller locality
(and thereby detect constraints with more efficiency) by considering additional
recursive steps. Each code C̃j in the cover S1 of C1 is a Reed–Solomon code
RS[F, D̃j , dj ] with |D̃j |, dj = O(

√
d), and the next recursive step appends to

each codeword in C̃j a corresponding auxiliary function, yielding a new code
C2. In turn, C2 has a cover S2, and another recursive step yields a new code
C3, which has its own cover S3, and so on. The crucial technical observation is
that the intersection and independence properties, which hold recursively, enable
us to deduce that Ci is 1-intersecting, O( 2i√

d)-local, and O( 2i√
d)-independent;

in particular, for r = log log d + O(1), Sr is 1-intersecting, O(1)-local, O(1)-
independent.
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Then, recalling that detecting constraints for local codes requires only the
views in the cover that intersect I, our constraint detector works by choosing
i ∈ {1, . . . , r} such that the cover Si is poly(|I|)-local, finding in this cover
a poly(|I|)-size set of poly(|I|)-size views that intersect I, and computing in
poly(|I|) time a basis for the dual of each of these views — thereby proving
Theorem 4.

Remark 1. For the sake of those familiar with BS-RS we remark that the domain
D′ is the carefully chosen subset of F × F designated by that construction, the
code C1 is the code that evaluates bivariate polynomials of degree O(

√
d) on

D∪D′ (along the way mapping D ⊆ F to a subset of F×F), the subdomains D̃j

are the axis-parallel “rows” and “columns” used in that recursive construction,
and the codes C̃j are Reed–Solomon codes of block length O(

√
d). The O(

√
d)-

locality and independence follow from basic properties of bivariate Reed–Muller
codes; see the full version for more details.

Remark 2. It is interesting to compare the above result with linear lower bounds
on query complexity for testing proximity to random low density parity check
(LDPC) codes [BHR05,BGK+10]. Those results are proved by obtaining a basis
for the dual code such that every small-support constraint is spanned by a small
subset of that basis. The same can be observed to hold for BS-RS, even though
this latter code is locally testable with polylogarithmic query complexity [BS08,
Theorem 2.13]. The difference between the two cases is due to the fact that,
for a random LDPC code, an assignment that satisfies all but a single basis-
constraint is (with high probability) far from the code, whereas the recursive
and 1-intersecting structure of BS-RS implies the existence of words that satisfy
all but a single basis constraint, yet are negligibly close to being a codeword.

2.2 From Constraint Detection to Zero Knowledge via Masking

We provide intuition about the connection between constraint detection and
zero knowledge (Sect. 2.2), and how we leverage this connection to achieve two
intermediate results: (i) protocol that is zero knowledge in the Interactive PCP
model (Sect. 2.2); and (ii) proximity proofs for Reed–Solomon codes that are
zero knowledge in the Interactive Oracle Proof model (Sect. 2.2).

Local simulation of random codewords. Suppose that the prover and veri-
fier both have oracle access to a codeword w ∈ C, for some linear code C ⊆ F

D

with exponential-size domain D, and that they need to engage in some protocol
that involves w. During the protocol, the prover may leak information about w
that is hard to compute (e.g., requires exponentially-many queries to w), and
so would violate zero knowledge (as we see below, this is the case for protocols
such as sumcheck).

Rather than directly invoking the protocol, the prover first sends to the
verifier a random codeword r ∈ C (as an oracle since r has exponential size)
and the verifier replies with a random field element ρ ∈ F; then the prover and
verifier invoke the protocol on the new codeword w′ := ρw+r ∈ C rather than w.
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Intuitively, running the protocol on w′ now does not leak information about w,
because w′ is random in C (up to resolvable technicalities). This random self-
reducibility makes sense for only some protocols, e.g., those where completeness
is preserved for any choice of ρ and soundness is broken for only a small fraction
of ρ; but this will indeed be the case for the settings described below.

The aforementioned masking technique was used by [BCGV16] for codes with
polynomial-size domains, but we use it for codes with exponential-size domains,
which requires exponentially more efficient simulation techniques. Indeed, to
prove (perfect) zero knowledge, a simulator must be able to reproduce, exactly,
the view obtained by any malicious verifier that queries entries of w′, a uniformly
random codeword in C; however, it is too expensive for the simulator to explicitly
sample a random codeword and answer the verifier’s queries according to it.
Instead, the simulator must sample the “local view” that the verifier sees while
querying w′ at a small number of locations I ⊆ D.

But simulating local views of the form w′|I is reducible to detecting con-
straints, i.e., codewords in the dual code C⊥ whose support is contained in I.
Indeed, if no word in C⊥ has support contained in I then w′|I is uniformly
random; otherwise, each additional linearly independent constraint of C⊥ with
support contained in I further reduces the entropy of w′|I in a well-understood
manner. (See Lemma 1 for a formal statement.) In sum, succinct constraint detec-
tion enables us to “implement” [GGN10,BW04] random codewords of C despite
C having exponential size.

Note that in the above discussion we implicitly assumed that the set I is
known in advance, i.e., that the verifier chooses its queries in advance. This, of
course, need not be the case: a verifier may adaptively make queries based on
answers to previous queries and, hence, the set I need not be known a priori.
This turns out to not be a problem because, given a constraint detector, it is
straightforward to compute the conditional distribution of the view w′|I given
w′|J for a subset J of I. This is expressed precisely in Lemma 1.

We now discuss two concrete protocols for which the aforementioned random
self-reducibility applies, and for which we also have constructed suitably-efficient
constraint detectors.

Zero knowledge sumchecks. The celebrated sumcheck protocol [LFKN92]
is not zero knowledge. In the sumcheck protocol, the prover and verifier have
oracle access to a low-degree m-variate polynomial F over a field F, and the
prover wants to convince the verifier that

∑
α∈Hm F (α) = 0 for a given subset

H of F. During the protocol, the prover communicates partial sums of F , which
are #P-hard to compute and, as such, violate zero knowledge.

We now explain how to use random self-reducibility to make the sumcheck
protocol (perfect) zero knowledge, at the cost of moving from the Interactive
Proof model to the Interactive PCP model.

IPCP sumcheck. Consider the following tweak to the classical sumcheck pro-
tocol: rather than invoking sumcheck on F directly, the prover first sends to
the verifier (the evaluation of) a random low-degree polynomial R as an ora-
cle; then, the prover sends the value z :=

∑
α∈Hm R(α) and the verifier replies
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with a random field element ρ; finally, the two invoke sumcheck on the claim
“
∑

α∈Hm Q(α) = z” where Q := ρF + R.
Completeness is clear because if

∑
α∈Hm F (α) = 0 and

∑
α∈Hm R(α) = z

then
∑

α∈Hm(ρF +R)(α) = z; soundness is also clear because if
∑

α∈Hm F (α) �=
0 then

∑
α∈Hm(ρF + R)(α) �= z with high probability over ρ, regardless of the

choice of R. (For simplicity, we ignore the fact that the verifier also needs to
test that R has low degree.) We are thus left to show (perfect) zero knowledge,
which turns out to be a much less straightforward argument.

The simulator. Before we explain how to argue zero knowledge, we first clarify
what we mean by it: since the verifier has oracle access to F we cannot hope to
‘hide’ it; nevertheless, we can hope to argue that the verifier, by participating
in the protocol, does not learn anything about F beyond what the verifier can
directly learn by querying F (and the fact that F sums to zero on Hm). What
we shall achieve is the following: an algorithm that simulates the verifier’s view
by making as many queries to F as the total number of verifier queries to either
F or R.4

On the surface, zero knowledge seems easy to argue, because ρF + R seems
random among low-degree m-variate polynomials. More precisely, consider the
simulator that samples a random low-degree polynomial Q and uses it instead
of ρF + R and answers the verifier queries as follows: (a) whenever the veri-
fier queries F (α), respond by querying F (α) and returning the true value; (b)
whenever the verifier queries R(α), respond by querying F (α) and returning
Q(α) − ρF (α). Observe that the number of queries to F made by the simula-
tor equals the number of (mutually) distinct queries to F and R made by the
verifier, as desired.

However, the above reasoning, while compelling, is insufficient. First, ρF +R
is not random because a malicious verifier can choose ρ depending on queries
to R. Second, even if ρF + R were random (e.g., the verifier does not query R
before choosing ρ), the simulator must run in polynomial time, both producing
correctly-distributed ‘partial sums’ of ρF + R and answering queries to R, but
sampling Q alone requires exponential time. In this high level discussion we
ignore the first problem (which nonetheless has to be tackled), and focus on the
second.

At this point it should be clear from the discussion in Sect. 2.2 that the
simulator does not have to sample Q explicitly, but only has to perfectly simulate
local views of it by leveraging the fact that it can keep state across queries. And
doing so requires solving the succinct constraint detection problem for a suitable
code C. In this case, it suffices to consider the code C = ΣRM, and our Theorem3
guarantees the required constraint detector.

We refer the reader to the full version for further details.

4 A subsequent work [CFS17] shows how to bootstrap this IPCP sumcheck protocol
into a more complex one that has a stronger zero knowledge guarantee: the simulator
can sample the verifier’s view by making as many queries to F as the number of
verifier queries (plus one). Nevertheless, the weaker zero knowledge guarantee that
we achieve suffices for our purposes.
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Zero knowledge proximity proofs for Reed–Solomon. Testing proximity
of a codeword w to a given linear code C can be aided by a proximity proof
[DR04,BGH+06], which is an auxiliary oracle π that facilitates testing (e.g.,
C is not locally testable). For example, testing proximity to the Reed–Solomon
code, a crucial step towards achieving short PCPs, is aided via suitable proximity
proofs [BS08].

From the perspective of zero knowledge, however, a proximity proof can be
‘dangerous’: a few locations of π can in principle leak a lot of information about
the codeword w, and a malicious verifier could potentially learn a lot about w
with only a few queries to w and π. The notion of zero knowledge for proximity
proofs requires that this cannot happen: it requires the existence of an algorithm
that simulates the verifier’s view by making as many queries to w as the total
number of verifier queries to either w or π [IW14]; intuitively, this means that
any bit of the proximity proof π reveals no more information than one bit of w.

We demonstrate again the use of random self-reducibility and show a general
transformation that, under certain conditions, maps a PCP of proximity (P, V )
for a code C to a corresponding 2-round Interactive Oracle Proof of Proximity
(IOPP) for C that is (perfect) zero knowledge.

IOP of proximity for C. Consider the following IOP of Proximity: the prover
and verifier have oracle access to a codeword w, and the prover wants to convince
the verifier that w is close to C; the prover first sends to the verifier a random
codeword r in C, and the verifier replies with a random field element ρ; the prover
then sends the proximity proof π′ := P (w′) that attests that w′ := ρw+r is close
to C. Note that this is a 2-round IOP of Proximity for C, because completeness
follows from the fact that C is linear, while soundness follows because if w is far
from C, then so is ρw + r for every r with high probability over ρ. But is the
zero knowledge property satisfied?

The simulator. Without going into details, analogously to Sect. 2.1, a simu-
lator must be able to sample local views for random codewords from the code
L := {w‖P (w) }w∈C , so the simulator’s efficiency reduces to the efficiency of
constraint detection for L. We indeed prove that if L has succinct constraint
detection then the simulator works out. See the full version for further details.

The case of Reed–Solomon. The above machinery allows us to derive a zero
knowledge IOP of Proximity for Reed–Solomon codes, thanks to our Theorem4,
which states that the family of linear codes comprised of evaluations of low-
degree univariate polynomials concatenated with corresponding BS proximity
proofs [BS08] has succinct constraint detection; see the full version for details.
This is one of the building blocks of our construction of zero knowledge IOPs
for NEXP, as described below in Sect. 2.3.

2.3 Achieving Zero Knowledge Beyond NP

We outline how to derive our results about zero knowledge for #P and NEXP.

Zero knowledge for counting problems. We provide intuition for the proof
of Theorem 2, which states that the complexity class #P has Interactive PCPs
that are perfect zero knowledge.
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We first recall the classical (non zero knowledge) Interactive Proof for #P
[LFKN92]. The language L#3SAT, which consists of pairs (φ,N) where φ is
a 3-CNF boolean formula and N is the number of satisfying assignments of
φ, is #P-complete, and thus it suffices to construct an IP for it. The IP for
L#3SAT works as follows: the prover and verifier both arithmetize φ to obtain
a low-degree multivariate polynomial pφ and invoke the (non zero knowledge)
sumcheck protocol on the claim “

∑
α∈{0,1}n pφ(α) = N”, where arithmetic is

over a large-enough prime field.
Returning to our goal, we obtain a perfect zero knowledge Interactive PCP

by simply replacing the (non zero knowledge) IP sumcheck mentioned above
with our perfect zero knowledge IPCP sumcheck, described in Sect. 2.2. In the
full version we provide further details, including proving that the zero knowledge
guarantees of our sumcheck protocol suffice for this case.

Zero knowledge for nondeterministic time. We provide intuition for the
proof of Theorem1, which implies that the complexity class NEXP has Inter-
active Oracle Proofs that are perfect zero knowledge. Very informally, the proof
consists of combining two building blocks: (i) [BCGV16]’s reduction from NEXP
to randomizable linear algebraic constraint satisfaction problems, and (ii) our
construction of perfect zero knowledge IOPs of Proximity for Reed–Solomon
codes, described in Sect. 2.2. Besides extending [BCGV16]’s result from NP to
NEXP, our proof provides a conceptual simplification over [BCGV16] by clari-
fying how the above two building blocks work together towards the final result.
We now discuss this.

Starting point: [BS08]. Many PCP constructions consist of two steps: (1) arith-
metize the statement at hand (in our case, membership of an instance in some
NEXP-complete language) by reducing it to a “PCP-friendly” problem that
looks like a linear-algebraic constraint satisfaction problem (LACSP); (2) design
a tester that probabilistically checks witnesses for this LACSP. In this paper, as
in [BCGV16], we take [BS08]’s PCPs for NEXP as a starting point, where the
first step reduces NEXP to a “univariate” LACSP whose witnesses are code-
words in a Reed–Solomon code of exponential degree that satisfy certain proper-
ties, and whose second step relies on suitable proximity proofs [DR04,BGH+06]
for that code. Thus, overall, the PCP consists of two oracles, one being the
LACSP witness and the other being the corresponding BS proximity proof, and
it is not hard to see that such a PCP is not zero knowledge, because both the
LACSP witness and its proximity proof reveal hard-to-compute information.

Step 1: sanitize the proximity proof. We first address the problem that
the BS proximity proof “leaks”, by simply replacing it with our own perfect
zero knowledge analogue. Namely, we replace it with our perfect zero knowledge
2-round IOP of Proximity for Reed–Solomon codes, described in Sect. 2.2. This
modification ensures that there exists an algorithm that perfectly simulates the
verifier’s view by making as many queries to the LACSP witness as the total
number of verifier queries to either the LACSP witness or other oracles used
to facilitate proximity testing. At this point we have obtained a perfect zero
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knowledge 2-round IOP of Proximity for NEXP (analogous to the notion of
a zero knowledge PCP of Proximity [IW14]); this part is where, previously,
[BCGV16] were restricted to NP because their simulator only handled Reed–
Solomon codes with polynomial degree while our simulator is efficient even for
such codes with exponential degree. But we are not done yet: to obtain our goal,
we also need to address the problem that the LACSP witness itself “leaks” when
the verifier queries it, which we discuss next.

Step 2: sanitize the witness. Intuitively, we need to inject randomness in
the reduction from NEXP to LACSP because the prover ultimately sends an
LACSP witness to the verifier as an oracle, which the verifier can query. This
is precisely what [BCGV16]’s reduction from NEXP to randomizable LACSPs
enables, and we thus use their reduction to complete our proof. Informally, given
an a-priori query bound b on the verifier’s queries, the reduction outputs a
witness w with the property that one can efficiently sample another witness
w′ whose entries are b-wise independent. We can then simply use the IOP of
Proximity from the previous step on this randomized witness. Moreover, since
the efficiency of the verifier is polylogarithmic in b, we can set b to be super-
polynomial (e.g., exponential) to preserve zero knowledge against any polynomial
number of verifier queries.

The above discussion is only a sketch and we refer the reader to the full
version for further details. One aspect that we did not discuss is that an LACSP
witness actually consists of two sub-witnesses, where one is a “local” determin-
istic function of the other, which makes arguing zero knowledge somewhat more
delicate.

2.4 Roadmap

Our results are structured as in the table below. For details, see the full version.

§4.2 Theorem 3/5 detecting constraints for ΣRM §4.3 Theorem 4/6 detecting constraints for BS-RS
⏐
�

⏐
�

PZK IPCP for sumcheck PZK IOP of Proximity for RS codes
⏐
�

⏐
�

Theorem 2 PZK IPCP for #P Theorem 1 PZK IOP for NEXP

3 Definitions

3.1 Basic Notations

Functions, distributions, fields. We use f : D → R to denote a function
with domain D and range R; given a subset D̃ of D, we use f |D̃ to denote the
restriction of f to D̃. Given a distribution D, we write x ← D to denote that x is
sampled according to D. We denote by F a finite field and by Fq the field of size
q; we say F is a binary field if its characteristic is 2. Arithmetic operations over
Fq cost polylog q but we shall consider these to have unit cost (and inspection
shows that accounting for their actual polylogarithmic cost does not change any
of the stated results).
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Distances. A distance measure is a function Δ : Σn × Σn → [0, 1] such that
for all x, y, z ∈ Σn: (i) Δ(x, x) = 0, (ii) Δ(x, y) = Δ(y, x), and (iii) Δ(x, y) ≤
Δ(x, z)+Δ(z, y). We extend Δ to distances to sets: given x ∈ Σn and S ⊆ Σn, we
define Δ(x, S) := miny∈S Δ(x, y) (or 1 if S is empty). We say that a string x is
ε-close to another string y if Δ(x, y) ≤ ε, and ε-far from y if Δ(x, y) > ε; similar
terminology applies for a string x and a set S. Unless noted otherwise, we use
the relative Hamming distance over alphabet Σ (typically implicit): Δ(x, y) :=
|{i : xi �= yi}|/n.

Languages and relations. We denote by R a (binary ordered) relation con-
sisting of pairs (x,w), where x is the instance and w is the witness. We denote
by Lan(R) the language corresponding to R, and by R|x the set of witnesses
in R for x (if x �∈ Lan(R) then R|x := ∅). As always, we assume that |w| is
bounded by some computable function of n := |x|; in fact, we are mainly inter-
ested in relations arising from nondeterministic languages: R ∈ NTIME(T ) if
there exists a T (n)-time machine M such that M(x,w) outputs 1 if and only
if (x,w) ∈ R. Throughout, we assume that T (n) ≥ n. We say that R has rel-
ative distance δR : N → [0, 1] if δR(n) is the minimum relative distance among
witnesses in R|x for all x of size n. Throughout, we assume that δR is a constant.

Polynomials. We denote by F[X1, . . . , Xm] the ring of polynomials in m vari-
ables over F. Given a polynomial P in F[X1, . . . , Xm], degXi

P [Xi] is the degree
of P in the variable Xi. We denote by F

<d[X1, . . . , Xm] the subspace consisting
of P ∈ F[X1, . . . , Xm] with degXi

P [Xi] < d for every i ∈ {1, . . . , m}.

Random shifts. We later use a folklore claim about distance preservation for
random shifts in linear spaces.

Claim. Let n be in N, F a finite field, S an F-linear space in F
n, and x, y ∈ F

n.
If x is ε-far from S, then αx + y is ε/2-far from S, with probability 1 − |F|−1

over a random α ∈ F. (Distances are relative Hamming distances.)

3.2 Single-Prover Proof Systems

We use two types of proof systems that combine aspects of interactive
proofs [Bab85,GMR89] and probabilistically checkable proofs [BFLS91,AS98,
ALM+98]: interactive PCPs (IPCPs) [KR08] and interactive oracle proofs
(IOPs) [BCS16,RRR16]. We first describe IPCPs (Sect. 3.2) and then IOPs
(Sect. 3.2), which generalize the former.

Interactive probabilistically checkable proofs. An IPCP [KR08] is a PCP
followed by an IP. Namely, the prover P and verifier V interact as follows: P
sends to V a probabilistically checkable proof π; afterwards, P and V π engage in
an interactive proof. Thus, V may read a few bits of π but must read subsequent
messages from P in full. An IPCP system for a relation R is thus a pair (P, V ),
where P, V are probabilistic interactive algorithms working as described, that
satisfies naturally-defined notions of perfect completeness and soundness with a
given error ε(·); see [KR08] for details.
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We say that an IPCP has k rounds if this “PCP round” is followed by a
(k − 1)-round interactive proof. (That is, we count the PCP round towards
round complexity, unlike [KR08].) Beyond round complexity, we also measure
how many bits the prover sends and how many the verifier reads: the proof
length l is the length of π in bits plus the number of bits in all subsequent prover
messages; the query complexity q is the number of bits of π read by the verifier
plus the number of bits in all subsequent prover messages (since the verifier must
read all of those bits).

In this work, we do not count the number of bits in the verifier messages,
nor the number of random bits used by the verifier; both are bounded from
above by the verifier’s running time, which we do consider. Overall, we say that
a relation R belongs to the complexity class IPCP[k, l, q, ε, tp, tv] if there is an
IPCP system for R in which: (1)the number of rounds is at most k(n); (2) the
proof length is at most l(n); (3) the query complexity is at most q(n); (4) the
soundness error is ε(n); (5) the prover algorithm runs in time tp(n); (6) the
verifier algorithm runs in time tv(n).

Interactive oracle proofs. An IOP [BCS16,RRR16] is a “multi-round PCP”.
That is, an IOP generalizes an interactive proof as follows: whenever the prover
sends to the verifier a message, the verifier does not have to read the message in
full but may probabilistically query it. In more detail, a k-round IOP comprises k
rounds of interaction. In the i-th round of interaction: the verifier sends a message
mi to the prover; then the prover replies with a message πi to the verifier, which
the verifier can query in this and later rounds (via oracle queries). After the k
rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation R with soundness error ε is thus a pair (P, V ),
where P, V are probabilistic interactive algorithms working as described, that
satisfies the following properties. (See [BCS16] for more details.)

Completeness: For every instance-witness pair (x,w) in the relation R,
Pr[〈P (x,w), V (x)〉 = 1] = 1.

Soundness: For every instance x not in R’s language and unbounded malicious
prover P̃ , Pr[〈P̃ , V (x)〉 = 1] ≤ ε(n).

Beyond round complexity, we also measure how many bits the prover sends
and how many the verifier reads: the proof length l is the total number of bits
in all of the prover’s messages, and the query complexity q is the total number
of bits read by the verifier across all of the prover’s messages. Considering all
of these parameters, we say that a relation R belongs to the complexity class
IOP[k, l, q, ε, tp, tv] if there is an IOP system for R in which: (1) the number of
rounds is at most k(n); (2) the proof length is at most l(n); (3) the query com-
plexity is at most q(n); (4) the soundness error is ε(n); (5) the prover algorithm
runs in time tp(n); (6) the verifier algorithm runs in time tv(n).

IOP vs. IPCP. An IPCP (see Sect. 3.2) is a special case of an IOP because an
IPCP verifier must read in full all of the prover’s messages except the first one
(while an IOP verifier may query any part of any prover message). The above
complexity measures are consistent with those defined for IPCPs.
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Restrictions and extensions. The definitions below are about IOPs, but
IPCPs inherit all of these definitions because they are a special case of IOP.

Adaptivity of queries. An IOP system is non-adaptive if the verifier queries
are non-adaptive, i.e., the queried locations depend only on the verifier’s inputs.

Public coins. An IOP system is public coin if each verifier message mi is chosen
uniformly and independently at random, and all of the verifier queries happen
after receiving the last prover message.

Proximity. An IOP of proximity extends the definition of an IOP in the same
way that a PCP of proximity extends that of a PCP [DR04,BGH+06]. An IOPP
system for a relation R with soundness error ε and proximity parameter δ is a
pair (P, V ) that satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relation R,
Pr[〈P (x,w), V w(x)〉 = 1] = 1.

Soundness: For every instance-witness pair (x,w) with Δ(w,R|x) ≥ δ(n) and
unbounded malicious prover P̃ , Pr[〈P̃ , V w(x)〉 = 1] ≤ ε(n).

Similarly to above, a relation R belongs to the complexity class
IOPP[k, l, q, ε, δ, tp, tv] if there is an IOPP system for R with the corresponding
parameters. Following [IW14], we call an IOPP exact if δ(n) = 0.

Promise relations. A promise relation is a relation-language pair (RYES,L NO)
with Lan(RYES)∩L NO = ∅. An IOP for a promise relation is the same as an IOP
for the (standard) relation RYES, except that soundness need only hold for x ∈
L NO. An IOPP for a promise relation is the same as an IOPP for the (standard)
relation RYES, except that soundness need only hold for x ∈ Lan(RYES) ∪ L NO.

Prior constructions. In this paper we give new IPCP and IOP constructions
that achieve perfect zero knowledge for various settings. Below we summarize
known constructions in these two models.

IPCPs. Prior work obtains IPCPs with proof length that depends on the witness
size rather than computation size [KR08,GKR08], and IPCPs with statistical
zero knowledge [GIMS10] (see Sect. 3.3 for more details).

IOPs. Prior work obtains IOPs with perfect zero knowledge for NP [BCGV16],
IOPs with small proof length and query complexity [BCG+17], and an amorti-
zation theorem for “unambiguous” IOPs [RRR16]. Also, [BCS16] show how to
compile public-coin IOPs into non-interactive arguments in the random oracle
model.

3.3 Zero Knowledge

We define the notion of zero knowledge for IOPs and IPCPs achieved by our
constructions: unconditional (perfect) zero knowledge via straightline simulators.
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This notion is quite strong not only because it unconditionally guarantees sim-
ulation of the verifier’s view but also because straightline simulation implies
desirable properties such as composability. We now provide some context and
then give formal definitions.

At a high level, zero knowledge requires that the verifier’s view can be effi-
ciently simulated without the prover. Converting the informal statement into a
mathematical one involves many choices, including choosing which verifier class
to consider (e.g., the honest verifier? all polynomial-time verifiers?), the quality
of the simulation (e.g., is it identically distributed to the view? statistically close
to it? computationally close to it?), the simulator’s dependence on the verifier
(e.g., is it non-uniform? or is the simulator universal?), and others. The defin-
itions below consider two variants: perfect simulation via universal simulators
against either unbounded-query or bounded-query verifiers.

Moreover, in the case of universal simulators, one distinguishes between a
non-blackbox use of the verifier, which means that the simulator takes the ver-
ifier’s code as input, and a blackbox use of it, which means that the simula-
tor only accesses the verifier via a restricted interface; we consider this latter
case. Different models of proof systems call for different interfaces, which grant
carefully-chosen “extra powers” to the simulator (in comparison to the prover)
so to ensure that efficiency of the simulation does not imply the ability to effi-
ciently decide the language. For example: in ZK IPs, the simulator may rewind
the verifier; in ZK PCPs, the simulator may adaptively answer oracle queries.
In ZK IPCPs and ZK IOPs (our setting), the natural definition would allow
a blackbox simulator to rewind the verifier and also to adaptively answer ora-
cle queries. The definitions below, however, consider only simulators that are
straightline [FS89,DS98], that is they do not rewind the verifier, because our
constructions achieve this stronger notion.

We are now ready to define the notion of unconditional (perfect) zero knowl-
edge via straightline simulators. We first discuss the notion for IOPs, then for
IOPs of proximity, and finally for IPCPs.

ZK for IOPs. We define zero knowledge (via straightline simulators) for IOPs.
We begin by defining the view of an IOP verifier.

Definition 4. Let A,B be algorithms and x, y strings. We denote by
View 〈B(y), A(x)〉 the view of A(x) in an interactive oracle protocol with B(y),
i.e., the random variable (x, r, a1, . . . , an) where x is A’s input, r is A’s random-
ness, and a1, . . . , an are the answers to A’s queries into B’s messages.

Straightline simulators in the context of IPs were used in [FS89], and later
defined in [DS98]. The definition below considers this notion in the context of
IOPs, where the simulator also has to answer oracle queries by the verifier. Note
that since we consider the notion of unconditional (perfect) zero knowledge, the
definition of straightline simulation needs to allow the efficient simulator to work
even with inefficient verifiers [GIMS10].
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Definition 5. We say that an algorithm B has straightline access to another
algorithm A if B interacts with A, without rewinding, by exchanging messages
with A and also answering any oracle queries along the way. We denote by BA

the concatenation of A’s random tape and B’s output. (Since A’s random tape
could be super-polynomially large, B cannot sample it for A and then output it;
instead, we restrict B to not see it, and we prepend it to B’s output.)

Recall that an algorithm A is b-query if, on input x, it makes at most b(|x|)
queries to any oracles it has access to. We are now ready to define zero knowledge
IOPs.

Definition 6. An IOP system (P, V ) for a relation R is perfect zero
knowledge (via straightline simulators) against unbounded queries (resp.,
against query bound b) if there exists a simulator algorithm S such that for every
algorithm (resp., b-query algorithm) Ṽ and instance-witness pair (x,w) ∈ R,
SṼ (x) and View 〈P (x,w), Ṽ (x)〉 are identically distributed. Moreover, S must
run in time poly(|x| + qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

For zero knowledge against arbitrary polynomial-time adversaries, it suffices
for b to be superpolynomial. Note that S’s running time need not be polynomial
in b (in our constructions it is polylogarithmic in b); rather its running time may
be polynomial in the input size |x| and the actual number of queries Ṽ makes
(as a random variable).

We say that a relation R belongs to the complexity class PZK-IOP[k, l,
q, ε, tp, tv, b] if there is an IOP system for R, with the corresponding parame-
ters, that is perfect zero knowledge with query bound b; also, it belongs to the
complexity class PZK-IOP[k, l, q, ε, tp, tv, ∗] if the same is true with unbounded
queries.

ZK for IOPs of proximity. We define zero knowledge (via straightline simula-
tors) for IOPs of proximity. It is a straightforward extension of the corresponding
notion for PCPs of proximity, introduced in [IW14].

Definition 7. An IOPP system (P, V ) for a relation R is perfect zero
knowledge (via straightline simulators) against unbounded queries (resp.,
against query bound b) if there exists a simulator algorithm S such that for every
algorithm (resp., b-query algorithm) Ṽ and instance-witness pair (x,w) ∈ R, the
following two random variables are identically distributed:

(
SṼ ,w(x) , qS

)
and

(
View 〈P (x,w), Ṽ w(x)〉 , qṼ

)
,

where qS is the number of queries to w made by S, and qṼ is the number of
queries to w or to prover messages made by Ṽ . Moreover, S must run in time
poly(|x| + qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

We say that a relation R belongs to the complexity class PZK-IOPP[k, l,
q, ε, δ, tp, tv, b] if there is an IOPP system for R, with the corresponding para-
meters, that is perfect zero knowledge with query bound b; also, it belongs to
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the complexity class PZK-IOPP[k, l, q, ε, δ, tp, tv, ∗] if the same is true with
unbounded queries.

Remark 3. Analogously to [IW14], our definition of zero knowledge for IOPs of
proximity requires that the number of queries to w by S equals the total number
of queries (to w or prover messages) by Ṽ . Stronger notions are possible: “the
number of queries to w by S equals the number of queries to w by Ṽ ”; or, even
more, “S and Ṽ read the same locations of w”. The definition above is sufficient
for the applications of IOPs of proximity that we consider.

ZK for IPCPs. The definition of perfect zero knowledge (via straightline sim-
ulators) for IPCPs follows directly from Definition 6 in Sect. 3.3 because IPCPs
are a special case of IOPs. Ditto for IPCPs of proximity, whose perfect zero
knowledge definition follows directly from Definition 7 in Sect. 3.3. (For compar-
ison, [GIMS10] define statistical zero knowledge IPCPs, also with straightline
simulators.)

3.4 Codes

An error correcting code C is a set of functions w : D → Σ, where D,Σ are finite
sets known as the domain and alphabet; we write C ⊆ ΣD. The message length of
C is k := log|Σ| |C|, its block length is � := |D|, its rate is ρ := k/�, its (minimum)
distance is d := min{Δ(w, z) : w, z ∈ C, w �= z} when Δ is the (absolute)
Hamming distance, and its (minimum) relative distance is τ := d/�. At times we
write k(C), �(C), ρ(C), d(C), τ(C) to make the code under consideration explicit.
All the codes we consider are linear codes, discussed next.

Linearity. A code C is linear if Σ is a finite field and C is a Σ-linear space in
ΣD. The dual code of C is the set C⊥ of functions z : D → Σ such that, for all
w : D → Σ, 〈z, w〉 :=

∑
i∈D z(i)w(i) = 0. We denote by dim(C) the dimension

of C; it holds that dim(C) + dim(C⊥) = � and dim(C) = k (dimension equals
message length).

Code families. A code family C = {Cn}n∈{0,1}∗ has domain D(·) and alphabet
F(·) if each code Cn has domain D(n) and alphabet F(n). Similarly, C has mes-
sage length k(·), block length �(·), rate ρ(·), distance d(·), and relative distance
τ(·) if each code Cn has message length k(n), block length �(n), rate ρ(n), dis-
tance d(n), and relative distance τ(n). We also define ρ(C ) := infn∈N ρ(n) and
τ(C ) := infn∈N τ(n).

Reed–Solomon codes. The Reed–Solomon (RS) code is the code consisting
of evaluations of univariate low-degree polynomials: given a field F, subset S of
F, and positive integer d with d ≤ |S|, we denote by RS[F, S, d] the linear code
consisting of evaluations w : S → F over S of polynomials in F

<d[X]. The code’s
message length is k = d, block length is � = |S|, rate is ρ = d

|S| , and relative
distance is τ = 1 − d−1

|S| .
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Reed–Muller codes. The Reed–Muller (RM) code is the code consisting of
evaluations of multivariate low-degree polynomials: given a field F, subset S
of F, and positive integers m, d with d ≤ |S|, we denote by RM[F, S,m, d] the
linear code consisting of evaluations w : Sm → F over Sm of polynomials in
F

<d[X1, . . . , Xm] (i.e., we bound individual degrees rather than their sum). The
code’s message length is k = dm, block length is � = |S|m, rate is ρ = ( d

|S| )
m,

and relative distance is τ = (1 − d−1
|S| )m.

4 Succinct Constraint Detection

We introduce the notion of succinct constraint detection for linear codes. This
notion plays a crucial role in constructing perfect zero knowledge simulators for
super-polynomial complexity classes (such as #P and NEXP), but we believe
that this naturally-defined notion is also of independent interest. Given a linear
code C ⊆ F

D we refer to its dual code C⊥ ⊆ F
D as the constraint space of

C. The constraint detection problem corresponding to a family of linear codes
C = {Cn}n with domain D(·) and alphabet F(·) is the following:

Given an index n and subset I ⊆ D(n), output a basis for
{z ∈ D(n)I : ∀w ∈ Cn,

∑
i∈I z(i)w(i) = 0}.5

If |D(n)| is polynomial in |n| and a generating matrix for Cn can be found in
polynomial time, this problem can be solved in poly(|n|+ |I|) time via Gaussian
elimination; such an approach was implicitly taken by [BCGV16] to construct a
perfect zero knowledge simulator for an IOP for NP. However, in our setting,
|D(n)| is exponential in |n| and |I|, and the aforementioned generic solution
requires exponential time. With this in mind, we say C has succinct constraint
detection if there exists an algorithm that solves the constraint detection problem
in poly(|n| + |I|) time when |D(n)| is exponential in |n|. After defining succinct
constraint detection in Sect. 4.1, we proceed as follows.

– In Sect. 4.2, we construct a succinct constraint detector for the family of linear
codes comprised of evaluations of partial sums of low-degree polynomials.
The construction of the detector exploits derandomization techniques from
algebraic complexity theory. We leverage this result to construct a perfect
zero knowledge simulator for an IPCP for #P; see the full version for details.

– In Sect. 4.3, we construct a succinct constraint detector for the family of
evaluations of univariate polynomials concatenated with corresponding BS
proximity proofs [BS08]. The construction of the detector exploits the recur-
sive structure of these proximity proofs. We leverage this result to construct
a perfect zero knowledge simulator for an IOP for NEXP; this simulator can

5 In fact, the following weaker definition suffices for the applications in our paper: given
an index n and subset I ⊆ D(n), output z ∈ F(n)I such that

∑
i∈I z(i)w(i) = 0 for

all w ∈ Cn, or ‘independent’ if no such z exists. We achieve the stronger definition,
which is also easier to work with.
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be interpreted as an analogue of [BCGV16]’s simulator that runs exponen-
tially faster and thus enables us to “scale up” from NP to NEXP; see the
full version for details.

Throughout this section we assume familiarity with terminology and notation
about codes, introduced in Sect. 3.4. We assume for simplicity that |n|, the num-
ber of bits used to represent n, is at least log D(n) + logF(n); if this does not
hold, then one can replace |n| with |n| + log D(n) + logF(n) throughout the
section.

Remark 4 (sparse representation). In this section we make statements about
vectors v in F

D where the cardinality of the domain D may be super-polynomial.
When such statements are computational in nature, we assume that v is not
represented as a list of |D| field elements (which requires Ω(|D| log |F|) bits)
but, instead, assume that v is represented as a list of the elements in supp(v)
(and each element comes with its index in D); this sparse representation only
requires Ω(|supp(v)| · (log |D| + log |F|)) bits.

4.1 Definition of Succinct Constraint Detection

Formally define the notion of a constraint detector, and the notion of succinct
constraint detection.

Definition 8. Let C = {Cn}n be a linear code family with domain D(·) and
alphabet F(·). A constraint detector for C is an algorithm that, on input an
index n and subset I ⊆ D(n), outputs a basis for the space

{
z ∈ D(n)I : ∀w ∈ Cn,

∑

i∈I

z(i)w(i)
}

.

We say that C has T (·, ·) -time constraint detection if there exists a detector
for C running in time T (n, �); we also say that C has succinct constraint
detection if it has poly(|n| + �)-time constraint detection.

A constraint detector induces a corresponding probabilistic algorithm for
‘simulating’ answers to queries to a random codeword; this is captured by the
following lemma, the proof of which is in the full version. We shall use such
probabilistic algorithms in the construction of perfect zero knowledge simulators.

Lemma 1. Let C = {Cn}n be a linear code family with domain D(·) and
alphabet F(·) that has T (·, ·)-time constraint detection. Then there exists a
probabilistic algorithm A such that, for every index n, set of pairs S =
{(α1, β1), . . . , (α�, β�)} ⊆ D(n) × F(n), and pair (α, β) ∈ D(n) × F(n),

Pr
[
A(n, S, α) = β

]
= Pr

w←Cn

⎡

⎢
⎣w(α) = β

∣
∣
∣
∣
∣
∣
∣

w(α1) = β1

...
w(α�) = β�

⎤

⎥
⎦ .

Moreover A runs in time T (n, �) + poly(log |F(n)| + �).



Zero Knowledge Protocols from Succinct Constraint Detection 197

For the purposes of constructing a constraint detector, the sufficient condition
given in Lemma 2 below is sometimes easier to work with. To state it we need
to introduce two ways of restricting a code, and explain how these restrictions
interact with taking duals; the interplay between these is delicate (see Remark 5).

Definition 9. Given a linear code C ⊆ F
D and a subset I ⊆ D, we denote by

(i) C⊆I the set consisting of the codewords w ∈ C for which supp(w) ⊆ I, and
(ii) C|I the restriction to I of codewords w ∈ C.

Note that C⊆I and C|I are different notions. Consider for example the
1-dimensional linear code C = {00, 11} in F

{1,2}
2 and the subset I = {1}: it

holds that C⊆I = {00} and C|I = {0, 1}. In particular, codewords in C⊆I are
defined over D, while codewords in C|I are defined over I. Nevertheless, through-
out this section, we sometimes compare vectors defined over different domains,
with the implicit understanding that the comparison is conducted over the union
of the relevant domains, by filling in zeros in the vectors’ undefined coordinates.
For example, we may write C⊆I ⊆ C|I to mean that {00} ⊆ {00, 10} (the set
obtained from {0, 1} after filling in the relevant zeros).

Claim. Let C be a linear code with domain D and alphabet F. For every I ⊆ D,

(C|I)⊥ = (C⊥)⊆I ,

that is,
{

z ∈ D(n)I : ∀w ∈ Cn,
∑

i∈I

z(i)w(i)
}

=
{

z ∈ C⊥
n : supp(z) ⊆ I

}
.

Proof. For the containment (C⊥)⊆I ⊆ (C|I)⊥: if z ∈ C⊥ and supp(z) ⊆ I
then z lies in the dual of C|I because it suffices to consider the subdomain I for
determining duality. For the reverse containment (C⊥)⊆I ⊇ (C|I)⊥: if z ∈ (C|I)⊥

then supp(z) ⊆ I (by definition) so that 〈z, w〉 = 〈z, w|I〉 for every w ∈ C, and
the latter inner product equals 0 because z is in the dual of C|I ; in sum z is
dual to (all codewords in) C and its support is contained in I, so z belongs to
(C⊥)⊆I , as claimed.

Observe that Claim 4.1 tells us the constraint detection is equivalent to deter-
mining a basis of (Cn|I)⊥ = (C⊥

n )⊆I . The following lemma asserts that if, given
a subset I ⊆ D, we can find a set of constraints W in C⊥ that spans (C⊥)⊆I

then we can solve the constraint detection problem for C; see the full version for
a proof.

Lemma 2. Let C = {Cn}n be a linear code family with domain D(·) and
alphabet F(·). If there exists an algorithm that, on input an index n and sub-
set I ⊆ D(n), outputs in poly(|n| + |I|) time a subset W ⊆ F(n)D(n) (in sparse
representation) with (C⊥

n )⊆I ⊆ span(W ) ⊆ C⊥
n , then C has succinct constraint

detection.
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Remark 5. The following operations do not commute: (i) expanding the domain
via zero padding (for the purpose of comparing vectors over different domains),
and (ii)taking the dual of the code. Consider for example the code C = {0} ⊆
F

{1}
2 : its dual code is C⊥ = {0, 1} and, when expanded to F

{1,2}
2 , the dual code

is expanded to {(0, 0), (1, 0)}; yet, when C is expanded to F
{1,2}
2 it produces the

code {(0, 0)} and its dual code is {(0, 0), (1, 0), (0, 1), (1, 1)}. To resolve ambi-
guities (when asserting an equality as in Claim 4.1), we adopt the convention
that expansion is done always last (namely, as late as possible without having
to compare vectors over different domains).

4.2 Partial Sums of Low-Degree Polynomials

We show that evaluations of partial sums of low-degree polynomials have succinct
constraint detection (see Definition 8). In the following, F is a finite field, m, d
are positive integers, and H is a subset of F; also, F

<d[X1, . . . , Xm] denotes
the subspace of F[X1, . . . , Xm] consisting of those polynomials with individual
degrees less than d. Moreover, given Q ∈ F

<d[X1, . . . , Xm] and α ∈ F
≤m (vectors

over F of length at most m), we define Q(α) :=
∑

γ∈Hm−|α| Q(α,γ), i.e., the
answer to a query that specifies only a suffix of the variables is the sum of
the values obtained by letting the remaining variables range over H. We begin
by defining the code that we study, which extends the Reed–Muller code (see
Sect. 3.4) with partial sums.

Definition 10. We denote by ΣRM[F,m, d,H] the linear code that comprises
evaluations of partial sums of polynomials in F

<d[X1, . . . , Xm]; more precisely,
ΣRM[F,m, d,H] := {wQ}Q∈F<d[X1,...,Xm] where wQ : F≤m → F is the function
defined by wQ(α) :=

∑
γ∈Hm−|α| Q(α,γ) for each α ∈ F

≤m.6 We denote by
ΣRM the linear code family indexed by tuples n = (F,m, d,H) and where the
n-th code equals ΣRM[F,m, d,H]. (We represent indices n so to ensure that
|n| = Θ(log |F| + m + d + |H|).)

We prove that the linear code family ΣRM has succinct constraint detection:

Theorem 5 (formal statement of 3). ΣRM has poly(log |F|+m+d+|H|+�)-
time constraint detection.

Combined with Lemma 1, the theorem above implies that there exists a prob-
abilistic polynomial-time algorithm for answering queries to a codeword sampled
at random from ΣRM, as captured by the following corollary.

6 Note that ΣRM[F,m, d,H] is indeed linear: for every wQ1 , wQ2 ∈ ΣRM[F,m, d,H],
a1, a2 ∈ F, and α ∈ F

≤m, it holds that a1wQ1(α) + a2wQ2(α) = a1

∑
γ∈Hm−|α| Q1

(α,γ) + a2

∑
γ∈Hm−|α| Q2(α,γ) =

∑
γ∈Hm−|α|(a1Q1 + a2Q2)(α,γ) = wa1Q1+a2Q2

(α). But wa1Q1+a2Q2 ∈ ΣRM[F,m, d,H], since F
<d[X1, . . . , Xm] is a linear space.
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Corollary 1. There exists a probabilistic algorithm A such that, for every finite
field F, positive integers m, d, subset H of F, subset S = {(α1, β1), . . . , (α�, β�)} ⊆
F

≤m × F, and (α, β) ∈ F
≤m × F,

Pr
[
A(F,m, d,H, S, α) = β

]
= Pr

R←F<d[X1,...,Xm]

⎡

⎢
⎣R(α) = β

∣
∣
∣
∣
∣
∣
∣

R(α1) = β1

...
R(α�) = β�

⎤

⎥
⎦ .

Moreover A runs in time poly(log |F| + m + d + |H| + �).

We sketch the proof of Theorem 5, for the simpler case where the code is
RM[F,m, d,H] (i.e., without partial sums). We can view a polynomial Q ∈
F

<d[X1, . . . , Xm] as a vector over the monomial basis, with an entry for each
possible monomial Xi1

1 . . . Xim
m (with 0 ≤ i1, . . . , im < d) containing the corre-

sponding coefficient. The evaluation of Q at a point α ∈ F
m then equals the

inner product of this vector with the vector φα, in the same basis, whose entry
for Xi1

1 . . . Xim
m is equal to αi1

1 . . . αim
m . Given α1, . . . ,α�, we could use Gaussian

elimination on φα1 , . . . , φα�
to check for linear dependencies, which would be

equivalent to constraint detection for RM[F,m, d,H].
However, we cannot afford to explicitly write down φα, because it has dm

entries. Nevertheless, we can still implicitly check for linear dependencies, and
we do so by reducing the problem, by building on and extending ideas of [BW04],
to computing the nullspace of a certain set of polynomials, which can be solved
via an algorithm of [RS05] (see also [Kay10]). The idea is to encode the entries
of these vectors via a succinct description: a polynomial Φα whose coefficients
(after expansion) are the entries of φα. In our setting this polynomial has the
particularly natural form:

Φα(X) :=
m∏

i=1

(1 + αiXi + α2
i X

2
i + · · · + αd−1

i Xd−1
i );

note that the coefficient of each monomial equals its corresponding entry in φα.
Given this representation we can use standard polynomial identity testing tech-
niques to find linear dependencies between these polynomials, which corresponds
to linear dependencies between the original vectors. Crucially, we cannot afford
any mistake, even with exponentially small probability, when looking for linear
dependencies for otherwise we would not achieve perfect simulation; this is why
the techniques we leverage rely on derandomization. We now proceed with the
full proof.

Proof (Proof of Theorem 5). We first introduce some notation. Define [< d] :=
{0, . . . , d − 1}. For vectors α ∈ F

m and a ∈ [< d]m, we define αa :=
∏m

i=1 αai
i ;

similarly, for variables X = (X1, . . . , Xm), we define Xa :=
∏m

i=1 Xai
i .
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We identify ΣRM[F,m, d,H] with F
[<d]m ; a codeword wQ then corresponds

to a vector Q whose a-th entry is the coefficient of the monomial Xa in Q. For
α ∈ F

≤m, let

φα :=

⎛

⎝αa
∑

γ∈Hm−|α|

γb

⎞

⎠

a∈[<d]|α|, b∈[<d]m−|α|

.

We can also view φα as a vector in F
[<d]m by merging the indices, so that, for

all α ∈ F
≤m and wQ ∈ ΣRM[F,m, d,H],

wQ(α) =
∑

γ∈Hm−|α|

Q(α,γ) =
∑

γ∈Hm−|α|

∑

a∈[<d]|α|

∑

b∈[<d]m−|α|

Qa,b · αaγb

=
∑

a∈[<d]|α|

∑

b∈[<d]m−|α|

Qa,b · αa
∑

γ∈Hm−|α|

γb = 〈Q, φα〉.

Hence for every α1, . . . ,α�,α ∈ F
≤m and a1, . . . , a� ∈ F, the following state-

ments are equivalent (i)w(α) =
∑�

i=1 aiw(αi) for all w ∈ ΣRM[F,m, d,H];
(ii)〈f , φα〉 =

∑�
i=1 ai〈f , φαi〉 for all f ∈ F

[<d]m (iii)φα =
∑�

i=1 aiφαi . We
deduce that constraint detection for ΣRM[F,m, d,H] is equivalent to the prob-
lem of finding a1, . . . , a� ∈ F such that φα =

∑�
i=1 aiφαi

, or returning
‘independent’ if no such a1, . . . , a� exist.

However, the dimension of the latter vectors is dm, which may be much larger
than poly(log |F|+m+d+ |H|+ �), and so we cannot afford to “explicitly” solve
the � × dm linear system. Instead, we “succinctly” solve it, by taking advantage
of the special structure of the vectors, as we now describe. For α ∈ F

m, define
the polynomial

Φα(X) :=
m∏

i=1

(1 + αiXi + α2
i X

2
i + · · · + αd−1

i Xd−1
i ).

Note that, while the above polynomial is computable via a small arithmetic cir-
cuit, its coefficients (once expanded over the monomial basis) correspond to the
entries of the vector φα. More generally, for α ∈ F

≤m, we define the polynomial

Φα(X) :=

⎛

⎝
|α|∏

i=1

(1 + αiXi + · · · + αd−1
i Xd−1

i )

⎞

⎠

⎛

⎝
m−|α|∏

i=1

∑

γ∈H

(1 + γXi+|α| + · · · + γd−1Xd−1
i+|α|)

⎞

⎠ .
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Note that Φα is a product of univariate polynomials. To see that the above does
indeed represent φα, we rearrange the expression as follows:

Φα(X) =

⎛

⎝
|α|∏

i=1

(1 + αiXi + · · · + αd−1
i Xd−1

i )

⎞

⎠

⎛

⎝
∑

γ∈Hm−|α|

m−|α|∏

i=1

(1 + γiXi+|α| + · · · + γd−1
i Xd−1

i+|α|)

⎞

⎠

= Φα(X1, . . . , X|α|)

⎛

⎝
∑

γ∈Hm−|α|

Φγ(X|α|+1, . . . , Xm)

⎞

⎠ ;

indeed, the coefficient of Xa,b for a ∈ [< d]|α| and b ∈ [< d]m−|α| is
αa

∑
γ∈Hm−|α| γb, as required.

Thus, to determine whether φα ∈ span(φα1 , . . . , φα�
), it suffices to determine

whether Φα ∈ span(Φα1 , . . . , Φα�
). In fact, the linear dependencies are in corre-

spondence: for a1, . . . , a� ∈ F, φα =
∑�

i=1 aiφαi
if and only if Φα =

∑�
i=1 aiΦαi

.
Crucially, each Φαi

is not only in F
<d[X1, . . . , Xm] but is a product of m univari-

ate polynomials each represented via an F-arithmetic circuit of size poly(|H|+d).
We leverage this special structure and solve the above problem by relying on an
algorithm of [RS05] that computes the nullspace for such polynomials (see also
[Kay10]), as captured by the lemma below;7 for completeness, we provide an
elementary proof of the lema in the full version.

Lemma 3. There exists a deterministic algorithm D such that, on input a vector
of m-variate polynomials Q = (Q1, . . . , Q�) over F where each polynomial has
the form Qk(X) =

∏m
i=1 Qk,i(Xi) and each Qk,i is univariate of degree less than

d with d ≤ |F| and represented via an F-arithmetic circuit of size s, outputs a
basis for the linear space Q⊥ := {(a1, . . . , a�) ∈ F

� :
∑�

k=1 akQk ≡ 0}. Moreover,
D runs in poly(log |F| + m + d + s + �) time.

The above lemma immediately provides a way to construct a constraint detec-
tor for ΣRM: given as input an index n = (F,m, d,H) and a subset I ⊆ D(n), we
construct the arithmetic circuit Φα for each α ∈ I, and then run the algorithm D
on vector of circuits (Φα)α∈I , and directly output D’s result. The lemma follows.

4.3 Univariate Polynomials with BS Proximity Proofs

We show that evaluations of univariate polynomials concatenated with corre-
sponding BS proximity proofs [BS08] have succinct constraint detection (see

7 One could use polynomial identity testing to solve the above problem in probabilistic
polynomial time; see [Kay10, Lemma 8]. However, due to a nonzero probability of
error, this suffices only to achieve statistical zero knowledge, but does not suffice to
achieve perfect zero knowledge.
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Definition 8). Recall that the Reed–Solomon code (see Sect. 3.4) is not locally
testable, but one can test proximity to it with the aid of the quasilinear-size
proximity proofs of Ben-Sasson and Sudan [BS08]. These latter apply when low-
degree univariate polynomials are evaluated over linear spaces, so from now on
we restrict our attention to Reed–Solomon codes of this form. More precisely,
we consider Reed–Solomon codes RS[F, L, d] where F is an extension field of
a base field K, L is a K-linear subspace in F, and d = |L| · |K|−μ for some
μ ∈ N

+. We then denote by BS-RS[K,F, L, μ, k] the code obtained by concate-
nating codewords in RS[F, L, |L| · |K|−μ] with corresponding BS proximity proofs
whose recursion terminates at “base dimension” k ∈ {1, . . . ,dim(L)} (for a for-
mal definition of these, see the full version); typically K, μ, k are fixed to certain
constants (e.g., [BS08] fixes them to F2, 3, 1, respectively) but below we state
the cost of constraint detection in full generality. The linear code family BS-RS
is indexed by tuples n = (K,F, L, μ, k) and the n-th code is BS-RS[K,F, L, μ, k],
and our result about BS-RS is the following:

Theorem 6 (formal statement of 4). BS-RS has poly(log |F| + dim(L) +
|K|μ + �)-time constraint detection.

The proof of the above theorem is technically involved, and we refer the
reader to the full version for details.

The role of code covers. We are interested in succinct constraint detec-
tion: solving the constraint detection problem for certain code families with
exponentially-large domains (such as BS-RS). We now build some intuition about
how code covers can, in some cases, facilitate this.

Consider the simple case where the code C ⊆ F
D is a direct sum of many

small codes: there exists S = {(D̃j , C̃j)}j such that D = ∪jD̃j and C = ⊕jC̃j

where, for each j, C̃j is a linear code in F
D̃j and the subdomain D̃j is small and

disjoint from other subdomains. The detection problem for this case can be solved
efficiently: use the generic approach of Gaussian elimination independently on
each subdomain D̃j .

Next consider a more general case where the subdomains are not necessarily
disjoint: there exists S = {(D̃j , C̃j)}j as above but we do not require that the
D̃j form a partition of D; we say that each (D̃j , C̃j) is a local view of C because
D̃j ⊆ D and C̃j = C|D̃j

, and we say that S is a code cover of C. Now suppose
that for each j there exists an efficient constraint detector for C̃j (which is defined
on D̃j); in this case, the detection problem can be solved efficiently at least for
those subsets I that are contained in D̃j for some j. Generalizing further, we see
that we can efficiently solve constraint detection for a code C if there is a cover
S = {(D̃j , C̃j)}j such that, given a subset I ⊆ D, (i) I is contained in some
subdomain D̃j , and (ii) constraint detection for C̃j can be solved efficiently.

We build on the above ideas to derive analogous statements for recursive
code covers, which arise naturally in the case of BS-RS. But note that recursive
constructions are common in the PCP literature, and we believe that our cover-
based techniques are of independent interest as, e.g., they are applicable to other
PCPs, including [BFLS91,AS98].
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Abstract. Trusted parties and devices are commonly used in the real
world to securely perform computations on secret inputs. However, their
security can often be compromised by side-channel attacks in which the
adversary obtains partial leakage on intermediate computation values.
This gives rise to the following natural question: To what extent can one
protect the trusted party against leakage?

Our goal is to design a hardware device T that allows m ≥ 1 parties
to securely evaluate a function f(x1, . . . , xm) of their inputs by feeding
T with encoded inputs that are obtained using local secret randomness.
Security should hold even in the presence of an active adversary that can
corrupt a subset of parties and obtain restricted leakage on the internal
computations in T .

We design hardware devices T in this setting both for zero-knowledge
proofs and for general multi-party computations. Our constructions can
unconditionally resist either AC0 leakage or a strong form of “only
computation leaks” (OCL) leakage that captures realistic side-channel
attacks, providing different tradeoffs between efficiency and security.

Keywords: Leakage-resilience · Secure multiparty computation · Alge-
braic manipulation detection · AMD Circuits.

1 Introduction

There is a long and successful line of work on protecting general computations
against partial information leakage. Originating from the works on general secure
multiparty computation (MPC) [4,11,22,37], the question has been “scaled
down” to the domain of protecting circuits against local probing attacks [26] and
then extended to different types of global information leakage [7–10,13,15,16,23–
25,28,31,32,34].
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Most of the works along this line consider the challenging goal of protecting
computations against continual leakage. In a general instance of this problem,
a desired ideal functionality is specified by a stateful circuit C, which maps the
current input and state to the current output and the next state. The input and
output are considered to be public whereas the state is secret. The goal is to
securely realize the functionality C by a leakage-resilient randomized circuit Ĉ.
The circuit Ĉ is initialized with some randomized encoding ŝ of an initial secret
state s. The computation can then proceed in a virtually unlimited number
of rounds, where in each round Ĉ receives an input, produces an output, and
replaces the old encoding of the secret state by a fresh encoding of a new state.

The correctness goal is to ensure that Ĉ[ŝ] has the same input-output func-
tionality as C[s]. The security goal is defined with respect to a class L of leakage
functions �, where each function � returns some partial information on the val-
ues of the internal wires of Ĉ. The adversary may adaptively choose a different
function � ∈ L in each round. The security goal is to ensure that whatever
the adversary learns by interacting with Ĉ[ŝ] and by additionally observing the
leakage, it can simulate by interacting with C[s] without obtaining any leakage.

While general solutions to the above problem are known for broad classes
of leakage functions L, they leave much to be desired. Some rely on leak-free
hardware components [15,16,23,28,32]. Others make a heavy use of public-key
cryptography [7,10,23,25,28] or even indistinguishability obfuscation [25]. Other
issues include the need for internal fresh randomness in each round, big computa-
tional overhead that grows super-linearly with the amount of tolerable leakage,
complex and subtle analysis, and poor concrete parameters. All of the above
works suffer from at least some of these limitations.

In this work we take a step back, and study a simpler stateless variant of
the problem, where both C and Ĉ are stateless circuits. The goal is to replace
an ideal computation of C(x) by a functionally equivalent but leakage-resilient
computation Ĉ(x̂). Here x is a secret input which is randomly encoded into an
encoded input x̂ to protect it against leakage. Solutions for the above continuous
leakage model can be easily specialized to the stateless model by considering a
single round where the input is used as the initial secret state. This stateless
variant of the problem has been considered before [25,26,32], but mainly as an
intermediate step and not as an end goal.

Our work is motivated by the observation that this simpler setting, which
is relevant to many real-world scenarios, does not only offer an opportunity to
get around the limitations of previous solutions, but also poses new challenges
that were not addressed before. For instance, can correctness be guaranteed even
when the input encoding x̂ is invalid, in the sense that the output corresponds to
some valid input x? Can the solutions be extended to the case where the encoded
inputs for Ĉ are contributed by several, mutually distrusting, parties? To further
motivate these questions, we put them in the context of natural applications.

Protecting a trusted party. We consider the goal of protecting (stateless) trusted
parties against leakage. Trusted Parties (TPs) are commonly used to perform
computations that involve secret inputs. They are already widely deployed in
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payment terminals and access control readers, and will be even more so in
future Trusted Platform Modules. TPs have several advantages over distrib-
uted protocols for secure multiparty computation (MPC) [4,11,22,37]. First,
they avoid the expensive interaction typically required by MPC protocols. Sec-
ond, they are very light-weight and allow the computational complexity of the
other (untrusted) parties to be independent of the complexity of the compu-
tation being performed. Finally, TPs may offer unconditional security against
computationally unbounded adversaries.

An important special case which is a major focus of this work is that of a
hardware implementation of zero-knowledge (ZK) proofs, a fundamental prim-
itive for identification and a useful building block for cryptographic protocol
design. Informally, a ZK hardware takes a statement and witness from a prover,
and outputs the verified statement, or rej, to a verifier. While there are effi-
cient ZK protocols without hardware (including non-interactive zero-knowledge
protocols (NIZKs) [21,35], or succinct non-interactive arguments of knowledge
(SNARKs) [5]), such protocols do not (and cannot) have the last two features
of TP-based solutions.

A primary concern when using trusted hardware are so-called “side-channel”
attacks which allow the adversary to obtain leakage on the internal computa-
tions of the device (e.g., through measuring its running time [30], power con-
sumption [29], or the electromagnetic radiation it emits [33]). Such attacks were
shown to have devastating effects on security. As discussed above, a large body
of works attempted to incorporate the information obtained through such leak-
age into the security model, and develop schemes that are provably secure in
these models. More specifically, these works have focused on designing leakage-
resilient circuit compilers (LRCCs) that, informally, compile any circuit C into
its leakage-resilient version Ĉ, where Ĉ withstands side-channel attacks in the
sense that these reveal nothing about the (properly encoded) input x̂. However,
all of the schemes obtained in these works suffer from some of the limitations
discussed above. In particular, none considers the questions of invalid encodings
provided by malicious parties or combining encoded inputs that originate from
mutually distrusting parties. These questions arise naturally in the context of
ZK and in other contexts where TPs are used.

1.1 Our Contribution

Our main goal is to study the feasibility and efficiency of protecting TPs against
general classes of leakage, without leak-free hardware or trusted setup. Eliminat-
ing the leak-free hardware unconditionally [24], or under computational assump-
tions [13,34] has been a major research goal. However, in contrast to earlier
works, we consider here the easier case of realizing a stateless TP in the presence
of one-time leakage.

We model the TP as a leaky (but otherwise trusted) hardware device T
that is used by m ≥ 1 parties to execute a multiparty computation task. More
specifically, in this setting each party locally encodes its input and feeds the
encoded input into the device, that evaluates a boolean (or arithmetic) circuit
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on the encoded inputs, and returns the output. This computation should preserve
the secrecy of the inputs, as well as the correctness of the output, in the presence
of a computationally-unbounded adversary that corrupts a subset of the parties,
and additionally obtains leakage on the internals of the device. (Notice that
the secrecy requirement necessitates some encoding of the inputs, otherwise we
cannot protect even against a probing attack on a single bit.)

We note that the stateless hardware should be reusable on an arbitrary num-
ber of different inputs. Thus, we cannot take previous leakage-secure computa-
tion protocols that employ correlated randomness (such as the ones from [15,16])
and embed this randomness into the hardware. Indeed, we consider the internals
of the hardware as being public, since any secret internal embedded values can
be leaked over multiple invocations.

The model has several different variants, depending on whether the adversary
is passive (i.e., only sees the inputs of corrupted parties and obtains leakage on
the internals of the TP) or active (namely, it may also cause corrupted parties to
provide the TP with ill-formed “encoded” inputs that may not correspond to any
inputs for the original computation); whether there is a single party providing
input to the TP (as in the ZK example described below) or multiple parties;
whether the TP is deterministic or randomized (namely, has randomness gates
that generate uniformly-random bits); and finally, whether the output of the TP
is encoded or not (in the latter, one cannot protect the privacy of the output
even when the adversary only obtains leakage on the internals of the TP without
corrupting any parties, whereas in the former the outputs will remain private in
this case). We focus on the variant with an active adversary, and a randomized
TP with encoded outputs. We consider both the single-party and multi-party
setting. In the ZK setting, we also construct deterministic TPs (at the expense
of somewhat increasing the complexity of the prover and verifier).

The leakage model. We consider an extended version of the “only computation
leaks” (OCL) model of Micali and Reyzin [31], also known as “OCL+” [6].
Informally, in this context, the wires of the circuit Ĉ are partitioned into a “left
component” ĈL and a “right component” ĈR. Leakage functions correspond to
bounded-communication 2-party protocols between ĈL, ĈR, where the output of
the leakage function is the transcript of the protocol when the views of ĈL, ĈR

consist of the internal values of the wires of these two “components”. Following
the terminology of Goyal et al. [25], we refer to this model as bounded commu-
nication leakage (BCL). The model is formalized in the next definition.

Definition 1 (t-BCL [25]). Let t ∈ N be a leakage bound parameter. We say
that a deterministic 2-party protocol is t-bounded if its communication com-
plexity is at most t. Given a t-bounded protocol Π, we define the t-bounded-
communication leakage (t-BCL) function fΠ associated with Π, that given the
views of the two parties, outputs the transcript of Π. The class Lt

BCL con-
sists of all t-BCL functions fΠ associated with t-bounded protocols Π, namely:
Lt

BCL = {fΠ : Π is t − bounded}.



How to Construct a Leakage-Resilient (Stateless) Trusted Party 213

We say that a size-s circuit Ĉ is t-BCL resilient if there exists a partition
P = {s1, s2} of the wires of Ĉ, such that the circuit resists any t-BCL function
fΠ for a protocol Π that respects the partition P.

We note that BCL is broad enough to capture several realistic leakage attacks
such as the sum of all circuit wires over the integers, as well as linear functions
over the wires of the circuit. This captures several realistic attacks on hard-
ware devices, where a single electromagnetic probe measures involuntary leakage
which can be approximated by a linear function of the wires of the circuit.

1.2 Our Results

We construct TPs for both ZK proofs, and general MPC, which simultaneously
achieve many of the desired features described above: they resist a wide class of
leakage functions (BCL), without using any leak-free components, and are quite
appealing from the perspective of asymptotic efficiency, since the complexity
of the parties is independent of the size of the computation. Our constructions
combine ideas and results from previous works on leakage-resilient circuits, with
several new ideas, as discussed in Sect. 1.3.

TPs for ZK. In the context of ZK, the hardware device enables the verification of
NP-statements of the form “(x,w) ∈ R” for an NP-relation R. That is, the prover
provides (x,w) as input to the device, which computes the function f (x,w) =
(x,R (x,w)). Since the device is leaky, the prover is unwilling to provide its secret
witness w to the device “in the clear”. Instead, the prover prepares in advance a
“leak-free” encoding ŵ of w, which it stores on a small isolated device (such as
a smartcard or USB drive). It then provides (x, ŵ) as input to the leaky device
(e.g., by plugging in his smartcard) which outputs the public verification out-
come. We say that the hardware device is an L-secure ZK circuit if it resists leak-
age from L with negligible error. We construct Lt

BCL-secure ZK circuits for NP:

Theorem 1 (Leakage-secure ZK circuit). For any leakage bound t ∈ N,
statistical security parameter σ ∈ N, and length parameter n ∈ N, any NP-
relation R = R (x,w) with verification circuit of size s, depth d, and n inputs has
an Lt

BCL-secure ZK circuit CR that outputs the outcome of verification, where
Lt

BCL is the family of all t-BCL functions. Moreover, to prove that (x,w) ∈ R,
the prover runs in time poly (t, σ, n, |w|), and |CR| = ˜O (s + d (t + σ + n)) +
poly (t, σ, n).

We also construct a variant of the ZK circuit that allows one to “trade”
efficiency of the prover and verifier with the randomness used by the ZK circuit:

Theorem 2 (Deterministic leakage-secure ZK circuit). For any leakage
bound t ∈ N, statistical security parameter σ ∈ N, and length parameter n ∈ N,
any NP-relation R = R (x,w) with verification circuit of size s, depth d, and
n inputs has a deterministic Lt

BCL-secure ZK circuit CR. Moreover, |CR| =
˜O (s + d (t + σ + n)) + poly (t, σ, n), to prove that (x,w) ∈ R, the prover runs
in time ˜O (s + d (t + σ + n)) + poly (t, σ, n, |w|), and the verifier runs in time
poly (t, σ, n).
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General MPC. We consider hardware devices that allow the evaluation of general
functions in both the single-party setting, and the multiparty setting with m ≥ 2.
More specifically, we construct m-party LRCCs that given a circuit C that takes
inputs from m parties, output a circuit Ĉ that operates on encoded inputs and
outputs. Informally, we say the m-party LRCC is (L, ε)-secure if the evaluation
of Ĉ guarantees (except with probability ε) privacy of the honest parties’ inputs,
and correctness of the output, in the presence of an adversary that may actively
corrupt a strict subset of parties, and obtain leakage from L on the internals of
the device. We construct m-party LRCCs that are secure against t-BCL:

Theorem 3 (Leakage-secure m-party LRCC). For any leakage bound t ∈
N, statistical security parameter σ ∈ N, input and output length parame-
ters n, k ∈ N, and size and depth parameters s, d ∈ N, any m-party func-
tion f : ({0, 1}n)m → {0, 1}k computable by a circuit of size s and depth
d has an m-party (Lt

BCL, ε)-secure LRCC, where Lt
BCL is the family of all

t-BCL functions, and ε = negl (σ). Moreover, the leakage-secure circuit has size
˜O (s + d (t + σ log m)) + m · poly (t, σ, log m, k), its input encodings can be com-
puted in time ˜O (n) + poly (t, σ, log m, k), and its outputs can be decoded in time
˜O (m · k (t + σ log m + k)).

1.3 Our Techniques

1.3.1 Leakage-Resilient Zero-Knowledge
Recall that the leaky ZK device allows a prover P to prove claims of the form
“(x,w) ∈ R” for some NP-relation R. We model the device as a stateless boolean
(or more generally, arithmetic) circuit C. Though C cannot be assumed to with-
stand leakage, using an LRCC it can be transformed into a leakage-resilient
circuit Ĉ. Informally, an LRCC is associated with a function class L (the leakage
class), a (randomized) input encoding scheme E, and a (deterministic) output
decoder DecOut. The LRCC compiles a circuit C into a (public) circuit Ĉ that
emulates C over encoded inputs and outputs. Ĉ resists leakage from L in the
sense that for any input z for C, and any � ∈ L, the output of � on the wire
values of Ĉ, when evaluated on E (z), can be efficiently simulated given only the
description of C.

Our starting point in constructing leakage-resilient ZK hardware is the recent
result of Goyal et al. [25], who use MPC protocols to protect computation against
BCL leakage. More specifically, they design information-theoretically secure pro-
tocols in the OT-hybrid model that allow a user, aided by a pair of “honest-but-
curious” servers, to compute a function of her input while preserving the privacy
of the input and output even under BCL leakage on the internals of the servers.
We observe that when these server programs are implemented as circuits (in
particular, the OT calls are implemented by constant-sized sub-circuits), this
construction gives an LRCC that resists BCL leakage.

In the context of designing leakage-resilient TPs, the main advantage of this
construction over previous information-theoretically secure LRCCs that resist
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similar leakage classes [15,16,32] is that [25] does not use any leak-free compo-
nents. More specifically, these LRCCs use the leak-free components (or leak-
free preprocessing in [23]) to generate “masks”, which are structured random
bits that are used to mask the internal computations in Ĉ, thus guaranteeing
leakage-resilience.

These leak-free components could be eliminated if the parties include the
masks as part of their input encoding. However, this raises three issues. First,
in some constructions (e.g. [15,16,32]) the number of masks is proportional to
the size of Ĉ, so the running time of the parties would not be independent
of the computation size (which defeats the purpose of delegating most of the
computation to the TP). Second, in the multi-party setting, it is not clear how
to combine the masks provided by different parties into a single set of masks to be
used in Ĉ, such that these masks are unknown to each one of the parties, which
is crucial for the leakage-resilience property to hold. (We show in [36] how to do
so for the LRCC of [16] which resists AC0 leakage, but this construction has the
efficiency shortcomings mentioned above.) Finally, even with a single party, these
constructions totally break when the party provides “ill-formed” masks (namely,
masks that do not have the required structure), since correctness is guaranteed
only when the masks have the required structure. This is not only a theoretical
concern, but rather an actual one. To see why, consider the ZK setting. If the
prover provides the masks to the device then it has a way of choosing (ill-
formed) masks that flip the output gate, thus causing the device to accept false
NP statements. Alternative “solutions” also fail: the device cannot verify that
the masks provided by the prover are well-formed, since the aforementioned
constructions crucially rely on the fact that the leakage-resilience simulator can
use ill-formed masks; and the verifier cannot provide the masks, since leakage-
resilience relies on the leakage function not knowing the masks.

Though using the LRCC of [25] eliminates all these issues, it has one short-
coming: its leakage-resilience simulator is inefficient. In the context of ZK hard-
ware, this gives witness-indistinguishability, namely the guarantee that a mali-
cious verifier that can leak on the internals of the ZK hardware cannot distinguish
between executions on the same statement x with different witnesses w,w′. This
falls short of our desired security guarantee that leakage reveals no information
about the witness. (In particular, notice that if a statement x has only one wit-
ness then witness-indistinguishability provides no security.) We note that this
weaker security guarantee is inherent to the construction of [25].

To achieve efficient simulation, we leverage the fact that the construction
of [25] operates over encodings that resist BCL leakage. We observe that one can
obtain simulation-based security if the encodings at the output of Ĉ are decoded
using a circuit ĈDec that “tolerates” BCL leakage, in the sense that such leakage
on its entire wire values can be simulated given only (related) BCL leakage on
the inputs and outputs of the circuit [7]. Indeed, the simulator can evaluate Ĉ on
an arbitrary (non-satisfying) “witness” (thus generating the entire wire values
of Ĉ, and in particular allowing the simulator to compute any leakage on them),
and then simulate leakage on the internals of ĈDec by computing (related) leakage
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on its inputs (namely, the outputs of Ĉ) and output (which is (x, 1)). Since the
outputs of Ĉ resist BCL leakage, this is indistinguishable from the leakage on
the internal wires of Ĉ, ĈDec when Ĉ is evaluated on an actual witness. We note
that the decoding circuit ĈDec can be constructed using the LRCC of [15], which
by a recent result of Bitansky et al. [8] is leakage-tolerant against BCL leakage.

Though this construction achieves efficient simulation, it is no longer sound.
Indeed, soundness crucially relies on the fact that ĈDec emulates CDec (which
decodes the output of Ĉ). Recall that in current LRCC constructions that offer
information-theoretic security against wide leakage classes (e.g., [15,16,32]), the
correctness of the computation crucially relies on the fact that the masks (which
are provided as part of the input encoding) have the “correct” structure. Con-
sequently, by providing ĈDec with ill-formed masks, a malicious prover P ∗ can
arbitrarily modify the functionality emulated by ĈDec, and in particular, may
flip the output of ĈDec, causing the device to accept x /∈ LR.1 Recall that the
device cannot verify that the masks are well-formed, since this would violate
leakage-resilience.

To overcome this, we observe that when ĈDec is generated using the LRCC of
Dziembowski and Faust [15], the effect of ill-formed masks on the computation
in ĈDec is equivalent to adding a vector of fixed (but possibly different) field
elements to the wires of CDec. Such attacks are called “additive attacks”, and
one can use AMD circuits [17–19] to protect against them. Informally, AMD cir-
cuits are randomized circuits that offer the best possible security under additive
attacks, in the sense that the effect of every additive attack that may apply to
all internal wires of the circuit can be simulated by an ideal attack that applies
only to its inputs and outputs.

Thus, by replacing CDec with an AMD circuit C ′
Dec before applying the LRCC,

the effect of ill-formed encoded inputs is further restricted to an additive attack
on the inputs and output of CDec. Finally, to protect the inputs and outputs
of C ′

Dec from additive attacks, we use the AMD code of [12]. (We note that
encoding the inputs and outputs of C ′

Dec using AMD codes is inherent to any
AMD-based construction, otherwise a malicious prover P ∗ can use ill-formed
encoded inputs to Ĉ ′

Dec to flip the output.) As we show in Sect. 4, the resultant
construction satisfies the properties of Theorem 1. To obtain the deterministic
circuit of Theorem2, we have the prover provide (as part of its input encoding)
the randomness used by the ̂C component (which was generated using the LRCC
of [25]), and the verifier provides the randomness used by the AMD circuit in
̂CDec. (We note that the prover cannot provide this randomness, since the security
of AMD circuits crucially relies on their randomness being independent of the
additive attack. Therefore, if the prover provides the randomness for the AMD
circuit, a malicious prover may correlate the randomness used by the AMD
circuit with the additive attack, rendering the AMD circuit useless.)

1 We note that “ill-formed” encodings do not pose a problem for stateful circuits
(intuitively, the compiled circuit can use the secret state to overcome the influence
of ill-formed masks). However, we are interested in stateless circuits.
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1.3.2 General Leakage-Resilient Computation
Recall that the setting consists of m ≥ 1 parties that utilize a leaky, but otherwise
trusted, device to compute a joint function of their inputs; while protecting
the privacy of the inputs, and the correctness of the output, against an active
adversary that corrupts a subset of the parties, and may also obtain leakage
on the internals of the device. More specifically, we construct m-party LRCCs
that given a (boolean or arithmetic) circuit C with m inputs, output a circuit
Ĉ that operates on encoded inputs and outputs. (Recall that encoded outputs
are needed to guarantee privacy against adversaries that do not corrupt any
parties.) As in other LRCCs, the circuit compiler is associated with an input
encoder Enc, and an output decoder Dec (used to encode the inputs to, and the
output of, Ĉ, respectively).

The multiparty setting introduces an additional complication which did not
arise in the ZK setting. Recall that the leakage-resilience property of Ĉ crucially
relies on the fact that its internal computations are randomized using masks
which are unknown to the leakage function. As already discussed in Sect. 1.3.1,
to avoid the need for leak-free hardware we let the participating parties provide
these masks. Consequently, the adversary (who also chooses the leakage function)
knows the identity of the masks provided by all corrupted parties. We note that
this issue occurs even in the passive setting, in which parties are guaranteed
to honestly encode their inputs. This raises the following question: how can
we preserve the leakage-resilience property when the leakage function “knows” a
subset of the masks?

Our solution is to first replace the circuit C with a circuit C ′ that computes
an m-out-of-m additive secret sharing of the output of C. We then construct the
leakage-resilient version Ĉ ′ of C ′ using the LRCC of [25], which outputs encod-
ings of the secret shares which C ′ computes. Then, each encoding is refreshed
in a leakage-resilient manner. (This is similar to using a leakage-resilient version
of the decoder in the ZK setting of Sect. 1.3.1.) More specifically, let Crefresh be
a circuit that given an encoding of some value v outputs a fresh encoding of v.
Similar to the construction of ZK circuits in Sect. 1.3.1, we replace Crefresh with
an AMD circuit C ′

refresh that emulates Crefresh but operates on AMD encodings.
Finally, we compile C ′

refresh using the LRCC of [15] into a leakage-resilient cir-
cuit Ĉ ′

refresh, which (as discussed in Sect. 1.3.1) has the additional feature that
ill-formed masks are detected. We use m copies of Ĉ ′

refresh to refresh the m secret
shares, where the i’th copy is associated with the i’th party, who provides (as
part of its input encoding) the masks needed for the computation of the i’th copy.
Finally, the decoder Dec decodes the secret shares, and uses them to reconstruct
the output.

Having the leakage-resilience circuit generate (encodings of) secret-shares of
the output, instead of (an encoding of) the output itself guarantees leakage-
resilience even when the adversary corrupts parties and learns the masks which
they provide for the computation. At a very high level, this holds because even
if the adversary learns (through the leakage, and knowledge of the masks) the
entire wire values of the copies of Ĉ ′

refresh associated with corrupted parties, these
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only reveal information about the secret shares which these copies operate on.
Therefore, the secrecy of the secret-sharing scheme guarantees that no informa-
tion is revealed about the actual output, or inputs, of the computation. Thus,
we obtain Theorem 3. (The analysis is in fact much more complex, see Sect. 6
for the construction and its analysis.)

1.4 Open Problems

Our work leaves several interesting open problems for further research. One is
that of making the TP deterministic, while minimizing the complexity of the
parties. Currently, we can make the TP deterministic, but only at the expense
of making the parties work as hard as the entire original computation. A nat-
ural approach is via derandomization of the LRCC of [25]. Another research
direction is to obtain a better understanding of the leakage classes that can be
handled in this model, and extend the results to the setting of continuous leakage
with stateful circuits. Another question is that of improving the asymptotic and
concrete efficiency of our constructions, by providing better underlying LRCCs,
or better analysis of existing ones. These questions are interesting even in the
simple setting of a single semi-honest party.

1.5 Related Work

Originating from [26], MPC techniques are commonly used as a defense against
side-channel attacks (see [2,3] and references therein). However, except for the
works of [14,26] (discussed below) these techniques either rely on cryptographic
assumptions [13,25], or on structured randomness which is generated by leak-
free hardware, and is used to mask the internal computations [6,8,15,16,23].
To eliminate the leak-free hardware, the parties can provide the structured ran-
domness as part of their input encoding. However, since the correctness of the
computation crucially relies on the randomness having the “correct” structure,
this allows corrupted parties to arbitrarily modify the functionality computed by
the circuit, by providing randomness that does not have the required structure.

The only exception to the above are the works of [14,26], that provide prov-
able information-theoretic security guarantees (without relying on structured
randomness) against probing attacks, and some natural types of “noisy” leak-
age, but fail to protect against other simple types of realistic attacks, such as
the sum of a subset of wires over the integers. (For example, when an AND
gate is implemented using the LRCC of [26], the sum of a subset of wires in the
resultant circuit allows an adversary to distinguish between the case in which
both inputs are 0, and the case in which one of them is 1.)

2 Preliminaries

Let F be a finite field, and Σ be a finite alphabet (i.e., a set of symbols).
For a function f over Σn, we use supp (f) to denote the image of f , namely
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supp (f) = {f (x) : x ∈ Σn}. For an NP-relation R = R (x,w), we denote
LR = {x : ∃w, (x,w) ∈ R}. Vectors will be denoted by boldface letters (e.g., a).
If D is a distribution then X ← D, or X ∈R D, denotes sampling X according to
the distribution D. Given two distributions X,Y , SD (X,Y ) denotes the statisti-
cal distance between X and Y . For a natural n, negl (n) denotes a function that
is negligible in n. For a function family L, we sometimes use the term “leakage
family L”, or “leakage class L”. In the following, n usually denotes the input
length, k usually denotes the output length, d, s denote depth and size, respec-
tively (e.g., of circuits, as defined below), and m is used to denote the number
of parties.

Circuits. We consider boolean circuits C over the set X = {x1, · · · , xn} of
variables. C is a directed acyclic graph whose vertices are called gates and whose
edges are called wires. The wires of C are labeled with functions over X. Every
gate in C of in-degree 0 has out-degree 1 and is either labeled by a variable from
X and referred to as an input gate; or is labeled by a constant α ∈ {0, 1} and
referred to as a constα gate. Following [16], all other gates are labeled by one of
the operations ∧,∨,¬,⊕, where ∧,∨,⊕ vertices have fan-in 2 and fan-out 1; and
¬ has fan-in and fan-out 1. We write C : {0, 1}n → {0, 1}k to indicate that C is
a boolean circuit with n inputs and k outputs. The size of a circuit C, denoted
|C|, is the number of wires in C, together with input and output gates.

We also consider arithmetic circuits C over a finite field F and the set X.
Similarly to the boolean case, C has input and constant gates, and all other gates
are labeled by one of the following functions +,−,× which are the addition,
subtraction, and multiplication operations of the field. We write C : Fn → F

k

to indicate that C is an arithmetic circuit over F with n inputs and k outputs.
Notice that boolean circuits can be viewed as arithmetic circuits over the binary
field in a natural way. Therefore, we sometimes describe boolean circuits using
the operations +,−,× instead of ⊕,¬,∧,∨.

Additive Attacks. Following the terminology of [17], an additive attack A
affects the evaluation of a circuit C as follows. For every wire connecting gates
a and b in C, a value specified by the attack A is added to the output of a
and then the derived value is used for the computation of b. Similarly, for every
output gate, a value specified by A is added to the value of this output. Note
that an additive attack on C is a fixed vector of (possibly different) field elements
which is independent from the inputs and internal values of C. We denote the
evaluation of C under additive attack A by CA.

At a high level, an additively-secure implementation of a function f is a
circuit which evaluates f , and guarantees the “best” possible security against
additive attacks, in the sense that any additive attack on it is equivalent (up to a
small statistical distance) to an additive attack on the inputs and outputs of f .
Formally,

Definition 2 (Additively-secure implementation [18]). Let ε > 0. A ran-
domized circuit C : F

n → F
k is an ε-additively-secure implementation of a

function f : Fn → F
k if the following holds.
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– Completeness. For every x ∈ F
n, Pr [C (x) = f (x)] = 1.

– Additive-attack security. For any additive attack A there exist ain ∈
F

n, and a distribution AOut over F
k, such that for every x ∈ F

n,
SD(CA (x) , f

(

x + ain
)

+ Aout) ≤ ε.

We also consider the notion of an additively-secure circuit compiler, which is a
single PPT algorithm that compiles a given circuit C into its additively-secure
implementation.

Definition 3 (Additively-secure circuit compiler). Let n ∈ N be an input
length parameter, k ∈ N be an output length parameter, and ε (n) : N → R

+.
Let Comp be a PPT algorithm that on input a circuit C : Fn → F

k, outputs a
circuit Ĉ. Comp is an ε (n)-additively-secure circuit compiler over F if for every
circuit C : Fn → F

k that computes a function fC , Ĉ is an ε (n)-additively-secure
implementation of fC .

We will need the following theorem.

Theorem 4 [19]. Let n be an input length parameter, and ε (n) : N → R
+ be a

statistical error function. Then there exists an ε (n)-additively-secure circuit com-
piler Comp over F2. Moreover, on input a depth-d boolean circuit C : {0, 1}n →
{0, 1}k, Comp outputs a circuit Ĉ such that |Ĉ| = |C| · polylog

(

|C|, log 1
ε(n)

)

+

poly
(

n, k, d, log 1
ε(n)

)

. Furthermore, there exists a PPT algorithm Alg that on

input C, ε (n), and an additive attack A, outputs a vector ain ∈ {0, 1}n, and
a distribution Aout over {0, 1}k, such that for any x ∈ {0, 1}n it holds that
SD(ĈA(x), C(x + ain) + Aout) ≤ ε (n).

Encoding schemes. An encoding scheme E over alphabet Σ is a pair (Enc,Dec)
of algorithms, where the encoding algorithm Enc is a PPT algorithm that given
a message x ∈ Σn outputs an encoding x̂ ∈ Σn̂ for some n̂ = n̂ (n); and the
decoding algorithm Dec is a deterministic algorithm, that given an x̂ of length
n̂ in the image of Enc, outputs an x ∈ Σn. Moreover, Pr [Dec (Enc (x)) = x] = 1
for every x ∈ Σn. It would sometimes be convenient to explicitly describe the
randomness used by Enc, in which case we think of Enc as a deterministic function
Enc (x; r) of its input x, and random input r. Following [27], we say that a vector
v ∈ Σn̂(n) is well-formed if v ∈ Enc (0n).

Parameterized encoding schemes. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 1t, which
is used as a security parameter. Concretely, the encoding length depends also
on t (and not only on n), i.e., n̂ = n̂ (n, t), and for every t the resultant
scheme is an encoding scheme (in particular, for every x ∈ Σn and every
t ∈ N, Pr [Dec (Enc (x, 1t) , 1t) = x] = 1). We call such schemes parameterized.
For n, t ∈ N, a vector v ∈ Σn̂(n,t) is well-formed if v ∈ Enc (0n, 1t). Furthermore,
we sometimes consider encoding schemes that take a pair of security parameters
1t, 1tIn . (tIn is used in cases when the encoding scheme employs an “internal”



How to Construct a Leakage-Resilient (Stateless) Trusted Party 221

encoding scheme, and is used in the internal scheme.) In such cases, the encod-
ing length depends on n, t, tIn, and the resultant scheme should be an encoding
scheme for every t, tIn ∈ N. We will usually omit the term “parameterized”, and
use “encoding scheme” to describe both parameterized and non-parameterized
encoding schemes.

Next, we define leakage-indistinguishable encoding schemes.

Definition 4 (Leakage-indistinguishability of functions and encod-
ings, [27]). Let D,D′ be finite sets, LD = {� : D → D′} be a family of leakage
functions, and ε > 0. We say that two distributions X,Y over D are (LD, ε)-
leakage-indistinguishable, if for any function � ∈ LD, SD (� (X) , � (Y )) ≤ ε. In
case LD consists of functions over a union of domains, we say that X,Y over D
are (LD, ε)-leakage-indistinguishable if SD (� (X) , � (Y )) ≤ ε for every function
� ∈ L with domain D.

Let L be a family of leakage functions. We say that a randomized function
f : Σn → Σm is (L, ε)-leakage-indistinguishable if for every x, y ∈ Σn, the dis-
tributions f (x) , f (y) are (L, ε)-leakage-indistinguishable. We say that an encod-
ing scheme E = (Enc,Dec) is (L, ε)-leakage-indistinguishable if for every large
enough t ∈ N, Enc (·, 1t) is (L, ε)-leakage indistinguishable.

Algebraic Manipulation Detection (AMD) Encoding Schemes. Infor-
mally, an AMD encoding scheme is an encoding scheme which guarantees that
additive attacks on codewords are detected by the decoder (except with small
probability), where the decoder outputs (in addition to the decoded output) also
a flag indicating whether an additive attack was detected. Formally,

Definition 5 (AMD encoding scheme, [12,18]). Let F be a finite field, n ∈ N

be an input length parameter, t ∈ N be a security parameter, and ε (n, t) : N×N →
R

+. An (n, t, ε (n, t))-algebraic manipulation detection (AMD) encoding scheme
(Enc,Dec) over F is an encoding scheme with the following guarantees.

– Perfect completeness. For every x ∈ F
n, Pr [Dec (Enc (x, 1t) , 1t) =

(0,x)] = 1.
– Additive soundness. For every 0n̂(n,t) �= a ∈ F

n̂(n,t), and every x ∈ F
n,

Pr [Dec (Enc (x, 1t) + a, 1t) /∈ ERR] ≤ ε (n, t) where ERR = (F\{0})×F
n, and

the probability is over the randomness of Enc.

We will use the following theorem from the full version of [18].

Theorem 5 (AMD encoding scheme, [18]). Let F be a finite field, and
n, t ∈ N. Then there exists an

(

n, t, |F|−t
)

-AMD encoding scheme (Enc,Dec)
with encodings of length n̂ (n, t) = O (n + t). Moreover, encoding and decoding
of length-n inputs with parameter t can be performed by circuits of size O (n + t).

2.1 Leakage-Resilient Circuit Compilers (LRCCs)

In this section we define the notion of a leakage-resilient circuit compiler. This
notion, and its variants defined in later sections, will be extensively used in this
work.
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Definition 6 (Circuit compiler with abort). We say that a triplet
(Comp,E,DecOut) is a circuit compiler with abort if:

– E = (Enc,Dec) is an encoding scheme, where Enc on input x ∈ F
n, and 1t, 1tIn ,

outputs a vector x̂ of length n̂ for some n̂ = n̂ (n, t, tIn).
– Comp is a polynomial-time algorithm that given an arithmetic circuit C over

F, and 1t, outputs an arithmetic circuit Ĉ.
– DecOut is a deterministic decoding algorithm associated with a length function

n̂Out : N → N that on input x̂ ∈ F
n̂Out(n) outputs (f, x) ∈ F × F

n.

We require that (Comp,E,DecOut) satisfy the following correctness with abort
property: there exists a negligible function ε (t) = negl (t) such that for any arith-
metic circuit C, and input x for C, Pr

[

DecOut

(

Ĉ (x̂)
)

= (0, C (x))
]

≥ 1 − ε (t),

where x̂ ← Enc
(

x, 1t, 1|C|).

Informally, a circuit compiler is leakage resilient for a class L of functions if
for every “not too large” circuit C, and every input x for C, the wire values of
the compiled circuit Ĉ, when evaluated on a random encoding x̂ of x, can be
simulated given only the description of C; and functions in L cannot distinguish
between the actual and simulated wire values.

Notation 6. For a Circuit C, a function � : F|C| → F
m for some natural m,

and an input x for C, [C, x] denotes the wire values of C when evaluated on x,
and � [C, x] denotes the output of � on [C, x].

Definition 7 (LRCC). Let t ∈ N be a security parameter, and F be a finite
field. For a function class L, ε (t) : N → R

+, and a size function S (n) : N → N,
we say that (Comp,E,DecOut) is an (L, ε (t) ,S (n))-LRCC if there exists a PPT
algorithm Sim such that the following holds. For all sufficiently large t, every
arithmetic circuit C over F of input length n and size at most S (n), every � ∈ L
of input length |Ĉ|, and every x ∈ F

n, we have SD
(

� [Sim (C, 1t)] , �
[

Ĉ, x̂
])

≤
ε (t), where x̂ ← Enc

(

x, 1t, 1|C|).
If the above holds with an inefficient simulator Sim, then we say that

(Comp,E) is an (L, ε (t) ,S (n))-relaxed LRCC.

2.2 Gadget-Based Leakage-Resilient Circuit Compilers

In this section we describe gadget-based LRCCs [15,16,26], which are the basis
of all our constructions. We choose to describe the operation of these compilers
over a finite field F, but the description naturally adjusts to the boolean case
as well. At a high level, given a circuit C, a gadget-based LRCC replaces every
wire in C with a bundle of wires, which carry an encoding of the wire value, and
every gate with a sub-circuit that emulates the operation of the gate on encoded
inputs. More specifically:

Gadgets. A bundle is a sequence of field elements, encoding a field element
according to some encoding scheme E; and a gadget is a circuit which oper-
ates on bundles and emulates the operation of the corresponding gate in C.
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A gadget has both standard inputs, that represent the wires in the original cir-
cuit, and masking inputs (so-called “masks”), that are used to achieve privacy.
More formally, a gadget emulates a specific boolean or arithmetic operation on
the standard inputs, and outputs a bundle encoding the correct output. Every
gadget G is associated with a set MG of “well-formed” masking input bundles
(e.g., in the LRCC of [16], MG consists of sets of 0-encodings). For every stan-
dard input x, on input a bundle x encoding x, and any masking input bundles
m ∈ MG, the output of the gadget G should be consistent with the operation
on x. For example, if G computes multiplication, then for every standard input
x = (x1, x2), for every bundle encoding x = (x1,x2) of x according to E, and
for every masking input bundles m ∈ MG, G (x,m) is a bundle encoding x1 ×x2

according to E. Because the encoding schemes we use have the property that the
encoding function is onto its range, we may think of the masking input bundles
m as encoding some set mask of values. The internal computations in the gadget
will remain private as long as its masking input bundles are a uniformly random
encoding of mask, regardless of the actual value of mask.

Gadget-based LRCCs. In our constructions, the compiled circuit Ĉ is
obtained from a circuit C by replacing every wire with a bundle, and every
gate with the corresponding gadget. Recall that the gadgets also have masking
inputs (which in previous works [15,16] were generated by leak-free hardware).
These are provided as part of the encoded input of Ĉ, in the following way.
E = (Enc,Dec) uses an “inner” encoding scheme EIn = (EncIn,DecIn), where Enc
uses EncIn to encode the inputs of C, concatenated with 0tIn for a “sufficiently
large” tIn (these 0-encodings will be the masking inputs of the gadgets, that are
used to achieve privacy); and Dec uses DecIn to decode its input, and discards
the last tIn symbols.

3 LRCCs Used in this Work

In this section we review the various LRCC constructions used in this work.

3.1 The LRCC of [25]

We use a slight modification of the LRCC of Goyal et al. [25], which we describe in
this section. Their construction uses small-bias encodings over F2, namely encod-
ings for which linear distinguishers obtain only a small distinguishing advantage
between encodings of 0 and 1. Formally:

Definition 8 (Small-bias encoding schemes). Let ε ∈ (0, 1), and (Enc,Dec)
be an encoding scheme over F2 with encodings of length n̂. We say that
(Enc,Dec) is ε-biased if for every x ∈ F2, and every ∅ �= S ⊆ [n̂],
|Pr [PS (Enc (x)) = 1] − Pr [PS (Enc (x)) = 0]| ≤ ε, where PS (z) = ⊕i∈Szi, and
the probability is over the randomness of Enc.
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At a high level, given a circuit C (which, without loss of generality, contains
only NAND gates), its leakage-resilient version is constructed in three steps: first,
C is compiled into a parity resilient circuit C⊕, which emulates the operation of
C on small-bias encodings of its inputs, and resists leakage from the class of all
parity function (namely, all functions that output the parity of a subset of wires).
C⊕ is constructed using a single constant-size gadget G that operates over the
small-bias encoding. Second, a GMW-style 2-party protocol π is constructed,
which emulates C⊕ (gate-by-gate) on additive secret shares of the input, and
outputs additive secret shares of the output. π uses an oracle to the functionality
computed by the gadget G. In the final step, each oracle call to G is replaced with
a constant number of OT calls, and the resultant 2-party protocol is converted
into a boolean circuit, in which the OT calls are implemented using a constant
number of gates.2 The resultant circuit C ′ operates on encoded inputs, and
returns encoded outputs. More specifically, the encoding scheme first encodes
each input bit using the small-bias encoding, then additively secret shares these
encodings into two shares.

The reason we need to modify the compiler is the small-bias encoding
it uses. The LRCC can use any small-bias encoding, and [25] construct a
robust gadget G, that can emulate any constant-sized boolean function, over
inputs and outputs encoded according to any constant-sized small-bias encod-
ing (the inputs and outputs may actually be encoded using different encoding
schemes). However, the specific encoding used in [25] is insufficient for our needs.
More specifically, we need an encoding scheme

(

Enc : {0, 1} × {0, 1}c → {0, 1}c′
,

Dec : {0, 1}c′ → {0, 1}2
)

(for some natural constants c, c′)3 satisfying the follow-
ing two properties for some constant ε > 0.

– Property (1): (Enc,Dec) is ε-biased, and |supp (Enc (0; ·))| = |supp
(Enc (1; ·))|.

– Property (2): For every 0 �= A ∈ {0, 1}c′
, and every b ∈ {0, 1}, Prr∈R{0,1}c

[Enc (b; r) ⊕ A ∈ supp (Enc (1 ⊕ b; ·))] ≤ ε.

The first property is needed for the leakage-resilience property of the LRCC
of [25]. The second property implies that with constant probability, additive
attacks on encodings are “harmless”, in the sense that they either do not change
the encoded value, or result in an invalid encoding. The reason that the second
property is needed will become clear in Sect. 4.1.

Since the encoding scheme used in [25] does not possess property (2), we
replace it with an encoding that does.4 As noted in [25], a probabilistic argu-
ment implies that for a large enough constant c, and c′ = 2c, most encoding
2 We note that the conversion from protocol to circuit is not explicitly described in [25].
3 Dec returns a pair of bits of which one is a flag indicating whether decoding failed.

This is necessary since for c′ > c+ 1, not all possible inputs to Dec are valid encoding.
4 To improve efficiency of our construction by a factor of 2, one could use the encoding

of [25] (in which c′ = c + 1) throughout the circuit, and only use our new encoding
for the outputs of the circuit. However, to simplify the construction we choose to
use the same encoding throughout the circuit.
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schemes with a 1:1 Enc satisfy property (1). A similar argument shows that
most encoding schemes posses property (2). Therefore, there exists an encoding
scheme

(

Enc⊕ : {0, 1} × {0, 1}c → {0, 1}2c,Dec⊕ : {0, 1}2c → {0, 1}2
)

with both
properties. (Moreover, one can find an explicit description of this scheme, since
c is constant.) Since G is a generic gadget, that can be used to emulate any
function over any encoding, we can replace the encoding scheme of [25] with
(

Enc⊕,Dec⊕)

.
We are now ready to define the encoding used by the LRCC of [25].

Construction 1. The encoding scheme
(

EncGIMSS,DecGIMSS
)

over F2 is
defined as follows:

– for every x ∈ F2, EncGIMSS (x, 1t):
• Generates x1, · · · , xt ← Enc⊕ (x).
• Picks xL,xR ∈ F

2ct
2 uniformly at random subject to the constraint that

xL ⊕ xR =
(

x1, · · · , xt
)

.
– DecGIMSS : F2ct

2 × F
2ct
2 → F

2
2, on input

(

xL,xR
)

operates as follows:
• Computes x = xL⊕xR, and denotes x =

(

x1, · · · , xt
)

. (Intuitively, xL,xR

are interpreted as random secret shares of x, and x consists of t copies of
encodings, according to Enc⊕, of a bit b.)

• For every 1 ≤ i ≤ t, let (fi, xi) = Dec⊕ (

xi
)

. (This step decodes each of
the t copies of b.)

• If there exist 1 ≤ i1, i2 ≤ t such that fi1 �= 0, or xi1 �= xi2 , then sets
f = 1. Otherwise, sets f = 0. (This step checks that all copies of b are
consistent, and that no flag is set, otherwise the decoder sets a flag f .)

• Outputs
(

f, x1
)

.

We will need the fact that every additive attack on encodings generated
by Construction 1 is either “harmless” (in the sense that it does not change
the encoded value), or causes a decoding failure. This is formalized in the next
lemma.

Lemma 1. Let t ∈ N be a security parameter. Then for every 0 �= A ∈ F
4ct
2 ,

and for every x ∈ F2,

Pr
[

DecGIMSS
(

EncGIMSS
(

x, 1t
)

+ A
)

/∈ {(0, x) ,ERR}
]

= negl (t) .

Proof. Let 0 �= A =
(

AL,AR
)

∈ F
2ct
2 × F

2ct
2 , and let

(

xL,xR
)

←
EncGIMSS (x, 1t). Then on input

(

yL,yR
)

=
(

xL,xR
)

+
(

AL,AR
)

, the decoder
DecGIMSS first computes

x′ =
(

x1′, · · · , xt′) = yL ⊕ yR = xL ⊕ xR ⊕ AL ⊕ AR

and then for every 1 ≤ i ≤ t, computes (fi, x
′
i) ← Dec⊕ (

xi, 1t
)

. We consider
two possible cases.
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First, if AL ⊕AR = 0, then x′ = xL ⊕xR, namely the additive attack cancels
out, and so the output of DecGIMSS would be (0, x) (with probability 1) by the
correctness of the scheme.

Second, assume that AL ⊕ AR �= 0 and DecGIMSS (x ⊕ A, 1t) �= (0, x). We
show that in this case DecGIMSS outputs ERR except with negligible probability.
Recall that Enc⊕ has the property that for every 0 �= A′, and every z ∈ F,
Pr

[

Enc⊕ (z) ⊕ A′ ∈ supp
(

Enc⊕ (z̄)
)]

≤ ε for some constant ε ∈ (0, 1), where
the probability is over the randomness used by Enc⊕ to generate the encoding.
Consequently, for every 1 ≤ i ≤ t, Pr

[

Dec⊕ (

xi′) = (0, x̄)
]

≤ ε. Since DecGIMSS

outputs (0, x̄) only if all xi′ decoded to x̄, and each of these t copies was gen-
erated using fresh, independent randomness in Enc⊕, this happens only with
probability εt = negl (t).

The final modification we need is in the gadget G. Notice that unlike the
semi-honest setting considered in [25], in our setting the parties provide the
inputs to the leakage-resilient circuit, where a malicious party may provide inputs
that are not properly encoded, and therefore do not correspond to any input
for the original circuit. (We note that the inputs are the only encodings that
may be invalid, since G is guaranteed to always output valid encodings.) To
guarantee correctness of the computation even in this case, the encoded inputs
should induce inputs to the original circuit. Therefore, we have G interpret invalid
encodings as encoding the all-zeros string. More specifically, given encodings x̂, ŷ,
G operates as follows: decodes x̂, ŷ to obtain x, y, where if decoding failed then
x, y are set to the all-zero strings; computes z = NAND (x, y); and outputs a
fresh encoding of z.

Combining the aforementioned modifications, we have the following.

Construction 2 (LRCC, [25]). Let c ∈ N and ε ∈ (0, 1) be constants,
t, tIn ∈ N be security parameters, and n ∈ N be an input length parame-
ter. Let

(

Enc⊕ : F2 × F
c
2 → F

2c
2 ,Dec⊕ : F2c

2 → F2

)

be an encoding scheme sat-
isfying properties (1) and (2) described above. (We also use Enc⊕,Dec⊕ to
denote the natural extension of encoding and decoding to bit strings, where
every bit is encoded or decoded separately.) The relaxed LRCC with abort
(

CompGIMSS,EGIMSS
In ,DecGIMSS

Out

)

is defined as follows.

– The input encoding scheme EGIMSS
In =

(

EncGIMSS
In ,DecGIMSS

In

)

is defined as
follows:

• for every x ∈ F2, EncGIMSS
In (x, 1tIn) =

(

xL,xR, r
)

where xL,xR are a
random additive secret sharing of Enc⊕ (x), and r ∈R F

tIn
2 .

• DecGIMSS
In

(((

xL,xR
)

, r
)

, 1tIn
)

computes (f, x) = Dec⊕ (

xL + xR
)

, and
outputs x.

– The output decoding algorithm DecGIMSS
Out : Fn·t·2c

2 × F
n·t·2c
2 → F

n+1
2 , on input

(

xL,xR
)

=
((

xL
1 , · · · ,xL

n

)

,
(

xR
1 , · · · ,xR

n

))

operates as follows:
• For every 1 ≤ i ≤ n, computes (fi, xi) = DecGIMSS

((

xL
i ,xR

i

)

, 1t
)

(where
DecGIMSS is the decoder from Construction 1).

• If there exist 1 ≤ i ≤ n such that fi �= 0, outputs (1, 0n). Otherwise,
outputs (f, x1, · · · , xn).
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– Let r ∈ N denote the number of random inputs used by each gadget G. Then
CompGIMSS, on input 1t and a circuit C : Fn → F

k containing s NAND gates,
outputs a circuit CGIMSS : F4c·n

2 × F
r(s+t·k)
2 → F

4c·k·t
2 generated as follows:

• Let C ′ : F2c·n
2 × F

r·s
2 → F

2c·k
2 denote the circuit in which every gate of

C is replaced with the gadget G of [25] that emulates a NAND gate over
encodings generated by Enc⊕. The random inputs used by the gadgets in
C ′ are taken from the second input to C ′ (each random input is used only
once).

• Let C ′′ : F2c·n
2 ×F

r(s+t·k)
2 → F

2c·k·t
2 denote the circuit obtained from C ′ by

adding after each output gadget of C ′ (namely each gadget whose output is
an output of C ′) t gadgets G emulating the identity function. As in C ′, the
random inputs used by the gadgets in C ′′ are taken from the second input
to C ′′. (This step encodes each output bit using the repetition code.)5

• Let π denote a 2-party GMW-style protocol in the OT-hybrid model which
emulates C ′′ gadget-by-gadget on inputs encoded according to EncGIMSS

(i.e., on additive shares of encodings according to Enc⊕). Then CGIMSS is
the circuit obtained from π by implementing the programs of the parties as
a circuit, where each OT call with inputs (x0, x1) , b is implemented using
the following constant-sized circuit: OT ((x0, x1) , b) =

(

x0 ∧ b̄
)

⊕ (x1 ∧ b).
(The wires of this circuit are divided between the parties as follows: the
input wires x0, x1 are assigned to the OT sender; whereas the wires corre-
sponding to b, b̄, the outputs of the ∧ gates, and the output of the ⊕ gate,
are assigned to the OT receiver.6)

Goyal et al. [25] show that Construction 2 resists BCL (Definition 1):

Theorem 7 (Implicit in [25]). For every leakage-bound t ∈ N, input and out-
put lengths n, k ∈ N, and size bound s ∈ N, there exists an (Lt

BCL, 2−t, s)-relaxed
LRCC with abort, where Lt

BCL is the family of all t-BCL functions. Moreover,
on input a size-s, depth d circuit C : {0, 1}n → {0, 1}k, the leakage-resilient cir-
cuit CGIMSS has size ˜O

(

s + td + t2
)

, the input encoder EncGIMSS
In can be imple-

mented by a circuit of size ˜O (n + t), and the output decoder DecGIMSS
Out can be

implemented by a circuit of size ˜O
(

t2 + tk
)

.7

5 This step, which we add to the LRCC of [25], is used to reduce the decoding error
when the LRCC is used to construct leakage-secure ZK circuits in Sect. 4.1. We note
that this modification preserves the parity-resilience property since it is equivalent
to duplicating each output of C t times before transforming it into C′.

6 Notice that this division of the wires preserves the leakage-resilience guarantee of [25].
Indeed, in [25] the view of the OT sender contains the input wires x0, x1, whereas the
view of the OT receiver contains the input wire b and the output of the OT (i.e., the
output of the ⊕ gate). Notice that b̄ and the outputs of the ∧ gates are computable
from b and the OT output, so the view of the OT receiver contains exactly the same
information in [25] and in our implementation of their protocol.

7 The output decoder in the original construction of [25] has size ˜O (t + k), the decoder
of Construction 2 is larger due to the modified encoding we use, which replaces each
encoded output bit with t copies.
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3.2 The Leakage-Tolerant Circuit-Compiler of [15]

In this section we describe the Leakage-Tolerant Circuit-Compiler (LTCC)
obtained from [15] through the transformation of [8]. Informally, the LRCC
of Dziembowski and Faust [15], denoted DF-LRCC, is a gadget-based LRCC
which uses the inner-product encoding scheme that encodes a value x as a pair
of vectors whose inner-product is x:

Definition 9 (Inner product encoding scheme). Let F be a finite field, and
n ∈ N be an input length parameter. The inner product encoding scheme EIP =
(EncIP,DecIP) over F is a parameterized encoding scheme defined as follows:

– For every input x = (x1, · · · , xn) ∈ F
n, and security parameter t ∈ N,

EncIP (x, 1t) =
((

yL
1 ,yR

1

)

, · · · ,
(

yL
n ,yR

n

))

, where for every 1 ≤ i ≤ n, yL
i ,yR

i

are random in (F \ {0})t subject to the constraint that 〈yL
i ,yR

i 〉 = xi.
– For every t ∈ N, and every

((

yL
1 ,yR

1

)

, · · · ,
(

yL
n ,yR

n

))

∈ F
2nt, DecIP

((

yL
1 ,

yR
1

)

, · · · ,
(

yL
n ,yR

n

))

=
(

〈yL
1 ,yR

1 〉, · · · , 〈yL
n ,yR

n 〉
)

.

More specifically, the DF-LRCC is an LRCC variant in which the compiled
circuit takes un-encoded inputs, as well as masking inputs that are used in
the gadgets. The construction uses 4 gadgets: a refresh gadget which emulates
the identity function, and is used to generate fresh encodings of the wires; a
generalized-multiplication gadget which emulates the function fc (x, y) = c−x×
y, for a constant c ∈ F; a multiplication by a constant gadget that emulates the
function fc (x) = c × x, for a constant c ∈ F; and an addition by a constant
gadget that emulates the function fc (x) = c + x, for a constant c ∈ F. (The
field operations ×,+,− can be implemented using a constant number of these
gadgets.) For completeness, these gadgets are described in AppendixA. We will
only need the following property of these gadgets: the effect of evaluating a
gadget with ill-formed masking inputs is equivalent to an additive attack on the
gate that the gadget emulates (this is formalized in Lemma 3).

As explained in Sect. 1.3.1, we use a leakage-tolerant variant of the DF-LRCC.
Roughly speaking, a leakage-tolerant circuit operates on un-encoded inputs and
outputs (the input encoding function simply returns the inputs, concatenated
with masking inputs), where any leakage on the computation can be simulated
by related leakage on the inputs and outputs alone. (Leakage on the inputs and
outputs is unavoidable since these are provided to the circuit “in the clear”.)
Formally,

Definition 10 (LTCC (for BCL)). Let t, ε (t) ,S (n) be as in Definition 7,
let n, k ∈ N be input and output length parameters (respectively), and let
Lt

BCL be the family of t-BCL functions. We say that a pair (Comp,E) is an
(Lt

BCL, ε (t) ,S (n))-leakage-tolerant circuit-compiler (LTCC) if Comp,E have the
syntax of Definition 6, and satisfy the following properties for some negligible
function ε (t) = negl (t):

– Correctness. For any arithmetic circuit C, and input x for C,
Pr

[

Ĉ (x̂) = C (x)
]

≥ 1 − ε (t), where x̂ ← Enc
(

x, 1t, 1|C|).
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– (Oblivious) leakage-tolerance. There exists a partition P = ((n1, n2) ,
(k1, k2)) of input and output lengths, and a PPT algorithm Sim such that the
following holds for all sufficiently large t ∈ N, all n, k ∈ N, every arithmetic
circuit C : Fn → F

k of size at most S (n), and every � ∈ Lt
BCL of input length

|Ĉ|. Sim is given C, and outputs a view translation circuit T = (T1, T2) such
that for every (x1, x2) ∈ F

n1 × F
n2 ,

SD
(

� (T1 (x1, C (x1, x2)1) , T2 (x2, C (x1, x2)2)) , �
[

Ĉ, (x̂1, x̂2)
])

≤ ε (t)

where C (x1, x2) = (C (x1, x2)1 , C (x1, x2)2) ∈ F
k1 × F

k2 .

We use a recent result of Bitansky et al. [8], that show a general transforma-
tion from LRCCs with a strong simulation guarantee against OCL, to LTCCs.
Recently, Dachman-Soled et al. [13] observed that the DF-LRCC has this strong
simulation property, namely the transformation can be applied directly to the
DF-LRCC.8 The final LTCC will use the following circuit CLR−DF:

Definition 11. Let t ∈ N be a security parameter, and let r = r (t) denote the
maximal length of masking inputs used by a gadget of Construction 6. For an
arithmetic circuit C : Fn → F

k containing + and × gates, defined the circuit
CLR−DF : Fn+r(t)·(n+|C|) → F

k as follows:

– The input (x = (x1, · · · , xn) ,m) ∈ F
n ×

(

supp
(

EncInDF (0, 1t)
))|C|+n

of

CLR−DF is interpreted as an input x for C, and a collection m of masking
inputs for gadgets.

– Every gate of C is replaced with the corresponding gadget (as defined in
Construction 6), and gadgets corresponding to output gates are followed by
decoding sub-circuits (computing the decoding algorithm DecIP of the inner
product encoding of Definition 9). The masking inputs used in the gadgets are
taken from m (every masking input in m is used at most once).

– Following each input gate xi, an encoding sub-circuit (with some fixed, arbi-
trary randomness hard-wired into it) is added, computing the inner-product
encoding of xi.

– A refresh gadget is added following every encoding sub-circuit, where the
masking inputs used in the gadgets are taken from m.

We now describe the LTCC of [15]. To simplify the notations and construc-
tions, we define the LTCC only for circuits operating on pairs of inputs.

Construction 3 (LTCC, [15] and [8]). Let t, tIn ∈ N, and n ∈ N be an input
length parameter. Let S : N4 → N be a length function whose value is set below.
The LTCC

(

CompDF,EDF
)

is defined as follows:

8 We note that though Bitansky et al. [8] construct leakage-tolerant circuits based on
the DF-LRCC, since they are interested in obtaining UC-security against continuous
leakage, they use a more complex variant of the LRCC. We prefer to use the DF-
LRCC directly, since it suffices for our needs, and gives a much simpler construction.
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– EDF =
(

EncDF,DecDF
)

, where:

• For every x ∈ F
n, EncDF (x, 1t, 1tIn) =

(

x,
(

EncInDF (0, 1t)
)2tIn

)

, where
(

EncInDF (0, 1t)
)k

denotes k random and independent evaluations of

EncInDF (0, 1t).
• DecDF ((x,m) , 1t, 1tIn) = x.

– CompDF, on input an arithmetic circuit C : FnL × F
nR → F

k, outputs the
circuit CDF : F2nR+nL+S(t,nL,nR,|C|) → F

k constructed as follows:
• Construct a circuit C1 : FnR × F

nR → F
nR that evaluates the function

f1 (x, y) = x+y. Denote s1 = |C1|, and let C ′
1 be the circuit obtained from

C1 by the transformation of Definition 11. (Notice that if y is uniformly
random then C ′

1 outputs a one-time pad encryption of x.)
• Construct the circuit C2 : FnL+nR × F

nR → F
k such that C2 ((z, c) , y) =

C (c + y, z). Denote s2 = |C2|, and let C ′
2 be the circuit obtained from C2

by the transformation of Definition 11. (Notice that if c is a one-time pad
encryption of some value x with pad y, then C ′

2 emulates C on x and z.)
• Let r = r (t) denote the total length of masking inputs used by a gadget of

Construction 6. Then S = S (t, nL, nR, |C|) = r (t) · (s1 + s2 + nL + 4nR).
(Notice that S is the number of masking inputs used in C ′

1 and C ′
2.)

• CDF (x, y, z) = C ′
2 (z, (C ′

1 (x, y)) , y). (Intuitively, CDF first uses C ′
1 to

encrypt x with pad y, and then evaluates C ′
2 on the encryption output by

C ′
1, z and pad y.)

We note that the correctness error of the LTCC of Theorem 3.2 might be
abused by malicious parties (e.g., a malicious ZK prover in Sect. 4.1, or mali-
cious parties in Sect. 6) to violate the correctness of the computation, which we
overcome by checking whether a correctness error occurred, as described in the
following remark.

Remark 1 (Dealing with gadget failures). We will actually use a modified version
of Construction 3, in which CDF also computes an error flag, indicating whether
the computation failed in one of its gadget (i.e., failed in all t copies of the
gadget, see Remark 3). More specifically, each of the two parties implementing
the gadget computes in the clear a flag indicating whether its encoding of the
output is a valid encoding (i.e., all entries are non-zero), and each party locally
combines the flags it generated for all the gadgets. This additional computation
is needed since malicious parties (e.g., a malicious prover in the leakage-secure
ZK circuit of Construction 4) may not choose the masking inputs at random,
and might generate them in a “smart” way which will always cause gadgets to
fail.

We note that thought these flags are generated in the clear, they do not
violate the leakage-tolerance property of Construction 3. The reason is these
flags are generated locally (by each of the parties), and so could be generated
by the leakage function from the simulated wire values which the LT simulator
(of Definition 10) generates. This observation gives a reduction from any t-BCL
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function on the modified circuit to a t-BCL function on the original circuit, and
so when using Construction 3 as a building block, we will implicitly disregard
these additional wires (remembering that any leakage on the modified circuit with
the flags can be generated by related leakage on the original circuit). Finally, we
note that in an honest execution the flag is set only with negligible probability
(and so the fact that the flag is computed in the clear does not violate leakage-
resilience).

Remark 2. To combine Construction 3 with Construction 2, we assume that
Construction 3 is implemented using a boolean circuit (implementing group oper-
ations via operations over F2) that operates over a standard basis.

Dziembowski and Faust (Corollary 2 in the full version of [15]) show that the
DF-LRCC resists OCL leakage, which by the result of [8] implies the existence
of an LTCC against such leakage. Combined with Lemma2 below (which shows
a relation between OCL and BCL), we have the following:

Theorem 8 ([15] and [8], and Lemma 2). Let t ∈ N be a leakage bound, and
n, k ∈ N be input and output length parameters. Then for every polynomial p (t)
there exist a finite field F of size Ω(t), and a negligible function ε (t) = negl (t)
for which there exists an

(

L˜tBCL, ε (t) , p (t)
)

-LTCC, where ˜t = 0.16t log2 |F| −
1 − log2 |F|, and LT

BCL is the family of all ˜t-BCL functions.

Theorem 8 relies on the next lemma (whose proof appears in AppendixA)
which states that security against so-called “only computation leaks” (OCL)
implies security against BCL. (One can also show that 2t-BCL implies resilience
against t-OCL.) Recall that in the context of OCL, the wires of the leakage-
resilient circuit ̂C are divided according to some partition P, into two “parts”
̂CL, ̂CR. The input encodings of ̂C are also divided into two parts, e.g., an encod-
ing x̂ is divided into x̂L (which is the input of ̂CL) and x̂R (which constitutes
the input to ̂CR) The adversary can (adaptively) pick functions fL

1 , · · · , fL
nL

,
and fR

1 , · · · , fR
nR

for some nL, nR ∈ N, where the combined output lengths of
fL
1 , · · · , fL

nL
(and fR

1 , · · · , fR
nR

) is at most t. In the execution of ̂C on x̂, the

adversary is given fL
i

[

̂CL, x̂L

]

, 1 ≤ i ≤ nL and fR
i

[

̂CR, x̂R

]

, 1 ≤ i ≤ nR,
and chooses the next leakage functions based on previous leakage. The out-
put of the leakage is taken to be the combined outputs of all leakage functions
fL
1 , · · · , fL

nL
, fR

1 , · · · , fR
nR

. We say that a circuit is (Lt
OCL, ε)-leakage-resilient with

relation to the partition P =
(

̂CL, ̂CR

)

, if the real-world output of the OCL func-
tions can be efficiently simulated (given only the description of the circuit, and
its outputs if ̂C computes the outputs in the clear), and the statistical distance
between the actual and simulated wire values is at most ε. (We refer the reader
to, e.g., [15] for a more formal definition of OCL.) We note that we allow the
adversary to leak on the two components of the computation in an arbitrary
order, a notion which is sometimes referred to as “OCL+”.
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Lemma 2 (OCL+-resilience implies BCL-resilience). Let ε ∈ (0, 1) be
an error bound, t ∈ N be a leakage bound, and C be a boolean circuit. If C
is (Lt

OCL, ε)-leakage-resilient with relation to partition P, then C is also (L, ε)-
leakage-resilient for the family L of all t-BCL functions with relation to the same
partition P.

The following property of Construction 3 will be used to guarantee correctness
of our constructions in the presence of malicious parties (see AppendixA for the
proof).

Lemma 3 (Ill-formed masking inputs correspond to additive attacks).
Let S : N4 → N be the length function from Definition 11. Then Construction 3
has the following property. For every circuit C : FnL × F

nR → F
k, every secu-

rity parameter t ∈ N, and every m ∈ F
S(t,nL,nR,|C|), there exists an additive

attack Am on C such that for every x ∈ F
nL+nR , and every x̂ = (x,m) it holds

that CDF (x̂) = CAm (x). Moreover, there exists a PPT algorithm Alg such that
Alg (m) = Am.

4 Leakage-Secure Zero-Knowledge

In this section we describe our leakage-secure zero-knowledge circuits. At a high
level, an L-secure ZK circuit for a family L of functions is a randomized algorithm
Gen that given an error parameter ε, and an input length n, outputs a randomized
prover input encoder EncP , and a circuit T . T takes an input from a prover P ,
and returns output to a verifier V , and is used by P to convince V that x ∈ LR.
T guarantees soundness, and zero-knowledge even when V obtains leakage from
L on the internals of T .

Definition 12 (L-secure ZK circuit). Let R = R (x,w) be an NP-relation,
L be a family of functions, and ε > 0 be an error parameter. We say that Gen is
an L-secure zero-knowledge (ZK) circuit if the following holds.

– Syntax. Gen is a deterministic algorithm that has input ε, 1n, runs in time
poly (n, log (1/ε)), and outputs (EncP , T ) defined as follows. EncP is a ran-
domized circuit that on input (x,w) such that |x| = n (x is the input, and
w is the witness) outputs the prover input y for T ; and T is a randomized
circuit that takes input y and returns z ∈ {0, 1}n+1.

– Correctness. For every ε > 0, every n ∈ N, and every (x,w) ∈ R such that
|x| = n, Pr [T (EncP (x,w)) = (x, 1)] ≥ 1 − ε, where (EncP , T ) ← Gen (ε, 1n),
and the probability is over the randomness used by EncP , T .

– Soundness. For every (possibly malicious, possibly unbounded) prover P ∗,
every ε > 0, every n ∈ N, and any x /∈ LR such that |x| = n,
Pr [T (P ∗ (x)) = (x, 1)] ≤ ε, where (EncP , T ) ← Gen (ε, 1n), and the proba-
bility is over the randomness used by P ∗, T .

– L-Zero-knowledge. For (x,w) ∈ R we define the following experiments.
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• For a (possibly malicious, possibly unbounded) verifier V ∗, define the
experiment RealV ∗,Gen (x,w, ε) where V ∗ has input x, ε, and chooses a leak-
age function � ∈ L, and RealV ∗,Gen (x,w, ε) = (T (EncP (x,w)) , � [T,EncP

(x,w)]), where (EncP , T ) ← Gen (ε, 1n), and [T, y] denotes the wires of T
when evaluated on y.

• For a simulator algorithm Sim that has input x, ε, and one-time ora-
cle access to �, the experiment IdealSim,R (x,w, ε) is defined as follows:
IdealSim,R (x,w, ε) = Sim� (ε, x), where Sim� (ε, x) is the output of Sim,
given one-time oracle access to �.

We say that Gen has L-zero-knowledge (L-ZK) if for every (possibly mali-
cious, possibly unbounded) verifier V ∗ there exists a simulator Sim such that
for every ε > 0, every n ∈ N, and every (x,w) ∈ R such that |x| = n,
SD (RealV ∗,Gen (x,w, ε) , IdealSim,R (x,w, ε)) ≤ ε.

4.1 The Leakage-Secure ZK Circuit

We now construct the leakage-secure ZK circuit by combining the LRCC
(

CompGIMSS,EGIMSS
Inp ,DecGIMSS

Out

)

of Theorem 7 with the LTCC
(

CompDF,EDF
)

of Theorem 8.
At a high level, we compile the verification circuit CR of an NP-relation R

using CompGIMSS, where the prover provides the encoded input and witness for
the compiled circuit ĈR. ĈR has encoded outputs, and only guarantees that BCL
leakage cannot distinguish between the executions on two different witnesses. To
achieve full-fledged ZK, we use CompDF to decode the outputs of ĈR. Recall
that circuits compiled with CompDF have masking inputs, and moreover, their
leakage-tolerance property crucially relies on the fact that the masks are unknown
to the leakage function. Therefore, these masking inputs must be provided by the
prover as part of the input encoding (which is generated using EncP ). However,
since the correctness of the computation is guaranteed only when the masking
inputs are well-formed, a malicious prover P ∗ can violate soundness by providing
ill-formed masking inputs (which were not drawn according to the “right” distri-
bution), and thus modify the computed functionality, and potentially cause the
circuit to accept x /∈ LR. As discussed in Sect. 3.2, the effect of ill-formed mask-
ing inputs corresponds to applying an additive attack on the original decoding
circuit, so we can protect against such attacks by first replacing the decoding
circuit with an AMD circuit.

Construction 4 (Leakage-secure ZK circuit). Let n ∈ N be an input
length parameter, t ∈ N be a security parameter, and c ∈ N be a constant. Let
R = R (x,w) be an NP-relation, with verification circuit CR of size s = |CR|.
The leakage-secure ZK circuit uses the following building blocks (where any field
operations are implemented via bit operations).

– The LRCC
(

CompGIMSS,EGIMSS
In =

(

EncGIMSS
In ,DecGIMSS

In

)

,DecGIMSS
Out

)

of
Theorem7 (Construction 2), and its underlying small-bias encoding scheme
(

Enc⊕ : F2 × F
c
2 → F

2c
2 ,Dec⊕ : F2c

2 → F
2
2

)

.
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– The LTCC
(

CompDF,EDF
)

of Theorem8 (Construction 3) over a field F =

Ω(t), and its underlying encoding scheme EIn
DF =

(

EncInDF,DecInDF

)

.

– The additively-secure circuit compiler Compadd of Theorem4.
– The AMD encoding scheme

(

Encamd,Decamd
)

of Theorem5, with encodings

of length n̂amd (n, t).

On input 1n, 1t, Gen outputs (EncP , T ) defined as follows.

– For every input x ∈ {0, 1}n, and witness w, EncP (x,w) = (EncGIMSS

((x,w) , 1t) ,EncInDF

(

0s′
, 1t

))

for a parameter s′ whose value is set below.
– Let nw be a bound on the maximal witness length for inputs of length n. T

is obtained by concatenating the decoding component T ′′ to the verification
component C ′′ (namely, applying T ′′ to the outputs of C ′′) which are defined
next.
1. The verification component C ′′. Define C ′ : F

n+nw
2 → F

n+1
2 as

C ′ (x,w) = (x,CR (x,w)). Let C ′
2 denote the circuit that emulates C ′,

but replaces each output bit with (the bit string representation of) the bit
as an element of F. Then C ′′ = CompGIMSS (C ′

2).
2. The decoding component.

• Construct the circuit Camd : F2c·t·(n+1) → F
n̂amd(n+1,t) that operates

as follows:
∗ Decodes its input using DecGIMSS

Out to obtain the output (f, x, z).
∗ If f = 1, x /∈ {0, 1}n, or z �= 1, then Camd sets z′ = 0. Other-
wise, it sets z′ = 1.
∗ Generates e ← Encamd ((x, z′) , 1t), and outputs e.

• Generate ̂Camd = Compadd
(

Camd
)

.

• Generate T ′ = CompDF
(

̂Camd
)

. Let s′ denote the number of masking
inputs used in T ′.

• Construct the circuit T ′′ that on input y, operates as follows:
∗ Computes (fL, fR, e) = T ′ (y). (Recall that fL, fR are flags indi-
cating whether a gadget of T ′ has failed.)
∗ Computes (f, x, z) = Decamd (e, 1t), where f, z ∈ F and x ∈ F

n.
If f = fL = fR = 0, x ∈ {0, 1}n, and z = 1 then T ′ outputs
(x, 1). Otherwise, it outputs 0n+1.

We show in the full version [20] that Construction 4 is a leakage-secure ZK
circuit, proving Theorems 1 and 2 (for Theorem 1, we have the prover provide
the masking inputs used for the computation in C ′′, while the verifier provides
the randomness used in T ′′).

5 Multiparty LRCCs: Definition

In this section we define the notion of multiparty LRCCs, a generalization of
leakage-secure ZK circuits to evaluation of general functions with m ≥ 1 parties.
We first formalize the notion of secure computation with a single piece of trusted
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(but leaky) hardware device, where security with abort holds in the presence of
adversaries that corrupt a subset of parties, and obtain leakage (from a pre-
defined leakage class) on the internals of the device. This raises the following
points.

1. The output should include a flag signaling whether there was an abort.
2. Leakage on the wires of the device should reveal nothing about the internal

computations, or the inputs of the honest parties, other than what can be
computed from the output. This necessitates randomized computation.

3. The inputs should be encoded, otherwise leakage on the input wires may
reveal information that cannot be computed from the outputs. This should
be contrasted with the ZK setting, in which x is assumed to be public, and so
when all parties are honest the output is (x, 1) and can therefore be computed
in the clear.

To guarantee that an adversary that only obtains leakage on the internals of
the device (but does not corrupt any parties) learns nothing about the inputs
or internal computations, the outputs must be encoded. Therefore, the device,
which is implemented as a circuit, is associated with an input encoding algorithm
Enc, and an output decoding algorithm Dec. The above discussion is formalized
in the next definition.

Definition 13 (Secure function implementation). Let m∈N, f : ({0, 1}n)m

→ {0, 1}k be an m-argument function, L be a family of leakage functions, and
ε > 0. We say that (Enc, C,Dec) is an m-party (L, ε)-secure implementation of
f if it satisfies the following requirements.

– Syntax:
• Enc : {0, 1}n → {0, 1}n̂ is a randomized function, called the input

encoder.
• C :

(

{0, 1}n̂
)m → {0, 1}k̂ is a randomized circuit.

• Dec : {0, 1}k̂ → {0, 1}k+1 is a deterministic function called the output
decoder.

– Correctness. For every x1, · · · , xm ∈ {0, 1}n,

Pr [Dec (C (Enc (x1) , · · · ,Enc (xm))) = (0, f (x1, · · · , xm))] ≥ 1 − ε.

– Security. For every adversary A there exists a simulator Sim such that for
every input (x1, · · · , xm) ∈ ({0, 1}n)m, and every leakage function � ∈ L,
SD (Real, Ideal) ≤ ε, where Real, Ideal are defined as follows.
Real:

• A picks a set B ⊂ [m] of corrupted parties, and (possibly ill-formed)
encoded inputs x′

i ∈ {0, 1}n̂ for every i ∈ B.
• For every uncorrupted party j /∈ B, let x′

j = Enc (xj).
• If B �= ∅ then z = (C (x′

1, · · · , x′
m) ,Dec (C (x′

1, · · · , x′
m))), otherwise z is

empty. (Intuitively, z represents the information A has about the output
of C. If B = ∅ then A learns nothing.)

• Real =
(

B, {x′
i}i∈B , � [C, (x′

1, · · · , x′
m)] , z

)

.
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Ideal:
• Sim picks a set B ⊂ [m] of corrupted parties and receives their inputs

{xi}i∈B. Sim then chooses effective inputs wi ∈ {0, 1}n for every i ∈ B,
and if B �= ∅ obtains f (w1 · · · , wm), where wj = xj for every j /∈ B.

• Sim chooses b ∈ {0, 1}. (Intuitively, b indicates whether to abort the com-
putation.)

• If B �= ∅ and b = 0, set y = (0, f (w1, · · · , wm)), if B �= ∅ and b = 1, set
y =

(

1, 0k
)

, and if B = ∅ then y is empty.
• Let

(

W, {x′
i}i∈B

)

denote the output of Sim, where W contains a bit for
each wire of C, and x′

i ∈ {0, 1}n̂ for every i ∈ B. Denote the restriction
of W to the output wires by WOut.

• If B �= ∅, let z = (WOut, y). Otherwise, z is empty.
• Ideal =

(

B, {x′
i}i∈B , � (W ) , z

)

.

We say that (Enc, C,Dec) is a passive-secure implementation of f if the
security property holds with the following modifications: (1) A does not choose
x′

i, i ∈ B, and instead, x′
i ← Enc (xi) for every i ∈ B; and (2) Sim always chooses

b = 0.

We now define an m-party LRCC which, informally, is an asymptotic version
of Definition 13.

Definition 14 (m-party circuit). Let m ∈ N. We say that a boolean circuit C
is an m-party circuit if its input can be partitioned into m equal-length strings,
i.e., C : ({0, 1}n)m → {0, 1}k for some n, k ∈ N.

Definition 15 (Multiparty LRCCs and passive-secure multiparty
LRCCs). Let m ∈ N, L be a family of leakage functions, S (n) be a size func-
tion, and ε (n) : N → R

+. Let Comp be a PPT algorithm that on input m, and
an m-party circuit C : ({0, 1}n)m → {0, 1}k, outputs a circuit Ĉ.

We say that (Enc,Comp,Dec) is an m-party (L, ε (n) ,S (n))-leakage-resilient
circuit compiler (m-party LRCC, or multiparty LRCC) if there exists a PPT
simulator Sim such that for all sufficiently large n’s, and every m-party circuit
C : ({0, 1}n)m → {0, 1}k of size at most S (n) that computes a function fC ,
(

Enc, Ĉ,Dec
)

is an (L, ε (n))-secure implementation of fC , where the security
property holds with simulator Sim that is given the description of C, and has
black-box access to the adversary. We say that (Enc,Comp,Dec) is a passively-
secure m-party (L, ε (n) ,S (n))-LRCC if

(

Enc, Ĉ,Dec
)

is an (L, ε (n))-passively-
secure implementation of fC , where security holds with simulator Sim.

Remark 1. Definitions 13–15 naturally extend to the arithmetic setting in
which C is an arithmetic circuit over a finite field F. When discussing the arith-
metic setting, we explicitly state the field over which we are working (e.g., we
use “multiparty LRCC over F” to denote that the multiparty LRCC is in the
arithmetic setting with field F).
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6 A Multiparty LRCC

In this section we construct a multiparty LRCC that withstands active adver-
saries. The high-level idea of the construction is as follows. Given an m-party
protocol C, we first replace it with a circuit Cshare that emulates C but outputs
a secret-sharing of the outputs, then compile Cshare using the LRCC of [25].
We then refresh each of the shares using a circuit CDec. However, to guarantee
leakage-resilience, and correctness of the computation in the presence of actively-
corrupted parties, we first replace the circuit CDec with its additively-secure ver-
sion C ′

Dec, then compile C ′
Dec using the LTCC of [15] to obtain a leakage-tolerant

circuit ̂C ′
Dec. We use m copies of ̂C ′

Dec, where the i’th copy refreshes the i’th secret
share, using masking inputs provided by the i’th party. Each party provides, as
its input encoding to the device, both a leakage-resilient encoding of its input,
and the masking inputs needed for the computation in ̂CDec. The output decoder
decodes each of the secret shares, and reconstructs the output from the shares
(unless it detects that one of the parties provided ill-formed masking inputs, in
which case the computation aborts). This is formalized in the next construction.

Construction 5 (Multiparty LRCC). Let m ∈ N denote the number of par-
ties, t ∈ N be a security parameter, n ∈ N be an input length parameter, k ∈ N

be an output length parameter, and c ∈ N be a constant. The m-party LRCC
uses the following building blocks:

– The LRCC
(

CompGIMSS,EGIMSS
In =

(

EncGIMSS
In ,DecGIMSS

In

)

,DecGIMSS
Out

)

of
Theorem7 (Construction 2), where the outputs of the leakage-resilient cir-
cuit are encoded by the encoding scheme

(

EncGIMSS : F2 → F
4ct
2 ,DecGIMSS :

F
4ct
2 → F

2
2

)

.

– The LTCC
(

CompDF,EDF
)

of Theorem8 (Construction 3) over a field F =

Ω(t), and its underlying encoding scheme EIn
DF =

(

EncInDF,DecInDF

)

that out-

puts encodings of length n̂DF (n, t).
– The additively-secure circuit compiler Compadd of Theorem4.

The m-party LRCC (Enc,Comp,Dec) is defined as follows.

– For every n, t, tIn ∈ N and every x ∈ F
n, Enc (x, 1t, 1tIn) =

(

EncGIMSS
In (x, 1t, 1tIn) ,EncDF

In (0tIn , 1t)
)

.

– For every y =
((

f1
L, f1

R, y1
)

, · · · , (fm
L , fm

R , ym)
)

∈
(

F 2+2tc(k+1)
)m

, Dec (y, 1t)
computes

(

fi, z
i
)

= DecOut
GIMSS

(

yi, 1t
)

. If f i
L = f i

R = fi = 0 for all 1 ≤ i ≤ m

then Dec outputs
(

0,
∑m

i=1 zi
)

, otherwise it outputs
(

1, 0k
)

. (Intuitively, each
triplet

(

f i
L, f i

R, yi
)

consists of a pair of flags output by the LTCC, indicating
whether the computation in one of its gadgets failed; and an encoding of a
flag, concatenated with an additive secret share of the output.)

– Comp on input m ∈ N, and an m-party circuit C : (Fn)m → F
k:

1. Constructs the circuit Cshare : (Fn)m → F
mk that operates as follows:
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• Evaluates C on inputs x1, · · · , xm to obtain the output y =
C (x1, · · · , xm).

• Generates y1, · · · , ym−1 ∈R F
k, and sets ym = y ⊕

∑m−1
i=1 yi.

(y1, · · · , ym are random additive secret shares of y.)
• For every 1 ≤ i ≤ m, generates y′

i by replacing each bit of yi with (the
bit string representation of) the bit as an element of F.

• Outputs (y′
1, · · · , y′

m).
2. Computes C ′ = CompGIMSS

(

Cshare
)

.
3. Construct the circuit CDec : F4ct(k+1) → F

4ct(k+1) that operates as follows:
• Decodes its input using DecGIMSS

Out to obtain a flag f ∈ F2 and output
z ∈ F

k.
• If f = 1, sets z′ = 0k, otherwise z′ = z.
• Generates e ← EncGIMSS ((f, z′) , 1t), and outputs e.

4. Generate ̂Camd = Compadd
(

CDec
)

.

5. Generate C ′′ = CompDF
(

̂Camd
)

.

6. Outputs the circuit Ĉ obtained by concatenating a copy of C ′′ to each of
the m outputs of C ′. (We note that the i’th copy of C ′′ takes its masking
inputs from the encoding of the i’th input to Ĉ.)

The next theorem (whose proof appears in the full version [20]) states that
Construction 5 is a multiparty LRCC.

Theorem 9 (Multiparty LRCC). Let n, k ∈ N be input and output length
parameters, S (n) : N → N be a size function, ε (n) , ε′ (n) : N → (0, 1) be error
functions, t ∈ N be a leakage bound, let c ∈ N be a constant, and let m ∈ N

denote the number of parties. Let L denote the family of all t-BCL functions. If:

–
(

CompGIMSS,EncGIMSS
In ,DecGIMSS

Out

)

is an (L, ε,S (n) + 2m)-relaxed LRCC

with abort, where for security parameter t, DecGIMSS
Out ,EncGIMSS can be evalu-

ated using circuits of size sGIMSS (t),
– Compadd is an ε′ (n)-additively-secure circuit compiler over F, where there

exist: (1) B : N → N such that for any circuit C, Compadd (C) has size at
most B (|C|); and (2) a PPT algorithm Alg′ that given an additive attack A
outputs the ideal attack

(

ain,AOut
)

(whose existence follows from the additive-
attack security property of Definition 3), and

–
(

CompDF,EDF
)

is an
(

L, ε, B
(

2sGIMSS (t) + ck
))

-LTCC.

Then Construction 5 is an m-party (L, (2m + 1) ε (n) + ε′ (n) + negl (t) ,S (n))-
LRCC.

Moreover, if on input a circuit of size s, CompGIMSS,CompDF output circuits
of size ŝGIMSS (s), and sDF (s), respectively, then on input a circuit C of size
s, the compiler of Construction 5 outputs a circuit ̂C of size ŝGIMSS (s + 2m) +
sDF

(

B
(

2sGIMSS (t) + ck
))

.

In the full version, we use Theorem9 to prove Theorem 3. We also provide a
(somewhat) more efficient MPCC construction for passive corruptions.



How to Construct a Leakage-Resilient (Stateless) Trusted Party 239

Acknowledgments. This work was supported in part by the 2017–2018 Rothschild
Postdoctoral Fellowship; by the Warren Center for Network and Data Sciences; by
the financial assistance award 70NANB15H328 from the U.S. Department of Com-
merce, National Institute of Standards and Technology; and by the Defense Advanced
Research Project Agency (DARPA) under Contract #FA8650-16-C-7622. The second
author was supported in part by NSF-BSF grant 2015782, BSF grant 2012366, ISF
grant 1709/14, ERC grant 742754, DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, a Xerox Fac-
ulty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the DARPA through the ARL under Contract W911NF-15-C-0205. The
views expressed are those of the authors and do not reflect the official policy or position
of the DoD, the NSF, or the U.S. Government. This work was supported in part by
NSF grants CNS-1314722, CNS-1413964.

A Gadgets for the LRCC of [15]

In this section we describe the gadgets used in the LRCC of [15], and prove
Lemmas 2 and 3.

Construction 6 (Gadgets for an LRCC, [15]). Let F be a finite field, and
EIP = (EncIP,DecIP) denote the inner product encoding over F of Definition 9.
Each gadget consists of a left component CL, and a right component CR that
are connected to each other. We use the term “X is sent from component Y to
component Z” to denote that the value X computed in component Y is the input
to some sub-computation performed in component Z.

1. Refresh gadget:9 inputs
(

aL,aR
)

∈ EncIP(a, 1t2) for a ∈ F, and mask-
ing inputs

((

rL,1, rL,2
)

,
(

rR,1, rR,2
))

∈ EncInDF(0, 1t2); outputs
(

aL′,aR′) ∈
EncIP(a, 1t2).
(a) CL generates b ∈ F

t2 such that bi =
(

aL
i

)−1 × rL,1
i for every 1 ≤ i ≤ t2,

and sends b to CR.
(b) CR computes c ∈ F

t2 such that ci = bi × rR,1
i for every 1 ≤ i ≤ t2.

(c) CR computes aR′ = aR + c.
(d) CR generates d ∈ F

t2 such that di =
(

aR′
i

)−1 × rR,2
i for every 1 ≤ i ≤ t2,

and sends d to CL.
(e) CL computes e ∈ F

t2 such that ei = di × rL,2
i for every 1 ≤ i ≤ t2.

(f) CL computes aL′ = aL + e.
2. Multiplication by constant gadget: inputs constant c ∈ F \ {0}, and

(

aL,aR
)

∈ EncIP (a, 1t) for a ∈ F; output
(

bL, bR
)

∈ EncIP (c × a, 1t).

(a) CL computes bL
i = c × aL

i for every 1 ≤ i ≤ t.
(b) CR sets bR = aR.

9 This refresh gadget is a simpler construction than the original gadget of [15], due
to [1].
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3. Addition by constant gadget: inputs constant c ∈ F, and
(

aL,aR
)

∈
EncIP (a, 1t) for a ∈ F; output

(

bL, bR
)

∈ EncIP (c + a, 1t).

(a) CL sets bL = aL, and sends aL
1 to CR.

(b) CR sets bR = aR +
(

(

aL
1

)−1 × c, 0, · · · , 0
)

.
4. Generalized multiplication gadget: inputs a constant c ∈ F,

(

aL,aR
)

∈ EncIP (a, 1t) ,
(

bL, bR
)

∈ EncIP (b, 1t) for a, b ∈ F, and mask-

ing inputs
((

rL,1, rL,2
)

,
(

rR,1, rR,2
))

∈ EncInDF (0, 1t); output
(

cL, cR
)

∈
EncIP (c − a × b, 1t).

(a) CL generates a t × t Matrix L = aL
(

bL
)T

=
(

aL
i × bL

j

)

i,j∈[t]
. We inter-

pret L as a length-t2 vector.

(b) CR enerates a t × t Matrix R = aR
(

bR
)T

=
(

aR
i × bR

j

)

i,j∈[t]
. We inter-

pret R as a length-t2 vector.
(c) CL, CR evaluate the Refresh gadget with inputs L,R, and masking inputs

((

rL,1, rL,2
)

,
(

rR,1, rR,2
))

, to obtain L′,R′ (which are length-t2 vectors).
(d) CL sends L′

1, L
′
t+1, · · · L′

t2 to CR.
(e) CR computes d = 〈

(

L′
t+1, · · · L′

t2

)

,
(

R′
t+1, · · · , R′

t2

)

〉.
(f) CR computes cR = − (R′

1, · · · , R′
t) +

(

(L′
1)

−1 (c − d) , 0, · · · , 0
)

.

(g) CL computes cL = (L′
1, · · · , L′

t).

Remark 3 (Amplifying correctness). The execution in each gadget can fail (if the
generated encodings are not valid inner-product encodings). However, [15] show
that for |F| = Ω(t), if each computation step is implemented using t copies of
the corresponding gadget (and the output of the computation step is set to the
output of the first gadget whose output is valid), then each computation step
succeeds except with negl (t) probability. In what follows, we implicitly assume
that each computation step is implemented using this amplification technique
over t gadgets.

We now prove Lemmas 2 and 3.

Proof (of Lemma 2 (sketch)). Let � be a t-BCL function that corresponds to a
two party protocol Π, defined in relation to partition P. Let NextMsgL,NextMsgR

be the next-message functions defining the messages the parties send, given their
current view, and assume without loss of generality that the left party sends the
first message in the protocol. Let (x̂L, x̂R) be the input on which ̂C is evaluated,
and denote WL =

[

̂CL, x̂L

]

, and WR =
[

̂CR, x̂R

]

.
To generate the transcript of Π, the adversary operates as follows. First, it

picks fL
1 (z) = NextMsgL (z). Then, given fL

1 (WL), which is the first message
that the left party sends in Π, it picks fR

1 to be the function which NextMsgR

computes, conditioned on the event that fL
1 (WL) was the first message which

the right party received, and sends fR
1 , to be evaluated on WR. The adversary

continues in this way until all messages of Π have been computed. Since Π is
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t-bounded, then in particular each of the two participating parties sends at most
t bits, namely the leakage functions we have defined leak at most t bits on each
of WL,WR. Therefore, the t-OCL resilience of C guarantees that the leakage
can be efficiently simulated, up to statistical distance ε.

Proof (of Lemma 3). We analyze the effect of ill-formed masking inputs m in
the gadgets of Construction 6, and show that they correspond to applying an
additive attack on the underlying gate.

– Refresh gadget. Denote m = 〈rL,1, rR,1〉+〈rL,2, rR,2〉 (which, if the masking
inputs are ill-formed, may not be 0). Then the output of the gadget encodes
the value 〈aL′,aR′〉. We analyze this value. 〈aL′,aR′〉 =

∑t2

i=1 aL′
i , ar′

i which,
by the definition of aL′,aL′ is equal to

t2
∑

i=1

(

aL
i + ei

) (

aR
i + ci

)

=
t2

∑

i=1

aL
i aR

i +
t2

∑

i=1

ei

(

aR
i + ci

)

+
t2

∑

i=1

aL
i ci

= a +
t2

∑

i=1

eia
R′
i +

t2
∑

i=1

aL
i ci

which, by the definition of c, e, is equal to

a+
t2
∑

i=1

(

aR′
i

)−1

rR,2
i rL,2

i aR′
i +

t2
∑

i=1

aL
i

(

aL,1
i

)−1

rL,1
i rR,1

i = a+〈rL,1, rR,1〉+〈rL,2, rR,2〉

which is equal to a+m. Moreover, notice that m can be efficiently computed
from rL,1, rR,1, rL,2, rR,2 by computing 〈rL,1, rR,1〉 + 〈rL,2, rR,2〉.

– Generalized multiplication gadget. Denote m = 〈rL,1, rR,1〉+〈rL,2, rR,2〉.
The output of the gadget encodes the value 〈cL, cR〉 =

∑t
i=1 cL

i cR
i which, by

the definition of cL, cR, is equal to

L′
1

(

−R′
1 +
(

L′
1

)−1
(c − d)

)

+
t
∑

i=2

L′
i · (−R′

i

)

= c−
t
∑

i=1

L′
iR

′
i − d = c−

t2
∑

i=1

L′
iR

′
i −m

which is equal to c−a×b−m (the rightmost equality follows from the analysis
of the refresh gadget).

– Multiplication and addition by constant gadgets. Notice that these
gadget do not use any masking inputs, and so the computation in these gad-
gets is always correct (corresponds to computation under the all-zeros attack).
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Abstract. Austrin et al. [1] studied the notion of bitwise p-tampering
attacks over randomized algorithms in which an efficient ‘virus’ gets
to control each bit of the randomness with independent probability p
in an online way. The work of [1] showed how to break certain ‘pri-
vacy primitives’ (e.g., encryption, commitments, etc.) through bitwise
p-tampering, by giving a bitwise p-tampering biasing attack for increas-
ing the average E[f(Un)] of any efficient function f : {0, 1}n �→ [−1, +1]
by Ω(p · Var[f(Un)]).

In this work, we revisit and extend the bitwise tampering model of
[1] to blockwise setting, where blocks of randomness becomes tamperable
with independent probability p. Our main result is an efficient blockwise
p-tampering attack to bias the average E[f(X )] of any efficient function
f mapping arbitrary X to [−1, +1] by Ω(p ·Var[f(X )]) regardless of how
X is partitioned into individually tamperable blocks X = (X1, . . . , Xn).
Relying on previous works of [1,19,36], our main biasing attack imme-
diately implies efficient attacks against the privacy primitives as well as
seedless multi-source extractors, in a model where the attacker gets to
tamper with each block (or source) of the randomness with independent
probability p. Further, we show how to increase the classification error of
deterministic learners in the so called ‘targeted poisoning’ attack model
under Valiant’s adversarial noise. In this model, an attacker has a ‘tar-
get’ test data d in mind and wishes to increase the error of classifying d
while she gets to tamper with each training example with independent
probability p an in an online way.

1 Introduction

In this work, we study tampering attacks that efficiently manipulate the ran-
domness of randomized algorithms with adversarial goals in mind. Tampering
attacks could naturally be studied in the context of cryptographic algorithms
that (wish to) access perfectly uniform and untampered randomness for sake of
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achieving security. However, the scope of such attacks goes beyond the context of
cryptography and could be studied more broadly for any class of algorithms that
depend on some form of untampered random input and try to achieve specific
goals (e.g., learning algorithms using untampered training data to generate a
hypothesis). Here, we are interested in understanding the power and limitations
of such tampering attacks over the randomness, when the adversary can tamper
with, or even control, ≈ p fraction of the randomness.1

The most relevant to our study here is the work of Austrin et al. [1] that
introduced the notion of bitwise p-tampering attacks on the randomness of cryp-
tographic primitives. In this model, the adversary generates an efficient ‘virus’
who gets into the ‘infected’ device, can read everything, but is limited in what
it can alter. As the stream of bits of randomness R = (r1, . . . , rn) is being
generated, for every bit ri, the p-tampering virus gets to change ri with inde-
pendent probability p (i.e., with probability (1− p) the bit remains unchanged).
p-tampering attacks are online, so the virus does not know the future incom-
ing bits, but it can base its decisions based on the history of the (potentially
tampered) bits. The work of [1] proved that bitwise p-tampering attacks can
always increase the average of efficient bounded functions f : {0, 1}n �→ [−1,+1]
by Ω(p · Var[f(Un)]) where Var[f(Un)] is the variance of f(Un).

Austrin et al. [1] showed how to break a variety of ‘privacy’ cryptographic prim-
itives (e.g., public-key and private key encryption, zero knowledge, commitments,
etc.) that have ‘indistinguishability-based’ security games using their main effi-
cient bitwise p-tampering biasing attack. In such cryptographic attacks, the code
of the p-tampering virus is generated by an outside adversary who only knows
the public information (e.g. public key). Previously, Dodis et al. [19] had shown
that for the same cryptographic primitives, there are high-min-entropy Santha-
Vazirani sources of randomness [39] that make them insecure. Thus, the work of
[1] was a strengthening of the results of [19] showing how to generate such ‘bad’ SV
sources through efficient p-tampering attacks. The p-tampering attacks of [1], and
in particular their core attack for biasing the output of balanced bounded func-
tions, crucially depend on the fact that the attacker can tamper with every single
bit of the randomness independently with probability p. However, randomness is
usually generated in blocks rather than bits [4,16,21,28], e.g., during the boot time
[30], and is also made available to the algorithms requesting them in blocks. Thus,
it is indeed natural to consider tampering attackers who sometimes get to change
an incoming block of randomness.

Blockwise p-tampering attacks. In this work, we revisit the bitwise p-
tampering model of [1] and extend it to a setting where the tampering could hap-
pen over blocks. Suppose A is an algorithm taking X = (X1 × · · · × Xn) as input
whereX is a distribution consisting of n blocks and the i’th block is independently
sampled from the distribution Xi. For example, A could be a cryptograhpic algo-
rithm in which Xi is the i’th block of uniform randomness given to A. Or A could
also be a learning algorithm given n i.i.d training examples. Roughly speaking, a
1 Note that if the adversary can control all the randomness, we are effectively back to

what we can do in the deterministic setting.
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blockwise p-tampering attack on (the randomness of) A is an algorithmTamwork-
ing as follows. Suppose we sample the blocks xi ← Xi one by one. Then the i’th
block xi becomes ‘tamperable’ with independent probability p for each i, and it
remains intact with probability 1 − p. In case xi becomes tamperable, then Tam
could substitute xi with another value x′

i in the support set2 of Xi in an online
way. Namely, when Tam gets the chance to tamper with xi it could decide on a
new block x′

i based on the knowledge of previous (tampered) blocks. The tamper-
ing algorithm Tam could also depend on (and thus know everything about) the
algorithm A including all of its inputs selected so far, but it cannot write anything
except when it is given the chance to tamper with a block of randomness.

Different p-tampering attackers could pursue different goals. For example, as
it was done in the bitwise setting of [1], a p-tampering attack might aim to ‘signal
out’ a secret information (e.g., the plain-text). Another example is when Tam
wants to increase the classification error of the hypothesis output by a learner
A where each block xi = (d, t) consists of a labeled example sampled from the
same distribution.

We also note that, though called primarily a tampering attack, p-tampering
attacks are not blind tampering attackers and naturally rely on the knowledge of
the previous random bits before deciding on the tampering of the next bit/block,
although such knowledge is only given to the tampering virus, and e.g., not the
external adversary generating the code of the virus. That is a reason why the
proven power of p-tampering attacks in this work is not in contradiction with
known positive results such as [18,24,26,32] that guarantee tamper resilience.

1.1 Our Results

Our main result is a generalization of the biasing attack of [1] to the blockwise
setting. We first describe this result, and then we will describe some of the
applications of this biasing attack.

Theorem 1 (Informally stated). Let X = (X1 × · · · × Xn) be a product
distribution where each of Xi’s is efficiently samplable. For any efficient function
f : Supp(X ) �→ [−1,+1] there is an efficient blockwise p-tampering attack that
increases the average of f over a sampled input by at least Ω(p) · Var[f(X )].

See Theorem 4 for a formalization. Similarly to [1], we also prove a variant
of Theorem 1 for the special case of Boolean functions, but with better parame-
ters (see Theorem 5). However, some of the applications of this biasing lemma
(e.g., for attacking cryptographic primitives, or attacking learning algorithms
with non-Boolean cost/loss functions) we need to use the non-Boolean attack of
Theorem 1.

Our main biasing p-tampering attack on bounded functions even applies to
the settings where X is not a product distribution. In that case, we assume
2 We only allow the tampering algorithm to produce something in the support set. A

more general definition allows the tampering algorithm to make choices out of the
support set, however, our restriction only makes our attacks stronger.
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that X is sampled in a ‘stateful’ way, and that the next block Xi is sampled
conditioned on adversary’s choices of blocks. This extension allows our model to
include previous special models of p-tampering attacks against random walks on
graphs [3].

We also prove some applications for our main biasing attack that rely on the
blockwise nature of it. In addition to obtaining attacks against the security of
cryptographic primitives as well as multi-source randomness extractors through
blockwise p-tampering, we also demonstrate applications beyond cryptography.
In particular, by relying on the power of biasing attacks over non-uniform distri-
butions, we show how to attack and increase the error of learning algorithms that
output classifiers, through an attack that injects a p fraction of adversarial data
in an online way. In what follows we briefly discuss each of these applications.

Attacks on Randomness of Cryptographic Primitives. As mentioned, the
bitwise p-tampering attack of [1] for biasing functions was at the core of their
attacks breaking the security of cryptographic primitives by tampering with
their randomness. By using our biasing attack of Theorem 1 we immediately
obtain blockwise attacks against the same primitives. This time, our attacks
work regardless of how randomness is packed into blocks, and is also ‘robust’ in
the sense that the attack succeeds even if the tampering probabilities p1, p2, . . .
are not equal so long as p ≤ pi for all i.3

Corollary 1 (Informal). Let P be one of the following primitives. CPA secure
public-key or private-key encryption, efficient-prover zero-knowledge proofs for
NP, commitment schemes, or two party computation where only one party gets
the output. Then there is an efficient blockwise p-tampering attack that breaks
the security of P with advantage Ω(p). In particular, the attack succeeds even
if the length of the tampered randomness blocks are unknown a priori and only
become clear during the attack.

The above theorem could be obtained by plugging in our biasing attack of
Theorem 1 into the proofs of [1].

Achieving security against blockwise p-tampering? In addition to pre-
senting the power of bitwise p-tampering attacks, the work of [1] also showed
how to achieve secure protocols against bitwise p-tampering attacks for ‘forging-
based’ primitives such as signatures for p = 1/poly(κ) where κ is the security
parameter. For the same primitives, when we move to the blockwise setting,
whether or not achieving positive (secure) results is possible depends on the
block sizes of the tampering attack. For example, if the whole randomness of the
key generation algorithm of a signature scheme becomes tamperable as a single

3 In fact, we observe that the bitwise p-tampering attack of [1] is also robust, but
proving robustness becomes more challenging for our blockwise p-tampering attack.
Moreover, we believe robustness is an important feature for cryptographic attacks
and so worth to be studied explicitly, as some attacks, e.g., the reduction from
bitwise to blockwise p-tampering (Please see the full version for the proof.), are not
necessarily robust.
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block (with probability p ≥ 1/poly(κ)) the adversary can choose an insecure
key. On the other hand, if all the blocks are of constant size (or even of size
o(lg κ)) similar arguments to those in [1] could be used to make ‘forging-based’
primitives secure for any p ≤ κ−Ω(1).

Efficient Attacks for Biasing Extractors. Our blockwise p-tampering
attacks for biasing functions are natural tools for ‘biasing attacks’ against (seed-
less) randomness extractors from block sources.

Biasing Multi-source Seedless Extractors. We can directly use our p-
tampering attacks against any specific, multi-source, seedless randomness extrac-
tors [12,39,43]. Namely, suppose f is an efficient seedless extractor who takes
n blocks of randomness (x1, . . . , xn) ← (X1 × · · · × Xn) where the distribution
Xi belongs to a class of randomness source. Then, for any choice of samplable
X = (X1, . . . , Xn), Theorem 5 gives an efficient p-tampering attacker who could
transform the distribution X into Y such that |E[f(Y )]| ≥ Ω(p). Note that the
interesting aspect of Y is that it is identical to X in (≈ 1 − p) fraction of the
blocks. In particular, as we will see, our attacker of Theorem 1 has the prop-
erty that upon tampering with each block, all it does is to either leave as is or
‘resample’ it once.

The second application of our p-tampering attacks against extractors is dif-
ferent in the sense that instead of attacking extractors when unbiased extraction
is possible, it gives an alternative algorithmic proof for a known impossibil-
ity result [6,19,22,36] regarding block Santha-Vazirani sources [39]. Below, by
U j

i = Ui × · · · × Ui we refer to j blocks each consisting of i uniform bits.

Impossibility of Randomness Extraction from SV Sources. The cele-
brated work of Santha and Vazirani [39] proved a strong negative result about
deterministic randomness extraction from sources with high min-entropy. An SV
source (see Definition 7) is a joint distribution (X1, . . . , Xn) over {0, 1}n with
the guarantee that every bit is δ-close to uniform even if we condition on all
the previous bits. In particular, [39] proved that for any deterministic (suppos-
edly extractor) function f : {0, 1}n �→ {+1,−1}, there is always an δ-SV source
X = (X1, . . . , Xn) such that |E[f(X )]| ≥ Ω(δ). The work of Reingold et al.
[36] gave an elegant simple proof for this result using the so called ‘half-space’
sources, and this idea found its way into the work of Dodis et al. [19] where they
generalized the result of [39] to block sources [13]. A (�, k)-block SV source is a
sequence of blocks of length � bits such that each block has min-entropy at least
k conditioned on previous blocks (see Definition 8).

Even though p-tampering attacks do not generate block-SV sources with
‘high’ min-entropy in general, we show that the specific p-tampering attacker
of our Theorem 1 does indeed generate an (�, � − p) block-SV source. As a
result, we get an alternative proof for the impossibility of deterministic extraction
from block-SV sources, but this time through efficient p-tampering attacks.4 In
particular, we prove the following.
4 Note that this is indeed a stronger condition than just getting a samplable source.

See Remark 1.
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Theorem 2 (Efficient p-tampering attacks over block SV sources). Let
the function f : {0, 1}�·n �→ {+1,−1} be a ‘candidate’ efficient deterministic
extractor for (�, � − p) block SV sources. Then there is an efficient p-tampering
attack that generates a (�, � − p) block SV source for which the average of f
becomes Ω(p).

Our main contribution in Theorem 2 is the efficiency of its p-tampering
attacker, as without that condition one can prove Theorem 2 using a compu-
tationally unbounded p-tampering attacker and the proof implicit in [19,36] and
explicit in [6,22] for the case of block SV sources. In fact, we prove a more general
result than Theorem 2 by proving the impossibility of efficient bit bit extractors
from yet another generalization of SV sources, called mutual max-divergence [23]
(MMD) sources (see Definition 6).

Attacking Learners. In this work, we also use our blockwise p-tampering
attack in the context of “adversarial” machine learning [5,35] where an adver-
sary aims to increase the error of a learning algorithms for a specific test data
that is known to him. In what follows, the reader might find the review of the
standard terminology at the beginning of Sect. 4.2 useful.

Targeted poisoning attacks against learners. Poisoning attacks (a.k.a
causative attacks) [2,40,44] model attacks against learning systems in which the
adversary manipulates the training data x = (x1, . . . , xn), where xi is the i’th
labeled training example, in order to increase the error of the learning algorithm.
Poisoning attacks could model scenarios where the tampering happens over time
[37,38] e.g., because the learning algorithm is “retrained” daily or weekly using
potentially tamperable data. Targeted (poisoning) attacks [40] refer to the set-
ting where the adversary knows a specific test data X over which the hypothesis
will be tested, and she probably has some interest in increasing the error of the
hypothesis over that particular test set X . For simplicity of discussion, below we
assume that X = {(d, t)} where t is the label of d and the adversary’s goal is to
make the learning algorithm output a wrong label for d.

A very natural model for how the poisoning attacks occur was defined by
Valiant [42]. In this model, a training oracle OX(.) for a distribution X (from
which the training sequence x = (x1, . . . , xn) will be sampled) would be manip-
ulated by an adversary as follows. Whenever the training algorithm queries this
oracle, with probability 1 − p the answer is generated from the original oracle
OX and with probability p a stateful adversary A gets control over the oracle
and answers with an arbitrary pair (d, t). Many subsequent work (e.g., [10,31])
studied how to make learners secure against such noise but not in the targeted
setting.

Valiant’s model vs p-tampering. Valiant’s adversarial model for the training
oracle is indeed very similar to our blockwise p-tampering model except for
the fact that in the Valiant’s model, the adversary is allowed to use wrong
labels (i.e., xi = (d, t) where t is not the correct label for d). However, as we
discussed above, our p-tampering attackers are not allowed to go out of the
‘support set’ of the distribution (see Definition 18). In this work, we prove the
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following attack against deterministic learners of classifiers (see Theorem 8 for
a formalization). One subtle difference between the models is that in Valiant’s
model, the adversary knows everything about the current state of the learner,
while in our model, the adversary knows the history of the blocks. For all of our
attacks, all adversary needs is to ‘continue’ the computation done by the learner,
and knowing the current state (as in Valiant’s model) allows us to do so, even
if the previous blocks are unknown. Therefore, all of our p-tampering attacks
indeed apply in Valiant’s model.

Theorem 3 (Informal–Targeted poisoning attacks against classifiers).
Let L be a deterministic learning algorithm L that takes a sequence x =
(x1, . . . , xn) of i.i.d samples from the same distribution X, where xi = (di, �i)
and �i is the label of di. Suppose, without tampering, the probability of L making
a mistake on test example d is δ over the choice of x1, . . . , xn ← X. Then there
exists a p-tampering attack over the training sequence (x1, . . . , xn) that increases
the error for classifying d to δ′ ≥ δ + Ωδ(p). Moreover, if X is efficiently sam-
plable, the attack is efficient as well.

Note that the above attacker is a p-tampering one, meaning it never goes
out of the support set of the distribution. In other words, our attacker does
not use any wrong labels in its adversarial samples! Therefore, our attacks are
‘defensible’ in the sense that what they produce is always a possible legitimate
outcome of the honest sampling, so it could not be proved in court that the data
is not generated honestly! Previous work on poisoning attacks (e.g., [2,40,44])
has studied attacks against specific learners, while our result can be applied to
any learner.

Comparison with the distribution-independent setting of [10,31]. Pre-
vious works of Kearns and Li [31] and Bshouty et al. [10] have already proved
impossibility of PAC learning in Valiant’s model of adversarial noise. In addi-
tion to using wrong label in their attacks (which is not allowed in the p-
tampering model) there is also another distinction between their model and
our p-tampering poisoning attacks. The attacks of [10,31] are proved in the
distribution-independent setting, and their negative results heavily rely on the
existence of some initial distribution that is not PAC learnable under adversar-
ial noise. Our attacks, on the other hand, apply even to the distribution-specific
setting, where the adversary has no control over the initial distribution, and it
can always turn that distribution against the learner.

1.2 Ideas Behind Our Blockwise p-Tampering Biasing Attack

In this subsection we describe some of the ideas behind the proof of our
Theorem 1.

Reduction to bitwise tampering? Our first observation is that blockwise
p̃-tampering over uniformly distribute blocks Us1 × . . . Usn

could be reduced to
p-tampering over N =

∑

i si many uniform bits, as long as 1 − p̃ ≤ (1 − p)si
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for every si. The idea is that if 1 − p̃ ≤ (1 − p)si , then the probability of the
whole block Usi

getting tampered with in the blockwise model is at least the
probability that at least one of the bits are tampered with in the bitwise model.
Therefore, a blockwise attacker can ‘emulate’ the bitwise attacker internally. See
the full version for a formalization of this argument.)

However, this reduction is imperfect in three aspects. (1) Firstly, to use this
reduction we will need to use p ≈ p̃/s where s is the maximum length of any
block. Therefore, we cannot gain any bias more than 1/s which, in particular,
would be at most o(1) for non-constant block sizes s = ω(1). This prevents
us from getting applications (e.g., attacks against extractors) that require large
Ω(1) bias. (2) Secondly, this reduction only works for blocks that are originally
distributed as uniform bits (i.e., Us), and so it cannot be applied to general non-
uniform distributions, which is indeed the setting of our p-tampering attacks
against learners. (3) Finally, this reduction does not preserve robustness as the
p̃-tampering algorithm would need to know the exact probabilities under which
the tampering happens, while in our applications of blockwise tampering to cryp-
tographic primitives robustness we aim for robust attacks that do not depend
on this exact knowledge. Because of all this, in this work we aim for a direct
attack analyzed in the blockwise regime.

The work of [1] used a so called ‘mild-greedy’ attack for biasing real-valued
bounded function in a bitwise p-tampering attack. Roughly speaking, this attack
works as follows. When the tampering happens, the tampering algorithm first
picks a random bits b′

i. Then, using a random continuation b′
i+1, . . . , b

′
n it inter-

prets s = f(b1, . . . , bi−1, b
′
i, . . . ) as how good the choice of b′

i is. Then, using a
biased coin based on s, the tampering algorithm either keeps b′

i or it flips it to
1 − b′

i. This attack, unfortunately, is tailored of the bitwise setting, as flipping a
block is not natural (or even well defined).

Our new one rejection sampling attack. In this work propose a new attack
for the blockwise setting that is inspired by the mild-greedy attack of [1]. Our
attack is not exactly a ‘generalization’ of the mild-greedy attack to the blockwise
setting, as even for the case of uniform blocks of one bit, it still differs from the
mild-greedy attack, but it is nonetheless inspired by the one-greedy attack and
its analysis also uses ideas from the analysis of mild-greedy attack [1]. We call
our tampering attack one rejection sampling, denoted by ORSam, and it works
as follows: given previously chosen blocks (y1, . . . , yi−1) for X (some of which
might be the tampered blocks) the tampering algorithm ORSam first samples
(y′

i ← Xi, . . . , y
′
n ← Xn) ‘in its head’, then gets s = f(y1, . . . , yi−1, y

′
i, . . . , y

′
n),

and outputs:
{

Case 1: with probability 1+s
2 : keep y′

i

Case 2: with probability 1−s
2 : use a fresh sample y′′

i ← Xi.

Why does one-rejection sampling work? The main challenge is to show
that the simple one-rejection sampling attack described above actually achieves
bias proportional to the variance. In order to relate the bias to the variance of the
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function, we first need to define two notations. For every prefix x≤i = x1, . . . , xi

let f̂ [x≤i] = E[f(X )|X1 = x1, . . . , Xi = xi] to be the average of function f

w.r.t to distribution X conditioned on that prefix. Also let g[x≤i] = f̂ [x≤i] −
f̂ [x≤i−1] be the change in average of f (i.e., f̂) when we go from x≤i−1 to x≤i.
A straightforward calculation shows that

Var[f(X )] = E
(x1,...,xn)←X

[

∑

i∈[n]

g[x≤i]2
]

=
∑

i∈[n]

E
x≤i←(X1,...,Xi)

[

g[x≤i]2
]

. (1)

That is simply because the sequence (f̂ [x≤0], . . . , f̂ [x≤n]) forms a martingale.
Suppose Y = (Y1, . . . , Yn) is the new distribution after the p-tampering hap-
pens over X . Equation (1) suggests the following natural idea for lower bound-
ing the amount of “global gain” that is achieved for increasing the average
d = E[f(Y )] − E[f(X )] under the attack’s generated distribution by relating
it to the variance Var[f(X )]. In particular, it would suffice to lower bound
the “local gains” for average of f when we apply our one rejection sam-
pling with probability p for a particular block i, by relating it the term
E(x1,...,xn)←X [g[x≤i]2] (for the same fixed i). Direct calculation shows that the
‘local gain’ obtained by our one-rejection sampling attack for any prefix x≤i is
exactly p

2 · Exi+1←Xi+1 [g[x≤i, xi+1]2].
Unfortunately, a subtle point prevents us from using the above argument,

because as soon tampering happens, we deviate from the original distribution
X , and the ‘prefixes’ of the blocks come from a new distribution Y rather than
X , so we cannot directly use to Eq. (1) to lower bound the local gains by relating
them to Var[f(X )]. Nonetheless, it can be shown that a variant of Eq. (1) still
holds in which, roughly speaking, Var[f(Y )] substitutes Var[f(X )]. Therefore, it
would be sufficient to lower bound Var[f(Y )] based on Var[f(X )]. For this goal,
we employ similar ideas to those of [1] to show by induction over i that at any
moment during the attack either the average or the variance of f̂ [x≤i] under
the new tampered distribution Y is large enough. See Sect. 5 for more details.

1.3 Further Related Work and Models

Since the work of Boneh et al. [9] it is known that even random tampering with
computation of certain protocols could lead to devastating attacks. The work
of Gennaro et al. [26] initiated a formal study of algorithmic tamper resilience.
Along this direction, non-malleable codes, introduced by Dziembowski et al.
[25], become a central tool for preventing tampering attacks on the internal
state of an algorithm. More recently, Chandran et al. [11] studied non-malleable
codes in the blockwise tampering model that bears similariteis to our model in
this work, though our goals are completely different. Finally, Bellare et al. [7]
initiated the study of algorithm substitution attacks where a powerful attacker
can adversarially substitute components of the algorithm.

Coin-tossing. At a high level, our blockwise tampering attacks, specially for
biasing Boolean functions, have some conceptual similarities to attacks against
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coin-tossing protocols [8,15,17,29,34]. Indeed, both types of attacks aim at bias-
ing a final bit by ‘substituting’ some ‘blocks’. In our setting, the block is the next
sampled chunk of randomness, and for coin tossing blocks are maliciously chosen
messages to the other party! However, the pattern of tampering in such attacks
is one out of two complementing sets (referring to each party’s turns), while in
our setting each block becomes tamperable with an independent probability p.

Tampering with ‘bounded budget’. The works of [15,27,33] studied the
power of related tampering attacks in the blockwise setting where the goal of
the adversary is indeed to bias the output of a function. However, in these papers,
while the adversary has a ‘limited budged’ of how many times to tamper, it can
choose when to tamper with a block, while, in our model the adversary will
have no control on about 1 − p fraction of the blocks, and he does not get to
choose which blocks will be so. The work of Dodis [20] studies a ‘mixture’ of
both models where the adversary has a bounded budged that she can use upon
choice, but she also gets to tamper ‘randomly’ otherwise.

2 Preliminaries

Logarithms are denoted by lg(·) and, unless specified otherwise, they are in base
2. By a, b ∈ D we mean that a ∈ D and b ∈ D. For a string x ∈ {0, 1}∗, by |x| = n
we denote that x ∈ {0, 1}n. For a randomized algorithm S, we only explicitly
represent its input and do not represent its randomness and by y ← S(x) we
denote the process of running S(x) using fresh randomness and getting y as
output.

Notation on distributions and random variables. Unless specified oth-
erwise, all of the random variables and distributions in this work are discrete
and finite. We use uppercase letters to denote random variables and distribu-
tions (e.g., X). For real valued random variable X, by E[X] and Var[X], we
mean (in order) the expected value and variance of X. We usually use the same
letter to refer to distributions and random variables sampled from them. By
Supp(X) = {x | Pr[X = x] > 0} we denote the support set of X. The process
of sampling x from X is denoted by x ← X and X ≡ Y is used to show that X
and Y are distributed identically.

By Um we denote the random variable uniformly distributed over {0, 1}m.
By (X,Y ) we denote random variables X,Y that are distributed jointly. By
(X × Y ) we mean (X,Y ) where X and Y are independently sampled from their
marginal distribution. For joint random variables (X,Y ) and for any y ← Y ,
by (X | y) we denote the distribution of X conditioned on Y = y. By using a
random variable like X in an expected value (or probability) we mean that the
expected value (or the probability) is also over X (e.g., E[f(X)] = Ex←X [f(x)]
and Pr[f(X) = 1] = Prx←X [f(x) = 1]). We also use the tradition that the
multiple appearances of the same random variable X in the same phrase refer
to identical samples (e.g., it always holds that Pr[X = X] = 1). For a random
variable D, we also use D(x) to denote Pr[D = x].
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Definition 1 (Bit extraction). Let X be a set of distributions over a domain
D. We call a function f : D �→ {+1,−1} an ε-extractor for X (sources) if for
every X ∈ X it holds that |E[f(X)]| ≤ ε.

Definition 2. H∞(X) = minx∈Supp(X) lg(1/p(x)) is the min-entropy of X.

Definition 3 (Span of distributions). Let X = {X1, . . . , Xk} be a set of
distributions over the same domain. For α1 + · · · + αk = 1, by X =

∑

i∈[k] αiXi

we refer to the distribution X such that Pr[X = a] = X(a) =
∑

i αiXi(a).
Namely, X can be sampled by the following process: first sample i ∈ [k] with
probability αi, then sample x ← Xi and output x. The span of distributions
in X is defined to be the set of all convex combinations of distributions in X :
Span(X ) = {X =

∑

i∈[k] αiXi |
∑

i∈[k] αi = 1}.

Lemma 1 (Hoeffding’s inequality). Suppose A1, . . . , An are i.i.d random
variables distributed over [−1,+1] with expected value E[Ai] = μ, and let A =
Ei←[n][Ai] be their average. Then, for all ε ≥ 0 we have Pr [|A − μ| ≥ ε] ≤
e−n·ε2/2.

2.1 Distance Measures

Definition 4 (Statistical distance). The statistical distance (a.k.a. total
variation distance) between random variables X,Y is defined as

DSD(X,Y ) = max
E⊆Supp(X)

Pr[X ∈ E] − Pr[Y ∈ E].

The following lemma gives a well known characterization of the statistical
distance.

Lemma 2 (Characterizing statistical distance). It holds that DSD(X,Y ) ≤
p iff there are distributions Z,X ′, Y ′ such that X = (1 − p)Z + pX ′ and Y =
(1−p)Z +pY ′. In particular, if Y = (1−p)X +pZ then we have DSD(X,Y ) ≤ p
because it always holds that X = (1 − p)X + pX.

Definition 5 (KL-divergence). The Kullback-Leibler (KL) divergence from
distribution Q to distribution P is defined as follows: DKL(P ||Q) =
Ea←P lg(P (a)/Q(a)) if Supp(P ) ⊆ Supp(Q), and DKL(P ||Q) = ∞ if Supp(P ) �⊆
Supp(Q).

Definition 6 (Max-divergence[23]). The max-divergence from Q to P is
defined as follows: D∞(P ||Q) = maxa∈Supp(P ) lg(P (a)/Q(a)) if Supp(P ) ⊆
Supp(Q), and if Supp(P ) �⊆ Supp(Q), then D∞(P ||Q) = ∞.

The work of [23] defined the notion of max-divergence using e as the base
for logarithm, but in this work we use a variation of it using base 2, which is the
same up to a multiplicative constant factor lg e. The following lemma lists some
of the basic properties of max-divergence (see Definition 6).
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Lemma 3 (Properties of max-divergence). Let X,Y be distributions and
p < 1.

1. The following conditions are equivalent.
(a) D∞(X||Y ) ≤ lg(1/(1 − p)).
(b) For all a ∈ Supp(X) it holds that Pr[X = a] · (1 − p) ≤ Pr[Y = a].
(c) There exists some random variable Z such that Y = (1 − p)X + pZ.

Namely, Y can be sampled as: with probability 1 − p sample from X and
with probability p sample from Z.

2. For Supp(Y ) ⊆ {0, 1}m, H∞(Y ) ≥ k iff D∞(Y ||Um) ≤ m − k.
3. If D∞(X||Y ) ≤ r and D∞(Y ||X) ≤ r, then DKL(X||Y ) ≤ r(2r − 1).

Proof (Proof Sketch). Here we only sketch the proofs as they are straightforward.
The equivalence of Parts 1a and 1b directly follows from the definition of max-
divergence, so here we only show the equivalence of Parts 1b and 1c. Assuming
Part 1c we have

Pr[X = a] · (1 − p) ≤ Pr[X = a] · (1 − p) + Pr[Z = a] · p = Pr[Y = a]

which implies Part 1b. Assuming Part 1b, we define the distribution Z over
Supp(Y ) as follows: Z(a) = (Y (a) − (1 − p) · X(a))/p. It is easy to see that
Z(a) ≥ 0 and that

∑

a Z(a) = 1, so Z indeed defines a distribution. Moreover,
we have

X(a) · (1 − p) + Z(a) · p = X(a) · (1 − p) + (Y (a) − X(a) · (1 − p)) = Pr[Y = a]

which implies that Y = (1 − p)X + pZ, proving Part 1c.
Part 2 directly follows from the definitions of min-entropy and max-

divergence.
Part 3 follows from the same proof give in [23] but using the logarithm base

2 istead of e in the definition of max-divergence.

2.2 Santha-Vazirani Sources and Their Generalizations

Definition 7 (SV sources [39]). A joint distribution X = (X1, . . . , Xn) where
Xi ∈ {0, 1} for all i ∈ [n] is a δ-Santha-Vazirani (δ-SV) source with bias at most
δ ∈ [0, 1], if for all i ∈ [n] and all x1, . . . , xi ∈ {0, 1} it holds that (1 − δ)/2 ≤
Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1] ≤ (1 + δ)/2.

The following definition is a close variant of Block SV Sources defined in [13]
where we allow the blocks to have different lengths and specify the amount of
loss in the min-entropy (compared to the uniform distributing) in each block.

Definition 8 (Block SV Sources [13]). Suppose X = (X1, . . . , Xn) is a
joint distribution where Xi ∈ {0, 1}� for all i ∈ [n]. We call X a (�, k)-block SV
source if for all i ∈ [n] and all possible (x1, . . . , xi−1) ← (X1, . . . , Xi−1) it hold
that H∞(Xi | x1, . . . , xi−1) ≥ k.
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It is easy to see that a δ-SV source is a (1, 1 − γ)-block-SV source for γ =
lg(1 + δ) ≤ δ. The following definition by Beigi et al. [6] generalizes both of the
above definitions of SV and Block-SV sources.

Definition 9 (Generalized SV Sources [6]). Let D be a set of distributions
(dices) over alphabet C. A distribution X = (X1, . . . , Xn) over Cn is a Gen-
eralized SV source w.r.t D if for all i ∈ [n] and x1, . . . , xi−1 ∈ C there exists
S ∈ Span(D) such that for all xi ∈ C it holds that

Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1] = Pr[S = xi].

3 Blockwise p-Tampering: Definitions and Main Results

In this section, we will describe our results formally.

Notation on sequences of random variables. By Dn we denote the product
distribution D×· · ·×D (n times). Using this notation, by Un

m we mean a sequence
of n blocks each distributed independently like Um. Thus, although both of Un

m

and Um
n are eventually m · n random bits, one is divided into n blocks and one

is divided into m blocks. For a vector x = (x1, . . . , xn) we let x≤i = (x1, . . . , xi),
x<i = (x1, . . . , xi−1).

Definition 10 (Valid prefixes and conditional sampling). Let X =
(X1, . . . , Xn) be a joint distribution. We call x≤i = (x1, . . . , xi) a valid pre-
fix for X if there are xi+1, . . . , xn such that (x1, . . . , xn) ∈ Supp(X ) (i.e.,
x≤i ∈ Supp(X≤i)). We use ValPref(X ) to denote the set of all valid prefixes
of X (including the empty string x≤0). For a valid prefix y≤i ∈ ValPref(X ), by
(Xi | y≤i−1) we denote the conditional distribution (Xi | X1 = y1, . . . , Xi−1 =
yi−1).

Definition 11 (Online-samplable sequences of random variables). We
call a randomized algorithm S(·) an online sampler for a joint distribution.
Let X = (X1, . . . , Xn) if for every valid prefix x≤i−1 ∈ ValPref(X ), it holds
that S(x≤i−1) outputs according to (Xi | x≤i−1). If X = X (n) is a vector from
a family of vectors indexed by n, we let N = N(n) be the total length of the
representation of X (i.e., (X1, . . . , Xn) ∈ {0, 1}N ) and assume that n could be
derived from N(n). In that case, an online sampler S(·) for X (n) takes also N
as input and it holds that S(1N , x≤i−1) ≡ (Xi | x≤i−1). We call X = X (n)

efficiently online samplable if there exists an online sampler S for X that runs
in polynomial time (i.e. poly(N)). When n is clear from the context we might
simply drop 1N and simply write S(x≤i−1).

Definition 12 (Tampering algorithms for sequences of random vari-
ables). Let X = (X1, . . . , Xn) be an arbitrary joint distribution. We call a
(potentially randomized and even computationally unbounded) algorithm Tam
an (online) tampering algorithm for X if given any valid prefix x≤i−1 ∈
ValPref(X ), Tam(x≤i−1) always outputs xi such that x≤i ∈ ValPref(X ).
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If X = X (n) is a vector from a family of vectors indexed by n, we call Tam an
efficient tampering algorithm for X if it runs in time poly(N) where N = N(n)
is the total bit length of the vector X (i.e., (X1, . . . , Xn) ∈ {0, 1}N ).

Note that in Definition 12, we only allow the tampering algorithm to produce
something in the support set of the joint distribution.

The following definition defines a notation for representing the “chances” that
might be given to a tampering algorithm to tamper with the joint distribution
X = (X1, . . . , Xn). We need this generalization to formally define the robustness
of p-tampering attack when p changes during the attack.

Definition 13 (Probability trees over sequences of random variables).
Let X = (X1, . . . , Xn) be an arbitrary joint distribution. We call a function
ρ : ValPref(X ) �→ [0, 1] a probability tree over X . For 0 ≤ p ≤ q ≤ 1, we call
ρ[·] a [p, q]-probability tree over X if ρ(x≤i) ∈ [p, q] for all x≤i ∈ ValPref(X ).
We call ρ[·] the p-probability tree over X if ρ[x≤i] = p for all x≤i ∈ ValPref(X ).

Now we define the outcome of an actual “tampering game” in which a tam-
pering algorithm gets to tamper with a joint distribution X = (X1, . . . , Xn)
according to some probability tree defined over X .

Definition 14 (ρ-tampering variations of distributions). Let X =
(X1, . . . , Xn) be an arbitrary joint distribution, and let ρ[·] be a probability tree
over X . We say that a tampering algorithm Tam for X generates Y from X
through a ρ-tampering attack if Y = (Y1, . . . , Yn) is inductively sampled as fol-
lows. Given any valid prefix y≤i−1 ∈ ValPref(Y ) we will sample Yi through the
following process:

– with probability 1 − ρ[y≤i−1], sample Yi from (Xi | X≤i−1 = y≤i−1), and
– with probability ρ[y≤i−1], sample Yi ← Tam(y≤i−1).

Equivalently, using Definition 3, for all y≤i−1 ∈ ValPref(Y ) we have (Yi |
y≤i−1) = (1 − ρ[y≤i−1]) · (Xi | X≤i−1 = y≤i−1) + ρ[y≤i−1] · Tam(y≤i−1). In
this case, we also call Y a ρ-tampering variation of X . In case ρ is the con-
stant function p, we call Y a p-tampering variation of X and we say that Tam
generates Y from X through a p-tampering attack.

Note that even in cases where we end up sampling Yi from the “untampered”
distribution of Xi (which happens with probability at least 1−ρ[x≤i−1]) we still
sample from Xi conditioned on the possibly tampered prefix (y1, . . . , yi). In other
words, the result of the tampering algorithm determines, in case it happens, will
completely substitute the tampered block and the sampling will continue as if
the history of the blocks were from the untampered sequence X1, . . . , Xi. For
the special case that Xi’s are independent distributions (e.g., when X is uniform
distribution over some set Σn) we will not need to do this.

Prefixes remain valid. Note that because in Definition 14 the algorithm Tam
is a (valid) tampering algorithm for X , all the resulting prefixes will remain valid
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for X and we will have ValPref(Y ) ⊆ ValPref(X ). In fact, we get ValPref(Y ) =
ValPref(X ) if ρ[x≤i] < 1 for all x≤i ∈ ValPref(X ). A more general definition
of tampering algorithms (compared to Definition 12) could use a larger support
set Z where ValPref(X ) ⊂ Z and only require the tampering algorithm to
produce prefixes in Z. However, since our main contributions in this paper is
to give attacks, by restricting our model to require the attackers to remain in
ValPref(X ) only makes our results stronger.

Remark 1 (Efficient tampering vs. efficient sampling). Note that an efficient
tampering refers only to when the algorithm Tam is polynomial time, and it
can apply even to settings where X and its variation generated by Tam are
not efficiently samplable. On the other hand, using the standard terminology,
X is efficiently samplable if one can efficiently sample all of the blocks of X
simultaneously. Of course, if X is efficiently online samplable and if Tam is also
an efficient tampering for X , then the variation Y of X produced by tampering
attack Tam will also be trivially efficiently online-samplable, but we emphasize
that this is a specific way of getting an efficient sampler for Y , and so the
efficiency of our tampering attacks shall not be confused with mere efficient
samplablility of the final distribution Y .

Remark 2 (An alternative definition). An alternative variant of Definition 14
could ‘strengthen’ the tampering algorithm Tam who, now, receives the ‘original’
sample xi before substituting it with something else. Namely, we would first
sample xi ← (Xi | y≤i−1), and then with probability 1 − p we let yi = xi

and with probability p we let yi = Tam(y≤i−1, xi). This definition is natural
for scenarios in which the adversary gets to see the first initial sample and then
might decide to change or not change it. However, as long as either (1) tampering
is allowed to be inefficient or (2) X is efficiently online samplable, the power of
tampering attacks under this alternative definition is the same as those under
Definition 14. To see why, first note that Tam(y≤i−1, xi) can always ignore the
extra input xi. In the other direction, suppose Tam′ is a tampering algorithm
under the alternative definition and suppose a tampering algorithm Tam(y≤i−1)
is only given y≤i−1. If Tam can obtain a sample x′

i ← (Xi | y≤i−1), then it
could also emulate Tam′(y≤i−1, x

′
i). Interestingly, although xi and x′

i might be
different samples, this emulation of Tam′(y≤i−1, x

′
i) by Tam leads to the same

final distribution.

Now we define what it means for a tampering adversary to successfully bias
the output of a function, while being robust to changes in probabilities.

Definition 15 (Robust p-tampering attacks for biasing real functions).
Let X = (X1, . . . , Xn) be a joint distribution, f : Supp(X ) �→ R a real function
and Tam a tampering algorithm for X .

– For a probability tree ρ over X , we say that Tam is a ρ-tampering attack
biasing f(X ) by at least δ, if Tam generates Y from X through a ρ-tampering
attack and E[f(Y )] ≥ E[f(X )] + δ.
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– For p ∈ [0, 1], we say that Tam is a p-tampering attack biasing f(X ) by at
least δ, if Tam a ρ-tampering attack biasing f(X ) by at least δ for the constant
probability tree ρ[x≤i] = p.

– We say that Tam is a robust p-tampering attack biasing f(X ) by at least δ,
if for every [p, 1]-probability tree ρ over X it holds that Tam is a ρ-tampering
attack biasing f(X ) by at least δ.

3.1 Main Results: Blockwise p-Tampering of Bounded Functions

Now, we are ready our main results that are about biasing real functions through
efficient blockwise p-tampering attacks. We will then describe our results about
the computationally unbounded setting where the tampering algorithm Tam is
not necessarily polynomial time. Our main motivation for studying the compu-
tationally unbounded setting is to understand the limitations of what amount of
bias could be achieved. We will then describe the applications of our results for
attacking candidate randomness extractors (over multiple sources or variations
of SV sources) through p tampering attacks.

Theorem 4 (Efficient blockwise p-tampering of bounded real func-
tions). Let X = (X1, . . . , Xn) be a joint distribution, f : Supp(X ) �→ [−1,+1]
be a real-output function defined over Supp(X ). Then there is a tampering algo-
rithm Tam for X such that:

1. (Bias) Tam is a robust p-tampering attack biasing f(X ) by at least p
3+4p ·

Var[f(X )]. Furthermore, if the function f : Supp(X ) �→ {−1,+1} is Boolean,
then the bias is at least p

2+2p · Var[f(X )].
2. (Efficiency) Moreover, Tam could be implemented efficiently given oracle

access to any online sampler S(·) for X and f(·). In particular, given only
two samples y1

i , y2
i ← S(y≤i−1), Tam(y≤i−1) chooses between y1

i , y2
i by making

use of a biased coin that only depends on f̂ [y≤i−1, y
1
i ]. Such biased coin could

be sampled efficiently using further calls to S(·) and one call to f(·).

See Sect. 5 (in particular Sect. 5.1) for the full proof of Theorem 4.
Theorem 4 above extends the previous result of [1] from bitwise to blockwise

p-tampering. We also get bias Ω(p) though with worse constants. Also, for the
case of Boolean functions, we again extend the previous result of [1] from bitwise
p-tampering to blockwise p-tampering.

Importance of the efficiency features of the attacker in Theorem 4.
As we will see in Theorem 5 below, we can get better biasing bounds for the
Boolean case than p · Var[f(X )]/4, however, the reason that we pointed this out
in Theorem 4 was that result comes along with the efficiency feature specified in
Theorem 4 (and this is not the case in our Theorem 5 below). As mentioned, the
attacker of Theorem 4 only needs two honestly generated samples {y1

i , y2
i } for

the next tampered block Xi and chooses one of them. Interestingly, this means
that if the tampering algorithm is actually given an ‘initial true value’ xi for
block Xi (e.g., the honestly generated randomness to be used in a randomized

http://dx.doi.org/10.1007/978-3-319-70503-3_5


Blockwise p-Tampering Attacks 261

algorithm) then the tampering algorithm could basically just either keep xi or
substitute it with another fresh sample from Xi. This is a natural attack strategy
when the adversary can “reset” the sampling procedure for the block Xi.

Biasing Martingales. An interesting special case of Theorem 4 is when the
joint distribution X = (X1, . . . , Xn) is a martingale (i.e., Xi ∈ R and E[Xi |
x≤i−1] = xi−1) and f(X ) = Xn ∈ [−1,+1]. In this case, it holds that f̂ [x≤i] =
xi, and so our attacker of Theorem 4 becomes extremely simple: given any two
samples y1

i , y2
i ← (Xi | y≤i−1), Tam(y≤i−1) chooses yi = y1

i with a probability
that only depends on y1

i and chooses yi = y2
i otherwise. Note that no further calls

to the online sampler nor f(·) is needed! Moreover, this simple attack not only
biases the final value Xn = f(X ) but it does bias every other Xi as well. The
reason is that if we define fi(X≤i) = Xi ∈ [−1,+1], then the attacker’s algorithm
would be identical for biasing fi(·) compared to biasing fn(·) = f(·). Therefore,
our attack generates a p-tampering variation Y of X that simultaneously achieves
bias Yi ≥ Xi +(p/7) ·Var[Xi] for every block i ∈ [n]. Moreover, the p-tampering
is efficient if the martingale is online samplable.

Tampering with only a part of randomness. The specific way that the
attacker of Theorem 4 chooses between the two samples {y1

i , y2
i } for block Xi

allows us to generalize the attack to settings where the tamping happens only
over part of the randomness and some subsequent randomness R is also used for
computing f . As we will see, this corollary would also be useful for attacking
randomized learners through the so called ‘targeted poisoning’ attacks.

Corollary 2 (Biasing bounded ‘randomized’ functions). Let X =
(X1, . . . , Xn) be a joint distribution, R another distribution, and f : Supp(X ×
R) �→ [−1,+1]. For any fixed x ← X , let g(x) = Er←R[f(x, r)] ∈ [−1,+1]. Then
there is a tampering algorithm Tam for X (not receiving R) such that:

1. (Bias) Tam is a robust p-tampering attack biasing g(X ) by ≥ p
3+4p ·Var[g(X )].

2. (Efficiency) Tam could be implemented efficiently given oracle access to any
online sampler S(·) for X and f(·, ·). In particular, Tam(y≤i−1) again chooses
between two samples y1

i , y2
i ← S(y≤i−1) using further calls to S(·) and one

call to f(·, ·) and one sample from R.

Proof (Proof of Corollary 2 using Theorem 4). To derive Corollary 2 from The-
orem 4 we apply Theorem 4 directly to the function g(x) = Ef(x,R), and we
rely on the properties specified in the efficiency part of Theorem 4 to derive
the efficiency of the new attacker. All we need is to provide a sample from the
distribution Z (for choosing between y1

i , y2
i ← S(y≤i−1)) when we try to bias g.

In order to do so, we can first sample x ← (X | y≤i−1, y
1
i ) using S(·), and then

output Z ← f(x,R) using one sample r ← R. By the linearity of expectation,
even though we did not really compute g(x), this way of sampling Z using only
one r ← R has the needed properties for the (average) function g as well.
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The following theorem gives a better biasing bound for the important special
case of Boolean functions. On the down side, the attacker will be less efficient
and asks more queries to the online sampler S(·).5

Theorem 5 (Biasing Attacks on Boolean functions). Let X =
(X1, . . . , Xn) be a joint distribution, f : Supp(X ) �→ {+1,−1} a Boolean func-
tion defined over Supp(X ), and μ = E[f(X )]. Suppose S is a sampler for X
and let N be an upper bound on the total binary length of X = (X1, . . . , Xn) ∈
{0, 1}N , and ε < 1 be an input parameter. Then there is a tampering algorithm
Tam for X that:

1. (Bias) Tam is a robust p-tampering attack biasing f(X ) by ≥ p(1−μ2)
2−p(1−μ) −

ε
1+μ .6

2. (Efficiency) Moreover, Tam could be implemented in time poly(N/ε) given
oracle access to any online sampler S(·) for X and f(·). Thus, if ε ≥
1/poly(N), X is efficiently online samplable, and f is efficient, then Tam
would be efficient as well.

We prove our Theorem 5 using ideas from the attack of [1] also for the Boolean
case. In a nutshell, we follow the same ‘greedy’ approach, but the analysis of the
attack in the blockwise setting becomes more challenging and we can no longer
get the same bias of +p in the balanced case. Indeed, achieving the bias of +p
for balanced functions in the blockwise setting is not possible in general! For full
proof of Theorem 5 please see the full version.

Remark 3 (Robustness vs. p-obliviousness). Note that in both Theorems 5 and 4
the attackers are robust in the sense that they work simultaneously for all [p, 1]
probability trees (i.e., they only rely on the lower-bound p for the probability of
the tampering to happen for each block). However, this feature of the attacker
should not be confused with another aspect of our attackers that they are p-
oblivious, meaning the tampering algorithm Tam does not rely on knowing p
either. Putting these two together, it means that the attackers of Theorems 4
and 5 could be “generated” independently of the probability tree ρ under which
the tampering to the randomness will eventually happen, and yet the quality
of obtained bias only depend on the minimum over all the probabilities under
which the blocks become tamperable.

5 The sample complexity measure is an important factor in some of the applications
of our biasing attacks. For example, to attack the soundness of learning algorithms
through targeted poisoning attacks, the sample complexity of the attacker translates
into how much ‘fresh’ data is needed to substitute the original training examples
when the tampering happens.

6 The analysis of the greedy attack of [1] shows that the amount of bias is at least
p · (1 − |μ|). Our bound depends on 1 − μ2 instead of 1 − |μ|. The reason behind this
is that we use a better approximation of the probabilities for the output to be −1
or +1.
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Computationally Unbounded p-Tampering. One might wonder what are
the ‘potential’ and ‘limitations’ of the power of blockwise p-tampering attacks.
Even though our focus in this work is on the computationally bounded set-
ting, we also study the power and limitations of computationally unbounded
p-tampering attacks. Showing the power of attackers in the unbounded model
might eventually shed light into how to get better efficient attackers as well,
and proving limitations in this model imply strong limits for efficient tampering
algorithms as well. In Full version of this paper we show that the better biasing
bound of Theorem 5 could be obtained for bounded real functions as well, but
this comes with an inefficient p-tampering, and achieving this bound efficiently
remains as an open question. Perhaps surprisingly, we also show that there are
balanced functions over block sources where the best bias by (even inefficient)
p-tampering attacks is smaller than 0.7p. This comes in contrast with the bit-
wise p-tampering model where p is the optimal possible bias in general. See Full
version for more details.

4 Applications of p-Tampering Biasing Attacks

In this subsection we describe some of the applications of our main results on
blockwise p-tampering of bounded functions in several different contexts.

4.1 Efficient p-Tampering Attacks on Extractors

Rather than proving Theorem 2, here we prove a more general result by defining
yet another generalization of SV sources based on the notion of max-divergence
[23] (see Definition 6) which is tightly related to p-tampering variations. Intu-
itively, we will show that X is an (�, γ) block SV source if the uniform distri-
bution Un

� is a p-tampering variation of X for p ≈ γ. We will then show that
our p-tampering attacker of Theorem 4 produces Y such that X itself is a O(p)-
tampering variation of Y ! We first define the following generalization of block-SV
sources based on max-divergence.

Definition 16 (MD and MMD Sources). Let X = (X1, . . . , Xn) be a joint
distribution. For real number r ≥ 0, we call a joint distribution Y = (Y1, . . . , Yn)
an (X, r)-max-divergence (MD) source if Supp(Y ) = Supp(X ) and for all i ∈
[n], x<i ∈ ValPref(X ) the max-divergence D∞((Xi | x<i)||(Yi | x<i)) is at most
r. We call Y an (X, r) mutual MD (MMD) source if in addition X is an (Y , r)
MD source as well.

Remark 4 (Sources based on other distance measures). The above definition uses
max-divergence in order to limit how ‘far’ the source Y can be from the ‘central’
random process X = (X1, . . . , Xn). Alternative definitions could be obtained
by using other distance metrics and measures. For example, we can also define
(X, r) KL sources to include all distributions Y such that DKL((Xi | x<i)||(Yi |
x<i)) ≤ r. A result of [23] (see Part 3 of Lemma 3) shows that any (X, r) mutual
MD source is also a (X, r′) KL-source for r′ = r(2r − 1) which is r′ ≤ r2 for any
r ≤ 1.
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The following claim shows that MD sources and p-tampering variations are
tightly related. The proof directly follows from definitions of MD sources and
p-variations.

Claim 1 (MD sources vs. tampering variations). Y = (Y1, . . . , Yn) is an
(X, r)-MD source iff it is a p-tampering variation of X for p = 1 − 2−r.

The following claim shows that MD sources are also related to SV block
sources (in the ‘reverse’ direction), and its proof directly follows from the defin-
ition of MD sources and Part 2 of Lemma 3.

Claim 2 (MD sources vs. block SV sources). For a joint distribution
X = (X1, . . . , Xn), Un

� is an (X, r)-MD source iff X is an (�, � − r) block SV
source. In particular, if X is an (Un

� , � − r)-MMD source, then it is also an
(�, � − r)-block SV source.

Theorem 2 follows from Claim 2 above and the following general result about
the impossibility of deterministic extraction from MMD sources.

Theorem 6 (Impossibility of extractors from MMD sources). Let X =
(X1, . . . , Xn) be a joint distribution with an efficient online sampler, and let
f : Supp(X ) �→ {+1,−1} be an efficient Boolean function. Then, there is a p-
tampering variation Y of X where:

1. Y is an (X, p) MMD source.
2. |E[f(Y )]| ≥ Ω(p).
3. Y is generated by an efficient tampering algorithm Tam.

The first two items in Theorem 6 imply that f cannot be an extractor for
(X, p) MMD sources for any X = (X1, . . . , Xn). Moreover, one can show that
the source Y is also a (X, p2) KL source because it is a (X, p) mutual MD source
(see Remark 4).

Efficiency of the attacker. The last condition shows that the p-tampering
attack against such f (as a candidate extractor) could be implemented by an
efficient p-tampering attacker. We emphasize that the efficiency condition again
is crucial here. In fact, if we change the statement of Theorem 6 by (1) restricting
X = (Z × · · · × Z) to iid distributions and more importantly (2) allowing Tam
to be computationally unbounded, then we can derive this weaker version of
Theorem 6 from the recent impossibility result of [6] for generalized SV sources as
follows. Beigi et al. [6] showed that bit extraction with o(1) bias from generalized
SV sources (Definition 9) is impossible if (1) all the distributions D ∈ D available
to the adversary have full support over the alphabet set C and that (2) the
span of distributions D (see Definition 3) has full dimension |C|. To apply their
result to MMD sources, we observe that (1) the distribution of Yi where Y =
(Y1, . . . , Yn) is an (X, r) MMD source has full support (i.e., Supp(Z) = C) and
that (2) conditioned on any y≤i−1, the set of all possible distributions for Yi

forms a polytope with full rank |Supp(Z)|.
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Proof (Proof of Theorem 6). To prove Theorem 6 we use Theorem 4 and rely
on some specific properties of the p-tampering attacker there. Even though the
function f is Boolean, for some minor technical reasons, we will actually use the
p-tampering attacker of Theorem 4 for real output functions. In the following
we will show that this attacker has the properties listed in Theorem 6.

First note that without loss of generality, we can assume that E[f(X )] ≥ 0
(as otherwise we can work with −f and bias it towards +1). In that case, the
second and third properties of Theorem 6 follow from the main properties of
Tam as stated in Theorem 4. However, for getting the first property (that it
gives us an MMD source) we need to get into the actual attack’s description
from the proof of Theorem 4 given in Subsect. 5.1, which we also describe here.
This attacker Tam (for the real output case) is based on one-rejection sampling
(of Construction 1) modified as follows. Whenever the tampering algorithm is
given the chance to tamper with a new block (which happens with probability
p), the attacker itself tosses a coin and decides not to tamper with the block
with probability 0.5, and otherwise will actually run the one-rejection sampling
of Construction 1. Thus, during the execution of the p-tampering attack, the
tampering actually happens with probability p/2.

As described above, the tampering happens with probability p/2, so by Claim
1, it holds that Y is an (X, r) MD source for r ≤ lg(1/(1 − p/2)) ≤ p (by
p ∈ [0, 1]). On the other hand, the one-rejection sampling is actually used only
with probability p/2. Therefore, for every possible y≤i, if we let α = Pr[Xi =
yi | y≤i−1], then it holds that Pr[Yi = yi | y≤i−1] ≤ (1 − p/2) · α + (p/2) · (2α) ≤
(1+p/2) ·α, because, either no tampering happens with probability 1−p/2 and
even if it happens, because the tampering algorithm only uses two samples for
the tampered block, by a union bound, the probability of sampling yi in this case
is at most 2α, which means that X is an (Y , r) MD source for r ≤ lg(1+p/2) ≤ p
(by p ∈ [0, 1]).

Putting things together, it holds that Y is indeed an (X, p) MMD source.

4.2 Targeted Poisoning Attacks on Learners

Terminology. Let D be the domain containing all the objects of interest in a
learning problem, and let C be a class of concept functions mapping objects in
D to a set of labels T . A labeled example from the set D for a concept function
c ∈ C is a pair x = (d, c(d)) where d ∈ D. We use Pc = {(d, c(d)) | d ∈ D} to
denote all the labeled examples from D. The goal of a learning algorithm L is
to produce a hypothesis h ∈ H after receiving a sequence x = (x1, . . . , xn) of
labeled examples that we call the training sequence, such that h can predict the
label of a given input from D. The examples in the training sequence are usually
sampled independently from a distribution X over Pc through an oracle OX(.)
that we call the training oracle. A subset X ⊆ Pc is a test set if we use it to
evaluate the performance of the hypothesis h.

Definition 17 (Cost and average cost). A cost function cost : H × 2Pc →
[0, 1] captures the quality of a hypothesis, and the lower the value of cost(h,X ),

http://dx.doi.org/10.1007/978-3-319-70503-3_5
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the better h is performing on the examples in X . We define the average cost
function for a learning algorithm L and a test set X according to a specific
training oracle as follows:

cost
O
L (X ) = E

x1,...,xn←O
h←L(x1,...,xn)

[cost(h,X )]

For example the cost functions might be the fraction of examples in X that
h generate a wrong label for. The test set itself can consist of only one point, or
it might be very large to model the scenario where sampling an example from
X is equivalent to sampling from X.7

Definition 18 (p-tampering training oracles). Let OX be the training ora-
cle for a distribution X. A p-tampering oracle ̂Op

X works as follows. Whenever
the training algorithm queries this oracle, with probability 1 − p the answer is
generated from the original oracle OX and with probability p a stateful adversary
gets the control over the oracle and answers with an arbitrary pair (d, t) such that
(d, t) ∈ Pc. We call ̂Op

X efficient, if the pair (d, t) is generated using an efficient
p-tampering algorithm that takes as input 1N , where N is the total length of the
training sequence x, and all the previous samples in the training sequence.

We can use our Theorem 4 to increase the average cost of even randomized
learners where the cost could also be a real number. In the following theorem
we do exactly that. However, the quality of this attack depends on the variance
of the learner’s success probability (as defined in Theorem 7). Thus, a provable
randomized remedy against our attacks need, as the first step, to bound the
variance parameter defined in Theorem 7.

Theorem 7 (Power of targeted poisoning attack against real cost func-
tions). Let C be a concept class defined over domain D. Also let L be a (poten-
tially randomized) learning algorithm for C which takes a sequence of labeled
examples x = (x1, . . . , xn) that are sampled using an efficient training oracle
OX and outputs a hypothesis h ∈ H. For any such learning algorithm L that
tries to learn a concept c ∈ C, any p ∈ [0, 1], any test set X and any cost func-
tion cost : H × 2Pc → [0, 1] there exists a p-tampering training oracle ̂Op

X such
that if we sample x using ̂Op

X instead of OX the average cost increases as follows:

cost
̂Op
X

L (X ) ≥ cost
OX

L (X ) + Ω(p · σ2)

where

σ2 = Varx1,...,xn←OX

[

E
h←L(x1,...,xn)

[cost(h,X )]
]

.

7 In case the test data comes from X itself (i.e., X ≡ X), the average cost becomes
tightly related to PAC learnability [41]. In particular, if we define cost to be one
whenever the hypothesis h generates a wrong label, then any (ε, δ)-PAC learner has
average cost at most ε + δ. Conversely, if the average cost is at most γ, then by an
averaging argument we get a (

√
γ,

√
γ)-PAC learner.
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Moreover, if L is efficient, X is efficiently samplable, and cost(·) is efficiently
computable, then the corresponding p-tampering attack is efficient as well.

Proof. Assume L uses its own randomness r ← R in addition to (x1, . . . , xn)
and outputs a hypothesis h. For a fixed test set X , we define a function f :
Cn

p × Supp(R) → [−1,+1] as follows:

f(x1, . . . , xn, r) = 2 · cost(L(x1, . . . , xn, r),X ) − 1.

The output of the cost function is between 0 and 1, so the output of f is between
−1 and +1. Now by using our biasing attacks over part of the randomness of
randomized functions (i.e., Corollary 2) there exists a p-tampering variation Y
of Xn, generated through an efficient tampering attack, that biases f as follows:

μ̂ = E
x1,...,xn←Y

r←R

[f(x1, . . . , xn, r)] > μ +
p

7
· v

where μ = E
x1,...,xn←Xn

r←R

[f(x1, . . . , xn, r)]

and v = Varx1,...,xn←Xn [Er←R[f(x1, . . . , xn, r)]] .

Since Y is a p-tampering variation of Xn generated by an efficient tampering
attack, there is an efficient p-tampering training oracle ̂Op

X that generates Y . By

the linearity of expectation, we have μ̂ = 2 ·cost
̂Op
X

L (X )−1, μ = 2 ·costO
p
X

L (X )−1.
In addition, it holds that v = 4 · σ2, so by replacing μ̂, μ and v we get

cost
̂Op
X

L (X ) ≥ cost
̂Op
X

L (X ) +
2p

7
· σ2.

This bound of the above theorem could be indeed very weak as it depends
on the variance of the cost of the generated hypothesis. In particular, the change
could be o(1). As we will see, for the special case of Boolean cost functions (e.g.,
classification) we can increase the error arbitrarily close to one.

Theorem 8. (Power of targeted poisoning attacks against classifiers).
Let C be a concept class defined over domain D. Also let L be a determin-
istic, learning algorithm for C which takes a sequence of labeled examples x =
(x1, . . . , xn) that are sampled using an efficient training oracle OX and outputs a
hypothesis h ∈ H. For any such learning algorithm L that tries to learn a concept
c ∈ C, any p ∈ [0, 1], any test set X and any cost function cost : H×2Pc → {0, 1}
there exist a p-tampering training oracle ̂Op

X such that if we sample x using ̂Op
X

instead of OX , the average cost increases as:

cost
̂Op
X

L (X ) ≥ δ +
p(δ − δ2)

1 − p(1 − δ)
where δ = cost

OX

L (X ).

Moreover, if L and cost(·) are efficient and X is efficiently samplable, then for
any ε > 0 our p-tampering training oracle can be implemented in time poly( n

ε·δ )

and achieve cost
̂Op
X

L (X ) ≥ δ + p(δ−δ2)
1−p(1−δ) − ε.
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The proof of Theorem 8 is based on Theorem 5.

Proof (Proof of Theorem 8). We define a function f : Cn
p → [−1,+1] as follows:

f(x1, . . . , xn) = 2 · cost(L(x1, . . . , xn),X ) − 1.

Now using Theorem 5, there exist a p-tampering variation Y of Xn that biases
f as follows:

μ̂ = E
x1,...,xn←Y

≥ μ +
p · (1 − μ2)
2 − p(1 − μ)

where μ = E
x1,...,xn←Xn

[f(x1, . . . , xn)].

Since Y is a p-tampering variation of Xn, there is an p-tampering training oracle
̂Op

X that generates Y . With a simple calculation we have μ̂ = 2 · cost
̂Op
X

L (X ) − 1
and μ = 2 · δ − 1. By replacing μ̂ and μ we get

cost
̂Op
X

L (X ) ≥ δ +
p · (δ − δ2)

1 − p · (1 − δ)
.

The efficient version of our attack also directly follows from the efficient version
of Theorem 5.

A natural Boolean cost function can be defined as

cost(h,X ) =

{

0 if h(d) = t for all (d, t) ∈ X
1 otherwise

where the cost function outputs 0 if the hypothesis is correct on all the examples
in the test set. A special interesting case is where X ′ contains a single element
t ← X sampled from X itself, but the adversary knows this test example and
hopes to increase the error of classifying t.

Corollary 3 (Doubling the error). For every deterministic learning algo-
rithm L that outputs a hypothesis h by taking a sequence of n labeled examples
generated by an oracle OX and for every Boolean cost function cost : H × 2Pc →
{0, 1}, there exist a p-tampering training oracle ̂Op

X , using p = 1
2(1−δ) , such that

doubles the average cost δ = cost
OX

L (X ) into 2δ. (I.e., for small error δ, we can
double it by using p ≈ 1/2.)

5 Efficient p-Tampering Attacks Biasing Bounded
Functions

In this section we will formally prove Theorems 4. As described in Sect. 1.2, some
of the ideas (and even notation) that we use here goes back to the original work
of Austrin et al. [1] and here we show how to extend these arguments to the
blockwise setting and overcome challenges that emerge.

Before doing so, we need to define some useful notation for the notions that
naturally come up in our proofs. We will also make some basic observations
about these quantities before proving our main theorems.
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Definition 19 (Functions f̂ , g,G,A,Q). Suppose f : Supp(X ) �→ R is defined
over a joint distribution X = (X1, . . . , Xn), i ∈ [n], and x≤i ∈ ValPref(X ) is a
valid prefix for X . Then we define the following with respect to f,X , x≤i.

– fx≤i
(·) is a function defined as fx≤i

(x≥i+1) = f(x) where x = (x≤i, x≥i+1).
– f̂ [x≤i] = Ex≥i+1←(X≥i+1|x≤i)[fx≤i

(x≥i+1)]. We also use μ = f̂ [∅] to denote
f̂ [x≤0] = E[f(X )].

– We define the gain of the “node” x≤i (compared to its parent x≤i−1) as
g[x≤i] = f̂ [x≤i]− f̂ [x≤i−1]. This defines the change in f̂ [x≤i] after moving to
the i’th block.

– For every x≤i−1 and every distribution Z that could depend on x≤i−1 (e.g.,
Z is the output of a randomized algorithm that takes x≤i−1 as input) and
Supp(Z | x≤i−1) ⊆ Supp(Xi | x≤i−1) we define:

• The average of the gain over the “children” of node x≤i−1 under distrib-
ution (Z | x≤i−1):

GZ [x≤i−1] = E
xi←(Z|x≤i−1)

[g[x≤i]].

• The average of the squares of the gains:

QZ [x≤i−1] = E
xi←(Z|x≤i−1)

[

g[x≤i]2
]

.

Notation. Throughout the following sections, whenever we define X and f ,
then we will use all the notations defined in Definition 19 with respect to f and
X even if there are other distributions like Y defined.

The following lemma directly follows from the definition of μ and g[x≤i].

Proposition 1. For every x ∈ Supp(X ), f(x) = μ +
∑

i∈[n] g[x≤i].

The following two intuitive propositions also follow from the definition of
GXi

[x≤i−1] (See the full version for the proofs.).

Proposition 2. For every valid prefix x≤i−1 ∈ ValPref(X ), we have
GXi

[x≤i−1] = 0.

Proposition 3. Let f : Supp(X ) �→ R be any real-output function. Then for
any distribution Y such that Supp(Y ) ⊆ Supp(X ) it holds that E[f(Y )] −
E[f(X )] =

∑

i∈[n] EY≤i−1

[

GYi
[Y≤i−1]

]

.

The above proposition holds for any distribution Y as long as Supp(Y ) ⊆
Supp(X ), but the following is just about ρ-tampering variations.

Proposition 4. For any probability tree ρ over X , and any ρ-tampering varia-
tion Y of X generated by a (possibly randomized) tampering algorithm Tam, and
for any y≤i−1 ∈ ValPref(X ), it holds that GYi

[y≤i−1] = ρ[y≤i−1] · GTam[y≤i−1].
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Proof. The proof simply follows from the definition of ρ-tampering variations.
When we sample from the distribution (Yi | Y ≤i−1 = y≤i), by definition, with
probability 1−ρ[y≤i−1] we will be sampling Yi from (Xi | X≤i−1 = y≤i−1) which
by Proposition 2 leads to gaining GXi

[y≤i−1] = 0, and with probability ρ[y≤i−1]
we will be sampling Yi from Tam(y≤i−1) which leads to gaining GTam[y≤i−1].
Putting together, this implies an average gain of ρ[y≤i−1] · GTam[y≤i−1].

5.1 Biasing Real-Output Functions: Proving Theorem 4

In this Section we will prove our Theorem 4.

Construction 1. Let X = (X1, . . . , Xn) be the joint distribution and
f : Supp(X ) �→ [−1,+1]. The one rejection sampling tampering algorithm
ORSam works as follows. Given the valid prefix y≤i−1 ∈ ValPref(X ), the tam-
pering algorithm would sample y≥i ← (X≥i | y≤i−1) by multiple invocations of
the online sampler S. Then it computes s = f(y1, . . . , yn) and output from the
following random variable.

T =
{

Case 1: with probability1+s
2 outputyi.

Case 2: with probability1−s
2 output a fresh sampley′

i ← S(y≤i−1).

Claim 3. For every f : Supp(X ) → [−1,+1] and every [p, q]-probability tree
ρ over X , the tampering algorithm ORSam of construction 1 generates a ρ-
tampering variation Y of X such that E[f(Y )] ≥ E[f(X )] + p·(1−q)

2+2p−2q−pq ·
Var[f(X )], and if f : Supp(X ) → {+1,−1} is Boolean, then E[f(Y )] ≥
E[f(X )] + p

2+2p · Var[f(X )].

We first prove Theorem 4 using Claim 3, and then we will prove Claim 3

Proof (Proof of Theorem 4). We need to show that there is an attack that can
bias f by Ω(p). For the Boolean case the proof follows directly from the statement
of Claim 3. For the case of real-output functions we use an attacker that with
probability 0.5 uses uses a fresh sample, and with probability 0.5 it runs the one-
rejection sampling attack of Construction 1. This algorithm gives a ρ-tampering
variation Y of X such that ∀y≤i ∈ ValPref(X ), p

2 ≤ ρ[y≤i] ≤ 1
2 so using Claim 3

we have:

E[f(Y )] − E[f(X )] ≥ p/4
1 + 3p/4

Var[f(X )] =
p

4 + 3p
Var[f(X )].

In the rest of this section we will first prove three lemmas and then will use
them to prove Claim 3. All along we use Y to denote the ρ-tampering variation
of X generated by one rejection sampling algorithm ORSam of Construction 1.

Claim 4. Let T ≡ ORSam(y≤i−1) be a random variable defined over the ran-
domness of ORSam running on a valid prefix y≤i−1 ∈ ValPref(X ). The proba-
bility distribution of this random variable is:

Pr[T = yi] =
(

1 +
g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].
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Proof. We have two cases in the attack. We first compute the probability of
Case 1.

Pr[Case 1 ∧ T = yi] = E
y>i←(X>i|y≤i−1)

[

1 + f(y)
2

]

· Pr[Xi = yi | y≤i−1]

=

(

1 + f̂ [y≤i]
2

)

· Pr[Xi = yi | y≤i−1].

On the other hand, the probability of Case 2 is

Pr[Case 2 ∧ T = yi] = Pr[T = yi | Case 2] · Pr[Case 2]

= Pr[Xi = yi | y≤i−1] · E
y>i−1←(X>i−1|y≤i−1)

[

1 − f(y)
2

]

= Pr[Xi = yi | y≤i−1] ·
(

1 − f̂ [y≤i−1]
2

)

.

Thus, we have

Pr[T = yi] = Pr[Case 1 ∧ T = yi] + Pr[Case 2 ∧ T = yi]

=

(

1 + f̂ [y≤i]
2

)

· Pr[Xi = yi | y≤i−1]

+ Pr[Xi = yi | y≤i−1] ·
(

1 − f̂ [y≤i−1]
2

)

=
(

1 +
g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].

Corollary 4. For any y≤i ∈ ValPref(X ), it holds that

Pr[Yi = yi | y≤i−1] =
(

1 +
ρ[y≤i−1] · g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].

Proof. By definition of Y we have

Pr[Yi = yi | y≤i−1] = (1 − ρ[y≤i−1]) · Pr[Xi = yi | y≤i−1]
+ ρ[y≤i−1] · Pr[yi = ORSam(y≤i−1)]

(by Claim 4) = (1 − ρ[y≤i−1] + ρ[y≤i−1] · (1 +
g[y≤i]

2
)) Pr[Xi = yi | y≤i−1]

=
(

1 +
ρ[y≤i−1] · g[y≤i]

2

)

· Pr[Xi = yi | y≤i−1].

Lemma 1. Let X = (X1, . . . , Xn). For every function f : Supp(X ) → [−1,+1]
and every [p, 1]-probability tree ρ over X , if Y is the ρ-tampering variation of
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distribution X generated by tampering algorithm ORSam of construction 1, and
if μ = E[f(X )], then it holds that

E[f(Y )] ≥ μ +
p

2(1 + p)
·
(

E[f(Y )2] − μ2
)

.

Before proving the above lemma, we will need to prove several other claims.

Claim 5 (One rejection sampling’s local gains). For any y≤i ∈
ValPref(X ), it holds that

GORSam[y≤i−1] = QXi
[y≤i−1]/2.

Proof. First note that GORSam[y≤i−1] =
∑

yi
Pr[yi = ORSam(y≤i)] · g[y≤i]. By

Claim 4 we get

GORSam[y≤i−1] =
∑

yi

Pr[Xi = yi | y≤i−1] ·
(

1 +
g[y≤i]

2

)

· g[y≤i]

=
∑

yi

Pr[Xi =yi | y≤i−1] · g[y≤i]+
∑

yi

Pr[Xi =yi | y≤i−1] · g[y≤i]2

2

= GXi
[y≤i−1] +

QXi
[y≤i−1]
2

.

By Proposition 2 we also know that GXi
[y≤i−1] = 0, so GORSam[y≤i−1] =

QXi
[y≤i−1]/2.

Corollary 5. For any y≤i−1 ∈ ValPref(X ), it holds that GYi
[y≤i−1] = ρ[y≤i−1]

2 ·
QXi

[y≤i−1].

Proof.

GYi
[y≤i−1] =

∑

yi

Pr[yi = Yi | y≤i−1] · g[y≤i]

=
∑

yi

(

(1 − ρ[y≤i−1]) · Pr[yi = Xi | y≤i−1]
)

· g[y≤i]

+
∑

yi

(

ρ[y≤i−1] · Pr
[

yi = ORSam(y≤i−1)
]

)

· g[y≤i]

= (1 − ρ[y≤i−1]) · GXi
[y≤i−1] + ρ[y≤i−1] · GORSam[y≤i−1]

(by Proposition 2) = ρ[y≤i−1] · GORSam[y≤i−1]

(by Claim 5) =
ρ[y≤i−1]

2
· QXi

[y≤i−1].

Corollary 6. EY [f(Y )] = μ +
∑n

i=1 EY≤i−1

[

ρ[Y≤i−1]

2 · QXi
[Y≤i−1]

]

.

Proof. Using Claim 3, we have EY [f(Y )]=μ+
∑n

i=1 EY≤i−1 [GYi
[Y≤i−1]] . By also

using Corollary 5 we obtain EY [f(Y )]=μ+
∑n

i=1 EY≤i−1

[

ρ[Y≤i−1]

2 · QXi
[Y≤i−1]

]

.
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Claim 6. For every x ∈ Supp(X ), it holds that

f(x)2 = μ2 +
n

∑

i=1

(

g[x≤i]2 + 2f̂ [x≤i−1] · g[x≤i]
)

.

Proof. By squaring the equation in Proposition 1 we get

f(x)2 = μ2 +
n

∑

i=1

g[x≤i]2 + 2
n

∑

i=1

g[x≤i] · (μ +
i−1
∑

j=1

.g[x≤j ])

By the definition of g[x≤j ] it holds that f̂ [x≤i−1] = μ +
∑i−1

j=1 g[x≤j ]. So we get

f(x)2 = μ2 +
n

∑

i=1

(

g[x≤i]2 + 2f̂ [x≤i−1] · g[x≤i]
)

.

You can find the proof of the following two claims in the full version of this
paper.

Claim 7. For any y≤i−1 ∈ ValPref(X ), it holds that

QYi
[y≤i−1] = QXi

[y≤i−1] + E
Xi|y≤i−1

[

ρ[y≤i−1]
2

· g[(y≤i−1,Xi)]3
]

.

Claim 8. For any y≤i−1 ∈ ValPref(X ), it holds that

f̂ [y≤i−1] · QXi
[y≤i−1] + E

Xi|y≤i−1

[

g[(y≤i−1,Xi)]3
]

≤ QXi
[y≤i−1].

Claim 9. For any [p, 1]-probability tree ρ over X it holds that

E[f(Y )2] ≤ μ2 +
1 + p

p
·

n
∑

i=1

E
Y≤i−1

[ρ[Y≤i−1]QXi
[Y≤i−1]] .

Proof. Using Claim 6 we have

E
Y

[f(Y )2] − μ2 =
n∑

i=1

E
Y

[
g[Y≤i]

2 + 2f̂ [Y≤i−1] · g[Y≤i]
]

=

n∑

i=1

E
Y≤i−1

[ E
Yi|Y≤i−1

[g[Y≤i]
2]]+2

n∑

i=1

E
Y≤i−1

[f̂ [Y≤i−1] · E
Yi|Y≤i−1

[g[Y≤i]]]

=
n∑

i=1

E
Y≤i−1

[QYi [Y≤i−1]] + 2
n∑

i=1

E
Y≤i−1

[f̂ [Y≤i−1] · GYi [Y ≤i−1]]

(by Claim 7) =
n∑

i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
E

Xi|Y≤i−1

[g[(Y≤i−1, Xi)]
3]

]
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+

n∑

i=1

E
Y≤i−1

[
2f̂ [Y≤i−1] · GYi [Y≤i−1]

]

(by Corollary 5) =

n∑

i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
E

Xi|Y≤i−1

[g[(Y≤i−1, Xi)]
3]

]

+
n∑

i=1

E
Y≤i−1

[
ρ[Y≤i−1]f̂ [Y≤i−1]QXi [Y≤i−1]

]

(by Claim 8) ≤
n∑

i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
· QXi [Y≤i−1]

]

+
n∑

i=1

E
Y≤i−1

[
ρ[Y≤i−1]

2
· f̂ [Y≤i−1] · QXi [Y≤i−1]

]

(by f̂ [Y≤i−1] ≤ 1) ≤
n∑

i=1

E
Y≤i−1

[(1 + ρ[Y≤i−1]) · QXi [Y≤i−1]]

(by ρ[Y≤i−1] ≥ p) ≤
(

1

p
+ 1

)
·

n∑

i=1

E
Y≤i−1

[ρ[Y≤i−1] · QXi [Y≤i−1]].

Now we will prove Lemma 1.

Proof (Proof of Lemma 1). Using Claim 9 we have

n
∑

i=1

E
Y≤i−1

[ρ[Y≤i−1]QXi
[Y≤i−1]] ≥ p

1 + p
· (E

Y

[f(Y )2] − μ2)

By also applying Corollary 6 we get E[f(Y )] ≥ μ + p
2(1+p) · (E[f(Y )2] − μ2).

Lemma 2. For every function f : X → [−1,+1] and every [0, q]-probability tree
ρ over X , if Y is the ρ-tampering variation of distribution X generated by tam-
pering algorithm ORSam of construction 1 it holds that

E
Y

[f(Y )] +
1 − q

q
· E

Y

[f(Y )2] +
1 − q

2q
· E

Y

[f(Y )2]2 ≥ E[f(X )] +
1 − q

q
E[f(X )2]

+
1 − q

2q
· E[f(X )2]2.

Before proving Lemma 2 we need to define a few useful functions.

Definition 20 (Functions t, r, t̂ and the potential function). Let
t : Supp(X ) → [0, 1] be the square of f , namely for every y ∈ Supp(X ), t(y) =
f(y)2. We also define t̂ the same way we defined f̂ in Definition 19.
Namely, for every valid prefix x≤i ∈ ValPref(X ) we have t̂[x≤i] =
Ex≥i+1←(X≥i+1|x≤i)[tx≤i

(x≥i+1)]. Also for every valid prefix y≤i for X let r be
defined as r[y≤i] = t̂[y≤i] − t̂[y≤i−1] and for every i ∈ [n] and every valid
prefix y≤i ∈ ValPref(X ) let the potential function Φ be defined as follows:
Φ(y≤i) = f̂ [y≤i] + 1−q

q · t̂[y≤i] + 1−q
2q · (t̂[y≤i])2.
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Proposition 5. If y≤i ∈ ValPref(X ), then Eyi←(Xi|y≤i−1)[r[y≤i]] = 0.

Proof. The proof is identical to the proof of Proposition 2.

Claim 10 (Potential function does not decrease). E[Φ(Y≤i)] ≥
E[Φ(Y≤i−1)].

Proof. Please see the full version for the proof.

Now, Lemma 2 immediately follows from Claim 10.

Proof (Proof of Lemma 2). Using Claim 10 together with a simple induction we
get

E[Φ(Y≤n)] ≥ E[Φ(Y≤0)]

which means

E[f(Y )] +
1 − q

q
· E[f(Y )2] +

1 − q

2q
· E[f(Y )2]2 ≥ E[f(X )] +

1 − q

q
E[f(X )2]

+
1 − q

2q
· E[f(X )2]2.

Finally, we prove Claim 3.

Proof (Proof of Claim 3). Let α = E[f(X )2] − E[f(Y )2] and Var[f(X )] =
E[f(X )2] − E[f(X )]2. Using Lemma 1 we have

E[f(Y )] ≥ E[f(X )] +
p

2(1 + p)
· (Var[f(X )] − α). (2)

If α < 0, using this inequality we have the following. (We assume q < 1 otherwise
the inequality below holds trivially).

E[f(Y )] ≥ E[f(X )] +
p

2(1 + p)
· Var[f(X )]

≥ E[f(X )] +
p(1 − q)

2(1 + p)(1 − q)
· Var[f(X )]

≥ E[f(X )] +
p(1 − q)

2 + 2 · p − 2 · q − p · q
· Var[f(X )].

So we can assume α ≥ 0, in which case by also using Lemma 2 we get

E[f(Y )]−E[f(X )] ≥ (1 − q)
q

· (E[f(X )2]−E[f(Y )2])+
(1 − q)

2q
(E[f(X )2]2

−E[f(Y )2]2) (By α ≥ 0) ≥ (1 − q)
q

· (E[f(X )2] − E[f(Y )2]) =
α · (1 − q)

q
. (3)

By combining the Inequalities 2 and 3 we get

E[f(Y )] − E[f(X )] ≥ max
(

p

2(1 + p)
· (Var[f(X )] − α),

α · (1 − q)
q

)

≥ p(1 − q)
2 + 2 · p − 2 · q − p · q

Var[f(X )].
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where the minimum is achieved when at p·(Var[f(X )]−α)
2(1+p) = α·(1−q)

q at α =
Var[f(X )]·p·q
2p+2−pq−2q .

Remark 5. Austrin et al. [1] analyzed their mild greedy attack using a different
potential function defined as follows:

Φ(y≤i) = f̂ [y≤i] +
1
2

· t̂[y≤i] +
1
4

· (t̂[y≤i])2.

Using this potential function they show that the amount of bias for mild greedy
is at least p

1+4p · Var[f(X )]. Using our p-dependent potential function

Φ(y≤i) = f̂ [y≤i] +
1
2p

· t̂[y≤i] +
1
4p

· (t̂[y≤i])2

one can get a slightly better bound (mainly for small p) of p
1+2p+2p2 ·Var[f(/X )].

6 Open Questions

We conclude by describing some open questions and interesting directions for
future research.

Power of k-sampling attacks for small k. A natural yet more general class
of attacks that include k-resetting attacks at special case is the class of k + 1
sampling attacks in which the tampering algorithm first gets k +1 samples from
the distribution of the i’th tampered block and then it chooses one of these
samples (perhaps by calls to the online sampler and the function f). Our �-
greedy algorithm is indeed an � sampling attack but to get good bias, it needs
to use many � = poly(n/ε) samples. What is the power of �-sampling attacks in
general, when � is small, e.g. constant?

Power of ‘very’ efficient viruses. What is the power of tampering attacks
whose computational resources is not sufficient for sampling the next block or
even computing f? Such tampering algorithms are natural for cryptographic
attacks where computing f is heavy and the virus might prefer to use very
limited resources not to be detected by the system. Our efficient tampering
attacks of Theorems 4 and 5 both need to run the online sampler as well as
the function f . It remains an interesting future direction to study the power of
limited tampering attacks whose decisions are more ‘local’ and cannot be based
on sampling the blocks from the original distribution or computing f .

We conjecture that such efficient viruses that cannot depend on f or the
distribution X are not powerful to achieve constant bias Ω(p). However, it is
interesting to find out what is the minimum number of calls needed to f or the
sampler for getting bias Ω(p).

Biasing up vs. biasing either way. Our Theorems 4 and 5 always bias the
function towards +1. Inspired by models of attacks against coin-tossing protocols
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[8,14,15,17,29,34] one can ask the following questions. What is the power of p-
tampering biasing attacks whose goal is to either bias the average of the function
up or bias it down? Some of the applications of our biasing attacks (e.g., against
learners) need to bias the function always in a fixed direction to increase the
‘error’, but other attacks (e.g., against extractors) could achieve their goal by
biasing the function in either direction.

Acknowledgement. We thank Dimitrios Diochnos, Yevgeniy Dodis, and Yanjun Qi
for useful discussions.
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Abstract. We define and study zero-testable homomorphic encryption
(ZTHE) – a semantically secure, somewhat homomorphic encryption
scheme equipped with a weak zero test that can identify trivial zeros.
These are ciphertexts that result from homomorphically evaluating an
arithmetic circuit computing the zero polynomial over the integers. This
is a relaxation of the (strong) zero test provided by the notion of graded
encodings, which identifies all encodings of zero.

We show that ZTHE can suffice for powerful applications. Based on
any ZTHE scheme that satisfies the additional properties of correctness
on adversarial ciphertexts and multi-key homomorphism, we construct
publicly verifiable non-interactive arguments for delegating computation.
Such arguments were previously constructed from indistinguishability
obfuscation or based on so-called knowledge assumptions. The argu-
ments we construct are adaptively sound, based on an efficiently falsifi-
able assumption, and only make black-box use of the underlying crypto-
graphic primitives.

We also show that a ZTHE scheme that is sufficient for our appli-
cation can be constructed based on an efficiently-falsifiable assumption
over so-called “clean” graded encodings.

1 Introduction

Recent breakthroughs in the study of fully homomorphic encryption [Gen09] and
program obfuscation [GGH+13b] have revolutionized the foundations of cryp-
tography. Fully homomorphic encryption (FHE) allows arbitrary polynomial-
time computations to be performed “homomorphically” on encrypted data, while
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ensuring that semantic security is maintained and nothing about the data can
be learned. While this powerful security guarantee enables important applica-
tions, other scenarios require more fine-grained control: allowing some informa-
tion about the data to be exposed, while other information remains hidden.
Multilinear maps [BS02] and graded encodings [GGH13a] are basic building
blocks that have proven to be incredibly useful in such scenarios. Intuitively,
a graded encoding scheme is a somewhat homomorphic encryption, supporting
homomorphic evaluation of low-degree algebraic computations, with an addi-
tional capability: an efficient zero test procedure that publicly identifies encod-
ings of zero. Graded encodings cannot be semantically secure: the zero test pro-
cedure leaks partial information on the encoded elements. Nevertheless, other
information can remain hidden (in particular, inverting the encoding might still
be hard). This balance between functionality and security makes the notion
of graded encoding incredibly useful for computing on encrypted data, with
applications such as indistinguishability obfuscation and functional encryption
[GGH+13b,GGHZ16].

While homomorphic encryption can by based on the Learning with Errors
assumption [BV11,GSW13], the situation for graded encodings is less clear. Ana-
lyzing the security of existing candidates and designing new ones are central
challenges [GGH13a,CLT15,GGH15,CHL+15,HJ16,MSZ16,GMM+16].

Zero-testable homomorphic encryption. In this work we define and study a
new relaxation of graded encodings that we call zero-testable (somewhat) homo-
morphic encryption (ZTHE). A ZTHE is a semantically secure somewhat homo-
morphic encryption scheme equipped with a weak zero test that can only identify
trivial zeros. These are ciphertexts that result from homomorphically evaluating
an arithmetic circuit computing the zero polynomial over Z. The weak zero test
should accept such trivial zeros, but reject ciphertexts that encrypt non-zero
values.

Importantly, an efficient weak zero test poses no contradiction to semantic
security, since it does not allow to distinguish between encryptions of two dif-
ferent values. Given a ciphertext c it is possible to homomorphically evaluate a
circuit P on c and test if the result is a trivial zero. However, this does not give
any information on the value encrypted in c, since the zero test only required to
pass if P vanishes on all values. Intuitively, the zero test is giving information on
the evaluated computation P rather then on the ciphertext c. Indeed, semantic
security implies that if P only vanishes on some values, then even if the eval-
uated ciphertext encrypts zero it will not pass the weak zero test (except with
negligible probability). Otherwise, the zero test would have revealed information
on the original encrypted evaluation point.

From ZTHE to delegation. The main technical result in this work demon-
strates that ZTHE can suffice for powerful applications. Based on any ZTHE
scheme that satisfies the additional properties of correctness on adversarial
ciphertexts and multi-key homomorphism (we elaborate on these additional
properties below), we construct publicly verifiable non-interactive arguments
for delegating computation. Such arguments were previously constructed from
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indistinguishability obfuscation or based on so-called knowledge assumptions.
Our construction follows a new approach and has important properties, such
as adaptive soundness, reduction to an efficiently falsifiable assumption, and
black-box use of the underlying cryptographic primitives. We note that the
additional properties we assume (adversarial correctness and multi-key homo-
morphism) make ZTHE incomparable to “vanilla” graded encodings: the weak
zero test assumption is more relaxed than the strong zero test of graded encod-
ings schemes, but we require a stronger correctness property (namely correctness
on adversarially generated ciphertexts).

ZTHE Candidate. We study the feasibility of constructing ZTHE. First,
we observe that several existing somewhat homomorphic encryption schemes
[Gen09,vDGHV10] admit a simple weak zero test. These schemes, however,
do not satisfy the additional properties required for our non-interactive argu-
ments. We construct ZTHE that is sufficient for our application based on an
efficiently-falsifiable assumption over graded encodings with strong properties
such as adversarial correctness. Our construction cannot be instantiated based
on the existing graded encoding candidates (so-called “clean” graded encodings
[Zim15,LV16] do guarantee these stronger properties). We leave the question of
ZTHE instantiations as an important open problem and hope it will lead to new
and improved deletion protocols based on weaker assumptions, as well as other
applications.

Organization. In the rest of this introduction we elaborate on our results and
techniques. Section 1.1 gives background on non-interactive arguments and dis-
cusses our main technical result, a construction of non-interactive arguments
from ZTHE. In Sect. 1.2 we present our results in more detail. The construction
of non-interactive arguments from ZTHE is described in Sect. 1.3. The construc-
tion of ZTHE from graded encodings is described in Sect. 1.4.

1.1 Non-interactive Arguments

Background. The power of efficiently verifiable proof systems is a foundational
issue in the study of computation. A central goal is constructing proof sys-
tems that can be used by a powerful prover to convince a weak verifier of the
correctness of a complex computational statement, usually framed as proving
membership of an input x in a language L. Beyond its foundational importance
in the theory of computation, this question has real-world applications, such as
delegating computation. In this setting, a powerful server (playing the role of the
prover) can run a complex computation for a much weaker client (playing the
role of the verifier), and provide a proof of the output’s correctness.

A similar question was raised by Babai, Lund, Fortnow and Szegedy [BFLS91]
in the PCP setting. Kilian [Kil92] and Micali [Mic94] gave the first candidate
scheme for delegating computation. The question re-emerged in the theoretical
literature in the work of Goldwasser, Kalai and Rothblum [GKR08], and became
the focus of a rich body of research spanning theory and systems. See the recent
survey by Walfish and Blumberg [WB13].
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A “holy grail” for delegating computations is fully non-interactive proofs,
comprised of a single message sent from the prover to the verifier with uncondi-
tional soundness, as in classic NP or Merlin-Arthur proofs. Unfortunately, there
are serious barriers to constructing such proofs for delegating general determin-
istic computations (in particular, they imply Merlin-Arthur speedups for deter-
ministic computations). Thus, a body of research has focused on computationally
sound proofs in the common reference string model, where:

1. Soundness is only required to hold against efficient cheating provers. Com-
putationally sound proof systems are commonly called argument systems.

2. There is a (public) common reference string (CRS), generated in advance by a
trusted authority (or the verifier herself). This CRS can be used (repeatedly)
by different parties to verify proofs. The prover and the verifier both have
access to the CRS, but neither has access to the secret coins used to generate
the CRS.

We focus on non-interactive argument systems for polynomial-time compu-
tations, where the verifier should be super-efficient (nearly-linear in the input
length), and the honest prover should run in polynomial time. Non-interactive
arguments are especially attractive for delegating computation, as any untrusted
server can simply use the CRS to generate proofs and send them off (non-
interactively and asynchronously), to be verified at the clients’ convenience.
We refer to such a system as a publicly verifiable non-interactive argument for
delegating computation. For the remainder of this work, we use the term non-
interactive argument as shorthand.

Prior works on non-interactive arguments. In his seminal work, Micali
[Mic94] gave the first construction of non-interactive arguments in the ran-
dom oracle model. However, instantiating random oracle model construc-
tions in a provably secure way is notoriously difficult, and often impossible
[CGH04,GW11]. A rich body of research has aimed to construct non-interactive
arguments in the plain model led to a variety of beautiful constructions based
on strong cryptographic assumptions.

One line of works based non-interactive arguments on non-falsifiable1 knowl-
edge assumptions such as the knowledge of exponent assumption in bilinear
groups [Gro10,Lip12,DFH12,GGPR13,BCI+13,BCCT13]. A recent sequence
of works [SW14,BGL+15,CHJV14,KLW14] show how to base non-interactive
arguments on indistinguishability obfuscation (IO). Based on standard assump-
tions such as somewhat-homomorphic encryption or private information retrieval
schemes, the works of [KRR13,KRR14,BHK16] achieve the weaker notion of
designated-verifier arguments. These are two-message arguments where, in the
first message, the verifier samples the CRS and sends it to the prover. The secret
coins used to sample the CRS are required to verify the proof sent in the second
message.

1 A “falsifiable” assumption [Nao03] is one that can be efficiently refuted. Falsifiability
is a basic “litmus test” for cryptographic assumptions.
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This work. Our main technical result is a construction of non-interactive argu-
ments from any ZTHE with the additional properties mentioned above (see
Sect. 1.2). Our construction follows a different approach from previous works and
leverages ideas and techniques that were previously used only in the context of
designated-verifier arguments [KRR14,BHK16], such as efficient probabilistically
checkable proofs and no-signaling soundness. As a result, our non-interactive
arguments have some notable advantages compared to previous works:

– Efficiently falsifiable assumptions. Our arguments are based on the
semantic security of the underlying ZTHE - an efficiently falsifiable assump-
tion. Moreover, in our candidate construction of ZTHE from graded encod-
ings, we further base semantic security of the ZTHE on a simple and effi-
ciently falsifiable assumption on the graded encodings. Taken together, we
can base soundness of the argument system on a falsifiable assumption on
graded encodings.
In contrast, the constructions of publicly verifiable non-interactive argument
are based on assumptions that are not efficiently falsifiable. IO was recently
constructed from simpler primitives such as multi-linear maps or functional
encryption. However, these construction involve a sub-exponential security
loss. While many applications of IO can be based directly on polynomially
secure functional encryption, currently non-interactive arguments still require
the full power of IO. For more information on this line of work, see [GPSZ17]
and references therein.
We note that for any particular non-interactive argument candidate, the
assumption that the candidate is secure is efficiently falsifiable. Therefore,
our focus will be on falsifiable assumptions that are elementary and natural
compared to the tautological assumption that the candidate is secure.

– Adaptive soundness. The soundness of our non-interactive arguments is
adaptive: it holds even when the statement proven is chosen as a function
of the CRS. Adaptive soundness is required in many applications, and it is
especially important in settings where the CRS is set “once and for all”.
We note that any sound argument can be turned into an adaptively sound
one via “complexity leveraging”. However, this reduction incurs an exponen-
tial loss in security, and therefore cannot be based on efficiently falsifiable
assumptions.

– Black-box construction. In contrast to all previous construction of non-
interactive arguments, our construction makes only black-box use of the
underlying cryptographic primitives.2 Understanding the feasibility and lim-
itation of black-box constructions in cryptography is the subject of a rich
body of work motivated both by theoretical interest as well as efficiency con-
siderations.

2 One exception is instantiating Micali’s random oracle construction with a crypto-
graphic hash function. However, beyond assuming this construction is secure, we do
not know how to reduce its security to a simpler assumption.
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1.2 Our Results in More Details

In this section we present our results in more details. We start by describing
the basic notion of zero testable homomorphic encryption and the additional
properties we consider.

Zero-testable homomorphic encryption. A homomorphic encryption is a
semantically secure public key encryption equipped with a public evaluation
algorithm that adds, subtracts and multiplies values homomorphically “under
the encryption”. We focus on somewhat homomorphic encryption that only sup-
ports homomorphic evaluation of polynomial-size arithmetic circuits of logarith-
mic degree. That is, of degree c · log λ for any constant c, where λ is the security
parameter. We require that ciphertexts are succinct: their size is bounded by
some fixed polynomial in λ that is independent of c.

A zero-testable somewhat homomorphic encryption (ZTHE) has an addi-
tional zero test procedure that takes a ciphertext and tests if it is a trivial zero.
In more detail, we consider the homomorphic evaluation of a circuit P over
freshly encrypted ciphertexts c1, . . . , cn, resulting in the evaluated ciphertext c.
If the polynomial computed by P is identically zero over Z, then we require that
c passes the zero test. We also require that a ciphertext c′ that decrypts to a
non-zero value does not pass the zero-test. If c decrypts to zero, but it is not a
trivial zero, we make no requirement on the outcome of the zero test. However,
as discussed above, it follows from the semantic security of the encryption that
such a ciphertext should not pass the zero test. Moreover, we note that even if
P vanishes on all boolean inputs, but it is not identically zero as a polynomial
over Z, we still expect the zero test to fail. Otherwise, the zero test can be used
to efficiently decide the satisfiability of P .

We further study the following additional properties of ZTHE, which we use
in our construction of non-interactive arguments:

Multi-key evaluation. In multi-key homomorphic encryption, introduced by
López-Alt et al. [LTV12], homomorphic computation can be executed over
ciphertexts encrypted under different keys. To ensure semantic security, decrypt-
ing the result requires all secret keys. We use ZTHE for three keys. That is, it is
possible to homomorphically compute over ciphertexts encrypted under at most
three different keys, and to run a weak zero test on the result. Importantly, a
system can generate ciphertext under an unbounded number of keys and any
three of them can be combined in a homomorphic computation. The encryption
may also use shared public parameters to generate all keys.

Correctness for adversarially generated ciphertexts. We require that an
efficient adversary, given the public key, cannot generate a pair of ciphertexts
that result in an evaluation error. A pair of ciphertexts c1, c2 cause an evaluation
error if computing a homomorphic operation � over c1, c2 and decrypting the
evaluated ciphertext c give a different result than decrypting c1 and c2 and
computing � on the decrypted values. If c1 and c2 are generated honestly, this
follows from the standard correctness guarantee of the encryption. However, we
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require correctness even when the ciphertext are not generated honestly. Note
that the zero test is only required to accept honest ciphertexts that are trivially
zero. However, even a malformed ciphertext that decrypts to a non-zero value
should make the zero test reject.

In known constructions of somewhat homomorphic encryption, there exist
invalid ciphertexts that do not represent an encryption of any value. To account
for such candidates, we allow the decryption algorithm to fail. If c1 or c2 are
invalid (fail to decrypt) we require that the evaluated ciphertext c is invalid as
well. If both c1 and c2 are valid, we require that c is either invalid or it decrypts
to the correct value.

Theorem 1.1 (Informal). Assuming a 3-key zero-testable somewhat homo-
morphic encryption scheme with correctness for adversarially-generated cipher-
texts, there exists an adaptively-secure publicly-verifiable non-interactive argu-
ment for delegating all polynomial time computations. The non-interactive argu-
ment uses the encryption scheme as a black box.

Instantiations: discussion. We observe that existing constructions of some-
what homomorphic encryption, such as the ones in [Gen09,vDGHV10], already
support zero testing: simply test if the ciphertext is zero in the ring of cipher-
texts. More generally, in any encryption scheme where ciphertexts are elements
of some ring, and the homomorphic operations on ciphertext identify with the
ciphertext-ring operations, every trivial zero is represented by the zero of the
ciphertext ring. While these construction satisfy the weak zero test requirement,
they do not seem to support the additional properties stated above.

Following the observations in [LTV12,GHV10,HRSV11], any homomorphic
encryption scheme that supports homomorphic computations of sufficiently large
degree can be generically modified to satisfy both multi-key evaluation for a
constant number of keys and correctness for adversarially generated ciphertexts.
This transformation, however, may not preserve the weak zero test property.
Roughly speaking, the generic transformation is based on the idea of bootstrap-
ping [Gen09], where the evaluated circuit is modified to include the decryption
circuit of the scheme itself. Now, even if we evaluate a circuit computing the
zero polynomial, the modified circuit, which now runs the scheme’s decryption
circuit, will not be identically zero.

We show that ZTHE satisfying both additional properties can be constructed
from graded encodings with additional properties described below.

Graded encoding. A graded encoding is an encoding scheme for elements of
a ring. We consider a symmetric graded encoding that supports homomorphic
computations of bounded degree Δ. The encoding scheme also features a (strong)
zero test that identifies encodings of zero (even non-trivial ones). In Sect. 1.4 we
describe the interface of a graded encoding scheme in more detail.

We consider graded encodings that satisfy a simple and natural decisional
assumption.
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Assumption 1.2 (Informal). Given encoded coefficients α0, . . . , αΔ of a ran-
dom degree Δ polynomial, it is hard to distinguish an encoding of a root from an
encoding of a random element.

Intuitively, this problem should be hard since testing if the given encoding is a
root requires a homomorphic computation of degree Δ + 1.

To reduce the semantic security of the ZTHE to the above assumption on the
graded encoding, we need the graded encodings to support a re-randomization
operation. Intuitively, re-randomizing an encoding results in a new encoding
of the same value that is otherwise independent of the original encodings. As
in many other applications of graded encoding (for example [GLSW15]), the
re-randomization operation is only needed in the reduction and not in the con-
struction. We note that it is possible to avoid the use of randomization, but
this requires making a more complicated and less natural (though still efficiently
falsifiable) hardness assumption.

Correctness for adversarially generated encodings. In order to construct
a ZTHE scheme with correctness for adversarially generated ciphertexts we need
to require that the graded encoding themselves have correctness for adversarially
generated ciphertexts. This is a non-standard requirement for graded encoding
schemes, and it is not required in other applications such as obfuscation (where
all encodings are generated by an honest party).

The correctness requirement for adversarially generated encodings is some-
what stronger than in the context of encryption. We require that it is hard to
find a pair of valid encodings such that a homomorphic operation on them results
in an invalid encoding. In order to support “noisy” candidates, where such an
evaluation error always occurs after a large enough number of homomorphic eval-
uations, we also consider a relaxed requirement. Intuitively, it should be possible
to publicly test that the level of noise in an adversarially generated encoding is
low. If we determine that an encoding has low noise, it should support a large
number of homomorphic operation without an error.

Theorem 1.3 (Informal). Assuming a graded encoding scheme satisfying
Assumption 1.2, there exists a O(1)-key zero-testable somewhat homomorphic
encryption scheme. Moreover, if the graded encoding scheme is correct for adver-
sarially generated encodings, then the encryption scheme is correct for adversar-
ially generated ciphertexts.

Instantiations: discussion. The existing constructions of graded encodings
[GGH13a,CLT15,GGH15] that support re-randomization do not satisfy our
hardness assumption [GGH13a,CHL+15,HJ16]. We don’t know if in existing
constructions of graded encodings it is possible to publicly test for low noise
level. One potential strategy to implement such a test would be to combine
the re-randomization and zero test operations. We note that so-called “clean”
graded encoding schemes (see for example [Zim15,LV16]), where every element
has a unique encoding, trivially satisfy correctness for adversarially generated
encodings, and support re-randomization.
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1.3 Non-interactive Arguments from Zero-Testable Homomorphic
Encryption

Our construction is based on ideas developed in the context of designated-verifier
arguments.

Designated-verifier arguments. Aiello et al. [ABOR00] suggested the follow-
ing approach to constructing designated verifier arguments: The prover computes
a probabilistically checkable proof (PCP) for the statement. The verifier’s mes-
sage contains PCP queries, encrypted using an FHE scheme, where each query is
encrypted under a different key. The prover computes the PCP answers homo-
morphically, and the verifier decrypts and verifies the answers. The hope was
that since a cheating prover couldn’t tailor its answer to one query depend-
ing on other queries’s values, the argument would inherit the PCP’s soundness.
Dwork et al. [DLN+04,DNR16] showed obstacles to proving this construction’s
soundness. Nonetheless, Kalai, Raz and Rothblum [KRR14] proved that when
the underlying PCP satisfies a strong notion of soundness called no-signaling
soundness, the suggested arguments are in fact sound.

Leaking information on queries: a failed attempt. A naive attempt to turn
the above designated-verifier protocol into a publicly verifiable non-interactive
argument would be to place the verifier’s encrypted queries in the CRS, and
provide some leakage on encrypted queries that allows verifying the evaluated
answers, but (somehow) does not compromise the soundness of the protocol. We
argue, however, that any such leakage must (inherently) compromise soundness.
A cheating prover can begin with an accepting PCP proof, changing it into a
rejecting proof one symbol at a time. By observing which of the intermediate
proofs makes the verifier reject, the prover can recover the encrypted queries and
break soundness.

Our approach: intuition. Our protocol follows the blueprint described above:
the CRS contains encrypted queries, and the prover homomorphically evaluates
the PCP and sends the evaluated queries as the proof. However, to make the
proof publicly verifiable we do not leak any information about the encrypted
queries or their answers. The main idea is to encrypt the queries with a ZTHE.
By executing a sequence of homomorphic evaluations and zero tests on the eval-
uated ciphertexts in the proof, the verifier learns information about the PCP
proof computed by the prover, which is sufficient to verify its validity.

Next we elaborate on this idea. We start by giving some background on the
PCP system we use.

The BFLS PCP. The PCP of Babai et al. [BFLS91] proves that a given com-
putation accepts its input. The tableau of the computation is translated into a
multi-variate low-degree polynomial P0 and the PCP proof contains all the eval-
uations of P0 over some finite field. Testing the validity of the tableau is reduced
to testing that P0 is indeed a low-degree polynomial and that it vanishes on all
boolean inputs. The proof that P0 vanishes on all boolean inputs is based on the
well-known sum-check protocol. The sum-check proof contains auxiliary polyno-
mials P1, . . . , Pm and the verifier tests that these polynomials satisfy some local
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low-degree relations of the form R(Pi, Pi+1) ≡ 0. These tests are carried out by
probing the polynomials on a small number of random inputs and testing that
the relations are satisfied.

A sketch of our protocol. As described above, the CRS contains encryptions
c1, . . . , cm that specify queries to the PCP. Each triplet cj , ck, c� specifies an
evaluation point for the polynomials P1, . . . , Pm. For every such triplet, and for
every polynomial Pi, the proof contains the homomorphically evaluated answer
di = Pi(cj , ck, c�). To verify the relation R(Pi, Pi+1) ≡ 0, the verifier homomor-
phically evaluates R(di, di+1) and tests that the evaluation results in a trivial
zero. Since the different queries are encrypted under different keys, we use a
multi-key homomorphic encryption scheme. While the CRS contains encryp-
tions under m different keys, the verifier only computes homomorphically on
three keys at a time, therefore we only need 3-key homomorphism.

The proof strategy. Intuitively, if the prover is cheating and R(Pi, Pi+1) �≡
0 it follows from sematic security that the verifier’s zero test fails. Alas, this
intuition is fundamentally flawed. A cheating prover may not derive its answers
by homomorphically evaluating the low degree polynomials P1, . . . , Pm, or any
other polynomial for that matter. Our actual proof strategy is inspired by that
of Kalai, Raz and Rothblum [KRR14] and consists of the following steps.

1. Since the encryption is semantically secure, the prover’s answers are no-
signaling, meaning that the decrypted answer to one query gives no infor-
mation on the other queries values.

2. In the BFLS PCP, it is possible to reconstruct any small subset of entries
L of the computation’s tableau based on PCP values in some small set of
locations q(L). We show that our proof satisfies the following local soundness
guarantee: if the verifier’s encrypted queries include the locations q(L) and
if the verifier accepts the prover’s encrypted answers then the reconstructed
subset of the tableau is locally consistent. That is, it obeys the computation’s
local constrains. To show that this is the case even when the prover sends
malformed answers we use the fact that the encryption scheme is correct for
adversarially generated ciphertext.

3. By the semantic security of encrypted queries, and by the fact that the proto-
col is publicly verifiable, we deduce that if the verifier accepts the answers to
any queries encrypted in the CRS (say the all-0 queries), it would also accept
the answers to the to queries q(L), for every subset L.

4. It follows that we can turn any convincing prover in our protocol into an algo-
rithm that samples local assignments for any subset L of the computation’s
tableau that are guaranteed to be both no-signaling and locally consistent.

5. Based on the augmented circuit technique of [KRR14], we show how to use
such a local-assignment generator to reconstruct a complete and valid tableau.

We note that our soundness proof is significantly simpler than that of
[KRR14]. In particular we only use a striped down version of the BFLS PCP
without any low-degree tests, and we do not argue that this PCP has no-signaling
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soundness. Intuitively, what enables this simplification is that in the publicly-
verifiable setting we can move from local consistency for one subset to local
consistency on all subsets using semantic security (see Step 3 above) and with-
out using global properties of the PCP.

Proving adaptive soundness presents additional challenges. To argue adaptive
soundness, we use ideas inspired by the recent work of Brakerski et al. [BHK16],
who constructed an adaptively sound arguments in the designated-verifier set-
ting. Roughly, they show how to reconstruct a tableau from any local-assignment
generator that can chose the statement adaptively as a function of the subset L.

On the notion of local-assignment generator. The augmented circuit tech-
nique as well as the technique of reconstructing the computation’s tableau
by reading subsets that are no-signaling and locally-consistent originates from
the analysis of [KRR14]. The notion of local-assignment generator and the
generic transformation from a local-assignment generator to global sound-
ness first appeared in an earlier version of this work [PR14]. Since then the
local-assignment generator abstraction played a key role in achieving stronger
designated-verifier arguments for RAM computations [KP16] and Batch-NP
computations [BHK16], as well as in achieving adaptive soundness [BHK16]. In
the current version of this work we use the adaptive local-assignment generator
of [BHK16].

1.4 Zero-Testable Homomorphic Encryption from Graded
Encodings

We start by describing the interface of a graded encoding scheme in more details.
The scheme has public parameters that define a ring R and a maximal degree
Δ. The scheme encodes elements in R and supports homomorphic computations
up to degree Δ. Every encoding has a level. Freshly generated encodings are
of level 1 and level-δ encodings are the result of a degree-δ homomorphic com-
putation. We also refer to the elements of R as level-0 encoding. Following the
standard formulation of graded encodings, we do not assume that the ring R is
public. Instead, there is a public interface for sampling random level-0 encodings
and evaluating the ring operations. We also assume that the public parameters
include encodings of the constants 0 and 1 in every level.

The graded encoding supports a (strong) zero test that can publicly identify
encodings of zero in any level. It also supports a re-randomization operation
that, given an encoding, generates a new random encoding of the same element.
For example, re-randomizing an encoding can be used to hide the homomorphic
computation that generated it.

The ZTHE scheme. We construct multi-key ZTHE from graded encoding as
follows. The scheme’s public parameters are the parameters of a graded encoding
scheme with degree bound Δ. The secret key is a random ring element t ∈ R
and the corresponding public key is a level-1 encoding of t.

An encryption c of a message m ∈ {0, 1} is given by a random degree-Δ
univariate polynomial P such that P (t) = m. The ciphertext c consists of level-1
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encodings of the Δ+1 coefficients α0, . . . , αΔ of P . The semantic security of this
encryption follows from Assumption 1.2 that states that even given the public
key encoding of t, the encodings in c are indistinguishable from encodings of
random elements, independent of m.

Encryption. We need to sample such an encryption using only the public para-
meters and the public key encoding of t. A naive approach would be to sample
all the coefficients of P except for the free coefficient α0 randomly and then
homomorphically compute an encoding of α0. However, this would result in an
encoding in level Δ instead of level 1. Instead we can sample all the coefficients
of P as linear functions of t. We sample random ring elements r1, . . . , rΔ and
homomorphically compute encodings of the coefficients

α0 = m − r1 · t, . . . , αi = ri − ri+1 · t, . . . , αΔ = rΔ.

Note that α0, . . . , αΔ are indeed random subject to
∑

αi · ti = m. Finally, we
re-randomize the encoded coefficient to hide the process in which they where
sampled (which depends on m).

We note that the re-randomization operation is only used during encryption.
In our non-interactive argument the ZTHE encryption procedure is only used to
generate the CRS and in the security proof. As noted above, we could avoid the
use of re-randomization at the cost of making a more complicated assumption
on the graded encoding that implies the CPA security of our encryption scheme
in the secret key setting.

Same-Key homomorphic evaluation. Let c1 and c2 be ciphertexts encrypt-
ing messages m1 and m2 respectively under the same secret key t. Let P1 and
P2 be the polynomials encoded by c1 and c2, where

P1(t) = m1, P2(t) = m2.

To evaluate a homomorphic operation � ∈ {+,−,×} we homomorphically com-
pute the encoded coefficients of the polynomial P1 �P2. Correctness follows since

(P1 � P2)(t) = P1(t) � P1(t) = m1 � m2.

For addition and subtraction, the homomorphic computation of the new coeffi-
cients is a linear operation (over the input coefficients), and the degree of the
resulting polynomial is the maximal degree of the two input polynomials. For
multiplication, we homomorphically compute a convolution of the input coeffi-
cients, and the degree of the resulting polynomial is the sum of the degrees of
the input polynomials. Thus, the evaluation of a degree-δ homomorphic com-
putation yields coefficients that are encoded in level-δ of the graded encoding
scheme, and the resulting (univariate) polynomial has degree (δ · Δ). It follows
that the encryption supports degree-Δ homomorphic computations, before the
level of encoded coefficient exceeds the degree bound.

Multi-key homomorphic evaluation. To compute a homomorphic opera-
tion � over ciphertexts c1, c2 encrypted under different secret keys t1, t2, we
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homomorphically compute the coefficients of the bivariate polynomial P (x, y) ≡
P1(x)�P2(y), where P1 and P2 are the polynomials encoded by c1 and c2 respec-
tively. In general, a homomorphic computation involving ciphertexts under d dif-
ferent keys will result in a ciphertext encoding a d-variate polynomial. Since the
number of coefficients grows exponentially with d, we only support homomorphic
computation involving a constant number of keys.

Decryption. To decrypt a ciphertext c, we homomorphically evaluate the poly-
nomial P it encodes on the secret key t. Since the secret key is a level-0 encoding,
this homomorphic evaluation does not exceed the degree bound Δ. We then use
the graded encoding zero test to compare the evaluated encoding to an encoding
of 0 or of 1. If none of the tests succeed decryption fails.

Note that in homomorphic evaluation, the algebraic operation on the plain-
texts are evaluated over the ring R. However, since our decryption only obtains
an encoding of the plaintext, we can only decrypt messages in {0, 1} (or more
generally, messages taken from a small plaintext space). This is analogous to
the behaviour of the additively-homomorphic ElGamal encryption and other
schemes [BGN05]. Such decryption is sufficient for our application, where we
evaluate arithmetic circuits (over Z) whose outputs are expected to be boolean.

Zero Test. A ciphertext c that results from a homomorphic evaluation of a
polynomial that is identically zero always encodes a polynomial P ≡ 0. We can
test this by using the zero test procedure of the graded encoding, testing that
all the encoded coefficient of P are zero. It is also the case that a ciphertext
that passes the zero test must encode a polynomial P ≡ 0 and therefore it must
decrypt to zero.

Correctness for adversarially generated ciphertexts. If the graded encod-
ing scheme is correct even on adversarially generated encodings, we inherit this
strong correctness guarantee also for the ciphertext. Note, however, that even
a ciphertext that consists of valid encodings may encode a polynomial P such
that P (t) /∈ {0, 1}, and therefore fail to decrypt. To deal with this case, we con-
sider an alternative decryption algorithm that is inefficient and can decrypt any
value in R. The correctness requirement for adversarially generated ciphertexts
is therefore defined with respect to this inefficient decryption procedure. The
weaker correctness requirement suffices for proving the computational soundness
of the non-interactive argument, even though it considers an inefficient decryp-
tion algorithm: once the correctness requirement is guaranteed, the remainder
of the soundness proof is information theoretic.

1.5 Organization

The definition of non-interactive arguments and other preliminaries are given in
Sect. 2. In Sect. 3 we define the notion of ZTHE and the additional properties
we use. Section 4 describes the construction of non-interactive argument from
ZTHE. The analysis of the non-interactive argument and the construction of
ZTHE from graded encodings appear in the full version of this work.
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2 Preliminaries

For a sequence x = (x1, . . . , xn), we denote by x−i the sequence with the i-th
elements removed

x−i = (x1, . . . , xi−1, xi+1, xn) .

For a pair of sequences x = (x1, . . . , xn) and y = (y1, . . . , yn′) we denote by
x |y the concatenated sequence

x |y = (x1, . . . , xn, y1, . . . , yn′) .

2.1 Arithmetic Circuits

We consider arithmetic circuits with binary addition, subtraction and multipli-
cation gates. We only allow use of the constants {0, 1}.

Degree. For an arithmetic circuit C, the degree (resp. total degree) of C is
the individual (resp. total) degree of the formal polynomial computed by C.
A degree-1 circuit is said to be multi-linear.

Equivalence. An arithmetic circuit C is said to be identically zero (denoted
by C ≡ 0) if the formal polynomial computed by C is identically zero over Z.
Two arithmetic circuits C1, C2 are said to be equivalent (denoted by C1 ≡ C2)
if C1 − C2 ≡ 0.

Computing boolean functions. An arithmetic circuit C is said to compute
a boolean function f if C agrees with f when evaluated over Z. That is, if f
takes n inputs, then for every x ∈ {0, 1}n we have that f(x) = C(x) when C is
evaluated over Z.

Fact 2.1. Let C1 and C2 be arithmetic circuits with n inputs wires computing
boolean functions f1 and f2 respectively.

1. The circuit 1 − C1 computes the boolean function 1 − f1.
2. The circuit C1 · C2 computes the boolean function f1 · f2.
3. If for every x ∈ {0, 1}n, at most one of the values C1(x) and C2(x) is non-

zero, then the circuit C1 + C2 computes the boolean function f1 + f2.

Circuit restrictions. Let C be an arithmetic circuit with n inputs wires and
individual degree δ. For i ∈ [n] let C|i,0, . . . , C|i,δ be the arithmetic circuits with
n − 1 inputs wires and individual degree δ such that

C(x1, . . . , xn) ≡
∑

j∈[0,δ]

C|i,j(x1, . . . , xi−1, xi+1, . . . , xn) · xj
i . (1)

For j > δ let C|i,j denote the identically 0 circuit.

Fact 2.2. There is an procedure that given an arithmetic circuit C with n inputs
wires and individual degree δ and given an index i ∈ [n] computes C|i,0, . . . , C|i,δ
in time poly(|C|, δ).
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2.2 Multi-linear Extension

A multi-linear extension of a boolean function f is a multi-linear arithmetic
circuit C computing f . Next we describe a multi-linear extension circuit of an
arbitrary boolean function f .

Let βn be the multi-linear arithmetic circuit with 2n inputs computing the
boolean identity function. That is, for every x,y ∈ {0, 1}n, βn(x,y) = 1 if and
only if x = y. The arithmetic circuit βn is given by the expression

βn(x1, . . . , xn, y1, . . . , yn) =
∏

i∈[n]

xiyi + (1 − xi)(1 − yi). (2)

We sometimes omit the subscript n when it is clear from the context.
The multi-linear extension of a boolean function f with n inputs is given by

the arithmetic circuit

C(x) =
∑

y∈{0,1}n

βn(x,y) · f(y). (3)

Since for every x ∈ {0, 1}n there exist only one value of y ∈ {0, 1}n such that
βn(x,y) �= 0, it follows by Fact 2.1 that C computes the boolean function f .

2.3 Publicly-Verifiable Non-interactive Arguments

In this section we define publicly verifiable non-interactive arguments.
Let U be the universal language such that (x,T) ∈ U for x = (M,y) if and

only if the Turing machine M accepts the input y within at most T steps.

Syntax. A publicly verifiable non-interactive argument scheme for the universal
language U consists of PPT algorithms (Del.Gen,Del.P,Del.V) with the following
syntax.

Del.Gen: Given the security parameter 1λ, outputs a common reference string
CRS.

Del.P: Given the common reference string, a time bound 1T in unary represen-
tation and an instance x ∈ {0, 1}∗, outputs a proof Π.

Del.V: Given the common reference string, a time bound T in binary represen-
tation, an instance x ∈ {0, 1}∗ and a proof Π, outputs a bit.

Definition 2.1. A publicly verifiable non-interactive argument scheme
(Del.Gen,Del.P,Del.V) for the universal language U satisfies the following
requirements

Completeness: For every λ ∈ N and every (x,T) ∈ U

Pr
[

Del.V(CRS,T, x,Π) = 1
∣
∣
∣
∣
CRS ← Del.Gen(1λ)
Π ← Del.P(CRS, 1T, x)

]

= 1.
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Efficiency: In the above (honest) experiment the size of the proof Π is
poly(λ, logT). The running time of Del.V is |x| · poly(|CRS|, |Π|, logT).

Adaptive Soundness: For every polynomial T and for every poly-size cheating
prover P∗ there exists a negligible function μ such that for every λ ∈ N

Pr
[

(x∗,T(λ)) /∈ U
Del.V(CRS,T, x∗,Π∗) = 1

∣
∣
∣
∣
CRS ← Del.Gen(1λ)
(x∗,Π∗) ← P∗(CRS)

]

≤ μ(λ),

3 Zero-Testable Homomorphic Encryption

In this section we define the notion of zero-testable homomorphic encryption.
We also define a multi-key variant [LTV12].

3.1 Homomorphic Encryption

We start by recalling the notion of homomorphic encryption.

Syntax. A homomorphic encryption scheme consists of PPT algorithms

(HE.KeyGen,HE.Enc,HE.Dec,HE.Eval)

with the following syntax.

HE.KeyGen: Given the security parameter 1λ, outputs a secret key sk, a public
key pk and a description of a ring R.

HE.Enc: Given the public key pk and a message m ∈ {0, 1}, outputs a
ciphertext c.

HE.Dec: Given the secret key sk and a ciphertext c, outputs a ring element α ∈ R
or a special symbol ⊥.

HE.Eval: Given e public key pk, an operation � ∈ {+,−,×}, and a pair of
ciphertexts c1, c2, outputs a ciphertext c or a special symbol ⊥.

Evaluating circuits. Some formulations of homomorphic encryption only con-
sider an evaluation algorithm for circuits and not individual gates. By explicitly
requiring that the evaluation is performed gate by gate, we ensure correctness for
a “multi-hop” evaluation [GHV10] where ciphertexts that result from a homo-
morphic computation support further homomorphic operations.

Homomorphic evaluation of an arithmetic circuit C is implemented by itera-
tively applying the basic evaluation algorithm HE.Eval for every gate in C. This
process is described formally below.

We only consider arithmetic circuits containing constants from {0, 1}, which
can be evaluated over any ring. When evaluating a gate that takes a constant
b ∈ {0, 1} we do not generate a fresh random encryption of b. Instead, we assume
that the public key includes ciphertexts 0̂ and 1̂ of 0 and 1 respectively. This eval-
uation strategy guarantees that all occurrences of a constant in C are replaced
with the same ciphertext. This will be crucial later when we introduce the notion
of zero-testable homomorphic encryption.
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For an arithmetic circuit C, and ciphertexts (c1, . . . , cn) encrypted under
public key pk we denote by 〈C (c1, . . . , cn)〉 the evaluated ciphertext c computed
as follows.

– If C is the constant 0 then c = 0̂.
– If C is the constant 1 then c = 1̂.
– If C is the i-th input wire then c = ci.
– If C is of the form C = C1 � C2 then

c = HE.Eval (pk, �, (〈C1 (c1, . . . , cn)〉 , 〈C2 (c1, . . . , cn)〉)) .

Definition 3.1 (Homomorphic Encryption). Let C = {Cλ}λ∈N
be an

ensemble of circuits. A homomorphic encryption scheme (HE.KeyGen,HE.Enc,
HE.Dec,HE.Eval) for C satisfies the following requirements.

Correctness: For every λ ∈ N, every C ∈ Cλ with n inputs wires, and every
m1, . . . ,mn ∈ {0, 1}

Pr

⎡

⎢
⎢
⎣C(m1, . . . ,mn) = α

∣
∣
∣
∣
∣
∣
∣
∣

(sk, pk, R) ← HE.KeyGen(1λ)
∀i ∈ [n] : ci ← HE.Enc(pk,mi)
c ← 〈C(c1, . . . , cn)〉
α ← HE.Dec(sk, c)

⎤

⎥
⎥
⎦ = 1,

where C is evaluated over R.
Compactness: There exists a polynomial L such that in the above honest exper-

iment |c| ≤ L(λ) (independently of |C|).
Semantic Security: For every poly-size adversary Adv there exists a negligible

function μ such that for every λ ∈ N

Pr

⎡

⎢
⎢
⎣m = m′

∣
∣
∣
∣
∣
∣
∣
∣

m ← {0, 1}
(sk, pk, R) ← HE.KeyGen(1λ)
c ← HE.Enc(pk,m)
m′ ← Adv(pk, c)

⎤

⎥
⎥
⎦ ≤ 1

2
+ μ(λ).

Definition 3.2 (Somewhat Homomorphic Encryption). For B,Δ ∈ N

let CB,Δ be the set of arithmetic circuits of size at most B and total degree
at most Δ. Let B = B(λ),Δ = Δ(λ) be polynomially bounded functions. A
homomorphic encryption scheme is (B,Δ)-somewhat homomorphic if it satisfies
Definition 3.1 for the circuit ensemble

{CB(λ),Δ(λ)

}
λ∈N

. A scheme is Δ-somewhat
homomorphic if it is (B,Δ)-somewhat homomorphic for every polynomial B.

3.2 Correctness for Adversarial Ciphertexts

We formulate an additional correctness requirement that considers evaluation
of adversatively generated ciphertexts. Informally, we require that an efficient
adversary cannot generate a pair of ciphertexts that cause en evaluation error. A
homomorphic evaluation 〈c1 � c2〉 is erroneous if the following two experiments
have different outputs
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1. Homomorphically evaluate 〈c1 � c2〉 and output the decryption of the evalu-
ated ciphertext.

2. Decrypt c1, cs. If one of the ciphertexts fails to decrypt (decryption output
⊥), then output ⊥. Otherwise output the evaluation of � on the decrypted
elements.

Many existing homomorphic encryption candidates only support a polynomi-
ally bounded number of homomorphic operations before the noise in the cipher-
texts becomes too large and causes an evaluation error. Therefore, in such candi-
dates, ciphertexts that cause en evaluation error are easy to generate. To support
candidate of this nature we allow the output of the first experiment above to be
⊥ even if the output of the second experiment is different than ⊥.

Correctness for Adversarial Ciphertexts: For every poly-size adversary
Adv there exists a negligible function μ such that for every λ ∈ N and for
every operation � ∈ {+,−,×}

Pr

⎡

⎢
⎢
⎢
⎢
⎣

α /∈ {α1 � α2,⊥}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(sk, pk, R) ← HE.KeyGen(1λ)
c1, c2 ← Adv(pk)
c ← HE.Eval(pk, �, (c1, c2))
∀i ∈ {1, 2} : αi ← HE.Dec(sk, ci)
α ← HE.Dec(sk, c)

⎤

⎥
⎥
⎥
⎥
⎦

≤ μ(λ),

where in the probability above, if α1, α2 ∈ R, the expression α1 � α2 is eval-
uated over R. If either α1 = ⊥ or α1 = ⊥ then α1 � α2 = ⊥.

3.3 Zero Test

A zero test for a homomorphic encryption scheme is a PPT algorithm HE.ZT
that can identify trivial encryptions of 0. These are ciphertexts that result from
homomorphically evaluating an arithmetic circuit that is identically zero. We
additionally require that the zero test never incorrectly identifies encryptions of
non-zero values. This holds even for adversatively generated ciphertexts.

Given the public key pk and a ciphertext c, the zero test HE.ZT outputs a
bit. The zero test satisfies the following requirements.

Zero-Test Completeness: For every λ ∈ N, every C ∈ Cλ with n inputs wires
such that C is identically zero, and every m1, . . . ,mn ∈ {0, 1}

Pr

⎡

⎣HE.ZT(pk, c) = 1

∣
∣
∣
∣
∣
∣

(sk, pk, R) ← HE.KeyGen(1λ)
∀i ∈ [n] : ci ← HE.Enc(pk,mi)
c ← 〈C (c1, . . . , cn)〉

⎤

⎦ = 1.

Zero-Test Soundness: For every poly-size adversary Adv there exists a negli-
gible function μ such that for every λ ∈ N

Pr

⎡

⎣HE.ZT(pk, c) = 1
α �= 0

∣
∣
∣
∣
∣
∣

(sk, pk, R) ← HE.KeyGen(1λ)
c ← Adv(pk)
α ← HE.Dec(sk, c)

⎤

⎦ ≤ μ(λ).
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3.4 Weak Decryption

We define a relaxation of homomorphic encryption where

– The decryption procedure HE.Dec is not required to be PPT.
– Instead we require that there exists a weak decryption procedure HE.WeakDec

which is PPT but does not decrypt messages outside {0, 1}.
– The weak decryption result should be consistent with the inefficient decryp-

tion result even for adversarially generated ciphertexts.

The encryption scheme we construct from graded encodings will only satisfy this
relaxation which is sufficient for our application.

Given the secret key sk and a ciphertext c, the weak decryption procedure
HE.WeakDec outputs a message m ∈ {0, 1} or a special symbol ⊥. The weak
decryption procedure satisfies the following requirement.

Weak Decryption: For every poly-size adversary Adv there exists a negligible
function μ such that for every λ ∈ N

Pr

⎡

⎢
⎢
⎣m �= α′

∣
∣
∣
∣
∣
∣
∣
∣

(sk, pk, R) ← HE.KeyGen(1λ)
c ← Adv(pk)
α ← HE.Dec(sk, c)
m ← HE.WeakDec(sk, c)

⎤

⎥
⎥
⎦ ≤ μ(λ),

where in the above probability, α′ = α if α ∈ {0, 1} and α′ = ⊥ otherwise.

3.5 Multi-key Zero-Testable Homomorphic Encryption

In this section we define a multi-key variant of homomorphic encryption that
also satisfies the other requirements defined above. In multi-key homomorphic
encryption, introduced by López-Alt et al. [LTV12] homomorphic computation
can be executed over ciphertexts encrypted under d different keys. To ensure
semantic security, decrypting the result requires all secret keys. Importantly, a
system can generate ciphertext under an unbounded number of keys and any
d of them can be combined in a homomorphic computation. We assume that
the number of different keys d is constant. We also allow for common public
parameters used to generate all keys.

Syntax. A d-key zero-testable homomorphic encryption scheme consists of PPT
algorithms

(MHE.ParamGen,MHE.KeyGen,MHE.Enc,MHE.WeakDec,MHE.Eval,MHE.ZT)

and an unbounded algorithm MHE.Dec with the following syntax.

MHE.ParamGen: Given the security parameter 1λ, outputs public parameters pp
and a description of a ring R.

MHE.KeyGen: Given the public parameters pp, outputs a secret key sk and a
public key pk.
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MHE.Enc: Given public parameters pp, a public key pk and a message m ∈ {0, 1},
outputs a ciphertext c.

MHE.Dec: Given public parameters pp, d secret keys sk1, . . . , skd and a ciphertext
c, outputs a ring element α ∈ R or a special symbol ⊥.

MHE.WeakDec: Given public parameters pp, d secret keys sk1, . . . , skd and a
ciphertext c, outputs a message m ∈ {0, 1} or a special symbol ⊥.

MHE.Eval: Given public parameters pp, a pair of public keys pk1, pk2, an oper-
ation � ∈ {+,−,×} and a pair c1, c2, outputs a ciphertext c or a special
symbol ⊥.

MHE.ZT: Given public parameters pp, d public keys pk1, . . . , pkd and a ciphertext
c, outputs a bit.

Remark 3.1 (Superfluous keys). The decryption and zero test algorithms take
d keys, even if the input ciphertext results from a computation involving less
keys. We assume without loss of generality that adding superfluous keys does
not affect the procedures functionality.

Definition 3.3 (Multi-key Zero-Testable Homomorphic Encryption).
Let C = {Cλ}λ∈N

be an ensemble of circuits. A d-key zero-testable homomorphic
encryption scheme

(MHE.ParamGen,MHE.KeyGen,MHE.Enc,MHE.Dec,MHE.WeakDec,

MHE.Eval,MHE.ZT)

for C satisfies the following requirements.
Correctness: There exists a negligible function μ such that for every λ ∈ N,

every C ∈ Cλ with n inputs wires, every m1, . . . ,mn ∈ {0, 1} and every indices
j1, . . . , jn ∈ [d]

Pr

⎡
⎢⎢⎢⎢⎣

C(m1, . . . , mn) = α

∣∣∣∣∣∣∣∣∣∣

(pp, R) ← MHE.ParamGen(1λ)
∀j ∈ [d] : (pkj , skj) ← MHE.KeyGen(pp)

∀i ∈ [n] : ci ← MHE.Enc(pp, pkji
, mi)

c ← 〈C(c1, . . . , cn)〉
α ← MHE.Dec(pp, (sk1, . . . , skd), c)

⎤
⎥⎥⎥⎥⎦

≥ 1 − μ(λ),

where C is evaluated over R.
Compactness: There exists a polynomial L (that may depend on d) such that

in the above honest experiment |c| ≤ L(λ) (independently of |C|).
Correctness for Adversarial Ciphertexts: For every poly-size adversary Adv

there exists a negligible function μ such that for every λ ∈ N and for every
operation � ∈ {+,−,×}

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

α /∈ {α1 � α2, ⊥}

∣∣∣∣∣∣∣∣∣∣∣∣

(pp, R) ← MHE.ParamGen(1λ)
∀j ∈ [d] : (pkj , skj) ← MHE.KeyGen(pp)

c1, c2 ← Adv(pp, pk1, . . . , pkd)
c ← MHE.Eval(pp, (pk1, . . . , pkd), �, (c1, c2))
∀i ∈ {1, 2} : αi ← MHE.Dec(pp, (sk1, . . . , skd), ci)
α ← MHE.Dec(pp, (sk1, . . . , skd), c)

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ μ(λ),

where in the probability above, if α1, α2 ∈ R, the expression α1�α2 is evaluated
over R. If either α1 = ⊥ or α1 = ⊥ then α1 � α2 = ⊥.
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Zero Test Completeness: There exists a negligible function μ such that for
every λ ∈ N, every C ∈ Cλ with n inputs wires that is identically zero, every
m1, . . . ,mn ∈ {0, 1}, and every indices j1, . . . , jn ∈ [d]

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp, R) ← MHE.ParamGen(1λ)
∀j ∈ [d] : (pkj , skj) ← MHE.KeyGen(pp)
∀i ∈ [n] : ci ← MHE.Enc(pp, pkji

,mi)
c ← 〈C (c1, . . . , cn)〉
b ← MHE.ZT(pp, (pk1, . . . , pkd), c)

⎤

⎥
⎥
⎥
⎥
⎦

≥ 1 − μ(λ).

Zero-Test Soundness: For every poly-size adversary Adv there exists a negli-
gible function μ such that for every λ ∈ N

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = 1
α �= 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp, R) ← MHE.ParamGen(1λ)
∀j ∈ [d] : (pkj , skj) ← MHE.KeyGen(pp)
c ← Adv(pp, pk1, . . . , pkd)
α ← MHE.Dec(pp, (sk1, . . . , skd) , c)
b ← MHE.ZT(pp, (pk1, . . . , pkd), c)

⎤

⎥
⎥
⎥
⎥
⎦

≤ μ(λ).

Weak Decryption: For every poly-size adversary Adv there exists a negligible
function μ such that for every λ ∈ N

Pr

⎡

⎢
⎢
⎢
⎢
⎣

m �= α′

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp, R) ← MHE.ParamGen(1λ)
∀j ∈ [d] : (pkj , skj) ← MHE.KeyGen(pp)
c ← Adv(pp, pk1, . . . , pkd)
α ← MHE.Dec(pp, (sk1, . . . , skd) , c)
m ← MHE.WeakDec(pp, (sk1, . . . , skd) , c)

⎤

⎥
⎥
⎥
⎥
⎦

≥ 1 − μ(λ),

where in the above probability, α′ = α if α ∈ {0, 1} and α′ = ⊥ otherwise.
Semantic Security: For every poly-size adversary Adv there exists a negligible

function μ such that for every λ ∈ N

Pr

⎡

⎢
⎢
⎢
⎢
⎣

m = m′

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m ← {0, 1}
(pp, R) ← MHE.ParamGen(1λ)
(sk, pk) ← MHE.KeyGen(1λ)
c ← MHE.Enc(pp, pk,m)
m′ ← Adv(pk, c)

⎤

⎥
⎥
⎥
⎥
⎦

≤ 1
2

+ μ(λ).

4 A Non-interactive Argument

This section describes our publicly-verifiable non-interactive arguments. We start
with an overview of the construction.

4.1 Overview

We construct a non-interactive argument system for the universal language U .
Given an instance x = (M,y) ∈ {0, 1}n and a time bound T the verifier wants to
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ascertain that (x,T) ∈ U , that is, that the Turing machine M accepts the input
y within T steps. The protocol should be adaptively sound: even an adaptive
cheating prover, who first sees the CRS and then picks an instance (x,T) /∈ U
adaptively, should not be able to generate am accepting proof.

In the protocol, the prover and verifier translate the instance (x,T) into a
3CNF formula ϕ over poly(n,T) variables, which is satisfiable if and only if
(x,T) ∈ U . ϕ has a “short” implicit description via an arithmetic circuit Φ of
small size and degree that, given the labels of three literals, determines whether
their disjunction is a clause in ϕ. Note that given ϕ, the formula Φ and the
original instance (x,T) can be efficiently reconstructed. More over, if (x,T) ∈ U ,
a satisfying assignment for ϕ can be efficiently computed. With this formula in
mind, the argument system has two main ingredients:

Ingredient 1: the core protocol. The first ingredient is a publicly-verifiable
non-interactive “core protocol”. The prover in the core protocol is presented with
a CRS, a circuit Φ describing a 3CNF ϕ (as above), and a satisfying assignment
σ to ϕ. It generates a proof Π that will convince the verifier that the 3CNF
described by Φ is satisfiable.

The core protocol has a relaxed soundness property: it is not guaranteed
that an adaptive cheating prover P∗ cannot generate a circuit Φ describing an
unsatisfiable 3CNF together with a proof Π∗ that makes the verifier accept.
Rather, the soundness guarantee is that any adaptive cheating prover for the
core protocol can be used to derive a no-signalling adaptive local assignment
generator Assign. The adaptive assignment generator Assign is a randomized
algorithm that gets as input a small set S of variables, and outputs a pair (Φ, σ),
where σ : S → {0, 1} is a local assignment to the variables in S. The algorithm
Assign satisfies the following properties:

1. No-signalling. Given a set S of variables, Assign outputs a pair (Φ, σ). Intu-
itively, the joint distribution of Φ and the values assigned to any subset of the
variables in S are independent of the other variables in S. More precisely, for
every two sets of variables S1, S2 both containing a subset T , the distribu-
tions obtained by executing Assign on S1 and on S2 to obtain (Φ, σ), and then
restricting σ to the variables in T , are computationally indistinguishable.

2. Adaptive local soundness. We consider an execution of the cheating prover
P∗ in the core protocol that generates a pair (Φ,Π∗). Additively, for every
small subset S of variables, we consider an execution of Assign on the set S
that generates a pair (Φ′, σ′). We require that Φ′ is indistinguishable from Φ,
and moreover, if the proof Π∗ is accepting, then the assignment σ′ is locally-
consistent with the 3CNF ϕ′ described by Φ′. We say that the assignment
σ′ : S → {0, 1} is locally-consistent with ϕ′ if σ′ satisfies all clauses of ϕ′ that
are comprised entirely of variables in S.
In particular, we have that if P∗ has a noticeable probability of generating
a pair (Φ,Π∗) such that Φ describes an unsatisfiable 3CNF, but the verifier
accepts Π∗. Then for every small subset S of variables, running Assign on
the set S has a noticeable probability of producing a pair (Φ′, σ′) where Φ′

describes an unsatisfiable 3CNF ϕ′, but σ is a locally-consistent with Φ′.
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Some remarks are in order. First, we note that the relaxed soundness property
has a flavor of “knowledge extraction”: while we do not claim that any cheating
prover for the core protocol must “know” a satisfying assignment to the 3CNF
(indeed, the 3CNF might not be satisfiable, in which case no such assignment
exists), a cheating prover can be used to generate “locally consistent” assign-
ments on any set of variables. This extraction property is slightly more involved
because it is concerned with adaptive cheating provers: the 3CNF is not fixed in
advance. Rather, an adaptive cheating prover for the core protocol can be used
to adaptively generate, given a set S of variables, an unsatisfiable 3CNF together
with a locally-consistent assignment for those variables in S. The distribution of
3CNFs generated by the core protocol cheating prover (together with the bit indi-
cating whether the verifier accepts the jointly-generated proof) is computation-
ally indistinguishable from the distribution of 3CNFs generated by the assign-
ment generator (together with the bit indicating whether the jointly-generated
assignment is locally satisfiable). We note further that the no-signalling prop-
erty implies that for any two sets S and S′, the distributions of the circuit Φ
generated by Assign are themselves computationally indistinguishable.

While the core protocol’s soundness guarantee is robust to adaptive provers,
it is weak in the sense that it only guarantees local consistency of the assignment
generator. Even for a fixed 3CNF (let alone for an adaptively-generated one)
the existence of no-signalling locally-consistent assignments does not imply that
the 3CNF is satisfiable! As in prior works, we provide a “circuit-augmentation”
procedure that encodes a Turing Machine computation as a 3CNF with a partic-
ular structure. The existence of a (no-signalling) locally-consistent assignment
generator for the augmented 3CNF guarantees that the Turing Machine accepts
its input. Here too, we need to take care to handle adaptive adversaries. This is
the second main ingredient of our delegation protocol.

Ingredient 2: adaptive augmented circuit. To build an adaptively-sound
delegation protocol we need an adaptive variant of the augmented circuit con-
struction from [KRR14]. We describe this as a circuit-augmentation algorithm
that transforms an instance (x,T) for U into an arithmetic circuit Φ of small
size and degree, which describes a 3CNF ϕ. The 3CNF ϕ should be satisfiable
if and only if (x,T) ∈ U . This property alone, of course, is not sufficient, since
the core protocol does not prove the 3CNF’s global satisfiability. Prior work
showed a transformation where if (x,T) /∈ U , then it is not possible to gen-
erate even locally-consistent assignments in a no-signalling manner. Since we
want an adaptively-sound delegation protocol, we need an even stronger prop-
erty: let Assign be a no-signalling adaptive assignment generator as above. We
assume that Assign generates the circuit Φ by applying the adaptive circuit-
augmentation procedure to an instance (x,T). Then for some small set S∗ of
variables the probability that (x,T) /∈ U but Assign generates a locally-consistent
assignment for S∗ is negligible. The transformation and its proof are based on
[KRR14,PR14,BHK16].

There is a (slight) gap between the soundness we consider in the augmented-
circuit transformation and in the core protocol: the core protocol is simply con-
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cerned with 3CNFs described by small circuits. The augmented-circuit trans-
formation, on the other hand, considers (and relies on) the procedure used to
derive these 3CNFs from a computation described by a Turing Machine. This
gap makes the presentation of the core protocol considerably simpler and more
modular (in particular, there is no need to consider Turing Machines in the core
protocol). We bridge the gap by noting that the augmentation procedure Aug
is easy to invert: given a circuit Φ, it is easy to recover the instance (x,T) from
which it was derived (or to output ⊥ if Φ is not an output of Aug). This allows
us to argue that for two computationally indistinguishable distributions on Φ,
if the first distribution is over outputs of Aug, then the second must be over
such outputs too (except with negligible probability). Moreover, given a circuit
Φ produced by Aug, we can determine whether it describes a satisfiable 3CNF by
recovering the original instance for U and testing (in polynomial time) whether
the Turing Machine accepts or rejects.

Putting it together. To derive a delegation protocol, we use the core protocol’s
CRS. Given an instance (x,T), the prover and verifier both use the augmented-
circuit transformation to derive Φ and execute the core protocol on Φ. A prover
P∗ that cheats with noticeable probability can be used to derive a no-signalling
adaptive local assignment generator Assign∗. By the core protocol’s soundness
we conclude that for every set S of variables, with noticeable probability Assign∗

generates pairs (Φ, σ) where Φ describes an unsatisfiable 3CNF, but σ is locally
consistent. Moreover, Φ is derived by running the augmented circuit construction
on an instance (x,T) /∈ U (this is true for the execution of the core protocol, by
computational indistinguishability it holds also for the outputs of Assign∗). How-
ever, the the augmented circuit construction guarantees that no such assignment
generator exists, leading to a contradiction.

Organization. We define adaptive no-signalling local assignment generators in
Sect. 4.2. The core protocol is given in Sect. 4.3. The properties of the augmented-
circuit transformation are discussed in Sect. 4.4. The analysis of the core pro-
tocol, the augmented-circuit transformation, and the full delegation protocol
appear in the full version of this work.

4.2 Adaptive No-Signaling Local-Assignment Generator

Before stating the properties of the core protocol, we introduce some notation
and formalize the notion of an adaptive no-signaling local-assignment generator.

Succinct formula representation Iϕ. Let ϕ be a 3CNF boolean formula with
variables α1, . . . , αB . Let B = 2m and identify the indices in [B] with strings in
{0, 1}m. We define a boolean indicator function Iϕ : {0, 1}3m+3 → {0, 1} of ϕ
as follows. For every indices u1,u2,u3 ∈ {0, 1}m and for every bits b1, b2, b3 ∈
{0, 1}3, we have that

Iϕ(u1,u2,u3, b1, b2, b3) = 1,

if and only if ϕ contains the clause:

(αu1 = b1) ∨ (αu2 = b2) ∨ (αu3 = b3).
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The locally consistency verifier Vlocal. We denote by Vlocal the verification
algorithm for local assignments to ϕ. The algorithm is given as input

– An arithmetic circuit Φ computing a boolean function with 3m + 3 inputs
(we think of Φ as computing the indicator function Iϕ for some formula ϕ).

– A partial assignments σ : S → {0, 1} for a set S ⊆ {0, 1}m.

Vlocal(Φ, σ) accepts if an only if the assignment σ is locally consistent with the
formula described by Φ. That is, for every u1,u2,u3 ∈ S and every b1, b2, b3 ∈
{0, 1}

Φ(u1,u2,u3, b1, b2, b3) = 1 ⇒ (σ(u1) = b1) ∨ (σ(u2) = b2) ∨ (σ(u3) = b3).

Adaptive local-assignment generator. Let Q = Q(λ), B = B(λ) be func-
tions and let B = 2m. An adaptive Q-local-assignment generator Assign for
B-variate formulas is a probabilistic algorithm with the following syntax: given
the the security parameter 1λ and a set of indices S ⊆ {0, 1}m of size at most
Q, Assign outputs

– An arithmetic circuit Φ computing a boolean function with 3m + 3 inputs.
– A partial assignment σ : S → {0, 1}.

We define a no-signaling adaptive local-assignment generator

Definition 4.1 (No-Signaling Adaptive Local-Assignment Generator).
A Q-local-assignment generator Assign for B = 2m-variate formulas is (com-
putationally) no-signalling if for every polynomial-size distinguisher D there
exists a negligible function μ such that for every λ ∈ N and every subsets
S ⊆ S′ ⊆ {0, 1}m of size at most Q

∣
∣
∣
∣ Pr
(Φ,σ)←Assign(1λ,S)

[D(Φ, σ(S)) = 1] − Pr
(Φ,σ′)←Assign(1λ,S′)

[D(Φ, σ′(S)) = 1]
∣
∣
∣
∣

≤ μ(λ).

4.3 The Core Protocol

In this section we describe the syntax and the properties of the core delegation
protocol. The protocol itself is given in Sect. 4.3.

Syntax. Let Δ = Δ(λ) be a polynomially bounded function. The core protocol
with degree bound Δ consists of PPT algorithms (Core.Gen,Core.P,Core.V) with
the following syntax. Let ϕ be a B-variate 3CNF boolean formula where B =
2m and let Φ be an arithmetic circuit of total degree δ ≤ Δ computing the
function Iϕ.

Core.Gen: Given the security parameter 1λ and a locality parameter 1Q outputs
a common reference string CRS.
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Core.P: Given the common reference string CRS, the circuit Φ and an assignment
σ : {0, 1}m → {0, 1}, outputs a proof Π.

Core.V: Given the common reference string CRS, the circuit Φ and the proof Π
outputs a bit.

The protocol satisfies the following requirements.

Completeness. For every security parameter λ ∈ N, every 3CNF boolean for-
mula ϕ with B variables, every satisfying assignment σ, every arithmetic circuit
Φ of individual degree δ ≤ Δ computing the function Iϕ, and every locality
parameter Q ∈ [B]

Pr
[

Core.V(CRS, Φ,Π) = 1
∣
∣
∣
∣
CRS ← Core.Gen(1λ, 1Q)
Π ← Core.P(CRS, Φ, σ)

]

= 1.

Efficiency. There exists a polynomial L such that in the above honest experi-
ment |Π| ≤ L(λ) · Q · δ where δ is the individual degree of the circuit Φ. Addi-
tionally the verifier’s running time is bounded by L(|CRS|) · (|Φ| + |Π|).
No-Signaling adaptive local soundness. For every polynomially bounded
functions Q = Q(λ), B = B(λ) there exists an algorithm Assign such that for
every poly-size cheating prover P∗ the following holds

– AssignP
∗

is a no-signaling adaptive Q-local-assignment generator for B-variate
formulas.

– For every polynomial-size distinguisher D there exists a negligible function μ
such that for every λ ∈ N, letting B = 2m, for every set of indices S ⊆ {0, 1}m

of size at most Q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎣D(Φ, b) = 1

∣
∣
∣
∣
∣
∣

CRS ← Core.Gen(1λ, 1Q)
(Φ,Π∗) ← P∗(CRS)
b ← Core.V(CRS, Φ,Π∗)

⎤

⎦

− Pr

⎡

⎣D(Φ, b) = 1

∣
∣
∣
∣
∣
∣

(Φ, σ) ← AssignP
∗
(1λ, S)

b ← Vlocal(Φ, σ)

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ μ(λ).

Construction. Let Δ = Δ(λ) be the function bounding the total degree of the
circuit Φ. The core protocol makes use of a 3-key zero-testable 2Δ-somewhat
homomorphic encryption scheme

(MHE.ParamGen,MHE.KeyGen,MHE.Enc,MHE.Dec,MHE.WeakDec,

MHE.Eval,MHE.ZT).

The CRS generator. The CRS generation algorithm Core.Gen is given as input
the security parameter 1λ and a locality parameter 1Q. It outputs a common
reference string CRS as follows.
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1. Sample public parameters for the encryption scheme

(pp, R) ← MHE.ParamGen(1λ).

2. For every q ∈ [Q], generate a key pair

(skq, pkq) ← MHE.KeyGen(pp),

and λ encryptions of 0

{cq
i ← MHE.Enc(pp, pkq, 0)}i∈[λ] .

3. Output a reference string containing the public parameters and all the public
keys and ciphers

CRS =
(
pp, {pkq, (cq

1, . . . , c
q
λ)}

q∈[Q]

)
.

The prover. The prover algorithm Core.P is given as input

– The common reference string

CRS =
(
pp, {pkq, (cq

1, . . . , c
q
λ)}

q∈[Q]

)
.

– An (individual) degree δ arithmetic circuit Φ computing a boolean function
with 3m + 3 inputs.

– An assignment σ : {0, 1}m → {0, 1}.

We start by introducing some notation.

1. For every query q ∈ [Q], let cq = (cq
1, . . . , c

q
m). We refer to the ciphertext

vector cq as an encryption of the q-th CRS index (in an honestly generated
CRS the index value is always 0m).

2. Let Σ be a multi-linear extension of σ (See Sect. 2.2).
3. For every triplet of bits b = (b1, b2, b3) ∈ {0, 1}3 let Pb

0 be the degree δ + 1
arithmetic circuit taking 3m inputs

Pb
0 (x1,x2,x3) = Φ(x1,x2,x3,b) ·

∏

k∈[3]

(1 − β(bk, Σ(xk))) . (4)

(See Sect. 2.2 for the definition of the circuit β.)
4. For every i ∈ [3m], let Pb

i be the linearization of the first i variables of the
circuit Pb

0 . That is, Pb
i is the following arithmetic circuit taking 3m inputs

which is multilinear in its first i variables, and of degree at most δ + 1 in its
other variables.

Pb
i (x1, . . . , x3m) =

∑
y1,...yi∈{0,1}

β(y1, . . . yi, x1, . . . xi) · Pb
0 (y1, . . . , yi, xi+1, . . . , x3m).

(5)

Core.P outputs a proof Π as follows.
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1. For every q ∈ [Q] obtain an encryption of the assignment Σ evaluated on
the q-th CRS index. That is, homomorphically obtain the ciphertext dq =
〈Σ (cq)〉.

2. For every triplet of bits b ∈ {0, 1}3, triplet of queries q = (q1, q2, q3) ∈ [Q]3,
and i ∈ [3m] obtain the encrypted coefficients of the circuit Pb

i−1 evaluated
on the CRS indices q and restricted to its i-th input variable (see Sect. 2.1).
Since the individual degree of Pb

i−1 is at most δ +1, the restricted polynomial
will have at most δ + 2 coefficients. That is, homomorphically obtain the
sequence of δ + 2 ciphertexts eq,b

i−1

eq,b
i−1 =

(〈
Pb

i−1

∣
∣
i,j

(
(cq1 | cq2 | cq3)−i

)〉)

j∈[0,δ+1]
.

3. Output a proof Π that contains all the ciphertexts

Π =
(

{dq}q∈[Q] ,
{
eq,b

i−1

}

b∈{0,1}3,q∈[Q]3,i∈[3m]

)

.

The verifier. The verifier algorithm Core.V is given as input

– The common reference string

CRS =
(
pp, {pkq, (cq

1, . . . , c
q
λ)}

q∈[Q]

)
.

– A degree δ arithmetic circuit Φ computing a boolean function with 3m + 3
inputs.

– An proof

Π =
(

{dq}q∈[Q] ,
{
eq,b

i−1

}

b∈{0,1}3,q∈[Q]3,i∈[3m]

)

.

Core.V performs the following tests for every triplet of bits b = (b1, b2, b3) ∈
{0, 1}3 and triplet of queries q = (q1, q2, q3) ∈ [Q]3. Core.V accepts only if all
tests pass.

First, Core.V homomorphically evaluates the following ciphertexts

– Let P̃b be the following arithmetic circuit taking 3m + 3 inputs

P̃b(x1,x2,x3, y1, y3, y3) = Φ(x1,x2,x3,b) ·
∏

k∈[3]

(1 − β(bk, yk)) . (6)

Evaluate the ciphertext

f ′
0 =

〈
P̃b (cq1 , cq2 , cq3 , dq1 , dq2 , dq3)

〉
.

– Let F be the following arithmetic circuit taking δ + 3 inputs

F (x, y0, . . . , yδ+1) =
∑

j∈[0,δ+1]

yj · xj . (7)
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For i ∈ [3m], evaluate the ciphertext fi−1 that encrypts the evaluation of
the univariate polynomial with encrypted coefficient eq,b

i−1 on the i-th input
bit of the concatenated CRS indices q. Recall that eq,b

i−1 are supposedly the
encrypted coefficients of the circuit Pb

i−1 evaluated on the CRS indices q and
restricted to its i-th input variable. Therefore, fi−1 is suppose to encrypt the
evaluation of Pb

i−1 on the CRS indices q.

fi−1 =
〈
F

(
(cq1 | cq2 | cq3)i , eq,b

i−1

)〉
.

– Let F ′ be the following arithmetic circuit taking δ + 3 inputs

F ′(x, y0, . . . , yδ+1) =
∑

z∈{0,1}
β(z, x) · F (z, y0, . . . , yδ+1).

For i ∈ [3m], evaluate the ciphertext f ′
i that encrypts the linearization of the

univariate polynomial with encrypted coefficient eq,b
i−1 evaluated on the on the

i-th input bit of the concatenated CRS indices q. Therefore, fi−1 is suppose
to encrypt the evaluation of the circuit Pb

i−1 with its i-th variable linearized
on the CRS indices q.

f ′
i =

〈
F ′

(
(cq1 | cq2 | cq3)i , eq,b

i−1

)〉
.

– Let f3m = 0̂.
For every i ∈ [0, 3m], Core.V tests that

MHE.ZT (pp, (pkq1 , pkq2 , pkq3) , 〈fi − f ′
i〉) = 1.

4.4 The Augmented Circuit

Syntax. Let U be the universal language (see Sect. 2.3). The augmented-
circuit transformation consists of deterministic polynomial time algorithms
(Aug,Aug−1,Trans) with the following syntax.

Aug: the circuit-augmentation procedure takes as input an instance x = (M,y)
and a time bound T for U . It outputs an arithmetic circuit Φ computing the
indicator function Iϕ of the “augmented formula” ϕ (see Sect. 4.2)). We say
that Φ represents ϕ.

Aug−1: the inversion procedure takes as input an arithmetic circuit Φ. It either
outputs (x,T) or fails and outputs ⊥.

Trans: the assignment generation procedure takes as input an instance x and a
time bound T for U . It outputs an assignment σ for ϕ.

These procedures satisfy the following properties:

Efficiency. For x ∈ {0, 1}n

– Aug(x,T) runs in time n ·polylog(T) and outputs an arithmetic circuit Φ such
that
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• Φ is of size n · polylog(T).
• Φ is of total degree δ = δ(n,T) = polylog(n,T).
• Φ represents a formula ϕ on B = B(n,T) = poly(n,T) variables.

– Aug(x,T) and Aug−1(Φ) run in time n · polylog(T).
– Trans(x,T) runs in time poly(n,T).

Inversion. For every (x,T) ∈ {0, 1}∗

Aug−1(Aug(x,T)) = (x,T).

Completeness. For every (x,T) ∈ U , Trans(x,T) outputs a satisfying assign-
ment σ for the formula ϕ represented by the output of Aug(x,T).

Soundness. At a high level, the soundness guarantees that there does not exist
an adaptive no-signalling local-assignment generator (see Sect. 4.2) that for every
small set of indices S generates a circuit Φ = Aug(x,T), such that (x,T) /∈ U ,
together with partial assignment σ : S → {0, 1} that is locally consistent with
the formula represented by Φ.

Lemma 4.1 (Augmented Circuit Soundness). There exists a function Q =
polylog(λ) such that for every polynomially bounded function B = B(λ), and
every polynomial-time no-signaling Q-local-assignment generator Assign for B-
variate formulas there exists a negligible function μ such that for every λ ∈ N,
letting B = 2m, there exists a set S∗ ⊆ {0, 1}m of size at most Q such that

Pr
[
Aug−1(Φ) /∈ U ∪ {⊥}
Vlocal(Φ, σ) = 1

∣
∣
∣
∣ (Φ, σ) ← Assign(1λ, S∗)

]

≤ μ(λ).
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Abstract. Non-malleable codes (NMCs), introduced by Dziembowski
et al. [DPW10], provide a useful message integrity guarantee in situ-
ations where traditional error-correction (and even error-detection) is
impossible; for example, when the attacker can completely overwrite the
encoded message. NMCs have emerged as a fundamental object at the
intersection of coding theory and cryptography.

A large body of the recent work has focused on various constructions
of non-malleable codes in the split-state model. Many variants of NMCs
have been introduced in the literature i.e. strong NMCs, super strong
NMCs and continuous NMCs. Perhaps the most useful notion among
these is that of continuous non-malleable codes, that allows for continu-
ous tampering by the adversary.

In this paper we give the first efficient, information-theoretic secure
construction of continuous non-malleable codes in the split-state model.
Enroute to our main result, we obtain constructions for almost all pos-
sible notions of non-malleable codes that have been considered in the
split-state model, and for which such a construction is possible. Our
result is obtained by a series of black-box reductions starting from the
non-malleable codes from [ADL14].

One of the main technical ingredient of our result is a new concept
that we call inception coding. We believe it may be of independent inter-
est. Also our construction is used as a building block for non-persistent
(resettable) continuous non-malleable codes in constant split-state model
in [DNO16].

1 Introduction

Non-malleable Codes. Non-malleable codes (NMCs), introduced by Dziem-
bowski, Pietrzak and Wichs [DPW10], provide a useful message integrity
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guarantee in situations where traditional error-correction (and even error-
detection) is impossible; for example, when the attacker can completely over-
write the encoded message. NMCs have emerged as a fundamental object at the
intersection of coding theory and cryptography.

Informally, given a tampering family F , an NMC (Enc,Dec) against F encodes
a given message m into a codeword c ← Enc(m) in a way that, if the adversary
modifies c to c′ = f(c) for some f ∈ F , then the message m′ = Dec(c′) is either
the original message m, or a completely “unrelated value”. As has been shown by
the recent progress [DPW10,LL12,DKO13,ADL14,FMVW14,FMNV14,CG14a,
CG14b,CZ14,Agg15,ADKO15b,ADKO15a,CGL15,AGM+15b,AGM+15a,
AAnHKM+16,Li16] NMCs aim to handle a much larger class of tampering func-
tions F than traditional error-correcting or error-detecting codes, at the expense
of potentially allowing the attacker to replace a given message m by an unrelated
message m′. NMCs are useful in situations where changing m to an unrelated
m′ is not useful for the attacker (for example, when m is the secret key for a
signature scheme.)

(Super) Strong Non-malleable Codes. A stronger notion of non-malleability,
called strong non-malleable codes, was also considered in [DPW10] in which,
whenever the codeword c is modified to c′ = f(c) �= c, the decoded message
m′ = Dec(c′) is independent of m. This is in contrast to the plain notion of
non-malleability where some modification of the codeword c could still result in
m′ = m. Indeed, this is the case in some of the previous constructions of non-
malleable codes like [ADL14,ADKO15a]. For the purpose of conveniently defin-
ing continuous non-malleable codes, an even stronger notion called super-strong
non-malleable codes has been considered in the literature [FMNV14,JW15].
Informally speaking, in this notion, if c′ �= c is a valid codeword, then c′ must
be independent of c.

An intermediate notion can also be considered where if m′ = Dec(c′) /∈
{m,⊥}, then c′ must be independent of c. To be consistent with other notions
of non-malleable codes, we call these super non-malleable codes.

Continuous Non-malleable Codes. It is clearly realistically possible that the
attacker repeatedly tampers with the device and observes the outputs. As men-
tioned in [JW15], non-malleable codes can provide protection against these kind
of attacks if the device is allowed to freshly re-encode its state after each invo-
cation to make sure that the tampering is applied to a fresh codeword at each
step. After each execution the entire content of the memory is erased. While such
perfect erasures may be feasible in some settings, they are rather problematic in
the presence of tampering. Due to this reason, Faust et al. [FMNV14] introduced
an even stronger notion of non-malleable codes called continuous non-malleable
codes where security is achieved against continuous tampering of a single code-
word without re-encoding. Jafargholi and Wichs [JW15] considered four variants
of continuous non-malleable codes depending on

– Whether tampering is persistent in the sense that the tampering is always
applied to the current version of the tampered codeword, and all previous
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versions of the codeword are lost. The alternative definition considers non-
persistent tampering where the tampering always occurs on the original code-
word.

– Whether tampering to an invalid codeword (i.e., when the decoder outputs
⊥) causes a “self-destruct” and the experiment stops and the attacker cannot
gain any additional information, or alternatively whether the attacker can
always continue to tamper and gain information.

Split-State Model. Although any kind of non-malleable codes do not exist if the
family of “tampering functions” F is completely unrestricted,1 they are known
to exist for many large classes of tampering families F . One such natural family
is the family of tampering functions in the so called t-split-state model. In this
model, the codeword is “split” into t > 1 states c = (c1, . . . , ct); a tampering
function f is viewed as a list of t functions (f1, . . . , ft) where each function fi

tampers with corresponding component ci of the codeword independently: i.e.,
the tampered codeword is c′ = (f1(c1), . . . , ft(ct)).

This family is interesting since it seems naturally useful in applications, espe-
cially when t is low and the shares y1, . . . , yt are stored in different parts of mem-
ory, or by different parties. Not surprisingly, the setting of t = 2 appears the
most useful (but also the most challenging from the technical point of view), so
it received the most attention so far [DPW10,LL12,DKO13,ADL14,FMNV14,
CG14a,CG14b,CZ14,CGL15,ADKO15b,ADKO15a,Li16] and is also the focus
of our work.

While some of the above mentioned results achieve security against compu-
tationally bounded adversaries, we focus on security in the information-theoretic
setting, i.e., security against unbounded adversaries. The known results in the
information-theoretic setting can be summarized as follows. Firstly [DPW10]
showed the existence of (strong) non-malleable codes, and this result was
improved by [CG14a] who showed that the optimal rate of these codes is 1/2.
Faust et al. [FMNV14] showed the impossibility of continuous non-malleable
codes against non-persistent split-state tampering. Later [JW15] showed that
continuous non-malleable codes exist in the split-state model if the tampering is
persistent.

There have been a series of recent results culminating in constructions of
efficient non-malleable codes in the split-state model [DKO13,ADL14,CZ14,
CGL15,ADKO15a,Li16]. However, there is no known efficient construction in
the continuous setting. Since the work of [FMNV14] rules out the possibility of
such a construction for the case of non-persistent tampering, the best one can
hope for is an efficient construction for the case of persistent tampering in the
split-state model.

Our Results and Techniques. This brings us to the main result of the paper which
is the following.
1 In particular, F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c)))

for any non-trivial function f ′, as m′ = Dec(f(Enc(m))) = f ′(m) is obviously related
to m.
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Theorem 1. For any k, there exists an efficient (in k) information-theoretically
secure persistent continuous 2−kΩ(1)

-non-malleable code with self-destruct in the
split-state model that encodes k-bit messages to poly(k)-bit codewords.

Enroute to Theorem 1, we obtain efficient constructions of almost all pos-
sible notions of non-malleable codes in the split-state model for which such a
construction is possible.

While it might be argued that the most interesting case of continuous non-
malleable codes is that of non-persistent tampering, it was shown to be impossi-
ble in the 2-split state model in [FMNV14]. In a recent work, it has been shown
that our persistent continuous non-malleable codes can in fact be used to obtain
an efficient construction of non-persistent continuous non-malleable codes in the
constant split-state model [DNO16].

The construction is obtained in a series of steps. We first show a reduction
(Theorem 2 in Sect. 4) that any scheme in the split-state model that is a super-
strong non-malleable code is also a persistent continuous non-malleable code
with self-destruct in the split-state model. The key idea behind this reduction is
the observation by Jafargholi and Wichs [JW15] that for the case of persistent
continuous non-malleable codes with self-destruct, without loss of generality,
we can assume that the experiment stops at the first instance (say at step I)
when there is a non-trivial tampering. This is because if the tampered codeword
decodes to ⊥ then the experiment stops because of the self-destruct property,
and if it does not decode to ⊥, then the adversary learns the entire codeword
and can simulate the remaining tampering experiment himself. Thus, the main
ingredient of this reduction is showing that for any non-malleable code in the
split-state model, the random variable I combined with first non-same tampering
experiment output does not reveal the encoded message.

Our main technical reduction (Theorem 3 in Sect. 5) is one that shows that
any coding scheme that is super non-malleable in the split-state model can be
converted into a scheme that is super-strong non-malleable in the split-state
model. To do that we develop a new technique we called inception coding. The
key difference between a super non-malleable code and a super-strong non-
malleable code is that in the former, the adversary is assumed to not gain
any useful information if he tampers with and changes the codeword but the
tampered codeword still decodes to the same message while in the latter, the
adversary in this case gets to see the entire tampered codeword. Our incep-
tion coding essentially forces all these non-trivial tampered codewords (that
originally decoded to the correct message) to decode to ⊥. In our reduction,
given a super non-malleable code (Enc,Dec), we modify the encoding proce-
dure to sacrifice a small suffix of the message (it will not carry any message
related information anymore) to replace it with validity checks for each of the
states that detect whether these states have been tampered with. The message
m is encoded as Enc(m, checkx, checky) = (X,Y ) subject to the condition that
Verify(checkx;X) = Verify(checky;Y ) = OK. This ensures that in the case when
tampered codeword decodes correctly, the validity check can detect the tam-
pering and output ⊥. In order to use the super non-malleability of (Enc,Dec)
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to conclude super-strong non-malleability of the modified encoding scheme, we
need to do rejection sampling to ensure that the codeword is valid with respect
to the modified encoding algorithm. This blows up the error by a factor of
about 22t where t is the length of each validity check, and so we require that
22t � 1/ε, where ε is the error parameter for (Enc,Dec). We obtain a construc-
tion of the check function in Definition 8 using the well-studied Reed-Solomon
error-correcting codes. In order to reduce the output length of this construc-
tion, we define a composition theorem on validity check functions, and show in
Lemma 7 that using this composition theorem repeatedly, we can progressively
make the length of the validity check shorter.

Finally, to complete the proof, we show (in Theorem5 in Sect. 6) that the
coding scheme from [ADL14], which was shown to be a non-malleable code
in the split-state model, is also super non-malleable. This proof was surpris-
ingly involved, since we need to argue that for any two tampered codewords
c′
1, c

′
2 of two distinct messages, if they do not decode to ⊥ or the original mes-

sages, respectively, then the two tampered codewords are indistinguishable. This
required a careful re-analysis of the various cases in [ADL14], in particular those
where their tampering experiment does not output same or ⊥. Fortunately, this
happens only when one of the two tampered parts f(L) or g(R) loses a lot of
information about the two parts L and R of the original codeword, and since the
construction of [ADL14] is based on the inner product function, which is a strong
2-source extractor, one can conclude that the tampered codeword (f(L), g(R))
is independent of the 〈L,R〉 and hence of the original message.

Background. The notion of non-malleability was introduced by Dolev et al.
[DDN00], and has found many applications in cryptography. Traditionally, non-
malleability is defined in the computational setting, but recently non-malleability
has been successfully defined and applied in the information-theoretic setting
(generally resulting in somewhat simpler and cleaner definitions than their com-
putational counter-parts). For example, in addition to non-malleable codes stud-
ied in this work, the work of Dodis and Wichs [DW09] defined the notion of non-
malleable extractors as a tool for building round-efficient privacy amplification
protocols.

Finally, the study of non-malleable codes falls into a much larger crypto-
graphic framework of providing counter-measures against various classes of tam-
pering attacks. This work was pioneered by the early works of [ISW03,GLM+03,
IPSW06], and has since led to many subsequent models. We do not list all such
tampering models, but we refer to [KKS11,LL12] for an excellent discussion of
various such models.

Other Related Work. In addition to the works mentioned above, non-malleable
codes have been studied in various tampering models in several recent results.
For tampering functions of size 2poly(n), rate-1 codes (with efficient encoding and
decoding) exist, and can be obtained efficiently with overwhelming probabil-
ity [FMVW14].

Cheraghchi and Guruswami [CG14b] gave a rate 1 non-malleable code against
the class of bitwise-tampering functions, where each bit of the codewords
is tampered independently. Recently, Agrawal et al. [AGM+15b,AGM+15a]
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improved this result by giving a explicit rate-1 code against a stronger class
of tampering functions, which in addition to tampering with each bit of the
codeword independently, can also permute the bits of the resulting codeword
after tampering, was achieved in [AGM+15b,AGM+15a].

In the “split state” setting, an encoding scheme was proposed in [CKM11].
For the case of only two states, an explicit non-malleable code for encoding
one-bit message was proposed by [DKO13]. This was improved by Aggarwal
et al. [ADL14] to a scheme that encodes larger messages but with rate 1/poly(k)
where k is the length of the message. This was further improved to obtain a
constant-rate non-malleable code in [CZ14,ADKO15a].

Another related result by Aggarwal et al. [ADKO15b] obtained efficient con-
struction of non-malleable codes in a model where the adversary, in addition
to performing split-state tampering, is also allowed some limited interaction
between the two states.

Coretti et al. [CMTV15,CDTV16] have obtained constructions of
information-theoretically secure continuous non-malleable codes in the bit-wise
independent tampering model and have used this construct a non-malleable
encryption scheme.

In the computational setting, there has been a sequence of works con-
structing non-malleable codes and its variants [LL12,FMNV14]. Chandran
et al. [CGM+15] also rely on the computational setting in defining their new
notion of blockwise non-malleable codes. Blockwise non-malleable codes are a
generalization of the split-state model (and the recent lookahead model of
[ADKO15a]) where the adversary tampers with one state at a time.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer
m ∈ N, we let Um denote the uniform distribution over {0, 1}m, the bit-strings
of length m. For a distribution or random variable X we write x ← X to denote
the operation of sampling a random x according to X. For a set S, we write
s ← S as shorthand for s ← US .

The Hamming distance between two strings (a1, . . . , am), (b1, . . . , bm) ∈
{0, 1}m is the number of i ∈ [m] such that ai �= bi. We denote it as

Ham((a1, . . . , am) ; (b1, . . . , bm)) .

Entropy and Statistical Distance. The min-entropy of a random variable X is
defined as H∞(X) def= − log(maxx Pr[X = x]). We say that X is an (n, k)-source
if X ∈ {0, 1}n and H∞(X) ≥ k. For X ∈ {0, 1}n, we define the entropy rate of
X to be H∞(X)/n. We also define average (aka conditional) min-entropy of a
random variable X conditioned on another random variable Z as

˜H∞(X|Z) def= − log
(

Ez←Z

[

max
x

Pr[X = x|Z = z]
])

= − log
(

Ez←Z

[

2−H∞(X|Z=z)
])

.

where Ez←Z denotes the expected value over z ← Z. We have the following
lemma.
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Lemma 1 [DORS08]. Let (X,W ) be some joint distribution. Then,

– For any s > 0, Prw←W [H∞(X|W = w) ≥ ˜H∞(X|W ) − s] ≥ 1 − 2−s.
– If Z has at most 2� possible values, then ˜H∞(X|(W,Z)) ≥ ˜H∞(X|W ) − �.

The statistical distance between two random variables W and Z distributed over
some set S is

Δ(W,Z) := max
T⊆S

|W (T ) − Z(T )| =
1
2

∑

s∈S

|W (s) − Z(s)|.

Note that Δ(W,Z) = maxD(Pr[D(W ) = 1] − Pr[D(Z) = 1]), where D is
a probabilistic function. We say W is ε-close to Z, denoted W ≈ε Z, if
Δ(W,Z) ≤ ε. We write Δ(W,Z|Y ) as shorthand for Δ((W,Y ), (Z, Y )), and
note that Δ(W,Z|Y ) = Ey←Y Δ(W |Y = y, Z|Y = y).

Reed-Solomon Codes. In Sect. 5 we will use standard Reed-Solomon error-
correcting codes. The following is a folklore result about Reed-Solomon codes.
See, for example [RU08].

Lemma 2. Let n = 2� for some positive integer �, and let q > 0 be an integer.
There exist a function RS : {0, 1}n → {0, 1}n+q log n2 such that:

– Hamming distance between any two elements of the image of RS is at least
q + 1,

– For any x ∈ {0, 1}n there exist a unique sequence of bits u ∈ {0, 1}q log n such
that x‖u is an element of the image of RS;

– For every u ∈ {0, 1}q log n the set of all x ∈ {0, 1}n such that x‖u is an element
of the image of RS is affine subspace of {0, 1}n.

3 Various Definitions of Non-malleable Codes

Definition 1. A coding scheme in the split-state model consists of two func-
tions: a randomized encoding function Enc : {0, 1}k �→ {0, 1}n × {0, 1}n, and a
deterministic decoding function Dec : {0, 1}n×{0, 1}n �→ {0, 1}k ∪{⊥} such that,
for each m ∈ M, Pr(Dec(Enc(m)) = m) = 1 (over the randomness of the encod-
ing algorithm). Additionally, we say that the coding scheme is almost uniform if
for any m, any constant c > 1/2 and large enough n, and any L,R ⊆ {0, 1}n,
such that |L| ≥ 2cn, and |R| ≥ 2cn we have that

|L| × |R|
22n+1

≤ Pr(Enc(m) ∈ L × R) ≤ |L| × |R|
22n−1

,

where the probability is taken over the randomness of the encoding algorithm.

2 The elements of the image of RS are called valid codewords for RS.
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We now define non-malleable codes.

Definition 2 (Non-malleable Code from [DPW10]). Let (Enc : M → X ×
X ,Dec : X × X → M ∪ {⊥}) be an encoding scheme. For f, g : X → X and for
any m ∈ M define the experiment DPWTampf,g

m as:

DPWTampf,g
m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(X,Y ) ← Enc(m),
X ′ := f(X), Y ′ := g(Y )

m′ := Dec(X ′, Y ′)
output: m′

⎫

⎪

⎪

⎬

⎪

⎪

⎭

We say that an encoding scheme (Enc,Dec) is ε-DPW-non-malleable in split-
state model if for every functions f, g : X → X there exists distribution Df,g on
M ∪ {same,⊥} such that for every m ∈ M we have

DPWTampf,g
m ≈ε

⎧

⎨

⎩

d ← Df,g

if d = same then output m
otherwise output d.

⎫

⎬

⎭

We will consider the following alternative definition of non-malleable code, which
will be a smoother transition to the subsequent definitions in this section. We
show the equivalence of this definition to Definition 2 (originally formulated in
[DPW10]) in AppendixA.

Definition 3 (Non-malleable Code). We say that an encoding scheme (Enc :
M → X ×X ,Dec : X ×X → M∪{⊥}) is ε-non-malleable in split-state model if
for every functions f, g : X → X there exists family of distributions {Df,g

x,y}x,y∈X
each on {0, 1} such that for every m0,m1 ∈ M

Tampf,g
m0

≈ε Tampf,g
m1

where

Tampf,g
m =

⎧

⎨

⎩

(X,Y ) ← Enc(m),
output same if Dec(X,Y ) = Dec(f(X), g(Y )) ∧ Df,g

X,Y = 0
else output: Dec(f(X), g(Y ))

⎫

⎬

⎭

Some results in the literature like [FMNV14,JW15] have considered a notion
of super-strong non-malleable codes. We introduce the following intermediate
notion of super non-malleable codes.

Definition 4 (Super Non-malleable Code). We say that an encoding
scheme (Enc : M → X × X ,Dec : X × X → M ∪ {⊥}) is ε-super non-malleable
in split-state model if for every functions f, g : X → X there exists family of
distributions {Df,g

x,y}x,y∈X each on {0, 1} such that for every m0,m1 ∈ M

SupTampf,g
m0

≈ε SupTampf,g
m1
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where SupTampf,g
m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(X,Y ) ← Enc(m),
output same if Dec(X,Y ) = Dec(f(X), g(Y )) ∧ Df,g

X,Y = 0
else if Dec(f(X), g(Y )) = ⊥ output ⊥

else output: (f(X), g(Y ))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Definition 5 (Super Strong Non-malleable Code). We say that an encod-
ing scheme (Enc : M → X × X ,Dec : X × X → M ∪ {⊥}) is ε-super strong
non-malleable in split-state model if for every functions f, g : X → X and for
every m0,m1 ∈ M

SupStrTampf,g
m0

≈ε SupStrTampf,g
m1

where

SupStrTampf,g
m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(X,Y ) ← Enc(m),
output same if (X,Y ) = (f(X), g(Y ))
else if Dec(f(X), g(Y )) = ⊥ output ⊥

else output: (f(X), g(Y ))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Definition 6 (Continuous Non-malleable Code). [JW15] define four types
of continuous non-malleable codes based on two flags: sd ∈ {0, 1} (self-destruct)
and prs ∈ {0, 1} (persistent). We say that an encoding scheme (Enc : M →
X × X ,Dec : X × X → M ∪ {⊥}) is (T, ε)-continuous [sd, prs] non-malleable in
split-state model if for every Adversary A and for every m0,m1 ∈ M

ConTamperA,T,m0
≈ε ConTamperA,T,m1

where ConTamperA,T,m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X,Y ) ← Enc(m),
f0, g0 ≡ id,
Repeat i = 1, 2, ...,T

A chooses functions f ′
i , g

′
i

if prs = 1 then fi = f ′
i ◦ fi−1, gi = g′

i ◦ gi−1

else fi = f ′
i , gi = g′

i

if (fi(X), gi(Y )) = (X,Y ) then output same
else
if Dec(fi(X), gi(Y )) = ⊥ then output ⊥if sd = 1 then experiment stops

else output (fi(X), gi(Y )) if prs = 1 then experiment stops

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Remark 1. In the case of persistent tampering, the above definition by [JW15]
assumes that the tampering experiment stops if there is a non-trivial tampering
that does not decode to ⊥ since in this case the adversary learns the entire tam-
pered codeword, and can simulate the remaining tampering experiment himself.

Remark 2. [FMNV14] show that non-persistent continuous non-malleable codes
are impossible to construct in 2-split state model.
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Remark 3. In any model allowing bitwise tampering, in particular the 2-split
state model, it is not difficult to conclude that the non-self-destruct property
is impossible to achieve even in the case of persistent tampering if the space of
messages contains at least 3 elements. To see this, notice that one can tamper
the codeword c = (c1, c2, c3, . . .) to obtain c′

1 = (0, c2, . . .). The adversary then
obtains the output of the tampering experiment which is same if and only if
c1 = 0. Thus the adversary learns c�

1 = c1 and continues the tampering exper-
iment with (c�

1, 0, c3, . . .) (note that this tampering is persistent). Thus, the
adversary can continue learn the codeword one bit at a time, thereby learn-
ing the entire codeword in N steps where N is the length of the codeword. Such
an argument has been used previously for proving impossibility results. See for
instance the work of Gennaro et al. [GLM+03].

4 From Super Strong NMCs to Continuous NMCs

In this section we will prove the following statement:

Theorem 2. If (Enc,Dec) is an ε-super strong non-malleable code in the split-
state model then (Enc,Dec) is a (T, (2T + 1)ε)−continuous [1, 1] non-malleable
code in the split-state model.

For proving Theorem2, we will need the following lemmata. The following result
states that any non-malleable code in the 2-split state model is a good 2-out-of-2
secret sharing scheme.

Lemma 3 ([ADKO15b, Lemma 6.1]). Let Dec : X × X → M, and Enc :
M → X × X be an ε−non-malleable code in the split state model for some
ε < 1

2 . For any pair of messages m0,m1 ∈ M, let (X0
1 ,X0

2 ) ← Enc(m0), and let
(X1

1 ,X1
2 ) ← Enc(m1). Then Δ(X0

1 ; X1
1 ) ≤ 2ε.

The following result states that given a non-malleable code (Enc,Dec) in
the split-state model, for any sets A,B, and any message m, the probability
that Enc(m) falls in the set A × B is almost independent of the choice of the
message m.

Lemma 4. Let k ≥ 3, and let ε < 1/20. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n,
Dec : {0, 1}n × {0, 1}n → {0, 1}k be an ε−non-malleable code in the split state
model. For every sets A,B ⊂ {0, 1}n and every messages m0,m1 ∈ {0, 1}k.

|Pr(Enc(m0) ∈ A × B) − Pr(Enc(m1) ∈ A × B)| ≤ ε.

Proof. We claim that there exist x, y, z, w ∈ {0, 1}n such that m0,m1,Dec(x,w),
Dec(z, w), and Dec(z, y) are all different from Dec(x, y). Before proving this
claim, we show why this implies the given result. Consider the tampering func-
tions f, g such that f(c) = x if c ∈ A, and f(c) = z, otherwise, and g(c) = y if
c ∈ B, and g(c) = w, otherwise. Thus, for b = 0, 1, Tampf,g

mb
= Dec(x, y) if and

only if Enc(mb) ∈ A × B. The result then follows from the ε-non-malleability of
(Enc,Dec).
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Now, to prove the claim, we will use the probabilistic method. Let U be
uniform in {0, 1}k, and let X,Y ← Enc(U). Furthermore, let W,Z ∈ {0, 1}n

be uniform and independent of X,Y,U . We claim that X,Y,Z,W satisfy the
required property with non-zero probability.

It is easy to see that the probability that Dec(X,Y ) = U is either of m0 or
m1 is at most 2/2k. Also, by Lemma 3, we have that except with probability 2ε,
X is independent of U . Also, W is independent of U . Thus, the probability that
Dec(X,W ) = U is at most 2ε+1/2k. Similarly, the probability that Dec(Z, Y ) =
U is at most 2ε+1/2k. Finally, W,Z are independent of U , and so the probability
that Dec(Z,W ) = U is at most 1

2k .
Thus, by union bound, the probability that X,Y,Z,W do not satisfy the

condition of the claim is at most 5
2k + 4ε ≤ 5

8 + 4ε < 1. �
Before proving Theorem 2, let us fix some notation. Let A∗ be any adversary

described in Definition 6. Let (I)m denote the index of a round when same is not
output in the experiment ConTamperA∗,T,m and (fi, gi) (for i = 1, . . . , T ) denote
pairs of functions chosen by A∗ (of course we can assume that they are always
the same because the choice for the next round does not depend on (X,Y )).

Proof (of Theorem 2). We will show that

Δ([(I)m0 , fIm0
(X0), gIm0

(Y0)] ; [Im1 , fIm1
(X1), gIm1

(Y1)]) ≤ (2T + 1)ε. (4.1)

The desired result will follow from the observation that ConTamperA∗,T,mb
for

b = 0, 1 depends only on (I)mb
, f(I)mb

(Xb), and g(I)mb
(Yb).

In order to simplify the proof, we make use of the following fact about sta-
tistical distance: The statistical distance between two random variables Z0 and
Z1 is at most δ if and only if for any computationally unbounded algorithm that
is given as input a sample distributed as Zb, for a uniformly random bit b, the
probability that the algorithm can guess the bit b is at most 1/2 + δ/2.

Thus, we wish to bound the probability of guessing the bit b, given
I, fI(X), gI(Y ), where I,X, Y are shorthand for Imb

,Xb, Yb.
We can partition the codeword space {0, 1}n × {0, 1}n into (2T + 1) sets:

(Ai
1 × Bi

1), (A
i
2 × Bi

2) for 1 ≤ i ≤ T , and the set C × D, where

Ai
1 = {X ⊂ {0, 1}n|fj(X) = X, for all j < i and fi(X) �= X},

Bi
1 = {Y ⊂ {0, 1}n|gj(Y ) = Y, for all j < i},

Ai
2 = {X ⊂ {0, 1}n|fj(X) = X, for all j ≤ i},

Bi
2 = {Y ⊂ {0, 1}n|gj(Y ) = Y, for all j < i and gi(Y ) �= Y },

C = {X ⊂ {0, 1}n|fj(X) = X, for all j ≤ T},

D = {Y ⊂ {0, 1}n|gj(Y ) = Y, for all j ≤ T}.

Note that if (X,Y ) ∈ Ai
j × Bi

j for j = 1, 2, and i ∈ [T ], then I = i, and
if (X,Y ) ∈ C × D, then I = T + 1. Also fI(X), gI(Y ) are empty strings if
I = T + 1.
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We call these partitions P1, ..., P2T+1.
Now suppose there is an adversary A that guesses the bit b with probability

greater than 1/2 + (2T + 1)ε/2 given I, fI(X), gI(Y ). Let us say that A wins if
A guesses the bit b correctly. Then

1/2 + (2T + 1)ε/2 < Pr[A wins]

=
2T+1
∑

r=1

Pr[A wins | (X,Y ) ∈ Pr] · Pr[(X,Y ) ∈ Pr]

= 1/2 +
2T+1
∑

r=1

(Pr[A wins | (X,Y ) ∈ Pr] − 1/2) · Pr[(X,Y ) ∈ Pr] .

Thus, there exists some r such that:

(Pr[A wins | (X,Y ) ∈ Pr] − 1/2) · Pr[(X,Y ) ∈ Pr] > ε/2. (4.2)

We now show that this contradicts the fact that (Enc,Dec) is ε− super strong
non-malleable in the split state model.

Case 1: Pr = Ai
1 × Bi

1 for some i ∈ [T ].
Define the tampering function (f, g) as:

f(x) :=
{

fi(x) if x ∈ Ai
1

u, otherwise.

where u is some element not in fi(Ai
1).

g(y) :=
{

gi(y) if y ∈ Bi
1

v, otherwise.

where v is some element not in gi(Bi
1).

Then define an adversary A∗ that given the tampering experiment of a
random message mb, outputs a fresh uniform random bit if it sees any of
(u, y), (x, v), same, or ⊥, and calls A with input i, and the output of the tam-
pering experiment otherwise. The success probability of A∗ in guessing bit b is

Pr[A wins | (X,Y ) ∈ Pr] · Pr[(X,Y ) ∈ Pr] + 1
2 · (1 − Pr[(X,Y ) ∈ Pr]), which

is greater than 1
2 · Pr[(X,Y ) ∈ Pr] + ε

2 + 1
2 · (1 − Pr[(X,Y ) ∈ Pr]) = 1/2 + ε/2

using Eq. 4.2.
This contradicts the assumption that (Enc,Dec) is ε− super strong non-

malleable in the split state model.

Case 2: Pr = Ai
2 × Bi

2 for some i ∈ [T ].
This case is similar to Case 1.

Case 3: Pr = C × D.
In this case, the only information that A has is that I = T + 1, which is

equivalent to saying that (X,Y ) ∈ C × D. Then let pb be Pr((Xb, Yb) ∈ C × D)
for b = 0, 1. By Lemma 4, we have that |p0 − p1| ≤ ε. Without loss of generality,
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let p0 = p1 + ε′ for some ε′ ∈ [0, ε]. Then given (Xb, Yb) ∈ C × D, the adversary
has higher chance of winning if the adversary outputs 0.

Thus, Pr[A wins | (Xb, Yb) ∈ C × D] = Pr[b = 0|(Xb, Yb) ∈ C × D].
So, rewriting Eq. 4.2 assuming Pr = C×D, we get that Pr[(Xb, Yb) ∈ C×D∧b =
0]− 1

2 ·Pr[(Xb, Yb) ∈ C×D] > ε/2. This implies, 1
2 ·(p1+ε′)− 1

2 · 12 ·(p1+p1+ε′) >
ε/2, which is equivalent to ε′ > 2ε, which is a contradiction. �

Remark 4. The above reduction is in the split-state model. It may be interesting
to note that the only place that we use a particular property of this model is
Eq. 4.1, which can be generalized to saying that the random variable I combined
with the output of tampering experiment should not reveal the message. It is also
obvious that if this statement does not hold for some model then the reduction
will not hold. That means that the above mentioned statement is in some sense
a necessary and sufficient property of a tampering model in which the main
reduction of this section is true.

5 Super Strong NMCs from Super NMCs via Inception
Coding

In this section, we will show that any super non-malleable code in the split-
state model can be converted into a super-strong non-malleable code in the
split-state model. The main technique used here and called by us ‘inception’ is
described in 5.2 (i.e. Definition 9). However before we start the actual definition
and construction let us define some auxiliary objects in Sect. 5.1.

5.1 Check Functions

In order to detect possible tampering with a string x, we introduce the following
variant of Universal Hashing Family.

Definition 7. A function C : {0, 1}s × {0, 1}n → {0, 1}t is called an ε-check if
for any x, y ∈ {0, 1}n such that x �= y,

Pr
R←{0,1}s

(C(R, x) = C(R, y)) ≤ ε

Remark 5. Every ε-check is also (ε · 2t − 1)-universal hashing family. Due to
unnecessarily complicated normalization of parameters in standard UHF defini-
tion it is simply more convenient for us to use the check notion all through the
paper.

In this section we give a construction of an efficient check function that has a
short output length, short seed and has preimages with affine structure. Consider
the following function.
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Definition 8. Let q, t, n > 0 be integers. Let Check1 : {0, 1}n → {0, 1}q log n be
such that for all x ∈ {0, 1}n, x||Check1(x) is a valid Reed-Solomon code.3 Let
Check2 : {0, 1}t log n × {0, 1}n → {0, 1}t be a simple sampler function defined as
follows. Let r = r1‖r2‖ · · · ‖rt be such that each rj is a log n-bit string. Then
Check2(r, x) := xr1 . . . xrt

, where xrj
is the bit of x at position rj, when writ-

ten in binary form. Then we define the function C0 : {0, 1}t log(n) × {0, 1}n →
{0, 1}q log n+t as C0(r, x) := Check1(x)‖Check2(r, x).

Lemma 5. The function C0 defined above is a e− qt
n -check.

Proof. We want to bound the probability that for any two distinct x, y ∈ {0, 1}n

and R = R1‖ . . . ‖Rt chosen uniformly at random from {0, 1}t log n, C0(R, x) =
C0(R, y).

By Lemma 2, we have that the Hamming distance between x‖Check1(x) and
y‖Check1(y) is at least q+1. Thus, if Ham(x; y) < q then Check1(x) �= Check1(y).
So, for C0(R, x) = C0(R, y) we must have that Ham(x; y) ≥ q. Additionally, we
have that Check2(R, x) = Check2(R, y) which implies xRj

= yRj
for all j ∈ [t].

This holds if none of R1, . . . , Rt belong to the set of positions on which x and y
are not different which occurs with probability at most

(

1 − q

n

)t

≤ e− qt
n .

�

For our application, we require a check with the output having length upper
bounded by nα for a small constant α > 0. Now, let us describe a composition
lemma for check functions that will help us to reach the expected parameters.

Lemma 6. If C0 : {0, 1}s1 ×{0, 1}n �→ {0, 1}t1 is an ε1-check and C : {0, 1}s2 ×
{0, 1}t1 �→ {0, 1}t2 is an ε2-check then C1 : {0, 1}s1+s2 ×{0, 1}n �→ {0, 1}t2 given
by

C1(r1‖r2, x) := C(r2, C0(r1, x))

is an (ε1 + ε2)-check.

Proof. Let R1‖R2 ← Us1+s2 , and let E1 = E1(R1, x) be the event
that C0(R1, x) = C0(R1, y) and E2 = E2(R1, R2, x) be the event that
C(R2, C0(R1, x)) = C(R2, C0(R1, y)). Then

Pr(E2) ≤ Pr(E1) + Pr(E2 | E1)
≤ ε1 + ε2 .

�

We now apply Lemma 6 repeatedly to the construction of Lemma 5 to obtain
a check with small length of both the output and the seed.
3 Correctness of this definition follows from Lemma 2.
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Lemma 7. For any constant δ ∈ (0, 1/2) and for a large enough integer n, there

exists an efficient 2−nδ2/5
-check Check� : {0, 1}s × {0, 1}n → {0, 1}t with s ≤ nδ

and t ≤ nδ.

Proof. Let δ′ = δ/5. We start with the construction from Lemma 5, and we set
t = n3δ′

, and q = n1−2δ′
. Furthermore, we assume that output length n1 =

q log n+ t ≤ n1−δ′
, and s1 = t log n ≤ n4δ′

, which hold for a large enough n. The
error is e−nδ′

.
We then define a check function for the output of length n1, with seed length

s2 being at most n4δ′
1 ≤ n(1−δ′)·4δ′

, output length n2 being at most n1−δ′
1 ≤

n(1−δ′)2 , and error is at most e−nδ′
1 .

We continue this procedure for � steps until n� ≤ nδ. Thus n�−1 > nδ. The
number of steps � is upper bounded by log(1 − δ′)/ log δ. Thus, using Lemma 6,
the error is upper bounded by

log(1 − δ′)
log δ

· e−n5δ′2
≤ 2−n5δ′2

and the total seed length is

s1 + · · · + s� ≤ n4δ′ · log(1 − δ′)
log δ

≤ nδ ,

where we again used that n is large enough. �

5.2 Inception Coding

In this section, we show that any super non-malleable code in the split-state
model can be converted into a super-strong non-malleable code in the split-state
model. Notice that for some message m with (X,Y ) ← Enc(m), the only possible
scenario in which the output of the tampering experiment in the super-strong
non-malleability definition and that in the super non-malleability definition are
different is when Dec(X,Y ) = Dec(f(X), g(Y )) even in the case of a non-trivial
tampering, i.e., (X,Y ) �= (f(X), g(Y )). Our idea is to use some of the least
significant bits of the message to store a seed and an output of a “Check” such
that if the decoder outputs the correct message in case of a non-trivial tampering,
then the “Check” can detect this and force the output to be ⊥. This technique
of installing a validity check for a codeword within the message is what we call
inception coding and is defined below (Fig. 1).

Definition 9. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n →
{0, 1}k ∩ {⊥} be a coding scheme. Let C : {0, 1}s × {0, 1}n → {0, 1}t be some
function.4 The Inception version of (Enc,Dec, C) is a coding scheme denoted
as IEnc : {0, 1}k−2s−2t → {0, 1}n × {0, 1}n, IDec : {0, 1}n × {0, 1}n →
{0, 1}k−2s−2t ∪ {⊥} and is defined as follows. The encoding algorithm IEnc,
for a given message m ∈ {0, 1}k−2s−2t, does the following.
4 We will use this definition with C being a check function.
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Fig. 1. Inception coding using super non-malleable code.

– Choose uniformly at random rx, ry from {0, 1}s, and cx, cy from {0, 1}t.
– Sample (X,Y ) as the output of the encoding algorithm Enc on input

(m‖rx‖cx‖ry‖cy) conditioned on the fact that C(rx,X)=cx and C(ry, Y )=cy.
– Output (X,Y ).

The decoding algorithm IDec, on input x, y ∈ {0, 1}n, does the following.

– Obtain Dec(x, y) ∈ {0, 1}k, and interpret the output as (m‖rx‖cx‖ry‖cy),
where m ∈ {0, 1}k−2s−2t, rx, ry ∈ {0, 1}s, and cx, cy ∈ {0, 1}t.

– If C(rx, x) = cx and C(ry, y) = cy then output m, else output ⊥.

We now state our main result.

Theorem 3. Let ε1, ε2 > 0. C : {0, 1}s × {0, 1}n → {0, 1}t be an ε1-check.
Let Enc : {0, 1}k → {0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n → {0, 1}k ∩ {⊥}
be a uniform ε2-super non-malleable code in the split-state model such that for
any m, rx, cx, ry, cy, there is an efficient algorithm to sample (X,Y ) ← Enc(m)
conditioned on C(rx,X) = cx and C(ry, Y ) = cy. Then (IEnc, IDec) is an
efficient ε′-super strong non-malleable code in the split-state model with ε′ =
16ε2
2−2t + 2ε1 + 3ε2.

Proof. Let f : {0, 1}n �→ {0, 1}n, g : {0, 1}n �→ {0, 1}n be arbitrary functions
and m,m′ ∈ {0, 1}k−2s−2t be arbitrary messages. We will bound the statistical
distance between SupStrTampf,g

m and SupStrTampf,g
m′ for the encoding scheme

(IEnc, IDec). For this purpose, we intend to use the fact that (Enc,Dec) is super
non-malleable. However, the main issue with using this is that the codeword
obtained by using Enc might not be a valid encoding for IEnc. The main idea to
make sure that the encoding is valid is to (artificially) do rejection sampling. We
modify the tampering functions f, g to f ′, g′ such that the tampered codeword
becomes irrelevant if the code is not a valid codeword with respect to IEnc. This
is the reason that the error is blown-up by a factor 22t.
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Let the space of all x ∈ {0, 1}n such that C(r, x) = c be Ar,c, i.e.,

Ar,c := {x ∈ {0, 1}n |C(r, x) = c} .

We choose fresh uniformly random and independent strings rx, ry from {0, 1}s,
and cx, cy from {0, 1}t. Consider the following functions:

f ′(x) :=
{

f(x) if x ∈ Arx,cx

0n, otherwise.

g′(y) :=
{

g(y) if y ∈ Ary,cy

0n otherwise.

Let (X,Y ) ← Enc(m, rx, cx, ry, cy) and let (X ′, Y ′) ← Enc(m′, rx, cx, ry, cy).
We shorthand SupTampf ′,g′

(m,rx,cx,ry,cy)
by T and SupTampf ′,g′

(m′,rx,cx,ry,cy)
by T ′.

The range of T and T ′ is R = {0, 1}n × {0, 1}n ∪ {⊥, same}. Also, let A =
Arx,cx

× Ary,cy
, and let Pr((X,Y ) ∈ A) = p and Pr((X ′, Y ′) ∈ A) = p′. By

Lemma 4, we have that |p − p′| ≤ ε2, and by the fact that (Enc,Dec) is almost
uniform, we have that p ≥ 2−2t−1.

Also, if (X,Y ) /∈ A, then (f ′(X), g′(Y )) depends on at most one of X,Y ,
and if (X ′, Y ′) /∈ A, then (f ′(X ′), g′(Y ′)) depends on at most one of X ′, Y ′.
Hence the respective tampering experiments T and T ′ depend on at most one of
the shares and by Lemma 3, we have that in this case T and T ′ are statistically
close, i.e.,:

1
2

·
∑

z∈R
|Pr(T = z ∧ (X,Y ) /∈ A) − Pr(T ′ = z ∧ (X ′, Y ′) /∈ A)| ≤ 2ε2 . (5.1)

Also, by the super non-malleability assumption, we have that Δ(T ;T ′) ≤ ε2.
Thus, using Eq. 5.1, and the triangle inequality, we have that

6ε2 ≥
∑

z∈R
|Pr(T = z ∧ (X,Y ) ∈ A) − Pr(T ′ = z ∧ (X ′, Y ′) ∈ A) |

=
∑

z∈R
|Pr(T = z | (X,Y ) ∈ A) · p − Pr(T ′ = z|(X ′, Y ′) ∈ A) · p′|

≥ p ·
∑

z∈R
|Pr(T = z|(X,Y ) ∈ A) − Pr(T ′ = z|(X ′, Y ′) ∈ A)| − |p − p′|

≥ (2−2t−1) ·
∑

z∈R
|Pr(T = z|(X,Y ) ∈ A) − Pr(T ′ = z|(X ′, Y ′) ∈ A)| − 2ε2 .

This implies that
∑

z∈R
|Pr(T = z|(X,Y ) ∈ A) − Pr(T ′ = z|(X ′, Y ′) ∈ A)| ≤ 8ε2

2−2t−1
.

Let ˜T be the tampering experiment T conditioned on the event (X,Y ) ∈ A.
Similarly define ˜T ′.
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We now compare the experiments ˜T and SupStrTampf,g
m . For the pur-

pose of this comparison, we assume that the random coins needed to gener-
ate rx, cx, ry, cy, and (X,Y ) ← Enc(m) conditioned on (X,Y ) ∈ A are the
same. Then, we have that if ˜T �= same, then SupStrTampf,g

m is equal to ˜T

except with probability at most ε2. To see this, notice that if both ˜T and
SupStrTampf,g

m are not same, then they are equal. The event that ˜T �= same

and SupStrTampf,g
m = same happens if f(X) = X, g(Y ) = Y but Df,g

X,Y = 1.
This cannot happen with probability more than ε2, since this would mean that
T = (X,Y ) which would immediately reveal the message thereby contradicting
the non-malleability of (Enc,Dec).

Also, we claim that if ˜T = same, then SupStrTampf,g
m ∈ {same,⊥}, except

with probability at most ε1. This follows from the fact that if ˜T = same, and
SupStrTampf,g

m /∈ {same,⊥}, then this implies that at least one of f(X) �= X,
or g(Y ) �= Y but C(rx, f(X)) = cx, and C(ry, g(Y )) = cy which happens with
probability at most ε1.

Thus, we can bound the statistical distance between SupStrTampf,g
m and

SupStrTampf,g
m′ by

8ε2
2−2t−1

+2ε1 +2ε2 + |Pr(SupStrTampf,g
m = same)−Pr(SupStrTampf,g

m′ = same)| .

Finally, using Lemma 4, we can conclude that

|Pr(SupStrTampf,g
m = same) − Pr(SupStrTampf,g

m′ = same)| ≤ ε2

by setting A = {x ∈ {0, 1}n : f(x) = x}, and B = {y ∈ {0, 1}n : g(y) = y}. �

6 Instantiating a Super Non-malleable Code

In [ADL14], Aggarwal et al. gave a construction of non-malleable codes in the
split-state model. Here, we argue that the construction of [ADL14] is also super-
non-malleable.

Note that for any message m with Enc(m) = (X,Y ), and any functions f, g,
the output of the tampering experiment in Definition 3 is the same as that in
Definition 4 if Dec(f(X), g(Y )) = m or Dec(f(X), g(Y )) = ⊥. This leads to the
following simple observation.

Observation 6.1. Let ε, ε′ > 0. Let (Enc : M → X × X ,Dec : X × X → M ∪
{⊥}) be an ε-non-malleable code in the split-state model. Given f, g : X �→ X ,
assume there exists a partitioning (S1, · · · ,Ss+t,S�) of X × X such that the
following hold:

1. For all m ∈ M, 1 ≤ i ≤ s, Pr(X,Y )←Enc(m)(Dec(f(X), g(Y )) ∈
{m,⊥}|(X,Y ) ∈ Si) ≥ 1 − ε′.

2. For all m1,m2 ∈ M, s + 1 ≤ i ≤ s + t, let (X1, Y1), (X2, Y2) be the encoding
of m1,m2 respectively, conditioned on the fact that (X1, Y1), (X2, Y2) ∈ Si.
Then Δ((f(X1), g(Y1)), (f(X2), g(Y2)) ≤ ε′.
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3. For any m ∈ M, Pr(Enc(m) ∈ S�) ≤ ε′.

Then, the scheme (Enc,Dec) is (ε + O(ε′))-super-non-malleable.

In the above observation, we set Df,g
(X,Y ) to be 1 if (X,Y ) ∈ S1, . . . ,Ss, and

0, otherwise.
Before describing the encoding scheme from [ADL14], we will need the fol-

lowing definition of an affine-evasive function.

Definition 10. Let F = Fp be a finite field. A surjective function h : F �→
M ∪ {⊥} is called (γ, δ)-affine-evasive if or any a, b ∈ F such that a �= 0, and
(a, b) �= (1, 0), and for any m ∈ M,

1. PrU←F(h(aU + b) �= ⊥) ≤ γ
2. PrU←F(h(aU + b) �= ⊥ | h(U) = m) ≤ δ
3. A uniformly random X such that h(X) = m is efficiently samplable.

Aggarwal [Agg15] showed the following.

Lemma 8. There exists an efficiently computable (p−3/4,Θ(|M| log p · p−1/4))-
affine-evasive function h : F �→ M ∪ {⊥}.

We now describe the coding scheme from [ADL14] combined with the affine-
evasive function promised by Lemma 8. Let M = {1, . . . , K} and X = F

N ,
where F is a finite field of prime order p such that p ≥ (K/ε)16, and N chosen
as C log6 p, where C is some universal constant.

Then for any m ∈ M, Enc(m) = Enc1 ◦ Enc2(m), where for any m ∈ M,
Enc2(m) is X where X is uniformly random such that h(X) = m, where h is
affine-evasive function defined earlier, and for any x ∈ F, Enc1(x) = (L,R),
where L,R ∈ F

N are uniform such that 〈L,R〉 = x.
The decoding algorithm is as follows. For �, r ∈ F

N × F
N , Dec(�, r) = Dec2 ◦

Dec1(�, r), where for any �, r ∈ F
N , Dec1(�, r) = 〈�, r〉, and for any x ∈ F,

Dec2(x) = h(x).
The following is implicit in [ADL14].

Theorem 4. Let f, g : FN �→ F
N be arbitrary functions. Let s = �N/20�, and let

t = � s1/6

c log p�, for some universal constant c. Then, there exists a set S ⊂ F
N ×F

N

of size at most p2N−s such that FN × F
N \ S can be partitioned into sets of the

form

1. L × R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform for L′, R′

uniform in L,R respectively.
2. L × R, such that |L × R| ≥ p2N−7s, and there exists A ∈ F

N×N , a �= 0 ∈
F, b ∈ F

n such that f(�) = A� for all � ∈ L, and AT g(r) = ar + b for all
r ∈ R.

3. L × R, such that |L × R| ≥ p2N−7s, and there exists y ∈ F
N , such that

g(r) = y for all y ∈ R.
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To argue that the construction given above is also super-non-malleable, we
will need the following:

Lemma 9. Let L and R be independent random variables over F
N . If

H∞(L) + H∞(R) ≥ (N + 1) log p + 2 log
(

1
ε

)

,

then

Δ((L, 〈L,R〉) ; (L,UF)) ≤ ε and Δ((R, 〈L,R〉) ; (R,UF)) ≤ ε.

Lemma 10. Let X1, Y1 ∈ A, and X2, Y2 ∈ B be random variables such that
Δ((X1,X2) ; (Y1, Y2)) ≤ ε. Then, for any non-empty set A1 ⊆ A, we have

Δ(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤ 2ε

Pr(X1 ∈ A1)
.

Theorem 5. The scheme (Enc,Dec) is almost uniform, O(ε)-super-non-
malleable code in the split-state model.

Proof. We first show that the scheme is a super non-malleable code in the split-
state model. We will argue that each partition promised by Theorem4 is one
of S1, . . . ,Ss+t,S� as in Observation 6.1 with ε′ = ε. Clearly, for any m ∈ M,
Pr(Enc(m) ∈ S) ≤ p−s+1 ≤ ε, and hence we can set S� = S. So, we consider the
partitioning of Fn × F

n \ S.

1. L×R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform for L′, R′ uni-
form in L,R respectively. In this case, for any message m, if (L,R) ← Enc(m),
then Dec(f(L), g(R)) conditioned on (L,R) ∈ L×R is h(〈f(L′), g(R′)〉) con-
ditioned on h(〈L′, R′〉) = m. By Lemma 10, we have that this is 2 ·p−t+1-close
to uniform, and hence, by Lemma8, we have that h(〈f(L′), g(R′)〉) = ⊥ with
probability at least 1 − p−3/4 − p−t+1 ≥ 1 − ε.

2. L×R, such that |L×R| ≥ p2N−7s, and there exists A ∈ F
N×N , a ∈ F, b ∈ F

N

such that f(�) = A� for all � ∈ L, and AT g(r) = ar + b for all r ∈ R. In
this case, using the same argument as in the previous item, we have that
Dec(f(L), g(R)) conditioned on (L,R) ∈ L×R is ⊥ with probability at least
1 − p−1/4 log p − p−t+1 ≥ 1 − ε.

3. L × R, such that |L × R| ≥ p2N−7s, and there exists y ∈ F
N , such that

g(r) = y for all y ∈ R. Let L′, R′ uniform in L,R, respectively. Then, using
Lemma 9, we have that 〈L′, R′〉 is p−(N−7s−1)/2-close to uniform given f(L′),
and g(R′) = y, and so, using Lemma 10, this partition satisfies item 2 from
Observation 6.1.

The result then follows from Observation 6.1.
We now show that the scheme is uniform. Let X0,Y0 ⊂ F

N such that |X0| =
pc1N , and |Y0| = pc2N for some c1, c2 ∈ (1/2, 1), and let X1 = F

N \ X0, and
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Y1 = F
N \Y0. Let X0,X1, Y0, Y1 be uniform in X0,X1,Y0,Y1, respectively. Then

by Lemma 9, there exists c > 0, such that for i, j ∈ {0, 1},

Δ(〈Xi, Yj〉 ; UF) ≤ p−cN .

Thus, for any a ∈ Fp, the number of x ∈ Xi, y ∈ Yj such that 〈x, y〉 = a is

|Xi| · |Yj | · (
1
p

± p−cN ) .

Thus the fraction of (x, y) ∈ X0 × Y0 such that 〈x, y〉 = a is in the interval
( |Xi| · |Yj |

p2N
· 1 − p−cN+1

1 + p−cN+1
,

|Xi| · |Yj |
p2N

· 1 + p−cN+1

1 − p−cN+1

)

,

which implies the result. �

7 Final Proof of the Main Result

Theorem 5 proves that non-malleable code from [ADL14] is super non-malleable.
The only additional requirement that needs to be fulfilled in order to be able
to use this code to obtain super strong non-malleable codes using Theorem3 is
that there is an efficient algorithm to sample (X,Y ) ← Enc(m) conditioned on
C(rx,X) = cx and C(ry, Y ) = cy for some given rx, ry, cx, cy,m. Note that here,
X,Y ∈ F

N , which is thought of as being embedded in to {0, 1}n for n = N�log p�.
A way to sample this will be to sample a ← Enc2(m) ∈ Fp, and then try to sample
X,Y such that 〈X,Y 〉 = a (where X,Y are interpreted as elements of FN ) and
C(rx,X) = cx and C(ry, Y ) = cy (where X,Y are interpreted as elements of
{0, 1}n).

Since we don’t know how to sample this efficiently, we resolve this issue by
introducing an alternate definition of inception coding, which we call partial
inception coding, that installs only a check for X into the message.

Definition 11. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n →
{0, 1}k ∩ {⊥} be a coding scheme. Let C : {0, 1}s × {0, 1}n → {0, 1}t be some
function.5 The Partial Inception version of (Enc,Dec, C) is a coding scheme
denoted as IEnc : {0, 1}k−s−t → {0, 1}n × {0, 1}n, IDec : {0, 1}n × {0, 1}n →
{0, 1}k−s−t ∪ {⊥} and is defined as follows. The encoding algorithm IEnc, for a
given message m ∈ {0, 1}k−s−t, does the following.

– Choose uniformly at random rx from {0, 1}s, and cx from {0, 1}t.
– Sample (X,Y ) as the output of the encoding algorithm Enc on input

(m‖rx‖cx) conditioned on the fact that C(rx,X) = cx.
– Output (X,Y ).

The decoding algorithm IDec, on input x, y ∈ {0, 1}n, does the following.

5 We will use this definition with C being a check function.
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– Obtain Dec(x, y) ∈ {0, 1}k, and interpret the output as (m‖rx‖cx), where
m ∈ {0, 1}k−s−t, rx ∈ {0, 1}s, and cx ∈ {0, 1}t.

– If C(rx, x) = cx then output m, else output ⊥.

Then, it is easy to sample from the desired distribution. One can efficiently
sample X conditioned on C(X, rX) = cX since for any r ∈ {0, 1}s and any c ∈
{0, 1}t the set of all x such that C(r, x) = c is an affine subspace of {0, 1}n. This
follows immediately from Lemma 2 and Definition 8. Then, Y can be sampled
easily conditioned on the constraint that 〈X,Y 〉 = a.

However, this introduces an additional requirement on the non-malleable
code that the adversary cannot decode to the same message by changing just one
part of the codeword, i.e., for any function g : {0, 1}n �→ {0, 1}n, and any message
m with (X,Y ) ← Enc(m), the probability that g(Y ) �= Y and Dec(X, g(Y )) = m
is small. This condition, fortunately, is immediate from the proof of Theorem5,
where item (2) with A being the identity matrix corresponds to this case, and
unless g is also the identity function, we conclude that Dec(X, g(Y )) = m with
probability at most ε.

Remark 6. The main reason that we did not define partial inception coding to
start with is because we did not want to restrict Theorem 3 in the sense that it
only works if we instantiate it with a non-malleable code that has the special
property that the probability that g(Y ) �= Y and Dec(X, g(Y )) = m is small.
This, we believe is just a minor technicality since we are having difficulty in
sampling X,Y conditioned on C(rX ,X) = cX , C(rY , Y ) = cY and 〈X,Y 〉 = a.
Perhaps using a clever sampling algorithm like the one used by Chattopadhyay
and Zuckerman [CZ14], such a sampling is possible. Even if this is not the case,
we want Theorem 3 to be general enough so that it can be instantiated with
other super non-malleable codes.

Thus, using a result analogous to Theorem3 for the case of Partial Incep-
tion coding introduced in Definition 11 and instantiating it with (Enc,Dec)
from [ADL14] gives us the following result.

Theorem 6. There exists an efficient 2−kΩ(1)
-super-strong non-malleable code

in the split-state model from k-bit messages to k7-bit codewords.

Combining Theorem 6 with Theorem 2 gives us the main result of the paper, i.e.,
a construction of a persistent continuous non-malleable code in the split-state
model.

Theorem 7. There exists an efficient (T, (T + 1) · 2−kΩ(1)
)−continuous [1, 1]

non-malleable code in the split-state model from k-bit messages to k7-bit code-
words.

A Equivalence of Our Non-malleable Codes Definition
(Def. 3) with that of [DPW10]

Theorem 8. If (Enc,Dec) is an ε−non-malleable code then it is also an ε−non-
malleable code according to the definition from [DPW10].
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Proof. Let us define transform Tm : M ∪ {⊥, same} → M ∪ {⊥} as follows:
for any m′ ∈ M let Tm(m′) = m′, Tm(⊥) = ⊥, Tm(same) = m. Notice that
Tm(Tampf,g

m ) = DPWTampf,g
m . Fix any message m0, and take Df,g = Tampf,g

m0
.

We know that Tampf,g
m ≈ε Tampf,g

m0
for any functions f, g and any message m.

Thus
Tm(Tampf,g

m ) ≈ε Tm(Tampf,g
m0

),

DPWTampf,g
m ≈ε Tm(Df,g).

�

Theorem 9. If (Enc,Dec) is an ε−non-malleable code according to the defini-
tion from [DPW10], then it is 4ε−non-malleable code.

Proof. Using the notation from Theorem8, we know that, irrespective of the
choice of Df,g

x,y distributions, the following is true:

Tm(Tampf,g
m ) = DPWTampf,g

m .

Now let Df,g
x,y as follows:

Pr(Df,g
x,y = 0) = min

{

Pr(Df,g = same)

Pr(DPWTampf,g
Dec(x,y) = Dec(x, y))

, 1

}

if Pr(DPWTampf,g
Dec(x,y) = Dec(x, y)) �= 0. Otherwise let Pr(Df,g

x,y = 0) = 0.
Notice that now

|Pr(Tampf,g
m = same) − Pr(Df,g = same)| < ε .

By DPW-non-malleable codes definition we get

Tm(Tampf,g
m ) ≈ε Tm(Df,g)

thus
Tampf,g

m ≈2ε Df,g,

and thus that for any m0,m1 we get

Tampf,g
m0

≈4ε Tampf,g
m1

.

�
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Abstract. Non-malleable codes (NMCs), introduced by Dziembowski,
Pietrzak and Wichs (ITCS 2010), generalize the classical notion of error
correcting codes by providing a powerful guarantee even in scenarios
where error correcting codes cannot provide any guarantee: a decoded
message is either the same or completely independent of the underlying
message, regardless of the number of errors introduced into the codeword.
Informally, NMCs are defined with respect to a family of tampering func-
tions F and guarantee that any tampered codeword either decodes to the
same message or to an independent message, so long as it is tampered
using a function f ∈ F .

Nearly all known constructions of NMCs are for the t-split-state fam-
ily, where the adversary tampers each of the t “states” of a codeword,
arbitrarily but independently. Cheraghchi and Guruswami (TCC 2014)
obtain a Rate-1 non-malleable code for the case where t = O(n) with n
being the codeword length and, in (ITCS 2014), show an upper bound
of 1 − 1/t on the best achievable rate for any t-split state NMC. For
t = 10, Chattopadhyay and Zuckerman (FOCS 2014) achieve a constant
rate construction where the constant is unknown. In summary, there is
no known construction of an NMC with an explicit constant rate for any
t = o(n), let alone one that comes close to matching Cheraghchi and
Guruswami’s lowerbound!

In this work, we construct an efficient non-malleable code in the t-
split-state model, for t = 4, that achieves a constant rate of 1

3+ζ
, for any

constant ζ > 0, and error 2−Ω(�/logc+1�), where � is the length of the
message and c > 0 is a constant.

1 Introduction

Error correcting codes allow for the correction of errors introduced in data.
However, their applicability is limited by the fact that they can only correct a
bounded number of errors. When data is completely overwritten, no protection
can be guaranteed. Non-malleable codes, introduced in the work of Dziembowski
et al. [15], guarantee that, errors caused to the data will render it either inde-
pendent of the underlying message or leave it unchanged.
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 344–375, 2017.
https://doi.org/10.1007/978-3-319-70503-3_11
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Non-malleable codes are parameterized by a family of tampering functions,
F , and they guarantee non-malleability only when m∗ = Dec(f(Enc(m))) where
f ∈ F and Enc,Dec are the encode and decode functions respectively. (In other
words, there is no guarantee when f /∈ F .) Informally, given a tampering family
F , a non-malleable code (Enc,Dec) encodes a given message m into a codeword
c ← Enc(m) s.t. if c is modified to c̃ = f(c) by some f ∈ F , then the message
m̃ = Dec(c̃) contained in the modified codeword, is either the original message
m or is “unrelated” to and “independent” of m.

To understand the motivation of studying non-malleable codes, consider their
application to cryptography. In any standard cryptographic security game, secu-
rity is typically guaranteed even when the adversary has access to some permis-
sible input-output behaviour on the secret key sk.1 If the adversary is allowed
to observe input-output behaviour with respect to some modified sk∗, we can
no longer guarantee any security with respect to the original key sk. Consider a
situation where sk∗, if different from sk, is guaranteed to be independent of sk.
In such a case, no input-output behaviour on sk∗ can help break the security
with respect to sk. (After all, if obtaining information about an independent
sk∗ can help break the security with respect to sk, then an adversary for sk
can generate this information on his own.) If sk is encoded with a non-malleable
code, then non-malleability will prevent sk∗ from ever taking a related value and
the scheme will continue to remain secure with respect to sk.

It is no surprise that, since their introduction, non-malleable codes have
found many applications such as in securing functionalities against physical –
leakage and tampering– attacks [15,21], domain extension of CCA secure encryp-
tion [8] and non-malleable commitments [17]. Additionally, non-malleable codes
have inspired an impressive line of theoretical research drawing connections
across topics such as non-malleable extractors, additive combinatorics and so
on. Researchers have been fascinated with two aspects of non-malleable codes:

(a) the richness of the tampering function family which NMCs can protect
against and

(b) the rate (= messagelength
codewordlength ) they achieve.

Our work too falls into this domain with a specific focus on the rate.

1.1 Related Work

In [15], Dziembowski et al. observe that it is impossible to build non-malleable
codes which are secure with respect to the class of all functions. The intuition
behind this is that, this class would contain the function which decodes Enc(m)
and re-encodes it into a related value m∗. Further, [15] proves an existential
result for non-malleable codes w.r.t tampering families of size less than 22

n

.

1 For example, this input-output behaviour may be decryption of ciphertexts in the
case of Chosen Ciphertext Security of Encryption or signatures of messages in the
case of Digital Signatures.
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A natural but restricted class of tampering functions is the class of bit-
wise tampering functions which modify each bit of the codeword independently.
Dziembowski et al. [15] presented a construction of non-malleable codes with
respect to this family. Their construction used a composition of Linear error
correcting secret sharing scheme (LECSS)2 and Algebraic Manipulation Detec-
tion codes (AMD codes)3. Following this, Cheraghchi and Guruswami [7] gave an
explicit construction of an optimal rate NMC w.r.t. bit-wise tampering family.
Their construction combines the properties of a LECSS scheme, a sub-optimal
NMC for small messages and pseudorandom permutations.

A natural generalization of the bit-wise tampering family is the split-state
tampering family, where a codeword is split into blocks (typically of equal length
though not necessarily) and each block of the codeword, called a state, is tam-
pered independently. A t-split-state family consists of a family of t functions
acting independently on a state of length n/t, where n is the codeword length4.

Improving on an existential result due to Dziembowski et al. [15], in [6],
Cheraghchi and Guruswami show that for a t-split state family, with each state
of codeword containing n/t bits, the upper bound on best achievable rate is
1 − 1/t. Both [6,15] give a Monte-Carlo construction of non-malleable codes for
the 2-split-state model which show the existence of such codes in the random
oracle model. The work of [7] also makes an elegant connection between seedless
t-source non-malleable extractors and non-malleable codes in the t-split-state
model.

In spite of the progress on bit-wise tampering function family, the first effi-
cient constructions of split-state non-malleable codes made strong assumptions
such as the random oracle model [15] or were in the computational setting [21]5.
Dziembowski et al. [14] were the first to present an explicit construction of a
non-malleable code for the split-state model. Specifically, they used the inner
product extractor to construct a non-malleable code for 1-bit messages in the
2-split-state model. Improving upon this result, Aggarwal et al. [3] gave the
first information theoretic construction for k-bit messages in 2-split-state model,
achieving rate Ω(n−6/7). This construction relies on an elegant property of inner-

2 LECSS ensures that the bits of codeword are t-wise independent and detects tam-
pering if the codeword is modified by an offset Δ, when Δ is not a valid codeword
of the scheme.

3 AMD codes detect tampering attacks that add some pre-determined offset Δ to the
codeword.

4 This tampering family captures other tampering attacks such as bit-wise tampering,
identity function, constant function etc. A motivation to study this model comes from
practical applications like cloud storage, where a single file may be stored in t parts
at t different locations and an adversary tampers each of these parts independent
of the other. It is therefore both of theoretical as well as practical interest to obtain
non-malleable codes for t-split state family where t > 1 is as small as possible.

5 Specifically, Liu and Lysyanskaya [21] present a computational non-malleable code
w.r.t. split-state tampering functions in the common reference string (CRS) model,
using number theoretic assumptions and assuming existence of robust non-interactive
zero-knowledge proof systems for an appropriate NP language.



Four-State Non-malleable Codes with Explicit Constant Rate 347

product functions, which is obtained using results from additive combinatorics,
including the Quasi-polynomial Freiman-Ruzsa Theorem.

NMC with Improved Rates: All of the above works focused on improving the
richness of tampering functions which NMCs can tolerate. However, none of
them, barring the codes of [7] for the bit-wise tampering family, achieve optimal
rate. Chattopadhyay and Zuckerman [5] were the first to construct an efficient
constant rate non-malleable code in 10-split-state model. Unfortunately, the rate
they achieve is an unknown constant which is typically undesirable while building
information-theoretic primitives. Additionally, as observed in [2], the rate is likely
to be a small (i.e., poor) constant due to their use of additive combinatorics.

For the 2-split-state model, the construction by Li in [20] achieves the best
known rate to date, of Ω(1/ log n). Both these works use the connection between
seedless t-source non-malleable extractors and non-malleable codes in t-split-
state model, due to [7]. The work of Aggarwal et al. [2] gives beautiful connec-
tions between various split-state models. Unfortunately, due to a subtle error
pointed by Li [20], their proposed construction of a 2-split state, constant rate,
non-malleable code no longer holds, making Li’s result the best known for the
2-split state model. However, there are two conjectured constant-rate NMC con-
structions. Specifically, in [3], under an inner product conjecture, the authors
get a constant-rate 2-split-state scheme. Further, while [2], as it stands, gives
a linear-rate code using existing methods, it gives a constant-rate 2-split-state
under an appropriate conjecture.

We know the following, about the best achievable rate, from [6]:

Lemma 1. [6, Sect. 1.1]. For non-malleable codes in the t-split-state model, with
each state of equal length, the best achievable rate is 1 − 1

t .

While Cheraghchi et al. in [7], obtain a Rate-1 (optimal) NMC for t = O(n),
there is no known construction for t = o(n), which achieves the optimal rate
1 − 1

t , for t-split-state family. In this work, we construct a non-malleable code
with rate 1

3+ζ , for any constant ζ > 0 in the 4-split-state model.

Computational Setting: If we resort to computational assumptions, Aggarwal et
al. [1] show that a NMC with the best possible rate as well as the least restricted
of the t-split-state families can obtained. Concretely, they obtain a rate 1 com-
putational NMC w.r.t. 2-split-state tampering function family. Unfortunately,
despite significant efforts, there has been a large gap between the rates of the best
known constructions in the computational setting and the information-theoretic
setting.

We give an overview of the Rate-1 construction in the computational setting
due to Aggrawal et al. [1] and then highlight the challenges of building such codes
in the information-theoretic setting. Their construction works by choosing a key
kae to a computational authenticated encryption scheme. It encodes this key
with a poor-rate 2-split-state non-malleable code to get states c1, c2. This key is
used to compute an authenticated encryption ciphertext (c3) of the message to
be encoded. This gives a three state nmc: (c1, c2, c3). (They obtain a two-split-
state construction by using an enhanced notion of “augmented” non-malleable
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codes. They also prove that the 2-state construction of [3] achieves augmented
non-malleability.) The key behind the optimality of the rate is the observation
that the length of the key for authenticated encryption (in the computational
setting) can be short (and independent of the message length).

We have summarized the prior work on NMCs for the t-split-state model in
Fig. 1.

Fig. 1. Summarizing prior work on t-split-state family

1.2 Our Result

Informally, in this work, we obtain information-theoretic constant-rate non-
malleable codes in the 4-split-state model. The fact that we make no compu-
tational assumptions brings up some unique challenges in both the construction
as well as the proof, which we now highlight. As a starting point, consider the
same construction [1] described above but replace the computational authenti-
cated encryption scheme with an information-theoretic one: we would still obtain
a secure non-malleable code. However, for an information-theoretic encryption
scheme to be secure, we require the length of the key to be as much as the
length of the message. This means that to obtain good rate, the split-state non-
malleable code used as a building block should have good rate as it is encoding
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a key that is as long as the message – this is precisely the problem we are trying
to solve!

To resolve this chicken-and-egg problem, we observe that an authenticated
encryption scheme can be modularly decomposed into an authentication scheme
and an encryption scheme: namely, encrypting a message first with a generic
(one-time) encryption scheme and then authenticating it with a one-time mes-
sage authentication code, gives us a construction of an (one-time) authenticated
encryption scheme. The good news is that message authentication codes only
require short keys (informally, as long as the security parameter) and can, there-
fore, be encoded using a non-malleable code without compromising on the rate.
This leads to the following approach: can we leverage the non-malleability of
authentication key to non-malleably encode larger messages?

We shall motivate our construction by discussing some incorrect construc-
tions. Consider the following attempt: c1=(Encke

(m),Tagka
(Encke

(m))); c2=ke;
(c3, c4) = NMEnc(ka) where Enc is just a one-time pad encryption, MAC =
(Tag,Vrfy) is a one-time message authentication code, NMEnc is a 2-split-state
non-malleable code and {ci}i∈[4] are all stored in separate states. A fundamental
problem with this proposal is that the encryption key is not encoded with a
non-malleable code. By simply changing the key ke and leaving the rest of the
encoding unchanged, the adversary can relate the tampered message m̃ to the
underlying message m. We can fix this problem by requiring the encryption key
to be authenticated as well. Let c1 = (Encke

(m),Tagka
(Encke

(m)||ke)); c2 =
ke; (c3, c4) = NMEnc(ka). While the authenticity of ke may no longer be an
issue, this introduces another problem: c1 contains a MAC value computed on the
key ke and could reveal some information about ke and therefore, the ciphertext
c1 may no longer be secure. The standard definition of a one-time MAC does
not guarantee privacy of the underlying message. (We could consider specific
MACs which do guarantee privacy as well but such information-theoretic MACs
cannot have short keys, which we require, as mentioned above.) Let us try to
remove this dependency by encoding the tag using the non-malleable code. Let
c1 = (Encke

(m)); c2 = ke; (c3, c4) = NMEnc(ka,Tagka
(Encke

(m)||ke)).
This leads to the following candidate construction to encode a message m:

1. Choose a key ke for one-time pad encryption (Enc) and a key ka for a one-time
message authentication code (MAC).

2. Compute c1 = Encke
(m), tag t = Tagka

(c1||ke) and set c2 = ke.
3. Compute (c3, c4) ← NMEnc(ka, t), using a 2-split-state non-malleable code

with poor rate.
4. Output c1, c2, c3, c4 as the four states of the non-malleable code.

Intuitively, this might seem secure as the encryption key ke is authenticated
and its’ tag is non-malleably encoded. Therefore, at best, the tampering func-
tion can make the tampered k̃a, t̃ become independent of the underlying values.
Assuming that the MAC verifies on the tampered key and tag, one might like to
believe that it guarantees independence of k̃e and, therefore, of the underlying
message m̃ as well. Unfortunately, this reasoning is not true for message authen-
tication codes with short tags. Specifically, when tags are much shorter than the
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message, there will necessarily be collisions in the tag space of a given key –
i.e., on a given key, there could be multiple message that map to the same tag
value.6 As we describe in the attack below, these “collisions” can be exploited
to make the code “malleable”.

Attack on the Candidate Construction: To describe an attack, we need to specify
tampering functions f1, f2, f3, f4. We use x[0] to denote the least significant bit
of the binary string x in the description below.

1. Choose constants k0, k1 from encryption key space, ct0, ct1 from cipher-
text space such that ct0[0] = k0[0] = 0, ct1[0] = k1[0] = 1 and a tag t∗

and a key k∗
a such that Tagk∗

a
(ct0||k0) = Tagk∗

a
(ct0||k1) = Tagk∗

a
(ct1||k0) =

Tagk∗
a
(ct1||k1) = t∗. Observe that these values are all independent of the mes-

sage as well as the randomness of the encoding scheme described above. Now
we describe the four tampering functions.

2. f1(c1): If c1[0] = 0, set c∗
1 = ct0 otherwise c∗

1 = ct1.
3. f2(c2): If c2[0] = 0, set c∗

2 = k0 otherwise c∗
2 = k1.

4. Compute c∗
3, c

∗
4 = NMEnc(k∗

a, t∗).
5. f3(c3) = c∗

3.
6. f4(c4) = c∗

4.

Carefully working through our choice of the various constants will show us
that the tampered message will retain the least significant bit of the underlying
message i.e., m̃[0] = m[0], where m̃ is the tampered message. Furthermore, colli-
sions in the MAC scheme have been exploited to ensure that tag of the tampered
message and key will always verify. Thus any tampering is undetected and reveals
information about the underlying message, thus violating non-malleability.

Analyzing the intuition behind the attack, we observe that the main challenge
is that, even though the key and the ciphertext are tampered independently,
jointly they may retain information about the original message. To overcome
this issue, we modify the construction to ensure that the tampered key is never
related to the original key. Ensuring this independence proves to be our major
bottleneck. We are able to overcome this bottleneck through a somewhat sur-
prising use of (strong) randomness extractors.

Using Randomness Extractors to “Amplify” Non-malleability: Informally, ran-
domness extractors allow us to transform non-uniform randomness into uni-
form randomness. Here we use randomness extractors to generate the key ke

i.e., ke = Ext(w; s) where w and s are uniformly random string of appropriate
lengths. At the outset, this might seem completely pointless: after all, extractors
are typically used in settings where one does not have perfect randomness. This
is clearly not the case here: indeed, the encoding scheme is allowed to choose its’
own randomness! How can choosing ke as the output of an extractor be of any

6 This problem does not arise with a MAC such as ax + b where (a, b) is the MAC
key and x is the underlying message. There, for a fixed key and fixed tag, there is a
unique message which satisfies the linear equation.
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help? Showing how the randomness extractor helps in this scenario is the crux
of our proof. We consider the following cases:

1. s, w are both unchanged: In this case, the extracted encryption key remains
unchanged. While it remains unclear how to argue non-malleability in this
scenario, for now, it suffices to note that the attack described above is no
longer relevant and, therefore, we defer a discussion on this case to later.

2. s is changed to an independent seed s̃:7 In this case, k̃e is independent of ke,
regardless of how w̃ depends on w. As mentioned earlier, here too the attack
described above is no longer relevant.

3. s is unchanged but w is changed in a related manner: In this case, k̃e could
contain information about ke.

Case 3 seems to still retain our original bottleneck and we handle it by ensuring
that, in our construction, whenever the source w is changed, the seed s also
needs to be changed. This reduces it to Case 2. What remains, is to show how
we can ensure this through a delicate use of randomness extractors, message
authentication codes and non-malleable codes.

Overview of Our Construction: We use the following tools in our construction:
(a) A non-malleable code for 2-split-state model achieving rate Ω(1/ log n) [20]
where n is the block-length; (b) a one-time information theoretic message authen-
tication code; (c) an average-case strong randomness extractor; (d) a perfectly
secure encryption scheme, like One Time Pad.

Step I: We use a randomness extractor (which typically have short seeds) to
extract the encryption key.
Step II: We encrypt the message using the extracted key.
Step III: To detect modification of the source (used to extract the key) and
the ciphertext, we authenticate them using two different one time MACs8.
Step IV: Finally, we encode the authentication keys and tags along with the
seed (used to extract the key) using a 2-state non-malleable code. We output
the 2-state codeword, the source and the ciphertext.

The non-malleable encoding in Step IV ties various key components of our con-
struction together and is crucial in overcoming the challenge described in Case 3.

Proof Techniques: We prove non-malleability via a series of statistically-close
hybrids which take us from the tampered game to a simulated game. But some
non-trivial challenges arise in our proof: firstly, there are dependencies across
states (e.g.: we include the source in one state and the encoding of its tag in
another). So, even though the states are modified independently, the modifica-
tions will be interlinked through this dependency. Secondly, even though in our
encoding, we choose the source uniformly at random, the decode process reveals
7 We ensure this by encoding s using a non-malleable code.
8 It is crucial to authenticate them separately as, a construction where we do not

authenticate them separately is insecure. This is brought out in the security proof
later.
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information about the source. This will prevent us from using extractor secu-
rity directly. The trick that helps us here is that we capture all the information
learnt via the decoding using auxiliary information that is independent of the
seed. This will allow us to use the crucial extractor security in our proof.

1.3 Organization of the Paper

We describe preliminaries and building blocks of the construction in Sects. 2
and 3, respectively. We then give the main construction in Sect. 4.2, followed by
the proof in Sect. 4.3. We then give a detailed analysis of the rate and error in
Sects. 4.4, 4.5, 4.6 and 4.7.

2 Preliminaries

Notation. κ denotes security parameter throughout. s ∈R S denotes uniform
sampling from set S. x ← X denotes sampling from a probability distribution X.
x||y represents concatenation of two binary strings x and y. |x| denotes length
of binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms
are base 2.

Statistical Distance and Entropy. Let X1,X2 be two probability distributions
over some set S. Their statistical distance is

SD (X1,X2)
def= max

T⊆S
{Pr[X1 ∈ T ] − Pr[X2 ∈ T ]} =

1
2

∑

s∈S

∣∣∣∣Pr
X1

[s] − Pr
X2

[s]
∣∣∣∣

(they are said to be ε-close if SD (X1,X2) ≤ ε and denoted by X1 ≈ε X2). The
min-entropy of a random variable W is H∞(W ) = − log(maxw Pr[W = w]). For
a joint distribution (W,E), define the (average) conditional min-entropy of W
given E [12] as

H̃∞(W | E) = − log(Ee←E(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). For
a random variable W over {0, 1}n, W |E is said to be an (n, t) - source if
H̃∞(W |E) ≥ t.

Proposition 1. Let A1, . . . , An be mutually exclusive and exhaustive events.
Then, for probability distributions X1,X2 over some set S, we have:

SD (X1,X2) ≤
n∑

i=1

Pr[Ai].SD (X1|Ai,X2|Ai)

where Xj |Ai is the distribution of Xj conditioned on the event Ai.
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Proof.

2SD (X1,X2) =
∑

s∈S

∣∣∣ Pr[X1 = s] − Pr[X2 = s]
∣∣∣

=
∑

s∈S

∣∣∣
n∑

i=1

( Pr[Ai] Pr[X1 = s|Ai] − Pr[Ai] Pr[X2 = s|Ai])
∣∣∣

≤
∑

s∈S

n∑

i=1

Pr[Ai]
∣∣∣ Pr[X1 = s|Ai] − Pr[X2 = s|Ai]

∣∣∣

=
n∑

i=1

Pr[Ai]
∑

s∈S

∣∣∣ Pr[X1 = s|Ai] − Pr[X2 = s|Ai]
∣∣∣

= 2
n∑

i=1

Pr[Ai]SD (X1|Ai,X2|Ai)

Lemma 2. For any random variables A,B,C if (A,B) ≈ε (A,C), then B ≈ε C.

Lemma 3. For any random variables A,B if A ≈ε B, then for any function f,
f(A) ≈ε f(B).

Lemma 4. Let A,B be correlated random variables over A,B. For randomized
functions F : A → X , G : A → X (randomness used is independent of B)
if ∀ a ∈ A, F (a) ≈ε G(a), then (B,A, F (A)) ≈ε (B,A,G(A))

Proof. 2SD ((B,A, F (A)), (B,A,G(A)))

=
∑

b∈B,a∈A,x∈X

∣∣∣Pr[B = b ∧ A = a ∧ F (A) = x] − Pr[B = b ∧ A = a ∧ G(A) = x]
∣∣∣

=
∑

b∈B,a∈A,x∈X
Pr[B = b]

∣∣∣Pr[A = a ∧ F (A) = x|B = b] − Pr[A = a ∧ G(A) = x|B = b]
∣∣∣

=
∑

b∈B,a∈A,x∈X
Pr[B = b] Pr[A = a|B = b].

∣∣∣Pr[F (A) = x|A = a, B = b] − Pr[G(A) = x|A = a, B = b]
∣∣∣

=
∑

b∈B,a∈A,x∈X
Pr[B = b] Pr[A = a|B = b].

∣∣∣Pr[F (a) = x|B = b] − Pr[G(a) = x|B = b]
∣∣∣

=
∑

b∈B,a∈A,x∈X
Pr[B = b] Pr[A = a|B = b]

∣∣∣Pr[F (a) = x] − Pr[G(a) = x]
∣∣∣

=
∑

b∈B,a∈A
Pr[A = a ∧ B = b]

∑

x∈X

∣∣∣Pr[F (a) = x] − Pr[G(a) = x]
∣∣∣

≤
∑

b∈B,a∈A
Pr[A = a ∧ B = b] · 2ε = 2ε

We also use the following lemma [12, Lemma 2.2b], which says that average
min-entropy of a random variable does not decrease by more than the length of
the correlated random variable.
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Lemma 5. If B has at most 2λ possible values, then H̃∞(A | B) ≥ H∞(A,B)−
λ ≥ H∞(A) − λ. And, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C) − λ ≥
H̃∞(A | C) − λ.

2.1 Definitions

Definition 1 [7]. A (possibly randomized) function Enc : {0, 1}l → {0, 1}n

and a deterministic function Dec : {0, 1}n → {0, 1}l ∪ {⊥} is said to be a
coding scheme if ∀ m ∈ {0, 1}l, Pr[Dec(Enc(m)) = m] = 1. l is called the
message length and n is called the block length or the codeword length. Rate of a

coding scheme is given by
l

n
.

Definition 2 [7]. A coding scheme (Enc,Dec) with message and codeword spaces
as {0, 1}l, {0, 1}n respectively, is ε- non-malleable with respect to a function
family F ⊆ {f : {0, 1}n → {0, 1}n} if ∀ f ∈ F , ∃ a distribution Simf over
{0, 1}l ∪ {same∗,⊥} such that ∀ m ∈ {0, 1}l

Tampermf ≈ε Copy
m
Simf

where Tampermf denotes the distribution Dec(f(Enc(m))) and Copym
Simf

is
defined as

m̃ ← Simf

Copym
Simf

=

{
m if m̃ = same∗

m̃ otherwise

Simf should be efficiently samplable given oracle access to f(.).

3 Building Blocks

We use information-theoretic message authentication codes, strong average case
extractor and an existing 2-split state non-malleable codes construction by
Li [20], as building blocks to our construction. We briefly discuss about these
building blocks below.

3.1 One-Time Message Authentication Codes

A family of pair of functions {Tagka
: {0, 1}γ → {0, 1}δ, Vrfyka

: {0, 1}γ ×
{0, 1}δ → {0, 1}}ka∈{0,1}τ is said to be a μ − secure one time MAC if

1. For ka ∈R {0, 1}τ , ∀ m ∈ {0, 1}γ , Pr[Vrfyka
(m,Tagka

(m)) = 1] = 1.
2. For any m = m′, t, t′, Pr

ka

[Tagka
(m) = t|Tagka

(m′) = t′] ≤ μ for ka ∈R {0, 1}τ .

3.2 Average-Case Extractors

Extractors [22] yield a close-to-uniform string from a random variable with high
min-entropy, using a uniformly random seed i as a kind of catalyst. Strong
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extractors are ones in which the extracted string looks random even in the pres-
ence of the seed. (We will use only strong extractors in this paper and thus
sometimes omit the adjective “strong.”) If an extractor works when the guaran-
tee on W is for conditional min-entropy rather than min-entropy, it is called an
average-case extractor.

Definition 3 [12, Sect. 2.5]. Let Ext : {0, 1}n × {0, 1}d → {0, 1}l be a poly-
nomial time computable function. We say that Ext is an efficient average-case
(n, t, d, l, ε)-strong extractor if for all pairs of random variables (W, I) such that
W is an n-bit string satisfying H̃∞(W |I) ≥ t, we have SD ((Ext(W ;X),X, I),
(U,X, I)), where X is uniform on {0, 1}d.

3.3 Li’s Construction of 2-Split State Non-malleable Code

Lemma 6 [20, Theorem 7.12]. For any β ∈ N there exists an explicit non-
malleable code with efficient encoder/decoder in 2-split state model with block

length 2β, rate Ω

(
1

log β

)
and error = 2

−Ω

⎛
⎝ β

log β

⎞
⎠

.

Let the message length be α for the non-malleable code in Lemma6. By
Lemma 6, we have

α

2β
= Ω

(
1

log β

)

⇒ α = Ω

(
β

log(β)

)

By Lemma 10, we have
β = O(α. log(α)) (1)

4 Construction

Before we present our construction, we briefly summarize some important points
that we discussed in Sect. 1. We observe that a non-malleable code is unlikely to
be secure if the message m is revealed in the clear in any of the states. If it did,
then the tampering function for that state could choose whether or not to tamper
depending on the information it learns. It is for this reason that, in our construc-
tion, we need to encrypt the message (using a one-time pad) and then store the
key as well as the ciphertext in separate states. To prevent the adversary from
tampering with these in a related manner, we authenticate it using a key ka. We
encode ka as well as the tags using a non-malleable code to ensure that any non-
trivial tampering will render these independent of the underlying ka and tags.
However, as described in Sect. 1, if we store the encryption key k in the clear, then
using the collisions in MAC, we can tamper the key and the ciphertext in a related
way, hence leading to a related tampered message. We observe that if we are able
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to relate the tampered cipher-text but not the tampered encryption key k̃ to k,
then the attack described in Sect. 1 no longer holds. Therefore, a key concern we
address as we design our scheme is the following: can we ensure the independence
of any tampered encryption key k̃ from the underlying encryption key k?

We show that a use of randomness extractors to generate k, combined with a
careful use of message authentication codes helps us achieve this independence.

4.1 Notation

– NMEnc,NMDec be an ε1-secure two split state non-malleable code over mes-
sage and codeword spaces as {0, 1}α, {0, 1}β1 × {0, 1}β2 respectively (as in
Lemma 6), with the message length α and the length of the two states, β1, β2,
respectively. NMTampermf1,f2 ,NMSimf1,f2 denote the tampered message distri-
bution of m and the simulator of NMEnc,NMDec with respect to tampering
functions f1, f2.

– Tag,Vrfy be an information theoretic ε2 secure one time MAC (as in Lemma 9)
over key, message, tag spaces as {0, 1}τ1 , {0, 1}n, {0, 1}δ1 respectively.

– Tag′,Vrfy′ be an information theoretic ε3 secure one timeMAC (as in Lemma 9)
over key, message, tag spaces as {0, 1}τ2 , {0, 1}l, {0, 1}δ2 respectively.

– Ext be an (n, t, d, l, ε4) average case strong extractor.

The parameters will be chosen such that α = τ1 + τ2 + δ1 + δ2 + d and n >
1 + τ2 + δ2 + l + t. (Refer to Sect. 4.5 for details)

4.2 Construction Overview

We now define a construction for l bit messages in the four split state model.
The idea is to use a randomness extractor (which typically have short seeds) to
extract the key and then encode the seed using the underlying non-malleable
code. Further, the source and the ciphertext are stored in separate parts of the
codeword. We then authenticate the source and the ciphertext using two different
one time MAC schemes and then encode the authentication keys and tags using
the underlying non-malleable code. In other words, we define an encoder, which
sends the ciphertext, the source (used to extract the encryption key) and the
2-state codeword encoding the two pairs of authentication keys and tags and the
seed. The construction is described below:

Enc(m) :

– w ∈R {0, 1}n, s ∈R {0, 1}d

– ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2

– k = Ext(w, s)
– C = m ⊕ k
– t1 = Tagka1

(w), t2 = Tag′
ka2

(C)
– (L,R) = NMEnc(ka1 ||ka2 ||t1||t2||s)
– output :(L,R,w,C)

Dec(L,R,w,C) :

– ka1 ||ka2 ||t1||t2||s = NMDec(L,R)
– If ka1 ||ka2 ||t1||t2||s = ⊥ output ⊥
– else if Vrfyka1

(w, t1) = 1
∧ Vrfy′

ka2
(C, t2) = 1

output C ⊕ Ext(w, s)
– else output ⊥
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Theorem 1. Let NMEnc,NMDec be an ε1-secure two split state non-malleable
code, Tag,Vrfy be an information theoretic ε2 secure one time MAC and
Tag′,Vrfy′ be an information theoretic ε3 secure one time MAC as given above.
Let Ext be an (n, t, d, l, ε4) average case strong extractor. Let α = τ1 + τ2 + δ1 +
δ2 + d and n > 1 + τ2 + δ2 + l + t.

For any constant ζ > 0, messages of length l, any κ such that κ = o

(
l

log l

)
,

the construction in the figure above is a non-malleable code that has block length

(3 + ζ)l + o(l) and there by achieves asymptotic rate
1

3 + ζ
and error 2−κ.

Proof. We give the proof in two steps. Firstly, we prove that the proposed con-
struction is a non-malleable coding scheme (Sect. 4.3). Secondly, we set the para-
meters to achieve the desired rate and error (Sect. 4.4).

4.3 Security Proof

Define the 4-split-state tampering family for the above construction as

F = {(h1, h2, f, g) : h1 : {0, 1}β1 → {0, 1}β1 , h2 : {0, 1}β2 → {0, 1}β2 ,

f : {0, 1}n → {0, 1}n, g : {0, 1}l → {0, 1}l}
To show that (Enc,Dec) is non-malleable we need to show that ∀ (h1, h2, f, g) ∈
F , ∃ Simh1,h2,f,g such that ∀ m ∈ {0, 1}l

Tamperm
h1,h2,f,g ≈ε Copym

Simh1,h2,f,g

Let (h1, h2, f, g) ∈ F . We define the following simulator:

Simh1,h2,f,g :

1. k ∈R {0, 1}l

2. C = 0 ⊕ k
3. w ∈R {0, 1}n

4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

a. If w̃ = w and C̃ = C output same∗

b. else output ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧ Vrfy′
˜ka2

(C̃, t̃2) = 1 output C̃ ⊕
Ext(w̃; s̃)

9. else output ⊥
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We now prove the statistical closeness of the tampered random variable and the
simulated random variable through a sequence of hybrids.

Proof Overview. At a high level, our goal is to remove the dependency of m̃ on m,
through a series of hybrids. The codeword depends on m, directly or indirectly,
through various random variables such as the seed s, w, the authentication keys
as well as the tags. To begin with, we wish to remove the dependence of the
tampered extracted key (used to decrypt the codeword) on the original extracted
key. Through a series of hybrids, we achieve this by removing the dependence of
the tampered extracted key on the seed s. Once we do this, we use the extractor
property, to remove the dependency of C on w and s. Finally, we use perfect
security of the one-time pad to remove dependency of C̃ on m.

Going from Tamper experiment to Hybrid1m
h1,h2,f,g: Hybrid1m

h1,h2,f,g is the same
as the standard tampering experiment except that we use the simulator for
the underlying non-malleable code to generate the tampered random variable
˜ka1 || ˜ka2 ||t̃1||t̃2||s̃.

Claim. If (NMEnc,NMDec) is an ε1-secure non-malleable code, then
Tampermh1,h2,f,g ≈ε1 Hybrid1m

h1,h2,f,g

Tampermh1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d

2. ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2

3. k = Ext(w; s)
4. C = m ⊕ k
5. t1 = Tagka1

(w), t2 = Tag′
ka2

(C)
6. (w̃, C̃) = (f(w), g(C))
7. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ←

NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output
⊥

9. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
10. else output ⊥

Hybrid1m
h1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d

2. ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2

3. k = Ext(w; s)
4. C = m ⊕ k
5. t1 = Tagka1

(w), t2 = Tag′
ka2

(C)
6. (w̃, C̃) = (f(w), g(C))

7a. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

7b. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗,
assign ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ =
ka1 ||ka2 ||t1||t2||s

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output
⊥

9. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
10. else output ⊥

Proof. We wish to use the statistical closeness of the tampered and simulated
random variables corresponding to (NMEnc,NMDec), to prove the claim.
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Now, we apply Lemma 4, taking B = (w,C), A = (ka1 ||ka2 ||t1||t2||s), and the
functions as NMTamperh1,h2

,CopyNMSimh1,h2
to get:

Since, NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

≈ε1 Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

hence we get,

(w,C, ka1 ||ka2 ||t1||t2||s,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1

(w,C, ka1 ||ka2 ||t1||t2||s,Copyka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)

=⇒ By Lemma 2, (w, C,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1 (w, C,Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)

=⇒ By Lemma 3, (w̃, C̃,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1 (w̃, C̃,Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)

(2)

Now, we express the outputs of the hybrids as a deterministic function, Q, of
the above variables, to apply Lemma 3 and hence prove the claim.
Q(w̃, C̃, ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃):
– If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
– else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧ Vrfy′
˜ka2

(C̃, t̃2) = 1 output C̃ ⊕ Ext(w̃; s̃)
– else output ⊥
Then, using Eq. 2 and Lemma 3, we get

Q(w̃, C̃,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1 Q(w̃, C̃,Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)

=⇒ Tampermh1,h2,f,g ≈ε1 Hybrid1m
h1,h2,f,g

Going from Hybrid1m
h1,h2,f,g to Hybrid2m

h1,h2,f,g: As will become evident later,
Hybrid1m

h1,h2,f,g is what will allow us to argue that, in the restricted case where
s̃ = s, the extracted key k̃ is independent of s. We now move to Hybrid2m

h1,h2,f,g

which is the same as Hybrid1m
h1,h2,f,g except for the case where s is unchanged. In

this case, as we show in Hybrid2m
h1,h2,f,g, the output of the experiment can be com-

puted without evaluating k̃. We prove that Hybrid1m
h1,h2,f,g and Hybrid2m

h1,h2,f,g

are statistically close by using the unforgeability of the message authentication
scheme.

Claim. If (Tag,Vrfy) and (Tag′,Vrfy′) are ε2-, ε3-secure information theoretic
one-time MAC (respectively), then Hybrid1m

h1,h2,f,g ≈ε2+ε3 Hybrid2m
h1,h2,f,g.
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Hybrid1m
h1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d

2. ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2

3. k = Ext(w; s)
4. C = m ⊕ k
5. t1 = Tagka1

(w), t2 = Tag′
ka2

(C)
6. (w̃, C̃) = (f(w), g(C))
7. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗,
assign ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ =
ka1 ||ka2 ||t1||t2||s

9. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output
⊥

10. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
11. else output ⊥

Hybrid2m
h1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d

3. k = Ext(w; s)
4. C = m ⊕ k

6. (w̃, C̃) = (f(w), g(C))
7. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m

• else output ⊥
9. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output

⊥
10. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′

˜ka2
(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
11. else output ⊥

Proof. If same∗ is not the value sampled from NMSimh1,h2 , then Hybrid1m
h1,h2,f,g

and Hybrid2m
h1,h2,f,g can be evaluated without steps (2, 5, 8) and (8) respectively.

The output of the two hybrids are identical in this case. Therefore, the statistical
distance is zero in this case. When same∗ is sampled, the key difference between
Hybrid1m

h1,h2,f,g and Hybrid2m
h1,h2,f,g is that, corresponding to this case, we remove

the two verify checks (of Step 10) in Hybrid2m
h1,h2,f,g and simply replace it

with the checks shown in Step 8. By Proposition 1 and above observation, we
get:

SD
(
Hybrid1m

h1,h2,f,g;Hybrid2m
h1,h2,f,g

) ≤ Pr[NMSimh1,h2 = same∗] ·
SD
(
Hybrid1m

h1,h2,f,g|NMSimh1, h2 = same∗;Hybrid2m
h1,h2,f,g|NMSimh1, h2 = same∗)

So, now remains the case when NMSimh1,h2 outputs same∗. By using unforgeabil-
ity of (Tag,Vrfy) and (Tag′,Vrfy′) we show the that two hybrids are statistically
close.

– Let E be the event that same∗ is sampled from NMSimh1,h2 and Ẽ be its
compliment.

– Let F be the event that w̃ = w ∧ C̃ = C and F̃ its complement.
– E and F are independent because w̃, C̃ are deterministic functions of w and C

respectively (which are independent of NMSimh1, h2) and NMSimh1, h2 does
not take any input except for the a-priori fixed tampering functions h1, h2.
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2SD
(
Hybrid1m

h1,h2,f,g;Hybrid2
m
h1,h2,f,g

)

=
∑

m̃∈{0,1}l∪{⊥}

∣∣∣Pr[Hybrid1m
h1,h2,f,g = m̃] − Pr[Hybrid2m

h1,h2,f,g = m̃]
∣∣∣

=
∑

m̃∈{0,1}l∪{⊥}

∣∣∣Pr[E]( Pr[Hybrid1m
h1,h2,f,g = m̃|E] − Pr[Hybrid2m

h1,h2,f,g = m̃|E])

+ Pr[Ẽ] ( Pr[Hybrid1m
h1,h2,f,g = m̃|Ẽ] − Pr[Hybrid2m

h1,h2,f,g = m̃|Ẽ])
︸ ︷︷ ︸

=0 as given Ẽ both the hybrids are identical.

∣∣∣

=
∑

m̃∈{0,1}l∪{⊥}
Pr[E]

∣∣∣Pr[Hybrid1m
h1,h2,f,g = m̃|E] − Pr[Hybrid2m

h1,h2,f,g = m̃|E]
∣∣∣

= Pr[E]
∑

m̃∈{0,1}l∪{⊥}

∣∣∣Pr[F |E].

( Pr[Hybrid1m
h1,h2,f,g = m̃|E, F ] − Pr[Hybrid2m

h1,h2,f,g = m̃|E, F ]
︸ ︷︷ ︸

=0 as given E and F both the hybrids outputm.So for anym̃ the difference is 0

) + Pr[F̃ |E].

( Pr[Hybrid1m
h1,h2,f,g = m̃|E, F̃ ] − Pr[Hybrid2m

h1,h2,f,g = m̃|E, F̃ ])
∣∣∣

= Pr[E]
∑

m̃∈{0,1}l∪{⊥}

∣∣∣Pr[F̃ ]( Pr[Hybrid1m
h1,h2,f,g = m̃|E, F̃ ]−

Pr[Hybrid2m
h1,h2,f,g = m̃|E, F̃ ])

∣∣∣

= Pr[E] Pr[F̃ ]
∑

m̃∈{0,1}l

∣∣∣Pr[Hybrid1m
h1,h2,f,g = m̃|E, F̃ ] − Pr[Hybrid2m

h1,h2,f,g = m̃|E, F̃ ]
∣∣∣

+
∣∣∣Pr[Hybrid1m

h1,h2,f,g = ⊥|E, F̃ ] − Pr[Hybrid2m
h1,h2,f,g = ⊥|E, F̃ ]

︸ ︷︷ ︸
= 1 as given E,F̃ Hybrid 2 outputs ⊥

∣∣∣

= Pr[E] Pr[F̃ ]
∑

m̃∈{0,1}l

Pr[Hybrid1m
h1,h2,f,g = m̃|E, F̃ ] + 1

− Pr[Hybrid1m
h1,h2,f,g = ⊥|E, F̃ ]

= 2 Pr[E] Pr[F̃ ]( Pr[Hybrid1m
h1,h2,f,g �= ⊥|E, F̃ ])

≤ 2 Pr[E] Pr[F̃ ] Pr[Vrfy ˜ka1
(w̃, t̃1) = 1 ∧ Vrfy′

˜ka2
(C̃, t̃2) = 1|t1 = Tagka1

(w),

t2 = Tag′
ka2

(C), E, F̃ ]

≤ 2 Pr[E] Pr[F̃ ] Pr[Vrfyka1
(w̃, t1) = 1 ∧ Vrfy′

ka2
(C̃, t2) = 1|t1 = Tagka1

(w),

t2 = Tag′
ka2

(C), F̃ ]

≤ 2(ε2 + ε3)

∴ Hybrid1m
h1,h2,f,g ≈ε2+ε3 Hybrid2m

h1,h2,f,g
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Rewriting Hybrid2m
h1,h2,f,g as Hybrid3m

h1,h2,f,g: Now we simply rewrite the
Hybrid2m

h1,h2,f,g, starting with sampling from NMSimh1,h2 .

Hybrid2m
h1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d

2. k = Ext(w; s)
3. C = m ⊕ k
4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′

˜ka2
(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid3m
h1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

2. w ∈R {0, 1}n, s ∈R {0, 1}d

3. k = Ext(w; s)
4. C = m ⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′

˜ka2
(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

It is easy to see that we have rearranged the steps without changing the distri-
butions of any of the random variable, Hybrid2m

h1,h2,f,g ≡ Hybrid3m
h1,h2,f,g.

Going from Hybrid3m
h1,h2,f,g to Hybrid4m

h1,h2,f,g: We now wish to remove depen-
dency of the ciphertext on the source. This removes the dependency across the
two states containing w and C, which might have led to related tampering of
the message. To do this we would like to use the security of our randomness
extractor and replace the extracted key k by uniform. The main challenge in
doing so is that, the decoded (tampered) message might itself reveal informa-
tion about the key k. This is a challenge because this information is learnt after
the seed s is chosen. This is the main bottleneck of our proof. The way we over-
come it is by carefully arguing that the information revealed by the decoded
message might be learnt from auxiliary information. Importantly, this auxiliary
information is completely independent of s and therefore, we can use extractor
security.

Claim. If Ext is an (n, t, d, l, ε4) average case extractor, then Hybrid3m
h1,h2,f,g ≈ε4

Hybrid4m
h1,h2,f,g
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Hybrid3m
h1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

2. w ∈R {0, 1}n,s ∈R {0, 1}d

3. k = Ext(w; s)
4. C = m ⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid4m
h1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

2. w ∈R {0, 1}n

3. k ∈R {0, 1}l

4. C = m ⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Proof. As explained in the motivation to this claim, we wish to replace the
extractor output with a uniform string. But the main challenge in this, is to
capture the security, given an auxiliary information. We consider two cases and
carefully analyze the auxiliary information that we use in each of them. We show
that in both these cases, the auxiliary information is completely independent of
s. We then use the average extractor property to argue security. We define two
mutually exclusive events:

– Let Case1 denote the event that ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗.
– Let Case2 denote the event that ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗.

By Proposition 1, we get:
SD

(
Hybrid3m

h1,h2,f,g,Hybrid4
m
h1,h2,f,g

)

≤ Pr[Case1] SD
(
Hybrid3m

h1,h2,f,g|Case1,Hybrid4m
h1,h2,f,g|Case1

)

+Pr[Case2] SD
(
Hybrid3m

h1,h2,f,g|Case2,Hybrid4m
h1,h2,f,g|Case2

)
(3)

We now use the security of the average case extractor to get the desired statistical
closeness in each of the two cases separately. The auxiliary information in each
case is different.

Case1 : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s = same∗

In this case, the auxiliary information just includes a single bit, indicating
whether w is modified or remains the same. So, we first define this indicator
function:

eq(w) =

{
0 if f(w) = w

1 if f(w) = w

Let the auxiliary information be denoted by E1 ≡ (eq(W )). E1 is independent
of S because E1 is determined given W and W is independent of S. Now, E1

and W are correlated and E1 can take at most two possible values.
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Hence, H̃∞(W |E1) ≥ H∞(W )−1 = n−1 by Lemma 5. As n−1 > t, by security
of average case extractor, we get:

E1,Ext(W ;S) ≈ε4 E1, Ul

As m is independent of (W,S), we get:

m,E1,Ext(W ;S) ≈ε4 m,E1, Ul (4)

Now, we wish to apply Lemma 3, for which, we express the output of the hybrids
in Case1 as a deterministic function of the variables above. Let
Q1(m, eq(w), k):

– C = m ⊕ k
– C̃ = g(C)
– If eq(w) = 1 and C̃ = C output m
– else output ⊥
Then, the outputs of Hybrid3m

h1,h2,f,g|Case1 and Hybrid4m
h1,h2,f,g|Case1 are

expressible by Q1 above.

Hence, Eq. 4 =⇒ By Lemma 3, Q1(m, E1,Ext(W ; S)) ≈ε4 Q1(m, E1, Ul)

i.e., Hybrid3m
h1,h2,f,g|Case1 ≈ε4 Hybrid4m

h1,h2,f,g|Case1

(5)

Case2 : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s = same∗

This case is further divided into two mutually exclusive events of Case2.

Case2a : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s = ⊥
Given ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥ both hybrids output ⊥ with probability 1. Therefore

SD
(
Hybrid3m

h1,h2,f,g|case2a,Hybrid4m
h1,h2,f,g|case2a

)
= 0 (6)

Case2b : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s = ⊥ ∧ k̃a1 ||k̃a2 ||t̃1||t̃2||̃s = same∗

When ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = (same∗,⊥), the auxiliary information consists of an
indicator of verification of w̃, the simulated authentication key and tag (corre-
sponding to the ciphertext) distributions and the modified encryption key. We
first define the indicator of verification bit:

V erify(w) = Vrfy ˜ka1
(f(w), t̃1)

Now, let the auxiliary information be denoted by E2 ≡ (V erify(W ), K̃a2 ,
T̃2,Ext(W̃ ; S̃)), where K̃a1 , K̃a2 , T̃1, T̃2, S̃ denote the distributions on the authen-
tication key, tag spaces and the seed, when sampled from the simulator
conditioned on the event Case2b. E2 is clearly a deterministic function of
K̃a1 , K̃a2 , W̃ , T̃1, T̃2, S̃, all of which are independent of S (as we use the sim-
ulator). Hence, E2 is independent of S. Now, E2 and W are correlated. E2 can
take at most 21+τ2+δ2+l possible values.
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Hence, H̃∞(W |E2) ≥ H∞(W ) − (1 + τ2 + δ2 + l) = n − (1 + τ2 + δ2 + l), by
Lemma 5. As n − (1 + τ2 + δ2 + l) > t (due to the way we set parameters in
Sect. 4.5), by security of average case extractor, we get:

E2,Ext(W ;S) ≈ε4 E2, Ul

As m is independent of (W,S), we get:

m,E2,Ext(W ;S) ≈ε4 m,E2, Ul (7)

Now, we wish to apply Lemma 3 and again, we express the outputs of
Hybrid3m

h1,h2,f,g|Case2b and Hybrid4m
h1,h2,f,g|Case2b as a deterministic function

of the variables above. Define function Q2 as follows.
Q2(m,V erify(w), ˜ka2 , t̃2,Ext(w̃; s̃), k):

– C = m ⊕ k
– C̃ = g(C)
– If V erify(w) = 1 and Vrfy′

˜ka2
(C̃, t̃2) = 1 output C̃ ⊕ Ext(w̃; s̃)

– else output ⊥
Then, the outputs of Hybrid3m

h1,h2,f,g|Case2b and Hybrid4m
h1,h2,f,g|Case2b are

expressible by Q2 above.

Hence, Eq. 7 =⇒ By Lemma 3, Q2(m,E2,Ext(W ;S)) ≈ε4 Q2(m,E2, Ul)
i.e., Hybrid3m

h1,h2,f,g|Case2b ≈ε4 Hybrid4m
h1,h2,f,g|Case2b (8)

Hence, by Proposition 1, Eqs. 3, 5, 6 and 8 above, we get:

Hybrid3m
h1,h2,f,g ≈ε4 Hybrid4m

h1,h2,f,g

Remark on Auxiliary Information. We first observe that the auxiliary informa-
tion in both the cases contains the additional information required to get the
outputs of the hybrids, which are independent of the seed. In Case1, we just
have a single bit of auxiliary information, which is independent of s. In Case2
however, as we add the verification bit to E2, it is important that this verifi-
cation check is independent of s. If we authenticate w and C together, under a
single MAC, then the verify check would be dependent on C as well, which in
turn depends on s in the third hybrid. So, it is important that we authenticate w
and C using separate one time MAC. Then, we give the modified authentication
key and tag corresponding to C in E2, which are independent of s.

Rewriting Hybrid4m
h1,h2,f,g as Hybrid5m

h1,h2,f,g: We again rewrite Hybrid4m
h1,h2,f,g

such that we first choose the encryption key k uniformly at random, to get
Hybrid5m

h1,h2,f,g. This reordering of steps is to stress on the fact that, we have
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now removed the dependency of the encryption key on w and s and we sample
it uniformly at random.

Hybrid4m
h1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

2. w ∈R {0, 1}n

3. k ∈R {0, 1}l

4. C = m ⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid5m
h1,h2,f,g :

1. k ∈R {0, 1}l

2. C = m ⊕ k
3. w ∈R {0, 1}n

4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

As we have only reordered the steps without changing any of the distributions,
clearly Hybrid4m

h1,h2,f,g ≡ Hybrid5m
h1,h2,f,g.

Going fromHybrid5m
h1,h2,f,g toHybrid6m

h1,h2,f,g: In the final hybrid,Hybrid6m
h1,h2,f,g,

we use the perfect security of the one time pad to remove the dependency of C
(and hence, of C̃) on m. This gives us the simulated view, independent of m.

Claim. Hybrid5m
h1,h2,f,g ≡ Hybrid6m

h1,h2,f,g by perfect security of One Time Pad
encryption.

Proof. We begin by expressing the hybrid outputs as a deterministic function of
the message and the ciphertext. Define function Q3 as follows:
Q3(m,C) :

– ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

– w ∈R {0, 1}n

– (w̃, C̃) = (f(w), g(C))
– If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥
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Hybrid5m
h1,h2,f,g :

1. k ∈R {0, 1}l

2. C = m ⊕ k
3. w ∈R {0, 1}n

4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid6m
h1,h2,f,g :

1. k ∈R {0, 1}l

2. C = 0 ⊕ k
3. w ∈R {0, 1}n

4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ ← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′
˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

• else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
• else If Vrfy ˜ka1

(w̃, t̃1) = 1 and Vrfy′
˜ka2

(C̃, t̃2) = 1 Output C̃ ⊕ Ext(w̃, s̃)
• else Output ⊥.

Replace sequence of steps 3–9 with an output of Q3(m,C) in both the hybrids.
By perfect security of OTP encryption, for any message m and a uniformly
random key k

(m, (m ⊕ k)) ≡ (m, (0 ⊕ k))

Q3(m, (m ⊕ k)) ≡ Q3(m, (0 ⊕ k))

Hybrid5m
h1,h2,f,g ≡ Hybrid6m

h1,h2,f,g

Combining results of above claims in Sect. 4.3, we get

Tamperm
h1,h2,f,g ≈ε1 Hybrid1m

h1,h2,f,g ≈ε2+ε3 Hybrid2m
h1,h2,f,g ≡ Hybrid3m

h1,h2,f,g

Hybrid3m
h1,h2,f,g ≈ε4 Hybrid4m

h1,h2,f,g ≡ Hybrid5m
h1,h2,f,g

Hybrid5m
h1,h2,f,g ≡ Hybrid6m

h1,h2,f,g ≡ Copym
Simh1,h2,f,g

=⇒ Tamperm
h1,h2,f,g ≈ε1+ε2+ε3+ε4 Copym

Simh1,h2,f,g

4.4 Rate and Error Analysis

We now present the details of the rate of the code as well as the error it achieves.
As we are encoding the seed of the extractor using the underlying non-malleable
code, it is important that the strong extractor we use has short seed length. This
is guaranteed by the following lemma.

Lemma 7 [18]. For every constant ν > 0 all integers n ≥ t and all ε ≥ 0,
there is an explicit (efficient) (n, t, d, l, ε)−strong extractor with l = (1 − ν)t −
O(log(n) + log(

1
ε
)) and d = O(log(n) + log(

1
ε
)).
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Now, as we give some auxiliary information about the source, we require the
security of the extractor to hold, even given this information. Hence, we use
average case extractors, given in the following lemma.

Lemma 8 [12]. For any μ > 0, if Ext is a (worst case)(n, t, d, l, ε)−strong

extractor, then Ext is also an average-case (n, t + log(
1
μ

), d, l, ε + μ) strong

extractor.

We now combine the Lemmata 7 and 8 to get an average case extractor with
optimal seed length.

Corollary 1. For any μ > 0 and every constant ν > 0 all integers n ≥ t and all

ε ≥ 0, there is an explicit (efficient) (n, t+log(
1
μ

), d, l, ε+μ)− average case strong

extractor with l = (1 − ν)t − O(log(n) + log(
1
ε
)) and d = O(log(n) + log(

1
ε
)).

Now, we also encode the authentication keys and tags using the underlying non-
malleable code. Hence, we require them to have short lengths. This is guaranteed
by the following lemma.

Lemma 9 [13, Lemma 26]. For any n′, ε2 > 0 there is an efficient ε2-secure one

time MAC with δ ≤ (log(n′) + log(
1
ε2

)), τ ≤ 2δ, where τ, n′, δ are key, message,

tag length respectively.

We refer the reader to [11] for a construction satisfying these parameters.

4.5 Setting Parameters

– Set all the error parameters ε, μ, ε1ε2, ε3 = 2−λ and ε4 = ε + μ
– The codeword of the construction in Fig. 1 has four states: a two-split state

NMC codeword(L,R), source(w), ciphertext(C). In order to estimate the rate
we need to estimate the length of each of these states.

– Let l be the length of the message for construction in Fig. 1. As we are using
the one-time pad encryption scheme, |C| = l.

– We now estimate the length of the source - n. Although the source has full
entropy (i.e., uniformly random), there is some auxiliary information revealed
about it. (For details, see the proof of statistical closeness of Hybrid3m

h1,h2,f,g

and Hybrid4m
h1,h2,f,g). Specifically, the highest entropy loss occurs in Case 2b

of the proof and this is the quantity that we need to upper-bound. This
auxiliary information consists of an indicator bit, the key, tag of cipher text,
and an extractor output. Of these, we know that the extractor output is of
length l bits and the indicator is just one bit. So we need to estimate the
length of the authentication key, tag pair of the cipher text.

– τ2, δ2 - length of key, tag to authenticate cipher text (C) of length l.
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• Applying Lemma 9 with n′ = l, ε3 = 2−λ gives δ2 ≤ (log(l) + λ) and
τ2 ≤ 2δ2. Therefore

τ2 + δ2 ≤ 3(log(l) + λ) (9)

– By Lemma 5, the average entropy of the source given auxiliary information is
at least n − (1 + τ2 + δ2 + l)︸ ︷︷ ︸

length of aux info

which is at least n − (1 + 3 log(l) + 3λ + l).

– Also we need to make sure that the average entropy we are left with is at

least the entropy threshold (t + log(
1
μ

)). So we need to estimate t

• By Corollary 1, we have t = (l + O(log(n) + log(
1
ε
)))

1
1 − ν

• It is necessary and sufficient if n − (1 + 3 log(l) + 3λ + l) > t + log(
1
μ

)

⇒ n ≥ (1 +
1

1 − ν
)l + 3 log(l) + 4(λ) + O(log(n) + λ)

As ν can be very small constant thats close to 0, fixing n = (2 + ζ)l +
O(log(l) + λ) for some constant ζ close to 0, would satisfy the above
equation.

We now estimate the length of the codeword of the underlying NMC. We
encode an authentication key, tag pair of ciphertext, authentication key, tag
pair of the source, extractor seed. The length of the authentication key, tag
pair of ciphertext is given in Eq. 9. We estimate the lengths of the remaining
variables below.

– d - seed length of the extractor.

• From Corollary 1. We have d = O(log(n) + log(
1
ε
)).

• Substituting n = (2 + ζ)l + O(log(l) + λ) and ε = 2−λ gives

d = O(log((2+ζ)l+O(log(l)+λ))+λ) = O(log(l+λ)+λ) = O(log(l)+λ)
(10)

– τ1, δ1 - length of key, tag to authenticate source (W ) of length n.
• Applying Lemma 9 with n′ = n, ε2 = 2−λ gives δ1 ≤ (log(n) + λ) and

τ1 ≤ 2δ1. Therefore
τ1 + δ1 ≤ 3(log(n) + λ) (11)

– α = τ1 + τ2 + δ1 + δ2 +d - length of message that we are encoding using NMC
in [20].

• By Eqs. 9, 10, 11

α ≤ (c + 1)(log(l) + λ) + 3(log(l) + λ) + 3(log(n) + λ)

By the same argument as in Eq. 10

α = O(log(l) + λ) (12)

– 2β - codeword length of NMC in [20].
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• By Eq. 1, we have β = O(α log(α))
By Eq. 12, we have

α log(α) = O((log(l)+λ). log(log(l)+λ)) = O((log(l))2+λ. log(λ)+2.λ. log(l)))
(13)

Therefore,
β = O((log(l))2 + λ log(λ) + 2λ log(l))) (14)

– Now we have upper bound on the length of all states of the codeword in terms
of l and λ.

4.6 Rate

Let R denote the rate of proposed construction.

R =
l

2β + n + l

Substituting n and β (by Eq. 14)

=
l

O((log(l))2 + λ. log(λ) + 2.λ. log(l)) + (2 + ζ)l + O(log(l) + λ) + l

For some constant c

≥ l

c((log(l))2 + λ log(λ) + 2λ log(l)) + (2 + ζ)l + O(log(l) + λ) + l

=
1

c((log(l))2 + λ log(λ) + 2λ log(l)) + (2 + ζ)l + O(log(l) + λ) + l

l
For large l

=
1

c(λ log(λ) + 2λ log(l)) + O(λ)
l

+ 3 + ζ

For λ = o

(
l

log l

)

=
1

3 + ζ

Construction in Fig. 1 achieves rate that is at least
1

3 + ζ
, for some ζ very close

to 0.

4.7 Error

Error of the proposed construction is ε1 + ε2 + ε3 + ε4 = 5(2−λ). Because λ =

o

(
l

log l

)
the error will be at least 2

−
l

log l . For any ρ > 0, fixing λ =
l

logρ+1 l
,

the error would be at most 5.2
−

l

logρ+1 l . Setting κ = λ − log 5 the error would
be 2−κ = 2−Ω(l/ logρ+1 l).
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5 Conclusion

In this work, we constructed an efficient non-malleable code in the t-split-state
model, for t = 4, that achieves a constant rate of 1

3+ζ , for any constant ζ > 0 and

error 2−Ω(�/ logc+1 �), where � is the length of the message and c > 0 is a constant.
This improves the constant-rate constructions of Cheraghchi and Guruswami [7]
(by bringing down the number of states from n to 4) and Chattopadhyay and
Zuckerman [5] (by making the “constant” in the rate explicit and by bringing
down the number of states from 10 to 4). We stress that, as is the case with all
information-theoretic primitives, optimizing constant factors in achieving key
parameters, such as, in this case, the rate/number of states etc., is both crucial
and challenging.

While we obtain our specific parameters by using the 2 state non-malleable
code construction due to [20], our techniques are general and uses the underlying
NMC in a black-box. Hence, our construction can be generalized to obtain a (t+
2)-state NMC from any t-state NMC, leading to interesting trade-offs between
the rate vs the number of states depending on the parameters of underlying
NMC (Appendix A).

An interesting open problem would be to see if our techniques can be
used to improve the rate of non-malleable codes with special features such as
“locality” [4,9,10], security against continuous tampering [16,19], and leakage-
resilience [2].

Acknowledgments. We thank Yevgeniy Dodis for insightful comments related to
the generalization in Appendix A We also thank the anonymous referees for several
helpful comments. Research of the first author was supported, in part, by Department
of Science and Technology Inspire Faculty Award.

A Appendix I

A.1 Building Constant Rate (t + 2) - State NMC from Any t-state
NMC with Inverse Polynomial Rate

Theorem 2. Let NMEnc,NMDec be an ε1-secure t-split state non-malleable

code with rate ω

(
1
αa

)
, for some constant a and message length α. The algo-

rithms (Tag,Vrfy), (Tag′,Vrfy′),Ext be as a specified in Sect. 4.1.

For any constant ζ > 0, messages of length l, any κ such that κ = o

(
l

la+1

)
,

the (t+2)-split state construction in figure below has block length (3+ ζ)l + o(l),

there by achieves asymptotic rate
1

3 + ζ
and error 2−κ.
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Enc(m) :

– w ∈R {0, 1}n, s ∈R {0, 1}d

– ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2

– k = Ext(w, s)
– C = m ⊕ k
– t1 = Tagka1

(w), t2 = Tag′
ka2

(C)
– (L1, L2, · · · , Lt) =

NMEnc(ka1 ||ka2 ||t1||t2||s)
– Output :(L1, L2, · · · , Lt, w, C)

Dec(L1, L2, · · · , Lt, w, C) :

– ka1 ||ka2 ||t1||t2||s =
NMDec(L1, L2, · · · , Lt)

– If ka1 ||ka2 ||t1||t2||s = ⊥ output ⊥
– else if Vrfyka1

(w, t1) = 1
∧ Vrfy′

ka2
(C, t2) = 1

output C ⊕ Ext(w, s)
– else output ⊥

Proof. The construction in figure above is a secure (t + 2)- state NMC. The
security proof is similar to the proof in Sect. 4.3.
Set parameters κ, ε, μ, ε1ε2, ε3, ε4, n, α in terms of l, λ as in Sect. 4.5.

– Let β be length of t-state codeword of (NMEnc,NMDec) for messages of
length α.

– β = O(αa+1)
– The rate r of the (t + 2)−state NMC (Enc,Dec) is

r =
l

β + n + l

Substituting n and β

=
l

O(αa+1) + (2 + ζ)l + O(log(l) + λ) + l

Substituting α = O(log(l) + λ)

=
l

O((log(l) + λ)a+1) + (2 + ζ)l + O(log(l) + λ) + l

For some constant c

≥ 1
c((log(l) + λ)a+1) + (2 + ζ)l + O(log(l) + λ) + l

l

For large l

=
1

c((log(l) + λ)a+1) + O(λ)
l

+ 3 + ζ

For λ = o

(
l

la+1

)
r =

1
3 + ζ

Error analysis is similar to analysis in Sect. 4.7.
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B Appendix II

Lemma 10. If α = Ω(
β

log(β)
), then β = O(α. log(α))

Proof. By the definition of Ω, ∃ a constant c > 0 such that for large α, β

0 ≤ c.
β

log(β)
≤ α (15)

cβ ≤ α. log(β)

cβ ≤ α
√

β

If c ≥ 1 √
β ≤ α

log(β) ≤ 2. log(α)

Multiplying with Eq. 15, we get

0 ≤ c

2
.β ≤ α log(α) (16)

If c < 1, let c′ =
1
c √

β ≤ c′.α

log(β) ≤ 2(log(c′) + log(α))

log(β) ≤ 4. log(α)

Multiplying with Eq. 15
0 ≤ c

4
.β ≤ α log(α) (17)

In either case, for large α, β, for a constant
c

4
> 0

0 ≤ c

4
.β ≤ α log(α)

=⇒ α log(α) = Ω(β)

=⇒ β = O(α log(α))
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Abstract. Threshold secret sharing schemes enable a dealer to share a
secret among n parties such that only subsets of parties of cardinality at
least k = k(n) can reconstruct the secret. Komargodski, Naor and Yogev
(TCC 2016-B) proposed an efficient scheme for sharing a secret among
an unbounded number of parties such that only subsets of k parties can
recover the secret, where k is any fixed constant. This access structure is
known as k-threshold. They left open the possibility of an efficient scheme
for the dynamic threshold access structure, in which the qualified sets are
of increasing size as the number of parties increases. We resolve this open
problem and present a construction in which the share size of the t-th
party is O(t4 · log t) bits.

Furthermore, we show how to generically translate any scheme for
k-threshold into a scheme which is robust, where a shared secret can
be recovered even if some parties hand-in incorrect shares. This answers
another open problem of Komargodski et al. Our construction is based on
the construction of robust (classical) secret sharing schemes of Cramer et
al. (EUROCRYPT 2008) using algebraic manipulation detection codes.

1 Introduction

Secret sharing schemes, introduced by Shamir [17] and Blakley [5], are methods
that enable a dealer, that holds a secret piece of information, to distribute this
secret among n parties such that predefined qualified subsets can reconstruct
the secret, while others learn nothing about it. The monotone collection of qual-
ified subsets is known as an access structure. Secret sharing schemes are a basic
primitive and have found numerous applications in cryptography and distrib-
uted computing; see the extensive survey of Beimel [2] and the book of Cramer
et al. [9]. Any access structure admits a secret sharing scheme but the share size
could be as large as O(2n), the maximal number of possible qualified sets [12].
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A significant goal in secret sharing is thus to minimize the share size, namely,
the amount of information distributed to the parties.1

Almost all known secret sharing schemes assume that the number of parties
n and the access structure are known in advance. However, in many scenarios
these assumptions have a cost: First, the eventual set might turn out to be much
smaller than n. Second, the access structure may change with time, forcing the
dealer to re-share its secret. In a recent work, Komargodski et al. [14] initiated
the study of secret sharing schemes for the case where the set of parties is not
known in advanced and could potentially be infinite (or even more generally
the access structure may change). Specifically, parties arrive one by one and
whenever a party arrives there is no communication to the parties that have
already received shares, i.e. the dealer distributes a share only to the new party.
In the most general case, a qualified subset is revealed to the dealer only when the
last party in that subset arrives. In special cases, the dealer knows the access
structure to begin with, just does not have an upper bound on the number
of parties. We assume that the changes to the access structure are monotone,
namely, parties are only added and qualified sets remain qualified as more and
more parties join. We call this an evolving access structure.

When designing a secret sharing scheme for an evolving access structure, the
goal is to minimize the share size of the tth party arriving as a function of t.
Komargodski et al. showed that any evolving access structure can be realized
albeit the share size of the tth party is 2t−1. Then, they consider the evolving k-
threshold access structure for k ∈ N, where at any point in time any k parties can
reconstruct the secret but no k − 1 parties can learn anything about the secret
and showed an efficient scheme for it in which the share size of the tth party is
bounded by roughly k · log t bits (see Theorem 2.5 for a precise statement). Their
scheme was shown to be optimal in terms of share size for k = 2.

One of the main open problems left open by their work was to construct an
efficient secret sharing scheme for the evolving majority access structure in which
qualified subsets are the ones which form a majority of the present parties at
some point in time. More precisely, a set of k parties with indices i1 < . . . < ik
is qualified if and only if there exists an index j ∈ [k] such that

|{i1, . . . , ij}| ≥ 1
2

· ij .

The 1/2 threshold above is arbitrary and could be replaced with any other
constant in (0, 1) or even with a sequence of growing threshold k1 ≤ k2 ≤ . . .
such that the qualified sets at time t are those sets of cardinality at least kt. We
resolve this open problem and construct a secret sharing scheme for this evolving
majority access structure in which the share size of the tth party is O(t4 · log t)
bits. Our scheme is linear in the sense that reconstruction is done by applying a
linear function on the shares [1, Sect. 4.1]. This property is desirable since it is
useful in applications such as secure multiparty computation [3,8].

1 Whether having exponentially large shares is necessary is a major open problem.
The best lower bound known to date is (almost) linear by Csirmaz [11].
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Another question left open in [14] was to construct robust secret sharing
schemes for evolving access structures. In the setting described so far, secret
sharing schemes assume the parties are honest and upon reconstruction provide
their correct shares. However, in most cryptographic settings it is often the case
that we need to handle malicious parties that manipulate their shares. For this,
the strengthened notion of robust secret sharing was proposed by Ben-Or and
Rabin [16]. This notion requires that the shared secret can be recovered even if
some parties hand-in incorrect shares.

In the original construction of Ben-Or and Rabin each party authenticates
the share of every other party using a MAC having unforgeability security 2−λ

(the reconstruction procedure checks that the majority of the tags are verified).
When the number of parties is unbounded, it is unclear how to implement such
a solution as the first party has to authenticate all future parties (which is
an unbounded number). Several follow-up constructions of robust secret shar-
ing schemes with smaller shares [4,6], rely on the same high-level idea of par-
ties authenticating share of other parties (in a pairwise manner) and thus seem
unsuitable for our setting.

We observe that a different line of works on robust secret sharing, ones based
on algebraic manipulation detection (AMD) codes [7,10] can be adapted to the
evolving setting. We thus present an efficient robust secret sharing scheme for the
evolving k-threshold access structure such that as long as an adversary corrupts
at most k − 1 parties, from any set of 2k − 1 parties, one can recover the secret.
The failure probability of our reconstruction procedure is 2−λ and the share size
is bounded by roughly k · log t + λ bits.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We denote by log
the base 2 logarithm and assume that log 0 = −∞. For a set X we denote by
x ← X the process of sampling a value x from the uniform distribution over X .
A function neg : N → R

+ is negligible if for every constant c > 0 there exists an
integer Nc such that neg(λ) < λ−c for all λ > Nc.

We start by briefly recalling the standard setting of (perfect) secret sharing.
Let Pn = {1, . . . , n} be a set of n parties. A collection of subsets A ⊆ 2Pn is
monotone if for every B ∈ A, and B ⊆ C it holds that C ∈ A.

Definition 2.1 (Access structure). An access structure A ⊆ 2Pn is a
monotone collection of subsets. Subsets in A are called qualified and subsets
not in A are called unqualified.

A secret sharing scheme involves a dealer who has a secret, a set of n par-
ties, and an access structure A. A secret sharing scheme for A is a method by
which the dealer distributes shares to the parties such that any subset in A can
reconstruct the secret from its shares, while any subset not in A cannot reveal
any information on the secret.
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Definition 2.2. A secret sharing scheme S for an access structure A consists
of a pair of algorithms (SHARE,RECON). SHARE is a probabilistic procedure
that gets as input a secret s (from a domain of secrets S such that |S| ≥ 2) and
a number n, and generates n shares Π

(s)
1 , . . . , Π

(s)
n . RECON is a deterministic

procedure that gets as input the shares of a subset B and outputs a string. The
requirements are:

1. Correctness: For every secret s ∈ S and every qualified set B ∈ A, it holds
that

Pr[RECON({Π
(s)
i }i∈B , B) = s] = 1,

where the probability is over the randomness of the sharing procedure.
2. Security: For every unqualified set B /∈ A and every two different secrets

s1, s2 ∈ S, it holds that the distributions ({Π
(s1)
i }i∈B) and ({Π

(s2)
i }i∈B) are

identical.

The share size of a scheme S, denoted by SS(S), is the maximum number of bits
each party holds in the worst case over all parties and all secrets. For an access
structure A we denote by SS(A) the minimum of SS(S) over all schemes S for
the access structure A.

Linear schemes. An important subclass of secret sharing schemes are linear
schemes. In such a scheme the secret is viewed as an element of a finite field, and
the shares are obtained by applying a linear mapping to the secret and several
independent random field elements. Equivalently, a linear scheme is defined by
requiring that each qualified set reconstructs the secret by applying a linear
function to its shares [1, Sect. 4.1]. We denote by lin-SS(A) the minimum value
of SS(S) over all linear schemes S for the access structure A.

2.1 Evolving Secret Sharing

We recall the notion of an evolving access structure and the corresponding notion
of secret sharing defined by [14]. Roughly speaking, these definitions capture the
scenario in which the access structure is not fully known to the sharing procedure
at once but is rather revealed in an online manner. Concretely, parties arrive one
by one and, in the most general case, a qualified subset is revealed only when all
parties in that subset are present (in special cases the access structure is known
to begin with, but there is no upper bound on the number of parties). To make
sense of sharing a secret with respect to such a sequence of access structures, we
require that the changes to the access structure are monotone, namely, parties
are only added and qualified sets remain qualified.

Definition 2.3 (Evolving access structure). An evolving access structures
A ⊆ 2N is a (possibly infinite) monotone collection of subsets of the natural
numbers such that for any t ∈ N, the collection of subsets At � A ∩ [t] is an
access structure (as in Definition 2.1).
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Below we give a generalization of the definition of a standard secret sharing
scheme (see Definition 2.2) to apply for evolving access structures as in [14].
Intuitively, in this setting, at any point t ∈ N in time, there is an access structure
At which defines the qualifies and unqualified subsets of parties.

Definition 2.4 (Secret sharing for evolving access structures). Let A =
{At}t∈N be an evolving access structure. Let S be a domain of secrets, where
|S| ≥ 2. A secret sharing scheme S for A and S consists of a pair of algorithms
(SHARE,RECON). The probabilistic sharing procedure SHARE and the determin-
istic reconstruction procedure RECON satisfy the following requirements:

1. SHARE(s, {Π
(s)
1 , . . . , Π

(s)
t−1}) gets as input a secret s ∈ S and the secret shares

of parties 1, . . . , t−1. It outputs a share for the tth party. For t ∈ N and secret
shares Π

(s)
1 , . . . , Π

(s)
t−1 generated for parties {1, . . . , t − 1}, respectively, we let

Π
(s)
t ← SHARE(s, {Π

(s)
1 , . . . , Π

(s)
t−1})

be the secret share of party t.
We abuse notation and sometimes denote by Π

(s)
t the random variable that

corresponds to the secret share of party t generated as above.
2. Correctness: For every secret s ∈ S and every t ∈ N, every qualified subset

in At can reconstruct the secret. That is, for s ∈ S, t ∈ N, and B ∈ At, it
holds that

Pr
[
RECON({Π

(s)
i }i∈B , B) = s

]
= 1,

where the probability is over the randomness of the sharing procedure.
3. Secrecy: For every t ∈ N, every unqualified subset B /∈ At, and every two

secret s1, s2 ∈ S, the distribution of the secret shares of parties in B gener-
ated with secret s1 and the distribution of the shares of parties in B gener-
ated with secret s2 are identical. Namely, the distributions ({Π

(s1)
i }i∈B) and

({Π
(s2)
i }i∈B) are identical.

The share size of the tth party in a scheme for an evolving access structure
is max |Πt|, namely the number of bits party t holds in the worst case over all
secrets and previous assignments.2

In [14] it was shown how to construct a secret sharing scheme for any evolving
access structure. This scheme results, for party t, with a share of size exponential
in t. They further showed that in many special cases one can do much better. For
example, in the evolving k-threshold access structure which contains all subsets
of size k (where k is known), they gave a scheme in which the share size depends
logarithmically on t.

2 This means that the share size is bounded, which is almost always the case. An
exception is the scheme (for rational secret sharing) of Kol and Naor [13] in which
the share size does not have a fixed upper bound.



384 I. Komargodski and A. Paskin-Cherniavsky

Theorem 2.5 [14]. There is a secret sharing scheme for sharing a 1-bit secret
for any evolving access structure in which for every t ∈ N the share size of the
tth party is 2t−1.

For the special case of the evolving k-threshold access structure for a fixed
k ∈ N, there is a secret sharing scheme for sharing an �-bit secret such that for
every t ∈ N the share size of the tth party is (k − 1) · log t + poly(k, �) · o(log t).

On choosing the access structure adaptively. One can also consider a
stronger definition in which At is chosen at time t (rather than ahead of time)
as long as the sequence of access structures A = {A1, . . . ,At} is evolving. In
this variant, the SHARE and RECON procedures get the access structure At

as an additional parameter. An illustrative example where At is known ahead
of time is the evolving k-threshold access structure mentioned above. (In this
case k is fixed and is independent of t.) We will consider (in Sect. 3) a natural
generalization in which there is a sequence of growing thresholds k1 < k2 . . . that
say how many parties should be present as a function of the indices of the present
parties themselves. This sequence of thresholds does not have to be known in
advance.

2.2 Algebraic Manipulation Detection Codes

In our robust evolving secret sharing scheme we will use algebraic manipula-
tion codes [10]. Originally, they were used to transform standard secret sharing
schemes into robust ones.

Definition 2.6. An (S,G, δ)-AMD code is a probabilistic encoding map E : S →
G for a set S of size S and a group G of size G together with a deterministic
decoding function D : ZG → [S] ∪ {⊥} such that D(E(s)) = s with probability 1
for every s ∈ [S]. Furthermore, for any s ∈ [S] and Δ ∈ ZG it holds that

Pr
E

[D(E(s) + Δ) /∈ {s,⊥}] ≤ δ.

The AMD code is called systematic if S is a group, the encoding is of the
form E : S → S ×G1×G2 and E(s) has the form (s, x, f(x, s)) for some function
f and x ∈R G1. The decoding function of a systematic AMD code is given by
D(s′, x′, σ′) = s′ if σ′ = f(s′, x′) and ⊥ otherwise.

Theorem 2.7 [10]. Let F be a field of size q and characteristic p, and let d be
an integer such that d + 2 is not divisible by p. There exists a construction of
a systematic (qd, qd+2, (d + 1)/q)-AMD code. The encoding function maps F

d to
F

d × F × F.

To achieve error parameter γ, and input domain S we will instantiate the
above scheme with G = F

t
2, d = 1 where t = log S + γ + O(1). We refer to this

construction as AMDS,γ .
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3 A Scheme for Dynamic Threshold

In this section we present a secret sharing scheme for the evolving dynamic
threshold access structure. This access structure is parametrized by a sequence
of threshold values k1 ≤ k2 ≤ . . . such that at time t the qualified sets are
those of cardinality at least kt. The condition that kt ≤ kt+1 is necessary for
the monotonicity of the sequence of access structures, namely for the sequence
of access structures to be a valid evolving structure.

Definition 3.1 (Dynamic threshold). The dynamic threshold access struc-
ture is parametrized by a (possibly infinite) sequence of number k1 ≤ k2 ≤ . . ..
For any t ∈ N, the set At of qualified sets at time t contains all those sets of
cardinality at least kt.

Of particular interest is the following special case of dynamic threshold access
structures in which the threshold at any point in time is a fixed function. Specif-
ically, the function that we focus on is the one in which in time t the qualified
sets are those of cardinality at least γ · t for fixed γ ∈ (0, 1).

Definition 3.2 (γ-dynamic threshold). For a parameter γ ∈ (0, 1), the γ-
dynamic threshold access structure is the above dynamic threshold access struc-
tures with sequence of numbers γ · 1, γ · 2, . . .. That is, k parties i1 < · · · < ik is
qualified iff there exists an index j ∈ [k] such that |{i1, . . . , ij}| ≥ γ · ij.

The main result of this section is summarized in the following theorem:

Theorem 3.3. For any sequence of threshold values {kt}t∈N that define a
dynamic threshold access structures, there exists a secret sharing scheme for
sharing a 1-bit secret in which the share size of the t-th party is bounded by
O(t4 · log t) bits.

High level idea. The main idea is to represent the access structure as an
infinite decision tree where the nodes in layer i are labeled by xi. Turning such
an infinite decision tree into an evolving secret sharing scheme can be done
essentially generically via an evolving secret sharing scheme for undirected st-
connectivity. This was done somewhat implicitly in [14] so we omit details here,
but we just mention that the eventual share size is proportional to the tree size.
Thus, using this naively gives us not very efficient schemes. In particular, for the
dynamic threshold scheme it gives a scheme with exponential share size.

To improve this we observe that this decision tree can be “squashed” such
that now each layer is labeled by a sequence of variables xi, . . . , xj and not just
xi. We call such a sequence a generation. Now, since every layer is labeled by a
sequence of variables, we define each edge to be some monotone Boolean function
of the variables in the generation. This operation potentially reduces the number
of edges in the tree. If, in addition, this monotone function is simple enough (i.e.
there is an efficient secret sharing scheme for it), this will eventually reduce the
share size of our construction. Indeed, we can share the secret according to the
new decision tree (with the squashed layers) to a virtual set of (much fewer)
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parties that correspond to the squashed sets and then re-sharing those shares
via a secret sharing scheme among the parties inside a generation.

In the case of dynamic majority, each edge between two generation is labeled
by the number of parties in the generation that arrived. This is the only informa-
tion we need to remember for each generation in our structure. Now, if enough
parties come so that we can reconstruct the secret, the decision tree must con-
tain a path that leads to an accepting node (and vice versa). Luckily, this access
structure (that counts how many parties arrived from a specific generation) can
be implemented very efficiently using Shamir’s scheme.

It remains to explain how we set the size of a generation. If we set it too low,
then we do not save much in the decision tree size. If we set it too high, then we
have a lot of parties in each generation and the first party in that generation will
have to pay too much. The exact choice really depends on the access structure in
hand, but it turns out that for the dynamic threshold case, the optimal setting
of generation size is so that it increases in a specific polynomial rate, namely,
the i-th generation size is square of the (i − 1)-th generation size.

The above overview was slightly over-simplified and the actual construction
requires some more care. In particular, we present the scheme directly and not
as a composition of many schemes as it does not require familiarity with the st-
connectivity scheme, and it allows us to prove its security directly via induction.

Proof. We begin by recalling Shamir’s scheme [17] which will be heavily used
in our scheme. Shamir’s scheme is a scheme for sharing a 1-bit secret s among
n parties for the k-out-of-n access structure (which contains all subsets of car-
dinality at least k). The share size in his scheme is log q bits, where q > n is a
prime number (or a power of a prime). We denote this scheme by Shamir(n, k, s).
Note that in the cases where k = 1 or k = n, there are more efficient schemes:
for k = 1, each party gets the secret and for k = n, each party gets a random
value conditioned on their XOR being the secret. In these cases, the share size
is a single bit (and it is, in particular, independent of n).

We assign to each arriving party t ∈ N a generation GenOf(t). The size
of generation i is doubly exponential, namely, GenSz(i) = 22

i

. Thus, the t-th
party is part of the �log log t-th generation (at most) which includes at most t2

parties. The first party in generation g is
∑g

i=1 GenSz(i) =
∑g

i=1 22
i

. The state
of the dealer after generation g ends consists of strings sA, where A ranges over
all tuples (c0, . . . , cg) such that ci ∈ [22

i

]. In other words, the dealer maintains
a string sA for each A = (c0, . . . , cg) ∈ [GenSz(0)] × . . . × [GenSz(g)], where
GenSz(i) = 22

i

. The number ci, in some sense, represents the number of parties
present from generation i.

For the ith party in the gth generation, denote by IdxOf(G, i) the overall index
of this party since the beginning of time. Denote by s the secret to be shared
and set s(0) = s. When the (g + 1)-th generation begins, the dealer does the
following for every (c0, . . . , cg) ∈ [GenSz(0)] × . . . × [GenSz(g)]:

1. For each party i ∈ [GenSz(g + 1)] do:
(a) Share the secret s(c0,...,cg) via a (kIdxOf(G+1,i) − ∑g

i=1 ci)-out-of-i to get
shares Π1, . . . , Πi.

(b) For each j ∈ [i], give share Πj to the jth party in the generation.
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2. For each cg+1 ∈ [GenSz(g + 1)]
(a) Sample r(c0,...,cg+1) ← {0, 1} uniformly at random.
(b) Share r(c0,...,cg+1) via a cg-ouf-of-GenSz(g + 1) scheme among the parties

of the (g + 1)th generation.
(c) Set s(c0,...,cg+1) = s(c0,...,cg) ⊕ r(c0,...,cg+1).

For correctness we observe that if ci parties arrive from generation i for
every i ∈ [g + 1], then by the correctness of Shamir’s scheme they can recover
r(c0), r(c0,c1) and all the way through r(c0,...,cg). Assume that the present set
is qualified while the most recent party is the i-th party in generation g + 1.
Moreover, assume that from the (g + 1)th generation there are � parties present
from the first i parties. Since the set is qualified,

∑g
i=0 ci + � ≥ kIdxOf(G+1,i).

Thus, the set of parties can further recover s(c0,...,cg) (again, by the correctness
of Shamir’s scheme). The latter is s(c0,...,cg) = s(c0,...,cg−1)⊕r(c0,...,cg), from which
we can recover s(c0,...,cg−1) (since we know r(c0,...,cg)). Continuing in this manner,
we can compute s(c0,...,cg−2) and then s(c0,...,cg−3) until we recover s(0) which is
equal to the secret we shared.

For security we need to show that an unqualified set has no information
regarding s, the secret that was shared. The proof is by induction on the number
of generations. Assume that the scheme is secure for parties coming from g
generations and we will show that it is secure for parties coming from the first
g+1 generations. The base case follows immediately from the security of Shamir’s
scheme. Let the dealer share the secret among the parties in the first generation.
Now, we observe that what the dealer does in the remaining sharing procedure
is to share GenSz(0) secrets among the remaining g generations with slightly
modified access structures. That is, it shares the secret s(i) for i ∈ [GenSz(0)]
according to the sequence of dynamic thresholds k1−i, k2−i, . . . ,. We claim that
the remaining satisfies one of two cases: (1) it is unqualified in the new access
structure and therefore its shares are independent of s(i), or (2) it is qualified so
can learn s(i) but in this case it won’t be able to recover the masking of s (by the
security Shamir’s scheme). The third option where it is both qualified and can
learn the masking of s cannot occur since the set is unqualified to begin with.

Now, we apply the induction hypothesis and get that the shares held by
the adversary according to each of these schemes are independent of the secret.
Moreover, the sharing is done independently among these access structures and
therefore the combination of all of these shares is independent of the secret.

The share size. The share size of a party in generation g consists of two
parts corresponding to the above two Shamir sharing procedures. The first part,
stemming from Item 1 above, is of size at most

g∏
j=1

GenSz(j) · log(GenSz(g)) =
g∏

j=1

22
j · 2g = 2

∑g
j=1 2j · 2g ≤ 22

g+1 · 2g.



388 I. Komargodski and A. Paskin-Cherniavsky

The second part, stemming from Item 2 above, is (again) of size at most

g∏
j=1

GenSz(j) · log(GenSz(g)) ≤ 22
g+1 · 2g.

In total, the share size is bounded by 22
g+1 ·2g ·2. The t-th party is in generation

g = �log log t which means that its share size is bounded by 4t4 · log t. �

On our generation size. The choice of parameters where generation sizes
grows as GenSz(g + 1) = (GenSz(g))2 were carefully chosen to obtain optimal
share complexity. The “generation-like” schemes of [14] were always growing by
a linear factor and such choice in our case results with an inefficient scheme in
which shares are of super-polynomial size. Specifically, our goal is to minimize
the value of the product:

g∏
j=1

GenSz(j) · log(GenSz(g)).

Choosing generations of linearly growing size gives that GenSz(j) is roughly 2j

(which is indeed small for the t-th party which is in generation roughly log t)
but there are now logarithmically many terms in the product which results with
super-polynomial share size. A further inspection gives that our choice of the
constant 2 in the exponent gives the best share size.

On sharing longer secrets. The above scheme can be generalized to sup-
port sharing of longer secrets more efficiently than sharing it bit by bit.
Roughly speaking, this follows since Shamir’s threshold scheme can be used
to share a secret longer than 1 bit without increasing the share size. More pre-
cisely, Shamir’s scheme allows to share a secret of length � with shares of size
max{�, log q} (where q > n is a prime number as above and n is the number
of parties among which we share the secret). So, even for long secrets, for large
enough party index t ∈ N, we will apply Shamir’s scheme on a very large set such
that max{�, log q} = log q and therefore the analysis from above will hold. For
parties with low index (where max{�, log q} = �) we do pay a price proportional
to � in the share size.

3.1 A General Framework

Our scheme is a special case of the following approach that can be used for more
general evolving access structures. These access structures have the property
that (1) parties can be split into generations of growing size, where the size
of generation g is denoted by GenSz(g), (2) within each generation “not too
much” information has to be remembered for the future, and (3) it is possible to
efficiently “combine” all this information from different generations and decide
whether a set is qualified or not.
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The access structure at time t ∈ N, denoted by At, is a function of indica-
tor bits representing the presence of each party in the reconstruction process.
Namely, we can think of the function At(x1, . . . , xt) as the indicator function of
the access structure (where each xi indicates whether the ith party is present).
Denote by Xg the set of parties in generation g. Associate with each generation
g, monotone functions Ψg

0
, . . . , Ψg

�g
: {0, 1}Xg → {0, 1} that gets the indicator of

the parties in the generation and output one bit (where �g is a parameter). More-
over, for each (c0, . . . , cg−1) ∈ {0, 1}�0 × . . . × {0, 1}�g−1 , associate a monotone
function Φc0,...,cg−1 : {0, 1}Xg → {0, 1} such that the indicator of a set of parties
x1, . . . , xt (where the generation of party t is g∗) is qualified in At iff

At(x1, . . . , xt) = 1 ⇐⇒ (3.1)
∃c0, . . . , cg∗−1 ∈ [�0] × . . . × [�g∗−1] : Φ

Ψ0
c0

(X0),...,Ψ
g∗−1
cg∗−1

(Xg∗−1)
(Xg∗).

Such an association always exists by setting each Ψ ′
i to be the identity func-

tion that outputs the ith bit (i.e., �g = GenSz(g)) and letting Φc0,...,cg correspond
to At (for the appropriate value of t) where the output of Ψi for each i ∈ [g − 1]
is fixed and only the last generation is not. In some cases, however, there is a
more efficient mapping. For example, in the dynamic threshold considered above,
we set each Ψi to count how many parties come from that generation, namely,
�i = GenSz(i), and the monotone function Φ�0,...,�g , on input x1, . . . , xGenSz(g)

is naturally defined to be the one that checks for each j ∈ [GenSz(g)] whether∑g
i=0 �i +

∑j
i=1 xi is at least as large as the required threshold.

The point in making the above mapping is that now the original access
structure A can be viewed as a composition of many access structures of the form
Ψg

ci and Φco,...,cg . If we choose the generations to be large enough but keep the
�i’s not too large, and moreover have efficient schemes for the above structures,
we can overall have an efficient scheme. We describe this general scheme next.
The state of the dealer after generation g ends consists of strings sA, where A
ranges over all tuples (c0, . . . , cg) such that ci ∈ {0, 1}�i . Denote by s ∈ {0, 1}
the secret to be shared and set s(0) = s. When the (g + 1)-th generation begins,
the dealer does the following for every (c0, . . . , cg) ∈ [�0] × . . . × [�g]:

1. Share the secret s(c0,...,cg) via a Φc0,...,cg among the parties in generation g+1.
2. For each cg+1 ∈ [�g+1]

(a) Sample r(c0,...,cg+1) ← {0, 1} uniformly at random.
(b) Share r(c0,...,cg+1) via a Ψg+1

cg+1
among the parties of generation g + 1.

(c) Set s(c0,...,cg+1) = s(c0,...,cg) ⊕ r(c0,...,cg+1).

The correctness and security of the scheme follows by identity 3.1, similarly
to how we proved correctness and security for the dynamic threshold scheme.
We omit further details here.

The share size of a party in generation g+1 consists of two parts correspond-
ing to the above two Φ and Ψ sharing procedures. We assume that the share size
of each Φc0,...,cg upper bounded by φc0,...,cg and that the share size of each Ψg

cg



390 I. Komargodski and A. Paskin-Cherniavsky

is upper bounded by ψg
cg . The first part, stemming from Item 1 above, is of size

at most
∏

c0∈[�0]

. . .
∏

cg∈[�g]

φc0,...,cg .

The second part, stemming from Item 2 above, is of size at most
∏

c0[�0]

. . .
∏

cg∈[�g]

∏
cg+1∈[�g+1]

ψg
cg .

In total, the share size of party t that resides in generation g is bounded by
the sum of the two terms above.

Instantiations. The above general blueprint captures not only the dynamic
threshold scheme we presented above, but also can be used to capture the scheme
for general access structures and the scheme for k-threshold for constant values
of k of [14]. However, the choice of the generation size is different in each case. In
the general case, the generations are of size 1 (as we cannot gain anything from
squashing since the structure is completely arbitrary), and in the k-threshold
case, the generations are growing in linear rate (linear in k) rather than poly-
nomial in t as we have in the dynamic threshold case.

4 Robust Evolving Secret Sharing

In this section we show how to generically make any k-threshold scheme robust in
the sense that even if some parties hand-in incorrect shares, the correct secret can
be recovered. The formalization of this notion is done by augmenting a standard
secret sharing for evolving access structures with an additional procedure called
R-RECON which gets as input the shares of a set of parties A from which it can
recover the secret. The adversary is allowed to corrupt any set B ⊆ A such that
A\B is still qualified. The aforementioned reconstruction procedure succeeds
with all but 2−λ probability, where λ is a parameter that is fixed during the
sharing procedure.

Definition 4.1 (Robust evolving secret sharing). A robust secret sharing
scheme R is described by three procedures (SHARE,RECON,R-RECON). The pro-
cedures (SHARE,RECON) form an evolving secret sharing scheme (as in Defin-
ition 2.4) in which the procedure SHARE is augmented with an additional input
1λ for a security parameter λ. The additional procedure R-RECON satisfies the
following requirement:

3 Robust reconstruction: The secret s is shared using SHARE(1λ, s). An
adversary A chooses a time t and two subsets of parties A,B ⊆ [t] such that
(1) B ⊆ A, (2) B is unqualified, and (3) A\B is qualified. The adversary A
is then given the shares of the parties in B, denoted by Πs

B, and it changes
it arbitrarily to get Πs

B
′. Finally, the value of s′ = R-RECON(1λ,Πs

A ∪ Πs
B

′)
is output.
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We say that the scheme is λ-robust if for any such adversary A if it holds
that

Pr[s′ �= s] ≤ 2−λ.

The next theorem shows how to obtain a robust secret sharing scheme for
the evolving k-threshold access structure in which qualified sets are those of size
at least k.

Theorem 4.2. Let k ∈ N
+ and λ > 0. Assume there exists a linear evolving

(family of) schemes for k-threshold such that for the domain of secrets S, it is
linear over the field F = F

t
2 (t ≥ log |S|).

Then, there exists an evolving λ-robust secret sharing scheme for the evolving
k-threshold access structure. The overhead in the share for party t is an additive
factor of O(λ + k · log k) bits relatively to the share size of the original scheme
(for a sufficiently large domain S, otherwise the overhead is multiplicative).

We prove the theorem, by adapting the robust (standard) secret sharing
scheme of [10] to the evolving setting. Then, we use the linear scheme of [14] for
the evolving k-threshold access structure and transform it into a robust one.3

The high-level idea of the construction is, instead of sharing the secret itself, to
share an AMD encoding of the secret (see Definition 2.6). Roughly speaking, the
resulting scheme is robust since AMD codes protect information against additive
attacks and our secret sharing scheme is linear.

Proof of Theorem 4.2. Our construction assumes a linear evolving scheme
E = (SHARE,RECON) for a k-threshold access structure and turns it into a
robust evolving scheme for the same structure. We share secrets from domain
S. As an instantiation of the base scheme, we use the construction from [14] for
the evolving k-threshold access structure over a sufficiently large secret space.
The share size for the t-th party in their scheme is roughly σ(t) = k log t bits for
large enough t. Fix a γ′ = (λ + k log k)-AMD code (E,D) for secret domain |S|.
Concretely, we use AMDσ,γ′ .

Our new robust secret sharing scheme is described next:

1. The new sharing procedure SHARE′(1λ,Πs
1 , . . . , Πs

t−1, s) gets as input a
robustness parameter 1λ, the shares of parties 1, . . . , t − 1 and the original
secret s and generates the share for the t-th party as follows. At the begin-
ning of time (before the first party arrives), it computes an AMD encoding
of s, denoted ŝ = E(s), and shares this value using the underlying scheme by
running (in the t-th time step) the procedure SHARE(Πs

1 , . . . , Πs
t−1, ŝ) and

giving the t-th party this value.
3 Observe that the construction from [14] for the evolving k-threshold access structure

are “almost” of the right form. One minor issue is that the field over which the various
instances of Shamir operate grow as more parties arrive. Using extension fields, the
shares can be viewed as a vector of linear combinations over a single field F

t
2 of a

suitable size, and the proof applies in a similar way. Our scheme from Theorem 3.3
has the same property.
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2. The reconstruction procedure RECON′(Πs
B , B) on input the shares of a subset

of parties B applies the original reconstruction procedure of the underlying
scheme RECON(Πs

B , B) to obtain an AMD encoding ŝ. Then, it outputs the
AMD decoding of this value s = D(ŝ).

3. The robust reconstruction procedure R-RECON(1λ,Πs
B , B) on input the

robustness parameter 1λ and the shares of a set of parties B works as follows.
Let B′ denote the set of the first min{2k − 1, |B|} parties in B. Go over all
minterms T ⊆ B′ (sets of size exactly k), and apply the reconstruction pro-
cedure on each of them: ŝT = RECON′(1λ,Πs

T , T ). If all ŝT are ⊥, output ⊥.
Otherwise, output the first value which is not ⊥.

Notice that since k is constant, the running time of this procedure is poly-
nomial in its input size.

We proceed with the correctness, security and robustness of the above con-
struction. As the original scheme is an evolving k-threshold scheme, and as the
AMD scheme is perfectly correct the resulting scheme satisfies perfect correct-
ness and privacy. As to robustness, first observe that |B′| ≤ 2k − 1, and it must
contain a qualified subset T ′ in which no party is malicious. Indeed, if B′ = B,
this follows by our guarantee on the choice of the malicious parties the adver-
sary is allowed to make (otherwise, the adversary chose a qualified set which is
illegal). If |B′| = 2k − 1, then the set of honest parties in this subset is of size k,
and is therefore qualified.

Next, we prove that with probability at least 1− 2−λ, the robust reconstruc-
tion procedure R-RECON outputs the shared secret s. By perfect correctness of
the AMD scheme, ŝ′

T ′ = s. It remains to show that for all other minterms T , it
holds that ŝT ∈ {s,⊥} with probability 1 − 2−λ (the proof is similar to the one
in [10], and is included here for completeness). For each T , consider any possible
shift ΔT in the shares chosen by the adversary. This shift naturally corresponds
to an additive shift on the total set of shares used for reconstruction, as thus on
the shared value (since the scheme basic evolving k-threshold scheme is linear).

By the security of the secret sharing scheme, the adversary’s view (i.e. the
shares of the parties he controls) does not depend on ŝ. Thus the distribution
of shifted shares is also independent of the secret ŝ. Now, by the security of the
AMD code, ŝT /∈ {s,⊥} with probability at most 2−λ+k·(log k+1). As there are at
most

(|B′|
k

) ≤ (
2k−1

k

)
possible different sets T (minterms), we can apply a union

bound and get that the probability that this happens for some ŝT is at most

(2k)k · 2−λ+k·(log k+1) = 2k·(log k+1) · 2−λ+k·(log k+1) ≤ 2−λ,

as required. �
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Abstract. A secret-sharing scheme realizes the forbidden graph access
structure determined by a graph G = (V, E) if a pair of vertices can
reconstruct the secret if and only if it is an edge in G. Secret-sharing
schemes for forbidden graph access structures of bipartite graphs are
equivalent to conditional disclosure of secrets protocols, a primitive that
is used to construct attributed-based encryption schemes.

We study the complexity of realizing a forbidden graph access struc-
ture by linear secret-sharing schemes. A secret-sharing scheme is linear
if the reconstruction of the secret from the shares is a linear mapping. In
many applications of secret-sharing, it is required that the scheme will be
linear. We provide efficient constructions and lower bounds on the share
size of linear secret-sharing schemes for sparse and dense graphs, closing
the gap between upper and lower bounds: Given a sparse graph with n
vertices and at most n1+β edges, for some 0 ≤ β < 1, we construct a
linear secret-sharing scheme realizing its forbidden graph access struc-
ture in which the total size of the shares is Õ(n1+β/2). We provide an
additional construction showing that every dense graph with n vertices
and at least

(
n
2

)− n1+β edges can be realized by a linear secret-sharing
scheme with the same total share size.

We provide lower bounds on the share size of linear secret-sharing
schemes realizing forbidden graph access structures. We prove that for
most forbidden graph access structures, the total share size of every linear
secret-sharing scheme realizing these access structures is Ω(n3/2), which
shows that the construction of Gay, Kerenidis, and Wee [CRYPTO 2015]
is optimal. Furthermore, we show that for every 0 ≤ β < 1 there exist a
graph with at most n1+β edges and a graph with at least

(
n
2

)−n1+β edges,
such that the total share size of every linear secret-sharing scheme real-
izing these forbidden graph access structures is Ω(n1+β/2). This shows
that our constructions are optimal (up to poly-logarithmic factors).
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1 Introduction

A secret-sharing scheme, introduced by [14,35,43], is a method in which a dealer,
which holds a secret, can distribute shares to a set of parties, enabling only prede-
fined subsets of parties to reconstruct the secret from their shares. These subsets
are called authorized, and the family of authorized subsets is called the access
structure of the scheme. The original motivation for defining secret-sharing was
robust key management schemes for cryptographic systems. Nowadays, they are
used in many secure protocols and applications, such as multiparty computa-
tion [11,21,23], threshold cryptography [27], access control [41], attribute-based
encryption [34,48], and oblivious transfer [44,47].

In this paper we study secret-sharing schemes for forbidden graph access
structures, first introduced by Sun and Shieh [46]. The forbidden graph access
structure determined by a graph G = (V,E) is the collection of all pairs of
vertices in E and all subsets of vertices of size greater than two. Secret-sharing
schemes for forbidden graph access structure determined by bipartite graphs are
equivalent to conditional disclosure of secrets protocols. Following [7,8], we study
the complexity of realizing a forbidden graph, and provide efficient constructions
for sparse and dense graphs.

A secret-sharing scheme is linear if the shares are a linear function of the
secret and random strings that are taken from some finite field. Equivalently, a
scheme is linear if the reconstruction of the secret from the shares is a linear map-
ping. A linear secret-sharing can be constructed from a monotone span program,
a computational model which introduced by Karchmer and Wigderson [37], and
every linear secret-sharing scheme implies a monotone span program. See [4], for
discussion on equivalent definitions of linear secret-sharing schemes. In many of
the applications of secret-sharing mentioned above, it is required that the scheme
will be linear. For example, Cramer et al. [23] construct general secure multi-
party computation protocols, i.e., protocols which are secure against an arbi-
trary adversarial structure, from any linear secret-sharing scheme realizing the
access structure in which a set is authorized if and only if it is not in the adver-
sarial structure. Furthermore, it was shown by Attrapadung [3] and Wee [49]
that linear secret-sharing schemes realizing forbidden graphs access structures
are a central ingredient for constructing public-key (multi-user) attribute-based
encryption. These applications motivate the study in this paper of linear secret-
sharing schemes for forbidden graph access structures.

1.1 Related Work

Secret-Sharing Schemes for Arbitrary Access Structures. Secret-sharing
schemes were introduced by Shamir [43] and Blakley [14] for the threshold case,
and by Ito, Saito, and Nishizeki [35] for the general case. Threshold access struc-
tures, in which the authorized sets are all the sets containing at least t parties
(for some threshold t), can be realized by secret-sharing schemes in which the
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size of each share is the size of the secret [14,43]. There are other access struc-
tures that have secret-sharing schemes in which the size of the shares is small,
i.e., polynomial (in the number of parties) share size [12,13,17,37]. In particular,
Benaloh and Leichter [12] proved that if an access structure can be described
by a small monotone formula, then it has an efficient secret-sharing scheme.
Improving on this result, Karchmer and Wigderson [37] showed that if an access
structure can be described by a small monotone span program, then it has an
efficient secret-sharing scheme.

The best known schemes for general access structures (e.g., [13,17,35,37]) are
highly inefficient, i.e., they have total share size of 2O(n) (where n is the number
of parties). The best known lower bound on the total share size of secret-sharing
schemes realizing an access structure is Ω(n2/ log n) [24,25]; this lower bound is
very far from the upper bound.

Graph Access Structures. A secret-sharing scheme realizes the graph access
structure determined by a given graph if every two vertices connected by an
edge can reconstruct the secret and every independent set in the graph does not
get any information on the secret. The trivial secret-sharing scheme for realizing
a graph access structure is sharing the secret independently for each edge; this
results in a scheme whose total share size is O(n2) (times the length of the secret,
which will be ignored in the introduction). This can be improved – every graph
access structure can be realized by a linear secret-sharing scheme in which the
total size of the shares is O(n2/ log n) [19,29]. Graph access structures have been
studied in many works, such as [7–9,15,16,18,20,26,45]. In particular, Beimel
et al. [7] showed that a graph with n vertices that contains

(
n
2

) − n1+β edges for
some constant 0 ≤ β < 1 can be realized by a scheme in which the total share
size is Õ(n5/4+3β/4).

Forbidden Graph Access Structures. Gay et al. [32] have proved that every
forbidden graph access structure can be realized by a linear secret-sharing scheme
in which the total size of the shares is O(n3/2). Liu et al. [38] have recently
shown that every forbidden graph access structure can be realized by a non-
linear secret-sharing scheme in which the total size of the shares is n1+o(1).

Beimel et al. [8] showed that any graph with n vertices and with at least(
n
2

) − n1+β edges (for some constant 0 ≤ β < 1
2 ) can be realized by a linear

secret-sharing scheme in which the total share size is O(n7/6+2β/3). They also
showed that if less than n1+β edges are removed from an arbitrary graph that
can be realized by a secret-sharing scheme with total share size m, then the
resulting graph can be realized by a secret-sharing scheme in which the total
share size is O(m + n7/6+2β/3). These results are improved in this paper.

Secret-sharing schemes for graph access structures and forbidden graph access
structures have similar requirements, however, the requirements for graph access
structures are stronger, since in graph access structures independent sets of ver-
tices should not get any information on the secret. Given a secret-sharing scheme
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for a graph access structure, we can construct a secret-sharing scheme for the for-
bidden graph access structure: We can independently share the secret using the
scheme for the graph access structure and the 3-out-of-n scheme of Shamir [43].
The total share size of the new scheme is slightly greater than the former. There-
fore, upper bounds on the share size for graph access structures imply the same
upper bounds on the share size for forbidden graph access structures.

Conditional Disclosure of Secrets. Gertner et al. [33] defined conditional
disclosure of secrets (CDS). In this problem, two parties Alice and Bob want
to disclose a secret to a referee if and only if their inputs (strings of N bits)
satisfy some predicate (e.g., if their inputs are equal). To achieve this goal,
each party computes one message based on its input, the secret, and a common
random string, and sends the message to the referee. If the predicate holds,
then the referee, which knows the two inputs, can reconstruct the secret from
the messages it received. In [33], CDS is used to efficiently realize symmetrically-
private information retrieval protocols. In [32], it is shown that CDS can be used
to construct attribute-based encryption, a cryptographic primitive introduced in
[34,42].

We can represent the CDS for some predicate as the problem of realizing a
secret-sharing scheme for a forbidden graph access structure of a bipartite graph
and vice-versa: Every possible input for Alice is a vertex in the first part of the
graph and every possible input for Bob is a vertex in the second part of the
graph, and there is an edge between two vertices from different parts if and only
if the two corresponding inputs satisfy the predicate. Given a CDS protocol for
a predicate, we construct a secret-sharing scheme realizing the bipartite graph
defined by the predicate in which the share of party z is the message sent in
the CDS protocol to the referee by Alice or Bob (depending on z’s part of the
graph) when they hold the input z. Thus, given a predicate P , we get a bipartite
graph with n = 2N vertices in each part (where N is the size of the input of
the parties) such that the length of the messages required in a CDS for P is the
length of the shares required by a secret-sharing realizing the forbidden graph
access structure.

Gertner et al. [33] have proved that if a predicate P has a (possibly non-
monotone) formula of size S, then there is a CDS protocol for P in which the
length of the messages is S. A similar result holds if the predicate has a (possi-
bly non-monotone) span program, or even a non-monotone secret-sharing scheme
(this is a secret-sharing scheme realizing an access structure defined in [33] in
which for every bit in the input there are two parties, one for every value of
the bit). This result provides a rich class of predicates for which there are effi-
cient CDS protocols. Thus, there is a rich class of forbidden graph access struc-
tures that can be realized by efficient secret-sharing schemes (by the equivalence
between CDS and secret-sharing schemes for forbidden graph access structures).

It was shown in [32] that for every predicate there exists a linear CDS such
that the size of each of the messages sent by the two parties to the referee is
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2N/2.1 This implies that for every bipartite graph there exists a linear secret-
sharing scheme realizing the forbidden graph access structure in which the size
of each share is O(n1/2) (where n is the number of the parties); in particular,
the total share size of this scheme is O(n3/2).

Liu et al. [38] have recently shown that every predicate has a non-linear
CDS scheme in which the size of the messages the parties send to the referee is
2O(

√
N log N). As a corollary, we get a non-linear secret-sharing scheme realizing

the forbidden graph access structure for every bipartite graph with n vertices, in
which the size of each share is nO(

√
log log n/ log n) = no(1); in particular, the total

share size of this scheme is n1+O(
√

log log n/ log n) = n1+o(1). By a transformation
of [8,10], the above two results hold for every graph (not necessarily bipartite).

Applebaum et al. [2] and Ambrona et al. [1] have shown that if we have
a linear CDS for some predicate P with message length c and shared random
string length r, then we can construct a linear CDS for the complement predicate
P in which the message length and the shared random string length is linear
in c and r. Translated to secret-sharing, we conclude that if we have a linear
secret-sharing scheme that uses r random field elements in the generation of the
shares and realizes the forbidden graph access structure of a bipartite graph G,
then we can realize its complement bipartite graph G with a linear scheme in
which the size of each share is O(r).

Another result shown in [2] is that for every predicate there exists a linear
CDS for secrets of k bits, where k is double-exponential in N , such that the size
of each of the messages sent by the two parties to the referee is O(k · N). This
gives us an amortized size of O(N) bits per each bit of the secret, much better
than the size of 2N/2 for one-bit secret that was shown in [32]. When considering
forbidden graph access structures, we get that for every forbidden bipartite graph
access structure with n vertices there exists a linear secret-sharing scheme with
secrets of length k and total share size of O(kn log n), provided that the size of
the secret k is exponential in n.

1.2 Our Results

The main result we show in this paper is the construction of linear secret-sharing
schemes realizing forbidden graph access structures for sparse graphs and dense
graphs. We also prove tight lower bounds on the share size of linear secret-sharing
schemes realizing forbidden graph access structures.

Constructions. Our main constructions of linear secret-sharing schemes are
the following ones:

– Given a sparse graph with n vertices and at most n1+β edges, for some 0 ≤
β < 1, we construct a linear secret-sharing scheme that realizes its forbidden
graph access structure, in which the total size of the shares is Õ(n1+β/2). The

1 A linear CDS is a CDS in which if the predicate holds, then the reconstruction
function of the referee is linear.
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best previously known linear secret-sharing scheme for such graphs is the
trivial scheme that independently shares the secret for each edge; the total
share size of this scheme is O(n1+β).

– Given a dense graph with n vertices and at least
(
n
2

) − n1+β edges, for some
0 ≤ β < 1, we construct a linear secret-sharing scheme that realizes its
forbidden graph access structure with total share size Õ(n1+β/2). The best
previously known linear secret-sharing scheme for such graphs is the scheme
of [8], which has total share size O(n7/6+2β/3).

– As a corollary, we construct a secret-sharing scheme for forbidden graph access
structures of graphs obtained by changing (adding or removing) few edges
from an arbitrary graph G. If the forbidden graph access structure determined
by a graph G can be realized by a secret-sharing scheme with total share size
m and G′ is obtained from G by changing at most n1+β edges, for some
0 ≤ β < 1, then we construct a secret-sharing scheme realizing the forbidden
graph access structure of G′ with total share size m+Õ(n1+β/2). If the secret-
sharing scheme realizing the forbidden graph access structure determined by
G is linear, then the resulting scheme realizing the forbidden graph access
structure determined by G′ is also linear.

Overview of Our Constructions. We construct the secret-sharing scheme
realizing forbidden graph access structures determined by sparse graphs in few
stages, where in each stage we restrict the forbidden graph access structures
that we can realize. We start by realizing fairly simple bipartite graphs, and in
each stage we realize a wider class of graphs using the schemes constructed in
previous stages.

Our basic construction, described in Lemma 1, is a linear secret-sharing
scheme realizing a forbidden graph access structure for a bipartite graph G =
(A,B,E), where A is small and the degree of each vertex in B is at most d, for
some d < n. To construct this scheme, we construct a linear subspace Va for
each vertex a ∈ A, and a vector zb for every vertex b ∈ B, such that zb ∈ Va if
and only if (a, b) ∈ E. The total size of the shares in the scheme we construct
is O(d|A| + |B|). A naive scheme for this graph, which shares the secret inde-
pendently for each edge, has total share size O(d|B|). Our scheme is much more
efficient than the naive scheme when A is small and B is big. This is the scheme
that enables us to construct efficient schemes for sparse forbidden graph access
structures.

In the second stage, we construct, in Lemma 3, a secret-sharing scheme for
a forbidden graph access structure for a bipartite graph G = (A,B,E), where
the degree of every vertex in B is at most d (and there is no restriction that
A is small). The total size of the shares in this scheme is O(n

√
d log n), where

|A| = |B| = n. The idea of this construction is to randomly partition the set A
to � = O(

√
d ln n) = Õ(

√
d) “small” sets A1, . . . , A�. We prove that with high

probability, for every 1 ≤ i ≤ �, the degree of every vertex b ∈ B in the bipartite
graph Gi = (Ai, B,E ∩ (Ai × B)) is at most O(

√
d) (compared to its degree in
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G, which can be at most d). We now realize each sparse graph Gi using the basic
scheme.

In the third stage, we construct, in Theorem2, a secret-sharing scheme for
a bipartite graph G = (A,B,E), where the number of edges in G is at most
n1+β for some 0 ≤ β < 1 (where |A| = |B| = n). That is, we realize forbidden
graph access structures for bipartite graphs where the average degree of each
vertex in B is at most nβ . To this purpose, we use an idea from [7] (also used
in [8]). Fix some degree d, and let Bbig be the vertices in B whose degree is
at least d. Furthermore, let Bsmall = B\Bbig. Since the number of edges in
G is at most n1+β , the size of Bbig is at most n1+β/d. Using the fact that
Bbig is small (however, the degree of each vertex in Bbig can be n), the secret-
sharing scheme of [32] (alternatively, the scheme of Lemma 3) realizes the graph
Gbig = (A,Bbig, E ∩ (A × Bbig)) with “quite small” shares. Using the fact that
the degree of each vertex in Bsmall is small, the secret-sharing scheme of Lemma 3
realizes Gsmall = (A,Bsmall, E ∩ (A×Bsmall)) with total share size O(n

√
d log n).

By taking the appropriate value for d, we get a secret-sharing scheme realizing
G in which (for small enough values of β) the total share size is o(n1+β), but still
larger than the promised total share size. To get a secret-sharing scheme realizing
G with total share size Õ(n1+β/2), we group the vertices in B into O(log n) sets
according to their degree, where the ith set Bi contains the vertices whose degree
is between n/2i+1 and n/2i. We realize each graph Gi = (A,Bi, E ∩ (A × Bi))
independently using the secret-sharing scheme of Lemma 3.

In the last stage, we construct, in Theorem 3, a secret-sharing scheme for any
forbidden graph access structure with the promised total share size. That is, if
the number of edges in G is at most n1+β for some 0 ≤ β < 1 (where |V | = n),
then the total share size is Õ(n1+β/2). The last stage is done using a generic
transformation of [8,10], which constructs a secret-sharing scheme for any graph
from secret-sharing schemes for bipartite graphs.

To summarize, there are 4 stages in our construction for sparse graphs. The
first two stages are the major new steps in our construction. The third stage uses
ideas from [7], however, it requires designing appropriate secret-sharing schemes
in the first two stages. In the last stage, we use a transformation of [8,10] as a
black-box. The construction for forbidden graph access structures determine by
dense graphs is similar, however, we construct a different scheme for the first
stage.

The construction of a scheme realizing a forbidden graph access structure
determined by a graph G′ obtained by adding or removing few edges from a
graph G is done using ideas from [8] as follows: First, we share the secret s using
the secret-sharing scheme realizing the sparse graph containing all edges added
to G (we add at most n1+β to G). In addition, we share the secret s using a
2-out-of-2 secret-sharing scheme. That is, we choose two random elements s1
and s2 such that s = s1 ⊕ s2. We share s1 using the scheme of the graph G and
share s2 using the secret-sharing scheme realizing the dense graph containing all
possible edges except for the edges removed from G (this graph is a dense graph
with at least

(
n
2

) − n1+β edges, since we remove at most n1+β from G).
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Lower Bounds. We prove that for most forbidden graph access structures,
the total share size of every linear secret-sharing scheme realizing these access
structures, with a one-bit secret, is Ω(n3/2), which shows that the construction
of Gay et al. [32] is optimal. This also shows a separation between the total
share size in non-linear secret-sharing schemes realizing forbidden graph access
structures, which is n1+o(1) by [38], and the total share size required in linear
secret-sharing schemes realizing forbidden graph access structures. This lower
bound implies that, for most predicates P : {0, 1}N × {0, 1}N → {0, 1}, in every
linear CDS protocol for P the length of the messages is Ω(2N/2).

Furthermore, we show that for every 0 ≤ β < 1 there exist a graph with
at most n1+β edges and a graph with at least

(
n
2

) − n1+β edges, such that the
total share size of every linear secret-sharing scheme realizing their forbidden
graph access structures is Ω(n1+β/2). This shows that our constructions are
optimal (up to poly-logarithmic factors). Our lower bounds are existential and
use counting arguments. They previously appeared (in a somewhat less general
form) in the master thesis of the third author of this paper [39].

2 Preliminaries

We denote the logarithmic function with base 2 and base e by log and ln, respec-
tively. We denote vectors by bold letters, e.g., v.

2.1 Secret-Sharing

We present the definition of secret-sharing scheme as given in [6,22]. For more
information about this definition and secret-sharing in general, see [5].

Definition 1 (Secret-Sharing Schemes). Let P = {p1, . . . , pn} be a set of
parties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.
The family of minimal authorized subsets is denoted by min Γ .

A distribution scheme Σ = 〈Π,μ〉 with domain of secrets K is a pair, where
μ is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K×R to a set of n-tuples K1×K2×· · ·×Kn, where Kj

is called the domain of shares of pj. A dealer distributes a secret k ∈ K according
to Σ by first sampling a random string r ∈ R according to μ, computing a vector
of shares Π(k, r) = (s1, . . . , sn), and privately communicating each share sj to
party pj. For a set A ⊆ P , we denote ΠA(k, r) as the restriction of Π(k, r) to
its A-entries (i.e., the shares of the parties in A).

Given a distribution scheme, define the size of the secret as log |K|, the (nor-
malized) share size of party pj as log |Kj |/ log |K|, the (normalized) max share
size as max1≤j≤n log |Kj |/ log |K|, and the (normalized) total share size of the
distribution scheme as

∑
1≤j≤n log |Kj |/ log |K|.
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Let K be a finite set of secrets, where |K| ≥ 2. A distribution scheme 〈Π,μ〉
with domain of secrets K is a secret-sharing scheme realizing an access structure
Γ if the following two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {pi1 , . . . , pi|B|} ∈ Γ , there exists a reconstruction
function ReconB : Ki1 × . . . × Ki|B| → K such that for every secret k ∈ K and
every random string r ∈ R,

ReconB

(
ΠB(k, r)

)
= k.

Privacy. Every unauthorized set cannot learn anything about the secret (in the
information theoretic sense) from their shares. Formally, for any set T /∈ Γ ,
every two secrets a, b ∈ K, and every possible vector of shares 〈sj〉pj∈T ,

Pr[ ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ ΠT (b, r) = 〈sj〉pj∈T ].

when the probability is over the choice of r from R at random according to μ.

Definition 2 (Linear Secret-Sharing Scheme). Let Σ = 〈Π,μ〉 be a secret-
sharing scheme with domain of secrets K, where μ is a probability distribution
on a set R and Π is a mapping from K × R to K1 × K2 × · · · × Kn. We say
that Σ is a linear secret-sharing scheme over a finite field F if K = F, the sets
R,K1, . . . ,Kn are vector spaces over F, Π is a F-linear mapping, and μ is the
uniform probability distribution.

2.2 Monotone Span Programs

Monotone span programs (abbreviated MSPs) are a linear-algebraic model of
computation introduced by Karchmer and Wigderson [37]. As explained below
in Claim 1, MSPs over finite fields are equivalent to linear secret-sharing schemes.

Definition 3 (Monotone Span Programs [37]). A monotone span program
is a quadruple M̂ = 〈F,M, δ,v〉, where F is a field, M is an a × b matrix over
F, δ : {1, . . . , a} → P (where P is a set of parties) is a mapping labeling each
row of M by a party,2 and v is a non-zero vector in F

b, called the target vector.
The size of M̂ is the number of rows of M (i.e., a). For any set A ⊆ P , let MA

denote the sub-matrix obtained by restricting M to the rows labeled by parties in
A. We say that M̂ accepts a set B ⊆ P if the rows of MB span the vector v. We
say that M̂ accepts an access structure Γ where M̂ accepts a set B if and only
if B ∈ Γ .

By applying a linear transformation to the rows of M , the target vector can
be changed to any non-zero vector without changing the size of the MSP. The
default value for the target vector is e1 = (1, 0, . . . , 0), but in this work we also
use other vectors, e.g., 1 (the all one’s vector).
2 We label a row by a party rather than by a variable xj as done in [37].
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Claim 1 ([4,37]). Let F be a finite field. There exists a linear secret-sharing
scheme over F realizing Γ with total share size a if and only if there exists an
MSP over F of size a accepting Γ .

For the sake of completeness, we explain how to construct a linear secret-
sharing scheme from an MSP. Given an MSP M̂ = 〈F,M, δ, e1〉 accepting Γ ,
where M is an a × b matrix over F, define a linear secret-sharing scheme as
follows:

– Input: a secret k ∈ F.
– Choose b − 1 random elements r2, . . . , rb independently with uniform distri-

bution from F and define r = (k, r2, . . . , rb).
– Evaluate (s1, . . . , sa) = MrT , and distribute to each party p ∈ P the entries

corresponding to rows labeled by p.

In this linear secret-sharing scheme, every set in Γ can reconstruct the secret:
Let B ∈ Γ and N = MB, thus, the rows of N span e1, and there exists some
vector v such that e1 = vN . Notice that the shares of the parties in B are NrT .
The parties in B can reconstruct the secret by computing v(NrT ), since

v(NrT ) = (vN)rT = e1 · rT = k.

The proof of the privacy of this scheme can be found in [5,37].

2.3 Graphs and Forbidden Graph Access Structures

Recall that a bipartite graph G = (A,B,E) is a graph where the vertices are
A ∪ B (A and B are called the parts of G) and E ⊆ A × B. A bipartite graph
is complete if E = A × B.

Definition 4 (The Bipartite Complement). Let G = (A,B,E) be a bipar-
tite graph. The bipartite complement of G is the bipartite graph G = (A,B,E),
where every a ∈ A and b ∈ B satisfy (a, b) ∈ E if and only if (a, b) /∈ E.

Definition 5 (Forbidden Graph Access Structures). Let G = (V,E) be a
graph. The forbidden graph access structure defined by G is the collection of all
pairs of vertices in E and all subsets of vertices of size greater than two.3

Remark 1 When we say that a secret-sharing scheme realizes a graph G, we mean
that the scheme realizes the forbidden graph access structure of the graph G.

Remark 2 In applications of secret-sharing schemes for forbidden graph access
structures (e.g., conditional disclosure of secrets), the only requirement is that
pairs of vertices can reconstruct the secret if and only if they are connected by an
edge. To fully specify the access structure of a forbidden graph, we also require
that all sets of 3 or more vertices are authorized. This additional requirement
3 In [46], the access structure is specified by the complement graph, i.e., by the edges

that are forbidden from learning information on the secret.
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only slightly increases the total share size required to realize forbidden graph
access structures, since we can independently share the secret using the 3-out-
of-n scheme of Shamir [43], in which the size of the share of every party is the
size of the secret (when the size of the secret is at least log n). To simplify the
description of our schemes, in all our construction in Sects. 3 to 5 we implicitly
assume that we share the secret using Shamir’s 3-out-of-n secret-sharing scheme.

2.4 Conditional Disclosure of Secrets

For completeness, we present the definition of conditional disclosure of secrets,
originaly defined in [33].

Definition 6 (Conditional Disclosure of Secrets). Let P : {0, 1}N ×
{0, 1}N → {0, 1} be some predicate, and let EncA : {0, 1}N × S × R → MA,
EncB : {0, 1}N × S × R → MB be deterministic functions, where S is the
domain of secrets and R is the domain of the common random strings, and
Dec : {0, 1}N × {0, 1}N × MA × MB → S be a deterministic function. Then,
(EncA,EncB ,Dec) is a conditional disclosure of secrets (CDS) protocol for the
predicate P if the following two requirements hold:

Correctness. For every x, y ∈ {0, 1}N with P (x, y) = 1, every secret s ∈ S,
and every common random string r ∈ R,

Dec(x, y,EncA(x, s, r),EncB(y, s, r)) = s.

Privacy. For every x, y ∈ {0, 1}N with P (x, y) = 0, every two secrets s1, s2 ∈ S,
and every messages mA ∈ MA,mB ∈ MB:

Pr[EncA(x, s1, r) = mAandEncB(y, s1, r) = mB ]
= Pr[EncA(x, s2, r) = mAandEncB(y, s2, r) = mB ],

when the probability is over the choice of r from R at random with uniform
distribution.

3 The Basic Construction for Graphs of Low Degree

Our basic construction requires the following construction of linear spaces, which
will be used both for sparse graphs and for dense graphs.

Claim 2. Let G = (A,B,E) be a bipartite graph with A = {a1, . . . , am}, B =
{b1, . . . , bn} such that the degree of every vertex in B is at most d and let F be a
finite field with |F| ≥ m. Then, there are m linear subspaces V1, . . . , Vm ⊆ F

d+1

of dimension d and n + 1 vectors z1, . . . , zn,w ∈ F
d+1 such that

zj ∈ Vi if and only if (ai, bj) ∈ E,

and w /∈ Vi for every 1 ≤ i ≤ m.
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Proof. We identify vectors in F
d+1 with polynomials of degree at most d in

the indeterminate X. That is, for a vector v ∈ F
d+1 we consider a polynomial

v(X) ∈ F[X] of degree d in which the coefficient of degree i is the (i + 1)-th
coordinate of v.

For each vertex ai ∈ A, we associate a distinct element αi ∈ F. We define
the subspace Vi ⊆ F

d+1 of dimension d as the one associated to the space of
polynomials P (X) of degree at most d such that P (αi) = 0, i.e., the space of
polynomials spanned by

{
(X − αi), (X2 − αi · X), . . . , (Xd − αi · Xd−1)

}
. Since

these d polynomials are independent, the dimension of each Vi is d. Furthermore,
for a vertex bj ∈ B, whose neighbors are ai1 , ai2 , . . . , aid′ (for some d′ ≤ d), we
define

zj(X) = (X − αi1) · (X − αi2) · . . . · (X − αid′ ).

Note that zj ∈ Vi if and only if zj(αi) = 0 if and only if αi ∈ {
αi1 , αi2 , . . . , αid′

}

if and only if (ai, bj) ∈ E.
Finally, define w(X) = 1. For every 1 ≤ i ≤ m, since w(αi) = 1 and v(αi) = 0

for every v ∈ Vi, the vector w is not in Vi. �
Lemma 1. Let G = (A,B,E) be a bipartite graph with |A| = m, |B| = n,
such that the degree of every vertex in B is at most d. Then, there is a linear
secret-sharing scheme realizing G with total share size n + (d + 1)m.

Proof. Denote A = {a1, . . . , am}, B = {b1, . . . , bn}, and let V1, . . . , Vm and
z1, . . . , zn be the linear subspaces and vectors guaranteed by Claim2. We con-
struct a monotone span program accepting G, where there are d+1 rows labeled
by ai for every 1 ≤ i ≤ m and one row labeled by bj for every 1 ≤ j ≤ n. By
Claim 1, this implies the desired linear secret-sharing scheme.

Let {vi,1, . . . ,vi,d} be a basis of Vi, and for 1 ≤ � ≤ d, define v′
i,� = (0, 0,vi,�)

(that is, v′
i,� is a vector in F

d+3 whose first two coordinates are 0 followed by
the vector vi,�). The rows labeled by ai are v′

i,1, . . . ,v
′
i,d and (0, 1, 0, . . . , 0).

The row labeled by bj is z′
j = (1, 0, zj). The target vector is (1, 1, 0, . . . , 0).

The monotone span program accepts (ai, bj) if and only if (1, 1, 0, . . . , 0) ∈
span

{
z′
j,v

′
i,1, . . . ,v′

i,d, (0, 1, 0, . . . , 0)
}

if and only if zj ∈ span {vi,1, . . . ,vi,d}
if and only if zj ∈ Vi if and only if (ai, bj) ∈ E.

Furthermore, two vertices from the same part do not span (1, 1, 0, . . . , 0): For
two vertices in A, this follows since the first coordinate in all vectors they label
is 0. For two vertices in B, this follows since the second coordinate in the vectors
they label is 0. Therefore, the monotone span program accepts G. �

We next show that Lemma 1 can be used to realize every bipartite graph
by a linear secret-sharing scheme with total share size O(n3/2). This scheme
has the same total share size as the linear secret-sharing scheme of [32]. This
construction is presented as a warmup for our construction for bipartite graphs
with bounded degree.

Lemma 2. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n.
Then, there is a linear secret-sharing scheme realizing G with total share size
O(n3/2).
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Proof. We arbitrarily partition A into
√

n sets, A1, . . . , A√
n, each set of size

at most
√

n. By Lemma 1, the bipartite graph (Ai, B,E ∩ (Ai × B)) (in which
every vertex in B has at most |Ai| =

√
n neighbors) can be realized by a linear

secret-sharing scheme with total share size O(n + (
√

n + 1)
√

n) = O(n). We use
this construction for each of the

√
n sets A1, . . . , A√

n. Hence, the total share
size of the resulting scheme is O(n3/2). �

It can be verified that in the secret-sharing scheme of Lemma 2, the size of
the share of each vertex is O(n1/2).

4 Secret-Sharing Schemes for Sparse Graphs

In this section we present efficient secret-sharing schemes for forbidden graph
access structures of sparse graphs, that is, graphs with at most n1+β edges for
some 0 ≤ β < 1. The main result is Theorem 3, where we show that these graphs
admit secret-sharing schemes with total share size O(n1+β/2 log3 n). Its proof is
involved, and we use several intermediate results. First, we construct an efficient
secret-sharing schemes for sparse bipartite graphs. In the construction for a
sparse bipartite graph G = (A,B,E) in Theorem 2 we partition the vertices in
B into O(log n) sets according to their degree, that is, the vertices in the ith set
Bi are the vertices whose degrees are between n/2i+1 and n/2i. We realize each
graph Gi = (A,Bi, E ∩ (A×Bi)) independently using the secret-sharing scheme
of Lemma 3. This methodology is the same as in [7,8]. The main new technical
result in this section is Lemma 3, and it is the basis of this construction. Finally,
using a transformation that appeared in [10], we use the schemes for sparse
bipartite graphs to construct a scheme for general sparse graphs.

Lemma 3. Let G = (A,B,E) be a bipartite graph with |A| = n, |B| ≤ n such
that the degree of each vertex in B is at most d for some d ≤ n. If d|B| ≥ n log2 n,
then there is a linear secret-sharing scheme realizing G with total share size
O

(√
n|B|d log n

)
.

Proof. Let δ = logn d (that is, d = nδ), γ = logn |B| (i.e., |B| = nγ), and

α =
1
2

+
γ

2
− δ

2
, (1)

and denote � = 2n1−α ln n. We first prove that there are sets A1, . . . , A� ⊂ A of
size nα that satisfy the following properties:

(I)
⋃�

i=1 Ai = A, and
(II) for every 1 ≤ i ≤ �, the degree of the vertices in B in the graph Gi =

(Ai, B,E ∩ (Ai × B)) is at most 12nα+δ−1.

For each 1 ≤ i ≤ �, we independently choose Ai with uniform distribution
among the subsets of A of size nα. We show that, with positive probability,
A1, . . . , A� satisfy properties (I) and (II).
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First, we analyze the probability that (I) does not hold.

Pr [A �= ∪Ai] ≤
∑

a∈A

Pr [a /∈ ∪Ai] =
∑

a∈A

�∏

i=1

Pr [a /∈ Ai] =
∑

a∈A

(
1 − nα

n

)�

≤
∑

a∈A

e−�/n1−α

= n
1
n2

=
1
n

.

Now we show that the probability that the sets A1, . . . , A� do not satisfy
Property (II) is less than 1/4. Fix an index 1 ≤ i ≤ � and a vertex b ∈ B. We
analyze the probability that the degree of b in Gi is larger than 12nα+δ−1. We
view the choice of the random set Ai as a process of nα steps, where in the jth
step we uniformly choose a vertex aj ∈ A amongst the vertices that have not
been chosen in the first j − 1 steps. Using this view of choosing Ai, we define
the following binary random variables Z1, . . . , Znα , where Zj = 1 if (aj , b) is an
edge of Gi, and 0 otherwise. Then, we consider Z =

∑nα

j=1 Zj , that is, Z is the
degree of b in Gi.

We would like to apply a Chernoff bound to these variables, however, they are
not independent. We use Z1, . . . , Znα to define new random variables Z ′

1, . . . , Z
′
nα

that are independent. For every vector z = (zt)t�=j , let

pz = Pr[Zj = 1|Zt = zt for all t �= j].

By convention, if Pr[Zt = zt for all t �= j] = 0, then pz = 0. Note that

pz ≤ nδ

n − nα
≤ 2

n1−δ
,

where d = nδ is the upper bound on the degree of b given in the lemma. Observe
that the last inequality follows because n1/2 ≤ nδ/2+γ/2/ log n, and so

nα = n1/2+γ/2−δ/2 ≤ n(δ/2+γ/2)+γ/2−δ/2/ log n ≤ n/2,

obtaining that n − nα ≥ n/2.
The random variables Z ′

1, . . . , Z
′
nα are defined as follows: Let z1, . . . , zn be

the values given to Z1, . . . , Zn. If zj = 1, then Z ′
j = 1 and if zj = 0, then

Z ′
j = 1 with probability (2/n1−δ − pz)/(1 − pz) and Z ′

j = 0 otherwise. Thus,
Pr[Z ′

j = 1|Zt = zt for all t �= j] = 2/n1−δ. Therefore, Z ′
j is independent of

(Zt)t�=j , and, hence, independent of (Z ′
t)t�=j .

Let Z ′ =
∑nα

j=1 Z ′
j . The expected value of Z ′ is nα ·2/n1−δ = 2nα+δ−1. Using

a Chernoff bound [40, Theorem 4.4, (4.3)], we obtain

Pr
[
Z > 12nα+δ−1

] ≤ Pr
[
Z ′ > 12nα+δ−1

] ≤ 2−12nα+δ−1
.

By (1) and since nγ+δ ≥ n log2 n, we obtain nα+δ−1 = nγ/2+δ/2−1/2 ≥ log n.
Thus,

Pr
[
Z > 12nα+δ−1

] ≤ 1/n12 ≤ 1/(4n�).
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Property (II) holds if for every b ∈ B and every 1 ≤ i ≤ �, the degree of b
in Gi is at most 12nα+δ−1. By the union bound, the probability that (II) does
not hold is at most 1/4. Thus, again by the union bound, the probability that
random sets A1, . . . , A� satisfy properties (I) and (II) is greater than 1/2, and,
in particular, such sets exist.

Given valid sets A1, . . . , A�, we construct a secret-sharing scheme for each
bipartite graph Gi = (Ai, B,E ∩ (Ai × B)) using Lemma 1. In each one of these
subgraphs, the degree of each vertex in B is at most 12nα+δ−1. Hence, the total
share size of the resulting scheme will be

�∑

i=1

(|B| + |Ai| · (12nα+δ−1 + 1)
)

= O
(
�(nγ + nαnα+δ−1)

)

= O
(
n1−α ln n(nγ + n2α+δ−1)

)

= O
(
log n(n1+γ−α + nα+δ)

)
.

This value is minimized when 1 + γ − α = α + δ, that is, when α = 1
2 + γ

2 − δ
2

(this explains our choice of α). Using this value of α, we obtain total share size
of O(n1/2+γ/2+δ/2 log n). �

The following theorem is a special case of the above lemma, when |A| = |B|.
In the proof of Theorem 2 below, we also use Lemma 3.

Theorem 1. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n
and the degree of every vertex in B is at most d for some d ≤ n. Then, there is
a linear secret-sharing scheme realizing G in which the share size of each vertex
is O(

√
d log n). The total share size of this scheme is O(n

√
d log n).

Proof. If d < log2 n, we use the trivial secret-sharing scheme, where we share the
secret independently for each edge; in this scheme the share size of each vertex
is O(d) = O(

√
d log n), and the total share size is O(n

√
d log n).

Otherwise, d ≥ log2 n, and let δ = logn d, � = 2nδ/2 ln n, and A1, . . . , A� ⊂ A
be the sets of size n1−δ/2 guarantied from Lemma 3 (taking γ = 1). We can
assume that each vertex in A is a member of exactly one set (by removing the
vertex from every set except from one). Note that the sets still satisfy the two
desired properties.

Next, as in Lemma 3, we construct a secret-sharing scheme for each bipartite
graph Gi = (Ai, B,E ∩ (Ai × B)) (for 1 ≤ i ≤ �) using the scheme of Lemma 1.
The degree of each vertex in B in the graph Gi is at most 12nδ/2 = O(

√
d). Every

vertex in B participates in � schemes, and gets a share of size one in each of these
schemes. Hence, the share size of every vertex in B is � = O(

√
d log n). Every

vertex in A participates in one scheme, and gets a share of size 12nδ/2 + 1 =
O(

√
d) in this scheme. Overall, the share size of each vertex in the resulting

scheme is O(
√

d log n), and the total share size is O(n
√

d log n). �

Theorem 2. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n and
with at most n1+β edges, for some constant 0 ≤ β < 1. Then, there is a linear
secret-sharing scheme realizing G with total share size O(n1+β/2 log2 n).
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Proof. If nβ ≤ log2 n, we use the trivial secret-sharing scheme, where we share
the secret independently for each edge; in this scheme the total share size is
O(n1+β) = O(n1+β/2 log n).

We next deal with the interesting case where nβ > log2 n. In this case, we
partition the vertices in B according to their degree, that is, for i = 0, . . . , (1−β)
log n − 1, define

Bi =
{

b ∈ B :
n

2i+1
< deg(b) ≤ n

2i

}

and Bsmall =
{
b ∈ B : deg(b) ≤ nβ

}
, and Gi = (A,Bi, E ∩ (A × Bi)).

We realize each graph Gi, for i = 0, . . . , (1 − β) log n − 1, using Lemma 3.
Since the number of edges in G is at most n1+β and the degree of every vertex
in Bi is at least n/2i+1, the number of vertices in Bi is at most n1+β

n/2i+1 = 2i+1nβ .
By adding dummy vertices to Bi with degree 0, we can assume that |Bi| =
2i+1nβ . By Lemma 3, there is a secret-sharing scheme realizing the forbidden
graph access structure of Gi with total share size O(

√
n · 2i+1nβ · n/2i · log n) =

O(n1+β/2 log n). Note that, as required in Lemma3, d|Bi| = n/2i · 2i+1nβ ≥
n log2 n.

Finally, we realize (A,Bsmall, E∩(A×Bsmall)) using the secret-sharing scheme
of Theorem 1; the total share size of this scheme is O(n1+β/2 log n) as well. Since
we use 1 + (1 − β) log n schemes, the total share size of the resulting scheme is
O(n1+β/2 log2 n). �

Theorem 3. Let G = (V,E) be a graph with n vertices and with at most n1+β

edges for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme
realizing G with total share size O(n1+β/2 log3 n).

Proof. To simplify notation, assume that n is a power of 2. As in [10], we cover
G by log n bipartite graphs, each graph having at most n1+β edges. We assume
that V = {v1, . . . , vn}, and for a vertex vi we consider i as a binary log n string
i = (i1, . . . , ilog n). For every 1 ≤ t ≤ log n, we define the bipartite graph Ht =
(At, Bt, Ft) as the subgraph of G in which At is the set of vertices whose t-th
bit is 0, Bt is the set of vertices whose t-th bit is 1, and Ft = E ∩ (At × Bt), i.e.,
Ft is the set of edges in E between the vertices of At and Bt.

To share a secret s, for every 1 ≤ t ≤ log n, we share s independently using
the secret-sharing scheme of Theorem 2 realizing the bipartite graph Ht with
total share size O(n1+β/2 log2 n). Since we use log n schemes, the total share size
in the scheme realizing G is O(n1+β/2 log3 n).

For an edge (vi, vj) ∈ E, where i = (i1, . . . , ilog n) and j = (j1, . . . , jlog n),
there is at least one 1 ≤ t ≤ log n such that it �= jt, thus, (vi, vj) ∈ Ft and
{vi, vj} can reconstruct the secret using the shares of the scheme realizing Ht. If
(vi, vj) /∈ E, then (vi, vj) /∈ Ft for every 1 ≤ t ≤ log n, and, hence, {vi, vj} have
no information on the secret. �
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5 Secret-Sharing Schemes for Dense Graphs

In this section we study forbidden graph access structures of dense graphs. The
main result of this section is Theorem 6, where for every dense graph we present
a linear secret-sharing scheme realizing its forbidden graph access structure.
For sparse graphs, we designed a general construction starting from a basic
secret-sharing scheme, described in Lemma 1. For dense graphs, we follow the
same strategy, replacing the basic construction with a different scheme, given in
Lemma 4.

Lemma 4. Let G = (A,B,E) be a bipartite graph with |A| = m, |B| = n, such
that the degree of every vertex in B is at least m − d. Then, there is a linear
secret-sharing scheme realizing G with total share size 2n + (d + 1)m.

Proof. Denote A = {a1, . . . , am}, B = {b1, . . . , bn}. Let G = (A,B,E) be the
bipartite complement of G, and let V1, . . . , Vm ⊆ F

d+1 be the linear subspaces
of dimension d and z1, . . . , zn,w ∈ F

d+1 be the vectors guaranteed by Claim 2
for the graph G. As proved in Claim 2, zj ∈ Vi if and only if (ai, bj) /∈ E and
w /∈ Vi for every 1 ≤ i ≤ m.

Next, we construct a monotone span program where there are d + 1 rows
labeled by ai for every 1 ≤ i ≤ m and two rows labeled by bj for every
1 ≤ j ≤ n. Let {vi,1, . . . ,vi,d} be a basis of Vi. The rows labeled by ai are
(0, 0,vi,1), . . . , (0, 0,vi,d), (0, 1, 0, . . . , 0) and the rows labeled by bj are (0, 0, zj)
and (1, 0, . . . , 0). We take (1, 1,w) as the target vector.

We first prove that the span program accepts an edge (ai, bj) ∈ E. Since
(ai, bj) ∈ E, it holds that zj /∈ Vi and so the dimension of span {zj,vi,1, . . . ,vi,d}
is 1 plus the dimension of Vi, i.e., span {zj,vi,1, . . . ,vi,d} = F

d+1, and in
particular,

w ∈ span {zj,vi,1, . . . ,vi,d} .

Thus, (1, 1,w) is in the span of the vectors labeled by ai and bj .
We next prove that this monotone span program does not accept any pair

(ai, bj) /∈ E where ai ∈ A and bj ∈ B. By Claim 2, w /∈ Vi. Since (ai, bj) /∈ E,
it holds that zj ∈ Vi and so w /∈ span {zj,vi,1, . . . ,vi,d} = Vi. Thus, (1, 1,w) is
not in the span of the vectors labeled by ai and bj

Furthermore, two vertices from the same part do not span (1, 1,w): For two
vertices in A, this follows since the first coordinate in all vectors they label is
0. For two vertices in B, this follows since the second coordinate in the vectors
they label is 0. Therefore, the monotone span program accepts G. �

Lemma 5. Let G = (A,B,E) be a bipartite graph with |A| = n, |B| ≤ n, and
let G = (A,B,E) be the bipartite complement of G. If the degree of B in G is at
most d, for some d satisfying d ≤ n and d|B| ≥ n log2 n, then there is a linear
secret-sharing scheme realizing G with total share size O(

√
n|B|d log n).

Proof. We use the techniques presented in the proof of Lemma3. We take δ =
logn d, γ = logn |B|, α = 1

2 + γ
2 − δ

2 , and � = 2n1−α ln n. By the proof of Lemma 3,
there exist sets A1, . . . , A� ⊂ A of size nα that satisfy:
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(I)
⋃�

i=1 Ai = A, and
(II) for every 1 ≤ i ≤ �, the degree of the vertices in B in the graph Gi =

(Ai, B,E ∩ (Ai × B)) is at most 12nα+δ−1.

Then, we construct a secret-sharing scheme for each bipartite graph Gi =
(Ai, B,E ∩ (Ai × B)) using Lemma 4. The degree of each vertex in B in the
graph Gi is at least |Ai| − 12nα+δ−1, so the total share size will be

O

(
�∑

i=1

|B| + |Ai| · 12nα+δ−1

)

=

= O
(
ln n(n1+γ−α + nα+δ)

)
= O(n1/2+γ/2+δ/2 log n).

�

Theorem 4. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n
and the degree of every vertex in B is at least n−d for some d ≤ n. Then, there is
a linear secret-sharing scheme realizing G in which the share size of each vertex
is O(

√
d log n). The total share size of this scheme is O(n

√
d log n).

Proof. If d < log2 n, we use the construction in [8, Lemma 3.8]; in this scheme
the share size of each vertex is O(d) = O(

√
d log n), and the total share size is

O(n
√

d log n).4

Otherwise, d ≥ log2 n, and let δ = logn d, � = 2nδ/2 ln n, and A1, . . . , A� ⊂
A be the sets of size n1−δ/2 guarantied from Lemma 5 (taking γ = 1). As in
Theorem 1, we can assume that each vertex in A is a member of exactly one set,
and the sets still satisfy the two desired properties.

Next, as in Lemma 5, we construct a secret-sharing scheme for each bipartite
graph Gi = (Ai, B,E ∩ (Ai × B)) (for 1 ≤ i ≤ �) using the scheme of Lemma 4.
The degree of each vertex in B in the bipartite complement of Gi is at most
12nδ/2 = O(

√
d). Every vertex in B participates in � schemes, and gets a share

of size two in each of these schemes. Hence, the share size of every vertex in B is
2� = O(

√
d log n). Every vertex in A participates in one scheme, and gets a share

of size 12nδ/2 + 1 = O(
√

d) in this scheme. Overall, the share size of each vertex
in the resulting scheme is O(

√
d log n), and the total share size is O(n

√
d log n).

�

Theorem 5. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n such
that its bipartite complement G = (A,B,E) has at most n1+β edges, for some
constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme realizing G
with total share size O(n1+β/2 log2 n).

Proof. As in the proof of Theorem 2, for i = 0, . . . , (1 − β) log n − 1, define
Bi =

{
b ∈ B : n

2i+1 < degG(b) ≤ n
2i

}
and Bsmall =

{
b ∈ B : degG(b) ≤ nβ

}
.

For every 0 ≤ i ≤ (1 − β) log n − 1, we use Lemma 5 to construct a secret-
sharing scheme realizing the graph (A,Bi, E ∩ (A × Bi)); the total share size
4 In [8, Lemma 3.8], it is only stated that the total share size in the scheme is O(nd),

however, in their scheme the size of the share of each vertex is O(d).



412 A. Beimel et al.

of this scheme is O(
√

n · 2i+1nβ · n/2i · log n) = O(n1+β/2 log n). Finally, we
realize (A,Bsmall, E ∩ (A × Bsmall)) using the secret-sharing scheme of Theo-
rem 4; the total share size of this scheme is O(n1+β/2 log n) as well. Since we use
1 + (1 − β) log n schemes, the total share size of the resulting scheme is
O(n1+β/2 log2 n). �

Theorem 6. Let G = (V,E) be a graph with n vertices and with at least
(
n
2

) −
n1+β edges, for some constant 0 ≤ β < 1. Then, there is a secret-sharing scheme
realizing G with total share size O(n1+β/2 log3 n).

Proof. For every 1 ≤ t ≤ log n, we define the bipartite graph Ht = (At, Bt, Ft)
as in Theorem 3. The bipartite complements of these bipartite graphs have at
most n1+β edges. By Theorem 5, each such bipartite graph admits a secret-
sharing scheme with total share size O(n1+β/2 log2 n). The total share size of
the resulting scheme is O(n1+β/2 log3 n). �

We use Theorems 3 and 6 to show that the total share sizes required to realize
two graphs that differ in a few edges is close.

Corollary 1. Let G = (V,E) be a graph with n vertices that can be realized
by a secret-sharing scheme in which the total share size is m, and let G′ be a
graph obtained from G by adding and removing n1+β edges, for some constant
0 ≤ β < 1. Then, there is a secret-sharing scheme realizing G′ with total share
size O(m + n1+β/2 log3 n).

Proof. Let s be the secret, E′ ⊂ E be the set of edges removed from G, and E′′

(where E′′ ∩E = ∅) be the set of edges added to G. Note that G′ = (V, (E\E′)∪
E′′) and |E′|, |E′′| ≤ n1+β . First, we share the secret s using the secret-sharing
scheme of Theorem 3 realizing the sparse graph (V,E′′) with total share size
O(n1+β/2 log3 n). Next, we independently share the secret s using a 2-out-of-2
secret-sharing scheme. I.e., let s1, s2 be two random elements such that s = s1⊕s2
(i.e., s1 is chosen at random and s2 = s1 ⊕ s). We independently share s1
using the scheme realizing G with total share size m, and share s2 using the
secret-sharing scheme of Theorem 6 realizing the dense graph (V,E′) (note that
|E′| ≥ (

n
2

) − n1+β) with total share size O(n1+β/2 log3 n). The total share size
of the resulting scheme is O(m + n1+β/2 log3 n).

For an edge e in the graph G′, if e ∈ E′′, then it can reconstruct the secret
using the scheme of Theorem 3 realizing (V,E′′), and if e ∈ E\E′ = E ∩ E′,
then it can reconstruct s1 using the scheme realizing G and can reconstruct s2
using the scheme of Theorem 6 realizing (V,E′), and, hence, can reconstruct the
secret s.

For an edge e not in the graph G′, if e ∈ E′, then it cannot get information
on the secret s from the scheme realizing (V,E′′) (since E′′ ∩ E′ = ∅, which
implies that e /∈ E′′), and it cannot learn information on s2 from the scheme
realizing (V,E′), and, hence, it cannot get information on the secret s from the
2-out-of-2 scheme. Otherwise, if e ∈ E ∪ E′′, then it cannot get information on
the secret s from the scheme realizing (V,E′′) (since e /∈ E′′), and it cannot
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learn information on s1 from the scheme realizing G (since e /∈ E), and, hence,
it cannot get information on the secret s from the 2-out-of-2 scheme. �

6 Lower Bounds for Linear Secret-Sharing Schemes

In this section, we prove that for most forbidden graph access structures with n
parties, the total share size required by any linear secret-sharing scheme realizing
these access structures, with a one-bit secret, is Ω(n3/2). We then use this result
to prove that for most forbidden graph access structures with n parties and at
most n1+β edges, the total share size required by any linear secret-sharing scheme
realizing these access structures, with a one-bit secret, is Ω(n1+β/2). As we show
in this paper, this bound is tight up to a poly-logarithmic factor. Furthermore,
we bound the share size of families of access structures whose size of minimal
authorized sets is small. Since linear secret-sharing schemes are equivalent to
monotone span programs (see Claim 1), we prove the lower bounds using MSP
terminology.

The section is organized as follows: We start with some definitions, then in
Sect. 6.1 we discuss dual access structures and the dual of MSPs. In Sect. 6.2,
we prove lower bounds for MSPs in which each party labels a bounded number
of rows; this implies lower bounds for the max share size in linear secret-sharing
schemes. In Sect. 6.3, we prove a stronger result – the same lower bounds hold
for the size of MSPs; this implies lower bounds for the total share size in linear
secret-sharing schemes (this result uses the results of Section 6.2).

Definition 7. Let M̂ = 〈F,M, δ,1〉 be an MSP accepting an access structure Γ .
Define ρi(M̂) as the number of rows labeled by i, and define ρ(M̂) as the maximal

number of rows labeled by a single label: ρ(M̂)
def
= maxi∈P ρi(M̂). Define ρq(Γ )

as the minimum ρ(M̂) over all MSPs accepting the access structure Γ over Fq.
Define size(M̂) as the number of rows in the matrix M and sizeq(Γ ) as the

minimum size(M̂) over all MSPs accepting the access structure Γ over Fq.

Notice that ρq(Γ ) is the minimal max share size of all linear secret-sharing
schemes accepting Γ over Fq, and sizeq(Γ ) is the minimal total share size of all
linear secret-sharing schemes accepting Γ over Fq.

Definition 8. We say that an access structure Γ has rank r if the size of every
minimal authorized set in Γ is at most r.

By counting arguments it is possible to prove lower bounds on the monotone
span program size for most access structures: Assume that every access structure
can be accepted by an MSP of size S. The number of MSPs with n parties over
Fq whose size is at most S is at most nSqS2

(as proved in Proposition 1 below,
we can consider MSPs in which the number of columns in the matrix of the
MSP is at most S, thus, there are qS2

possible matrices and nS possible ways to
label the rows, where n is the number of parties). Since the number of monotone
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access structures is at least 22
n/

√
n and every MSP accepts one monotone access

structure, it must be that nSqS2 ≥ 22
n/

√
n, i.e., S log n + S2 log q ≥ 2n/

√
n,

which implies that S log q > S
√

log q = Ω(2n/2/n1/4) (where S log q is the non-
normalized total share size of the scheme).

It is not clear how to use direct counting arguments to prove lower bounds
on the size of MSPs accepting forbidden graph access structures: the number of
graphs is 2O(n2), thus, we get that nSqS2 ≥ 2O(n2), which only implies the trivial
lower bound S log q > S

√
log q = Ω(n).

6.1 Dual of Monotone Span Programs

We use the notion of dual access structures and dual MSPs, since their properties
would enable us to use a counting argument that will yield tight lower bounds
on the size of MSPs accepting forbidden graph access structures. Such dual’s
were studied in many papers, e.g., [28,30,31,36].

Definition 9 (Dual Access Structure). Given an access structure Γ ⊆ 2P ,
its dual access structure Γ⊥ is defined as

Γ⊥ def
= {B ⊆ P : P \B /∈ Γ}.

For example, for the t-out-of-n access structure Γt = {B ⊆ P : |B| ≥ t} (where
|P | = n),

Γ⊥
t =

{
B ⊆ P :

∣
∣P \B

∣
∣ < t

}
= {B ⊆ P : |B| > n − t} .

Given an MSP, we can define its dual MSP. For this construction, recall that
given an MSP 〈F,M, δ,1〉 accepting Γ , for every authorized set A ∈ Γ there
exists a reconstruction vector rA such that rAM = 1, and (rA)T is non-zero
only in rows labeled by A.

Constructions 1 (Dual MSP). Given an MSP M̂ = 〈F,M, δ,1〉 accepting
Γ over F, construct an MSP M̂⊥ = 〈F,M⊥, δ,1〉 in which for every minimal
authorized set A ∈ min Γ there exists a column (rA)T in M⊥, where rA is a
reconstruction vector for A in M . The MSP M̂⊥ = 〈F,M⊥, δ,1〉 is called the
dual MSP.

The following claim can be found in [31]. For completeness, we include its
proof.

Claim 3. Let M̂ = 〈F,M, δ,1〉 be an MSP accepting an access structure Γ ⊆
2P . The dual MSP M̂⊥ = 〈F,M⊥, δ,1〉, as defined in Construciton 1, is an
MSP accepting the dual access structure Γ⊥. The sizes of M̂ = 〈F,M, δ,1〉 and
M̂⊥ = 〈F,M⊥, δ,1〉 are the same.

Proof. We begin by proving that for every authorized set A ∈ Γ , the set B =
P\A is rejected by M̂⊥. It suffices to consider only minimal authorized sets
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A ∈ min Γ . The reconstruction vector rA of A is a column of M⊥, and has non-
zero entries only in rows labeled by A. The rows labeled by B = P\A cannot
span 1, since in the column (rA)T all entries labeled by B are zero.

Now, assume that A /∈ Γ . In this case, the rows of M labeled by elements
from A do not linearly span 1. By orthogonality arguments, there is a column
vector v such that 1 ·v = 1 and MAv = 0, where MA are the rows of M labeled
by elements from A. Denote w = (Mv)T . We prove that wM⊥ = 1, i.e., w is
a reconstruction vector of B = P\A in M̂⊥. For every column rC of M⊥ the
following is true:

w · (rC)T = (Mv)T · (rC)T = vT MT (rC)T = vT (rCM)T = vT · 1T = 1.

This implies that w · M⊥ = 1. Furthermore, the vector wT is non-zero only in
rows labeled by B = P\A (since MAv = 0). Thus, the set B has a reconstruction
vector for the MSP M̂⊥, and, therefore, is accepted by M̂⊥.

Since the MSP and its dual MSP have the same labeling, the size of the MSP
and the dual MSP are the same. �

Claim 3 implies that lower bounds on the size of the dual MSPs over F for
forbidden graph access structures yield lower bounds on the total share size of
linear secret-sharing schemes over F for forbidden graph access structures. The
following simple proposition bounds the number of columns of an MSP.

Proposition 1. For every non-empty access structure Γ and every prime-power
q, there is an MSP M̂ = 〈Fq,M, δ,1〉 accepting Γ such that size(M̂) = sizeq(Γ )
and the number of columns in M is at most size(M̂).

Proof. Let M̂ ′ = 〈Fq,M
′, δ,1〉 be an MSP accepting Γ such that size(M̂ ′) =

sizeq(Γ ). We remove all dependent columns from the MSP M̂ ′; this does not
change the sets accepted by the MSP. We obtain an MSP M̂ = 〈Fq,M, δ,1〉
accepting Γ such that all columns of M are linearly independent. Since column
rank equals row rank, the number of columns in M is at most the number of
rows in M , which is the number of rows in M ′.5 �

Given an access structure Γ of rank r and an MSP M̂ = 〈F,M, δ,1〉 accepting
Γ , we consider its dual M̂⊥ = 〈F,M⊥, δ,1〉 which accepts Γ⊥. We can assume
that M⊥ has at most S independent columns that form a basis spanning all
reconstruction vectors {rA}A∈minΓ (where S is the size of the MSPs M̂ and

M̂⊥). In particular, for every column in M⊥ there is a set of parties A of size at
most r such that the non-zero elements in the column are only in rows labeled
by A.

5 Notice that the rows are not necessarily linearly independent (since rows labeled by
different parties can be dependent). Therefore, the number of columns can actually
be smaller than the number of rows.
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6.2 Counting Monotone Span Programs with Small Max Share Size

We next compute the number of access structures of rank r that have an MSP
such that each party labels at most s rows and prove that there are at most
2O(rns2 log q) such access structures.

Theorem 7. Let q be a prime power and s, r, n be integers such that s > log n.
The number of access structures Γ with n parties, rank r, and ρq(Γ ) ≤ s is at
most 22rns2 log q.

Proof. If ρq(Γ ) ≤ s, then, as explained above, there is an MSP M̂⊥ =
〈F,M⊥, δ,1〉 accepting Γ⊥ of the following form:

– M⊥ is an ns×ns matrix (this can be achieved without changing the validity
of the MSP by adding zero rows or duplicating columns).

– δ is fixed and δ(i) = � i
s�, i.e., the first s rows are labeled by the first party,

the next s rows are labeled by the second party, and so on.
– Every column of M⊥ is a reconstruction vector of some minimal authorized

set A ∈ min Γ (by Claim 3).

Every dual of a rank r access structure has an MSP of this form, and the number
of these MSPs is bounded by the number of possible matrices. Every matrix has
ns columns, each is a reconstruction vector of some A ∈ min Γ . By the definition
of reconstruction vectors, the columns can have non-zero values only in entries
labeled by some i ∈ A, that is, at most rs entries can be non-zero. Therefore, the
number of possible column vectors for a given minimal authorized set A ∈ min Γ
is at most |Fq|rs = qrs. Since we allow the entries in rows labeled by A to be
zero, we can assume that the size of A is exactly r. The number of sets of size
r that can label a column is

(
n
r

)
< nr < 2rs (since s > log n). Thus, since the

number of columns is ns, the number of such matrices is at most

(2rsqrs)ns < 22rns2 log q.

�

Theorem 7 bounds the number of MSPs over a given finite field. We use this
result to give a lower bound on the share size in sharing a one-bit secret for
forbidden graph access structures by a linear secret-sharing schemes over all
finite fields.

Theorem 8. For most forbidden graph access structures, the max share size for
sharing a one-bit secret in a linear secret-sharing scheme is Ω(

√
n).

Proof. If we share a one-bit secret using an MSP M̂ over Fq with ρ(M̂) = s,
then the size of the share of at least one party is s log q. For the max share size
to be less than

√
n, it must be that q ≤ 2

√
n (otherwise, every share contains at

least
√

n bits), and, furthermore, s log q ≤ √
n.

We next bound the number of forbidden graph access structures that can be
realized by a secret-sharing scheme with max share size at most θ. Recall that
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in forbidden graph access structures all sets of size 3 are authorized. On one
hand, by Theorem 7, the number of forbidden graph access structures Γ , each
one of them has rank at most 3, with n parties and ρq(Γ ) ≤ θ/ log q, is at most
26n(θ/ log q)2 log q < 26nθ2

. Since we are counting linear schemes, we need to sum
the number of the MSPs for every possible finite field (there are at most 2

√
n

such fields, because q ≤ 2
√

n). Consider the MSPs for which the max share size in
the secret-sharing schemes defined by the MSPs is at most θ <

√
n. The number

of such MSPs is at most 2
√

n · 26nθ2 � 27nθ2
. On the other hand, the number

of graphs is 2(n
2) ≈ 2n2/2. Thus, if half of the forbidden graph access structures

have a linear secret-sharing scheme with max share size θ, then 27nθ2
> 1

2 ·2n2/2,
i.e., θ = Ω(

√
n). �

Since CDS protocols are equivalent to secret-sharing schemes for forbidden
graph access structures, we get the following corollary.

Corollary 2. For most functions f : {0, 1}N × {0, 1}N → {0, 1}, the communi-
cation complexity of every linear conditional disclosure of secrets protocol for f
is Ω(2N/2).

The same lower bound holds for graph access structures. Furthermore, if
we take sparse forbidden graphs with at most n1+β edges for some constant
0 ≤ β < 1, then the number of such graphs is at least

(
n2/2
n1+β

)
≥

(
n2/2
n1+β

)n1+β

= 2Ω(n1+β log n).

Thus, the max share size θ for such forbidden graph access structures has to
satisfy nθ2 > Ω(n1+β log n), i.e., θ = Ω(nβ/2

√
log n).

6.3 Counting Monotone Span Programs with Small Total Share
Size

Theorem 7 counts the number of rank r access structures with ρq(Γ ) ≤ s. The
total share size of access structures with max share size s can still be small,
i.e., n + s. Next, we count the number of forbidden graph access structures with
MSPs of size at most S.

Theorem 9. Let q be a prime power and S, n be integers such that S > n log n.
The number of forbidden graph access structures Γ with n parties and sizeq(Γ ) ≤
S is at most 2n2/3+(72S2 log q)/n.

Proof. Let M̂ = 〈F,M, δ,1〉 be a monotone span program accepting a forbidden
graph access structure Γ of a graph G = (V,E) with n parties V = {v1, . . . , vn}
such that size(M̂) ≤ S. Let B ⊆ V be the set of parties such that each one of the
parties in B labels more than 4S/n rows in M̂ . The size of B must be at most
n/4. Let M̂ ′ = 〈F,M ′, δ′,1〉 be the monotone span program obtained from M̂
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by removing the rows of M labeled by parties in B. Notice that ρ(M̂ ′) ≤ 4S/n.
Furthermore, M̂ ′ accepts the forbidden graph access structure Γ ′ obtained from
Γ by removing all the authorized sets containing parties from B. That is, Γ ′ is
the forbidden graph access structure of the graph G′ obtained by removing B
from G (i.e., G′ = (V \B,E ∩ (V \B) × (V \B))).

We say that a forbidden graph access structure Γ is efficient if sizeq(Γ ) ≤ S.
For every efficient forbidden graph access structure Γ of a graph G with n parties,
arbitrarily choose an MSP M̂G accepting it whose size is exactly S,6 choose a
set BG of size exactly n/4 such that each party in V \BG labels at most 4S/n

rows in M̂G, and let HG be the graph obtained by removing BG from G. As
explained above, if Γ is efficient then ρ(M̂ ′) ≤ 4S/n.

Fix a set B ⊂ V of size n/4 and a graph H = (VH , EH) such that VH ⊂
{v1, . . . , vn} and |VH | = 3n/4. We next give an upper-bound on the number of
efficient forbidden graph access structures Γ such that BG = B and HG = H.
The number of graphs G = (V,E) such that H is obtained by removing B from
G is at most 2(n/4

2 ) · 2n
4 · 3n

4 ≤ 2n2/4 (where the first term corresponds to possible
edges between vertices in B and the second term corresponds to possible edges
between a vertex in B and a vertex in V \B).

To conclude, the number of efficient forbidden graph access structures over
Fq is at most

(
n

n/4

)
· 2n2/4 · 26(3n/4)(4S/n)2 log q ≤ 2n2/3+72(S2/n) log q,

where the first term is the number of possible choices of B, the second term is an
upper bound on the number of graphs such that the graph obtained by removing
B from these graph is the same, and the third term is an upper bound on the
number of forbidden graph access structures Γ ′ whose set of parties is V \B and
ρq(Γ ′) ≤ 4S/n. �

Corollary 3. For most forbidden graph access structures, the total share size
for sharing a one-bit secret in a linear secret-sharing scheme is Ω(n3/2).

Proof. If we share a one-bit secret using an MSP M̂ over Fq with sizeq(M̂) = S,
then the total share size is S log q. For the total share size to be less than n3/2, it
must be that q ≤ 2

√
n (otherwise, each share contains more than

√
n bits, and,

in total, the share size is more than n3/2), and, furthermore, S log q ≤ n3/2.
On one hand, by Theorem9, the number of forbidden graph access structures

Γ with n parties and sizeq(Γ ) ≤ Θ/ log q is at most

2n2/3+(72(Θ/ log q)2 log q)/n < 2n2/3+72Θ2/n.

Since we are counting linear schemes, we need to sum the number of the MSPs
for every possible finite field (there are at most 2

√
n such fields, because q ≤ 2

√
n).

6 By adding all-zero rows we can assume that the size is exactly S.
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Consider the MSPs for which the total share size in the secret-sharing schemes
defined by the MSPs is at most Θ < n3/2. The number of such MSPs is at most

2
√

n · 2n2/3+72Θ2/n.

On the other hand, the number of graphs is 2(
n
2) ≈ 2n2/2. Thus, if half of the

forbidden graph access structures have a linear secret-sharing scheme with total
share size Θ, then

√
n + n2/3 + 72Θ2/n > n2/2 − 1, i.e., Θ = Ω(n3/2). �

We cannot apply Theorem9 directly to prove lower bounds on the total share
size of linear schemes for sparse or dense forbidden graph access structures,
since the term of 2n2/3 in Theorem 9 dominates the number of sparse graphs. To
prove lower bounds for sparse forbidden graph access structures, we use an idea
from [7].

Corollary 4. Let 0 ≤ β < 1 be a constant. There exists a forbidden graph access
structure with at most n1+β edges such that the total share size for sharing a one-
bit secret in a linear secret-sharing scheme is Ω(n1+β/2). Furthermore, there
exists a forbidden graph access structure with at least

(
n
2

)−n1+β edges such that
the total share size for sharing a one-bit secret in a linear secret-sharing scheme
is Ω(n1+β/2).

Proof. By Corollary 3, for every n there exists a graph with n vertices such that
the total share size in any linear secret-sharing scheme realizing its forbidden
graph access structure is Ω(n3/2). We use such a graph (with fewer vertices) to
construct a sparse graph G = (V,E) with n vertices. We partition the vertices
of G into n1−β disjoint sets of vertices V1, . . . , Vn1−β , where |Vi| = nβ for 1 ≤
i ≤ n1−β . We construct the edges as follows: For every i (where 1 ≤ i ≤ n1−β),
we construct a copy of a graph from Corollary 3 with nβ vertices among the
vertices of Vi. We denote this graph by Gi. There are no edges between vertices
in different sets.

Since all edges in the above construction are between vertices in the same
part, the number of edges is at most

(
nβ

2

)
n1−β < n1+β . The total share size of

any linear secret-sharing scheme realizing Gi (for 1 ≤ i ≤ n1−β) is Ω((nβ)3/2) =
Ω(n3β/2). Thus, the total share size of any linear secret-sharing scheme realizing
G is Ω(n1−βn3β/2) = Ω(n1+β/2).

To construct a dense graph with at least
(
n
2

)−n1+β edges that requires large
shares in every linear scheme realizing its forbidden graph access structure, we
use a similar construction, however, we add all edges between different sets.
Similar analysis implies that the resulting graph has at least

(
n
2

) − n1+β edges
and the total share size of any linear secret-sharing scheme realizing the graph
is Ω(n1+β/2). �

Theorem 10. Let q be a prime power and S, n, r be integers such that S >
n log n. The number of rank r access structures with n parties and sizeq(Γ ) ≤ S
is at most

exp
(

O
(
(1 − (3/4)r)

(
n

r

)
+

rS2 log q

n

))
.



420 A. Beimel et al.

Proof. The proof is similar to the proof of Theorem9, i.e., given an MSP of size
S, we find a set B of size at most n/4 containing all parties such that each one
of these parties labels more than 4S/n rows. Let Γ ′ be an access structure over
3n/4 parties such that each one of them label at most 4S/n rows. To complete
the proof, we need to upper bound the number of rank r access structures with
n parties whose restriction to 3n/4 parties is Γ ′. The number of sets of size r
that intersect B is the number of sets of size r minus the number of sets of size
r contained in P\B i.e.,

(
n

r

)
−

(
3n/4

r

)
> (1 − (3/4)r)

(
n

r

)
.

Thus, the number of rank r access structures with an MSP over Fq of size at
most S is at most

(
n

n/4

)
· 2(1−(3/4)r)(n

r) · 22r(3n/4)(4S/n)2 log q =

= exp
(

O
(
(1 − (3/4)r)

(
n

r

)
+

rS2 log q

n

))
.

�

We conclude that for most rank r access structures with n parties, the size
of the shares in every linear secret-sharing scheme realizing the access structure
with a one-bit secret is Ω(n(r+1)/2).
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Abstract. We study the question of minimizing the computational com-
plexity of (robust) secret sharing schemes and error correcting codes. In
standard instances of these objects, both encoding and decoding involve
linear algebra, and thus cannot be implemented in the class AC0. The fea-
sibility of non-trivial secret sharing schemes in AC0 was recently shown
by Bogdanov et al. (Crypto 2016) and that of (locally) decoding errors
in AC0 by Goldwasser et al. (STOC 2007).

In this paper, we show that by allowing some slight relaxation such
as a small error probability, we can construct much better secret shar-
ing schemes and error correcting codes in the class AC0. In some cases,
our parameters are close to optimal and would be impossible to achieve
without the relaxation. Our results significantly improve previous con-
structions in various parameters.

Our constructions combine several ingredients in pseudorandomness
and combinatorics in an innovative way. Specifically, we develop a gen-
eral technique to simultaneously amplify security threshold and reduce
alphabet size, using a two-level concatenation of protocols together with
a random permutation. We demonstrate the broader usefulness of this
technique by applying it in the context of a variant of secure broadcast.

1 Introduction

The motivation for this paper comes from two different sources. The first is the
general theme of improving performance at the price of allowing some small
probability of error or failure. This is evident throughout computer science. For
example, randomized algorithms tend to be much more efficient than their deter-
ministic counterparts. In cryptography and coding theory, randomization with
small failure probability can often be used to amplify security or improve effi-
ciency. This is arguably a good tradeoff in practice.

The second source of motivation is the goal of minimizing the computational
complexity of cryptographic primitives and related combinatorial objects. For
example, a line of work on the parallel complexity of cryptography [2,3,16,18,29]

A full version of this paper appears in [13].
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successfully constructed one way functions and other cryptographic primitives
in the complexity class NC0 based on different kinds of assumptions, including
very standard cryptographic assumptions. Works along this line have found sev-
eral unexpected applications, most recently in the context of general-purpose
obfuscation [24]. The study of low-complexity cryptography is also motivated
by the goal of obtaining stronger negative results. For instance, low-complexity
pseudo-random functions imply stronger hardness results for learning [30] and
stronger natural proof barriers [27], and low-complexity decryption [8] implies a
barrier for function secret sharing [10].

In this paper, we address the question of minimizing the complexity of secret
sharing schemes and error correcting codes by introducing additional random-
ization and allowing for a small failure probability. We focus on the complexity
class AC0, which is the lowest class for which a secret can be reconstructed or a
message be decoded with negligible error probability. We show that the random-
ization approach can be used towards obtaining much better parameters than
previous constructions. In some cases, our parameters are close to optimal and
would be impossible to achieve without randomization.

We now give a more detailed account of our results, starting with some
relevant background.

1.1 (Robust) Secret Sharing in AC0

A secret sharing scheme allows a dealer to randomly split a secret between n
parties so that qualified subsets of parties can reconstruct the secret from their
shares while unqualified subsets learn nothing about the secret. We consider here
a variant of threshold secret sharing (also known as a “ramp scheme”), where any
k parties can learn nothing about the secret, whereas all n parties together can
recover the secret from their shares. We also consider a robust variant where the
secret should be correctly reconstructed even if at most d shares are corrupted
by an adversary, possibly in an adaptive fashion. We formalize this below.

Definition 1 (secret sharing). An (n, k) secret sharing scheme with message
alphabet Σ0, message length m, and share alphabet Σ is a pair of functions
(Share,Rec), where Share : Σm

0 → Σn is probabilistic and Rec : Σn → Σm
0 is

deterministic, which satisfy the following properties.

– Privacy: For a privacy threshold k, the adversary can choose a sequence W =
(w1, . . . , wk) ∈ [n]k of share indices to observe, either adaptively (where each
wi depends on previously observed shares Share(x)w1 , . . . ,Share(x)wi−1) or
non-adaptively (where W is picked in one shot). We say that the scheme is
ε-private if for every such strategy, there is a share distribution D over Σk

such that for every secret message x ∈ Σm
0 , Share(x)W is ε-close (in statistical

distance) to D. We refer to ε as the privacy error and say that the scheme
has perfect privacy if ε = 0.

– Reconstruction: We say that the scheme has reconstruction error η if for every
x ∈ Σm

0 ,
Pr[Rec(Share(x)) = x] ≥ 1 − η.
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We say the scheme has perfect reconstruction if η = 0.

We are also interested in robust secret sharing, where an adversary is allowed
to modify at most d shares.

– Robustness: For any secret x ∈ Σm
0 , let Y = Share(x). Consider an arbitrary

adversary who (adaptively or non-adaptively) observes d shares and can then
arbitrarily change these d shares, transforming Y to Y ′. The scheme is d-
robust if for every such adversary,

Pr[Rec(Y ′) = x] ≥ 1 − η.

If the share alphabet and the message alphabet are both Σ, then we simply
say the alphabet of the scheme is Σ. By saying that a secret sharing scheme is
in AC0, we mean that both the sharing function and the reconstruction function
can be computed by (uniform) AC0 circuits.

A recent work of Bogdanov et al. [7] considers the complexity of sharing and
reconstructing secrets. The question is motivated by the observation that almost
all known secret sharing schemes, including the well known Shamir’s scheme [31],
require the computation of linear functions over finite fields, and thus cannot be
implemented in the class AC0 (i.e., constant depth circuits). Thus a natural ques-
tion is whether there exist secret sharing schemes in AC0 with good parameters.
In the case of threshold secret sharing, Bogdanov et al. [7] showed a relation
between the approximate degree1 of a function and the privacy threshold of a
secret sharing scheme. Using this and known approximate degree lower bounds,
they obtained several secret sharing schemes with sharing and reconstruction
functions computable in AC0. However, to achieve a large privacy threshold (e.g.,
k = Ω(n)) their construction needs to use a large alphabet (e.g., size 2poly(n)).
In the case of binary alphabet, they can only achieve privacy threshold Ω(

√
n)

with perfect reconstruction and privacy threshold Ω((n/ log n)2/3) with constant
reconstruction error η < 1/2. This limit is inherent without improving the best
known approximate degree of an AC0 function [11]. Furthermore, their schemes
only share one bit, and a naive approach of sharing more bits by repeating the
scheme multiple times will lead to a bad information rate. This leaves open the
question of improving these parameters. Ideally, we would like to share many bits
(e.g., Ω(n)), obtain a large privacy threshold (e.g., Ω(n)), and achieve perfect
reconstruction and small alphabet size at the same time.

In order to improve the AC0 secret sharing schemes from [7], we relax their
perfect privacy requirement and settle for the notion of ε-privacy from Defin-
ition 1. (This relaxation was recently considered in [9], see discussion below.)
Note that this relaxation is necessary to improve the privacy threshold of AC0

secret sharing schemes, unless one can obtain better approximate degree lower
bounds of an explicit AC0 function (as [7] showed that an explicit AC0 secret
1 The approximate degree of a Boolean function is the lowest degree of a real polyno-

mial that can approximate the function within, say, an additive difference of 1/3 on
every input.
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sharing scheme with privacy threshold k and perfect privacy also implies an
explicit function in AC0 with approximate degree at least k). Like most schemes
in [7], we only require that the secret can be reconstructed by all n parties. On
the other hand, we always require perfect reconstruction. We show that under
this slight relaxation, we can obtain much better secret sharing schemes in AC0.
For an adaptive adversary, we can achieve both a constant information rate and
a large privacy threshold (k = Ω(n)) over a binary alphabet. In addition, our
privacy error is exponentially small. Specifically, we have the following theorem.

Theorem 1 (adaptive adversary). For every n ∈ N and constant γ ∈
(0, 1/4), there exists an explicit (n,Ω(n)) secret sharing scheme in AC0 with

alphabet {0, 1}, secret length m = Ω(n), adaptive privacy error 2−Ω(n
1
4 −γ) and

perfect reconstruction.

Note that again, by using randomization and allowing for a small privacy
error, we can significantly improve both the privacy threshold and the informa-
tion rate, while also making the scheme much more efficient by using a smaller
alphabet.

Remark 1. We note that a recent paper by Bun and Thaler [11] gave improved
lower bounds for the approximate degree of AC0 functions. Specifically, for any
constant α > 0 they showed an explicit AC0 function with approximate degree at
least n1−α, and by the relation established in [7] this also gives a secret sharing
scheme in AC0 with privacy threshold n1−α. However, our results are stronger in
the sense that we can achieve threshold Ω(n), and furthermore we can achieve
perfect reconstruction while the secret sharing scheme in [11] only has constant
reconstruction error.

Remark 2. Our construction of AC0 secret sharing schemes is actually a gen-
eral transformation and can take any such scheme in [7] or [11] as the starting

point. The error 2−Ω(n
1
4 −γ) in Theorem 1 comes from our use of the one-in-a-box

function [28], which has approximate degree n1/3. We can also use the new AC0

function of [11] with approximate degree n1−α, which will give us an error of

2−Ω(n
1
2 −γ) but the reconstruction error will become a constant. We note that

the privacy error of our construction is also close to optimal, without further
improvement on the lower bounds of approximate degree of AC0 functions. This
is because a privacy error of 2−s will imply an AC0 function of approximate
degree Ω(s/ log n). Thus if one can achieve a sufficiently small privacy error
(e.g., 2−Ω(n)), then this will give an improved approximate degree lower bound
for an AC0 function. See Appendix A of the full version for a more detailed
explanation.

A very recent paper by Bogdanov and Williamson [9] considered a similar
relaxation as ours. Specifically, they showed how to construct two distributions
over n bits that are (k, ε)-wise indistinguishable, but can be distinguished with
advantage 1 − η by some AC0 function. Here (k, ε)-wise indistinguishable means
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that if looking at any subset of k bits, the two distributions have statistical
distance at most ε. Translating into the secret sharing model, this roughly implies
an AC0 secret sharing scheme with binary alphabet, privacy threshold k, privacy
error ε and reconstruction error η. Bogdanov and Williamson [9] obtained several
results in this case. Specifically, they showed a pair of such distributions for any
k ≤ n/2 with ε = 2−Ω(n/k), that can be distinguished with η = Ω(1) by the OR
function; or for any k with ε = 2−Ω((n/k)1−1/d), that can be distinguished with
η = 0 by a depth-d AND-OR tree.

We note the following important differences between our results and the
corresponding results by Bogdanov and Williamson [9]: first, the results in [9],
in the language of secret sharing, only consider a 1-bit secret, while our results
can share Ω(n) bits with the same share size. Thus our information rate is much
larger than theirs. Second, we can achieve a privacy threshold of k = Ω(n) while
simultaneously achieving an exponentially small privacy error of ε = 2−nΩ(1)

and
perfect reconstruction (η = 0). In contrast, the results in [9], when going into
the range of k = Ω(n), only have constant privacy error. In short, our results are
better than the results in [9], in the sense that we can simultaneously achieve
asymptotically optimal information rate and privacy threshold, exponentially
small privacy error and perfect reconstruction. As a direct corollary, we have the
following result, which is incomparable to the results in [9].

Corollary 1. There exists a constant α > 0 such that for every n and k ≤ αn,
there exists a pair of (k, 2−nΩ(1)

)-wise indistinguishable distributions X, Y over
{0, 1}n and an AC0 function D such that Pr[D(X)] − Pr[D(Y )] = 1.

Next, we extend our AC0 secret sharing schemes to the robust case, where the
adversary can tamper with several parties’ shares. Our goal is to simultaneously
achieve a large privacy threshold, a large tolerance to errors, a large information
rate and a small alphabet size. We can achieve a constant information rate with
privacy threshold and error tolerance both Ω(n), with constant size alphabet,
exponentially small privacy error and polynomially small reconstruction error.
However, here we can only handle a non-adaptive adversary. Specifically, we have
the following theorem.

Theorem 2 (non-adaptive adversary). For every n ∈ N, every η = 1
poly(n) ,

there exists an explicit (n,Ω(n)) robust secret sharing scheme in AC0 with share
alphabet {0, 1}O(1), message alphabet {0, 1}, message length m = Ω(n), non-
adaptive privacy error 2−nΩ(1)

, non-adaptive robustness Ω(n) and reconstruction
error η.

1.2 Error Correcting Codes for Additive Channels in AC0

Robust secret sharing schemes are natural generalizations of error correcting
codes. Thus our robust secret sharing schemes in AC0 also give error correcting
codes with randomized AC0 encoding and deterministic AC0 decoding. The model
of our error correcting codes is the same as that considered by Guruswami and
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Smith [20]: stochastic error correcting codes for additive channels. Here, the code
has a randomized encoding function and a deterministic decoding function, while
the channel can add an arbitrary error vector e ∈ {0, 1}n of Hamming weight
at most ρn to the transmitted codeword of length n. As in [20], the error may
depend on the message but crucially does not depend on the randomness used
by the encoder. Formally, we have the following definition.

Definition 2. For any n,m ∈ N, any ρ, ε > 0, an (n,m, ρ) stochastic
binary error correcting code (Enc,Dec) with randomized encoding function Enc :
{0, 1}m → {0, 1}n, deterministic decoding function Dec : {0, 1}n → {0, 1}m and
decoding error ε, is such that for every x ∈ {0, 1}m, every e = (e1, . . . , em) ∈
{0, 1}m with hamming weight at most ρn,

Pr[Dec(Enc(x) + e) = x] ≥ 1 − ε.

An (n,m, ρ) stochastic error correcting code (Enc,Dec) can be computed by
AC0 circuits if both Enc and Dec can be computed by AC0 circuits.

Previously, Guruswami and Smith [20] constructed such codes that approach
the Shannon capacity 1 − H(ρ). Their encoder and decoder run in polynomial
time and have exponentially small decoding error. Here, we aim at constructing
such codes with AC0 encoder and decoder. In a different setting, Goldwasser
et al. [19] gave a construction of locally decodable codes that can tolerate a
constant fraction of errors and have AC0 decoding. Their code has deterministic
encoding but randomized decoding. By repeating the local decoder for each bit
for O(log n) times and taking majority, one can decode each bit in AC0 with
error probability 1/poly(n) and thus by a union bound the original message
can also be decoded with error probability 1/poly(n). However we note that
the encoding function of [19] is not in AC0, and moreover their message rate
is only polynomially small. In contrast, our code has constant message rate
and can tolerate a constant fraction of errors (albeit in a weaker model) when
the decoding error is 1/poly(n) or even 2−poly log(n). The rate and tolerance are
asymptotically optimal. We can achieve even smaller error (2−Ω(r/ log n)) with
message rate 1/r. Furthermore both our encoding and decoding are in AC0.
Specifically, we have the following theorems.

Theorem 3 (error-correcting codes). For any n ∈ N and ε = 2−poly log(n),
there exists an (n,Ω(n), Ω(1)) stochastic binary error correcting code with decod-
ing error ε, which can be computed by AC0 circuits.

Theorem 4 (error-correcting codes with smaller decoding error). For
any n, r ∈ N, there exists an (n,m = Ω(n/r), Ω(1)) stochastic binary error
correcting code with decoding error 2−Ω(r/ log n), which can be computed by AC0

circuits.

Note that Theorem 4 is interesting mainly in the case where r is at least
poly log n.
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Remark 3. We note that, without randomization, it is well known that deter-
ministic AC0 circuits cannot compute asymptotically good codes [25]. Thus the
randomization in our AC0 encoding is necessary here. For deterministic AC0

decoding, only very weak lower bounds are known. In particular, Lee and Viola
[23] showed that any depth-c AC0 circuit with parity gates cannot decode beyond
error (1/2−1/O(log n)c+2)d, where d is the distance of the code. While the rep-
etition code can be decoded in AC0 with a near-optimal fraction of errors by
using approximate majority, obtaining a similar positive result for codes with a
significantly better rate is open.

1.3 Secure Broadcasting with an External Adversary

We apply our ideas and technical approach to the following flavor of secure
broadcasting in the presence of an adversary. The problem can be viewed as
a generalization of a one-time pad encryption. In a one-time pad encryption,
two parties share a secret key which can be used to transmit messages with
information-theoretic security. Suppose that each party wants to transmit an
m-bit string to the other party. If an external adversary can see the entire com-
munication, then it is well known that to keep both messages secret, the parties
must share a secret key of length at least 2 m. This can be generalized to the case
of n parties, where we assume that they have access to a public broadcast chan-
nel, and each party wants to securely communicate an m-bit string to all other
parties. This problem can be useful, for example, when n collaborating parties
want to compute a function of their secret inputs without revealing the inputs to
an external adversary. Again, if the adversary can see the entire communication,
then the parties need to share a secret key of length at least nm.

Now, what if we relax the problem by restricting the adversary’s power?
Suppose that instead of seeing the entire communication, the adversary can
only see some fraction of the communicated messages. Can we get more efficient
solutions? We formally define this model below, requiring not only the secrecy
of the inputs but also correctness of the outputs in the presence of adaptive
tampering with a bounded fraction of messages.

Definition 3. Let n,m ∈ N and α, ε > 0. An (n,m,α, ε, η)-secure broadcast-
ing protocol is an n-party protocol with the following properties. Initially, each
party i has a local input xi ∈ {0, 1}m and the parties share a secret key. The
parties can then communicate over a public broadcast channel. At the end of the
communication, each party computes a local output. We require the protocol to
satisfy the following security properties.

– (Privacy) For any adaptive adversarial observation W which observes at most
1 − α fraction of the messages, there is a distribution D, such that for any
inputs x = (x1, . . . , xn) ∈ ({0, 1}m)n leading to a sequence of messages Y ,
the distribution YW of observed messages is ε-close to D.

– (Robustness) For any adaptive adversary that corrupts at most 1−α fraction
of the messages, and any n-tuple of inputs x = (x1, . . . , xn) ∈ ({0, 1}m)n, all
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n parties can reconstruct x correctly with probability at least 1 − η after the
communication.

The naive solution of applying one-time pad still requires a shared secret key
of length at least nm, since otherwise even if the adversary only sees part of the
communication, he may learn some information about the inputs. However, by
using randomization and allowing for a small error, we can achieve much better
performance. Specifically, we have the following theorem.

Theorem 5 (secure broadcasting). For any n,m, r ∈ N with r ≤ m, there
exists an explicit (n,m,α = Ω(1), n2−Ω(r), n2−Ω(r)+nm2−Ω(m/r)) secure broad-
casting protocol with communication complexity O(nm) and shared secret key of
length O(r log(nr)).

1.4 Overview of the Techniques

Secret sharing. Here we give an overview of the techniques used in our construc-
tions of AC0 secret sharing schemes and error correcting codes. Our construc-
tions combine several ingredients in pseudorandomness and combinatorics in an
innovative way, so before describing our constructions, we will first describe the
important ingredients used.

The secret sharing scheme in [7]. As mentioned before, Bogdanov et al. [7] were
the first to consider secret sharing schemes in AC0. Our constructions will use
one of their schemes as the starting point. Specifically, since we aim at perfect
reconstruction, we will use the secret sharing scheme in [28] based on the so called
“one-in-a-box function” or Minsky-Papert CNF function. This scheme can share
one bit among n parties, with binary alphabet, privacy threshold Ω(n1/3) and
perfect reconstruction.

Random permutation. Another important ingredient, as mentioned before, is
random permutation. Applying a random permutation, in many cases, reduces
worst case errors to random errors, and the latter is much more convenient to
handle. This property has been exploited in several previous work, such as the
error correcting codes by Guruswami and Smith [20]. We note that a random
permutation from [n] to [n] can be computed in AC0 [22,26,33].

K-wise independent generators. The third ingredient of our construction is the
notion of k-wise independent pseudorandom generators. This is a function that
stretches some r uniform random bits to n bits such that any subset of k bits is
uniform. Such generators are well studied, while for our constructions we need
such generators which can be computed by AC0 circuits. This requirement is
met by using k-wise independent generators based on unique neighbor expander
graphs, such as those constructed by Guruswami et al. [21] which use seed length
r = kpoly log(n).

Secret sharing schemes based on error correcting codes. Using asymptotically
good linear error correcting codes, one can construct secret sharing schemes that



432 K. Cheng et al.

simultaneously achieve constant information rate and privacy threshold Ω(n)
(e.g., [12]). However, certainly in general these schemes are not in AC0 since
they need to compute linear functions such as parity. For our constructions, we
will use these schemes with a small block length (e.g., O(log n) or poly log(n))
such that parity with such input length can be computed by constant depth
circuits. For robust secret sharing, we will also be using robust secret sharing
schemes based on codes, with constant information rate, privacy threshold and
tolerance Ω(n) (e.g., [15]), with a small block length.

The constructions. We can now give an informal description of our constructions.
As mentioned before, our construction is a general transformation and can take
any scheme in [7] or [11] as the starting point. A specific scheme of interest is the
one in [7] based on the one-in-a-box function, which has perfect reconstruction.
Our goal then is to keep the property of perfect reconstruction, while increasing
the information rate and privacy threshold. One naive way to share more bits
is to repeat the scheme several times, one for each bit. Of course, this does not
help much in boosting the information rate. Our approach, on the other hand,
is to use this naive repeated scheme to share a short random seed R. Suppose
this gives us n parties with privacy threshold k0. We then use R and the k-wise
independent generator G mentioned above to generate an n-bit string Y , and
use Y to share a secret X by computing Y ⊕ X.

Note that now the length of the secret X can be as large as n and thus the
information rate is increased to 1/2. To reconstruct the secret, we can use the
first n parties to reconstruct R, then compute Y and finally X. Note that the
whole computation can be done in AC0 since the k-wise independent generator G
is computable in AC0. The privacy threshold, on the other hand, is the minimum
of k0 and k. This is because if an adversary learns nothing about R, then Y is
k-wise independent and thus by looking at any k shares in Y ⊕X, the adversary
learns nothing about X. This is the first step of our construction.

In the next step, we would like to boost the privacy threshold to Ω(n) while
decreasing the information rate by at most a constant factor. Our approach
for this purpose can be viewed as concatenating a larger outer protocol with
a smaller inner protocol, which boosts the privacy threshold while keeping the
information rate and the complexity of the whole protocol. More specifically,
we first divide the parties obtained from the first step into small blocks, and
then for each small block we use a good secret sharing scheme based on error
correcting codes. Suppose the adversary gets to see a constant fraction of the
shares, then on average for each small bock the adversary also gets to see only a
constant fraction of the shares. Thus, by Markov’s inequality and adjusting the
parameters, the adversary only gets to learn the information from a constant
fraction of the blocks. However, this is still not enough for us, since the outer
protocol only has threshold nΩ(1).

We solve this problem by using a threshold amplification technique. This is
one of our main innovations, and a key step towards achieving both constant
information rate and privacy threshold Ω(n) without sacrificing the error. On a
high level, we turn the inner protocol itself into another concatenated protocol
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(i.e., a larger outer protocol combined with a smaller inner protocol), and then
apply a random permutation. Specifically, we choose the size of the block men-
tioned above to be something like O(log2 n), apply a secret sharing scheme based
on asymptotically good error correcting codes and obtain O(log2 n) shares. We
then divide these shares further into O(log n) smaller blocks each of size O(log n)
(alternatively, this can be viewed as a secret sharing scheme using alphabet
{0, 1}O(log n)), and now we apply a random permutation of these smaller blocks.
If we are to use a slightly larger alphabet, we can now store each block together
with its index before the permutation as one share. Note that we need the index
information when we try to reconstruct the secret, and the reconstruction can
be done in AC0.

Now, suppose again that the adversary gets to see some small constant frac-
tion of the final shares, then since we applied a random permutation, we can
argue that each smaller block gets learned by the adversary only with some
constant probability. Thus, in the larger block of size O(log2 n), by a Chernoeff
type bound, except with probability 1/poly(n), we have that only some constant
fraction of the shares are learned by the adversary. Note that here by using
two levels of blocks, we have reduced the probability that the adversary learns
some constant fraction of the shares from a constant to 1/poly(n), which is much
better for the outer protocol as we shall see soon. By adjusting the parameters
we can ensure that the number of shares that the adversary may learn is below
the privacy threshold of the larger block and thus the adversary actually learns
nothing. Now, going back to the outer protocol, we know that the expected
number of large blocks the adversary can learn is only n/poly(n); and again by a
Chernoff type bound, except with probability 2−nΩ(1)

, the outer protocol guar-
antees that the adversary learns nothing. This gives us a secret sharing scheme
with privacy threshold Ω(n) while the information rate is still constant since we
only increased the number of shares by a constant factor. With the O(log n) size
alphabet, we can actually achieve privacy threshold (1 − α)n′ for any constant
0 < α < 1, where n′ is the total number of final parties.

To reduce to the binary alphabet, we can apply another secret sharing scheme
based on error correcting codes to each share of length O(log n). In this case then
we won’t be able to achieve privacy threshold (1 − α)n′, but we can achieve βn′

for some constant β > 0. This is because if the adversary gets to see a small con-
stant fraction of the shares, then by Markov’s inequality only for some constant
fraction of the smaller blocks the adversary can learn some useful information.
Thus the previous argument still holds.

As described above, our general construction uses two levels of concatenated
protocols, which corresponds to two levels of blocks. The first level has larger
blocks of size O(log2 n), where each larger block consists of O(log n) smaller
blocks of size O(log n). We use this two-level structure to reduce the probability
that an adversary can learn some constant fraction of shares, and this enables us
to amplify the privacy threshold to Ω(n). We choose the smaller block to have
size O(log n) so that both a share from the larger block with length O(log n)
and its index information can be stored in a smaller block. This ensures that the
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information rate is still a constant even if we add the index information. Finally,
the blocks in the second level are actually the blocks that go into the random
permutation. This general strategy is one of our main contributions and we hope
that it can find other applications.

The above construction gives an AC0 secret sharing scheme with good para-
meters. However, it is not a priori clear that it works for an adaptive adversary.
In standard secret sharing schemes, a non-adaptive adversary and an adaptive
adversary are almost equivalent since usually we have privacy error 0. More
specifically, a secret sharing scheme for a non-adaptive adversary with privacy
error ε and privacy threshold k is also a secret sharing scheme for an adap-
tive adversary with privacy error nkε and privacy threshold k. However in our
AC0 secret sharing scheme the error ε is not small enough to kill the nk factor.
Instead, we use the property of the random permutation to argue that our final
distribution is essentially symmetric; and thus informally no matter how the
adversary picks the shares to observe adaptively, he will not gain any advantage.
This will show that our AC0 secret sharing scheme also works for an adaptive
adversary.

To extend to robust secret sharing, we need to use robust secret sharing
schemes instead of normal schemes for the first and second level of blocks. Here
we use the nearly optimal robust secret sharing schemes based on various codes
by Cheraghchi [15]. Unfortunately since we need to use it on a small block length
of O(log n), the reconstruction error becomes 1/poly(n). Another tricky issue
here is that an adversary may modify some of the indices. Note that we need
the correct index information in order to know which block is which before the
random permutation. Suppose the adversary does not modify any of the indices,
but only modify the shares, then the previous argument can go through exactly
when we change the secret sharing schemes based on error correcting codes into
robust secret sharing schemes. However, if the adversary modifies some indices,
then we could run into situations where more than one block have the same index
and thus we cannot tell which one is correct (and it’s possible they are all wrong).
To overcome this difficulty, we store every index multiple times among the blocks
in the second level. Specifically, after we apply the random permutation, for every
original index we randomly choose O(log n) blocks in the second level to store
it. As the adversary can only corrupt a small constant fraction of the blocks in
the second level, for each such block, we can correctly recover its original index
with probability 1−1/poly(n) by taking the majority of the backups of its index.
Thus by a union bound with probability 1−1/poly(n) all original indices can be
correctly recovered. In addition, we use the same randomness for each block to
pick the O(log n) blocks, except we add a different shift to the selected blocks.
This way, we can ensure that for each block the O(log n) blocks are randomly
selected and thus the union bound still holds. Furthermore the randomness used
here is also stored in every block in the second level, so that we can take the
majority to reconstruct it correctly. In the above description, we sometimes need
to take majority for n inputs, which is not computable in AC0. However, we note
that by adjusting parameters we can ensure that at least say 2/3 fraction of the
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inputs are the same, and in this case it suffices to take approximate majority,
which can be computed in AC0 [32].

For our error correcting codes, the construction is a simplified version of the
robust secret sharing construction. Specifically, we first divide the message itself
into blocks of the first level, and then encode every block using an asymptot-
ically good code and divide the obtained codeword into blocks of the second
level. Then we apply a random permutation to the blocks of the second level as
before, and we encode every second level block by another asymptotically good
code. In short, we replace the above mentioned robust secret sharing schemes
by asymptotically good error correcting codes. We use the same strategy as in
robust secret sharing to identify corrupted indices. Using a size of O(log2 n) for
blocks in the first level will result in decoding error 1/poly(n), while using larger
block size (e.g., poly log(n)) will result in decoding error 2−poly log(n). This gives
Theorem 3. To achieve even smaller error, we can first repeat each bit of the
message r times for some parameter r. This serves as an outer error correct-
ing code, which can tolerate up to r/3 errors, and can be decoded in in AC0

by taking approximate majority. The two-level block structure and the argu-
ment we described before can now be used to show a smaller decoding error of
2−Ω(r/ log2 n). This gives Theorem 4.

Secure broadcasting. Rather than use the naive approach of one-time pad, here a
more clever solution is to use secret sharing (assuming that each party also has
access to local private random bits). By first applying a secret sharing scheme to
the input and then broadcasting the shares, a party can ensure that if the adver-
sary only gets to see part of the messages (below the secrecy threshold), then
the adversary learns nothing. In this case the parties do not even need shared
secret key. However, one problem with this solution is that the adversary cannot
be allowed to see more than 1/n fraction of the messages, since otherwise he can
just choose the messages broadcasted from one particular party, and then the
adversary learns the input of that party. This is the place where randomization
comes into play. If in addition, we allow the parties to share a small number
of secret random bits, then the parties can use this secret key to randomly per-
mute the order in which the they broadcast their messages (after applying the
secret sharing scheme). Since the adversary does not know the secret key, we
can argue that with high probability only a small fraction of each party’s secret
shares are observed. Therefore, by the properties of secret sharing we can say
that the adversary learns almost nothing about each party’s input. The crucial
features of this solution are that first, the adversary can see some fixed fraction
of messages, which is independent of the number of parties n (and thus can
be much larger than 1/n). Second, the number of shared secret random bits is
much smaller than the naive approach of one-time pad. Indeed, as we show in
Theorem 23, to achieve security parameter roughly r it is enough for the parties
to share O(r(log n + log r)) random bits. Finally, by using an appropriate secret
sharing scheme, the communication complexity of our protocol for each party
is O(m), which is optimal up to a constant factor. Note that here, by applying
random permutation and allowing for a small probability of error, we simulta-
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neously improve the security threshold (from 1/n to Ω(1)) and the length of the
shared secret key (from nm to O(r(log n + log r))).

Discussions and open problems. In this paper we continue the line of work on
applying randomization and allowing a small failure probability for minimizing
the computational complexity of cryptographic primitives and related combina-
torial objects while maximizing the level of achievable security. In the context
of secret sharing in AC0, we show how to get much better parameters by allow-
ing an (exponentially) small privacy error. We note that achieving exponentially
small error here is non-trivial. In fact, if we allow for a larger error then (for a
non-adaptive adversary) there is a simple protocol for AC0 secret sharing: one
can first take a random seed R of length Ω(n), and then apply a deterministic
AC0 extractor for bit-fixing sources to obtain an output Y of length Ω(n). The
secret X can then be shared by computing the parity of Y and X. This way, one
can still share Ω(n) bits of secret, and if the adversary only learns some small
fraction of the seed, then the output Y is close to uniform by the property of
the extractor, and thus X remains secret. However, by the lower bound of [14],
the error of such AC0 extractors (or even for the stronger seeded AC0 extrac-
tors) is at least 2−poly log(n). Therefore, one has to use additional techniques to
achieve exponentially small error. We also extended our techniques to robust AC0

secret sharing schemes, stochastic error correcting codes for additive channels,
and secure broadcasting. Several intriguing open problems remain.

First, in our robust AC0 secret sharing schemes, we only achieve reconstruc-
tion error 1/poly(n). This is because we need to use existing robust secret sharing
schemes on a block of size O(log n). Is it possible to avoid this and make the error
exponentially small? Also, again in this case we can only handle non-adaptive
adversaries, and it would be interesting to obtain a robust AC0 secret sharing
scheme that can handle adaptive adversaries. These questions are open also for
AC0 stochastic error correcting codes.

Second, as we mentioned in Remark 2 (see also [9]), a sufficiently small privacy
error in an AC0 secret sharing scheme would imply an improved approximate
degree lower bound for AC0 functions. Is it possible to improve our AC0 secret
sharing scheme, and use this approach to obtain better approximate degree lower
bound for AC0 functions? This seems like an interesting direction.

In addition, the privacy threshold amplification technique we developed, by
using two levels of concatenated protocols together with a random permutation,
is quite general and we feel that it should have applications elsewhere. We note
that the approach of combining an “outer scheme” with an “inner scheme” to
obtain the best features of both has been applied in many previous contexts.
For instance, it was used to construct better codes [1,20] or better secure multi-
party computation protocols [17]. However, in almost all of these previous appli-
cations, one starts with an outer scheme with a very good threshold (e.g., the
Reed-Solomon code which has a large distance) and the goal is to use the inner
scheme to inherit this good threshold while improving some other parameters
(such as alphabet size). Thus, one only needs one level of concatenation. In our
case, instead, we start with an outer scheme with a very weak threshold (e.g.,
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the one-in-a-box function which only has privacy threshold n1/3). By using two
levels of concatenated protocols together with a random permutation, we can
actually amplify this threshold to Ω(n) while simultaneously reducing the alpha-
bet size. This is an important difference to previous constructions and one of our
main contributions. We hope that these techniques can find other applications
in similar situations.

Finally, since secret sharing schemes are building blocks of many other impor-
tant cryptographic applications, it is an interesting question to see if the low-
complexity secret sharing schemes we developed here can be used to reduce the
computational complexity of other cryptographic primitives.

Paper organization. We introduce some notation and useful results in Sect. 2.
In Sect. 3 we give our privacy threshold amplification techniques. In Sect. 4, we
show how to increase the information rate using k-wise independent generators.
Combining all the above techniques, our final construction of AC0 secret sharing
schemes is given in Sect. 5. Instantiations appear in Sect. 6. Finally, we give our
constructions of robust AC0 secret sharing schemes, AC0 error correcting codes,
and secure broadcast protocols in Sect. 7. Some proofs and additional details
have been deferred to the full version [13].

2 Preliminaries

Let | · | denote the size of the input set or the absolute value of an input real
number, based on contexts.

For any set I of integers, for any r ∈ Z, we denote r + I or I + r to be
{i′ : i′ = i + r, i ∈ I}.

We use Σ to denote the alphabet. Readers can simply regard Σ as {0, 1}l

for some l ∈ N. For σ ∈ Σ, let σn = (σ, σ, . . . , σ) ∈ Σn. For any sequence
s = (s1, s2, . . . , sn) ∈ Σn and sequence of indices W = (w1, . . . , wt) ∈ [n]t with
t ≤ n, let sW be the subsequence (sw1 , sw2 , . . . , swt

).
For any two sequences a ∈ Σn, b ∈ Σ′n′

where a = (a1, a2, . . . , an), b =
(b1, b2, . . . , bn′), let a ◦ b = (a1, . . . , an, b1, . . . , bn′) ∈ Σn × Σ′n′

.
Let supp(·) denote the support of the input random variable. Let I(·) be the

indicator function.

Definition 4 (Statistical Distance). The statistical distance between two
random variables X and Y over Σn for some alphabet Σ, is SD(X,Y ) which
is defined as follows,

SD(X,Y ) = 1/2
∑

a∈Σn

|Pr[X = a] − Pr[Y = a]|.

Here we also say that X is SD(X,Y )-close to Y .

Lemma 1 (Folklore Properties of Statistical Distance [4]).

1. (Triangle Inequality) For any random variables X, Y , Z over Σn, we have

SD(X,Y ) ≤ SD(X,Z) + SD(Y,Z).
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2. ∀n,m ∈ N, any deterministic function f : {0, 1}n → {0, 1}m and any random
variables X, Y over Σn,

SD(f(X), f(Y )) ≤ SD(X,Y ).

We will use the following well known perfect XOR secret sharing scheme.

Theorem 6 (Folklore XOR secret sharing). For any finite field F, define
Share+ : F → F

n and Rec+ : F
n → F, such that for any secret x ∈ F, Share+(x) =

y such that y is uniformly chosen in F
n conditioned on

∑
i∈[n] yi = x and Rec+

is taking the sum of its input.
(Share+,Rec+) is an (n, n − 1) secret sharing scheme with share alpha-

bet and message alphabet both being F, message length 1, perfect privacy and
reconstruction.

Definition 5 (Permutation). For any n ∈ N, a permutation over [n] is defined
to be a bijective function π : [n] → [n].

Definition 6 (k-wise independence). For any set S, let X1, . . . , Xn be ran-
dom variables over S. They are k-wise independent (and uniform) if any k of
them are independent (and uniformly distributed).

For any r, n, k ∈ N, a function g : {0, 1}r → Σn is a k-wise (uniform) inde-
pendent generator, if for g(U) = (Y1, . . . , Yn), Y1, . . . , Yn are k-wise independent
(and uniform). Here U is the uniform distribution over {0, 1}r.

Definition 7 [21]. A bipartite graph with N left vertices, M right vertices and
left degree D is a (K,A) expander if for every set of left vertices S ⊆ [N ] of size
K, we have |Γ (S)| > AK. It is a (≤Kmax, A) expander if it is a (K,A) expander
for all K ≤ Kmax.

Here ∀x ∈ [N ], Γ (x) outputs the set of all neighbours of x. It is also a set
function which is defined accordingly. Also ∀x ∈ [N ], d ∈ [D], the function
Γ : [N ] × [D] → [M ] is such that Γ (x, d) is the dth neighbour of x.

Theorem 7 [21]. For all constants α > 0, for every N ∈ N, Kmax ≤ N , and
ε > 0, there exists an explicit (≤Kmax, (1−ε)D) expander with N left vertices, M
right vertices, left degree D = O((log N)(log Kmax)/ε)1+1/α and M ≤ D2K1+α

max .
Here D is a power of 2.

For any circuit C, the size of C is denoted as size(C). The depth of C is
denoted as depth(C). Usually when we talk about computations computable by
AC0 circuits, we mean uniform AC0 circuits, if not stated specifically.

Lemma 2 (Folklore properties of AC0 circuits [4,19]). For every n ∈ N,

1. ([4] Folklore) every Boolean function f : {0, 1}l=Θ(log n) → {0, 1} can be com-
puted by an AC0 circuit of size poly(n) and depth 2.

2. [19] for every c ∈ N, every integer l = Θ(logc n), if the function fl : {0, 1}l →
{0, 1} can be computed by a circuit with depth O(log l) and size poly(l), then
it can be computed by a circuit with depth c + 1 and size poly(n).
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Remark 4. We briefly describe the proof implied in [19] for the second property
of our Lemma 2. As there exists an NC1 complete problem which is downward
self-reducible, the function fl can be reduced to (AC0 reduction) a function with
input length O(log n). By Lemma 2 part 1, and noting that the reduction here
is an AC0 reduction, fl can be computed by an AC0 circuit.

3 Random Permutation

3.1 Increasing the Privacy Threshold

The main technique we use here is random permutation.

Lemma 3 [22,26,33]. For any constant c ≥ 1, there exists an explicit AC0

circuit C : {0, 1}r → [n]n with size poly(n), depth O(1) and r = O(nc+1 log n)
such that with probability 1 − 2−nc

, C(Ur) gives a uniform random permutation
of [n]; When this fails the outputs are not distinct.

In the following we give a black box AC0 transformation of secret sharing
schemes increasing the privacy threshold.

Construction 1. For any n, k,m ∈ N with k ≤ n, any alphabet Σ,Σ0, let
(Share,Rec) be an (n, k) secret sharing scheme with share alphabet Σ, message
alphabet Σ0, message length m.

Let (Share+,Rec+) be a (t, t − 1) secret sharing scheme with alphabet Σ by
Theorem6.

For any constant a ≥ 1, α > 0, large enough b ≥ 1, we can construct the
following (n′ = tnn̄, k′ = (1 − α)n′) secret sharing scheme (Share′,Rec′) with
share alphabet Σ × [n′], message alphabet Σ0, message length m′ = mn̄, where
t = O(log n), n̄ = bna−1.

Function Share′ : Σm′
0 → (Σ × [n′])n′

is as follows.

1. On input secret x ∈ Σmn̄
0 , parse x to be (x1, x2, . . . , xn̄) ∈ (Σm

0 )n̄.
2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . ,Share(xn̄)) and parse it to be

ŷ = (ŷ1, . . . , ŷnn̄) ∈ Σnn̄. Note that Share is from Σm
0 to Σn.

3. Compute (Share+(ŷ1), . . . ,Share+(ŷnn̄)) ∈ (Σt)nn̄ and split every entry to be
t elements in Σ to get y′ = (y′

1, . . . , y
′
n′) ∈ Σn′

. Note that Share+ is from Σ
to Σt.

4. Generate π by Lemma 3 which is uniformly random over permutations of [n′].
If it fails, which can be detected by checking element distinctness, set π to be
such that ∀i ∈ [n′], π(i) = i.

5. Let

Share′(x) = (y′
π−1(1) ◦ π−1(1), . . . , y′

π−1(n′) ◦ π−1(n′)) ∈ (Σ × [n′])n′
.

Function Rec′ : (Σ × [n′])n′ → Σm′
0 is as follows.
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1. Parse the input to be (y′
π−1(1) ◦ π−1(1), . . . , y′

π−1(n′) ◦ π−1(n′)).
2. Compute y′ = (y′

1, . . . , y
′
n′) according to the permutation.

3. Apply Rec+ on y′ for every successive t entries to get ŷ.
4. Parse ŷ to be y.
5. Compute x by applying Rec on every entry of ŷ.
6. Output x.

Lemma 4. If Share and Rec can be computed by AC0 circuits, then Share′ and
Rec′ can also be computed by AC0 circuits.

Proof. As Share can be computed by an AC0 circuit, y can be computed by an
AC0 circuit (uniform). By Lemma 2 part 1, we know that (Share+,Rec+) both
can be computed by AC0 circuits. By Lemma 3, (π−1(1), π−1(2), . . . , π−1(n′))
can be computed by an AC0 circuit. Also

∀i ∈ [n′], y′
π−1(i) =

∨

j∈[n′]

(y′
j ∧ (j = π−1(i))). (1)

Thus Share′ can be computed by an AC0 circuit.
For Rec′, ∀i ∈ [n′], y′

i =
∨

j∈[n′](y
′
π−1(j) ∧ (π−1(j) = i)). As Rec+ can be

computed by an AC0 circuit, y can be computed by an AC0 circuit. As Rec can
be computed by an AC0 circuit, Rec′ can be computed by an AC0 circuit.

Lemma 5. If the reconstruction error of (Share,Rec) is η, then the reconstruc-
tion error of (Share′,Rec′) is η′ = n̄η.

Proof. According to the construction, as (Share+,Rec+) has perfect reconstruc-
tion by Lemma 6, the y computed in Rec′ is exactly (Share(x1), . . . ,Share(xn̄)).
As ∀i ∈ [n̄],Pr[Rec(Share(xi)) = xi] ≥ 1 − η,

Pr[Rec′(Share′(x)) = x] = Pr[
∧

i∈[n̄]

(Rec(Share(xi)) = xi)] ≥ 1 − n̄η, (2)

by the union bound.

In order to show privacy, we need the following Chernoff Bound.

Definition 8 (Negative Correlation [5,6]). Binary random variables
X1,X2, . . . , Xn are negative correlated, if ∀I ⊆ [n],

Pr[
∧

i∈I

(Xi = 1)] ≤
∏

i∈I

Pr[Xi = 1] and Pr[
∧

i∈I

(Xi = 0)] ≤
∏

i∈I

Pr[Xi = 0].

Theorem 8 (Negative Correlation Chernoff Bound [5,6]). Let
X1, . . . , Xn be negatively correlated random variables with X =

∑n
i=1 Xi, μ =

E[X].

– For any δ ∈ (0, 1),

Pr[X ≤ (1 − δ)μ] ≤ e−δ2μ/2 and Pr[X ≥ (1 + δ)μ] ≤ e−δ2μ/3.

– For any d ≥ 6μ, Pr[X ≥ d] ≤ 2−d.
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Lemma 6. Let π : [n] → [n] be a random permutation. For any set S,W ⊆ [n],
let u = |W |

n |S|. Then the following holds.

– for any constant δ ∈ (0, 1),

Pr[|π(S) ∩ W | ≤ (1 − δ)μ] ≤ e−δ2μ/2,

Pr[|π(S) ∩ W | ≥ (1 + δ)μ] ≤ e−δ2μ/3.

– for any d ≥ 6μ, Pr[|π(S) ∩ W | ≥ d] ≤ 2−d.

Proof. For every s ∈ S, let Xs be the indicator such that Xs = 1 is the event
that π(s) is in W . Let X =

∑
s∈S Xs. So |π(S) ∩ W | = X. Note that Pr[Xs =

1] = |W |/n. So μ = E(X) = |W |
n |S|.

For any I ⊆ S,

Pr[
∧

i∈I

(Xi = 1)] =
|W |
n

· |W | − 1
n − 1

· · · |W | − |I|
n − |I| , (3)

(if |W | < |I|, it is 0). This is because the random permutation can be viewed as
throwing elements 1, . . . , n into n boxes uniformly one by one, where every box
can have at most one element. We know that for j = 1, . . . , |I|, |W |−j

n−j ≤ |W |
n

as |W | ≤ n. So Pr[
∧

i∈I(Xi = 1)] ≤ ∏
i∈I Pr[Xi = 1]. In the same way, for any

I ⊆ [n],

Pr[
∧

i∈I

(Xi = 0)] =
n − |W |

n
· n − |W | − 1

n − 1
· · · n − |W | − |I|

n − |I| , (4)

(if n − |W | < |I|, it is 0). Thus ∀I ⊆ [n],Pr[
∧

i∈I(Xi = 0)] ≤ ∏
i∈I Pr[Xi = 0].

By Theorem 8, the conclusion follows.

We can get the following more general result by using Lemma 6.

Lemma 7. Let π : [n] → [n] be a random permutation. For any W ⊆ [n] with
|W | = γn, any constant δ ∈ (0, 1), any t, l ∈ N

+ such that tl ≤ 0.9δ
1+0.9δ γn, any

S = {S1, . . . , Sl} such that ∀i ∈ [l], Si ⊆ [n] are disjoint sets and |Si| = t, let
Xi be the indicator such that Xi = 1 is the event |π(Si) ∩ W | ≥ (1 + δ)γt. Let
X =

∑
i∈[l] Xi. Then for any d ≥ 0,

Pr[X ≥ d] ≤ e−2d+(e2−1)e−Ω(γt)l.

Proof. For any s > 0, Pr[X ≥ d] = Pr[esX ≥ esd] ≤ E[esX ]
esd by Markov’s inequal-

ity. For every i ∈ [l], ∀x1, . . . , xi−1 ∈ {0, 1}, consider p = Pr[Xi = 1|∀j <

i,Xj = xj ]. Let S̄i =
⋃i

j=1 Sj for i ∈ [l]. Note that the event ∀j < i,Xj = xj

is the union of exclusive events π(S̄i−1) = V,∀j < i,Xj = xj for V ⊆ [n] with
|V | = (j − 1)t and π(S̄i−1) = V does not contradict ∀j < i,Xj = xj . Condi-
tioned on any one of those events, saying π(S̄i−1) = V,∀j < i,Xj = xj , π is
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a random bijective mapping from [n] − S̄i to [n] − V . Note that |W∩([n]−V )|
n−(i−1)t ≤

γn
n− 0.9δ

1+0.9δ γn
≤ γn

n− 0.9δ
1+0.9δ n

≤ (1 + 0.9δ)γn, since (i − 1)t ≤ lt ≤ 0.9δ
1+0.9δ γn. So

E[π(Si) ∩ W ||π(S̄i−1) = V,∀j < i,Xj = xj ] ≤ (1 + 0.9δ)γt. By Lemma 6,
Pr[Xi = 1|π(S̄i−1) = V,∀j < i,Xj = xj ] = Pr[|π(Si)∩W | ≥ (1+δ)γt|π(S̄i−1) =
V,∀j < i,Xj = xj ] ≤ e−Ω(γt). Thus p ≤ e−Ω(γt). Next note that

E[es
∑l

k=i Xk |∀j < i,Xj = xj ]

= pes
E[es

∑l
k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1]

+ (1 − p)E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0]

≤(pes + 1 − p)max(E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1],

E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0])

≤ep(es−1) max(E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1],

E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0])

≤ee−Ω(γt)(es−1) max(E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1],

E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0]).

(5)

As this holds for every i ∈ [l] and every x1, . . . , xi−1 ∈ {0, 1}, we can iteratively
apply the inequality and get the result that there exists x′

1, . . . , x
′
l ∈ {0, 1} such

that

E[esX ] ≤ ee−Ω(γt)(es−1)
E[es

∑l
k=2 Xk |X1 = x′

1]

≤ e2e−Ω(γt)(es−1)
E[es

∑l
k=3 Xk |X1 = x′

1,X2 = x′
2]

≤ · · · ≤ e(l−1)e−Ω(γt)(es−1)
E[esXl |X1 = x′

1,X2 = x′
2, . . . , Xl−1 = x′

l−1]

≤ ee−Ω(γt)(es−1)l.
(6)

Let’s take s = 2. So Pr[X ≥ d] ≤ E[esX ]
esd ≤ e−2d+(e2−1)e−Ω(γt)l.

Let’s first show the non-adaptive privacy of this scheme.

Lemma 8. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-
adaptive privacy error of (Share′,Rec′) is n̄(ε + 2−Ω(k)).

Proof. We show that there exists a distribution D such that for any string x ∈
Σm′

0 , for any sequence of distinct indices W = (w1, w2, . . . , wk′) ∈ [n′]k
′
(chosen

before observation),

SD(Share′(x)W ,D) ≤ n̄(ε + 2−Ω(k)).

For every i ∈ [nn̄], the block Share+(ŷi) has length t. Let the indices of shares
in Share+(ŷi) be Si = {(i − 1)t + 1, . . . , it}.
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For every i ∈ [n̄], let Ei be the event that for at most k of j ∈ {(i − 1)n +
1, . . . , in}, π(Sj) ⊆ W . Let E =

⋂
i∈[n̄] Ei. We choose b to be such that tn ≤

0.9α
1+0.9α |W |. So by Lemma 7, Pr[Ei] ≥ 1 − e−Ω(k)+(e2−1)e−Ω((1−α)t)n. We choose a
large enough t = O(log n) such that Pr[Ei] ≥ 1−e−Ω(k). So Pr[E] ≥ 1− n̄e−Ω(k)

by the union bound.
Let’s define the distribution D to be Share′(σ)W for some σ ∈ Σm′

0 . We claim
that Share′(x)W |E and D|E have statistical distance at most n̄ε. The reason is
as follows.

Let’s fix a permutation π for which E happens. We claim that Share′(x)W

is a deterministic function of at most k entries of each yi for i ∈ [n̄] and some
extra uniform random bits. This is because, as E happens, for those i ∈ [nn̄]
with π(Si) � W , the shares in π(Si) ∩ W are independent of the secret by the
privacy of (Share+,Rec+). Note that they are also independent of other shares
since the construction uses independent randomness for Share+(ŷi), i ∈ [nn̄]. For
those i ∈ [nn̄] with π(Si) ⊆ W , the total number of them is at most k. So the
claim holds. Hence by the privacy of (Share,Rec) with noting that yi, i ∈ [n̄] are
generated using independent randomness,

SD(Share′(x)W ,D) ≤ n̄ε. (7)

So with probability at least 1 − n̄e−Ω(k) over the fixing of π, Share′(x)W and
D have statistical distance at most n̄ε, which means that

SD(Share′(x)W ,D) ≤ n̄(ε + 2−Ω(k)). (8)

Next we show the adaptive privacy.

Lemma 9. For any alphabet Σ, any n, k ∈ N with k ≤ n, for any distribution
X = (X1, . . . , Xn) over Σn, let Y = ((Xπ−1(1) ◦π−1(1)), . . . , (Xπ−1(n) ◦π−1(n)))
where π is a random permutation over [n] → [n]. For any adaptive observation
W with |W | = k, YW is the same distribution as Y[k].

Proof. Let W = (w1, . . . , wk).
We use induction.
For the base step, for any x ∈ Σ, any i ∈ [n],

Pr[Yw1 = (x, i)] = Pr[Xi = x]/n, (9)

while
Pr[Y1 = (x, i)] = Pr[Xi = x]/n. (10)

So Yw1 and Y1 are the same distributions.
For the inductive step, assume that YW[i] and Y[i] are the same distributions.

We know that for any u ∈ (Σ × [n])i,

Pr[YW[i] = u] = Pr[Y[i] = u]. (11)

Fix a u ∈ (Σ × [n])i. For any v = (v1, v2) ∈ (Σ × [n]), where v1 ∈ Σ, v2 ∈ [n],
Pr[Ywi+1 = v|YW[i] = u] = 0 if v2 has already been observed in the previous i
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observations; otherwise Pr[Ywi+1 = v|YW[i] = u] = Pr[Xv2=v1]

n−i . Also Pr[Yi+1 =
v|Y[i] = u] = 0 if v2 has already been observed in the previous i observations;

otherwise Pr[Yi+1 = v|Y[i] = u] = Pr[Xv2=v1]

n−i .
Thus YW[i+1] and Y[i+1] are the same distributions. This finishes the proof.

Lemma 10. If (Share,Rec) has non-adaptive privacy error ε, then (Share′,Rec′)
has adaptive privacy error n̄(ε + 2−Ω(k)).

Proof. First we assume that the adaptive observer always observes k′ shares.
For every observer M which does not observe k′ shares, there exists another
observer M ′ which can observe the same shares as M and then observe some
more shares. That is to say that if the number of observed shares is less than k′,
M ′ will choose more unobserved shares (sequentially in a fixed order) to observe
until k′ shares are observed. Since we can use a deterministic function to throw
away the extra observes of M ′ to get what M should observe, by Lemma 1 part
2, if the privacy holds for M ′ then the privacy holds for M . As a result, we
always consider observers which observe k′ shares.

By Lemma 9, for any s ∈ Σm′
0 , any adaptive observation W , Share′(s)W is the

same distribution as Share′(s)W ′ where W = {w1, w2, . . . , wk′}, W ′ = [k′]. As W ′

is actually a non-adaptive observation, by Lemma8, for distinct s, s′ ∈ {0, 1}m′
,

SD(Share′(s)W ′ ,Share′(s′)W ′) ≤ n̄(ε + 2−Ω(k)). So

SD(Share′(s)W ,Share′(s′)W ) = SD(Share′(s)W ′ ,Share′(s′)W ′) ≤ n̄(ε + 2−Ω(k)).
(12)

The theorem below now follows from Construction 1, Lemmas 4, 5 and 10.

Theorem 9. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] and any constant
a ≥ 1, α ∈ (0, 1], if there exists an explicit (n, k) secret sharing scheme in AC0

with share alphabet Σ, message alphabet Σ0, message length m, non-adaptive
privacy error ε and reconstruction error η, then there exists an explicit (n′ =
O(na log n), (1 − α)n′) secret sharing scheme in AC0 with share alphabet Σ ×
[n′], message alphabet Σ0, message length Ω(mna−1), adaptive privacy error
O(na−1(ε + 2−Ω(k))) and reconstruction error O(na−1η).

3.2 Binary Alphabet

In this subsection, we construct AC0 secret sharing schemes with binary alphabet
based on some existing schemes with binary alphabets, enlarging the privacy
threshold.

We use some coding techniques and secret sharing for small blocks.

Lemma 11 ([12] Sect. 4). For any n ∈ N, any constant δ0, δ1 ∈ (0, 1), let
C ⊆ F

n
2 be an asymptotically good (n, k = δ0n, d = δ1n) linear code.

1. There exists an (n, d) secret sharing scheme (Share,Rec) with alphabet {0, 1},
message length k, perfect privacy and reconstruction. Here ∀x ∈ {0, 1}k,
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Share(x) = f(x) + c with c drawn uniform randomly from C⊥ (the dual code
of C) and f is the encoding function from {0, 1}k to C. For y ∈ {0, 1}n,
Rec(y) is to find x such that there exists a c ∈ C⊥ with f(x) + c = y.

2. For any p = poly(n), there exists an explicit (n, d) secret sharing scheme
(Share,Rec) with alphabet {0, 1}p, message length k, perfect privacy and recon-
struction.

3. If the codeword length is logarithmic (say n = O(log N) for some N ∈ N),
then both schemes can be constructed explicitly in AC0 (in N).

Proof. The first assertion is proved in [12].
The second assertion follows by applying the construction of the first asser-

tion in parallel p times.
The third assertion holds because, when the codeword length is O(log N),

both encoding and decoding functions have input length O(log N). For encoding,
we can use any classic methods for generating asymptotically good binary codes.
For decoding, we can try all possible messages to uniquely find the correct one.
By Lemma 2, both functions can be computed by AC0 circuits.

Now we give the secret sharing scheme in AC0 with a constant privacy rate
while having binary alphabet.

Construction 2. For any n, k,m ∈ N with k,m ≤ n, let (Share,Rec) be an
(n, k) secret sharing scheme with alphabet {0, 1}, message length m.

Let (ShareC ,RecC) be an (nC , kC) secret sharing scheme with alphabet
{0, 1}p, p = O(log n), message length mC by Lemma 11, where mC = δ0nC ,
kC = δ1nC , nC = O(log n) for some constants δ0, δ1.

Let (Share0,Rec0) be an (n0, k0) secret sharing scheme with alphabet {0, 1},
message length m0 by Lemma 11, where m0 = δ0n0 = p + O(log n), k0 = δ1n0.

For any constant a ≥ 1, we can construct the following (n′ = O(na), k′ =
Ω(n′)) secret sharing scheme (Share′,Rec′) with alphabet {0, 1}, message length
m′ = mn̄, where n̄ = Θ(na−1) is large enough.

Function Share′ : {0, 1}m′ → {0, 1}n′
is as follows.

1. On input x ∈ {0, 1}mn̄, parse it to be (x1, x2, . . . , xn̄) ∈ ({0, 1}m)n̄.
2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . ,Share(xn̄)) ∈ ({0, 1}n)n̄. Split

each entry to be blocks each has length pmC to get ŷ = (ŷ1, . . . , ŷñ) ∈
({0, 1}pmC )ñ, where ñ = n̄ n

pmC
�.

3. Let y∗ = (ShareC(ŷ1), . . . ,ShareC(ŷñ)). Parse it to be y∗ = (y∗
1 , . . . , y

∗
n∗) ∈

({0, 1}p)n∗
, n∗ = ñnC .

4. Generate π by Lemma 3 which is uniform random over permutations of [n∗].
If it failed, which can be detected by checking element distinctness, set π to
be such that ∀i ∈ [n∗], π(i) = i.

5. Compute

z(x) = (Share0(y∗
π−1(1) ◦ π−1(1)), . . . ,Share0(y∗

π−1(n∗) ◦ π−1(n∗)))

∈ ({0, 1}n0)n∗
.
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6. Parse z(x) to be bits and output.

Function Rec′ : {0, 1}n′=n0n∗ → {0, 1}m′
is as follows.

1. Parse the input bits to be z ∈ ({0, 1}n0)n∗
and compute

(y∗
π−1(1) ◦ π−1(1), . . . , y∗

π−1(n∗) ◦ π−1(n∗)) = (Rec0(z1), . . . ,Rec0(zn∗)).

2. Compute y∗ = (y∗
1 , . . . , y

∗
n∗).

3. Compute ŷ by applying RecC on y∗ for every successive nC entries.
4. Parse ŷ to be y.
5. Compute x by applying Rec on every entry of y.

We have the following two lemmas, whose proofs are deferred to the full version.

Lemma 12. If Share and Rec can be computed by AC0 circuits, then Share′ and
Rec′ can be computed by AC0 circuits.

Lemma 13. If the reconstruction error of (Share,Rec) is η, then the reconstruc-
tion error of (Share′,Rec′) is η′ = n̄η.

Lemma 14. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-
adaptive privacy error of (Share′,Rec′) is n̄(ε + 2−Ω(k/ log2 n)).

Proof. Let k′ = 0.9δ21n
′. We show that there exists a distribution D such that

for any string x ∈ {0, 1}m, for any W ⊆ [n′] with |W | ≤ k′,

SD(Share′(x)W ,D) ≤ n̄(ε + 2−Ω(k/ log2 n)). (13)

Let D be Share′(σ)W for some σ ∈ {0, 1}m′
.

Consider an arbitrary observation W ⊆ [n′], with |W | ≤ k′. Note that for at
least 1−0.9δ1 fraction of all blocks zi ∈ {0, 1}n0 , i = 1, . . . , n∗, at most δ1 fraction
of the bits in the block can be observed. Otherwise the number of observed bits
is more than 0.9δ1 × δ1n

′. Let W ∗ be the index set of those blocks which have
more than δ1 fraction of bits being observed.

For every i ∈ [n∗]\W ∗, zi is independent of y∗
π−1(i) ◦ π−1(i) by the privacy

of (Share0,Rec0). Note that zi is also independent of zi′ , i′ ∈ [n∗], i′ �= i since it
is independent of y∗

π−1(i) ◦ π−1(i) (its randomness is only from the randomness
of the Share0 function) and every Share0 function uses independent randomness.
So we only have to show that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε + 2−Ω(k/ log2 n)). (14)

For every i ∈ [ñ], let Si = {(i − 1)nC + 1, . . . , inC}. Let Xi be the indicator
that |π(Si) ∩ W ∗| > kC , i ∈ [ñ]. Note that E[|π(Si) ∩ W ∗|] ≤ 0.9δ1nC = 0.9kC .

For every i ∈ [n̄], let Ei be the event that
∑i� n

pmC
	

j=(i−1)� n
pmC

	+1 Xj ≤ k
pmC

.

Let E =
⋂

i∈[n̄] Ei. We take n̄ to be large enough such that nC n
pmC

� ≤
0.9×0.1

1+0.9×0.1 |W ∗|. For every i ∈ [n̄], by Lemma 7,

1 − Pr[Ei] ≤ e
−2k/(pmC)+(e2−1)e−Ω(0.9δ21nC )� n

pmC
	
. (15)
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We take nC = O(log n) to be large enough such that the probability is at most

e−Ω(k/(pmC)) ≤ e−Ω(k/ log2 n). (16)

Next we do a similar argument as that in the proof of Lemma8. We know
that Pr[E] ≥ 1 − n̄e−Ω(k/ log2 n). We claim that zW ∗(x)|E and zW ∗(σ)|E have
statistical distance at most n̄ε. The reason follows.

Let’s fix a permutation π for which E happens. We claim that zW ∗(x) is a
deterministic function of at most k bits of each yi for i ∈ [n̄] and some extra
uniform random bits. This is because, as E happens, for those i ∈ [ñ] with
|π(Si)∩W ∗| ≤ kC , the shares in π(Si)∩W ∗ are independent of the secret by the
privacy of (ShareC ,RecC). Note that they are also independent of other shares
since the construction uses independent randomness for ShareC(ŷi), i ∈ [ñ]. For
those i ∈ [ñ] with |π(Si) ∩ W ∗| > kC , the total number of them is at most k

pmC
.

By the construction, Share′(x)W ∗ is computed from at most k
pmC

× pmC = k

bits of each yi for i ∈ [n̄] and some extra uniform random bits. Hence by the
privacy of (Share,Rec) and noting that yi,∈ [n̄] are generated using independent
randomness,

SD(zW ∗(x), zW ∗(σ)) ≤ n̄ε. (17)

Thus with probability at least 1− n̄e−Ω(k/ log2 n) over the fixing of π, zW ∗(x)
and zW ∗(σ) have statistical distance at most n̄ε, which means that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε + e−Ω(k/ log2 n)). (18)

Lemma 15. For any alphabet Σ, any n ∈ N, Let X = (X1, . . . , Xn) be an arbi-
trary distribution over Σn. For any n0, k0 ∈ N with k0 ≤ n0, let (Share0,Rec0) be
an arbitrary (n0, k0)-secret sharing scheme with binary alphabet, message length
m0 = log |Σ| + O(log n), perfect privacy. Let

Y = (Share0(Xπ−1(1) ◦ π−1(1)), . . . ,Share0(Xπ−1(n) ◦ π−1(n)))

where π is a random permutation over [n] → [n]. For any t ≤ n ·k0, let W be an
any adaptive observation which observes t shares. Then there exists a determin-
istic function f : {0, 1}poly(n) → {0, 1}t such that YW has the same distribution
as f(YW ′ ◦ S), where S is uniform over {0, 1}poly(n) and W ′ = [t′n0], t′ =  t

k0
�.

Proof. For every i ∈ [n], Let Bi = {(i − 1)n0 + 1, . . . , in0}. Assume the adaptive
adversary is M .

Let f be defined as in Algorithm 1.
Let W = (w1, . . . , wt) ∈ [n · n0]t, Z = f(YW ′ ◦ S). Let R ∈ {0, 1}nn0 be the

random variable corresponds to r.
We use induction to show that YW has the same distribution as Z.
For the base case, the first bits of both random variables have the same

distributions by the perfect privacy of (Share0,Rec0).
For the inductive step, assume that, projected on the first d bits, the two

distributions are the same. Fix the first d observed bits for both YW and Z to
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Algorithm 1. f(·)
Input: y ∈ {0, 1}t′n0 , s ∈ {0, 1}poly(n)

Let c = 1;
∀i ∈ [n], li ∈ [n] ∪ {null} is assigned to be null;
Compute the secrets for the t′ blocks y, which are

(x1, . . . , xt′) ∈ ({0, 1}m0)t
′
;

Compute (Share0(σ), . . . , Share0(σ)) ∈ ({0, 1}n0)n and parse it to be
r ∈ {0, 1}n0n, for an arbitrary σ ∈ Σ. Here for each Share0 function, we take
some unused bits from s as the random bits used in that function.
Next f does the following computation by calling M ;
while M wants to observe the ith bit which is not observed previously do

Find j ∈ [n] such that i ∈ Bj ;
if the number of observed bits in the jth block is less than k0 then

Let M observe ri;
else

Let Ij be the indices of the observed bits in the jth block. (The indices
here are the relative indices in the jth block)
if lj = null then

lj = c;
c = c + 1;
Draw a string vj from Share0(xc)|Share0(xc)Ij

=r(j−1)n0+Ij
by using

some unused bits of s;
end

Let M observe vj
i−(j−1)n0

;

end

end

be ȳ ∈ {0, 1}d. Assume that the (d + 1)th observation is to observe the wdth bit
where wd is in Bj for some j.

If the number of observed bits in the jth block is less than k0 then
Y{w1,...,wd+1}∩Bj

has the same distribution as R{w1,...,wd+1}∩Bj
, following the

privacy of (Share0,Rec0). Note that the blocks Y{w1,...,wd+1}∩Bi
, i ∈ [n] are inde-

pendent. The blocks R{w1,...,wd+1}∩Bi
, i ∈ [n] are also independent. As f will

output Rwd+1 , the conclusion holds for d + 1.
Else, if the number of observed bits in the jth block is at least k0, it is

sufficient to show that Ywd+1 |Y{w1,...,wd}=ȳ has the same distribution as that of
Zd+1|Z{1,...,d}=ȳ. Note that there are c blocks such that W observes more than
k0 bits for each of them. Let q1, . . . , qc denote those blocks. Let I = ((q1−1)n0+
Iq1 , . . . , (qc − 1)n0 + Iqc

), which is the set of indices of all observed bits. Note
that I ⊆ {w1, . . . , wd}.

By the privacy of the secret sharing scheme, for those blocks which have
at most k0 bits being observed, they are independent of the secret and hence
independent of other blocks. So Ywd+1 |Y{w1,...,wd}=ȳ is in fact Ywd+1 |YI=y∗ where
y∗ are the corresponding bits from ȳ with a proper rearrangement according to
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I. From the definition of f we know that for i ∈ [c], the observed bits in the
qith block is exactly the same distribution as (YBlqi

)Iqi
= Share0(xlqi

)Iqi
. So for

Zd+1|Z{1,...,d}=ȳ, it is the same distribution as

T = (YBlj
)wd−(j−1)n0 |∧c

i=1((YBlqi
)Iqi

=y∗
(qi−1)n0+Iqi

)

= Share0(xlj )wd−(j−1)n0 |∧c
i=1(Share0(xlqi

)Iqi
=y∗

(qi−1)n0+Iqi
).

(19)

By Lemma 9, (YBq1
, . . . , YBqc

) has the same distribution as (YBlq1
, . . . , YBlqc

)
as they both are the same distribution as (Share0(x1), . . . ,Share0(xc)). Thus
Ywd+1 |YI=y∗ has the same distribution as T , as Ywd+1 |YI=y∗ is the distribution of
some bits in (YBq1

, . . . , YBqc
) and T is the distribution of the corresponding bits

(same indices) in (YBlq1
, . . . , YBlqc

). So we know that Ywd+1 |Y{w1,...,wd}=ȳ has the
same distribution as Zd+1|Z{1,...,d}=ȳ and this shows our conclusion.

Lemma 16. If the non-adaptive privacy error of (Share,Rec) is ε, then the adap-
tive privacy error of (Share′,Rec′) is n̄(ε + 2−Ω(k/ log2 n)).

Proof. Let W be an adaptive observation. Let W ′ = [|W |/k0�n0]. Let |W | =
Ω(n′) be small enough such that |W ′| ≤ 0.9δ21n

′. By Lemma 15, there exists a
deterministic function f such that for any x, x′ ∈ {0, 1}m′

,

SD(Share′(x)W ,Share(x′)W ) = SD(f(Share′(x)W ′◦S), f(Share′(x′)W ′◦S)), (20)

where S is the uniform distribution as defined in Lemma15 which is independent
of Share′(x)W ′ or Share′(x′)W ′ . By Lemma 1, we know that

SD(f(Share′(x)W ′ ◦ S), f(Share′(x′)W ′ ◦ S)) ≤ SD(Share′(x)W ′ ,Share′(x′)W ′).
(21)

By Lemma 14 we know that

SD(Share′(x)W ′ ,Share′(x′)W ′) ≤ n̄(ε + 2−Ω(k/ log2 n)). (22)

Hence
SD(Share′(x)W ,Share′(x′)W ) ≤ n̄(ε + 2−Ω(k/ log2 n)). (23)

Theorem 10. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] and any constant
a ≥ 1, if there exists an explicit (n, k) secret sharing scheme in AC0 with alphabet
{0, 1}, message length m, non-adaptive privacy error ε and reconstruction error
η, then there exists an explicit (n′ = O(na), k′ = Ω(n′)) secret sharing scheme
in AC0 with alphabet {0, 1}, message length Ω(mna−1), adaptive privacy error
O(na−1(ε + 2−Ω(k/ log2 n))) and reconstruction error O(na−1η).

Proof. It follows from Construction 2, Lemmas 12, 13 and 16.
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4 k-Wise Independent Generator in AC0

In this section we focus on increasing the secret length to be linear of the number
of shares while keeping the construction in AC0. The privacy rate is not as good
as the previous section. The main technique is to use the following well known
k-wise independent generator which is constructed from expander graphs.

Theorem 11 [29]. For any N,D,M ∈ N, any ε > 0, if there exists a
(≤Kmax, ( 12 + ε)D) expander with left set of vertices [N ], right set of ver-
tices [M ], left degree D, then the function g : {0, 1}M → {0, 1}N , defined by
g(x)i =

⊕
j∈[D] xΓ (i,j), i = 1, 2, . . . , N , is a Kmax-wise uniform independent

generator.

Next we directly give the main results for this section. Detailed proofs are
deferred to the full version.

Theorem 12. For any M ∈ N, N = poly(M), any alphabets Σ0, Σ, any con-
stant γ ∈ (0, 1], there exists an explicit K-wise independent generator g : ΣM

0 →
ΣN in AC0, where K = (M log |Σ0|

log |Σ| )1−γ .

Now we give the construction of secret sharing schemes in AC0 with large
message rate (saying 1 − 1/poly(n)).

Construction 3. For any n, k,m ∈ N with k ≤ n, any alphabets Σ0, Σ, let
(Share,Rec) be an (n, k) secret sharing scheme with share alphabet Σ, message
alphabet Σ0, message length m.

For any constant a > 1, γ ∈ (0, 1], we construct the following (n′ = n +
m′, k′ = min(k, l)) secret sharing scheme (Share′,Rec′) with alphabet Σ, message
length m′ = Ω(na), where l = Θ(m log |Σ0|

log |Σ| )1−γ .

The function Share′ : Σm′ → Σn′
is as follows.

1. Let gΓ : Σm
0 → Σm′

be the l-wise independent generator by Theorem12.
2. For secret x ∈ Σm′

, we draw r uniform randomly from Σm
0 let

Share′(x) = (Share(r), gΓ (r) ⊕ x).

The function Rec′ : Σn′ → Σm′
is as follows.

1. The input is y = (y1, y2) where y1 ∈ Σn, y2 ∈ Σm′
.

2. Let
Rec′(y) = gΓ (Rec(y1)) ⊕ y2.

Theorem 13. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1], any constant γ ∈
(0, 1], any m′ = poly(n) and any alphabets Σ0, Σ, if there exists an explicit
(n, k) secret sharing scheme in AC0 with share alphabet Σ, message alphabet Σ0,
message length m, non-adaptive privacy error ε and reconstruction error η, then
there exists an explicit (n + m′,min(k, (m log |Σ0|

log |Σ| )1−γ)) secret sharing scheme
in AC0 with alphabet Σ, message length m′, non-adaptive privacy error ε and
reconstruction error η.
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5 Final Construction

In this section we give our final AC0 construction of secret sharing schemes which
has constant message rate and constant privacy rate.

Our construction will use both random permutation and k-wise independent
generator proposed in the previous sections.

Construction 4. For any n, k,m ∈ N with k,m ≤ n, let (Share,Rec) be an
(n, k) secret sharing scheme with alphabet {0, 1}, message length m.

Let (ShareC ,RecC) be an (nC , kC) secret sharing scheme from Lemma 11 with
alphabet {0, 1}p=O(log n), message length mC , where mC = δ0nC , kC = δ1nC ,
nC = O(log n) for some constants δ0, δ1.

Let (Share∗
C ,Rec∗

C) be an (n∗
C , k∗

C) secret sharing scheme from Lemma 11 with
alphabet {0, 1}, message length large enough m∗

C , where m∗
C = δ0n

∗
C = p +

O(log n), n∗
C = δ1n

∗
C .

For any constant a > 1, γ > 0, we can construct the following (n′ =
O(na), k′ = Ω(n′) secret sharing scheme (Share′,Rec′) with alphabet {0, 1}, mes-
sage length m′ = Ω(n′).

The function Share′ : {0, 1}m′ → {0, 1}n′
is as follows.

1. Let n̄ = Θ(na−1) where the constant factor is large enough.
2. Let gΓ : {0, 1}mn̄ → {0, 1}m′

be the l-wise independent generator by Theo-
rem12, where l = Ω(mna−1)1−γ .

3. For secret x ∈ {0, 1}m′
, we draw a string r = (r1, . . . , rn̄) uniform randomly

from ({0, 1}m)n̄.
4. Let y = (ys, yg), where

ys = (ys,1, . . . , ys,n̄) = (Share(r1), . . . ,Share(rn̄)) ∈ ({0, 1}n)n̄, (24)

yg = (yg,1, . . . , yg,m′) = gΓ (r) ⊕ x ∈ {0, 1}m′
. (25)

5. Compute ŷs ∈ (({0, 1}p)mC )ns from ys by parsing ys,i to be blocks over
({0, 1}p)mC for every i ∈ [n̄], where ns =  n

pmC
�n̄.

6. Compute ŷg ∈ (({0, 1}p)mC )ng from yg by parsing yg to be blocks over
({0, 1}p)mC , where ng =  m′

pmC
�.

7. Let

y′ = (ShareC(ŷs,1), . . . ,ShareC(ŷs,ns
),ShareC(ŷg,1), . . . ,ShareC(ŷg,ng

)).

Parse y′ as (y′
1, . . . , y

′
n∗) ∈ ({0, 1}p)n∗

, where n∗ = (ns + ng)nC .
8. Generate a random permutation π : [n∗] → [n∗] and compute

z(x) = (Share∗
C(y′

π−1(1) ◦ π−1(1)), . . . ,Share∗
C(y′

π−1(n∗) ◦ π−1(n∗)))

∈ ({0, 1}n∗
C )n∗

.

9. Parse z(x) to be bits and output.

The function Rec′ : {0, 1}n′ → {0, 1}m′
is as follows.
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1. Parse the input bits to be z = (z1, . . . , zn∗) ∈ ({0, 1}n∗
C )n∗

.
2. For every i ∈ [n∗], let (y′

π−1(i) ◦ π−1(i)) = Rec∗
C(zi) to get y′.

3. Parse y′ = (y′
s, y

′
g), where y′

s = (y′
s,1, . . . , y

′
s,ns

) ∈ ({0, 1}pnC )ns and y′
g =

(y′
g,1, . . . , y

′
g,ng

) ∈ ({0, 1}pnC )ng .
4. Let

ŷs = (RecC(y′
s,1), . . . ,RecC(y′

s,ns
)), ŷg = (RecC(y′

g,1), . . . ,RecC(y′
g,ng

)).

5. Parse ŷs to get ys.
6. Parse ŷg to get yg

7. Let r = (Rec(ys,1), . . . ,Rec(ys,n̄)).
8. Output

Rec′(z) = gΓ (r) ⊕ yg.

We have the following lemmas, whose proofs are similar to previous ones and
deferred to the full version.

Lemma 17. If (Share,Rec) can be computed by AC0 circuits, then (Share′,Rec′)
can be computed by AC0 circuits.

Lemma 18. If the reconstruction error of (Share,Rec) is η, then the reconstruc-
tion error of (Share′,Rec′) is η′ = n̄η.

Lemma 19. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-
adaptive privacy error of (Share′,Rec′) is n̄(ε + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Lemma 20. If the non-adaptive privacy error of (Share,Rec) is ε, then the adap-
tive privacy error of (Share′,Rec′) is n̄(ε + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Theorem 14. For any ε, η ∈ [0, 1], any n,m ∈ N,m ≤ n and any constant
a > 1, γ > 0, if there exists an explicit (n, k) secret sharing scheme in AC0

with alphabet {0, 1}, message length m, non-adaptive privacy error ε and recon-
struction error η, then there exists an explicit (n′ = O(na), Ω(n′)) secret shar-
ing scheme in AC0 with alphabet {0, 1}, message length Ω(n′), adaptive privacy
error O(na−1(ε+2−Ω(k/ log2 n))+2−Ω((mna−1)1−γ/ log2 n)) and reconstruction error
O(na−1η).

Proof. It follows from Construction 4, Lemmas 17, 18, 20.

6 Instantiation

The Minsky-Papert function [28] gives a secret sharing scheme in AC0 with
perfect privacy.

Theorem 15 [7,28]. For any n ∈ N, there exists an explicit (n, n
1
3 ) secret

sharing scheme in AC0 with alphabet {0, 1}, message length 1, perfect privacy
and reconstruction.
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Combining our techniques with Theorem 15, we have the following results.
The detailed proofs are deferred to the full version.

Theorem 16. For any n ∈ N, any constant α ∈ (0, 1], β ∈ [0, 1), there exists
an explicit (n, (1 − α)n) secret sharing scheme in AC0 with share alphabet
{0, 1}O(log n), message alphabet {0, 1}, message length m = nβ, adaptive privacy
error 2−Ω(( n

m log n )1/3) and perfect reconstruction.

Theorem 17. For any n ∈ N, for any constant γ ∈ (0, 1/4), there exists an
explicit (n,Ω(n)) secret sharing scheme in AC0 with alphabet {0, 1}, message

length m = Ω(n), adaptive privacy error 2−Ω(n
1
4 −γ) and perfect reconstruction.

7 Extensions and Other Applications

The detailed constructions and proofs in this section appear in the full version.

7.1 Robust Secret Sharing

Our secret sharing schemes can be made robust by using robust secret sharing
schemes and authentication techniques in small blocks.

We first recall the following robust secret sharing scheme.

Theorem 18 [15]. For any n ∈ N, any constant ρ < 1/2, there is an (n,Ω(n))
robust secret sharing scheme, with alphabet {0, 1}O(1), message length Ω(n), per-
fect privacy, robustness parameter d = ρn and reconstruction error 2−Ω(n).

We use concatenations of the schemes from Theorem 18 to get the following
robust secret sharing scheme in AC0 with poly-logarithmic number of shares.

Lemma 21. For any n ∈ N, any constant a ∈ N, any ε = 1/poly(n), there exists
an (n0 = O(loga n), k0 = Ω(n0)) robust secret sharing scheme in AC0 (in n),
with share alphabet {0, 1}O(1), message alphabet {0, 1}, message length Ω(n0),
perfect privacy, robustness parameter Ω(n0), reconstruction error ε.

Next, we give our construction of robust secret sharing scheme with “asymp-
totically good” parameters.

Theorem 19. For any n ∈ N, any η = 1
poly(n) , there exists an explicit (n,Ω(n))

robust secret sharing scheme in AC0 with share alphabet {0, 1}O(1), message
alphabet {0, 1}, message length m = Ω(n), non-adaptive privacy error 2−nΩ(1)

,
non-adaptive robustness Ω(n) and reconstruction error η.
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7.2 Stochastic Error Correcting Code

Using our general strategy, we can also construct stochastic error correcting
codes in AC0 which can resist additive errors [20].

One important component of our construction is the following “tiny” codes.
It is constructed by classic code concatenation techniques.

Lemma 22. For any n ∈ N, any constant a ∈ N, there exists an asymptotically
good binary (n = O(loga n),m, d) code C such that the encoding and decoding
can both be computed by AC0 circuits of size poly(n).

Here we give the construction of stochastic error correcting codes in AC0

which are “asymptotically good”.

Construction 5. For any n ∈ N, we construct the following (n,m = Ω(n), ρ =
Ω(1)) stochastic error correcting code.

Let δ0, δ1 be some proper constants in (0, 1).
Let (Enc0,Dec0) be an asymptotically good (n0,m0, d0) error correcting code

with alphabet {0, 1}p, n0 = O(log n), m0 = δ0n0, d0 = δ1n0. In fact we can
realize this code by applying an asymptotically good binary code, having the same
rate, in parallel p times.

Let (Enc1,Dec1) be an asymptotically good (n1,m1, d1) error correcting code
from Lemma22 with alphabet {0, 1}, n1 = p + O(log n), m1 = δ0n1 = O(p),
d1 = δ1n0.

Encoding function Enc : {0, 1}m=Ω(n) → {0, 1}n is a random function which
is as follows.

1. On input x ∈ {0, 1}m, split x into blocks of length pm0 such that x =
(x̄1, . . . , x̄m/(pm0)) ∈ ({0, 1}pm0)m/(pm0).

2. Let y = (y1, . . . , yn′) = (Enc0(x̄1), . . . ,Enc0(x̄m/(pm0))) ∈ ({0, 1}p)n′
, n′ =

m/(δ0p)
3. Generate a random permutation π : [n′] → [n′].
4. Randomly pick l = O(log n) different indices r1, . . . , rl ∈ [n′] and let r =

(r1, . . . , rl).
5. For every i ∈ [n′], let ỹi = (yπ−1(i), π

−1(i), π−1(i � r1), . . . , π−1(i � rl), r).
6. Output z = (Enc1(ỹ1), . . . ,Enc1(ỹn′)) ∈ ({0, 1}n1)n′

.

Decoding function Dec : {0, 1}n=n1n′ → {0, 1}m is as follows.

1. On the input z, apply Dec1 on every block of length n0 to get ỹ.
2. Take the majority of the r in every ỹi, i ∈ [n′] to get r.
3. ∀i ∈ [n′], we do the following. Check that for every j ∈ [l], the corresponding

backup of π−1(i) in the (i � rj)th block is equal to the one stored in the ith
block. Take the approximate majority of these l tests, if the output is true
then mark ỹi as good, otherwise mark it as bad.

4. Compute the entries of y from shares that are marked as good. Other entries
are set as blank.

5. Apply Dec0 on every block of y of length pn0 to get x.
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Theorem 20. For any n ∈ N and any ε = 1/poly(n), there exists an explicit
(n,m = Ω(n), ρ = Ω(1)) stochastic binary error correcting code with decoding
error ε, which can be computed by AC0 circuits.

Note that if we set both levels of codes in our construction to be from
Lemma 22 with length poly log n and l to be also poly log n, we can get quasi-
polynomially small decoding error following the same proof. The result is stated
as the follows.

Theorem 21. For any n ∈ N, any ε = 2−poly log n, there exists an explicit
(n,m = Ω(n), ρ = Ω(1)) stochastic binary error correcting code with decoding
error ε, which can be computed by AC0 circuits.

We can use duplicating techniques to make the decoding error to be even
smaller, however with a smaller message rate.

Theorem 22. For any n, r ∈ N, there exists an (n,m = Ω(n/r), ρ = Ω(1))
stochastic binary error correcting code with decoding error 2−Ω(r/ log n), which
can be computed by AC0 circuits.

7.3 Secure Broadcasting

We give a protocol that allows n parties to securely communication their secret
inputs to each other using only a small amount of common secret randomness
and communication over a public broadcast channel. The protocol should be
secure against an external adversary who can (adaptively) observe and tamper
with a constant fraction of the messages. This notion is formalized in Definition 3.

Protocol 1. For any n,m ∈ N, for any i ∈ [n], let xi ∈ {0, 1}m be the input of
party i. Let the security parameter be r ∈ N with r ≤ m.

Let (RShare0,RRec0) be an (n0, k0 = δ0n0) robust secret sharing scheme with
share alphabet {0, 1}p=O(1), secret length m0 = m = δn0 and robustness parame-
ter d0 = δ1n0, as given by Theorem18 for some constant δ, δ0, δ1 with δ0 ≥ δ1.

Let (RShare1,RRec1) be an (n1, k1 = δ0n1) robust secret sharing scheme with
share alphabet {0, 1}p=O(1), secret length m1 = pn0/r = δn1 and robustness
parameter d1 = δ1n1, by Theorem18.

Assume that all parties have a common secret key s ∈ {0, 1}O(r log(nr)).
The i-th party does the following.

1. Generate a 2−Ω(r)-almost r-wise independent random permutation π over [nr]
using s.

2. Compute the secret shares yi = RShare0(xi) ∈ ({0, 1}p)n0 . Split yi into r
blocks each of length pn0/r such that yi = (yi,1, . . . , yi,r).

3. View the communication procedure as having [nr] time slots. For j ∈ [r], on
the π((i − 1)r + j)’s time slot, send message zi,j = RShare1(yi,j).
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4. For every i ∈ [n], j ∈ [r], compute yi,j = RRec1(zi,j), where zi,j is the message
received in the π((i − 1)r + j)’s time slot.

5. For every i ∈ [n] get yi = (yi,1, . . . , yi,r).
6. For every i ∈ [n], xi = RRec0(yi).

Theorem 23. For any n,m, r ∈ N with r ≤ m, there exists an explicit
(n,m,α = Ω(1), n2−Ω(r), n2−Ω(r) + nm2−Ω(m/r)) secure broadcasting protocol
with communication complexity O(nm) and secret key length O(r log(nr)).
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Abstract. An OT-combiner takes n candidate implementations of the
oblivious transfer (OT) functionality, some of which may be faulty, and
produces a secure instance of oblivious transfer as long as a large enough
number of the candidates are secure. We see an OT-combiner as a 2-party
protocol that can make several black-box calls to each of the n OT candi-
dates, and we want to protect against an adversary that can corrupt one
of the parties and a certain number of the OT candidates, obtaining their
inputs and (in the active case) full control of their outputs.

In this work we consider perfectly (unconditionally, zero-error) secure
OT-combiners and we focus on minimizing the number of calls to the can-
didate OTs.

First, we construct a single-use (one call per OT candidate) OT-
combiner which is perfectly secure against active adversaries corrupting
one party and a constant fraction of the OT candidates. This extends a
previous result by Ishai et al. (ISIT 2014) that proves the same fact for
passive adversaries.

Second, we consider a more general asymmetric corruption model where
an adversary can corrupt different sets of OT candidates depending on
whether it is Alice or Bob who is corrupted. We give sufficient and nec-
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essary conditions for the existence of an OT combiner with a given num-
ber of calls to the candidate OTs in terms of the existence of secret shar-
ing schemes with certain access structures and share-lengths. This allows
in some cases to determine the optimal number of calls to the OT candi-
dates which are needed to construct an OT combiner secure against a given
adversary.

1 Introduction

1-out-of-2 bit oblivious transfer [EGL82] (OT) is a well-known cryptographic
primitive between two parties, a sender Alice and a receiver Bob, in which the
sender has as input two one-bit messages and the receiver chooses to learn one
of them; in addition, two other guarantees hold, namely the sender does know
which of her two messages was chosen by the receiver and the receiver obtains
no information about the message that he did not choose to learn.

OT is a fundamental primitive for secure multiparty computation. In fact
it is known that secure multiparty computation protocols can be entirely based
on OT [Kil88,IPS08]. However, unconditionally secure two-party computation is
not possible in the plain model, even if we only assume that one of the parties
may be passively corrupted. Hence, OT is likewise impossible to be attained
unless we assume the existence of some additional resource or some restriction
on the capabilities of the parties. Examples of such situations include: physical
assumptions such as the existence of a noisy channel between the sender and the
receiver [CK88,IKO+11], hardware tokens [GIS+10], or the premise that one
of the parties has bounded memory [CCM98]; and computational assumptions,
where we assume that the parties are computationally bounded and we base
the security of the OT protocol on the hardness of some problem, for example
hardness of factoring [Rab81], the DDH assumption [BM89,AIR01], hardness
of decoding [DvdGMN08], the quadratic residuosity assumption, and worst-case
lattice assumptions [PVW08].

However, a particular assumption may at some point become compromised
(e.g. computational assumptions may be broken, a hardware token may be cor-
rupted, or a party may be in possession of a better-than-expect reception equip-
ment in the case of a protocol based on noisy channels) and this would con-
sequently jeopardize the security of an OT protocol based on such assumption.
This motivates the notion of an OT combiner, a protocol between Alice and Bob
that makes black-box calls to n candidate implementations of OT, and produces
an instance of OT which is secure as long as a certain number of the candidates
were secure to start with. In this way, we do not need to rely on a particular OT
candidate being secure.

OT combiners can also be seen as a server-aided oblivious transfer protocol,
where the resource that Alice and Bob have at their disposal is the existence of n
servers, each of which is supposed to implement the OT functionality. Alice and
Bob can call each of the servers several times, where for each execution a server
receives two bits from Alice and one bit from Bob, and outputs the resulting
bit to Bob. Therefore, in particular, there is no need of direct communication
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between servers; in fact, the servers do not even need to be aware of each other.
We adopt this view of OT combiners in what follows.

OT combiners were introduced in [HKN+05] and further studied in several
articles such as [HIKN08,PW08,IMSW14]. In this work we are interested in
minimizing the number of calls to each of the servers, and we take as starting
point [IMSW14], where the authors focus on single-use OT combiners, in which
each OT server is used only once. In their work, they consider an adversary that
may corrupt Alice and up to tA servers or Bob and up to tB servers, thereby
obtaining all information seen during the protocol by the corrupted servers and
party. We will call this adversary a (tA, tB)-adversary. It is shown that for large
enough n, there exists a single-use OT combiner which is perfectly secure against
a passive (tA, tB)-adversary where tA = tB = Ω(n). More precisely this holds for
tA = tB = 0.11n. Furthermore, they show that the existence of single-use OT
combiners implies the existence of a certain secret sharing scheme whose privacy
and reconstruction thresholds are related to tA and tB and where the shares
are of constant size. By applying certain bounds on secret sharing over small
alphabets [CCX13], they conclude among other facts that unconditionally secure
single-use OT-combiners cannot exist when tA+tB = n−O(1) (it is easy to show
that perfectly secure OT combiners, single-use or not, cannot exist if tA+tB ≥ n).

In this work, we first show a construction of single-use OT-combiners which
are perfectly secure against an active adversary corrupting the same sets as in
[IMSW14], namely:

Theorem 1. For any large enough n, there exists an n-server single-use OT-
combiner which is perfectly secure against an active (0.11n, 0.11n)-adversary.

In fact, this theorem is a special case of a more general result, that represents
a tight link between secret sharing schemes and OT combiners.

In order to explain this result, we first need to consider a slightly more general
adversary that can corrupt either Alice and a set A ∈ A of servers, or Bob and
a set B ∈ B of servers. Here A and B are two adversary structures1 on the set of
servers {1, . . . , n}. We say that a pair (A,B) of adversary structures is R2 if for
all A ∈ A and B ∈ B we have A ∪ B �= {1, . . . , n}. Our result is then as follows.

Theorem 2. Let A, B be adversary structures on the set of servers {1, . . . , n}.
Suppose that the following conditions are true:

– (A,B) is an R2 pair of structures.
– There exists a secret sharing scheme S for the set of participants {1, . . . , n}

with the following properties:
1. It is a linear secret sharing scheme.
2. The domain of secrets is {0, 1} and for i = 1, . . . , n the domain of the

i-th share is {0, 1}�i , for some �i > 0.
3. Every set A ∈ A is unqualified in S and for every set B ∈ B, its comple-

ment B is qualified in S.
1 An adversary (or anti-monotone) structure A is a family of subsets of {1, . . . , n}

such that if A ∈ A and A′ ⊆ A, then A′ ∈ A.
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Then there exists a OT-combiner which is perfectly secure against any active
(A,B)-adversary and uses the i-th server exactly �i times.

Therefore we can see that a single-use OT combiner exists in the cases where
an ideal (i.e. every share is one bit long) linear secret sharing scheme S exists
with a fitting access structure. Theorem 1 is obtained by plugging into Theorem 2
secret sharing schemes constructed from families of binary linear codes such that
both them and their duals are on the Gilbert-Varshamov bound [CCG+07] (see
Sect. 5.3 for more details).

An interesting fact about Theorem 2 is that it is close to give a tight char-
acterization of unconditionally secure OT combiners in terms of secret sharing
schemes, since one can extend the arguments in [IMSW13] to prove the following
result.

Theorem 3. Let A, B be adversary structures on the set of servers {1, . . . , n}.
If there exists a perfectly secure OT-combiner which is secure against any active
(A,B)-adversary and uses server Si exactly �i times, then:

– (A,B) is an R2 pair of structures.
– There exists a secret sharing scheme S for the set of participants {1, . . . , n}

with the following properties:
1. The domain of secrets is {0, 1} and for i = 1, . . . , n the domain of the

i-th share is {0, 1}�i , for some �i > 0.
2. Every set A ∈ A is unqualified in S and for every set B ∈ B, its comple-

ment B is qualified in S.

If we compare both Theorems 2 and 3 we see there is just one gap regarding
sufficient and necessary conditions, namely that our construction from Theo-
rem 2 requires a linear secret sharing scheme, while we do not know if this is
strictly necessary. Nevertheless, Theorems 2 and 3 can be used to determine the
exact minimal number of calls that are sufficient and necessary for a perfectly
secure OT combiner in some cases. For example, we can determine that if there
are 3 servers and the adversary can be corrupt one party and one server, then
the optimal number of OT calls is 5 (Sect. 8).

1.1 Details and Techniques

Our construction of an OT combiner showing Theorem 2 relies on the combina-
tion of two secret sharing schemes. The first one is the secret sharing scheme S
assumed by the theorem, which is used by Bob in order to secret share his input
among the servers. The other secret sharing scheme is a multi-secret sharing
scheme Σ with some unusual properties, whose construction may be of inde-
pendent interest. This will be used by Alice in order to secret share her inputs
among the servers.

Such secret sharing scheme takes a 2-bit secret (m0,m1) and, in the simplified
“single-use” case of our theorem where all �i = 1 (which is enough to show
Theorem 1), splits it into 2n shares, indexed by pairs (i, j), where i = 1, . . . , n,



Resource-Efficient OT Combiners with Active Security 465

and j = 0, 1. The secret sharing scheme is such that a set of participants of the
form {(1, v1), (2, v2), . . . , (n, vn)} (where vi ∈ {0, 1}) can reconstruct the message
m0 if and only if the bit-string (v1, . . . , vn) belongs to some given vector space V ,
while it can reconstruct m1 if and only if (v1, . . . , vn) belongs to some affine space
t+V for some given vector t. Further, these sets are the only minimally qualified
sets for each of the messages.

If they were the only requirements, the existence of such a secret sharing
scheme would be guaranteed by known general results in secret sharing (where
each coordinate m0 and m1 would then be independently shared with a secret
sharing scheme with potentially exponentially long shares). But what makes the
problem interesting is that we have an additional requirement: every share is
one bit long. This rules out the solution above and therefore the question of
how the requirements on the access structures of m0 and m1 can be realized
simultaneously is not trivial. Moreover, given that m0 and m1 cannot be shared
independently, it is also necessary to exact some conditions preventing certain
sets of shares from leaking correlations between m0 and m1 even if they give no
information about either individual message. We show that we can achieve all
these properties by a relatively simple construction.

With all these elements in hand, it is now easy to explain how our OT
combiner works. Alice will use a secret sharing scheme as specified above where
V is the set of all possible sharings of 0 in the scheme S used by Bob, and t is
a sharing of 1 in S. In this situation t + V is the set of all sharings of 1 in S
by linearity of S. She then sends the (i, 0) and (i, 1)-th shares to the i-th server.
If Bob has used b1, . . . , bn as input for the servers, he will receive the shares
of (m0,m1) with indices (1, b1), . . . , (n, bn). By the properties of the scheme Σ
given that set of shares he can now reconstruct m0 if (b1, . . . , bn) was a sharing
of 0 with S, and m1 if (b1, . . . , bn) was a sharing of 1 with S. Of course this
only shows the correctness of the protocol when Alice and Bob are honest. We
need to take into account that Bob can corrupt a set B ∈ B of servers, obtaining
both of Alice’s shares corresponding to those servers. Furthermore, in the active
case, he can also submit values that do not correspond to a valid sharing of a bit
with S. However, we show that even using both strategies simultaneously will
not give him information about more than one of Alice’s messages.

1.2 Other Related Work

[HKN+05] introduced the notion of OT combiners. Several different flavours are
introduced; the notion we are considering in this paper corresponds to the one
they call third-party black-box combiners. They consider threshold security with
tA = tB = t, and show that passively unconditionally secure OT combiners can-
not exist for n = 2, t = 1. On the other hand, they give a concrete construction
of a secure OT combiner for n = 3, t = 1 making 2 calls to each OT-candidate
(giving a total number of calls of 6, which as mentioned above can be brought
down to 5 by our construction).
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In [HIKN08], OT-combiners are constructed from secure multiparty compu-
tation protocols. Again, the threshold case with tA = tB = t is considered. They
show how to construct OT combiners which are statistically secure against a
(t, t)-adversary with t = Ω(n) which make O(1) calls to each server. Further-
more they achieve constant production rate, meaning that their construction
allows to produce Θ(n) instances of OT (in this work, we are only concerned
about producing one instance). Furthermore, they show a variant of their pro-
tocol that is computationally secure against active adversaries. Subsequently
[IPS08] shows, as one of the applications of their compiler, that the latter con-
struction can be turned into a statistically secure OT-combiner, still achieving
constant production rate and being secure against an active (t, t)-adversary with
t = Ω(n).

In [PW08] an oblivious linear function evaluation (OLFE) combiner is con-
structed where each server executes a single instance of OLFE and the construc-
tion achieves perfect security whenever tA + tB < n. OLFE is a functionality
where Alice has as input two values a, b in a finite field Fq of q elements, Bob
has as input x ∈ Fq and receives ax + b as output. Even though OLFE is a
generalization of OT (OT is equivalent to OLFE over F2), the construction in
[PW08] requires q > n, since it uses Shamir secret sharing in order to share the
parties’ inputs among the servers.

Finally, it is interesting to point out that [BI01] and [VV15] consider, in dif-
ferent contexts, secret sharing schemes with access structures that are somewhat
related to the ones we need. Given a language L ⊆ {0, 1}n, their secret shar-
ing schemes for 2n participants have as minimally qualified subsets all those of
the form {(1, v1), (2, v2), . . . , (n, vn)} where (v1, v2, . . . , vn) ∈ L. However, both
works also include the sets of the form {(i, 0), (i, 1)} as minimally qualified.

1.3 Extensions and Open Questions

We briefly consider some possible extensions of our result that we do not fully
address in this paper. First, [IMSW14] also presents a single-use OT combiner
that achieves statistical security against a passive adversary corrupting one of
Alice and Bob and up to n/2−ω(log κ) servers, where κ is the security parameter.
We sketch in Sect. 5.3 how we think our construction from Theorem 1 can be
modified in order to achieve a similar result as [IMSW14] against a static active
adversary.

Moreover, in this paper we have focused in minimizing the number of OT calls
when we want to produce a single secure instance of OT. It is an interesting open
question to understand whether our constructions can be extended to achieve
constant production rate for perfect actively secure combiners. This raises the
question whether our multi-secret sharing scheme can be modified so that it
handles secrets of size O(n).

Finally, we only consider adversaries that corrupt one of the parties Alice and
Bob together with a subset of servers. Our model does not consider corruption of
only servers. It is easy to see that if an OT combiner is secure against a passive
(A,B)-adversary, then it is also secure against passive corruption of a server set C
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which lies in both A and B. This is because such “external” adversary corrupting
only C cannot obtain more information about Alice’s (resp. Bob’s) input than
an adversary corrupting C and Bob (resp. Alice). However, when considering
and active adversary we also need to guarantee the correctness of the combiner,
i.e., that the external adversary is not able to make Bob output a value that is
inconsistent with Alice’s inputs. We can in fact identify situations where the R2

condition is not enough to achieve security against such adversaries. We discuss
this in Sect. 9. It is an open question to determine in which conditions security
is possible against corruption of servers only.

1.4 Overview

Section 2 contains preliminaries on secret sharing and adversary structures,
although we also introduce the notion of R2 pair. Section 3 describes our model.
Section 4 gives a construction of a multi-secret sharing scheme with certain prop-
erties regarding its access structure; this will be the secret sharing scheme used
by Alice in our construction. In Sect. 5 we show Theorem 2 in the case where
S can be taken to be an ideal secret sharing scheme (i.e. every share is a bit
long). This is enough to show Theorem 1. In Sect. 6 we show Theorem 2 in the
general case. In Sect. 7 we show Theorem 3. In Sect. 8 we apply our results to
determine the minimal number of calls which are required for a 3-server OT
combiner to be secure against an active (1,1)-adversary. Finally Sect. 9 contains
our considerations on the case where an adversary corrupts only servers.

2 Preliminaries

2.1 Adversary Structures and R2 Pairs of Structures

We denote by Pn the set {1, 2, . . . , n}. Furthermore, 2Pn is the family of all
subsets of Pn.

Definition 1. An adversary (or antimonotone) structure A ⊆ 2Pn is a family
of subsets of Pn such that ∅ ∈ A and for every A ∈ A and B ⊆ A we have
B ∈ A.

Definition 2. We say that a pair (A,B) of adversary structures is R2 if for all
A ∈ A, B ∈ B, we have A ∪ B �= Pn.

R2 is a generalization of the well known notion of a Q2 adversary structure
(an adversary structure A is Q2 if for all A,B ∈ A, we have A ∪ B �= Pn). More
precisely, the pair of adversary structures (A,A) is R2 if and only if A is Q2.
However, there exist adversary structures A,B such that neither A nor B are Q2,
while the pair (A,B) is R2. For example: n = 4, and A and B are the adversary
structures with maximal sets {1, 2}, {3, 4} in the case of A, and {1, 3}, {2, 4} in
the case of B.
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2.2 Secret Sharing

Our protocols rely heavily on secret sharing, a well-known cryptographic primi-
tive introduced by Shamir [Sha79] and, independently, Blakley [Bla79]. We recall
some terminology and results which will be needed later.

A secret sharing scheme for the set of participants Pn is given by a prob-
abilistic algorithm ShareS that takes as input a secret s and outputs values
a1, a2, . . . , an known as shares. The vector (a′

1, a
′
2, . . . , a

′
n) is called a sharing of

s if on input s ShareS outputs the values a′
i as shares with non-zero probability.

We say that a set A ⊆ Pn is unqualified if for any secret s and any sharing
(a1, a2, . . . , an) for it, the vector (ai)i∈A gives no information about the secret,
i.e., the probability that the values (ai)i∈A are outputted (as shares for A) by
ShareS on input s is the same as the probability of the same event when the
input is s′. Note that the family A ⊆ 2Pn of all unqualified sets of S is an
adversary structure. We say that a set A ⊆ Pn is qualified if for any secret s
and any sharing (a1, a2, . . . , an) for it, the vector (ai)i∈A uniquely determines
the secret, i.e. there is a unique secret for which ShareS can output those values
as shares for A. The family of all qualified sets is called the access structure of
S. We say that a secret sharing scheme is perfect if every set A ⊆ Pn is either
qualified or unqualified (there are no sets of shares which give partial information
about the secret).

We also define ReconstructS , an algorithm that takes as input a set of pairs
{(i, ai) : i ∈ A} where A ⊆ Pn and outputs s if A is a qualified set for S and the
values (ai)i∈A are part of a valid sharing of the secret s, and ⊥ otherwise.

Let F be a finite field. A linear secret sharing scheme S (over F), LSSS for
short, is a secret sharing scheme where the space of secrets is a vector space F

�0 ,
the space of the i-th shares is F

�i for i = 1, . . . , n, and there exists an integer e
and a map M : F

�0+e → F
�1 × · · · × F

�n such that ShareS consists in choosing a
uniformly random vector u ∈ F

e and outputting M(s,u) as shares. We denote by
[s,u]S ∈ F

� this sharing, where � =
∑n

i=1 �i. Given a set A ⊆ Pn we use [s,u](A)
S

to denote the vector consisting only of the shares corresponding to A. When
we do not need to make the randomness explicit, then we write [s]S and [s](A)

S .
Moreover, we say that � is the complexity of S. We note that ShareS runs in
polynomial time in �. The set of possible sharings in a LSSS is a vector space and
for all λ1, λ2 ∈ F we have λ1[s1,u1]S +λ2[s2,u2]S = [λ1s1+λ2s2, λ1u1+λ2u2]S ,
i.e. a linear combination of sharings is a sharing for the same linear combination
applied to the secrets. An immediate implication is that ReconstructS , on input
a qualified set A and a set of shares for it, acts by applying a linear function to
these shares.

We need a few facts about when sets are qualified and unqualified in a linear
secret sharing scheme. First, consider the case �0 = 1, where the secret is just
an element in F. In that case a LSSS is perfect, and we have:

Lemma 1. Let S be a LSSS with secrets in F. A set A ⊆ Pn is unqualified if and
only if there exists a vector u, such that [1,u](A)

S = 0, i.e., if we share the secret
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1 using randomness u, the shares corresponding to A are all zero. Otherwise, it
is qualified.

This can be easily derived by taking into account that, if the condition above is
satisfied, then[s, t]S and [s′, t′]S = [s, t]S + (s′ − s)[1,u]S are sharings of s and
s′ such that all the shares in A coincide.

Now suppose that in addition F = F2, so we are dealing with binary LSSS;
and that every share is one bit long, i.e., �i = 1. Since given a qualified set A,
the reconstruction algorithm in a LSSS consists of applying a linear function on
the corresponding shares, under the conditions above the secret needs to equal
the sum of the shares of a fixed subset A′ ⊆ A. Therefore we can characterize
the minimally qualified sets (those qualified sets such that none of their subsets
are qualified) as follows.

Lemma 2. Let S be a LSSS with secrets in F2 and shares in F2. A set A
is minimally qualified if and only if for any secret s ∈ F2 and any sharing
(a1, a2, . . . , an) = [s]S , we have that s =

∑
i∈A ai.

In this work it will also be essential to understand LSSSs where �0 = 2 and
F is the binary field F2. In general, if �0 > 1, the situation is more complicated
than in the case �0 = 1 since there may be sets A ⊆ Pn which can obtain partial
information about the secret. The generalization of Lemma 1 is as follows. Let
TA ⊆ F

�0 be the set of secrets s such that there exists u with [s,u](A)
S = 0.

Then for any secret m, when given [m](A)
S , any element in m + TA has the same

probability of being the secret and any element not in m + TA can be ruled
out. Furthermore, TA is always a vector space. In the case �0 = 2, F = F2,
this means that a set A can be either qualified, unqualified or learn one bit of
information about the secret m = (m0,m1), and this partial information can be
of three types, corresponding to the three different subspaces of F

2
2 of dimension

1: either it learns one coordinate m0 and has no information about the other
m1, or viceversa, or it learns m0 + m1 and nothing else. A LSSS Σ with secrets
(m0,m1) in F

2
2 induces a perfect LSSS Σ0 for the secret m0 (by considering m1

as randomness) and similarly, perfect LSSSs Σ1 and Σ2 for m1 and m0 + m1

respectively. Therefore we can talk about qualified sets and unqualified sets for
m0 (resp. m1, m0 + m1) and we will use Lemmas 1 and 2 for these individual
secrets later on. We are therefore seeing Σ as a multi-secret sharing scheme (in a
multi-secret sharing scheme [JMO93] several secret values are distributed among
a set of users, and each secret may have different qualified subsets). Moreover,
we can clearly define a reconstruction algorithm for the individual secrets m0

and m1, which we call Reconstruct0
Σ and Reconstruct1

Σ respectively.
As for the existence of LSSS, it is well known [ISN87] that every adversary

structure is the adversary structure of a LSSS.

Theorem 4. For every finite field F and integer �0 ≥ 1 and for every adversary
structure A there exists a perfect LSSS S with secrets in F

�0 and adversary
structure A.
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In general the complexity of the LSSS S constructed with the methods used in
[ISN87] is exponential in n. We say that a LSSS is ideal if �0 = 1 and �i = 1 for
all i. The complexity of an ideal LSSS is n, which is the smallest possible. Given
a finite field F most adversary structures A do not admit ideal LSSSs over F.

3 OT-Combiners

We describe our model in more detail. Alice has a pair of inputs m0,m1 ∈ {0, 1}
and Bob has an input a selection bit b ∈ {0, 1}. They execute a protocol π
whose goal is to implement the functionality FOT securely (in the presence of an
adversary which we specify below) on those inputs. The protocol π consists only
of local computations by each of the parties and oracle calls to servers S1, . . . , Sn

(in particular, we do not need a direct communication channel between Alice and
Bob). If the server Si is not corrupted, then it executes a copy of the functionality
FOT and may be called several times. Each time a server is called, it receives a
new pair of inputs x0, x1 ∈ {0, 1} from Alice and c from Bob, and executes the
functionality FOT on these inputs, therefore outputting the message xc towards
Bob (Fig. 1).

Fig. 1. Functionality FOT

We consider a static adversary Adv characterized by a pair of adversary
structures (A,B) each contained in 2{S1,...,Sn}, which we call an (A,B)-adversary.
Such adversary can corrupt, before the protocol starts, either Alice and a set of
servers A ∈ A or Bob and a set of servers B ∈ B. If the adversary is passive, then
it obtains all information seen bys the corrupted party and servers during the
protocol, but cannot make them deviate from the protocol. If the adversary is
active, it can in addition make the corrupted party and servers deviate arbitrarily
from the protocol.

In these conditions, we say that the protocol π is an n-server OT-combiner
secure against Adv if it securely implements the functionality FOT in the pres-
ence of this adversary. In this paper we will prove security using the Universal
Composability framework [Can01], see [CDN15] for more information.

Let 1 ≤ tA, tB ≤ n. If there exist A and B such that A contains all subsets
of size tA of {1, . . . , n} and B contains all subsets of size tB of {1, . . . , n} and if
π is an n-server OT-combiner secure against any (A,B)-adversary, then we say
that π is an n-server OT-combiner secure against a (tA, tB)-adversary.
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4 A Multi-secret Sharing Scheme

As we mentioned in Sect. 1.1, our OT combiners rely on the combination of two
linear secret sharing schemes S and Σ. S is given by the statement of Theorem 2
and is used by Bob. The secret sharing scheme Σ, used by Alice, is a multi-secret
sharing scheme satisfying a number of properties that we need in order to achieve
security of our combiner.

In this section, we abstract the properties that we will need for Σ, and we
give a construction achieving these properties. How this will play a role in our
OT-combiners will become apparent in the next sections.

Proposition 1. Let � be an integer, V � F
�
2 be a vector subspace, t ∈ F

�
2 be a

vector such that t /∈ V and let W be the affine space W = t + V . Finally for
I ⊆ {1, . . . , �} let eI ∈ F

�
2 denote the vector with 1’s in the I-coordinates and 0’s

in the rest.
Then the linear secret sharing scheme Σ for 2� participants (indexed by pairs

(i, j)) with secrets in {0, 1}2 and shares in {0, 1}, given in Fig. 2, is such that
the following properties hold:

1. The minimally qualified sets for reconstructing the first coordinate m0 of the
secret are exactly the sets of the form

{(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈ V }.

2. The minimally qualified sets for reconstructing the second coordinate m1 of
the secret are exactly the sets of the form

{(i, ai) : i = 1, . . . , n, (a1, . . . , an) ∈ W}.

3. The minimally qualified sets for reconstructing the sum m0 + m1 are those of
the form

{(i, c) : i ∈ H, c = 0, 1},

where H is such that eH ∈ W and eH′ /∈ W for H ′ ⊆ H.

Before starting with the proof, we need some definitions. Let U be the vector
space spanned by the set V ∪ {t}. Note U = V + W . We define

Z0 = U⊥ = {h ∈ F
�
2 : h ∈ V ⊥, <t,h> = 0}

and
Z1 = {h ∈ F

�
2 : h ∈ V ⊥, <t,h> = 1}.

Note since b /∈ V , then Z1 is non-empty and Z1 = Z0 + g for some g such
that <t,g> = 1.

We also need the following lemma, which is a basic fact of linear algebra.

Lemma 3. For every u /∈ U , the random variable <u,h>, where h is chosen
uniformly at random in Z0 (resp. Z1), is uniformly distributed in F2.
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Fig. 2. The multi-secret sharing scheme Σ

Now we can proceed with the proof of Proposition 1

Proof of Proposition 1. Clearly Σ is linear, since a fixed linear combination of
the sharings is a sharing for the same linear combination applied to the secrets.
Nevertheless we can also make the linearity of the construction more explicit
by showing how the shares are constructed as a linear function of the secret
(m0,m1) and a uniform random vector in some space F

e
2, as follows. Note that

V ⊥ is a vector subspace. The set Z0 is also a vector subspace which will have a
basis {z(1), z(2), . . . , z(s)}.

A uniformly random element in {h ∈ F
�
2 : h ∈ V ⊥, <t,h> = m0+m1} can be

then sampled by sampling independent uniform random elements d1, . . . , ds ∈ F2

and outputting d1z(1) + · · · + dsz(s) + (m0 + m1)g. The elements hi in our
construction are simply the coordinates d1z

(1)
i + · · · + dsz

(s)
i + (m0 + m1)gi.

Therefore, the shares can be written as a linear combination of uniformly random
elements r1, . . . , r�−1, d1, . . . , ds ∈ F2 and the values m0, m1.

Now we need to argue about the access structure of the secret sharing schemes
for the different pieces of information m0, m1 and m0 + m1.

By Lemma 2, in the conditions of these scheme (linear, binary, every share
is a bit) a set is minimally qualified for m0 (resp. m1, m0 + m1) if and only if
the corresponding shares always sum up to m0 (resp. m1, m0 + m1) and there
is no stricty smaller subset satisfying the same.

Fix A ⊆ {1, 2, . . . , �} × {0, 1} a set of indices. We define two sets I1, I2 ⊆
{1, 2, . . . , �} as follows:

I1 = {i : exactly one of (i, 0) and (i, 1) is in A}
and

I2 = {i : (i, 1) ∈ A}.

Then ∑

(i,j)∈A

a(i,j) =
∑

i∈I1

ri +
∑

i∈I2

hi =
∑

i∈I1

ri + <eI2 ,h>
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where eI2 is the vector with 1’s in the positions of I2 and 0’s in the rest.
Note that if I1 �= ∅, {1, . . . , �}, then

∑
i∈I1

ri is uniformly distributed in F2

over the choice of the ri’s. Furthermore,
∑

i∈I1
ri is clearly independent from

<eI2 ,h>. Hence the sum
∑

(i,j)∈A a(i,j) is uniformly distributed in F2.
Likewise if eI2 /∈ U = V ∪ W then <eI2 ,h> is uniformly distributed in F2

by Lemma 3 (regardless of whether m0 + m1 = 0 or m0 + m1 = 1). Therefore,
the only cases where A can be minimally qualified for either m0, m1, m0 + m1

are the following:

– I1 = {1, . . . , �}, eI2 ∈ V . This case corresponds to

A = {(1, b1), (2, b2), . . . , (n, bn)}
where (b1, b2, . . . , bn) = eI2 ∈ V . Moreover

∑
(i,j)∈A a(i,j) = m0 +<h, eI2> =

m0, so this set is minimally qualified for m0, since clearly there cannot be
smaller subsets satisfying the same property.

– I1 = {1, . . . , �}, eI2 ∈ W . This case corresponds to

A = {(1, b1), (2, b2), . . . , (n, bn)}
where (b1, b2, . . . , bn) = eI2 ∈ W . Moreover

∑
(i,j)∈A a(i,j) = m0+<h, eI2> =

m1, so this set is minimally qualified for m1, since clearly there cannot be
smaller subsets satisfying the same property.

– I1 = ∅, eI2 ∈ V : in this case,

A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}.

However
∑

(i,j)∈A a(i,j) = <h, eI2> = 0, so this set is not minimally qualified
for any of the secrets.

– I1 = ∅, eI2 ∈ W : in this case, again

A = {(i, 0) : i ∈ I2} ∪ {(i, 1) : i ∈ I2}.

Now
∑

(i,j)∈A a(i,j) = <h, eI2> = m0 + m1, so this set is minimally qualified
for m0 + m1 unless there is a smaller subset I ′

2 ⊆ I2 such that eI′
2

∈ W . ��

5 Construction of OT-Combiners When S is Ideal

In this section we will show Theorem 2, under the additional assumption that
the secret sharing scheme S is also ideal. That is, we show:

Theorem 2 case S ideal. Let A, B ⊆ 2Pn be adversary structures such that
(A,B) is a R2 pair. Suppose there exists a linear secret sharing scheme S for n
participants where the secret is in {0, 1} and every share is in {0, 1}, and such
that every set A ∈ A is unqualified in S and the complement B of every set
B ∈ B is qualified in S.

Then there exists a single-use n-server OT combiner which is perfectly secure
against any active (A,B)-adversary.

This result is enough to show Theorem 1, which is proven at the end of this
section.
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5.1 The Protocol

Our protocol πOT described in Fig. 3 works as follows: Bob computes a secret
sharing of his input b with the ideal linear secret sharing scheme S promised
above, therefore creating n shares bi, each of which is a bit since the scheme is
ideal. On the other hand, Alice will secret share her input (m0,m1) with a secret
sharing scheme Σ that is defined as follows: Σ is the secret sharing scheme given
by Proposition 1 where � = n, V is the set of all possible sharings [0,u]S of 0
with S (which is a vector space because S is linear) and t will be one sharing
of 1 with S (for example t = [1,0]S). By linearity, W is the set of all possible
sharings of 1.

Now Alice an Bob call each OT server once, the inputs to the i-th server
being a(i,0) and a(i,1), in this order, on Alice’s side, and bi on Bob’s side. Assum-
ing that there is no active corruption, Bob will receive a(i,bi) from the servers. By
definition of Σ he has enough information to reconstruct mb by running the cor-
responding reconstruction algorithm (if the reconstruction fails, because Alice’s
shares were malformed, Bob outputs 0 by default).

Fig. 3. Protocol πOT for ideal LSSSs.

Proposition 2. If Alice and Bob follow the protocol semi-honestly, then πOT

(Fig. 3) implements OT with perfect correctness.

Proof. If Alice and Bob follow the protocol (semi-)honestly, at the end of
the protocol Bob will have received all values m

(i,bi)
b , i = 1, . . . , n, for some
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sharing [b]S = (b1, . . . , bn). By Proposition 1, {(1, b1), . . . , (n, bn)} is qualified for
reconstructing mb (because (b1, . . . , bn) ∈ V if b = 0 and (b1, . . . , bn) ∈ W if
b = 1). ��

5.2 Security

In order to guarantee the privacy of Alice’s input, the first thing that we need
to observe is that Bob does not learn mb from a(i,bi) if (b1, . . . , bn) is not a valid
sharing of b with S, since in that case {(1, b1), . . . , (n, bn)} is not qualified for
mb by Proposition 1. However, this only guarantees privacy against a very weak
semi-honest adversary corrupting Bob and no servers. Note that, first of all, the
adversary can corrupt some set B ∈ B of servers, thereby obtaining both a(i,0)

and a(i,1) for all i ∈ B. Moreover, if the adversary is malicious, it can also make
Bob submit values bi such that (b1, . . . , bn) is not a valid sharing [b]S . Finally,
remember that in Sect. 2.2 we argued that given an ideal LSSS with secrets in
F2, like it is the case with Σ, it may in principle happen that some sets of shares
allow to reconstruct m0 + m1 even if they do not get any information about the
individual m0 and m1. Therefore we also need to ensure that these cases will
not happen in our problem.

We show how the properties we have guaranteed in Proposition 1 take care
of all these and prevent the potentially malicious Bob from learning other infor-
mation than he should.

Proposition 3. Suppose (A,B) is an R2 pair of adversary structures and S
and Σ are defined as above. Let (m0,m1) be shared with Σ. Fix B ∈ B and
(b′

1, . . . , b
′
n) ∈ F

n
2 , and define the set of indices

H = {(i, b′
i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ {0, 1}}.

Then:

– If the set {b′
i : i ∈ B} is not part of any sharing [c]S for any c ∈ {0, 1} then

the values a(i,j), (i, j) ∈ I ′ give no information about the pair (m0,m1).
– If the set {b′

i : i ∈ B} is a part of a sharing [c]S of some c ∈ {0, 1} then
the values a(i,j), (i, j) ∈ I ′ give full information about mc but no information
about m1−c.

Proof. By the considerations in Sect. 2.2, we know that in principle a set of shares
could either be unqualified (give no information about (m0,m1)), qualified (give
full information) or give partial information, which in turn can be of three types:
either it gives information about one of the coordinates md and no information
about m1−d or it could give information about m0 + m1 and nothing else. On
the other hand, Proposition 1 describes the minimally qualified sets for m0, m1

and m0 + m1.
We show first that the set H is not qualified for m0 + m1 in any case. If that

were the case, then there would exist a set I ⊆ Pn such that H would contain
all indices of the form (i, 0), (i, 1) with i ∈ I and such that eI ∈ F

n
2 is a sharing
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of 1 with S. H contains both (i, 0) and (i, 1) exactly for those i ∈ B. But assume
there existed an I ⊆ B such that eI ∈ F

n
2 were a sharing of 1. Now we get a

contradiction as follows: from the assumptions, B is qualified in S. Therefore by
linearity of S there cannot be a sharing of 1, [1]S , such that [1]BS = 0. But on
the other hand eI ∈ F

n
2 is a sharing of 1 which satisfies that [1]IS is zero, and

since B ⊆ I both statements are contradictory.
Now note that the minimally qualified sets for m0 (resp. m1) are those of

the form {(1, b1), . . . , (n, bn)} ⊆ Pn,2 where (b1, . . . , bn) is a sharing of 0 (resp.
1) with S. This implies that if H is qualified for m0 (resp. m1) then necessarily
{b′

i : i ∈ B} needs to be part of a sharing [0]S (respectively [1]S). ��
These elements are enough to formally show the security of our construction.

Theorem 5. The protocol πOT UC-implements the functionality FOT in the
presence of an (A,B)-adversary.

Proof. Alice honest, Bob malicious:
We will suppose without loss of generality that corrupted servers act as a

dummy adversary. Let B denote the set of corrupted servers.
First, Sim awaits (ready, i) for i ∈ B and that the environment has sent

b′
i for each i ∈ B. Then it executes ReconstructS({(i, b′

i) : i ∈ B}). If the
reconstruction fails then Sim chooses random messages m̃0, m̃1. If the recon-
struction succeeds, let b be its output; then Sim sends the command (transfer,
b) to FOT , receives message (sent,mb) and sets m̃b := mb; it selects a random
message m̃1−b ∈ M.

In any case, Sim generates a sharing (a(i,j))(i,j)∈Pn,2 = [(m̃0, m̃1)]Σ.
Finally, in parallel Sim sends the following to the environment: for each i ∈ B,

it sends a(i,b′
i)

, and for each i ∈ B, it sends the entire vectors a(i,0), a(i,1).
We need to prove now that the distribution of these values is indistinguish-

able from the ones obtained in the interaction with the actual protocol. We
should first note that since the set B is qualified for S, the values {b′

i : i ∈ B}
cannot be part of both a sharing [0]S and a sharing [1]S . Using Proposition 3,
this implies that the distribution of the set of shares (m̃0)(i,j), (m̃1)(i,j), for i ∈ B

and j ∈ {0, 1} and (m̃0)(i,b′
i)

), (m̃1)(i,b′
i)

) for i ∈ B obtained in the simulation is
the same as the corresponding distribution in the actual protocol.

Alice malicious, Bob honest:
We will suppose without loss of generality that corrupted servers act as a

dummy adversary. Let A ∈ A be the set of corrupted servers. The simulator
works as follows:

Upon receiving (ready) from the ideal functionality FOT , Sim generates uni-
formly random sharings of b = 0 and b′ = 1 in S subject to the only condition
that if i ∈ A, then bi = b′

i. Note that this is possible since A is unqualified for
S. Then, in parallel Sim sends bi to the environment for each i ∈ A. Sim now
awaits that for each i ∈ A, the environment sends a(i,0) and a(i,1) and that for
each i ∈ A the environment sends a(i,bi).
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For k = 0, 1, if mk is not already set to 0 then Sim computes

mk = Reconstructk
Σ({((i, bi), a(i,bi)) : i ∈ Pn})

If the reconstruction of mk fails, Sim sets mk = 0. Finally, it sends (send,m0,m1)
to FOT .

By construction, the shares bi corresponding to the set A of corrupt servers
that the environment receives are indistinguishable from the A-shares in a uni-
formly random sharing of b, regardless of whether b = 0 or b = 1. Hence these bi

do not allow the receiver to distinguish the real and ideal world. Now, since after
that step there is no further interaction, it suffices to show that the messages
sent to Bob are indistinguishable from the ones sent in the real world.

This is the case since the shares have been chosen with the distribution Bob
would use and since the simulator reconstructs the messages m0 and m1 in
exactly the same way as Bob would reconstruct mb in the real protocol, if b is
his input. Therefore the real and ideal world are indistinguishable. ��

We note that the simulators in the proof above run in polynomial time.

5.3 Threshold Adversaries

We now consider threshold (tA, tB)-adversaries, which corrupt Alice and up to
tA servers or Bob and up to tB servers. Our main result is Theorem 1, which we
recall next.

Theorem 1. For any large enough n, there exists an n-server single-use OT-
combiner which is perfectly secure against an active (0.11n, 0.11n)-adversary.

This and other statements we claim below will be a consequence of the fol-
lowing lemma.

Lemma 4. If there exists a linear error-correcting code C over the binary field
with length n, minimum distance d satisfying d ≥ tB + 2, and such that the
minimum distance d⊥ of its dual C⊥ satisfies d⊥ ≥ tA + 2, then there exists a
single-use OT-combiner for n servers which is perfectly secure against an active
(tA, tB)-adversary.

Proof. We know from [Mas93] (see also [CCG+07, Theorem 1]) that given a
linear code C (over a field Fq) with length n + 1, one can construct a linear
secret sharing scheme for n participants with secret and shares in the same field
Fq as follows. Namely, given a secret s ∈ Fq, choose a codeword from C whose
first coordinate is s, and define the remaining coordinates as the n shares. Then,
if the code has minimum distance d and its dual code C⊥ has minimum distance
d⊥, then any set of d⊥ −2 participants in this LSSS is unqualified and any set of
n − d + 2 participants is qualified. Hence the conditions of the lemma guarantee
the existence of a ideal binary LSSS S for n participants where every set of
tA participants is unqualified and every set of n − tB participants is qualified.
Plugging this S into Theorem 2 (in the ideal case we have already proved in this
section) shows the result. ��
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Theorem 1 is then derived from the following result

Theorem 6. For large enough n, there exists a linear binary code with length
n + 1 and d, d⊥ ≥ 0.11n.

The proof of this result essentially follows the steps from [CCG+07], and is
based on the well-known Gilbert-Varshamov theorem from coding theory.

Theorem 7 (Gilbert-Varshamov). For every 0 ≤ δ < 1/2 and any 0 < ε <
1 − h2(δ) (where h(·) denotes the binary entropy function), if a linear code is
chosen uniformly at random among all linear codes over F2 of length n + 1 and
dimension k = (1−h2(δ)− ε)(n+1)�, then with probability 1− 2−Ω(n) the code
has minimum distance at least δ(n + 1).

Proof of Theorem 6. Choosing δ = 0.11 (which guarantees h2(δ) < 1/2), and
ε = 1/2 − h2(δ), Theorem 7 states that for large n, a uniformly random binary
linear code of dimension (n+1)/2 has minimum distance δ(n+1) with very large
probability. Now the dual of a code of dimension (n + 1)/2 also has dimension
(n+1)/2. So one can use Gilbert-Varshamov bound (applied to both a code and
its dual, whose distribution is clearly also uniformly random among all codes of
dimension (n + 1)/2) and a union bound argument and the observations above
about the relationship between codes and secret sharing schemes to conclude the
result. ��
Proof of Theorem 1. This is now straightforward from Lemma 4 and Theorem 6.

��
We can also give non-asymptotic statements, at the cost of a small loss in

the constant 0.11.

Theorem 8. For n ≥ 21, there exists an n-server single-use OT-combiner which
is perfectly secure against an active (�0.1n�, �0.1n�)-adversary.
Proof [CCG+07, Corollary 2]. (see also Definition 5 in the same paper) guaran-
tees that for n ≥ 21, there exists a binary linear code with both d, d⊥ ≥ �0.1n�.
Again applying Lemma 4 we obtain the result. ��

Theorem 1 is an existence result, and explicit constructions of codes attaining
the Gilbert-Varshamov bound over the binary field are not known. We can only
guarantee that choosing a random code of length n + 1 and dimension (n + 1)/2
will with high probability yield a linear secret sharing scheme with the desired
guarantees. Explicit constructions of perfectly secure OT-combiners against an
active (Ω(n),Ω(n))-adversary can be obtained from algebraic geometric codes,
but the underlying constant is worse than 0.11. For small values of n one can also
obtain explicit constructions of ideal binary LSSS with relatively good privacy
and reconstruction thresholds. One possibility is to use self-dual codes (i.e. codes
that are their own duals), since in that case the minimum distance of the code and
its dual is the same. Tables of self-dual codes with the largest known minimum
distance for their lengths are available at [Gab]. These tables show for instance
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the existence of a binary self-dual code of length 8 and minimum distance 4,
which yields a single-use 7-server OT-combiner with perfect security against an
active (2, 2)-adversary.

Finally, while in this paper we focus on perfect security, we briefly sketch
a modification of our protocol towards the goal of achieving statistical security
against a stronger threshold adversary that corrupts n/2 − ω(log κ) servers, for
a security parameter κ, following the ideas of [IMSW14] who obtained a similar
result for passive adversaries. In this case, we need to assume the existence of
a direct communication channel between Alice and Bob and we assume that
the static adversary corrupts a set of servers and one of the parties prior to the
beginning of the protocol. The idea is to use our construction from Theorem 1
but, rather than fixing a LSSS S prior to the start of the protocol as we do in
Theorem 1, in the statistical version we would let Alice and Bob choose a random
linear code and hence its associated LSSS as the first step of the protocol, after
corruption of the servers (and one of the parties) has taken place. They do
this by means of a secure coin tossing protocol. According to the arguments
in Theorem 2, the adversary can only break the security of the protocol if it
was able to corrupt either Alice and a set of servers A which is qualified in
the corresponding LSSS scheme S or Bob and a set of servers B such that the
complement B is not qualified in S. However, the adversary does not know the
LSSS at the time of the corruption, so he must basically guess which set to
corrupt. The results about LSSS constructed from codes in [Mas93,CCG+07]
imply that the adversary succeeds if he corrupts a set of servers such that there
exists a codeword in either C or C⊥ with a 1 in the first coordinate and the rest
of its support is contained in the set of indices corresponding to the corrupted
set. However, one can show by a simple counting argument that the probability
that this bad event happens is negligible in κ.

6 Construction of OT-Combiners in the General Case

In this section we present the general version of the protocol πOT from the
previous Sect. 5, when the adversary structure A is not necessarily the adversary
structure of an ideal LSSS over F2. Note that many interesting access structures,
for example most threshold structures, do not admit an ideal LSSS over F2.

Theorem 2. Let A, B ⊆ 2Pn be adversary structures such that (A,B) is a R2

pair. Suppose there exists a linear secret sharing scheme S for n participants
where the secret is in {0, 1} and the i-th share is in {0, 1}�i , and such that every
set A ∈ A is unqualified in S and the complement B of every set B ∈ B is
qualified in S.

Then there exists an OT combiner which calls the i-th server �i times and is
perfectly secure against any active (A,B)-adversary.

Let S be a possibly non-ideal perfect secret sharing scheme with adversary
structure A. For i = 1, . . . , n the i-th share of S belongs to some vector space
Ui = {0, 1}�i for some integer �i ≥ 1. Let � =

∑n
i=1 �i be the complexity of S.
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Fig. 4. Protocol πOT for general LSSSs.

The idea of the generalization is simple. The i-th server is split in �i sub-
servers, each of which will receive one different bit of the i-th share of Bob’s
input. These subservers will now work as the servers did in the protocol from
Sect. 5 (we remark however that the adversaries corrupt full servers and not
individual subservers). For that we need to modify the secret sharing scheme
Σ used by Alice accordingly. More precisely, let V,W ⊆ U1 × · · · × Un be the
sets of all possible sharings of 0 and 1 respectively. We can think of the ele-
ments of V and W as �-bit strings, and we index their coordinates by pairs
(i, k) where the (i, k)-th coordinate of a sharing is the k-th bit of the i-th share.
Now we can define Σ as in Proposition 1 for these V and W (and setting t
to be some sharing [1]S). Everything works therefore the same as in Sect. 5.1
except that Σ will now have 2� shares. The set of shares will be indexed by
P�,2 := {(i, k, j) : i = 1, . . . , n, k = 1, . . . , �i, j = 0, 1}. The general protocol is
given in Fig. 4. The security proofs work essentially as in the case presented in
Sect. 5.
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7 Necessary Conditions for the Existence of OT
Combiners

In this section we show Theorem 3.

Theorem 3. Let A, B be adversary structures on the set of servers
{S1, . . . , Sn}. If there exists a perfectly secure OT-combiner which is secure
against any passive (A,B)-adversary and uses server Si exactly �i times, then
(A,B) is an R2 pair of structures and there exists a secret sharing scheme for n
participants with secret in {0, 1}, the i-th share in {0, 1}�i , for i = 1, . . . , n and
such that every set A ∈ A is unqualified in S and the complement B of any set
every set B ∈ B is qualified in S.

First we show that if (A,B) were not R2 then the existence of an uncondition-
ally secure OT combiner would imply the existence of a 2-party unconditionally
secure OT protocol. Indeed if (A,B) is not R2, then there exists A ∈ A and
B ∈ B such that A ∪ B is the set of all servers. Then the entire protocol can
be emulated by two parties: Alice′, who plays the joint role of Alice and all the
servers in A and Bob′ who plays for Bob and all servers in B. This is then a
two-party protocol in the plain model which is unconditionally secure against
a semi-honest adversary who can corrupt either of the parties Alice′ and Bob′.
This is known to be impossible.

Next, we prove the existence of a secret sharing scheme with the properties
mentioned in the theorem. In fact, we simply reproduce the arguments from
[IMSW13] in our setting. Assume we have an OT combiner which is perfectly
secure against an (A,B)-adversary and where the i-th server is used �i times.
Then Bob’s inputs to the OT servers must have been computed from his global
input to the OT combiner by some probabilistic algorithm AlgBob. We now
consider a secret sharing scheme S whose sharing algorithm is AlgBob (under-
standing that the i-th share is the bit-string containing all �i inputs bits to the
i-th OT server produced by AlgBob). Since the OT combiner is secure against
and adversary corrupting Alice and a set A ∈ A, this means that every A ∈ A
must be unqualified in S. Next we show that for every B ∈ B, its complement
B must be a reconstructing set for S. Consider a party Alice′ who plays the
role of Alice and the servers in B in the OT-combiner and a party Bob′, who
plays the role of Bob and the servers in B. Assume that the inputs of Alice
and Bob are independent. We then have a protocol between Alice′ and Bob′ in
the plain model, which correctly implements the OT functionality and in which,
by security of the OT combiner and since B ∈ B, Bob′ obtains no information
about the input (m0,m1) of Alice′ after the protocol has been executed. In these
conditions, it follows from standard arguments about the impossibility of two
party computation in the plain model (see e.g. [CDN15]) that Alice′ not only
obtains information about the input of Bob′, but in fact she recovers it with
probability 1. Given that all the information that Alice′ has learned during the
execution of the protocol is the input bits to the servers in B, we conclude that
B is a reconstructing set for S.
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8 2-Out-of-3 OT-Combiners

As an application of Theorems 2 and 3 we determine the minimal number of
calls for a perfectly secure OT combiner where we have 3 servers, and 2 of them
are secure. In other words, we want perfect security against an (1, 1)-adversary,
i.e. A = B = {{1}, {2}, {3}}. By Theorem 2, we are then interested in finding a
linear secret sharing scheme over F2 for 3 participants such that it has 1-privacy
(every single participant is unqualified) and it has 2-reconstruction (every set
of two participants is qualified). Note that we want to find a threshold secret
sharing scheme, but Shamir’s scheme cannot be used directly over F2 (we would
tolerate at most 2 participants). One could instead use Shamir’s scheme over
the extension field F4, and in this case we have shares which are each in {0, 1}2.
This yields an OT-combiner where each server is called twice, which matches
the number of calls in a construction in [HKN+05]. However, we show that one
can do better with the following LSSS S.

Fig. 5. A 2-out-of-3 threshold linear secret sharing scheme S

Lemma 5. S has 2-reconstruction and 1-privacy.

Corollary 1. There exists an OT combiner for 3 OT servers which is perfectly
secure against an (1, 1)-adversary and makes 1 call to one of the OT servers and
2 calls to each of the other 2 servers.

Now we apply Theorem 3 in combination with the results from [CCX13] to
show that this is optimal in the total number of server calls. Theorem 3 states
that given an OT-combiner in the conditions above, there needs to exist a secret
sharing scheme (linear or not) for 3 participants with 1-privacy, 2-reconstruction
and share lengths matching the number of calls to the OT-servers. On the other
hand we have

Theorem 9 [CCX13]. Suppose there exists a secret sharing scheme for n par-
ticipants, where the i-th share takes values in an alphabet Ai, and such that it has



Resource-Efficient OT Combiners with Active Security 483

t-privacy and r-reconstruction. Let q = 1
n

∑n
i=1 |Ai| be the average cardinality of

the share-alphabets. Then

r − t ≥ n − t + 1
q

.

Therefore, a secret sharing in the conditions above must satisfy that the aver-
age cardinality of the share-alphabets is q ≥ 3. Now note that in our case the
shares are in {0, 1}�i , which are alphabets of cardinality 2�i , and we can rule
out degenerate cases where �i = 0 (since in that case, clearly it cannot happen
simultaneously that {i, j} is qualified and {j} is unqualified). Under all these
conditions, one can easily check that

∑3
i=1 �i < 5 and q = 1

3

∑3
i=1 2�i ≥ 3

cannot be achieved simultaneously. Therefore,

Corollary 2. The minimal number of calls for a OT combiner for 3 OT servers
which is perfectly secure against an (1, 1)-adversary is 5.

9 Security Against Corruptions of Only Servers

Our model does not consider corruption of only servers, and our security proofs
therefore do not directly guarantee any security in case the adversaries corrupt
only a set of servers. Nevertheless, we can argue that some security properties
are satisfied even in case of server-only corruption.

Let Adv be an adversary that corrupts a set C of servers only. Alice and Bob
are both honest and have inputs (m0,m1), b respectively. Let us first consider
the case where Adv is semi-honest and corrupts only a set S ∈ B of servers. If a
protocol π is secure in our model, it is easy to see that it will compute the correct
result (⊥,mb) (meaning Bob receives mb and Alice receives nothing) also in this
case and that Adv will learn nothing more than at most b,mb. This follows, since
if Adv had also corrupted Bob semi-honestly, he would have learned at least as
much and we can use security of π to conclude that in that case the correct result
is computed and Adv learns nothing more than b,mb. In particular, the view of
Adv can be simulated perfectly based on b,mb. A similar conclusion holds if we
switch the roles of Alice and Bob, i.e. if Adv is semi-honest and corrupts only a
set S ∈ A of servers, his view can be simulated perfectly based only on m0,m1.

Now, consider the case where S ∈ A and S ∈ B. We can then conclude that
the view of Adv can be simulated perfectly based on m0,m1 and also based on
b,mb. But this must mean that the distribution of this view does not depend
on any of these values: assume for contradiction that there existed m0,m1 such
that the distribution of the view of S given (0,m0) is different from the one
given (1,m1). Now compare the two cases where we run the protocol on inputs
(m0,m1, 0) respectively (m0,m1, 1). Then the simulation based on m0,m1 would
output the same distribution in both cases, so it cannot be consistent with both
the distribution resulting from (m0,m1, 0) and from (m0,m1, 1). So we have

Proposition 4. If protocol π is perfectly secure in our model, it is also secure
against semi-honest corruption of a set of servers that is in both A and B, except
that the simulation may not in general be efficient.
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Let us now consider malicious corruption: Alice and Bob are honest and
Adv is malicious and corrupts only a set C ∈ B of servers. Note that from
Alice’s point of view, the situation is indistinguishable from a case where Adv
also corrupts Bob but lets him play honestly. Security of π now implies that
Adv learns nothing more than b and mb′ for some well defined input b′ that
is determined by the behaviour of the malicious servers. Note that we are not
guaranteed that b′ is equal to the honest input b, even though Bob plays honestly.
Similarly, for C ∈ A, Adv will learn nothing about b.

We observe that if S is in both A and B, then both the honest Alice and
honest Bob are guaranteed privacy: By running π, I will give away only the
function evaluated in my own input and some input from the other party. But
Alice and Bob are not guaranteed to agree on the result, so we do not get security
in the standard single adversary sense against malicious corruption of C.

We can in fact argue that this cannot in general be achieved in our model,
even if C is in both A and B: Consider a case with 3 servers 1, 2, 3 and let
A = {{1}, {2}} and B = {{2}, {3}}. This is clearly R2, so our model applies.
Now, it is easy to see that a secure protocol π in our sense will in this case also be
semi-honestly secure against single-adversary corruption of {Alice, 1}, as well as
{Bob, 3}. So if π was also single adversary maliciously secure against corruption
of {2}, then we would have a situation where the whole player set is covered by 2
sets that are semi-honestly corruptible and 1 set that is maliciously corruptible,
while π remains secure. And where furthermore the malicious server 2 has no
inputs or outputs. We are precisely in the case where the proof of Theorem 1 in
[FHM99] rules out the possibility of having a secure protocol.

Acknowledgments. We thank the anonymous reviewers for their suggestions, which
have helped us to improve this work.
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Abstract. In Attribute-Based Signatures (ABS; first defined by Maji,
Prabhakaran and Rosulek, CT-RSA 2011) an authority can generate
multiple signing keys, where each key is associated with an attribute x.
Messages are signed with respect to a constraint f , such that a key for x
can sign messages respective to f only if f(x) = 0. The security require-
ments are unforgeability and key privacy (signatures should not expose
the specific signing key used). In (single-hop) Homomorphic Signatures
(HS; first defined by Boneh and Freeman, PKC 2011), given a signa-
ture for a data-set x, one can evaluate a signature for the pair (f(x), f),
for functions f . In context-hiding HS, evaluated signatures do not reveal
information about the original (pre-evaluated) signatures.

In this work we start by showing that these two notions are in fact
equivalent. The first implication of this equivalence is a new lattice-based
ABS scheme for polynomial-depth circuits, based on the HS construction
of Gorbunov, Vaikuntanathan and Wichs (GVW; STOC 2015).

We then construct a new ABS candidate from a worst case lat-
tice assumption (SIS), with different parameters. Using our equivalence
again, now in the opposite direction, our new ABS implies a new lattice-
based HS scheme with different parameter trade-off, compared to the
aforementioned GVW.

1 Introduction

In a standard digital signature scheme an authority generates a public verifi-
cation key vk and a secret signing key sk. Given sk, it is possible to sign any
message, and signatures can be verified publicly with vk. Recent works study
more powerful notions of digital signatures, where the authority can generate
multiple signing keys, each with limited signing permissions. An example use
case is when an organization wants to allow its employees to sign on behalf of
its name, while controlling which messages each employee can sign. A signature
should not reveal any information about the signing permissions of the signer,
other than whether he is allowed to sign the message corresponding to the same
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signature. In stronger notions, the signature should not reveal any information
about the identity of the signer. Main notions of this form are attribute-based
signatures (ABS) [MPR11], policy-based signatures (PBS) [BF14], constrained
signatures (CS) [BZ14] and functional signatures (FS) [BGI14]. In this work we
use a slightly modified definition of constrained signatures, with two flavors that
capture ABS and PBS for languages in P.

In a homomorphic signatures (HS) scheme, given a signature for a data-set
x, one can evaluate a signature for the pair (f(x), f), for any f in the supported
function space of the scheme. Context-hiding HS has the security guarantee
that an evaluated signature does not reveal information about the original (pre-
evaluated) signature. In particular, it does not reveal x. Context-hiding homo-
morphic signatures are useful, for example, when one wants to prove that he
has a signature for a data-set which satisfies some condition, without revealing
the data-set itself. We show in this work that CS is equivalent to context-hiding
1-hop HS.

1.1 Overview

Two flavors of CS will be alternately used throughout this work. In key-
policy constrained signatures, each signing key skf is associated with a circuit
f : {0, 1}∗ → {0, 1}, which we refer to as the constraint, and a key skf can sign an
attribute x ∈ {0, 1}∗ only if f(x) = 0. In message-policy constrained signatures,
each key is associated with an attribute x ∈ {0, 1}∗, and a key skx can sign a
constraint f : {0, 1}∗ → {0, 1} only if f(x) = 0. Message-policy CS is equivalent
to attribute-based signatures, and key-policy CS is equivalent policy-based sig-
natures for languages in P1. When presented as two flavors of a single primitive,
we can take advantage of the similarities and alternately use the definition that
best fits the context. Note that the flavors are interchangeable up to switching
the constraint space and attribute space.

Security. We consider two aspects of security – unforgeability and key privacy.
Unforgeability requires that an adversary cannot sign a message which it does
not have a permission to sign, even after seeing other signatures. We also define
a relaxed notion where the adversary has only a single key, and a selective notion
where the adversary has to announce the message for which it is going to forge
a signature before seeing any public data. Key privacy bounds the information
revealed by a signature regarding the key that was used to produce it. In the
strongest notion, key-hiding privacy, the signature completely hides the key. In
particular, it is impossible to determine whether two signatures were derived
from the same key. In constraint-hiding privacy (or attribute-hiding privacy, in
the message-policy flavor) we only aim to hide the constraint (or to hide the

1 The original definition of ABS [MPR11] (PBS [BF14]) considers an additional mes-
sage space M, where messages m ∈ M are signed respective to an attribute (a
policy). The two definitions are equivalent since m can always be encoded into the
signed attribute (policy).
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attribute, in the message-policy flavor), possibly leaving the identity of the sign-
ing key public. We note that without any privacy requirements, CS are trivial
to achieve using standard signatures.

Delegation. A CS scheme can be extended to support key delegation. In this
setting, a party with a singing key skf can derive a signing key sk(f,g) that is
authorized to sign a message x only when f(x) = 0 and g(x) = 0. Note that
the permissions of sk(f,g) are never stronger than the permissions of skf , since
otherwise the scheme is forgeable.

Motivation. CS is weaker than PBS for NP but strong enough for some of the
motivations that lead to the study of PBS, such as constructing group signatures
and attribute-based signatures. See the applications discussion in [BF14] for
details. We exploit this gap and construct CS with a different approach than
previous results that were using variations of NIZK. Indeed, as noted in [BF14],
PBS for general languages in NP implies simulation-extractable NIZK proofs.
We also see in this work a contribution to the understanding of homomorphic
signatures – prior to this work there was only a single known construction of
(leveled) fully HS [GVW15].

1.2 Results

Unforgeability Amplification. In our first construction we assume a (key-policy)
CS scheme with single-key-selective unforgeability. This notion is captured by a
security game where the adversary is only allowed to query for a single key skf ,
and it has to announce f before seeing any public data. It wins if it manages
to forge a signature for an attribute x that is not authorized by f , i.e. where
f(x) = 1. We use a standard signatures scheme to construct a (key-policy) CS
scheme with full unforgeability. The downside of this general amplification is
the loss in key privacy – while the new CS scheme is constraint-hiding (i.e. it
hides the functionality of the signing key, as long as the underlying CS scheme
does as well), signatures reveal other key-specific information and therefore it
is not key-hiding (i.e. one can learn from a signature the identity of the signing
key). The amplification maintains the delegation properties of the underlying
CS scheme.

Equivalence of CS and Homomorphic Signatures. We first construct a (message-
policy) CS scheme which is single-key-selective unforgeable and key-hiding, from
context-hiding 1-hop homomorphic signatures. [GVW15] construct a context-
hiding HS scheme which is secure under the Short Integer Solution (SIS) hard-
ness assumption. When used as the underlying HS scheme to our construction,
this results in a SIS-based (message-policy) CS scheme with bounded attribute
space, and constraint space of boolean circuits with bounded depth. In the other
direction, we construct a selectively-unforgeable context-hiding 1-hop HS scheme
from a single-key-selective unforgeable key-hiding (message-policy) CS scheme.
As shown in [GVW15], it is possible to amplify the unforgeability of such HS
scheme to the adaptive notion.
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CS from Lattice Trapdoors. We construct a (key-policy) CS scheme from lattice
trapdoors, which is message-selective unforgeable and key-hiding. The key pri-
vacy is statistical, and the unforgeability relies on the Short Integers Solution
(SIS) hardness assumption. The construction supports attribute space of fixed
size and constraint space of boolean circuits with bounded depth. When trans-
lated to the message-policy flavor, the attribute space is unbounded and the
policy space is bounded in depth and size.

A New Homomorphic Signatures Construction. An immediate conclusion of the
above two results is a new lattice-based (leveled) fully homomorphic signatures
scheme, where fresh signatures are of fixed size (independent of the signed data-
set size), and evaluated signatures grow with the size of the policy description.
It means that for any policy with a short description succinctness is maintained.

Two New CS Constructions. Combining the first two results gives a new CS
construction – first construct the HS-based (message-policy) CS scheme which
is single-key-selective unforgeable, and then amplify it to full unforgeability,
while compromising on key privacy. We summarize the different properties of
this CS construction and the lattice-based CS construction in the table below.
Note that the HS-based scheme is presented in the message-policy flavor, and
the lattice-based scheme is presented in the key-policy flavor. Implementing each
of them in the opposite flavor will result in a constraint space of bounded depth
and size, and an unbounded attribute space.

HS-based message-policy CS Lattice-based key-policy CS

Assumption SIS SIS

Attribute space Fixed Fixed

Constraint space Bounded depth Bounded depth

Unforgeability Full Message-selective

Privacy Constraint-hiding Key-hiding

Supports delegation No Yes

1.3 Technical Overview

Definition of CS. A (key-policy) CS scheme consists of 4 algorithms
(Setup,Keygen, Sign,Ver). Setup is an initialization algorithm that generates a
verification key vk and a master signing key msk. Keygen produces constrained
signing keys – it takes as input the master signing key msk and a constraint f ,
and outputs a constrained key skf . The signing algorithm Sign takes as input
an attribute x and a constrained singing key skf , and outputs a signature σx,
which is valid if and only if f(x) = 0. The verification algorithm Ver takes an
attribute x and a signature σx, and either accepts or rejects.
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Unforgeability Amplification. We now give a brief description of the ampli-
fication. Assume a (key-policy) constrained signatures scheme CS′ which is
single-key-selective unforgeable, constraint-hiding and possibly supports del-
egation. Let S be an existentially unforgeable standard signatures scheme.
The construction is as follows. In Setup, the authority initializes S and sets
(vk,msk) = (S.vk,S.sk). Every time a key is generated, the authority initial-
izes a fresh instance of CS′ and generates a constrained key for the desired
f under this instance: (CS′.vk′,CS′.sk′

f ). It also generates a fresh instance of
S : (S.vk′′,S.sk′′). The authority then signs (CS′.vk′,S.vk′′) under the standard
scheme S using msk = S.sk and gets S.σ(vk′,vk′′). The constrained key is therefore
skf = (CS′.vk,CS′.skf , S.vk′′,S.sk′′,S.σ(vk′,vk′′)). To sign an attribute x with a
key of this form, one signs x with (CS′.vk,CS′.skf ), signs x with (S.vk′′,S.sk′′)
and outputs these signatures along with S.σ(vk′,vk′′). Verification is done by ver-
ifying the signatures for x under CS′.vk′ and S.vk′′, and verifying S.σ(vk′,vk′′)
under S.vk. Since for each instance of CS′ the authority only generates a sin-
gle key, the unforgeability for each such instance is maintained. The existential
unforgeability of S guarantees that it is not possible to forge a signature for an
instance of CS′ that was not initialized by the authority. Note that CS′.vk is a
part of the signature, and since this value is different for each key, it reveals the
identity of the key. For that reason the construction is not key-hiding but solely
constraint-hiding.

CS from Homomorphic Signatures. The construction of (message-policy) CS
from context-hiding HS works as follows. The CS authority initializes the HS
scheme. In order to produce a CS key for an attribute x, it signs x under the HS
scheme and outputs skx = HS.σx. A signature for a policy f is derived from skx

by homomorphically evaluating f on HS.σx. This results in an HS signature for
the pair (f, f(x)). In order to verify one checks the validity of the HS signature,
and that f(x) = 0. The context-hiding property of HS ensures that σ(f,f(x))

reveals nothing about σx, and thus the construction is key-hiding.

Homomorphic Signatures from CS. The construction of context-hiding 1-hop
HS from (message-policy) CS works as follows. The HS authority initializes the
CS scheme. In order to sign a data-set x, generate a CS key for the attribute
x and outputs σx = CS.skx. To homomorphically evaluate a function f on a
signature σx, first compute y = f(x), then define the function fy that on input
x′ outputs 0 if and only if f(x′) = y. Sign the constraint fy under the CS scheme
(using CS.skx) and output this CS signature: HS.σ(f,y) = CS.σfy

. In order to
verify one checks the validity of the CS signature. The key-hiding property of
CS ensures that CS.σfy

reveals nothing about CS.skx, and thus the construction
is context-hiding.

CS from Lattice Trapdoors. We use techniques that were developed in [GVW13,
BGG+14] for the purpose of attribute-based encryption (ABE). Let � be the
attribute length, i.e. x ∈ {0, 1}�. The constraint space is all the circuits f :
{0, 1}� → {0, 1} of bounded depth. The verification key vk consists of a uniformly
sampled matrix �A = [A1‖ . . . ‖A�X ] and a close-to-uniform matrix A, and the
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master signing key msk is a trapdoor for A, i.e. A−1
τ0 . A valid signature for an

attribute x is a non-zero short-entries vector vx such that [A‖�A− x ⊗G] ·vx =
0, where G is a special fixed gadget matrix. The constrained signing key skf

respective to a circuit f is a trapdoor [A‖Af ]−1
τ , where Af is computed from

�A and f . Given msk = A−1
τ0 it is possible to generate a trapdoor [A‖M]−1

τ

for any matrix M, so the authority can generate such keys efficiently. For any
pair (x, f), a trapdoor [A‖�A − x ⊗ G]−1

τ ′ can be derived from the trapdoor
[A‖Af − f(x)G]−1

τ . This implies that when f(x) = 0, it can be derived from
the signing key skf = [A‖Af ]−1

τ . The trapdoor [A‖�A − x ⊗ G]−1
τ ′ allows to

sample a short vector vx which is a valid signature for x. Since the signature is
sampled from the same distribution regardless of the signing key, the scheme is
statistically key-hiding. The proof of message-selective unforgeability is similar
to the selective security proof in [BGG+14]. Recall that the adversary has to
announce x for which it is going to forge a signature at the beginning of the
game. The matrix �A is then generated from A based on x in such way that it is
possible to generate a key for any function f for which f(x) = 1 without A−1

τ0 .
It is then shown that forging a signature for x implies breaking SIS respective
to the matrix A.

1.4 Related Work

Policy-based signatures were introduced in [BF14], where it was also shown
that PBS for NP can be constructed from NIZK. [CNW16] construct lattice-
based PBS in the random oracle model. [MPR11] introduced attribute-based
signatures, and suggested a general framework for constructing ABS from NIZK.
In [SAH16] ABS for circuits is constructed from bilinear maps. [BK16] construct
ABS for threshold functions and (∨,∧)- functions from lattice assumptions. Our
construction in Sect. 6 is the first ABS candidate for circuits that does not use
NIZK or non-standard assumptions.

[Fuc14,CRV14] define constrained verifiable random functions (CVRF),
which are constraint PRFs where given a constraint key one can compute,
in addition to the function value, a non-interactive proof for the computed
function value, where the proof is key-hiding. ABS can be constructed from
CVRF trivially, however the pseudo-randomness property of known CVRF con-
structions implies single-key unforgeability of the derived ABS. [Fuc14,CRV14]
show existence of CVRFs for poly-sized circuits, where the constructions assume
mulitilinar-maps and the multilinear DDH assumption respectively.

Homomorphic signatures were constructed in [BF11,CFW14] for polyno-
mials, and later in [GVW15] for boolean circuits. [LTWC16] define multi-key
homomorphic signatures and show how to derive ABS from it. [FMNP16] define
multi-key homomorphic MACS and signatures, and extend the [GVW15] HS
construction to support multi-key evaluation.

Other notions of digital signatures with fine-grained control over signing per-
missions are functional signatures (FE) [BGI14] and delegatable functional sig-
natures [BMS16]. In FE, a key respective to a function f can sign a message y
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if and only if the signer provides a preimage x such that f(x) = y. When the
function space consists of efficiently invertible functions, finding such x is trivial
whenever it exists, and FE can be derived from (key-policy) CS: a FE key for
f will be a CS key for the function that computes f ◦ f−1 and returns 0 if and
only if the output is equal to the input.

2 Preliminaries

2.1 Digital Signatures

Definition 1 ((Standard) Signature Scheme). A signature scheme is a
tuple of PPT algorithms (Setup,Sign,Ver) with the following syntax.

– Setup(1λ) → (vk, sk) takes as input the security parameter λ and outputs a
verification key vk and a signing key sk.

– Sign(sk,m) → σm takes as input a signing key sk and a message m, and
outputs a signature σm for m.

– Vervk(m,σm) takes as input a message m and a signature σm, and either
accepts or rejects.

Correctness. The scheme is correct for a message space M, if for all m ∈ M it
holds that Vervk(m,Sign(sk,m)) = accept, where (sk, vk) ← Setup(1λ).

Existential Unforgeability. The scheme is existentially unforgeable for a message
space M if every PPTM adversary A has no more than negligible advantage in
the following game:

1. The challenger computes (sk, vk) ← Setup(1λ) and sends vk to A.
2. A makes queries: it sends m ∈ M and gets in response σm ← Sign(m, sk).
3. A wins if it manages to output (m∗, σm∗) such that Vervk(m∗, σm∗) = accept,

where m∗ 
= m for any signature queried by A for a message m ∈ M.

2.2 Short Integer Solution (SIS)

Below is the definition and hardness assumption of SIS, as phrased in [Pei16].

Definition 2 (Short Integer Solution (SISn,q,B,m)). Given a uniformly ran-
dom matrix A ∈ Z

n×m
q , find a nonzero integer vector r ∈ Z

m of norm ‖r‖∞ ≤ B
such that Ar = 0.

Theorem 1 [Ajt96,Mic04,MR07,MP13]. For any m = poly(n), B > 0, and
sufficiently large q ≥ B ·poly(n), solving SISn,q,B,m with non-negligible probabil-
ity is at least as hard as solving the decisional approximate shortest vector prob-
lem GapSVPγ and the approximate shortest independent vectors problem SIVPγ

on arbitrary n-dimensional lattices (i.e., in the worst case) with overwhelming
probability, for some γ = B · poly(n).
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2.3 Lattice Trapdoors

Let n, q ∈ Z, g = (1, 2, 4, . . . , 2�log q�−1) ∈ Z
�log q�
q and m = nlog q�. The gadget

matrix G is defined as the diagonal concatenation of g n times. Formally, G =
g ⊗ In ∈ Z

n×m
q . For any t ∈ Z, the function G−1 : Zn×t

q → {0, 1}m×t expands
each entry a ∈ Zq of the input matrix into a column of size log q� consisting
of the bits representation of a. For any matrix A ∈ Z

n×t
q , it holds that G ·

G−1(A) = A.
The (centered) discrete Gaussian distribution over Z

m with parameter τ ,
denoted DZm,τ , is the distribution over Z

m where for all x, Pr[x] ∝ e−π‖x‖2/τ2
.

Let n,m, q ∈ N and consider a matrix A ∈ Z
n×m
q . For all v ∈ Z

n
q we let A−1

τ (v)
denote the random variable whose distribution is the Discrete Gaussian DZm,τ

conditioned on A · A−1
τ (v) = v.

A τ -trapdoor for A is a procedure that can sample from a distribution within
2−n statistical distance of A−1

τ (v) in time poly(n,m, log q), for any v ∈ Z
n
q . We

slightly overload notation and denote a τ -trapdoor for A by A−1
τ . The following

properties had been established in a long sequence of works.

Corollary 1 (Trapdoor Generation [Ajt96,MP12]). There exists an effi-
ciently computable value m0 = O(n log q) and an efficient procedure
TrapGen(1n, q,m) such that for all m ≥ m0 outputs (A,A−1

τ0 ), where A ∈ Z
n×m
q

is 2−n-uniform and τ0 = O(
√

n log q log n).

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 2 (Trapdoor Extension [ABB10,MP12]). Given Ā ∈ Z
n×m
q with a

trapdoor Ā−1
τ , and letting B̄ ∈ Z

n×m′
q be s.t. Ā = B̄S (mod q) where S ∈ Z

m′×m

with largest singular value s1(S), then (Ā−1
τ ,S) can be used to sample from B̄−1

τ ′

for any τ ′ ≥ τ · s1(S).

A few additional important corollaries are derived from this theorem. We
recall that s1(S) ≤ √

m′m ‖S‖∞ and that a trapdoor G−1
O(1) is trivial. The first

is a trapdoor extension that follows by taking S = [Im′‖0m]T .

Corollary 2. Given A ∈ Z
n×m′
q , with a trapdoor A−1

τ , it is efficient to generate
a trapdoor [A‖B]−1

τ ′ for all B ∈ Z
n×m
q , for any m ∈ N and any τ ′ ≥ τ .

Next is a trapdoor extension that had been used extensively in prior work.
It follows from Theorem 2 with S = [−RT ‖Im]T .

Corollary 3. Given A ∈ Z
n×m′
q , and R ∈ Z

m′×m with m = nlog q�, it is
efficient to compute [A‖AR + G]−1

τ for τ = O(
√

mm′ ‖R‖∞).

Note that by taking A uniform and R to be a high entropy small matrix, e.g.
uniform in {−1, 0, 1}, and relying on the leftover hash lemma, Corollary 1 is in
fact a special case of this one.

It is also possible to permute trapdoors in the following manner.

Corollary 4. Given [A1‖ . . . ‖At]−1
τ and a permutation ρ : Zt → Zt, it is effi-

cient to compute [Aρ(1)‖ . . . ‖Aρ(t)]−1
τ .
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2.4 Lattice Evaluation

The following is an abstraction of the evaluation procedure in recent LWE based
FHE and ABE schemes, that developed in a long sequence of works [ABB10,
MP12,GSW13,AP14,BGG+14,GVW15]. We use a similar formalism to [BV15,
BCTW16] but slightly rename the functions.

Theorem 3. There exist efficient deterministic algorithms EvalF and EvalFX
such that for all n, q, � ∈ N, and for any sequence of matrices �A =
(A1, . . . ,A�) ∈ (Zn×n�log q�

q )�, for any depth d boolean circuit f : {0, 1}� → {0, 1}
and for every x = (x1, . . . , x�) ∈ {0, 1}�, the outputs Hf = EvalF(f, �A)
and Hf,x = EvalFX(f, x, �A) are both in Z

(�n�log q�)×n�log q� and it holds that
‖Hf‖∞ , ‖Hf,x‖∞ ≤ (2nlog q�)d and (�A − x ⊗ G) · Hf,x = �A · Hf − f(x)G
(mod q).

3 Definition of Constrained Signatures (CS)

We now define constrained signatures, along with a number of security notions
that will be used throughout this work. The definitions are presented in the key-
policy flavor. See AppendixA for definitions in the message-policy flavor. Lastly
we define key delegation in the context of constrained signatures.

Definition 3 ((Key-Policy) Constrained Signatures). Let X be an
attribute space and F be a function space of the form f ∈ F =⇒ f : X ′ → {0, 1}
where X ′ ⊆ X . A constrained signatures scheme for (X ,F) is a tuple of
algorithms:

– Setup(1λ) → (msk, vk) takes as input the security parameter λ and possibly
a description of (X ,F), and outputs a master signing key msk and a public
verification key vk.

– Keygen(f,msk) → skf takes as input a function f ∈ F and the master signing
key msk, and outputs a signing key skf .

– Sign(x, skf ) → σx takes as input an attribute x ∈ X and a signing key skf ,
and outputs a signature σx.

– Vervk(x, σx) → {accept, reject} takes as input an attribute x ∈ X and a
signature σx, and either accepts or rejects.

Correctness. The scheme is correct if for all x ∈ X and f ∈ F for which f(x) =
0, it holds that with all but negligible probability Vervk(x, σx) = accept, where
(msk, vk) ← Setup(1λ) and σx = Sign(x,Keygen(f,msk)).

Privacy. Privacy bounds the information revealed by a signature about the
signing key that was used to produce it. We define two notions of privacy. In
constraint-hiding privacy, a signature should not reveal the signing key’s func-
tionality f , however it might be possible to retrieve other information such as
whether two signatures were produced using the same key. In key-hiding privacy,
a signature should not reveal any information at all about the signing key.



498 R. Tsabary

Definition 4 (Privacy of (Key-Policy) Constrained Signatures). The
scheme is constraint-hiding if any ppt adversary A has no more than negli-
gible advantage in the following game.

1. The challenger computes and outputs (msk, vk) ← Setup(1λ).
2. A sends (f0, f1, x) such that f0(x) = f1(x) = 0.
3. The challenger computes skf0 = Keygen(f0,msk) and skf1 = Keygen(f1,msk).

It then samples b
$← {0, 1} and computes σx,b ← Sign(x, skfb

). It sends σx,b

to A.
4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.

The scheme is key-hiding if any ppt adversary A has no more than neg-
ligible advantage in the above game, where in step 3 the challenger sends
(skf0 , skf1 , σx,b) to A.

Unforgeability. We consider full unforgeability vs. message-selective unforgeabil-
ity. These notions are caputred by a security game between a challenger and an
adversary. In the full unforgeability game, the adversary can adaptively make
queries of three types: (1) query for constrained keys, (2) query for signatures
under a specified constraint, and (3) query for signatures that are generated
with an existing key from a type (2) query. In order to win the adversary has to
forge a signature for an attribute x∗ that is not authorized by any of the queried
keys, and does not appear in any of the type (2) and (3) signature queries. In
the message-selective game, the adversary has to announce x∗ before seeing the
verification key. The construction in Sect. 6 is message-selective unforgeable.

Definition 5 (Unforgeability of (Key-Policy) Constrained Signatures).
The scheme is fully unforgeable if every PPTM adversary A has no more than
negligible advantage in the following game:

1. The challenger computes (msk, vk) ← Setup(1λ) and sends vk to A.
2. A makes queries of three types:

– Key Queries. A sends f ∈ F and gets back skf ← Keygen(f,msk).
– Signature Queries. A sends (f, x) ∈ F × X such that f(x) = 0. The chal-

lenger computes skf ← Keygen(f,msk) and sends back σx ← Sign(x, skf ).
– Repeated Signature Queries. A sends i ∈ N and x ∈ X . If there were less

than i signature queries at this point of the game, the challenger returns
⊥. Otherwise, let f denote the constraint that was sent at the ith signature
query and let skf denote the key that was generated by the challenger when
answering this query. If f(x) 
= 0, the challenger returns ⊥. Otherwise it
returns σx ← Sign(x, skf ).

3. A wins if it manages to output (x∗, σx∗) such that Vervk(x∗, σx∗) = accept
and the following restrictions hold:
– For any key queried by A respective to f ∈ F , it holds that f(x∗) = 1.
– For any signature σx queried by A, it holds that x 
= x∗.

The scheme is message-selective unforgeable if any PPT A that announces x∗

before seeing vk has no more than negligible advantage in the game.
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We also define a relaxed notion, single-key-selective unforgeability, which is useful
as a building block towards full unforgeability, as shown in Sect. 4. In this security
game, the adversary is restricted to a single key query and no signatures queries.
It also has to announce the queried constraint at the beginning of the game.

Definition 6 (Single-Key-Selective Unforgeability of (Key-Policy)
Constrained Signatures). The scheme is single-key-selective unforgeable if
every PPTM adversary A has no more than negligible advantage in the follow-
ing game:

1. A sends f∗ ∈ F to the challenger.
2. The challenger computes (msk, vk) ← Setup(1λ) and skf∗ ← Keygen(f∗,msk),

and sends (vk, skf∗) to A.
3. A wins if it manages to output (x∗, σ(x∗)) such that Vervk(x∗, σx∗) = accept

and f∗(x∗) = 1.

3.1 Key Delegation

Given a key skf for a constraint f ∈ F , it might be useful to generate a key
with limited capabilities, i.e. a key sk(f,g) for a constraint that requires f(x) = 0
and g(x) = 0 for some function g ∈ F . In this setting, any attribute x ∈ X
that can be signed by sk(f,g) can also be signed by skf , but the other direction
is not guaranteed since it might be the case that f(x) = 0 but g(x) = 1. Key
delegation can therefore be though of as restricting the signing permissions of a
given key.

We now give a formal definition of the key delegation algorithm, along with
definitions for correctness, privacy and unforgeability. Note that it captures mul-
tiple levels of delegation. The unforgeability game is analogouse to the non-
delegatable unforgeability game, where the adversary can in addition query for
delegated keys.

Definition 7 (Delegation of (Key-Policy) Constrained Signatures). A
constrained signatures scheme CS = (Setup,Keygen,Sign,Ver) with attribute
space X , function space F and key space K supports delegation if there exists a
PPT algorithm DelKey with the syntax

– DelKey(sk(f1,...,ft), ft+1) → sk(f1,...,ft+1): takes as input a constrained key
sk(f1,...,ft) ∈ K and a function ft+1 ∈ F , and outputs a delegated constrained
key sk(f1,...,ft+1) ∈ K.

such that it satisfies correctness, privacy and unforgeability as defined below.
For any t ≥ 1 and F = (f1, . . . , ft) ∈ F t, write F (x) = 0 to denote that
f ∈ F ⇒ f(x) = 0. Moreover, denote skF = sk(f1,...,ft), where ∀i ∈ [2 . . . t] :
sk(f1,...,fi) = DelKey(sk(f1,...,fi−1), fi) and skf1 = Keygen(f1,msk) for some
(msk, vk) ← Setup(1λ) which is clear from the context.

Correctness. Consider (msk, vk) ← Setup(1λ). The scheme is correct for a func-
tion family F and attribute space X , if for all t ∈ N, (x, F ) ∈ X × F t for which
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F (x) = 0, it holds with all but negligible probability that Vervk(x,Sign(x, skF )) =
accept.

Privacy. The scheme is constraint-hiding if any ppt adversary A has no more
than negligible advantage in the following game.

1. The challenger computes and outputs (msk, vk) ← Setup(1λ).
2. A sends (t, F0, F1, x), where ∀b ∈ {0, 1} : Fb = (f b

1 , . . . , f b
t ) and Fb(x) = 0.

3. The challenger computes skF0 and skF1 . It then samples b
$← {0, 1} and com-

putes σx,b ← Sign(x, skFb
). It sends σx,b to A.

4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.

The scheme is key-hiding if any ppt adversary A has no more than neg-
ligible advantage in the above game, where in step 3 the challenger sends
(skF0 , skF1 , σx,b) to A.

Full Unforgeability. The scheme is fully unforgeable if every PPTM adversary
A has no more than negligible advantage in the following game:

1. The challenger computes (msk, vk) ← Setup(1λ) and sends vk to A.
2. A makes queries of three types:

– Key Queries. A sends t ∈ N, F ∈ F t and gets back skF .
– Signature Queries. A sends t ∈ N, (F, x) ∈ F t × X such that F (x) =

0. The challenger computes skF as described above and returns σx ←
Sign(x, skF ).

– Repeated Signature Queries. A sends i ∈ N and x ∈ X . If there were
less than i signature queries at this point of the game, the challenger
returns ⊥. Otherwise, let F denote the set of constraints that was sent at
the ith signature query and let skF denote the key that was generated by
the challenger when answering this query. If ∃f ∈ F s.t. f(x) 
= 0, the
challenger returns ⊥. Otherwise it returns σx ← Sign(x, skf ).

3. A wins if it manages to output (x∗, σx∗) such that Vervk(x∗, σx∗) = accept
and the following restrictions hold:
– For any key queried by A respective to t ∈ N, F ∈ F t, it holds that ∃f ∈ F

such that f(x∗) = 1.
– For any signature σx queried by A, it holds that x 
= x∗.

Message-Selective Unforgeability. The scheme maintains message-selective
unforgeability if any PPT A that announces x∗ before seeing vk has no more
than negligible advantage in the game.

Single-Key-Selective Unforgeability. The scheme is single-key-selective unforge-
able if every PPTM adversary A has no more than negligible advantage in the
following game:

1. A sends t ∈ N, F ∈ F t to the challenger.
2. The challenger computes (msk, vk) ← Setup(1λ) and skF , and sends (vk, skF )

to A.
3. A wins if it manages to output (x∗, σx∗) such that Vervk(x∗, σx∗) = accept

and ∃f ∈ F such that f(x∗) = 1.



An Equivalence Between ABS and HS, and New Constructions for Both 501

4 From Single-Key-Selective Unforgeability to Full
Unforgeability

We show how any standard digital signatures scheme can be used to amplify
the security guarantee of a (key-policy) CS scheme from single-key-selective to
full unforgeability. This comes with a partial loss in key privacy – while the
underlying scheme might be either key-hiding or solely constraint-hiding, the
amplified scheme reveals key-specific information as part of the signature, and
thus it is only constraint-hiding.

Let CS = (Setup′,Keygen′,Sign′,Ver′) be a single-key selectively unforgeable
constraint-hiding constrained signature scheme with attribute space X ′, con-
straint space F ′ and verification-key space VK′. Let S = (S.Setup,S.Sign,S.Ver)
be a standard signature scheme with verification-key space VK and message
space X such that VK′ × VK ⊆ X . The construction is as follows.

– Setup(1λ). Compute (S.vk,S.sk) ← S.Setup(1λ). Output vk = S.vk and msk =
S.sk.

– Keygen(f,msk). Generate (vk′,msk′) ← Setup′(1λ). Compute k′
f ←

Keygen′(msk′, f). Generate (vk′′, sk′′) ← S.Setup(1λ). Sign (vk′, vk′′) using
msk: σ(vk′,vk′′) ← S.Sign(S.sk, (vk′, vk′′)). Output kf = (vk′, k′

f , vk′′,
sk′′, σ(vk′,vk′′)).

– Sign(x, kf ). Compute σ′
x = Sign′(x, k′

f ) and σ′′
x = S.Sign(sk′′, x). Output σx =

(vk′, σ′
x, vk′′, σ′′

x , σ(vk′,vk′′)).
– Vervk(x, σx).

Accept only if S.Ver(σ(vk′,vk′′), (vk
′, vk′′)) = accept, Ver′vk′(x, σ′

x) = accept
and S.Vervk′′(x, σ′′

x) = accept.

Lemma 1 (Correctness). The scheme is correct for (F ′,X ′).

Proof. Fix x ∈ X ′ and f ∈ F ′ such that f(x) = 0, and con-
sider (msk, vk) ← Setup(1λ) and σx = Sign(x,Keygen(f,msk)). Denote
σx = (vk′, σ′

x, vk′′, σ′′
x , σ(vk′,vk′′)), then by Sign and Keygen it holds that

σ′
x = Sign′(x, k′

f ) = Sign′(x,Keygen′(msk′, f)), and since f(x) = 0 it
holds that Ver′vk′(σ′

x, x) = accept by the correctness of CS′. Moreover,
S.Vervk′′(x, σ′′

x) = S.Vervk′′(x,S.Sign(sk′′, x) = accept and S.Ver(σ(vk′,vk′′),
(vk′, vk′′)) = S.Ver(S.Sign(S.sk, (vk′, vk′′)), (vk′, vk′′)) = accept by the correctness
of S. Therefore, Vervk(x,m, σx) accepts.

Lemma 2 (Privacy). The scheme is constraint-hiding for (F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the constraint-
hiding privacy game with some significant probability, and use it to break the
constraint-hiding privacy of CS as follows:

1. Receive (vk′,msk′) ← Setup′(1λ) from the CS challenger.
2. Compute (S.vk,S.sk) ← S.Setup(1λ) and send (msk = S.sk, vk = S.vk) to A.
3. A returns (f0, f1, x) such that f0(x) = f1(x) = 0. Forward (f0, f1, x) to the

CS challenger.
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4. The CS challenger samples b
$← {0, 1} and returns σ′

x,b. Now gener-
ate (vk′′, sk′′) ← S.Setup(1λ), sign (vk′, vk′′) with the standard signature
scheme: σ(vk′,vk′′) ← S.Sign(S.sk, (vk′, vk′′)), sign x with the standard sig-
nature scheme: σ′′

x ← S.Sign(sk′′, x) and send to A the signature σx,b =
(vk′, σ′

x,b, vk
′′, σ′′

x , σ(vk′,vk′′)).
5. Get b′ from A and forward it to the CS challenger. Clearly, any advantage of

A induces an advantage of the reduction.

Lemma 3 (Unforgeability). The scheme is fully unforgeable for (F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the security
game. We show that it can be used to break either S or CS. Let Qkey,Qsig,Qrep

be the sets of key queries, signature queries and repeated signature queries made
by A during the security game. Recall that Qkey ∈ F ′, Qsig ∈ F ′ × X ′ and
Qrep ∈ N × X ′. In particular, each query qi ∈ Qkey

⋃ Qsig contains an element
fi ∈ F . Moreover, every response of the challenger (whether it is a key or a
signature) contains a pair (vk′

i, vk
′′
i ) that is generated during Keygen(fi,msk). A

wins the game, it therefore outputs a successful forgery (x∗, σx∗), where σx∗ =
(vk′

∗, σ
′
x∗ , vk′′

∗ , σ′′
x∗ , σ(vk′

∗,vk′′
∗ )). Since Vervk(x∗, σ(x∗,m∗)) = accept, it holds that

S.Ver(σvk′
∗ , vk′

∗) accepts, Ver′vk′
∗
(x∗, σ′

x∗) accepts and S.Vervk′′(x∗, σ′′
x∗) accepts.

Consider three cases:

– If ∃qi ∈ Qkey such that (vk′
i, vk

′′
i ) = (vk′

∗, vk
′′
∗), then (x∗, σ′

x∗) is a valid forgery
to the CS instance that was initialized during Keygen(fi,msk). Note that since
qi ∈ Qkey, fi(x∗) = 1. We show a reduction from the selective-single-key
security game of CS to this game:
1. Initialize (S.vk,S.sk) ← S.Setup(1λ) as in the real scheme and send S.vk

to A.
2. Queries phase:

• Answer all queries except of the ith as in the real unforgeability game.
• Upon receiving form A the query qi ∈ Qkey, send fi

to the ith CS challenger and get back (vk′
i, k

′
fi

). Generate
(vk′′

i , sk′′
i ) ← S.Setup(1λ), sign (vk′

i, vk
′′
i ) with the standard scheme:

σ(vk′
i,vk

′′
i ) ← S.Sign(S.sk, (vk′

i, vk
′′
i )). Send to A the key kfi

=
(vk′

i, k
′
fi

, vk′′
i , sk′′

i , σ(vk′
i,vk

′′
i )).

3. When A sends the forgery (x∗, σx∗), send (x∗, σ′
x∗) to the ith CS challenger

to win the selective-single-key game.
– If ∃qi ∈ Qsig such that (vk′

i, vk
′′
i ) = (vk′

∗, vk
′′
∗), then (x∗, σ′′

x∗) is a valid forgery
to the S instance that was initialized during Keygen(fi,msk). Note that ∀qi ∈
Qsig, where qi = (fi, xi), it holds that xi 
= x∗. We show a reduction from
the security game of S to this game:
1. Initialize (S.vk,S.sk) ← S.Setup(1λ) as in the real scheme and send S.vk

to A.
2. Queries phase:

• Answer all queries up to qi as in the real unforgeability game.
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• Upon receiving form A the query qi ∈ Qsig, instantiate a game against
the ith S challenger and get vk′′

i . Query a signature for xi and get back
σ′′

xi
. Generate (vk′

i,msk′
i) ← Setup′(1λ) and k′

fi
← Keygen′(msk′

i, fi),
sign σ′

xi
← Sign′(xi, k

′
fi

). Sign (vk′
i, vk

′′
i ) with the standard signa-

ture scheme: σ(vk′
i,vk

′′
i ) ← S.Sign(S.sk, (vk′

i, vk
′′
i )). Send A the signature

σxi
= (vk′

i, σ
′
xi

, vk′′
i , σ′′

xi
, σ(vk′

i,vk
′′
i )).

• Answer all queries as in the real game, except of repeated signature
queries that reference qi. For these, do as described above with the
same vk′

i, vk
′′
i , σ(vk′

i,vk
′′
i ), k

′
fi

.
3. When A sends the forgery (x∗, σx∗), send (x∗, σ′′

x∗) to the ith S challenger
to win the game.

– Otherwise ∀qi ∈ Qkey

⋃ Qsig (vk′
i, vk

′′
i ) 
= (vk′

∗, vk
′′
∗), and thus

(σ(vk′
∗,vk′′

∗ ), (vk
′
∗, vk

′′
∗)) is a valid forgery to S. We show a reduction from the

security game of S to this game:
1. Receive S.vk from the S challenger and send it to A.
2. Answer queries from A as in the real game, except the way σ(vk′

i,vk
′′
i ) is

computed: instead of signing (vk′
i, vk

′′
i ) with msk = S.sk (which we don’t

have), query the S challenger and get σ(vk′
i,vk

′′
i ).

3. When A sends the forgery (x∗, σx∗), send (σ(vk′
∗,vk′′

∗ ), (vk
′
∗, vk

′′
∗)) to the S

challenger to win the game.

4.1 Key Delegation

If the underlying scheme CS supports delegation, i.e. there exists an algorithm
DelKey′(k′

(f1,...,ft)
, ft+1) → k′

(f1,...,ft,ft+1)
and CS is correct, constraint-hiding

and single-key-selectively unforgeable as per Definition 7, then also the amplified
construction is. The amplified delegation algorithm delegates the key of CS. It
also initializes a new instance of S with each delegation, which is used either to
sign x, when the key is used in Sign, or to sign the verification keys of every two
neighboring delegation levels, when the key is delegated.

– DelKey(sk(f1,...,ft), ft+1) takes a key
sk(f1,...,ft) = (vk′, k′

(f1,...,ft)
, {vk′′

i }i∈[t], sk
′′
t , σ(vk′,vk′′

1 )
, {σ(vk′′

i ,vk′′
i+1)

}i∈[t−1]) and
a constraint ft+1 ∈ F ′. It computes k′

(f1,...,ft,ft+1)
← DelKey′(k′

(f1,...,ft)
, ft+1).

It then generates (sk′′
t+1, vk

′′
t+1) ← S.Setup(1λ), signs σ(vk′′

t ,vk′′
t+1)

←
S.Sign(sk′′

t , (vk′′
t , vk′′

t+1)) and outputs sk(f1,...,ft,ft+1) = (vk′, k′
(f1,...,ft+1)

,

{vk′′
i }i∈[t+1], sk

′′
t+1, σ(vk′,vk′′

1 )
, {σ(vk′′

i ,vk′′
i+1)

}i∈[t]).
– Sign(x, sk(f1,...,ft)) takes a key sk(f1,...,ft) =

(vk′, k′
(f1,...,ft)

, {vk′′
i }i∈[t], sk

′′
t , σ(vk′,vk′′

1 )
, {σ(vk′′

i ,vk′′
i+1)

}i∈[t−1]) and an attribute
x ∈ X ′. It computes σ′

x ← Sign′(x, k′
(f1,...,ft)

) and σ′′
x ← S.Sign(sk′′

t , x).
It outputs σx = (vk′, σ′

x, {vk′′
i }i∈[t], σ

′′
x , σ(vk′,vk′′

1 )
, {σ(vk′′

i ,vk′′
i+1)

}i∈[t−1]).
– Vervk(x, σx) accepts only when all of the following conditions hold:
Ver′vk′(x, σ′

x) accepts; S.VerS.vk(σ(vk′,vk′′
1 )

, (vk′, vk′′
1)) accepts; ∀i ∈ [t − 1],

S.Vervk′′
i
(σ(vk′′

i ,vk′′
i+1)

, (vk′′
i , vk′′

i+1)) accepts; S.Vervk′′
t
(σ′′

x , x) accepts.

See AppendixB for correctness, privacy and unforgeability proofs.
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5 Equivalence of CS and Homomorphic Signatures

5.1 Recap on Homomorphic Signatures

Our starting point is a (single-data selectively secure) homomorphic signature
scheme, which is also context hiding. We use a simplified version of the definition
in [GVW15] that suffices for our needs.

Definition 8 (Single-Data Homomorphic Signature). A single-data
homomorphic signature scheme is a 4-tuple of PPT algorithms (HS.Setup,
HS.Sign, HS.Eval,HS.Ver) with the following syntax.

– HS.Setup(1λ) → (vk, sk) takes as input the security parameter λ and possibly
a description of the data-set space X and the functions space G. It outputs a
verification key vk and a signing key sk.

– HS.Sign(sk, x) → σx takes as input a signing key sk and a data-set x ∈ X ,
and outputs a signature σx.

– HS.Eval(g, x, σx) → σ(g,g(x)) takes as input a data-set x ∈ X and a function
g ∈ G such that g(x) is defined, and a signature σx. It outputs a signature for
the pair (g, g(x)): σ(g,g(x)).

– HS.Vervk(g, y, σ(g,y)) takes as input a function g ∈ G, a value y and a signature
σ(g,y), and either accepts or rejects.

Correctness. The scheme is correct for a function family G and data-set space X
if for all x ∈ X and g ∈ G such that g(x) is defined, it holds that HS.Vervk(g, g(x),
σ(g,g(x))) = accept, where σ(g,g(x)) = HS.Eval(g, x, σx), σx = HS.Sign(sk, x) and
(vk, sk) ← HS.Setup(1λ).

Single-Data Selective Unforgeability. Fix X ,G and consider the following game
between an adversary A and a challenger:

– A sends x ∈ X to the challenger.
– The challenger computes (sk, vk) ← HS.Setup(1λ) and σx ← HS.Signvk(sk, x).

It sends to A the values (vk, σx).
– A outputs (g, y, σ(g,y)). It wins if g ∈ G, HS.Vervk(g, y, σ(g,y)) = accept and

y 
= g(x).

The scheme is secure for X ,G if any PPT A has no more than negligible advan-
tage in this game.

Context Hiding. The scheme is context hiding for X ,G if any ppt adversary A
has no more than negligible advantage in the following game.

1. The challenger computes and outputs (sk, vk) ← HS.Setup(1λ).
2. A sends (g, x0, x1) ∈ G × X × X such that g(x0) = g(x1). Denote this value

by y.
3. The challenger computes σx0 ← HS.Sign(sk, x0) and σx1 ← HS.Sign(sk, x1). It

then samples b
$← {0, 1} and computes σ(g,y) ← HS.Eval(g, xb, σxb

). It sends
(σx0 , σx1 , σ(g,y)) to A.
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4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.

Note that the correctness requirement also captures the validity of a non-
evaluated signature: a signature σx for a data-set x ∈ X can be verified bit-by-bit
using the functions {gi}i∈[|x|], where gi(x) outputs the ith bit of x. The context
hiding property requires that an evaluated signature will not reveal anything
about the original (pre-evaluated) signature, other than the evaluation result
along with a signature for it.

5.2 Constrained Signatures from Homomorphic Signatures

In this section we construct a (message-policy) CS scheme from context-hiding
homomorphic signatures. We assume that the underlying HS scheme is context-
hiding and single data-set unforgeable, and show that the resulting CS scheme
is single-key-selective unforgeable and key-hiding. Combined with the security
amplification from Sect. 4 (which downgrades the key privacy), this results in a
scheme that is fully unforgeable and attribute-hiding.

Let HS = (Setup,Sign,Eval,Ver) be a homomorphic signature scheme
with data-space X and functions space F . We construct CS =
(Setup,Keygen,Sign,Ver) for (X ,F).

– CS.Setup(1λ). Initialize the HS scheme (HS.sk,HS.vk) ← HS.Setup(1λ) and
output vk = HS.vk and msk = HS.sk.

– CS.Keygen(x,msk). Sign x using HS: HS.σx ← HS.Sign(HS.sk, x). Output
skx = HS.σx.

– CS.Sign(f, skx). Use σx to homomorphically compute a context-hiding sig-
nature for y = f(x). That is, compute and output σf = HS.σ(f,f(x)) ←
HS.Eval(f, x, σx).

– CS.Vervk(f, σf ). Accept if and only if HS.Vervk(f, 0, σf ) accepts.

Lemma 4 (Correctness). The scheme is correct for (F ,X ).

Proof. Fix (x, f) ∈ X × F such that f(x) = 0. Consider (msk, vk) ←
CS.Setup(1λ), skx ← CS.Keygen(x,msk) and σf = CS.Sign(f, skx). Then it holds
that σf ← HS.Eval(f, x,HS.Sign(HS.sk, x)). We need to show that Vervk(f, σf ) =
accept, i.e. that HS.Vervk(f, 0,HS.σ(f,f(x))) accepts. Indeed, f(x) = 0 by assump-
tion, thus the result follows by the correctness of HS.

Lemma 5 (Privacy). The scheme is key-hiding for (F ,X ).

Proof. Assume towards contradiction an adversary Ac that wins the privacy
game with noticeable advantage and use it to break the context hiding property
of the underlying HS scheme as follows:

1. Receive (HS.sk,HS.vk) ← HS.Setup(1λ) from the HS challenger and forward
it to Ac as (msk, vk).

2. Receive from Ac a tuple (x0, x1, f) such that f(x0) = f(x1) = 0. Forward
(x0, x1, f) to the HS challenger.
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3. Receive from the HS challenger the challenge (HS.σx0 ,HS.σx1 ,HS.σ(f,0)) and
forward it to Ac as (skx0 , skx1 , σf ).

4. Get b′ from Ac and forward it to the HS challenger. Clearly, any advantage
of Ac induces an advantage of the reduction.

Lemma 6 (Unforgeability). The scheme is single-key-selectively unforgeable
for (F ,X ).

Proof. Consider the CS single-key selective security game against an adversary
Ac. Let x ∈ X be the attribute sent by Ac, and assume towards contradiction
that it wins the game. Then Ac outputs (f, σf ) such that CS.Vervk(f, σf ) =
accept and f(x) 
= 0. Such adversary can be used to break the unforgeability of
HS:

1. Upon receiving x from Ac, send it to the HS challenger.
2. The HS challenger sends back HS.vk and HS.σx = HS.Sign(HS.sk, x), which

is exactly (vk, skx) that we have to send to Ac.
3. Ac sends back (f, σf ) such that Vervk(f, σf ) = accept and f(x) 
= 0. Denoting

σf = HS.σ(f,f(x)), it means that HS.Vervk(f, 0,HS.σ(f,f(x))) = accept while
f(x) 
= 0, therefore HS.σ(fm,fm(x)) is a successful forgery against HS.

5.3 Homomorphic Signatures from Constrained Signatures

We show how to construct a context-hiding 1-hop homomorphic signatures
scheme from (message-policy) CS. We assume that the underlying CS scheme is
single-key-selective unforgeable and key-hiding, and show that the resulting HS
scheme is context-hiding and selectively unforgeable. As shown in [GVW15], it
is possible to construct an adaptively unforgeable HS scheme from a selectively
unforgeable HS scheme.

Let CS = (Setup,Keygen,Sign,Ver) be a constrained signatures scheme
with attribute space X and constraint space F . We construct HS =
(Setup,Sign,Eval,Ver) for data-set space X and functions space G : X → Y,
where the requirement is that for any (g, y) ∈ G × Y, it holds that f(g,y) ∈ F ,
where f(g,y) : X → {0, 1} is a function that on input x returns 0 if and only if
g(x) = y.

– HS.Setup(1λ). Initialize the CS scheme: compute (CS.msk,CS.vk) ←
CS.Setup(1λ). Output vk = CS.vk and sk = CS.msk.

– HS.Sign(x, sk). Compute and output σx = CS.skx ← CS.Keygen(x,CS.msk).
– HS.Eval(g, σx). Let y = g(x). Define the circuit f(g,y) : X → {0, 1} that on

input x returns 0 if and only if g(x) = y. Use CS.skx to sign the policy f(g,y).
That is, compute and output σ(g,y) = CS.σf(g,y) ← CS.Sign(f(g,y),CS.skx).

– HS.Vervk(g, y, σ(g,y)). Accept if and only if CS.Vervk(f(g,y),CS.σf(g,y)) accepts.

Lemma 7 (Correctness). The scheme is correct for (G,X ).
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Proof. Fix (x, g) ∈ X × G. Consider (sk, vk) ← HS.Setup(1λ), σx ←
HS.Sign(x, sk) and σ(g,y) = HS.Eval(g, σx), where y = g(x). Then it
holds that σ(g,y) = CS.σf(g,y) = CS.Sign(f(g,y),CS.skx), where CS.skx ←
CS.Keygen(x,CS.msk). We need to show that HS.Vervk(g, y, σ(g,y)) = accept,
i.e. that CS.Vervk(f(g,y),CS.σf(g,y)) accepts. Indeed, g(x) = y and therefore
f(g,y)(x) = 0, and thus CS.Vervk(f(g,y),CS.σf(g,y)) accepts by the correctness
of CS.

Lemma 8 (Privacy). The scheme is context-hiding for (G,X ).

Proof. Assume towards contradiction an adversary Ah that wins the context-
hiding game with noticeable advantage, and use it to break the key-privacy the
underlying MPCS scheme as follows:

1. Receive (CS.msk,CS.vk) ← CS.Setup(1λ) from the CS challenger and forward
it to Ah as (sk, vk).

2. Receive from Ah a tuple (g, x0, x1) such that g(x0) = g(x1) and denote this
value by y. Forward (x0, x1, f(g,y)) to the CS challenger.

3. Receive from the CS challenger the challenge (CS.skx0 ,CS.skx1 ,CS.σf(g,y)) and
forward it to Ah as (σx0 , σx1 , σ(g,y)).

4. Get b′ from Ah and forward it to the CSy challenger. Clearly, any advantage
of Ah induces an advantage of the reduction.

Lemma 9 (Unforgeability). The scheme is single-data selectively unforgeable
for (G,X ).

Proof. Consider the HS single-data selective unforgeability game against an
adversary Ah. Let x ∈ G be the data-set sent by Ah, and assume towards
contradiction that it wins the game. Then Ah outputs (g, y, σ(g,y)) such that
HS.Vervk(g, y, σ(g,y)) = accept and g(x) 
= y. Such adversary can be used to
break the unforgeability of MPCS:

1. Upon receiving x from Ah, send it to the CS challenger.
2. The CS challenger sends back CS.skx = CS.Keygen(CS.msk, x) and CS.vk,

which is exactly (σx, vk) that we have to send to Ah.
3. Ah sends back (g, y, σ(g,y)) such that HS.Vervk(g, y, σ(g,y)) = accept

and g(x) 
= y. Denoting σ(g,y) = CS.σf(g,y) , it means that
CS.Vervk(f(g,y),CS.σf(g,y)) = accept, however g(x) 
= y and therefore
f(g,y)(x) 
= 0, thus CS.σf(g,y) is a successful forgery against CS.

6 CS Construction from Lattice Trapdoors

In this section we construct a (key-policy) CS scheme from lattices trapdoors,
using techniques that were developed in [GVW13,BGG+14]. The resulting
scheme supports a fixed attribute space, and the constraint space consists of
boolean circuits with a bound on depth. We prove message-selective unforge-
ability based on the SIS hardness assumption, and statistical key-hiding. Lastly
we show how to extend the scheme to support key delegation.
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The initialization parameters are (�, d), where the attribute space is X =
{0, 1}� and the constraint space is all d-depth bounded circuits Fd = {f :
{0, 1}� → {0, 1}}.

6.1 The Scheme

Initialize the parameters n,m,m′, q, B, τ0, τk, τs respective to λ, d, � as described
below.

– Setup(1λ) → (msk, vk): Generate a matrix A ∈ Z
n×m′
q with its trapdoor

A−1
τ0 (see Corollary 1). Sample uniformly a matrix �A $← Z

n×(m×�)
q . Output

vk = (A, �A) and msk = A−1
τ0 .

– Keygenvk(f,msk) → skf : Compute Hf = EvalF(f, �A) (see Theorem 3) and
Af = �A · Hf , then use A−1

τ0 to compute skf = [A‖Af ]−1
τk

(see Corollary 2).
– Signpp(x, skf ) → σx: If f(x) 
= 0 return ⊥. Otherwise, compute Hf,x =

EvalFX(f, x, �A) (see Theorem 3). Note that by this theorem, [�A − x ⊗ G] ·
Hf,x = Af − f(x)G = Af . Now apply trapdoor extension (see Theorem2)
with

Ā = [A‖Af ], B̄ = [A‖�A − x ⊗ G], S =
[
Im′ 0
0 Hf,x

]

(using skf = [A‖Af ]−1
τk

= Ā−1
τk

), and achieve B̄−1
τs

= [A‖�A−x⊗G]−1
τs

. Sample
σx

$← [A‖�A − x ⊗ G]−1
τs

(0) and output σx.
Note that by Theorem 3, Hf,x ∈ Z

�m×m and ‖Hf,x‖∞ ≤ (2m)d, and thus
the largest singular value s1(S) = max{1, s1(Hf,x)} ≤ √

�2dmd+1. Hence
τk · s1(S) ≤ τs = τk · √

�2dmd+1, as required by the conditions of Theorem2.
– Verpp(x, σx) → {accept, reject}: Output accept if and only if the following

conditions hold: σx 
=⊥, σx 
= 0, [A‖�A − x ⊗ G] · σx = 0 and ‖σx‖∞ ≤ B.

Choice of Parameters. The SIS parameters n, q,B′ are chosen according to con-
straints from the correctness and security analyses that follow. We require that
n ≥ λ, q ≤ 2n and recall that � = poly(λ) ≤ 2n. We set m = nlog q�,
m′ = max{m0, (n + 1)log q� + 2λ}, where m0 is as required by TrapGen (see
Corollary 1), τ0 = O(

√
nlog q� log n) as required by TrapGen (see Corollary 1),

τk = max{√m′�2dm1.5+d, τ0}, τs = τk · √
�2dmd+1, B = τs

√
m′ + � · m, and we

require that (�m+1)B ≤ B′, i.e. that (�m+1)
√

m′�1.522dm2d+2.5
√

m′ + � · m ≤
B′, while keeping SISn,q,B′,m′ hard as per Theorem1. These constraints can
be met by setting n = d

1
ε + �, B′ = 2nε

and then choosing q accord-
ingly based on Theorem 1. Note that it guarantees that indeed q ≤ 2n and
(�m + 1)

√
m′�1.522dm2d+2.5

√
m′ + � · m ≤ B′.

Correctness and Security. We prove correctness and security for the attribute
space X = {0, 1}� and function family Fd = {f : {0, 1}� → {0, 1}} of circuits
with depth at most d.

Lemma 10 (Correctness). The scheme is correct for (X ,F).
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Proof. Fix x ∈ X and f ∈ F for which f(x) = 0, and consider (msk, vk) ←
Setup(1λ) and σx = Signvk(x,Keygenvk(f,msk)). Then since f(x) = 0, σx ∈
[A‖�A − x ⊗ G]−1

τs
(0) and therefore [A‖�A − x ⊗ G] · σx = 0. By the properties

of lattice trapdoors, samples from [A‖�A − x ⊗ G]−1
τs

(0) are within 2−n statis-
tical distance from a discrete Gaussian distribution over Z

m′+�·m
q with parame-

ter τs. Therefore, with all but 2−(m′+�·m) = negl(λ) probability,
∥
∥σ(x,m)

∥
∥

∞ ≤
τs

√
m′ + � · m = B and hence Vervk(x, σx) = accept.

Lemma 11 (Privacy). The scheme is statistically key-hiding for (X ,F).

Proof. Consider the key-hiding privacy game from Definition 4. Change the way
that σx,b is generated in the challenge: use msk = A−1

τ0 to compute [A‖�A −
x ⊗ G]−1

τs
(note that τs ≥ τ0 and see Corollary 2), then sample and output

σx,b
$← [A‖�A−x⊗G]−1

τs
(0). The distribution from which σx,b is sampled remains

the same, therefore this change is statistically indistinguishable. In this setting,
the challenge is independent of b and thus any adversary has no advantage in
the game.

Lemma 12 (Unforgeability). The scheme is message-selective unforgeable
for (X ,F).

Proof. The proof proceeds with a sequence of hybrids and follows similar lines
to [BGG+14].

Hybrid H0. The message-selective unforgeability game from Definition 5.

Hybrid H1. Upon receiving x∗, the challenger generates vk as follows: it generates
A along with A−1

τ0 as before, then it samples a matrix �RA
$← {0, 1}m′×�X m and

computes �A = A�RA + x∗ ⊗ G. Indistinguishability follows from the extended
leftover hash lemma, since m′ ≥ (n + 1)log q� + 2λ and A is statistically-close
to uniform by Corollary 1.

Hybrid H2. Change the way that the challenger answers key queries. Let f be a
query, then f(x∗) = 1 and thus f(x∗) = 1, thus by Theorem 3

[A‖Af −G] = [A‖Af −f(x∗)G] = [A‖[�A−x∗⊗G]·Hf,x∗ ] = [A‖A· �RA ·Hf,x∗ ].

Hence [A‖Af ] = [A‖A · �RA · Hf,x∗ + G], and by Corollary 3 it is possible to
compute skf = [A‖Af ]−1

τk
= [A‖A · �RA · Hf,x∗ + G]−1

τk
given A, �RA and Hf,x∗ ,

since ‖Hf,x‖∞ ≤ (2m)d and thus

√
m′m

∥
∥
∥�RA · Hf,x

∥
∥
∥

∞
≤

√
m′�m1.5 ·

∥
∥
∥�RA

∥
∥
∥

∞
· ‖Hf,x‖∞ ≤

√
m′�2dm1.5+d ≤ τk.

The distribution of skf remains the same, thus the hybrids are statistically indis-
tinguishable.

Hybrid H3. Change the way that the challenger answers signature queries.
Let (f, x) be a query, then x 
= x∗ and f(x) = 0. Consider the function
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fx : {0, 1}� → {0, 1} that returns 0 if the input is x, and 1 otherwise. Then
since x 
= x∗, fx(x∗) = 1, hence we can generate a skfx

respective to the func-
tion fx as described in the previous hybrid. In this hybrid we compute a signature
for x using this skfx

, i.e. output Signvk(x, skfx
). Since fx(x) = 0 and the scheme

is statistically constraint-hiding, this change is statistically indistinguishable.

Hybrid H4. Change the way that the challenger answers repeated signature
queries. Let (i, x) ∈ N × X be a query. Compute and output Signvk(x, skfx

),
where skfx

is as described above. Since the scheme is statistically key-hiding,
this change is statistically indistinguishable.

Hybrid H5. At this point the challenger does not use A−1
τ0 anymore. We switch

to sampling A uniformly without A−1
τ0 , which is statistically indistinguishable

by Corollary 1.
Finally we show that if A wins the game in this hybrid then it breaks

SISn,q,B′ : Let A be a SISn,q,B′,m′ challenge. Initialize a game against A as in
this hybrid using the matrix A. Assume that A produces a valid forgery σx∗ for
x∗. Then σx∗ 
= 0, ‖σx∗‖∞ ≤ B and

0 = [A‖�A − x∗ ⊗ G] · σx∗ = [A‖A�RA] · σx∗ = A · [I‖�RA] · σx∗ .

Since
∥
∥
∥[I‖�RA] · σx∗

∥
∥
∥

∞
≤ (�m + 1) ‖σx∗‖∞ = (�m + 1)B ≤ B′,

[I‖�RA] · σx∗ is a valid solution to SISn,q,B′,m′ .

6.2 Adding Key Delegation

It is possible to extend the construction to support key delegation as per
Definition 7. We define an alternative Signdel algorithm along with a new DelKey
algorithm. Note that by definition each key maintains its delegation history: an
ordered list of constraints which define the permissions of the key. Upon comput-
ing DelKeyvk(sk(f1,...,ft), ft+1) → sk(f1,...,ft+1), the delegated key sk(f1,...,ft+1) con-
tains the constraints list of sk(f1,...,ft) and the new constraint ft+1. The scheme
should be parameterized with an upper bound t′ to the delegation depth (i.e.
the list length). The other parameters are initialized as before, with the only
differences τs = τk · √

�t′2dmd+1 and n = d
1
ε + �t′. Hence the scheme can be

initializes with any t′ = poly(λ).

– DelKeyvk(sk(f1,...,ft), ft+1) → sk(f1,...,ft+1): Recall that when t = 1, skf =
[A‖Af ]−1

τk
. Assume that for any t ≥ 1, skf1,...,ft

= [A‖Af1‖ . . . ‖Aft
]−1
τk

,
and compute the new key as follows: Compute Hft+1 = EvalF(ft+1, �A) (see
Theorem 3) and Aft+1 = �A ·Hft+1 , then use [A‖Af1‖ . . . ‖Aft

]−1
τk

to compute
and output skf1,...,ft+1 = [A‖Af1‖ . . . ‖Aft+1 ]

−1
τk

(see Corollary 2).
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– Signpp(x, skf1,...,ft
) → σx: If ∃i ∈ [t] s.t. fi(x) 
= 0, return ⊥. Otherwise, for

i ∈ [t] compute Hfi,x = EvalFX(fi, x, �A) (see Theorem 3). Note that by this
theorem, [�A − x ⊗ G] · Hfi,x = Afi

− fi(x)G = Afi
− fi(x)G = Afi

. Now
apply the Trapdoor Extension Theorem (2) with

Ā = [A‖Af1‖ . . . ‖Aft
], B̄ = [A‖�A − x ⊗ G], S =

[
Im′ 0 . . . 0
0 Hf1,x . . . Hft,x

]

(using skf = Ā−1
τk

), and achieve B̄−1
τs

= [A‖�A−x⊗G]−1
τs

. Finally sample and
output σx

$← [A‖�A − x ⊗ G]−1
τs

(0).
Note that by Theorem 3, ∀i ∈ [t] : Hfi,x ∈ Z

�m×m and ‖Hfi,x‖∞ ≤ (2m)d,
and thus the largest singular value s1(S) ≤ √

�t2dmd+1. Hence τk · s1(S) ≤
τk · √

�t′2dmd+1 = τs, as required by the conditions of Theorem2.

Correctness and Security. Correctness and statistical key-hiding can be proved
the same way as in the non-delegatable scheme, since for each x the valid sig-
natures distribution remains the same: [A‖�A − x ⊗ G]−1

τs
(0). We now prove

message-selective unforgeability as per Definition 7.

Lemma 13. The scheme is message-selective unforgeable for (X ,F).

Proof. We first define the procedure PermuteKey(skf1,...,ft
, ρ) → skfρ(1),...,fρ(t)

that takes as input a signing key skf1,...,ft
and a permutation ρ : Zt → Zt, and

outputs a key of the permuted constraints skfρ(1),...,fρ(t) . PermuteKey works as
follows: Recall that skf1,...,ft

= [A‖Af1‖ . . . ‖Aft
]−1
τk

, thus by Corollary 4, it is
efficient to compute skfρ(1),...,fρ(t) = [A‖Afρ(1)‖ . . . ‖Afρ(t) ]

−1
τk

.
The security proof goes by reduction to the security of the non-delegatable

scheme. Assume an adversary Adel that wins the delegation security game, and
use it to win the security game without delegation against a challenger Challenger
as follows:

1. Receive x∗ from Adel and forward it to Challenger.
2. Receive vk from Challenger and forward it to Adel.
3. Answer Adel’s queries as follows:

– If the query is a key query, i.e. it is of the form t ∈ N, F ∈ F t such that
∃f ∈ F for which f(x∗) = 1, request skfi

from Challenger. Then compute
sk(f,F/f) using DelKey |F | − 1 times and skf . Finally compute skF using
PermuteKey and sk(f,F/f), and send it to Adel.

– If the query is a signature query, i.e. it is of the form t ∈ N, (F, x) ∈ F t×X
such that x 
= x∗ and ∀f ∈ F : f(x) = 0, request σx from Challenger using
an arbitrary f ∈ F , i.e. send (x, f) and get back σx. Forward the signature
to Adel. Recall that in the unforgeability game, those queries should be
answered by computing σx ← Sign(x, skF ). Since the construction is key-
hiding, this is indistinguishable to Adel.

– If the query is a repeated signature query, i.e. it is of the form i ∈ N,
x ∈ X such that x 
= x∗ and the ith signature query (Fi, xi) satisfies
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∀f ∈ Fi : f(x) = 0, answer it as described above as if it were a signature
query of the form (Fi, x). Recall that in the unforgeability game, those
queries should be answered by computing σx ← Sign(x, skFi

), where skFi

is a key that was generated when the ith signature query was answered.
Since the construction is key-hiding, this is indistinguishable to Adel.

4. Get a forgery σx∗ from Adel and forward it to Challenger.

If Adel wins the game then also the reduction does, with contradiction to the
security of the non-delegatable scheme.

A Definitions of Message-Policy CS

Definition 9 ((Message-Policy) Constrained Signatures). Let X be an
attribute space and F be a function space of the form f ∈ F =⇒ f : X ′ →
{0, 1} where X ′ ⊆ X . A constrained signatures scheme for (X ,F) is a tuple of
algorithms:

– Setup(1λ) → (msk, vk) takes as input the security parameter λ and possibly
a description of (X ,F), and outputs a master signing key msk and a public
verification key vk.

– Keygen(x,msk) → skx takes as input an attribute x ∈ X and the master
signing key msk, and outputs a signing key skx.

– Sign(f, skf ) → σf takes as input a policy f ∈ F and a signing key skx, and
outputs a signature σf .

– Vervk(f, σf ) → {accept, reject} takes as input a policy f ∈ F and a signature
σf , and either accepts or rejects.

Correctness. The scheme is correct if for all x ∈ X and f ∈ F for which
f(x) = 0, it holds that with all but negligible probability Vervk(f, σf ) = accept,
where (msk, vk) ← Setup(1λ) and σf = Sign(f,Keygen(x,msk)).

Definition 10 (Privacy of (Message-Policy) Constrained Signatures).
The scheme is attribute-hiding if any ppt adversary A has no more than neg-
ligible advantage in the following game.

1. The challenger computes and outputs (msk, vk) ← Setup(1λ).
2. A sends (x0, x1, f) such that f(x0) = f(x1) = 0.
3. The challenger computes skx0 = Keygen(x0,msk) and skx1 = Keygen(x1,msk).

It then samples b
$← {0, 1} and computes σf,b ← Sign(f, skxb

). It sends σf,b

to A.
4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.

The scheme is key-hiding if any ppt adversary A has no more than neg-
ligible advantage in the above game, where in step 2 the challenger sends
(skx0 , skx1 , σf,b) to A.
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Definition 11 (Unforgeability of (Message-Policy) Constrained Signa-
tures). The scheme is fully unforgeable if every PPTM adversary A has no
more than negligible advantage in the following game:

1. The challenger computes (msk, vk) ← Setup(1λ) and sends vk to A.
2. A makes queries of three types:

– Key Queries. A sends x ∈ X and gets back skx ← Keygen(x,msk).
– Signature Queries. A sends (f, x) ∈ F × X such that f(x) = 0. The chal-

lenger computes skx ← Keygen(x,msk) and sends back σf ← Sign(f, skx).
– Repeated Signature Queries. A sends i ∈ N and f ∈ F × M. If there

were less than i signature queries at this point of the game, the challenger
returns ⊥. Otherwise, let x denote the attribute that was sent at the ith
signature query and let skx denote the key that was generated by the chal-
lenger when answering this query. If f(x) 
= 0, the challenger returns ⊥.
Otherwise it returns σf ← Sign(f, skx).

3. A wins if it manages to output (f∗, σf∗) such that Vervk(f∗, σf∗) = accept
and the following restrictions hold:
– For any key queried by A respective to x ∈ X , it holds that f∗(x) = 1.
– For any signature σf queried by A, it holds that f 
= f∗.

The scheme maintains message-selective unforgeability if any PPT A that
announces f∗ before seeing vk has no more than negligible advantage in the
game.

Definition 12 (Single-Key-Selective Unforgeability of (Message-
Policy) Constrained Signatures). The scheme is single-key selectively
unforgeable if every PPTM adversary A has no more than negligible advantage
in the following game:

1. A sends x∗ ∈ F to the challenger.
2. The challenger computes (msk, vk) ← Setup(1λ) and skx∗ ← Keygen(x∗,msk),

and sends (vk, skx∗) to A.
3. A wins if it manages to output (f∗, σf∗) such that Vervk(f∗, σf∗) = accept

and f∗(x∗) = 1.

B Proofs for Sect. 4.1

For any t ≥ 1 and F = (f1, . . . , ft) ∈ F t, write F (x) = 0 to denote that
f ∈ F ⇒ f(x) = 0. Moreover, denote skF = sk(f1,...,ft), where ∀i ∈ [2 . . . t] :
sk(f1,...,fi) = DelKey(sk(f1,...,fi−1), fi) and skf1 = Keygen(f1,msk) for some
(msk, vk) ← Setup(1λ) which is clear from the context.

Lemma 14 (Correctness). The scheme from Sect. 4.1 is correct for (F ′,X ′).

Proof. Fix x ∈ X ′, t ∈ N and F ∈ F ′t such that F (x) = 0, and consider
(msk, vk) ← Setup(1λ). Consider skF as described above and σx = Sign(x, skF ).
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Denote

σx = (vk′, σ′
x, {vk′′

i }i∈[t], σ
′′
x , σ(vk′,vk′′

1 )
, {σ(vk′′

i ,vk′′
i+1)

}i∈[t−1]),

then by Sign, Keygen and DelKey it holds that σ′
x = Sign′(x, sk′

F ), and since
F (x) = 0 it holds that Ver′vk′(σ′

x, x) = accept by the correctness of CS′. Moreover,

S.Vervk′′
t
(x, σ′′

x) = S.Vervk′′
t
(x,S.Sign(sk′′

t , x)) = accept,

S.VerS.vk(σ(vk′,vk′′
1 ), (vk

′, vk′′
1 )) = S.VerS.vk(S.Sign(S.sk, (vk′, vk′′

1 )), (vk
′, vk′′

1 )) = accept,

and for all i = 1. . . . t − 1,

S.Vervk′′
i
(σ(vk′′

i ,vk′′
i+1)

, (vk′′
i , vk′′

i+1)) = S.Vervk′′
i
(S.Sign(sk′′

i , (vk′′
i , vk′′

i+1)), (vk
′′
i , vk′′

i+1)) = accept.

by the correctness of S. Therefore, Vervk(x, σx) accepts.

Lemma 15 (Privacy). The scheme from Sect. 4.1 is constraint-hiding for
(F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the constraint-
hiding privacy game with some significant probability, and use it to break the
constraint-hiding privacy of CS as follows:

1. Receive (vk′,msk′) ← Setup′(1λ) from the CS challenger.
2. Compute (S.vk,S.sk) ← S.Setup(1λ) and send (msk = S.sk, vk = S.vk) to A.
3. A returns (t, F0, F1, x), where ∀b ∈ {0, 1} : Fb = (f b

1 , . . . , f b
t ) and Fb(x) = 0.

Forward (t, F0, F1, x) to the CS challenger.
4. The CS challenger samples b

$← {0, 1} and returns σ′
x,b.

Now for i ∈ [t] generate (vk′′
1 , sk′′

t ) ← S.Setup(1λ), sign (vk′, vk′′
1)

with the standard signature scheme: σ(vk′,vk′′
1 )

← S.Sign(S.sk, (vk′, vk′′
1))

and for each i ∈ [t − 1] sign σ(vk′′
i ,vk′′

i+1)
← S.Sign(S.sk′′

i , (vk′′
i , vk′′

i+1)).
Finally sign σ′′

x ← S.Sign(sk′′
t , x) and send to A the signature σx,b =

(vk′, σ′
x,b, {vk′′

i }i∈[t], σ
′′
x , σ(vk′,vk′′

1 )
, {σ(vk′′

i ,vk′′
i+1)

}i∈[t−1]).
5. Get b′ from A and forward it to the CS challenger. Clearly, any advantage of

A induces an advantage of the reduction.

Lemma 16 (Unforgeability). The scheme from Sect. 4.1 is fully unforgeable
for (F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the security
game. We show that it can be used to break either S or CS. Let Qkey,Qsig,Qrep

be the sets of key queries, signature queries and repeated signature queries made
by A during the security game. Recall that each query qi ∈ Qkey is of the form
(ti, (f i

1, . . . , f
i
ti

)) and each query qi ∈ Qsig is of the form (ti, (f i
1, . . . , f

i
ti

, xi)),
where ti ∈ Z, f i

j ∈ F ′, xi ∈ X ′. In particular, each query qi ∈ Qkey

⋃ Qsig

contains a set (f i
1, . . . , f

i
ti

) ∈ F ′ti . Moreover, every response of the challenger
(whether it is a key or a signature) contains a tuple (vk′i, {vk′′i

j }j∈[ti]) that
is generated during Keygen and DelKey. A wins the game, it therefore out-
puts a successful forgery (x∗, σx∗), where σx∗ = (vk′∗, σ′

x∗ , {vk′′∗
j }j=1...t, σ

′′
x∗ ,

σ(vk′∗,vk′′∗
1 ), {σ(vk′′∗

j ,vk′′∗
j+1)

}j=1...t−1). Consider three cases:
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– If ∃qi ∈ Qkey such that (vk′i, {vk′′i
j }j∈[ti]) = (vk′∗, {vk′′∗

j }j∈[ti]), then (x∗, σ′
x∗)

is a valid forgery to the delegatable CS instance that was initialized during
Keygen(fi,msk). Note that since qi ∈ Qkey, ∃j ∈ [1 . . . ti] such that f i

j(x
∗) = 1,

therefore (ti, f i
1, . . . , f

i
ti

) is a valid delegated-key query to the underlying CS
challenger. We show a reduction from the selective-single-key security game
of CS to this game:
1. Initialize (S.vk,S.sk) ← S.Setup(1λ) as in the real scheme and send S.vk

to A.
2. Queries phase:

• Answer all queries except of the ith as in the real unforgeability game.
• Upon receiving form A the query qi ∈ Qkey, send (ti, f i

1, . . . , f
i
ti

)
to the ith CS challenger and get back (vk′

i, k
′
(fi

1,...,fi
ti
)
). For

j ∈ [ti], generate (vk′′i
j , sk′′i

j ) ← S.Setup(1λ). Compute
σ(vk′

i,vk
′′i
1 ) ← S.Sign(S.sk, (vk′

i, vk
′′i
1 )) and for each j ∈ [1 . . . ti −

1] compute σ(vk′′i
j ,vk′′i

j+1)
← S.Sign(sk′′i

j , (vk′′i
j , vk′′i

j+1)). Send to A
the key sk(fi

1,...,fi
ti
) = (vk′

i, k
′
(fi

1,...,fi
ti
)
, {vk′′i

j }j∈[ti], sk
′′i
ti

, σ(vk′
i,vk

′′i
1 ),

{σ(vk′′i
j ,vk′′i

j+1)
}j∈[ti−1]).

3. When A sends the forgery (x∗, σx∗), send (x∗, σ′
x∗) to the ith CS challenger

to win the selective-single-key game.
– If ∃qi ∈ Qsig such that (vk′i, {vk′′i

j }j∈[ti]) = (vk′∗, {vk′′∗
j }j∈[ti]), then

(x∗, σ′′
x∗) is a valid forgery to the S instance that was initialized during

DelKey(k′
(fi

1,...,fi
ti−1)

, f i
ti

). Note that ∀qi ∈ Qsig, it holds that xi 
= x∗. We

show a reduction from the security game of S to this game:
1. Initialize (S.vk,S.sk) ← S.Setup(1λ) as in the real scheme and send S.vk

to A.
2. Queries phase:

• Answer all queries up to qi as in the real unforgeability game.
• Upon receiving form A the query qi ∈ Qsig, compute k′

(fi
1,...,fi

ti−1)
as in

the real game, then instantiate a game against the S challenger and
get vk′′i

ti
. Query a signature for (xi,mi) and get back σ′′

(xi,mi)
. Sign

σ(vk′′i
ti−1,vk′′i

ti
) ← S.Sign(sk′′i

ti−1, (vk
′′i
ti−1, vk

′′i
ti

)). Compute k′
(fi

1,...,fi
ti
)

←
DelKey′(k′

(fi
1,...,fi

ti−1)
, f i

ti
) and σ′

(xi,mi)
← Sign′(xi,mi, k

′
(fi

1,...,fi
ti
)
).

Send to A: σxi
= (vk′

i, σ
′
xi

, {vk′′i
j }j∈[ti], σ

′′
(xi,mi)

, σ(vk′
i,vk

′′i
1 ),

{σ(vk′′i
j ,vk′′i

j+1)
}j∈[ti−1]).

• Answer all queries as in the real game, except of repeated signature
queries that reference qi. For these, do as described above with the val-
ues vk′

i, {vk′′i
j }j∈[ti], σ(vk′

i,vk
′′i
1 ), {σ(vk′′i

j ,vk′′i
j+1)

}j∈[ti−1], k′
(fi

1,...,fi
ti
)

that

were generated when qi was answered.
3. When A sends the forgery (x∗, σx∗), send (x∗, σ′′

x∗) to the ith S challenger
to win the game.

– If ∀d ∈ [1 . . . ti] and ∀qi ∈ Q∗
d = {qi ∈ Qkey

⋃ Qsig : (vk′
i, {vk′′i

j }j=1...d−1) =
(vk′

∗, {vk′′∗
j }j=1...d−1)} it holds that vk′′∗

d 
= vk′′i
d , then (σ(vk′′∗

d−1,vk′′∗
d ),
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((vk′′∗
d−1, vk

′′∗
d )) is a valid forgery to the S instance with the verification key

vk′′∗
d−1 = vk′′i

d−1. The reduction follows similar lines to the reduction from the
previous case.

– Otherwise ∀qi ∈ Qkey

⋃ Qsig (vk′
i, vk

′′i
1 ) 
= (vk′

∗, vk
′′∗
1 ), and thus

(σ(vk′
∗,vk′′∗

1 ), (vk
′
∗, vk

′′∗
1 )) is a valid forgery to S. We show a reduction from

the security game of S to this game:
1. Receive S.vk from the S challenger and send it to A.
2. Answer queries from A as in the real game, except the way σ(vk′

∗,vk′′∗
1 )

is computed: instead of signing (vk′
∗, vk

′′∗
1 ) with msk = S.sk, query the S

challenger and get σ(vk′
∗,vk′′∗

1 ).
3. When A sends the forgery (x∗, σx∗), send (σ(vk′

∗,vk′′∗
1 ), (vk

′
∗, vk

′′∗
1 )) to the

S challenger to win the game.
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1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
{manuel.fersch,eike.kiltz}@rub.de

2 Information Security Group, Royal Holloway, University of London, London, UK
bertram.poettering@rhul.ac.uk

Abstract. The American signature standards DSA and ECDSA, as
well as their Russian and Chinese counterparts GOST 34.10 and SM2,
are of utmost importance in the current security landscape. The men-
tioned schemes are all rooted in the Elgamal signature scheme (1984)
and use a hash function and a cyclic group as building blocks. Unfor-
tunately, authoritative security guarantees for the schemes are still due:
All existing positive results on their security use aggressive idealization
approaches, like the generic group model, leading to debatable overall
results.

In this work we conduct security analyses for a set of classic signature
schemes, including the ones mentioned above, providing positive results
in the following sense: If the hash function (which is instantiated with
SHA1 or SHA2 in a typical DSA/ECDSA setup) is modeled as a random
oracle, and the signer issues at most one signature per message, then the
schemes are unforgeable if and only if they are key-only unforgeable,
where the latter security notion captures that the adversary has access
to the verification key but not to sample signatures. Put differently, for
the named signature schemes, in the one-signature-per-message setting
the signature oracle is redundant.

Keywords: Elgamal signatures · DSA · ECDSA · GOST · SM2

1 Introduction

Digital signatures. Digital signature schemes are a ubiquitous cryptographic
primitive. They are extensively used for message and entity authentication and
find widespread application in real-world protocols. The signature schemes most
often used in practice are likely the RSA-based PKCS#1v1.5, and the DLP-
based DSA and ECDSA [20]. For instance, current versions of TLS exclusively
employ signatures of these types to authenticate servers. Standardized schemes

The full version of this work can be found on the IACR Cryptology ePrint
Archive [12].
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Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 519–534, 2017.
https://doi.org/10.1007/978-3-319-70503-3_17



520 M. Fersch et al.

that share a great similarity with (EC)DSA are the Russian GOST 34.10 [9] and
the Chinese SM2 [19]. In the following we describe those schemes in more detail.

DSA and ECDSA. The signature schemes DSA and ECDSA build on ideas
of ElGamal [10] and are defined over a cyclic group G = 〈g〉 of prime order q.
They utilize two independent hash functions, H and f , that map messages and
group elements, respectively, into the exponent space Zq. Function f is called the
conversion function. While for DSA the group G is a prime-order subgroup of the
multiplicative group of some prime field GF(p) with the canonical representation
of group elements as integers in {1, . . . , p−1}, and f is defined as A �→ (A mod p)
mod q, for ECDSA the group is a subgroup of an elliptic curve over some field
GF(pn), and f is defined as A �→ A.x mod q where A.x is an encoding of the
x-coordinate of elliptic curve point A as an integer.

The signature schemes GOST and SM2 use similar settings. After having
fixed the cyclic group G, the hash function H, and the conversion function f , if
x is a signing key and X = gx the corresponding verification key, an (EC)DSA
signature on a message m is a pair (s, t) such that s = (H(m) + xt)/r and
t = f(gr), where r is freshly picked in each signing operation. In GOST and
SM2, different equations that values s, t, r, x have to fulfill are used. (For details
see Fig. 2.)

Prior analyses of Elgamal-type signature schemes. The first positive
results on (unmodified) ECDSA are due to Brown. In [4–6] he proves security
of ECDSA in the generic group model [27]. Unfortunately, some crucial for-
mal aspects of his idealization remain unclear, for instance that his modeling
approach for the group implicitly also idealizes the conversion function f . This
has unexpected impact: he de facto proves that ECDSA signatures are strongly
unforgeable, while in practice this is obviously not the case. See the discussions
in [11,28] for more details. Further, as Brown reports, his arguments are applica-
ble to ECDSA only, but not to the (closely-related) DSA.

Independently of the findings discussed above, in [4,6,7] Brown identifies
both sufficient and necessary conditions on H, f for the security of ECDSA.
However, the sufficient ones are significantly stronger than the discrete logarithm
problem.

In an informal discussion, in [6, II.4.4], Brown mentions that for ECDSA,
in the random oracle model, unforgeability against adversaries that have access
to the verification key but not to a signing oracle implies unforgeability against
adversaries that can request signatures, but at most one per message. No formal
argument is given for this claim. We work out the details in the current article. As
our treatment shows, a formal proof requires careful consideration and additional
techniques.

In [11] the current authors propose GenDSA, a signature framework that
subsumes both DSA and ECDSA in unmodified form, and prove the unforge-
ability of corresponding signatures using a novel approach of idealization: They
decompose the conversion function into three independent functions, where the
outer two mimic algebraic properties of the conversion function’s domain and
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range, and the inner function is modeled as a bijective random oracle.1 In the
full version they extend their results to also cover GOST and SM2. To the best
of our knowledge, this is the only existing security proof for GOST signatures.
For SM2, the only other security evaluation is in the generic group model [31].

In comparison to [5,11] the current work takes a conservative approach: We
idealize neither the group nor the conversion function but rather model a hash
function as a random oracle. As this hash function is typically instantiated with
a dedicated construction like SHA1 or SHA2, we believe our assumptions are
weaker and thus preferable to those used in [5,11,31]. We caution, however, that
also our results are weaker for not giving a reduction to the DLP, but to a
different (non-interactive) assumption.

Further related work. The works discussed next do not establish security
results for standardized schemes like DSA/GOST/SM2: Some works instead
target modified versions of these schemes, others give implementation advice.

Brickell et al. [3] define a framework for signature schemes called Trusted El
Gamal Type Signature Scheme and prove its unforgeability in the random ora-
cle model. Among the instantiations of their framework are the schemes DSA-I
(reportedly due to Brickell, 1996) in which the conversion function f is replaced
by a random oracle, and DSA-II (due to [26]) that deviates from DSA for apply-
ing the hash function H to both the message and the ephemeral value f(gr).
The framework of [3] cannot be instantiated such that unmodified (EC)DSA,
GOST, or SM2 is covered.

Similarly, Malone-Lee and Smart [22] propose the variants ECDSA-II and
ECDSA-III of ECDSA. In order to make certain attacks impossible (like dupli-
cate signatures [28] where one signature is valid for two messages), and for obtain-
ing tighter security reductions, the authors diverge from the original ECDSA
scheme.

Other work on the security of DSA and ECDSA, identifying necessary condi-
tions for the security of the schemes or analyzing their robustness against flaws in
implementations and parameter selection, was conducted by Vaudenay [29,30],
Howgrave-Graham and Smart [18], Nguyen and Shparlinski [24], Leadbitter et
al. [21], Garćıa et al. [13], and Genkin et al. [14].

Our Contribution

Our contribution is threefold. First, we describe the abstract signature scheme
GenElgamal that, among others, subsumes DSA, ECDSA, and GOST in unmod-
ified, and SM2 in an equivalent form. Second, we show that in the random oracle
model (for H), forging signatures in the presence of a signing oracle that can be
queried at most once on each message (one-per-message unforgeability, uf-cma1)
is as hard, but with a non-tight security reduction, as without such an oracle
(key-only unforgeability, uf-koa). This means for the named schemes that the
1 A bijective random oracle is an idealized public bijection that is accessible, in both

directions, via oracles; cryptographic constructions that build on such objects include
the Even–Mansour blockcipher and the SHA3 hash function.
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(restricted) signing oracle is actually redundant. Third, we generalize the notion
of intractable semi-logarithm from [6] and show that it is equivalent, for some
schemes, to key-only unforgeability. In the following we describe these three parts
in more detail.

Generic Elgamal Signatures. The GenElgamal signature scheme is defined
in the DLP setting relative to a hash function H, a conversion function f , a
so-called defining equation E, and a set D that enforces some restrictions on the
signature values. See Sect. 3 for the details. Different choices of these parameters
lead to different signature schemes, including DSA, ECDSA, GOST, and SM2.

Proving the security of GenElgamal. Consider GenElgamal and assume
H is a random oracle. In Sect. 4 we prove that, in this setting, key-only unforge-
ability implies one-per-message unforgeability. (The latter notion is not only of
theoretical interest; as we elaborate in Sect. 2 it is sufficient in many practical
scenarios.) This observation can be traced back to Brown [6, II.4.4] for the case
of ECDSA, but previously it has not been proved formally. Surprisingly, our
security reduction requires a Coron-like partitioning argument [8]. We note that
our reduction is not tight but loses a factor of about Qs (the number of queries
to the signing oracle).

Intractable Semi-logarithm. The notion of intractable semi-logarithm was
introduced by Brown [6, II.2.2] to analyze the security of ECDSA. The idea
is effectively to remove hash function H from the assumption that ECDSA is
unforgeable. In brief, a semi-logarithm challenge consists of computing, given g
and X = gx, a pair (s, t) such that t = f((gXt)1/s). We formalize and generalize
the semi-logarithm assumption in Sect. 5 and show that, in the random oracle
model, its hardness is equivalent to the key-only unforgeability of the signature
schemes considered in this article (except for SM2).

2 Preliminaries

Notation. For a set A we write A
n for the n-fold Cartesian product. We denote

random sampling from a finite set A according to the uniform distribution with
a $← A. We use symbol $← also for assignments from randomized algorithms,
while we denote assignments from deterministic algorithms and calculations
with ←. All algorithms are randomized unless explicitly noted. When using
symbols like ⊥ we mean special symbols that do not appear as elements of sets
(e.g., key spaces). Any computation involving ⊥ results in ⊥, in particular for
every function f we have f(⊥) = ⊥.

If q is a prime number, we write Zq for the field Z/qZ and assume the canonic
representation of its elements as a natural number in the interval [0, q −1]. That
is, an element a ∈ Zq is invertible iff a 	= 0. We denote prime-order groups with
(G, g, q) where G is (the description of) a cyclic group, its order q = |G| is a
prime number, and g is a generator such that G = 〈g〉. We write 1 for the neutral
element of G and G

∗ = G\{1} for the set of its generators.
Our security definitions are game based and expressed via program code.

As data structures, besides sets our code may use associative arrays (look-up
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tables). We use notation A[·] ← ∅ to initialize all cells of an array A to empty.
A game G consists of an Init procedure, one or more procedures to respond to
adversary oracle queries, and a Fin procedure. G is executed with an adversary A
as follows: Init is always run first and its outputs are the inputs to A. Next, the
oracle queries of A are answered by the corresponding procedures of G. Finally,
A calls Fin and terminates. Whenever the Stop command is invoked in a game,
the execution of game and adversary is halted and the command’s argument
is considered the output of the game. We write ‘Abort’ as a shortcut for ‘Stop
with 0’. By GA ⇒ out we denote the event that game G executed with A invokes
the Stop command with argument out.

Signature Schemes. A signature scheme consists of algorithms KGen,Sign,
Verify such that: algorithm KGen generates a signing key sk and a verification
key pk ; on input a signing key sk and a message m algorithm Sign generates a
signature σ or the failure indicator ⊥; on input a verification key pk , a message m,
and a candidate signature σ, deterministic algorithm Verify outputs 0 or 1 to
indicate rejection and acceptance, respectively. A signature scheme is correct if
for all key pairs (sk , pk) created by KGen and all messages m, an invocation of
Sign(sk ,m) results in a signature with overwhelming probability, and if it does
so then Verify accepts it.

We specify three security notions for signature schemes: uf-cma, uf-cma1,
and uf-koa. The standard goal is unforgeability under chosen-message attack
(uf-cma), meaning that no adversary can produce a valid signature on a fresh
message, even if it sees signatures on messages of its choosing. A slightly
weaker notion is one-per-message unforgeability (uf-cma1) [2,15,25] that adds
the restriction that the adversary can see at most one signature per message.
The weakest notion considered in this paper is key-only unforgeability (uf-koa)
where the adversary sees no sample signature but only the verification key. The
corresponding security games are in Fig. 1. Note that the uf-cma1 game aborts
if the adversary queries the signing oracle a second time on any message, and
that in the uf-koa game there is no signing oracle.

Definition 1 (Unforgeability). For a signature scheme, a forger F is said to
(τ,Qs, ε)-break uf-cma (uf-cma1, uf-koa) security if it runs in at most time τ ,
poses at most Qs queries to the Sign oracle, and achieves a forging advantage
of ε = Pr[GF ⇒ 1], where G is the corresponding game in Fig. 1. (In the uf-koa
case we require Qs = 0.)

If the signature scheme is specified in relation to some idealized primitive that
is accessed via oracles, we also annotate the maximum number of corresponding
queries; for instance, in the random oracle model for a hash function H we
use the expression (τ,Qs, QH , ε). We always assume that forgers that output a
forgery attempt (m∗, σ∗) pose a priori all (public) queries that the verification
in Fin will require.

Note that, while the uf-cma1 notion is technically weaker than uf-cma secu-
rity, for many practical applications the former is natural and sufficient. For
instance, in Signed-Diffie-Hellman key agreement users exchange messages of
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Fig. 1. The vertical space above Line 03 is exclusively for aligning the Sign oracles of
variant uf-cma and of variant uf-cma1 (that adds Line 10). In variant uf-koa the Sign
oracle does not exist.

the form gx ‖ Sign(sk , gx), where exponent x is fresh for each execution and
thus no value gx is ever signed twice. For cases where uf-cma security is not
sufficient, [2] propose efficient generic transformations that turn uf-cma1 secure
signature schemes into ones secure in the uf-cma sense. Concretely, one possibil-
ity is to derandomize the signing algorithm by obtaining the randomness from
a secretly keyed function applied to the message.

3 The Generic Elgamal Framework

We recall the abstract signature framework GenElgamal from [23, Sect. 11] that
is defined relative to a group G, a hash function H, a conversion function f ,
and an equation E(s, h, t, r, x) called the defining equation of GenElgamal. To
the latter is also associated a set D. In GenElgamal, the hash function H is
used to hash messages to elements of field Zq, and the conversion function f
is used to transform group elements to elements of Zq. Intuitively, a signature
consists of a solution s of E for values h = H(m), t = f(gr) where r is the
signing randomness, and signing key x. As we will see, to ensure functionality
and security, certain such solutions need to be excluded. This is implemented
by filtering them out by requiring containedness of corresponding triples (s, h, t)
in set D. As it turns out, some standards are overly restrictive on the set of
possible signatures (i.e., set D is specified smaller than it could be; an example
is SGenSM2 where s = 0 is not allowed). Nevertheless, in this document we stick
to the sets specified by the standard documents unless further noted.

Different choices of the defining equation E (and set D) lead to different
signature schemes. See Fig. 2 for an overview of classic ones. All these schemes
are rooted in the Elgamal signature scheme [10].

Definition 2 (Defining Equation). Let D ⊆ Z
3
q be a set. An equation

E = E(s, h, t, r, x) over D × (Z∗
q)

2
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is said to be defining (a signature scheme) if E has the form

E(s, h, t, r, x) = C0(s, h, t) + r Cr(s, h, t) + xCx(s, h, t),

where C0, Cx are functions D → Zq, and Cr is a function D → Z
∗
q . With other

words, E is defining if it is affine linear in x and r, and E can always be solved
for r.

Figure 2 lists possible defining equations together with common names for the
corresponding signature schemes. Concretely, we consider all variants of Elgamal
signatures mentioned in the Handbook of Applied Cryptography [23], and in
addition SM2.2 Of course there are also other possible choices for E; for example,
[17] lists a total of 18 configurations.

Fig. 2. Defining equations of a selection of established signature schemes. The variant
number (Vi) refers to [23, Table 11.5]. DSM(t) is defined as {(s, h, t) ∈ Z

∗
q ×Z

2
q : t+h �=

0, s − t − h �= 0}.

Definition 3 (Signing and Verification Function). Let E be a defining
equation. Then we define the signing function SE(h, t, r, x) = SE

x (h, t, r) as fol-
lows: if there exists a unique s such that E(s, h, t, r, x) is satisfied, SE returns s;
otherwise, the function returns ⊥.

Further, we define the verification function VE(g, s, h, t, x) = VE
g,x(s, h, t)

with respect to a prime-order group (G, g, q) as follows: if r is the (unique) solu-
tion of E(s, h, t, r, x) then VE returns gr.

Note that the affine linear form of E makes it possible to efficiently evaluate
VE given just s, h, t, gx, i.e., without knowing x explicitly.

Definition 4 (GenElgamal Framework). Let (G, g, q) be a prime-order
group, D ⊆ Z

3
q a set, and H : {0, 1}∗ → Zq a hash function. Let further

f : G
∗ → Zq be a function and E a defining equation as in Definition 2. Then

GenElgamal (relative to E, G,H, f, D) is defined by the algorithms of Fig. 3.

2 More precisely, we consider SGenSM2 which is an equivalent variant of SM2. Con-
cretely, (ŝ, t̂) is a valid SM2 signature on a message m for the verification key X̂ if
and only if (s, t) = (ŝ + t̂, t̂ − H(m)) is a valid SGenSM2 signature on m for the
verification key X = gX̂. As all these transformations are public and reversible, the
functionality and security of SM2 and SGenSM2 are the same.
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Fig. 3. The GenElgamal signature scheme with defining equation E. Functions SE and
VE are as in Definition 3. If SE returns ⊥ in Line 07 then Sign returns ⊥ in Line 09.

We define a notion of simulatability that will be used in the GenElgamal
security proof (in Sect. 4). It captures the fact that, in the random oracle model,
it is possible to simulate (almost) correctly distributed GenElgamal signatures
without knowledge of the signing key.

Definition 5 (δ-Simulatability). Let (E, G,H, f, D) be an instantiation of
GenElgamal as in Definition 4. We say the scheme is δ-simulatable if there exists
a function SimE : Z

3
q → Z

2
q ∪· {⊥} that is computable in about the same time as

SE such that for all x ∈ Z
∗
q the statistical distance between the outputs of the

two protocols depicted in Fig. 4 is at most δ.

Fig. 4. Simulatability of an instantiation of GenElgamal. If SimE outputs ⊥ in Line 12
then Psim outputs ⊥ in Line 13. The vertical space between Lines 12 and 13 is exclu-
sively for aligning the two protocols.

Lemma 1. All of the instantiations of GenElgamal described in Fig. 2 are
δ-simulatable with δ ≤ 2/q.

Proof. Consider any of the instantiations. Let x ∈ Z
∗
q be arbitrary. In Psim the

random value r is implicitly computed in the exponent as ax + b and by choice
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of a and b uniformly distributed on Zq, so the t-values in both protocols are
distributed identically.

Next, we want to show that for fixed r, t, x the value a is almost always a
function in h and vice versa. To this end we show that for each instantiation
there exist sets A, H ⊆ Zq (depending on r, t = f(gr), x) with |H| ≥ q − 2 and a
bijection πx,r : H → A. The bijection and its inverse function can be computed
directly from the respective defining equation, see Fig. 5. Note that π−1

x,r actually
is a function of a, b, t, but for fixed x, r the value of b is uniquely determined by
the choice of a as b = r−ax and the value of t is uniquely determined as t = f(gr).
Now when sampling a $← Zq and computing h as π−1

x,r(a, r−ax, f(gr)) in Psim(x)
(setting π−1

x,r(a, r − ax, f(gr)) = ⊥ for a /∈ A, which happens with probability
at most 2/q since |Zq\A| ≤ 2) instead of directly sampling h uniformly random
from Zq in Preal(x), the statistical distance between the h-values is at most 2/q.

Fig. 5. Sets H and A and functions πx,r(h), π−1
x,r(a, b, t), and ξx,r(a, b, t) for the schemes

from Fig. 2. We write t = f(gr). The last column shows the δ-values for the simulata-
bility of the instantiation (see Definition 5).

Now once x, a, b, t, h are fixed, since the defining equation has to hold, s can
be computed deterministically by a function ξx,r, also displayed in Fig. 5. Note
that both π−1

x,r and ξx,r can be computed without explicit knowledge of x, r for
all of the instantiations. So if we set

SimE(a, b, t) = (ξx,r(a, b, t), π−1
x,r(a, b, t)),

the statistical distance between the outputs of the two protocols from Fig. 4 is
at most 2/q. �

4 Security of GenElgamal in the ROM

We examine the security of GenElgamal, showing that if the hash function H
is modeled as a random oracle, key-only unforgeability implies one-per-message
unforgeability. This was already suggested in [6, II.4.4] for the case of GenDSA,
but no formal treatment was given. We here provide a formal statement and
a proof for the general case. Interestingly, our argument involves Coron-type
partitioning [8].
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Theorem 1. Let E, G,H, f, D be a δ-simulatable instantiation of GenElgamal.
Then if H is modeled as a random oracle, for every forger F that (τ,Qs, QH , ε)-
breaks the one-per-message unforgeability of this instantiation there also exists a
forger F ′ that (τ ′, 0, QH , ε′)-breaks the key-only unforgeability of this instantia-
tion, where

ε′ ≥ ε/(e2(Qs + 1)) − Qsδ and τ ′ = τ + O(QH).

Proof. Let F be a forger that (τ,Qs, QH , ε)-breaks the one-per-message unforge-
ability of the scheme under consideration. Let Game G0 be the standard
uf-cma1 game with the algorithms of Fig. 3 plugged in and an additional random
oracle RO for H that is implemented by lazy sampling (see Fig. 6). We assume
without loss of generality that F queries RO on m before calling Sign or Fin
involving the same message. We have

Pr[GF
0 ⇒ 1] = ε.

The idea of the reduction is that we respond to each hash query RO(m)
by selecting the hash value in a specific though uniform way (such that we can
simulate signatures on m), except for the value of m∗, which we want to forward
to the random oracle RO∗ of the uf-koa security game in a reduction later. But
m∗ is not yet known at the time of simulating the hash queries, so in Game G1

(see Fig. 6) we apply the partitioning technique from [8] and toss a biased coin
that takes value 0 with probability Qs/(Qs + 1) and value 1 with probability

Fig. 6. Games G0 and G1. Ber is the Bernoulli distribution with bias γ = 1/(Qs + 1),
i.e., in Line 16 c[m] takes the value 1 with probability 1/(Qs + 1). Note that Line 20
is redundant in G1.



One-Per-Message Unforgeability of (EC)DSA 529

γ = 1/(Qs + 1) for every queried message, and we hope that it takes the value 0
for all messages used in signature queries and the value 1 for m∗.

We now analyze the probability that one of the coins takes an unwanted
value, i.e., the probability of an abort in Lines 05 and 21. To do this, we con-
sider the complementary probability. Since for all messages m, c[m] is distributed
according to the Bernoulli distribution Ber(γ) with γ = 1/(Qs + 1) and inde-
pendently of all other coins, the probability that no abort happens in these lines
is

(1 − γ)Qsγ ≥ (1 − 1/Qs)Qs(1/(Qs + 1)) ≥ 1/e2(Qs + 1),

where the last inequality is a standard result in calculus and holds for Qs ≥ 2.
The case Qs = 1 is trivial. It follows that

Pr[GF
0 ⇒ 1] ≤ e2(Qs + 1)Pr[GF

1 ⇒ 1].

In Game G2 (see Fig. 7) we introduce two changes: (a) when processing a
random oracle query on a message m, a signature for m is precomputed and
stored, and (b) the way of signing messages is changed so that signatures are
generated without knowing the signing key. Note that change (a) is possible
only because the Sign oracle may be queried on each message at most once.
Change (b) exploits the assumed simulatability (see Definition 5) of GenElgamal.

Fig. 7. Game G2

We argue that the adversary can distinguish G1 and G2 with probability at
most Qsδ. To see this, note that change (a) is a pure rewriting step and does
not influence the output of the game. Concerning change (b), consider first the
case that the adversary queries Sign or RO on a message m with c[m] = 1. For
the random oracle, the response h is picked uniformly at random in Line 11, and
the signing oracle aborts, so the distribution is exactly as in G1.



530 M. Fersch et al.

Consider next the case that the adversary queries one of the oracles on a
message m with c[m] = 0. Observe then that Lines 06 to 11 in G1 correspond
exactly to the protocol Preal from Fig. 4, and Lines 13 to 20 in G2 correspond
exactly to the protocol Psim. Thus, switching the way of computing signatures
introduces, for each call to the signing oracle, a statistical distance between the
two games that is bounded by δ. We obtain

∣
∣Pr[GF

1 ⇒ 1] − Pr[GF
2 ⇒ 1]

∣
∣ ≤ Qsδ.

Now construct a uf-koa forger F ′ against GenElgamal in the random oracle
model as in Fig. 8.

Fig. 8. Construction of uf-koa forger F ′ from F by changing Game G2 as specified.
Init∗, RO∗, and Fin∗ are the procedures from the uf-koa security game run by F ′.
Procedure Sign is as in Game G2.

The coin tosses in Line 10 of Fig. 7 ensure that F ′ only has to provide sig-
natures on messages for which it programmed the random oracle itself; it thus
simulates the signing procedure of G2 perfectly. Further, the coin tosses guar-
antee that the forgery is consistent with RO∗, so F ′ wins its game exactly if F
produces a valid forgery. This means that

Pr[GF
2 ⇒ 1] = ε′,

and the statement follows. �

5 The Semi-Logarithm Problem

We formalize and generalize the notion of intractable semi-logarithm problem
(SLP), a notion introduced by Brown for the analysis of signature schemes.

His motivation for studying the SLP is “to isolate the role of the hash function
and the group in analyzing the security of ECDSA” [6, p. 25]. Effectively, the
SLP is a number-theoretic hardness assumption related to the search problem
of finding a valid GenElgamal signature for a (unknown) message m with hash
value H(m) = 1.
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As we show, the key-only unforgeability of an instantiation of GenElgamal
is characterized by the intractability of the corresponding variant of the semi-
logarithm problem (in the random oracle model), potentially establishing a sim-
plified target for cryptanalysis. Note that a suitable SLP variant does not exist
for all GenElgamal instantiations: for SM2 there is apparently no corresponding
SLP definition.

Definition 6. Let (G, g, q) be a prime-order group and let f : G
∗ → Zq and

ρ0, ρ1 : Z
2
q → Zq be functions. We say that an algorithm I (τ, ε)-breaks the semi-

logarithm problem (SLP) in G with respect to f, ρ0, ρ1 if it runs in time at most τ
and achieves probability

ε = Pr[X $← G; (u, v) $← I(g,X) : v = f(gρ0(u,v)Xρ1(u,v))].

Definition 7. Let E = E(s, h, t, r, x) be a defining equation with corresponding
set D (see Definition 2). We say that E is h-decomposable (with respect to D) if
there exist functions

η0, η1 : Zq → Zq and ρ0, ρ1 : Z
2
q → Zq

such that η0(h), η1(h) 	= 0 if h 	= 0 and

r = η0(h)ρ0(s, t) + x η1(h)ρ1(s, t)

for all (s, h, t) ∈ D and r, x ∈ Z
∗
q satisfying E(s, h, t, r, x).

All defining equations from Fig. 2, except for SGenSM2, are h-decomposable.
The corresponding components η0, ρ0, η1, ρ1 are listed in Fig. 9.

Fig. 9. Components η0, ρ0, η1, ρ1 of the h-decomposable defining equations from Fig. 2.

Theorem 2. Let (G, g, q) be a prime-order group, let E be a defining equation
with corresponding set D, and let f : G

∗ → Zq and H : {0, 1}∗ → Zq be functions.
If E is h-decomposable with functions ρ0, ρ1, and H is modeled as a random
oracle, then the semi-logarithm problem in G with respect to f, ρ0, ρ1 is non-
tightly equivalent to the key-only unforgeability of GenElgamal when instantiated
with E, G,H, f, D.

More precisely, for any adversary I that (τ, ε)-breaks SLP, there exists a
forger F that (τ ′, ε)-breaks the key-only unforgeability of GenElgamal, where
τ ≈ τ ′.
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Conversely, for any forger F that (τ,QH , ε)-breaks the key-only unforgeability
of GenElgamal, there exists an adversary I that (τ ′, ε/QH − 1/q)-breaks SLP,
where τ ′ ≈ τ and QH is the number of random oracle queries posed by F .

Proof. Given an adversary I that (τ, ε)-breaks SLP, we construct a forger F that
(τ ′, ε)-breaks key-only unforgeability of GenElgamal, for any hash function H.
(For the particular case of ECDSA, this result is due to Brown [6].) On input,
F obtains g,X (from pk). It picks any message m (independently of X) such
that H(m) 	= 0, computes h ← H(m), g′ ← gη0(h), and X ′ ← Xη1(h), and lets
I compute a semi-logarithm as per (u, v) $← I(g′,X ′). Then (u, v) is a valid
signature on m (with respect to g,X). Indeed, since E is h-decomposable, by
definition of VE

g,x (see Definition 3) it holds that in Verify (see Line 14 in Fig. 3)
we have

R̂ = VE
g,x(u, h, v) = gη0(h)ρ0(u,v)Xη1(h)ρ1(u,v) = (g′)ρ0(u,v)(X ′)ρ1(u,v),

and thus f(R̂) = v.
Let now F be a forger that (τ,QH , ε)-breaks the key-only unforgeability of

GenElgamal. We construct an adversary I against SLP from it. On input of
(g,X), it draws a $← Zq, aborts if a = 0, sets g′ ← g1/η0(a) and X ′ ← X1/η1(a),
and starts F on input pk = (g′,X ′). If m∗ denotes the message on which F
forges a signature, we assume w.l.o.g. that F queries H(m∗) before outputting
the latter. I initially guesses the index j ∈ {1, . . . , QH} of the corresponding
query to H. It then responds to the jth random oracle query by programming
it via H(mj) ← a, and answers all other queries with uniform values. Once F
outputs its forgery (m∗, (s, t)), adversary I forwards (s, t) to its own challenger.
Since E is h-decomposable and g = (g′)η0(H(m∗)) and X = (X ′)η1(H(m∗)), it
holds that

gρ0(s,t)Xρ1(s,t) = ((g′)η0(H(m∗)))ρ0(s,t)((X ′)η1(H(m∗)))ρ1(s,t)

= VE
g′,x′(s,H(m∗), t),

where x′ = logg′ X ′. That is, I wins in the SLP game if it didn’t abort when
sampling a, its guess for index j was correct, and F forges successfully. �
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Abstract. Verifiable Random Functions (VRFs) as introduced by
Micali, Rabin and Vadhan are a special form of Pseudo Random Func-
tions (PRFs) wherein a secret key holder can also prove validity of the
function evaluation relative to a statistically binding commitment.

Prior works have approached the problem of constructing VRFs by
proposing a candidate under a specific number theoretic setting — mostly
in bilinear groups — and then grappling with the challenges of proving
security in the VRF environments. These constructions achieved differ-
ent results and tradeoffs in practical efficiency, tightness of reductions
and cryptographic assumptions.

In this work we take a different approach. Instead of tackling the VRF
problem as a whole, we demonstrate a simple and generic way of building
Verifiable Random Functions from more basic and narrow cryptographic
primitives. Then we can turn to exploring solutions to these primitives
with a more focused mindset. In particular, we show that VRFs can be
constructed generically from the ingredients of: (1) a 1-bounded con-
strained pseudo random function for a functionality that is “admissible
hash friendly”, (2) a non-interactive statistically binding commitment
scheme (without trusted setup) and (3) non-interactive witness indis-
tinguishable proofs or NIWIs. The first primitive can be replaced with
a more basic puncturable PRF constraint if one is willing to settle for
selective security or assume sub-exponential hardness of assumptions.

In the second half of our work, we support our generic approach by
giving new constructions of the underlying primitives. We first provide
new constructions of perfectly binding commitments from the Learning
with Errors (LWE) and Learning Parity with Noise (LPN) assumptions.
Second, we give two new constructions of 1-bounded constrained PRFs
for admissible hash friendly constructions. Our first construction is from
the n-powerDDH assumption. The next is from the φ hiding assumption.

1 Introduction

Verifiable Random Functions (VRFs) as introduced by Micali et al. [30] are
a special form of Pseudo Random Functions (PRFs) [20] wherein a secret key
holder can also prove validity of the function evaluation relative to a statistically
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 537–566, 2017.
https://doi.org/10.1007/978-3-319-70503-3_18
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binding commitment. The caveat being that the pseudorandomness of the func-
tion on other points should not be sacrificed even after providing polynomially
many proofs. The VRF definition forbids interactivity or any setup assumption,
thereby disallowing trivial extensions of PRFs making the problem more chal-
lenging and interesting.

Prior works [13,14,22,24,25,29] have approached the problem of constructing
VRFs by proposing a candidate under a specific number theoretic setting —
mostly in bilinear groups — and then grappling with the challenges of proving
security in the VRF environments. These constructions achieved different results
and tradeoffs in practical efficiency, tightness of reductions and cryptographic
assumptions.

In this work we take a different approach. Instead of tackling the VRF prob-
lem as a whole, we demonstrate a simple and generic way of building Verifiable
Random Functions from more basic and narrow cryptographic primitives. Then
we can turn to exploring solutions to these primitives with a more focused mind-
set.

In particular, we show that VRFs can be constructed generically from the
ingredients of: (1) a 1-bounded constrained pseudo random function [8,10,27]
for a functionality that is “admissible hash friendly”, (2) a non-interactive sta-
tistically binding commitment scheme (without trusted setup) and (3) non-
interactive witness indistinguishable proofs or NIWIs [16]. The first primitive
can be replaced with a more basic puncturable PRF [36] constraint if one is
willing to settle for selective security or assume sub-exponential hardness of
assumptions.

The first benefit of our approach is that by generically breaking down the
problem we expose and separate the core features of VRFs. Namely, we can see
that in spirit any reduction must both develop a way of constraining itself from
knowing the output of the entire PRF space while at the same time be able to
develop non-interactive proofs without a common setup. Second, with the VRF
problem dissected into constituent parts, we can explore and develop number
theoretic solutions to each piece. Ideally, this breakdown will help us develop a
wider array of solutions and in particular break away from the dependence on
bilinear maps. We now look at each primitive in turn.

Beginning with constrained PRFs, our goal is to build them for constraints
that we call admissible hash [7] compatible. In particular, we need a constrained
key that can be associated with a string z ∈ {0, 1,⊥}n where the constrained key
can be evaluated on any input x ∈ {0, 1}n where x �= z. For our purposes such
a scheme only needs to be secure in the model where an attacker is allowed a
single key query. The recent work of Brakerski and Vaikuntanthan [11] construct
1-bounded constrained PRFs under the learning with errors (LWE) [35] assump-
tion that can handle any constraint in NC1 which encompasses the admissible
hash compatible functionality.

We complement this by providing a new construction of constrained PRFs
that is admissible hash friendly in the setting of non-bilinear groups. Our con-
struction is proven secure under the n-powerDDH problem. Informally, one is
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given g, ga, ga2
, . . . , gan−1

, it is hard to distinguish gan

from a random group
element. We note that this problem in composite order groups reduces to the
subgroup decision problem [12]. In addition, as mentioned above if we assume
sub-exponential hardness of our assumptions or relax to selective security we
can instead rely on puncturable PRFs which are realizable from any one way
function.

We next turn to constructing non-interactive perfectly binding commitments.
The main challenge here is any solution must not utilize a trusted setup since
a trusted setup is disallowed in the VRF setting. Naor [32] showed how any
certifiably injective one way function gives rise to such a commitment scheme.
Injective functions can in turn be based on (certifiable) groups where discrete
log is hard.

We develop new constructions for non-interactive perfectly binding commit-
ments from noisy cryptographic assumptions. We show and prove a construction
under the Learning with Errors and Learning Parity with Noise (LPN) assump-
tions. Our LPN solution uses a low-noise variant (β �

1√
n
) of the LPN assump-

tion that has been used in previous public key encryption schemes [1]. We also
develop an approach for proving security under LPN with constant noise. Our
solution requires the existence of an explicit error correcting code with certain
properties. We leave finding such a code as an interesting open problem.

Finally, we arrive at NIWIs. There are three basic approaches to building
NIWIs. First, in the bilinear setting, it is known [21] how to construct NIWIs
from the decision linear assumption. Second, Barak, Ong and Vadhan (BOV) [4]
showed that two-message public-coin witness indistinguishable proofs (a.k.a.
ZAPs [15]) imply NIWIs under certain complexity theoretic assumptions that
allow for derandomization. Finally, indistinguishability obfuscation [18] gives rise
to NIWI constructions [6].

Taking a step back we can see that our approach already leads to construc-
tions of VRFs with new properties. For example, if we build ZAPs from trapdoor
permutations and apply the BOV theorem we can achieve multiple constructions
of adaptively secure VRFs without complexity leveraging that do not use bilinear
groups. In addition, given the wide array of choices for building our commitments
and constrained PRFs, our work reveals developing new techniques for building
and proving NIWIs as the primary bottleneck for progress towards VRFs.

1.1 Technical Overview

We now give a high level overview of our technical approach. A formal treat-
ment is given in the main body. We break our overview into three pieces. First
we describe our generic construction of Verifiable Random Functions. Next,
we define admissible hash compatible constrained PRFs and go over our non-
bilinear group solution. Finally, we overview our LWE and LPN solutions to
non-interactive perfectly binding commitments.

Constructing VRFs Generically. We first briefly review the definition of a Verifi-
able Random Function. In the VRF framework, a party runs the Setup algorithm
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to generate a pair of secret key SK and public verification key VK. Using the
secret key SK, it could efficiently evaluate the function FSK(·) on any input x
as well as a proof Π of the statement y = FSK(x). The verification key could be
considered as a statistically binding commitment to the underlying pseudoran-
dom function. A third party verification algorithm Verify is used to verify a proof
Π which takes the verification key VK, function evaluation y, and message x as
additional inputs. First, the soundness condition dictates that for each (VK, x)
pair there should be at most one output y such that Verify(VK, x, y, π) = 1.
Importantly, VRFs do not make use of any setup assumption and soundness
should hold even in the case of a maliciously generated VK. Second, it should
also hold that the output of function FSK(·) is indistinguishable from a random
string even after observing polynomially many evaluations and proofs at adver-
sarially chosen points. The latter is formalized as pseudorandomness property of
the VRF.

We now give a simple construction from the aforementioned primitives. The
VRF setup proceeds as follows. First, a constrained PRF key K is sampled and
kept as part of the secret key. Next, a sequence of three independent commit-
ments c1, c2, c3 is computed such that each commitment ci opens to the key
K.1 The triple of commitments (c1, c2, c3) is stored as the public verification key
and the corresponding randomness used during commitment is included in the
secret key. For evaluating the VRF on any input x, we first apply an admissible
hash function on x and then evaluate the constrained PRF on the output of
admissible hash. In short, the VRF output on some input x is PRFK(h(x)). For
proving correctness of evaluation, we use non-interactive witness indistinguish-
able proofs (NIWIs). In particular, to prove that the output of VRF on some
input x is y, we create a NIWI proof for the statement that at least two out of
three commitments (c1, c2, c3) (in the verification key) open to keys K1,K2 such
that y = PRFK1(h(x)) = PRFK2(h(x)) (the idea of a majority-based decoding
(i.e., two out of three trick) was also used in [2]). We would like to emphasize
that keys K1 and K2 need not be identical as the only constraint that must hold
is that the PRF evaluation of input h(x) must be equal to y irrespective of the
key (out of K1,K2) used. The proof verification can be done in a straightforward
manner as it simply involves running the NIWI verifier.

Now we briefly sketch the idea behind pseudorandomness proof in the adap-
tive setting. To prove security we use a “partitioning” argument where roughly
1/Q fraction of inputs can be used as challenge and remaining 1 − 1/Q frac-
tion will be used for answering evaluation queries, where Q is the number of
queries made by an attacker. First step in the reduction is to concretely define
the challenge and non-challenge partitions using admissible hash function. Next,
we leverage the facts that all the evaluation queries will lie outside the challenge

1 Looking ahead, it will be crucial for proving the unique provability property that
the commitment scheme used is perfectly binding.
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partition2 and for generating the evaluation proofs we only need openings of two
key commitments out of three. At a high level, our goal is to switch all three
commitments c1, c2, c3 such that they commit to the constrained key K ′ instead
of key K, where K ′ could be used to evaluate the VRF on all points outside the
challenge partition. To this end, the reduction proceeds as follows.

First, the challenger makes two crucial modifications — (1) it generates a
constrained PRF key K ′ along with the master key K, (2) it computes c3 as a
commitment to key K ′ instead of key K. Such a hybrid jump is indistinguish-
able by the hiding property of the commitment scheme as for generating all
the evaluation proofs it does not need the opening for c3. Next, we switch the
NIWI witness used to generate the proof. In particular, the challenger now uses
openings of c2, c3 as the NIWI witnesses. This only results in a negligible dip in
the adversary’s advantage because for all inputs outside the challenge partition,
the PRF evaluation using the master key K and constrained key K ′ is identical,
thus the openings of any two commitments out of c1, c2, c3 could be used as the
NIWI witness. Applying similar modifications as above in succession, all three
commitments c1, c2, c3 could be switched to commitments of the constrained key
K ′. If all three commitments open to the constrained key K ′, then the challenger
could directly reduce an attack on the VRF pseudorandomness to an attack on
the constrained pseudorandomness of the PRF.

It is also interesting to note that if we use a puncturable PRF instead of
an admissible hash compatible constrained PRF, then the same construction
could be proven to be selectively secure with only polynomial security loss to the
underlying assumptions. The major difference in the proof being the partitioning
step, where instead of using the admissible hash function to perform partitioning
and aborting in case of bad partitions, the reduction already knows the challenge
input at the start, thus it only needs to puncture the PRF key on the challenge
input in order to use the same sequence of hybrids. This is discussed in detail in
Sect. 3.

Admissible Hash Compatible Constrained PRFs. A constrained PRF family con-
sists of a setup algorithm that outputs the master PRF key, a constrain algorithm
that takes as input the master PRF key and a constraint, and outputs a con-
strained PRF key. The constrained PRF key can be used to evaluate the PRF at
all points satisfied by the constraint. As mentioned in the previous paragraph, for
constructing adaptively secure VRFs, we require constrained PRFs for a special
class of “admissible hash compatible” constraints. Each constraint is specified by
a string u ∈ {0, 1,⊥}n. Given a constrained key for u, it can be used to evaluate
the PRF at all points x such that there exists an index i ≤ n where ui �= ⊥
and xi �= ui. For this work, we require a weaker notion of security which we call
‘single-key no-query’ security. Here, the adversary first sends a constrained key
query u. After receiving the constrained key, it sends a challenge point x such

2 The challenger needs to perform an abort step in case of bad partitioning, however
for the above informal exposition we avoid discussing it. More details are provided
in Sect. 3.
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that it does not satisfy the constraint (that is, for all i ≤ n, either ui = ⊥, or
xi = ui). It then receives either the PRF evaluation at x or a uniformly random
string, and it must distinguish between the two scenarios.

Powers-DDH Construction. This construction, at a high level, is similar
to the Naor-Reingold PRF construction. The PRF key consists of 2n integers
{ci,b}i≤n,b∈{0,1} and a group element g. To evaluate at a point x, we first choose
n out of the 2n integers, depending on the bits of x. Let t denote the product
of these n integers. The PRF evaluation is gt. A constrained key for constraint
u ∈ {0, 1,⊥}n consists of n powers of a random integer a in the exponent of
g: (g, ga, . . ., gan−1

) and 2n integers {vi,b}. Each vi,b is set to be either ci,b or
ci,b/a, depending on ui. Using the vi,b and an appropriate gak

term, one can
compute the PRF evaluation at any point x such that it satisfies the constraint
(that is, if there exists an i ≤ n such that ui �= ⊥ and xi �= ui). However, if x
does not satisfy the constraint, then one needs to compute gan

to compute the
PRF evaluation at x. Using the n-powerDDH assumption, we can argue that if
an adversary can distinguish between the PRF evaluation and a truly random
string, then one can use this adversary to distinguish between gan

and a random
group element.

Phi-Hiding Construction. In this scheme, the PRF key consists of an RSA
modulus N , its factorization (p, q), 2n integers ci,b, a base integer h and a strong
extractor seed s. The PRF evaluation on an n bit strings is performed as fol-
lows: first choose n out of the 2n integers depending on the input, compute their
product, then compute this product in the exponent of h and finally apply a
strong extractor on the product with seed s. A constrained key for constraint
u ∈ {0, 1,⊥}n consists of 2n integers {vi,b}, integers e and he, and seed s. Each
vi,b is set to be either (ci,b − 1) · e−1 or ci,b · e−1, depending on ui. Integers vi,b

are set such that the PRF evaluation at any point x satisfying the constraint
is of the form Ext(heα, s), where α could be computed only using vi,b’s and e.
However, for all unsatisfying points x, the output is of the form Ext(h1+eα, s).
Using the phi-hiding assumption, we can argue that an adversary can not dis-
tinguish between the cases where e is co-prime with respect to φ(N), and when
e divides φ(N). Note that in the latter case, there are e distinct eth roots of he.
Thus, for any challenge point, the term h1+eα will have large min-entropy, and
by strong extractor guarantee we could conclude that it looks uniformly random
to the adversary.

We could also show that the above construction is a secure constrained
unpredictable function under the RSA assumption. Note that constrained unpre-
dictability is a weaker notion of security than constrained pseudorandomness in
which the adversary must guess the PRF evaluation on the challenge point.

New Constructions of Non-Interactive Perfectly Binding Commitments. Finally,
the third component required for our VRF construction is a non-interactive
perfectly binding commitment scheme (without trusted setup). In this work,
we give new constructions for this primitive based on the Learning with Errors
(LWE) and Learning Parity with Noise (LPN) assumptions. (We emphasize that
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such commitments have applications beyond VRFs. For example, they are a key
ingredient in building verifiable functional encryption [2].) Our LPN construction
can be proven secure under the LPN with low noise assumption. Finally, we also
give an approach for proving security under LPN with constant noise. This
approach relies on the existence of special error correcting codes with ‘robust’
generator matrix. Currently, we do not have any explicit constructions for this
combinatorial object. For simplicity, we only consider single bit commitment
schemes.

LWE Construction. In this scheme, we will be working in Zq for a suitably
large prime q. The commitment to a bit b consists of a randomly chosen vector w
and wT s+ noise+ b(q/2), where s is a randomly chosen secret vector. However,
to ensure perfect binding, we need to have some additional components. The
scheme also chooses a random matrix B from a distribution D1 and outputs
B,BT s+noise. This distribution has the special property that all matrices from
this distribution have ‘medium norm’ rowspace. This property ensures that there
does not exist two distinct vectors s1 and s2 such that BT s1 + noise1 = BT s2 +
noise2. Finally, to argue computational hiding, we require that a random matrix
from this distribution looks uniformly random. If this condition is satisfied, then
we can use the LWE assumption to argue that wT s+noise and BT s+noise′ look
uniformly random, thereby hiding the committed bit. Sampling a matrix from
the distribution D1 works as follows: first choose a uniformly random matrix A,
then choose a matrix C with low norm entries, matrix D with ‘medium’ entries
and output [A | AC + D + noise]. For any non zero vector s, if AT s has low
norm, then CTAT s also has low norm, but DT s has medium norm entries, and
therefore [A | AC + D + noise]T s has medium norm entries.

Low Noise LPN construction. This scheme is similar to the LWE construc-
tion. Here also, the commitment to a bit b consists of w and wT s + b, where
w and s are uniformly random vectors in Z

n
2 . To ensure that there can be only

one vector s, we also choose a matrix B from a special distribution D2 and out-
put B,BT s + noise. In this case, the distribution D2 is such that all matrices
from this distribution have high hamming weight rowspace. To sample from the
distribution D2, one chooses a uniformly random matrix A, a matrix C with
low hamming weight rows and outputs [A | AC + G], where G is the genera-
tor matrix of an error correcting code. Here the role of G is similar to the role
of D in the previous solution: to map any non-zero vector to a high hamming
weight vector. An important point here is that we need the rows of C to have
low (O(

√
n)) hamming weight. This is because we want to argue that if AT s has

low hamming weight, then so does CTAT s. Finally, to argue that D2 looks like
the uniform distribution, we need the LPN assumption with low noise3 (since C
has low (O(

√
n)) hamming weight rows).

3 We will be using the (low noise) Knapsack LPN assumption. The Knapsack LPN
assumption states that for a uniformly random matrix A and a matrix E such that
each entry is 1 with probability p and A has fewer rows than columns, then (A,AE)
look like uniformly random matrices.
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This construction bears some similarities to the CCA secure encryption
scheme of Kiltz et al. [28].

Standard LPN construction. Finally, we describe an approach for construct-
ing a commitment scheme that can be proven secure under the standard LPN
assumption (with constant noise). For this approach, we require a deterministic
procedure that can output � matrices G1, . . . ,G� with the following property:
for any matrix A, there exists an index i such that the rowspace of A+Gi has
high hamming weight. Given such a procedure, our commitment scheme works
as follows. The commitment algorithm, on input message b, chooses a uniformly
random matrix A and generates � sub-commitments. The ith sub-commitment
chooses uniformly random vectors si,wi and outputs (A + Gi)T si + noise, wi

and wT
i si + b. For perfect binding, we will use the guarantee that there exists an

i such that the rowspace of A+Gi has high hamming weight. This implies that
if (A + Gi)T s1 + noise = (A + Gi)T s2 + noise, then s1 = s2. For computational
hiding, we need a hybrid argument to switch each sub-commitment to uniformly
random.

1.2 Concurrent Work

Independently and concurrently, Bitansky [5] gave a very similar construc-
tion of VRFs from NIWIs, perfectly binding commitments and puncturable
PRFs/constrained PRFs for admissible hash friendly constraints.

The notable differences in the two works are with respect to the new real-
izations of commitments and constrained PRFs. Both works give a constrained
PRF under the n-powerDDH assumption for admissible hash friendly constraints.
Bitansky was able to further prove this construction secure under the DDH
assumption. Interestingly, the result was achieved by considering constrained
PRFs for a more general notion of partitioning than admissible hash. We also
construct admissible hash friendly constrained PRFs based on the phi-hiding
assumption as well as constrained unpredictable functions based on the more
standard RSA assumption. Finally, we also provide new constructions for per-
fectly binding commitments based on the LWE and LPN assumption.

Subsequently, Badrinarayanan et al. [3] gave an alternate construction of
VRFs from puncturable PRFs/constrained PRFs for admissible hash friendly
constraints and Verifiable Functional Encryption [2], which in turn can be con-
structed from NIWIs, injective one-way functions and secret key functional
encryption schemes secure against single ciphertext and unbounded key queries.

2 Preliminaries

2.1 Verifiable Random Functions

Verifiable random functions (VRFs) were introduced by Micali, Rabin and Vad-
han [30]. VRFs are keyed functions with input domain {Xλ}λ, output range
{Yλ}λ and consist of three polynomial time algorithms Setup, Evaluate and Verify
described as follows:
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– Setup(1λ) is a randomized algorithm that on input the security parameter,
outputs (SK,VK). SK is called secret key, and VK verification key.

– Evaluate(SK, x) is a (possibly randomized) algorithm, and on input the secret
key SK and x ∈ Xλ, it outputs an evaluation y ∈ Yλ and a proof π ∈ {0, 1}∗.

– Verify(VK, x, y, π) is a (possibly randomized) algorithm which uses verifica-
tion key VK and proof π to verify that y is the correct evaluation on input
x. It outputs 1 (accepts) if verification succeeds, and 0 (rejects) otherwise.

Definition 1 (Adaptively-secure VRF). A pair of polynomial time algorithms
(Setup,Evaluate,Verify) is an adaptively-secure verifiable random function if it
satisfies the following conditions:

– (Correctness) For all (SK,VK) ← Setup(1λ), and all x ∈ Xλ, if (y, π) ←
Evaluate(SK, x), then Pr[Verify(VK, x, y, π) = 1] = 1.

– (Unique Provability) For every (VK, x, y1, π1, y2, π2) such that y1 �= y2, the
following holds for at least one i ∈ {1, 2}:

Pr[Verify(VK, x, yi, πi) = 1] ≤ 2−Ω(λ).

– (Pseudorandomness) For any PPT adversary A = (A0,A1) there exists a
negligible function negl(·), such that for all λ ∈ N, Advadp-VRF

A (λ) ≤ negl(λ),
where advantage of A is defined as

Advadp-VRF
A (λ) = Pr

⎡
⎢⎢⎣AOx∗

1 (st, yb) = b :

(SK,VK) ← Setup(1λ);
(x∗, st) = AEvaluate(SK,·)

0 (VK)
(y1, π) ← Evaluate(SK, x∗);

y0 ← Yλ; b ← {0, 1}

⎤
⎥⎥⎦− 1

2
,

where x∗ should not have been queried by A0, and oracle Ox∗ on input x∗

outputs ⊥, otherwise behaves same as Evaluate(SK, ·).
A weaker notion of security for VRFs is selective pseudorandomness where

the adversary must commit to its challenge x∗ at the start of the game, that is
before the challenger sends VK to A. Then during evaluation phase, A is allowed
to query on polynomially many messages x �= x∗, and A wins if its guess b′ = b.
The advantage of A is defined to be Advsel-VRF

A (λ) = |Pr[A wins] − 1/2|.
Definition 2 (Selectively-secure VRF). A pair of polynomial time algorithms
(Setup,Evaluate,Verify) is called a selectively-secure verifiable random function
if it satisfies correctness and unique provability properties (as in Definition 1),
and for all PPT adversaries A, Advsel-VRF

A (λ) is negligible in the security para-
meter λ.

2.2 Non-interactive Witness Indistinguishable Proofs

Witness indistinguishable (WI) proofs were introduced by Feige and Shamir [16]
as a natural weakening of zero-knowledge (ZK) proofs. At a high level, the wit-
ness indistinguishability property says that a proof must not reveal the witness
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used to prove the underlying statement even if it reveals all possible witnesses
corresponding to the statement. Unlike ZK proofs, WI proofs without interaction
in the standard model are known to be possible. Barak et al. [4] provided con-
structions for one-message (completely non-interactive, with no shared random
string or setup assumptions) witness indistinguishable proofs (NIWIs) based on
ZAPs (i.e., two-message public-coin witness indistinguishable proofs) and Nisan-
Wigderson type pseudorandom generators [34]. Groth et al. [21] gave the first
NIWI construction from a standard cryptographic assumption, namely the deci-
sion linear assumption. Recently, Bitansky and Paneth [6] constructed NIWI
proofs assuming iO and one-way permutations.

Definition 3 (NIWI). A pair of PPT algorithms (P,V) is a NIWI for a lan-
guage L ∈ NP with witness relation R if it satisfies the following conditions:

– (Perfect Completeness) For all (x,w) such that R(x,w) = 1,

Pr[V(x, π) = 1 : π ← P(x,w)] = 1.

– (Statistical Soundness) For every x /∈ L and π ∈ {0, 1}∗,

Pr[V(x, π) = 1] ≤ 2−Ω(|x|).

– (Witness Indistinguishability) For any sequence I = {(x,w1, w2) : R(x,w1) =
1 ∧ R(x,w2) = 1}

{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I

2.3 Perfectly Binding Commitments (with No Setup Assumptions)

A commitment scheme with message space {Mλ}λ, randomness space {Rλ}λ

and commitment space {Cλ}λ consists of two polynomial time algorithms —
Commit and Verify with the following syntax.

– Commit(1λ,m ∈ Mλ; r ∈ Rλ): The commit algorithm is a randomized algo-
rithm that takes as input the security parameter λ, message m to be com-
mitted and random coins r. It outputs a commitment c.

– Verify(m ∈ Mλ, c ∈ Cλ, o ∈ Rλ): The verification algorithm takes as input
the message m, commitment c and an opening o. It outputs either 0 or 1.

For simplicity, we assume that the opening for a commitment is simply the
randomness used during the commitment phase. As a result, we do not have
a separate ‘reveal’ algorithm. Below we formally define perfectly binding com-
putationally hiding (PB-CH) commitment schemes with no setup assumptions
(i.e., without trusted setup and CRS).

Definition 4 (PB-CH Commitments). A pair of polynomial time algorithms
(Commit,Verify) is a perfectly binding computationally hiding (PB-CH) commit-
ment scheme if it satisfies the following conditions:
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– (Perfect Correctness) For all security parameters λ ∈ N, message m ∈ Mλ

and randomness r ∈ Rλ, if c = Commit(1λ,m; r), then Verify(m, c, r) = 1.
– (Perfect Binding) For every (c,m1, r1,m2, r2) such that m1 �= m2, the follow-

ing holds for at least one i ∈ {1, 2}:
Pr[Verify(mi, c, ri) = 1] = 0.

– (Computationally Hiding) For all security parameters λ ∈ N, messages
m1,m2 ∈ Mλ,

{
c1 : c1 ← Commit(1λ,m1; r1);

r1 ← Rλ

}
≈c

{
c2 : c2 ← Commit(1λ,m2; r2);

r2 ← Rλ

}

Perfectly binding commitments (without trusted setup) can be constructed
from certifiably injective one-way functions. In this work, we show how to con-
struct them under the Learning Parity with Low Noise assumption [1] and Learn-
ing with Errors assumption [35]. We would like to point out that the ‘no trusted
setup’ requirement for commitments is essential for our VRF construction. We
already know how to construct perfectly binding commitments with trusted setup
from the LPN assumption [26], however it is not sufficient for our VRF construc-
tion as VRFs disallow trusted setup.

2.4 Admissible Hash Functions

A commonly used technique for achieving adaptive security is the partitioning
strategy where the input space is partitioned into a ‘query partition’ and a ‘chal-
lenge partition’. This partitioning is achieved using admissible hash functions
introduced by Boneh and Boyen [7]. Here we state a simplified definition from
[23].

Definition 5. Let k, � and θ be efficiently computable univariate polynomi-
als. Let h: {0, 1}k(λ) → {0, 1}�(λ) be an efficiently computable function and
AdmSample a PPT algorithm that takes as input 1λ and an integer Q, and out-
puts u ∈ {0, 1,⊥}�(λ). For any u ∈ {0, 1,⊥}�(λ), define Pu : {0, 1}k(λ) → {0, 1}
as follows:

Pu(x) =

{
1 if for j ≤ �(λ), uj = h(x)j ∨ uj = ⊥
0 otherwise.

We say that (h,AdmSample) is θ-admissible if the following condition holds:

For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x
∗ ∈

{0, 1}k(λ), where x∗ /∈ {xi}Q(λ)
1 ,

Pr[(∀i ≤ Q(λ), Pu(xi) = 0) ∧ Pu(x∗) = 1] ≥ 1
θ(Q(λ))

where the probability is taken over u ← AdmSample(1λ, Q(λ)).
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Theorem 1 (Admissible Hash Function Family [7], simplified proof in
[17]). For any efficiently computable polynomial k, there exist efficiently com-
putable polynomials �, θ such that there exist θ-admissible function families map-
ping k bits to � bits.

Note that the above theorem is information theoretic, and is not based on
any cryptographic assumption.

2.5 Constrained Pseudorandom and Unpredictable Functions

Constrained pseudorandom functions, introduced by [8,10,27], are an extension
of pseudorandom functions [20] where a party having the master PRF key can
compute keys corresponding to any constraint from a constraint class. A con-
strained key for constraint C can be used to evaluate the PRF on inputs x that
satisfy the constraint C(x) = 0.4 However, the constrained key should not reveal
PRF evaluations at points not satisfied by the constraint. Constrained PRFs
for general circuit constraints can be constructed using multilinear maps [8],
indistinguishability obfuscation [9] and the learning with errors assumption [11].
Note that the construction from LWE only allows a single constrained key query,
which is a weaker security definition than the standard fully ‘collusion-resistant’
notion.

In this work, we will be using a special constraint family which we call ‘admis-
sible hash compatible’, and the security definition will also be weaker than the
standard (fully collusion-resistant) security for constrained PRFs. This enables
us to construct this primitive from weaker and standard cryptographic assump-
tions such as the n-powerDDH assumption.

Definition 6. Let Zn = {0, 1,⊥}n. An admissible hash compatible function
family Pn = {Pz : {0, 1}n → {0, 1} | z ∈ Zn} is defined exactly as the pred-
icate Pu(·) in Definition 5.

Looking ahead the above admissible hash compatible function family will
correspond to the family of constraints for which we assume constrained PRFs.
Next, we formally define the syntax, correctness and security properties of con-
strained PRFs.

Syntax. Let n(·) be a polynomial. A constrained pseudorandom function CPRF
with domain {Xλ = {0, 1}n(λ)}λ, range Y = {Yλ}λ, key space K = {Kλ}λ and
constrained key space Kc = {Kc

λ}λ for a family of admissible hash compatible
constraints {Cλ = Pn(λ)}λ consists of three algorithms Setup,Constrain,Evaluate
defined as follows. For simplicity of notation, we will refer to z as the constraint
instead of Pz.

4 We would like to point out that our notation departs from what has been used in
the literature. Traditionally, it is considered that the constrained key allows PRF
evaluation on points that satisfy C(x) = 1. However, we switch the constraint to
C(x) = 0 for convenience.
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– Setup(1λ): The setup algorithm takes as input the security parameter λ and
outputs a PRF key K ∈ Kλ.

– Constrain(K, z ∈ {0, 1,⊥}n(λ)): The constrain algorithm takes as input a mas-
ter PRF key K ∈ Kλ, a constraint z ∈ {0, 1,⊥}n(λ) and outputs a constrained
key Kz ∈ Kc

λ.
– Evaluate(K ∈ Kλ ∪ Kc

λ, x ∈ {0, 1}n(λ)): The evaluation algorithm takes as
input a PRF key K (master or constrained), and outputs y ∈ Y.

We would like to point out that in the above description there is a common
evaluation algorithm that accepts both the PRF master key as well as the con-
strained key. Such an abstraction helps us in simplifying our VRF construction
later in Sect. 3. Note that this is not a restriction on the constrained PRFs as
it can achieved without loss of generality from any constrained PRF. Below we
define the single-key no-query constrained pseudorandomness security notion for
constrained PRFs.

Definition 7. A pair of polynomial time algorithms (Setup,Constrain,Evaluate)
is a single-key no-query secure constrained pseudorandom function for admissible
hash compatible constraint family if it satisfies the following conditions:

– (Correctness) For every security parameter λ ∈ N, master PRF key K ←
Setup(1λ), constraint z ∈ {0, 1,⊥}n(λ), constrained key Kz ← Constrain(K, z)
and input x ∈ {0, 1}n(λ) such that Pz(x) = 0, Evaluate(K,x) =
Evaluate(Kz, x).

– (Single-key No-query Constrained Pseudorandomness) For any PPT adver-
sary A = (A0,A1,A2) there exists a negligible function negl(·), such that for
all λ ∈ N, AdvCPRF

A (λ) ≤ negl(λ), where advantage of A is defined as

AdvCPRF
A (λ) =

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

A2(s̃t, yb) = b :

K ← Setup(1λ); (z, st) = A0(1
λ)

Kz ← Constrain(K, z)
(x, s̃t) ← A1(st, Kz); b ← {0, 1}
y1 = Evaluate(K, x); y0 ← Yλ

⎤

⎥
⎥
⎦

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

.

Also, the challenge point x chosen by A must satisfy the constraint Pz(x) = 1,
i.e. it should not be possible to evaluate the PRF on x using constrained
key Kz.

Note that the above security notion is weaker than the standard fully
collusion-resistant security notion, since the adversary gets one constrained key,
and then it must distinguish between a random string and the PRF evaluation
at a point not satisfying the constraint. This is weaker than the standard secu-
rity definition in two ways. First, there is only one constrained key query, and
second, there are no evaluation queries. However, as we will see in Sect. 3, this
suffices for our construction. Looking ahead, the high level idea is that we will
partition the VRF input space using an admissible hash function, and to answer
each evaluation query we only need a constrained key since a constrained key
lets us evaluate at all points in the query partition.
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Remark 1. Additionally, we want that there exists a polynomial s(·) such that
∀λ ∈ N, K ∈ Kλ ∪ Kc

λ, |K| ≤ s(λ), i.e. size of each PRF key is polynomially
bounded.

We could also define constrained PRFs for an even weaker constraint family
which is the puncturing constraint function family.

Definition 8. A puncturing constraint function family Pn = {Pz : {0, 1}n →
{0, 1} | z ∈ {0, 1}n} is defined exactly as the predicate Pu(·) in Definition 5.

Definition 9. A set of polynomial time algorithms (Setup,Puncture,Evaluate)
is a secure puncturable pseudorandom function if it is a single-key no-query
secure constrained pseudorandom function (Definition 7) for puncturing con-
straint function family.

We also define the notion of constrained unpredictable functions which are
syntactically the same as constrained PRFs with the difference only being that
they only need to satisfy a weaker security requirement. Below we formally define
constrained unpredictable functions.

Definition 10. A pair of polynomial time algorithms (Setup,Constrain,
Evaluate) is a single-key no-query secure constrained unpredictable function for
admissible hash compatible constraint family if it satisfies the correctness condi-
tion (as in Definition 7) and it also satisfies the following:

– (Single-key No-query Constrained Unpredictability) For any PPT adversary
A = (A0,A1) there exists a negligible function negl(·), such that for all λ ∈ N,
AdvCUF

A (λ) ≤ negl(λ), where advantage of A is defined as

AdvCUF
A (λ)=Pr

⎡
⎣y = Evaluate(K,x) :

K ← Setup(1λ); (z, st) = A0(1λ)
Kz ← Constrain(K, z);

(x, y) = A1(st,Kz)

⎤
⎦ .

Also, the challenge point x chosen by A must satisfy the constraint Pz(x) = 1,
i.e. it should not be possible to evaluate the PRF on x using constrained
key Kz.

2.6 Strong Extractors

Extractors are combinatorial objects used to ‘extract’ uniformly random bits
from a source that has high randomness, but is not uniformly random. In this
work, we will be using seeded extractors. In a seeded extractor, the extraction
algorithm takes as input a sample point x from the high randomness source
X , together with a short seed s, and outputs a string that looks uniformly
random. Here, we will be using strong extractors, where the extracted string
looks uniformly random even when the seed is given.
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Definition 11. A (k, ε) strong extractor Ext : D × S → Y is a deterministic
algorithm with domain D, range Y and seed space S such that for every source X
on D with min-entropy at least k, the following two distributions have statistical
distance at most ε:

D1 = {(s,Ext(x, s)) : s ← S, x ← X},D2 = {(s, y) : s ← S, y ← Y}
Using the Leftover Hash Lemma, we can construct strong extractors from

pairwise-independent hash functions. More formally, let H = {h : {0, 1}n →
{0, 1}m} be a family of pairwise independent hash functions, and let m = k −
2 log(1/ε). Then Ext(x, h) = h(x) is a strong extractor with h being the seed.
Such hash functions can be represented using O(n) bits.

2.7 Lattice Preliminaries

Given positive integers n,m, q and a matrix A ∈ Z
n×m
q , we let Λ⊥

q (A) denote
the lattice {x ∈ Z

m : A · x = 0 mod q}. For u ∈ Z
n
q , we let Λu

q (A) denote the
coset {x ∈ Z

m : A · x = u mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distrib-
ution Dσ with parameter σ is defined by the probability distribution function
ρσ(x) = exp(−π · ||x||2/σ2). For any set �L ⊂ Rm, define ρσ(�L) =

∑
x∈�L ρσ(x).

The discrete Gaussian distribution D�L,σ over �L with parameter σ is defined by
the probability distribution function ρ�L,σ(x) = ρσ(x)/ρσ(�L) for all x ∈ �L.

The following lemma (Lemma 4.4 of [19,31]) shows that if the parameter σ
of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Z
n×m
q

be a matrix of dimensions n × m, and �L = Λ⊥
q (A). Then

Pr[||x|| >
√

m · σ : x ← D�L,σ] ≤ negl(n).

3 Constructing Verifiable Random Functions

In this section, we give a generic construction of VRFs from admissible hash
functions, perfectly binding commitments, NIWIs and constrained pseudoran-
dom functions for admissible hash compatible constraints. We also prove that
it satisfies correctness, unique provability and pseudorandomness properties (as
described in Definition 1). Later in Sect. 3.3, we give a slightly modified construc-
tion for VRF that is selectively-secure assuming only puncturable pseudorandom
functions.

Let (h,AdmSample) be an admissible hash function that hashes n(λ) bits to
�(λ) bits, (P,V) be a NIWI proof system for language L (where the language
will be defined later), (CS.Commit,CS.Verify) be a perfectly binding commit-
ment scheme with {Mλ}λ , {Rλ}λ and {Cλ}λ as the message, randomness and
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commitment space, and CPRF = (CPRF.Setup,CPRF.Constrain,CPRF.Eval) be
a constrained pseudorandom function with {Xλ}λ , {Yλ}λ , {Kλ}λ and {Kc

λ}λ as
its domain, range, key and constrained key spaces. For simplicity assume that
Kλ ∪Kc

λ ⊆ Mλ, or in other words, all the PRF master keys and constrained keys
lie in the message space of the commitment scheme. Also, let Xλ = {0, 1}�(λ).

First, we define the language L. It contains instances of the form
(c1, c2, c3, x, y) ∈ C3

λ × {0, 1}n(λ) × Yλ with the following witness relation:

∃ i, j ∈ {1, 2, 3} , K,K ′ ∈ Kλ ∪ Kc
λ, r, r′ ∈ Rλ such that

i �= j ∧ CS.Verify(K, ci, r) = 1 ∧ CS.Verify(K ′, cj , r
′) = 1∧

CPRF.Eval(K,h(x)) = CPRF.Eval(K ′, h(x)) = y.

Clearly the above language is in NP as it can be verified in polynomial time.
Next we describe our construction for VRFs with message space {0, 1}n(λ) and
range space {Yλ}λ.

3.1 Construction

– Setup(1λ) → (SK,VK). It generates a PRF key for constrained pseudoran-
dom function as K ← CPRF.Setup(1λ). It also generates three indepen-
dent commitments to the key K as ci ← CS.Commit(1λ,K; ri) for i ≤ 3
where ri is sampled as ri ← Rλ, and sets the secret-verification key pair as
SK =

(
K, {(ci, ri)}i≤3

)
,VK = (c1, c2, c3).

– Evaluate(SK, x) → (y, π). Let SK =
(
K, {(ci, ri)}i≤3

)
. It runs the PRF eval-

uation algorithm on x as y = CPRF.Eval(K,h(x)). It also computes a NIWI
proof π for the statement (c1, c2, c3, x, y) ∈ L using NIWI prover algorithm
P with (i = 1, j = 2,K,K, r1, r2) as the witness, and outputs y and π as the
evaluation and corresponding proof.

– Verify(VK, x, y, π) → {0, 1}. Let VK = (c1, c2, c3). It runs NIWI verifier to
check proof π as V((c1, c2, c3, x, y), π) and accepts the proof (outputs 1) iff V
outputs 1.

3.2 Correctness, Unique Provability and Pseudorandomness

Theorem 2. If (h,AdmSample) is an admissible hash function, (CS.Commit,
CS.Verify) is a secure perfectly binding commitment scheme, (P,V) is a secure
NIWI proof system for language L, and CPRF is a secure single-key constrained
pseudorandom function according to Definitions 5, 4, 3, and 7 (respectively), then
the above construction forms an adaptively-secure VRF satisfying correctness,
unique provability and pseudorandomness properties as described in Definition 1.

Correctness. For every well-formed secret and verification key pair (SK,VK) ←
Setup(1λ), we know that both c1 and c2 are commitments to PRF key K with r1

and r2 as the corresponding openings, where SK =
(
K, {(ci, ri)}i≤3

)
. Therefore,

by perfect correctness of the constrained PRF and NIWI proof system, we can
conclude that the above construction satisfies the VRF correctness condition.
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Unique Provability. We will prove this by contradiction. Assume that the above
construction does not satisfy unique provability property. This implies that there
exists (VK, x, y1, π1, y2, π2) such that y1 �= y2 and Pr[Verify(VK, x, yi, πi) = 1] >
2−Ω(λ) for both i ∈ {1, 2}. To prove that this is not possible, we show that at
least one of these proof verifications must involve verifying a NIWI proof for an
invalid instance. Formal arguments proceed as follows:

– Let VK = (c1, c2, c3). Since the commitment scheme is perfectly binding, we
know that for each i ∈ {1, 2, 3} there exists at most one key Ki such that
there exists an ri which is a valid opening for ci, i.e. CS.Verify(Ki, ci, ri) = 1.

– Suppose ci is a commitment to key Ki for i ≤ 3, and CPRF.Eval(K1, x) =
CPRF.Eval(K2, x) = y1. Now since y1 �= y2, thus even when
CPRF.Eval(K3, x) = y2 holds, we know that (c1, c2, c3, x, y2) /∈ L as no two
keys out of K1,K2,K3 evaluate to y2 on input x. Therefore, at least one proof
out of π1 and π2 is a proof for an incorrect statement.

– However, by statistical soundness of NIWI proof system, we know that for
all instances not in L, probability that any proof gets verified is at most
2−Ω(λ). Therefore, if the above construction does not satisfy unique prov-
ability, then the NIWI proof system is not statistically sound which contra-
dicts our assumption. Hence, unique provability follows from perfect binding
property of the commitment scheme and statistical soundness of NIWI proof
system.

Pseudorandomness. The pseudorandomness proof follows from a sequence of
hybrid games. The high level proof idea is as follows. We start by partition-
ing the input space into query and challenge partition using the admissible hash
function. After partitioning we observe that to answer evaluation queries we only
need a constrained PRF key which can evaluate on inputs in the query partition,
however to give a proof we still need the master PRF key. Next we note that to
compute the NIWI proofs we only need openings for any two commitments out
of the three. Thus, we could switch one of the strings ci to commit to the con-
strained key instead. This follows from the hiding property of the commitment
scheme. Now we observe that we only need to compute NIWI proofs for the
inputs in the query partition, thus we could use a master key - constrained key
pair instead of using the master key - master key pair as the NIWI witness. This
follows from witness indistinguishability property of NIWI proof system and the
fact that the constrained and master key compute the same output on query
partition. Using the same trick two more times, we could move to a hybrid game
in which all three strings ci’s are commitments of the constrained key. Finally,
in this hybrid we could directly reduce the pseudorandomness security of VRF
to constrained pseudorandomness security of the single-key secure constrained
PRF. Due to space constraints, the formal proof has been provided in the full
version.

Remark 2. We would like to note that if we use a constrained unpredictable
function instead of a constrained PRF in the above construction, then it results
in an adaptively-secure VUF (verifiable unpredictable function).



554 R. Goyal et al.

3.3 Selectively-Secure VRFs

In this section, we give a modified construction which assumes puncturable PRFs
instead of constrained PRFs for admissible hash compatible constraints. The
trade-off is that we could only prove selective security of this construction. How-
ever, if we make sub-exponential security assumptions, then it could be proven
to be adaptively-secure as well.

Let (P,V) be a NIWI proof system for language L̃ (where the language will be
defined later), (CS.Commit,CS.Verify) be a perfectly binding commitment scheme
with {Mλ}λ , {Rλ}λ and {Cλ}λ as the message, randomness and commitment
space, and PPRF = (PPRF.Setup,PPRF.Puncture,PPRF.Eval) be a constrained
pseudorandom function with {Xλ}λ , {Yλ}λ , {Kλ}λ and {Kp

λ}
λ

as its domain,
range, key and constrained key spaces. For simplicity assume that Kλ∪Kp

λ ⊆ Mλ,
or in other words, all the PRF master keys and constrained keys lie in the message
space of the commitment scheme.

First, we define the language L̃. It contains instances of the form
(c1, c2, c3, x, y) ∈ C3

λ × Xλ × Yλ with the following witness relation:

∃ i, j ∈ {1, 2, 3} , K,K ′ ∈ Kλ ∪ Kp
λ, r, r′ ∈ Rλ such that

i �= j ∧ CS.Verify(K, ci, r) = 1 ∧ CS.Verify(K ′, cj , r
′) = 1∧

PPRF.Eval(K,x) = PPRF.Eval(K ′, x) = y.

Clearly the above language is in NP as it can be verified in polynomial time.
Next we describe our construction for selectively-secure VRFs with message
space {Xλ}λ and range space {Yλ}λ.

– Setup(1λ) → (SK,VK). It generates a PRF key for punctured pseudoran-
dom function as K ← PPRF.Setup(1λ). It also generates three indepen-
dent commitments to the key K as ci ← CS.Commit(1λ,K; ri) for i ≤ 3
where ri is sampled as ri ← Rλ, and sets the secret-verification key pair as
SK =

(
K, {(ci, ri)}i≤3

)
,VK = (c1, c2, c3).

– Evaluate(SK, x) → (y, π). Let SK =
(
K, {(ci, ri)}i≤3

)
. It runs the PRF eval-

uation algorithm on x as y = PPRF.Eval(K,x). It also computes a NIWI
proof π for the statement (c1, c2, c3, x, y) ∈ L̃ using NIWI prover algorithm
P with (i = 1, j = 2,K,K, r1, r2) as the witness, and outputs y and π as the
evaluation and corresponding proof.

– Verify(VK, x, y, π) → {0, 1}. Let VK = (c1, c2, c3). It runs NIWI verifier to
check proof π as V((c1, c2, c3, x, y), π) and accepts the proof (outputs 1) iff V
outputs 1.

Theorem 3. If (CS.Commit,CS.Verify) is a secure perfectly binding commitment
scheme, (P,V) is a secure NIWI proof system for language L̃, and PPRF is a
secure puncturable pseudorandom function according to Definitions 4, 3, and 9
(respectively), then the above construction forms a selectively-secure VRF satisfy-
ing correctness, unique provability and pseudorandomness properties as described
in Definition 2.
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Proof Sketch. Correctness and unique provability of the above scheme could be
proven similar to as in Sect. 3.2. The proof of pseudorandomness is also similar
to that provided before with the following differences — (1) since we are only
targeting selective security, the reduction algorithm receives the challenge input
from the adversary at the start of the game, thus it does not need to perform any
partitioning or abort, (2) in the final hybrid game, the reduction algorithm uses
the adversary to attack the punctured pseudorandomness property. The main
idea in the reduction to punctured pseudorandomness is that since at the start
of the game adversary sends the challenge input to the reduction algorithm, the
reduction algorithm could get a punctured key from the PRF challenger and use
it inside the commitments as well as to answer each evaluation query.

4 Perfectly Binding Commitment Schemes

In this section, we give new constructions of perfectly binding non-interactive
commitments from the Learning with Errors assumption and the Learning Parity
with Noise assumption. These constructions are in the standard model without
trusted setup. As mentioned in the introduction, there are already simple solu-
tions [26] known from LWE/LPN when there is a trusted setup.

We will first present a construction based on the LWE assumption. Next, we
will adapt this solution to work with the LPN assumption. However, this adapta-
tion only works with low noise (that is, the Bernoulli parameter is 1/

√
n). We also

propose a different approach for constructing perfectly binding non-interactive
commitments from the standard constant noise LPN problem. This approach
reduces to finding error correcting codes with ‘robust’ generator matrices. Cur-
rently, we do not have any explicit5 constructions for such error correcting codes,
and finding such a family of generator matrices is an interesting open problem.

4.1 Construction from Learning with Errors

In this commitment scheme, our message space is {0, 1} for simplicity. To commit
to a bit x, one first chooses two vectors s, w and outputs w and wT s + x.
Clearly, this is not binding since there could be different s vectors that open
to different messages. Therefore, we need to ensure that the vector s is fixed.
To address this, we choose a matrix B with certain structure and output B and
BT s+noise. The special structure of the matrix ensures that there cannot be two
different vectors s1, s2 and noise vectors noise1, noise2 such that BT s1 +noise1 =
BT s2 + noise2. Computational hiding of the committed bit follows from the
fact that even though B has special structure, it ‘looks’ like a random matrix,
and therefore we can use the LWE assumption to argue that BT s + noise looks
random, and therefore the message x is hidden.

We will now describe the algorithms formally. Let �·� denote the floor oper-
ation, i.e. �x� = max{y ∈ Z : y ≤ x}.

5 We note that most randomly chosen linear codes satisfy this property.
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– Commit(1n, x ∈ {0, 1}): The commitment algorithm first sets the LWE mod-
ulus p = 2nε

for some ε < 1/2 and error distribution χ = Dσ where σ = nc

for some constant c. Next, it chooses a matrix A ← Z
n×n
p , low norm matrices

C ← χn×n, E ← χn×n and constructs D = �p/(4nc+1)� ·I (here I is the n×n
identity matrix). Let B = [A | AC + D + E].

It then chooses vectors s ← χn, w ← Z
n
p , e ← χ2n and f ← χ, and com-

putes y = BT s + e and z = wT s + x(p/2) + f . If either ‖C‖ > nc+2 or
‖E‖ > nc+2 or ‖e‖ > 2nc+1 or ‖s‖ > nc+1 or f > �p/100�, the commitment
algorithm outputs x as the commitment. Else, the commitment consists of
(p, c,B,w,y, z).

– Verify(com, x, (C,E, e, s, f)): Let com = (p, c,B,w,y, z). The verification
algorithm first checks if ‖C‖ ≤ nc+2, ‖E‖ ≤ nc+2, ‖e‖ ≤ 2nc+1, ‖s‖ ≤ nc+1

and f ≤ �p/100�. Next, it checks that B = [A | AC + D + E], BT s + e = y
and wT s+x(p/2)+f = z, where D = �p/(4nc+1)� ·I. If all these checks pass,
it outputs 1.

Theorem 4. If (n,m, 2nε

,Dnc)-LWE-ss assumption holds, then the above con-
struction is a perfectly binding computationally hiding commitment scheme as
per Definition 4.

Perfect Correctness. Suppose there exist two different openings for the same
commitment. Let s1, e1, f1,C1, f1 and s2, e2, f2,C2, f2 be the two openings. We
will first show that s1 = s2 and e1 = e2. Next, we will argue that if s1 = s2,
then the commitment cannot be opened to two different bits.

Suppose s1 �= s2. Since BT s1 +e1 = BT s2 +e2, it follows that BT (s1 −s2) =
e2 − e1. Let e11 and e12 denote the first n components of e1 and e2 respectively.
Then AT (s1 − s2) = e11 − e12. Note that ‖e2 − e1‖ ≤ 4nc+1, and therefore,
‖AT (s1 − s2)‖ ≤ 4nc+1.

Since C1 and C2 are matrices with low norm entries, it follows that
‖C1‖ ≤ nc+2 and ‖C2‖ ≤ nc+2. This implies ‖CT

1 A
T (s1 − s2)‖ ≤ 4n2c+3. Sim-

ilarly, since ‖E1‖ ≤ nc+2, ‖ET
1 (s1 − s2)‖ ≤ 2n2c+3. However, since the matrix

D has ‘medium-sized’ entries, if s1 �= s2, it follows that
∥∥DT (s1 − s2)

∥∥
∞ ≥

�p/(4nc+1)�. Additionally, since D has medium-sized entries, we could also
say that each entry of vector DT (s1 − s2) is at most p/2. This is because∥∥DT (s1 − s2)

∥∥
∞ ≤ ∥∥DT

∥∥
∞ · ‖s1 − s2‖∞ ≤ �p/(4nc+1)� · 2nc+1 ≤ p/2.

Therefore, the vector DT (s1 − s2) is sufficiently long, i.e.
∥∥DT (s1 − s2)

∥∥
∞ ∈[�p/(4nc+1)�, p/2

]
.

Next, let us consider the norm of vector BT (s1 − s2). Recall that B =
[A | AC + D + E]. Consider the matrix X = [A | AC + E], i.e. it is same
as B except it does not contain matrix D. Using triangle inequality, we can
write that ‖XT (s1 − s2)‖ ≤ ‖AT (s1 − s2)‖+ ‖CT

1 A
T (s1 − s2)‖+ ‖ET

1 (s1 − s2)‖
≤ 8n2c+3. Therefore, we could also say that each entry of vector XT (s1 − s2) is
at most 8n2c+3, i.e.

∥∥∥XT (s1 − s2)
∥∥∥

∞
≤ 8n2c+3.

We know that BT (s1 − s2) = XT (s1 − s2) + [0 | D]T (s1 − s2). There-
fore, given the above bounds, we could conclude that �p/(4nc+1)� − 8n2c+3 ≤
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∥∥∥BT (s1 − s2)
∥∥∥

∞
≤ p/2 + 8n2c+3. Since, p = 2nε

, we know that for suffi-

ciently large values of n, �p/(8nc+1)� ≤
∥∥∥BT (s1 − s2)

∥∥∥
∞

< p. However, this

is a contradiction since BT (s1 − s2) = e2 − e1 and ‖e2 − e1‖ ≤ 4nc+1, thus∥∥∥BT (s1 − s2)
∥∥∥

∞
< 4nc+1.

Now, if s1 = s2 and f1, f2 are both at most �p/100�, then wT s1 + f1 cannot
be equal to wT s2+f2+p/2. This implies that any commitment cannot be opened
to two different bits.

Computational Hiding. Due to space constraints, we defer the formal proof
to the full version of our paper.

4.2 Construction from Learning Parity with Low Noise

We will now construct a perfectly binding non-interactive commitment scheme
that can be proven secure under the low noise LPN assumption. At a high level,
this solution is similar to our LWE solution. The message space is {0, 1}, and to
commit to a bit x, we choose a vector w, secret vector s and output w,wT s+x as
part of the commitment. However, this is not enough, as there could exist s1, s2
such that wT s1 + 1 = wT s2. To prevent this, the commitment also consists of a
matrix B chosen from a special distribution, and BT s + noise′ fixes the vector
s. Drawing parallels with the LWE solution, we use an error correcting code’s
generator matrix G instead of the matrix D used in the LWE solution. Both
these matrices have a similar role: to map non-zero vectors to vectors with high
hamming weight/high norm.

An important point to note here is that the Bernoulli parameter needs to
be O(1/

√
n). This is necessary for proving perfect binding. Recall, in the LWE

perfect binding proof, we argue that since AT s has low norm, CTAT s also
has low norm. For the analogous argument to work here, the error distribution
must be O(1/

√
n). In that case, we can argue that if the error distribution has

hamming weight fraction at most 1/100
√

n and each row of C has hamming
weight fraction at most 1/100

√
n, then CTAT s has hamming weight fraction

at most 1/10000. If the noise rate was constant, then we cannot get an upper
bound on the hamming weight fraction of CTAT s.

We will now describe the formal construction. Let β = 1/(100
√

n) and χ =
Berβ the noise distribution. Let {Gn ∈ Z

n×10n
2 }n∈N be a family of generator

matrices for error correcting codes where the distance of the code generated by
Gn is at least 4n.

– Commit(1n, x ∈ {0, 1}): Let m = 10n. Choose random matrices A ← Z
n×m
2 ,

w ← Z
n
2 and C ← χm×m. Let B = [A | AC + G]. Choose secret vector

s ← Z
n
2 , error vector e ← χ2m and set y = BT s + e. If either Ham-Wt(e) >

m/(25
√

n) or there exists some row ci of matrix C such that Ham-Wt(ci) >
m/(50

√
n), output the message x in clear as the commitment. Else, let z =

wT s + x. The commitment string com is set to be (B,w,y, z).
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– Verify(com, x, (s, e,C)): Let com = (B,w,y, z). The verification algorithm
first checks that Ham-Wt(e) ≤ m/(25

√
n) and all rows ci of C satisfy

Ham-Wt(ci) ≤ m/(50
√

n). Next, it checks if B = [A | AC + G], y = BT s+e
and z = wT s + x. If all checks pass, it outputs 1, else it outputs 0.

Theorem 5. Assuming the Extended Learning Parity with Noise problem
LPNn,m,p and Knapsack Learning Parity with Noise problem KLPNn,m,β (for
β = 1/(100

√
n)) is hard, the above construction is a perfectly binding computa-

tionally hiding commitment scheme as per Definition 4.

Perfect Correctness. First, we will argue perfect correctness. Suppose there exists
a commitment com = (B,w,y, z) that can be opened to two different messages.
Then there exist two different reveals (s1, e1, C1) and (s2, e2, C2) such that
BT s1 + e1 = y = BT s2 + e2, wT s1 + 0 = z = wT s2 + 1 and [A|AC1 + G]
= B = [A|AC2 + G]. We will first show that s1 = s2, and then show that this
implies perfect binding.

For proving that s1 = s2 and e1 = e2, notice that BT (s1 + s2) = e1 + e2,
which implies that Ham-Wt([A|AC1 + G]T (s1 + s2)) ≤ 2m/(25

√
n) (recall, the

hamming weight of e1 + e2 is at most 2m/(25
√

n)).
This implies, in particular, Ham-Wt(AT (s1 + s2)) ≤ 2m/(25

√
n). Since each

row of C1 and C2 has hamming weight at most m/(50
√

n), Ham-Wt((AC1)T

(s1 + s2)) ≤ m2/(625n) < n. As a result, Ham-Wt([A|AC1]
T (s1 + s2)) < 2n.

But if s1 �= s2, then Ham-Wt(GT (s1 + s2)) ≥ 4n which implies, using triangle
inequality, that Ham-Wt(BT (s1 + s2)) ≥ 2n. This brings us to a contradiction
since Ham-Wt(e1 + e2) ≤ 2m/(25

√
n) < n.

Next, given that s1 = s2, it follows that wT s1 + 1 �= wT s2. This concludes
our proof.

Computational Hiding. Due to space constraints, we defer the proof to the
full version of our paper.

4.3 Construction from Learning Parity with Constant Noise

For this construction, we will require a polynomial time algorithm GenECC
that generates ‘robust’ error correcting code generator matrices. More formally,
GenECC(1n) takes as input a parameter n and outputs � matrices G1, . . . ,G�

of dimension n × m such that the following property holds: for every matrix
A ∈ Z

n×m
2 , there exists an i ∈ [�] such that every non-zero vector in the rowspace

of A + Gi has hamming weight at least m/3. Let β = 1/100 denote the error
rate.

– Commit(1n, x ∈ {0, 1}): The commitment algorithm first computes (G1, . . .,
G�) ← GenECC(1n), where Gi ∈ Z

n×m
2 . Next, it chooses A ← Z

n×m
2 and sets

Di = [A + Gi]. It chooses secret vectors si ← Z
n
2 and error vectors ei ← χm

for i ≤ �. If any of the error vectors have hamming weight greater than 2mβ,
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then the algorithm outputs x in the clear. Else, it chooses w ← Z
n
2 , sets

yi ← DT
i si + ei for i ∈ [�], zi = wT si + x and outputs com = (A, {yi, zi}) as

the commitment.
– Verify(com, x, ({si, ei})): Let com = (A, {yi, zi}). The verification algorithm

first checks that yi = [A + Gi]T si + ei for all i ∈ [�] and zi = wT si + x.
Next, it checks that each error vector has hamming weight less than 2mβ. If
all these checks pass, it outputs 1, else it outputs 0.

Perfect Correctness. This will crucially rely the robustness property of GenECC
algorithm. Suppose there exist two sets of vectors {s1i }, {s2i } and error vectors
{e1i } and {e2i } such that DT

i s
1
i +e1i = DT

i s
2
i +e2i . Then, for all i ≤ �, DT

i (s1i +s2i )
has hamming weight at most 4mβ. This implies that for all i ≤ �, there exists
at least one non-zero vector in the rowspace of Di that has hamming weight at
most 4mβ. But by the robustness property, for every A ∈ Z

n×m
2 , there exists at

least one index i ∈ [�] such that the row space of A + Gi has hamming weight
at least m/3. This brings us to a contradiction.

Computational Hiding Proof Sketch. The proof is fairly simple, and follows from
the LPN assumption. First we introduce � hybrid experiments, where in the ith

experiment, (yj , zj) are random for all j ≤ i. The remaining (yj , zj) components
are same as in the actual construction. The only difference between the (i− 1)th

and ith hybrid is the distribution of (yi, zi).

Hybrid Hybridi. In this experiment, the challenger chooses a matrix A ← Z
n×m
2 ,

vector w ← Z
n
2 and sets Di = A+Gi. Next, it chooses sj ← Z

n
2 and ej ← Bermβ

for all j ≤ �. For j ≤ i, it chooses yj ← Z
m
2 and zj ← Z2. For j > i, it chooses

the commitment bit b ← {0, 1}, sets yj = DT
j sj + ej and zj = wT sj + b. It

sends (A,w, {yi, zi}i) to the adversary. The adversary outputs a bit b′ and wins
if b = b′.

Suppose there exists an adversary A that can distinguish between these two
hybrids. Then we can construct a reduction algorithm B that can break the
extended LPN assumption. B receives (X,w,y, z) from the LPN challenger,
where y = XT s + e or is random, and z = wT s. It sets A = X − Gi. The
remaining components can be generated using A (note that there is a different
si for each i, so the reduction algorithm does not need the LPN secret s to
generate the remaining components). Depending on whether y is random or
not, B either simulates Hybrid i or Hybrid i − 1.

5 Constrained PRFs for Admissible Hash Compatible
Constraints

In this section, we will provide two separate constructions of constrained PRFs
for admissible hash compatible constraints. We prove security of the first con-
struction under the n-powerDDH assumption and the second construction is
proven to be secure under the Phi-Hiding assumption.
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5.1 Constrained PRFs from n-powerDDH Assumption

At a high level, our base PRF looks like the Naor-Reingold PRF [33]. The PRF
key consists of 2n integers and a random group generator g. The PRF evaluation
on an n bit strings is performed as follows: first choose n out of the 2n integers
depending on the input, compute their product and then output this product in
the exponent of g.

– Setup(1λ): The setup algorithm takes as input the security parameter λ. It
first generates a group of prime order as (p, G, g) ← G(1λ), where p is a
prime, G is a group of order p and g is a random generator. Next, it chooses
2n integers ci,b ← Z

∗
p for i ≤ n, b ∈ {0, 1}. It sets the master PRF key as

K =
(
(p, G, g), {ci,b}i≤n,b∈{0,1}

)
.

– Constrain(K,u ∈ {0, 1,⊥}n): The constrain algorithm takes as input the mas-
ter PRF key K = ((p, G, g), {ci,b}i,b) and constraint u ∈ {0, 1,⊥}n. It first
chooses an integer a ∈ Z

∗
p and computes, for all i ≤ n, b ∈ {0, 1},

vi,b =

{
ci,b/a if ui = b ∨ ui = ⊥
ci,b otherwise.

It sets the constrained key as Ku =
(
(p, G, g), u, {g, ga, ga2

, . . . , gan−1},

{vi,b}i,b

)
.

– Evaluate(K,x ∈ {0, 1}n): The evaluation algorithm takes as input a PRF key
K (which could be either the master PRF key or constrained PRF key) and
an input string x ∈ {0, 1}n.

If K is a master PRF key, then it can be parsed as K = ((p, G, g), {ci,b}i,b).
The evaluation algorithm computes t =

∏
i≤n ci,xi

and outputs gt.
If K is a constrained key, then it consists of the group description (p, G, g),

constraint u ∈ {0, 1,⊥}n, group elements (g0, g1, . . . , gn−1) and 2n integers
{vi,b}i,b. The evaluation algorithm first checks if Pu(x) = 0. If not, it out-
puts ⊥. Else, it computes the product v =

∏
i≤n vi,xi

. Next, it counts the
number of positions s such that ui = xi ∨ ui = ⊥. It outputs the evaluation
as gv

s (note that since Pu(x) = 0, 0 ≤ s < n, and therefore the output is well
defined).

Theorem 6. If n-powerDDH assumption holds over G, then the above construc-
tion is a secure single-key no-query secure constrained pseudorandom function
for admissible hash compatible constraint family as per Definition 7.

Correctness. We need to show that for any PRF key K, any constraint u ∈
{0, 1,⊥}n, any key Ku constrained at u and any input x ∈ {0, 1}n such that
Pu(x) = 0, evaluation at x using the master PRF key K matches the evaluation
at x using the constrained key Ku.

More formally, let K ← Setup(1n), and let K = ((p, G, g), {ci,b}). Let u ∈
{0, 1,⊥}n be any constraint, and let Ku = ((p, G, g), u, {g, ga, . . . , gan−1}, {vi,b})
be the constrained key. On input x ∈ {0, 1}n, the PRF evaluation using the
master PRF key computes t =

∏
ci,xi

and outputs h = gt.
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Let S = {i : ui = xi ∨ ui = ⊥}, and let s = |S|. Since Pu(x) = 0, it follows
that s < n (since there is at least one index where ui �= ⊥ ∧ xi �= ui). For
all i ∈ S, vi,xi

is set to be ci,xi
/a, and for all i /∈ S, vi,xi

= ci,xi
. As a result,

v =
∏

i vi,xi
= (

∏
i ci,xi

)/as. Therefore, (gas

)v = gt = h, which is equal to the
master key evaluation.

Security. We will now show that the construction described above is secure as
per Definition 7. Recall, in the single-key no-query security game, the adversary
is allowed to query for a single constrained key, after which the adversary must
output a challenge point not in the constrained set and then distinguish between
the PRF evaluation at the challenge point and a truly random string. We will
show that such an adversary can be used to break the n-powerDDH assumption.
The reduction algorithm receives as challenge (g, ga, ga2

, . . . , gan−1
) and T , where

T = gan

or a uniformly random group element. The reduction algorithm then
receives a constrained key query u from the adversary. The reduction algorithm
chooses 2n random integers and sends them along with (g, ga, . . ., gan−1

). Now,
the adversary sends a point x such that Pu(x) = 1. The reduction algorithm will
use T to respond to the adversary. The crucial point here is that the reduction
does not need to know a to construct this response.

Lemma 2. Assuming the n-powerDDH assumption, for any A, AdvCPRF
A (n) ≤

negl(n).

Proof. Suppose there exists an adversary A such that AdvCPRF
A (n) = ε. We

will use A to construct a reduction algorithm B that breaks the n-powerDDH
assumption. The reduction algorithm receives the group description (p, G, g), n
group elements (g0, g1, . . ., gn−1) and the challenge term T from the challenger.
It then chooses 2n random integers vi,b ← Z

∗
p for all i ≤ n, b ∈ {0, 1}. It receives

constrained key query u from A, and sends ((p, G, g), u, {g0, . . . , gn−1}, {vi,b}i,b)
to A. Next, it receives the challenge input x ∈ {0, 1}n from A such that Pu(x) =
1. The reduction algorithm computes v =

∏
i vi,xi

and sends T v to the adversary.
If A guesses that the challenge string is random, then B guesses that T is random,
else it guesses that T = gan

, where gi = gai

.
We now need to argue that B perfectly simulates the single-key no-query

constrained PRF game. First, let us consider the case when gi = gai

and T = gan

.
The constrained key is distributed as in the actual security game. The reduction
algorithm implicitly sets ci,b = vi,ba for all i, b such that ui = b ∨ ui = ⊥. On
challenge input x such that Pu(x) = 1, let v =

∏
i vi,xi

. Note that t =
∏

i ci,xi
=

anv. As a result, its outputs T v = gt is the correct PRF evaluation at x.
Now, suppose T is a uniformly random group element. Then, once again, the

constrained key’s distribution is identical to the real security game distribution,
and the response to PRF challenge is a uniformly random group element. This
implies that B can break the n-powerDDH assumption with advantage ε.

5.2 Constrained PRFs from Phi-Hiding Assumption

The PRF key consists of a RSA modulus, its factorization, 2n integers, a random
group generator h and a strong extractor seed. The PRF evaluation on an n bit
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strings is performed as follows: first choose n out of the 2n integers depending
on the input, compute their product, then compute this product in the exponent
of h and finally apply a strong extractor on the product.

– Setup(1λ): The setup algorithm takes as input the security parameter λ. It
first sets input length n = λ, parameter �RSA = 20(n + 1), generates RSA
modulus N = pq, where p, q are primes of �RSA/2 bits each. Next, it chooses
2n integers ci,b ← Zφ(N) for i ≤ n, b ∈ {0, 1} and h ← Z

∗
N . Finally, it sets

�s = O(n) and chooses an extractor seed s ← {0, 1}�s . It sets the master PRF
key as K =

(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h, s

)
.

– Constrain(K,u ∈ {0, 1,⊥}n): The constrain algorithm takes as input the mas-
ter PRF key K = ((N, p, q), {ci,b}i,b, h, s) and constraint u ∈ {0, 1,⊥}n. It
first chooses an integer e ∈ Z

∗
φ(N) and computes, for all i ≤ n, b ∈ {0, 1},

vi,b =

{
(ci,b − 1) · e−1 mod φ(N) if ui = b ∨ ui = ⊥
ci,b · e−1 mod φ(N) otherwise.

It sets the constrained key as Ku = (N,u, e, {vi,b}i,b, h
e, s).

– Evaluate(K,x ∈ {0, 1}n): The evaluation algorithm takes as input a PRF key
K (which could be either the master PRF key or constrained PRF key) and
an input string x ∈ {0, 1}n.

If K is a master PRF key, then K =
(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h, s

)
. The

evaluation algorithm computes t =
∏

i≤n ci,xi
and outputs Ext(ht, s).

If K is a constrained key, then K =
(
N,u, e, {vi,b}i≤n,b∈{0,1}, g, s

)
. Recall

g is set to be he. The evaluation algorithm first checks if Pu(x) = 0. If not,
it outputs ⊥. Since Pu(x) = 0, there exists an index i such that ui �= ⊥ and
ui �= xi. Let i∗ be the first such index. For all i �= i∗, compute wi,b = vi,b ·e+1
if ui = b∨ui = ⊥, else wi,b = vi,b ·e. Finally, set wi∗,xi∗ = vi∗,xi∗ and compute
t′ =

∏
wi,xi

. Output Ext(gt′
, s).

Theorem 7. If Phi-Hiding assumption holds and Ext is a (�RSA/5, 1/22n)
strong extractor as per Definition 11, then the above construction is a secure
single-key no-query secure constrained pseudorandom function for admissible
hash compatible constraint family as per Definition 7.

Correctness. We need to show that for any PRF key K, any constraint u ∈
{0, 1,⊥}n, any key Ku constrained at u and any input x ∈ {0, 1}n such that
Pu(x) = 0, evaluation at x using the master PRF key K matches the evaluation
at x using the constrained key Ku.

More formally, let K ← Setup(1n), and let K = ((N, p, q), {ci,b}, h, s). Let
u ∈ {0, 1,⊥}n be any constraint, and let Ku = (N,u, e, {vi,b}, he, s) be the
constrained key. On input x ∈ {0, 1}n, the PRF evaluation using the master
PRF key computes t =

∏
ci,xi

and outputs Ext(ht, s).
Since Pu(x) = 0, there is at least one index i∗ where ui∗ �= ⊥ ∧ xi∗ �= ui∗ .

As a result, vi∗,xi∗ = ci∗,xi∗ · e−1. For all i �= i∗, we can compute ci,b given vi,b

and e. Therefore, if we define wi,b as in the evaluation algorithm and compute
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t′ =
∏

i wi,xi
, then (he)t′

= h
∏

ci,xi . Since both the constrained key evaluation
and PRF key evaluation use the same extractor seed, the evaluation using the
constrained key is correct.

Security. If Pu(x) = 1, then there exists no i such that vi,xi
= ci,xi

· e−1. As a
result, suppose there exists an adversary A that can win the single-key no-query
constrained PRF security game. Then we can use A to break the Phi-hiding
assumption. We will prove security via a sequence of hybrid experiments. First,
we will switch the exponent e in the constrained key from being a random element
(co-prime w.r.t. φ(N)) to a factor of φ(N). This step will rely on the Phi-hiding
assumption. Next, we will show that any adversary has negligible advantage if e
divides φ(N). Intuitively, this step will follow because the quantity γ = he in the
constrained key does not reveal h — there could be e different eth roots of γ. As
a result, running the extractor on h

∏
ci,xi outputs a uniformly random bit. Due

to space constraints, we defer the formal proof to the full version of our paper.

5.3 Constrained Unpredictable Functions from RSA Assumption

The PRF key consists of a RSA modulus, its factorization, 2n integers and a
random group generator h. The PRF evaluation on an n bit strings is performed
as follows: first choose n out of the 2n integers depending on the input, compute
their product and then output this product in the exponent of h.

– Setup(1λ): The setup algorithm takes as input the security parameter λ. It
first generates RSA modulus N = pq, where p, q are primes of �RSA/2 bits
each. Next, it chooses 2n integers ci,b ← Zφ(N) for i ≤ n, b ∈ {0, 1} and
h ← Z

∗
N . It sets the master PRF key as K =

(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h

)
.

– Constrain(K,u ∈ {0, 1,⊥}n): The constrain algorithm takes as input the mas-
ter PRF key K = ((N, p, q), {ci,b}i,b, h) and constraint u ∈ {0, 1,⊥}n. It first
chooses an integer e ∈ Z

∗
φ(N) and computes, for all i ≤ n, b ∈ {0, 1},

vi,b =

{
(ci,b − 1) · e−1 mod φ(N) if ui = b ∨ ui = ⊥
ci,b · e−1 mod φ(N) otherwise.

It sets the constrained key as Ku = (N,u, e, {vi,b}i,b, h
e).

– Evaluate(K,x ∈ {0, 1}n): The evaluation algorithm takes as input a PRF key
K (which could be either the master PRF key or constrained PRF key) and
an input string x ∈ {0, 1}n.

If K is a master PRF key, then K =
(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h

)
. The

evaluation algorithm computes t =
∏

i≤n ci,xi
and outputs ht.

If K is a constrained key, then K =
(
N,u, e, {vi,b}i≤n,b∈{0,1}, g

)
. Recall g

is set to be he. The evaluation algorithm first checks if Pu(x) = 0. If not, it
outputs ⊥. Since Pu(x) = 0, there exists an index i such that ui �= ⊥ and
ui �= xi. Let i∗ be the first such index. For all i �= i∗, compute wi,b = vi,b ·e+1
if ui = b∨ui = ⊥, else wi,b = vi,b ·e. Finally, set wi∗,xi∗ = vi∗,xi∗ and compute
t′ =

∏
wi,xi

. Output gt′
.
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Correctness. The proof of correctness is identical to that provided for correctness
of constrained PRF in Sect. 5.2.

Security. If Pu(x) = 1, then there exists no i such that vi,xi
= ci,xi

· e−1. As
a result, suppose there exists an adversary A that can win the single-key no-
query constrained unpredictable function security game. Then we can use A
to break the RSA assumption. We will prove security via a sequence of hybrid
experiments. The idea is to set he to be the RSA challenge. At a high level, if
the adversary can win the unpredictability game (i.e., correctly output h

∏
ci,xi

at point x such that Pu(x) = 0), then it must have computed the eth root of he.
The detailed proof can be found in the full version of our paper.
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Abstract. Verifiable random functions (VRFs) are pseudorandom func-
tions where the owner of the seed, in addition to computing the function’s
value y at any point x, can also generate a non-interactive proof π that
y is correct, without compromising pseudorandomness at other points.
Being a natural primitive with a wide range of applications, consider-
able efforts have been directed towards the construction of such VRFs.
While these efforts have resulted in a variety of algebraic constructions
(from bilinear maps or the RSA problem), the relation between VRFs
and other general primitives is still not well understood.

We present new constructions of VRFs from general primitives, the
main one being non-interactive witness-indistinguishable proofs (NIWIs).
This includes:

– A selectively-secure VRF assuming NIWIs and non-interactive com-
mitments. As usual, the VRF can be made adaptively-secure assum-
ing subexponential hardness of the underlying primitives.

– An adaptively-secure VRF assuming (polynomially-hard) NIWIs,
noninteractive commitments, and (single-key) constrained pseudo-
random functions for a restricted class of constraints.

The above primitives can be instantiated under various standard assump-
tions, which yields corresponding VRF instantiations, under different
assumptions than were known so far. One notable example is a non-
uniform construction of VRFs from subexponentially-hard trapdoor per-
mutations, or more generally, from verifiable pseudorandom generators
(the construction can be made uniform under a standard derandomiza-
tion assumption). This partially answers an open question by Dwork and
Naor (FOCS ’00).

The construction and its analysis are quite simple. Both draw from
ideas commonly used in the context of indistinguishability obfuscation.

1 Introduction

Verifiable random functions (VRFs), introduced by Micali et al. [39], are pseudo-
random functions (PRFs) [27] where it is possible to verify that a given output
y corresponds to a correct evaluation of the function on any given input x.
Such a VRF is associated with a secret key SK and a corresponding public

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 567–594, 2017.
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verification key V K. The secret key allows anyone to compute the function
y = VRF.EvalSK(x) at any point x, and also to compute a proof πx,y that y
was computed correctly. Here, by “computed correctly”, we mean that any ver-
ification key V K∗, even a maliciously chosen one, is a commitment to the entire
function—it uniquely determines the value y of the function at any point x, and
accepting proofs only exist for this value y. The pseudorandomness requirement
generalizes that of plain PRFs—the value y of the function at any point x should
be pseudorandom, even after evaluating the function and obtaining proofs of cor-
rectness for an arbitrary polynomial number of points {xi �= x}. The standard
definition is adaptive, allowing the point x to be chosen at any point, and we can
also consider a selective definition, where the adversary chooses the challenge x,
before getting the verification key V K, and before any evaluation query.

Constructions. VRFs are a natural primitive with a variety of applications
(listed for instance in [1]), and considerable effort has been invested in the pur-
suit of constructions, aiming to diversify and simplify the underlying assump-
tions [1,11,12,19,21,22,26,33,35,36,38,39]. Despite the progress made, almost
all known constructions are of an algebraic nature, and are based directly either
on the (strong) RSA assumption, or on different assumptions related to bilin-
ear (or multilinear) maps. Attempts to construct VRFs from more general
assumptions have been limited to constructions from VRF-suitable identity-based
encryption [1], or from indistinguishability obfuscation (IO) and injective one-
way functions [45]. In both cases, concrete instantiations are, again, only known
based on bilinear or multilinear maps.1 Alternatively, weak VRFs, which are the
verifiable analog of weak PRFs [42], can be constructed from (doubly enhanced)
trapdoor permutations [16].

In terms of barriers, VRFs imply [29] non-interactive zero-knowledge proofs
(NIZKs) [10], and accordingly constructing VRFs from symmetric-key primitives
like one-way functions, or collision-resistant hashing, seems out of reach for exist-
ing techniques. In contrast, NIZKs can be constructed from (doubly enhanced)
trapdoor permutations (TDPs) [6,24,28], and we may hope that so can VRFs.
As possible evidence that this is a false hope, Fiore and Schröder show that there
is no black-box reduction from VRFs to (doubly enhanced) TDPs [25].

1.1 This Work

We present new constructions of VRFs from general assumptions, the main
one being non-interactive witness-indistinguishable proofs (NIWIs), which were
introduced by Barak et al. [4].

Our most basic result is a selectively-secure construction based on NIWIs,
non-interactive commitments, and puncturable PRFs [13,15,37,45] (these are in

1 The construction based on IO is also limited to either selective security, or reliance
on subexponential hardness.
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turn implied by one-way functions and thus also by non-interactive commit-
ments). As usual, adaptive security of the construction can be shown assuming
all primitives are subexponentially-secure.

Theorem 1 (informal). Assuming the existence of NIWIs and non-interactive
commitments, there exist selectively-secure VRFs. Further assuming subexponen-
tial hardness of these primitives, there exist adaptively-secure VRFs.

Aiming to avoid subexponential assumptions, our more general construc-
tion replaces puncturable PRFs with more general types of single-key con-
strained PRF (CPRFs) [13,15,37] and achieves adaptive security from poly-
nomial assumptions.

Theorem 2 (informal). Assuming the existence of NIWIs, non-interactive
commitments, and single-key CPRFs (for some restricted class of constraints),
there exist adaptively-secure VRFs.

Given the reliance on generic primitives, the above theorems already allow
(and may further allow in the future) to base VRFs on different assumptions.
We now review the (generic and specific) assumptions under which the above
primitives are known, and derive corresponding corollaries. (For now, we focus
on the implications of the theorems. We recall the definitions of NIWIs and
CPRFs later, in the technical overview.)

NIWIs. Dwork and Naor [23] gave a non-uniform construction of NIWIs from
NIZKs (which can be constructed from doubly enhanced TDPs). Barak et al.
[4] showed that the construction can be made uniform assuming also the exis-
tence of a problem solvable in deterministic time 2O(n) with non-deterministic
circuit complexity 2Ω(n). The latter is a worst-case assumption previously used
to derandomize AM [40], and can be seen as an extension of the assumption
that EXP �⊆ NP/poly (see further discussion in [4]). Groth et al. [32] then
constructed NIWIs based on standard assumptions on bilinear maps such as
the Decision Linear (DLIN) assumption, the Symmetric External Diffie Hellman
(SXDH) assumption, or the Subgroup Decision Assumption. In [8], NIWIs are
constructed from IO and one-way permutations.

Non-interactive Commitments. Such commitments are known from any
family of injective one-way functions [9]. Naor [41] gave a non-uniform construc-
tion from plain one-way functions, which can be made uniform under the same
derandomization assumption mentioned above [4].

CPRFs. Theorem 2 relies on single-key CPRFs for certain specific classes of
constraints (see the technical outline below). It can be instantiated either by the
CPRFs of Brakerski and Vaikuntanathan [17], based on LWE and 1D-SIS, or
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from those of Boneh and Zhandry, based on IO [14]. We also give new instanti-
ations under the DDH assumption.2

We can now combine the above in different ways to get instantiations of
(adaptively-secure) VRFs from different assumptions, several of which were pre-
viously unknown. For example:

– A non-uniform construction from subexponential hardness of (doubly
enhanced) TDPs. This should be contrasted with the black-box barrier of
Fiore and Schróder mentioned above. The barrier does not apply to this con-
struction both due to non-uniformity, and also non-black-box use of some of
the underlying primitives, such as the commitments or puncturable PRFs.

– By instantiating these TDPs with a variant of the Rabin construction [28], we
get a non-uniform construction from subexponential hardness of Factoring.
This should be compared with the construction from subexponential hardness
of strong RSA [39]. (We can avoid subexponential hardness relying on DDH
or LWE and 1D-SIS. We can further make the construction uniform under
the above mentioned derandomization assumption.)

– Constructions from simple assumptions on bilinear groups, such as DLIN or
SXDH. Indeed, the past decade has seen gradual progress toward this goal,
starting from [38], through [1,11,12,21,22,35,36], and culminating in [33],
with a construction from the n-Linear assumption. While the result obtained
here does not improve on [33], it provides a quite different solution.

– A construction from polynomially hard IO and one-way permutations. In
comparison, the existing construction mentioned above [45] required subex-
ponential hardness for adaptive security.

An Equivalence Between Nonuniform VRFs, VPRGs, and NIZKs.
Dwork and Naor [23] defined a verifiable version of pseudo-random generators
(VPRGs) and showed their equivalence to NIZKs. Such VPRGs (or NIZKs) are
implied (even by selectively-secure) VRFs. Dwork and Naor raised the ques-
tion of whether the converse holds: do VPRGs imply VRFs? (Analogously to
the fact that PRGs imply PRFs.) Our result shows that for non-uniform con-
structions this is indeed the case—VPRGs imply selectively-secure VRFs (or
adaptively-secure if they are subexponentially-hard). For uniform constructions,
we only establish this equivalence conditioned on the mentioned derandomiza-
tion assumption.

1.2 Techniques

We now explain the main ideas behind our constructions.

A Näıve Idea: NIWIs instead of NIZKs. Our starting point is the simple
construction of VRFs in the common random string model [39]—to construct a
VRF, let the verification key V K be a commitment c = Com(F) to a function F

2 We also give a simpler construction under the stronger d-power DDH assumption.
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drawn at random from a PRF family [27], and store F along with the commitment
randomness as the private evaluation key SK. The value of the function at any
point x is simply y = F(x), and the proofs of correctness πx,y are simply NIZKs
that y is consistent with the commitment c.

This solution works as expected, but requires a common random string. Aim-
ing to get a construction in the plain model, a natural direction is to replace
NIZKs with NIWIs, which exist in the plain model and still offer some level of
privacy. Concretely, NIWIs guarantee absolute soundness (convincing proofs for
false statements simply do not exist), and witness indistinguishability—a proof
for a statement with multiple witnesses leaks no information about which witness
was used in the proof; namely, proofs that use different witnesses are computa-
tionally indistinguishable. It is not hard see, however, that this relaxed privacy
guarantee does not allow using NIWIs as is in the above solution. Indeed, since
F is uniquely determined by the commitment c, a NIWI proof may very well leak
it in full, without ever compromising witness indistinguishability.

Indeed, leveraging witness indistinguishability would require a different func-
tion commitment mechanism that would not completely determine the underly-
ing description of the function F. This may appear to conflict with the uniqueness
requirement of VRFs, which in the näıve construction was guaranteed exactly
due to the fact that the commitment fixes the function’s description. However,
we observe that there is still some wiggle room here—uniqueness of VRFs only
requires that the functionality {F(x)}x is fixed (rather than the description F of
the function). Our solution will take advantage of this fact.

Function Commitments: Indistinguishability instead of Simulation. At
high level, our first step is to consider, and instantiate, a function commitment
mechanism so that on one hand, any verification key V K∗ completely determines
the underlying function, but on the other hand, does not leak which specific
(circuit) description is used in the commitment. The second step will be to show
that such function commitments can be combined with appropriate PRFs to
obtain VRFs.

This approach bears similarity to a common approach in obfuscation-
based applications. There, typically, a given application easily follows from the
simulation-based notion of virtual black-box obfuscation. The challenge is to
recover the application using the weaker indistinguishability-based notion of IO,
which hides which circuit was obfuscated (among different circuit descriptions for
the same function). In our context, the NIZK-based VRF solution corresponds
to simulation-based function commitments where the verification key, function
values, and proofs can all be efficiently simulated given black-box access to the
underlying function, in which case, any PRF would be enough to get VRFs. Our
challenge will be to obtain VRFs from an indistinguishability-based notion of
function commitments. Indeed, our second step will rely on techniques from the
IO regime, such as puncturing [45]. Details follow.
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Step 1: Indistinguishability-Based Function Commitments. The func-
tion commitment notion we consider requires that verification keys V K, V K ′

corresponding to two circuits F,F′ would be indistinguishable given evaluations
yi, with proofs of consistency πxi,yi

, for an arbitrary polynomial number of points
xi, provided that the circuits agree on these points, namely F(xi) = F′(xi). This
is on top of the usual binding requirement saying that any verification key V K∗

uniquely determines the underlying function (but not its circuit description).
This notion is dual and equivalent to a notion of functional (bit-string) com-

mitments considered in [2, Appendix G] where the commitment is to an input x,
and evaluations correspond to fi(x) for different functions fi. In [2], such func-
tional commitments are constructed from single-ciphertext verifiable functional
encryption (SCT-VFE), which in turn is constructed from commitments, NIWIs,
and plain, non-verifiable, SCT-FE (known from one-way functions [30,44]). This,
in particular, gives an instantiation for the required function commitments.

Here we give a simple construction of the required function commitments
directly from NIWIs and commitments (avoiding FE altogether). Concretely, a
verification key V K for a circuit F consists of three commitments (c1, c2, c3)
to the circuit F. The secret key SK consists of F and the randomness for the
commitments. To prove correctness of y = F(x), we give a NIWI that y is
consistent with two out of the three commitments; namely, there exist 1 ≤ i <
j ≤ 3 so that ci, cj are commitments to circuits Fi,Fj , and y = Fi(x) = Fj(x).

The binding of commitments and soundness of NIWIs, guarantee that any
verification key corresponds to at most a single function, which at any point
returns the majority value of the functions underlying the commitments (for
malicious verification keys, a majority may not exist, in which case no value will
be accepted). At the same time, the required indistinguishability can be shown
by a simple hybrid argument. Throughout this argument, NIWI proofs use as
the witness the randomness and underlying plaintext for any two of the three
commitments, allowing to invoke the hiding of the third commitment. For exam-
ple, at first, proofs will use the randomness for c1 and c2, allowing to change the
third commitment c3 from the circuit F to the circuit F′. Then, assuming F′ and
F agree on all evaluation queries xi, we can rely on witness-indistinguishability,
and now use instead the randomness for two different commitments, say c1 and
c3 to compute NIWI proofs. Now, we can change c2 to F′, and so on.

Step 2: From Function Commitments to VRFs. Our construction of VRFs
then proceeds by combining function commitments such as those above with
carefully chosen PRFs. Indeed, while we might not be able to use any PRF (as
in the simulation-based function commitments from NIZKs), the indistinguisha-
bility guarantee that we have suggests a natural solution. Specifically, if we could
replace the committed PRF circuit F, with a circuit F′ that agrees with F on all
of the adversary’s evaluation queries xi, and yet does not leak information on the
function’s value F(x) at the challenge point x, then we could satisfy the pseudo-
randomness requirement of VRFs. Can we generate such a circuit F′? We first
observe that in the case of a selective adversary (that announces the challenge
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x before even getting the verification key), we certainly can—via puncturable
PRFs [13,15,37]. Recall that in such PRFs, we can puncture the PRF circuit F
at any point x, so that the new punctured circuit F′

{x} retains the functionality
of F at any point other than x, whereas the value F(x) at the punctured point x
remains pseudorandom.

Concretely, our security reduction will use any selective adversary against the
VRF to break the pseudorandomness at the punctured point x. The reduction
will generate a commitment (namely, verification key) for the punctured F′

{x},
and use this punctured circuit to compute the answers (yi, πxi,yi

), for all the
queries xi �= x. By the function-commitment indistinguishability, the adversary
could not distinguish between this and the real VRF experiment where the
unpunctured F would be used, as the two completely agree on all evaluations
points xi. Accordingly, any successful adversary in the VRF game can be used
by the reduction to distinguish F(x) from a truly random output.

Adaptive Security via Constrained PRFs. As mentioned, selective security
implies adaptive security if we assume subexponential hardness—the reduction
basically guesses the challenge, incurring a 2|x| security loss. To obtain adaptive
security from polynomial assumptions, we follow a common path in adaptive-
security proofs, relying on the idea of partitioning. Roughly speaking, the idea
is that instead of guessing the challenge (which is successful with exponentially-
small probability), the reduction guesses a partition (S,X\S) of the query space
X, aiming that with noticeable (rather than exponentially-small) probability, all
evaluation queries xi will fall outside S, but the challenge x will fall inside S.

In our case, given such a partition scheme, we aim to follow the same approach
as above (for the selective case), only that now instead of creating a circuit F′

{x}
that is punctured at a single point, we would like to create a circuit F′

S that
is punctured at the entire set S; namely, it retains the functionality of F on
any point in X\S, but the value F(x) is pseudorandom for any x ∈ S. This
more general notion is indeed known as constrained PRFs (CPRF). Here we
only need single-key CPRFs in the sense that security holds in the presence of
a single constrained PRF. Also, we do not need constraining for arbitrary sets
S, but just for the sets S in the support of the partition scheme we use. We
give three examples of such partition schemes, one that aligns with the common
notion of admissible hash functions [11], a second one that generalizes admissible
hashing to large alphabets, and a third one based on universal hashing [18]. As
stated in the previous subsection, we demonstrate corresponding CPRFs based
on different (polynomial) assumptions. Overall, the construction is exactly the
same as before only that we instantiate the PRF with a CPRF for constrained
sets in the support of one of the above partition schemes.3

3 In the body, we further allow the partition scheme to involve some encoding of the
input space X into a more structured input space ̂X, and then consider applying
the CPRF and partitioning for encoded inputs in the new space ̂X. See Definition 4
and Sect. 3 for more details.
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Fulfilling the above approach involves certain technical subtleties, most of
which are common to typical partitioning proofs. One notorious issue concerns
the fact that, while overall noticeable, the probability of successful partition may
vary with how the adversary chooses its queries. In particular, it may potentially
be the case that conditioned on a successful partition, the adversary’s advantage
in the VRF game becomes negligible (see more elaborate discussion in [46]).
There are several approaches for dealing with this in the literature (the most
common one is perhaps the artificial abort technique in [46]). We follow an
approach suggested by Jager [36] of requiring that the partition schemes in use
are balanced in the sense that the probability of partition does not change by
much over different choices of queries. See further details in Sects. 2.4 and 3.3.

1.3 Concurrent and Subsequent Work

In concurrent and independent work, Goyal et al. [31] present a similar approach
for constructing VRFs. The general construction and underlying primitives are
essentially the same as ours. There are some differences regarding the instantia-
tions provided for the underlying primitives and the presentation. We summarize
the symmetric difference below.

– Underlying Primitives. In terms of CPRF instantiations, apart from the
instantiations common to both works, they give an instantiation based on
the Phi-Hiding assumption, and we give an instantiations based on the DDH
assumption. They also give new instantiations for commitment schemes based
on LWE and LPN, which we do not.

– Presentation and Abstractions. For modularity, we chose to use the
abstraction of function commitments. Effectively, the same function commit-
ment construction is present in both works. Also, to get adaptive security, they
rely on the standard notion of admissible hash functions, whereas we chose
to consider a somewhat more general notion of partition schemes, with the
aim of giving more flexibility when designing corresponding CPRFs; indeed,
this allows us to get our DDH-based instantiation.

– Analysis. To prove adaptive security, they use the technique of artificial
aborts [46], whereas we instead use a slightly stronger notion of partition
schemes (or admissible hash functions) that are also balanced [36]. (The bal-
ance property does not require any additional assumptions and is essentially
obtained for free in the considered constructions).

In a subsequent note [3], Badrinarayanan et al. suggest an alternative construc-
tion of VRFs from single-ciphertext verifiable functional-encryption (SCT-VFE).
Their construction can be interpreted as following our two-step construction
where the first step—function commitments—is realized using SCT-VFE (the
second step, of using puncturable or constrained PRFs, is identical). As men-
tioned, SCT-VFE was constructed in [2] from commitments, NIWIs, and plain
(non-verifiable) SCT-FE. We give a simple construction of the required function
commitments directly from NIWIs and commitments.
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Organization. In Sect. 2, we define the primitives used in this work. In Sect. 3,
we present the main construction and its analysis. In Sect. 4, we discuss possible
instantiations, induced by different partition schemes and CPRFs. Some of the
basic definitions and proofs are Omitted and can be found in the full version.

2 Preliminaries

In this section, we give the basic definitions used throughout the paper. For lack
of space, some of the standard definitions can be found in the full version.

2.1 Verifiable Random Functions

We define verifiable random functions (VRFs).

Definition 1 (VRF [39]). Let n,m, k be polynomially bounded functions. A
verifiable random function VRF = (VRF.Gen,VRF.Eval,VRF.P,VRF.V) consists
of the following polynomial-time algorithms:

– a probabilistic key sampler VRF.Gen(1λ) that given a security parameter 1λ

outputs a secret key SK and public verification key V K ∈ {0, 1}k(λ),
– an evaluator VRF.EvalSK(x) that given the secret key and x ∈ {0, 1}n(λ) out-

puts y ∈ {0, 1}m(λ),
– a prover VRF.PSK(x) that given x and the secret key produces a proof π that

y is consistent with the verification key V K,
– and verifier VRF.VV K(π, x, y) that verifies the proof.

We make the following requirements:

1. Completeness: For every security parameter λ ∈ N and input x ∈ {0, 1}n(λ),

Pr

⎡
⎣VRF.VV K(π, x, y) = 1

∣∣∣∣∣∣
(SK, V K) ← VRF.Gen(1λ)
y = VRF.EvalSK(x)
π ← VRF.PSK(x)

⎤
⎦ = 1.

2. Uniqueness: For every security parameter λ ∈ N, input x ∈ {0, 1}n(λ), and
arbitrary verification key V K∗ ∈ {0, 1}k(λ), there exists at most a single y ∈
{0, 1}m(λ) for which there exists an accepting proof π. That is,

if VRF.VV K∗(π0, x, y0) = VRF.VV K∗(π1, x, y1) = 1 then y0 = y1.

3. Adaptive Indistinguishability: For any adversary A(1λ), consider the follow-
ing game Gvrf

A :
(a) The VRF challenger samples (SK, V K) ← VRF.Gen(1λ), and sends V K

to A.
(b) A submits to a challenger evaluation queries x1, . . . , xQ, and gets back

from the challenger (y1, π1), . . . , (yQ, πQ), where yi = VRF.EvalSK(xi),
πi ← VRF.P(xi, SK).
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(c) At any point, including between evaluation queries, A may submit
a challenge input x∗ ∈ {0, 1}n(λ). The challenger then sets y0

∗ =
VRF.EvalSK(x∗), y1

∗ ← {0, 1}m(λ), samples b ← {0, 1}, and sends yb
∗ to

A. (The adversary A may then make additional evaluation queries.)
(d) At the end, A outputs a guess b′. The result of the game Gvrf

A (λ) is 1 if
b′ = b, and 0 otherwise.

We say that A is admissible if in the above game it is always the case that
x∗ /∈ {xi | i ∈ [Q]}. We require that any polynomial-size admissible adversary
wins the game with negligible advantage:

AdvvrfA :=
∣∣∣∣Pr

[Gvrf
A (λ) = 1

] − 1
2

∣∣∣∣ ≤ negl(λ).

We say that the VRF satisfies Selective Indistinguishability (rather than adap-
tive) if A submits the challenge query x∗ at the beginning of the game, before
getting V K and making any evaluation query.

2.2 Sets with Efficient Representation

We consider collections of sets with efficient representation.

Definition 2 (Efficient Representation of Sets). S = {Sλ}λ∈N
is a collec-

tion of sets with efficient representation if there is a polynomial poly such that
any set S ∈ Sλ can be represented by a circuit CS of size poly(λ) such that
CS(s) = 1 if s ∈ S and CS(s) = 0 otherwise. We further require that given CS,
it is possible to efficiently sample some s ∈ S.

It will be convenient to identify any set S with its circuit representation CS .
In particular, when an algorithm gets as input a set S that is super-polynomially
large, we mean that it gets as input its efficient representation CS .

2.3 Constrained Pseudo-Random Functions

We next define constrained pseudo-random functions (CPRFs).

Definition 3 (Constrained PRFs [13,15,37]). Let n,m, k be polynomially-
bounded functions. Let S =

{
Sλ ⊆ 2{0,1}n(λ)

}
λ∈N

be a collection of sets

with efficient representation. A constrained PRF CPRF = (CPRF.Gen,
CPRF.Eval,CPRF.Cons) for S consists of the following polynomial-time
algorithms:

– a probabilistic key sampler CPRF.Gen(1λ) that given a security parameter 1λ

outputs a key K ∈ {0, 1}k(λ),
– an evaluator CPRF.EvalK(x) that given as input the key K and x ∈ {0, 1}n(λ)

outputs y ∈ {0, 1}m(λ),
– and a constraining algorithm that given as input the key K and a set S ∈ Sλ,

outputs a constrained key KS ∈ {0, 1}k(λ).
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We make the following requirements:

1. Functionality: For every security parameter λ ∈ N, set S ∈ Sλ, and input
x ∈ {0, 1}n(λ)\S,

Pr
[
CPRF.EvalKS

(x) = CPRF.EvalK(x)
∣∣∣∣

K ← CPRF.Gen(1λ)
KS ← CPRF.Cons(K,S)

]
= 1.

2. (Single-Key) Indistinguishability: For any adversary B(1λ), consider the fol-
lowing game Gcprf

B :
(a) B submits a constraint S to a CPRF challenger.
(b) The CPRF challenger samples K ← CPRF.Gen(1λ), computes a con-

strained key KS ← CPRF.Cons(K,S), and sends KS to B.
(c) B, given KS, chooses a challenge input x∗ ∈ {0, 1}n(λ), and sends it to

the challenger.

(d) The challenger sets
y0

∗ = CPRF.EvalK(x∗),
y1

∗ ← {0, 1}m(λ) , samples b ← {0, 1}, and

sends yb
∗ to B.

(e) B, given yb
∗, outputs a guess b′. The result of the game Gcprf

B (λ) is 1 if
b′ = b, and 0 otherwise.

We say that B is admissible if in the above game it is always the case that
S ∈ Sλ and x∗ ∈ S. We require that any polynomial-size admissible adversary
wins the game with negligible advantage:

AdvcprfB :=
∣∣∣∣Pr

[
Gcprf

B (λ) = 1
]

− 1
2

∣∣∣∣ ≤ negl(λ).

Remark 1 (Key Size). In the above definition, constrained keys and uncon-
strained keys have the same description size k. Furthermore, we have a sin-
gle evaluation algorithm for both constrained and unconstrained keys. Both of
these assumptions are without loss of generality and are just meant to simplify
presentation in our construction.

Remark 2 (Computational Functionality). We can also consider a relaxed com-
putational functionality requirement [17], which essentially says that inputs out-
side the constrained set S, on which functionality isn’t preserved, may exist, but
are hard to find. Formally,

1. Computational Functionality: For any polynomial-size adversary A, any λ ∈
N, and any S ∈ Sλ:

Pr

⎡

⎣

x /∈ S
CPRF.EvalKS (x) �= CPRF.EvalK(x)

∣

∣

∣

∣

∣

∣

K ← CPRF.Gen(1λ)
KS ← CPRF.Cons(K, S)

x ← ACPRF.EvalK(·)(KS)

⎤

⎦ ≤ negl(λ).
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2.4 Partition Schemes

We define partition schemes, which generalize the concept of admissible hash
functions [11] often used in the literature to prove adaptive security.

Such a scheme for a domain {0, 1}n provides a way to efficiently encode any
element x ∈ {0, 1}n to an element x̂ = PAR.Enc(x) in a new domain {0, 1}n̂.
The new domain is associated with a partition sampler PAR.Gen that samples
a partition (S, S), where S = {0, 1}n̂\S. The main guarantee is that for any set
of Q elements X ⊆ {0, 1}n and any x∗ /∈ X, with high probability x̂∗ ∈ S and
X̂ ⊆ S; namely, x∗ and X are split by the partition. We shall further require
that the scheme is balanced, roughly meaning that the probability that the
above occurs does not change much between different choices of (X,x∗). This
property was suggested in [36] for admissible hash functions as an alternative to
the artificial abort technique in partition-based proofs [46], inspired by [5].

Definition 4 (Partition Schemes). Let n, n̂ be polynomially bounded func-
tions, τ < 1 an inverse-polynomial function, and S =

{
Sλ ⊆ 2{0,1}n̂(λ)

}
λ∈N

a collection of sets with efficient representation. A partition scheme PAR =
(PAR.Enc,PAR.Gen) parameterized by (n, n̂, τ,S) consists of the following
polynomial-time algorithms

– a deterministic encoder PAR.Enc(x) that maps any x ∈ {0, 1}n(λ) to x̂ ∈
{0, 1}n̂(λ)

– a probabilistic sampler PAR.Gen(1λ, Q, δ) that given security parameter 1λ,
integer Q, and balance parameter δ, outputs a set S ∈ Sλ, interpreted as a
partition (S, S) of {0, 1}n̂(λ).4

Fix λ,Q ∈ N, δ < 1. Let X be a distribution on pairs (X,x∗) such that X :=
(x1, . . . , xQ) ∈ {0, 1}n(λ)×Q and x∗ ∈ {0, 1}n(λ)\X. We define the probability
that (X,x∗) are split by the sampled partition:

PX (λ,Q, δ) := Pr

⎡
⎢⎢⎣x̂∗ ∈ S, X̂ ⊆ S

∣∣∣∣∣∣∣∣

(X,x∗) ← X ,
x̂∗ = PAR.Enc(x∗),

X̂ = {PAR.Enc(xi) | xi ∈ X} ,
S ← PAR.Gen(1λ, Q, δ)

⎤
⎥⎥⎦ .

For every λ,Q ∈ N, δ < 1, and any two distributions X ,X ′ as above, we require:

1. Probable Partitioning:

PX (λ,Q, δ) ≥ τ(λ,Q, δ−1) =
(

δ

Q · λ

)O(1)

,

4 We note that the set S has efficient representation in terms of λ, and does not grow
with Q, δ−1. Indeed, throughout this paper, Q, δ−1, will be arbitrary polynomials in
λ that depend on the adversary. In our partition schemes, the representation of sets
will only scale with min {log(Q/δ), n(λ)}.
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2. Balance:

1 − δ ≤ PX (λ,Q, δ)
PX ′(λ,Q, δ)

≤ 1 + δ.

Remark 3 (Admissible Hash Functions). Admissible hash functions [11] are a
special case of partition schemes where the partitions considered are of a specific
kind—namely S is always the set of all strings that contain a certain substring
(we call these substring matching in Sect. 4). For our construction, we may use
other partition schemes as well (we give such an example in Sect. 4).

We also note that the balance requirement is inspired by the definition in
[36] for balanced admissible hash functions. There, the requirements of probable
partition and balanced are unified to one requirement. We find that the above
formulation captures the balance requirement in a somewhat more intuitive way.

3 The Construction

In this section, we present our VRF construction. For this purpose we first define
and construct verifiable function commitments. We then use this primitive in
conjunction with constrained PRFs to obtain our VRFs.

3.1 A Verifiable Function Commitment

We define verifiable function commitment schemes (VFCs). At high-level such a
scheme has a similar syntax to that of a VRF, it allows to commit to a function
and then verify its uniquely determined values. Security of such commitments
says that commitments to two circuits C0, C1 remain indistinguishable, as long
as the attacker only sees evaluations (with proofs) on inputs x such that C0(x) =
C1(x).

Definition 5 (Verifiable Function Commitment). Let n,m, k be poly-
nomially bounded functions. A verifiable function commitment VFC =
(VFC.Gen,VFC.P,VFC.V) consists of the following polynomial-time algorithms:

– a probabilistic key sampler VFC.Gen(1λ, C) that given a security parameter 1λ

and a circuit C: {0, 1}n(λ) → {0, 1}m(λ) outputs a secret key SK and public
verification key V K ∈ {0, 1}k(λ),

– a prover VFC.PSK(x) that given x and the secret key produces a proof π that
y = C(x) is consistent with the verification key V K,

– and verifier VFC.VV K(π, x, y) that verifies the proof.

We make the following requirements (the first two analogous to those of a VRF):

1. Completeness: For every security parameter λ ∈ N, input x ∈ {0, 1}n(λ), and
circuit C,

Pr

⎡
⎣VFC.VV K(π, x, y) = 1

∣∣∣∣∣∣
(SK, V K) ← VFC.Gen(1λ, C)
y = C(x)
π ← VFC.PSK(x)

⎤
⎦ = 1.
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2. Uniqueness: For every security parameter λ ∈ N, input x ∈ {0, 1}n(λ), and
arbitrary verification key V K∗ ∈ {0, 1}k(λ), there exists at most a single y ∈
{0, 1}m(λ) for which there exists an accepting proof π. That is,

if VFC.VV K∗(π0, x, y0) = VFC.VV K∗(π1, x, y1) = 1 then y0 = y1.

3. Indistinguishability: For any adversary A(1λ), consider the following game
Gvfc

A :
(a) A submits to the challenger two circuits C0, C1.
(b) The challenger samples b ← {0, 1}, (SK, V K) ← VFC.Gen(1λ, Cb), and

sends V K to A.
(c) A submits to a challenger evaluation queries x1, . . . , xQ, and gets back

from the challenger π1, . . . , πQ, where πi ← VFC.P(xi, SK).
(d) At the end, A outputs a guess b′. The result of the game Gvfc

A (λ) is 1 if
b′ = b, and 0 otherwise.

We say that A is admissible if in the above game the circuits C0, C1 map
{0, 1}n(λ) to {0, 1}m(λ) are of the same size and C0(xi) = C1(xi) for all
i ∈ [Q]. We require that any polynomial-size admissible adversary wins the
game with negligible advantage:

AdvvfcA :=
∣∣∣∣Pr

[Gvfc
A (λ) = 1

] − 1
2

∣∣∣∣ ≤ negl(λ).

We now show how to construct such a VFC.

Ingredients:

– A non-interactive commitment Com.
– A non-interactive witness-indistinguishable proof system NIWI.

The Construction:

– The key sampler VRF.Gen(1λ, C):
• Compute three commitments {ci := Com(C; ri)}i∈[3], using randomness

ri ← {0, 1}λ.
• Output the secret key SK = (C, r2, r3) and public key V K = (c1, c2, c3).

– The prover VRF.PSK(x):
• Construct the statement Ψ = Ψ(c1, c2, c3, x, y) asserting that y is consis-

tent with the function value given by the majority of the commitments:

∃((i, ri, Ci), (j, rj , Cj)) :
1 ≤ i < j ≤ 3,
ci = Com(Ci; ri), cj = Com(Cj ; rj),
y = Ci(x) = Cj(x).

• Output a NIWI proof π ← NIWI.P(Ψ, (2, r2, C), (3, r3, C), 1λ) for the
statement Ψ , using the commitment randomness r2, r3 and the circuit
C as the witness.
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– The verifier VRF.VV K(π, x, y):
• Construct Ψ as above.
• Run the NIWI verifier NIWI.V(π, Ψ) and output the same answer.

Completeness and Uniqueness. The completeness of the scheme follows read-
ily from the completeness of the NIWI system. The uniqueness follows from
the perfect binding of the commitment as well as the soundness of the NIWI.
Indeed, given the verification key V K = (c1, c2, c3), binding implies that for each
commitment ci, there exists at most a single circuit Ci such that ci is a valid
commitment to Ci. Thus, also for any input x, each ci is consistent with at most
a single value yi = Ci(x). By the soundness of the NIWI, any accepted y must
be consistent with the majority of value y1, y2, y3.

Indistinguishability. We prove the security of the scheme.

Proposition 1. For any polynomial-size admissible adversary A, it holds that
AdvvfcA (λ) ≤ negl(λ).

The proof proceeds by a standard hybrid argument and is given in the full
version.

3.2 The VRF

We now present the VRF construction based on verifiable function commitments
and constrained pseudorandom functions. We first list the required ingredients.

Ingredients:

– A partition scheme PAR parameterized by (n, n̂, τ,S) for a collection of sets
S = {Sλ}λ∈N

with efficient representation.
– A constrained pseudo-random function CPRF for the collection S, mapping

n̂ bits to m bits. (For simplicity, we assume perfect functionality. We later
observe that the construction works also given computational functionality.)

– A verifiable function commitment VFC for circuits mapping n̂ bits to m bits.

The Construction:

– The key sampler VRF.Gen(1λ):
• Sample a CPRF key K ← CPRF.Gen(1λ), and consider the circuit

CK(·) = CPRF.EvalK(·).
• Sample VFC keys (SK, V K) ← VFC.Gen(1λ, CK).
• Output the secret key SK = (K,SK) and public key V K = V K.

– The evaluator VRF.EvalSK(x):
• Compute x̂ = PAR.Enc(x).
• Output y := CPRF.EvalK(x̂).

– The prover VRF.PSK(x):
• Output a VFC proof π ← VFC.PSK(x̂) for the consistency of y = CK(x̂)

with V K.
– The verifier VRF.VV K(π, x, y):

• Run the VFC verifier VFC.VV K(π, x̂, y) and output the same answer.

Completeness and Uniqueness. Completeness and uniqueness follow readily
from those of the VFC.
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3.3 Security Analysis

We now prove the security of the VRF constructed above. Concretely, given
an admissible adversary A against the VRF, we construct an admissible adver-
sary B against the underlying constrained PRF. Throughout, we assume that A
makes (w.l.o.g exactly) Q = Q(λ) evaluation queries in the VRF game, for some
polynomially bounded Q(λ), and denote its advantage AdvvrfA (λ) by δ = δ(λ).

The CPRF adversary. Adversary B(1λ) operates as follows:

1. Initializes a variable result = succ.
2. Invokes PAR.Gen(1λ, Q, δ) to sample a partition set S ∈ Sλ.
3. Submits S to the CPRF challenger as the constraint, and obtains a con-

strained key KS .
4. It now emulates A in Gvrf

A as follows:
(a) Computes the constrained evaluation circuit CKS

(·) = CPRF.EvalKS
(·),

samples corresponding VFC keys (SK, V K) ← VFC.Gen(1λ, CKS
), and

sends V K = V K to A.
(b) When A makes an evaluation query xi ∈ {0, 1}n, for i ∈ [Q],

i. B computes the encoding x̂i of xi.
ii. If x̂i ∈ S, sets result = fail, and jumps to the last step 4d.
iii. Otherwise, computes yi = CKS

(x̂i), and a VFC proof πi ←
VFC.PSK(x̂i) that yi is consistent with V K. Sends (yi, πi) to A.

(c) When A makes the challenge query x∗ ∈ {0, 1}n,
i. As before, B computes the encoding x̂∗ of x∗.
ii. If x̂∗ /∈ S, sets result = fail, and jumps to the last step 4d.
iii. Otherwise, submits x̂∗ to the CPRF challenger as the challenge query,

obtains yb
∗, and sends it to A as the VRF challenge.

(d) At the end of the game, if result = fail, B acts as follows:
i. If a challenge query x̂∗ has not yet been submitted to the CPRF chal-

lenger (due to a pre-challenge failure in step 4(b)ii or 4(c)ii), samples
some z ∈ S and submits it as the challenge. Disregards the chal-
lenger’s answer.

ii. Outputs a random guess b′ ← {0, 1}.
If result = succ, B obtains a guess b′ from A, and outputs b′.

Note that B is admissible by construction (it always respects the constraint
S). We now show that the advantage of B in the CPRF game is as large as
the advantage δ of A in the VRF game, up to some loss τ that depends on the
partition scheme (the guaranteed partition probability).

Proposition 2. AdvcprfB (λ) ≥ τ(λ,Q, δ−1) · δ
2 − negl(λ) ≥

(
δ

λ·Q
)O(1)

− negl(λ).

Proof. To prove the claim we examine a sequence of hybrid CPRF games
{Gcprf

α

}
,

each with a corresponding adversary Bα and challenger CHα, which slightly
augment the adversary and challenger of the previous hybrid. In all games, as in
the original CPRF game, the result of the game is 1 if and only if the adversary
Bα guesses correctly the challenge bit, i.e. b′ = b.
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Hybrid Gcprf
0 : This corresponds to the game Gcprf

B described above. Namely B0

is the above described B and CH0 is the usual CPRF challenger.

Hybrid Gcprf
1 : In this game, the CPRF challenger CH1 also provides B1 with

the unconstrained key K, and B1 generates the VFC keys (SK, V K) ←
VFC.Gen(1λ, CK) corresponding to the circuit CK(·) = CPRF.EvalK(·) instead
of the constrained circuit CKS

.
We argue that by the indistinguishability of the VFC scheme

∣∣∣Pr
[
Gcprf
1 (λ) = 1

]
− Pr

[
Gcprf
0 (λ) = 1

]∣∣∣ ≤ negl(λ).

Indeed, any noticeable difference between the games, leads to an efficient dis-
tinguisher D that can break the VFC scheme. The distinguisher D will submit
to the VFC challenger the circuits C0 = CKS

, C1 = CK , and then will emu-
late B only that instead of generating (SK, V K) and the proofs πi by itself, it
will use the verification key V K and proofs πi given by the VFC challenger.
First, note that this always induces an admissible VFC adversary. Indeed, B
only answers the queries xi of A as long as they are such that x̂i /∈ S, meaning
that CKS

(x̂i) = CK(x̂i). It is left to note that when the challenge bit is b, the
emulated B acts exactly as Bb in Gcprf

b .

Hybrid Gcprf
2 : In this game, the adversary B2 and challenger CH2 act differently

given evaluation queries xi, or the challenge query x∗, from the emulated A. B2

does not check right away whether x̂i, or x̂∗ are in S. Instead, first all evaluation
queries are answered according to the unconstrained circuit CK , and the chal-
lenge is also answered according to this circuit, or a random string, depending
on the challenge bit b. Namely, this part exactly emulates the real VRF game
Gvrf

A .
Having finished emulating A as above, and recording its output guess b′, B2

now checks that for all evaluation queries xi made x̂i /∈ S and for the challenge
query x̂∗ ∈ S. If this is the case, it outputs the recorded b′ (previously output
by A) as the guess. Otherwise, it outputs a random guess b′ ← {0, 1}.

We argue that

Pr
[
Gcprf
1 (λ) = 1

]
= Pr

[
Gcprf
2 (λ) = 1

]
.

Indeed, consider in either game the event bad that either x̂i ∈ S for some eval-
uation query by A or x̂∗ /∈ S for the challenge query by A. Then, until the
first query that induces bad, the view of A in the two experiments is distrib-
uted exactly the same. This also implies that bad occurs in both experiments
with exactly the same probability. Furthermore, if bad does occur, then from
that point on, A’s emulation is disregarded and the two experiments again have
exactly the same output distribution, a random b′. The required equality follows.

The Advantage in Gcprf
2 . To conclude the proof, we show that

∣∣∣∣Pr
[
Gcprf
2 (λ) = 1

]
− 1

2

∣∣∣∣ ≥ τ(λ,Q, δ−1) · δ

2
.
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Let us denote by win the event that in Gcprf
2 the adversary A emulated in the

first part correctly guesses the challenge bit b. We continue to denote by bad
the event that either x̂i ∈ S for some evaluation query by A or x̂∗ /∈ S for the
challenge query by A.

Then, we have that

Pr
[
Gcprf
2 (λ) = 1

]

= Pr [bad] · Pr
[
Gcprf
2 (λ) = 1

∣∣∣ bad
]

+ Pr
[
Gcprf
2 (λ) = 1 ∧ bad

]

=
(
1 − Pr

[
bad

]) · 1
2

+ Pr [win] · Pr
[
Gcprf
2 (λ) = 1 ∧ bad

∣∣∣ win
]

+ Pr
[
win

] · Pr
[
Gcprf
2 (λ) = 1 ∧ bad

∣∣∣ win
]

=
(
1 − Pr

[
bad

]) · 1
2

+ Pr [win] · Pr
[
bad

∣∣ win] · Pr
[
Gcprf
2 (λ) = 1

∣∣∣ win ∧ bad
]

+ Pr
[
win

] · 0 =
(
1 − Pr

[
bad

]) · 1
2

+ Pr [win] · Pr
[
bad

∣∣ win] · 1

=
1
2

+ Pr
[
bad

∣∣ win]
(

Pr [win] − 1
2

· Pr
[
bad

]

Pr
[
bad

∣∣ win]
)

.

We next note that by the probable partition and balance properties of the under-
lying partition schemes:

Pr
[
bad

∣∣ win] ≥ τ(Q,λ, δ−1),

Pr
[
bad

]

Pr
[
bad

∣∣ win] ∈ [1 − δ, 1 + δ].

Indeed, bad is exactly the event of successful partition where (X = {x1, . . . , xq},
x∗) are sampled according to A’s queries in the VRF game. bad|win is the event of
successful partition when (X,x∗) are sampled from a different distribution—the
one induced by A in the VRF game, but conditioned on A winning.

In addition, since the view of the emulated A in Gcprf
2 is identical to its view

in Gvrf
A , it holds that

Pr [win] = Pr
[Gvrf

A (λ) = 1
]
.

It now follows that∣∣∣∣Pr
[
Gcprf
2 (λ) = 1

]
− 1

2

∣∣∣∣

= Pr
[
bad

∣∣ win] ·
∣∣∣∣∣Pr

[Gvrf
A (λ) = 1

] − 1
2

· Pr
[
bad

]

Pr
[
bad

∣∣ win]
∣∣∣∣∣

≥ τ(λ,Q, δ−1) ·
(∣∣∣∣Pr

[Gvrf
A (λ) = 1

] − 1
2

∣∣∣∣ − 1
2

·
∣∣∣∣∣

Pr
[
bad

]

Pr
[
bad

∣∣ win] − 1

∣∣∣∣∣

)

≥ τ(λ,Q, δ−1) ·
(

δ − δ

2

)
= τ(λ,Q, δ−1) · δ

2
.
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Extending the Proof for CPRFs with Computational Functionality.
We observe that the proof extends when relying on CPRFs with computational
(and not perfect) functionality (Remark 2). First, note that the place where we
rely on the functionality of the CPRF is in the transition between Gcprf

0 to Gcprf
1 .

There, to argue that both CK and CKS
agree on any A-query xi (thus making

the VCF attacker admissible), we rely on the fact that for xi /∈ S, the two circuits
agree. For CPRFs with perfect functionality, this agreement is guaranteed.

To extend the analysis to the case of computational functionality, we will
argue that in the above transition, the VCF distinguisher D considered still
does not violate functionality—namely, it does not output any evaluation query
xi /∈ S such that CPRF.EvalKS

(xi) �= CPRF.EvalK(xi)—except with negligible
probability. Concretely, if it outputs with non-negligible probability xi /∈ S that
violates functionality, we can construct from it an adversary that breaks the
computational functionality of the CPRF.

First, we argue that if the VCF attacker D violates functionality with non-
negligible probability when the VCF challenge bit b is chosen at random, then it
also does so when we restrict b = 0; that is, when VFC keys always correspond to
C0 = CKS

. Indeed, until the point that D outputs xi that violates functionality,
the case that b = 0 and b = 1 are indistinguishable by the VFC guarantee;
furthermore, the event that xi violates functionality is efficiently testable.

We now observe that in the restricted VFC experiment where b = 0, can
be perfectly emulated given only the constrained key KS and oracle access to
CPRF.EvalK (needed to compute the answer to the challenge query). Thus, we
can use D to break the computational functionality of the CPRF.

4 Instantiations

In this section, we discuss possible instantiations for the underlying partition
scheme and constrained PRF. We consider both adaptive security and selective
security. For adaptive security, we consider instantiations based on various poly-
nomial assumptions (such as LWE and 1D-SIS, DDH, or IO), or instantiations
based on sub-exponential one-way functions. For selective security, we can rely
on polynomial one-way functions. (The assumptions mentioned above are those
required for appropriate CPRFs. For the CPRFs themselves, we still need NIWIs
and non-interactive commitments).

4.1 Adaptive Security from Polynomial Assumptions

To obtain adaptive security from polynomial assumptions, we describe three par-
tition schemes for three different collections of partition sets S. We then exhibit
the existence of CPRFs for these collections based on different assumptions.

Partition Schemes. We give three examples of partition schemes. The first is a
code-based scheme that aligns with the common notion of (balanced) admissible
hash functions from the literature. The second is a variant of the first to large
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alphabets (which will be useful later on for simplifying the assumptions behind
CPRFs). The third is a simple scheme based on universal hashing [18], which is
omitted here and can be found in the full version.

Substring Matching over Binary Alphabet. We first describe an existing
partition scheme considered first in [38] for the collection substring matching
sets, which aligns with the notion of admissible hash functions. The scheme was
also shown to be balanced in [36]. Given that our definition is slightly different
than that in [36], and for the sake of completeness, we describe the scheme and
its analysis.

– The partition scheme’s encoding function PAR.Enc(x) is any binary error
correcting code with constant distance c < 1.5 Each element x ∈ {0, 1}n is
encoded by an element x̂ ∈ {0, 1}n̂.

– The collection of sets Sλ that partitions {0, 1}̂n(λ) consists of sets Ss para-

meterized by a string s ∈ {0, 1, �}̂n(λ) containing wildcard symbols �. For
an element z ∈ {0, 1}̂n(λ), we say that z ∈ Ss if every non-wildcard bit of s
agrees with z; namely, if si �= �, then si = zi. We call such a set Ss a substring
matching set.

– The partition sampler PAR.Gen(1λ, Q, δ) works as follows:
• Let d := log(2Q/δ)/ log( 1

1−c ).
• Sample a random set of d indices D ← (

[n̂]
d

)
.

• For i ∈ D sample si ← {0, 1} at random. For i /∈ D set si = �.
• Output Ss.

We will now prove probable partition and balance.
For (X = (x1, . . . , xQ), x∗), and consistently with Definition 4, define:

PX,x∗(λ,Q, δ) := Pr

⎡
⎣x̂∗ ∈ S, X̂ ⊆ S

∣∣∣∣∣∣
x̂∗ = PAR.Enc(x∗),
X̂ = {x̂i | xi ∈ X} ,

S ← PAR.Gen(1λ, Q, δ)

⎤
⎦ .

Further define

P = max
(X,x∗):x∗ /∈X

PX,x∗(λ,Q, δ), P = min
(X,x∗):x∗ /∈X

PX,x∗(λ,Q, δ).

First, note that for any fixed (X = {x1, . . . , xQ} , x∗) and any xi ∈ X, it holds
that

Pr
D

[x̂i|D = x̂∗|D] =
∏
i∈[d]

(
1 − cn + i − 1

n

)
≤ (1 − c)d.

Also, for any fixed D,

Pr
s|D←{0,1}d

[s|D = x̂∗|D] = 2−d.

5 Recall that in a code with (relative) distance c, each two codewords agree on at most
a c-fraction of symbols.
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Combining the first fact, a union bound over all xi ∈ X, and the second fact,
we have

P ≥ 2−d(1 − Q(1 − c)d) = 2−d(1 − δ/2) ≥ (δ/Q)O(1)
.

Thus, probable partitioning holds with τ(λ,Q, δ−1) = (δ/Q)O(1).
Furthermore, we know that

P ≤ max
x∗,D

Pr
s|D

[s|D = x̂∗|D] = 2−d.

This in turn implies that

1 − δ ≤ 1 − δ/2 ≤ P/P ≤ P/P ≤ 1
1 − δ/2

≤ 1 + δ.

Since for every two distributions X ,X ′ on pairs (X,x∗) it holds that

P/P ≤ PX (λ,Q, δ)
PX ′(λ,Q, δ)

≤ P/P ,

the balance property follows.

Substring Matching over Polynomial Alphabet. We describe a variant of
the above that will have a polynomial alphabet and will require supporting d-
symbol substrings only for a constant d, which will be useful in the construction
of corresponding CPRFs. We shall restrict attention to a relatively simple setting
of parameters, which will be enough for our purpose. (Conceivably, setting the
parameters more carefully may lead to more efficient constructions.)

– Let Σ ⊇ {0, 1} be an alphabet of size σ = O(n2). The partition scheme’s
encoding function PAR.Enc(x) is an efficient error correcting code mapping
Σn to Σm ∼= {0, 1}n̂ with distance 1− 1

n . Each element x ∈ {0, 1}n is encoded
by an element x̂ ∈ {0, 1}n̂. For example, we can take the Reed-Solomon code
consisting of degree n polynomials over a field F2k of size O(n2) (so n̂ = m×k).

– The collection of sets Sλ that partitions Σm ∼= {0, 1}n̂ consists of sets Ss

parameterized by a string (s ∈ Σ ∪ {�})m containing wildcard symbols �. For
an element z ∈ Σm, we say that z ∈ Ss if every non-wildcard symbol of s
agrees with z; namely, if si �= �, then si = zi. Again, we call such a set Ss a
substring matching set.

– The partition sampler PAR.Gen(1λ, Q, δ) works as follows:
• Let d := log(2Q/δ)/ log(n). (In our setting, both Q/δ and n are polyno-

mial in λ and d = O(1).)
• Sample a random set of d indices D ← (

[m]
d

)
.

• For i ∈ D sample si ← Σ at random. For i /∈ D set si = �.
• Output Ss.

The proof of probable partition and balance naturally generalizes that of the
previous partition scheme.
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Constrained PRFs. We now discuss possible CPRF instantiations for the
above collections.

Existing Constructions. We start by noting that CPRFs for all set collections
with efficient representation, with computational functionality, are known based
on the standard lattice assumptions—LWE and 1D-SIS [17]. We also note that
such CPRFs with perfect correctness are known from indistinguishability obfus-
cation (IO) [14]. In particular, we can rely on the above CPRFs with either one
of the partition schemes presented above.

A Construction for Substring Matching Sets over Binary Alphabet. We
now give a construction that can be used together with the first partition scheme
for substring matching sets over binary alphabet. The construction is based on
the d-power DDH assumption (for logarithmic d), which in turn can be reduced
to the subgroup hiding assumption in composite DDH groups [20,34]. Later on,
we will show how to reduce the assumption to plain DDH, by generalizing this
construction.

Assumption 41 (d-Power DDH). There exists a polynomial-time sampler
G(1λ) that outputs a group G and g ∈ G, such that for any polynomial-size
adversary A, and any d(λ) = O(log λ),

AdvdpdhA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

A(G, g, gα, . . . , gαd−1
, gγb) = b

∣

∣

∣

∣

∣

∣

∣

∣

(G, g) ← G(1λ)
α, β ← Z

∗
|G|

γ0 = αd, γ1 ← β
b ← {0, 1}

⎤

⎥

⎥

⎦

− 1

2

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ).

We next describe the construction, which is inspired by the Naor-Reingold
PRF [43] and a construction of adaptive puncturable PRFs from [34] from indis-
tinguishability obfuscation and d-Power DDH. The security notion considered in
that work is stronger than the one considered in this work (Definition 3), where
the constraining set is chosen ahead of time and not adaptively. In particular, it
will not require indistinguishability obfuscation and will handle the collection of
constraints S considered in this section.

For domain {0, 1}n̂, the function is defined as follows:

– Each (unconstrained) key K consists of n̂ pairs
(
ki,b ← Z

∗
|G|

)
i∈[n̂],b∈{0,1}

, as

well as (G, g).
– The value of the function is given by CPRF.EvalK(x) = g

∏

i∈[n̂] ki,xi .
– The constraining algorithm CPRF.Cons(K, s), given a key K and a string

s ∈ {0, 1, �}n̂, with d non-wildcards at positions D ⊆ [n̂], works as follows:
• Samples α ← Z

∗
G
.

• Outputs a constrained key KSs
consisting of (s, G, g, gα, . . . , gαd−1

) and
a new set

(
k′

i,b

)
i,b

, where

k′
i,b =

{
α−1 · ki,b i ∈ D, b = si

ki,b otherwise
.
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– To evaluate the function on x ∈ {0, 1}n̂\Ss using the constrained key KSs
:

• Let d′ be the number of indices i ∈ D such that xi = si (note that d′ < d
since x /∈ Ss).

• Output
(
gαd′ )∏i∈[n̂] k′

i,xi .

Functionality. By definition,

CPRF.EvalKSs
(x) =

(
gαd′ )∏i∈[n̂] k′

i,xi =
(
gαd′ )α−d′ ∏

i∈[n̂] ki,xi

= g
∏

i∈[n̂] ki,xi = CPRF.EvalK(x).

Indistinguishability. We now prove the indistinguishability property of the
constructed CPRF. Given an (admissible) adversary B that breaks the indistin-
guishability of the CPRF, we construct and adversary A that breaks the d-Power
DDH assumption with the same advantage.

The breaker A. Given (G, g, gα, . . . , gαd−1
, gγb), the adversary A emulates B

as follows:

1. When B submits s ∈ {0, 1, �}n̂ to the CPRF challenger, where s has d non-
wildcard entries on an index set D ⊆ [n̂], A samples

(
k′

i,b ← Z
∗
|G|

)
i,b

. It then

sends KSs
:=

(
s, G, g, gα, . . . , gαd−1

,
(
k′

i,b

)
i,b

)
to B.

2. Then B gives x ∈ Ss as the challenge query, A returns gγb

∏

i∈n̂ k′
i,xi .

3. When B outputs a guess b′, A outputs the same guess.

We observe that the view of the emulated B is identical to its view in the CPRF
game, where the induced unconstrained key is given by

ki,b =

{
α · k′

i,b i ∈ D, b = si

ki,b otherwise
.

When γb = αd, this corresponds to the case that the CPRF value is returned,
and when γb ← Z

∗
|G| is random, this corresponds to the case that a random

element gβ , β ← Z
∗
|G| is returned.6

It follows that
AdvdpdhA (λ) = AdvcfprfB (λ).

A Construction for Substring Matching Sets over Polynomial Alpha-
bet. We now give a construction that can be used together with the second
6 The above distribution is not necessarily random over strings. In any natural instan-

tiation of the group, e.g. as a prime order group for a large prime, or a composite
group of smooth order, gβ is also random in the group G. In any case, and as usual,
if one insists, on outputting a random string, we can further apply a randomness
extractor (see for example, [43]).
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partition scheme for substring matching sets over polynomial alphabet. The
construction is based on the Generalized Decision Diffie Hellman Assumption
(GDDH), which follows from DDH [43].

Assumption 42 (GDDH). There exists a polynomial-time sampler G(1λ) that
outputs a group G and g ∈ G, such that for any polynomial-size adversary A,
and any d = O(1),7

AdvgddhA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

A(G,
(

g
∏

i∈S αi
∣

∣

∣ S � [d]
)

, g
γb ) = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

(G, g) ← G(1λ)

α1, . . . , αd, β ← Z
∗
|G|

γ0 =
∏

i∈[d] αi, γ1 = β

b ← {0, 1}

⎤

⎥

⎥

⎥

⎦

− 1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤negl(λ).

We next describe the construction, which is a carefully augmented variant of
the previous construction. At first, it might be tempting to use the previous
CPRF construction (with binary substring matching partition) as before, only
that instead of using the same pad α, we would use independent pads α1, . . . , αd

for each of the d padded coordinates. The problem with this approach is that
the constrained key will need to include all the elements

(
g
∏

i∈S αi
∣∣ S � [d]

)
.

Here, as long as we use the first partition scheme, over binary alphabet, d ≈
log Q/δ. Thus, the size of the above set is roughly Q/δ, which is too large. (It is
a polynomial in λ, but a polynomial that depends on the adversary’s number of
queries and advantage, which are not apriori bounded. Before, this was not an
issue as we only considered the set of all powers of the same element α.)

To circumvent the above we use the second partition scheme presented over a
polynomial alphabet that has a constant d. This requires a natural augmentation
of the construction, which we present now.

For domain {0, 1}n̂ ∼= Σm, where Σ is of size σ = O(n2), the function is
defined as follows:

– Each (unconstrained) key K consists of an m × σ matrix(
ki,j ← Z

∗
|G|

)
i∈[m],j∈Σ

, as well as G, g.

– The value of the function on x ∈ Σm is given by CPRF.EvalK(x) =
g
∏

i∈[m] ki,xi .
– The constraining algorithm CPRF.Cons(K, s), given a key K and a string

s ∈ (Σ ∪ {�})m, with d non-wildcards at positions {i1, . . . , id} = D ⊆ [m],
works as follows:

• Samples αi1 , . . . , αid
← Z

∗
G
.

• Outputs a constrained key KSs
consisting of s, G,

(
g
∏

�∈S αi�

∣∣ S � [d]
)
,

and a new set
(
k′

i,j

)
i,j

, where

k′
i,j =

{
α−1

i · ki,j i ∈ D, j = si

ki,j otherwise
.

7 This is a weaker variant of the usual GDDH assumption where d may be polynomial
(and the elements are given by an oracle). This weaker variant will be sufficient for
us.
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– To evaluate the function on x ∈ Σm \ Ss using the constrained key KSs
:

• Let D′ ⊆ D be the subset of indices such that xi = si (note that D′ �= D
since x /∈ Ss).

• Output
(
g
∏

�∈D′ αi�

)∏
i∈[m] k′

i,xi .

First, we note that as long as d ≤ c log n for some fixed constant c, all the
algorithms, including the constraining algorithm run in fixed polynomial time
as required. When combining this scheme with the substring matching partition
scheme over large alphabets, it is always the case that d = O(1) � log n. Proving
functionality and security of the CPRF is similar to the previous CPRF (from
d-power DDH), and can be found in the full version.

Remark 4 (Resulting VRFs from Bilinear Maps). Using the above construction,
we get VRFs from simple assumptions on bilinear maps—DLIN and SXDH.
Indeed, both SXDH and DLIN imply DDH in plain (non-bilinear) groups,8 as
required for the above CPRFs, as well as commitments and NIWIs.

Remark 5 (Verifiable Unpredictable Function from Factoring). We note that a
computational (rather than decisional) version of GDH holds assuming it is
hard to factor Blum integers [7]. In this version, the value g

∏

�∈D αi� is only
unpredictable and not necessarily pseudorandom. It is not hard to see that the
same construction as above, would give in this case a corresponding notion of
unpredictable CPRFs. Plugging this in our general construction would readily
give a Verifiable Unpredictable Function [39], instead of a VRF.

4.2 Selective Security

We now discuss how to obtain selective security based on plain puncturable
PRFs, instead of the more general CPRFs considered above. As usual, this also
gives an adaptively-secure constructions assuming subexponential hardness.

Puncturable PRFs are a special case of constrained PRFs where the collection
of sets S includes singletons Sx = {x}; namely, every constrained key K{x} allows
computing the PRF everywhere, but at the point x. As shown in [13,15,37],
the GGM [27] PRF yield puncturable PRFs. In particular, (subexponential)
puncturable PRFs can be constructed from (subexponential) one-way functions.

Recall that in the case of selective security (see Definition 3), the VRF adver-
sary announces the challenge query x∗ ahead of time, before obtaining the veri-
fication key, or performing any evaluation query. In this case, we can avoid using
partition schemes, and replace use puncturable PRFs as our CPRFs. Alterna-
tively, we can think of a trivial partition scheme for the collection of singletons
where the encoding is the identity, and the partition sampler also gets the chal-
lenges x∗ as input, and outputs it as the partition, corresponding to the case
that successful partition occurs with probability τ = 1. The same analysis as in
Sect. 3.3 now applies.
8 For SXDH, DDH holds in the based groups. For DLIN, DDH holds in the target

group. We thank Brent Waters for pointing out this last fact.
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By taking all the underlying primitives to be subexponentially hard (say
2λε

-hard), the scheme is adaptively secure (when setting the underlying security
parameter to n1/ε). This follows by a standard reduction (see for example [1]).
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Abstract. Traditional fully homomorphic encryption (FHE) schemes
support computation on data encrypted under a single key. In STOC
2012, López-Alt et al. introduced the notion of multi-key FHE
(MKFHE), which allows homomorphic computation on ciphertexts
encrypted under different keys. In this work, we focus on MKFHE
constructions from standard assumptions and propose a new con-
struction of ring-LWE-based multi-hop MKFHE scheme. Our work is
based on Brakerski-Gentry-Vaikuntanathan (BGV) FHE scheme where,
in contrast, all the previous works on multi-key FHE with standard
assumptions were based on Gentry-Sahai-Waters (GSW) FHE scheme.
Therefore, our construction can encrypt a ring element rather than
a single bit and naturally inherits the advantages in aspects of the
ciphertext/plaintext ratio and the complexity of homomorphic opera-
tions. Moveover, our MKFHE scheme supports the Chinese Remain-
der Theorem (CRT)-based ciphertexts packing technique, achieves
poly (k, L, log n) computation overhead for k users, circuits with depth at
most L and an n dimensional lattice, and gives the first batched MKFHE
scheme based on standard assumptions to our knowledge. Furthermore,
the ciphertext extension algorithms of previous schemes need to perform
complex computation on each ciphertext, while our extension algorithm
just needs to generate evaluation keys for the extended scheme. So the
complexity of ciphertext extension is only dependent on the number of
associated parities but not on the number of ciphertexts. Besides, our
scheme also admits a threshold decryption protocol from which a gener-
alized two-round MPC protocol can be similarly obtained as prior works.

1 Introduction

Fully homomorphic encryption (FHE) is a very attractive cryptography primitive
that allows computation on encrypted data and has numerous theoretical and
practical applications [Gen09,BV11b,DPSZ12,GSW13]. In STOC 2012, López-
Alt et al. introduced a notion of multi-key FHE (MKFHE) [LATV12], which
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 597–627, 2017.
https://doi.org/10.1007/978-3-319-70503-3_20
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is a variant of FHE allowing computation on data encrypted under different
and independent keys. One of the most appealing applications of MKFHE is to
construct on-the-fly multiparty computation (MPC) protocols.

López-Alt et al. [LATV12] proposed the first MKFHE construction based
on the NTRU cryptosystem [HPS98], which was optimized later in [DHS16].
However, the security of this construction is based on a new and somewhat
non-standard assumption on polynomial rings. Clear and McGoldrick [CM15]
proposed an LWE-based MKFHE construction for an unlimited number of
keys using the Gentry-Sahai-Waters (GSW) FHE scheme [GSW13,ASP14]. In
EUROCRYPT 2016, Mukherjee and Wichs [MW16] presented a construction
of MKFHE based on LWE that simplifies the scheme of Clear and McGoldrick
[CM15] and admits a simple 1-round threshold decryption protocol. Based on
this threshold MKFHE, they successfully constructed a general two-round MPC
protocol upon it in the common random string model.

The schemes in [CM15,MW16] need to determine all the involved parties
before the homomorphic computation and do not allow any new party to join in,
which called single-hop MKFHE in [PS16]. Recently, Peikert and Shiehian [PS16]
proposed a notion of multi-hop MKFHE, in which the result ciphertexts of homo-
morphic evaluations can be used in further homomorphic computations involving
additional parties (secret keys). In multi-hop MKFHE, any party can dynami-
cally join the homomorphic computation at any time. A similar notion named
fully dynamic MKFHE was proposed by Brakerski and Perlman in [BP16].
A slight difference is that in fully dynamic MKFHE the bound of the number of
users does not need to be input during the setup procedure.

The method to construct multi-hop MKFHE in [PS16] is maintaining com-
mitment randomness relative to a fixed public parameter, along with an encryp-
tion of that randomness. Their homomorphic evaluation algorithm requires only
a few standard GSW-style matrix operations. This comes at the cost of relatively
larger ciphertexts, which grow at least quadratically in the maximum number
of keys. In [BP16], Brakerski and Perlman provided a fully dynamic MKFHE
scheme with an approach of extending the refresh keys to the ones under a
joint secret key at first and then bootstrapping the ciphertexts by the extended
refresh keys. Specifically, their multi-key ciphertexts grow only linearly in the
number of different involving secret keys. In addition, they described an “on-
the-fly” bootstrapping algorithm that requires only a linear amount of “local”
memory. However, as [PS16] analyzed, [BP16] is comparatively inefficient since
their bootstrapping is generally very costly and some efficient bootstrapping
techniques such as [ASP13,HS15,DM15] seem not to be applicable here.1 From
above, one can obverse that MKFHE is still far from practical, even comparing
with existing results of single key FHE.

1 Most of practical bootstrapping techniques [ASP13,HS15,DM15] are based on ring-
LWE schemes and few can be applied to the LWE-based GSW scheme like that used
in [BP16].
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1.1 Motivations

Encrypting a ring element. There are two most widely studied single-key FHE
schemes based on standard assumptions, the BGV type scheme [BV11a,BGV12,
GHS12b,HS15] and the GSW type scheme [GSW13,BV14,ASP14]. Both of them
have an LWE version and a ring-LWE version. As the analysis in [GSW13], the
most efficient one among them is the ring-LWE based BGV scheme in aspects of
the ciphertext/plaintext ratio and the complexity of homomorphic operations.
Actually, the plaintext of ring-LWE BGV scheme is a ring element, while both
the LWE version and ring-LWE version of GSW scheme can only encrypt one bit
for each ciphertext according to [GSW13]. The major reason is that the GSW
noise depends also on the plaintext size after a homomorphic multiplication.
Consequently, MKFHE from the GSW scheme [CM15,MW16,BP16,PS16] can
only encrypt a single bit even based on the ring-LWE assumption. Therefore,
if we can encrypt a ring element in MKFHE schemes, the efficiency will be
improved considerably.

SIMD operations. Currently, the most efficient FHE schemes are those that
allow SIMD (Single Instruction Multiple Data) style operations, by packing some
plaintexts into the same number of independent “slots” as the plaintext space.
Gentry et al. [GHS12b] showed that if the circuit C has size t = poly(λ), depth L,
and average width w = O(λ), and we set the packing parameter as l = Θ(λ), then
we get an O(L · log λ)-depth implementation of C using O(t/λ ·poly log(λ)) l-fold
gates. If implementing each l-fold gates takes Õ(Lbλc) time, then the total time
to evaluate C is no more than Õ(t · Lb · λc−1). Smart and Vercauteren described
a ciphertext-packing technique based on polynomial-CRT [SV14], and Gentry et
al. [GHS12b] used the technique to achieve a nearly optimal homomorphic eval-
uation (up to poly-logarithmic factors). Besides, two other ciphertexts packing
techniques have been proposed [BGH13,HAO15] so far, both of which are based
on kinds of matrix operations rather than the algebra structure of the rings. How-
ever, it is not clear how ciphertext packing techniques can be applied to standard
assumption based MKFHE schemes [CM15,MW16,BP16,PS16] so far.

Generally, since existing MKFHE schemes [CM15,MW16,BP16,PS16] from
standard assumptions are all based on GSW scheme, one interesting theoretical
problem is that whether we can construct MKFHE from other existing standard
assumption based single key FHE schemes?

Compact ciphertext extension. In the MKFHE schemes [CM15,MW16,BP16,
PS16], each party’s messages are encrypted by different public keys at first, and
the original ciphertexts correspond to different secret keys. When several parties
decide to jointly evaluate a circuit, a ciphertext extension algorithm is used
to transform the original ciphertexts to larger dimensional ciphertexts under
a same new secret key which is a concatenation of all the involved parities’
secret keys. Generally, the outputs of ciphertext extension can be viewed as the
ciphertexts in a single-key FHE scheme with a larger dimensional secret key.
After that, the circuit is finally evaluated under the new larger dimensional
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single-key FHE scheme. Particularly, in [CM15,MW16], a GSW ciphertext is
extended to a k times dimensional ciphertext matrix, by adding sub-blocks which
are derived from the encryption of randomness. The ciphertext extension in
[PS16] is similar to that in [CM15,MW16], while the additional sub-blocks are
derived from commitment randomness relative to a fixed public parameter, along
with an encryption of that randomness. In [BP16], the ciphertext extension of a
GSW ciphertext is completed by bootstrapping the ciphertext with an extended
refreshed key which needs to be generated in advance. All of their ciphertext
extension algorithms need to perform complex computations for each ciphertext,
which will be a heavy burden if the number of ciphertexts is large. We observe
that such a ciphertext extension procedure is not needed in [LATV12]. For a
standard assumption based MKFHE scheme, a natural question is whether one
can directly compute homomorphic operations for the ciphertexts under different
keys and reduce the dependence of the computation cost of ciphertext extension
(if necessary) on the number of ciphertexts.

1.2 Our Contributions

Note that all previous MKFHE [CM15,MW16,BP16,PS16] are all constructed
from the GSW scheme. In this paper, we construct a new ring-LWE based multi-
hop MKFHE scheme from the BGV scheme, so our work naturally inherits the
advantages of the second generation FHE [Lin]. For example, our scheme can
encrypt a ring element and support the CRT-based ciphertexts packed tech-
nique. So it is much more efficient than prior works in aspects of the cipher-
text/plaintext ratio, the complexity of homomorphic operations and other com-
putation overhead. The detailed comparisons are provided in Tables 1, 2 and 3 in
Subsect. 4.7. Similar to [PS16], a priori bound on the number of users is required
at the setup phase. Our scheme also admit a threshold decryption protocol as
[MW16], so a 2-round MPC can be similarly obtained from our construction.

A simple ciphertext extension is also used in our construction to transform
BGV ciphertexts under different secret keys to larger dimensional ciphertexts
under the concatenation of all involving secret keys, which is realized by just
padding the ciphertext vectors with zeros. However, due to the structure of
the BGV cryptosystem, the generation of new evaluation keys is needed. As
the result, the complexity of the extension procedure is dependent only on the
number of involved secret keys but not on the number of ciphertexts. The evalu-
ation keys are generated in the key-generation phase, and can be pre-computed
before encryption and even be publicly stored for the next time evaluation if the
involved parties are unchanged. This is beneficial for a possible scenario where
multiple ciphertexts are encrypted with the same key.

Generally, both the LWE version and the ring-LWE version of our construc-
tion can be provided. In the text, we choose to present the ring-LWE version. It
is easy for readers to get the analogous LWE version without much effort. More-
over, our technique of constructing MKFHE can be extended to other (ring-
)LWE based second generation FHE schemes such as [BV11a,Bra12], and all
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optimization techniques about these FHE schemes [GHS12a,GHS12c,GHPS13,
ASP13,HS14,HS15,CP16] also can apply here.

From a technical point of view, we show the evaluation key of BGV scheme
can be generated from a GSW encryption of a secret key the first time. We
believe this technique can help us to better understand the internal connection
between these two famous FHE schemes.

1.3 Technique Overview

In the ring-LWE based BGV scheme, given level-l ciphertexts cl = (〈a, zl〉 +
2e + μ,a) ∈ R2

q under the secret key sl = (1,−zl) ∈ R2
q and c′

l = (〈a′, z′
l〉 + 2e′ +

μ′,a′) ∈ R2
q under the secret key s′

l = (1,−z′
l) ∈ R2

q , one can trivially extend
them to ciphertexts c̄l = (cl,0) ∈ R4

q and c̄′
l = (0, c′

l) ∈ R4
q under the same secret

key s̄l = (sl, s′
l) ∈ R4

q which is a concatenation of the two parties’ secret keys. For
extended ciphertexts, the homomorphic addition is just the vector addition. But
for homomorphic multiplication, one need to compute the tensor product of the
two ciphertexts, then use the evaluation key to relinearization the ciphertext.
Since the corresponding secret key of c̄l ⊗ c̄′

l ∈ R16
q is ŝl = s̄l ⊗ s̄l ∈ R16

q , the
required evaluation key is

evkl =
{(〈

ai,j , z∗
l−1

〉
+ 2ei,j + 2j ŝl[i],ai,j

)
i=1,...,16, j=0,...,�log q�

}
(1)

for next level secret key s̄l−1 = (1,−z∗
l−1) ∈ R4

q and some ai,j ∈ R3
q . So the main

obstacle is to generate the evaluation key evkl.

Generating BGV’s evk from GSW scheme. Intuitively, evkl can be viewed as a
kind of “encryption” of each element of ŝl ∈ R16

q . Our first observation is that
evkl of the BGV scheme can be generated from a GSW encryption of ŝl. In fact,
the variant of GSW encryption for the plaintext ŝl[i] is

GSW.Encs̄l−1(ŝl[i]) = r
(
Az∗

l−1 + 2e,A
)

+ 2E + ŝl[i] · G ∈ R(�log q�+1)4×4
q .

Here
G =

(
1, . . . , 2�log q�

)T

⊗ I4 ∈ Z
(�log q�+1)4×4
q

is the gadget matrix, A ∈ R
4(�log q�+1)×3
q is a random matrix, r ∈ Rq and

E ∈ R4(�log q�+1)×4. Note that the plaintext is encrypted in low bits, which
is different from the original GSW scheme in [GSW13,ASP14]. Then the j-th
row has the form

(〈
aj , z∗

l−1

〉
+ 2ej + 2j ŝl[j],aj

) ∈ R4
q for some random vector

aj ∈ R3
q . This gives the evaluation key evkl we need.

The next task is to generate GSW.Encs̄l−1(ŝl[i]). Our basic idea is to take
advantage of the ciphertext extension method in [CM15,MW16]. Specifically,
each element of ŝl is a product of two elements of s̄l, where s̄l is the con-
catenation of each party’s secret key. So if one party’s public key includes
GSW.Encsl−1(sl[i]), i = 1, 2, it can be extended to a larger dimensional cipher-
text GSW.Encs̄l−1(sl[i]) under the secret key s̄l−1 = (sl−1, s′

l−1) ∈ R4
q , and also
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GSW.Encs′
l−1

(s′
l[i]) can be extended to GSW.Encs̄l−1(s

′
l[i]). If we can homomor-

phically multiply GSW.Encs̄l−1(sl[i]) and GSW.Encs̄l−1(s
′
l[i

′]), i, i′ = 1, 2, we get
all the element of GSW.Encs̄l−1(ŝl[i]), i = 1, . . . , 16. Then we can derive �log q�+1
BGV ciphertexts

(〈aj , z∗
l−1〉 + 2ej + 2j ŝl[j],aj

) ∈ R4
q , j = 0, . . . , �log q�

under the secret key s̄l−1 = (sl−1, s′
l−1) = (1,−z∗

l−1) from each GSW encryption
GSW.Encs̄l−1(ŝl[i]), and therefore get the supposed evaluation key.

GSW Scheme with ring element plaintext. However, the plaintext of the tradi-
tional GSW scheme is in {0, 1} while we encrypt ŝl[i] ∈ Rq. When the plaintext
is an element in Rq, the homomorphic multiplication can not work normally as
explained before since the noise will be out of control. To deal with this problem,
we propose a variant of GSW scheme with ring element plaintext. Specifically, we
observe that when we compute GSW.Enc(a) � GSW.Enc(b) for some a, b ∈ Rq,
the noise in the result ciphertext only depends on b but not on a. So we can
compute

�log q�∑
i=0

GSW.Enc (Powersof2(a)[i]) � GSW.Enc (BitDecomp(b)[i]).

Such a homomorphic multiplication in our GSW scheme with ring element plain-
text can only be performed once, but it is enough for us to successfully compute
GSW.Encs̄l−1(ŝl[i]).

1.4 Organization

In Sect. 2, some background knowledge is provided. We introduce a special GSW
scheme with ring element plaintext which is used to generate evaluation keys and
existing techniques about the BGV scheme in Sect. 3. In Sect. 4, we give a formal
description of our ring-LWE based MKFHE construction. Finally, in Sect. 5, we
present a threshold decryption mechanism and a two round MPC protocol from
our scheme. The conclusion is provided in Sect. 6.

2 Preliminaries

In this paper, we use bold lower case letters to denote vectors and bold upper
case letters to denote matrices. All vectors are represented as columns. For a
matrix A, we use A[i, :] to denote the i-th row vector, and A[i, j] to denote the
entry in the i-th row and j-th column. For a vector a, a[i] denotes the i-th entry.

For a positive integer m, let Φm(X) be the m-th cyclotomic polynomial
which has degree n = φ(m) where φ(·) is the Euler’s function. We will use the
ring R = Z[X]/Φm(X) and its localization RN , for some modulus N . When
dealing with RN , we assume that the coefficients are in [−N/2, N/2) (except
for R2 whose coefficients are in {0, 1}). Given a polynomial a ∈ R, we denote
by ‖a‖∞ = max0≤j≤n−1 |aj | the standard l∞-norm and ‖a‖1 =

∑n−1
j=0 |aj | the

standard l1-norm.
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2.1 Hardness Assumption

The ring-LWE problem introduced by [LPR13a] can be seen as a ring version
of the LWE problem [Reg09]. Now we recall its definition. Let K be the m-th
cyclotomic number field having dimension n = φ(m) and R = OK be its ring
of integers which embeds as a lattice. R∨ ⊂ K is the dual fractional ideal of R.
The noise estimation can be taken with respect to the canonical embedding norm
‖a‖can

∞ = ‖σ(a)‖∞, where σ is the canonical embedding defined in [LPR13a]. To
map from norms in the canonical embedding to norms on the coefficients of the
polynomial, we have

‖a‖∞ ≤ cm‖a‖can∞ , (2)

where cm is the ring expansion factor, see [DPSZ12] for more details.

Definition 1 (Ring-LWE [LPR13a,LPR13b]). For an s ∈ R∨
q and a distribu-

tion χ over the field tensor product KR = K ⊗Q R, a sample from the ring-LWE
distribution As,χ over Rq ×KR/qR∨ is generated by choosing a ← Rq uniformly
at random, choosing e ← χ, and outputting (a, b = a · s + e).

The decisional version of the ring-LWE problem, denoted R-DLWEq,χ, is
to distinguish with non-negligible advantage between independent samples from
As,χ, where s is uniformly chosen from R∨

q once and for all, and the same num-
ber of uniformly random and independent samples from Rq × KR/qR∨.

On the hardness, the theorem below captures reductions from GapSVP
(GapSIVP) on ideal lattices to ring-LWE for certain parameters. We state the
result in terms of canonical norm B-bounded distributions over the ring. Here-
after, “canonical norm” sometimes will be omit.

Definition 2 (B-bounded distribution over the ring). A distribution
ensemble {χn}n∈N

, supported over KR, is called (canonical norm) B-bounded
if

Pr
e←χn

[‖e‖can
∞ > B] = negl (n) .

Theorem 1 [LPR13a,LPR13b]. Let R be the m-th cyclotomic ring, having
dimension n = φ(m). Let q = q(n), q = 1 mod m be a poly(n)-bounded inte-
ger, and B = ω(

√
n log n). There is a poly(n)-time quantum reduction from

nω(1)q/B-approximate SIVP (or SVP) on ideal lattices in R to solve R-DLWEq,χ

where χ is a distribution bounded by B with overwhelming probability.

It has been shown for ring-LWE that one can equivalently assume that s is
alternatively sampled from the noise distribution χ [LPR13a].

2.2 Smudging Lemma

We rely on the following lemma, which says that adding large noise “smudges
out” any small values.
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Lemma 1 [AJL+12]. Let B1 = B1(λ), and B2 = B2(λ) be positive integers and
let e1 ∈ [−B1, B1] be a fixed integer. Let the integer e2 ∈ [−B2, B2] be chosen
uniformly at random. Then the distribution of e2 is statistically indistinguishable
from that of e2 + e1 as long as B1/B2 = negl(λ).

Similarly, when R = Z[X]/Φm(X), let e1 ∈ Rq be a fixed ring element
where ‖e1‖∞ ≤ B1, and e2 be another ring element whose coefficients are chosen
uniformly at random from [−B2, B2]. Then the distribution of e2 is statistically
indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).

2.3 Bit Decomposition Technique

The bit decomposition technique is first introduced in [BV11a] and widely used
in FHE schemes. Let β = �log q� + 1. We describe the subroutines as follows.

– BitDecomp(V ∈ Z
n×d
q ): Decompose each coefficient of V in bit representation.

Namely, write V =
∑�log q�

j=0 2j · Uj , with all Uj ∈ {0, 1}n×d, and output[
U0,U1, . . . ,U�log q�

] ∈ {0, 1}n×dβ .
– Powersof2(V ∈ Z

n×d
q ): Let Wj = 2jV mod q ∈ Z

n×d
q , j = 0, . . . , �log q� and

output
[
W0,W1, . . . ,W�log q�

] ∈ Z
n×dβ
q .

Obviously, BitDecomp(U) ·Powerof2(V)T = U ·VT , where U,V ∈ Z
n×d
q . Conse-

quently, let g =
(
1, 2, . . . , 2�log q�)T ∈ Z

β
q , Id be the d dimensional identity matrix

and G = g⊗Id ∈ Z
dβ×d
q . For any matrix C ∈ Z

n×d
q , C̄ = BitDecomp(C) ∈ Z

n×dβ
q

and C̄ · G = C. Moreover, when a is an element in the ring Rq = R/qR where
R = Z[x]/Φm[X], a can be represented as a vector in Z

n
q and we can apply

BitDecomp and Powersof2 algorithms to a as well.

2.4 Cryptographic Definitions

Definition 3. A leveled multi-hop, multi-key FHE scheme is a tuple of efficient
randomized algorithms (Setup, Gen, Enc, Dec, Eval) described as follows:

– Setup(1λ, 1K , 1L): Given the security parameter λ, a bound K on the number
of keys, and a bound L on the circuit depth, output a public parameter pp.

– Gen(pp): Given the public parameter pp, output public key pki and secret key
ski (i = 1, . . . ,K) for each party.

– Enc(pp, pki, μ): Given the public key pki of party i and a message μ, output
a ciphertext cti. Without loss of generality, cti contains the index of corre-
sponding secret key and the level tag.

– Dec(pp, (ski1 , ski2 , . . . , skik
), ctS): Given a ciphertext ctS corresponding to a

set of parties S = {i1, . . . , ik} ⊆ [K] and their secret keys ski1 , ski2 , . . . , skik
,

output the message μ.
– Eval(pp, C, (ctS1 , pkS1), . . . , (ctSt

, pkSt
)): Given (a description of) a boolean

circuit C along with t tuples (ctSi
, pkSi

), each comprising of a ciphertext ctSi

corresponding to a set of secret keys indexed by Si = {i1, . . . , iki
} ⊆ [K] and a

set of public keys pkSi
= {pkj ,∀j ∈ Si}, output a ciphertext ct corresponding

to the set of secret keys indexed by S =
⋃t

i=1 Si ⊆ [K].
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Notice that the input ciphertexts of Eval can be fresh or the intermediate results
of any homomorphic operations, which is allowed by the multi-hop property.

Definition 4 (Correctness). A leveled multi-hop, multi-key FHE scheme is
correct if for any circuit C of depth at most L having t input wires and any tuples
{(ctSi

, pkSi
)}i∈[t], letting μi = Dec(skSi

, ctSi
), where skSi

= {skj ,∀j ∈ Si},
i = 1, . . . t, it holds that

Pr [Dec(skS ,Eval(C, (ctS1 , pkS1), . . . , (ctSt
, pkSt

))) �= C(μ1, . . . , μt)] = negl(λ),

where S =
⋃t

i=1 Si, pp ← Setup(1λ, 1K , 1L), (pkj , skj) ← Gen(pp) for j ∈ [S].

Definition 5 (Compactness). A leveled multi-hop, multi-key FHE scheme is
compact if there exists a polynomial poly(·, ·, ·) such that in Definition 3, |ct| ≤
poly(λ,K,L). In other words, the length of ct is independent of the size of C, but
can depend polynomially on λ, K, and L.

3 GSW Scheme with Ring Element Plaintext

In this section, we describe a variant of ring-LWE based GSW scheme with ring
element plaintext, which can also be converted to a MKFHE scheme using the
key extension technique in [CM15,MW16]. As explained in the introduction, this
scheme will be used for the evaluation key generation in the Eval algorithm of the
MKFHE scheme. The analogous LWE based scheme can be similarly constructed
without effort, so we omit the description.

3.1 Basic Scheme

Here we present basic algorithms of our ring-GSW scheme. The differences
between our scheme and the original ring-LWE based GSW scheme in [GSW13]
include the following. First, the plaintext here is a Rq ring element instead of one
bit, so our scheme do not support the general homomorphic multiplication gate.
But we show that in a special case that the second plaintext has a small l1 norm,
one homomorphic multiplication is allowed. Second, the plaintext in our scheme
is encrypted in low bits for the convenience of transformation to the evaluation
key of the BGV scheme. Third, the decryption algorithm of our scheme is not
presented, since it will not be used in our construction.

Our scheme is parameterized by an integer m (that defines the cyclotomic
polynomial Φm and φ(m) = n), a modulus q(= poly(n)), a small constant integer
p, a (canonical norm) B-bounded discrete distribution χ in R = Z[X]/Φm for
B � q and an integer N = O(n log q). Let β = �log q� + 1. We use ring Rq =
R/qR.

RGSW.Keygen(1n): Sample z ∈ R with a distribution χ, then we define the secret
key as a vector s = (1,−z)T ∈ R2

q . Pick a random vector a ∈ R2β
q uniformly at

random and vectors e ∈ R2β with a distribution χ2β . Output the public key as

P = [az + pe,a] = [b,a] ∈ R2β×2
q .
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RGSW.EncRand(μ,P): This procedure is to generate the encryption of random-
ness that is used in the real encryption. When input μ ∈ Rq, pick β ring elements
ri ← χ for i = 1, . . . , β and two vectors e′

1, e
′
2 ← χβ , and output

RGSW.EncRands(μ) = F = [f1, f2] ∈ Rβ×2
q ,

where for i = 1 . . . β,

f1[i] = b[i]ri + pe′
1[i] + Powersof2(μ)[i] ∈ Rq

and
f2[i] = a[i]ri + pe′

2[i] ∈ Rq.

Notice that Fs = pẽ + Powersof2(μ)T ∈ Rβ
q for some small ẽ ∈ Rβ . In fact,

ẽ[i] = e[i]ri + e′
1[i] − e′

2[i]z for i = 1, . . . , β.

RGSW.Enc(μ,P): On inputs μ ∈ Rq and the public key P, pick a random ring

element r
$←− χ and an error matrix E = [e1, e2] ← χ2β×2, and output

RGSW.Enc(μ)s = C = rP + pE + μG

= [rb, ra] + pE + μG

= [raz + p(re + e1), ra + pe2] + μG ∈ R2β×2
q ,

where G = (I, 2I, . . . , 2β−1I)T ∈ R2β×2
q , and

RGSW.EncRand(r,P) = F ∈ Rβ×2
q .

Notice that C · s = pẽ + μGs ∈ R2β
q for some small ẽ. The corresponding

decryption algorithm is not provided.

RGSW.HomAdd(C1,C2): Addition of two ciphertext matrices is just standard
addition in Rq.

RGSW.HomMult(C1,C2): On input two ciphertexts C1,C2 ∈ R2β×2
q , first com-

putes the bit decomposition C1 = [D0, . . . ,Dβ−1]
T ∈ R2β×2β

q of C1 such that
C1 =

∑β−1
i=0 2iDi, and then present the multiplication as

C1 � C2 := C1 · C2.

The homomorphic multiplication can be accelerated using FFT/NTT as [DM15].
Notice that RGSW.HomMult operation can not always output a legal ciphertext
with small noise. But in a special case that C2 encrypts a plaintext with a
small l1 norm, the noise in the output will be small. A rigorous analysis will be
provided in Subsect. 3.3.
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RGSW.CTExt (Ci,Fi, {Pj , j = 1, . . . , k}): given a ciphertext Ci ∈ R2β×2
q , an

encryption of randomness Fi and public keys of all parties, output an extended
ciphertext as

C̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ci · · · X1 · · · 0

0
. . .

... 0
... Ci

...
...

. . .
0 · · · Xk · · · Ci

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2kβ×2k
q (3)

where each sub block Xj ∈ R2β×2
q is constructed from Fi and {Pj}j=1,...,k as

Xj [u, :] = BitDecomp(b̃j [u])Fi ∈ R2
q for u = 1, . . . , 2β.

3.2 Security

The view of the attacker is the following distribution (P,F,C) generated via,
(sk, pk = P) ← RGSW.Keygen(params), F ← RGSW.EncRand(r,P) and C ←
RGSW.Enc(μ,P). We prove semantic security of our GSW scheme with ring
element plaintext by relying on the semantic security of the underlying ring-
LWE scheme [LPR13a,LPR13b]. The proof consists of the following hybrids:

– First, we change the public key P to a random matrix R2β×2
q according the

ring LWE assumption.
– Second, we change the encryption of randomness F to β ring LWE encryption

of 0.
– Third, we change the encryption C to 2β ring LWE encryption of 0.

Finally, this distribution is completely independent of the plaintext μ which
concludes the proof of security.

3.3 Noise Growth

The noise growth by the evaluation of the homomorphic operation can be
analysed by the following lemma.

Lemma 2. Let β = �log q� + 1 and k ≥ 1. Let s ∈ R2k
q be a secret key. Let

C1,C2 ∈ R2kβ×2k
q be ciphertexts that encrypt μ1, μ2 ∈ Rq with noise vectors

e1, e2 ∈ R2kβ, respectively. Let Cadd := C1 ⊕ C2 and Cmult := C1 � C2. Then,
we have

Cadds = peadd + (μ1 + μ2)Gs,

Cmults = pemult + (μ1μ2)Gs,

where eadd := e1 + e2 and emult := C1e2 + μ2e1. In particular, ‖emult‖can
∞ ≤

Õ(φ(m)k)‖e2‖can
∞ + ‖μ2‖1‖e1‖can

∞ .
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Proof. The statements for Cadd can be immediately proved. For Cmult, we have

Cmults = C1 · C2s

= C1 · (pe2 + μ2Gs)

= pC1 · e2 + μ2C1s

= p(C1 · e2 + μ2e1) + (μ1μ2)Gs.

Remind that C1 =
∑β

i=1 2iDi, where each Di ∈ R2kβ×2k
q has entries with coef-

ficients in {0, 1}. So the canonical norm of them are bounded by φ(m). Then we
have

‖emult‖can
∞ ≤ Õ(φ(m)k)‖e2‖can

∞ + ‖μ2‖1‖e1‖can
∞ .

��
From the above lemma, we can see that the noise term in Cmult is only concerned
with the l1 norm of μ2. From this observation, we get the following important
corollary.

Corollary 1. Let β = �log q� + 1, k ≥ 1 and φ(m) = n. Let C1,C2 ∈ R2kβ×2k
q

be ciphertexts that encrypt μ1, μ2 ∈ Rq with B bounded distribution noise vectors
e1, e2 ∈ R2β � Z

2βφ(m), respectively. Cmult and emult is defined as before. If
‖μ2‖∞ ≤ 1, we have ‖ emult ‖∞≤ Õ(n) · B.

Proof. From Lemma 2, we have

‖emult‖can
∞ ≤ Õ(kφ(m))‖e2‖can

∞ + ‖μ2‖1‖e1‖can
∞ .

Since ‖μ2‖∞ ≤ 1, ‖μ2‖1 ≤ n. So by (2) we have

‖ emult ‖∞≤ cm ‖ emult ‖can
∞ ≤ Õ(kn) · B.

��

3.4 Correctness of Ciphertext Extension

In this subsection, we will explain the method of [CM15,MW16] to extend GSW
ciphertexts corresponding to one single secret key to larger dimensional GSW
ciphertexts corresponding to a concatenation of multiple keys.

Specifically, let Ci ∈ R2β×2
q be a GSW ciphertext encrypting the message μ

under secret key si = (1,−zi)T ∈ R2
q , i.e.,

Ci = ri [azi + pei,a] + E + μG

= ri [azi + pei,a] + E + μG ∈ R2β×2
q .

(4)

Given a sequence of public vectors from different parties

bj = azj + pej ∈ R2β
q , j = 1, . . . , i − 1, i + 1, . . . , k
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and the i-th party’s encryptions of the randomness

RGSW.EncRand(ri, pki) = Fi ∈ Rβ×2
q ,

we show that the Ci can be extended to a larger GSW ciphertext C̄ ∈ R2kβ×2k
q

encrypting the same message μ under the secret key s̄ = (s1| . . . |sk) ∈ R2k
q for

sj = (1,−zj)T ∈ R2
q , j ∈ [k], such that

C̄ · s̄ = pe + μḠs̄,

where ẽ ∈ R2kβ is a small noise vector. Here the matrix Ḡ can be written as

Ḡ =
[
I2k, 2I2k, . . . , 2�log q�I2k

]T

∈ R2kβ×2k
q .

Let the extended ciphertext

C̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ci · · · X1 · · · 0

0
. . .

... 0
... Ci

...
...

. . .
0 · · · Xk · · · Ci

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2kβ×2k
q (5)

to be a matrix whose sub blocks in R2β×2
q are all zero except the ones in the

diagonal line and the ith column. Since Cisi = pei +μGsi, we also need to make
sure that

Xjsi + Cisj = pẽ + μGsj , (6)

where ẽ ∈ R2β is a small noise vector.
Therefore, for si = (1,−zi)T and sj = (1,−zj)T , we can define

b̃j = bj − bi ∈ R2β
q .

Let the uth row of Xj be

Xj [u, :] = BitDecomp(b̃j [u])Fi ∈ R2
q (7)

for u = 1, . . . , 2β. Hence

Xj [u, :]si =
(
BitDecomp(b̃j [v])Fi

)
si

= BitDecomp(b̃j [v]) · (
pe + Powersof2(ri)T

)

= pe′ + b̃j [v] · ri,

and
Xjsi = pe′ + rib̃j (8)



610 L. Chen et al.

where e′ is bounded by βB (canonical norm). According to the Eq. (4), we have

Cisj = ri(azi + pe) − riazj + Esj + μGsj

= ri (bi − bj) + Esj + μGsj

.

Therefore, as the Eq. (6) holds for ẽ = e′ + Esj which is bounded by βB2

(canonical norm).
Formally, the ciphertext extension algorithm can be described as follow.

– RGSW.CTExt (Ci,Fi, {Pj , j = 1, . . . , k}), given a ciphertext Ci ∈ R2β×2
q ,

an encryption of randomness Fi and public keys of all parties, output an
extended ciphertext as (5) where each sub block Xj ∈ R2β×2

q is constructed
from Fi and {Pj}j=1,...,k as (7).

4 New Construction of Ring-LWE MKFHE

In this section, we present the details of our method to extend the BGV
scheme to a MKFHE scheme. As explained in Definition 3, MKFHE consists
of five algorithms, i.e., MKFHE.Setup, MKFHE.Gen, MKFHE.Enc, MKFHE.Dec
and MKFHE.Eval. For convenience, in the following we use RGSW.Encs (μ) (pre-
sented in Sect. 3) to denote a GSW ciphertext (which may be not fresh) that can
be decrypted to μ with the secret key s. Also we directly adopt the same sub-
routines such as modulus switching ModulusSwitch and key switching SwitchKey
as the single key BGV scheme. For details of the original BGV scheme, see
AppendixA.

4.1 Basic Schemes

MKFHE.Setup(1λ, 1K , 1L): Given the security parameter λ, a bound K on the
number of keys, and a bound L on the circuit depth, generate the noise distri-
bution χ = χ(λ,K,L) which is a B-bounded distribution over R, L decreasing
modules qL � qL−1 � · · · � q0 for each level and a small integer p coprime
with all ql’s. Let βl = �log ql� + 1, and choose L + 1 random public vectors
al ∈ R2βl

ql
for l = L, . . . , 0. All the following algorithms implicitly take the public

parameter pp =
(
R,χ,B, {ql,al}l∈{L,...,0}, p

)
as input.

MKFHE.Gen(j ∈ [K]): Generate keys for the j-th party. For l from L down to 0,
do the following:

1. Choose zl,j ← χ, and set sl,j := (1,−zl,j)T ∈ R2
ql

. The secret key for the j-th
party is skj = {sl,j}l∈{L,...,0}.

2. Generate 2βl ring-LWE instances

ptl,j := [bl,j = alzl,j + pel,j ,al] ∈ R2βl×2
ql

,

where el,j ← χ2βl . The public key pkj for the j-th party consists of all the
ptl,j , l = L, . . . , 0.
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3. For i = 1, . . . , 2βl, compute RGSW.Enc (Powersof2(sl,j)[i], ptl−1,j) and get

Φi,l,j = RGSW.Encsl−1,j
(Powersof2(sl,j)[i])

= ri,l,j [bl−1,j ,al−1] + pEi,l,j + Powersof2(sl,j)[i]G

together with

Fi,l,j = RGSW.EncRand(ri,l,j , ptl−1,j) ∈ Rβl×2
ql

.

Also compute

Ψi,l,j = RGSW.Encsl−1,j
(BitDecomp(sl,j)[i])

= r′
i,l,j [bl−1,j ,al−1] + pE′

i,l,j + BitDecomp(sl,j)[i]G

together with

F′
i,l,j = RGSW.EncRand(r′

i,l,j , ptl−1,j) ∈ Rβl×2
ql

.

The evaluation key generation material is

emj =
{
(Φi,l,j ,Fi,l,j) ,

(
Ψi,l,j ,F′

i,l,j

)}
i∈[2βl],l∈[L]

.

Later, the emj will be used to generate evaluation keys for the homomorphic
evaluation algorithm.

MKFHE.Enc(pkj , μ): Given the public key pkj of the j-th party and a message
μ ∈ Rp, choose a random ring element r ∈ R2. Similar to the BGV scheme, the
level-L ciphertext c = (c0, c1) ∈ R2

qL
encrypts a plaintext element μ ∈ Rp with

respect to sL = (1,−zL), where

c0 = rbL,j [1] + pe + μ ∈ RqL
and c1 = raL[1] + pe′ ∈ RqL

.

Let S be an ordered set containing all indexes of the parities that the ciphertext
corresponding to. Without loss of generality, we assume that the indexes in S
are always arranged from small to large and S has no duplicate elements. Here
we set S = {j}. Usually, the ciphertext ct contains c, the set S and a tag l to
label the number of the level. Finally, output a tuple ct = (c, {j}, L).

MKFHE.Dec(skS , ct = (c, S, l)): Suppose S = {j1, . . . , jk} and skS consists of
all the parties’ secret keys whose indexes are contained in S, i.e., skS =
{skj1 , . . . , skjk

}. Let

s̄l = (sl,j1 |sl,j2 | · · · |sl,jk
) ∈ R2k

ql
,

where sl,j is the key of the j-th party to decrypt level-l ciphertexts. Once given
a level-l ciphertext c ∈ R2k

ql
, compute

μ = 〈c, s̄l〉 mod ql mod p.
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MKFHE.Eval((pki1 , . . . , pkik
), emS , C, (ct1, . . . , ctt)): Assume that the sequence

of ciphertexts are at the same level-l (If needed, use SwitchKey and ModulusS-
witch to make it so). For j ∈ [t], parse ctj as (cj , Sj , l), let |Sj | = kj , S =⋃t

j=1 Sj = {i1, . . . , ik} , pkS = (pki1 , . . . , pkik
), and thus cj ∈ R

2kj
ql . Then the

outline of the evaluation of the Boolean circuit C is as follows.

1. For j ∈ [t], compute MKFHE.CTExt(cj , S) = c̄j to get extended 2k dimen-
sional ciphertexts which encrypts the same message under the key s̄l. Here
s̄l := (sl,i1 , . . . , sl,ik

) is indexed by S.
2. Compute MKFHE.EVKGen(emS) = evkS to generate the evaluation key for

the extended scheme.
3. Call the two basic homomorphic operations for the extended ciphertexts

MKFHE.EvalAdd(evkS , c̄i, c̄j) and MKFHE.EvalMult(evkS , c̄i, c̄j) to evaluate
each gate of the circuit C.

Note that, we have given a detailed description of the first four algorithms
MKFHE.Setup, MKFHE.Gen, MKFHE.Enc and MKFHE.Dec. For MKFHE.Eval,
we just provided an outline of the algorithm. In the following subsections, we
will detail the ciphertext extension algorithm MKFHE.CTExt and the evaluation
key generation algorithm MKFHE.EVKGen. Also, we will explain how to call
the algorithm MKFHE.EvalAdd and MKFHE.EvalMult to evaluate addition and
multiplication for larger dimensional ciphertexts.

4.2 The Ciphertext Extension

In this subsection, we detail the ciphertext extension algorithm MKFHE.CTExt
which converts a BGV ciphertext to a larger dimensional ciphertext under a new
larger dimensional secret key. In fact, the new secret key is a concatenation of
secret keys from a larger set of parties.

MKFHE.CTExt(ct, S′): On input a ciphertext ct = (c, S, l) and a set of parties’s
indexes S′ for S ⊆ S′, where S has k members {i1, i2, . . . , ik} and S′ has k′

members {j1, j2, . . . , jk′} for k′ > k. c ∈ R2k
ql

corresponds to the decryption key
sl ∈ R2k

ql
, so 〈c, sl〉 mod ql = pe + μ. Sequentially divide c into k sub-vectors

which can be indexed by S = {i1, i2, . . . , ik}, i.e.,

c = (ci1 |ci2 | · · · |cik
) ∈ R2k

ql

where each ci1 ∈ R2
ql

. The extended ciphertext c̄ ∈ R2k′
ql

consists of k′ sequential
sub-vectors of 2 dimensional, which can be indexed by S′ = {j1, j2, . . . , jk′}, i.e.,

c̄ =
(
c′

j1 |c′
j2 | · · · |c′

jk′

)
∈ R2k′

ql
.

If an index j in S′ is also included in S, we set c′
j = cj , otherwise c′

j = 0.
Obviously, c̄ corresponds to the secret key

s̄l =
(
sj1,l|sj2,l| · · · |sjk′ ,l

) ∈ R2k′
ql

,
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where sj,l is the key of the j-th party to decrypt the level-l ciphertexts. And the
decryption is performed by the inner product and modulus, i.e.,

〈c̄, s̄l〉 =
k′∑

t=1

〈c′
jt

, sjt,l〉 =
k∑

ι=1

〈ciι
, siι,l〉 = 〈c, sl〉 = pe + μ, (9)

and μ = 〈c̄, s̄l〉 mod ql mod p. The second equality in (9) holds because other
c′

j ’s are all 0.

4.3 Homomorphic Operations

In this subsection, we explain how to perform the algorithms MKFHE.EvalAdd
and MKFHE.EvalMult on extended ciphertexts when a proper evaluation key is
provided. The evaluation key we needed is

τs̄′
l→s̄l−1 = {Kt,ζ}t=1,...,βl;ζ=1,...,4k2 (10)

for s̄′
l = s̄l ⊗ s̄l and Kt,ζ ∈ R2k

ql
such that 〈Kt,ζ , s̄l−1〉 = pet,ζ + 2t−1s̄′

l[ζ] ∈ Rql

and the canonical norm of et,ζ is small.

MKFHE.EvalAdd(evkS , c̄1, c̄2): Take two (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

at
the same level-l under the same s̄l as inputs (If needed, use SwitchKey and
ModulusSwitch to make it so). First, compute c̄′

3 ← c̄1 + c̄2 mod ql under the
secret key s̄l ∈ R2k

ql
. Second, use SwitchKey(c̄′

3, τs′
l→sl−1 , ql) to generate ciphertext

c̄′′
3 under the secret key s̄l−1 (s̄′

l’s coefficients include all of s̄l’s since s̄′
l = s̄l ⊗ s̄l

and s̄l’s first coefficient is 1). Third, compute c̄3 = ModulusSwitch(c̄′′
3 , l).

MKFHE.EvalMult(evkS , c̄1, c̄2): Take two (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

at
the same level-l under the same s̄l. (If needed, use SwitchKey and ModulusSwitch
to make it so). First, compute c̄′

3 ← c̄1⊗c̄2 mod ql under the secret key s̄l ∈ R2k
ql

.
Second, use SwitchKey(c̄′

3, τs′
l→sl−1 , ql) to generate a ciphertext c̄′′

3 under the
secret key s̄′

l = s̄l ⊗ s̄l. Third, compute c̄3 = ModulusSwitch(c̄′′
3 , l).

4.4 Evaluation Key Generation

In this subsection, we detail the evaluation key generation algorithm EVKGen,
which inputs the public keys of involved parties and outputs the extended BGV
evaluation key as (10). Remind that all parties share L common random public
matrices al ∈ R2βl

ql
for l = L, . . . , 0 and βl = �log ql� + 1. The evaluation key

generation material emj for the jth party consists of all the Φi,l,j , Ψi,l,j , Fi,l,j

and F′
i,l,j for l = L, . . . , 0 and i = 1, . . . , 2βl.

MKFHE.EVKGen(emS , pkS). Notice that S contains k elements, and emS con-
sists of a collection of evaluation key generation materials {emj1 , . . . , emjk

} and
the public keys {pkj1 , . . . , pkjk

} belonging to parties in S. To generate a level-l
evaluation key as (10), compute as follows.
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1. For each j∗ ∈ S, use the GSW extend algorithm to get larger dimensional
ciphertexts under a key s̄l−1

Φ̄i,l,j∗ = RGSW.CTExt (Φi,l,j∗ , pkS ,Fi,l,j∗)
= RGSW.Encs̄l−1 (Powersof2(sl,j∗)[i])

and
Ψ̄i,l,j∗ = RGSW.CTExt

(
Ψi,l,j∗ , pkS ,F′

i,l,j∗
)

= RGSW.Encs̄l−1 (BitDecomp(sl,j∗)[i])

where s̄l−1 = (sl−1,j1 |sl−1,j2 | · · · |sl−1,jk
) ∈ R2k

ql
.

2. Set s̄l = (sl,j1 |sl,j2 | · · · |sl,jk
) ∈ R2k

ql
and s̄′

l = s̄l ⊗ s̄l ∈ R4k2

ql
. If we can compute

RGSW.Encs̄l−1 (s̄l[ζ] · s̄l[ζ ′]) from
{
Φ̄i,l,j , Ψ̄i,l,j

}
and

{
Φ̄i′,l,j′ , Ψ̄i′,l,j′

}
, where

s̄l[ζ] and s̄l[ζ ′] are any two elements of s̄l, we have the GSW encryptions of
all the elements of s̄′

l under the key s̄l−1. The details of how to accomplish
this task will be explained later.

3. Given the RGSW.Encs̄l−1 (s̄′
l[ζ]), compute

τs̄′
l→s̄l−1 = {Kt,ζ}t=1,...,βl;ζ=1,...,4k2 (11)

for Kζ ∈ R2k
ql

such that 〈Kt,ζ , s̄l−1〉 = pet,ζ +2t−1s̄′
l[ζ] ∈ Rql

. Also, the details
will be provided later.

Details of Step 2. Since we need to compute the GSW encryptions of s̄[ζ] · s̄[ζ ′],
the intuition may be the homomorphic multiplication of the GSW encryptions
of s̄[ζ] and s̄[ζ ′] ∈ Rq. But the noise will be out of control in this way accord-
ing to Lemma 2, because the absolute value of the message s̄[ζ ′] can be larger
than ql/2. Alternatively, we know that 〈Powersof2(̄sl[ζ]),BitDecomp(̄sl[ζ ′])〉 =
s̄l[ζ] · s̄l[ζ ′]. So we homomorphically compute the inner product of the GSW
encryptions of Powersof2(̄sl[ζ]) = Powersof2(sl,j [t]) and BitDecomp(̄sl[ζ ′]) =
BitDecomp(sl,j′ [t′]), since ζ = 2(j − 1) + t and ζ ′ = 2(j′ − 1) + t′, 1 ≤ j ≤ k,
t = 1 or 2. Namely we compute

RGSW.Encs̄l−1 (̄sl[ζ] · s̄l[ζ
′])

=

βl∑

ι=1

(
RGSW.Encs̄l−1 (Powersof2(̄sl[ζ])[ι]) � RGSW.Encs̄l−1

(
BitDecomp(̄sl[ζ

′])[ι]
))

=

βl∑

ι=1

(
RGSW.Encs̄l−1 (Powersof2(sl,j [t])[ι]) � RGSW.Encs̄l−1

(
BitDecomp(sl,j′ [t′])[ι]

))

=

βl∑

ι=1

Φ̄βl(t−1)+ι,l,j � Ψ̄βl(t
′−1)+ι,l,j′ .

(12)
The l∞ norm of BitDecomp(sl,j′ [t′])[ι] is less than 1. According to Corollary 1,
the canonical norm of the noise in the result ciphertext of homomorphic multi-
plication is bounded by Õ(n)B∗ if the noise in the input ciphertexts is bounded
by B∗. So the noise in the final output ciphertext RGSW.Encs̄l−1 (̄sl[ζ] · s̄l[ζ ′]) of
(12) is bounded by Õ(nβ2

l )B2 for βl = �log ql�+1 if the noise in emj is bounded
by B.
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Details of Step 3. After above procedure, we have the GSW ciphertext

RGSW.Encs̄l−1 (̄s
′
l[ζ]) = Cζ ∈ R2kβl×2k

ql

so that
Cζ s̄l−1 = pe + s̄′

l[ζ]Gs̄l−1.

Since
G =

[
I2k, 2I2k, . . . , 2�log q�I2k

]T

∈ R2kβl×2k
ql

,

let the 2t · k + 1th row of Cζ be ct,ζ ∈ R2k
ql

, so we have

〈ct,ζ , s̄l−1〉 = pet,ζ + 2t−1s̄′
l[ζ] ∈ Rql

for some small et,ζ . This is the evaluation key as (10).

4.5 Packing Ciphertexts

We show that if the underlying single key BGV ciphertexts is batched, we can
get a batched multi-key FHE scheme. The extended ciphertext c̄ = (c1| . . . |ck) ∈
R2k

ql
has O(n) plaintext slots if the plaintext μ ∈ Rp has O(n) slots by the Chinese

Remainder Theorem. The O(n)-fold addition gate and the O(n)-fold multipli-
cation gate can be evaluated directly by MKFHE.EvalAdd and MKFHE.EvalMult
since the plaintext space is Rp. In the following we provide the homomorphic
permutation operation. Given the extended ciphertext c̄ ∈ R2k

ql
, we first apply

the automorphisms ρi as (15) to each ring element of c. Since

〈c̄, s̄l〉 = pe + μ + k[X]Φm[X],

we have the equality
〈
c̄[Xi], s̄[Xi]l

〉
= pe[Xi] + μ[Xi] + k[Xi]Φm[Xi].

In view of Φ(X) divides Φ(Xi) for i ∈ Z
∗
m, c̄[Xi] ∈ R2k

ql
is an encryption of

μ[Xi] under the key s̄[Xi]. So the homomorphic permutation is completed by
KeySwitching and get an level-(l − 1) ciphertext which encrypts μ[Xi] under the
key s̄l−1.

In this case, the evaluation key generation material for the jth party should
also include the RGSW.Enc

(
sl,j [Xi], ptl−1,j

)
for i ∈ Z

∗
m. By applying the GSW

ciphertext extension and extracting certain rows, we can successfully compute
the evaluation key

τs̄′
l[X

i]→s̄l−1 = {Kt,ζ}t=1,...,βl;ζ=1,...,4k2

for Kζ ∈ R2k
ql

such that 〈Kt,ζ , s̄l−1〉 = peζ + 2t−1s̄′
l[ζ][Xi] ∈ Rql

.
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4.6 Analysis

An analysis of the evaluation key generation procedure is as follows.

Lemma 3. Assume the noise in each Φi,l,j and Ψi,l,j is bounded by B, and k is
the number of the parities involved in the evaluation. The noise of each evaluation
key in (11) is bounded by Õ(nk)B2.

Proof. For βl = �log ql� + 1, if the noise in each Φi,l,j and Ψi,l,j is bounded
by B, the noise in each Φ̄i,l,j and Ψ̄i,l,j is bounded by βlB

2 (canonical norm).
According to Corollary 1, the noise in Φ̄βl(t−1)+ι,l,j � Ψ̄βl(t′−1)+ι,l,j′ is bounded
by O(nkβl)B2. So the noise in ciphertext RGSW.Encs̄l−1 (̄sl[ζ] · s̄l[ζ ′]) in (12) is
bounded by O(nkβ2

l B2). The final evaluation key in (10) is just derived from the
RGSW.Encs̄l−1 (̄sl[ζ]· s̄l[ζ ′]), so the bound of noise is also O(nkβ2

l )B2 = Õ(nk)B2.
��

An analysis of the homomorphic operation procedure is as follows.

Definition 6. We say an (extended) BGV ciphertext c̄ ∈ R2k
ql

(k ≥ 1) encrypts
μ ∈ Rp under a key s̄l ∈ R2k

ql
if 〈c̄, s̄l〉 mod ql = pe + μ.

Lemma 4. If the (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

(k ≥ 1) encrypt μ1, μ2 ∈
Rp, respectively, under a key s̄l ∈ R2k

ql
, the extended ciphertext c̄1 + c̄2 ∈ R2k

ql

encrypts μ1 + μ2 ∈ Rp under the decryption key s̄l ∈ R2k
ql

.

Lemma 5. If the (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

(k ≥ 1) encrypt μ1, μ2 ∈
Rp, respectively, under the decryption key s̄l ∈ R2k

ql
, the extended ciphertext

c̄1 ⊗ c̄2 ∈ R4k2

ql
encrypts the μ1 · μ2 ∈ Rp under the key s̄′

l = s̄l ⊗ s̄l ∈ R4k2

ql
.

Moreover, given the evaluation key as (10) where the canonical norm of et,ζ is
bounded by B, we can use SwitchKey(τs̄′

l→s̄l−1 , c̄1 ⊗ c̄2) to get c̄∗ ∈ R2k
ql

which
encrypts μ1 · μ2 ∈ Zp under the key s̄l−1 ∈ R2k

ql
with the noise bounded by

O(k2βl) · B. Here

s̄l−1 = (sl−1,j1 |sl−1,j2 | · · · |sl−1,jk
) ∈ R2k

ql
, (13)

where sl−1,j is the key of the jth party to decrypt level-(l − 1) ciphertexts and
the first entry of sl−1,j is 1.

Assuming the noise in the public key ptj and the evaluation key generation
material emj is bounded by B, the noise in the evaluation key is bounded by
Õ(kn)·B according to Lemma 3. If the level-l ciphertexts have a noise bounded by
Bl, the ciphertexts after homomorphic operations and before modulus switching
have a noise bounded by B2

l + Õ(k3n) · B by Lemma 5. Finally, we apply the
Scale function. The noise is now at most

Bl−1 =
ql−1

ql

(
B2

l + Õ(k3n) · B2
)

+ ηScale,l
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where ηScale,l is an additive term. Let Bl be bounded by Bmax for all l. Also

we let Bmax ≥ 2
(
Õ

(
K3n

) · B2 + ηScale,l

)
for all l and the upper bound of the

parties’ number K, and ql/ql−1 ≥ 2 · Bmax for all l. Then we have

Bl−1 =
ql−1

ql

(
B2

l + Õ(k3n) · B2
)

+ ηScale,l

≤ ql−1

ql
B2

max + Õ(k3n) · B2 + ηScale,l

≤ 1
2 · Bmax

B2
max +

1
2
Bmax

≤ Bmax.

Therefore, it is enough to set Bmax as poly(n,K) and the largest modulus qL as
poly(n,K)L. For approximation factors of the presumed hardness, our scheme
is poly(n,K)L due to the above analysis. So our scheme can similarly bootstrap
as [BGV12].

4.7 Parameters and Comparisons

The comparisons of main properties of various schemes are provided in Tables 1,
2 and 3. To ensure security, we can set the dimension of the underlying (ring-)
LWE problem as n = O(λ log qL) = Õ(λL) for our scheme and n = O(λ) for
previous schemes, where λ is the the security parameter.

Comparison with [LATV12]. The first advantage over [LATV12] is that the
security of our scheme is based on the LWE assumption or the ring-LWE
assumption which is currently supported by a worst-case hardness theorem,
but not on a somewhat non-standard assumption on polynomial rings such as
the decisional small polynomial ratio (DSPR) assumption. The second advan-
tage is that our construction admits a threshold decryption protocol, therefore
can obtain a 2-round MPC, while only a “on-the-fly” MPC can be obtained
from [LATV12]. Moreover, when [LATV12] is modified to avoid the recent sub-
exponential attacks on the NTRU problem, our scheme still holds some advan-
tages in efficiency. In fact, the attacks [ABD16,MSZ16,CJL16] have complexity
2Õ(

√
n/ log q), where n is the degree of the ring, and q is the largest modulus

in the modulus chain. To get security against attacks running in time 2λ, we
need log q > K · L to support noise growth and n > (λKL)2 to thwart the
attacks. This gives public key of size λ2K4L5 and ciphertext of size λ2K3L3 for
[LATV12], while our ring-LWE based scheme has public key of size λ2L6 and
ciphertext of size λkL2.

Comparison with [PS16] and [BP16]. For approximation factors of the presumed
hardness, our scheme is poly(K,n)L due to the above analysis, while [PS16] is
poly(K,n,L)K+L and [BP16] is poly(K,n). Comparing to [BP16], our scheme
needs to take larger dimensions to compensate for larger approximation fac-
tors when L is large. But thanks to the ring element plaintext space and the
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SIMD operations, our construction has much better amortized per-bit timing.
Moreover, when considering the threshold decryption protocol, because of the
Smudging Lemma, [PS16] and [BP16] also need exponential large modulus/error
rate in λ and K as well as our scheme. In this case, [PS16] and [BP16] do not
own an advantage in hardness assumptions when constructing a 2-round MPC
protocol.

Table 1. Main properties comparisons. k denotes the actual number of parties involved
in the evaluation, with a designed bound of K in [PS16]. L denotes the circuit depth
that the scheme is designed to homomorphically evaluate.

Scheme Assumption Public key Ciphertext/plaintext Key hops Batch

[CM15] LWE Õ(λ2L2) Õ(k2λ2L2) Single No

[CM15] ring-LWE Õ(λL2) Õ(k2λL2) Single No

[BP16] LWE Õ(λ3) Õ(kλ) Multiple No

[PS16] scheme #1 LWE Õ(λ(K + L)2) Õ(kλ3(K + L)4) Multiple No

[PS16] scheme #2 LWE/KDM Õ(λ4(K + L)4) Õ(k2λ2(K + L)2) Multiple No

Our scheme LWE Õ(λ3L7) Õ(kλL) Multiple No

Our scheme ring-LWE Õ(λ2L6) Õ(kL) Multiple Yes

Table 2. Complexity of party extension. The meanings of the symbols are as
same as Table 1. t(≥ k) denotes the number of involved ciphertexts in an eval-
uation. The ciphertexts extension in [BP16] denotes the evluation of the circuit
C(x, y) = NAND (Decx(c1),Decy(c2)), and the evaluation key generation is to generate
the extended refresh key. The matrix multiplication is performed by the algorithm in
[WV12], which has complexity of O(n2.37) for n dimensional square matrices. It is hard
to give an exact complexity for multiplication of rectangular matrices with the algo-
rithm in [WV12], so we just provide the upper bound of the complexity by the naive
algorithm.

Scheme Assumption Approximate factor Ciphertexts extension Evaluation key generation

[CM15] LWE poly(K, λ)L t · Õ(kλ4.37L4.37) ***

[CM15] ring-LWE poly(K, λ)L t · Õ(kλL) ***

[BP16] LWE poly(K, λ) Õ(k2λ4) Õ(kλ4.37)

[PS16] scheme #1 LWE poly(K, λ, L)K+L < t · Õ(k2λ4(K + L)4) ***

[PS16] scheme #2 LWE/KDM poly(K, λ, L)K+L < t · Õ(k2λ5(K + L)4) ***

Our scheme LWE poly(K, λ, L)L Õ(1) Õ(k4.37λ4.37L7.37)

Our scheme ring-LWE poly(K, λ, L)L Õ(1) Õ(k3λ3L6)

5 Threshold Decryption and Two Round MPC

We now show how to implement a threshold decryption for the MKFHE con-
struction presented in the previous section, hence a 2-round MPC protocol can
be constructed according to the result of [MW16].
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Table 3. Complexity of evaluation. The meanings of the symbols are as same as
Tables 1 and 2. Also we just provide the complexity of the naive algorithm as the
upper bound of rectangular matrix multiplication complexity.

Scheme Assumption Per gate complexity Overhead

[CM15] LWE Õ(k2.37λ2.37L2.37) Õ(k2.37λ2.37L3.37)

[CM15] ring-LWE Õ(k3λL2) Õ(k3λL2)

[BP16] LWE Õ(k2λ4) Õ(k2λ4)

[PS16] scheme #1 LWE < Õ(k2λ5(K + L)7) < Õ(k2λ5(K + L)7)

[PS16] scheme #2 LWE/KDM Õ(k2.37λ2.37(K + L)2.37) Õ(k2.37λ2.37(K + L)2.37)

Our scheme LWE Õ(k3λ3L5) Õ(k3λ3L5)

Our scheme ring-LWE Õ(k2λL3) Õ(k2L2)

5.1 Definitions

Definition 7 [MW16]. A Threshold multi-key FHE scheme (TMKFHE) is a
MKFHE scheme with two additional algorithms MFHE.PartDec, MFHE.FinDec
described as follows:

– ρi ← MFHE.PartDec(ct, (pk1, . . . , pkK), i, ski): On input an expanded cipher-
text under a sequence of K keys and the i-th secret key, output a partial
decryption ρi.

– μ ← MFHE.FinDec(ρ1, . . . , ρK): On input K partial decryption, output the
plaintext μ.

Along with the properties of multi-key FHE we require the scheme to satisfy the
following properties.

Correctness. The following holds with probability 1:

MKFHE.FinDec(ρ1, . . . , ρN ) = C(μ1, . . . , μh)

where {ρi ← MKFHE.PartDec(ct, (pk1, . . . , pkK), i, ski)}i∈[K] are the partial
decryptions and ct is the final output ciphertext by the evaluation algorithm
for the circuit C.

Simulatability. There exists a PPT simulator Sthr which, on input index i ∈
[K], all but the i-th keys {skj}j∈[K]/{i}, the evaluated ciphertext ct and the
output message μ := C(μ1, . . . , μh), produces a simulated partial decryption
ρ′

i ← Sthr
(
μ, ct, i, {skj}j∈[K]/{i}

)
such that

ρi ≈ ρ′
i

where ρi ← MFHE.PartDec (ct, (pk1, . . . , pkN ), i, ski). Note that the randomness
is only over the random coins of the simulator and the MFHE.PartDec procedure,
and all other values are assumed to be fixed (and known).
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Theorem 2 [MW16]. Given any threshold multi-key fully homomorphic scheme
defined as above, one can construct a two-round MPC protocol for any cir-
cuit which achieves honest-but-curious security in the CRS model. Additionally
assuming the existence of NIZKs, then one can construct a two-round MPC pro-
tocol for any circuit which achieves fully malicious security in the UC framework
in the CRS model.

5.2 Construction

We now show how to implement a threshold decryption for the MKFHE con-
struction presented in the previous section. Since Smudging Lemma1 is involved
to ensure the simulatability, we should choose the modulus qL as large as
2O(K,λ,L), which implies the approximate factor for the underlying problem to
be exponentially large. Note that the same problem exists in [MW16] as well.

MKFHE.PartDec(c̄, (pk1, . . . , pkk), i, ski): On input an expanded ciphertext c̄ ∈
R2k

q under a sequence of keys (pk1, . . . , pkk) and the ith secret key at level-l
sl,i ∈ R2

q , do the following:

– Parse c̄ as a concatenation of k sub-vectors ci ∈ R2
q such that c̄ = (c1| . . . |ck).

– Then compute γi = 〈si, ci〉 ∈ Rq and output ρi = γi + esm
i ∈ Rq, where each

coefficient of the random “smudging noise” esm
i is uniformly sampled from

[−Bdec
smdg, B

dec
smdg] for Bdec

smdg = 2λBmax and Bmax = Õ(λK).

MFHE:FinDec(p1, . . . , pk): Given ρ1, . . . , ρk, compute the sum ρ :=
∑k

i=1 ρi. Out-
put μ := ρ mod p.

5.3 Correctness and Simulation Security

Theorem 3. The above threshold decryption procedures for MKFHE satisfy the
correctness and the (statistical) simulation security.

Correctness. The entire scheme is the same as MKFHE except the decryption.
If C is an evaluated ciphertext encrypting a bit μ and the secret keys are s̄l =
(sl,1, . . . , sl,k), by the correctness analysis of the non-threshold MKFHE, we have

〈s̄l, c̄〉 =
∑
i∈[k]

〈sl,i, ci〉 = μ + pe,

where ‖e‖∞ ≤ K · B0. Therefore, if the partial decryptions ρi are computed as
above, we have ∑

i∈[k]

ρi =
∑
i∈[k]

γi + p
∑
i∈[k]

esm
i

=
∑
i∈[k]

〈sl,i, ci〉 + pesm

= μ + pe + pesm,

(14)
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where esm =
∑

i∈[k] e
sm
i has norm ‖esm‖∞ ≤ K · Bdec

smdg ≤ K · 2O(λ)Bmax and
e has norm ‖e‖∞ ≤ Bmax. If we set q0 = 4K · 2λBmax, then ‖e0 + esm‖ < q/4
and the correctness holds immediately.

Simulatability. The simulator Sthr
(
μ, ĉ, i, {sl,j}j∈[k]/{i}

)
takes as inputs the

secrets keys {sl,j}j∈[k]/{i}, the evaluated ciphertext ĉ ∈ R2k
q and the output

value μ = C(μ1, . . . , μk) encrypted in ĉ. It outputs the simulated partial decryp-
tion as

ρ′
i = μ + pesm

i − p
∑
i�=j

γi

for esm ∈ [−Bdec
smdg, B

dec
smdg] where γi = 〈sl,i, ci〉. To see the indistinguishability,

note that if ρi = γi + esm
i is the real partial decryption then according to (14)

ρi = μ + pe + pesm
i − p

∑
i�=j

γi.

The difference between the real value ρi and the simulated value ρ′
i is the noise

e of norm ‖e‖∞ ≤ Bmax. By Lemma 1, the distributions of esm
i and esm

i + e
are statistically close since each coefficient of esm

i is uniformly sampled from
[−Bdec

smdg, B
dec
smdg] where Bdec

smdg = 2λBmax, so that Bdec
smdg/‖e‖∞ ≥ 2λ. Therefore,

the simulated partial decryption and the real one are statistically indistinguish-
able.

6 Conclusion

In this paper, we show the multi-hop multi-key FHE can be achieved from the
BGV scheme. Therefore, the scheme inherits the advantages of the BGV scheme,
for example, it can encrypt a ring element as the plaintext and support the CRT-
based packed ciphertexts technique. Moreover, the complexity of the ciphertext
extension procedure in out scheme is dependent only on the number of involved
secret keys but not on the number of ciphertexts.
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A The BGV Cryptosystem

In this section, we revisit the BGV scheme from [BGV12]. As explained in the
introduction, our MKFHE is based on the BGV FHE scheme.
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A.1 Modulus Switching

In the BGV LFHE scheme, since the noise term grows with homomorphic opera-
tions of the cryptosystem, switching modulus from qi+1 to qi is used to decrease
the noise term roughly by the ratio qi+1/qi.

– ModulusSwitch(c, i): The operation takes a ciphertext c = (c0, c1) defined
modulo qi as input, and produces a ciphertext c′ = (c′

0, c
′
1) defined modulus

qi−1, such that [c0 − z · c1]qi
≡ [c′

0 − z · c′
1]qi−1 (modp). Then change the level

tag from i to i − 1.

The Modulus Switching procedure makes use of the function Scale(x, q, q′)
that takes an element x ∈ Rq as input and returns an element y ∈ Rq′ such
that in coefficient representation it holds that y ≡ x(modp), and y is the closest
element to (q′/q) · x that satisfies this mod-p condition for p � q. The details
are available in [BGV12,GHS12c]. Once we have a level-0 ciphertext ct, we can
no longer use modulus switching technique to reduce the noise. Then the boot-
strapping technique is needed to regain a fresh cipher.

Lemma 6 [BGV12,GHS12c]. Let qi > qi−1 > p be positive integers satisfying
qi = qi−1 = 1( mod p). Let c,s be two ring elements over R = Z[X]/Φm(X)
such that

‖c · s‖can
qi

< qi/2 − qi

qi−1
pn · φ(m)‖s‖can,

and let c′ = Scale(c, qi, qi−1, p). Denoting e = cs mod Φm(X) and e′ = c′s
mod Φm(X) (arithmetic in Z[X] = Φm(X)), it holds that e mod qi−1 mod p ≡
e′ mod qi mod p in coefficient representation, and

‖e′‖can
qi−1

<
qi−1

qi
· ‖e‖can

qi
+ pn · φ(m) · ‖s‖can.

A.2 Key Switching

After some homomorphic evaluation operations, we have on our hands not a
“normal” ciphertext which is valid relative to a “normal” secret key, but an
“extended ciphertext” which is valid with respect to an “extended secret key”.
Let β = �log q� + 1. The key switching approach consists of two procedures, i.e.,

– SwitchKeyGen(s1 ∈ Rk
q , s2 = (1,−z2)T ∈ R2

q): Compute s = Powersof2(s1) ∈
Rkβ

q , sample k·β ring-LWE instances (ai, aiz2+pei), i = 1, · · · , kβ, and output

τs1→s2 := {Ki = (aiz2 + pei + s[i], ai) ∈ R2
q}i=1,··· ,kβ .

– SwitchKey(τs1→s2 , c ∈ Rk
q ): Since c̄ = BitDecomp(c), output

c′ =
∑

i

c̄[i]Ki

as the new ciphertext under the secret key s2. The correctness requires that
〈Ki, s2〉 = pe + Powersof2(s1)[i] for a small norm e.
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A.3 BGV LFHE Scheme

Following we list the basic algorithms of BGV schemes. See [BGV12,GHS12c] for
details. Specifically, the BGV scheme is parameterized by a sequence of decreas-
ing module qL � qL−1 � · · · � q0, and an “level-l ciphertext” in the scheme is
c = (c0, c1) ∈ R2

ql
. Let βl = �log ql� + 1 for l = L, . . . , 0. After each homomor-

phic operation, modulus ql at level-l is switched to ql−1 at level-l − 1. Also, the
corresponding secret key is switched.

BGV.KeyGen(1λ, 1L): Given the security parameter λ and L, choose the noise
distribution χ = χ(λ,L) which is a B-bounded distribution over R, L decreasing
module qL � qL−1 � · · · � q0 for each level, and a small integer p coprime with
all ql’s. For l from L down to 0, do the following:

1. Choose a vector zl ← χ, and set sl := (1,−zl)T ∈ R2
ql

.
2. Generate ring-LWE instances ptl := (bl = al · zl + pel mod ql, al) ∈ R2

ql
for

al ∈ Rql
, set ptl as the level-l public key relative to the secret key sl.

3. Set s′
l = sl ⊗ sl ∈ R4

ql
, run τs′

l→sl−1 ← SwitchKeyGen(s′
l, sl−1) (omit this step

when l = 0).

The public key is pk = {ptl}l∈{L,...,0}, the evaluation key is evk = {τs′
l→sl−1}l∈[L]

and the secret key is sk = {sl}l∈{L,...,0}.

BGV.Enc(pk, μ): To encrypt an element μ ∈ Rp, choose two random elements
r, e ← χ and output level-L ciphertext c = (c0, c1) ∈ R2

qL
where

c0 = rbL + pe + μ ∈ RqL
and c1 = raL ∈ RqL

.

BGV.Dec(sk, c, l): Given a level-l ciphertext c = (c0, c1) ∈ R2
ql

, compute

μ = 〈c1, sl〉 mod ql mod p.

BGV.HomAdd(evk, c1, c2): Take two ciphertexts c1 and c2 at the same level-l
under the same sl as inputs (If needed, use SwitchKey and ModulusSwitch to
make it so). First, compute c1 + c2 mod ql and pad zeros to get c′

3 ∈ R4
ql

under
the key s′

l := sl ⊗sl. Second, use SwitchKey(τs′
l→sl−1 , c

′
3) to generate a ciphertext

c̄3 under the secret key sl−1 (s′
l’s coefficients include all of sls since s′

l = sl ⊗ sl

and sl’s first coefficient is 1). Third, compute c3 = ModulusSwitch(c̄3, l).

BGV.HomMult(evk, c1, c2): Take two ciphertexts c1 and c2 at same level-l under
the same sl as inputs (If needed, use SwitchKey and ModulusSwitch to make it
so). First, compute c̃3 = c1 ⊗ c2 under the secret key s′

l = sl ⊗ sl. Second, use
SwitchKey(c̃3, τs′

l→sl−1 , ql) to generate a ciphertext c′
3 under the secret key sl−1.

Third, compute c3 = ModulusSwitch(c′
3, l).
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A.4 Packing Ciphertexts

Let p be a prime integer, coprime to m, and Rp be the localisation of R at p. The
polynomial Φm(X) factors modulo p into k(R) irreducible factors, i.e., Φm(X) ≡∏k(R)

i=1 Fi(X)(mod p). Each Fi(X) has degree d(R) = φ(m)/k(R), where d(R) is
the multiplicative order of p in Z

∗
m. In the packed ciphertext scheme, each of

these k(R) factors corresponds to a “plaintext slot”, i.e.

Rp
∼= Zp[X]/F1(X) × · · · × Zp[X]/Fk(R)(X) ∼= (F

pd(R) )k(R)
.

More precisely, we have k(R) = |Z∗
m/ 〈p〉 | isomorphisms

ψi : Zp[X]/Fi(X) → F
pd(R) , i = 1, . . . , k(R),

that allow to represent k(R) plaintext elements of Fpd as a single element in Rp.
By the Chinese Remainder Theorem, addition and multiplication correspond to
the SIMD operations on the slots, which allows us to process k(R) input values
at once.

Beyond addition and multiplications, we can also manipulate elements in Rp

using a set of automorphisms on Rp of the form a(X) �→ a(Xj), or in more detail

ρj : Rp → Rp, a (X) + (p, Φm (X)) �→ a
(
Xj

)
+ (p, Φm (X)) (j ∈ Z

∗
m) . (15)

Actually, the Galois group Gal(Q[X]/Φm(X)) consists of all the transforma-
tions X �→ Xi for i ∈ Z

∗
m, hence there are exactly φ(m) of them. Specifically,

Gal(Q[X]/Φm(X)) contains a subgroup G = {(X �→ Xpi

) : j = 0, 1, . . . , d − 1}
corresponding to the Frobenius automorphisms modulo p. This subgroup does
not permute the slots at all, but the quotient group H = Gal/G does. Clearly,
G has order d and H has order φ(m)/d = k. We can homomorphically evaluate
these automorphisms by applying them to the batched BGV ciphertext elements
and then preforming a “key switching”. As discussed in [GHS12b], the combi-
nations of automorphisms in H can induce any permutations on the plaintext
slots.

Theorem 4 [GHS12b]. Let l, t, ω and W be parameters. Then any t-gate fan-
in-2 arithmetic circuit C with average width ω and maximum width W , can be
evaluated using a network of O (�t/l� · �l/w� · log W · poly log(l)) l-fold gates of
types l-Add, l-Mult, and l-Permute. The depth of this network of l-fold gates is
at most O(log W ) times that of the original circuit C, and the description of the
network can be computed in time Õ(t) given the description of C.

Using this theorem, Gentry et al. showed, as the batched BGV scheme with
bootstrapping [BGV12], the total overhead is polylogarithmic in the security
parameter.
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Abstract. Database management systems that operate over encrypted
data are gaining significant commercial interest. CryptDB is one such
notable system supporting a variety SQL queries over encrypted data
(Popa et al., SOSP ’11). It is a practical system obtained by utilizing a
number of encryption schemes, together with a new cryptographic prim-
itive for supporting SQL’s join operator.

This new primitive, an adjustable join scheme, is an encoding scheme
that enables to generate tokens corresponding to any two database
columns for computing their join given only their encodings. Popa
et al. presented a framework for modeling the security of adjustable
join schemes, but it is not completely clear what types of potential
adversarial behavior it captures. Most notably, CryptDB’s join opera-
tor is transitive, and this may reveal a significant amount of sensitive
information.

In this work we put forward a strong and intuitive notion of security
for adjustable join schemes, and argue that it indeed captures the secu-
rity of such schemes: We introduce, in addition, natural simulation-based
and indistinguishability-based notions (capturing the “minimal leakage”
of such schemes), and prove that our notion is positioned between their
adaptive and non-adaptive variants.

Then, we construct an adjustable join scheme that satisfies our notion
of security based on the linear assumption (or on the seemingly stronger
matrix-DDH assumption for improved efficiency) in bilinear groups.
Instantiating CryptDB with our scheme strengthens its security by
providing a non-transitive join operator, while increasing the size of
CryptDB’s encodings from one group element to four group elements
based on the linear assumption (or two group elements based on the
matrix-DDH assumption), and increasing the running time of the adjust-
ment operation from that of computing one group exponentiation to
that of computing four bilinear maps based on the linear assumption (or
two bilinear maps based on the matrix-DDH assumption). Most impor-
tantly, however, the most critical and frequent operation underlying our
scheme is comparison of single group elements as in CryptDB’s join
scheme.
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1 Introduction

Database management systems operating over encrypted data are gaining signif-
icant commercial interest. CryptDB, designed by Popa et al. [37–40], is one such
notable system that supports a variety of SQL queries over encrypted databases.
It is a practical system offering a throughput loss of only 26% as compared to
MySQL. We refer the reader to CryptDB’s project page for the growing list
of companies and organizations that have already either adopted CryptDB or
designed similar systems directly inspired by CryptDB.1

CryptDB operates in a setting that consists of two main parties, a proxy
and a server, with the goal of enabling the server to execute SQL queries on
encrypted data almost as if it were executing the same queries on the data itself.
The only difference is that the operators corresponding to the SQL queries,
such as selections, projections, joins, aggregates, and orderings, are performed
using possibly modified operators (see, for example, [18,19,23–25,28] and the
references therein, as well as our discussion in Sect. 1.3, for additional approaches
and systems for executing SQL queries on encrypted data).

Specifically, for our purposes it is sufficient to consider a proxy that holds
a secret key sk, and a server that holds a database encrypted using sk. Such a
database consists of a number of tables, where each table consists of several data
records that are vertically-partitioned into columns. Whenever the proxy would
like the server to execute an SQL query, it uses its secret key sk for generating a
token allowing the server to execute the given query over the encrypted database.
This is realized in CryptDB by utilizing a number of existing encryption schemes,
together with a new cryptographic primitive for supporting SQL’s join operator
(see Fig. 1 for a simplified description of SQL’s join operator2).

Adjustable join schemes. Supporting SQL’s join operator within CryptDB
is essentially equivalent to identifying the matching pairs of values for two
encrypted columns, and this has motivated Popa et al. to introduce the notion of
an adjustable join scheme. This is a symmetric-key encoding scheme supporting
the following two operations: (1) Given the secret key sk it is possible to generate
an encoding Encsk(m, col) of any message m relative to any column label col, and
(2) given the secret key sk it is possible to generate a token TokenGensk(col, col′)
enabling to compute the join of any two given columns labeled by col and col′

(we refer the reader to Sect. 3 for the formal definition of such schemes). Popa
and Zeldovich initiated the study of adjustable join schemes, and presented the
first construction of such a scheme, which they have incorporated into the design
of CryptDB.

The security of CryptDB’s adjustable join. In terms of functionality, a
server that is given an encrypted database and a token for computing the join

1 CryptDB’s project page is available at css.csail.mit.edu/cryptdb.
2 The example described in Fig. 1 considers the inner join operator, and we note that

all of our contributions in this work equally apply to various other join operators,
such as right join, left join, full join, and self join.

http://css.csail.mit.edu/cryptdb
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of two columns, should be able to identify all pairs of encodings from these two
columns that correspond to identical messages. At the same time, in terms of
security, we would like the server not to learn any additional information. Gener-
ally speaking, this intuitive requirement can be viewed as a specific instantiation
of the security requirement underlying private-key two-input functional encryp-
tion (e.g., [5,7,21]): Encryption of messages m1, . . . , mk and functional keys
corresponding to functions f1, . . . , fn should not reveal any information other
than the values {f�(mi,mj)}i,j∈[k],�∈[n].

Popa and Zeldovich [40] formalized a specific notion of security for adjustable
join schemes, aiming to capture the above intuitive requirement, and proved that
CryptDB’s adjustable join scheme indeed satisfies their notion. However, unlike
the recently-introduced security notions for private-key functional encryption, it
is not completely clear what types of potential adversarial behavior it actually
captures.

Most notably, due to efficiency considerations, Popa et al. have chosen to
consider a notion of security that does not capture transitivity: For any three
columns coli, colj and colk, tokens for computing the joins between coli and
colk and between colk and colj should ideally not allow computing the join
between coli and colj . Moreover, it is not only that their notion does not capture
transitivity, but in fact CryptDB’s adjustable join scheme is indeed transitive
by design due to efficiency considerations: Given tokens for computing the joins
between coli and colk and between colk and colj , it is easy to compute the join
between columns coli and colj .

Using our example from Fig. 1, this means that given a token for computing
the join between the “Students” and “Terrorists” tables (via their “Name” col-
umn), and a token for computing the join between the “Terrorists” and “Firearm
Holders” tables (again via their “Name” column), the CryptDB server learns that
the “Students” and “Firearm Holders” tables have matching records which were
not included in the results of these two join operations (those matching records
belong to David – who is not a terrorist). This may leak significantly more
information than one would expect when executing SQL queries over encrypted
databases (specifically, in our example, this leaks the fact that among the non-
terrorist students there is a student that has two firearms in his or her posses-
sion).

In light of the growing commercial interest in CryptDB and in various other
similar systems, this state of affairs suggests that a more in-depth security treat-
ment of adjustable join schemes is required, and raises the concrete goal of
strengthening the security of CryptDB’s adjustable join scheme. Offering a new
trade-off between the security of CryptDB and its efficiency is of significant
importance especially given the various recent attacks on CryptDB and other
similar systems (see, for example, [22,31,35,41]).

1.1 Our Contributions

In this work we first put forward a fine-grained definitional framework for
adjustable join schemes. Then, we design a new adjustable join scheme for
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Name DoB
Alice 05/02/1995
Bob 31/01/1997
Carol 10/03/1989
David 27/01/1996

Name Address
Alice Apple St.
Erin Eagle Ave.
Tom Trees Blvd.

Name Purchase Date
David 08/10/2013
Alice 21/10/2013
Frank 21/03/2015
Erin 17/06/2015
David 21/11/2015
Erin 30/12/2017

Name DoB Address
Alice 05/02/1995 Apple St.

Students Table Terrorists Table Firearm Holders Table

Name Address Purchase Date
Alice Apple St. 21/10/2013
Erin Eagle Ave. 17/06/2015
Erin Eagle Ave. 30/12/2017

Fig. 1. SQL’s join operator takes as input two tables, and one or more column labels,
and outputs all records that have matching values with respect to the given column
labels. There are different types of join operators, depending on the subset of the data
records one would like to select from the two given tables. The above example shows
the result of joining the “Students” and “Terrorists” tables via their “Name” column,
and joining the “Terrorists” and “Firearm Holders” tables via their “Name” column.

CryptDB that satisfies our strong notions of security, thus offering a new trade-
off between the security of CryptDB and its efficiency. In addition, we discusses
various extensions of our scheme (e.g., supporting multi-column joins), which can
be used for fine-tuning its efficiency, while providing different levels of security,
ranging from the security guarantees of CryptDB’s join scheme to the stronger
security guarantees of our new scheme.

Although our strengthening of CryptDB’s security does not directly mitigate
the recent attacks on CryptDB (e.g., [35,41]), our new trade-off constitutes a
first step towards demonstrating that the security of CryptDB (and, potentially,
of other similar systems) can be gradually improved in various aspects. Given
the promising applications of such systems and the growing commercial interest
in such systems, obtaining a better understanding of such potential trade-offs is
an important goal.

We emphasize that an adjustable join scheme is a general and system-
independent cryptographic primitive. Although our work is motivated by
CryptDB, adjustable join schemes can be used by any database system that
would like to support join queries over encrypted data, and not only by CryptDB
(see, for example, [18,19,25,28] and the references therein). Moreover, while our
specific construction is designed to be compatible with that of CryptDB, our
framework for modeling and defining the security of adjustable join schemes is
completely system-independent and is rather likely to find additional applica-
tions in various other database systems.
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Strengthening the definitional framework. We put forward strong and
realistic notions of security for adjustable join schemes, identify the relations
among them, and their relations to the notion of security suggested by Popa and
Zeldovich [40].

Specifically, we first extend the notion of security considered by Popa and
Zeldovich (which we denote by 2Partition) that does not capture transitivity due
to efficiency considerations, into a new notion (which we denote by 3Partition)
that does capture transitivity. At a first glance, our new notion may still seem
rather arbitrary, and it is not immediately clear what types of potential adver-
sarial behaviour it actually captures.

Then, we show that our new notion indeed captures the security of adjustable
join schemes: We formalize new simulation-based and indistinguishability-based
notions of security, capturing the “minimal leakage” of adjustable join schemes,
and prove that 3Partition is positioned between their adaptive variants and non-
adaptive variants (i.e., we prove that their adaptive variants imply 3Partition,
and that 3Partition implies their non-adaptive variants). We refer the reader to
Fig. 2 for an illustration of our notions of security and the relations among them,
and to Sect. 1.2 for an overview of our new definitional framework.

Constructing a non-transitive adjustable join scheme. We construct an
adjustable join scheme that satisfies our strong notions of security based on the
linear assumption [4]. Instantiating CryptDB with our scheme strengthens its
security by providing a non-transitive join operator, at the expense of increasing
the size of CryptDB’s encodings from one group element to four group elements,
and increasing the running time of the adjustment operation from that of com-
puting one group exponentiation to that of computing four bilinear maps. Most
importantly, however, our join operation (which is typically much more frequent
than the adjust operation) relies on one comparison of single group elements as
in CryptDB.

Moreover, by relying on the seemingly stronger matrix-DDH assumption due
to Escala et al. [16], we obtain a significant improvement to the efficiency of our
scheme while still satisfying our strong notion of security. Specifically, basing
our scheme on the matrix-DDH assumption results in increasing the size of
CryptDB’s encodings from one group element to only two group elements, and
increasing the running time of the adjustment operation from that of computing
one group exponentiation to that of computing only two bilinear maps (see
Sect. 1.4).

1.2 Overview of Our Contributions

In this section we provide a high-level overview of our contributions. First, we
briefly describe the notion of an adjustable join scheme. Then, we discuss the
notion of security considered by Popa and Zeldovich [40] for such schemes, and
CryptDB’s transitive join scheme. Finally, we turn to describe our strengthened
definitional framework, and the main technical ideas underlying our new scheme.
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Fig. 2. An illustration of our notions of security for adjustable join schemes. Solid
arrows represent our claims, and dashed arrows follow by transitivity.

Adjustable join schemes. As discussed above, an adjustable join scheme [40]
is a symmetric-key encoding scheme that enables to generate an encoding c ←
Encsk(m, col) of any message m relative to any column label col, and to generate
a pair of tokens (τ, τ ′) ← TokenGensk(col, col′) enabling to compute the join of
any two given columns labeled by col and col′. The join is computed publicly via
an adjustment algorithm Adj with the following guarantee: For any two column
labels col and col′ with corresponding tokens (τ, τ ′) ← TokenGensk(col, col′), and
for any two messages m and m′, it holds that

m = m′ ⇐⇒ Adj (τ,Encsk (m, col)) = Adj
(
τ ′,Encsk

(
m′, col′

))
.

That is, the scheme adjusts each encoding using its corresponding part of the
token, and compares the resulting encodings. It should be noted that we con-
sider schemes that may adjust both columns, whereas CryptDB’s scheme adjusts
only one of the columns. As far as we can tell, adjusting both columns is fully
compatible with the design of CryptDB, and allows for more flexibility when
designing adjustable join schemes. We refer the reader to Sect. 3.1 for a more
detailed description of adjustable join schemes.

The security of CryptDB’s join scheme. The adjustable join scheme pro-
posed by Popa and Zeldovich [40], as well as the scheme that we proposed in
this work, are based on a deterministic encoding algorithm. Clearly, whenever a
deterministic encoding algorithm is used, an unavoidable leakage is the equality
pattern within each column. When considering, in addition, the functionality of
a join scheme, an additional unavoidable leakage is the equality pattern between
each pair of columns for which a join token was provided (and this leakage is
inherent due to the functionality of the scheme even if the encoding is random-
ized). However, CryptDB’s join scheme leaks significantly more information than
the minimal leakage, and our goal is to avoid any unnecessary leakage (as will
be formally captured by our notions of security).

Specifically, the notion of security introduced by Popa and Zeldovich, that
we denote by 2Partition, considers an experiment in which an adversary may
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adaptively define two disjoint sets of columns, which we refer to as a “left” set
L and a “right” set R. The adversary is given the ability to compute joins inside
L and joins inside R, but it should not be able to compute the join between any
column in L and any column in R.

However, this intuitive requirement does not capture transitivity: Assume
that there is a certain column col∗ that does not belong to either L or R, then
the ability to compute the join between col∗ and columns in L, and to com-
pute the join between col∗ and columns in R, may imply the ability to compute
the join between columns in L and columns in R. Moreover, it is not only that
2Partition does not capture transitivity, but in fact the adjustable join scheme
of Popa and Zeldovich (that satisfies 2Partition) is indeed transitive due to effi-
ciency considerations (recall our example based on Fig. 1). We refer the reader
to Sect. 3.2 for a more detailed discussion of the 2Partition notion and of the
adjustable join scheme of Popa and Zeldovich.

Our definitional framework. As our first step, we introduce a new notion of
security, denoted 3Partition, which strictly extends 2Partition. Our notion con-
siders a partitioning of the columns into three disjoint sets in a manner that
enables it to properly model non-transitive joins. Specifically, we consider adver-
saries that may adaptively define three disjoint sets of columns, which we refer
to as a “left” set L, a “right” set R, and a “middle” set M . The adversary is
given the ability to compute joins inside L, inside M , and inside R, as well as
joins between L and M and between R and M , but it should not be able to
compute the join between any column in L and any column in R.

Intuitively, partitioning the columns into three disjoint sets is inherent when
attacking an adjustable join scheme. Consider, for example, a natural security
notion asking that an adversary should not be able to distinguish encodings of
two databases even when given tokens for computing joins (clearly, this only
makes sense as long as the actual results of the join operations do not triv-
ially distinguish the two databases). Then, we claim that the difference between
the two databases can be gradually divided into small “changes”, each of them
implicitly defines a partition into three disjoint sets: There is the set of columns
that contain this change, the set of columns that are joined with those columns
(and are thus limited to not reveal the difference), and the set of all other columns
(which are not subject to any restrictions).

At this point one may ask whether partitioning the columns into three dis-
joint sets is sufficient for capturing the security of adjustable join schemes, or
whether we should also consider partitioning the columns into more than three
sets. We show that partitioning the columns into three disjoint sets is sufficient,
and that 3Partition indeed captures the security of adjustable join schemes: We
formalize new simulation-based and indistinguishability-based notions of secu-
rity, capturing the “minimal leakage” of adjustable join schemes, and prove that
3Partition in positioned between their adaptive variants and non-adaptive vari-
ants (recall Fig. 2 for an illustration of our notions of security and the relations
among them). We refer the reader to Sect. 4 for a detailed description and analy-
sis of our definitional framework.
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Our adjustable join scheme. Our scheme is inspired by that of Popa [37–40].
Their scheme uses a group G of prime order p that is generated by an element
g ∈ G, and a pseudorandom function for identifying messages and column labels
as pseudorandom Zp elements. The encoding of a message m for a column col
is the group element gacol·xm ∈ G, where acol and xm are the pseudorandom
Zp elements corresponding to col and m, respectively. A token for computing
the join between columns coli and colj is the element τi,j = acoli · a−1

colj
∈ Zp,

and thus it is clear that such tokens enable transitive joins: Given the tokens
τi,k = acoli · a−1

colk
∈ Zp and τk,j = acolk · a−1

colj
∈ Zp, one can efficiently compute

the token τi,j = τi,k · τ−1
k,j .

The main idea underlying our scheme is to introduce additional struc-
ture into both the encodings and the tokens, and to rely on a bilinear map
ê : G×G → GT for computing the adjusted encodings. First, instead of applying
a pseudorandom function for identifying messages and column labels as pseudo-
random Zp elements, we apply a pseudorandom function for identifying mes-
sages as pseudorandom Z

4
p vectors, and column labels as pseudorandom invert-

ible Z
4×4
p matrices. In what follows, for a matrix A = [aij ] ∈ Z

a×b
p we define

gA = [gaij ]ij ∈ G
a×b, and for matrices H = [hij ] ∈ G

a×b and H ′ = [h′
ij ] ∈ G

b×c

we define ê(H,H ′) = [
∏b

k=1 ê(hik, h′
kj)]ij ∈ G

a×c
T (thus, for matrices A and B of

appropriate dimensions it holds that ê(gA, gB) = ê(g, g)AB).
Equipped with this notation, the encoding of a message m for a column

label col is defined as c = gAcolxm ∈ G
4, where xm ∈ Z

4
p and Acol ∈ Rk4(Z4×4

p )
are the pseudorandom vector and matrix associated with m and col, respec-
tively. Our token-generation algorithm takes as input two column labels, coli
and colj , uniformly samples a vector v ← Z

4
p, and outputs the adjustment

tokens g
vTA−1

coli ∈ G
4 and g

vTA−1
colj ∈ G

4. Adjusting an encoding c ∈ G
4 using

a token τ ∈ G
4 is computed as ê(τT, c) ∈ GT , and we prove that correctness

holds with an overwhelming probability: For any two column labels coli and
colj , and for any two messages mi and mj , it holds that mi = mj if and only if

ê(gvTA−1
coli , gAcoli

xmi ) = ê(gvTA−1
colj , gAcolj

xmj ) with all but a negligible probability.
We refer the reader to Sect. 5.1 for the formal description of our scheme.

One may wonder why we use matrices and vectors instead of scalars
(as in [40], as well as in [19,25]). Otherwise, the scheme is trivially broken,
because of the presence of a bilinear map unless rather non-standard assump-
tions are made (such as the new assumption introduced by Furukawa and
Isshiki [19] for the purpose of their analysis). In particular, for distinct mes-
sages m,m′,m′′ and columns coli, colj , an adversary can distinguish between
(gacoli

xm , gacoli
xm′ , gacolj

xm , gacolj
xm′ ) and (gacoli

xm , gacoli
xm′ , gacolj

xm , gacolj
xm′′ ) by

comparing the bilinear image of the first and fourth elements to the bilinear
image of the second and third elements.

Our proof of security. For proving the security of our scheme, we first
observe that the linear assumption [4] implies that the two distributions (gA, gAx,
gB , gBy) and (gA, gAx, gB , gBx) are computationally indistinguishable, where
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A,B ← Z
4×4
p and x, y ← Z

4
p. Intuitively, this enables us to view A and B as

Z
4×4
p matrices corresponding to two different column labels, and x and y as Z

4
p

vectors corresponding to two different messages. Without being explicitly given
a token for computing the join between the columns A and B, an adversary
should not be able to distinguish between an encoding gBx of x to the column
B and an encoding gBy of y to the column B, even when given an encoding gAx

of x to the column A in both cases.
Our proof of security realizes this intuition, showing that given (gA, gAx,

gB, gBy) or (gA, gAx, gB , gBx) as input we can essentially generate an entire
encoding of an adversarially-chosen database, as well as generate all join tokens
of the adversary’s choice, as long as no token is requested for the join of A and
B. Most importantly, although we do not explicitly know either A or B, for any
column C we can generate tokens for computing the join between A and C, and
the join between C and B. The main challenge, however, is that in our 3Partition
notion, the adversary is not limited to only one such pair A and B, and more
generally, we do not know in advance the entire structure of the database or the
pairs of columns for which the adversary will request join tokens.

Recall that our 3Partition notion considers adversaries that may adaptively
define three disjoint sets of columns, which we refer to as a “left” set L, a “right”
set R, and a “middle” set M . The adversary is given the ability to compute joins
inside L, inside M , and inside R, as well as joins between L and M and between
R and M , but it is not given the ability to compute the join between any column
in L and any column in R. We rely on this structure for reusing the matrix A
for all columns in L and for reusing the matrix B for all columns in R, where in
both cases this is done via an appropriate re-randomization. The fact that the
adversary is not allowed to request join tokens between L and R guarantees that
we are able to generate all required join tokens. We refer the reader to Sect. 5.2
for our proof of security.

1.3 Additional Related Work

Supporting join queries over encrypted data. Additional approaches for
supporting join queries over encrypted data include those of Furukawa and Isshiki
[19], Hang et al. [25], and Kamara and Moataz [28] which we now discuss.

Furukawa and Isshiki [19] consider a notion of security for join schemes
which is seemingly weaker compared to our 3Partition notion, and captures non-
transitivity to a certain extent (it is essentially equivalent to a non-adaptive vari-
ant of our 3Partition notion). However, as we pointed out in Sect. 1.1, without
also including more standard indistinguishability-based and simulation-based
notions (as we do in our work), it is far from being clear that such a notion
indeed captures the security of join schemes. Furukawa and Isshiki also propose
a specific scheme that can be viewed as based on a simplified variant of our
scheme where scalars are used instead of matrices and vectors. As discussed in
Sect. 1.2, such a scheme is trivially insecure with respect to our notions of secu-
rity unless rather non-standard assumptions are made (specifically, Furukawa
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and Isshiki introduced a new and non-standard assumption for the purpose of
their analysis).

Hang et al. [25] frame their approach in terms of deterministic proxy re-
encryption. However, they propose a weak notion of security which does not
seem to capture non-transitivity, and their proposed scheme does not satisfy
any of our notions of security (or even the notion of security considered by Popa
and Zeldovich [40]) under any assumption. As far as we can tell, our scheme is
fully compatible with their approach and design goals.

Kamara and Moataz [28] recently proposed the first solution for supporting
SQL queries on encrypted databases that does not make use of deterministic
encodings of the data. Their approach avoids the usage of property-preserving
encryption techniques (that are known to be susceptible to various attacks [22,
31,35]) and of general-purpose primitives such as fully-homomorphic encryption
or oblivious RAM (that are currently somewhat unlikely to lead to practical
schemes). Their scheme provides strong security guarantees, and in particular
a non-transitive join operator. However, their scheme is based on essentially
computing all possible joins in advance, and then the problem can be solved via
symmetric searchable encryption techniques. Thus, their approach both requires
a significant amount of storage (may be quadratic in the size of the database –
and thus potentially impractical), and does not seem to support dynamic updates
to either the structure or the content of the database.

Proxy re-encryption schemes. Proxy re-encryption schemes (e.g., [2,3,27])
have various applications to distributed storage systems. However, the known
constructions and notions of security for proxy re-encryption typically focus
on randomized schemes, and therefore (in general) even after invoking the re-
encryption algorithm it is not directly clear how to compare two encrypted mes-
sages without providing a decryption key – which results in a transitive scheme.
Deterministic variants of proxy re-encryption may support such comparisons, as
suggested by Hang et al. [25] and discussed above.

Private set intersection. Adjustable join schemes are somewhat related to the
classic problem of designing private set-intersection protocols both in terms of
techniques and in terms of security notions. However, in the setting of adjustable
join schemes all elements are encoded using a shared secret key sk, whereas in the
setting of private set-intersection protocols the parties are not assumed to share
any secrets. Moreover, the approach underlying the existing practical protocols
does not seem to rely on establishing shared secrets as part of the protocol (see,
for example, [17,26,36] and the references therein).

Searchable encryption. Adjustable join schemes may also seem somewhat
related to symmetric searchable encryption [1,6,8–15,20,29,30,32,33,42,43].
However, in the setting of symmetric searchable encryption a search token is
associated with a specific message and enables to identify encryptions of that
message, whereas in an adjustable join schemes a join token enables to reveal the
equality pattern between two sets of encryptions. As a result, both our notions
of security and our techniques are significantly different from those of symmetric
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searchable encryption. Nevertheless, it would be intriguing to explore any poten-
tial applications of our techniques to symmetric searchable encryption.

1.4 Extensions and Open Problems

Multi-column joins. Following the work of Popa et al. [37–39] we have consid-
ered joins according to two columns (and thus two tables). Our adjustable join
scheme can in fact be extended to support multi-column joins by modifying its
token-generation algorithm (and without modifying its encoding or adjustment
algorithms). This enables to join multiple tables more efficiently (compared to
successively applying two-column joins), and leads to reducing the space over-
head by using a smaller number of adjusted encodings.

Specifically, our token-generation algorithm can be modified as follows. On
input params = (G,GT , g, p, ê), sk = (K1,K2) and an arbitrary number k = k(λ)
column labels col1, . . . , colk ∈ Lλ, the modified token-generation algorithm uni-
formly samples v ← Z

4
p\{(0, 0, 0, 0)}, computes Acoli = PRFK2(coli) ∈ Rk4(Z4×4

p )

for every i ∈ [k], and outputs the tuple
(
gvTA−1

col1 , . . . , g
vTA−1

colk

)
∈

(
G

4
)k of adjust-

ment tokens. Moreover, we can generate such a multi-join adjustment tokens
even when not all k columns are known in advance, as long as we securely store
the value v (or, possibly, regenerate it using a pseudorandom function), then
compute the value g

vTA−1
coli only when coli is determined.

This allows to reduce space usage (and time as well), by storing adjusted
encodings for cliques of joined columns, instead of storing adjusted encodings
for each pair of them. Moreover, this allows tuning a trade-off between privacy
and efficiency in space and time, by using multiple-column join encodings for
the less sensitive data. At the extreme end, one can store only one column of
adjusted encodings for each column, by using multiple-column encodings for
disjoint sets of columns, and obtain security guarantees that are similar to the
2Partition-security of [40]. Overall, our support for multi-column joins enables to
fine-tune the efficiency of our scheme, while providing different levels of security,
ranging from the security guarantees of CryptDB’s join scheme to the stronger
security guarantees of our new scheme.

Improved efficiency via the matrix-DDH assumption. The security of
our adjustable join scheme is based on the assumption the two distributions
(params, gA, gAx, gB , gBy) and (params, gA, gAx, gB , gBx) are computationally
indistinguishable, where params = (G,GT , g, p, ê) ← G(1λ), A,B ← Rk4(Z4×4

p )
and x, y ← Z

4
p. This assumption is the reason that we increase the size of

CryptDB’s encodings from one group element to four group elements, and
increase the running time of the adjustment operation from that of comput-
ing one group exponentiation to that of computing four bilinear maps.

Claim 2.5 (which we prove in the full version of this paper [34]) states that
this assumption is implied by the linear assumption [4]. The seemingly stronger
U4,2-MDDH assumption due to Escala et al. [16], states that our underlying
assumption holds already for 2 × 2 matrices instead of 4 × 4 matrices. In turn,
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based on the U4,2-MDDH assumption we obtain a more efficient scheme, increas-
ing the size of CryptDB’s encodings from one group element to two group ele-
ments, and increasing the running time of the adjustment operation from that
of computing one group exponentiation to that of computing two bilinear maps.
This more efficient scheme is directly obtained from our scheme by simply mod-
ifying the dimensions of all 4 × 4 matrices and 4 × 1 vectors to dimensions 2 × 2
and 2 × 1, respectively (and without any additional modification to either the
construction or the proof of security).

Adaptive security. Our adjustable join scheme satisfies our strong 3Partition
notion, which considers adversaries that may determine databases of any poly-
nomial size (i.e., databases containing any polynomial number columns and
records). When considering databases with a logarithmic number of columns
(but still allowing any polynomial number of records!), it is possible to prove
that our scheme satisfies our even stronger, adaptive, indistinguishability-based
notion.

This is done by “guessing” the partitioning of the columns into three disjoint
sets, as implicitly defined by the adversary’s token-generation queries within
our adaptive indistinguishability experiment – thus leading to only a polyno-
mial security loss as the number of such partitions is polynomial assuming
that the number of columns is logarithmic (a rather standard argument shows
that the notion of security obtained from 3Partition by not asking the adver-
sary to explicitly partition the columns into three sets, is equivalent to our
adaptive indistinguishability-based notion). Similarly, by relying on the stan-
dard sub-exponential variant of the linear assumption, we can prove adaptive
indistinguishability-based security for databases with any a-priori bounded poly-
nomial number of columns (without requiring any a-priori bound on the poly-
nomial number of records). We leave the task of formalizing these intuitions to
future work. An intriguing open problem is to achieve such a level of security
without relying on sub-exponential assumptions or without an a-priori bound
on the number of columns.

Deterministic vs. randomized encodings. Our encoding algorithm is deter-
ministic similarly and in compatibility with that of CryptDB. An intriguing
open problem is to explore the possibility and the potential advantages of join
schemes that are based on a randomized encoding algorithm. Given the inherent
leakage of the join operation itself, it is not immediately clear that using a ran-
domized encoding algorithm may offer any clear advantage except for avoiding
the inherent leakage of deterministic encoding (i.e., the equality pattern within
each column).

1.5 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce
the basic tools and computational assumptions underlying our contributions.
In Sect. 3 we present the notion of an adjustable join scheme, and discuss the
weakness of the notion of security for such schemes that was put forward by



Strengthening the Security of Encrypted Databases: Non-transitive JOINs 643

Popa and Zeldovich [40]. In Sect. 4 we introduce our new and refined framework
for capturing the security of adjustable join schemes. In Sect. 5 we present our
new adjustable join scheme and prove its security.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . For an
integer n ∈ N we denote by [n] the set {1, . . . , n}, and for two random variables
X and Y we denote by Δ(X,Y ) their statistical distance. The following two
facts follow directly from notion of statistical distance:

Fact 2.1. Let X and Y be two random variables over Ω. Then, for any (possibly
randomized) function f : Ω → Ω′ it holds that Δ(f(X), f(Y )) ≤ Δ(X,Y ).

Fact 2.2. Let X and Y be a random variables over Ω such that Pr[Y = ω] =
Pr[X = ω | Ac] for some event A and for all ω ∈ Ω. Then, it holds that
Δ(X,Y ) ≤ Pr[A].

Throughout the paper, we denote by λ ∈ N the security parameter. A func-
tion ν : N → R

+ is negligible if for every constant c > 0 there exists an
integer Nc such that ν(λ) < λ−c for all λ > Nc. Two sequences of random
variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are statistically indistinguishable
(denoted X≈sY ) if Δ(Xλ, Yλ) is negligible in λ. Two sequences of random vari-
ables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable
(denoted X≈cY ) if for any probabilistic polynomial-time algorithm A it holds
that

∣
∣Prx←Xλ

[A(1λ, x) = 1] − Pry←Yλ
[A(1λ, y) = 1]

∣
∣ is negligible in λ. The fol-

lowing fact follows directly from notion of computational indistinguishability:

Fact 2.3. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be computationally indistin-
guishable. Then, for any probabilistic polynomial-time algorithm A it holds that
A(X) and A(Y ) are computationally indistinguishable.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval)
be a function family with the following syntax:

– PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter λ, and outputs a key K ∈ Kλ.

– PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.
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The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the
function family, respectively. For ease of notation we may denote by PRF.EvalK(·)
or PRFK(·) the function PRF.Eval(K, ·) for K ∈ Kλ. The following is the standard
definition of a pseudorandom function family.

Definition 2.4. A function family PRF = (PRF.Gen,PRF.Eval) is pseudoran-
dom if for every probabilistic algorithm A there exists a negligible function ν(·)
such that

AdvPRF,A(λ) def=
∣
∣
∣
∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr

f←Fλ

[
Af(·)(1λ) = 1

]∣∣
∣
∣

≤ ν(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ

into Yλ.

2.2 Computational Assumptions

Let G be a probabilistic polynomial-time algorithm that takes as input the
security parameter 1λ, and outputs a tuple (G,GT , g, p, ê), where p is a λ-bit
prime number, G and GT are groups of order p, g is a generator of G, and
ê : G × G → GT is a non-degenerate efficiently-computable bilinear map.

For a matrix A = [aij ] ∈ Z
a×b
p we define gA = [gaij ]ij ∈ G

a×b, and for
matrices H = [hij ] ∈ G

a×b and H ′ = [h′
ij ] ∈ G

b×c we define ê(H,H ′) =
[
∏b

k=1 ê(hik, h′
kj)]ij ∈ G

a×c
T (thus, for matrices A and B of appropriate dimen-

sions it holds that ê(gA, gB) = ê(g, g)AB). We denote by Rkr(Za×b
p ) the set of

all a × b matrices over Zp of rank r.
The linear assumption [4] states that for params ← G(1λ), g1, g2, g3 ← G

and r1, r2, r3 ← Zp, the two distributions (params, g1, g2, g3, g
r1
1 , gr2

2 , gr3
3 ) and

(params, g1, g2, g3, g
r1
1 , gr2

2 , gr1+r2
3 ) are computationally indistinguishable. The

security of our scheme relies on the following assumption – which we prove
to follow from the linear assumption:

Claim 2.5. The linear assumption implies that the two distributions
(params, gA, gAx, gB , gBy) and (params, gA, gAx, gB , gBx) are computationally
indistinguishable, where params = (G,GT , g, p, ê) ← G(1λ), A,B ← Rk4(Z4×4

p )
and x, y ← Z

4
p.

As discussed in Sect. 1.4, a variant of the above claim for 2 × 2 matrices
is implied by the matrix-DDH assumption due to Escala et al. [16]. Specifi-
cally, their U4,2-MDDH assumption states that the two distributions (params, gC ,
gCv) and (params, gC , gu) are computationally indistinguishable, where params
= (G,GT , g, p, ê) ← G(1λ), C ← Z

4×2
p , v ← Z

2
p and u ← Z

4
p.

Claim 2.6. The U4,2-MDDH assumption implies that the two distributions
(params, gA, gAx, gB , gBy) and (params, gA, gAx, gB , gBx) are computationally
indistinguishable, where params = (G,GT , g, p, ê) ← G(1λ), A,B ← Rk2(Z2×2

p )
and x, y ← Z

2
p.
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The proof of Claim 2.6 is rather straightforward. Given (params, gC , gu),
where either u ← Z

4
p or u = Cv where v ← Z

2
p, we view C and u as consisting

of two equal-sized matrices and vectors, respectively,

C =
[

A
B

]
, u =

[
w
z

]
,

and rearrange the tuple as (params, gA, gw, gB , gz). Since the probability that
A or B are not invertible is negligible, by Fact 2.2 we may assume that they
are invertible. Now, for x, y ← Z

2
p, it holds that Ax and By are independent,

uniformly distributed, and independent of A and B. So, if u ← Z
4
p, then w and z

are distributed as Ax and By. On the other hand, if u = Cv where v ← Z
2
p, then

w = Av and z = Bv. So, distinguishing between the two ensembles in Claim 2.6
would result in contradicting the U4,2-MDDH assumption.

3 Adjustable Join Schemes and Their Security

In this section we first present the notion of an adjustable join scheme [37–40].
Then, we present the notion of security introduced by Popa and Zeldovich [40]
for such schemes, that we denote by 2Partition, and observe that it does not
guarantee non-transitive joins.

3.1 Adjustable Join Schemes

An adjustable join scheme for a message space M = {Mλ}λ∈N, an encoding
space C = {Cλ}λ∈N and a column label space L = {Lλ}λ∈N, is a 4-tuple Π =
(KeyGen,Enc,TokenGen,Adj) of polynomial-time algorithms with the following
properties:

– The key-generation algorithm, KeyGen, is a probabilistic algorithm that takes
as input a unary representation 1λ of the security parameter λ ∈ N, and
outputs a secret key sk and public parameters params.

– The encoding algorithm, Enc, is a deterministic algorithm that takes as input
a secret key sk, a message m ∈ Mλ and a column label col ∈ Lλ, and outputs
an encoding c ∈ Cλ.

– The token-generation algorithm, TokenGen, is a probabilistic algorithm that
takes as input a secret key sk and two column labels coli, colj ∈ Lλ, and
outputs a pair (τi, τj) of adjustment tokens.

– The adjustment algorithm, Adj, is a deterministic algorithm that takes as
input the public parameters params, an encoding c ∈ Cλ and an adjustment
token τ , and outputs an encoding c′ ∈ Cλ.

Correctness. In terms of correctness, we require that for all sufficiently large
λ ∈ N, and for any two column labels coli, colj ∈ Lλ and two messages mi,mj ∈
Mλ, it holds that

mi = mj ⇐⇒ Adj (params, τi,Encsk (mi, coli)) = Adj (params, τj ,Encsk (mj , colj))
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with an overwhelming probability over the choice of (sk, params) ← KeyGen(1λ)
and (τi, τj) ← TokenGensk(coli, colj).

A comparison with the notion of Popa and Zeldovich [40]. The above
notion of an adjustable join scheme is essentially identical to the one originally
formalized by Popa and Zeldovich [40] except for the following minor difference:
When computing the join of columns i and j, we allow the scheme to apply
the adjustment algorithm to the encodings of column i and to the encodings of
column j, whereas Popa and Zeldovich allow the scheme to apply the adjustment
algorithm only to the encodings of column j. As far as we can tell, applying the
adjustment algorithm to the encodings of both columns is fully compatible with
the design of CryptDB.

3.2 The 2Partition Security Notion and its Weakness

The notion of security introduced by Popa and Zeldovich [40], that we denote by
2Partition, considers an experiment in which an adversary may adaptively define
two disjoint sets of columns, which we refer to as a “left” set L and a “right”
set R. The adversary is given the ability to compute joins inside L and joins
inside R, but it should not be able to compute the join between any column in L
and any column in R. Specifically, at any point in time the adversary can insert
any column to either L or R, and to obtain encodings of messages of her choice
relative to any of these columns. In addition, the adversary may obtain tokens
for computing the join of all columns coli and colj such that coli, colj ∈ L or
coli, colj ∈ R.

The 2Partition notion of security asks that such an adversary should not
be able to compute the join of any two columns coli ∈ L and colj ∈ R. This
is modeled in the experiment by enabling the adversary to output a pair of
messages, m0 and m1, and providing the adversary either with the encodings
of m0 for all columns in R or with the encodings of m1 for all columns in R.
The adversary should not be able to distinguish these two cases with a non-
negligible advantage (of course, as long as the adversary did not explicitly ask
for an encoding of m0 or m1 relative to some column label in R).
A comparison with the notion of Popa and Zeldovich [40]. The above
informal description is in fact a simplification of the notion considered by Popa
and Zeldovich [40], but a straightforward hybrid argument shows that the two
are in fact equivalent (whenever the message space is not too small). Specifically,
whereas in the above description the adversary obtains either encodings of m0

for all columns in R or encodings of m1 for all columns in R, Popa and Zeldovich
provide the adversary with encodings of both m0 and m1 for all columns in R
but in a shuffled order. We refer the reader to [40, Sect. 3.1] for a more formal
description of their notion.
2Partition does not capture transitivity. Intuitively, the 2Partition notion
guarantees that for any two disjoint sets of columns, L and R, the ability to
compute joins inside L and joins inside R, does not imply the ability to compute
the join between any column in L and any column in R. However, this does not
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capture transitivity: Assume that there is a certain column col∗ that does not
belong to either L or R, then the ability to compute the join between col∗ and
columns in L, and to compute the join between col∗ and columns in R, may
imply the ability to compute the join between columns in L and columns in R.

Moreover, it is not only that 2Partition does not capture transitivity, but in
fact the adjustable join scheme of Popa and Zeldovich [40] is completely transitive
(due to efficiency considerations) although it satisfies 2Partition: For any three
columns coli, colj and colk, given tokens for computing the joins between coli
and colk and between colk and colj , it is easy to efficiently construct a token for
computing the join between coli and colj .

Specifically, as pointed out in Sect. 1.2, their scheme uses a group G of prime
order p that is generated by an element g ∈ G, and a pseudorandom function PRF
mapping column labels and messages into Z

∗
p with keys skcol and skmsg, respec-

tively (Popa et al. use a pseudorandom permutation, but in fact any pseudo-
random function suffices as any specific collision occurs with only a negligible
probability whenever the range of the function is of size super-polynomial in the
security parameter). The encoding of a message m for a column coli is the group
element gPRFskcol

(coli)·PRFskmsg (m) ∈ G, and a token for computing the join between
columns coli and colj is the element τi,j = PRFskcol(coli) · PRFskcol(colj)

−1 ∈ Zp.
Thus, it is clear that given the tokens τi,k = PRFskcol(coli) ·PRFskcol(colk)−1 ∈ Zp

and τk,j = PRFskcol(colk) · PRFskcol(colj)
−1 ∈ Zp, one can efficiently compute the

token τi,j = τi,k · τk,j .

4 Strengthening the Definitional Framework

In this section we introduce our new and refined framework for capturing the
security of adjustable join schemes. First, in Sect. 4.1, we introduce a new notion
of security, denoted 3Partition, which strictly strengthens 2Partition. Our notion
considers a partitioning of the columns into three disjoint sets (instead of two
disjoint sets as in the 2Partition notion) in a manner that enables it to properly
model non-transitive joins.

As discussed in Sect. 1.2, partitioning the columns into three disjoint sets
is intuitively inherent for capturing the security of adjustable join schemes. In
Sects. 4.2 and 4.3 we show that partitioning the columns into three sets is indeed
sufficient and captures the security of adjustable join schemes in a natural man-
ner: We formalize natural simulation-based and indistinguishability-based secu-
rity notion, capturing the “minimal leakage” of join schemes without any explicit
partitioning of the columns, and prove that 3Partition in positioned between their
adaptive variants and their non-adaptive variant. Finally, in Sect. 4.4 we include
some additional remarks regarding the standard aspects of column privacy and
leakage of frequency characteristics that arise in our notions of security.

4.1 The 3Partition Security Notion

Our 3Partition notion of security considers an adversary that may adaptively
define three disjoint sets of columns, which we refer to as a “left” set L, a “right”
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set R, and a “middle” set M . The adversary is given the ability to compute joins
inside L, inside M , and inside R, as well as joins between L and M and between
R and M , but it should not be able to compute the join between any column
in L and any column in R. Specifically, at any point in time the adversary can
insert any column to either L, R or M , and to obtain encodings of messages
of her choice relative to any of these columns. In addition, the adversary may
obtain tokens for computing the join of all columns coli and colj such that
coli, colj ∈ L ∪ M or coli, colj ∈ R ∪ M .

The 3Partition notion of security asks that such an adversary should not be
able to compute the join of any two columns coli ∈ L and colj ∈ R. This is
modeled by enabling the adversary to output a pair of messages, m0 and m1,
and providing the adversary either with the encodings of m0 for all columns in
R or with the encodings of m1 for all columns in R. The adversary should not be
able to distinguish these two cases with a non-negligible advantage (of course, as
long as the adversary did not explicitly ask for an encoding of m0 or m1 relative
to some column label in R ∪ M).

Definition 4.1. A join scheme Π = (KeyGen,Enc,TokenGen,Adj) is 3Partition-
secure if for any probabilistic polynomial-time adversary A there exists a negli-
gible function ν(·) such that

Adv3ParΠ,A(λ) def=
∣
∣
∣Pr

[
Exp3ParΠ,A(λ, 0) = 1

]
− Pr

[
Exp3ParΠ,A(λ, 1) = 1

]∣∣
∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment
Exp3ParΠ,A(λ, b) is defined as follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ), and initialize L = R =
M = ∅. The public parameters params are given as input to the adversary A.

2. Pre-challenge query phase: A may adaptively issue AddColumn, Enc and
TokenGen queries, which are defined as follows.
– AddColumn(col, S): Adds the column label col to the set S, where S ∈

{“L”, “R”, “M”}. A is not allowed to add a column label into more than
one set (i.e., the sets L, R and M must always be pairwise disjoint).

– Enc(m, col): Computes and returns to A an encoding c ← Encsk(m, col),
where col ∈ L ∪ R ∪ M .

– TokenGen(coli, colj): Computes and returns to A a pair of tokens (τi, τj)
← TokenGensk(coli, colj), where coli, colj ∈ L ∪ M or coli, colj ∈ R ∪ M .

3. Challenge phase: A chooses messages m0 and m1 subject to the constraint
that A did not previously issue a query of the form Enc(m, col) where m ∈
{m0,m1} and col ∈ R ∪ M . As a response, A obtains an encoding c ←
Encsk(mb, col) for every col ∈ R.

4. Post-challenge query phase: As in the pre-challenge query phase, with the
restriction that A is not allowed to issue a query of the form Enc(m, col) where
m ∈ {m0,m1} and col ∈ R ∪ M . In addition, for each AddColumn(col, “R”)
query, A is also provided with c ← Encsk(mb, col).
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5. Output phase: A outputs a value σ ∈ {0, 1} which is defined as the value of
the experiment.

Our 3Partition notion clearly strengthens the 2Partition notion of Popa and
Zeldovich [40] by considering a partitioning of the column labels into three sets
instead of two sets. Moreover, as shown in Sect. 3.2, the adjustable join scheme of
Popa and Zeldovich is not a 3Partition-secure scheme, although they proved it to
be a 2Partition-secure scheme, and thus our 3Partition notion strictly strengthens
the 2Partition notion.

4.2 Indistinguishability-Based Security Notions

We first introduce some basic notation that will be helpful in formalizing our
indistinguishability-based security notions. A database DB of dimensions dim =
dim(DB) = (t, (ni)t

i=1) consists of a list of distinct column labels, denoted Cols =
Cols(DB) = (col1, . . . , colt), and of a list of distinct messages Li = (mi

1, . . . , m
i
ni

)
for each column label coli ∈ Cols. The size of a database is defined as size(DB) =∑t

i=1 ni (i.e., the total number of messages in DB). We let

V = V (dim) = {(i, k)|i ∈ [t], k ∈ [ni]}

and view the messages of the database as a map m = m(DB) : V → Mλ by
setting m(i, k) = mi

k. A map m is “valid” (i.e., can be a part of a description of
a database) if and only if m(i, k) �= m(i, 
) for all i ∈ [t] and k �= 
 ∈ [ni].

Given an adjustable join scheme Π = (KeyGen,Enc,TokenGen,Adj) we extend
its encoding algorithm from encoding single messages to encoding a complete
database by defining Encsk(DB) = {(i, k,Encsk(m(i, k), coli))}i∈[t],k∈[ni]. Simi-
larly, given a list of pairs of indices I = ((i1, j1), . . . , (is, js)) ∈ ([t] × [t])∗, we
extend its token-generation algorithm by defining

TokenGensk(DB, I) = {(i, j,TokenGensk(coli, colj))}(i,j)∈I .

In addition, for such a list I and a database DB we define

JoinDB(i, j) = {(k, 
) ∈ [ni] × [nj ] : m(i, k) = m(j, 
)} ,

and we define the leakage of (DB, I) to be

L(DB, I) =
(
dim(DB),Cols(DB), I, {(i, j, JoinDB(i, j))}(i,j)∈I

)
.

Non-adaptive IND security. Our non-adaptive indistinguishability-based
notion is perhaps the most simplistic and natural notion: It considers an adver-
sary that obtains the public parameters of the scheme, and then chooses two
databases, DB0 and DB1, and a list I of pairs of indices such that L(DB0, I) =
L(DB1, I) (i.e., the functionality of the scheme does not trivially distinguish
DB0 and DB1). We ask that such an adversary has only a negligible advantage
in distinguishing between (Encsk(DB0),TokenGensk(DB0, I)) and (Encsk(DB1),
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TokenGensk(DB1, I)). That is, the adversary should essentially not be able to
distinguish between an encoding of DB0 and an encoding of DB1, where in both
cases she is given tokens for computing the joins of all column label pairs corre-
sponding to the pair of indices in I.

Definition 4.2 (Non-adaptive IND security). A join scheme Π =
(KeyGen,Enc,TokenGen,Adj) is non-adaptively IND-secure if for any probabilis-
tic polynomial-time adversary A there exists a negligible function ν(·) such that

AdvnaIND
Π,A (λ) def=

∣
∣
∣Pr

[
ExpnaIND

Π,A (λ, 0) = 1
]

− Pr
[
ExpnaIND

Π,A (λ, 1) = 1
]∣∣
∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment
ExpnaIND

Π,A (λ, b) is defined as follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters
params are given as input to the adversary A.

2. Challenge phase: A chooses two databases, DB0 and DB1, and a list I of
column label pairs such that L(DB0, I) = L(DB1, I). As a response, A obtains
Encsk(DBb) and TokenGensk(DBb, I).

3. Output phase: A outputs a value σ ∈ {0, 1} which is defined as the value of
the experiment.

The following claim, which is proved in the full version of this paper [34],
states that non-adaptive IND security is implied by 3Partition security.

Claim 4.3. Any 3Partition-secure join scheme that supports a message space
of super-polynomial size (in the security parameter λ ∈ N) is a non-adaptively
IND-secure join scheme.

Adaptive IND security. We consider an adaptive flavor of Definition 4.2 by
considering adversaries that can adaptively issue encoding queries and token-
generation queries. Each encoding query consists of a pair of messages, m0 and
m1, and a column label col, and the adversary obtains an encoding Encsk(mb, col)
(where b ∈ {0, 1} is fixed throughout the experiment). The adversary’s encoding
queries define two databases, DB0 and DB1, of the same dimension that have the
same column label set. Each token-generation query consists of a pair of column
labels, and the adversary obtains a token for computing the join of these columns.
The adversary’s token-generation queries define a set I of all column label pairs
for which the adversary has obtained tokens. Such an adversary is called “valid”
if at the end of the experiment it holds that L(DB0, I) = L(DB1, I).

Definition 4.4 (Adaptive IND security). A join scheme Π = (KeyGen,Enc,
TokenGen,Adj) is IND-secure if for any probabilistic polynomial-time valid adver-
sary A there exists a negligible function ν(·) such that

AdvIND
Π,A(λ) def=

∣
∣
∣Pr

[
ExpIND

Π,A(λ, 0) = 1
]

− Pr
[
ExpIND

Π,A(λ, 1) = 1
]∣∣
∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment
ExpIND

Π,A(λ, b) is defined as follows:
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1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters
params are given as input to the adversary A.

2. Query phase: A may adaptively issue Enc and TokenGen queries, which are
defined as follows.
– Enc(m0,m1, col): Computes an encoding c ← Encsk(mb, col), and returns

c to A.
– TokenGen(coli, colj): Computes a token (τi, τj) ← TokenGensk(coli, colj),

and returns (τi, τj) to A.
3. Output phase: A outputs a value σ ∈ {0, 1} which is defined as the value of

the experiment.

The following claim states that adaptive IND security implies 3Partition
security.

Claim 4.5. Any adaptively IND-secure join scheme is a 3Partition-secure join
scheme.

The proof of Claim 4.5 is straightforward, as the IND-security experiment is
essentially less restrictive than the 3Partition-security experiment. Specifically,
given an adversary to the 3Partition-security experiment we can construct an
adversary to the IND-security experiment (having the exact same advantage) as
follows:

– All queries of the form AddColumn(col, S) are ignored. However, the adversary
keeps track of the set R.

– Any query of the form Enc(m, col) is converted into a query Enc(m,m, col).
– Any query of the form TokenGen(coli, colj) is forwarded as without any mod-

ification.
– The challenge (m0,m1) is converted into queries of the form Enc(m0,m1, col)

for each col ∈ R.
– Any query of the form AddColumn(col, “R”) in the post-challenge query phase

is converted into a query Enc(m0,m1, col).

4.3 Simulation-Based Security Notions

As with our indistinguishability-based notions, we first formalize a non-adaptive
simulation-based notion, which we then generalize to an adaptive one.

Non-adaptive SIM security. Our non-adaptive simulation-based notion con-
siders an adversary A and a simulator S. In the real-world experiment, the
adversary A interacts with the scheme in the following non-adaptive manner:
It obtains the public parameters of the scheme, chooses a databases DB and a
list I of column label pairs, and then obtains an encoding of DB and tokens for
all column label pairs in I. In the ideal-world experiment, the simulator has to
produce a view that is indistinguishable from the real world when given only the
“minimal” leakage L(DB, I), and without being given the database DB (recall
that the leakage function L was defined in Sect. 4.2).

Formally, for an adjustable join scheme Π and an adversary A, we consider
the experiment RealnaSIMΠ,A (λ) which is defined as follows:
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1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters
params are given as input to the adversary A.

2. Challenge phase: A chooses a databases DB and a list I of column label pairs.
As a response, A obtains Encsk(DB) and TokenGensk(DB, I).

3. Output phase: A outputs a value σ ∈ {0, 1} which is defined as the value of
the experiment.

In addition, given an adversary A and a simulator S, we consider the experiment
IdealnaSIMA,S (λ) which is defined as follows:

1. Setup phase: The simulator S produces the public parameters params, which
are given as input to the adversary A.

2. Challenge phase: A chooses a databases DB and a list I of column label pairs.
The simulator is given L(DB, I) and produces a database encoding and a list
of tokens, which are given to A.

3. Output phase: A outputs a value σ ∈ {0, 1} which is defined as the value of
the experiment.

Definition 4.6 (Non-adaptive SIM security). A join scheme Π = (KeyGen,
Enc,TokenGen,Adj) is non-adaptively SIM-secure if for any probabilistic
polynomial-time adversary A there exist a probabilistic polynomial-time simu-
lator S and a negligible function ν(·) such that

AdvnaSIMΠ,A,S(λ) def=
∣
∣
∣Pr

[
RealnaSIMΠ,A (λ) = 1

]
− Pr

[
IdealnaSIMA,S (λ) = 1

]∣∣
∣ ≤ ν(λ)

for all sufficiently large λ ∈ N.

The following claim, which is proved in the full version of this paper [34],
states that non-adaptive SIM security is equivalent to non-adaptive IND security.

Claim 4.7. Any join scheme Π that supports a message space of super-
polynomial size (in the security parameter λ ∈ N) is non-adaptively SIM secure
if and only if it is non-adaptive IND secure.

Adaptive SIM security. We consider an adaptive flavor of Definition 4.6 by
naturally generalizing the above real-world and ideal-world experiments. Specif-
ically, for an adjustable join scheme Π and an adversary A, we consider the
experiment RealSIMΠ,A(λ) which is defined as follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters
params are given as input to the adversary A.

2. Query phase: A may adaptively issue Enc and TokenGen queries, which are
defined as follows.

– Enc(m, col): Computes an encoding c ← Encsk(m, col), and returns c
to A.

– TokenGen(coli, colj): Computes a token (τi, τj) ← TokenGensk(coli, colj),
and returns (τi, τj) to A.
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3. Output phase: A outputs a value σ ∈ {0, 1} which is defined as the value of
the experiment.

In addition, given an adversary A and a simulator S, we consider the experiment
IdealSIMA,S(λ) which is defined as follows:

1. Setup phase: The simulator S produces the public parameters params, which
are given as input to the adversary A. An empty database DB and an empty
list I of column label pairs are initialized.

2. Query phase: A may adaptively issue Enc and TokenGen queries, which are
defined as follows.

– Enc(m, col): The pair (m, col) is inserted into the database DB, and S
obtains L(DB, I). Then, S provides A with an encoding c.

– TokenGen(coli, colj): The pair (coli, colj) is inserted into the list I, and S
obtains L(DB, I). Then, S provides A with a pair (τi, τj).

3.. Output phase: A outputs a value σ ∈ {0, 1} which is defined as the value of
the experiment.

Definition 4.8 (Adaptive SIM security). A join scheme Π = (KeyGen,Enc,
TokenGen,Adj) is SIM-secure if for any probabilistic polynomial-time adversary A
there exist a probabilistic polynomial-time simulator S and a negligible function
ν(·) such that

AdvSIMΠ,A,S(λ) def=
∣
∣
∣Pr

[
RealSIMΠ,A(λ) = 1

]
− Pr

[
IdealSIMA,S(λ) = 1

]∣∣
∣ ≤ ν(λ)

for all sufficiently large λ ∈ N.

The following claim states that adaptive SIM security implies adaptive IND
security.

Claim 4.9. Any SIM-secure join scheme is an IND-secure join scheme.

The proof idea of Claim 4.9 is similar to the non-adaptive case: The adversary
cannot distinguish between DB0 and the simulation, and between the simulation
and DB1, hence cannot distinguish between DB0 and DB1. In more details, given
an adversary B to the IND-security experiment, we construct an adversary A to
the SIM-security experiment, which samples c ← {0, 1}, and converts each query
of the form Enc(m0,m1, col) into a query Enc(mc, col). Finally, when B halts and
outputs σ ∈ {0, 1} then A halts and outputs σ ⊕ c. A similar argument to the
one in the proof of Claim 4.7 shows that

AdvIND
Π,B(λ) = 2 · AdvSIMΠ,A,S(λ),

where S is the simulator for which AdvSIMΠ,A,S(λ) is negligible. Therefore, the
SIM-security of Π implies its IND-security.
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4.4 Additional Remarks

Column privacy. Our notions of security include the column labels Cols(DB)
of the encrypted databases as explicit leakage (either as part of the experiment
or via leakage functions). In fact, our scheme in Sect. 5 does not leak the column
labels. All of our security notions can be naturally refined to model column
privacy in addition to message privacy. Although the task of guaranteeing column
privacy is well motivated, in this paper we focus on message privacy in order to
simplify our notions of security.

Implicit (and unavoidable) leakage. Our notions of security assume that the
given encrypted databases are “valid” in the sense that no message appears more
than once in each column. An alternative approach (e.g., [13,15]) is to avoid this
assumption, and explicitly include a leakage function that specifies the frequency
characteristics of each column. For deterministic encodings of messages (where
such leakage is unavoidable), these two approaches are equivalent. Therefore,
we do not explicitly include such a leakage function, but rather incorporate this
unavoidable leakage directly into our security notions.

5 Our Adjustable Join Scheme

In this section we present an adjustable join scheme that satisfies our 3Partition
security notion. In Sect. 5.1 we describe our scheme and prove its correctness,
and in Sect. 5.2 we prove its security.

5.1 The Scheme

Let PRF = (PRF.Gen,PRF.Eval) be a pseudorandom function family, and let G
be a probabilistic polynomial-time algorithm that takes as input the security
parameter 1λ, and outputs a triplet (G,GT , g, p, ê), where p is a λ-bit prime
number, G and GT are groups of order p, g is a generator of G, and ê : G ×
G → GT is a non-degenerate efficiently-computable bilinear map. The scheme
Π = (KeyGen,Enc,TokenGen,Adj) is defined as follows.

– Key generation. On input 1λ the key-generation algorithm KeyGen sam-
ples (G,GT , g, p, ê) ← G(1λ), K1 ← PRF.Gen(1λ), and K2 ← PRF.Gen(1λ).
For each i ∈ {1, 2} we let PRFKi

(·) = PRF.Eval(Ki, ·), and we assume that
PRFK1 : Mλ → Z

4
p and PRFK2 : Lλ → Rk4(Z4×4

p ), where M = {Mλ}λ∈N

and L = {Lλ}λ∈N are the message space and the column label space, respec-
tively. The algorithm outputs params = (G,GT , g, p, ê) and sk = (K1,K2).

For the above description, recall that Rk4(Z4×4
p ) denotes the set of all

invertible 4 × 4 matrices over Zp. Note that a pseudorandom function
PRFK2 : Mλ → Rk4(Z4×4

p ) can be constructed, for example, by taking any
pseudorandom function PRFK2 : Mλ → Z

4×4
p and substituting each non-

invertible output with the identity matrix.
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– Encoding. On input params = (G,GT , g, p, ê), sk = (K1,K2), a column
label col ∈ Lλ and a message m ∈ Mλ, the encoding algorithm Enc computes
Acol = PRFK2(col) ∈ Rk4(Z4×4

p ) and xm = PRFK1(m) ∈ Z
4
p, and then outputs

c = gAcolxm ∈ G
4.

– Token generation. On input params = (G,GT , g, p, ê), sk = (K1,K2) and
two column labels col, col′ ∈ Lλ, the token-generation algorithm TokenGen
uniformly samples v ← Z

4
p \ {(0, 0, 0, 0)}, computes Acol = PRFK2(col) ∈

Rk4(Z4×4
p ) and Acol′ = PRFK2(col

′) ∈ Rk4(Z4×4
p ), and then outputs the pair

of adjustment tokens
(
gvTA−1

col , gvTA−1
col′

)
∈ G

4 × G
4.

– Adjustment. On input params = (G,GT , g, p, ê), an adjustment token τ ∈
G

4, and an encoding c ∈ G
4, the adjustment algorithm Adj outputs ê(τT, c) ∈

GT .

Correctness. For any two column labels col, col′ ∈ Lλ and for any two messages
m,m′ ∈ Mλ it holds that

Adj (τ,Encsk(m, col)) = ê
(
gvTA−1

col , gAcolxm

)

= ê(g, g)vTA−1
col Acolxm = ê(g, g)vTxm

Adj
(
τ ′,Encsk(m′, col′)

)
= ê

(
gvTA−1

col′ , gAcol′xm′
)

= ê(g, g)vTA−1
col′ Acol′xm′ = ê(g, g)vTxm′ ,

where (sk, params) ← KeyGen(1λ) and (τ, τ ′) ← Adj(sk, col, col′). Therefore, it
holds that

Adj (τ,Encsk(m, col)) = Adj
(
τ ′,Encsk(m′, col′)

)

if and only if vTxm = vTxm′ . Note that if m = m′ then the equality always holds.
In addition, if m �= m′ then with an overwhelming probability xm �= xm′ (since
PRF is a pseudorandom function), and since v is uniform then the probability
that vTxm = vTxm′ is at most 1/p. We conclude that if m �= m′ then vTxm �=
vTxm′ with an overwhelming probability.

5.2 Proof of Security

We prove the following theorem:

Theorem 5.1. Assuming that PRF is a pseudorandom function family and that
the linear assumption holds relative to G, then Π is a 3Partition-secure adjustable
join scheme.

For proving Theorem5.1, we introduce a scheme Π̂ which is obtained from
Π by replacing its TokenGen and Adj algorithms with the followings algorithms:

– Token generation. On input params = (G,GT , g, p, ê), sk = (K1,K2)
and two column labels col, col′ ∈ Lλ, the modified token-generation algo-
rithm TokenGen uniformly samples V ← Rk4(Z4×4

p ), computes Acol =
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PRFK2(col) ∈ Rk4(Z4×4
p ) and Acol′ = PRFK2(col

′) ∈ Rk4(Z4×4
p ), and then

outputs
(
gV A−1

col , gV A−1
col′

)
∈ G

4×4 × G
4×4.

– Adjustment. On input params = (G,GT , g, p, ê), an adjustment token
T ∈ G

4×4, and an encoding c ∈ G
4, the modified adjustment algorithm

Adj outputs ê(T , c) ∈ G
4
T .

Note that Π can be obtained from Π̂ by viewing any v ∈ Z
4
p \ {(0, 0, 0, 0)}

that is produced by Π’s token-generation algorithm as the first row of the matrix
V ∈ Rk4(Z4×4

p ) that is produced by Π̂ token-generation algorithm. That is, Π’s
token-generation algorithm can be obtained from Π̂’s token-generation algorithm
by outputting only the first rows of its tokens. Thus, there is no information that
Π reveals and Π̂ does not, and therefore it suffices to prove the security of Π̂.

For each b ∈ {0, 1} and an adversary A, let Exp3ParRand,A(λ, b) denote the
experiment obtained from Exp3Par

Π̂,A(λ, b) by replacing the pseudorandom func-
tions PRFK1 : Mλ → Z

4
p and PRFK2 : Lλ → Rk4(Z4×4

p ) with truly random
functions f1 : Mλ → Z

4
p and f2 : Lλ → Rk4(Z4×4

p ). By the pseudorandom-
ness property of the pseudorandom function family PRF, it holds that for any
b ∈ {0, 1} and any probabilistic polynomial-time adversary A, the advantage of
A in distinguishing between the experiments Exp3Par

Π̂,A(λ, b) and Exp3ParRand,A(λ, b)

is negligible. Therefore, in order to prove the 3Partition-security of Π̂ it suffices
to show that the advantage of any adversary A in distinguishing between the
experiments Exp3ParRand,A(λ, 0) and Exp3ParRand,A(λ, 1) is negligible.

By Claim 2.5 and Fact 2.3, it follows that under the linear assumption it holds
that

(
params, gA, gAx, gAy, gB , gBx

)
≈c

(
params, gA, gAx, gAy, gB , gBz

)

≈c

(
params, gA, gAx, gAy, gB , gBy

)
,

where params ← G(1λ), A,B ← Rk4(Z4×4
p ) and x, y, z ← Z

4
p. We denote by X

and Y the computationally indistinguishable ensembles X = (params, gA, gAx,
gAy, gB , gBx) and Y = (params, gA, gAx, gAy, gB , gBy). Assume for now that dur-
ing the pre-challenge query phase, the adversary A does not issue a query of the
form Enc(m0, col) or Enc(m1, col), from any column label col, where m0 and m1

are the challenge messages. We claim that there exists a polynomial-time chal-
lenger Chal, such that it holds that ChalA(X) ≡ Exp3ParRand,A(λ, 0) and ChalA(Y ) ≡
Exp3ParRand,A(λ, 0) as distributions (and this implies that the advantage of A in dis-
tinguishing between the experiments Exp3ParRand,A(λ, 0) and Exp3ParRand,A(λ, 1) is neg-
ligible subject to the above assumption on A). Given (params, gA, gAx, gAy, gB ,
gBz) as input and A as oracle, the challenger Chal works as follows:

Setup phase. Chal provides A with params.

Pre-challenge query phase. We specify how Chal handles A’s queries:
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– AddColumn(col, S): Chal adds the column label col to the set S, where S ∈
{“L”, “R”, “M”}. In addition, Chal samples Rcol ← Rk4(Z4×4

p ), and denotes

Acol =

⎧
⎪⎨

⎪⎩

RcolA col ∈ L

RcolB col ∈ R

Rcol col ∈ M

.

Note that since Chal does not explicitly know A and B, he does not explicitly
know Acol in case that col ∈ L ∪ R.

– Enc(m, col): Chal samples xm ← Z
4
p, unless it was already sampled before.

Then, Chal returns c = gAcolxm to A. We need to show that Chal can efficiently
compute c, and we show this by cases:
1. col ∈ M : Chal explicitly knows Acol = Rcol and xm, so he can efficiently

compute gAcolxm .
2. col ∈ L: Since Chal knows gA, Rcol and xm, he can efficiently compute

gAcolxm = Rcol
(
gA

)xm .
3. col ∈ R: Similar to the previous case, but with gB .

– TokenGen(coli, colj): Chal returns to A the pair of tokens
(

g
V A−1

coli , g
V A−1

colj

)

where V ← Rk4(Z4×4
p ) is freshly sampled. We show that Chal is able to

efficiently compute τ by cases:
1. coli, colj ∈ M : Since Chal explicitly knows Acoli = Rcoli and Acolj = Rcolj ,

he can simply sample V ← Rk4(Z4×4
p ), and compute g

V A−1
coli and g

V A−1
colj .

2. coli, colj ∈ L: Denote U = V A−1
coli

and W = V A−1
colj

. Chal needs to be
able to compute gU and gW . Fixing Acoli and Acolj , both U and W
are uniform in Rk4(Z4×4

p ), but dependent of each other by the relation
UAcoli = WAcolj . In our case, Acoli = RcoliA and Acolj = Rcolj A, so the
relation turns into URcoli = WRcolj , and Chal can sample U ← Rk4(Z4×4

p )
and take W = URcoliR

−1
colj

. Since Chal explicitly knows U and W , he can
compute gU and gW efficiently.

3. coli, colj ∈ R: Similar to the previous case.
4. coli ∈ L and colj ∈ M : In this case, Acoli = RcoliA and Acolj = Rcolj , so

the relation UAcoli = WAcolj turns into URcoliA = WRcolj . So Chal can
sample U ← Rk4(Z4×4

p ) and take W = URcoliAR−1
colj

. Since Chal explicitly
knows U , he can compute gU . Since he knows U , Rcoli , Rcolj and gA, he

can efficiently compute gW = URcoli
(
gA

)R−1
colj .

5. coli ∈ R and colj ∈ M : Similar to the previous case.
6. coli ∈ L and colj ∈ R: This case is not allowed by the definition of

3Partition-security.

Challenge phase. A chooses messages m0 and m1. As a response, Chal returns
to A an encoding c = gAcolz for every col ∈ R. Since c = Rcol

(
gBz

)
, and Chal

knows Rcol and gBz, it can efficiently compute c.
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Post-challenge query phase. The only differences from the pre-challenge
query phase are the followings:

– AddColumn(col, S): In case that S=“R”, Chal provides A with c = gAcolz,
which we already saw that Chal can efficiently compute.

– Enc(m, col): In case that m = m0 or m = m1, by the definition of 3Partition-
security it must be that col ∈ L, and Chal return to A the encoding gAcolx or
gAcoly, respectively. Since gAcolx = Rcol

(
gAx

)
and gAcoly = Rcol

(
gAy

)
, Chal can

efficiently compute them.

Output phase. Chal outputs the value σ ∈ {0, 1} that A outputs.

This completes the description of Chal. Denote xm0 = x and xm1 = y. It does
not cause ambiguity in the notation because we assume that A does not query
m0 or m1 in the pre-challenge query phase, so Chal never samples xm0 and xm1

by himself. Every xm ∈ Z
4
p and Acol ∈ Rk4(Z4×4

p ) are uniformly random. So Chal
returns to A encodings and tokens with respect to truly random functions. In the
case that Chal is given as input X = (params, gA, gAx, gAy, gB , gBx), it answers
the challenge with encodings of m0, so we obtain the experiment Exp3ParRand,A(λ, 0).
Similarly, in the case Chal is given Y = (params, gA, gAx, gAy, gB , gBy), we obtain
the experiment Exp3ParRand,A(λ, 1). This completes the proof of security for adver-
saries that fulfill the aforementioned assumption.

When dealing with adversaries that may query m0 and m1 in the pre-
challenge phase, the problem is that Chal does not know when he queried on
m0 and m1. If he knew that, then he could respond in the same way he does in
the post-challenge query phase. So to solve this, Chal guesses when it is queried
with m0 or m1. More precisely, let q(λ) be a bound on the number of queries
that A performs. Chal samples t0, t1 ← {0, . . . , q(λ)}. During the pre-challenge
phase, if Chal is queried for an encoding of a message m that is the t0-th or t1-th
distinct message so far, then he acts as if it was queried on m0 or m1 respec-
tively, that is, he returns to A the encoding gAcolx or gAcoly, respectively. Then,
in the challenge phase, if it turns out that the guess was wrong, or if Chal was
queried on less than max{t0, t1} distinct messages, then Chal aborts and outputs
0. Since until the challenge phase, the view of A is independent of the sampling
of t0 and t1, it holds that the guess of Chal succeeds with probability of exactly
1/(q(λ)+1)2, and that the success probability is independent of the behavior of
A, so it holds that,

∣
∣
∣Pr

[
Exp3ParRand,A(λ, 0) = 1

]
− Pr

[
Exp3ParRand,A(λ, 1) = 1

]∣∣
∣ (1)

= (q(λ) + 1)2 ·
∣
∣
∣Pr

[
ChalA(X) = 1

]
− Pr

[
ChalA(Y ) = 1

]∣∣
∣ . (2)

For any probabilistic polynomial-time adversary A, the bound q(λ) on its num-
ber of queries is polynomial in the security parameter λ. The linear assumption
implies that the expression in Eq. (2) is negligible, and therefore also the expres-
sion in Eq. (1) is negligible, and this concludes the proof.
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Abstract. We consider the following strong variant of private informa-
tion retrieval (PIR). There is a large database x that we want to make
publicly available. To this end, we post an encoding X of x together with
a short public key pk in a publicly accessible repository. The goal is to
allow any client who comes along to retrieve a chosen bit xi by reading a
small number of bits from X, whose positions may be randomly chosen
based on i and pk, such that even an adversary who can fully observe
the access to X does not learn information about i.

Towards solving this problem, we study a weaker secret key variant
where the data is encoded and accessed by the same party. This primitive,
that we call an oblivious locally decodable code (OLDC), is independently
motivated by applications such as searchable symmetric encryption. We
reduce the public-key variant of PIR to OLDC using an ideal form of
obfuscation that can be instantiated heuristically with existing indistin-
guishability obfuscation candidates, or alternatively implemented with
small and stateless tamper-proof hardware.

Finally, a central contribution of our work is the first proposal of an
OLDC candidate. Our candidate is based on a secretly permuted Reed-
Muller code. We analyze the security of this candidate against several
natural attacks and leave its further study to future work.

1 Introduction

A private information retrieval (PIR) protocol allows a client to retrieve an item
from a remote database while hiding which item is retrieved even from the servers
storing the database. PIR has been studied both in a multi-server setting, where
security should only hold against non-colluding servers [9,10], and in a single-
server setting [27]. In both settings, the main focus of the large body of work on
PIR has been on minimizing the communication complexity.

c© International Association for Cryptologic Research 2017
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Improving the computational complexity of PIR turned out to be much more
challenging. If no preprocessing of the database is allowed, the computational
complexity of the servers must be at least linear in the database size [4]. While
preprocessing was shown to be helpful in the multi-server setting [4], the exis-
tence of sublinear-time single-server PIR protocols has been a longstanding open
question, with no negative results or (even heuristic) candidate solutions.

In this work we consider the following strong variant of sublinear-time PIR
that we call public-key PIR (pk-PIR). Suppose we want to allow efficient and
privacy-preserving access to a large database x ∈ {0, 1}n. To this end, we encode
x into a (possibly bigger) database X = (X1, . . . , XN ) and post X together with
a short public key pk in a publicly accessible repository. We want to allow any
client who comes along to retrieve a chosen bit xi by reading a small number of
bits from X (sublinear in n), where the positions of these bits may be randomly
chosen based on i and pk. (Note that X can be over any alphabet, but the total
number of bits read by the decoder should be o(n).) More concretely, there is a
randomized decoder that given i and pk picks a small set I ⊂ [N ] of positions
to be read, and using XI , pk, and its secret randomness recovers xi.

We would like to achieve the following strong security guarantee: even an
adversary who knows pk and can fully observe the access to X, including both the
positions I and the contents XI of symbols being read, does not learn information
about i. Since we are interested in efficient solutions that transfer less than n
bits of information, one should settle for computational (rather than information-
theoretic) security against computationally bounded observers [10].

Our notion of pk-PIR can be viewed as a variant of single-server PIR with
preprocessing [4] (see Sect. 1.1 for a detailed discussion). It can also be viewed as
a variant of oblivious RAM (ORAM) [19] which is weaker in that it only supports
“read” operations, but is qualitatively stronger in that the same encrypted data-
base can be repeatedly used without being updated. Unlike the standard notion
of ORAM, pk-PIR can support a virtually unlimited number of accesses by an
arbitrary number of stateless clients who do not trust each other. An efficient
realization of pk-PIR can be extremely useful for enabling privacy-preserving
public access to a large static database.

Main tool: OLDC. We reduce pk-PIR to the design of a new primitive that
we call an oblivious locally decodable code (OLDC). Intuitively, OLDC can be
thought of as a simpler secret-key variant of pk-PIR. An OLDC encoder ran-
domly maps the database x into an encoded database X by using a short secret
key sk. The decoder may use sk to determine the set I of symbols of X it reads
and also for recovering xi from XI , where the same key sk can be used for poly-
nomially many invocations of the decoder. As in pk-PIR (and standard LDC),
we require the decoder to have sublinear locality, namely to read o(n) bits of X.
There are two significant differences in the notion of security. First, the observer
does not have access to the secret key sk used for decoding. Second, it does not
even have access to the contents of the symbols XI . All the observer can see is
the positions I of the symbols being read.
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On the non-triviality of OLDC. The relaxed security goal makes OLDC con-
ceivably easier to realize than pk-PIR. However, whether such OLDC exists is
still far from obvious. In fact, one might be tempted to try to prove that OLDC
is just too strong to exist. In AppendixA we argue that ruling out the existence
of OLDC is unlikely, as it would require proving strong data structure lower
bounds that seem beyond the reach of current techniques.

On the other hand, there is also no hope to prove the existence of OLDC
unconditionally; in fact, we prove that any OLDC implies a one-way function.
Another source of non-triviality comes from the following general property of
OLDC. With overwhelming probability over the choice of sk, the encoder and
(probabilistic) decoder defined by sk should satisfy the following requirement: the
probability that a given codeword symbol is read by the decoder is essentially
independent of the query index i. Using known results, this means that any
OLDC can be easily converted into a closely related “smooth code”1 [24], or
even into a standard LDC that allows for local decoding in the presence of a
constant fraction of errors [26]. Since there is only a handful of known smooth
code and LDC constructions, this severely limits the pool of potential OLDC
candidates.

On the usefulness of OLDC. Unlike standard notions of PIR (but similarly to
ORAM), OLDC does not apply to the case of publicly accessible data, in the
sense that a client who has the key to access the encoded data can learn the
queries i of others who access the same encoded data. However, OLDC can still
be useful in many application scenarios. For instance, by applying an OLDC on
top of a data structure (e.g., one supporting near-neighbor searches), one can
implement general forms of searchable symmetric encryption [13,36], avoiding
the access pattern leakage of current practical approaches without the need to
update the encoded data as in an ORAM-based approach.

From OLDC to pk-PIR. Before describing our candidate OLDC construction, we
explain the transformation from OLDC to pk-PIR. Conceptually, the transfor-
mation is similar to an obfuscation-based construction of public-key encryption
from secret-key encryption. The idea is to have the pk-PIR encoder produce an
encrypted and authenticated version of the symbols of the OLDC encoding X,
and emulate the OLDC decoder by obfuscating the code for generating I from i
and pk together with the code for recovering xi from XI . An additional authen-
tication mechanism is needed to ensure that the decoder is indeed fed with XI

for the same I it generated.
Unlike the simpler case of encryption [34], here we cannot instantiate the

construction using indistinguishability obfuscation (iO). Instead, we need to
rely on an ideal “virtual black-box” obfuscation primitive [3]. This primitive
can be heuristically instantiated using existing iO candidates (e.g., the ones
from [14,15]) or provably instantiated by relying on ideal multi-linear maps [2].

1 A smooth code supports a local decoding procedure in which each codeword symbol
is read with roughly the same probability.
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Alternatively, the decoder can be implemented directly by using small and state-
less tamper-proof hardware or a secure co-processor. The latter setting does not
seem to trivialize the problem, and can potentially provide an implementable
variant of our construction that is not curbed by the inefficiency of current
software-based obfuscation methods.

An OLDC candidate. A central contribution of our work is the first proposal of
an OLDC candidate, which we describe below. The encoding is just a secretly
permuted version of a standard locally decodable code obtained from Reed-
Muller codes (cf. [24]): the secret key defines a (pseudo-)random permutation,
and the encoder applies a Reed-Muller encoding to x and then permutes the
result according to the permutation defined by the secret key. The parameters
are chosen such that decoding is done by probing O(λ · nε) (permuted) points
along a degree-λ curve, where λ is a security parameter and ε > 0 can be an
arbitrarily small constant that determines the (polynomial) storage overhead.
Decoding is done via interpolation, where it is crucial that the interpolation
points be kept secret to defeat a simple linearization attack we describe.

Assuming the security of this OLDC candidate, we get pk-PIR based on ideal
obfuscation and one-way functions, where the client reads poly(λ) · nε bits for
an arbitrarily small constant ε > 0. As noted above, ideal obfuscation can be
heuristically replaced by existing iO candidates, leading to an explicit candi-
date construction of pk-PIR. Alternatively, it can be implemented by small and
stateless tamper-proof hardware.

Roughly speaking, the security of our OLDC candidate reduces to an
intractability assumption defined by a“randomized puzzle” obtained by first
sampling polynomially many random low-degree curves (where each curve has
a different color), and then randomly shuffling the pieces of the puzzle, i.e., the
colored points of the space. The assumption is that it is hard to distinguish the
shuffled pieces of the puzzle from pieces of a similar puzzle where the low-degree
curves are replaced by high-degree curves, or even by totally random functions.
Note that unlike standard physical puzzles, or computational puzzles that are
motivated by problems such as DNA sequencing, the local independence prop-
erty of random low-degree curves ensures that there is no local information to
help determine whether two pieces are likely to fit next to each other.

Being unable to reduce the security of our OLDC candidate to any well
studied assumption, we establish its plausible security by showing that it defeats
several relevant types of attacks. This may be an inevitable state of affairs,
as it is often the case in cryptography that ambitious new goals call for new
assumptions. On the other hand, we show that several weaker variants of the
construction can be broken by linearization attacks. This includes variants in
which the global permutation is replaced by one that randomly permutes only
one of the coordinates in the space.

Finally, it is useful to note that other ad-hoc pseudorandomness assumptions
related to specific classes of efficiently decodable codes have successfully
withstood the test of time. This includes the conjectured pseudorandom-
ness of noisy Reed-Solomon codes [31] (despite early attacks on a specialized



666 E. Boyle et al.

variant [6,7]) and assumptions related to unbroken instances of the McEliece
cryptosystem [28] (despite some broken variants [35]). In contrast, several
attempts to base single-server PIR or public-key encryption on noisy Reed-
Muller or Reed-Solomon codes have been irreparably broken [5,11,12,25]. Our
OLDC candidate does not fit in the latter category, since neither the OLDC
primitive nor our concrete intractability assumption seem to imply single-server
PIR or even public-key encryption.

Future directions. The problem considered in this work is a rare remaining exam-
ple for a major “feasibility” goal in cryptography that is not clearly impossible
to achieve, and yet is not readily solved by using an ideal form of obfuscation
and standard cryptographic assumptions. The main question we leave open is
that of further evaluating the security of our OLDC candidate, either by showing
it insecure or by reducing its security (or the security of another candidate) to
a well studied assumption. There is of course a third possibility that the candi-
date will survive the test of time and become “well studied” without a security
reduction to an earlier assumption. A second natural open question is to obtain
a construction of pk-PIR from OLDC via iO. Some evidence against this is given
by the fact that single-server PIR cannot be based on iO and one-way functions
using standard proof techniques [1]. Finally, it would be very interesting to come
up with a direct candidate construction of pk-PIR that does not rely on any form
of general-purpose obfuscation.

1.1 Related Work

Sublinear-time PIR. The question of PIR with sublinear server computation
was first studied in [4]. The main model considered in [4] is that of PIR with
polynomial-time preprocessing. This model allows each server to apply a one-
time, polynomial-time preprocessing to the database in order to enable faster
processing of queries.

Our notion of pk-PIR can be seen as a variant of the single-server model
from [4] (Definition 2) with the following differences. Our model is more restric-
tive in that it does not allow the client to send a query which is answered by
the server. This has the advantage of not requiring the data to be stored on a
single computer—the encoded database can be dispersed over the network, or
written “up in the sky” or on the pages of a book, and can be accessed by clients
directly. By default, we also restrict the decoder to be non-adaptive (given the
public key), whereas the general version of the model from [4] can use multiple
rounds of interaction. On the other hand, our model is more liberal in that it
allows the encoding of the database to be randomized. This randomization is
essential for our solutions, even in the secret-key case of OLDC.

The results of [4] on PIR with preprocessing include a weak lower bound
on the tradeoff between storage and server computation, positive results in the
multi-server model, and a barrier to proving strong negative results for single-
server solutions with adaptive queries (see AppendixA). They also obtain pos-
itive results for sublinear-time PIR in alternative models, including the case
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of amortizing the computational work required for processing multiple queries
simultaneously and protocols with single-use preprocessing. The question of
reducing the amortized computational cost of multi-query PIR was subsequently
studied in [21,22].

Other notions of keyed LDC. A very different notion of LDC with (private or
public) keys was considered in [20,33]. The goal of these works is to make use of
the keys towards improving the efficiency of LDCs, rather than hide the access
pattern.

1.2 Independent Work

The problem we consider has been independently studied by Canetti et al. [8].
The two works consider the same problem of sublinear-time PIR with preprocess-
ing and propose similar candidate solutions based on secretly permuted Reed-
Muller codes. The notion of OLDC (resp., pk-PIR) from the present work cor-
responds to the notion of designated-client (resp., public-client) doubly-efficient
PIR from [8]. (In this work we make the additional restriction of non-adaptive
queries.) We provide an overview of the main differences between the two works
below.

The main contributions of [8] beyond those of this work include: (1) A dif-
ferent variant of the designated-client (OLDC) candidate in which the curve
evaluation points used by the decoder are fixed (or made public) but some of
the points on the curve are replaced by random noise. A combination of random
noise with secret evaluation points is also proposed as a potentially more conser-
vative candidate. (2) A search-to-decision reduction for a restricted case of the
above fixed-evaluation-point variant, where the location of the noise elements is
the same for all queries. (3) An efficient variant of the designated client scheme,
that is secure in the bounded-query case assuming one way functions.

The main contributions of this work beyond those of [8] include: (1) A gen-
eral transformation from (designated-client) OLDC to (public-client) pk-PIR by
applying VBB obfuscation to the query generation algorithm and an authenti-
cated version of the decoding algorithm. This yields an explicit candidate con-
struction of pk-PIR. (2) Two types of barriers: A “data structures barrier,”
suggesting that even a very strong form of pk-PIR, with deterministic encoder
and non-adaptive queries, would be difficult to unconditionally rule out; and an
“LDC barrier,” showing that OLDC implies traditional LDC, effectively impos-
ing a limitation on the space of possible candidates. (3) Ruling out (under stan-
dard assumptions) a natural “learning” approach for generically breaking con-
structions based on secret linear codes, by using the power of span programs.
(4) A proof that any OLDC implies a one-way function.

2 Preliminaries

Notation. The security parameter is denoted by λ. A function ν : N → N is said
to be negligible if for every positive polynomial p(·) and all sufficiently large λ it
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holds that ν(λ) < 1/p(λ). We use [n] to denote the set {1, . . . , n}. We use d ← D
to denote the process of sampling d from the distribution D or, if D is a set, a
uniform choice from it. We denote by SN the symmetric group on N elements.

2.1 Standard Cryptographic Tools

We refer the reader to, e.g. [17] for treatment of standard cryptographic prim-
itives, including pseudorandom function (PRF) families (Gen,Eval), pseudoran-
dom permutations PRP, semantically secure symmetric-key encryption schemes
(Gen,Enc,Dec), and message authentication codes (Gen,Tag,Verify).

2.2 Virtual Black-Box Obfuscation

Intuitively, a program obfuscator serves to “scramble” a program, hiding imple-
mentation details, while preserving its input/output functionality. The notion
of Virtual Black-Box (VBB) obfuscation was first formally studied by [3]. We
consider a notion with auxiliary input.

Definition 1 (VBB Obfuscator [3]). Let C = {Cn}n∈N be a family of
polynomial-size circuits, where Cn is a set of boolean circuits operating on inputs
of length n. And let O be a PPT algorithm, which takes as input an input length
n ∈ N, a circuit C ∈ Cn, a security parameter 1λ, and outputs a boolean circuit
O(C) (not necessarily in C). O is a virtual black-box (VBB) obfuscator for the
circuit family C if there exists a negligible function ν such that:

1. (Preserving Functionality): For every n ∈ N, and every C ∈ Cn, and every
x ∈ {0, 1}n, with all but ν(λ) probability over the coins of O, we have
(O(C, 1n, 1λ))(x) = C(x).

2. (Polynomial Slowdown): There exists a polynomial p(·) such that for every
n, λ ∈ N and C ∈ C, the circuit O(C, 1n, 1λ) is of size at most p(|C|, n, λ).

3. (Virtual Black-Box): For every (non-uniform) polynomial-size adversary A,
there exists a (non-uniform) polynomial-size simulator S such that, for every
n ∈ N every C ∈ Cn and every auxiliary input z,

∣
∣
∣ Pr[C̃ ← O(C, 1λ, 1n); b ← A(C̃, z) : b = 1]

− Pr[b ← SC(1|C|, 1n, 1λ, z) : b = 1]
∣
∣
∣ ≤ ν(λ).

3 Oblivious LDC and Public-Key PIR

In this section, we formally introduce the notions of oblivious locally decodable
codes and public-key private information retrieval. For simplicity, we consider a
database x consisting of n bits.



Can We Access a Database Both Locally and Privately? 669

3.1 Oblivious LDC

A standard locally decodable code (LDC) is an error-correcting code that simul-
taneously offers resilience to errors and a local decoding procedure, which can
recover any message bit xi with good success probability by probing few, ran-
domly selected, bits of the encoding. Intuitively, an oblivious LDC (OLDC) is an
LDC with the additional property that the sets of symbols being read computa-
tionally do not reveal the respective queried indices i. Unlike the standard goal
of LDCs, we do not explicitly require any error correction capability, but such
a capability is in some sense implied by our security requirement (see Remark 2
below).

Note that Oblivious LDC is a “secret-key” notion of public-key PIR, where
to generate valid queries one must hold the secret key sk that was used within
the encoding procedure. As in other secret key primitives, we need to ensure
that the same sk can be used to hide any polynomial number of queries.

Definition 2 (Oblivious LDC). An Oblivious LDC is a tuple of PPT algo-
rithms (G,E,Q,D) with the following syntax:

G(1λ) is a probabilistic key generation algorithm, which takes as input a security
parameter 1λ and outputs a secret sampling key sk.

E(1λ, sk, x) is a probabilistic encoder, which takes as input a security parameter
1λ, secret key sk, and database x = (x1, . . . , xn) with xi ∈ {0, 1}, and outputs
X = (X1, ...,XN ) with Xi ∈ {0, 1}L.

Q(1λ, 1n, i, sk; r) is a probabilistic query sampler which takes as input: a security
parameter 1λ, database size 1n, index i ∈ [n], secret key sk, and randomness
r used within the query generation, and outputs a list of q indices I ∈ [N ]q.

D(1λ, 1n, i,XI , sk, r) is a deterministic decoder. It takes as input: a security
parameter 1λ, database size 1n, an index i ∈ [n], a vector of q queried data-
base symbols XI ∈ ({0, 1}L)q, secret key sk, and secret randomness r used
within the corresponding execution of Q. The output of D is a decoded data-
base symbol (presumably xi).

The algorithms (G,E,Q,D) should satisfy the following correctness, non-triviality
and security guarantees:

Correctness: Honest execution of G,E,Q,D, successfully returns the requested
data items. That is, for every x = (x1, . . . , xn) and every i ∈ [n],

Pr
[

sk ← G(1λ);X ← E(1λ, sk, x); I ← Q(1λ, 1n, i, sk; r);

x′
i = D

(

1λ, 1n, i,XI , sk, r
)

: x′
i = xi

]

= 1.

Non-triviality: There exists ε > 0 such that for every λ, and all sufficiently
large n, the number of queried bits satisfies Lq < n1−ε.

Security: No efficient adversary can distinguish the memory accesses dictated
by Q on input query index i0 and i1, for a randomly sampled sk. Namely,
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for every non-uniform PPT adversary A, there exists a negligible function ν
such that the distinguishing advantage of A in the following game is bounded
by ν(λ):
1. sk ← G(1λ): The challenger samples a secret key sk.
2. (i0, i1, aux) ← AQsk(·)(1λ): A selects a challenge index pair i0 �= i1 ∈

[n], and auxiliary information aux, given oracle access to the randomized
functionality Qsk(·), which on input i ∈ [n] outputs a list of indices I ∈
[N ]q sampled as I ← Q(1λ, 1n, i, sk).

3. b ← {0, 1}; I∗ ← Q(1λ, 1n, ib, sk): The challenger selects a random bit
and generates a sample query for the chosen index ib.

4. b′ ← AQsk(·)(aux, I∗): A outputs a guess for b, given the challenge I∗, and
continued oracle access to Qsk(·) as defined above.

5. A’s advantage in the challenge game is defined as Pr[b′ = b] − 1/2, over
the randomness of the challenger (and A).

Remark 1. The above security definition is specified for a single challenge query.
However, since security holds also given access to the query (“encrypt”) oracle,
then by a straightforward hybrid argument, this definition directly implies com-
putational indistinguishability for any polynomial number of queries, analogous
to semantic security of symmetric-key encryption.

Remark 2 (Relation to LDC). Analogous to PIR, OLDCs are a close relative
to standard LDCs, whose focus is on local recoverability of data given symbol
errors or erasures. Indeed, the OLDC security requirement implies that with
overwhelming probability over the choice of sk, the encoder and (probabilistic)
decoder defined by sk must read any given codeword symbol with probability
essentially independent of the queried index i. This property holds directly for
information theoretic PIR; for OLDC, the security guarantees are only computa-
tional, but such a probability disparity would constitute an efficient distinguisher
(and thus cannot exist). Thus, in a similar fashion to the PIR-implies-LDC
construction, a simple modification to the OLDC (by dropping “low-weight”
symbols and duplicating “high-weight” ones) then yields a related smooth code
(i.e., with a local decoding procedure where each codeword symbol is read with
roughly equal probability); see “Smooth encodings and PIR” in [24]. This in
turn directly yields an LDC correctable against erasures, or against errors in a
low but nontrivial error regime, and can further be transformed into a standard
LDC that allows for local decoding in the presence of a constant fraction of
errors [26]. This means that future OLDC candidates inherently must come out
of LDC techniques.

We prove that within the nontrivial regime of parameters, OLDC necessarily
implies the existence of one-way functions. Interestingly, several straightforward
approaches toward this assertion are not valid. In particular, one cannot make
a direct use of an OLDC to devise a symmetric-key encryption scheme, since
correctness of OLDC decoding is only guaranteed given the randomness used to
generate the query indices, and indistinguishability of OLDC query index sets
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is only guaranteed when the corresponding codeword symbols themselves are
unknown. The proof considers two distributions: One with a list of query sets
Iri

for random query indices ri together with the real indices ri, and the second
with a similar list of query sets Iri

together with uncorrelated random indices r′
i.

Note that we must necessarily make use of the fact that the OLDC decoder can
make many queries, as bounded-query OLDC exists unconditionally (e.g., using
a k-wise independent functions).

Proposition 1 (OLDC Implies OWF). Suppose OLDC exists. Then one-
way functions must exist.

Proof. Let (G,E,Q,D) be an OLDC with parameters as above. We demonstrate
two distributions which are (by OLDC security) computationally indistinguish-
able, but are (by OLDC correctness) statistically far [16]. Consider the following
pair of distributions, for a parameter � ∈ N:

D1(1λ, �) :=

⎧

⎨

⎩

(

(Ir1 , r1), . . . , (Ir�
, r�)

)

:
sk ← G(1λ);

r1, . . . , r� ← [n]�;
∀i ∈ [�], Iri

← Q(1λ, 1n, ri, sk)

⎫

⎬

⎭

D2(1λ, �) :=

⎧

⎪⎪⎨

⎪⎪⎩

(

(Ir1 , r
′
1), . . . , (Ir�

, r′
�)

)

:

sk ← G(1λ);
r1, . . . , r� ← [n]�;
r′
1, . . . , r

′
� ← [n]�;

∀i ∈ [�], Iri
← Q(1λ, 1n, ri, sk)

⎫

⎪⎪⎬

⎪⎪⎭

.

OLDC security directly dictates that D1(1λ, �),D2(1λ, �) are computationally
indistinguishable for any polynomial � = �(λ). We now argue that for appropriate
choice of � they must be statistically far.

To do so, we first consider an intermediate step, roughly corresponding to
the above distributions together with the secret key sk. Given sk, the OLDC
decoding correctness will require the distributions to be statistically far (by the
impossibility of information theoretic PIR). This does not yet suffice for our final
goal, as given sk the distributions are no longer computationally close. However,
with some amplification this will enable us to prove that the distributions remain
statistically far even when sk is removed.

For any sk in the support of G(1sk), consider a related pair of distributions
Dsk

1 ,Dsk
2 sampled as

Dsk
1 :=

{

(sk, (Ir, r)) :
r ← [n];

Ir ← Q(1λ, 1n, r, sk)

}

.

Dsk
2 :=

{

(sk, (Ir, r
′)) :

r, r′ ← [n];
Ir ← Q(1λ, 1n, r, sk)

}

.

For any ensemble of keys {skλ}λ in the support of G, the statistical distance
between Dskλ

1 and Dskλ
2 must be non-negligible, as the contrary would imply the

existence of information theoretically secure 1-server PIR with server-to-client
communication sublinear in n:
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– To query index i ∈ [n], the client samples (sk, (Ir, r)) ← Dskλ
1 (where the

execution of Q takes randomness rand) and sends the tuple (sk, (Ir, r − i)) to
the server.

– On input (sk, (I, r′)), the server responds by OLDC-encoding the r′-shifted
database (i.e., x′ where x′

j = xj+r′ (mod n) ∀j ∈ [n]) as X ← E(1λ, sk, x′), and
sending the codeword symbols XI .

– To decode, the client executes xi = D(1λ, 1n, i,XI , sk, rand).

Correctness and communication complexity follow from OLDC decoding and
non-triviality. Note that the desired xi will be be mapped to position r via the
(r− i) shift. Statistical privacy of the PIR holds by the statistical indistinguisha-
bility of D′

1 and D′
2 (by implying an index-i query (sk, (Ir, r + i)) is statistically

close to (sk, (Ir, r
′ + i)), which is the query distribution for a random index).

As the final step, we show that if we consider several such (Ir, r) query pairs,
then non-negligible statistical distance must be maintained even when we remove
sk from the distribution (at which point we can no longer use OLDC correctness
arguments directly). Intuitively, this must hold, otherwise omitting sk would
yield a secret-key encryption scheme with information theoretic security.

More formally, since the sampling of (Ir, r) and (Ir, r
′) are independent con-

ditioned on a given value of sk, we may directly amplify the (non-negligible)
statistical distance of Dskλ

1 and Dskλ
2 to be 1 − ν(λ) for negligible function ν by

including a sufficiently large polynomial number �1(λ) of sample pairs (Iri
, ri) or

(Iri
, r′

i), respectively (as in D1(1λ) and D2(1λ) above), together with sk. In par-
ticular, for any choice of {skλ}λ, one can reliably transmit a bit (with possibly
inefficient decoding) b ∈ {0, 1} by sending a sample

(

skλ, (Ir1 , r1), . . . , (Ir�1(λ) , r�1(λ))
)

if b = 0, or
(

skλ, (Ir1 , r
′
1), . . . , (Ir�1(λ) , r

′
�1(λ)

)
)

if b = 1,

(where this notation is shorthand for the distributions described above). This is
preserved for the larger value �∗(λ) = 2|skλ|�1(λ), enabling reliable transmission
of 2|skλ| bits of information. Further, it is maintined over a random choice of
skλ ← G(1λ).

Now, suppose that for this choice of �∗ the original pair of distributions
D1(1λ, �∗(λ)),D2(1λ, �∗(λ)) are statistically close. These distributions corre-
spond directly to the �∗(λ)-sample distributions above (which enable transmis-
sion of 2|skλ| bits) but with sk omitted. That is, we have just demonstrated an
information theoretically secure symmetric-key encryption scheme for messages
of length greater than twice the key size |skλ|, a contradiction to Shannon’s
impossibility. Thus, assuming OLDC it must be that D1(1λ, �∗(λ)),D2(1λ, �∗(λ))
are computationally indistinguishable but statistically far.

3.2 Public-Key PIR

Definition 3 (pk-PIR). A Public-Key PIR (with preprocessing) is a tuple of
PPT algorithms (Gen,Encode,Query,Decode) acting on a size-n database with
the following syntax:
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Gen(1λ): On input the security parameter, Gen outputs a secret encoding key sk
and a public sampling key pk.

Encode(1λ, sk, x): On input a secret encoding key and database x ∈ {0, 1}n,
Encode outputs a compiled database X ∈ ({0, 1}L)N .

Query(pk, i): On input the public key and index i ∈ [n], the algorithm Query
outputs a sample-specific decoding key ski and a list of indices I ∈ [N ]q for
some q.

Decode(ski,XI): On input a query-specific decoding key ski (as generated by
Query) and values XI ∈ ({0, 1}L)q, the algorithm outputs a decoded value
x′ ∈ {0, 1}.

The algorithms (Gen,Encode,Query,Decode) should satisfy the following correct-
ness and security guarantees:

Correctness: Honest execution of Gen,Encode,Query, and Decode successfully
recovers requested data items. That is, for every i ∈ [n],

Pr
[

(sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(ski, I) ← Query(pk, i);x′
i = Decode

(

ski,XI

)

: x′
i = xi

]

= 1.

Non-triviality: There exists ε > 0 such that for every λ, and all sufficiently
large n, the number of queried bits satisfies Lq < n1−ε.

Security: No efficient adversary, given access to a public key and encoded data-
base, can distinguish the memory accesses dictated by Query on input query
index i0 and i1. Namely, for every non-uniform PPT adversary A, there exists
a negligible function ν such that the distinguishing advantage of A in the fol-
lowing game is bounded by ν(λ):

1. (x, aux) ← A(1λ): A selects a database x ∈ {0, 1}n and auxiliary infor-
mation aux.

2. (sk, pk) ← Gen(1λ); X ← Encode(1λ, sk, x): The challenger samples a key
pair and encodes the database x.

3. (i0, i1, aux′) ← A(pk,X, aux): A selects a challenge index pair i0 �= i1 ∈
[n].

4. b ← {0, 1}; (ski, I
∗) ← Query(pk, ib): The challenger selects a random bit

and generates a sample query (and key ski) for the chosen index ib.
5. b′ ← A(aux′, I∗): A outputs a guess for b, given the challenge index list I∗.
6. A’s advantage in the challenge game is defined as Pr[b′ = b] − 1/2, over

the randomness of the challenger (and A).

Remark 3. As with OLDCs, the pk-PIR security definition is specified for a
single challenge query, but extends via a straightforward hybrid argument for
any polynomial number of queries (this time analogous to semantic security of
public-key encryption).
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4 Oblivious LDC Candidate

We propose an approach for constructing Oblivious LDCs via Reed-Muller codes.
At a high level, we use the standard LDC based on Reed-Muller codes (with a
constant number of variables m and query complexity Õ(n1/m)), except that we
randomly permute the codeword symbols. A more explicit description follows.

Let F be a finite field and let d,m ∈ N with dλ + 1 < |F|. We consider
an (m, d)-Reed-Muller code over F, namely the code defined by m-variate poly-
nomials of degree ≤ d over F. The codeword corresponding to a polynomial p
consists of the values of p on all points in F

m. We use a secret (pseudo-random)
permutation over F

m to order the codeword symbols (e.g., [30]). To decode the
value of the polynomial p at a target point α ∈ F

m, the decoder picks a random
degree-λ parameterized curve beginning at α, and recovers p(α) by reading the
values of p on a random sequence of dλ + 1 distinct parameter values along the
curve (excluding the initial parameter value).

We formally describe the construction below, viewing the number of variables
m and degree bound d as parameters that determine the database size n.

Construction 1 ((m, d) RM-Based Oblivious LDC Candidate). Let n =
(
m+d

d

)

. Fix a canonical set of n points in F
m in general position, denoted by

αi for i ∈ [n]. Let N = |F|m, and fix a correspondence between a ∈ F
m and

ja ∈ [N ]. Consider the following tuple of PPT algorithms.

G(1λ): Sample a key describing a pseudorandom permutation π ∈ SN , via π ←
PRP(1λ). Output sk = π.

E(1λ, sk, x):
1. For message x = (x1, . . . , xn) ∈ F

n, define the corresponding m-variable
d-degree polynomial Px ∈ F[Z1, . . . , Zm] as the low-degree interpolation
of evaluations Px(αi) = xi. Denote the resulting codeword by X ′ ∈ F

N

indexed by points a ∈ F
m (recall N = |F|m), given componentwise as

the evaluations of Px at every point in F
m: i.e., ∀a ∈ F

m, take X ′[a] :=
Px(a).

2. Permute the indices of X ′ via π. That is, let X = (X ′
π(1), . . . , X

′
π(N)).

3. Output X.
Q(1λ, 1n, i, sk; r):

1. Parse sk = π ∈ SN .
2. Sample a random degree-λ parametric curve C = {(p1(t), . . . , pm(t)) : t ∈

F} ⊂ F
m that intersects the ith distinguished point αi ∈ F

m, for queried
index i ∈ [n]. Concretely, C is defined by letting ph be a random univariate
polynomial of degree ≤ λ such that ph(0) = (αi)h.

3. Select a random sequence (t0, . . . , tdλ) ∈ F
dλ+1 of dλ + 1 distinct nozero

parameter values, using the randomness r. For each � = 0, . . . , dλ, let
b� = (p1(t�), . . . , pm(t�)) ∈ F

m be the corresponding point on C, and let
jb�

∈ [N ] be the associated index.
4. Output I = (π(jb0), . . . , π(jbdλ

)) ∈ [N ]dλ (i.e., the list of π-permuted
indices) as the list of query indices.
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D(1λ, 1n, i,XI , sk, r):
1. Parse XI = (X0, . . . , Xdλ), sk = π the pseudorandom permutation, and

r = (t0, . . . , tdλ).
2. The choice of parameter evaluation points t1, . . . , tdλ determines a

corresponding list of Lagrange polynomial interpolation coefficients
c0, . . . , cdλ ∈ F.

3. Output the linear combination x′
i =

∑dλ
�=0 c�X� ∈ F.

Choice of parameters. Viewing the number of variables m ≥ 2 as constant,
the code dimension is Θ(dm). We can therefore encode x ∈ {0, 1}n by letting
d = O(n1/m) and |F| = O(dλ). The code length is now |F|m = O(λm · n) and
the number of queries used for local decoding is dλ + 1 = O(λ · n1/m).

Consider the Oblivious LDC security game for the candidate construction
above. The challenger samples a random secret permutation π of the points in
F

m (corresponding to [N ]). The adversary is given oracle access to the query-
generation algorithm Qsk. In this case, the index set I ← Qsk(i) corresponds to a
collection of π-permuted points in the space F

m which (before the permutation)
were an oversampling of a low-degree curve in F

m.
Security of the candidate would say that, given access to polynomial many

samples of this type for desired query indices i, an efficient adversary still cannot
discern a fresh query index sample for some i0 from i1. In particular, it must
be the case that he cannot learn the secret permutation given access to these
samples.

We treat the security of the proposed scheme with respect to the following
conjecture. Roughly, it states that a permuted “puzzle” of colored low-degree
curves in m-dimensional space F

m is computationally indistinguishable from the
same number of colored points selected at random from F

m.

Conjecture 1 (Permuted Low-Degree Polynomials). Let m ∈ N be a dimension
parameter and d = dm(n) the minimal integer for which n ≥ (

m+d
d

)

. For every
efficient non-uniform A = (A1,A2) there exists a negligible ν such that

Pr

⎡

⎣

(1n, 1|F|, aux) ← A1(1λ);
π ← S(Fm); b ← {0, 1};

b′ ← ASampb(π,·)
2 (1n, aux)

: b′ = b

⎤

⎦ ≤ 1/2 + ν(λ),

where F is a finite field satisfying |F| > dλ+1, and for any π ∈ S(Fm) and v ∈ F
m,

the probabilistic algorithm Sampb(π, v) does the following:

– If b = 0:
1. Select m random degree-λ polynomials p1, . . . , pm ← F[Z] where ∀i ∈

[m], pi(0) = vi. This determines a curve in F
m, given by the points

{(p1(t), . . . , pm(t)) : t ∈ F}.
2. Sample dλ + 1 distinct random points on this curve, defined by nonzero

parameters t0, . . . , tdλ ← F.
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3. Output these points (in order), but with each point permuted by π : Fm →
F

m. That is,

(

π
(

p1(ti), . . . , pm(ti)
))dλ

i=0
∈ (Fm)dλ+1.

– If b = 1: Output dλ + 1 random points in F
m: (w0, . . . , wdλ) ← (Fm)dλ+1.

Proposition 2. Suppose that Conjecture 1 holds for dimension m ≥ 2. Then
Construction 1 is a secure Oblivious LDC with communication complexity
λm · Õ(n1/m).

Proof. The complexity is derived in “Choice of parameters” above. For the secu-
rity of the OLDC it suffices to prove a version of Conjecture 1 with the following
changes. In the first step A1 picks a pair of points (v0, v1). After the second step,
A2 is given a single instance of Samp0(π, vb). Finally, the third step is modified so
that Samp0 is used instead of Sampb. Conjecture 1 implies that for both choices
of b, the view of A2 is indistinguishable from a random and independent set of
points. Hence, the advantage of A2 in guessing b is negligible.

We remark that we choose to present the simplest proposed candidate in this
style whose security is plausible. One may consider several natural more complex
extensions, such as including additional “distractor” indices in the query list I
whose values will be ignored within the decoding. Such inclusion will correspond
to introduction of error symbols within the permuted codeword.

4.1 Generalized and Toy Versions of Conjecture

We explore both a generalization and a specific instance of the Permuted Low-
Degree Polynomials conjecture above.

Generalization: Permuted Puzzles. As discussed in the Introduction, our
main conjecture is a particular instance of a broader class of distinguishing tasks
of “permuted puzzles.” We think of a puzzle as describing: (1) a distribution of
structured functions from F

m to some range R (e.g., the class of pixel maps
defining images of dogs), and (2) a corresponding distribution of unstructured
functions (e.g., the class of all pixel maps with the same general color balance).
The corresponding Permuted Puzzle Conjecture considers a random secret per-
mutation π of the “puzzle pieces” (i.e., the input space F

m), and states that
one cannot efficiently distinguish between an arbitrary polynomial collection of
permuted samples from Structured from permuted samples from Unstructured,
where each sample is permuted with the same π.

Definition 4 (Puzzle). We refer to an m-dimensional puzzle over F

with range R as defined by a pair of efficiently samplable distributions
(Structured,Unstructured), each over the class of functions {f : Fm → R}.
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Conjecture 2 (Permuted Puzzle Conjecture). The Permuted Puzzle Conjecture
with respect to the m-dimensional puzzle (Structured,Unstructured) states that
for every efficient non-uniform A, there exists a negligible ν such that

∣
∣
∣ Pr[π ← PRP(1λ); b′ ← AOπ(struct)(1λ) : b′ = 1]

− Pr[π ← PRP(1λ); b′ ← AOπ(unstruct)(1λ) : b′ = 1]
∣
∣
∣ ≤ ν(λ),

where Oπ is an oracle that takes as input b ∈ {struct, unstruct} and performs the
following:

– If b = struct: Sample f ← Structured, output f ◦ π.
– If b = unstruct: Sample f ← Unstructured, output f ◦ π.

For example, the Permuted Low-Degree Polynomials Conjecture 1 is a par-
ticular case of the permuted puzzle conjecture, where Structured consists of func-
tions f : Fm → {0, 1} which evaluate to 1 precisely on (dλ+1) points on a degree-
λ parametric curve, and Unstructured consists of all functions Fm → {0, 1} which
have (dλ + 1) nonzero outputs (but in an arbitrary placement).

Specific Instance: Toy Conjecture. To encourage investigation of the core
Permuted Low-Degree Polynomials conjecture, we put forth a simple toy variant,
which constitutes an easier version of the simplest parameter setting. In partic-
ular, it considers the case of dimension m = 2, and takes the first-coordinate
polynomial to be the identity function: that is, including the value of the curve
parameter explicitly. This variant brings the problem closer to typical settings
of coding theory, and may thus be a useful starting point toward addressing
coding-based cryptanalytic attacks. We pursue this strategy in the discussion of
cryptanalysis in Sect. 4.2 below.

Conjecture 3 (Toy Conjecture). Let |F| ≈ λ2. Let p1, . . . , pm be random degree-
λ polynomials over F, for m = λ100. Let q1, . . . , qm be random functions from F

to F.
Then the following two distributions are computationally indistinguishable,

over the choice of random permutation π ← SF×F over F × F. Here, elements of
each set Si or Ti appear in canonical sorted order (not ordered by x ∈ F).

1. Permuted low-degree polynomials: (S1, . . . , Sm), for Si = {π(x, pi(x)) :
x ∈ F}.

2. Permuted random functions: (T1, . . . , Tm), for Ti = {π(x, qi(x)) : x ∈ F}.

4.2 Discussion on Cryptanalysis

We briefly address a selection of relevant cryptanalytic techniques with respect
to the candidate construction, as well as attacks on simplified versions of the
construction. We focus on the Toy Conjecture 3 (i.e., m = 2 dimensions, where
the first-coordinate polynomial is the identity function), as an attack on the
primary conjecture is necessarily also an attack on this easier version.
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Permuting Individual Coordinates. To develop intuition, we first consider weaker
(i.e., easier to break) variants of the Toy Conjecture, and show that these are
not secure. In these variants, instead of choosing the permutation π from the
entire space SF×F, we sample from a restricted class that permutes one or both
coordinates of F × F independently. In particular:

1. Permute only second coordinate: π ← id × SF. In this case, the permuted
low-degree curves are given as sets of points

{

(t, π2(p(t)))
} ⊆ F × F.

This weakened version is not secure. The exposure of the parameter values
t themselves in the clear reveals a linear constraint on the corresponding sec-
ond coordinate symbols, corresponding to Lagrange interpolation where the
coefficients are known. As discussed and generalized in the second category of
Linearization attacks below, this enables an adversary with sufficiently many
samples to learn the preimages of π.

2. Permute only first coordinate: π ← SF × id. In this case, the permuted low-
degree curves are given as sets of points

{

(π1(t), p(t))
} ⊆ F × F.

This weakened version is also not secure. One can view this as the problem
of distinguishing “noisy”Reed-Solomon codewords from uniformly random
vectors in F

|F|, where the “noise” is a permutation of the codeword symbols.
Since the resulting “noisy”codewords are still codewords in a linear code,
they are contained in some low-dimensional subspace. Thus, the adversary
may simply check the dimension of the span of sufficiently many samples to
determine whether the structured or unstructured case holds.

Standard Decoding Attacks. Coding-theoretic attacks are a natural attempt to
refute the Toy Conjecture 3; as above, the attacker’s task is similar to the task of
distinguishing “noisy” Reed-Solomon codewords from uniformly random vectors.
As noted above, when the “noise”is a permutation acting on either coordinate
independently, the linearity of the underlying code provides an attack. Simi-
larly, if the “noise” did not include a permutation, and only included standard
coding-theoretic noise (that is, if Si were of the form {(x, pi(x)+ei(x)) : x ∈ F}
for a sparse ei(x)), then standard decoding algorithms (for example Reed-
Solomon list-decoding, or the multi-dimensional extension of Coppersmith and
Sudan [11]) might apply. However, because the noise takes the form of a permu-
tation, it is not at all clear how to apply such techniques in this setting.

Similarly, an attacker might hope to adapt attacks on instantiations of the
McEliece cryptosystem [28] with Reed-Solomon codes in the place of Goppa
codes, since these attacks are aimed at distinguishing a permutation applied to
a Reed-Solomon generator matrix from uniformly random; such attacks might
apply directly in the setting where the Si are of the form {(π(x), pi(x)+ ei(x)) :
x ∈ F}. However, there are two reasons that these sorts of attacks are not directly
applicable to the general Toy Conjecture 3. First, the permuation acts on the
entire space F×F, rather than just on the first coordinate. Second, these attacks
require knowledge of the public key—the scrambled generator matrix—and in
the Oblivious LDC setting the attacker is not privy to this information.
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Linearization Attacks. Generalizing the discussion above on permuting individ-
ual coordinates, linearization-style attacks can be used to break any version of
the above candidate construction satisfying the following simplified properties:

1. Encoding is linear & public:
In this case, each encoded database entry Xj corresponds to a known linear
combination of the original database entries xj , i.e. to a known n-dimensional
coefficient vector c(j) ∈ F

n for which Xj =
∑n

i=1 c
(j)
i xi. In this case we can

assume without loss of generality that the decoder is also linear. Indeed, for
a random database x, a set of linear combinations of xj can be used to infer
a given target xi with better than 1/2 success probability if and only if it
spans xi. Given a query set I ∈ [N ]q, we can simply determine whether a
given basis vector ei lies in the span of the vectors c(j) corresponding to the
queried locations. By correctness and linearity of the decoder, this must be
the case for the true queried index i. But, since the number of queries q < n/2,
this cannot be the case for most indices i′ �= i.

In particular, this means that if Encode is a linear procedure, then it must
utilize secret randomness. In our candidate construction, this is achieved by
use of the secret permutation π. Namely, Encode corresponds to implement-
ing a fixed public linear Reed-Muller encoding procedure composed with a
random permutation matrix.

2. Decoding is linear & public, encoding is linear:
In this case, even if the encoding is randomized and secret, but the decoding is
linear and public, we can launch a simple linearization attack. As above, linear
encoding means each encoded symbol Xj corresponds to some n-dimensional
coefficient vector c(j) ∈ F

n (for which Xj =
∑n

i=1 c
(j)
i xi). Define nN lin-

earization variables, corresponding to the unknown values of {c
(j)
i }i∈[n],j∈[N ].

Plugging in the known linear decoding function, each received query sample
I ∈ [N ]q on input i ∈ [n] (whose data value xi is known) yields a fresh linear
constraint on these variables.

In particular, this means that a simplified version of our candidate con-
struction in which the dλ + 1 parameter values t0, . . . , tdλ ∈ F are fixed (and
public) would be broken, as well as the simplified variant discussed in “Per-
muting Individual Coordinates” above where the parameter values are ran-
dom but public. We avoid this issue in our proposed candidate by sampling a
random set of such values for each query, and passing this information along
to the decoder (but not revealing it directly). In effect, each distinct sub-
set of parameter values induces a distinct linear function for the decoding,
corresponding to the different value of Lagrange interpolation coefficients.

Generic Learning Approach. Assuming the existence of pseudorandom functions
in NC1 [18,32] (a mild assumption that follows from most standard crypto-
graphic assumptions), we can rule out the following hypothetical generic attack
that applies to constructions based on permuted linear LDCs. The generic
attack views every symbol of X as a hidden vector which specifies some linear
combination of x. By repeatedly invoking the decoder on index i, one can get
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polynomially many samples of sets of hidden vectors which span a given target
vector t. If this information could be used to learn the hidden vectors, or even
just distinguish between samples that span t and ones that do not, this would
give rise to a distinguishing attack.

However, the existence of pseudorandom functions in NC1, together with
the fact that span programs [23] can efficiently simulate NC1 functions, imply
that an attack as above cannot work in general. For simplicity we restrict the
attention to the case where t is the unit vector e1 and the field size is fixed.

Proposition 3. Suppose there is a pseudorandom function in NC1. Then, for
any finite field F, there are PPT algorithms (Gen,Query) such that Gen(1λ), on
a security parameter λ, outputs a secret key sk and a matrix M ∈ F

N×n, and
Query(sk, b) outputs a row index set Ib ⊆ [N ], and the following conditions hold.

– For the pair (M, I1) obtained by running Gen(1λ) and then Query(sk, 1), the
set of I1-rows of M spans the unit vector e1 ∈ F

n except with neg(λ) failure
probability.

– For the pair (M, I0) obtained by running Gen(1λ) and then Query(sk, 0), the
set of I0-rows of M does not span e1 except with neg(λ) failure probability.

– For any polynomial p(λ), the distribution ensembles {(I10 , . . . , I
p(λ)
0 )}λ and

{(I11 , . . . , I
p(λ)
1 )}λ are computationally indistinguishable, where (I1b , . . . ,

I
p(λ)
b )λ is obtained by letting (sk,M) ← Gen(1λ) and then Ij

b ← Query(sk, b)
for j = 1, . . . , p(λ).

Proof. Let Gen(1λ) generate a boolean formula F of size N computing a PRF
described by a secret evaluation key sk on an input x ∈ {0, 1}λ. (The existence
of polynomial-time Gen follows from the existence of a PRF in NC1.) Using the
known simulation of formulas by span programs [23], one can efficiently construct
2λ matrices Mi,0,Mi,1 over F, 1 ≤ i ≤ λ, each with n ≤ N columns and a total
of N rows, such that F (x) = 1 if and only if the unit vector e1 ∈ F

n is spanned
by the rows of the λ matrices Mi,xi

. The matrix M output by Gen is the matrix
whose rows contain all rows of Mi,b in order.

The algorithm Query(sk, b) samples a random x such that F (x) = b, and
outputs the index set Ib of the rows of Mi,xi

as rows of M . Since F = Fsk is
a PRF, F (x) = b holds for roughly a half of the inputs, and so such an x can
be sampled with negligible failure probability by trying λ random candidates.
Finally, since F is indistinguishable from a random function, polynomially many
samples of inputs x for which F (x) = 0 are indistinguishable from polynomially
many samples of inputs x for which F (x) = 1. Since the row indices in Ib are
determined by the input, this implies the required indistinguishability condition.

Overall, while there are certainly some simplified variants of the Toy Con-
jecture 3 that are not secure, it seems that the stated version is not immediately
susceptible to natural attack strategies. We hope that this Toy Conjecture will
be the subject of further study (either with the goal of refuting or confirming
it), as this will lead to a better understanding of our core Permuted Low-Degree
Polynomials Conjecture.
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5 Oblivious LDC to Public-Key PIR

We demonstrate a general transformation from any Oblivious LDC to a construc-
tion of Public-Key PIR, assuming virtual black-box program obfuscation. Recall
the core differences between the two primitives are: (1) querying an OLDC (and
decoding the retrieved values) requires the secret encoding key, and (2) OLDC
security holds only if the codeword remains private. The transformation uses
obfuscation to safely enable public querying and decoding (without revealing sk
directly). The codeword will be published in encrypted form, and the obfuscated
program will additionally contain the decryption key. Finally, to protect against
malicious decoding queries, all queries generated by the obfuscated program will
be authenticated by a MAC, which will be verified before answering.

Theorem 2. Suppose Oblivious LDCs exist. Then, assuming one-way func-
tions, there exists a secure Public-Key PIR in the virtual black-box obfuscation
hybrid model.

Proof. We present a general transformation from any oblivious LDC (G,E,Q,D)
to a public-key PIR scheme (Gen,Encode,Query,Decode) in Construction 3,
assuming the following tools (each of which, aside from VBB obfuscation itself,
are implied by one-way functions):

– Let O be a VBB circuit obfuscator secure with auxiliary input.
– Let (GenSKE,Enc,Dec) be a semantically secure symmetric encryption scheme.
– Let (GenMAC,Tag,Verify) be a secure deterministic MAC.2

– Let (GenPRF,EvalPRF) be a pseudorandom function family.

Construction 3 (pk-PIR from Oblivious LDC)

Gen(1λ, x):
1. Sample P ← Samp(1λ), defined as follows:

– Sample an oblivious LDC key skLDC ← G(1λ).
– Sample a SKE key skSKE ← GenSKE(1λ).
– Sample a MAC key skMAC ← GenMAC(1λ).
– Sample a PRF key k ← GenPRF(1λ).
– Let P be as in Fig. 1, with skLDC, skSKE, skMAC, k hardcoded.

2. Obfuscate the program as P̃ ← O(P, 1λ, 1n).
3. Output sk := (skLDC, skSKE, skMAC, k) and pk := P̃ .

Encode(1λ, sk, x):
1. Encode x using the oblivious LDC: i.e., X ′′ ← E(1λ, skLDC, x).
2. Encrypt each item in the encoded database (using skSKE from above):

For j = 1, . . . , N , let X ′
j ← EncskSKE(X

′′
j ).

3. MAC each item in the encrypted database (using skMAC from above):
For j = 1, . . . , N , compute tagj = Tag(skMAC, (j,X ′

j)), and define Xj =
(X ′

j , tagj).
4. Output the database X = (X1, . . . , XN ).

2 Note that a pseudorandom function can also be used directly for this purpose; how-
ever, we use separate notation for clarity to emphasize the two uses.
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Query(pk, i): Sample randomness r ← {0, 1}λ. Evaluate (I, c, tagQ) =
P̃ (“query”, i, r). Output ski = (c, tagQ) and query index set I.

Decode(ski,XI): Parse ski = (c, tagQ). Output v = P̃ (“decode”,
(i, I, c, tagQ,XI)).

Public Key Program P
Hardcoded: Oblivious LDC key skLDC, SKE key skSKE, MAC key skMAC, PRF key k.

– Input (“query”, i, r):
1. Let (r1, r2) = EvalPRF(0, i, r). This will serve as the randomness.
2. Let I = Q(1λ, 1n, i, skLDC; r1). Sample the LDC query set, using randomness r1.
3. Let c = EncskSKE(r1; r2). Encrypt the randomness r1 (using randomness r2).
4. Let tagQ = MACskMAC(i, I, c).
5. Output (I, c, tagQ).

– Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):

1. Test 1
?
= Verify(skMAC, (i, I, c), tagQ). That is, verify the query MAC tag.

2. For each j ∈ I:

(a) Test 1
?
= Verify(skMAC, (j, dataCTj), tagj). That is, verify the submitted

MAC on message (j, dataCT) consisting of the index and submitted en-
crypted data value.

(b) Decrypt dataj = DecskSKE(dataCTj).
3. Decrypt r1 = DecskSKE(c).
4. If any MACs did not properly verify, output ⊥.

Otherwise, output D(1λ, 1n, i, (dataj)j∈I , skLDC, r1).

Fig. 1. Query/Decode program whose obfuscation will constitute the pk-PIR public
key.

Suppose, for contradiction, that Construction 3 is not a secure pk-PIR: that
is, that there exists a non-negligible function α and non-uniform polynomial-
time A = (A1,A2,A3) who wins in the pk-PIR security challenge game with
advantage α. We will demonstrate a contradiction via a sequence of related
games.

Game 0. Real pk-PIR security game.

By definition of the pk-PIR security game, we have that A satisfies

Pr
[

(x, aux) ← A1(1λ); (sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux′) ← A2(pk,X, aux); b ← {0, 1}; (skib
, I) ← Query(pk, ib);

b′ ← A3(aux′, I) : b′ = b
]

≥ α. (1)
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Game 1. VBB security. In this step, we show that the adversary A must still be
able to successfully distinguish in the pk-PIR security game given only black-
box access to the program P in the place of seeing the actual obfuscated code
pk = P̃ .
Formally, consider Expression (1) above. By the pigeonhole principle applied
over index pairs (i0, i1) ∈ [n2], there must exist a fixed choice of (i∗0, i

∗
1) ∈ [n]2

for which

Pr
[

(x, aux) ← A1(1λ); (sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux′) ← A2(pk,X, aux); b ← {0, 1}; (skib
, I) ← Query(pk, ib);

b′ ← A3(aux′, I) : (b′ = b) ∧ [

(i0, i1) = (i∗0, i
∗
1)

]] ≥ α/n2.

For this choice of (i∗0, i
∗
1) ∈ [n]2, define a new adversary A(i∗

0 ,i∗
1)

= (A1,A2,A′
3)

where A′
3(aux

′, I) outputs A3(aux′, I) if (i0, i1) = (i∗0, i
∗
1) and ⊥ otherwise.

Then

Pr
[

(x, aux) ← A1(1λ); (sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux′) ← A2(pk,X, aux); b ← {0, 1}; (skib
, I) ← Query(pk, ib);

b′ ← A′
3(aux

′, I) : b′ = b
]] ≥ α/n2.

Plugging in the particular procedure for Gen (consisting of sampling (P, sk) ←
Samp(1λ) and then obfuscating P̃ ← O(P, 1λ, 1n), and taking pk := P̃ ), of
Query (which samples randomness r ← {0, 1}λ and evaluates the obfuscated
program at input (ski, I) = P̃ (“query”, i, r)), and making use of the correctness
of the obfuscator (so that P̃ (“query”, i, r) = P (“query”, i, r)), this implies

Pr
[

(x, aux) ← A1(1λ); (P, sk) ← Samp(1λ); P̃ ← O(P, 1λ, 1n);

X ← Encode(1λ, sk, x); (i0, i1, aux′) ← A2(P̃ ,X, aux); b ← {0, 1}; r ← {0, 1}λ;

(skib
, I) = P (“query”, ib, r); b′ ← A′

3(aux
′, I) : b′ = b

]

≥ α/n2.

For i ∈ [n], define the distribution (P, (aux,X, I)) ← InstSampi(1λ) by:

1. (x, aux) ← A1(1λ).
2. (P, sk) ← Samp(1λ) (where Samp samples keys and takes

sk = (skLDC, skSKE, skMAC, k) as specified in Gen in Construction 3).
3. X ← Encode(1λ, sk, x) (where Encode is specified in Construction 3).
4. r ← {0, 1}λ; (ski, I) = P (“query”, i, r).
5. Output (P, (aux,X, I)).

Then (for the same (i∗0, i
∗
1) ∈ [n]2 as above) we have

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ); P̃ ← O(P, 1λ, 1n);

(i0, i1, aux′) ← A2(P̃ ,X, aux); b′ ← A′
3(aux

′, I) : b′ = b
]

≥ α/n2
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Note that while the challenge I is sampled using either i∗0 or i∗1 instead of i0 or
i1 as selected by A, this does not affect the probabilities since A′

3 will anyway
output ⊥ in the case that (i0, i1) �= (i∗0, i

∗
1).

For the same (i∗0, i
∗
1) ∈ [n]2 as above, define the algorithm B(i∗

0 ,i∗
1)

that, on
input an obfuscated program P̃ , and a triple (aux,X, I), executes as follows:

1. Run (i0, i1, aux′) ← A2(P̃ ,X, aux).
2. Output b′ ← A′

3(aux
′, I).

Then, plugging in B(i∗
0 ,i∗

1)
notation to the expression above we have

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

P̃ ← O(P, 1λ, 1n); b′ ← B(i∗
0 ,i∗

1)
(P̃ , (aux,X, I)) : b′ = b

]

≥ α/n2.

Now, by the VBB security of the obfuscator O, then for the algorithm B(i∗
0 ,i∗

1)

there exists a corresponding simulator S(i∗
0 ,i∗

1)
such that for every auxiliary

input z = (aux,X, I),

∣
∣
∣ Pr[P̃ ← O(P, 1λ, 1n); b′ ← Baux

(i∗
0 ,i∗

1)
(P̃ , (aux,X, I)) : b′ = 1]

− Pr[b′ ← (S(i∗
0 ,i∗

1)
)P (·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = 1]

∣
∣
∣ ≤ ν(λ).

Therefore it must be the case that

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)P (·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − 2ν(λ). (2)

That is, the simulator (S(i∗
0 ,i∗

1)
) wins an analogous pk-PIR challenge (on a fixed

choice of challenge indices (i∗0, i
∗
1)), given only black-box oracle access to the

program P instead of its obfuscated code.
Game 2. MAC security. In this game, we consider the same experiment as

in Eq. (2), but where the simulator S(i∗
0 ,i∗

1)
instead interacts with a modi-

fied (stateful) oracle, PMAC defined below. PMAC acts precisely as P but self
destructs if it ever receives as input a valid MAC tag that was not generated
by the program itself (or appearing in the given encoded database X).

(Stateful) program PMAC:
Hardcoded: Program P , and encoded database X = ((dataCTreal

1 , tagreal1 ), . . . ,
(dataCTreal

N , tagrealN )).

– Initialize ValidTagList ← ∅.
– For each input (“query”, i, r):
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1. Let (I, c, tagQ) = P (“query”, i, r).
2. Add new message-tag pair to the list: ValidTagList ← ValidTagList ∪

{((i, I, c), tagQ)}.
3. Output (I, c, tagQ).

– For each input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):

1. If either of the following holds, set ForgedTag ← 1. Otherwise,
ForgedTag ← 0.

• For some j ∈ I, Verify(skMAC, (j, dataCTj), tagj) = 1 and dataCTj �=
dataCTreal

j .
• Verify(skMAC, (i, I, c), tagQ) = 1 and ((i, I, c), tagQ) /∈ ValidTagList.

2. If ForgedTag = 1: then selfdestruct.
3. Else, output P (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)).

Claim. For (i∗0, i
∗
1), InstSamp defined in Game 1, and PMAC as above, there exists

a negligible function ν2 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PMAC(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν2(λ). (3)

Proof. Follows directly by the security of the MAC. Namely, if the expression
in Eq. (3) differs from that in Eq. (2) by more than a negligible amount, this
would imply that the non-uniform polynomial algorithm S(i∗

0 ,i∗
1)

succeeds with
non-negligible probability in generating a fresh message-tag pair, given black-
box access to the program P . But, such an algorithm can be directly used to
win with non-negligible probability in the MAC security game, since the outputs
of the program P can be simulated given only query access to the algorithms
Tag and Verify for a challenge key.

Game 3. Correctness of SKE and Oblivious LDC. In this step, instead of actu-
ally running the oblivious LDC decoder D on a “decode” request to the pro-
gram, we will respond in one of two ways: (1) if the request is invalid or
includes message-tag pair that was not generated earlier by the program or X
(i.e., the case where PMAC would self-destruct) then output ⊥; (2) otherwise,
the decode request corresponds directly to a previously asked “query” request
for some index i ∈ [n], in which case we will directly output the database
value xi.

(Stateful) program Pcorrect:
Hardcoded: Program P , plaintext database x = x1, . . . , xn, encoded database

X = ((dataCTreal
1 , tagreal1 ), . . . , (dataCTreal

N , tagrealN )).

– Initialize QueryList ← ∅.
– For each input (“query”, i, r):

1. Let (I, c, tagQ) = P (“query”, i, r).
2. Add new query pair to the list: QueryList ← QueryList∪{((i, I, c), tagQ)}.
3. Output (I, c, tagQ).
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– For each input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
1. If either of the following holds, set ForgedTag ← 1. Otherwise,

ForgedTag ← 0.
• For some j ∈ I, Verify(skMAC, (j, dataCTj), tagj) = 1 and dataCTj �=
dataCTreal

j .
• Verify(skMAC, (i, I, c), tagQ) = 1 and ((i, I, c), tagQ) /∈ QueryList.

2. If ForgedTag = 1: then selfdestruct.
3. If ((i, I, c), tagQ) ∈ QueryList, output xi.
4. Else output ⊥.

Claim. For (i∗0, i
∗
1), InstSamp defined in Game 1, and Pcorrect as above, there exists

a negligible function ν3 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)Pcorrect(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν3(λ). (4)

Proof. Note that PMAC and Pcorrect identically treat “query” inputs (including an
identical update of respective lists ValidTagList and QueryList). Suppose an input
is received of the form (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), for which
ForgedTag = 0 (otherwise, if ForgedTag = 1, both PMAC and Pcorrect self destruct).
In particular, this means two things:

– The triple (I, c, tagQ) was generated as the output of the program on some
input (“query”, i, r). By the definition of the “query” portion of the programs,
this means there exists (r1, r2) for which I = Q(1λ, 1n, i, skLDC; r1) and c =
EncskSKE(r1; r2).

– The input values (dataCTj)j∈I are the true values of the encoded database
at the indices specified by I (i.e., XI). Now, recall that X was generated
(within InstSampi∗

b
, defined in Game 1, where Samp,Encode are defined as

in Fig. 1) by: sampling an oblivious LDC key as skLDC ← G(1λ); encoding x
via the oblivious LDC as X ′′ ← E(1λ, skLDC, x); encrypting each coordinate
of the encoded database as dataCTj ← EncskSKE(X

′′
j ) ∀j ∈ [N ]; MACing each

encrypted coordinate as tagj ← Tag(skMAC, (j, dataCTj)) ∀j ∈ [N ]; and taking
final output values Xj = (dataCTj , tagj) ∀j ∈ [N ].

Now, consider the steps of the “decode” portion of PMAC that are replaced
within Pcorrect:

1. For each j ∈ I: Decrypt dataj = DecskSKE(dataCTj).
By correctness of the SKE, we have that dataj = X ′′

j (as defined above) for
each j.

2. Decrypt r1 = DecskSKE(c).
By correctness of the SKE, we have that DecskSKE(c) = r1, for the randomness
value r1 used in Q to generate I.

3. Output D(1λ, 1n, i, (dataj)j∈I , skLDC, r1).
In our notation, this is D(1λ, 1n, i,X ′′

I , skLDC, r1), where I = Q(1λ, 1n, i,
skLDC; r1).
By correctness of decoding for the Oblivious LDC, this value is thus the
queried ith data value, xi.
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Therefore, the programs PMAC and Pcorrect are in fact identical. The claim follows.

Game 4. PRF security. We now replace the pseudorandom values (r1, r2) with
truly random values.

(Stateful) program PPRF:
Hardcoded: skLDC, skSKE, skMAC, Plaintext database x = x1, . . . , xn, encoded

database X = ((dataCTreal
1 , tagreal1 ), . . . , (dataCTreal

N , tagrealN )).

– Initialize QueryList ← ∅.
– Initialize OutputList ← ∅.
– Input (“query”, i, r):

1. If there exists a pair ((“query”, i, r), (I, c, tagQ)) ∈ OutputList, then output
(i, c, tagQ).

2. Else, let (r1, r2) ← {0, 1}λ × {0, 1}λ. (This was previously pseudo-
randomness).

3. Let I = Q(1λ, 1n, i, skLDC; r1).
4. Let c = EncskSKE(r1; r2).
5. Let tagQ = MACskMAC

(i, I, c).
6. Add new query pair to the list: QueryList ← QueryList∪{((i, I, c), tagQ)}.
7. Add new output value to the list:

OutputList ← OutputList ∪ {((“query”, i, r), (I, c, tagQ))}.
8. Output (I, c, tagQ).

– Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
Compute and output Pcorrect((“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), as
in Game 3.

Claim. For (i∗0, i
∗
1), InstSamp defined in Game 1, and PPRF as above, there exists

a negligible function ν4 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PPRF(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν4(λ). (5)

Proof. Follows directly by the security of the PRF. Note that Step 1 ensures
consistency if the same input (“query”, i, r) is received more than once.

Game 5. SKE security. We consider a new program PSKE that replaces each
c ← Enc(r1) in PPRF with an encryption of 0, i.e. c ← Enc(0). (Note that
each encryption in PPRF indeed uses true, freshly sampled randomness r2.)
In addition, we modify the InstSamp procedure so that instead of including
encryptions of the encoded database as X, we now simply generate N fresh
encryptions of 0 (and MAC the resulting ciphertexts).

Formally, define the new distribution (P, (aux,X, I)) ← InstSamp
Enc(0)
i (1λ),

for i ∈ [n], by:
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1. (x, aux) ← A1(1λ).
2. (P, sk) ← Samp(1λ) (where Samp is defined in Gen in Construction 3).
3. For j = 1, . . . , N :

(a) Sample CT of 0: dataCTj ← EncskSKE(0).
(b) MAC each item: tagj ← Tag(skMAC, (j, dataCTj)).
(c) Let Xj = (dataCTj , tagj).

4. r ← {0, 1}λ; (ski, I) = P (“query”, i, r).
5. Output (P, (aux,X, I)).

(Stateful) program PSKE:
Hardcoded: skLDC, skSKE, skMAC, Plaintext database x = x1, . . . , xn, encoded
database X = ((dataCTreal

1 , tagreal1 ), . . . , (dataCTreal
N , tagrealN )).

– Initialize QueryList ← ∅.
– Initialize OutputList ← ∅.
– Input (“query”, i, r):

1. If there exists a pair ((“query”, i, r), (I, c, tagQ)) ∈ OutputList, then output
(I, c, tagQ).

2. Let I ← Q(1λ, 1n, i, skLDC).
3. Let c ← EncskSKE(0). (Previously encrypted the randomness used in Q).
4. Let tagQ = MACskMAC

(i, I, c).
5. Add new query pair to the list: QueryList ← QueryList ∪ {(i, I, c)}.
6. Add new output value to the list:

OutputList ← OutputList ∪ {((“query”, i, r), (I, c, tagQ))}
7. Output (I, c, tagQ).

– Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
Compute and output Pcorrect((“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), as
in Game 3.

Claim. For (i∗0, i
∗
1) as in Game 1, and InstSamp

Enc(0)
i , PSKE as above, there exists

a negligible function ν5 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSamp
Enc(0)
i∗
b

(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PSKE(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν5(λ). (6)

Proof. Follows by the semantic security of the SKE and a standard hybrid argu-
ment.

Game 6. Oblivious LDC security. In our final step, we argue that Eq. (6) cannot
hold for non-negligible α. The reason is because interaction with the program
PSKE can be completely simulated given only access to the challenge oracle
for the Oblivious LDC security game. Therefore, the combined (non-uniform
polynomial-time) adversary which runs the simulator S(i∗

0 ,i∗
1)

and simulates
the answers of its oracle PSKE(·) serves as an Oblivious LDC adversary, who
successfully distinguishes between the challenge I sampled via InstSamp

Enc(0)
i∗
0

from that sampled via InstSamp
Enc(0)
i∗
1

.



Can We Access a Database Both Locally and Privately? 689

Claim. For (i∗0, i
∗
1) as in Game 1, and InstSamp

Enc(0)
i , PSKE as in Game 5, there

exists a negligible function ν6 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSamp
(Enc(0)
i∗
b

(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PSKE(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≤ ν6(λ). (7)

Proof. Suppose, to the contrary, the probability expression in Eq. (7) is equal to
some non-negligible function β(λ).

Consider following the Oblivious LDC adversary BLDC:

1. An Oblivious LDC challenge key is sampled as sk ← G(1λ). BLDC receives
oracle access to Qsk(·) (which on input i ∈ [n] outputs I ← Q(1λ, 1n, i, sk)).

2. BLDC simulates the remaining (non-LDC) items in InstSampEnc(0):
(a) Simulate A1 to obtain (x, aux) ← A1(1λ).
(b) Sample skSKE ← GenSKE(1λ); skMAC ← GenMAC(1λ); and k ← GenPRF(1λ).
(c) For j = 1, . . . , N :

i. Sample CT of 0: dataCTj ← EncskSKE(0).
ii. MAC each item: tagj ← Tag(skMAC, (j, dataCTj)).
iii. Let Xj = (dataCTj , tagj).

3. BLDC selects the Oblivious LDC challenge index pair (i∗0, i
∗
1) ∈ [n]2, and

receives a challenge index sequence I generated as I ← Q(1λ, 1n, i∗b , sk) for
randomly selected b ← {0, 1}.

4. BLDC simulates b′ ← (S(i∗
0i∗

1)
)PSKE(·)(1|P |, 1n, 1λ, (aux,X, I)), for the values of

(aux,X, I) as generated in Step 2.
For each query made by S(i∗

0i∗
1)

to the oracle PSKE(·), BLDC simulates the
response:

– In Step 2 of the computation for an input of the form (“query”, i, r), BLDC

makes a query to its oracle Qsk(·) on the input index i.
– In all other steps, BLDC simulates precisely.

5. BLDC outputs the guess bit b′.

By construction, the advantage of BLDC in the Oblivious LDC security challenge
for (G,E,Q,D) is precisely β. Therefore, it must be the case that β is negligible.

Combining Games 1–6, we have that the original advantage α of the adversary
A in the Public-Key PIR security challenge game must be negligible. That is,
(Gen,Encode,Query,Decode) of Construction 3 is a secure Public-Key PIR. This
concludes the proof of Theorem2.

Combining Proposition 2 and Theorem 2, we obtain the following main
theorem.

Theorem 4. Suppose the Permuted Low-Degree Polynomials Conjecture holds
(Conjecture 1), and one-way functions exist. Then given ideal obfuscation (alter-
natively, a poly(λ)-size, stateless hardware token), there is a pk-PIR scheme with
communication and computation complexity poly(λ) · nε, for every ε > 0.
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6 Conclusion and Open Problems

In this work we put forward two new cryptographic primitives: pk-PIR, a public-
key variant of single-server PIR with preprocessing, and OLDC, its secret-key
variant. We propose a candidate implementation for OLDC and reduce pk-PIR
to OLDC via ideal obfuscation. Our work leaves open many interesting directions
for further research. For example:

– Further study the Permuted Low-Degree Polynomials Conjecture and more
general instances of the Permuted Puzzles problem.

– Can a construction of OLDC be based on standard cryptographic assump-
tions? Alternatively, can it be based on standard assumptions together with
ideal obfuscation?

– Are there OLDC candidates that provide a better tradeoff between storage
overhead and decoding complexity?

– Does a general transformation from OLDC to pk-PIR follow from indistin-
guishability obfuscation?

– Is there a direct candidate construction of pk-PIR that does not rely on any
form of general-purpose obfuscation?
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A Barriers to Proving Impossibility of OLDC

In this section we argue that ruling out the existence of OLDC is unlikely, as it
would imply data structure lower bounds that seem beyond the reach of current
techniques.

When considering a relaxed notion of OLDC that allows for adaptive decoding
(i.e., decoding proceeds in rounds, where the location of each symbol read by
the decoder may depend on the contents of the previous ones) there is a known
barrier which was already pointed out in [4,29]: proving strong lower bounds in
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the adaptive setting requires strong branching program lower bounds. However,
no such connection is known in the non-adaptive case.

We argue that ruling out the existence of OLDC is very unlikely, as it would
require proving strong data structure lower bounds. To be concrete, consider the
following question:

Is it possible to preprocess any circuit C : {0, 1}k → {0, 1} of size k100 into
a data structure D of size poly(k) such that for any input q, C(q) can be
evaluated by non-adaptively probing k10 bits of D?

While this type of “dream data structure” seems extremely unlikely to exist,
ruling it out seems beyond the reach of current techniques.3 Given such a hypo-
thetical data structure, we can take existing single-server PIR protocols (e.g.,
the one from [27]) and just let D be the data structure corresponding to the
circuit Cx that computes the answer given the client’s PIR query. For instance,
for the concrete dream data structure formulated above, we can take an instance
of the protocol from [27] where the queries are of size k, the database is of size
n = k98, and the circuit Cx is of size k100. This would result in an OLDC that
makes k10 � n probes to the encoded database. In fact, this OLDC is stronger
than our default notion in that has a deterministic encoder and does not make
use of any secret key.
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Abstract. Private Information Retrieval (PIR) allows a client to obtain
data from a public database without disclosing the locations accessed.
Traditionally, the stress is on preserving sublinear work for the client,
while the server’s work is taken to inevitably be at least linear in the
database size. Beimel, Ishai and Malkin (JoC 2004) show PIR schemes
where, following a linear-work preprocessing stage, the server’s work per
query is sublinear in the database size. However, that work only addresses
the case of multiple non-colluding servers; the existence of single-server
PIR with sublinear server work remained unaddressed.

We consider single-server PIR schemes where, following a preprocess-
ing stage in which the server obtains an encoded version of the database
and the client obtains a short key, the per-query work of both server and
client is polylogarithmic in the database size. Concentrating on the case
where the client’s key is secret, we show:

– A scheme, based on one-way functions, that works for a bounded
number of queries, and where the server storage is linear in the num-
ber of queries plus the database size.

– A family of schemes for an unbounded number of queries, whose secu-
rity follows from a corresponding family of new hardness assumption
that are related to the hardness of solving a system of noisy linear
equations.

We also show the insufficiency of a natural approach for obtaining doubly
efficient PIR in the setting where the preprocessing is public.

1 Introduction

Enabling clients to query remote databases while preserving privacy of the
queries is a basic challenge in cryptography. With the proliferation of huge data-
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bases stored and managed by powerful third parties, this challenge becomes ever
more relevant.

One of the more basic formulations of this multi-faceted problem is the con-
cept of Private Information Retrieval (PIR) [CKGS98]. Here the client is inter-
ested in learning the contents of specific addresses in the database, while prevent-
ing the server controlling the database (or, simply, the database) from learning
these addresses. The goal here is to minimize communication and work for the
client.

There are two general types of PIR schemes: Multi-server schemes whose
security relies on the assumption that servers do not collude, but are other-
wise information theoretic (see e.g. [CKGS98,BI01]), and single-server schemes
which are based on computational assumptions, often of a structured nature
(e.g., [KO97,CMS99]). Still, in both cases, the per-query work of the server is
traditionally taken to be at least linear in the database size—else the server can
“obviously” somewhat localize the requested address. Indeed, this linear server
overhead is a main bottleneck for deployment (see e.g. [CSP+]).

Is this bottleneck really inevitable? A first indication that this might not be
the case is the body of work on oblivious RAM [GO96,Ajt10,DMN11,SCSL11]:
Here a client can indeed access a database in a privacy preserving manner, with
polylogarithmic overhead for both client and database (following an initial poly-
time preprocessing stage). However, oblivious RAM schemes inherently require
the client to (a) keep secret state and (b) be able to update the database. This
is so even if the client only wants to read from the database. Furthermore, if
the database is not trusted for correctness then the client needs to be able to
continually update its local state. Consequently, a database cannot serve multiple
clients without having the clients continually coordinate with each other.

An indication that these restrictions might not be necessary either is the work
of Beimel et al. [BIM04]. They present PIR schemes where, following an initial
polynomial-time preprocessing stage, the client and servers each are stateless
and incur a per-query overhead that is sublinear in the database size. However,
that work considers only the multi-server setting, and furthermore the number
of servers is tied to the “level of sublinearity” of the scheme. This leaves open
the following question:

Can we construct a single-server PIR scheme where the client has no updat-
able state and where the per-query work of both the client and the server
is sublinear in the database size, potentially with a more expensive pre-
processing stage?

Paraphrasing [GR17], we call this primitive doubly efficient PIR (DEPIR).

1.1 Our Contributions

We provide some positive answers to this question, along with some impossibility
results and cryptanalysis of our candidate schemes. Our DEPIR schemes start
with an initial preprocessing stage which takes the database as input and hands
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a preprocessed version of the database to the server and (short) key to the
client. We distinguish between the public preprocessing case, where the random
choices made during preprocessing are public, the public client case, where the
preprocessing may use secret randomness but the client’s long-term key is public,
and the designated client case where the client’s key remains hidden from the
server. In all cases the client maintains no state across queries other than the
long-term key, and the database is read-only.

We have no positive results for the first two cases. In fact, we demonstrate
that a natural and general approach towards a public preprocessing solution is
doomed to fail. We leave progress on this fascinating question to future research.
We then concentrate on the designated client case. Here we show:

1. A designated-client scheme for a bounded number of queries, whose security
can be based on any one way function. Given a bound B on the number of
client queries, the size of the preprocessed database is Õ(B+poly(N)), where
N is the database size. The client keeps a short secret key of size λ, the security
parameter. The per-query client and server overheads are λ · polylog(N,B)
and polylog(N,B), respectively. (We compare the performance of this scheme
to that of the trivial stateful scheme where in preprocessing the client hands
the server B independently permuted copies of the database, and then uses a
different copy for each query. Here the online work is only logN , but the size
of the preprocessed database is BN . This means that the amortized space
overhead in this scheme is N , whereas in our scheme it is polylog(N).) We
then demonstrate the tightness of the analysis in two ways:
(a) We demonstrate an efficient attack on this scheme which is applicable as

soon as the number of queries exceeds the designated bound B.
(b) We demonstrate the failure of a natural approach to extending the scheme

while preserving its proof structure1. Along the way, we also show a tight
quantitative extension of the impossibility result from [CKGS98] regard-
ing the communication complexity in standard single-server PIR, and a
tight bound on the size of the key in an information-theoretic designated-
client PIR with preprocessing.

2. A candidate extension of the scheme from (1) to the case of unbounded
queries. The extended scheme provides a natural tradeoff between complexity
and potential security, where in the best case the complexity parameters are
comparable to those of the bounded scheme with B = 1. We are unable to
prove security of this scheme based on known assumptions. Instead, we intro-
duce a new computational problem, which we call the hidden permutation with
noise (HPN) problem, and reduce the security of our scheme to the assumption
that HPN is hard. HPN is a noisy learning problem and is thus superficially
similar to other “standard” cryptographic assumptions (e.g. LWE, LPN), but
we do not know of any reduction to these assumptions.

3. We take first steps towards analyzing the hardness of HPN. Security of the
candidate scheme from (2) can be rephrased as the hardness of the adaptive,

1 Specifically, using pseudo-random functions and pseudo-random permutations to
compress a long key for a statistically secure scheme.
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decision version of HPN. We then prove that the adaptive decision version
is no harder than the static (selective), search version. This allows future
investigation of the hardness of HPN to focus on the latter version, which is
structurally simpler and more basic.

4. We also consider a number of other methods for extending the scheme from
(1) to the case of unbounded queries. However, while these other methods may
well provide additional security on top of the HPN-based scheme described
above, we are unable to make significant headways either towards cryptanaly-
sis of these methods, or towards reducing security to a simpler problem.

In the rest of the introduction we describe our contributions in more detail.

Defining PIR security with preprocessing. We formulate the security of PIR
schemes with preprocessing in a range of settings, including the ones mentioned
above and some variants. A PIR scheme with preprocessing consists of five algo-
rithms

(
Keygen,Process,Query,Resp,Dec

)
, as follows. Keygen takes the security

parameter λ and samples a key K. Process takes K and a database DB ∈ ΣN

for some alphabet Σ and samples a preprocessed database D̃B to be handed to
the server. Query takes K and an address i ∈ {1, . . . , N}, and samples a query
q and local state s. Resp computes the server’s response d given q and RAM
access to D̃B, and Dec outputs the decoded value given K, s, and d. Giving Resp

oracle (random-)access to D̃B enables it to be sublinear in N . It is stressed that
the client is stateless, apart from the long-term key K and the short-term state
s between sending a query and obtaining its response.

The correctness requirement is obvious. Double efficiency means that Query,
Resp, and Dec each run in time o(N) · poly(λ) (ideally, they should be polyloga-
rithmic in N), and additionally Process runs in time poly(N,λ). For security, we
consider three main cases (plus several variants).

In the designated client case, security is defined by requiring that for any
polytime stateful adversary A there exists a polytime stateful simulator S such
that A can distinguish between the following two games only with negligible
probability: In the real game, A chooses a database DB, obtains a preprocessed
database D̃B ← Process(K,DB) where K ← Keygen(λ), and then repeatedly and
adaptively generates an index i ∈ [N ] and obtains Query(K, i). In the ideal game,
A chooses a database DB, obtains a simulated preprocessed database S(DB), and
then repeatedly and adaptively generates an index i ∈ [N ] and obtains S(). (If
S gets only N rather than DB then we say that the scheme guarantees also
database privacy.)

In the public cllient case, the above real game is modified so that A obtains
K ← Keygen(λ) before generating DB; in the ideal game K is generated by S. In
the public preprocessing case we assume, in addition, that Keygen simply outputs
its random input, and Process is deterministic. (Other variants are considered
within.)

We remark that our definitional style is inspired by UC security. Indeed, our
game-based definitions can be re-formulated as realizing the appropriate “ideal
PIR functionalities”.
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Candidate constructions and analysis. For simplicity, we restrict attention to
DEPIR schemes where the client’s query consists of a list of addresses in the
encoded database D̃, and the server answers with the contents of D̃ in these
addresses. (Since we are shooting for polylogarithmic communication complexity,
not much generality is lost by this simplification.)

When viewed this way, the encoding of a database bears resemblance to
locally decodable codes: The ith symbol of D should be decodable by accessing
only few locations of the encoded version D̃. Here however we have the added
requirement that the locations queried should be simulatable without knowing
the original addresses i. On the other hand, we do not have any error-correction
requirements.

A natural approach, which we follow, is thus to start from an existing locally
decodable code and try to modify it to obtain privacy. Specifically, we start from
the following variant of Reed-Muller codes: In order to encode a database D ∈
{0, 1}N choose a field F of size polylog(N) and a subset H ⊂ F of size logN . The
database is viewed as a function D : Hm → {0, 1}, where m = logN/ log logN
so that |Hm| = N . With this setup in place, D̃ is the truth table of the low degree
extension of D. That is, D̃ = {D̂(x) : x ∈ F

m}, where D̂ : Fm → F is the unique
m-variate polynomial of degree at most (|H| − 1) in each variable, such that
D̂(i) = D(i) for all i ∈ Hm. The total degree of D̂ is d = O(log2 N). To query
the database at i ∈ Hm (i.e., to decode D(i) from D̃), the client chooses a line
ϕ : F → F

m such that ϕ(0) = i, and sets q =
(
ϕ(1), . . . , ϕ(k)

)
where k = d + 1.

Upon receiving the server’s response (x1, . . . ,xk), client recovers D(i) = ϕ(0) by
interpolation (note that (x1, . . . ,xk) all lie on a curve of degree at most d).

The above scheme is clearly insecure as the server can easily interpolate i =
ϕ(0) from the client’s query

(
ϕ(1), . . . , ϕ(k)

)
. In this work we study three natural

and orthogonal alterations to this basic scheme which attempt to prevent the
server from interpolating, while still allowing the client to do so. As a preliminary
step to all alterations, we let ϕ be a random degree-d′ polynomial, where d′ =
polylog(N), rather than a random line. (Still, we let D(i) = ϕ(0).) This means
that, in order to allow the client to interpolate D̃(ϕ(0)), we should set k ≥ dd′+1.
As we’ll see, setting d′ to be super-constant will be important for the security of
our schemes in various ways. The three alterations are:

1. The client uses secret evaluation points (α1, . . . , αk) rather than (1, . . . , k).
The evaluation points can be chosen randomly once and remain fixed through-
out, or alternatively chosen anew for each query.

2. The client introduces noise by adding some random points in F
m to the query,

at random locations. (There are a number of different variants here, depending
on the noise structure.)

3. At preprocessing, the client first encrypts all elements of the database using
symmetric encryption. Next it encodes the database to obtain D̃. Finally, it
secretly and pseudorandomly permutes the elements of D̃ before handing it
to the server. The client keeps the encryption key, as well as the key of the
pseudorandom permutation.
That is, let π ∈ Perm(Fm) be a pseudorandom permutation. (Since the
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domain is polynomial in size, use e.g. [MRS09].) The precomputed database
D̃ is now the truth table of the function D̂ ◦ π−1 : Fm → F. To query address
i, client draws ϕ and computes (x1, . . . ,xk) as before, but sends the query
(x′

1, . . . ,x
′
k) where x′

i = π(xi). The client uses the responses (a1, . . . , ak) to
interpolate the encrypted D(i), and then decrypts to obtain the actual value.

The various combinations of these three ideas suggest several possible DEPIR
schemes. Note that a scheme based on either of the first two ideas (or both)
but not the third would be public preprocessing. The third idea results in a
designated client scheme. We briefly review how our main results are mapped to
these three ideas.

No Public-Client DEPIR via Linear Codes: In Sect. 3, we prove that any
combination of the first two ideas alone is insecure. More generally, we show
that any scheme where the preprocessed database D̃ is obtained just by encod-
ing D via some explicit linear code cannot be secure. This holds regardless of
which query and response mechanism is used.

Bounded Security, Unbounded Insecurity via (3): In Sect. 4, we show
that alteration (3) by itself suffices to obtain our bounded-query result stated
above. In fact, we show that security holds even if, instead of starting from
Reed-Muller codes, we start from any locally decodable code in a rather
general class of codes.
On the other hand, we demonstrate an explicit attack on the scheme, for the
case of Reed-Muller codes, if the client asks even slightly more queries than
the bound allows.

Candidate Schemes via other combinations: We observe that the previous
attack is thwarted by using either (1) and (3) together, or using (2) and (3)
together. In fact, we were unable to break either one of these two candidates,
with any non-trivial level of noise in (2). We thus suggest them as target for
further cryptanalysis. In fact it is reasonable to also propose the scheme that
combines all three ideas.
We note however that, while it is tempting to assume that adding alterations
(e.g., adding noise or moving from fixed evaluation points to hidden or random
evaluation points) increases security, or at least does not harm security, we
cannot always back this intuition by actual reductions. For instance we do
not currently see a way to argue that, a scheme that uses all three alterations
is always no less secure than a scheme that uses only alterations (2) and (3).

Security reduction: We concentrate on the following “minimal” variant of a
scheme that combines ideas (2) and (3): We choose a random set T of l
indices in [k + l]. We then run alteration (3) with k + l evaluation points,
obtain a query q1, . . . , qk+l, and then for each j ∈ T we replace qj with a
random point in the domain. In Sect. 5, we reduce the security of this scheme
to the computational hardness of a search problem that is roughly sketched
as follows. As already mentioned, we call this the hidden permutation with
noise (HPN) problem:
In the HPN problem, a random permutation π ∈ Perm(Fm) is chosen, where
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|F| = polylog(N) and |Fm| = poly(N). The problem is to compute π given
samples chosen as follows: First a random set T of l indices out of [k + l]
is chosen. Next, draw poly(N) samples from the following distribution Hπ,T :
Choose z ← F, a degree-d polynomial ϕ : F → F

m with ϕ(z) = 0. Now, for
i ∈ T choose yi randomly from F

m. For i /∈ T , let yi = ϕ(i). The sample is
(π(z), π(y1), . . . , π(yk+l)). The parameters are set so that k ≈ d2; however l
can be significantly larger, so a sample may not uniquely determine ϕ even if
π is known.
Note that a sample from Hπ,T directly corresponds to a query in the scheme.
In other words, security of the scheme corresponds directly to a decisional
variant of HPN with adaptively chosen free coefficients for ϕ. In contrast,
the HPN problem as formulated above is a search problem with non-adaptive
input.
One may of course consider also another variant of this scheme, where the
client chooses a new set T for each query. While this variant indeed appears
to be harder to cryptanalyze, we are not able to argue that it is no less secure
than the above, fixed-T variant. Furthermore, we were unable to extend the
decision-to-search reduction to this variant.

Finally, we note that only the first alteration above (namely, using random
evaluation points) is specific to Reed-Muller codes. The other two are generic and
apply to any locally decodable code, opening other potential routes to DEPIR
schemes. In fact our bounded-query scheme in Sect. 4 is stated (and proved
secure) generically in terms of any locally decodable code whose decoding queries
are t-wise uniform for sufficiently large t.

Related Work. There are several existing hardness assumptions about polyno-
mials in the literature, which do not appear to be related to ours. In particu-
lar, we point out the “noisy polynomial interpolation” problem, introduced by
Naor and Pinkas [NP06] and (somewhat) cryptanalyzed by Bleichenbacher and
Nguyen [BN00]. Two main differences between this assumption and our HPN
assumption are that (i) we completely hide the algebraic structure of the under-
lying field by permuting the polynomial’s domain, and (ii) we work with mul-
tivariate polynomials rather than univariate polynomials, which can sometimes
make reconstruction problems much more difficult [GKS10].

Coppersmith and Sudan [CS03] show how to remove noise from codes based
on multi-variate polynomials. However, their techniques do not appear to extend
to our case of codes concatenated with a hidden permutation.

1.2 Independent Work

The problem we consider has been independently studied by Boyle et al.
[BIPW17]. The two works consider the same problem of sublinear-time PIR
with preprocessing and propose similar candidate solutions based on secretly
permuted Reed-Muller codes.
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The notions of designated-client (resp., public-client) doubly-efficient PIR
from the present work correspond to the notions of OLDC (resp., pk-PIR)
from [BIPW17] (with the exception that they make the additional restriction of
non-adaptive queries). We provide an overview of the main differences between
the two works below.

The main contributions of [BIPW17] beyond those of this work include:

1. A general transformation from (designated-client) OLDC to (public-client)
pk-PIR by applying VBB obfuscation to the query generation algorithm and
an authenticated version of the decoding algorithm. This yields an explicit
candidate construction of pk-PIR.

2. Two types of barriers: A “data structures barrier,” suggesting that even a very
strong form of pk-PIR, with deterministic encoder and non-adaptive queries,
would be difficult to unconditionally rule out; and an “LDC barrier,” showing
that OLDC implies traditional LDC, effectively imposing a limitation on the
space of possible candidates.

3. Ruling out (under standard assumptions) a natural “learning” approach for
generically breaking constructions based on secret linear codes, by using the
power of span programs.

4. A proof that any OLDC (or, DEPIR scheme) implies a one-way function.

The main contributions of this work beyond those of [BIPW17] include:

1. A different variant of the designated-client (OLDC) candidate in which the
curve evaluation points used by the decoder are fixed (or made public) but
some of the points on the curve are replaced by random noise. A combination
of random noise with secret evaluation points is also proposed as a potentially
more conservative candidate.

2. A search-to-decision reduction for a restricted case of the above fixed-
evaluation-point variant, where the location of the noise elements is the same
for all queries.

3. An efficient variant of the designated client scheme, that is secure in the
bounded-query case assuming one way functions.

2 Defining Doubly Efficient PIR

We define doubly-efficient PIR (DEPIR) schemes within a number of settings.
While we only construct DEPIR schemes in few of these settings, we hope that
the definitions will be useful as a basis for future work. In all settings, we consider
information retrieval schemes with preprocessing that consist of the following five
algorithms:

Keygen takes the security parameter 1λ and samples a key k.
Process takes k and a database DB ∈ ΣN and outputs a preprocessed database
D̃B.
Query takes k and index i ∈ {1, . . . , N} and outputs a query q and local state
st.
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Resp takes q and D̃B and returns the server answer a.
Dec takes k, st, a and returns a data element in Σ.

The correctness and efficiency requirements are obvious:

Definition 1 (Correct and Doubly Efficient Information Retrieval).
An information retrieval scheme with preprocessing Π =

(
Keygen,Process,

Query,Resp,Dec
)
, is correct if the correctness error of Π is negligible in λ, where

Π has correctness error ε if for all DB ∈ ΣN and i ∈ [N ] we have:

Pr
[
Dec(st, a) 	= DBi

] ≤ ε

in the probability space defined by sampling

K ← Keygen(1λ), D̃B ← Process(K,DB), (q, st) ← Query(K, i), a ← Resp
˜DB(q)

If ε = 0, then Π is perfectly correct.
Π is doubly efficient if all algorithms are polynomial in λ, |D̃B| = poly(λ,N),

and Query,Resp,Dec are sublinear in N , where Resp is given RAM access to D̃B.
(Ideally, these algorithms are polylogarithmic in N .)

We consider several levels of security. In all levels, the database and the
indices to be read by the client are assumed to be chosen adversarially (“by the
environment”). Also, in all levels we only consider honest-but-curious database
servers, i.e. we trust the database server to run Resp (and sometimes also Process)
as specified. We then consider three main levels with some variants:

Designated client: Here the key k is known only to the client. We consider
two variants: One where the server does not even learn the database itself,
and the other where the server may learn the database but does not learn the
queried locations. We also consider the case of security for only a bounded
number of queries.

Public client: Here k is assumed to be public (and honestly generated); how-
ever, the randomness used to generate k is assumed to remain hidden. Since
Query is stateless, this means that many clients may query the database con-
currently. The server learns the database but not the queried locations. Here
(and in the next variant) we consider two cases, depending on whether the
database is chosen before k is known, or adaptively, depending on k. We also
consider the case where Keygen generates an additional secret key that is used
only by Process.

Public preprocessing: This is the same as public client, except that the ran-
domness used by Keygen is public (or, equivalently, Keygen simply outputs is
random input.)

Our formal notions of security are inspired by UC security, and can be formu-
lated via realizing appropriate variants of an “ideal PIR functionality”. However,
for self-containment we present them directly via the following games. (To sim-
plify presentation the notation below considers adversaries and simulators that
are stateful throughout the interaction.)
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Definition 2 (Designated-Client and bounded-query DEPIR). A
DEPIR scheme Π =

(
Keygen,Process,Query,Resp,Dec

)
is Designated Client

if for any PPT A there exists a polytime simulator S such that realA,Π ≈
idealA,S , where:

realA,Π is the output of A in the following interaction:

1. A → DB ∈ ΣN and obtains D̃B ← Process
(
K,DB

)
, where K ←

Keygen
(
λ,N).

2. Repeat until A generates final output:
(a) A generates an index i ∈ [N ] and obtains q ← Query(K, i).

idealA,S is defined as the output of A in the following interaction:

1. A outputs a database DB ∈ ΣN and obtains D̃B ← S(λ,DB);
2. Repeat until A generates final output:

(a) A generates an index i ∈ [N ] and obtains q ← S().
If in the above interaction S obtains only N rather than the entire DB then

we say that the scheme has also database privacy.
If Keygen obtains an additional input B, and the privacy requirement is mod-

ified so that A can generate at most B queries, then we say that the scheme is
B-bounded DEPIR. In this case we define the amortized storage overhead of the
scheme to be |D̃B|/B.

Definition 3 (Public-Client and Public-Preprocessing DEPIR). A
DEPIR scheme Π =

(
Keygen,Process,Query,Resp,Dec

)
is Public-Client if for

any polytime A there exists a polytime simulator S such that realA,Π ≈
idealA,S , where:

realA,Π is the output of A in the following interaction:

1. A(K) → DB ∈ ΣN , where K ← Keygen
(
λ,N); A obtains D̃B ← Process(

K,DB
)
.

2. Repeat until A generates final output:
(a) A generates an index i ∈ [N ] and obtains q ← Query(K, i).

idealA,S is defined as the output of A in the following interaction:

1. A(K) → DB ∈ ΣN , where K ← S(λ,N); A obtains D̃B ← S(DB).
2. Repeat until A generates final output:

(a) A generates an index i ∈ [N ] and obtains q ← S().
If in the above interaction Keygen outputs its random input, and Process uses

no additional randomness other than K then we say that the scheme is public
preprocessing.

If in the above interaction A obtains K only after generating DB then we say
that the scheme has non-adaptive database generation.

If in the above interaction S obtains K = Keygen
(
λ,N) rather than gener-

ating it, then we say that the scheme has global key generation. If in the above
interaction Keygen generates an additional key that is used by Process and oth-
erwise remains unknown, then we say that the scheme is public client with secret
preprocessing key.
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3 Failure of a Natural Approach for Public-Preprocessing
DEPIR

We present an approach for constructing public-preprocessing DEPIR, and
demonstrate its failure. Whether public-preprocessing doubly efficient PIR
schemes exist is left as a fascinating open question.

As sketched in the introduction, a natural approach to constructing public-
preprocessing DEPIR is to view the database DB ∈ {0, 1}N as a function DB :
Hm → {0, 1}, where H ⊂ F with |H| = logN , F is a finite field of order
polylog(N), and m = log N

log log N . The encoding of DB is done by extending it to an

m-variate polynomial D̂B : Fm → F of degree |H| − 1, where D̂B(x) = DB(x) for
all x ∈ Hm.

One may hope to construct query distributions {Qi}i∈Hm such that

1. (Interpolability) When sampling Q ← Qi, it holds that D̂B|Q determines
DB(i). That is, any m-variate polynomial g of degree |H| − 1 which agrees
with D̂B on Q also agrees with D̂B (and therefore DB) on i.

2. (Privacy) Qi computationally hides i. That is, for any i 	= i′, Qi and Qi′ are
computationally indistinguishable.

Such a construction would immediately give a (public-client) PIR scheme. The
server just stores the truth table of D̂B, and the client makes queries to i by
sampling Q ← Qi, asking the server for D̂BQ, and interpolating the returned
values to obtain DB(i).

For example, one may suggest to construct Qi by sampling a uniformly ran-
dom curve γ : F → F

m of degree t = log2 k such that γ(0) = i. That is, Qi

is defined as {γ(xi)}d
i=0, where {xi}d

i=0 are uniformly random distinct points in
F \ {0}, and d = t · m · (|H| − 1) is the degree of D̂B ◦ γ; A natural justification
here is that interpolating {γ(xi)} to find γ(0) seems to require knowledge of
the evaluation points {xi}. One can also include in the query some number of
random points in F

m to make interpolation look even harder.
This template can be further generalized by replacing D̂B with any locally

decodable code (LDC) encoding of DB, and appropriately adapting the notion
of interpolability.

However, we show that even this general template fails, as long as the LDC
in use is linear—which rules out the vast majority of the LDCs studied in the
literature. We are inspired by a recent work of Kalai and Raz [KR17], which
shows (among other things) the insecurity of the Reed-Muller instantiation of
this template.

Definition 4. Let C : ΣN → ΣM be a code, and let Q be a subset of [M ]. We say
that Q determines i ∈ [N ] if for every m,m′ ∈ ΣN for which C(m)|Q = C(m)|Q,
it holds that mi = m′

i.

Proposition 1. Let C : FN → F
M be a linear code. Then there is a poly(M)-

time algorithm which takes as input a set of queries Q ⊆ [M ], and outputs all
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indices i ∈ [N ] which are determined by Q. Furthermore, there are at most |Q|
such indices.

Proof. Let G ∈ F
M×N be the generator matrix for C. Then Q determines i iff

the ith standard basis vector ei ∈ F
N is spanned by the rows of G which are

indexed by Q. This criterion is efficiently checkable by Gaussian elimination.
To see the “furthermore” part of the proposition, let A denote the set of

i ∈ [N ] which are determined by Q. If |A| were larger than |Q|, then (Gm)Q
would be a compressed encoding of mA, which is impossible since mA was
arbitrary. �

4 Bounded-Query Designated-Client DEPIR

We consider the case of bounded-query, designated-client DEPIR. We first
present a trivial scheme with minimal online work but with large space over-
head for the server which also requires a stateful client. Next we present our
main bounded-query scheme, which is based on any family of locally decodable
codes. When instantiated with the Reed-Muller family of codes (with a general-
ized decoding procedure), we obtain the following parameters, for a database of
size N and query bound B:

– The prover and verifier both do polylog(N) online work
– The processed database size and secret key size are both |D̃B| = Õ(B +

poly(N)).

We emphasize this holds with a stateless client. Our construction improves sig-
nificantly on the trivial scheme, which only supports a single query and cannot
be simply scaled up by repetition without having the client maintain updatable
long-term state.

Database Encryption. In both schemes the first step in the preprocessing of the
database is to encrypt each entry, using some semantically secure symmetric
encryption, with a key that’s part of the clients secret key. Notice that this step
makes the encrypted database computationally independent from the plaintext
database. For simplicity of presentation, we omit the encryption step from the
description of both schemes, and instead assume that the adversary does not see
the plaintext database. Instead, it sees only the preprocessed database and the
queries. (It is also possible to obtain statistical independence between the plain-
text databases and the preprocessed one by using perfectly secure encryption
such as one time pad, at the cost of a longer client secret key.)

Organization. The trivial, stateful scheme is presented in Sect. 4.1). The main
scheme is presented and analyzed in Sect. 4.2. Optimality of the analysis is
demonstrated in Sects. 4.3 and 4.4. Section 4.3 presents an efficient attack that
kicks in as soon as the number of queries exceeds |Fm|. The attack is specific for
the Reed-Muller instantiation of the scheme. Section 4.4 provides a more general
bound on the key size and communication complexity of any statistically-secure
designated client DEPIR.
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4.1 A Trivial Scheme

We note that it is trivial to construct a one-round designated-client PIR scheme
with perfect correctness and perfect 1-query security, with server storage Õ(N)
and server work O(1):

– Keygen(1λ, N) samples a uniformly random permutation π : [N ] → [N ], and
outputs K = π.

– Process(K,DB) outputs D̃B, where

D̃B : [N ] → {0, 1}

D̃B(i) = DB(π(i)).

– Query(K, i) outputs (q, st), where q = π(i) and st is the empty string.
– Resp(D̃B, q) outputs D̃B(q).
– Dec(st, a) outputs a.

Extensions and Shortcomings. If the client is allowed to keep long-term state
(i.e. remember how many queries it has made), then one can obtain a B-query
scheme by concatenating B single-query schemes, resulting in server (and client)
storage which is Θ̃(BN). With a stateless client however, it is not even clear
how to support 2 queries. Furthermore, the storage cost of Θ̃(BN) leaves much
to be desired.

4.2 A Scheme Based on LDCs and Random Permutations

We show a scheme with a stateless client, parameterized by a query bound B,
which achieves B-bounded security and server storage of B · poly(λ) (for suffi-
ciently large B). By using pseudo-randomness, the client storage in our schemes
can be reduced to poly(λ), where λ is a security parameter for computational
hardness. We present our scheme generally based on a weak type of locally
decodable code, which we now define.2 However, we encourage readers to keep
in mind the Reed-Muller based scheme mentioned in the intro. Several remarks
throughout this section are designed to help in this endeavor.

Definition 5 (Locally Decodable Codes). A locally decodable code is a tuple
(Enc,Query,Dec) where:

– Enc : ΣN → ΣM is a deterministic “encoding” procedure which maps a mes-
sage m to a codeword c. N is called the message length, and M is called the
block length.

– Query is a p.p.t. algorithm which on input i ∈ [N ] outputs k indices
j1, . . . , jk ∈ [M ] along with some decoding state st.

2 Our definition differs from the standard definition of locally decodable codes in that
it does not require any robustness against codeword errors, and we assume that the
decoding queries are non-adaptive.
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– Dec is a p.p.t. algorithm which on input st and cj1 , . . . , cjk
outputs mi.

The locally decodable code is said to be t-smooth if when sampling (st, (j1, . . . ,
jk)) ← Query(i), (js1 , . . . , jst

) is uniformly distributed on [M ]t for every distinct
s1, . . . , st.

The secret key is q i.i.d. uniform permutations π1, . . . , πq : [M ] → [M ], so
a lower key size can be achieved at the cost of computational security by using
(small-domain) pseudo-random permutations [MRS09]. A processed database
D̃B is the tuple (Enc(DB)◦π1, . . . ,Enc(DB)◦πq), where composition of Enc(DB) ∈
ΣM with πi denotes rearrangement of the elements of Enc(DB), as if Enc(DB)
were a function mapping [M ] to Σ and ◦ denoted function composition.

More formally, we define a scheme template as follows.

Keygen
(
1λ, N,B

)
: Pick a t-smooth locally decodable code LDC with mes-

sage length N and a k-query decoding procedure, with parameters chosen so
that Bkt−1

(
B
M

) t
2−1 ≤ 2−λ−1. See further discussion below on the choice of

parameters.
Sample i.i.d. uniform permutations π1, . . . , πk : [M ] → [M ]. Output

(π1, . . . , πk) as the secret key. (If LDC has additional parameters then they should
be output as well.)

Process
(
sk,DB

)
: If necessary, encode each entry of DB as an element of Σ, so DB

lies in ΣN . Output D̃B = (D̃B
(1)

, . . . , D̃B
(k)

), where D̃B
(i)

is defined by permut-

ing the coordinates of LDC.Enc(DB) by πi. That is, D̃B
(i)

πi(j) = LDC.Enc(DB)j .

Query
(
sk, i

)
: Output ((π1(j1), . . . , πk(jk)), st), where ((j1, . . . , jk), st) is sampled

according to LDC.Query(i).

Resp
˜DB((j̃1, . . . , j̃k)): Output (D̃B

(1)

j̃1 , . . . , D̃B
(k)

j̃k
).

Dec
(
st, (y1, . . . ,yk)

)
: Output LDC.Dec(st, (y1, . . . ,yk)).

The perfect correctness of this scheme follows from the correctness of the under-
lying LDC.

The Reed-Muller Based Scheme. The following polynomial-based code is a nat-
ural choice for instantiating our scheme. It is t-smooth because of the t-wise
independence of degree t polynomials. Choose a finite field F, integer m and a
subset H ⊂ F such that |H|m = N and |F|m = M . For correctness, we require
that |F| ≥ m · t · (|H| − 1) + 1.

Enc: Identify DB ∈ {0, 1}N with a map Hm → {0, 1} and let D̃B : Fm → F be
the low degree extension. Output D̃B ∈ F

F
m

.
Query: Identify i ∈ [N ] with z ∈ Hm and choose a random degree-t curve

ϕ : F → F
m such that ϕ(0) = z. For k at least m · t · (|H| − 1), output the

query (x1, . . . ,xk) ∈ F
mk where xi = ϕ(i).



708 R. Canetti et al.

Dec: Given responses (a1, . . . , ak) ∈ F
k, let ϕ̃ : F → F be the unique univariate

polynomial of degree at most k − 1 such that ϕ̃(i) = ai. Output ϕ̃(0).

Let us see how the LDC constraints are satisfiable by a concrete code, and with
what parameters.

Example Parameters: Low Work. For (relative) simplicity, assume that N4 ≤
B ≤ 2λ

λ3 . Then one can set |H| = λ, m = log N
log λ (≤λ

4 ), and |F| = (2λ6B)1/m. With
this choice of parameters M = 2λ6B, and there is a t-smooth, k-query decoding
procedure (via curves) with t = 2(λ+ log(2Bk) + 1) and k = λ3 (as required for
correctness of decoding, |F| ≥ B1/m ≥ λ4 ≥ k, and k = λ3 ≥ (λ− 1)4(λ+1)λ

4 ≥
(|H| − 1) · m · t).

2Bkt−1

(
B

M

)t/2−1

= 2Bk

(
Bk2

M

)t/2−1

= 2Bk2−t/2+1 = 2−λ

Thus we obtain an amortized storage overhead (defined in Sect. 2), server over-
head, and client overheads which are all poly(λ) (respectively λ6, λ3, and λ3).

Example Parameters: Low Server Storage. Let ε > 0 be any constant. Let |H| =
max(λ,N ε) and m = log N

log |H| (≤ 1
ε ). Suppose for simplicity that λ ≤ N ε ≤ 2λ and

B ≤ 2λ. Let t and k be such that t ≥ 2(λ+log(2Bk)+1) and k ≥ m · t ·(|H|−1),
which can be achieved by setting k = O(λ · N ε) and t = O(λ). Let |F| =
max

(
k, (2k2B)1/m

)
. With this choice of parameters M = max(N · λ1/ε, 2k2B),

which in particular is N · poly(λ) whenever B = o
(

N1−2ε

λ2

)
. This yields

2Bkt−1

(
B

M

)t/2−1

= 2Bk

(
Bk2

M

)t/2−1

≤ 2−λ

We leave further optimization of parameters (or instantiation with different
locally decodable codes) to future work.

Proving Security

Theorem 1. For any database size, any bound B on the number of queries, and
any value λ for the security parameter, the above SSPIR scheme is a B-bounded
designated client DEPIR scheme with statistical 2−λ-security. Furthermore, the
scheme provides database privacy.

Proof. We show that every query (for the first B queries) is statistically close
to a distribution that is simulatable given the adversary’s view thus far. First,
by the principle of deferred decision, we can think of the random permutations
π1, . . . , πk as being lazily defined, input-by-input as needed. Thus the adversary’s
view of the �th query (π1(j1), . . . , πk(jk)) only reveals, for every i ∈ [k], the subset
of prior queries which also had πi(ji) as their ith coordinate. Let S1, . . . , Sk ⊆
[� − 1] denote these subsets.



Towards Doubly Efficient Private Information Retrieval 709

Next, we observe that S1, . . . , Sk inherit t-wise independence from the under-
lying t-smooth LDC. Furthermore, we have for each i that Si = ∅ with probabil-
ity at least 1− B

M . Our main lemma, which at this point directly implies security
of our scheme, says that all such distributions are within a total variational
distance ball of diameter ε = 2kt−1

(
B
M

)t/2−1. The advantage of an unbounded
adversary is then Bε.

Lemma 1. Let X̄ = (X1, . . . , Xk) and Ȳ = (Y1, . . . , Yk) be t-wise indepen-
dent random variables with the same marginals (i.e. for each i, Xi and Yi are
identically distributed), such that for each i ∈ [k], there is a value � such that
Pr[Xi = �] ≥ 1 − ε. Then dTV(X̄, Ȳ ) ≤ (kε)t/2 + kt−1εt/2−1 ≤ 2kt−1εt/2−1.

Proof. We first show that X̄ and Ȳ each have only t/2 non-� values, except with
probability at most (kε)t/2.

Claim 1. Pr
[|{i : Xi 	= �}| ≥ t/2

] ≤ (
kε)t/2, and the same holds with Yi in place

of Xi.

Proof. For any I ⊂ [k] with |I| < t, the probability that Xi 	= � for all i ∈ I is at
most ε|I| by t-wise independence. The number of i for which Xi 	= � is at least
t/2 iff for some I ⊂ [k] with |I| ≥ t/2, it holds that for every i ∈ I, Xi 	= �. So
by a union bound,

Pr
[|{i : Xi 	= �}| ≥ t/2

] ≤
(

k

t/2

)
· εt/2 ≤ (kε)t/2.

�
With this claim in hand, define G as the set of z1, . . . , zk for which |{i : zi 	=
�}| < t/2. The above claim then says that Pr[X̄ /∈ G] and Pr[Ȳ /∈ G] are each
at most (kε)t/2. We then have

dTV(X̄, Ȳ ) =
1
2

∑

z̄=z1,...,zk

∣
∣
∣Pr[X̄ = z̄] − Pr[Ȳ = z̄]

∣
∣
∣

≤ 1
2

(

Pr[X̄ /∈ G] + Pr[Ȳ /∈ G] +
∑

z̄∈G

∣
∣
∣Pr[X̄ = z̄] − Pr[Ȳ = z̄]

∣
∣
∣

)

≤ (kε)t/2 +
1
2

∑

z̄∈G

∣
∣
∣Pr[X̄ = z̄] − Pr[Ȳ = z̄]

∣
∣
∣. (1)

We now bound the second term of Eq. (1). We begin by rewriting, for any
z̄ ∈ G, the event X̄ = z̄ as the conjunction of two not necessarily independent
events. Let I denote the set of coordinates where z̄ is not �, i.e. I

def= {i : zi 	= �}.
Then X̄ = z̄ iff both

1. X̄ and z̄ agree on their restrictions to I, i.e. X̄I = z̄I .
2. Xi = � for every i /∈ I. As short-hand, we write this event as X̄∼I = �.
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We can therefore profitably rewrite Pr[X̄ = z̄] = Pr[X̄I = z̄I ] · Pr[X̄∼I =
�|X̄I = z̄I ] and similarly Pr[Ȳ = z̄] = Pr[ȲI = z̄I ] · Pr[Ȳ∼I = �|ȲI = z̄I ].
By t-wise independence, the probability that X̄I = z̄I is exactly the same as
the probability that Ȳi = z̄I (since |I| < t/2). Hence the difference of these
probabilities has a common factor X̄I = z̄I = ȲI = z̄I , which can be factored
out to yield

Pr[X̄I = z̄I ] ·
∣
∣
∣Pr[X̄∼I = �|X̄I = z̄I ] − Pr[Ȳ∼I = �|ȲI = z̄I ]

∣
∣
∣ (2)

Claim 2. For all I ⊂ [k] such that |I| < t/2, and all z̄I , it holds that
∣
∣Pr

[
X∼I = �|XI = z̄I

] − Pr
[
Y∼I = �|YI = z̄I

]∣∣ ≤ 2(k − |I|)t−1εt/2−1

≤ 2kt−1εt/2−1.

Proof. All we really need about the conditional distributions X∼I |XI = z̄I and
Y∼I |YI = z̄I are that they are t/2-wise independent. This t/2-wise independence
follows from the fact that X̄ and Ȳ are t-wise independent, and the events
XI = z̄I and YI = z̄I depend on fewer than t/2 coordinates of X̄ and Ȳ ,
respectively. We also only need, for each i /∈ I, the single bit of whether or not
Xi = �.

So it suffices for us to prove the following slightly more abstract lemma. This
lemma can be viewed as a special case of a natural generalization of Braverman’s
celebrated result that poly-logarithmic independence fools AC0 [Bra09]. Instead
of AC0 our predicate is a single conjunction (with fan-in n = k − |I|), but the
lemma does not follow directly from [Bra09] because any individual X ′

i might
not be uniformly distributed on {0, 1}.

Lemma 2. If (X ′
1, . . . , X

′
n) are t′-wise independent {0, 1}-valued random vari-

ables such that E[X ′
i] = Pr[X ′

i = 1] ≥ 1 − ε for all i, then
∣
∣
∣
∣
∣
E

[
n∏

i=1

X ′
i

]

−
n∏

i=1

E[X ′
i]

∣
∣
∣
∣
∣
≤ 2n(n2ε)t

′−1

Proof. For any subset S ⊆ [n], write X ′
S to denote the product

∏
i∈S X ′

i. Let εi

denote 1−E[X ′
i] With this notation, we want to bound

∣
∣
∣E[X ′

[n]]−
∏n

i=1(1− εi)
∣
∣
∣.

By the principle of inclusion-exclusion, we have

E[X ′
[n]] = 1 +

∑

∅�=S⊆[n]

(−1)|S|
E[1 − X ′

S ]

= 1 +
∑

0<|S|≤t′
(−1)|S|

E[1 − X ′
S ] +

∑

t′<|S|≤n

(−1)|S|
E[1 − X ′

S ]

= 1 +
∑

0<|S|≤t′

∏

i∈S

(−εi) +
∑

t′<|S|≤n

(−1)|S|
E[1 − X ′

S ], (3)
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where the last equality is by t′-wise independence. Comparing Eq. (3) to the
binomial expansion

n∏

i=1

(1 − εi) = 1 +
∑

0<|S|≤n

∏

i∈S

(−εi), (4)

we just need to bound the last term of Eq. (3) (If C denotes a bound which
holds for any X ′

1, . . . , X
′
n, then it must also apply to

∑
0<|S|≤n

∏
i∈S(−εi). As a

result we have |E[X ′
[n]] −

∏n
i=1(1 − εi)| ≤ 2C). We bound

∣
∣
∣
∣
∣
∣

∑

t′<|S|≤n

(−1)|S|
E[1 − X ′

S ]

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
E

⎡

⎣
∑

t′<|S|≤n

(−1)|S|(1 − X ′
S)

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

t′<|S|≤n

(−1)|S|(1 − X ′
S)

∣
∣
∣
∣
∣
∣

⎤

⎦

= E

⎡

⎢
⎢
⎣

∣
∣
∣
∣
∣
∣
∣
∣

∑

S⊆{i:X′
i=0}

|S|>t

(−1)|S|

∣
∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎥
⎦ (5)

We bound Eq. (5) via the basic fact that for any B-bounded random variable
Z, we have E[Z] ≤ B · Pr[Z > 0]. We apply this fact with

Z =

∣
∣
∣
∣
∣
∣
∣
∣

∑

S⊆{i:X′
i=0}

|S|>t

(−1)|S|

∣
∣
∣
∣
∣
∣
∣
∣

.

Z is 0 if
∣
∣{i : X ′

i = 0}∣∣ ≤ t′, which happens with probability at least 1 −
(nε)t

′−1 by Claim1, so Pr[Z > 0] ≤ (nε)t
′−1. When this is not the case, we bound

Z via the elementary combinatorial identity
∑

S⊆[n](−1)|S| =
∑n

i=0(−1)i
(
n
i

)
= 0

(this follows from the binomial expansion of (1 − 1)n), obtaining

Z =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

S⊆{i:X′
i=0}

|S|≤t′

(−1)|S|

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤
(

n

t′

)
≤ nt′

.

This implies E[Z] ≤ (nε)t
′−1nt′ ≤ n(n2ε)t

′−1. Substituting into Eq. (5) concludes
the proof of Lemma 2. �
Claim 2 follows by applying Lemma 2 with n = k − |I| and t′ = t/2. �
Substituting Eq. (2) into Eq. (1) and applying the following claim concludes the
proof of Lemma 1. �
Theorem 1 follows from the discussion preceding the statement of Lemma 1, and
from the fact that we chose an LDC for which 2Bkt−1

(
B
M

)t/2−1
= 2−λ �
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4.3 A Linear Attack if Too Many Queries Are Asked

In this section we describe a technique for analyzing the query data which arises
when the number of queries exceeds B. Our technique gives an attack which, in
some situations, breaks the (unbounded-query) security of the (bounded-query
secure) scheme from Sect. 4.2. Our attack utilizes extra properties of the under-
lying LDC which are not without loss of generality, but are nevertheless natural
and satisfied by the Reed-Muller based LDC, as well as other choices based on
polynomials. Roughly speaking, our attack exploits extra linear structure in the
LDC.Query and LDC.Dec procedures. Readers familiar with polynomial-based
codes will recognize the properties we use as abstractions of properties commonly
used in those settings.

Intuition and Overview

Extra Properties of LDC. Recall LDC = (LDC.Enc,LDC.Query,LDC.Dec). The
encode and query procedures are randomized maps

LDC.Enc : {0, 1}N → Σ[M ]; and LDC.Query : [N ] → [M ]k;

we assume LDC.Dec is a public operation and so LDC.Query outputs no decoding
state st. We assume that [M ] is a vector space over some finite field F, and that
[N ] ⊂ [M ] (not necessarily a subspace). Note in our Reed-Muller example, we
had [N ] = Hm ⊂ F

m = [M ]. Moreover, we assume there exists some subspace
V ⊂ [M ]k such that for each i ∈ [N ], LDC.Query(i) outputs a random element
from an affine coset of V, denoted Vi ⊂ [M ]k. In the Reed-Muller case, V is
the set of (x1, . . . ,xk) for which there exists a curve ϕ : F → F

m of degree at
most t satisfying ϕ(0) = 0 and such that xs = ϕ(s) for s = 1, . . . , k. The affine
shift Vi for i ∈ Hm is the set of x which lie on a low degree curve satisfying
ϕ(0) = i instead of ϕ(0) = 0. We furthermore assume that for any distinct
s1, . . . , st+1 ∈ [k] ∪ {index}, there exists a linear map ψs : [M ]t+1 → [M ] such
that ψs(Vi|s) = i for all i ∈ [N ], where Vi

∣
∣
s

denotes the projection of Vi onto the
coordinates s (if s = index then Vi|s = i). For Reed-Muller, these linear maps
are interpolation. Note this last property implies that LDC.Query : [N ] → [M ]k

is an error-correcting code with good distance since queries to distinct i, i′ ∈ [N ]
can agree in at most t places. This last property also means that dim(V) ≤
t ·dim([M ]). Our scheme requires LDC to be t−smooth so dim(V) ≥ t ·dim([M ]),
thus dim(V) = t · dim([M ]). Finally, we require that LDC is locally correctable
rather than just decodeable. This means that LDC.Query supports queries to any
codeword symbol, rather than only message symbols i.e., LDC.Query supports
any i ∈ [M ] rather than just i ∈ [N ]. This means that the |M | different affine
planes {Vi}i∈[M ], together form a subspace V̂ ⊂ [M ]k of dimension (t + 1) ·
dim([M ]). Note that the following distributions are identical:

1. draw i ← [M ], (j1, . . . , jk) ← Vi, output (i, j1, . . . , jk);
2. draw (j1, . . . , jk) ← V̂ and output (i, j1, . . . , jk) where (j1, . . . , jk) ∈ Vi.

This will be useful moving forward.
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Our Attack. Concretely, we describe an attack which, given B = M1+o(1) queries
{(jα,1, . . . , jα,k)}B

α=1 from either: (1) all from Vi for a fixed i ∈ [M ]; or (2) from
Viα

for random iα ← [M ], distinguishes between (1) and (2). We emphasize
that this is an attack on the LDC but not exactly an attack on the DEPIR
scheme, because the distinguisher in the DEPIR security game only gets to see
queries from Vi for i ∈ [N ] and not i ∈ [M ] − [N ]. This assumption is mainly
to simplify the analysis; we show in Sect. 5.4 how to analyze the attack (in a
different context) without making this assumption (but using more queries).

Notation. Since we are assuming that the query spaces, Vi, are affine planes,
membership in the Vi is decided by the linear equation: v ∈ Vi iff ψs(v) = i for
any s ⊂ [k]. From now on, however, we will not be explicit about the s or the
linear maps ψs, we will just talk about the linear equation “v ∈ Vi”. (For the
specific case of Reed-Muller codes, the coefficients of the linear equation are the
Lagrange coefficients that correspond to the points where ϕ is evaluated.)

Intuition. The high-level idea of the attack is the following. First, initialize
variables {vs,j′

s
}(s,js)∈[k]×[M ] which take values in [M ]. The intention is that

vs,j′
s
= js if πs(js) = j′

s. For each query (j′
α,1, . . . , j

′
α,k), add the constraint

vj′
α

∈ Vi to a list L of linear constraints on the {vs,js
} where vj′

α
is shorthand

for (v1,j′
α,1

, . . .vk,j′
α,k

). After enough constraints have been added to L, we will
be in one of two cases depending on whether the queries (j′

α,1, . . . , j
′
α,k) are all

to the same index or are to random indices. In the first case, there will exist
non-constant assignments to the vs,j′

s
which satisfy all constraints in L; in the

second case all satisfying assignments are constant. This distinction allows the
two cases to be efficiently distinguished.

The QueryDist Algorithm. Set B = kλM1+o(1).
Input: {(j′

α,1, . . . , j
′
α,k)}α

1. Initialize variables {vs,j′
s
}(s,j′

s)∈[k]×[M ] taking values in [M ], and a list L of
linear constraints on the vs,j′

s
to ∅. Also fix i ∈ [N ] arbitrarily.

2. For α ∈ {1, . . . , B}, add vj′
α

∈ Vi to L, where vj′
α

is short for
(v1,j′

α,1
, . . . ,vk,j′

α,k
).

3. Checks whether there is a non-constant assignment to the {vs,j′
s
} which sat-

isfies the constraints in L. If so, output fixed, if not output random. An assign-
ment is constant if for all (s, j′

s, j
′′
s ), vs,j′

s
= vs,j′′

s
.

Note that QueryDist runs in time poly(λ,B,M). Step 3 involves checking whether
the space of satisfying assignments is contained in the space of constant assign-
ments; this is possible to do efficiently using Gaussian elimination. All other
steps are clearly polytime.

Lemma 3. Assume k > 2t, |F|−t = 2−Ω(λ), and all of the assumptions men-
tioned in the previous paragraph. If QueryDist is given inputs {(jα,1, . . . , jα,k)}
which are all queries for the same index, it outputs fixed with probability 1. If
given {(jα,1, . . . , jα,k)} which are queries to random indices, it outputs random
with probability 1 − 2−Ω(λ) over the queries.
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Proof. If the {(jα,1, . . . , jα,k)} are all queries to i, then the assignment
vs,j′

s
= π−1

s (j′
s) is non-constant and satisfies every constraint in L since(

π−1
1 (j′

α,1), . . . , π
−1
k (j′

α,k)
) ∈ Vi for all α. If they are all queries to some other

i′ 	= i, then L can be satisfied by setting vs,j′
s
= (π′

s)
−1(j′

s) where π′
s = πs ◦ τs

and the τs are any permutations such that (τ1, . . . , τk)(Vi) = Vi′ . Therefore,
QueryDist outputs fixed with probability 1. We complete the proof by showing
that if the {(j′

α,1, . . . , j
′
α,k)} are queries for random indices then with overwhelm-

ing probability, any assignment to the vs,j′
s

which satisfies all constraints in L
must be constant.

Fix any assignment to the vs,j′
s
satisfying L and for s = 1, . . . , k let σs : [M ] →

[M ] be the map which sends j′
s to the vector assigned to vs,j′

s
. We will show that

each σs is constant. Since the assignment satisfies L, for every (j′
α,1, . . . , j

′
α,k),

for all α,
(
σ1(j′

α,1), . . . , σk(j′
α,k)

) ∈ Vi. Recall that drawing (j′
α,1, . . . , j

′
α,k)

consists of drawing iα ← [N ] = [M ] and (jα,1, . . . , jα,k) ← Viα
. Therefore,

every (jα,1, . . . , jα,k) ← Viα
drawn to produce the input to QueryDist satisfies

σ ◦π(jα) ∈ Vi, where σ ◦π(j) is shorthand for
(
σ1 ◦π1(jα,1), . . . , σk ◦πk(jα,k)

)
.

Say an assignment to {vs,j′
s
} is BAD if Pr(j1,...,jk)←V̂

[
σ ◦ π(j) ∈ Vi

]
<

(
1 −

1/|F|). Note,

Pr{jα}
[∃ BAD satisfying assignment

]
< MkM ·

(
1 − 1

|F|
)B

= 2−Ω(λ),

when B = kλM1+o(1), so we can assume that the assignment underlying σ is
not BAD.

Now, fix (j1, . . . , jt) ∈ [M ]t such that Prj←V̂

[
σ(j) ∈ Vi

∣
∣(j1, . . . , jt)

] ≥ (
1 −

1/|F|). Note drawing j ← V̂ conditioned on fixed (j1, . . . , jt) requires drawing
just one more coordinate, say jt+1, randomly from [M ] (using the extra property
as well as interpolation). Now, having fixed (j1, . . . , jt), for s ∈ [k], let js =
σs ◦ πs(js). Let j∗

t+1 ∈ [M ] be the unique value such that (j1, . . . , jt, j
∗
t+1) is

consistent with Vi. It follows that

Prjt+1←[M ]

[
jt+1 = j∗

t+1

]
≥ 1 − 1

|F|
and so σt+1 ◦πt+1 (hence σt+1) takes a constant value on a

(
1− 1/|F|)−fraction

of its inputs. The same is true for all of the σs. For each s, let j′
s ∈ [M ] be the

most likely value of σs. We show that either σs(js) = j′
s with probability 1 for

all s, in which case the assignment is constant; or else with high probability,
σ ◦ π(jα) /∈ Vi for some α, so the assignment does not satisfy L.

By the t−smoothness of LDC, Claim 1 implies

Prj←V̂

[
#{s ∈ [k] : js 	= j′

s} > t
] ≤ (

k/|F|)t = 2−Ω(λ).

It follows that with high probability, for any α, α′,

Δ
(
σ ◦ π(jα),σ ◦ π(jα′)

) ≤ Δ
(
σ ◦ π(jα), j)

)
+ Δ

(
j,σ ◦ π(jα′)

) ≤ 2t,
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where Δ is Hamming distance. Therefore, σ ◦π(jα) and σ ◦π(jα′) share at least
k−2t > t of their coordinates. The interpolation assumption implies σ◦π(jα) =
σ ◦ π(jα′) for all α, α′. Therefore, σ is constant and the result follows. �

4.4 Limits on Statistical DEPIR

We show that in any B-bounded information-theoretically secure (designated
client) PIR, either:

– The server’s responses are almost as long as the database, or
– The length of the secret key is almost B.

The bound holds even for schemes with only imperfect correctness and secu-
rity. This in particular implies that the bound holds even for schemes, like the
one above, which provides information-theoretic security except for the use of
pseudorandom permutations for permuting the database.

Answer Size in Public Client PIR. First, we show that a public-client PIR
cannot achieve both information theoretic security and non-trivial succinctness.
The intuition is that (by statistical security) a single query is indistinguishable
from a query to any other index, so the server’s answer contains almost all the
information about the database. Let |a| denote the size of a server’s response –
i.e. the length of an output of Resp.

Theorem 2. In any statistically δ-secure public-client DEPIR with correctness
error ε:

|a| ≥ (1 − H(ε + δ))N − O(logN).

In fact, this lower bound holds even if the PIR is only non-adaptively δ-secure.

Proof. Suppose the PIR is non-adaptively δ-secure. Then

Claim. There is an algorithm Reconstruct such that for any database DB,

E
[
Δ(DB′,DB)

] ≥ (1 − ε − δ)N

in the probability space defined by sampling

(pk, sk) ← Keygen(1λ, N)
D̃B ← Process(sk,DB)
(q, st) ← Query(pk, 0)
a ← Resp(q, D̃B)
DB′ ← Reconstruct(pk, q, a).

Proof. Reconstruct is an algorithm which does the following: Given (pk, q, a), it
samples st1, . . . , stN , where each sti is independently sampled from the distrib-
ution of the state st obtained by sampling (q′, st) ← Query(pk, i) conditioned on
q′ = q. Finally Reconstruct outputs DB′ such that for each i, DB′

i = Dec(sti, a).
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By linearity of expectation, it suffices to show that for a uniformly random i,
Pr [DBi = Dec(sti, a)] ≥ 1 − ε − δ.

By the non-adaptive δ-security, if we instead sample (q, st) ← Query(pk, i),
this change modifies the distribution of (D̃B, pk, q) by statistical distance at most
δ. Since a is a function of (pk, q), and sti is a function of (pk, q, a), the distri-
bution of (D̃B, a, sti) and therefore the probability that DBi = Dec(sti, a) also
changes by at most δ. However, the modified experiment induces a distribution
of (D̃B, pk, q, sti) which is exactly as if one had sampled (q, sti) ← Query(pk, i).
Thus in the modified experiment, Pr [DBi = Dec(sti, a)] ≥ 1 − ε, which means
that in the original experiment Pr [DBi = Dec(sti, a)] ≥ 1 − ε − δ. �
Claim. A random variable X ∈ {0, 1}N with expected Hamming weight is at
most εN (with ε ≤ 1

2 ) has entropy at most H(ε)N + O(logN).

Proof. We can partition the set of N -bit strings based on their Hamming weight.
It is clear that the maximal entropy of X is achieved only when the distribution
of X is uniform within each class. In other words, an entropy-maximizing distri-
bution takes the form

∑N
i=0 wiUi, where Ui is the uniform distribution on strings

with Hamming weight i and {wi} are non-negative weights summing to 1. The
entropy of this distribution is −∑

i wi logwi +
∑

i wiH(Ui), which is at most∑
i wiH(Ui)+ log(N +1). So we want to maximize

∑
i wiH(Ui) =

∑
i wi log

(
N
i

)

subject to the constraint that
∑

i wi · i ≤ εN .

We have the bound

∑

i

wi log
(

N

i

)
= O(logN) +

∑

i

wiH

(
i

N

)
N by Stirling’s formula

≤ O(logN) + H

(
∑

i

wi · i

N

)

N by Jensen’s inequality

≤ O(logN) + H(ε)N because
∑

i

wi · i

N
≤ ε ≤ 1

2

�
To prove the theorem, we use the following basic fact. If X and Y are random
variables, then

0 ≤ H(X) − H(X|Y ) ≤ H(Y ).

We apply this where X = DB is uniformly random (i.e. has entropy N), and
Y = a. Conditioning on the value of a can reduce the entropy of DB by at most
|a|. The fact that Reconstruct produces DB′ which agrees in expectation with DB
on at least (1−ε−δ)N locations implies that H(DB|a) ≤ H(ε+δ)N +O(logN).
Thus

|a| ≥ N − (H(ε + δ)N + O(logN) = (1 − H(ε + δ))N − O(logN),

which concludes the proof of Theorem 2. �
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Key Size for Designated Client PIR. The idea behind our lower bound on
key size for a designated client scheme is that releasing the key turns the scheme
into a public client scheme, which by Theorem 2 must be insecure. Since the
key is a piece of information which causes a dramatic change in the entropy of
a random variable, it must be long.

Theorem 3. In any B-bounded-query statistically δdc-secure, (1 − ε)-correct
designated-client DEPIR, the key size |skdc| satisfies:

|skdc| ≥
(
1 − 2δdc − H

(
1 − δpc

2

))
· B − O(logB)

where δpc is the smallest δ such that H(ε + δ) ≥ 1 − |a|+O(log N)
N . In particular,

if |a| = o(N), ε = o(1), and δdc = o(1), then |skdc| = Ω(B).

Proof. Given any designated client PIR scheme with correctness error ε, answer
size |a|, and B-query δdc-security, we can turn it into a public-client scheme with
the same correctness probability and answer size |a| by just releasing the secret
key. By Theorem 2, this scheme can only be non-adaptively δ-secure if

H(ε + δ) ≥ 1 − |a| + O(logN)
N

Let δpc denote the minimum such δ. Note that if ε = o(1) and |a| = o(N), then
δpc = 1

2 − o(1). By definition of δpc, there exists a database DB and indices
i0 and i1 such that the distributions (pk, D̃B, q0) and (pk, D̃B, q1) are δpc-far
(i.e. distinguishable with probability 1+δpc

2 ) in the probability space defined by
sampling

(pkpc, skpc) ← Keygen(1λ, N)
D̃B ← Process(skpc,DB)
q0 ← Query(pk, i0)
q1 ← Query(pk, i1).

In particular, suppose a uniformly random string M ∈ {0, 1}B is chosen, and
an adversary A is given (pkpc, D̃B, q1, . . . , qB), where qj ← Query(pk, imi

). Then
it is possible for A to output M ′ such that in expectation, Δ(m,m′) ≥ 1+δpc

2 ·B.
In other words,

H(M |(pkpc, D̃B, q1, . . . , qB)) ≤ H

(
1 − δpc

2

)
B + O(logB).

On the other hand, we can use the following lemma, proved implicitly by
Bellare et al. [BTV12] and explicitly restated by Dodis [Dod12] to lower bound
the entropy of M given only D̃B, q1, . . . , qB .

Lemma 4 [BTV12]. For any (possibly correlated) distributions M,C over some
spaces M and C, let

ε = SD((M,C);M × C)
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where M×C is the product distribution of the independent marginal distributions
M and C. Then,

2ε2 ≤ I(M ;C) ≤ 2ε · log(|M|/ε)

This lemma, together with the B-bounded δdc-security of our designated
client PIR, implies that

H(M |D̃B, q1, . . . , qB) ≥ B − 2δdc(B − log δdc)
= (1 − 2δdc)B + 2δdc log δdc

≥ (1 − 2δdc)B − 2.

|pkpc| = |skdc| must be large as the difference between these two entropies,
which proves the theorem. �

5 A Candidate Designated Client Scheme and HPN

In this section we propose a candidate designated-client DEPIR scheme for
unbounded number of queries. We prove the security of the scheme based on
the hardness of a new computational problem, called the hidden permutation
with noise problem (HPN).

Our candidate scheme is similar to the bounded secure scheme of Sect. 4,
except that the client adds noise to each of its queries by overwriting some of
the coordinates with random values. This modification thwarts the linear attack
of last section; however, due to the impossibility of statistically secure designated
client DEPIR (see Sect. 4.4), the security of a scheme that follows these lines can
only be computational even if the client uses perfectly random permutations.
Thus, an additional hardness assumption is necessary.

We formulate a number of variants of HPN. The strongest variant is essen-
tially a restatement of the privacy requirement from the scheme, as per Defi-
nition 1. It says that no PPT A can distinguish the queries generated by the
scheme from sequences of random values in F

m, even if A has full adaptive con-
trol over which addresses are queried. We then give reductions from the adaptive
to static versions of HPN and from the decision version to a search version where
hidden random permutations are recovered in full. This implies that our scehme
is secure as long as the static, search problem remains hard.

The candidate scheme is presented in Sect. 5.1, the HPN assumption is defined
in Sect. 5.2, and the reductions are proved in Sects. 5.3 and 5.4.

5.1 Candidate Scheme

Notation. Let P be a family of pseudorandom permutations with seed length λ.
We use the same algebraic notation as in the Introduction. So let (m, t, r, k,H,F)
be such that m < t < r < k < |F| and H ⊂ F such that |H|m = N and
m(t − 1)(|H| − 1) < r. Also, |F|m = poly(n) while |F|t = nω(1).
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Keygen
(
1λ, N

)
: Draw permutations τ ← P(Fm+1) and π ← P(Fm) and a subset

T ⊂ [k] of size |T | = r. Output k = (seedπ, seedτ , T ).

Process
(
k,DB

)
: Interpret DB ∈ {0, 1}N as DB : Hm → {0, 1} using the identifi-

cation of [N ] with (a subset of) Hm (DB is zero on any points in Hm not in the
image of this identification) and let D̂B : Fm → F be the low degree extension,
so deg(D̂B) ≤ m(|H| − 1). Output

D̃B =
{(

x, τ
(
x, D̂B(π−1(x))

))}

x∈Fm
.

Query
(
k, i

)
: Let z ∈ Hm be the element corresponding to i ∈ [N ]. Choose

x = (x1, . . . ,xk) ← Vz. Output y = (y1, . . . ,yk) where yi = π(xi) if i ∈ T , and
yi ← F

m is random otherwise. Set st = (seedτ , T ).

Resp
˜DB(q): Upon receiving q = (y1, . . . ,yk), for each i = 1, . . . , k, find the row

of D̃B with first coordinate yi: (yi,y′
i). Output a = (y′

1, . . . ,y
′
k).

Dec
(
st, a

)
: Parse a = (y′

1, . . . ,y
′
k) and st = (seedτ , T ). For i ∈ T , set (xi, αi) =

τ−1
i (y′

i). Let ψ : F → F be the unique univariate polynomial of degree at most
m(t − 1)(|H| − 1) such that ψ(i) = αi for all i ∈ T . Output ⊥ if no such
polynomial exists; otherwise output ψ(0).

5.2 Variants of HPN

All variants of the HPN problem are defined in terms of the HPN distribution,
which is essentially a noisy version of the distributions D({πi}, z

)
from the pre-

vious section. Recall this distribution: x ← Vz is drawn and y is output where
yi = πi(xi). In this section we simplify notations and use the same permutation
π for all coordinates i ∈ [k]. We add noise to the samples in the following way:
at the beginning of the experiment a random subset T ⊂ [k] of size r > t is
chosen and yi = π(xi) only if i ∈ T ; otherwise yi is drawn randomly from F

m.
Intuitively, HPN says that no PPT adversary can either distinguish such sam-
ples from random (decision form) or recover the hidden permutation π (search
version).

Definition 6 (HPN Distribution). Let (m, t, r, k,F) be such that m < t <
r < k < |F|, |F|m = poly(n) and |F|t = nω(1). For π ∈ Perm(Fm), z ∈ F

m and
T ⊂ [k], let D(

π, z, T
)
be the distribution which: draws x ← Vz and outputs

y ∈ F
mk where yi = π(xi) if i ∈ T and yi ← F

m otherwise.

The static versions of the HPN assumption are formulated against a PPT
adversary who gets polynomially many samples (zα,yα) where yα ← D(

π, zα, T
)

for random fixed π ∈ Perm(Fm) and T ⊂ [k] and random zα ← F
m. In the adap-

tive versions of the assumption allow the adversary to choose the zα ∈ F
m

adaptively as the experiment progresses. The static versions of HPN imply the



720 R. Canetti et al.

adaptive versions as |F|m = poly(n), and so a static adversary who receives
enough random samples, will be able to provide samples to an adaptive adver-
sary. This idea is utilized in the proof of Claim 5.2 below. In the definitions below
we write {yα} ← D(

π, {zα}, T
)

for the samples; it is to be understood that the
indices {zα} are chosen randomly from F

m and made public to the adversary.

Definition 7 (The HPN Assumption). Let (m, t, r, k,F) be as above.

Search Version: For all PPT algorithms A and non-negligible δ > 0,

Prπ,T,{yα}
[
A({yα}) = π

]
< δ.

The probability above is over π ← Perm(Fm), random subset T ⊂ [k] such
that |T | = r, and {zα} ← F

m, {yα} ← D(
π, {zα}, T

)
.

Decision Version: For all PPT A and non-negligible δ > 0,

Prπ,T

[∣
∣
∣Pr{yα}←D(π,{zα},T )

[A({yα})=1
]−Pr{yα}←Fkm

[A({yα})=1
]∣∣
∣>δ

]
<δ,

where the outer probability is over π ← Perm(Fm) and random T ⊂ [k] such
that |T | = r.

Claim. The candidate scheme is secure assuming decisional HPN.

Proof. The ideal world simulator for the candidate scheme simply sends a ran-
dom yα ∈ F

km anytime the adversary A requests a query for some index zα.
Note that decisional HPN says that the simulated transcript is indistinguishable
from valid queries to a random sequence of address vectors zα ∈ F

m. This doesn’t
quite prove security since the DEPIR chooses arbitrary addresses in Hm in an
adaptive fashion. However, note that since |F|m = poly(n), arbitrary adaptive
address choice does not grant extra power to the adversary. Indeed, if A requests
a query to a particular address z ∈ Hm, a distinguisher who gets queries corre-
sponding to random zα ∈ F

m simply asks for |F|m · n such queries and forwards
to A the first one for which zα = z. With high probability, some such α will
exist. �

5.3 Search to Decision Reduction

Theorem 4. If there exists a PPT A which breaks the decisional
HPN−assumption, then there exists PPT B which breaks search HPN.

Proof. Let A be any PPT algorithm and δ > 0 non-negligible such that

Prπ,T

[∣
∣
∣Pr{yα}←D(π,{zα},T )

[A({yα})=1
]−Pr{yα}←Fkm

[A({yα}) = 1
]∣∣
∣>δ

]
≥ δ.

We construct B which recovers π given samples from D(
π, {zα}, T

)
and oracle

access to A. Our algorithm B will proceed in two steps. First, it will use A to
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recover a large (size at least t + 1) subset T ′ ⊂ T . We call this the “cleaning
step” since B removes all noise from the queries: given y ← D(

π, z, T
)
, (y)T ′

consists entirely of correct permuted evaluations of a curve. Then, B passes
the cleaned samples to the RecoverPerm algorithm, described and analyzed in
Sect. 5.4. RecoverPerm outputs π given polynomially many noiseless samples,
and is an extension of the distinguishing attack on the bounded scheme from
Sect. 4.3. We now describe the CLEAN algorithm.

The Distribution DS . For S ⊂ [k], let DS be the distribution which draws
{yα} ← D(

π, {zα}, T
)
, and outputs {y′

α} where

y′
α,i =

{
yα,i, i ∈ S

y′′ ← F
m, i /∈ S

Remark. We make the following observations about DS .

1. Since B is given samples from D(
π, {zα}, T

)
, it can efficiently obtain samples

from DS for any S ⊂ [k]. Since B additionally gets oracle access to A, it can
approximate

pS := Pr{yα}←DS

[A({yα}) = 1
]

to within arbitrary inverse polynomial accuracy in polynomial time with prob-
ability 1 − 2−n.

2. For all S ⊂ [k], DS is identically distributed to DS∩T . In particular, if i /∈ T
then DS ≡ DS∪{i}.

3. If S = [k] then DS = D(
π, {zα}, T

)
; if |S| ≤ t then DS is the uniform

distribution on F
mk·poly by t−wise independence of degree t curves.

Intuition. The main idea of CLEAN is the following. It samples {yα} ←
D(

π, {zα}, T
)
, chooses i ∈ [k] and replaces every yα,i with a random element

of Fm. If i /∈ T , then the distribution of {yα} has not changed, if i ∈ T , then
each yα has one fewer correct coordinate. If CLEAN was lucky in the choice of i,
A will change its decision probability, and CLEAN decides that i ∈ T . A hybrid
argument shows that if CLEAN will efficiently be able to find enough “lucky”
i ∈ T , to output T ′ ⊂ T of size at least t + 1.

The CLEAN Algorithm. For a parameter δ > 0, set M = nk2/δ2 and let c be a
universal constant.

1. Use M samples from D[k] and D∅ to compute p̂[k] and p̂∅, approximations of
p[k] and p∅.

2. Initialize T ′ = ∅; While |T ′| ≤ t:
– Initialize S = T ′, p̂S = p̂∅; While S 	= [k]:

* Pick i /∈ S. Use M samples from DS∪{i} to compute p̂S∪{i}, an approx-
imation of pS∪{i}.

* If
∣
∣p̂S∪{i} − p̂S

∣
∣ > δ/2k, T ′ = T ′ ∪ {i}.

* Redefine S = S ∪ {i}, p̂S = p̂S∪{i}.
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3. Output T ′.
4. Time Out Condition: If the total runtime ever reaches 2cn, abort and

output T ′.

Lemma 5. Let (m, t, r, k, |F|) be as above. Suppose PPT A, non-negligible δ > 0
and π ∈ Perm(Fm), T ⊂ [k] of size |T | = r are such that

∣
∣
∣Pr{yα}←D(π,{zα},T )

[A({yα}) = 1
] − Pr{yα}←Fkm

[A({yα}) = 1
]∣∣
∣ > δ.

Then

Pr{yα}←D(π,{zα},T )

[
CLEANA({yα})=T ′ st T ′ ⊂ T and |T ′|= t+1

]
≥ 1−2−Ω(n).

Moreover, the expected running time of CLEAN is O(nk3t/δ2).

Proof. We show that if all approximations p̂ computed by CLEAN are within δ/4k
of the true expectations p (in this case we say that the approximations are good)
then CLEAN runs in O(Mkt) time and outputs T ′ ⊂ T of size at least t+1. This
completes the proof since by the Chernoff-Hoeffding inequality, all of CLEAN’s
approximations are good with probability 1 − 2−Ω(n); the maximum runtime is
2cn because of the time-out condition, so events which occur with probability
2−Ω(n) may be safely ignored. Note that when CLEAN’s approximations are
good, the output T ′ is a subset of T . Indeed, the only way i gets added to T ′ is
if |p̂S∪{i} − p̂S | > δ/2k; if i /∈ T and approximations are good:

|p̂S∪{i}−p̂S | ≤ |p̂S∪{i}−pS∪{i}|+|pS∪{i}−pS |+|p̂S−pS | ≤ δ

2k
+|pS∪{i}−pS | = δ

2k
,

by Observation 2. We show that if approximations are good then each time
through the outer while loop at least one i is added to T ′. This completes the
proof since the time to run the inner while loop is O(Mk). The key point is that
throughout the course of the inner loop S goes from |S| ≤ t (so that pS = p∅ by
Observation 3) to S = [k]. Since A distinguishes D({πi}, {zα}, T

)
from uniform

with probability at least δ > 0, |p[k] − p∅| ≥ δ. By a hybrid argument, there
must exist some (S, i) encountered during the course of the inner loop so that
|pS∪{i} − pS | ≥ δ/k. Since approximations are good, |p̂S∪{i} − p̂S | ≥ δ/2k and
so i is added to T ′. �

5.4 Recovering the Permutations

In this section we describe a protocol which is given samples from D(
π, {zα})

and recovers the permutation π used to produce the samples. This attack extends
to the case of many permutations {πi} instead of just one, and so constitutes a
strong break of the unbounded variant of the scheme from Sect. 4. We use the
same notation as in that section. This algorithm requires more samples than the
one in the previous section (poly(|F|m) versus |F|m(1+o(1))).
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The RecoverPerm Algorithm. Let (m, t, k, |F|) be such that m < t < k < |F|
and |F|m = poly(λ). Set B = mλ|F|3m+3. Let {zα} be any sequence of addresses
such that every z ∈ Hm appears at least B times in {zα}.
Input: {yα} drawn from D(

π, {zα}).
1. Initialize variables {vy}y∈×Fm taking values in F

m, and a list L of linear
constraints to ∅.

2. For all α, add the constraint vyα
∈ Vzα

to L, where vyα
is shorthand for the

vector (vyα,1 , ..,vyα,k
).

3. If the constraints in L are inconsistent (i.e. no assignment to the vy satisfies all
constraints), abort and output ⊥. Otherwise, choose an arbitrary assignment
satisfying all constraints in L and let σ : Fm → F

m be the map which sends
y to the vector assigned to vy. If σ is not a permutation, abort and output
⊥. Otherwise, output π′ ∈ Perm(Fm) where π′ = σ−1.

Note that RecoverPerm runs in time poly(B, |F|m, λ) since Step 3 involves
solving a system of linear equations and checking whether a functions with poly-
sized domain is a permutation; all other steps are efficient. The next Lemma
states RecoverPerm recovers the correct π used to generate the samples with
high probability.

Lemma 6. Set B = mλ|F|3m+3 and let {zα} be any sequence of addresses such
that each z ∈ Hm appears at least B times in {zα}. Let π ∈ Perm(Fm) be
the permutation used to generate the input samples, and let π′ ∈ Perm(Fm) the
output. Then with overwhelming probability: π′ = π.

Proof. The first failure event in Step 3, that the linear constraints in L are
inconsistent, never occurs as by definition vy = π−1(y) satisfies every constraint.
Fix any assignment to the vy satisfying the constraints in L, let σ : Fm → F

m

be the map which sends y to the vector assigned to vy. Since the assignment
satisfies L, for every yα, we have σ(yα) ∈ Vzα

, where σ(yα) is shorthand for(
σ(yα,1), . . . , σ(yα,k)

)
. Recall that drawing yα ← D(

π, zα

)
consists of drawing

xα ← Vzα
and then setting yα = π(xα). Therefore, for every xα ← Vzα

drawn
to produce the input of RecoverPerm: σ ◦ π(xα) ∈ Vzα

.
We say that an assignment to the vy is BAD if Prx←Vz

[
σ ◦ π(x) ∈ Vz

]
<

1 − |F|−(2m+2), for some z ∈ Hm. Note,

Pr
[∃ BAD satisfying asst

]
< |F|m|F|m ·

(
1 − 1

|F|2m+2

)B

= 2−Ω(λ),

when B = mλ|F|3m+3. Therefore, it suffices to assume that the assignment
is not BAD. Lemma 7 below shows that in this case, σ ◦ π = 11. The result
follows. �
Lemma 7. Suppose f1, . . . , fk : Fm → F

m are such that Prx←Vz

[
f(x) ∈ Vz

] ≥
1 − |F|−(2m+2) for all z ∈ Hm. Then there exists a curve ϕ : F → F

m of degree
at most t satisfying ϕ(0) = 0 such that fi(xi) = xi +ϕ(i) for all i = 1, . . . , k. In
particular, if all fi are equal then each fi is the identity function.
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Proof. The second statement follows from the first since if ϕ(i) takes the same
value for i = 1, . . . , k then ϕ must be constant, hence identically zero.

The proof of the first statement consists of three steps, described momen-
tarily. First however we define the following random variables. Let f be func-
tions that satisfy the lemma hypotheses. For any c ∈ V0, define fc(x) :=
f(x+ c)−f(c). Choose c ∈ V0 so that fc(0) = 0 and Prx←Vz

[
fc(x) ∈ Vz

∣
∣x4 =

· · · = xt+1 = 0
] ≥ 1− 1/(2|F|2m) for all z ∈ Hm (random c ← V0 satisfies these

properties with probability at least 1 − |F|−1).
In the first step we show that fc1,1 is linear, so fc1,1(x1) = A1x1 for a matrix

A1 ∈ F
m×m; similarly, we have fc2,2(x2) = A2x2.

In the second step we show that A1 and A2 are equal (so drop the subscripts).
In particular, it follows that f1 and f2 are affine with the same linear component:
fi(xi) = fci,i(xi − ci) + fi(ci) = Axi − (

fci,i(ci) − fi(ci)
)

for i = 1, 2. This
argument extends to all i ∈ [k]: there exists A ∈ F

m×m and b1, . . . ,bk ∈ F
m

such that f(x) =
(
Ax1 + b1, . . . ,Axk + bk

)
.

Finally, we complete the proof by showing that A = 11 and b ∈ V0.
To see that fc1,1 is linear, let us first set some notation. Write (x1,x2,x3) ∈

V′
0 if there exists x′ ∈ V0 such that (x′

1,x
′
2,x

′
3) = (x1,x2,x3) and x′

4 = · · · =
x′

t+1 = 0. Clearly (x1,x2,x3), (x′
1,x2,x3) ∈ V′

0 implies x′
1 = x1 because of agree-

ment considerations. Note that V′
0 ⊂ F

3m is a (2m)−dimensional subspace so is
closed under addition. By our choice of c ∈ V0,

(
fc1,1(x1), fc2,2(x2), fc3,3(x3)

) ∈
V′
0 whenever (x1,x2,x3) ∈ V′

0. Now, choose arbitrary x1,x′
1 ∈ F

m, we will show
fc1,1(x1 + x′

1) = x1 + x′
1, where x1 = fc1,1(x1), x′

1 = fc1,1(x′
1). Let x2,x3 ∈ F

m

be so that (x1,x2,0), (x′
1,0,x3) ∈ V′

0 (such x2,x3 exist by interpolation). Let
xi = fci,i(xi) for i = 2, 3. We have (x1,x2,0), (x′

1,0,x3) ∈ V′
0 (using fc(0) = 0),

and so (x1 + x′
1,x2,x3) ∈ V′

0. On the other hand, if we first add then apply f
we get

(
fc1,1(x1 + x′

1),x2,x3

) ∈ V′
0; fc1,1(x1 + x′

1) = x1 + x′
1 follows.

Let A1 ∈ F
m×m be the matrix form of fc1,1. As mentioned before, the above

argument also shows that fc2,2 is linear with matrix A2 ∈ F
m×m. We show here

that A1 = A2. To see this, consider the linear map Φ : Fm → F
m which sends

x1 to x2 such that (x1,x2,0) ∈ V′
0. Note that Φ is actually just multiplication

by some non-zero scalar β ∈ F (this can be seen by writing Φ explicitly in terms
of Lagrange interpolation coefficients). For any x1 ∈ F

m, (x1, β · x1,0) ∈ V′
0;

the properties of fc imply that (A1x1, β · A2x1,0) ∈ V′
0; this means βA2x1 =

βA1x1; A1 = A2 follows.
We have shown so far that f1 and f2 are affine with the same linear com-

ponent. This argument extends to any fi, fj for i, j ∈ [k] so, as mentioned
above, there exists a single matrix A ∈ F

m×m and vectors b1, . . . ,bk ∈ F
m

such that fi(xi) = Axi + bi for all i ∈ [k]. We show that A = 11 and b ∈ V0,
which completes the proof. For any z ∈ Hm, the affine map f : Fmk → F

mk

maps the affine plane Vz ⊂ F
mk to an affine plane in F

mk. It follows that
either f(Vz) ⊂ Vz, or Prx←Vz

[
f(x) ∈ Vz

] ≤ |F|−1 since affine planes inter-
sect in at most 1/|F| fraction of their points unless there is containment. We
are given that Prx←Vz

[
f(x) ∈ Vz

] ≥ 1 − |F|−(2m+2), so it must be that
f(Vz) ⊂ Vz for all z ∈ Hm. In particular, b = f(0) ∈ V0. Finally, note that
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x �→ (Ax1, . . . ,Axk) + b maps Vz to VAz. Therefore, we must have Az = z for
all z ∈ Hm. As Hm spans F

m, this forces A = 11 as desired. �
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Abstract. Iterative collision search procedures play a key role in devel-
oping combinatorial algorithms for the subset sum and learning parity
with noise (LPN) problems. In both scenarios, the single-list pair-wise
iterative collision search finds the most solutions and offers the best effi-
ciency. However, due to its complex probabilistic structure, no rigorous
analysis for it appears to be available to the best of our knowledge.
As a result, theoretical works often resort to overly constrained and
sub-optimal iterative collision search variants in exchange for analytic
simplicity. In this paper, we present rigorous analysis for the single-list
pair-wise iterative collision search method and its applications in sub-
set sum and LPN. In the LPN literature, the method is known as the
LF2 heuristic. Besides LF2, we also present rigorous analysis of other
LPN solving heuristics and show that they work well when combined
with LF2. Putting it together, we significantly narrow the gap between
theoretical and heuristic algorithms for LPN.

1 Introduction

The Learning Parity with Noise (LPN) problem is a fundamental problem in cod-
ing theory, cryptography and machine learning. In cryptography, LPN attracts
most interest from lightweight constructions, i.e., those that run efficiently on
constrained devices such as RFID tags and wireless sensors. Many lightweight
constructions [7,9,11,13] build on the hardness of the LPN due to the simplic-
ity of the operations it entails. Studying the best algorithms for solving LPN is
vital to determine suitable parameters for these constructions and subsequent
improvements.

For a uniformly selected secret s ∈ Z
n
2 , the LPN problem is to find s given

input samples As+e, where A is uniformly random and each component of e is
a Bernoulli noise. For ease of exposition, we follow prior work and think of LPN
algorithms as consisting of two phases: a reduction phase and a solving phase.
The classical algorithm for LPN is the BKW algorithm [4]. At its core is an
iterative collision search procedure for the reduction phase. To start, partition
the samples into 2

n
k+1 groups such that the first n

k+1 bits are identical. Here, k is
a parameter of the algorithm and is set to Θ(log n). Then, select one sample in
each group and add it to the other ones in the group to cancel out the first n

k+1
bits. Each subsequent iterative step follows the same procedure to cancel out
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 729–746, 2017.
https://doi.org/10.1007/978-3-319-70503-3_24
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the next n
k+1 bits. After a few iterations, the samples only depend on a single

bit in the secret. These samples are the outputs of the reduction phase and we
call them reduced samples. At this point, the algorithm enters the solving phase
to guess this secret bit and tests it on the reduced samples. The algorithm then
moves on to guess the next secret bit, repeating the reduction phase and the
solving phase therein.

The BKW algorithm needs a sub-exponential number of input samples.
Lyubashevsky [18] and Kirchner [14] modified the BKW algorithm to work with
a polynomial number of samples. Outside the “limited-sample” direction, how-
ever, theoretical advances for LPN algorithms have been stagnant for more than
a decade. On the other hand, heuristic and practical methods for LPN continue
to develop at a fast pace. Levieil and Fouque [15] proposed two important heuris-
tic methods. The first one, LF1, improves the solving phase by guessing multiple
secret bits at a time. It is augmented with the Fast Walsh-Hadamard transform
to further reduce runtime. The second method, LF2, is a more efficient itera-
tive collision search procedure in the reduction phase. The goal is to generate
more reduced samples for the solving phase. After partitioning input samples
into groups sharing a chunk of bits, instead of adding one sample to the others
in the group as in BKW, LF2 computes the sums of every pair in the group.
Recent works [5,6,8,15,25] have applied covering codes, partial secret guessing
and linear programming to improve the solving phase.

The LF1 and LF2 heuristics are two most important heuristic techniques in
the LPN literature, and have been adopted by every subsequent work we know
of [5,6,8,25]. The efficiency gain, however, presents a challenge for analysis since
the reduced samples now depend on each other in a complex manner. (LF1 was
initially presented as a rigorous algorithm [15], but Zhang et al. [25] pointed
out that the original proof incorrectly assumed independence between reduced
samples. Hence, LF1 should be treated as a heuristic prior to our work.) A main
contribution of this paper is to provide rigorous analysis for the LF1 and LF2
methods and establish them as rigorous LPN algorithms. In particular, we com-
pute the number of solutions (both expectation and distribution) produced by
LF2 in the reduction phase. We also show that the correlation between LF2
reduced samples has little impact on the success rate of the LPN solving phase
for both majority voting and LF1 Walsh-Hadamard transform. Our results sig-
nificantly narrow the gap between theoretical and heuristic solutions to the LPN
problem.

LPN has a close connection to the subset sum problem. As Wagner sug-
gests [24], any improvement to the subset sum problem will also result in an
improvement to LPN. In this paper, we consider the random fixed-weighted
XOR variant of subset sum. Given a list L of elements sampled uniformly ran-
domly from Z

n
2 , find 2k elements from L such that they XOR to 0. One way is

to apply Wagner’s algorithm. However, Wagner’s algorithm was not tailored for
fixed weighted subset sum. Instead, it was presented for the generalized birth-
day problem [24]. In the generalized birthday problem, there are 2k separate lists
and the goal is to find one element from each list such that they XOR to 0. In
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order to apply Wagner’s algorithm, one has to partition the single list L into
2k smaller lists. Wagner’s algorithm then places the 2k lists as the leaves of a
depth-k binary tree. In step i, every pair of sibling lists are merged into a new
list at their parent node such that the i-th chunk of n

k+1 bits are canceled out. To
elaborate, the merge operation searches for two elements, one from each input
list, such that their i-th chunk of n

k+1 bits XOR to 0. After k steps, the elements
in the last list at the root of the tree are solutions to the problem.

Clearly, the partition into 2k separate lists is an artifact in order to invoke
Wagner’s algorithm. It not only increases the time complexity but also imposes
an unnecessary constraint that eliminates many valid candidate solutions. It is
much more natural to perform the same merge operation within the original
single list L: at step i, search for pairs of distinct elements in L that cancel out
the i-th chunk of n

k+1 bits, and add their XOR results to the new list for the
next step. This single-list pair-wise iterative collision search very much resem-
bles the LF2 method (there are also important differences which we describe in
Sect. 3.2). Also resembling LF2, it creates difficulties for the analysis. In Wag-
ner’s algorithm, in every merge operation, the two input elements (from different
lists) are independent of each other. In contrast, the single-list iterative collision
search introduces dependence across steps, making it hard to reason about the
expected list size after each step or the number of solutions produced in the end.
With a rigorous analysis, we establish the single-list pair-wise iterative collision
search as an improved algorithm over Wagner for random fixed weighted subset
sum.

The rest of the paper is organized as follows. We start with the fixed weighted
subset sum problem since the LPN problem additionally has to deal with the
solving phase. Section 2 presents our analysis for the single-list iterative collision
search algorithm for the fixed weighted subset sum problem. Section 3 presents
our analysis for the LF1 and LF2 methods for LPN. We conclude in Sect. 4.

2 Random Fixed Weighted Subset Sum

2.1 Background

Definition 1 (subset sum). Given a list L = {a1, a2, ..., aN} of N numbers
from an algebraic structure and an operation ⊕, find x ∈ {0, 1}N such that
〈x, S〉 = x1a1 ⊕ x2a2 ⊕ ... ⊕ xNaN = t where t is a pre-defined target.

The subset sum problem is one of Karp’s 21 NP-complete problems [12]. The
classical subset sum problem considers integers and integer addition. In the last
three decades, there have also been a few important variants of the subset sum
problem that attracted interest in cryptography [10,17,19].

In this paper, we focus on the random fixed weighted variant of the problem.
The term fixed weighted means the solution vector x must have a Hamming
weight of 2k.1 For concreteness, we start with the XOR case, i.e., a1, a2, · · · , aN

1 Without the fixed weighted restriction, the problem can be solved with Gauss elim-
ination easily.
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are n-bit binary string drawn independently and uniformly randomly from Z
n
2 ,

and the operator ⊕ is bit-wise XOR. Later , we will extend our analysis to other
groups and group operators, e.g., Z

n
q for some prime q and addition on Z

n
q . We

also focus on the special case where the target is t = 0.

Wagner’s Generalized Birthday Problem and Algorithm. Wagner intro-
duced the generalized birthday problem and an algorithm for it [24]. The gen-
eralized birthday problem bears some similarities to the random fixed-weighted
subset sum problem, but is also different in a fundamental way. Instead of finding
2k elements from a single list, the problem takes 2k lists and finds one element
from each list.

Definition 2 (generalized birthday problem). Given 2k lists L1, L2,
· · · , L2k each containing N elements in Z

n
2 , find one element from each list

a1 ∈ L1, a2 ∈ L2, · · · , a2k ∈ L2k such that a1 ⊕ a2 ⊕ · · · ⊕ a2k = 0.

Wagner’s algorithm performs iterative collision search in a tree fashion in k

steps. 2 Write the 2k input lists as L
(0)
1 , L

(0)
2 , ..., L

(0)

2k and place them at the leaves
of a binary tree of depth k. In the j-th step (1 ≤ j < k), for each pair of lists
L
(j−1)
2i and L

(j−1)
2i+1 , find two elements l ∈ L

(j−1)
2i and l′ ∈ L

(j−1)
2i+1 such that the j-

th chunk of n
k+1 bits cancel out (i.e., XOR to 0), and then add l⊕ l′ to a new list

L
(j)
i . In the last step j = k, there are only two lists remaining, and the algorithm

looks for two elements, one from each list, such that they cancel out the last 2n
k+1

bits and XOR to 0n. Figure 1 gives an illustration of this algorithm. There have
been several improvements and analysis to Wagner’s algorithm [2,14,16,20], and
they all follow the tree-based collision search framework.

Fig. 1. An illustration of Wagner’s algorithm.

To ensure at least one solution is found in expectation, the size of each input
list should be at least N ≥ 2

n
k+1 . Crucially for the analysis, in each step, a pair

2 Different from our notation, Wagner denoted the number of lists as k and the number
of steps as log2 k [24].
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Input: A single list L, also written as L(0), of size N .
1. Initially, add the index alongside each element in L(0), i.e.,
each element in L(0) now has the form (ai, {i}).
2. for j = 1 : k − 1 do

For each pair of elements (a, α) and (a′, α′) in L(j−1), if
a ⊕ a′ cancel out the+ j-th chunk of n

k+1
bits and

α ∩ α′ = ∅, then add (a ⊕ a′, α ∪ α′) to the new list L(j).
end
3. At the last step, repeat the similar operation to find a pair
of elements (a, α) and (a′, α′) such that a ⊕ a′ cancel out the
last 2n

k+1
bits and α ∩ α′ = ∅. Output L(k).

Algorithm 1. The single-list pair-wise iterative collision search algorithm.

of elements l and l′ are independent because they are sums of elements that
come from disjoint lists. Thus, the expected list size at each step can be easily
calculated as N2 · 2− n

k+1 ≥ N , and in the last step, N2 · 2− 2n
k+1 ≥ 1 solutions are

produced in expectation.

2.2 Single List Iterative Collision Search

The single-list pair-wise collision search algorithm is known as the LF2 method
in the LPN literature [15], which was in turn inspired by Wagner’s algorithm [24].
Algorithm 1 gives the pseudocode. Recently, it was also independently proposed,
though seemingly by accident, in a memory hard proof-of-work scheme called
Equihash [3]. The Equihash paper [3] used the above Algorithm 1 to solve the
random fixed-weighted subset sum, but confusingly, claimed to be using Wag-
ner’s algorithm and solving the generalized birthday problem throughout the
paper.

Complexities. Following previous works, we measure time complexity in the
number of ⊕ operations and measure time complexity in the number list entries,
essentially ignoring the number of bits ⊕ operates on and the number of bits
in each entry. For Algorithm 1, the time complexity is roughly O(kN) and the
space complexity is roughly O(N). As a comparison, for Wagner’s algorithm, the
time complexity is roughly O(2kN) and the space complexity is roughly O(kN).

As we have mentioned, analyzing the single-list pair-wise collision search
algorithm is much harder than analyzing Wagner’s algorithm because, after the
first step, elements in the list become correlated. They are no longer sums of non-
overlapping elements. Rather, they are now sums that contain common addends.
If the input list size at a certain step is N , the expected output list size is no
longer simply N2 · 2− n

k+1 . Indeed, it seems difficult to derive the final expected
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number of solutions by calculating the expected list size at each step. In the next
subsection, we approach the problem from a different angle. We will calculate
the total number of distinct candidate solutions and the probability that each
one is an actual solution that Algorithm 1 produces.

2.3 Expected Number of Solutions

Theorem 1. Let p = 2− n
k+1 . The expected number of solutions produced by

Algorithm 1 is

E
[
|L(k)|

]
= 2

(
N

2k

)
(2k)!(p/2)2

k

.

Proof. Consider an index vector α = (i1, i2, ..., i2k), and the candidate solution
it defines, aα = {ai1 , ai2 , · · · , ai2k

}. Let Yα = 1 if aα is a solution produced by
Algorithm 1 and Yα = 0 otherwise. Before we proceed, we remark that a solu-
tion to the fixed-weighted subset sum problem is not necessarily a solution that
will be found by Algorithm 1. (The other direction is true). The reason is that
Algorithm 1 can only find solutions that meet stringent conditions, i.e., those
that cancel out a chunk of bits after each step. For example, if α = (1, 2, 3, 4)
and Yα = 1, it is not only required that a1 ⊕ a2 ⊕ a3 ⊕ a4 = 0, but also that
a1 ⊕a2 and a3 ⊕a4 both cancel out the first chunk of bits. The iterative collision
search framework in general only finds solutions with a specific structure rather
than all solutions.

It is also important to note that some index vectors represent the same solu-
tion and should be counted only once. For example, if α = (1, 2, 3, 4) and Yα = 1,
then for α′ = (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), or
(4, 3, 2, 1), we have Yα′ = 1. However, these eight vectors all represent the same
single solution that will be produced by Algorithm 1. Define I to be a maximal
set of index vectors that correspond to distinct candidate solutions. To calculate
|I|, we think of the indices in a vector as the leaves in a binary tree of depth
k. (This binary tree is just a tool for analyzing Algorithm 1 and should not be
confused with Wagner’s tree-based iterative collision search in Fig. 1.) In the jth

step, swapping the two siblings would yield the same candidate solution. Thus,
for each subset of 2k elements, there are (2k)!

∏k
j=1 22

k−j = (2k)!

22k−1
distinct candidate

solutions out of the (2k)! total possible index vectors. Therefore, |I| =
(

N
2k

) (2k)!

22k−1

is the number of distinct candidate solutions that Algorithm 1 can possibly pro-
duce. The expected number of solutions produced by Algorithm 1 can then be
calculated as E

[|L(k)|] = E
[∑

α∈I Yα

]
.

After the jth step, the list L(j) contains (XOR) sums of 2j addends. We again
think of the 2j addends as leaves of a binary tree of depth j. To appear in L(j),
the two addends need to cancel out a chunk of n

k+1 bits at each node in the tree.
At each node, the probability is3 p = 2− n

k+1 and there are 2j − 1 nodes in a tree

3 p = 2− n
k+1 is used throughout the paper.
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of depth j. So the probability that a sum of certain 2j addends appear in L(j)

is p2
j−1. The expected number of elements in L(j) is hence

E
[
|L(j)|

]
= |I| · p2

j−1 =
(

N

2j

)
(2j)!
22j−1

· p2
j−1 =

(
N

2j

)
(2j)!(p/2)2

j−1. (1)

The last step needs to cancel out 2n
k+1 bits which happens with probability p2.

Thus, we have Pr(Yα = 1) = p2
k

, and

E
[
|L(k)|

]
= |I| · p2

k

=
(

N

2k

)
(2k)!
22k−1

· p2
k

= 2
(

N

2k

)
(2k)!(p/2)2

k

Extension to Z
n
q . Although we presented our analysis in the Z

n
2 and XOR case

for simplicity, our analysis can be easily modified to work with a larger modulus
q, i.e., when the operator ⊕ is modular addition over Z

n
q . The only change in

the analysis above and in Sect. 2.5 is to replace p = 2− n
k+1 with p = q− n

k+1 .

2.4 Experimental Verification

In this subsection, we provide experimental results that corroborate the expected
number of solutions we derive in Theorem 1. Another purpose of this section is
to correct a mistake in the Equihash scheme [3]. Specifically, Equihash adopts
Algorithm 1 with a list size N = 2

n
k+1+1. It then claimed the expected number of

solutions is
(
N
2

) ·2− 2n
k+1 ≈ 2 citing Wagner’s analysis. As we mentioned, Wagner’s

analysis requires independence and does not hold in the single-list case.
Table 1 lists the expected number of solutions found through experiments as

well as the values given by Theorem 1 under different choices of n and k. Our
theorem accurately predicts the number of solutions. (Our theorem is precise.
The difference is due to errors in the experiments.) Equihash claims 2 solutions in
expectation under all parameter settings, which as we see can be orders of mag-
nitude off. We note that the latter four (n, k) pairs are among the recommended
parameter settings from the Equihash paper [3]. For readers who are interested,
this incorrect estimation will make the difficulty of the proof-of-work scheme
proportionally harder than intended. For example, if a protocol designer adopts
Equihash with (n, k) = (192, 11), the expected time to find a valid proof-of-work
will be 107× longer than intended!

Table 1. The expected number of solutions found through experiments and Theorem 1.

n 16 32 48 56 96 128 160 192

k 1 3 5 6 5 7 9 11

Experiments 2.00 1.90 0.76 0.03 2.00 1.8 0.8 0.0

Theorem 1 1.9961 1.8931 0.7437 0.0328 1.9924 1.8797 0.7362 2.1 × 10−7
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2.5 Distribution of Solutions

Knowing the expected number of solutions is in most cases sufficient to para-
meterize an algorithm. For example, to attack knapsack-based cryptosystems,
one may parameterize Algorithm 1 to produce a small constant number of solu-
tions in expectation, e.g., 1. But for a rigorous analysis, we would like to rule
out a possible bad corner case. With the expectation being 1, it is possible that
Algorithm 1 generates 230 solutions with a 2−30 probability, while producing no
solution most of the time. In this subsection, we study the distribution of the
number of solutions produced by Algorithm 1. Aside from ruling out that bad
corner case, a more precise distribution will be useful in our analysis for LPN
and possibly other applications.

We will show that the distribution of solutions is close to a Poisson distrib-
ution. We will apply the Chen-Stein method of the second moment analysis as
the main tool to bound the difference.

Lemma 1 (Chen-Stein [1]). Let Π be a random variable that follows a Poisson
distribution with mean λ = E

[|L(k)|]. Let Jα be the neighborhood of dependence
for Yα (which means any Yβ �∈ Jα is independent of Yα) and J∗

α = Jα \{α} where
\ is set subtraction. Then,

∞∑
j=0

∣∣∣P
(
|L(k)| = j

)
− P (Π = j)

∣∣∣

≤4(1 − e−λ)
λ

⎛
⎝∑

α∈I

∑
β∈Jα

E [Yα] E [Yβ ] +
∑
α∈I

∑
β∈J∗

α

E [YαYβ ]

⎞
⎠ .

Define Δ to be the right hand side of the above inequality.

The rest of this subsection bounds the two double sums in Δ separately. The
first sum is

∑
α∈I

∑
β∈Jα

E [Yα] E [Yβ ] = E
[
|L(k)|

] ∑
β∈Jα

E(Yβ)

= E
[
|L(k)|

]
p2

k (2k)!
22k−1

2k−1∑
i=0

(
2k

i

)(
N − 2k

i

)
≈ E

[
|L(k)|

]
· p.

In most applications (e.g., attack hash functions), finding a few solutions is
sufficient, so E

[|L(k)|] will be much less than 1
p , and this first sum can be ignored.

The dominant part and also the difficulty of this analysis is the sum of the
correlation terms E(YαYβ). To start, we have

E [YαYβ ] = E [E [YαYβ |Yβ ]] = Pr(Yα = 1, Yβ = 1)
= Pr(Yα = 1)Pr(Yβ = 1|Yα = 1).

The last term above depends on the overlap pattern between two index vectors
(and their corresponding candidate solutions). For convenience, we denote a
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candidate solution by an index vector, e.g., α = (1, 2, 3, 4) refers to the candidate
solution {a1, a2, a3, a4}. We again treat their elements as leaves of a binary tree.
For each node in the tree for β, we color it black if its XOR output is independent
of α. At the leaf level, any element in β that does not appear in α is independent
of α and is colored black. For each level above, a node is colored black if at least
one of its two children is black. This is because XORing with an independent and
uniformly random addend yields an independent and uniformly random output.

Fig. 2. Fewest black nodes occur when black nodes at the leaf level are clustered in
the smallest subtree possible.

As black nodes in β’s tree are independent of α, we
have P (Yβ = 1|Yα = 1) ≤ p1+B where B is the number of black nodes in the
tree excluding the leaf level. This is because the candidate solution β needs to
cancel out a chunk of bits at each node, and what happens with β at the black
nodes are independent of α. The extra p is because the last step (the tree root)
cancels out 2n

k+1 bits which happens with p2. p1+B reaches its largest value when
there are fewest black nodes in the tree. For a certain number of black nodes at
the leaves (height 0), the number of black nodes in the entire tree is the fewest
if all the black nodes at height 0 are contained in the smallest subtree possible.
Figure 2 gives an illustration of this configuration with the minimal number of
black nodes. In this case, an upper bound on the number of black nodes in the
tree can be derived as follows:⎧

⎪⎨
⎪⎩

γ0 = |β \ α|
γj = �γj−1/2 j > 0
γ(m) =

∑k
j=1 γj where m = γ0

(2)

Then, γ (|β \ α|) is an upper bound on B, and we have

E [YαYβ ] ≤ Pr(Yα = 1)Pr(Yβ = 1|Yα = 1) ≤ p2
k+1+γ(|β\α|) (3)

Next, to bound
∑

α∈I

∑
β∈J∗

α
E [YαYβ ], we partition J∗

α, into disjoint parts
U1, U2, · · · , U2k according to the number of elements that differ from α. In other
words, if β ∈ Ui, then |β \ α| = i. For example, for a candidate solution α =
(1, 2, 3, 4) (implying k = 2), U1 contains (1, 2, 3, 5), (1, 6, 2, 3), etc. By a simple
counting argument,

|Ui| =
(

2k

2k − i

)(
N − 2k

i

)
(2k)!
22k−1

(4)
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For β ∈ Um, we have derived an upper bound that E [YαYβ ] ≤ p2
k+1+γ(m)

in Inequality (3). In Lemma 2, we would like to bound the number of candidate
solutions in Um that can reach this upper bound. To do so, we introduce some
additional notations. For an integer 0 < m < 2k, write m as a sum of a powers
of 2 in ascending order li, i.e., m =

∑ζ
i=1 2li where 0 ≤ l1 < l2 < · · · lζ < k.

Lemma 2. Let Ûm ⊂ Um be the set of candidate solutions that achieve the
maximum correlation p2

k+1+γ(m). |Ûm| ≤ (
N−2k

m

) · m!
2m−ζ · 2k

2l1
.

Proof. As mentioned, the maximum correlation appears when black nodes at the
leaf label are closest to each other. We calculate how many such max-correlation
configurations exist. First, the 2lζ leaves of a certain subtree of depth lζ should
be taken up by black nodes. There are 2k

2lζ
subtrees of depth lζ in total. After

choosing one subtree of depth lζ , all the remaining black nodes should appear in
the sibling subtree of depth lζ . Similarly, within that sibling subtree of depth lζ ,
a certain subtree of depth lζ−1 should be taken by black nodes, giving 2lζ−lζ−1

possible ways. We then repeat the above argument on the next subtree of depth
lζ−2 until we place all the m black nodes. Therefore, the total number of the
candidate solutions in Um that achieve the maximum correlation is at most

|Ûm| ≤
(

N − 2k

m

)
· m!∏ζ

i=1 22li −1
· 2k

2lζ
· 2lζ

2lζ−1
· ... · 2l2

2l1
=

(
N − 2k

m

)
· m!
2m−ζ

· 2k

2l1

We can now finally bound the correlation sum in Lemma 1. While ∀β ∈ Ûm

achieves the maximum correlation by definition, ∀β �∈ Ûm will have a correlation
that is at most p times the maximum, because its corresponding binary tree has
at least one more black node. Therefore,

∑
α∈I

∑
β∈J∗

α

E [YαYβ ] ≤ |I| · Pr(Yα = 1)
∑

β∈J∗
α

Pr(Yβ = 1|Yα = 1)

≤ E
[
|L(k)|

]
·
2k−1∑
i=0

[
|Ûi| + p

(
|Ui| − |Ûi|

)]
p2

k+1+γ(i)

where E
[|L(k)|] is given in Theorem 1, |Ûi| is given in Lemma 2, |Ui| is given in

Eq. (4), p = 2− n
k+1 , and γ(i) is defined in Eq. (2).

Example numerical calculation. Suppose k = 2. For brevity, we temporarily
write Pr(Yβ = 1|Yα = 1) as Pβα for short. We have

– |U0| = 4!
23 = 3, and ∀β ∈ U0, Pβα ≤ p;

– |U1| = 3 · (N−4
1

) · (
4
1

)
, |Û1| = 4(N − 4);

– |U2| = 3 · (N−4
2

) · (
4
2

)
, |Û2| = 2

(
N−4
2

)
; and ∀β ∈ Û1 ∪ U2, Pβα ≤ p3.

– |U3| = |Û3| = 3 · (
N−4
3

) · (
4
3

)
, and ∀β ∈ U3, Pβα ≤ p4.

Denote the right hand side in Lemma 1 as Δ. Plugging in a few example values,
we have
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– For n = 30 and N = 2 × 2
n

k+1 ,
∑

β∈J∗
α

Pβα < 0.021 and Δ < 0.037;
– For n = 100 and N = 2·2 n

k+1 ,
∑

β∈J∗
α

Pβα < 2.033·10−9 and Δ < 3.511·10−9;
– For a larger list size N = 10 · 2

n
k+1 with n = 100,

∑
β∈J∗

α
Pβα < 1.942 · 10−7

and Δ < 3.790 · 10−9;

For a few more examples,

– For k = 3, n = 100, and N = 4 × 2
n

k+1 , Δ < 2.1 × 10−3;
– For k = 3, n = 120, and N = 5 × 2

n
k+1 , Δ < 3.1 × 10−4;

– For k = 3, n = 120, and N = 10 × 2
n

k+1 , Δ < 3.8 × 10−2;
– For k = 4, n = 200, and N = 4 × 2

n
k+1 , Δ < 3.8 × 10−5;

– For k = 4, n = 250, and N = 5 × 2
n

k+1 , Δ < 1.1 × 10−6.

The above calculations show that the distribution of the number of solutions
produced by Algorithm 1 can be closely approximated by a Poisson distribution.
The total variation distance Δ between the two is small.

3 Learning Parity with Noise

3.1 Background

The Learning Parity with Noise (LPN) problem is a famous open problem that
is widely conjectured to be hard. It forms the foundation of several primitives
in lightweight cryptography and post-quantum cryptography. It is also a special
case of the Learning With Error (LWE) problem, which has a reduction from
the Shortest Independent Vector Problem (SIVP) [23] and has enabled numerous
works in lattice-based cryptography [21,22].

Definition 3 (LPN). Find the secret bit vector s ∈ Z
n
2 , given samples in the

form {(ai, bi)} where each ai ∈ Z
n
2 is a random n-bit string, and each ei ∈ {0, 1}

is a Bernoulli noise with parameter 0 < τ < 0.5 and bi = 〈ai, s〉 ⊕ ei

Starting from the seminal work by Blum, Kalai and Wasserman [4], LPN
solving algorithms and heuristics largely follow the “reduce-and-solve” frame-
work below.

– The reduction phase. Find a subset of samples {bi = 〈ai, s〉⊕ei} such that∑
ai is one of the n bases of Z

n
2 . The most popular choice is the standard

orthogonal bases, in which case the reduction phase becomes a subset sum
problem. For brevity and without loss of the generality, we focus on the first
bit of s, denoted by s1. The reduction phase looks for samples such that∑

ai = (1, 0, · · · , 0). Adding up the samples yield b̂ = s1 ⊕ ê where b̂ =
∑

bi

and ê =
∑

ei. We call these output samples of the reduction phase reduced
samples.

– The solving phase. With abundant reduced samples {b̂}, solve s1.
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LPN solving algorithms/heuristics differ in the detailed strategies for the
reduction phase and the solving phase. In all existing proposals we know of, the
reduction phase always uses some type of iterative collision search procedure.
The reduction phase of BKW in each step adds one sample to a set of other
samples to cancel out a chunk of bits in

∑
ai, and in the end obtains one reduced

sample. BKW then repeats the collision search procedure on fresh samples to
obtain more independent reduced samples.

For the reduction phase, the two most popular techniques are simple majority
voting and Fast Walsh-Hadamard Transform. BKW uses simple majority voting:
given abundant reduced samples {b̂}, if there are more 0’s than 1’s, guess s1 = 1;
otherwise, guess s1 = 0. Levieil and Fouque [15] proposed recovering multiple
secret bits at a time in the solving phase and using the Fast Walsh-Hadamard
Transform, which we explain in Sect. 3.4.

3.2 LPN Reduction Phase Using Iterative Collision Search

The BKW algorithm only obtains one reduced sample from each run of the
reduction phase in order to ensure independence among reduced samples to apply
the Chernoff bound in the solving phase. As a result, BKW is extravagant in
consuming input samples and does not mind “missing” many candidate reduced
samples. Similar to the subset sum case, the single-list pair-wise iterative collision
search, known as the LF2 method in the LPN literature, will produce far more
reduced samples given the same amount of initial samples. The LF2 method has
been an important technique, and has been adopted by every subsequent LPN
solving work that we know of. But prior to our work, LF2 remains a heuristic
with no rigorous analysis available. In particular, it remains open after a decade
how many reduced samples LF2 produces, to what degree these reduced samples
are correlated, and to what extent the correlation affects the solving phase. We
now answer these questions with rigorous analysis.

Although the reduction phase of LPN is almost exactly the same as a subset
sum problem if we think of the vectors {ai} as the bit-strings in the list L of
subset sum, several remarks should be made regarding the collision schedule,
i.e., how many bits to cancel at each step.

1. There is no agreed upon collision schedule in the literature. The original LF2
method [15] was inspired by Wagner’s algorithm [24], which cancels out 2n

k+1
bits in the last step and n

k+1 bits in every other step. Many subsequent works
define LF2 to cancel out n

k bits in every step including the last one. Our
analysis will assume the original collision search schedule by Wagner, but
can be extended to other schedules. With Wagner’s schedule, our analysis for
the number of solutions (both expectation and distribution) in Sect. 2 would
apply if we only output fixed weighted reduced samples. But we note that it
is OK for the LPN reduction phase to output reduced samples with weights
lower than 2k. So the total number of reduced samples will be greater than
what our analysis in Sect. 2 indicates. We omit the analysis of this effect
because more reduced samples improve the success rate of the solving phase.
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2. The number of input samples to the reduction phase (i.e., the original list
size N =

∣∣L(0)
∣∣) greatly influences the expected number of reduced samples

output by the reduction phase. If we set N = 2 × 2
n

k+1 as in Sect. 2.4, then
the list size at each step roughly remains the same (or slightly decreases)
and the expected number of output samples is less than 2. However, in LPN,
we would like the reduction phase to produce more samples for the solving
phase. An easy way to achieve this is to increase the initial list size N to be
slightly larger than 2 × 2

n
k+1 . In this case, the list size will grow after every

step before the last step.
3. Another way to obtain more reduced samples is to adjust the collision search

schedule to cancel out slightly fewer than 2n
k+1 bits in the last step, and slightly

more than n
k+1 bits in every other step. The optimal collision schedule is

outside the scope of this paper.
4. Bogos et al. [5] used an oversimplified combinatorial method to estimate the

expected number of reduced samples, which led to the conclusion that N =
3 × 2

n
k+1 would keep the list size constant across steps. Our analysis shows

this is not true. Plugging into Eq. (1), we can see that N = 3 × 2
n

k+1 will
cause the list size to grow exponentially after each step.

5. Another flaw in previous work is the LF(4) proposal by Zhang et al. [25]. It
generalizes the LF2 method by with the intention to check all 4-tuple combi-
nations instead of 2-tuple combinations. However, the scheme presented in [25]
approximates the 4-tuple collision search using a 2-tuple collision search. This
is essentially LF2 with the number of steps k doubled, and hence will not pro-
duce the claimed number of reduced samples. On the other hand, if a scheme
really enumerates all 4-tuple combinations by brute force, the time complex-
ity will become much more formidable than what’s reported in [25], and it
remains unclear whether the increased number of reduced samples can make
up for it.

3.3 LPN Solving Phase with Majority Voting

This subsection and the next one analyze how the correlation between reduced
samples affects the solving phase. Several previous works [5,8,25] have exper-
imentally shown that the correlation does not seem to cause problems in the
solving phase. Our analysis will provide theoretical support for these experi-
mental results. We show the correlation between reduced samples produced by
the iterative collision search is weak and does not affect the success rate too
much. This subsection focuses on the majority voting method, while the next
subsection studies the fast Walsh-Hadamard transform method.

Recall that the majority voting method tallies the reduced samples {b̂}, and
guesses s1 = 1 if there are more 1’s than 0’s, and guesses 0 otherwise. Since
b̂ = s1 ⊕ ê, each ê = 1 contributes an incorrect vote. Define Zα = Yαêα where
Yα is defined in Sect. 2 and êα = ⊕i∈αei. Let W =

∑
α∈I Zα. W represents the

number of incorrect votes among the reduced samples. If W does not exceed one
half of the reduced samples, then the majority voting will guess s1 correctly.
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If {Zα} were independent, a Chernoff bound would suffice like in BKW [4].
The main difficulty we face is to bound Pr(W ≥ w) when {Zα} are not inde-
pendent. We will show that if we calculate this bound pretending that {Zα} are
independent, the error will be very small.

Let W ′ be the sum of |I| independent Bernoulli random variables (cf. the
definition of W ). Each addend Z ′ follows the same distribution as Zα, i.e.,
Pr(Z ′ = 1) = Pr(Zα = 1) = Pr(Yα = 1)Pr(êα = 1). We once again invoke
the Chen-Stein method [1] to bound the total variation distance between W
and W ′,

Δ
′
=

∞∑
l=0

|Pr(W = l) − Pr(W ′ = l)|.

We introduce an intermediate random variable Π that follows a Poisson distribu-
tion with mean λ′ = E [W ]. Using the triangle inequality, we have Δ′ ≤ Δ′

1 +Δ′
2

where Δ′
1 and Δ′

2 are the total variation distances between W and Π, and
between Π and W ′, respectively. Δ′

1 can be bounded in the same way as in
Sect. 2.5. Recall that W =

∑
α∈I Zα, |L(k)| =

∑
α∈I Yα and Zα = Yαêα ≤ Yα.

So Δ′
1 is no larger than Δ. (Δ is defined in Lemma 1.)

W ′ follows a binomial distribution, which is frequently approximated by a
Poisson distribution. Concretely, we can bound their total variation distance
using the Chen-Stein method. Note that for each addend Z ′ of W ′, the neighbor-
hood of dependence of Z ′ is empty, so only the first double sum in the Chen-Stein
method (cf. Lemma 1) remains.

Δ′
2 =

∞∑
l=0

|Pr(W ′ = l) − Pr(Π = l)| ≤ 4(1 − eλ′
)

λ′ · |I| · (Pr(Z ′ = 1))2

Observe that λ′ = E [W ′] = |I|·Pr(Z ′ = 1), Pr(Z ′ = 1) = Pr(Yα = 1)·Pr(êα = 1),

Pr(Yα = 1) = p2
k

, and Pr(êα = 1) = Pr(⊕i∈αei = 1) = 1−(1−2τ)2
k

2 [4]. Thus,

Δ′
2 ≤ 4(1 − eλ′

) · Pr(Z ′ = 1) ≤ 4(1 − eλ′
) · p2

k · 1 − (1 − 2τ)2
k

2
< 2p2

k

.

Clearly, Δ′
2 is very small compared to Δ′

1, so Δ′ ≈ Δ′
1 ≤ Δ.

W ′ is a sum of independent Bernoulli random variables, so the Chernoff
bound can be applied to Pr(W ′ ≥ w). Pr(W ≥ w) can then be bounded by
≤ Pr(W ′ ≥ w) + Δ′. This means the correlation between votes (i.e., reduced
samples) resulting from the reduction phase lowers the success rate by at most
Δ compared to independent votes. Section 2.5 has shown that Δ is very small,
ranging from 0.02 to 10−9. This explains why previous works observed that
majority voting using correlated reduced samples works well in reality.

3.4 LPN Solving Phase with Fast Walsh-Hadamard Transform

Levieil and Fouque [15] proposed applying the Fast Wash-Hadamard Transform
(FWHT) and recovering a block of secret bits at a time. They call this method
LF1. We describe the LF1 method below.
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Since LF1 tries to recover a block of y secret bits at a time, it needs to modify
the reduction phase to generate reduced samples that depend on y bits of the
secret. This is a straightforward modification that simply involves canceling out
fewer bits (n−y instead of n−1). Denote these reduced samples as b̂l = 〈âl, s〉⊕êl

where âl, s ∈ Zy
2 , i.e., we focus on the y secret bits we are trying to guess.

In the solving phase, for x ∈ {0, 1}y define f(x) =
∑

l δ(al, x)(−1)bl where
δ(al, x) = 1 if al = x and 0 otherwise. LF1 applies FWHT to compute for each
v ∈ {0, 1}y,

f̂(v) =
∑

x

(−1)〈x,v〉
f(x) =

∑
l

(−1)〈âl,s⊕v〉⊕êl

Observe that f̂(s) =
∑

l(−1)êl . Since Pr(êl = 0) > Pr(êl = 1), f(s) should
be noticeably larger than 0. On the other hand, for s′ �= s, e′

l = 〈âl, s
′ ⊕ s〉 is

uniformly random, and f(s′) should be close to 0. LF1 then picks the largest
f̂(v) and guesses s = v. Thus, if there exists s′ �= s such that f̂(s′) ≥ f̂(s), then
the LF1 method fails. For each s′, the probability that f̂(s′) ≥ f̂(s) is

ε = Pr
(
f̂(s′) ≥ f̂(s)

)
= Pr

(∑
l

e′
l ≤

∑
l

êl

)
(5)

When analyzing the success rate of LF1, there are two places that prior works
argue heuristically [5,6,8,15,25]. One is that they assume reduced samples are
independent. The other one is that after noting LF1’s success requires ∀s′ ∈
{0, 1}y, f̂(s′) < f̂(s), they assume independence between the events f̂(s′) < f̂(s)
for different s′ and approximate LF1’s success rate as (1 − ε)2

y−1.
We now present a rigorous analysis for LF1’s success rate. We first bound ε.

The difficulty again lies in analyzing
∑

l êl for correlated {êl}. We use similar
techniques as before. Write S =

∑
l êl =

∑
α∈I Yαêα and T =

∑
l e′

l =
∑

α∈I Yα ·
〈âα, s′ ⊕s〉. Define S′ to be the sum of I independent Bernoulli random variables
each with mean Pr(Yαêα = 1) = 1

2 ·p2k ·(1−(1 − 2τ)2
k

). Define T ′ to be the sum
of I independent Bernoulli random variables each with mean Pr(e′

l = 1) = 1
2 .

We again have
∑∞

l=0 |Pr(S = l) − Pr(S′ = l)| ≤ Δ′
3 ≤ Δ and

∑∞
l=0 |Pr(T = l)

− Pr(T ′ = l)| ≤ Δ′
3 ≤ Δ. Therefore,

ε = Pr(T ≤ S) ≤ Pr(T ′ ≤ S′) + 2Δ′
3 ≤ Pr(T ′ ≤ S′) + 2Δ. (6)

This means a heuristic estimation of ε by pretending that T and S are sums of
independent random variables (T ′ and S′) is only off by at most 2Δ, which is
very small under suitable parameters as shown in Sect. 2.5. Pr(T ′ ≤ S′) can be
bounded rigorously using the Hoedffing bound. We continue the analysis in the
next subsection.

The second inaccuracy above can be easily fixed by a union bound. Thus,
the probability that LF1 recovers y secret bits fully correctly is

Pr(LF1 succeeds) < 1 − 2yε.
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3.5 Complexity Analysis

In this section, we analyze the time and space complexities of the LF1 + LF2
algorithm and compare it to the BKW algorithm [4] (the best previously known
non-heuristic algorithm).

The LF1 solving phase with FWHT recovers multiple bits at a time. A com-
mon practice in the literature [5,25] is to recover y = Θ(k) bits at time. This way,
the process of recovering the remaining n− y bits (still y bits at time) combined
cost roughly the same amount of time as the first y bits. This is because the
runtime of the reduction phase has a 2

n−y
k+1 term. When recovering the second

batch of y bits, that term becomes 2
n−2y
k+1 , which is a constant factor smaller

compared to the first batch.
Next, we determine how many reduced samples we should feed to LF1. Let

this quantity be NL. Recall that the failure probability of LF1 is 2yε from
Sect. 3.4). Using the Hoeffding inequality to bound Pr(T ′ ≤ S′) in Eq. (6), we
can upper bound the failure probability of LF1 using NL reduced samples by
2yε ≤ 2y(e−NLδ2/8 +2Δ). Here, δ = (1−2τ)2

k

where τ is the error rate of initial
input samples, and 1/2 − δ is an upper bound on the error rate of the reduced
samples [4]. For the LF algorithm to work, we need Δ to be small. Then, if we
want the above probability to be at most θ, we need NL ≈ 8δ−2 ln(2y/θ) reduced
samples.

The number of initial samples to feed into the LF2 reduction phase is thus
(NL)1/2k

2
n

k+1+1. In practice, it is common to set k such that NL < 2
n

k+1 . The
time complexity of the LF2 reduction phase is TLF2 = O(

∑k−1
i=1 NL

2i−k

2
n

k+1 +
NL) = O(

√
NL2

n
k+1 ) The time complexity of the LF1 solving phase is TLF1 =

O(y2y log NL + yNL) = O(yNL) due to [6]. Combining the two, the total time
complexity is TLF = TLF1 + TLF2 = O(

√
NL2

n
k+1 ). The maximum space usage

occurs at the (k − 1)th collision search, which is SLF = O(
√

NL2
n

k+1 ).
Next, we analyze the time and space complexities of the BKW algorithm.

In the reduction phase, BKW repeats its iterative collision search procedure
many times, each time with fresh initial samples, until it obtains sufficiently
many independent reduced samples. The solving phase is simply a majority
vote, so the time and space complexities are dominated by the reduction phase.
Again, we first need to calculate how many reduced samples are needed. Call this
quantity NB . The probability that a majority of reduced samples are erroneous
is Pr(

∑NB

l=1 êl ≥ NB

2 ) ≤ e− Nδ2
2 . For a fair comparison, we want BKW to recover

the first y secret bits with a success probability of 1 − θ. This requires NB ≈
2δ−2 ln(y/θ). The time complexity is TBKW = O(yNBk22

n
k+1 ) and the space

complexity is SBKW = O(k2
n

k+1 ).
Finally, we have

TBKW

TLF
= Θ

(
k2√y ln y

δ

)
= O(k2.5(ln k)δ−1),

and
SBKW

SLF
= O

(
k√
NL

)
= O(k0.5δ).
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In conclusion, the LF1 algorithm improves runtime by a factor of (slightly more
than) δ−1 by consuming a factor of (slightly less than) δ−1 more space.

4 Conclusion

Iterative collision search is a crucial technique in solving subset sum and LPN.
The single-list pair-wise variant has so far been the most efficient variant for
random fixed weighted subset sum and LPN, but has not been rigorously ana-
lyzed prior to our work. In this paper, we presented rigorous analysis for the
single-list pair-wise iterative collision search procedure and its applications in
random fixed weighted subset sum and LPN. In the LPN context, we show that
while the reduced samples produced by this method are correlated, the correla-
tion is weak and barely decreases the success rate of LPN solving. Our analysis
of the single-list pair-wise iterative collision search is also applicable to LWE. It
remains interesting future work to study how it interacts with other techniques
in the LWE literature.
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Abstract. We consider the question of whether PPAD hardness can be
based on standard cryptographic assumptions, such as the existence of
one-way functions or public-key encryption. This question is particularly
well-motivated in light of new devastating attacks on obfuscation candi-
dates and their underlying building blocks, which are currently the only
known source for PPAD hardness.

Central in the study of obfuscation-based PPAD hardness is the sink-
of-verifiable-line (SVL) problem, an intermediate step in construct-
ing instances of the PPAD-complete problem source-or-sink. Within
the framework of black-box reductions we prove the following results:

– Average-case PPAD hardness (and even SVL hardness) does not
imply any form of cryptographic hardness (not even one-way func-
tions). Moreover, even when assuming the existence of one-way func-
tions, average-case PPAD hardness (and, again, even SVL hardness)
does not imply any public-key primitive. Thus, strong cryptographic
assumptions (such as obfuscation-related ones) are not essential for
average-case PPAD hardness.

– Average-case SVL hardness cannot be based either on standard cryp-
tographic assumptions or on average-case PPAD hardness. In par-
ticular, average-case SVL hardness is not essential for average-case
PPAD hardness.

– Any attempt for basing the average-case hardness of the PPAD-
complete problem source-or-sink on standard cryptographic
assumptions must result in instances with a nearly-exponential num-
ber of solutions. This stands in striking contrast to the obfuscation-
based approach, which results in instances having a unique solution.

Taken together, our results imply that it may still be possible to
base PPAD hardness on standard cryptographic assumptions, but any
such black-box attempt must significantly deviate from the obfuscation-
based approach: It cannot go through the SVL problem, and it must
result in source-or-sink instances with a nearly-exponential number of
solutions.
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1 Introduction

In recent years there has been increased interest in the computational complexity
of finding a Nash equilibrium. Towards this end, Papadimitriou defined the com-
plexity class PPAD, which consists of all TFNP problems that are polynomial-
time reducible to the source-or-sink problem [31].1 Papadimitriou showed
that the problem of finding a Nash equilibrium is reducible to source-or-sink,
and thus belongs to PPAD. He also conjectured that there exists a reduction
in the opposite direction, and this was proved by Daskalakis, Goldberg and
Papadimitriou [18], and by Chen, Deng and Teng [11]. Thus, to support the
belief that finding a Nash equilibrium may indeed be computationally hard, it
became sufficient to place a conjectured computationally-hard problem within
the class PPAD.

Currently, no PPAD-complete problem is known to admit a sub-exponential-
time algorithm. At the same time, however, we do not know how to generate
instances that defeat known heuristics for these problems (see [24] for oracle-
based worst-case hard instances of computing Brouwer fixed points and [36] for
finding a Nash equilibrium). This leaves us in an intriguing state of affairs, in
which we know of no efficient algorithms with provable worst-case guarantees,
but we are yet to systematically rule out the possibility that known heuristic
algorithms perform well on the average.

“Post-obfuscation” PPAD hardness. A natural approach for arguing hard-
ness on the average would be to reduce from problems that originate from cryp-
tography. Working in the realm of cryptography has at least two advantages.
First of all, it enables us to rely on well-studied problems that are widely conjec-
tured to be average-case hard. Secondly, and no less importantly, cryptography
supplies us with frameworks for reasoning about average-case hardness. On the
positive direction, such frameworks are highly suited for designing and analyzing
reductions between average-case problems. On the negative direction, in some
cases it is possible to argue that such “natural” reductions do not exist [27,34].

Up until recently not much progress has been made in relating between cryp-
tography and PPAD hardness. This has changed as a result of developments in
the study of obfuscation [4,19], a strong cryptographic notion with connections
to the hardness of source-or-sink. As shown by Bitansky, Paneth and Rosen [8]
the task of breaking sub-exponentially secure indistinguishability obfuscation can
be reduced to solving source-or-sink. Beyond giving the first extrinsic evidence
of PPAD hardness, the result of Bitansky et al. also provided the first method
to sample potentially hard-on-average source-or-sink instances. Their result
was subsequently strengthened by Garg, Pandey and Srinivasan, who based it on
indistinguishability obfuscation with standard (i.e., polynomial) hardness [20].

“Pre-obfuscation” PPAD hardness? Indistinguishability obfuscation has
revealed to be an exceptionally powerful primitive, with numerous far reaching

1 The name end-of-line is more commonly used in the literature, however source-
or-sink is more accurately descriptive [7].
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applications. However, its existence is far from being a well-established crypto-
graphic assumption, certainly not nearly as well-established as the existence of
one-way functions or public-key encryption. Recently, our confidence in existing
indistinguishability obfuscation candidates has somewhat been shaken, following
a sequence of devastating attacks on both candidate obfuscators and on their
underlying building blocks (see, for example, [10,12–15,17,25,29,30]). It thus
became natural to ask:

Can average-case PPAD hardness be based on
standard cryptographic assumptions?

By standard cryptographic assumptions we are in general referring to “pre-
obfuscation” type of primitives, such as the existence of one-way functions or
public-key cryptography. As mentioned above, such assumptions are currently
by far more well-established than indistinguishability obfuscation, and basing
average-case PPAD hardness on them would make a much stronger case.

For all we know PPAD hardness may be based on the existence of one-way
functions. However, if it turned out that average-case PPAD hardness implies
public-key encryption, then this would indicate that basing average-case PPAD
hardness on one-way functions may be extremely challenging since we currently
do not know how to base public-key encryption on one-way functions (and in
fact cannot do so using black-box techniques [27]). Similarly, if it turned out that
average-case PPAD hardness implies indistinguishability obfuscation, this would
indicate that basing average-case PPAD average on any standard cryptographic
assumption would require developing radically new techniques. More generally,
the stronger the implication of PPAD hardness is, the more difficult it may be
to base PPAD hardness on standard assumptions. This leads us to the following
second question:

Does average-case PPAD hardness imply
any form of cryptographic hardness?

As discussed above, a negative answer to the above question would actually
be an encouraging sign. It would suggest, in particular, that program obfuscation
is not essential for PPAD hardness, and that there may be hope to base PPAD
hardness on standard cryptographic assumptions.

1.1 Our Contributions

Motivated by the above questions, we investigate the interplay between average-
case PPAD hardness and standard cryptographic assumptions. We consider this
interplay from the perspective of black-box reductions, the fundamental app-
roach for capturing natural relations both among cryptographic primitives (e.g.,
[27,28,34]) and among complexity classes (e.g., [7,16]).

Average-case PPAD hardness does not imply cryptographic hardness.
Our first result shows that average-case PPAD hardness does not imply any form
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of cryptographic hardness in a black-box manner (not even a one-way function).
In addition, our second result shows that, even when assuming the existence
of one-way functions, average-case PPAD hardness does not imply any public-
key primitive (not even key agreement).2 In fact, we prove the following more
general theorems by considering the sink-of-verifiable-line (SVL) problem,
introduced by Abbot et al. [1] and further studied by Bitansky et al. [8] and
Garg et al. [20]:

Theorem 1.1. There is no black-box construction of a one-way function from
a hard-on-average distribution of SVL instances.

Theorem 1.2. There is no black-box construction of a key-agreement protocol
from a one-way function and a hard-on-average distribution of SVL instances.

Abbot et al. [1] and Bitansky et al. [8] showed that any hard-on-average dis-
tribution of SVL instances can be used in a black-box manner for constructing a
hard-on-average distribution of instances to a PPAD-complete problem (specifi-
cally, instances of the source-or-sink problem). Thus, Theorem1.1 implies, in
particular, that there is no black-box construction of a one-way function from
a hard-on-average distribution of instances to a PPAD-complete problem. Simi-
larly, Theorem 1.2 implies, in particular, that there is no black-box construction
of a key-agreement protocol from a one-way function and a hard-on-average
distribution of instances to a PPAD-complete problem.

As discussed in the previous section, the fact that average-case PPAD hard-
ness does not naturally imply any form of cryptographic hardness is an encour-
aging sign in the pursuit of basing average-case PPAD hardness on standard
cryptographic assumptions. For example, if average-case PPAD hardness would
have implied program obfuscation, this would have indicated that extremely
strong cryptographic assumptions are likely to be essential for average-case
PPAD hardness. Similarly, if average-case PPAD hardness would have implied
public-key cryptography, this would have indicated that well-structured crypto-
graphic assumptions are essential for average-case PPAD hardness. The fact that
average-case PPAD hardness does not naturally imply any form of cryptographic
hardness hints that it may be possible to base average-case PPAD hardness even
on the minimal (and unstructured) assumption that one-way functions exist.

PPAD hardness vs. SVL hardness. The SVL problem played a central role
in the recent breakthrough of Bitansky et al. [8] and Garg et al. [20] in con-
structing a hard-on-average distribution of instances to a PPAD-complete prob-
lem based on indistinguishability obfuscation. Specifically, they constructed a
hard-on-average distribution of SVL instances, and then reduced it to a hard-
on-average distribution of source-or-sink instances [1,8].

We show, however, that the SVL problem is in fact far from representing
PPAD hardness: Whereas Abbot et al. [1] and Bitansky et al. [8] showed that
2 Recall that although indistinguishability obfuscation does not unconditionally imply

the existence of one-way functions [5], it does imply public-key cryptography when
assuming the existence of one-way functions [35].
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the SVL problem can be efficiently reduced to the source-or-sink problem
(even in the worst case), we show that there is no such reduction in the opposite
direction (not even an average-case one). We prove the following theorem:

Theorem 1.3. There is no black-box construction of a hard-on-average distrib-
ution of SVL instances from a hard-on-average distribution of source-or-sink
instances. Moreover, this holds even if the underlying source-or-sink instances
always have a unique solution.

On basing average-case PPAD hardness on standard assumptions.
Theorem 1.1 encouragingly shows that it may still be possible to base average-
case PPAD hardness on standard cryptographic assumptions, but Theorem1.3
shows that the obfuscation-based approach (which goes through the SVL prob-
lem) may not be the most effective one. Now, we show that in fact any attempt
for basing average-case PPAD hardness on standard cryptographic assumptions
(e.g., on one-way functions, public-key encryption, and even on injective trapdoor
functions) in a black-box manner must significantly deviate from the obfuscation-
based approach. Specifically, the source-or-sink instances resulting from that
approach have exactly one solution3, and we show that when relying on injec-
tive trapdoor functions in a black-box manner it is essential to have a nearly-
exponential number of solutions. We prove the following theorem:

Theorem 1.4. There is no black-box construction of a hard-on-average distrib-
ution of source-or-sink instances over {0, 1}n with 2no(1)

solutions from injec-
tive trapdoor functions.

In particular, since Abbot et al. [1] and Bitansky et al. [8] showed that hard-
on-average SVL instances lead to hard-on-average source-or-sink instances
having a unique solution, Theorem 1.4 implies the following corollary which,
when combined with Theorem 1.1, shows that average-case SVL hardness is
essentially incomparable to standard cryptographic assumptions.

Corollary 1.5. There is no black-box construction of hard-on-average distribu-
tion of SVL instances from injective trapdoor functions.

More generally, although Theorem1.4 and Corollary 1.5 focus on injective
trapdoor functions, our impossibility result holds for a richer and larger class
of building blocks. Specifically, it holds for any primitive that exists relative
to a random injective trapdoor function oracle. Thus, Theorem1.4 and Corol-
lary 1.5 hold, for example, also for collision-resistant hash functions (which are
not implied by one-way functions or injective trapdoor functions in a black-box
manner [23,37]).

Taken together, our results imply that it may be possible to base average-
case PPAD hardness on standard cryptographic assumptions, but any black-
box attempt must significantly deviate from the obfuscation-based approach:
3 Unless, of course, one allows for artificial manipulations of the instances to generate

multiple (strongly related) solutions.
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Fig. 1. An illustration of our results. Dashed arrows correspond to known implications,
and solid arrows correspond to our separations.

It cannot go through the SVL problem, and it must result in source-or-sink
instances with a nearly-exponential number of solutions. See Fig. 1 for an illus-
tration of our results.

A wider perspective: From Rudich’s impossibility to structured build-
ing blocks and bounded-TFNP hardness. Our results apply to a wide class
of search problems, and not only to the specific source-or-sink and SVL prob-
lems. We consider the notion of TFNP instances with a guaranteed (non-trivial)
upper bound on their number of existing solutions, to which we refer as bounded-
TFNP instances. This captures, in particular, source-or-sink instances and
(valid) SVL instances, and provides a more general and useful perspective for
studying cryptographic limitations in constructing hard instances of search prob-
lems.

Equipped with such a wide perspective, our approach and proof techniques
build upon, and significantly extend, Rudich’s classic proof for ruling out black-
box constructions of one-way permutations based on one-way functions [34].
We extend Rudich’s approach from its somewhat restricted context of one-way
functions (as building blocks) and one-way permutations (as target objects) to
provide a richer framework that considers: (1) significantly more structured build-
ing blocks, and (2) significantly less restricted target objects. Specifically, we
bound the limitations of hard-on-average source-or-sink and SVL instances
as building blocks (instead of one-way functions), and we rule out bounded-
TFNP instances as target objects (instead of one-way permutations).

1.2 Open Problems

Several interesting open problems arise directly from our results, and here we
point out some of them.
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– The strong structural barrier put forward in Theorem1.4 stands in stark
contrast to the approach of Bitansky et al. [8] and Garg et al. [20]. Thus, an
intriguing open problem is either to extend our impossibility result to rule out
constructions with any number of solutions, or to circumvent our impossibility
result by designing instances with an nearly-exponential number of solutions
based on standard cryptographic assumptions.

– More generally, the question of circumventing black-box impossibility results
by utilizing non-black-box techniques is always fascinating. In our specific
context, already the obfuscation-based constructions of Bitansky et al. [8]
and Garg et al. [20] involve non-black-box techniques (e.g., they apply an
indistinguishability obfuscator to a circuit that uses a pseudorandom func-
tion). However, as recently shown by Asharov and Segev [2,3], as long as
the indistinguishability obfuscator itself is used in a black-box manner, such
techniques can in fact be captured by refining the existing frameworks for
black-box separations (specifically, the framework of Asharov and Segev cap-
tures the obfuscation-based constructions of Bitansky et al. [8] and Garg et
al. [20]). Thus, an exciting open problem is to circumvent our results by
utilizing non-black-box techniques while relying on standard cryptographic
assumptions.

– Our impossibility results in Theorem 1.4 and Corollary 1.5 apply to any build-
ing block that exists relative to a random injective trapdoor function oracle
(e.g., a collision-resistent hash function). It is not clear, however, whether
similar impossibility results may apply to one-way permutations. Thus, an
intriguing open problem is either to extend our impossibility results to rule out
constructions based on one-way permutations, or to circumvent our impossi-
bility results by designing hard-on-average instances based on one-way per-
mutations. We note that by relying on one-way permutations it is rather
trivial to construct some arbitrary hard-on-average TFNP distribution (even
one with unique solutions), but it is not known how to construct less arbitrary
forms of hardness, such as average-case PPAD or SVL hardness.

– The recent work of Hubácek, Naor, and Yogev [26] proposes two elegant
approaches for constructing hard-on-average TFNP instances. Their first app-
roach is based on any hard-on-average NP relation (the existence of which
is implied, for example, by any one-way function) in a black-box manner,
and results in TFNP instances with a possibly exponential number of solu-
tions. Their second approach is based on any injective one-way function
and a non-interactive witness-indistinguishable proof system for NP (which
can be constructed based on trapdoor permutations), and results in TFNP
instances having at most two solutions. An interesting question is whether
their approaches imply not only average-case TFNP hardness for the particu-
lar problems defined by their underlying one-way function and proof system,
but also more specific forms of TFNP hardness, such as average-case PPAD
or SVL hardness.
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1.3 Overview of Our Approach

In this section we provide a high-level overview of the main ideas underlying
our results. Each of our results is of the form “the existence of P does not
imply the existence of Q in a black-box manner”, where each of P and Q is
either a cryptographic primitive (e.g., a one-way function) or a hard-on-average
search problem (e.g., the source-or-sink problem). Intuitively, such a statement
is proved by constructing a distribution over oracles relative to which there
exists an implementation of P , but any implementation of Q can be “efficiently
broken”. Our formal proofs properly formalize this intuition via the standard
framework of black-box reductions (e.g., [21,27,28,32]).

Average-case SVL hardness does not imply OWFs. Theorem 1.1 is proved
by presenting a distribution of oracles relative to which there exists a hard-on-
average distribution of SVL instances, but there are no one-way functions. An
SVL instance is of the form {(Sn,Vn, L(n))}n∈N, where for every n ∈ N it holds
that Sn : {0, 1}n → {0, 1}n, Vn : {0, 1}n × [2n] → {0, 1}, and L(n) ∈ [2n]. Such
an instance is valid if for every n ∈ N, x ∈ {0, 1}n, and i ∈ [2n], it holds that
Vn(x, i) = 1 if and only if x = Si

n(0n). Intuitively, the circuit Sn can be viewed
as implementing the successor function of a directed graph over {0, 1}n that
consists of a single line starting at 0n, and the circuit Vn enables to efficiently
test whether a given node x is of distance i from 0n on the line. The goal is to
find the node of distance L(n) from 0n (see Sect. 2.1 for the formal definition of
the SVL problem).

We consider an oracle that is a valid SVL instance OSVL corresponding to a
graph with a single line 0n → x1 → · · · → xL(n) of length L(n) = 2n/2. The line
is chosen uniformly among all lines in {0, 1}n of length L(n) starting at 0n (and
all nodes outside the line have self loops and are essentially irrelevant). First,
we show that the oracle OSVL is indeed a hard-on-average SVL instance. This is
based on the following, rather intuitive, observation: Since the line 0n → x1 →
· · · → xL(n) is sparse and uniformly sampled, then any algorithm performing
q = q(n) oracle queries should not be able to query OSVL with any element on
the line beyond the first q elements 0n, x1, . . . , xq−1. In particular, for our choice
of parameters, any algorithm performing at most, say, 2n/4 queries, has only an
exponentially-small probability of reaching xL(n) (where the probability is taken
over the choice of the oracle OSVL).

Then, we show that any oracle-aided function FOSVL(·) can be inverted (with
high probability over the choice of the oracle OSVL) by an algorithm whose query
complexity is polynomially-related to that of the function FOSVL(·). The proof
is based on the following approach. Consider a value y = FOSVL(x) that we
would like to invert. If F performs at most q = q(n) oracle queries, the above-
mentioned observation implies that the computation FOSVL(x) should not query
OSVL with any elements on the line 0n → x1 → · · · → xL(n) except for the first
q elements x0, x1, . . . , xq−1. This observation gives rise to the following inverter
A: First perform q queries to OSVL for discovering x1, . . . , xq, and then invert
y = FOSVL(x) relative to the oracle ˜OSVL defined via the following successor
function ˜S:
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˜S(α) =
{

xi+1 if α = xi for some i ∈ {0, . . . , q − 1}
α otherwise .

The formal proof is in fact more subtle, and requires a significant amount of
caution when inverting y = FOSVL(x) relative to the oracle ˜OSVL. Specifically,
the inverter A should find an input x̃ such that the computations F ÕSVL(x̃) and
FOSVL(x̃) do not query the oracles ˜OSVL and OSVL, respectively, with any of
xq, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter
is successful. We refer the reader to Sect. 3 for more details and for the formal
proof.

Average-case SVL hardness and OWFs do not imply key agreement.
Theorem 1.2 is proved by showing that in any black-box construction of a key-
agreement protocol based on a one-way function and a hard-on-average distri-
bution of SVL instances, we can eliminate the protocol’s need for using the
SVL instances. This leads to a black-box construction of key-agreement proto-
col based on a one-way function, which we can then rule out by invoking the
classic result of Impagliazzo and Rudich [27] and its refinement by Barak and
Mahmoody-Ghidary [6].

Specifically, consider a key-agreement protocol (Af,OSVL ,Bf,OSVL) in which
the parties have oracle access to a random function f and to the oracle OSVL

used for proving Theorem1.1. Then, if A and B perform at most q = q(n)
oracle queries, the observation underlying the proof of Theorem1.1 implies that,
during an execution (Af,OSVL ,Bf,OSVL) of the protocol, the parties should not
query OSVL with any elements on the line 0n → x1 → · · · → xL(n) except
for the first q elements x0, x1, . . . , xq−1. This observation gives rise to a key-
agreement protocol ( ˜Af , ˜Bf ) that does not require access to the oracle OSVL:
First, ˜A samples a sequence x1, . . . , xq of q values, and sends these values to ˜B.
Then, ˜A and ˜B run the protocol (Af,OSVL ,Bf,OSVL) by using the values x1, . . . , xq

instead of accessing OSVL. That is, ˜A and ˜B run the underlying protocol relative
to the given oracle f and to the oracle ˜OSVL defined via the following successor
function ˜S (which each party can compute on its own):

˜S(α) =
{

xi+1 if α = xi for some i ∈ {0, . . . , q − 1}
α otherwise .

The formal proof is again rather subtle, and we refer the reader to the full version
of this paper [33] for the formal proof.

Average-case PPAD hardness does not imply unique-TFNP hardness.
Theorem 1.3 is proved by presenting a distribution of oracles relative to which
there exists a hard-on-average distribution of instances of a PPAD-complete
problem (specifically, we consider the source-or-sink problem), but there are no
hard TFNP instances having unique solutions.

A TFNP instance with a unique solution, denoted a unique-TFNP instance,
is of the form {Cn}n∈N, where for every n ∈ N it holds that Cn : {0, 1}n → {0, 1}
and there is a unique x∗ ∈ {0, 1}n such that C(x) = 1. Note that any valid SVL
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instance yields a TFNP instance that has a unique solution. Therefore, relative
to our distribution over oracles any valid SVL instance can be efficiently solved.

A source-or-sink instance is of the form {(Sn,Pn)}n∈N, where for every n ∈ N

it holds that Sn : {0, 1}n → {0, 1}n and Pn : {0, 1}n → {0, 1}n. Intuitively, the
circuits Sn and Pn can be viewed as implementing the successor and predecessor
functions of a directed graph over {0, 1}n, where the in-degree and out-degree of
every node is at most one, and the in-degree of 0n is 0 (i.e., it is a source). The
goal is to find any node, other than 0n, with either no incoming edge and no
outgoing edge. We again refer the reader to Sect. 2.1 for the formal definitions.

We consider an oracle that is a source-or-sink instance OPPAD which is based
on the same sparse structure used to define the oracle OSVL: It corresponds to
a graph with a single line 0n → x1 → · · · → xL(n) of length L(n) = 2n/2.
The line is chosen uniformly among all lines in {0, 1}n of length L(n) starting
at 0n (and all nodes outside the line have self loops). The fact that the oracle
OPPAD is a hard-on-average source-or-sink instance follows quite easily from the
above-mentioned observation on its sparse and uniform structure: Any algorithm
performing q = q(n) oracle queries should not be able to query OPPAD with any
element on the line beyond the first q elements x0, x1, . . . , xq−1. In particular, for
our choice of parameters, any such algorithm should have only an exponentially-
small probability of reaching xL(n).

Solving any oracle-aided unique-TFNP instance relative to OPPAD, however,
turns out to be a completely different challenge. One might be tempted to follow
a same approach based on the oracle’s sparse and uniform structure. Specifically,
let Cn be a unique-TFNP instance, and consider the unique value x∗ ∈ {0, 1}n

for which COPPAD
n (x∗) = 1. Then, if Cn issues at most q = q(n) oracle queries,

the computation COPPAD
n (x∗) should essentially not be able to query OPPAD with

any elements on the line 0n → x1 → · · · → xL(n) except for the first q elements

0n, x1, . . . , xq−1. Therefore, one can define a “fake” oracle ˜OPPAD whose successor
and predecessor functions agree with OPPAD on 0n, x1, . . . , xq (and are defined as
the identity functions for all other inputs), and then find the unique x̃ such that
CÕPPAD

n (x̃) = 1. This approach, however, completely fails since the solution x∗

itself may depend on OPPAD in an arbitrary manner, providing the computation
COPPAD

n (x∗) with sufficient information for querying OPPAD with an input xi that
is located further along the line (i.e., q ≤ i ≤ L(n)).

As discussed in Sect. 1.1, our proof is obtained by significantly extending
Rudich’s classic proof for ruling out black-box constructions of one-way per-
mutations based on one-way functions [34]. Here, we show that his approach
provides a rich framework that allows to bound not only the limitations of one-
way functions as a building block, but even the limitations of significantly more
structured primitives as building blocks. Specifically, our proof of Theorem1.3
generalizes Rudich’s technique for bounding the limitations of hard-on-average
source-or-sink instances. We refer the reader to Sect. 4 for more details and for
the formal proof.

Injective trapdoor functions do not imply bounded-TFNP hardness.
Theorem 1.4 and Corollary 1.5 are proved by presenting a distribution of oracles
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relative to which there exists a collection of injective trapdoor functions, but
there are no hard TFNP instances having a bounded number of solutions (specif-
ically, our result will apply to a sub-exponential number of solutions).

A TFNP instance with bounded number k(·) of solutions, denoted a
k-bounded TFNP instance, is of the form {Cn}n∈N, where for every n ∈ N

it holds that C : {0, 1}n → {0, 1}, and there is at least one and at most k(n) dis-
tinct inputs x ∈ {0, 1}n such that C(x) = 1 (any one of these x’s is a solution).
In particular, as discussed above, any valid SVL instance yields a 1-bounded
TFNP instance (i.e., a unique-TFNP instance), and therefore our result rules
out black-box constructions of a hard-on-average distribution of SVL instances
from injective trapdoor functions. Similarly, any source-or-sink instance which
consists of at most (k + 1)/2 disjoint lines yields a k-bounded TFNP instance,
and therefore our result rules out black-box constructions of a hard-on-average
distribution of source-or-sink instances with a bounded number of disjoint lines
from injective trapdoor functions.

For emphasizing the main ideas underlying our proof, in Sect. 5 we first prove
our result for constructions that are based on one-way functions, and then in
Sect. 6 we generalize the proof to constructions that are based on injective trap-
door functions. Each of these two parts requires introducing new ideas and tech-
niques, and such a level of modularity is useful in pointing them out.

When considering constructions that are based on one-way functions, our
proof is obtained via an additional generalization of Rudich’s proof technique
[34]. As discussed above, we first observe that Rudich’s approach can be gen-
eralized from ruling out constructions of one-way permutations based on one-
way functions to ruling out constructions of any hard-on-average distribution
of unique-TFNP instances based on one-way functions. Then, by extending and
refining Rudich’s proof technique once again, we show that we can rule out
not only constructions of unique-TFNP instances, but even constructions of
bounded-TFNP instances. This require a substantial generalization of Rudich’s
attacker, and we refer reader to Sect. 5 for more details and for the formal proof.

Then, when considering constructions that are based on injective trapdoor
functions, we show that our proof from Sect. 5 can be generalized from construc-
tions of bounded-TFNP instances based on one-way functions to constructions of
bounded-TFNP instances based on injective trapdoor functions. Combined with
our the proof of Theorem1.3, this extends Rudich’s approach from its somewhat
restricted context of one-way functions (as building blocks) and one-way per-
mutations (as target objects) to provide a richer framework that considers: (1)
significantly more structured building blocks, and (2) significantly less restricted
target objects. We refer reader to Sect. 6 for more details and for the formal
proof.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce our
notation as well as the search problems and the cryptographic primitives that
we consider in this paper. In Sect. 3 we show that average-case SVL hardness
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does not imply one-way functions in a black-box manner (proving Theorem1.1).
In Sect. 4 we show that average-case PPAD hardness does not imply unique-
TFNP hardness in a black-box manner (proving Theorem1.3). In Sect. 5 we
show that one-way functions do not imply bounded-TFNP hardness in a black-
box manner, and in Sect. 6 we generalize this result, showing that even injective
trapdoor functions do not imply bounded-TFNP hardness in a black-box manner
(proving Theorem1.4 and Corollary 1.5). In the full version of this paper [33] we
extend our approach from Sect. 3 and show that average-case SVL hardness does
not imply key agreement even when assuming the existence of one-way functions.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . For an
integer n ∈ N we denote by [n] the set {1, . . . , n}. A q-query algorithm is an
oracle-aided algorithm A such that for any oracle O and input x ∈ {0, 1}∗, the
computation AO(x) consists of at most q(|x|) oracle calls to O.

2.1 Complexity Classes and Total Search Problems

An efficiently-verifiable search problem is described via a pair (I,R), where I ⊆
{0, 1}∗ is an efficiently-recognizable set of instances, and R is an efficiently-
computable binary relation. Such a search problem is total if for every instance
z ∈ I there exists a witness w of length polynomial in the length z such that
R(z, w) = 1.

The class TFNP consists of all efficiently-verifiable search problem that are
total, and its sub-class PPAD consists of all such problems that are polynomial-
time reducible to the source-or-sink problem [31], defined as follows.

Definition 2.1 (The source-or-sink problem). A source-or-sink instance
consists of a pair of circuits S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n �=
S(0n). The goal is to find an element w ∈ {0, 1}n such that P(S(w)) �= w or
S(P(w)) �= w �= 0n.

Intuitively, the circuits S and P can be viewed as implementing the successor
and predecessor functions of a directed graph over {0, 1}n, where for each pair
of nodes x and y there exists an edge from x to y if and only if S(x) = y and
P(y) = x (note that the in-degree and out-degree of every node in this graph is
at most one, and the in-degree of 0n is 0). The goal is to find any node, other
than 0n, with either no incoming edge or no outgoing edge. Such a node must
always exist by a parity argument.

The sink-of-verifiable-line (SVL) problem is a search problem introduced by
Abbot et al. [1] and further studied by Bitansky et al. [8] and Garg et al. [20].
It is defined as follows:
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Definition 2.2 (The sink-of-verifiable-line (SVL) problem). An SVL
instance consists of a triplet (S,V, T ), where T ∈ [2n], and S : {0, 1}n → {0, 1}n

and V : {0, 1}n × [2n] → {0, 1} are two circuits with the guarantee that for every
x ∈ {0, 1}n and i ∈ [2n] it holds that V(x, i) = 1 if and only if x = Si(0n). The
goal is to find an element w ∈ {0, 1}n such that V(w, T ) = 1.

Intuitively, the circuit S can be viewed as implementing the successor function
of a directed graph over {0, 1}n that consists of a single line starting at 0n. The
circuit V enables to efficiently test whether a given node x is of distance i from
0n on the line, and the goal is to find the node of distance T from 0n. Note that
not any triplet (S,V, T ) is a valid SVL instance (moreover, there may not be an
efficient algorithm for verifying whether a triplet (S,V, T ) is a valid instance).

Oracle-aided instances with private randomness. We consider source-or-
sink and SVL instances that are described by oracle-aided circuits, and we would
like to allow these circuits to share an oracle-dependent state that may be gen-
erated via private randomness (this clearly strengthens the class of problems
that we consider, and in particular, capture those constructed by [8,20] using
indistinguishability obfuscation). For this purpose, we equip the instances with
an oracle-aided randomized index-generation algorithm, denoted Gen, that pro-
duces a public index σ which is then provided to all circuits of the instance (and
to any algorithm that attempts to solve the instance).

Specifically, we consider source-or-sink instances of the form {(Genn,Sn,
Pn)}n∈N, where for every n ∈ N and for every index σ produced by Genn

it holds that Sn(σ, ·) : {0, 1}n → {0, 1}n and Pn(σ, ·) : {0, 1}n → {0, 1}n.
Similarly, we consider SVL instances of the form {(Genn,Sn,Vn, T (n))}n∈N,
where for every n ∈ N and for every index σ produced by Genn it holds that
Sn(σ, ·) : {0, 1}n → {0, 1}n, Vn(σ, ·, ·) : {0, 1}n × [2n] → {0, 1}, and T (n) ∈ [2n].
We say that an SVL instance is valid if for every n ∈ N, σ produced by Genn,
x ∈ {0, 1}n, and i ∈ [2n], it holds that Vn(σ, x, i) = 1 if and only if x = Si

n(σ, 0n).

Bounded TFNP instances. As discussed in Sect. 1.1, we prove our results
using the notion of bounded-TFNP instances, naturally generalizing source-or-
sink instances (and valid SVL instances) by considering TFNP instances with a
guaranteed upper bound on the number of solutions.

Definition 2.3. A k-bounded TFNP instance is of the form {Genn, Cn}n∈N,
where for every n ∈ N and for every index σ produced by Genn it holds that
Cn(σ, ·) : {0, 1}n → {0, 1}, and there is at least one and at most k(n) distinct
inputs x ∈ {0, 1}n such that Cn(σ, x) = 1 (any one of these x’s is a solution).

Note that any valid SVL instance yields a 1-bounded TFNP instance (to
which we refer as a unique-TFNP instance), and any source-or-sink instance
which consists of at most (k + 1)/2 disjoint lines yields a k-bounded TFNP
instance.

Average-case PPAD hardness and bound-TFNP hardness. The follow-
ing two definitions formalize the standard notion of average-case hardness in
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the specific context of source-or-sink instances and k-bounded TFNP instances.
These notions then serve as the basis of our definitions of black-box construc-
tions.

Definition 2.4. Let t = t(n) and ε = ε(n) be functions of the security parameter
n ∈ N. A source-or-sink instance {(Genn,Sn,Pn)}n∈N is (t, ε)-hard if for any
algorithm A that runs in time t(n) it holds that

Pr [A (1n, σ) = w s.t. Pn(σ,Sn(σ,w)) �= w or Sn(σ,Pn(σ,w)) �= w �= 0n] ≤ ε(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of σ ← Genn() and over the internal randomness of A.

Definition 2.5. Let k = k(n), t = t(n) and ε = ε(n) be functions of the security
parameter n ∈ N. A k-bounded TFNP instance {Genn, Cn}n∈N is (t, ε)-hard if
for any algorithm A that runs in time t(n) it holds that

Pr [A (1n, σ) = x s.t. Cn(σ, x) = 1] ≤ ε(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of σ ← Genn() and over the internal randomness of A.

2.2 One-Way Functions and Injective Trapdoor Functions

We rely on the standard (parameterized) notions of a one-way function and
injective trapdoor functions [22].

Definition 2.6. An efficiently-computable function f : {0, 1}∗ → {0, 1}∗ is
(t(·), ε(·))-one-way if for any probabilistic algorithm A that runs in time t(n)
it holds that

Pr
[

A (f(x)) ∈ f−1 (f(x))
] ≤ ε(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
x ← {0, 1}n and over the internal randomness of A.

A collection of injective trapdoor functions is a triplet (KG,F,F−1) of poly-
nomial-time algorithms. The key-generation algorithm KG is a probabilistic algo-
rithm that on input the security parameter 1n outputs a pair (pk, td), where pk
is a public key and td is a corresponding trapdoor. For any n ∈ N and for any
pair (pk, td) that is produced by KG(1n), the evaluation algorithm F computes
an injective function F(pk, ·) : {0, 1}n → {0, 1}�(n), and the inversion algorithm
F−1(td, ·) : {0, 1}�(n) → {0, 1}n ∪ {⊥} computes its inverse whenever an inverse
exists (i.e., it outputs ⊥ on all values y that are not in the image of the function
F(pk, ·)). The security requirement of injective trapdoor functions is formalized
as follows:

Definition 2.7. A collection of injective trapdoor functions (KG,F,F−1) is (t(·),
ε(·))-secure if for any probabilistic algorithm A that runs in time t(n) it holds
that

Pr [A (pk,F(pk, x)) = x] ≤ ε(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
(pk, td) ← KG(1n), x ← {0, 1}n, and over the internal randomness of A.
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3 Average-Case SVL Hardness Does Not Imply One-Way
Functions

In this section we prove that there is no fully black-box construction of a one-way
function from a hard-on-average distribution of SVL instances4 (proving Theo-
rem 1.1). Our result is obtained by presenting a distribution of oracles relative
to which the following two properties hold:

1. There exists a hard-on-average distribution of SVL instances.
2. There are no one-way functions.

Recall that an SVL instance is of the form {(Genn,Sn,Vn, L(n))}n∈N, where
for every n ∈ N and for every index σ produced by Genn it holds that Sn(σ, ·) :
{0, 1}n → {0, 1}n, Vn(σ, ·, ·) : {0, 1}n × [2n] → {0, 1}, and L(n) ∈ [2n]. We say
that an SVL instance is valid if for every n ∈ N, σ produced by Genn, x ∈ {0, 1}n,
and i ∈ [2n], it holds that Vn(σ, x, i) = 1 if and only if x = Si

n(σ, 0n). The
following definition tailors the standard notion of a fully black-box construction
(based, for example, on [21,28,32]) to the specific primitives under consideration.

Definition 3.1. A fully black-box construction of a one-way function from a
hard-on-average distribution of SVL instances consists of an oracle-aided poly-
nomial-time algorithm F , an oracle-aided algorithm M that runs in time TM (·),
and functions εM,1(·) and εM,2(·), such that the following conditions hold:

– Correctness: There exists a polynomial �(·) such that for any valid SVL
instance OSVL and for any x ∈ {0, 1}∗ it holds that FOSVL(x) ∈ {0, 1}�(|x|).

– Black-box proof of security: For any valid SVL instance OSVL = {(Genn,
Sn,Vn, L(n))}n∈N, for any oracle-aided algorithm A that runs in time TA =
TA(n), and for any function εA(·), if

Pr
[

AOSVL
(

FOSVL(x)
) ∈ (

FOSVL
)−1 (

FOSVL(x)
)

]

≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of x ← {0, 1}n and over the internal randomness of A, then

Pr
[

MA,OSVL (1n, σ) solves (Sn(σ, ·),Vn(σ, ·), L(n))
]

≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genn() and over the internal randomness of M .

Following Asharov and Segev [2,3], we split the security loss in the above
definition to an adversary-dependent security loss and an adversary-independent
4 Recall that any hard-on-average distribution of SVL instances can be used in a black-

box manner to construct a hard-on-average distribution of instances of a PPAD-
complete problem [1,8]. Thus, our result implies (in particular) that average-case
PPAD hardness does not imply one-way functions in a black-box manner.
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security loss, as this allows us to capture constructions where one of these losses
is super-polynomial whereas the other is polynomial (e.g., [8,9]). In addition, we
note that the correctness requirement in the above definition may seem somewhat
trivial since the fact that the output length of FOSVL(·) is polynomial follows
directly from the requirement that F runs in polynomial time. However, for
avoiding rather trivial technical complications in the proofs of this section, for
simplicity (and without loss of generality) we nevertheless ask explicitly that
the output length is some fixed polynomial �(n) for any input length n (clearly,
�(n) may depend on the running time of F , and shorter outputs can always be
padded). Equipped with the above definition we prove the following theorem in
the full version of this paper [33]:

Theorem 3.2. Let (F,M, TM , εM,1, εM,2) be a fully black-box construction of a
one-way function from a hard-on-average SVL instance. Then, at least one of
the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is
exponential).

In particular, Theorem3.2 rules out standard “polynomial-time polynomial-
loss” reductions. More generally, the theorem implies that if the running time
TM (·) of the reduction is sub-exponential and the adversary-dependent security
loss εM,1(·) is polynomial (as expected), then the adversary-independent security
loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

In what follows we first describe the oracle, denoted OSVL, on which we rely
for proving Theorem3.2. Then, we describe the structure of the proof, showing
that relative to the oracle OSVL there exists a hard-on-average distribution of SVL
instances, but there are no one-way functions. For the remainder of this section
we remind the reader that a q-query algorithm is an oracle-aided algorithm A
such that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists
of at most q(|x|) oracle calls to O.

The oracle OSVL. The oracle OSVL is a valid SVL instance {(Sn,Vn, L(n))}n∈N

that is sampled via the following process for every n ∈ N:

– Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . ,
xL(n) ← {0, 1}n \ {0n}.

– The successor function Sn : {0, 1}n → {0, 1}n is defined as

Sn(x) =
{

xi+1 if x = xi for some i ∈ {0, . . . , L(n) − 1}
x otherwise .

– The verification function Vn : {0, 1}n × [2n] → {0, 1} is defined in a manner
that is consistent with Sn (i.e., Vn is defined such that the instance is valid).
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Part I: OSVL is a hard-on-average SVL instance. We show that the oracle
OSVL itself is a hard-on-average SVL instance, which implies in particular that
relative to the oracle OSVL there exists a hard-on-average distribution of SVL
instances. We prove the following claim stating that, in fact, the oracle OSVL is an
exponentially hard-on-average SVL instance (even without an index-generation
algorithm):

Claim 3.3. For every q(n)-query algorithm M , where q(n) ≤ L(n) − 1, it holds
that

Pr
[

MOSVL (1n) solves (Sn,Vn, L(n))
] ≤ (q(n) + 1) · L(n)

2n − q(n) − 1

for all sufficiently large n ∈ N, where the probability is taken over the choice of
the oracle OSVL = {(Sn,Vn, L(n))}n∈N as described above.

The proof of the above claim is based on the following, rather intuitive,
observation: Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly
sampled, then any algorithm performing q = q(n) oracle queries should not be
able to query OSVL with any element on the line beyond the first q elements
0n, x1, . . . , xq−1. In particular, for our choice of parameters, any such algorithm
should have only an exponentially-small probability of reaching xL(n).

Part II: Inverting oracle-aided functions relative to OSVL. We show that
any oracle-aided function FOSVL(·) computable in time t(n) can be inverted with
high probability by an inverter that issues roughly t(n)4 oracle queries. We prove
the following claim:

Claim 3.4. For every deterministic oracle-aided function F that is computable
in time t(n) there exists a q(n)-query algorithm A, where q(n) = O(t(n)4), such
that

Pr
[

AOSVL
(

FOSVL(x)
) ∈ (

FOSVL
)−1 (

FOSVL(x)
)

]

≥ 1
2

for all sufficiently large n ∈ N and for every x ∈ {0, 1}n, where the probability
is taken over the choice of the oracle OSVL = {(Sn,Vn, L(n))}n∈N as described
above. Moreover, the algorithm A can be implemented in time polynomial in q(n)
given access to a PSPACE-complete oracle.

The proof of the above claim is based on the following approach. Consider the
value y = FOSVL(x) that is given as input to the inverter A. Since F is computable
in time t = t(n), it can issue at most t oracle queries and therefore the observation
used for proving Claim3.3 implies that the computation FOSVL(x) should not
query OSVL with any elements on the line 0n → x1 → · · · → xL(n) except for the
first t elements x0, x1, . . . , xt−1. In this case, any Sn-query α in the computation
FOSVL(x) can be answered as follows: If α = xi for some i ∈ {0, . . . , t − 1} then
the answer is xi+1, and otherwise the answer is α. Similarly, any Vn-query (α, j)
in the computation FOSVL(x) can be answered as follows: If (α, j) = (xi, i) for
some i ∈ {0, . . . , t − 1} then the answer is 1, and otherwise the answer is 0.
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This observation gives rise to the following inverter A: First perform t queries
to Sn for discovering x1, . . . , xt, and then invert y = FOSVL(x) relative to the
oracle ˜OSVL defined via the following successor function ˜Sn:

˜Sn(α) =
{

xi+1 if α = xi for some i ∈ {0, . . . , t − 1}
α otherwise .

The formal proof is in fact more subtle, and requires a significant amount of
caution when inverting y = FOSVL(x) relative to the oracle ˜OSVL. Specifically,
the inverter A should find an input x̃ such that the computations F ÕSVL(x̃) and
FOSVL(x̃) do not query the oracles ˜OSVL and OSVL, respectively, with any of
xt, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter is
successful.

4 Average-Case PPAD Hardness Does Not Imply
Unique-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-
on-average distribution of TFNP instances having a unique solution from a hard-
on-average distribution of instances of a PPAD-complete problem (proving, in
particular, Theorem1.3). Our result is obtained by presenting a distribution of
oracles relative to which the following two properties hold:

1. There exists a hard-on-average distribution of instances of a PPAD-complete
problem (specifically, we consider the source-or-sink problem).

2. There are no hard-on-average distributions over TFNP instances having a
unique solution.

Recall that a TFNP instance with a unique solution, denoted a unique-TFNP
instance (see Definitions 2.3 and 2.5), is of the form {Genn, Cn}n∈N, where for
every n ∈ N and for every index σ produced by Genn it holds that Cn(σ, ·) :
{0, 1}n → {0, 1} and there is a unique x∗ ∈ {0, 1}n such that Cn(σ, x) = 1. In
particular, for any valid SVL instance (Gen,S,V, T ) it holds that (Gen,V(·, ·, T ))
is a TFNP instance that has a unique solution since for every σ produced by
Gen there is exactly one value x∗ for which V(σ, x∗, T ) = 1. Therefore, our result
shows, in particular, that there is no fully black-box construction of a hard-
on-average distribution of SVL instances from a hard-on-average distribution of
instances of a PPAD-complete problem5.

Recall that a source-or-sink instance is of the form {(Genn,Sn,Pn)}n∈N,
where for every n ∈ N and for every index σ produced by Genn it holds that
Sn(σ, ·) : {0, 1}n → {0, 1}n and Pn(σ, ·) : {0, 1}n → {0, 1}n. The following defin-
ition tailors the standard notion of a fully black-box construction to the specific
primitives under consideration.
5 Recall that constructions in the opposite direction do exist: Any hard-on-average

distribution of SVL instances can be used in a black-box manner to construct a
hard-on-average distribution of instances of a PPAD-complete problem [1,8].
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Definition 4.1. A fully black-box construction of a hard-on-average distribu-
tion of unique-TFNP instances from a hard-on-average distribution of source-
or-sink instances consists of a sequence of polynomial-size oracle-aided circuits
C = {Genn, Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·), and
functions εM,1(·) and εM,2(·), such that the following conditions hold:

– Correctness: For any source-or-sink instance OPPAD, for any n ∈ N, and
for any index σ produced by GenOPPAD

n , there exists a unique x∗ ∈ {0, 1}n such
that COPPAD

n (σ, x∗) = 1.
– Black-box proof of security: For any source-or-sink instance OPPAD =

{(Gen′
n,Sn,Pn)}n∈N, for any oracle-aided algorithm A that runs in time TA =

TA(n), and for any function εA(·), if

Pr
[AOPPAD (1n, σ) = x∗ s.t. COPPAD

n (σ, x∗) = 1
] ≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genn() and over the internal randomness of A, then

Pr
[

MA,OPPAD (1n, σ′) solves (Sn(σ′, ·),Pn(σ′, ·))]

≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ′ ← Gen′

n() and over the internal randomness of M .

We note that, as in Definition 3.1, we split the security loss in the above
definition to an adversary-dependent security loss and an adversary-independent
security loss, as this allows us to capture constructions where one of these losses
is super-polynomial whereas the other is polynomial. Equipped with the above
definition we prove the following theorem in the full version of this paper [33]:

Theorem 4.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a
hard-on-average distribution of unique-TFNP instances from a hard-on-average
distribution of source-or-sink instances. Then, at least one of the following prop-
erties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is
exponential).

In particular, Theorem4.2 rules out standard “polynomial-time polynomial-
loss” reductions. More generally, the theorem implies that if the running time
TM (·) of the reduction is sub-exponential and the adversary-dependent security
loss εM,1(·) is polynomial (as expected), then the adversary-independent security
loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

In what follows we first describe the oracle, denoted OPPAD, on which we rely
for proving Theorem4.2. Then, we describe the structure of the proof, show-
ing that relative to the oracle OPPAD there exists a hard-on-average distribu-
tion of source-or-sink instances, but there are no hard-on-average unique-TFNP
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instances. For the remainder of this section we remind the reader that a q-query
algorithm is an oracle-aided algorithm A such that for any oracle O and input
x ∈ {0, 1}∗, the computation AO(x) consists of at most q(|x|) oracle calls to O.

The oracle OPPAD. The oracle OPPAD is a source-or-sink instance {(Sn,Pn)}n∈N

that is based on the same sparse structure used to define the oracle OSVL in
Sect. 3. The oracle OPPAD is sampled via the following process for every n ∈ N:

– Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . ,
xL(n) ← {0, 1}n \ {0n}.

– The successor function Sn : {0, 1}n → {0, 1}n is defined as

Sn(x) =
{

xi+1 if x = xi for some i ∈ {0, . . . , L(n) − 1}
x otherwise .

– The predecessor function Pn : {0, 1}n → {0, 1}n is defined in a manner that
is consistent with the successor function Sn:

Pn(x) =
{

xi−1 if x = xi for some i ∈ {1, . . . , L(n)}
x otherwise .

Note that the oracle OPPAD corresponds to a source-or-sink instance that consists
of the single line 0n → x1 → · · · → xL(n), and therefore the only solution to this
instance is the element xL(n).

Part I:OPPAD is a hard-on-average source-or-sink instance. We show that
the oracle OPPAD itself is a hard-on-average source-or-sink instance, which implies
in particular that relative to the oracle OPPAD there exists a hard-on-average
distribution of instances to the source-or-sink problem. We prove the following
claim stating that, in fact, the oracle OPPAD is an exponentially hard-on-average
source-or-sink instance (even without an index-generation algorithm):

Claim 4.3. For every q(n)-query algorithm M , where q(n) ≤ L(n) − 1, it holds
that

Pr
[

MOPPAD (1n) solves (Sn,Pn)
] ≤ (q(n) + 1) · L(n)

2n − q(n) − 1

for all sufficiently large n ∈ N, where the probability is taken over the choice of
the oracle OPPAD = {(Sn,Pn)}n∈N as described above.

The proof of the claim, which is provided in the full version of this paper
[33], is based on an observation similar to the one used for proving Claim3.3:
Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly sampled, then
any algorithm performing q = q(n) oracle queries should not be able to query
OPPAD with any element on the line beyond the first q elements x0, x1, . . . , xq−1.
In particular, for our choice of parameters, any such algorithm should have only
an exponentially-small probability of reaching xL(n).

Part II: Solving oracle-aided unique-TFNP instances relative to
OPPAD. We show that any oracle-aided unique-TFNP instance {Genn, Cn}n∈N,
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where Genn and Cn are circuits that contain at most q(n) oracle gates, can
always be solved by an algorithm that issues roughly q(n)2 oracle queries. We
prove the following claim:

Claim 4.4. Let C = {Genn, Cn}n∈N be an oracle-aided unique-TFNP instance,
where Genn and Cn are circuits that contain at most q(n) oracle gates each for
every n ∈ N. If C satisfies the correctness requirement stated in Definition 4.1,
then there exists an O(q(n)2)-query algorithm A such that

Pr
[AOPPAD (1n, σ) = x∗ s.t. COPPAD

n (σ, x∗) = 1
]

= 1

for every n ∈ N, where the probability is taken over the choice of the ora-
cle OPPAD = {(Sn,Pn)}n∈N as described above and over the choice of σ ←
GenOPPAD

n (). Moreover, the algorithm A can be implemented in time q(n)2 ·poly(n)
given access to a PSPACE-complete oracle.

For proving Claim 4.4, one might be tempted to follow the same approach
used for proving Claim3.4, based on the sparse and uniform structure of the
oracle. However, as discussed in Sect. 1.3, this approach seems to completely
fail.

Our proof of Claim 4.4, which is provided in the full version of this paper
[33], is obtained by building upon Rudich’s classic proof for ruling out black-
box constructions of one-way permutations based on one-way functions [34]. We
show, by extending and refining Rudich’s proof technique, that his approach pro-
vides a rich framework that allows to bound not only the limitations of one-way
functions as a building block, but even the limitations of significantly more struc-
tured primitives as building blocks. Specifically, our proof of Claim4.4 extends
Rudich’s technique for bounding the limitations of hard-on-average source-or-
sink instances.

5 One-Way Functions Do Not Imply Bounded-TFNP
Hardness

In this section we prove that there is no fully black-box construction of a hard-on-
average distribution of TFNP instances having a bounded number of solutions
from a one-way function. Our result is obtained by presenting a distribution of
oracles relative to which the following two properties hold:

1. There exists a one-way function.
2. There are no hard-on-average distributions of TFNP instances having a

bounded number of solutions. Specifically, our result will apply to any sub-
exponential number of solutions.

Recall that a TFNP instance with bounded number k(·) of solutions,
denoted a k-bounded TFNP instance (see Definitions 2.3 and 2.5), is of the form
{Genn, Cn}n∈N, where for every n ∈ N and for every index σ produced by Genn

it holds that Cn(σ, ·) : {0, 1}n → {0, 1}, and there is at least one and at most
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k(n) distinct inputs x ∈ {0, 1}n such that Cn(σ, x) = 1 (any one of these x’s is a
solution). In particular, as discussed in Sect. 4, any valid SVL instance yields a
1-bounded TFNP instance (i.e., a unique-TFNP instance as defined in Sect. 4),
and therefore our result rules out fully black-box constructions of a hard-on-
average distribution of SVL instances from a one-way function. Similarly, any
source-or-sink instance which consists of at most (k + 1)/2 disjoint lines yields
a k-bounded TFNP instance, and therefore our result rules out fully black-box
constructions of a hard-on-average distribution of source-or-sink instances with
a bounded number of disjoint lines from a one-way function.

In this section we model a one-way function as a sequence f = {fn}n∈N,
where for every n ∈ N it holds that fn : {0, 1}n → {0, 1}n. The following
definition tailors the standard notion of a fully black-box construction to the
specific primitives under consideration.

Definition 5.1. A fully black-box construction of a hard-on-average distribution
of k-bounded TFNP instances from a one-way function consists of a sequence of
polynomial-size oracle-aided circuits C = {Genn, Cn}n∈N, an oracle-aided algo-
rithm M that runs in time TM (·), and functions εM,1(·) and εM,2(·), such that
the following conditions hold:

– Correctness: For any function f = {fn}n∈N, for any n ∈ N, and for any
index σ produced by Genf

n, there exists at least one and at most k(n) distinct
inputs x ∈ {0, 1}n such that Cf

n(σ, x) = 1.
– Black-box proof of security: For any function f = {fn}n∈N, for any

oracle-aided algorithm A that runs in time TA = TA(n), and for any function
εA(·), if

Pr
[Af (1n, σ) = x s.t. Cf

n(σ, x) = 1
] ≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genf

n() and over the internal randomness of A, then

Pr
[

MA,f (fn(x)) ∈ f−1
n (fn(x))

] ≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of x ← {0, 1}n and over the internal randomness of M .

We note that, as in Definitions 3.1 and 4.1, we split the security loss in
the above definition to an adversary-dependent security loss and an adversary-
independent security loss, as this allows us to capture constructions where one
of these losses is super-polynomial whereas the other is polynomial. Equipped
with the above definition we prove the following theorem in the full version of
this paper [33]:

Theorem 5.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of
a hard-on-average distribution of k-bounded TFNP instances from a one-way
function. Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).
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2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduc-
tion’s running time, is exponential).

3. εM,1(k(n) · nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security
loss is exponential).

In particular, Theorem5.2 rules out standard “polynomial-time polynomial-
loss” reductions resulting in at most 2no(1)

solutions. That is, if TM (n), εM,1(n)
and εM,2(n) are all polynomials in n, then the number k(n) of solutions must
be at least sub-exponential in n (i.e., k(n) ≥ 2nΘ(1)

). In addition, if the num-
ber k(n) of solutions is constant, the running time TM (·) of the reduction is
sub-exponential, and the adversary-dependent security loss εM,1(·) is polyno-
mial (all as in [8]), then the adversary-independent security loss εM,2(·) must be
exponential (thus even ruling out constructions based on one-way functions with
sub-exponential hardness).

In what follows we first describe the oracle, denoted f , on which we rely
for proving Theorem5.2. Then, we describe the structure of the proof, showing
that relative to the oracle f there exists a one-way function, but there are no
hard-on-average bounded-TFNP instances. For the remainder of this section we
remind the reader that a q-query algorithm is an oracle-aided algorithm A such
that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists of
at most q(|x|) oracle calls to O.

The oracle f . The oracle f is a sequence {fn}n∈N where for every n ∈ N the
function fn : {0, 1}n → {0, 1}n is sampled uniformly from the set of all functions
mapping n-bit inputs to n-bit outputs.

Part I: f is a one-way function. We prove the following standard claim
stating that the oracle f is an exponentially-hard one-way function.

Claim 5.3. For every q(n)-query algorithm M it holds that

Pr
[

Mf (fn(x)) ∈ f−1
n (fn(x))

] ≤ 2(q(n) + 1)
2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
x ← {0, 1}n, and over the choice of the oracle f = {fn}n∈N as described above.

Part II: Solving oracle-aided bounded-TFNP instances relative to f .
We show that any oracle-aided k-bounded TFNP instance C = {Cn}n∈N, where
each Cn is a circuit that contains at most q(n) oracle gates, can always be solved
by an algorithm that issues roughly k(n) · q(n)2 oracle queries. We prove the
following claim:

Claim 5.4. Let C = {Genn, Cn}n∈N be an oracle-aided k(n)-bounded TFNP
instance, where Genn and Cn are circuits that contain at most q(n) oracle gates
each for every n ∈ N. If C satisfies the correctness requirement stated in Defin-
ition 5.1, then there exists an O(k(n) · q(n)2)-query algorithm A such that

Pr
[Af (1n, σ) = x s.t. Cf

n(σ, x) = 1
]

= 1
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for all n ∈ N, where the probability is taken over the choice of the oracle f =
{fn}n∈N as described above and over the choice of σ ← Genf

n(). Moreover, the
algorithm A can be implemented in time k(n) · q(n)2 · poly(n) given access to a
PSPACE-complete oracle.

Our proof of Claim 5.4, which is provided in the full version of this paper
[33], is obtained by further generalizing our extension of Rudich’s classic proof
technique [34]. As discussed in Sect. 4, by extending and refining Rudich’s proof
technique once again, we show that his approach allows to rule out even con-
structions of bounded-TFNP instances.

6 Public-Key Cryptography Does Not Imply
Bounded-TFNP Hardness

In this section we generalize the result proved in Sect. 5 from considering a
one-way function as the underlying building block to considering a collection
of injective trapdoor functions as the underlying building block (thus proving,
in particular, Theorem1.4 and Corollary 1.5). Specifically, we prove that there
is no fully black-box construction of a hard-on-average distribution of TFNP
instances having a bounded number of solutions from a collection of injective
trapdoor functions. Our result is obtained by presenting a distribution of oracles
relative to which the following two properties hold:

1. There exists a collection of injective trapdoor functions.
2. There are no hard-on-average distributions of TFNP instances having a

bounded number of solutions. Specifically, our result will apply to any sub-
exponential number of solutions, exactly as in Sect. 5.

From the technical perspective, instead of considering an oracle f = {fn}n∈N

where for every n ∈ N the function fn : {0, 1}n → {0, 1}n is sampled uniformly,
we consider a more structured oracle, OTDF, corresponding to a collection of
injective trapdoor functions. Proving that the oracle OTDF is indeed hard to
invert is quite standard (based, for example, on the approach of Haitner et al.
[23]). However, showing that relative to the oracle OTDF we can solve bounded-
TFNP instances is significantly more challenging than the corresponding proof
relative to the oracle f .

We say that τ =
{(

KGn,Fn,F−1
n

)}

n∈N
is a collection of injective trapdoor

functions if for every n ∈ N and for every pair (td, pk) produced by KGn(),
the function Fn(pk, ·) : {0, 1}n → {0, 1}m is injective (for some m ≥ n) and
the function F−1

n (td, ·) computes it inverse whenever an inverse exists (i.e., it
outputs ⊥ on all values y that are not in the image of the function Fn(pk, ·)) –
see Sect. 2.2 for more details. The following definition tailors the standard notion
of a fully black-box construction to the specific primitives under consideration.

Definition 6.1. A fully black-box construction of a hard-on-average distribu-
tion of k-bounded TFNP instances from a collection of injective trapdoor func-
tions consists of a sequence of polynomial-size oracle-aided circuits C = {Genn,
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Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·), and functions
εM,1(·) and εM,2(·), such that the following conditions hold:

– Correctness: For any collection τ of injective trapdoor functions, for any
n ∈ N, and for any index σ produced by Genτ

n, there exists at least one and
at most k(n) distinct inputs x ∈ {0, 1}n such that Cτ

n(σ, x) = 1.
– Black-box proof of security: For any collection τ =

{(

KGn,Fn,F−1
n

)}

n∈N

of injective trapdoor functions, for any oracle-aided algorithm A that runs in
time TA = TA(n), and for any function εA(·), if

Pr [Aτ (1n, σ) = x s.t. Cτ
n(σ, x) = 1] ≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of σ ← Genτ

n() and x ← {0, 1}n, and over the internal randomness of
A, then

Pr
[

MA,τ (pk,Fn(pk, x)) = x
] ≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of (td, pk) ← KGn(), x ← {0, 1}n, and over the internal randomness
of M .

We note that, as in Definitions 3.1, 4.1 and 5.1, we split the security loss in
the above definition to an adversary-dependent security loss and an adversary-
independent security loss, as this allows us to capture constructions where one
of these losses is super-polynomial whereas the other is polynomial. Equipped
with the above definition we prove the following theorem in the full version of
this paper [33] (generalizing Theorem 5.2):

Theorem 6.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a
hard-on-average distribution of k-bounded TFNP instances from a collection of
injective trapdoor functions. Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduc-
tion’s running time, is exponential).

3. εM,1(k(n) · nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security
loss is exponential).

In particular, and similarly to Theorem5.2, Theorem 6.2 rules out stan-
dard “polynomial-time polynomial-loss” reductions resulting in at most 2no(1)

solutions. That is, if TM (n), εM,1(n) and εM,2(n) are all polynomials in n,
then the number k(n) of solutions must be at least sub-exponential in n (i.e.,
k(n) ≥ 2nΘ(1)

). In addition, if the number k(n) of solutions is constant, the
running time TM (·) of the reduction is sub-exponential, and the adversary-
dependent security loss εM,1(·) is polynomial (all as in [8]), then the adversary-
independent security loss εM,2(·) must be exponential (thus even ruling out con-
structions based on one-way functions with sub-exponential hardness). Given our
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claims in the remainder of this section, the proof of Theorem6.2 is derived in a
nearly identical to proof of 5.2, and is therefore omitted.

In what follows we first describe the oracle, denoted OTDF, on which we
rely for proving Theorem6.2. Then, we describe the structure of the proof, and
explain the main challenges in generalizing our proof from Sect. 5.

The oracleOTDF. The oracle OTDF is a sequence of the form {(Gn,Fn,F−1
n

)}n∈N

that is sampled via the following process for every n ∈ N:

– The function Gn : {0, 1}n → {0, 1}2n is sampled uniformly from the set of all
functions mapping n-bit inputs to n-bit outputs.

– For every pk ∈ {0, 1}2n the function Fn(pk, ·) : {0, 1}n → {0, 1}2n is sampled
uniformly from the set of all injective functions mapping n-bit inputs to 2n-bit
outputs.

– For every td ∈ {0, 1}n and y ∈ {0, 1}2n we set

F−1
n (td, y) =

{

x if Fn(Gn(td), x) = y
⊥ if no such x exists .

Part I: OTDF is a hard-to-invert collection of injective trapdoor
functions. We show that the oracle OTDF naturally defines a hard-on-average
collection of injective trapdoor functions. Specifically, the key-generation algo-
rithm on input 1n samples td ← {0, 1}n uniformly at random, and computes
pk = Gn(td) (where Fn and F−1

n are used as the evaluation and inversion algo-
rithms). We prove the following claim stating that collection of injective trapdoor
functions is exponentially secure.

Claim 6.3. For every q(n)-query algorithm M it holds that

Pr
[

MOTDF (Gn(td),Fn(Gn(td), x)) = x
] ≤ 4(q(n) + 1)

2n − q(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
td ← {0, 1}n, x ← {0, 1}n, and the oracle OTDF = {(Gn,Fn,F−1

n )}n∈N.

The proof of Claim 6.3, which is provided in the full version of this paper
[33], is based on the observation that the inversion oracle F−1

n is not quite use-
ful. Specifically, the function Gn itself is uniformly chosen and thus hard to invert,
and therefore any algorithm M that is given as input (pk,Fn(pk, x)) should not
be able to find the trapdoor td corresponding to pk = Gn(td). Combining this
with the fact that the function Fn(pk, ·) is uniformly chosen and length doubling,
such an algorithm M should not be able to find any y in its image, unless y
was obtained as the result of a previous query (and, in this case, its inverse is
already known). Therefore, the task of computing x given (pk,Fn(pk, x)) essen-
tially reduces to that of inverting a uniformly-sampled injective function.

Part II: Solving oracle-aided bounded-TFNP instances relative to
OTDF. We show that any oracle-aided k-bounded TFNP instance C = {Genn,
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Cn}n∈N, where Genn and Cn contain at most q(n) oracle gates, and the input to
each such gate is of length at most q(n) bits, can always be solved with constant
probability by an algorithm that issues roughly k(n)3 · q(n)9 oracle queries. We
prove the following claim:

Claim 6.4. Let C = {Genn, Cn}n∈N be an oracle-aided k-bounded TFNP
instance, where for every n ∈ N it holds that Genn and Cn are circuits that
contain at most q(n) oracle gates, and the input to each such gate is of length at
most q(n) bits. If C satisfies the correctness requirement stated in Definition 6.1,
then there exists a O(q(n)9 · k(n)3)-query algorithm A such that

Pr
[AOTDF (1n, σ) = x s.t. COTDF

n (σ, x) = 1
] ≥ 1

2

for all n ∈ N, where the probability is taken over the choice of the oracle OTDF =
{(Gn,Fn,F−1

n )}n∈N as described above and over the choice of σ ← GenOTDF
n ().

Moreover, the algorithm A can be implemented in time q(n)9 · k(n)3 · poly(n)
given access to a PSPACE-complete oracle.

The proof of Claim 6.4, which is provided in the full version of this paper [33],
generalizes the proof of Claim 5.4 (which holds relative to the oracle f defined in
Sect. 5). Recall that for the proof of Claim5.4 we introduced an adversary that
runs for q + 1 iterations, with the goal of discovering a new oracle query from
the computation Cf

n(σ, x∗) in each iteration where x∗ is any fixed solution of
the instance Cf

n(σ, ·). This approach is based on the observation if no progress
is made then there exists an oracle g′ for which the instance Cg′

n (σ, ·) has too
many solutions. The oracle oracle g′ can be constructed by “pasting together”
partial information on the actual oracle f with full information on an additional
oracle g that is partially-consistent with f .

When dealing with the oracle OTDF, which is clearly more structured than
just a single random function f , this argument becomes much more subtle.
One may hope to follow a similar iteration-based approach and argue that if
no progress is made then there exists an oracle O′

TDF for which the instance
C

O′
TDF

n (σ, ·) has too many solutions. However, “pasting together” partial infor-
mation on the actual oracle OTDF with full information on an additional injective
trapdoor function oracle that is partially-consistent with OTDF may completely
fail, as the resulting oracle may not turn out injective at all.

Our main observation is that although pasting together the two oracles may
not always work (as in Sect. 5), it does work with high probability over the choice
of the oracle OTDF. By closely examining the way the two oracles are combined,
we show that if the resulting oracle is not a valid collection of injective trapdoor
functions, then one of the following “bad” events must have occurred:

– The adversary was able to “guess” an element pk for which there exists td
such that pk = Gn(td) without previously querying Gn with td.

– The adversary was able to “guess” a public key pk and an element y for which
there exists an input x such that y = Fn(pk, x) without previously querying
Fn with (pk, x).
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We show that the probability of each of these two events is small, as we choose
both Gn and all functions Fn(pk, ·) to be length increasing and uniformly dis-
tributed.
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