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Abstract. We provide a new construction of functional encryption (FE)
for circuits in the bounded collusion model. In this model, security of the
scheme is guaranteed as long as the number of colluding adversaries can
be a-priori bounded by some polynomial Q. Our construction supports
arithmetic circuits in contrast to all prior work which support Boolean
circuits. The ciphertext of our scheme is sublinear in the circuit size for
the circuit class NC1; this implies the first construction of arithmetic
reusable garbled circuits for NC1.

Additionally, our construction achieves several desirable features:
– Our construction for reusable garbled circuits for NC1 achieves the

optimal “full” simulation based security.
– When generalised to handle Q queries for any fixed polynomial Q,

our ciphertext size grows additively with Q2. In contrast, previ-
ous works that achieve full security [5,39] suffered a multiplicative
growth of Q4.

– The ciphertext of our scheme can be divided into a succinct data
dependent component and a non-succinct data independent compo-
nent. This makes it well suited for optimization in an online-offline
model that allows a majority of the computation to be performed in
an offline phase, before the data becomes available.

Security of our reusable garbled circuits construction for NC1 is based on
the Ring Learning With Errors assumption (RLWE), while the bounded
collusion construction (with non-succinct ciphertext) may also be based
on the standard Learning with Errors (LWE) assumption. To achieve our
result, we provide new public key and ciphertext evaluation algorithms.
These algorithms are general, and may find application elsewhere.

1 Introduction

Functional encryption (FE) [52,53] generalizes public key encryption to allow
fine grained access control on encrypted data. In functional encryption, a secret
key SKf corresponds to a function f , and a ciphertext CTx corresponds to some
input x from the domain of f . Given SKf and CTx, functionality posits that the
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user may run the decryption procedure to learn the value f(x), while security
guarantees that nothing about x beyond f(x) can be learned.

Recent years have witnessed significant progress towards constructing func-
tional encryption for advanced functionalities [3,4,11,13,15,16,21,25,31,32,35,
40–42,45,46,54]. However, for the most general notion of functional encryption –
one that allows the evaluation of arbitrary efficient functions and is secure against
general adversaries, the only known constructions rely on indistinguishability
obfuscation (iO) [31] or on the existence of multilinear maps [33]. For full-fledged
functional encryption, reliance on such strong primitives is not a co-incidence,
since functional encryption has been shown to imply indistinguishability obfus-
cation [7,8,12].

Unfortunately, all known candidate multi-linear map constructions [27,30,34]
as well as some candidates of indistinguishability obfuscation have recently been
broken [22–24,26,43,49]. To support general functionalities and base hardness on
standard assumptions, a prudent approach is to consider principled relaxations of
the security definition, as studied in [37,39,41].

The notion of bounded collusion functional encryption, inspired from the
domain of secure multiparty computation (MPC), was introduced by Gorbunov,
Vaikuntanathan and Wee [39]. This notion assumes that the number of collud-
ing adversaries against a scheme can be upper bounded by some polynomial
Q, which is known at the time of system design. It is important to note that
Q-bounded security does not impose any restriction on the functionality of
FE – in particular, it does not disallow the system from issuing an arbitrary
number of keys. It only posits, à la MPC, that security is guaranteed as long as
any collusion of attackers obtains at most Q keys. Note that multiple indepen-
dent collusions of size at most Q are supported.

The notion of Q-bounded FE is appealing – proving security under the
assumption that not too many parties are dishonest is widely accepted as reason-
able in protocol design. Even in the context of FE, for the special case of Identity
Based Encryption (IBE), bounded collusion security has been considered in a
number of works [28,29,38].

Structure versus Generality. Gorbunov et al. [39] showed that Q-bounded FE
can be constructed generically from any public key encryption (PKE) scheme
by leveraging ideas from multiparty computation. Considering that most con-
structions of FE for general functionalities rely on the existence of sophisticated
objects such as multilinear maps or indistinguishability obfuscation, basing a
meaningful relaxation of FE on an assumption as generic and mild as PKE
is both surprising, and aesthetically appealing. However, this generality comes
at the cost of efficiency and useful structural properties. The ciphertext of the
scheme is large and grows multiplicatively as O(Q4) to support collusions of
size Q. Additionally, the entire ciphertext is data dependent, making the scheme
unsuitable for several natural applications of FE, as discussed below.
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1.1 Our Results

In this work, we provide a new construction of bounded key functional encryp-
tion. Our construction makes use of the recently developed Functional Encryp-
tion for Linear Functions [1,5], denoted by LinFE, and combines this with
techniques developed in the context of Fully Homomorphic Encryption (FHE)1

[18,19]. Since LinFE and FHE can be based on LWE/Ring LWE, our construction
inherits the same hardness assumption. Our construction offers several advan-
tages:

1. Our construction supports arithmetic circuits as against Boolean circuits.
2. The ciphertext of our scheme is succinct for circuits in NC1 under Ring LWE

and any constant depth under standard LWE. This gives the first construction
of arithmetic reusable garbled circuits. We note that even single use arithmetic
garbled circuits have only been constructed recently [10].

3. Our construction achieves the optimal “full” simulation based security.
4. When generalised to handle Q queries for any fixed polynomial Q, our cipher-

text size grows additively with Q2. In contrast, previous works that achieve
full security [5,39] suffered a multiplicative growth of Q4.

5. The ciphertext of our scheme can be divided into a succinct data dependent
component and a non-succinct data independent component. This makes it
well suited for optimization in an online-offline model that allows a majority of
the computation to be performed in an offline phase, before the data becomes
available. This is followed by an efficient online phase which is performed after
the data is available.

1.2 Related Work

The first functional encryption scheme for circuits was provided by Gorbunov,
Vaikuntanathan and Wee [39]. Surprisingly, the security of this construction may
be based only on the existence of public key encryption. However, the ciphertext
size of this construction is large and does not enjoy the online-offline property
described above. The online component of [39] depends on the circuit size and the
number of queries in addition to the message size, whereas that of our scheme
depends only on the message size. Additionally, the overall ciphertext size of
[39] grows multiplicatively with Q4, whereas that in our scheme grows additively
with Q2. More recently, Agrawal et al. [5] provided a construction for bounded
collusion FE. However, their ciphertext size grows as O(Q6) and does not support
online-offline computation.

Concurrent and Subsequent Work. Subsequent to our work, Agrawal [2] also con-
structed Q collusion Functional Encryption where the ciphertext size grows addi-
tively with O(Q2). However, this construction only achieves semi-adaptive rather
than full security in a weak security game where the attacker must announce all
1 We emphasise that we do not rely on FHE in a black box way, but rather adapt

techniques developed in this domain to our setting.
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Q queries “in one shot”. Additionally, it supports Boolean rather than arithmetic
circuits and makes black box use of “heavy machinery” such fully homomorphic
encryption and attribute based encryption.

In another recent work, Canetti and Chen [20] provide a new construction
for single key FE for NC1 achieving full security. However, their construction
supports Boolean rather than arithmetic circuits, which is the main focus of this
work. Moreover, to generalise this construction to support Q queries, one must
rely on the [39] compiler, which incurs a multiplicative blowup of O(Q4) in the
ciphertext size. For more details about related work, please see Appendix A.

1.3 Techniques

In this section, we describe our techniques. We begin by outlining the approach
taken by previous work. [39] begin with a single key FE scheme for circuits
[51] and generalize this to a Q query scheme for NC1 circuits. This is the most
sophisticated part of the construction, and leverages techniques from multiparty
computation. Then, the Q query FE for NC1 is bootstrapped to Q query FE for
all circuits by replacing the circuit in the key by a tuple of low degree polynomials
admitted by computational randomized encodings [9].

Recently, Agrawal et al. [5] observe that a different construction for bounded
collusion FE can be obtained by replacing the single key FE [51] and its generali-
sation to Q query FE for NC1, with an FE that computes inner products modulo
some prime p. Such a scheme, which we denote by LinFE, was constructed by
[1,5] and computes the following functionality: the encryptor provides a cipher-
text CTx for some vector x ∈ F �

p , the key generator provides a key SKv for
some vector v ∈ F �

p , and the decryptor, given CTx and SKv can compute 〈x,v〉
mod p2. Since the bootstrapping theorem in [39] only requires FE for degree
3 polynomials, and FE for linear functions trivially implies FE for bounded
degree polynomials simply by linearizing the message terms x and encrypting
each monomial xixjxk separately, LinFE may be used to compute degree 3 poly-
nomials.

Thus, in [5], the challenge of supporting multiplication is “brute-forced” by
merely having the encryptor encrypt each monomial separately so that the FE
must only support linear functions in order to achieve bounded degree polyno-
mials. This brute force approach has several disadvantages: the ciphertext is not
online-offline and its size grows as O(Q6). See Appendix A for more details.

Our Approach. In this work, we observe that viewing functional encryption
through the lens of fully homomorphic encryption (FHE) enables a more sophis-
ticated application of the Linear FE scheme LinFE, resulting in a bounded col-
lusion FE scheme for circuits that is decomposable, online-succinct as well as
achieves ciphertext dependence of O(Q2) additively on Q.
2 We note that the FE scheme by Abdalla et al. [1] also supports linear functions but

only over Z, while the bounded collusion FE of [5] requires an FE scheme that sup-
ports Zp. Also note the difference from Inner Product orthogonality testing schemes
[4,45] which test whether 〈x,v〉 = 0 mod p or not.
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We begin on FE for quadratic polynomials for ease of exposition. Addition-
ally, here and in the rest of the paper, we present our construction from Ring-
LWE rather than standard LWE, for notational convenience and clarity. Our
construction can be ported to the standard LWE setting, by performing stan-
dard transformations such as replacing ring products by vector tensor products.
Details are provided in the full version [6].

Consider the ring LWE based symmetric key FHE scheme by Brakerski and
Vaikuntanathan [19]. Recall that the ciphertext of this scheme, as in [50], is
structured as (u, c) where c = u · s + 2 · μ + x. Here, s is the symmetric key
chosen randomly over an appropriate ring R, u is an element chosen by the
encryptor randomly over R, x is a message bit and μ is an error term chosen by
the encryptor from an appropriate distribution over R. Given secret key s, the
decryptor may compute c − u · s mod 2 to recover the bit x.

The main observation in [19] was that if:

ci = ui · s + 2 · μi + xi

cj = uj · s + 2 · μj + xj

then the decryption equation can be written as

xixj ≈ cicj + (uiuj)s2 − (ujci)s − (uicj)s

Thus, the 3 tuple (cicj , uicj +ujci, uiuj) is a legitimate level 2 FHE cipher-
text, decryptable by the secret key s. [19] observed that it is sufficient to add
one ciphertext element per level of the circuit to propagate the computation.

In the context of FE, things are significantly more complex even for quadratic
polynomials, since we must return a key that allows the decryptor to learn
xixj and nothing else. Hence, providing s to the decryptor is disastrous for FE
security. Here we use our first trick: observe that in the above equation, the
parenthesis can be shifted so that:

xixj ≈ cicj + uiuj(s2) − uj(cis) − ui(cjs)

Now, if we use the Linear FE scheme to encrypt the terms in parenthesis,
then we can have the decryptor recover the term uiuj(s2) − uj(cis) − ui(cjs).
More formally, let |x| = w. Now if,

CT = LinFE.Enc(s2, c1s, . . . , cws)
SKij = LinFE.KeyGen(uiuj ,−0−, ui,−0−, uj ,−0−)

then, LinFE.Dec(SKij ,CT) should yield the above term by correctness. Since
c1, . . . , cw may be provided directly in the ciphertext, the decryptor may itself
compute the term cicj . Now, LinFE decryption yields uiuj(s2)−uj(cis)−ui(cjs),
so the decryptor may recover (approximately) xixj as desired3.

A bit more abstractly, we observe that a quadratic plaintext xixj can be
represented as a quadratic polynomial which is quadratic in public terms ci, cj ,

3 As in FHE, approximate recovery is enough since the noise can be modded out.
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and only linear in secret terms cis. In particular, since the number of secret
terms cis which must be encrypted is only linear in |x|, we appear to avoid the
quadratic blowup caused by linearization.

This intuition, while appealing, is very misleading. To begin, note that if we
permit the decryptor to learn the term uiujs

2 − ujcis − uicjs exactly, then he
can recover exact quadratic equations in the secret s, completely breaking the
security of the scheme. To handle this, we resort to our second trick: add noise
artificially to the decryption equation. This takes care of the above attack, but to
handle Q queries, we need Q fresh noise terms to be encrypted in the ciphertext.
This step introduces the dependence of the ciphertext size on Q. Providing a
proof of security requires crossing several additional hurdles. The details of the
proof are provided in Sect. 3.

New Public Key and Ciphertext Evaluation Algorithms. To generalize our con-
struction to NC1, we develop new algorithms to compute on the public key
and ciphertext. Designing these algorithms is the most challenging part of our
work. Intuitively, the ciphertext evaluation algorithm enables the decryptor to
compute a “functional” ciphertext CTf(x) encoding f(x) on the fly, using the
function description f , and encodings of x provided by the encryptor obliviously
of f . The public key evaluation algorithm enables the key generator to compute
the “functional” public key PKf given the public key PK and the function f ,
obliviously of x so that the functional public key PKf matches the functional
ciphertext CTf(x) enabling the key generator to provide a functional secret key
which allows decryption of CTf(x).

We note that a previous work by Boneh et al. [14] also provided a ciphertext
evaluation algorithm which enables computing CTf(x) given CTx and f , but this
algorithm crucially requires the evaluator to have some knowledge of x in order
to support multiplications. In more detail, the evaluator must know at least one
of encoded values x1, x2 in the clear in order to compute an encoding of x1 ·x2. In
contrast, our ciphertext evaluation algorithm is completely oblivious of x even
for multiplication gates.

We give a brief description of our approach below. Recall that the “level 1”
encodings c of message x along with “level 2” encodings of message c · s in the
LinFE ciphertext were sufficient to compute encodings of degree two polynomials
in x. Generalizing, we get that at any level k in the circuit, given an encoding
ck−1 of message fk−1(x) where fk−1 is the output of the circuit at level k − 1,
as well as encodings of ck−1 · s, we would be in a position to compute encod-
ings ck of level k output of the circuit using the method to evaluate quadratic
polynomials described above.

This intuition is complicated by the fact that the encryptor may not pro-
vide ck−1 directly as this depends on f which it does not know. Thus, the
encryptor must provide advice which enables the decryptor to compute ck−1 on
the fly. Moreover, this advice must be sublinear in the size of the circuit. We
design advice encodings that enable a decryptor to compute functional cipher-
texts dynamically via nested FHE decryptions. Please see Sect. 4 for more details.
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Organization of the paper. We provide preliminaries in Sect. 2. Our bounded
collusion functional encryption scheme for quadratic polynomials is described in
Sect. 3. To generalize our method beyond quadratic polynomials, we describe our
public key and ciphertext evaluation procedures in Sect. 4. The succinct single
key FE using these procedures is constructed in Sect. 5. The bounded collusion
scheme is provided in Sect. 6, and parameters in Appendix B.

2 Preliminaries

In this section, we define the preliminaries we require for our constructions.

2.1 Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ

is a finite set. Let C =
{Cλ

}
λ∈N

denote an ensemble where each Cλ is a finite
collection of circuits, and each circuit C ∈ Cλ takes as input a string x ∈ Xλ and
outputs C(x) ∈ Yλ.

A functional encryption scheme F for C consists of four algorithms F =
(FE.Setup,FE.Keygen, FE.Encrypt,FE.Decrypt) defined as follows.

– FE.Setup(1λ) is a p.p.t. algorithm takes as input the unary representation
of the security parameter and outputs the master public and secret keys
(PK,MSK).

– FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as input the master secret
key MSK and a circuit C ∈ Cλ and outputs a corresponding secret key SKC .

– FE.Encrypt(PK,x) is a p.p.t. algorithm that takes as input the master public
key PK and an input message x ∈ Xλ and outputs a ciphertext CTx.

– FE.Decrypt(SKC ,CTx) is a deterministic algorithm that takes as input the
secret key SKC and a ciphertext CTx and outputs C(x).

Definition 2.1 (Correctness). A functional encryption scheme F is correct
if for all C ∈ Cλ and all x ∈ Xλ,

Pr
[ (PK,MSK) ← FE.Setup(1λ);
FE.Decrypt

(
FE.Keygen(MSK, C),FE.Encrypt(PK,x)

)
�= C(x)

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and
FE.Encrypt.

2.2 Simulation Based Security for Single Key FE

In this section, we define simulation based security for single key FE, as in [37,
Definition 4.1].

Definition 2.2 (FULL-SIM Security). Let F be a functional encryption
scheme for a circuit family C. For every stateful p.p.t. adversary Adv and a
stateful p.p.t. simulator Sim, consider the following two experiments:



180 S. Agrawal and A. Rosen

ExprealF,Adv(1
λ): ExpidealF,Sim(1λ):

1: (PK,MSK) ← FE.Setup(1λ)

2: C ← Adv(1λ,PK)
3: SKC ← FE.Keygen(MSK, C)
4: x ← Adv(SKC)
5: CTx ← FE.Encrypt(PK,x)

6: α ←Adv(CTx)

7: Output (x, α)

1: (PK,MSK) ← FE.Setup(1λ)

2: C ← Adv(1λ,PK)
3: SKC ← FE.Keygen(MSK, C)
4: x ← Adv(SKC)
5: CTx ← Sim(1λ, 1|x|,PK, C, SKC , C(x))

6: α ←Adv(CTx)

7: Output (x, α)

The functional encryption scheme F is then said to be FULL-SIM-secure if
there is an admissible stateful p.p.t. simulator Sim such that for every stateful
p.p.t. adversary Adv, the following two distributions are computationally indis-
tinguishable. {

ExprealF,Adv(1
λ)

}

λ∈N

c≈
{
ExpidealF,Sim(1λ)

}

λ∈N

In the bounded collusion variant of the above definition, the adversary is
permitted an a-priori fixed Q queries in Step 2, and Q is input to the FE.Setup
algorithm.

2.3 Lattice Preliminaries

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ
is a linearly independent set of vectors whose span is Λ.

Gaussian distributions. Let L be a discrete subset of Z
n. For any vector

c ∈ R
n and any positive parameter σ ∈ R>0, let ρσ,c(x) := Exp

(−π‖x − c‖2/σ2
)

be the Gaussian function on R
n with center c and parameter σ. Let ρσ,c(L) :=∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c over L, and let DL,σ,c be the discrete
Gaussian distribution over L with center c and parameter σ. Specifically, for all
y ∈ L, we have DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0

are abbreviated as ρσ and DL,σ, respectively.
The following lemma gives a bound on the length of vectors sampled from a

discrete Gaussian.

Lemma 2.3 ([48, Lemma 4.4]). Let Λ be an n-dimensional lattice, let T be
a basis for Λ, and suppose σ ≥ ‖T‖GS · ω(

√
log n). Then for any c ∈ R

n we have

Pr
[‖x − c‖ > σ

√
n : x R← DΛ,σ,c

] ≤ negl(n)

Lemma 2.4 (Flooding Lemma). [36] Let n ∈ N. For any real σ = ω(
√

log n),
and any c ∈ Z

n,
SD(DZn,σ, DZn,σ,c) ≤ ‖c‖/σ

2.4 Hardness Assumptions

Our main construction of arithmetic reusable garbled circuits for NC1 is based on
the hardness of Ring Learning with Errors, defined below. Our bounded collusion
construction for circuits may also be based on the standard Learning with Errors
problem, but we defer this discussion to the full version [6].
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Ring Learning with Errors. Let R = Z[x]/(φ) where φ = xn +1 and n is a power
of 2. Let Rq � R/qR where q is a large prime satisfying q = 1 mod 2n. Let
χ be a probability distribution on Rq. For s ∈ Rq, let As,χ be the probability
distribution on Rq × Rq obtained by choosing an element a ∈ Rq uniformly at
random, choosing e ← χ and outputting (a, a · s + e).

Definition 2.5 (Ring Learning With Errors- RLWEφ,q,χ). [47,50] The decision
R-LWEφ,q,χ problem is: for s ← Rq, given a poly(n) number of samples that are
either (all) from As,χ or (all) uniformly random in Rq × Rq, output 0 if the
former holds and 1 if the latter holds.

The hardness of the ring LWE problem was studied in [47] and is summarised
in the following theorem.

Theorem 2.6 ([47]). Let r ≥ ω(
√

log n) be a real number and let R, q be as
above. Then, there is a randomized reduction from 2ω(log n) · (q/r) approximate
RSVP to RLWEφ,q,χ where χ is the discrete Gaussian distribution with parameter
r. The reduction runs in time poly(n, q).

3 Warm-Up: Bounded Query Functional Encryption
for Quadratic Polynomials

As a warm-up, we present our bounded key FE for the special case of quadratic
functions, which we denote by QuadFE. Our construction will make use of the
linear functional encryption scheme, denoted by LinFE, constructed by [1,5].

Our construction makes use of two prime moduli p0 < p1 where p0 serves as
the message space for QuadFE, and p1 serves as the message space for LinFE. Let
L = |1 ≤ j ≤ i ≤ w|. Below, let distributions D0,D1 be discrete Gaussians with
width σ0, σ1 respectively. Please see Appendix B for parameters.

For ease of exposition, our key generation algorithm receives the index of the
requested key as input. This restriction can be removed using standard tricks,
see the full version [6] for details. Additionally, we present our construction using
Ring-LWE. This is both for efficiency and ease of exposition. The transformation
to standard LWE follows standard machinery, please see the full version [6] for
details.

FE.Setup(1λ, 1w, 1Q): On input a security parameter λ, a parameter w denoting
the length of message vectors and a parameter Q denoting the number of keys
supported, do:

1. Invoke LinFE.Setup(1λ, 1w+1+Q) to obtain LinFE.PK and LinFE.MSK.
2. Sample u ← Rw

p1
.

3. Output PK = (LinFE.PK,u), MSK = (LinFE.MSK).

FE.Enc(PK,x): On input public parameters PK, and message vector x ∈ Rw
p0

do:
1. Sample s1 ← Rp1 and μ ← Dw

0 , and compute an encoding of the message
as:

c = u · s1 + p0 · μ + x ∈ Rw
p1

.
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2. For i ∈ [Q], sample ηi ← D1 and let η = (η1, . . . , ηQ).
3. Let b = LinFE.Enc (s21, c1s1, . . . , cws1, p0 · η).
4. Output CT = (c,b).

FE.KeyGen(PK,MSK, k,g): On input the public parameters PK, the master secret
key MSK, a counter k ∈ [Q] denoting the index of the requested function
key and a function g =

∑

1≤j≤i≤w

gijxixj , represented as a coefficient vector

(gij) ∈ Z
L
p0

do:
1. Let ek denote the binary unit vector with a 1 in the kth position and 0

elsewhere. Compute

ug =
( ∑

1≤j≤i≤w

gij (uiuj , 0....0,−ui, 0...0,−uj , 0...0)
)

∈ Rw+1
p1

.

2. Compute SKg = LinFE.KeyGen
(
LinFE.PK, LinFE.MSK, (ug‖ek)

)
and out-

put it.
FE.Dec(PK,SKg,CTx): On input the public parameters PK, a secret key SKg for

polynomial
∑

1≤j≤i≤w

gijxixj , and a ciphertext CTx = (c,b), compute

∑

1≤j≤i≤w

gijcicj + LinFE.Dec(b,SKg) mod p1 mod p0

and output it.

3.1 Correctness

We establish correctness of the above scheme. Let 1 ≤ j ≤ i ≤ w. Let us assume
g is the kth key constructed by KeyGen, where k ∈ [Q]. By definition

xi + p0 · μi = ci − uis1 mod p1, xj + p0 · μj = cj − ujs1 mod p1

Letting μij = xiμj + xjμi + p0μiμj , we have

xixj + p0 · μij = cicj − ciujs1 − cjuis1 + uiujs
2
1 mod p1 (3.1)

By correctness of the linear scheme LinFE, we have that

LinFE.Dec(b,SKg) =
∑

1≤j≤i≤w

gij

( − ciujs1 − cjuis1 + uiujs
2
1

)
+ p0 · ηk

Therefore we have,
∑

1≤j≤i≤w

gijcicj + LinFE.Dec(b,SKg)

=
∑

1≤j≤i≤w

gij

(
cicj − ciujs1 − cjuis1 + uiujs

2
1

)
+ p0 · ηk

=
∑

1≤j≤i≤w

gij

(
xixj + p0 · μij

)
+ p0 · ηk

=
∑

1≤j≤i≤w

gij xixj mod p1 mod p0 as desired. (3.2)
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3.2 Security

Theorem 3.7. The construction in Sect. 3 achieves full simulation based secu-
rity as per Definition 2.2.

Proof. We describe our simulator.

Simulator Sim
(

1λ, 1|x|,PK, {gk,SKgk
,gk(x)}k∈[Q]

)
. The simulator given input

the security parameter, length of message x, the functions g1, . . . ,gQ, the secret
keys SKg1 , . . . ,SKgQ

and the values g1(x), . . . ,gQ(x) does the following:

1. It picks the ciphertext c ← Rw
p1

randomly.
2. It parses gk =

∑

1≤j≤i≤w

gk,ij xixj for some gk,ij ∈ Rp0 . For k ∈ [Q], it samples

ηk ← D1 and computes dk =
∑

1≤j≤i≤w

gk,ij

(
xixj − cicj) + p0 · ηk.

3. It invokes the Q key LinFE simulator with input d = (d1, . . . , dQ). It sets as
b the output received by the LinFE simulator.

4. It outputs CTx = (c,b).

We will prove that the output of the simulator is indistinguishable from the
real world via a sequence of hybrids.

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world.

Hybrid 1. In this hybrid, the only thing that is different is that b is computed
using the LinFE simulator as b = LinFE.Sim

(
1λ, 1w+1+Q, {gk,SKgk

, dk}k∈[Q]

)

where

dk =
∑

1≤j≤i≤w

gk,ij

(
xixj − cicj) + p0 · (

∑

1≤j≤i≤w

gk,ijμij + ηk) ∀ k ∈ [Q]

Above, μij is as defined in Eq. 3.1.

Hybrid 2. In this hybrid, let dk =
∑

1≤j≤i≤w

gk,ij

(
xixj − cicj) + p0 · ηk for k ∈ [Q].

Hybrid 3. In this hybrid, sample c at random. This is the simulated world.

Indistinguishability of Hybrids. Below we establish that consecutive hybrids are
indistinguishable.

Claim. Hybrid 0 is indistinguishable from Hybrid 1 assuming that LinFE is
secure.
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Proof. Recall that for j ≤ i ≤ w, we have:

xixj + p0 · μij = cicj − ciujs1 − cjuis1 + uiujs
2
1

∴
∑

j≤i≤w

gk,ij

(
xixj + p0 · μij

)
=

∑

j≤i≤w

gk,ij

(
cicj + uiujs

2
1 − ujcis1 − uicjs1

)

This implies,
∑

j≤i≤w

gk,ij

(
xixj − cicj) + p0 · ( ∑

j≤i≤w

gk,ijμij + ηk

)

=
∑

j≤i≤w

gk,ij

(
uiujs

2
1 − ujcis1 − uicjs1

)
+ p0 · ηk

In Hybrid 0, we have by Eq. 3.2 that the output of LinFE decryption is:
∑

1≤j≤i≤w

gij

( − ciujs1 − cjuis1 + uiujs
2
1

)
+ p0 · ηk

=
∑

j≤i≤w

gk,ij

(
xixj − cicj

)
+ p0 · ( ∑

j≤i≤w

gk,ijμij + ηk

)

In Hybrid 1, the LinFE simulator is invoked with the above value, hence by
security of LinFE, Hybrids 0 and 1 are indistinguishable.

Claim. Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Proof. This follows by our choice of parameters since for k ∈ [Q], we have

SD
( ∑

1≤j≤i≤w

gk,ijμij + ηk, ηk

)
= negl(λ)

Hybrid 2 and Hybrid 3 are indistinguishable assuming the hardness of ring LWE.
In more detail, we show:

Claim. Assume Regev public key encryption is semantically secure. Then,
Hybrid 2 is indistinguishable from Hybrid 3.

Proof. Recall that by semantic security of Regev’s (dual) public key encryption,
we have that the ciphertext c = u · s1 + p0 · μ + x is indistinguishable from
random, where u is part of the public key and μ ← D0 is suitably chosen noise.
We refer the reader to [35] for more details.

Given an adversary B who distinguishes between Hybrid 2 and Hybrid 3,
we build an adversary A who breaks the semantic security of Regev public key
encryption. The adversary A receives PK = u and does the following:

– Run LinFE.Setup to obtain LinFE.PK and LinFE.MSK. Return PK =
(LinFE.PK,u) to B.

– When B requests a key gk for k ∈ [Q], construct it honestly as in Hybrid 0.
– When B outputs challenge x, A outputs the same.
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– A receives c where c = u · s1 + p0 · μ + x or random.
– A samples η1, . . . , ηQ as in Hybrid 2 and computes dk =

∑

1≤j≤i≤w

gk,ij

(
xixj −

cicj) + p0 · ηk. It invokes LinFE.Sim
(
1λ, 1w+1+Q, {gk,SKgk

, dk}k∈[Q]

)
and

receives LinFE ciphertext b. It returns (c,b) to B.
– B may request more keys (bounded above by Q) which are handled as before.

Finally, when B outputs a guess bit b, A outputs the same.

Clearly, if b = 0, then B sees the distribution of Hybrid 2, whereas if b = 1, it
sees the distribution of Hybrid 3. Hence the claim follows.

4 Public Key and Ciphertext Evaluation Algorithms

In this section, we provide the tools to extend our construction for quadratic
polynomials to circuits in NC1. Throughout this section, we assume circular
security of LWE. This is for ease of exposition as well as efficiency. This assump-
tion can be removed by choosing new randomness si for each level i as in levelled
fully homomorphic encryption. Since the intuition was discussed in Sect. 1, we
proceed with the technical overview and construction.

Notation. To begin, it will be helpful to set up some notation. We will consider
circuits of depth d, consisting of alternate addition and multiplication layers.
Each layer of the circuit is associated with a modulus pk for level k. For an
addition layer at level k, the modulus pk will be the same as the previous modulus
pk−1; for a multiplication layer at level k, we require pk > pk−1. This results in
a tower of moduli p0 < p1 = p2 < p3 = . . . < pd. The smallest modulus p0 is
associated with the message space of the scheme.

We define encoding functions Ek for k ∈ [d] such that Ek : Rpk−1 → Rpk
. At

level k, the encryptor will provide Lk encodings Ck for some Lk = O(2k). For
i ∈ [Lk] we define

Ek(yi) = uk
i · s + pk−1 · ηk

i + yi mod pk

Here uk
i ∈ Rpk

, ηk
i ← χk and yi ∈ Rpk−1 . The RLWE secret s is reused across

all levels as discussed above, hence is chosen at the first level, i.e. s ← Rp1 . We
will refer to Ek(yi) as the Regev encoding of yi. At level k, the decryptor will be
able to compute a Regev encoding of fk(x) where fk is the circuit f restricted
to level k.

It will be convenient for us to denote encodings of functional values at every
level, i.e. fk(x) by ck, i.e. ck = Ek

(
fk(x)

)
. Here, ck are encodings computed

on the fly by the decryptor whereas Ck (described above) are a set of level k
encodings provided by the encryptor to enable the decryptor to compute ck. We
will denote the public key or label of an encoding Ek(·) (resp. ck) by PK(Ek(·))
(resp. PK(ck)).

In our construction, we will compose encodings, so that encodings at a given
level are messages to encodings at the next level. We refer to such encodings as
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nested encodings. In nested encodings at level k + 1, messages may be level k
encodings or level k encodings times the RLWE secret s. We define the notions
of nesting level and nested message degree as follows.

Definition 4.1 (Nesting level and Nested Message Degree). Given
a composition of successive encodings, i.e. a nested encoding of the form
Ek

(Ek−1
(
. . . (E�+1(E�(y) · s) · s) . . . · s

) · s
)
, we will denote as nesting level the

value k − �, the nested message of the encoding as y, and the nested message
degree of the encoding as the degree of the innermost polynomial y.

Note that in the above definition of nested message, we consider the message in
the innermost encoding and ignore the multiplications by s between the layers.

We prove the following theorem.

Theorem 4.2. There exists a set of encodings Ci for i ∈ [d], such that:

1. Encodings have size sublinear in circuit. ∀i ∈ [d] |Ci| = O(2i).
2. Efficient public key and ciphertext evaluation algorithms. There exist

efficient algorithms EvalPK and EvalCT so that for any circuit f of depth d,
if PKf = EvalPK(PK, f) and CT(f(x)) = EvalCT( ∪

i∈[d]
Ci, f), then CT(f(x)) is a

“Regev encoding” of f(x) under public key PKf . Specifically, for some LWE
secret s, we have:

CT(f(x)) = PKf · s + pd−1 · ηd−1
f + μf(x) + f(x) (4.1)

where pd−1 ·ηd−1
f is RLWE noise and μf(x) +f(x) is the desired message f(x)

plus some noise μf(x)
4. Here, μf(x) = pd−2 · ηd−2

f + . . . p0 · η0
f for some noise

terms ηd−2
f , . . . , η0

f .
3. Ciphertext and public key structure. The structure of the functional

ciphertext is as:

CTf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 (4.2)

where Polyf (C1, . . . , Cd−1) ∈ Rpd−1 is a high degree polynomial value obtained
by computing a public f-dependent function on level k ≤ d − 1 encodings
{Ck}k∈[d−1] and Linf ∈ RLd

pd
is an f-dependent linear function. We also have

f(x) + μf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 (4.3)

where Md are the messages encoded in Cd and μf(x) is functional noise. The
public key for the functional ciphertext is structured as:

PK
(
CTf(x)

)
=

〈
Linf ,

(
PK(Cd

1 ), . . . ,PK(Cd
Ld

)
)〉

(4.4)

4 Here μf(x) is clubbed with the message f(x) rather than the RLWE noise pd−1 ·ηd−1
f

since μf(x) + f(x) is what will be recovered after decryption of CTf(x), whereas
pd−1 · ηd−1

f will be removed by the decryption procedure. This is merely a matter of
notation.
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The Encodings. We define Ck recursively as follows:

1. C1 � {E1(xi), E1(s)}
2. If k is a multiplication layer, Ck = {Ek(Ck−1), Ek(Ck−1 · s), Ek(s2)}. If k is an

addition layer, let Ck = Ck−1.

We prove that:

Lemma 4.3. Assume that k is a multiplication layer. Given Ck for any 2 <
k < d,

1. Level k encodings Ek(ck−1 · s) and Ek(ck−1) may be expressed as quadratic
polynomials in level k − 1 encodings and level k advice encodings Ck. In par-
ticular, the polynomials are linear in terms Ck and quadratic in level k − 1
encodings Ek−1(yi)Ek−1(yj). The messages yi, yj of the form ck−3

� or ck−3
� · s

for some level k − 3 ciphertext ck−3
� .

Since the exact value of the coefficients is not important, we express this as:

Ek(ck−1 · s), Ek(ck−1) = LinComb
( Ck, Ek−1(yi)Ek−1(yj)

) ∀ i, j (4.5)

2. We can compute ck and ck+1 as a linear combination of quadratic terms in
level k − 1 encodings and linear in level k encodings Ck. In particular,

ck = CT(fk(x) + μk
f(x)) = 〈Linfk , Ck〉 + LinComb

(
Quad(Ek−1(yi) Ek−1(yj))

)

= 〈Linfk , Ck〉 + Polyfk

(C1, . . . , Ck−1
)

Proof by induction.

Base Case. While the quadratic scheme described in Sect. 3 suffices as a base case,
we work out an extended base case for level 4 circuits, since this captures the more
general case. Moreover polynomials of degree 4 suffice for computing randomized
encodings of circuits in P [44], which we use in our general construction.

We claim that C4 defined according to the above rules, permits the evaluator
to compute :

1. E4(c3 · s) and E4(c3) by taking linear combinations of elements in C4 and
adding to this a quadratic term of the form E3(yi)E3(yj) where E3(yi)E3(yj) ∈
C3 = C2. We note that since k − 1 is an addition layer, C3 = C2.

2. Encodings of level 4 functions of x, namely c4.

Note that our level 2 ciphertext may be written as:

c2i,j = E2(xixj + p0 · μij) = E2
(
c1i c

1
j + u1

i u
1
j (s

2) − u1
j (c

1
i s) − u1

i (c
1
js)

)

= E2(xixj + p0 · μij) = c1i c
1
j + E2

(
u1

i u
1
j (s

2) − u1
j (c

1
i s) − u1

i (c
1
js)

)

= c1i c
1
j + u1

i u
1
j E2(s2) − u1

j E2(c1i s) − u1
i E2(c1js) ∈ Rp2 (4.6)

In the above, the first equality follows by additive malleability of RLWE: here,
c1i c

1
j ∈ Rp1 is a message added to the encoding E2(u1

i u
1
j (s

2) − u1
j (c

1
i s) − u1

i (c
1
js)) .
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The second equality follows by additive homomorphism of the encodings.
Additionally, the public key and the noise of the resultant encoding may be
computed as:

u2
� � PK

(E2(xixj + p0 · μij)
)
= u1

i u1
j PK

(E2(s2)
)− u1

j PK
(E2(c1i s)

)− u1
i PK

(E2(c1js)
)

Nse2� � Nse
(E2(xixj + p0 · μij)

)
= u1

i u1
j Nse

(E2(s2)
)− u1

j Nse
(E2(c1i s)

)− u1
i Nse

(E2(c1js)
)

Above, Nse(E2(·)) refers to the noise level in the relevant encoding. Note that
even though u1

i are chosen uniformly in Rp1 , they do not blow up the noise in the
above equation since the above noise is relative to the larger ring Rp2 . This noise
growth can be controlled further by using the bit decomposition trick [17,18] –
we do not do this here for ease of exposition.

The Quadratic Method. Thus, we may compute a level 2 encoding as:

E2(xixj+p0 ·μij) = E1(xi)E1(xj) + u1
i u1

j E2(s2) − u1
j E2(E1(xi)·s) − u1

i E2(E1(xj)·s) (4.7)

Note that the above equation allows us to express the encoding of the desired
product at level 2, namely (a noisy version of) xixj , as a quadratic polynomial
of the following form: level 1 encodings are in the quadratic terms and level 2
encodings are in the linear terms. This equation will be used recursively in our
algorithms below, and will be referred to as the “quadratic method”.

The key point is that our level 2 ciphertext has the exact same structure as a
level 1 encoding, namely it is a Regev encoding using some secret s, some label
and noise as computed in Eq. 4.7. Thus, letting y� = xixj , we may write

E2(y�) = u2
� · s + Nse2� + y� ∈ Rp2 (4.8)

Addition (Level 3). To add two encoded messages y� = xixj + p0 · μij and
y�′ = xi′xj′ + p0 · μi′j′ , it is easy to see that adding their encodings suffices. The
resultant public key and noise is just the summation of the individual public
keys and noise terms. Thus, if the �th wire is the sum of the ith and jth wires,
we have:

c3� = c2i + c2j (4.9)

and
PK(c3�) = PK(c2i ) + PK(c2j ) (4.10)

Multiplication (Level 4). The nontrivial case is that of multiplication. We
next compute an encoding for the product of y� = xixj + xmxt + p0 · μ4

� and
y�′ = xi′xj′ + xm′xt′ + p0 · μ4

�′ where μ4
� , μ

4
�′ are level 4 noise terms computed as

μ4
� = μij + μmt (analogously for μ4

�′). Let c3� and c3�′ denote the encodings of y�

and y�′ computed using the first three levels of evaluation. As before, we have
by the quadratic method:

c4t = E4(y�y�′) = c3�c
3
�′ + E4

(
u3

�u
3
�′(s2) − u3

�′(c3�s) − u3
�(c

3
�′s)

) ∈ Rp4

= c3�c
3
�′ + u3

�u
3
�′ E4(s2) − u3

�′ E4(c3�s) − u3
� E4(c3�′s) (4.11)
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By correctness of first three levels of evaluation as described above, the
decryptor can compute the encoding of y�, namely c3� correctly, hence the
quadratic term c3�c

3
�′ may be computed. It remains to compute the terms E4(c3�s).

Note that the encryptor may not provide the encodings E4(c3�s) directly and pre-
serve succinctness because c3� = E2(xi xj + p0 · μij) + E2(xm xt + p0 · μmt) and
E2(xi xj + p0 · μij) contains the cross term c1i c

1
j as shown by Eq. 4.6.

Consider the term E4(c3�s). In fact, we will only be able to compute a noisy
version of this encoding, i.e. E4(c3�s + p1 · μ3

�) for some p1 · μ3
� .

E4(c3�s) = E4
(
(E2(xi xj + p0 · μij) + E2(xm xt + p0 · μmt)) · s

)

= E4
((

c1i c1j + u1
i u1

j E2(s2) − u1
j E2(c1i s) − u1

i E2(c1js)
) · s

)

+ E4
((

c1mc1t + u1
mu1

t E2(s2) − u1
t E2(c1ms) − u1

m E2(c1t s)
) · s

)

= E4(c1i c1js) + E4
(
u1

i u1
j E2(s2) s

) − E4
(
u1

j E2(c1i s) s
)− E4

(
u1

i E2(c1js) s
)

+ E4
(
c1mc1t s) + E4

(
u1

mu1
t E2(s2) s

)− E4
(
u1

t E2(c1ms)s
)− E4

(
u1

m E2(c1t s) s
)

= E4(c1i c1js) + u1
i u1

j E4
(E2(s2) s

) − u1
j E4
(E2(c1i s) s

)− u1
i E4
(E2(c1js) s

)

+ E4
(
c1mc1t s) + u1

mu1
t E4
(E2(s2) s

)− u1
t E4
(E2(c1ms)s

)− u1
m E4

(E2(c1t s) s
)

(4.12)

Thus, to compute E4(c3�s) by additive homomorphism, it suffices to compute
the encodings E4(c1i c

1
js), E4

(E2(s2) s
)

and E4
(E2(c1js) s

)
for all i, j. Note that

by definition of C4, we have that for m ∈ [w],
{

E4
(E2(s2) s

)
, E4

(E2(c1ms)s
)} ⊆ C4 (4.13)

Note that since level 3 is an addition layer, E3 = E2.
The only terms above not accounted for are E4(c1i c

1
js) and E4

(
c1mc1t s), which

are symmetric. Consider the former. To compute this, we view c1i c
1
js as a

quadratic term in c1i and c1j · s and re-apply the quadratic method given in
Eq. 4.7. This will enable us to compute a noisy version of E4(c1i c

1
js), namely

E4(c1i c
1
js + p1 · μ2

ij) for some noise μ2
ij .

Applying the Quadratic Method (Eq. 4.7): Given E2(c1i ), E2(c1j · s) along with
E4

(E2(c1i ) s
)

and E4
(E2(c1j · s) s

)
we may compute E4(c1i c

1
js + p1 · μ2

ij) using the
quadratic method. In more detail, we let

di � E2(c1i ) , hj � E2(c1j · s) ∈ Rp2 and d̂i � E4
(E2(c1i ) s

)
, ĥj � E4

(E2(c1j · s) s
) ∈ Rp4

Then, we have:

E4(c1i c
1
js + p1 · μ2

ij) = dihj + PK
(E2(c1i )

)
PK

(E2(c1j · s)
) E4(s2) (4.14)

− PK
(E2(c1i )

)
ĥj − PK

(E2(c1j · s)
)

d̂i ∈ Rp4

where μ2
ij = c1i ·Nse(E2(c1j · s))+c2j ·s·Nse(E2(c1i ))+p1·Nse(E2(c1j · s))·Nse(E2(c1i )).
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Again, note that though ci are large in Rp1 , they are small in Rp2 upwards,
and may be clubbed with noise terms as done above.

Also, the public key for E4(c1i c
1
js + p1 · μ2

ij) may be computed as:

PK
(E4(c1i c

1
js + p1 · μ2

ij)
)

= PK
(E2(c1i )

)
PK

(E2(c1j · s)
)
PK

(E4(s2)
)

(4.15)

− PK
(E2(c1i )

)
PK(ĥj) − PK

(E2(c1j · s)
)
PK(d̂i)

Thus we have, E4(c3�s + p1 · μ3
�) is a Regev encoding with public key

PK
(E4(c3�s + p1 · μ3

� ))

= PK
(
E4(c1i c1js + p1 · μ2

ij) + u1
i u1

j E4
(E2(s2) s

) − u1
j E4
(E2(c1i s) s

)− u1
i E4
(E2(c1js) s

)

+ E4(
(
c1mc1t s + p1 · μ2

mt) + u1
mu1

t E4
(E2(s2) s

)− u1
t E4
(E2(c1ms)s

)− u1
m E4

(E2(c1t s) s
))

= PK
(E4(c1i c1js + p1 · μ2

ij)
)

+ u1
i u1

j PK
(E4
(E2(s2) s

)) − u1
j PK

(E4
(E2(c1i s) s

))

− u1
i PK

(E4
(E2(c1js) s

))
+ PK

(E4(
(
c1mc1t s + p1 · μ2

mt)
)

+ u1
mu1

t PK
(E4
(E2(s2) s

))

− u1
t PK

(E4
(E2(c1ms)s

))− u1
m PK

(E4
(E2(c1t s) s

))
(4.16)

Above PK
(E4(c1i c

1
js+p1 ·μ2

ij)
)

may be computed by Eq. 4.15 and the remain-
ing public keys are provided in C4 as described in Eq. 4.13. Also, we have
μ3

� = μ2
ij + μ2

mt.
By Eqs. 4.12, 4.13 and 4.14, we may compute E4(c3�s + p1 · μ3

�) for any �.
Note that,

E4(c3�s + p1 · μ3
�) = LinComb

(
E2(c1i ) · E2(c1j · s), E4

(E2(c1i ) s
)
, E4

(E2(c1j · s) s
))

= 〈Linf4 , C4〉 + Quad
(E2(c1i ) · E2(c1j · s)

)

for some linear function Linf4 .

4.1 Ciphertext and Public Key Structure

By Eq. 4.11, we then get that

c4t = c3� c3�′ + u3
� u3

�′E4(s2) − u3
�

(
〈Lin′

f4 , C4〉 + Quad′(E2(c1i ) · E2(c1j · s)
))

− u3
�′

(
〈Lin′′

f4 , C4〉 + Quad′′(E2(c1i ) · E2(c1j · s)
))

= 〈Lin′′′
f4 , C4〉 + Polyf4(C1, C2, C3)

for some linear functions Lin′
f4 , Lin′′

f4 , Lin′′′
f4 and quadratic functions

Quad′, Quad′′ and polynomial Polyf4 .

Thus, we have computed E4(c3�s+p1 ·μ3
�) and hence, c4 by Eq. 4.11. The final

public key for c4 is given by:

PK(c4) = u3
�u

3
�′ PK(E4(s2)) − u3

�′ PK(E4(c3�s)) − u3
� PK(E4(c3�′s)) (4.17)
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E4(c3) and E4(c1i c
1
j ) are computed analogously. Thus, we have established

correctness of the base case.

Note. In the base case, we see that each time the quadratic method is applied
to compute an encoding of a product of two messages, we get an encoding of the
desired product plus noise.

Induction Step. Assume that the claim is true for level k − 1. Then we establish
that it is true for level k.

By the I.H, we have that:

1. We can compute Ek−1(ck−2 · s) and Ek−1(ck−2) by taking linear combinations
of elements in Ck−1 and quadratic terms of the form Ek−2(yi)Ek−2(yj) for
some yi, yj of the form ck−4

i , ck−4
j s.

2. We can compute ck−1.

To compute ck using the quadratic method, it suffices to compute Ek(ck−1 ·s).

Computing Ek(ck−1 · s). We claim that:

Claim. The term Ek(ck−1
� s) (hence ck) can be computed as a linear combination

of elements in Ck and quadratic terms of the form Ek−1(·) · Ek−1(·).
Proof. The term Ek(ck−1 · s) may be written as:

Ek(ck−1 · s)

= Ek
((

ck−2
i ck−2

j − uk−2
i Ek−1(ck−2

j · s) − uk−2
j Ek−1(ck−2

i · s) + uk−2
i uk−2

j Ek−1(s2)
) · s
)

= Ek(ck−2
i ck−2

j s) − uk−2
i Ek

(Ek−1(ck−2
j · s) · s

)

− uk−2
j Ek

(Ek−1(ck−2
i · s) · s

)
+ uk−2

i uk−2
j Ek

(Ek−1(s2) · s
)

(4.18)

Consider Ek
(Ek−1(s2) · s

)
. Since Ek−1(s2) ∈ Ck−1 and Ek

(Ck−1 · s
)

is con-
tained in Ck, we have that Ek

(Ek−1(s2) · s
) ∈ Ck.

Consider the term Ek(ck−2
i ck−2

j s). We may compute Ek(ck−2
i ck−2

j s) using
the quadratic method with messages ck−2

i and ck−2
j s as:

Ek(ck−2
i ck−2

j s)

=
(
Ek−1(ck−2

i ) · Ek−1(ck−2
j · s)

)
+ PK

(Ek−1(ck−2
i )

)
PK
(Ek−1(ck−2

j · s)
) Ek(s2)

− PK
(Ek−1(ck−2

i )
)(Ek

(Ek−1(ck−2
j · s) · s

))− PK
(Ek−1(ck−2

j · s)
)(Ek

(Ek−1(ck−2
i ) · s

))

(4.19)

Thus, to compute Ek(ck−1 · s), it suffices to compute the term Ek(ck−2
i ck−2

j s)
since the additional terms such as Ek

(Ek−1(ck−2
i · s) · s

)
that appear in Eq. 4.18

also appear in Eq. 4.19 and will be computed in the process of computing
Ek(ck−2

i ck−2
j s).



192 S. Agrawal and A. Rosen

Note. We observe that in Eq. 4.19, by “factoring out” the quadratic term
Ek−1(ck−2

i ) · Ek−1(ck−2
j · s) (which can be computed by I.H.), we reduce the

computation of Ek(ck−1 · s) to Ek
(Ek−1(ck−2

j · s) · s
)

where the latter value has
half the nested message degree (ref. Definition 4.1) of the former at the cost of
adding one more level of nesting and a new multiplication by s. By recursively
applying Eq. 4.19, we will obtain O(k) quadratic encodings in level k − 1 and a
linear term in level k advice encodings Ck.

Proceeding, we see that to compute Ek(ck−2
i ck−2

j s), we are required to com-
pute the following terms:

1. Ek−1(ck−2
i ) and Ek−1(ck−2

j · s). These can be computed by the induction
hypothesis using linear combinations of elements in Ck−1 and quadratic terms
of the form Ek−2(yi)Ek−2(yj) for some yi, yj . Since the precise linear coeffi-
cients are not important, we shall denote:

Ek−1(ck−2
j · s) = LinComb

(Ck−1, Ek−2(·)Ek−2(·)) (4.20)

2. Ek
(Ek−1(ck−2

i ) · s
)

and Ek
(Ek−1(ck−2

j · s) · s
)
: Consider the latter term (the

former can be computed analogously).

By the induction hypothesis,

Ek
(Ek−1(ck−2

j · s) · s
)

= Ek
(
LinComb

(Ck−1, Ek−2(·)Ek−2(·)) · s
)

= Ek
(
LinComb

(Ck−1 · s
))

+ Ek
(
LinComb

(Ek−2(ya)Ek−2(yb) · s
))

= LinComb
(
Ek

(Ck−1 · s
))

+ LinComb
(
Ek

(Ek−2(ya)Ek−2(yb) · s
))

(4.21)

Again, we note that the terms Ek
(Ck−1 ·s) ∈ Ck by definition hence it remains

to construct Ek
((Ek−2(ya)Ek−2(yb)

) · s
)

for some ya, yb ∈ {ck−3
a , ck−3

b · s}.

To proceed, again, we will consider za = Ek−2(ya) and zb = Ek−2(yb) · s as
messages and apply the quadratic method to compute an encoding of their
product. In more detail,

Ek
((Ek−2(ya)Ek−2(yb)

) · s
)

= LinComb
(
Ek−1(Ek−2(ya)) · Ek−1(Ek−2(yb) · s),

Ek
(Ek−1(Ek−2(ya)) · s

)
, Ek

(Ek−1(Ek−2(yb) · s) · s
))

(4.22)

Thus, we are required to compute:
(a) Ek−1(Ek−2(ya)), Ek−1(Ek−2(yb)·s): These can be computed via the induc-

tion hypothesis.
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(b) Ek
(
Ek−1

(Ek−2(ya)
) ·s

)
and Ek

(Ek−1(Ek−2(yb) ·s) ·s
)
: Consider the latter

term (the former may be computed analogously). Note that

Ek−2(yb) = LinComb
(Ck−2, Ek−3(·)Ek−3(·))

∴ Ek(Ek−1(Ek−2(yb) · s) · s
)

= Ek
(
Ek−1(LinComb

(Ck−2, Ek−3(·)Ek−3(·)) · s) · s
)

Again, Ek(Ek−1(Ck−2 · s) · s) ∈ Ck so we are left to compute:

Ek
(
Ek−1(Ek−3(·)Ek−3(·) · s) · s

)

= Ek
(
LinComb

(
Ek−2

(Ek−3(·) · s
) · Ek−2(Ek−3(·)),

Ek−1
(Ek−2

(Ek−3(·) · s
) · s

)))

= LinComb
(
Ek−1

(Ek−2
(Ek−3(·) · s

)) · Ek−1
(Ek−2

(Ek−3(·) · s
) · s

)
,

Ek
(
Ek−1

(Ek−2
(Ek−3(·) · s

) · s
) · s

)
· s

)

Thus, again by “factoring out” quadratic term Ek−1
(Ek−2

(Ek−3(·) ·
s
)) · Ek−1

(Ek−2
(Ek−3(·) · s

) · s
)
, we have reduced computation of

Ek
(Ek−1(Ek−2(yb)·s)·s

)
to Ek

(
Ek−1

(Ek−2
(Ek−3(·)·s)·s)·s

)
·s

)
which has

half the nested message degree of the former at the cost of one additional
nesting (and multiplication by s)5.
Proceeding recursively, we may factor out a quadratic term for each level,
to be left with a term which has half the nested message degree and one
additional level of nesting. At the last level, we obtain nested encod-
ings which are contained in Ck by construction. Hence we may com-
pute Ek(ck−1 · s) as a linear combination of quadratic terms of the form
Ek−1(·)Ek−1(·) and linear terms in Ck. Please see Fig. 1 for a graphical
illustration.
Note that the public key PK(Ek(ck−1 · s)) can be computed as a linear
combination of the public keys PK(Ck), as in Eq. 4.16.

PK(Ek(ck−1 · s)) = LinComb(PK(Ck)) (4.23)

Note that for the public key computation, the higher degree encoding
computations are not relevant as these form the message of the final level
k encoding.

Computing level k ciphertext. Next, we have that:

ck
t = ck−1

� ck−1
�′ + Ek

(
uk−1

� uk−1
�′ (s2) − uk−1

�′ (ck−1
� s) − uk−1

� (ck−1
�′ s)

)

= ck−1
� ck−1

�′ + uk−1
� uk−1

�′ Ek(s2) − uk−1
�′ Ek(ck−1

� s) − uk−1
� Ek(ck−1

�′ s) (4.24)

5 We note that the multiplication by s does not impact the nested message degree,
number of nestings or growth of the expression as we proceed down the circuit.
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Fig. 1. Computing level k functional ciphertext ck encoding fk(x) using induction. A
term in any node is implied by a quadratic polynomial in its children, quadratic in the
terms of the left child, and linear in the terms of the right child. The solid arrows on
the left indicate quadratic terms that are computed by the induction hypothesis. The
dashed arrows to the right point to terms whose linear combination suffices, along with
the high degree terms in the left sibling, to compute the parent. The terms in the right
child may be further decomposed into quadratic polynomials in its children, quadratic
in left child terms and linear in right child terms, until we reach the last level, where
the terms in the right child are provided directly by the encryptor as advice encodings
Ck. The functional ciphertext at level k, namely the root ck is thus ultimately linear
in Ck, while being high degree in lower level encodings C1, . . . , Ck−1.

Similarly,

PK(ck
t ) = uk−1

� uk−1
�′ PK(Ek(s2)) − uk−1

�′ PK
(Ek(ck−1

� s)
) − uk−1

� PK
(Ek(ck−1

�′ s)
)

(4.25)

Public Key, Ciphertext and Decryption Structure. From the above, we claim:

Claim. The public key for ck
t (for any t) is a publicly computable linear com-

bination of public keys of level k encodings PK(Ek(s2)) and PK
(Ek(ck−1

� s)
)

for
all �.

Regarding the ciphertext, since we computed Ek(ck−1
� s) from Ck above, and

ck−1 may be computed via the induction hypothesis, we may compute ck as
desired. Moreover, since Ek(ck−1

� s) is linear in level k encodings and has quadratic
terms in level k − 1 encodings, we get by unrolling the recursion that Ek(ck−1

� s)
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and hence level k ciphertext ck is linear in level k encodings and polynomial in
lower level encodings C1, . . . , Ck−1. Hence, we have that:

ck = CT(fk(x) + μk
f(x)) = 〈Linfk , Ck〉 + LinComb

(
Quad(Ek−1(yi) Ek−1(yj))

)

= 〈Linfk , Ck〉 + Polyfk

(C1, . . . , Ck−1
)

Moreover, note that the computation of the functional message embedded
in a level k ciphertext ck can be viewed as follows. By Eq. 4.6, we see that
the message embedded in ck equals the encoding in the left child plus a linear
combination of the messages embedded in the right child. At the next level, we
see that the message in the right child at level 2 (from the top) again equals the
encoding in the left child plus a linear combination of the messages embedded
in the right child. At the last level, we get that the message embedded in ck is a
quadratic polynomial in all the left children in the tree, and a linear combination
of level k messages Mk. Thus, we have as desired that:

f(x) ≈ Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉

The Public Key and Ciphertext Evaluation Algorithms. Our evaluation algo-
rithms EvalPK and EvalCT are defined recursively, so that to compute the func-
tional public key and functional ciphertext at level k, the algorithms require the
same for level k − 1. Please see Figs. 2 and 3 for the formal descriptions.

Algorithm EvalkPK( ∪
i∈[k]

PK(Ci), �)

To compute the label for the �th wire in the level k circuit, do:

1. If the �th wire at level k is the addition of the ith and jth wire at level k − 1, then
do the following:
– If k = 3 (base case), then compute PK(c3�) = PK(c2i ) + PK(c2j ) as in Equation

4.10.
– Let PKk−1

i = Evalk−1
PK ( ∪

j∈[k−1]
PK(Cj), i) and PKk−1

j = Evalk−1
PK ( ∪

i∈[k−1]
PK(Ci), j),

– Let PKk
� = PKk−1

i + PKk−1
j

2. If the �th wire at level k is the multiplication of the ith and jth wire at level k − 1,
then do the following:
– If k = 4 (base case), then compute PKk

� as described in Equation 4.17.

– Let uk−1
i = Evalk−1

PK ( ∪
j∈[k−1]

PK(Cj), i) and uk−1
j = Evalk−1

PK ( ∪
i∈[k−1]

PK(Ci), j)

– Let PK(ck
� ) = uk−1

i uk−1
j PK(Ek(s2)) − uk−1

j PK Ek(ck−1
i s)

) −
uk−1

i PK Ek(ck−1
j s)

)
as in Equation 4.25.

Here PK(Ek(s2)), PK Ek(ck−1
i s)

)
and PK Ek(ck−1

j s)
)

are computed using Ck

as described in Equation 4.16, 4.23.

Fig. 2. Algorithm to evaluate on public key.
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Algorithm EvalkCT( ∪
i∈[k]

Ci, �)

To compute the encoding for the �th wire in the level k circuit, do:

1. If the �th wire at level k is the addition of the ith and jth wire at level k − 1, then
do the following:
– If k = 3 (base case), then compute c3� = c2i + c2j as in Equation 4.9.
– Let CTk−1

i = Evalk−1
CT ( ∪

j∈[k−1]
Cj , i) and CTk−1

j = Evalk−1
CT ( ∪

i∈[k−1]
Ci, j),

– Let CTk
� = CTk−1

i + CTk−1
j

2. If the �th wire at level k is the multiplication of the ith and jth wire at level k − 1,
then do the following:
– If k = 4 (base case) then compute c4� (for any �) using Equations 4.11 and 4.12.
– Let ck−1

i = Evalk−1
CT ( ∪

j∈[k−1]
Cj , i) and ck−1

j = Evalk−1
CT ( ∪

i∈[k−1]
Ci, j),

– Let ck
� = ck−1

i ck−1
j +uk−1

i uk−1
j Ek(s2)−uk−1

j Ek(ck−1
i s)−uk−1

i Ek(ck−1
j s) as in

Equation 4.24. Here, the terms Ek(s2), Ek(ck−1
i s) and Ek(ck−1

j s) are computed

using Ck as described in claim 4.1

Fig. 3. Algorithm to evaluate on ciphertext.

5 Succinct Functional Encryption for NC1

In this section, we extend the construction for quadratic functional encryption pro-
vided in Sect. 3 to circuits of depth O(log n). The construction generalises directly
theQuadFE scheme using the public key and ciphertext evaluation algorithms from
the previous section. We make black box use of the LinFE scheme [1,5].

We proceed to describe the construction.

NC1.Setup(1λ, 1w, 1d): Upon input the security parameter λ, the message dimen-
sion w, and the circuit depth d, do:
1. For k ∈ [d], let Lk = |Ck| where Ck is as defined in Theorem 4.2. For

k ∈ [d − 1], i ∈ [Lk], choose uniformly random ui,k ∈ Rpk
. Denote uk =

(ui,k) ∈ RLk
pk

.
2. Invoke LinFE.Setup(1λ, 1Ld+1, pd) to obtain PK = LinFE.PK and MSK =

LinFE.MSK.
3. Output PK = (LinFE.PK,u1, . . . ,ud−1) and MSK = LinFE.MSK.

NC1.KeyGen(MSK, f)): Upon input the master secret key MSK and a circuit f
of depth d, do:
1. Let Linf ∈ RLd

pd
be an f dependent linear function output by the algorithm

EvalPK(PK, f). as described in claim 4.1.
2. Compute SKLin = LinFE.KeyGen

(
MSK, (Linf‖1)

)
and output it.

NC1.Enc(x,PK): Upon input the public key and the input x, do:
1. Compute the encodings Ck for k ∈ [d − 1] as defined in Theorem 4.2.
2. Sample flooding noise η as described in Appendix B.
3. Define Md =

( Cd−1, Cd−1 · s, Ed(s2)
) ∈ RLd

pd
. Compute CTLin =

LinFE.Enc
(
PK, (Md‖η)

)

4. Output CTx = ({Ck}k∈[d−1],CTLin).
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NC1.Dec(PK,CTx,SKf ): Upon input a ciphertext CTx for vector x, and a secret
key SKf = kf for circuit f , do:
1. Compute Polyf (C1, . . . , Cd−1) as described in Sect. 4 by running

EvalCT({Ck}k∈[d−1], f).
2. Compute LinFE.Dec(CTLin,SKLin) + Polyf (C1, . . . , Cd−1) mod pd

mod pd−1 . . . mod p0 and output it.

Correctness follows from correctness of EvalPK, EvalCT and LinFE. In more
detail, we have by Theorem 4.2 that,

f(x) + μf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉
Since CTLin is a LinFE encryption of (Md‖η) and SKLin is a LinFE functional key
for (Linf‖1), we have by correctness of LinFE that LinFE.Dec(CTLin,SKLin) =
〈Linf ,Md〉 + η mod pd. By correctness of EvalCT, we have that
Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 outputs f(x) + μf(x) + η. Since μf(x) as well
as η is a linear combination of noise terms which are multiples of moduli pi for
i ∈ [0, . . . , d−1], i.e. μf(x) = pd−1 ·βf

d−1+. . .+p0 ·βf
0 for some βf

i , and f(x) ∈ Rp0 ,
we have that f(x)+μf(x)+η = f(x) mod pd mod pd−1 . . . mod p0, as desired.

Analysis of Ciphertext Structure. Note that the ciphertext consists of encodings
Ck for k ∈ [d−1] and LinFE ciphertext for (Md‖η). Since each message-dependent
encoding depends only on a single bit of the message, the ciphertext is decom-
posable, and enjoys local-updates: if a single bit of the message changes, then
only O(d) encodings need updating, not the entire ciphertext. Also, since the
LinFE ciphertext is succinct, the message-dependent component of our cipher-
text is also succinct. The ciphertext is not succinct overall, since we need to
encode a fresh noise term per requested key.

Theorem 5.4. The construction in Sect. 5 achieves full simulation based secu-
rity as per Definition 2.2.

Proof. We describe our simulator.

Simulator NC1.Sim(1λ, 1|x|,PK, f,SKf , f(x)). The simulator given input the
security parameter, length of message x, the circuit f , the secret key SKf and
the value f(x) does the following:

1. It computes Linf = EvalPK(PK, f). Note that by claim 4.1 that Linf ∈ RLd
pd

.
2. It samples all encodings upto level d−1 randomly, i.e. Ck ← RLk

pk
for k ∈ [d−1].

3. It samples η ← Dd as described in Appendix B and computes d′ = f(x) +
η − Polyf (C1, . . . , Cd−1).

4. It invokes the single key LinFE simulator as

CTLin = LinFE.Sim(1λ, 1Ld ,PK, Linf ,SK(Linf ), d′)

5. It outputs CTx = ({Ck}k∈[d−1],CTLin).

We will prove that the output of the simulator is indistinguishable from the
real world via a sequence of hybrids.
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The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world.

Hybrid 1. In this hybrid, the only thing that is different is that CTLin is computed
using the LinFE simulator. In more detail,

– It computes Polyf (C1, . . . , Cd−1) = EvalCT
({Ck}k∈[d−1], f

)
.

– It computes f(x) + μf(x) = Polyf (C1, . . . , Cd−1) + 〈Md, Linf 〉
– It samples η such that

SD
(
η + μf(x), η

) ≤ negl(λ) (5.1)

– It invokes the single key LinFE simulator with input f(x) + μf(x) + η −
Polyf (C1, . . . , Cd−1).

Hybrid 2. In this hybrid, invoke the LinFE simulator with f(x) + η −
Polyf (C1, . . . , Cd−1).

Hybrid 3. In this hybrid, sample Ck for k ∈ [d − 1] at random. This is the
simulated world.

Indistinguishability of Hybrids proceeds as in Sect. 3. Indistinguishability of
Hybrids 0 and 1 follows from security of LinFE. It is easy to see that Hybrids 1
and 2 are statistically indistinguishable by Eq. 5.1. Hybrids 2 and 3 are indistin-
guishable due to semantic security of Regev encodings Ck for k ∈ [d − 1].

In the full version [6], we describe how to generalize the above construction
to bounded collusion FE scheme for all circuits in P, for any a-priori fixed poly-
nomial bound Q. The approach follows the (by now) standard bootstrapping
method of using low depth randomized encodings to represent any polynomial
sized circuit [39]. The ciphertext of the final scheme enjoys additive quadratic
dependence on the collusion bound Q.

6 Bounded Collusion FE for All Circuits

In this section, we describe how to put together the pieces from the previous
sections to build a bounded collusion FE scheme for all circuits in P, denoted
by BddFE. The approach follows the (by now) standard bootstrapping method
of using low depth randomized encodings to represent any polynomial sized
circuit. This approach was first suggested by Gorbunov et al. [39], who show
that q query FE for degree three polynomials can be bootstrapped to q query
FE for all circuits.

At a high level, their approach can be summarized as follows. Let C be a
family of polynomial sized circuits. Let C ∈ C and let x be some input. Let
C̃(x, R) be a randomized encoding of C that is computable by a constant depth
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circuit with respect to inputs x and R. Then consider a new family of circuits G
defined by:

GC,Δ(x, R1, . . . , RS) = C̃
(
x; ⊕

a∈Δ
Ra

)

Note that GC,Δ(·, ·) is computable by a degree three polynomial, one for each
output bit. Given an FE scheme for G, one may construct a scheme for C by
having the decryptor first recover the output of GC,Δ(x, R1, . . . , RS) and then
applying the decoder for the randomized encoding to recover C(x). Since our
construction from Sect. 5 is capable of evaluating degree 3 polynomials, it suffices
for bootstrapping, to yield q-query FE for all circuits. We will denote this scheme
by PolyFE as against NC1FE to emphasize that it needs to only compute degree
3 polynomials.

As in [5,39], let (S, v,m) be parameters to the construction. Let Δi for i ∈ [q]
be a uniformly random subset of [S] of size v. To support q queries, the key
generator identifies the set Δi ⊆ [S] with query i. If v = O(λ) and S = O(λ · q2)
then the sets Δi are cover free with high probability as shown by [39]. Let
L � (�3 + S · m).

BddFE.Setup(1λ, 1�): Upon input the security parameter λ and the message space
{0, 1}�, invoke (mpk,msk) = PolyFE.Setup(1λ, 1L) and output it.

BddFE.KeyGen(msk, C)): Upon input the master secret key and a circuit C, do:
1. Choose a uniformly random subset Δ ⊆ [S] of size v.
2. Express C(x) by GC,Δ(x, R1, . . . , RS), which in turn can be expressed as

a sequence of degree 3 polynomials P1, . . . , Pk, where k ∈ poly(λ).
3. Set BddFE.SKC = {SKi = PolyFE.KeyGen(PolyFE.msk, Pi)}i∈[k] and out-

put it.
BddFE.Enc(x,mpk): Upon input the public key and the input x, do:

1. Choose R1, . . . , RS ← {0, 1}m, where m is the size of the random input
in the randomized encoding.

2. Set CTx = PolyFE.Enc(PolyFE.mpk,x, R1, . . . , Rs) and output it.
BddFE.Dec(mpk,CTx,SKC): Upon input a ciphertext CTx for vector x, and a

secret key SKC for circuit C, do the following:
1. Compute GC,Δ(x, R1, . . . , RS) = PolyFE.Dec(CTx,SKC).
2. Run the Decoder for the randomized encoding to recover C(x) from

GC,Δ(x, R1, . . . , RS).

Correctness follows immediately from the correctness of PolyFE and the cor-
rectness of randomized encodings. The proof of security follows easily from the
security of randomized encodings and of the PolyFE scheme. Please see the full
version [6] for details.

Acknowledgements. We thank Damien Stehlé and Chris Peikert for helpful discus-
sions.
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Appendix

A Previous Constructions for Bounded Collusion FE

The GVW12 Construction. The scheme of [39] can be summarized as follows.

– The first ingredient they need is a single key FE scheme for all circuits.
A construction for this was provided by Sahai and Seyalioglu in [51].

– Next, the single FE scheme is generalized to a q query scheme for NC1 cir-
cuits. This gerenalization is fairly complex, we provide an outline here. At
a high level, they run N copies of the single key scheme, where N = O(q4).
The encryptor encrypts the views of the BGW MPC protocol for N parties,
computing some functionality related to C. They rely on the fact that BGW
is non-interactive when used to compute bounded degree functions. To gen-
erate a secret key, KeyGen chooses a random subset of the single query FE
keys, where the parameters are set so that the subsets have small pairwise
intersections. This subset of keys enables the decryptor to recover sufficiently
many shares of C(x) which allows him to recover C(x). [39] argue that an
attacker with q keys only learns a share xi when two subsets of keys intersect,
but since the subsets were chosen to have small pairwise intersections, this
does not occur often enough to recover enough shares of x. Finally, by the
security of secret sharing, x remains hidden.

– As the last step they “bootstrap” the q query FE for NC1 to q query FE
for all circuits using computational randomized encodings [9]. They must
additionally use cover free sets to ensure that fresh randomness is used for
each randomized encoding.

Thus, to encrypt a message x, the encryptor must secret share it into N =
O(q4) shares, and encrypt each one with the one query FE. Since they use
Shamir secret sharing with polynomial of degree t and t = O(q2), note that at
most O(q2) shares can be generated offline, since t + 1 points will determine the
polynomial. Hence O(q4) shares must be generated in the online phase. This
results in an online encryption time that degrades as O(q4).

The ALS16 construction. [5] provide a conceptually simpler way to build
q-query Functional Encryption for all circuits. Their construction replaces steps
1 and 2 described above with a inner product modulo p FE scheme, and then
uses step 3 as in [39]. Thus, the construction of single key FE in step 1 by Sahai
and Seyalioglu, and the nontrivial “MPC in the head” of step 2 can both be
replaced by the simple abstraction of an inner product FE scheme. For step 3,
observe that the bootstrapping theorem of [39] provides a method to bootstrap
an FE for NC1 that handles q queries to an FE for all polynomial-size circuits
that is also secure against q queries. The bootstrapping relies on the result of
Applebaum et al. [9, Theorem 4.11] which states that every polynomial time
computable function f admits a perfectly correct computational randomized
encoding of degree 3.
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In more detail, let C be a family of polynomial-size circuits. Let C ∈ C and let
x be some input. Let C̃(x,R) be a randomized encoding of C that is computable
by a constant depth circuit with respect to inputs x and R. Then consider a new
family of circuits G defined by:

GC,Δ(x,R1, . . . , RS) =
{

C̃
(
x; ⊕

a∈Δ
Ra

)
: C ∈ C, Δ ⊆ [S]

}
,

for some sufficiently large S (quadratic in the number of queries q). As observed
in [39], circuit GC,Δ(·, ·) is computable by a constant degree polynomial (one
for each output bit). Given an FE scheme for G, one may construct a scheme
for C by having the decryptor first recover the output of GC,Δ(x,R1, . . . , RS)
and then applying the decoder for the randomized encoding to recover C(x).

However, to support q queries the decryptor must compute q randomized
encodings, each of which needs fresh randomness. This is handled by hardcod-
ing S random elements in the ciphertext and using random subsets Δ ⊆ [S]
(which are cover-free with overwhelming probability) to compute fresh random-
ness ⊕

a∈Δ
Ra for every query. [5] observe that bootstrapping only requires support

for the particular circuit class G described above. This circuit class, being com-
putable by degree 3 polynomials, may be supported by a linear FE scheme, via
linearization of the degree 3 polynomials.

Putting it together, the encryptor encrypts all degree 3 monomials in the
inputs R1, . . . , RS and x1, . . . , x�. Note that this ciphertext is polynomial in
size. Now, for a given circuit C, the keygen algorithm samples some Δ ⊆ [S]
and computes the symbolic degree 3 polynomials which must be released to
the decryptor. It then provides the linear FE keys to compute the same. By
correctness and security of Linear FE as well as the randomizing polynomial
construction, the decryptor learns C(x) and nothing else.

Note that in this construction the challenge of supportingmultiplication is side-
stepped by merely having the encryptor encrypt each monomial xixj separately so
that the FE need only support addition. This “brute force” approach incurs sev-
eral disadvantages. For instance, decomposability is lost – even though the cipher-
text can be decomposed into |x|2 components, any input bit x1 (say) must fea-
ture in |x| ciphertext components x1x2, . . . , x1xw, where w = |x|. This makes the
scheme inapplicable for all applications involving distributed data, where a centre
or a sensor device knows a bit xi but is oblivious to the other bits. Additionally,
the scheme is not online-offline, since all the ciphertext components depend on
the data, hence the entire encryption operation must be performed after the data
becomes available. For applications where a centre or sensor must transmit data-
dependent ciphertext after the data is observed, this incurs a significant cost in
terms of bandwidth. Indeed, the work performed by the sensor device in comput-
ing the data dependent ciphertext becomes proportional to the size of the function
being computed on the data, which may be infeasible for weak devices.

Another approach to obtain bounded collusion FE is to compile the single
key FE of Goldwasser et al. [37] with the compiler of [39] to support Q queries.
Again, this approach yields succinct CTs but the CT grows as O(q4) rather than
O(q2) as in our scheme.
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B Parameters

In this section, we discuss the parameters for our constructions. We denote the
magnitude of noise used in the level i encodings by Bi. We require Bi ≤ O(pi/4)
at every level for correct decryption. We have that the message space for level
1 encodings E1 is Rp0 and encoding space is Rp1 . Then message space for E2 is
O(p20 +B2

1) = O(B2
1) since the noise at level 1 is a multiple of p0. Then, p2 must

be chosen as O(B2
1). At the next multiplication level, i.e. level 4, we have the

message space as O(p22 + B2
2) = O(B4

1). In general, for d levels, it suffices to set
pd = O(B2d

). We require all the distinct moduli to be relatively prime, hence
we choose all the moduli to be prime numbers of the aforementioned size.

We must also choose the size of the noise that is added for flooding. As
described in Sect. 3, for quadratic polynomials we require L·p0·σ2

0
σ1

= negl(λ) where
σ1 is the standard deviation for the noise ηi for i ∈ [Q] encoded in the cipher-

text. For depth d (Sect. 5), we require
Ld· ∏

i∈[0,d]
pi·B2d

σ = negl(λ) where σ is the
standard deviation of the noise η encoded in the ciphertext. Since Ld = poly(λ)
by definition, we require σ ≥ O(poly(λ)B2d+1

.
We may set p0 = n with initial noise level as B1 = poly(n) and any Bi, pi =

O(B2i

1 ). Also, the number of encodings provided at level d is Ld = O(2d), so in
general we may let d = O(log n), thus supporting the circuit class NC1. Note
that unlike FHE constructions [18,19], computation in our case proceeds UP a
ladder of moduli rather than down, and we may add fresh noise at each level.
Hence we never need to rely on subexponential modulus to noise ratio, and may
support circuits in NC1 even without modulus switching tricks.

We note that by the definition of efficiency of reusable garbled circuits [37], it
suffices to have ciphertext size that is sublinear in circuit size, which is achieved
by our construction.
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