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Abstract. There is some evidence that indistinguishability obfus-
cation (iO) requires either exponentially many assumptions or
(sub)exponentially hard assumptions, and indeed, all known ways of
building obfuscation suffer one of these two limitations. As such, any
application built from iO suffers from these limitations as well. However,
for most applications, such limitations do not appear to be inherent to
the application, just the approach using iO. Indeed, several recent works
have shown how to base applications of iO instead on functional encryp-
tion (FE), which can in turn be based on the polynomial hardness of just
a few assumptions. However, these constructions are quite complicated
and recycle a lot of similar techniques.

In this work, we unify the results of previous works in the form of
a weakened notion of obfuscation, called Decomposable Obfuscation. We
show (1) how to build decomposable obfuscation from functional encryp-
tion, and (2) how to build a variety of applications from decomposable
obfuscation, including all of the applications already known from FE.
The construction in (1) hides most of the difficult techniques in the prior
work, whereas the constructions in (2) are much closer to the compara-
tively simple constructions from iO. As such, decomposable obfuscation
represents a convenient new platform for obtaining more applications
from polynomial hardness.

1 Introduction

Program obfuscation has recently emerged as a powerful cryptographic concept.
An obfuscator is a compiler for programs, taking an input program, and scram-
bling it into an equivalent output program, but with all internal implementation
details obscured. Indistinguishability obfuscation (iO) is the generally-accepted
notion of security for an obfuscator, which says that the obfuscations of equiva-
lent programs are computationally indistinguishable.

In the last few years since the first candidate indistinguishability obfusca-
tor of Garg et al. [GGH+13], obfuscation has been used to solve many new
amazing tasks such as deniable encryption [SW14], multiparty non-interactive
key agreement [BZ14], polynomially-many hardcore bits for any one-way func-
tion [BST14], and much more. Obfuscation has also been shown to imply most
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traditional cryptographic primitives1 such as public key encryption [SW14], zero
knowledge [BP15], trapdoor permutations [BPW16], and even fully homomor-
phic encryption [CLTV15]. This makes obfuscation a “central hub” in cryptogra-
phy, capable of solving almost any cryptographic task, be it classical or cutting
edge. Even more, obfuscation has been shown to have important connections
to other areas of computer science theory, from demonstrating the hardness of
finding Nash equilibrium [BPR15] to the hardness of certain tasks in differential
privacy [BZ14,BZ16].

The power of obfuscation in part comes from the power of the underlying
tools, but its power also lies in the abstraction, by hiding away the complicated
implementation details underneath a relatively easy to use interface. In this
work, we aim to build a similarly powerful abstraction that avoids some of the
limitations of iO.

1.1 The Sub-exponential Barrier in Obfuscation

Indistinguishability obfuscation (iO), as an assumption, has different flavor than
most assumptions in cryptography. Most cryptographic assumptions look like

“Distribution A is computationally indistinguishable from distribution B, ” or
“Given a sample a from distribution A, it is computationally infeasible

to compute a value b such that a, b satisfy some given relation.”

Such assumptions are often referred to as falsifiable [Nao03], or more generally
as complexity assumptions [GT16]. In contrast, iO has the form

“For every pair of circuits C0, C1 that are functionally equivalent ,
iO(C0) is computationally indisitnguishable from iO(C1).”

In other words, for each pair of equivalent circuits C0, C1, there is an instance
of a complexity assumption: that iO(C0) is indistinguishable from iO(C1). iO
then is really a collection of exponentially-many assumptions made simultane-
ously, one per pair of equivalent circuits. iO is violated if a single assumption in
the collection is false. This is a serious issue, as the security of many obfuscators
relies on new assumptions that essentially match the schemes. To gain confidence
in the security of the schemes, it would seem like we need to investigate the iO
assumption for every possible pair of circuits, which is clearly infeasible.

Progress has been made toward remedying this issue. Indeed, Gentry
et al. [GLSW15] show how to build obfuscation from a single assumption—
multilinear subgroup elimination—on multilinear maps. Unfortunately, the secu-
rity reduction loses a factor exponential in the number of input bits to the
program. As such, in order for the reduction to be meaningful, the multi-
linear subgroup elimination problem must actually be sub-exponentially hard.
Similarly, Bitansky and Vaikuntanathan [BV15] and Ananth and Jain [AJ15]
demonstrate how to construct iO from a tool called functional encryption (FE).

1 With additional mild assumptions such as the existence of one-way functions.
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In turn, functional encryption can be based on simple assumptions on multilinear
maps [GGHZ16]. However, while the construction of functional encryption can
be based on the polynomial hardness of just a couple multilinear map assump-
tions, the construction of iO from FE incurs an exponential loss. This means
the FE scheme, and hence the underlying assumptions on multilinear maps, still
need to be sub-exponentially secure.

All current techniques for building iO suffer one of these two limitations:
either security is based on an exponential number of assumptions, or the reduc-
tion incurs an exponential loss. Unfortunately, this means every application of
iO also suffers from the same limitations. As iO is the only known instantiation
of many new cryptographic applications, an important research direction is to
devise new instantiations that avoid this exponential loss.

1.2 Breaking the Sub-exponential Barrier

A recent line of works starting with Garg et al. [GPS16] and continued
by [GPSZ16,GS16] have shown how to break the sub-exponential barrier for
certain applications. Specifically, these works show how to base certain applica-
tions on functional encryption, where the loss of the reduction is just polynomial.
Using [GGHZ16], this results in basing the applications on the polynomial hard-
ness of a few multilinear map assumptions. The idea behind these works is to
compose the FE-to-iO conversion of [BV15,AJ15] with the iO-to-Application
conversion to get an FE-to-Application construction. While this construction
requires an exponential loss (due to the FE-to-iO conversion), by specializing
the conversion to the particular application and tweaking things appropriately,
the reduction can be accomplished with a polynomial loss. Applications treated
in this way include: the hardness of computing Nash equilibria, trapdoor permu-
tations, universal samplers, multiparty non-interactive key exchange, and multi-
key functional encryption2.

While the above works represent important progress, the downside is that,
in order to break the sub-exponential barrier, they also break the convenient
obfuscation abstraction. Both the FE-to-iO and iO-to-Application conversions
are non-trivial, and the FE-to-iO conversion is moreover non-black box. Add
to that the extra modifications to make the combined FE-to-Application con-
version be polynomial, and the resulting constructions and analyses become
reasonably cumbersome. This makes translating the techniques to new appli-
cations rather tedious—not to mention potentially repetitive given the common
FE-to-iO core—and understanding the limits of this approach almost impossible.

1.3 A New Abstraction: Decomposable Obfuscation

In this work, we define a new notion of obfuscation, called Decomposable Obfus-
cation, or dO, that addresses the limitations above. This notion abstracts away

2 The kind of functional encryption that is used as a starting point only allows for a
single secret key query.
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many of the common techniques in [GPS16,GPSZ16,GS16]; we use those tech-
niques to build dO from the polynomial hardness of functional encryption. Then
we can show that the dO can be used to build the various applications. With our
new notion in hand, the dO-to-Application constructions begin looking much
more like the original iO-to-Application constructions, with easily identifiable
modifications that are necessary to prove security using our weaker notion.

The Idea

Functional Encryption (FE). As in the works of [GPS16,GPSZ16,GS16], we will
focus on obtaining our results from the starting point of polynomially-secure
functional encryption. Functional encryption is similar to regular public key
encryption, except now the secret key holder can produce function keys corre-
sponding to arbitrary functions. Given a function key for a function f and a
ciphertext encrypting m, one can learn f(m). Security requires that even given
the function key for f , encryptions of m0 and m1 are indistinguishable, so long
as f(m0) = f(m1)3.

The FE-to-iO Conversion. The FE-to-iO conversions of [BV15,AJ15] can be
thought of very roughly as follows. To obfuscate a circuit C, we generate the
keys for an FE scheme, and encrypt the description of C under the FE scheme’s
public key, obtaining c. We also produce function keys fki for particular functions
fi that we will describe next. The obfuscated program consists of c and the fki.

To evaluate the program on input x, we first use fk1 and c to learn f1(C).
f1(C) is defined to produce two ciphertexts c0, c1, encrypting (C, 0) and (C, 1),
respectively. We keep cx1 , discarding the other ciphertext. Now, we actually
define fk1 to encrypt (C, 0) and (C, 1) using the functional encryption scheme
itself—therefore, we can continue applying function keys to the resulting plain-
texts. We use fk2 and cx1 to learn f2(C, x1). f2(C, b) is defined to produce two
ciphertexts cb0, cb1, encrypting (C, b0) and (C, b1). Again, these ciphertexts will
be encrypted using the functional encryption scheme. We will repeat this process
until we obtain the encryption cx of (C, x). Finally, we apply the last function
key for the function fn+1, which is the universal circuit evaluating C(x).

This procedure implicitly defines a complete binary tree of all strings of
length at most 2n, where a string x is the parent of the two string x||0 and
x||1. At each node y ∈ {0, 1}≤n, consider running the evaluation above for the
first |y| steps, obtaining a ciphertext cy encrypting (C, y). We then assign the
circuit C to the node y, according the circuit that is encrypted in cy. The root is
explicitly assigned C by handing out the ciphertext c since we explicitly encrypt
C to obtain c. All subsequent nodes are implicitly assigned C as cy is derived
from c during evaluation time. Put another way, by explicitly assigning a circuit
C to a node (in this case, the root) we implicitly assign the same circuit C to

3 The two encryptions would clearly be distinguishable if f(m0) �= f(m1) just by
decrypting using the secret function key. Thus, this is the best one can hope for with
an indistinguishability-type definition.
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all of its descendants. The exception is the leaves: if we were to assign a circuit
C to a leaf x, we instead assign the output C(x). In this way, the leaves contain
the truth table for C.

Now, we start from an obfuscation of C0 (assigning C0 to the root of the tree)
and we wish to change the obfuscation to an obfuscation of C1 (assigning C1 to
the root). We cannot do this directly, but the functional encryption scheme does
allow us to do the following: un-assign a circuit C from any internal node y4, and
instead explicitly assign C to the two children of that node. This is accomplished
by changing cy to encrypt (⊥, x), explicitly constructing the ciphertexts cy||0 and
cy||1, and embedding cy||0, cy||1 in the function key fk|y| in a particular way. If
the children are leaves, explicitly assign the outputs of C on those leaves. Note
that this process does not change the values assigned to the leaves; as such, the
functionality of the tree remains unchanged, so this change cannot be detected
by functionality alone. The security of functional encryption shows that, in fact,
the change is undetectable to any polynomial-time adversary.

The security reduction works by performing a depth-first traversal of the
binary tree. When processing a node y on the way down the tree, we un-assign
C0 from y and instead explicitly assign C0 to the children of y. When we get
to a leaf, notice that by functional equivalence, we actually simultaneously have
the output of C0 and C1 assigned. Therefore, when processing a node y on our
way up the tree from the leaves, we can perform the above process in reverse
but for C1 instead of C0. We can un-assign C1 from the children of y, and then
explicitly assign C1 to y. In this way, when the search is complete, we explicitly
assign C1 to the root, which implicitly assigns C1 to all nodes in the tree. At this
point, we are obfuscating C1. By performing a depth-first search, we ensure that
the number of explicitly assigned nodes never exceeds n + 1, which is crucial
for the efficiency of the obfuscator, as we pay for explicit assignments (since
they correspond to explicit ciphertexts embedded in the function keys) but not
implicit ones (since they are computed on the fly). Note that while the obfuscator
itself is polynomial, the number of steps in the proof is exponential: we need to
un-assign and re-assign every internal node in the tree, which are exponential in
number. This is the source of the exponential loss.

Shortcutting the Conversion Process. The key insight in the works of [GPS16,
GPSZ16,GS16] is to modify the constructions in a way so that it is possible to
re-assign certain internal nodes in a single step, without having to re-assign all
of its descendants first. By doing this it is possible to shortcut our way across
an exponential number of steps using just a few steps.

In these prior works, the process is different for each application. In this
work, we generalize the conditions needed for and the process of shortcutting in
a very natural way. To see how shortcutting might work, we introduce a slightly
different version of the above assignment setting. Like before, every node can
be assigned a circuit. However, now the circuit assigned to a node u of length
k must work on inputs of length n − k; essentially, it is the circuit that is “left

4 By assigning ⊥ instead, which does not propagate down the tree.
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over” after reading the first k bits and which operates on the remaining n − k
bits.

If we explicitly assign a circuit Cy to a node y, its children are implicitly
assigned the partial evaluations of Cy on 0 and 1. That is, the circuit Cy||b
assigned to y||b is Cy(b, ·). We will actually use Cy(b, ·) to denote the circuit
obtained by hard-coding b as the first input bit, and then simplifying using
simple rules: (1) any unary gate with a constant input wire is replaced with an
appropriate input wire, (2) any binary gate with a constant input is replaced with
just a unary gate (a passthrough or a NOT) or a hardwired output according
to the usual rules, (3) any wire that is not used is deleted, and (4) this process
is repeated until there are no gates with hardwired inputs and no unused wires.
An important observation is that our rules guarantee that circuits assigned to
leaves are always constants, corresponding to the output of the circuit at that
point.

Now when we obfuscate by assigning C to the root, the internal nodes are
implicitly assigned the simplified partial evaluations of C on the prefix corre-
sponding to that node: node y is assigned C(y, ·) (simplified). The move we are
allowed to make is now to un-assign C from a node where C was explicit, and
instead explicitly assign the simplified circuits C(0, ·) and C(1, ·) to its children.
We call the partial evaluations C(0, ·) and C(1, ·) fragments of C, and we call this
process of un-assigning the parent and assigning the fragments to the children
decomposing the node to its children fragments. The reverse of decomposing is
merging.

This simple transformation to the binary tree rules allows for, in some
instances, the necessary shortcutting to avoid an exponential loss. When trans-
forming C0 to C1, the crucial observation is that if any fragment C0(x, ·) is equal
to C1(x, ·) as circuits (after simplification), it suffices to stop when we explicitly
assign a circuit to x; we do not need to continue all the way down to the leaves.
Indeed, once we explicitly assign the fragment C0(y, ·) to a node y, y already
happens to be assigned the fragment C1(y, ·) as well, and all of its descendants
are therefore implicitly assigned the corresponding partial evaluations of C1 as
well. By not traversing all the way to the leaves, we cut out potentially expo-
nentially many steps. For certain circuit pairs, it may therefore be possible to
transform C0 to C1 in only polynomially-many steps.

Our New Obfuscation Notion. Our new obfuscation notion stems naturally from
the above discussion. Consider two circuits C0, C1 of the same size, and consider
assigning C0 to the root of the binary tree. Suppose there is a set S of tree nodes
of size τ that (1) exactly cover all of the leaves5, and (2) for every nodes x ∈ S, the
(simplified) fragments C0(y, ·) and C1(y, ·) are identical as circuits. Then we say
the circuits C0, C1 are τ -decomposing equivalent. Our new obfuscation notion,
called decomposable obfuscation, is parameterized by τ and says, roughly, that the
obfuscations of two τ -decomposing equivalent circuits must be indistinguishable.

5 In the sense that for each leaf, the path from root to leaf contains exactly one element
in S.
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1.4 Our Results

Our results are as follows:

– We show how to use (compact, single key) functional encryption to attain our
notion of dO. The construction is similar to the FE-to-iO conversion, with
the key difference that each step simplifies the circuit as must as possible;
this implements the new tree rules we need for shortcutting.
The number of steps in the process of converting C0 to C1, and hence the
loss in the security reduction is proportional to τ . However, we show that by
performing the decompose/merge steps in the right order, we can make sure
the number of explicitly assigned nodes is always at most n + 1, independent
of τ . This means the obfuscator itself does not depend on τ , and therefore
τ can be taken to be an arbitrary polynomial or even exponential and the
obfuscator will still be efficient. If we restrict τ to a polynomial, we obtain dO
from polynomially secure FE. Our results also naturally generalize to larger
τ : we obtain dO for quasipolynomial τ from quasipolynomially secure FE,
and we obtain dO for exponential τ from (sub)exponentially secure FE.

– We note that by setting τ to be 2n, τ -decomposing equivalence corresponds to
standard functional equivalence, since we can take the set S of nodes to consist
of all leaf nodes. Then dO coincides with the usual notion of indistinguisha-
bility obfuscation, giving us iO from sub-exponential FE. This re-derives the
results of [BV15,AJ15]. In our reduction, the loss is O(2n).

– We then show how to obtain several applications of obfuscation from dO with
polynomial τ . Thus, for all these applications, we obtain the application from
the polynomial hardness of FE, re-deriving several known results. In these
applications, there is a single input, or perhaps several inputs, for which
the computation must be changed from using the original circuit to using
a hard-coded value. This is easily captured by decomposing equivalence: by
decomposing each node from the root to the leaf for a particular input x,
the result is that that the program’s output on x is hard-coded into the
obfuscation. Applications include:

• Proving the hardness of finding Nash equilibria (in the full version [LZ17];
Nash hardness from FE was originally shown in [GPS16])

• Trapdoor Permutations (originally shown in [GPSZ16])
• Universal Samplers (Sect. 3.3; originally shown in [GPSZ16])
• Short Signatures (Sect. 3.2; not previously known from functional encryp-

tion, though known from obfuscation [SW14])
• Multi-key functional encryption (in the full version [LZ17]; originally

shown in [GS16])
We note that Nash, universal samplers, and short signatures only require
(polynomially hard) dO and one-way functions. In contrast, trapdoor permu-
tations and multi-key functional encryption both additionally require public
key encryption. If basing the application on public key functional encryption,
this assumption is redundant. However, unlike the case for full-fledged iO,
we do not know how to obtain public key functional encryption from just
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polynomially hard dO and one-way functions (more on this below). We do
show that a weaker multi-key secret key functional encryption scheme does
follow from dO and one-way functions.

Thus, we unify the techniques underlying many of the applications of FE—
namely iO, Nash, trapdoor permutations, universal samplers, short signatures,
and multi-key FE—under a single concept, dO. The constructions and proofs
starting from dO are much simpler than the original proofs using functional
encryption, due to the convenient dO abstraction hiding many of the common
details. We hope that dO will also serve as a starting point for further construc-
tions based on polynomially-hard assumptions.

1.5 Discussion

A natural question to ask is: what are the limits of these techniques? Could
they be used to give full iO from polynomially-hard assumptions? Or at least all
known applications from polynomial hardness? Here, we discuss several difficul-
ties that arise.

Difficulties in Breaking the Sub-exponential Barrier. First, exponential loss may
be inherent to constructing iO. Indeed, the following informal argument is
adapted from Garg et al. [GGSW13]. Suppose we can prove iO from a single
fixed assumption. This means that for every pair of equivalent circuits C0, C1,
we prove under this assumption that iO(C0) is indistinguishable from iO(C1).
Fix two circuits C0, C1, and consider the proof for those circuits. If C0 is equiv-
alent to C1, then the proof succeeds. However, if C0 is not equivalent to C1,
then the proof must fail: let x be a point such that C0(x) �= C1(x). Then a
simple adversary with x hard-coded can distinguish iO(C0) from iO(C1) simply
by running the obfuscated program on x.

This intuitively means that the proof must some how decide whether C0 and
C1 are equivalent. Since the proof consists of an efficient algorithm R reducing
breaking the assumption to distinguishing iO(C0) from iO(C1), it seems that
R must be efficiently deciding circuit equivalence. Assuming P �= NP , such a
reduction should not exist.6

The reductions from iO to functional encryption/simple multilinear map
assumptions avoid this argument by not being efficient. Indeed, the reductions
traverse the entire tree of 2n nodes as described above. In essence, the proof in
each step just needs to check a local condition such as C0(x) = C1(x) for some

6 One may wonder whether the same arguments apply to the seemingly similar setting
of zero knowledge, where zero knowledge must hold for true instances, but sound-
ness must hold for false instances. The crucial difference is that soundness does not
prevent the zero knowledge simulator from working on false instances. Therefore,
a reduction from a hard problem to zero knowledge does not need to determine
whether the instance is in the language. In contrast, for iO, the security property
must apply to equivalent circuits, but correctness implies that it cannot apply to
inequivalent circuits.
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particular x—which can be done efficiently—as opposed to checking equivalence
for all inputs.

While this argument is far from a proof of impossibility, it does represent an
significant inherent difficulty in building full-fledged iO from polynomial hard-
ness. We believe that overcoming this barrier, or showing that it is insurmount-
able, is an important and fascinating open question. For example, imagine trans-
lating the arguments above to iO for computational models with unbounded
input lengths such as Turing machines. In this case, equivalence is not only inef-
ficient, but undecidable. As such, the above arguments demonstrate a barrier to
basing Turing machine obfuscation on a finite number of even (sub)exponentially
hard assumptions. An important open question is whether it is possible to build
iO from Turing machines from iO for circuits; we believe achieving this goal will
likely require techniques that can also be used to overcome the sub-exponential
barrier.

For the remainder of the discussion, we will assume that building iO from
polynomial hardness is beyond reach without significant breakthroughs.

Avoiding the Barrier. We observe that poly-decomposing equivalence is an NP
relation: the polynomial-sized set of nodes where the fragments are identical
provides a witness that two circuits are equivalent: it is straightforward to check
that a collection of nodes covers all of the leaves and that the fragments at those
nodes are identical. In contrast, general circuit equivalence is co-NP -complete,
and therefore unlikely to be in NP unless the polynomial hierarchy collapses.
This distinction is exactly what allows us to avoid the sub-exponential barrier.

Our security reduction has access to the witness for equivalence, which guides
how the reduction operates. The reduction can use the witness to trivially verify
that the two circuits are equivalent; if the witness is not supplied or is invalid, the
reduction does not run. The sub-exponential barrier therefore no longer applies
in this setting.

More generally, the sub-exponential barrier will not apply to circuit pairs for
which there is a witness proving equivalence; in other words, languages of circuit
pairs in NP ∩co-NP 7. Any languages outside NP ∩co-NP are likely to run into
the same sub-exponential barrier as full iO since witnesses for equivalence do
not exist, and meanwhile there remains some hope that languages inside might
be obfuscatable without a sub-exponential loss by feeding the witness to the
reduction.

In fact, almost all applications of obfuscation we are aware of can be modified
so that the pairs of circuits in question have a witness proving equivalence. For
example, consider obtaining public key encryption from one-way functions using
obfuscation [SW14]. The secret key is the seed s for a PRG, and the public
key is the corresponding output x. A ciphertext encrypting message m is an
obfuscation of the program Px,m, which takes as input a seed s′ and checks that
PRG(s′) = x. If the check fails, it aborts and outputs 0. Otherwise if the check

7 Circuit equivalence is trivially in co-NP ; a point on which the two circuits differ is
a witness that they are not equivalent.
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passes, it outputs m. To decrypt using s, simply evaluate obfuscated program
on s.

In the security proof, iO is used for the following two programs: Px,m where x
is a truly random element in the co-domain of PRG, and Z, the trivial program
that always outputs 0. We note that since PRG is expanding, with high probabil-
ity x will not have a pre-image, and therefore Px,m will also output 0 everywhere.
Therefore, Px,m and Z are (with high probability) functionally equivalent.

For general PRGs, there is no witness for equivalence of these two programs.
However, by choosing the right PRG, we can remedy this. Let P be a one-way
permutation, and let h be a hardcore bit for P . Now let PRG(s) = (P (s), h(s)).
Instead of choosing x randomly, we choose x as P (s), 1⊕h(s) for a random seed
s8. This guarantees that x has no pre-image under PRG. Moreover, s serves as
a witness that x has no pre-image. Therefore, the programs Px,m and Z have a
witness for equivalence.

Limits of the dO Approach. Unfortunately, decomposable obfuscation is not
strong enough to prove security in many settings. In fact, we demonstrate
(Sect. 4) that τ -decomposing equivalence can be decided in time proportional to
τ , meaning poly-decomposing equivalence is actually in P . However, for exam-
ple, the equivalence of programs Px,m and Z above cannot possibly be in P—
otherwise we could break the PRG: on input x, check if Px,m is equivalent to
Z. A random output will yield equivalence with probability 1/2, whereas a PRG
sample will never yield equivalence circuits. In other words, Px,m and Z are
provably not poly-decomposing equivalent, despite being functionally equivalent
programs.

One can also imagine generalizing dO to encompass more general paths
through the binary tree of prefixes. For example, one could decompose the circuit
into fragments, partially merge some of the fragments back together, decompose
again, etc. We show that this seemingly more general path decomposing equiv-
alence is in fact equivalent to (standard) decomposing equivalence. Therefore,
this path dO is equivalent to (standard) dO, and only works for pairs of circuits
that can be easily verified as equivalent.

Unsurprisingly then, all the applications we obtain using poly-decomposable
obfuscation obfuscate circuits for which it is easy to verify equivalence. This
presents some interesting limitations relative to iO:

– All known ways of getting public key encryption from iO and one-way func-
tions suffer from a similar problem, and cannot to our knowledge be based on
poly-dO. In other words, unlike iO, dO might not serve as a bridge between
Minicrypt and Cryptomania. Some of our applications—namely multi-key
functional encryption and trapdoor permutations—imply public key encryp-
tion; for these applications, we actually have to use public key encryption as
an additional ingredient. Note that if we are instantiating dO from functional

8 This is no longer a random element in the codomain of the PRG, but it suffices for
the security proof.
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encryption, we get public key encryption for free. However, if we are inter-
ested in placing dO itself in the complexity landscape, the apparent inability
to give public key encryption is an interesting barrier.
More generally, a fascinating question is whether any notion of obfuscation
that works only for efficiently-recognizable equivalent circuits can imply pub-
lic key encryption, assuming additionally just one-way functions.

– While iO itself does not imply one-way functions9, iO can be used in con-
junction with a worst-case complexity assumption, roughly NP � BPP , to
obtain one-way functions [KMN+14]. The proof works by using a hypothet-
ical inverter to solve the circuit equivalence problem; assuming the circuit
equivalence problem is hard, they reach a contradiction. The solver works
exactly because iO holds for the equivalent circuits.
This strategy simply does not work in the context of dO. Indeed, dO only
applies to circuits for which equivalence is easily decidable anyway, mean-
ing no contradiction is reached. In order to obtain any results analogous
to [KMN+14] for restricted obfuscation notions, the notion must always work
for at least some collection of circuit pairs for which circuit equivalence is hard
to decide. Put another way, dO could potentially exist in Pessiland.

– More generally, dO appears to roughly capture the most general form of the
techniques in [GPS16,GPSZ16,GS16], and therefore it appears that these
techniques will not extend to the case of non-efficiently checkable equivalence.
Many constructions using obfuscation fall in this category of non-checkable
equivalence: deniable encryption and non-interactive zero knowledge [SW14],
secure function evaluation with optimal communication complexity [HW15],
adaptively secure universal samples [HJK+16], and more.

We therefore leave some interesting open questions:

– Build iO for a class of circuit pairs for which equivalence is not checkable
in polynomial time, but for which security can be based on the polynomial
hardness of just a few assumptions.

– Modify the constructions in deniable encryption/NIZK/function evalua-
tion/etc so that obfuscation is only ever applied on program pairs for which
equivalence can be easily verified—ideally, the circuits would be decomposing
equivalent.

– Prove that for some applications, obfuscation must be applied to program
pairs with non-efficiently checkable equivalence.

2 Decomposing Equivalence and dO Definitions

In this section, we define several basic definitions including decomposing equiv-
alence and dO.

9 If P = NP , one-way functions do not exist but circuit minimization can be used to
obfuscate.
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2.1 Partial Evaluation on Circuits

Definition 1. Consider a circuit C defined on inputs of length n > 0, for any
bit b ∈ {0, 1}, a partial evaluation of C on bit b denoted as C(b, ·) is a circuit
defined on inputs of length n − 1, where we hardcode the input bit x1 to b, and
then simplify. To simplify, while there is a gate that has a hard-coded input,
replace it with the appropriate gate or wire in the usual way (e.g. AND(1, b)
gets replaced with the pass-through wire b, and AND(0, b) gets replaced with the
constant 0). Then remove all unused wires.

Also we can define a partial evaluation of a circuit C on a string x which is
repeatedly applying partial evaluations and simplifying bit by bit.

From now on, whenever we use the expression C(x, ·), we always refer to the
result of simplifying C after hardcoding the prefix x.

2.2 Circuit Assignments

A binary tree Tn is a tree of depth n + 1 where the root is labeled ε (an empty
string), and for any node that is not a root whose parent is labeled as x, it is
labeled x||0 if it is a left-child of its parent; it is labeled as x||1 if it is a right-child
of its parent.

Definition 2 (Tree Covering). We say a set of binary strings {xi}�
i=1 is a

tree covering for all strings of length n if the following holds: for every string
x ∈ {0, 1}n, there exists exactly one xj in the set such that xj is a prefix of x.

A tree covering {xi}�
i=1 also can be viewed as a set of nodes in Tn such that

for every leaf in the tree, the path from root ε to this leaf will pass exactly one
node in the set.

Yet another equivalent formulation is that a tree covering is either (1) a set
consisting of the root node of the tree, or (2) the union of two tree coverings for
the two subtrees rooted at the children of the root node.

Definition 3 (Circuit Assignment). We say L = {(xi, Cxi
)}�

i=1 is a circuit
assignment with size � where {xi}�

i=1 is a tree covering for Tn and {Cxi
}�

i=1 is
a set of circuits where Cxi

is assigned to the node xi in the covering.
We say a circuit assignment is valid if for each Cxi

, it is defined on input
length n − |xi|.

An evaluation of L on input x is defined as: find the unique xj which is a
prefix of x = xj ||x−j and return Cxj

(x−j).
We call each circuit in the assignment a fragment. The cardinality of the

circuit assignment is the size of the tree covering, and the circuit size is the
maximum size of any fragment in the assignment.

A circuit assignment L = {(xi, Cxi
)}�

i=1 naturally corresponds to a function:
on input y ∈ {0, 1}n, scan the prefix of y from left to right until we find the
smallest i such that y[i] equals to some xj , output Cxj

(y[i+1···n]). We will override
the notation and write this function as L(x).

We associate a circuit C with the assignment LC = {(ε, C)} which assigns
C to the root of the tree. Notice that LC and C are equivalent as functions.
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Definition 4 (one shot decomposing equivalent). Given two circuits
C0, C1 defined on inputs of length n, we say they are τ -one shot decomposing
equivalent or simply τ -decomposing equivalent if the following hold:

– There exists a tree covering X = {xi}i of size at most τ ;
– For all xi ∈ X , C0(xi, ·) = C1(xi, ·) as circuits (they are exactly the same

circuit).

Definition 5. dO with two PPT algorithms {dO.ParaGen, dO.Eval} is a
τ(n, s, κ)-decomposing obfuscator if the following conditions hold

– Efficiency: dO.ParaGen, dO.Eval are efficient algorithms;
– Functionality preserving: dO.ParaGen takes as input a security parame-

ter κ and a circuit C, and outputs the description Ĉ of an obfuscated pro-
gram. For all κ and all circuit C, for all input x ∈ {0, 1}n, we have
dO.Eval(dO.ParaGen(1κ, C), x) = C(x);

– Decomposing indistinguishability: Consider a pair of PPT adversaries
(Samp,D) where Samp outputs a tuple (C0, C1, σ) where C0, C1 are circuits
of the same size s = s(κ) and input length n = n(κ). We require that, for any
such PPT (Samp,D), if

Pr[C0 is τ -decomposing equivalent to C1 : (C0, C1, σ) ← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, dO.ParaGen(1κ, C0)) = 1]
−Pr[D(σ, dO.ParaGen(1κ, C1)) = 1]| ≤ negl(κ)

Note that the size of parameters generated by dO.ParaGen is bounded by
poly(n, κ, τ, |C|). But however you will see later that τ can always be replaced
by n so even if τ = Ω(2n), the size is still bounded by poly(n, κ, |C|) (but you
will have τ -loss in the security analysis).

And in the next section we will discuss about the applications of dO and later
come back to more discussions about dO including constructions and relations
between different iO.

3 Applications

3.1 Notations

Before all the applications, let us first introduce several definitions for conve-
nience.

First let us look at some operations defined on circuits (or circuit assign-
ments).

1. Decompose(L, x) takes a circuit assignment L and a string x as parameters.
This operation is invalid if x is not in the tree covering. The new circuit
assignment has a slightly different tree covering: the new tree covering includes
x||0 and x||1 but not x. It decomposes the fragment Cx into two fragments
Cx(0, ·) and Cx(1, ·) and assigns them to x||0 and x||1 respectively.
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2. CanonicalMerge(L, x) operates on an assignment L where the tree cover-
ing includes both children of node x but not x itself. It takes two circuits
Cx||0, Cx||1 assigned to the node x||0 and x||1 and merge them to get the
following circuit Cx(b, y) = (b ∧ Cx||0(y)) ∨ (b ∧ Cx||1(y)) (Here we assume
the output length of both circuits is 1. It is straightforward to extend the
definition to circuits with any output length). The new tree covering has x
but not x||0 or x||1.
One observation is that for any circuit assignment whose tree covering has
x||0 and x||1 but not x and Cx||0, Cx||1 can not be simplified any further,
Decompose(CanonicalMerge(L, x), x) = L.

3. DecomposeTo(L, TC): It takes a circuit assignment L (if the first parameter is
a circuit C, then L = {(C, ε)}) and a tree covering TC where TC is below the
covering in L. This procedure keeps taking the lexicographically first circuit
fragment Cx which x is not in TC and do Decompose(L, x). Because the
covering in L is above TC, the procedure halts when the covering in the new
circuit assignment is exactly TC.
We can also define DecomposeTo(L, x) = DecomposeTo(L, TCx) where TCx

is a tree covering that consists all the nodes adjacent to the path from root
to node x, in other words, TCx = {¬x1, x1¬x2, x1x2¬x3, · · · , x|x|−1¬x|x|, x}
(a full description is in Sect. 4).

4. CanonicalMerge(L): it canonically merges all the way to the root. In other
words, the procedure keeps taking the lexicographically first circuit fragment
pair Cx||0 and Cx||1 and doing CanonicalMerge(L, x) until the tree covering in
the circuit assignment is {ε}, in other words, it becomes a single circuit.

Note that the functionality of a circuit assignment is preserved under applying
any valid operation above.

We now define an decomposing compatible pseudo random function. The
construction [GGM86] automatically satisfies the definition below.

Definition 6. An decomposing compatible pseudo random function DPRF con-
sists the following algorithms DPRF.KeyGen and DPRF.Eval where

– DPRF.Eval takes a input of length n and the output is of length p(n) where p
is a fixed polynomial;

– (PRF Security). For any poly sized adversary A, there exists a negligible
function negl, for any string y0 ∈ {0, 1}n and any κ,

|Pr[A(DPRF.Eval(S, y0)) = 1] − Pr[A(r) = 1]| ≤ negl(κ)

where S ← DPRF.KeyGen(1κ) and r ∈ {0, 1}p(n) is a uniformly random
string.

– (EPRF Security). Consider the following game, let Gameκ,A,b be
• The challenger prepares S ← DPRF.KeyGen(1κ);
• The adversary makes queries about x and gets DPRF.Eval(S, x) back from

the challenger;
• The adversary gives a tree covering TC and y∗ ∈ TC to the challenger

where y∗ is not a prefix of any x that has been asked;
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• The challenger sends the distribution Db back to the adversary A where
∗ D0: let the circuit D to be D(·) = DPRF.Eval(S, ·) defined on

{0, 1}n, the circuit assignment is DecomposeTo(D,TC). We observe
that the fragment corresponding to y is DPRF.Eval(S, y, ·) defined on
{0, 1}n−|y|.

∗ D1: For each y �= y∗ ∈ TC, let the fragment corresponding to
y be Dy(·) = DPRF.Eval(S, y, ·) defined on {0, 1}n−|y| and for y∗,
Dy∗(·) = DPRF.Eval(S′, y∗, ·) defined on {0, 1}n−|y∗| where S′ ←
DPRF.KeyGen(1κ).

• The adversary can keep making queries about x which does not have prefix
y∗ and gets DPRF.Eval(S, x) back from the challenger;

• The output of this game is the output of A.
For any poly sized adversary A, there exists a negligible function negl such
that:

|Pr[Gameκ,A,0 = 1] − Pr[Gameκ,A,1 = 1]| ≤ negl(κ)

Let us define an another operation on a circuit assignment and a circuit.

Definition 7. By given a circuit C and a circuit assignment L where C takes
two inputs x and L(x), C(·, L(·)) is a circuit assignment defined below:

– Let TC be the tree covering inside L = {(x,Dx)}x∈TC .
– Let L′ = DecomposeTo(C, TC) = {(x,Cx)}x∈TC .
– For each fragment in the output circuit assignment corresponding to x ∈ TC,

it is Cx(·,Dx(·)) simplified, which is defined on {0, 1}n−|x|.

We can also define similar operations on several circuit assignments and one
circuit as long as these circuit assignments have the same tree covering. In other
words, let L1, · · · , Lm(Li = {(x,Di

x)} are circuit assignments with the same tree
covering TC, then C(·, L1(·), L2(·), · · · , Lm(·)) is a circuit assignment whose
fragment corresponding to y ∈ TC is C(y, ·,D1

y(·), · · · ,Dm
y (·)) simplified.

Then we have the following lemma:

Lemma 1. For any two circuits C,D where D takes a single input x and C
takes two inputs x and D(x), for any tree covering TC, we have

DecomposeTo(C(·,D(·)), TC) = C(·, [DecomposeTo(D,TC)](·))

For m+1 circuits C,D1,D2, · · · ,Dm, where D1, · · · ,Dm take a single input
x and C takes x and D1(x) · · · Dm(x) as inputs, we have

DecomposeTo(C(·,D1(·), · · · ,Dm(·)), TC)
= C(·,DecomposeTo(D1, TC), · · · ,DecomposeTo(Dm, TC))

Proof. Let us first look at the left side. It is a circuit assignment with the
tree covering TC. For the fragment corresponding to y ∈ TC, it is the partial
evaluation of C(·,D(·)) on y.
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For the right side, we first have a circuit assignment DecomposeTo(D,TC)
where the fragment corresponding to y is D(y, ·). So by the definition of our
operation, the fragment corresponding to y in the right side is C(y, ·,D(y, ·))
simplified.

Since each pair of fragments are the same, the left side is equal to the right
side.

3.2 Short Signatures

Here, we show how to use dO to build short signatures, following [SW14]. As
in [SW14], we will construct statically secure signatures.

The signature is simply of the following form f(DPRF.Eval(S,m)) where f is
a one-way function.

Definition 8. A signature scheme SS consists of the following algorithms:

– SS.Setup(1κ): it outputs a verification key vk and a signature key sk;
– SS.Sign(sk,m): it is a deterministic procedure; it takes a signature key and a

message, then outputs a signature σ;
– SS.Ver(vk,m, σ): it is a deterministic algorithm; it takes a verification key, a

message m and a signature σ, it outputs 1 if it accepts; 0 otherwise.

We say a short signature scheme is correct if for any message m ∈ {0, 1}�:

Pr

[
SS.Ver(vk,m, σ) = 1

∣∣∣∣∣ (vk, sk) ← SS.Setup(1κ)
σ ← SS.Sign(sk,m)

]
= 1

We now define security for short signatures.

Definition 9. We denote Gameκ,A to be the following where κ is the security
parameter and A is an adversary:

– First A announces a message m∗ of length �;
– The challenger gets m∗ and prepares two keys sk and vk; it then sends vk back

to A;
– A can keep making queries m′ to the challenger and gets Sign(sk,m′) back for

any m′ �= m∗;
– Finally A sends a forged signature σ∗ and the output of the game is

Ver(vk,m∗, σ∗).

We say SS is secure if for any polysized A, there exists a negligible function
negl,

Pr[Gameκ,A = 1] ≤ negl(κ)
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Algorithm 1. Verification Algorithm
1: procedure V (m, σ,DPRF.Eval(S, m))
2: it computes σ′ ← DPRF.Eval(S, m)
3: if f(σ) = f(σ′) then
4: return 1
5: else
6: return 0
7: end if
8: end procedure

Construction. We now give a signature scheme where signatures are short.
The construction is similar with that in [SW14] but we use dO instead of iO.
Our SS has the following algorithms:

– SS.Setup(1κ): it takes a security parameter κ and prepares a key S ←
DPRF.KeyGen(1κ). S is the secret key sk. Then it computes the verifica-
tion key as vk ← dO.ParaGen(1κ, V (·,DPRF.Eval(S, ·))) where V is given in
Algorithm 1 (we will pad programs to a length upper bound before applying
dO).

– SS.Sign(sk,m) = DPRF.Eval(S,m)
– SS.Ver(vk,m, σ) = dO.Eval(vk, {m,σ})

It is straightforward to see that the construction satisfies correctness.

Security

Theorem 1. If dO is a secure poly-dO, DPRF is a secure decomposing compat-
ible PRF, and f is a one-way function, then the construction above is a short
secure signature scheme.

Proof. Now prove security through a sequence of hybrid experiments.

– Hyb 0: In this hybrid, we are in Gameκ,A;
– Hyb 1: In this hybrid, since the challenger gets m∗ before it releases
vk, we decompose the circuit to get L = DecomposeTo(V (·,DPRF.
Eval(S, ·)),m∗). By Lemma 1, the circuit assignment is V (·,DecomposeTo
(DPRF.Eval(S, ·),m∗)).
Therefore we have that the distributions dO.ParaGen(1κ, V (·,DPRF.Eval
(S, ·))) and dO.ParaGen(1κ,CanonicalMerge(L)) are indistinguishable, since
these two circuits are � + 1-decomposing equivalent by applying dO.

– Hyb 2: This is the same as Hyb 1, except that we replace the frag-
ment in DecomposeTo(DPRF.Eval(S, ·),m∗) corresponding to m∗—which is
“return DPRF.Eval(S,m∗)”—by “return DPRF.Eval(S′,m∗)” where S′ ←
DPRF.KeyGen(1κ) is a fresh random DPRF key that is independent of S. We
call the new circuit assignment L′. Hyb 1 and Hyb 2 are indistinguishable
because of the DPRF security.
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– Hyb 3: This is the same as Hyb 2, except that we replace the fragment
in L′, which is “return DPRF.Eval(S′,m∗)” by “return r∗” where r∗ is a
uniformly random string. We call the new circuit assignment L′′. As we don’t
have S′ in the program anywhere except this fragment, Hyb 2 and Hyb 3
are indistinguishable because of the PRF security.
We find that in CanonicalMerge(L′′), the fragment corresponding to m∗ is:
on input σ, it returns 1 if f(σ) = v∗; 0 otherwise, where v∗ = f(r∗) for a
uniformly random r∗.

Lemma 2. If there exists a poly sized adversary A for Hyb 3, then we can break
one-way function f .

Proof. Given z∗ which is f(r∗) for a truly random r∗, we can actually simulate
Hyb 3. If we successfully find a forged signature for Hyb 3 with non-negligible
probability, it is actually a pre-image of z∗ which means we break one-way func-
tion with non-negligible probability.

This completes the security proof.

3.3 Universal Samplers

Here we construct universal samplers from dO. For the sake of simplicity, we
will show how to construct samplers meeting the one-time static definition
from [HJK+16]. However, note that the same techniques also can be used to con-
struct the more complicated k-time interactive simulation notion of [GPSZ16].

Let US denote an universal sampler. It has the following procedures:

– params ← US.Setup(1κ, 1�, 1t): the Setup procedure takes a security parameter
κ, a program size upper bound � and a output length t and outputs an
parameter params;

– US.Sample(params, C) is a deterministic procedure that takes a params and
a sampler C of length at most � where C outputs a sample of length t. This
procedure outputs a sample s;

– params′ ← US.Sim(1κ, 1�, 1t, C∗, s∗) takes a security parameter κ, a program
size upper bound � and a output length t, also a circuit C∗ and a sample s∗

in the image of C∗.

Correctness. For any C∗ and s∗ in the image of C∗, and for any � ≥ |C∗|, and
t is a upper bound for C∗’s outputs, we have

Pr
[
US.Sample(params′, C∗)] = s∗ | params′ ← US.Sim(1κ, 1�, 1t, C∗, s∗)

]
= 1

Security. For any � and t, for any C∗ of size at most � and output size at most
t, for any poly sized adversary A, there exists a negligible function negl, such
that
∣
∣
∣Pr[A(params, C∗) = 1 | params ← US.Setup(1κ, 1�, 1t)]

− Pr

[

A(params′, C∗) = 1
∣
∣
params′ ← US.Sim(1κ, 1�, 1t, C∗, s∗),
s∗ ←

R
C∗(·)

]
∣
∣
∣ ≤ negl(κ)
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where s∗ ←
R

C∗(·) means s∗ is a truly random sample from C∗(·).

Construction. Now we give the detailed construction for our universal sampler:

– Define U to be the size upper bound among all the circuits being obfus-
cated in our proof (not the size of circuits fed into the universal sampler).
It is straightforward to see that U = poly(κ, �, t); Whenever we mention
dO.ParaGen(1κ, C), we will pad C to have size U .

– For simplicity, we will assume circuits C fed into the universal sampler will
always be padded to length � so that we can consider only circuits of a fixed
size.

– US.Setup(1κ, 1�, 1t) randomly samples a key S ← DPRF.KeyGen(1κ), and
constructs a circuit Sampler (see Algorithm 2) as follows: on input cir-
cuit C of size �, it outputs a sample based on the randomness gener-
ated by DPRF; and the output of the procedure US.Setup is params =
dO.ParaGen(1κ,Sampler(·,DPRF.Eval(S, ·))).

Algorithm 2. Sampler Algorithm
1: procedure Sampler(C = c1c2 · · · c�,DPRF.Eval(S, C))
2: rC ← DPRF.Eval(S, C)
3: return C(; rC)
4: end procedure

– US.Sample(params, C): it simply outputs dO.Eval(params, C);
– US.Sim(1κ, 1�, 1t, C∗, s∗): it randomly samples a key S ← DPRF.KeyGen(1κ),

let L be a circuit assignment Sampler(·,DecomposeTo(DPRF.Eval(S, ·), C∗)).
And finally it replaces the fragment corresponding to C∗ in L
with “return s∗” instead of returning C∗(;DPRF.Eval(S,C∗)). Let
Sampler′ = CanonicalMerge(L) and the output of US.Sim is params′ =
dO.ParaGen(1κ,Sampler′).

Theorem 2. If dO and one-way functions exist, then there exists an universal
sampler.

Proof. First, it is straightforward that correctness is satisfied. Next we prove
security. Fix a circuit C∗ and suppose there is an adversary A for the sampler
security game for C∗. We prove the indistinguishability through a sequence of
hybrids:

– Hyb 0: Here, the adversary receives params ← US.Setup(1κ, 1�, 1t);
– Hyb 1: In this hybrid, let s∗ ← C∗(;DPRF.Eval(S,C∗)). We get params1 ←
US.Sim(1κ, 1�, 1t, C∗, s∗) where Sampler1 is the circuit constructed in US.Sim
where we are using the same S in Hyb 0.
It is straightforward that Sampler1 and Sampler are � + 1-decomposing
equivalent. Therefore params1 = dO.ParaGen(1κ,Sampler1) and params =
dO.ParaGen(1κ,Sampler) are indistinguishable by dO security, meaning Hyb
0 and Hyb 1 are indistinguishable.
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– Hyb 2: This is the same as Hyb 1, except we replace the fragment in
DecomposeTo(DPRF.Eval(S, ·), C∗) corresponding to C∗ with the fragment
“return DPRF.Eval(S′, C∗)” where S′ ← DPRF.KeyGen(1κ) is a new key
generated by a uniformly random string. We call the new circuit assignment
L′. The indistinguishability between Hyb 1 and Hyb 2 follows from the
DPRF security.

– Hyb 3: In this hybrid, since the fragment in L′ corresponding to C∗ is now
returning C∗(;DPRF.Eval(S′, C∗)) and we don’t have S′ in the program, by
PRF security, we can replace the return value with C(; r∗) where r∗ is a
truly random string. This is equivalent to the adversary receiving params ←
US.Sim(1κ, 1�, 1t, C∗, s∗) for a fresh sample s∗ ← C∗.

4 Constructions of dO

In this section, we give more discussions about decomposing equivalence and dO.
And finally we give the constructions of dO from compact functional encryption
schemes.

4.1 New Notions of Equivalence for Circuits

We will define a partial order  on nodes in a binary tree. We say that x  y
(alternatively, x is above y) if x is a prefix of y. We also extend our partial order
 to tree coverings. We say a tree covering TC0  TC1, or TC0 is above TC1,
if for every node u in TC1, there exists a node v in TC0 such that v  u (that is,
v is equal to u or an ancestor of u). A tree covering TC0 is below TC1 if TC1 is
above TC0. It is straightforward that if TC0  TC1, then |TC0| ≤ |TC1| where
|TC0| = |TC1| if and only if TC0 = TC1. We can also extend  to compare tree
coverings to nodes. We have u  TC if there is a node v ∈ TC such that u  v.
TC  u if there exists a v ∈ TC such that v  u.

We give more operations defined on circuits and circuit assignments for con-
venience.

– Decompose(L, x): mentioned in Sect. 3.1.
– CanonicalMerge(L, x): mentioned in Sect. 3.1.
– TargetedMerge(L, x,C) operates on an assignment L where the tree covering

includes both children of node x but not x itself. This operation is invalid if
either C(0, ·) �= Cx||0 or C(1, ·) �= Cx||1 as circuits. It takes the two circuits
Cx||0, Cx||1 assigned to the node x||0 and x||1 and merges them to get Cx = C.
The new tree covering has x but not x||0 or x||1.
We observe that

• Decompose(TargetedMerge(L, x,C), x) = L where Cx||0 and Cx||1 in L can
not be simplified any further, and all the operations are valid

• TargetedMerge(Decompose(L, x), x, C) = L where C is the fragment at
node x in L (as long as the operations are valid).
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– DecomposeTo(L, x): takes a circuit assignment L and a string x as parame-
ters. The operation is valid if TC  x, where TC is the tree covering for L.
Let u be ancestor of x in TC. Let p0 = u, p1, . . . , pt = x be the path from u to
x. DecomposeTo first sets L0 = L, and then runs Li ← Decompose(Li−1, pi−1)
for i = 1, . . . , t. The output is the new circuit assignment L′ = Lt. The new
tree covering TC ′ for L′ is the minimal TC ′ that is both below TC and con-
tains x.
We will also extend DecomposeTo to operate on circuits in addition to assign-
ments, by first interpreting the circuit as an assignment, and performing
DecomposeTo on the assignment.

– DecomposeTo(L, TC): mentioned in Sect. 3.1.
– CanonicalMerge(L, TC): It takes a circuit assignment L and a tree cov-

ering TC where TC is below the covering in L. It repeatedly performs
CanonicalMerge(L, x) at different x until the tree covering in the assignment
becomes TC. To make the merging truly canonical, we need to specify an
order that nodes are merged in. We take the convention that the lowest nodes
in the tree are merged first, and between nodes in the same level, the leftmost
nodes are merged first.

– CanonicalMerge(L) = CanonicalMerge(L, {ε}): mentioned in Sect. 3.1.

4.2 Locally, Path, One Shot Decomposing Equivalence

We define two new equivalence notions for circuits based on the decomposing and
merging operations defined above. First, we define a local equivalence condition
on circuit assignments:

Definition 10 (locally decomposing equivalent). We say two circuit
assignments L1 = {(xi, Cxi

)}, L2 = {(yi, C
′
yi

)} are (�, s)-locally decomposing
equivalent if the following hold:

– The circuit size of L1, L2 is at most s;
– The cardinality of L1, L2 is at most �;
– L1 can be obtained from L2 by applying Decompose(L2, x) for some x or by

applying TargetedMerge(L2, x, C) for some x and C is the fragment assigned
in L1 to the string (node) x;

Local decomposing equivalence (Local DE) means that we can transform
L1 into L2 by making just a single local change, namely decomposing a node
or merging two nodes. Notice that since decomposing a node does not change
functionality, local DE implies that L1 and L2 compute equivalent functions.
For any �, s, (�, s)-local decomposing equivalence forms a graph, where nodes
are circuit assignments and edges denote local decomposing equivalence. Next,
we define a notion of path decomposing equivalence for circuits (which can be
thought of as nodes in the graph), which says that two circuits are equivalent if
they are connected by a reasonably short path through the graph.
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Definition 11 (path decomposing equivalent). We say two circuits C1, C2

are (�, s, t)-path decomposing equivalent if there exists at most t − 1 circuit
assignments L′

1, L
′
2, · · · , L′

t−1 such that, for any 1 ≤ i ≤ t, L′
i−1 and L′

i are
(�, s)-locally decomposing equivalent, where L′

0 = {(ε, C1)} and L′
t = {(ε, C2)}.

Now let’s recall the definition of one shot decomposing equivalent which
allows for exactly two steps to get between C1 and C2. Now the steps are not
confined to be local, but instead the first step is allowed to decompose the root
to a given tree covering, and the second then merges the tree covering all the
way back to the root.

Recall Definition 4 (one shot decomposing equivalent). Given two cir-
cuits C0, C1 defined on inputs of length n, we say they are τ -one shot decom-
posing equivalent or simply τ -decomposing equivalent if the following hold:

– There exists a tree covering X = {xi}i of size at most τ ;
– For all xi ∈ X , C0(xi, ·) = C1(xi, ·) as circuits.

An equivalent definition for “τ -one shot decomposing equivalent” is that there
exists a tree covering X of size at most τ , such that DecomposeTo({(ε, C0)},X ) =
DecomposeTo({(ε, C1)},X ), in other words, the tree coverings are the same and
the corresponding fragments for each node are the same.

We note that since the operations defining path and one shot decomposing
equivalence all preserve functionality, we have that these notions imply standard
functional equivalence for the circuits:

Lemma 3. If C0, C1 are (�, s, t)-path decomposing equivalent for any �, s, t, or
if C0, C1 are τ -one shot decomposing equivalent for any τ , then C0, C1 compute
equivalent functions (C0(x) = C1(x),∀x ∈ {0, 1}n).

We also observe a partial converse:

Lemma 4. Two circuits C0, C1 (defined on n bits string) are 2n-one shot
decomposing equivalent if and only if they are functionally equivalent (C0(x) =
C1(x),∀x ∈ {0, 1}n).

Proof. We only need to show the case that functional equivalence implies 2n-
one shot decomposing equivalence. If C0, C1 are functionally equivalent, we can
let the tree covering be X = {0, 1}n. Because C0(x) = C1(x) for all x ∈ {0, 1}n =
X , we have DecomposeTo({(ε, C0)},X ) = DecomposeTo({(ε, C1)},X ). Therefore
C0, C1 are 2n-one shot decomposing equivalent.

4.3 Locally, One Shot dO

Here, we will recall decomposing obfuscation (dO) and give one more defini-
tion. Let us recall the definition of dO. Decomposable obfuscator, roughly, is
an indistinguishability obfuscator, but where the indistinguishability security
requirement only applies to pairs of circuits that are decomposing equivalent (as
opposed to applying to all equivalent circuits).
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Recall Definition 5. dO wtih two PPT algorithms {dO.ParaGen, dO.Eval} is
a τ(n, s, κ)-decomposable obfuscator if the following conditions hold

– Efficiency: dO.ParaGen, dO.Eval are efficient algorithms;
– Functionality preserving: dO.ParaGen takes as input a security parame-

ter κ and a circuit C, and outputs the description Ĉ of an obfuscated pro-
gram. For all κ and all circuit C, for all input x ∈ {0, 1}n, we have
dO.Eval(dO.ParaGen(1κ, C), x) = C(x);

– Decomposing indistinguishability: Consider a pair of PPT adversaries
(Samp,D) where Samp outputs a tuple (C0, C1, σ) where C0, C1 are circuits
of the same size s = s(κ) and input length n = n(κ). We require that, for any
such PPT (Samp,D), if

Pr[C0 is τ(n, s, κ)-decomposing equivalent to C1 : (C0, C1, σ) ← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, dO.ParaGen(1κ, C0)) = 1]
−Pr[D(σ, dO.ParaGen(1κ, C1)) = 1]| ≤ negl(κ)

Since 2n-equivalence corresponds to standard equivalence, 2n-dO is equivalent to
the standard notion of iO. In this work, we will usually consider a much weaker
setting, where τ is restricted to a polynomial.

The following tool, called local dO (ldO), will be used to help us build dO.
Roughly, ldO is an obfuscator for circuit assignments with the property that local
changes to the assignment (that is, decomposing operations) are computationally
undetectable.

Definition 12. ldO with two PPT algorithms {ldO.ParaGen, ldO.Eval} is a
locally decomposable obfuscator if the following conditions hold

– Efficiency: ldO.ParaGen, ldO.Eval are efficient algorithms;
– Functionality preserving: ldO.ParaGen takes as input a security para-

meter κ, a circuit assignment L, a cardinality bound �, and a circuit
size bound s. For all κ and all circuit assignment L with cardinality at
most � and circuit size at most s, for all input x ∈ {0, 1}n, we have
ldO.Eval(ldO.ParaGen(1κ, L, �, s), x) = L(x);

– Local decomposing indistinguishability: Consider polynomials � = �(κ)
and s = s(κ). For any such polynomials, and any pair of PPT adversaries
(Samp,D), we require that if

Pr[L0 is (�(κ), s(κ))-local decomp. equiv. to L1 : (L0, L1, σ) ← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, ldO.ParaGen(1κ, L0, �, s)) = 1]
− Pr[D(σ, ldO.ParaGen(1κ, L1, �, s)) = 1]| ≤ � · negl(κ)

We will also consider a stronger variant, called sub-exponentially secure local
dO, where in the definition of local decomposing indistinguishability, the negli-
gible function negl is replaced by a subexponential function subexp.
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4.4 Locally dO Implies One Shot dO

Lemma 5. If two circuits C0, C1 are (t/2+1)-one shot decomposing equivalent,
then they are (n+1, s, t)-path decomposing equivalent where s = max{|C0|, |C1|}.
Proof. We start from the covering that has C0 assigned to the root. We perform
a depth-first traversal of the binary search tree consisting of the “bad” nodes:
nodes for which the partial evaluations of C0 and C1 are different. Equivalently,
we search over the ancestors of nodes in the tree covering. There are t/2 such
nodes. When we first visit a node on our way down the tree, we Decompose the
fragment at that node to its children. When we visit a node x for the second
time after processing both children, we merge the fragments in the two children,
using a TargetedMerge toward the circuit (C1)x. This operation is always valid
since for each child either: (1) the child is a “good” node, in which case the
partial evaluations at that node is identical to the partial evaluation of (C1)x||b;
or (2) the child is a “bad” node, in which case it was, by induction, already
processed and replaced with the partial evaluation of (C1)x||b. The cardinality of
any circuit assignment in this path is at most n+1 since we will only have frag-
ments adjacent to the path from the root to the node we are visiting. The circuit
size is moreover always bounded by s = max{|C0|, |C1|} because all the inter-
mediate fragments are partial evaluations of either C0 or C1. Finally, the path
performs an Decompose and TargetedMerge for each “bad” node, corresponding
to t operations.

Now we show that the existence of ldO implies the existence of dO.

Lemma 6. If ldO exists, then τ -dO exists, where the loss in the security reduc-
tion is 2(τ −1). In particular, if polynomially secure ldO exists, then τ -dO exists
for any polynomial function τ . Moreover, if subexponentially secure ldO exists,
then 2n-dO, and hence iO, exists.

Proof. The construction of ldO from dO is the natural one: to obfuscate a
circuit C, we simply consider the circuit as a circuit assignment with C assigned
to the root node, and obfuscate this circuit assignment. We take the maximum
cardinality for ldO to be n + 1 and the circuit size to be |C|.
– dO.ParaGen(1κ, C) = ldO.ParaGen(1κ, {(ε, C)}, n + 1, |C|);
– dO.Eval(params, x) = ldO.Eval(params, x);

Efficiency and functionality preservation are straightforward to prove. Now
we focus on security. Let (Samp,D) be two PPT adversaries, and s, n be poly-
nomials in κ. Suppose the circuits C0, C1 outputted by Samp(κ) always have
the same size s(κ), same input length n(κ), and are τ(n, s, κ)-decomposing
equivalent with probability 1. Then C0 and C1 are also (n + 1, s, 2(τ − 1))-
path decomposing equivalent by Lemma 5. By the definition of path decom-
posing equivalence and Lemma 8 (which states that the minimum tree cov-
ering is efficiently computable), there exist L′

1, L
′
2, · · · , L′

2(τ−2), L
′
2(τ−1)−1 and
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L′
0 = {(ε, C0)}, L′

2(τ−1) = {(ε, C1)} such that any two adjacent circuit assign-
ments are (n + 1, s)-locally decomposing equivalent. So we have that

|Pr[D(dO.ParaGen(1κ, C0))] − Pr[D(dO.ParaGen(1κ, C1))]|

≤
2(τ−1)∑

i=1

∣∣∣∣Pr[D(ldO.ParaGen(1κ, L′
i−1), n + 1, |C0|)]

−Pr[D(ldO.ParaGen(1κ, L′
i), n + 1, |C0|)]

∣∣∣∣
≤ 2(τ − 1) · ε(κ)

Here, ε is the advantage of the following adversary pair (Samp′,D) in the local
dO security game (where D is from above). Samp′ runs (C0, C1, σ) ← Samp′,
computes the path L′

0, · · · , L′
2(τ−1), chooses a random i ∈ [2(τ −1)], and outputs

(L′
i−1, L

′
i, σ).

Therefore, as desired, we get an adversary for the local dO where the loss is
2(τ −1). If we assume the polynomial hardness of ldO, the adversary (Samp′,D)
must have negligible advantage ε, and so we get τ − dO for any polynomial
τ . If we assume the subexponential hardness of ldO, we can set κ so that ε =
2−nnegl(κ) for some negligible function negl. In this case, we even get 2n-dO,
which is equivalent to iO. In the regime of subexponential hardness, we can even
set ε = 2−nsubexp(κ) for some subexponential function subexp, in which case we
get subexponentially secure 2n-dO and hence subexponentially secure iO. ��

Next, we focus on constructing ldO, which we now know is sufficient for
constructing dO.

4.5 Compact FE Implies dO

Theorem 3. If compact single-key selective secure functional encryption
schemes exist, then there exists local decomposable obfuscators ldO.

With Theorem 3 and Lemma 6, we have the following Theorem 4.

Theorem 4. If compact single-key selective secure functional encryption
schemes exist, then there exist decomposable obfuscators dO.

Now we prove Theorem 3.

Proof. Let us first give the construction of our ldO.ParaGen (see Algorithm 3)
where FE is a compact functional encryption scheme, SKE is a symmetric key
encryption scheme and PRG is a pseudo random generator.

For each function f
b,Zb

i
i (1 ≤ i ≤ n), it basically computes a partial evaluation

of an input circuit and encrypts it under two different functional encryption
schemes (See Algorithm 5). But instead of doing this, this function also allows
us to cheat and output a result given a secret key.

For each function f b
n+1, it is given a circuit with no input, and simply eval-

uates it (see Algorithm 6).
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Algorithm 3. Locally decomposable obfuscator ldO.ParaGen
1: procedure ldO.ParaGen(1κ, L = {(xi, Cxi)}, �, s)
2: for i = 1, 2, · · · , n, n + 1 do
3: (mpkb

i ,mskb
i ) ← FE.Gen(1κ) for b ∈ {0, 1}

4: end for
5: prepare a list of secret keys skb

i,j ← SKE.KeyGen(1κ) for 1 ≤ i ≤ n, 1 ≤ j ≤ �
and b ∈ {0, 1}

6: prepare Zb
i = Zb

i,1, Z
b
i,2, · · · , Zb

i,� for 1 ≤ i ≤ n and b ∈ {0, 1} where Zb
i,j =

SKE.Enc(skb
i,j , 0

t1) and t1 is a length bound specified later;
7: generate c0, c1 by calling a recursive algorithm CGen(ε, L)
8: for i = 1, 2, · · · , n do

9: fskb
i ← FE.KeyGen(mskb

i , f
b,Zb

i
i ) for b ∈ {0, 1}

10: end for
11: fskb

n+1 ← FE.KeyGen(mskb
n+1, f

b
n+1) for b ∈ {0, 1}

12: return the parameters {c0, c1, {mpk0i ,mpk1i }n+1
i=1 , {fsk0i , fsk1i }n+1

i=1 }
13: end procedure

Algorithm 4. Generating c0, c1 recursively
1: procedure CGen(x, L)
2: if L only contains one pair, it must be (x, Cx) then
3: Generate Kb ← {0, 1}κ for b ∈ {0, 1}
4: cb ← FE.Enc(mpkb

d, 〈Cx, Kb, 0, 0t2〉) for b ∈ {0, 1}, and d = |x| + 1
5: return c0, c1
6: end if
7: Split L into L0, L1 where L0 contains all the pairs (y, Cy) where y starts with

x||0 and L1 contains all the pairs (y, Cy) where y starts with x||1
8: (c′

0, c
′
1) ← CGen(x||0, L0) and (c′′

0 , c′′
1 ) ← CGen(x||1, L1)

9: Choose an integer j0 randomly from 1 to � that has not been used yet in Z0
d

and replace Z0
d,j0 with SKE.Enc(sk0d,j0 , 〈c′

0, c
′
1〉)

10: Choose j1 in the same way and replace Z1
d,j1 with SKE.Enc(sk1d,j1 , 〈c′′

0 , c′′
1 〉)

11: return c0, c1 where c0 = FE.Enc(mpk0d, 〈⊥, ⊥, j0, sk
0
d,j0〉) and c1 =

FE.Enc(mpk1d, 〈⊥, ⊥, j1, sk
1
d,j1〉)

12: end procedure

Evaluation and Correctness. Now let us look at how ldO.Eval works. By
fixing the first two ciphers and keys, given a input x ∈ {0, 1}n,

– It begins with c0, c1;
– For i = 1, 2, · · · , n, it picks the function key fskxi

i and cxi
; then does the

update: (c0, c1) ← FE.Dec(fskxi
i , cxi

);
– Finally we can either output FE.Dec(fsk0n+1, c0) or FE.Dec(fsk1n+1, c1);

ldO.Eval(c0, c1, {mpk0i ,mpk1i }n+1
i=1 , {fsk0i , fsk1i }n+1

i=1 , · · · ) actually has the same
functionalities with the circuit assignment L since basically on input x, it finds
a fragment corresponding to a prefix y of x = y||x′ and keeps doing partial
evaluations on each input bit of x′. Since the cardinality is at most �, � different
Zb

i,j in Zb
i are enough for use.
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Algorithm 5. f
b,Zb

i
i for 1 ≤ i ≤ n

1: procedure f
b,Zb

i
i (C, K, σ, sk)

2: Hardcoded : Zb
i

3: if σ �= 0 then
4: return SKE.Dec(sk, Zb

i,σ)
5: else
6: C′ ← C(b, ·) and pad C′ to have length s
7: return {FE.Enc(mpk0i+1, 〈C′, K0

i+1, 0, 0t2〉; r1),
8: FE.Enc(mpk1i+1〈C′, K1

i+1, 0, 0t2〉; r2)} where
9: K0

i+1 ← r3
10: K1

i+1 ← r4
11: using randomness r1, r2, r3, r4 ← PRG(K)
12: end if
13: end procedure

Algorithm 6. f b
n+1

1: procedure fb
n+1(C, K, σ, sk)

2: return the evaluation of C on an empty input
3: end procedure

Efficiency. Let us look at the parameter size. All the master keys
{mpk0i ,mpk1i }n+1

i=1 are of length poly(κ). t2 is the length of a secret key for
SKE scheme so it is also of poly(κ). And we assume FE is a compact func-
tional encryption scheme which means the size of ciphers c0, c1 is bounded by
O(poly(s, log �, κ)) and also the size of f circuit is bounded by O(poly(s, �, κ))
which implies the size {fskb

i} is bounded by O(poly(s, �, κ)). Finally t1 is bounded
by O(poly(s, log �, κ)).

So ldO.ParaGen and ldO.Eval run in time poly(s, �, n, κ).

Security. Without loss of generality, we have two circuit assignments L0 and
L1 where Decompose(L0, x) = L1. We are going to prove the indistinguishability
when we are given either L0 or L1.

– Hyb 0: Here, an adversary is given an instance ldO.ParaGen(1κ, L0, �, s). In
the process of generating c0, c1, we will get to CGen on x and L′ where L′ is
the current partial circuit assignment. Since L′ only contains (x,Cx), CGen
will return FE.Enc(mpkb

d, 〈Cx,Kb, 0, 0t2〉) for b ∈ {0, 1} and d = |x| + 1; we
denote them as ĉ0, ĉ1.

– Hyb 1: In this hybrid, we change Zb
d. Assume ĉb,0, ĉb,1 = FE.Dec(fskb

d, ĉb). In
ldO.ParaGen, Zb

d are assigned to an array of encryptions of 0t1 before calling
CGen. We instead choose random j0, j1 from the unused indices (not used in
CGen process) and change Z0

d,j0
and Z1

d,j1
to encryptions of 〈ĉb,0, ĉb,1〉. Since

an adversary does not have any secret key skb
i,j , SKE security means Hyb 0

and Hyb 1 are indistinguishable.
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– Hyb 2: In this hybrid, we change the ciphertexts ĉ0, ĉ1 to

ĉb = FE.Enc(mpkb
d, 〈⊥,⊥, jb, sk

b
d,jb

〉)

where ⊥ means filling it with zeroes and jb are the indices chosen in Hyb 1.
Notice that

f
b,Zb

d

d (⊥,⊥, jb, sk
b
d,jb

) = f
b,Zb

d

d (Cx,Kb, 0, 0t2)

Therefore, FE security means Hyb 1 and Hyb 2 are indistinguishable.
– Hyb 3: In this hybrid, we change Z0

d,j0
and Z1

d,j1
. In Hyb 1, ĉb,0, ĉb,1 were

computed using the randomness from a pseudo random generator. In Hyb
2, we removed the seed feed to PRG. Therefore we can replace ĉb,0, ĉb,1 to
be the values computed using uniformly chosen randomness. Indistinguisha-
bility from Hyb 2 easily follows from PRG security. We observe that the
distribution of the instances in Hyb 3 is identical to the distribution of
ldO.ParaGen(1κ, L1, �, s).

This completes our proof for Theorem 3.

5 Discussion

5.1 Deciding Decomposing Equivalence

Definition 13. A tree covering TC is a witness that C0 ≡ C1 if TC satis-
fies DecomposeTo({(ε, C0)},X ) = DecomposeTo({(ε, C1)},X ). In other words,
decomposing C0 and C1 to TC give the same circuit assignment (as in, the cir-
cuit fragments themselves are identical).

TC is an minimal witness if, for all other TC ′ that are witnesses to C0 ≡ C1,
we have that TC  TC ′. In particular, this means that TC is strictly smaller
than all other witnesses.

We define a node x as “good” for C0, C1 if C0(x, ·) = C1(x, ·) as circuits.
Notice that the children of a good node are also good. We say that a good node
x is “minimal” if its parent is not good.

Lemma 7. For any two equivalent circuits C0, C1, there is always exactly one
minimal witness TC∗, and it consists of all of the minimal good nodes for C0, C1.

Proof. Since C0 ≡ C1, all the leaves are good, and at least the set of leaves
form a tree covering that is a witness. Now, for each leaf, consider the path
from the leaf to the root. There will be some node x on the path such that all
nodes in the path before x are not good, but x and all nodes after x are good.
Therefore, that x is an minimal good node. Moreover, no minimal good node
can be a descendant of any other minimal good node (since no minimal good
node can be the descendant of any good node). Therefore, the set of minimal
good nodes form a tree covering.
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Lemma 8. τ -one shot decomposing equivalence can be decided deterministically
in time τ × poly(n,max{|C0|, |C1|}). Moreover, if C0 ≡ C1, then the optimal
witness TC∗ can also be computed in this time.

Proof. The algorithm is simple: process the nodes in a depth-first manner,
keeping a global list R. When processing a node x, if C0(x, ·) = C1(x, ·) as
circuits, add x to R, and then do not recurse. Otherwise, recurse on the children
as normal. If the list R every grows to exceed τ elements, abort the search and
report non-decomposing equivalence. If the search finishes with |R| ≤ τ , then
report decomposing equivalence and output R.

The total running time is bounded by O(nτ · poly(max{|C0|, |C1|})): at most
nτ nodes are processed (the up to τ nodes in R, plus their ancestors), and
processing each node takes time proportional to the sizes of C0, C1.

5.2 One Shot DE Is Equivalent to Path DE

We have already proved that path DE implies one shot DE. Now let us prove
the converse.

Lemma 9. If two circuits C0, C1 are (�, s, t)-path decomposing equivalent, then
they are (t/2 + 1)-one shot decomposing equivalent

Proof. If C0, C1 are (�, s, t)-path decomposing equivalent, there exists a minimal
tree covering TC∗. We observe that, for each of the ancestors of nodes in TC∗,
there must be a step in the path where that node is decomposed, and there must
also be a step in the path where that node is merged. It is straightforward to
show that the number of ancestors for any tree covering is exactly one less than
the size of the covering. From this, we deduce that |TC∗| ≤ t/2 + 1. Since TC∗

exists and the size is bounded by t/2 + 1, these two circuits are (t/2 + 1)-one
shot decomposing equivalent.

We emphasize that the above lemma and proof were independent of the bounds
� and s. Putting together Lemmas 5 and 9, we find that the path equivalence
definition is independent of the parameters �, s.

We also see that path decomposing equivalence can be computed efficiently,
following Lemmas 5, 8, and 9.

5.3 One Shot DE Is Strictly Stronger Than Functional Equivalence

We then show that path/one-shot decomposing equivalence is a strictly stronger
notion than standard functional equivalence, when a reasonable bound is placed
on the path length/witness size. The rough idea is the use the fact that, say,
polynomial decomposing equivalence can be decided in polynomial time, whereas
in general deciding equivalence is hard.

Lemma 10. For any n, there exist two circuits on n bit inputs C0 ≡ C1 that
are not 2n−1 − 1-one-shot decomposing equivalent.
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Proof. Let D0,D1 be two equivalent but non-identical circuits on 2 input bits
(for example, two different circuits computing the XOR). Let TC∗ be the tree
covering consisting of all 2n−1 nodes in the layer just above the leaves. Let Lb for
b = 0, 1 be the circuit assignment assigning Db to every node in TC∗. Finally,
Let Cb be the result of canonically merging Lb all the way to the root node.

Now, TC∗ is clearly the optimal witness that C0 ≡ C1. Therefore, any witness
must have size at least |TC∗| = 2n−1. Therefore, C0, C1 are not 2n−1−1 one-shot
decomposing equivalent.

Note that the above separation constructed exponentially-large C0, C1. We
can even show a similar separation in the case where C0, C1 have polynomial
size, assuming P �= NP . Indeed, since poly-one shot decomposing equivalence
is decidable in polynomial time, but functional equivalence is not (assuming
P �= NP ), there must be circuits pairs that are equivalent but not poly-one shot
decomposing equivalent.

Next, we even demonstrate an explicit ensemble of circuit pairs that are
equivalent but not poly-decomposing equivalent, assuming one-way functions
exist.

Lemma 11. Assuming one-way functions exist, there is an explicit family
of circuit pairs (C0, C1) that are equivalent, but are not poly(n)-decomposing
equivalent for any polynomial poly(n).

Proof. Let PRG be a length-doubling pseudorandom generator (which can be
constructed from any one-way function). Let C0(x) = “return 0” and C1(x) =
‘return 1 if PRG(x) = v; 0 otherwise‘’ where v is uniformly chosen from {0, 1}2κ.
When v is uniformly chosen, except with probability 1

2κ , v has no pre-image
under PRG. Therefore, with probability 1− 1

2κ , C0 and C1 are functionally equiv-
alent.

Next, assume there exists a polynomial τ and a non-negligible probability δ
such that C0 and C1 are τ -decomposing equivalent with probability δ. Now let
us build an adversary B for this length-doubling PRG:

– The adversary B gets u from the challenger;
– B prepares the following two circuits: C0(x) =“return 0” and C1(x) =

“return 1 if PRG(x) = u; 0 otherwise”.
– B runs the algorithm to see if they are τ -decomposing equivalent. If the

algorithm returns true, B guesses u is a truly random string; otherwise it
guesses u is generated by PRG.

When u is generated by PRG, it will always return the correct answer
since C1 does not return 0 at some point but C0 does; when u is truly ran-
dom, the probability that B is correct equal to the probability C0 and C1 are
τ -decomposing equivalent which is a non-negligible δ. So B has non-negligible
advantage δ in breaking PRG.
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