
When Does Functional Encryption Imply
Obfuscation?

Sanjam Garg1, Mohammad Mahmoody2, and Ameer Mohammed2(B)

1 UC Berkeley, Berkeley, USA
sanjamg@berkeley.edu

2 University of Virginia, Charlottesville, USA
{mohammad,ameer}@virginia.edu

Abstract. Realizing indistinguishablility obfuscation (IO) based on well
understood computational assumptions is an important open problem.
Recently, realizing functional encryption (FE) has emerged as a promis-
ing direction towards that goal. This is because: (1) compact single-key FE
(where the functional secret-key is of length double the ciphertext length)
is known to imply IO [Anath and Jain, CRYPTO 2015; Bitansky and
Vaikuntanathan, FOCS 2015] and (2) several strong variants of single-key
FE are known based on various standard computation assumptions.

In this work, we study when FE can be used for obtaining IO. We
show any single-key FE for function families with “short” enough out-
puts (specifically the output is less than ciphertext length by a value at
least ω(n+κ), where n is the message length and κ is the security parame-
ter) is insufficient for IO even when non-black-box use of the underlying
FE is allowed to some degree. Namely, our impossibility result holds even
if we are allowed to plant FE sub-routines as gates inside the circuits for
which functional secret-keys are issued (which is exactly how the known
FE to IO constructions work).

Complementing our negative result, we show that our condition of
“short” enough is almost tight. More specifically, we show that any com-
pact single-key FE with functional secret-key output length strictly larger
than ciphertext length is sufficient for IO. Furthermore, we show that
non-black-box use of the underlying FE is necessary for such a construc-
tion, by ruling out any fully black-box construction of IO from FE even
with arbitrary long output.

S. Garg—University of California, Berkeley. Research supported in part from 2017
AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR
Award FA9550-15-1-0274, NSF CRII Award 1464397, and research grants by the
Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC
Berkeley). The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.
M. Mahmoody—Supported by NSF CAREER award CCF-1350939.
A. Mohammed—Supported by University of Kuwait.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 82–115, 2017.
https://doi.org/10.1007/978-3-319-70500-2_4

When Does Functional Encryption Imply Obfuscation? 83

1 Introduction

The goal of program obfuscation is to make computer programs “unintelligible”
while preserving their functionality. Over the past four years, we have come a
long way from believing that obfuscation is impossible [BGI+01,GK05] to having
plausible candidate constructions [GGH+13b,BR14,BGK+14,AGIS14,MSW14,
AB15,GGH15,Zim15,GLSW15,BMSZ16,GMM+16], [DGG+16,Lin16a,LV16,
AS16,Lin16b,LT17]. Furthermore, together with one-way functions, obfusca-
tion has been shown to have numerous consequences, e.g. [GGH+13b,SW14,
GGHR14,BZ14,BPR15].

However, all these constructions are based on the conjectured security of new
computational assumptions [GGH13a,CLT13,GGH15] the security of which is
not very well-understood [GGH13a,CHL+15,CGH+15,CLLT15,HJ16,MSZ16,
CGH16,CLLT16,ADGM16]. In light of this, it is paramount that we base secu-
rity of IO on better understood assumptions. Towards this goal, one of the
suggested approaches is to first realize some kind of a Functional Encryption
(FE) scheme based on standard computational assumptions and then use that
to realize IO. This directions is particularly promising because of the following.

1. Compact single-key FE is known to imply IO. Recent results by Ananth and
Jain [AJ15] and Bitansky and Vaikuntanathan [BV15] show how to base
IO on a compact FE scheme — namely, a single-key FE scheme for which
the encryption circuit is independent of the function circuit for which the
functional secret-key is given out. Furthermore, these results can even be
realized starting with FE for which at most one functional secret-key can be
given out (i.e., the functional encryption scheme is single-key secure, and this
is what we refer to by FE all along this paper). Furthermore, the construction
works even if the ciphertext is weakly compact, i.e. the length of the ciphertext
grows sub-linearly in the circuit size but is allowed to grow arbitrarily with
the depth of the circuit.

2. Positive results on single-key FE. The construction of IO from compact single-
key FE puts us in close proximity to primitives known from standard assump-
tions. One prominent work, is the single-key functional encryption scheme of
Goldwasser et al. [GKP+13] that is based on LWE. Interestingly, this encryp-
tion scheme is weakly compact for boolean circuits. However, in this scheme
the ciphertext grows additionally with the output length of the circuit for
which the functional secret-key is given out. Hence, it doesn’t imply IO.

In summary, the gap between the known single-key FE constructions from LWE
and the single-key FE schemes known to imply IO (for the same ciphertext length
properties) is only in the output length of circuit for which the functional secret-
key is issued. In light of this, significant research continues to be invested towards
realizing IO starting with various kinds of FE schemes (e.g. [BNPW16,BLP16]).
This brings us to the following question.

Main Question: What kind of FE schemes are sufficient for IO?

84 S. Garg et al.

1.1 Our Results

The main result of this work is to show that single-key FE schemes that support
only functions with ‘short output’ are incapable of producing IO even when non-
black-box use of the FE scheme is allowed in certain ways. The non-black-box use
of FE is modeled in a way similar to prior works by Brakerski et al. [BKSY11],
Asharov and Segev [AS15], and Garg et al. [GMM17]. We specifically use the
monolithic framework of [GMM17] which is equivalent to the fully black-box
framework of [IR89,RTV04] applied to monolithic primitives (that can include
all of their subroutines as gates inside circuits given to them as input). This
monolithic model captures the most commonly used non-black-box techniques in
cryptography, including the ones used by Ananth and Jain [AJ15] and Bitansky
and Vaikunthanathan [BV15] for realizing IO from FE. More formally, we prove
the following theorem.

Theorem 1 (Main Result–Informal). Assuming one-way functions exist
and NP �⊆ coAM, there is no construction of IO from “short” output single-key
FE where one is allowed to plant FE gates arbitrarily inside the circuits that are
given to FE as input. An FE scheme is said to be “short” output if

t(n, κ) ≤ p(n, κ) − ω(n + κ),

where n is the plaintext length, κ is the security parameter, p is the ciphertext
length (for messages of length n) and t is the output length of the functions
evaluated on messages of length n.

As a special case, the above result implies that single-key FE for boolean circuits
and other single-key FE schemes known from standard assumptions are insuffi-
cient for IO in an monolithic black-box way.

“Long-output” FE implies IO. Complementing this negative result, we show
that above condition on ciphertext length t is almost tight. In particular, we
show that a “long output” single-key FE — namely, a single-key FE scheme
with t = p + 1 (supporting an appropriate class of circuits) is sufficient for real-
izing IO. This construction is non-black-box (or, monolithic to be precise) and is
obtained as a simple extension of the previous results of Ananth and Jain [AJ15]
and Bitansky and Vaikuntanathan [BV15]. We refer the reader to the full version
of this paper for this result.

Fully Black-Box Separation of IO from FE. Finally, we show that some
form of non-black-box techniques (beyond the fully black-box framework of
[RTV04]) is necessary for getting IO from FE, regardless of the output lengths.
Namely, we prove a fully black-box separation from FE to IO. Previously, Lin
[Lin16a] (Corollary 1 there) showed that the existence of such fully black-box
construction from FE to IO would imply a construction of IO from LWE and
constant-degree PRGs. Our result shows that no such fully black-box construc-
tion exists (but the possibility of IO from LWE and constant-degree PRGs
remains open). We refer the reader to the full version of this paper for this
result.

When Does Functional Encryption Imply Obfuscation? 85

1.2 Comparison with Known Lower Bounds on IO

Sequence of works [AS15,CKP15,Pas15,MMN15,BBF16,MMN+16a],
[MMN+16b], under reasonable complexity assumptions,1 proved lower bounds for
building IO in a black-box manner from one-way functions, collision resistant hash
functions, trapdoor permutations or even constant degree graded encoding oracles.
Building on these work, authors [GMM17] showed barriers to realizing IO based
on non-black-box use of “all-or-nothing encryption” primitives — namely, encryp-
tionprimitiveswhere theprovided secret-keys either allow for completedecryption,
or keep everything hidden. This includes encryption primitives such as attribute-
based encryption [GVW13], predicate encryption [GVW15], and fully homomor-
phic encryption [Gen09,BV11b,BV11a,GSW13]. In comparison, this work aims
to show barriers to getting IO through a non-black-box use of single-key FE, an
encryption primitive that is not all-or-nothing, but has been previously shown to
imply IO in certain settings. The work of Asharov and Segev [AS15] proved lower
bounds on the complexity of assumptions behind IO with oracle gates (in our ter-
minology, restricted monolithic) which is a stronger primitive than IO.2

On the Relation to [GMM17,GKP+13]. Note that, as mentioned above,
the work [GMM17] rules out the existence of monolithic IO constructions from
attribute-based encryption (ABE) and the existence of monolithic IO construc-
tions from fully homomorphic encryption (FHE). Furthermore, this result can
be further broadened to separate IO from ABE and FHE in a monolithic way.
One can then ask why the result in this paper does not follow as a corollary
from [GMM17,GKP+13], where they construct single-key (non-compact) FE
for general circuits from ABE and FHE.

We note that our result does not follow from the above observation for two
reasons. First, the single-key FE construction of [GKP+13] also uses a garbling
scheme in order to garble circuits with FHE decryption gates, whereas the impos-
sibility of [GMM17] does not capture such garbling mechanisms in the monolithic
model. However, if one could improve the result of [GMM17] in the monolithic
model by adding a garbling subroutine that can accept ABE and FHE gates,
then we can compose the results of [GMM17,GKP+13] and obtain an impos-
sibility of IO from t-bit output (non-compact) FE. Secondly, we note that this
resulting t-bit output FE scheme has the property that t ≤ p/poly(κ) (i.e. the
ciphertext size is a (polynomial) multiplicative factor of the output length of the
function), whereas in this work we show the stronger impossibility of basing IO
on single-key FE for output-length t ≤ p − ω(κ).

Other Non-Black-Box Separations. Proving separations for non-black-box
constructions are usually very hard. However, there are several works that go

1 Note that since statistically secure IO exists if P = NP, therefore we need computa-
tional assumptions for proving lower bounds for assumptions implying IO.

2 In fact, their separation is unconditional, while statistical IO can be built if P = NP.
So any separation for IO needs to rely on computational assumptions before proving
P �= NP.

86 S. Garg et al.

done this line. The work of Pass et al. [PTV11] showed that, under believable
assumptions, there are no non-black-box constructions of certain cryptographic
primitives (e.g., one-way permutations) from one-way functions, as long as the
security reductions are black-box. Pass [Pas11] and Gentry and Wichs [GW11]
proved further separations in this model by separating certain primitives from
any falsifiable assumptions [Nao03], again, as long as the security proof is black-
box. Finally, the recent work of Dachman-Soled [Dac16] showed that certain
classes of constructions with some carefully defined non-black-box power are not
capable of basing public-key encryption on one way functions.

1.3 Technical Overview

In order to demonstrate the ideas behind our impossibility, we start by recalling
the constructions of IO from FE [AJ15,BV15]. The key point here is that their
IO constructions crucially rely on the ability of the underlying FE scheme to
generate functional secret keys for functions that generate outputs of sizes that
are larger than the ciphertexts that are decrypted using these functional secret
keys. In particular, when evaluating the obfuscation of some circuit C on some
input x = (x1, ..., xn), they would need to decrypt a ciphertext using a functional
secret key for a function that generates two ciphertexts – which is an output
that is double the size of the input. Then, by successively decrypting cx1,...,xi

for all i under a functional secret key that has the property described above
to get two encryptions (cx1,...,xi,0, cx1,...,xi,1) where cy is an encryption of y, the
evaluator will obtain a ciphertext of the entire input x that it wants to evaluate
the obfuscated circuit on. The obtained cx1,...,xn

is then decrypted using one
final functional secret key that corresponds to the circuit C to get C(x).

On the other hand, in case the output of a functional secret key is “sufficiently
smaller” than a ciphertext, then this explosion in number of ciphertexts does
not seem possible anymore. This is also the key to our impossibility. Roughly
speaking, at the core of the proof of our impossibility result is to show that in
this “small” output setting, the total number of ciphertexts that an evaluator
can compute remains polynomially bounded. Turning this high level intuition
into an impossibility proof requires several new ideas that we now elaborate
upon below.

The Details of the Proof of Separation. As mentioned before, monolithic
constructions of IO from FE are the same as fully black-box constructions of IO
from monolithic FE which is a primitive that is similar to FE but it allows FE
gates to be used in the circuits for which keys are issued. Therefore, to prove
the separation, we can still use oracle separation techniques from the literature
on black-box constructions [IR89].

In fact, for any candidate construction IO(·) of indistinguishability obfusca-
tion from monolithic FE, we construct an oracle O relative to which secure mono-
lithic FE exists but the construction IOO becomes insecure (against polynomial-
query attackers). In order to do this, we will employ an intermediate primitive:

When Does Functional Encryption Imply Obfuscation? 87

a variant of functional witness encryption defined by Boyle et al. [BCP14]. We
call this variant customized FWE (cFWE for short) and show that (1) relative
to our oracle cFWE exists, (2) cFWE implies monolithic FE in a black-box way,
and that (3) the construction IOO is insecure. We opted to work with this inter-
mediate primitive of cFWE since it is conceptually easier to work with than an
ideal FE oracle and allows us to leverage the previous results of [GMM17] to
prove our separation in a modular way. Now in order to get (1) we directly define
our oracle O to be an idealized version of cFWE. To get (2) we use the power
of cFWE.3 To get (3) we rely on the fact that cFWE is weakened in a careful
way so that it does not imply IO. Below, we describe more details about our
idealized oracle for cFWE and how to break the security of a given candidate
IO construction relative to this oracle. We first recap the general framework for
proving separations for IO.

GeneralRecipe forProvingSeparations for IO.Let I be our idealized cFWE
oracle. A general technique developed over the last few years [CKP15,MMN+16b,
GMM17] for breaking IOI using a polynomial number of queries to the oracle (i.e.
the step (3) above) is to “compile out” the oracle I from the obfuscation scheme
and get a new secure obfuscator IO′ = (iO′,Ev′) in the plain-model that is only
approximately-correct. Namely, by obfuscating iO′(C) = B and running B over
a random input we get the correct answer with probability 99/100. By the result
of [BBF16], doing so implies a polynomial query attacker against IOI in model
I. Note that this compiling out process (of I from IOI) is not independent of the
oracle being removed since different oracles may require different approaches to
be emulated. However, the general high-level of the compiler that is used in pre-
vious work [CKP15,MMN+16b,GMM17], and we use as well, is the same: The
new plain-model obfuscator iO′, given a circuit C to obfuscate would work in two
steps. The first step of iO′ is to emulate iOI(C) (by simulating the oracle I) to
get an ideal-model obfuscation B, making sure to ‘lazily’ evaluate (emulate) any
queries issued to I. The second step of the compiler is to learn the queries that are
likely to be asked by EvI(B, x) for a uniformly random input x, denote by QB ,
which can be found by by emulating EvI(B, xi) enough number of times for differ-
ent uniformly random xi. Finally, the output of iO′ is the plain-model obfuscation
B′ = (B,QB), where B is the ideal-model obfuscation and QB is the set of learned
queries. To evaluate the obfuscation over a new random input x, we simply execute
Ev′(B, x) = EvI(B, x) while emulating any queries to I consistently relative to
QB . Any compiler (for removing I from IO) that uses the approach describe above
is in fact secure, because we only send emulated queries to the evaluator that could
be simulated in the ideal world I. The challenge, however, is to prove the correct-
ness of the new obfuscator. So we shall prove that, by having enough iterations of
the learning process (in the learning step of iO′), the probability that we ask an
unlearned emulation query occurs with sufficiently small probability.

3 In fact, as shown in [BCP14], without our customization, the original FWE implies,
not just IO itself, but even di-IO.

88 S. Garg et al.

The Challenge Faced for Compiling Out Our Customized Functional
Witness Encryption Oracle. When I is defined to be our idealized cFWE
oracle, in order to prove the approximate correctness of the plain-model obfus-
cator, we face two problems.

1. The Fuzzy Nature of FWE: Unlike ‘all-or-nothing’ primitives such as
witness encryption and predicate encryption, functional witness encryption
mechanisms allow for more relaxed decryption functionalities. In particular,
decrypting a ciphertext does not necessarily reveal the whole message m.
In fact, the decryptor will learn only f(w,m), which is a function of the
encrypted message and witness. As a result, even after many learning steps,
when the actual execution of the obfuscated circuit starts, we might aim for
evaluating a ciphertext (generated during the obfuscation phase) on a new
function. This challenge did not exist in the previous separations of [GMM17]
that deals with the ‘all-or-nothing’ primitives, because the probability of not
decrypting a ciphertext during all the learning steps and then suddenly trying
to decrypt it during the final evaluation phase could be bounded to be arbi-
trary small. However, here we might try to decrypt this ciphertext in all these
steps, every time with a different function, which could make the information
gathered during the learning step useless for the final evaluation.

2. Unlearnable Hidden Queries: To get monolithic FE from our cFWE (step
(2) above), our cFWE needs to be restricted monolithic. Namely, we allow the
functions evaluated by cFWE to accept circuits with all possible gates that
compute the subroutines of cFWE itself. However, for technical reasons, we
limit how the witness verification is done in cFWE to only accept one-way
function gates. Now, since we are dealing with an oracle that is an ideal version
of our cFWE primitive, the function f cFWE(m,w) may also issue queries of
their own. The challenge is that there could be many such indirect/hidden
queries asked during the obfuscation phase (in particular during the learning
step) that we cannot send over to the final evaluator simply because these
queries are not suitable in the ideal world.

Resolving Challenges. Here we describe main ideas to resolve the challenges
above.

1. To resolve the first challenge, we add a specific feature to cFWE so that no
ciphertext c = Enc(x = (a,m)) would be decrypted more than once by the
same person. More formally, we add a subroutine to FWE (as part of our
cFWE) that reveals the message x = (a,m) fully, if one can provide two
correct witnesses w1 �= w2 for the attribute a. This way, the second time that
we want to decrypt c, instead we can recover the whole message x and run
the function f on our own! By this trick, we will not have to worry about the
fuzzy nature of FWE, as each message is now decryped at most once. In fact,
adding this subroutine is the exact reason that cFWE is a weaker primitive
than FWE.

When Does Functional Encryption Imply Obfuscation? 89

2. To resolve the second challenge, we rely on an information theoretic argument.
Suppose for simplicity that the encryption algorithm does not take an input
other than the message4 x. Suppose we use a random (injective) function
Enc: x �→ c for encryption, mapping strings of length n to strings of length
p = p(n). Then, if p � n, information theoretically, any q query algorithm
who has no special advice about the oracle has a chance of ≈ q · 2n−p to find
a valid ciphertext. If p � n this probability is very small, so intuitively we
would need about p−n− log(q) bits of advice to find such ciphertext. On the
other hand, any decryption query over a ciphertext c will only return t = t(n)
bits, which in our paper is assumed to be t 	 p−n. Therefore, if we interpret
the decryption like a ‘trade’ of information, we need to spend ≈ Ω(p−n) bits
to get back only s ≤ o(p−n) bits. This is the main idea behind our argument
showing that during the learning phase, we will not discover more than a
polynomial number of new ciphertexts, unless we have encrypted them! By
running the learning step of the compiler enough number of times, we will
learn all such queries and can successfully finish the final evaluation.

By the using above two ideas, we can successfully compile out our oracle I from
any IOI construction. The compilation process itself consists of two steps. The
first step being compiling out just the decryption queries where we face and
resolve the challenges that we described above. Once we do that, we get an
approximate obfuscator in a new oracle model I ′ that is actually a variant of an
idealized witness encryption oracle. The second step would be to compile out the
oracle I ′, which was already shown by [GMM17], to get the desired approximate
obfuscator in the plain model.

2 Preliminaries

In this section we define the primitives that we deal with in this work and are
defined prior to our work. We also give a brief background on black-box con-
structions and their monolithic variants.

Notation.We use “|” to concatenate strings and we use “,” for attaching strings in
a way that they could be retrieved. Namely, one can uniquely identify x and y from
(x, y). For example (00|11) = (0011), but (0, 011) �= (001, 1). When writing the
probabilities, by putting an algorithm A in the subscript of the probability (e.g.,
PrA[·]) wemean the probability is overA’s randomness.Wewill usen orκ to denote
the security parameter.We call an efficient algorithmV a verifier for anNP relation
R if V(w, a) = 1 iff (w, a) ∈ R. We call LR = LV = {a | ∃w, (a,w) ∈ R} the
corresponding NP language. By PPT we mean a probabilistic polynomial time
algorithm. By an oracle PPT/algorithm we mean a PPT that might make oracle
calls.

4 This is not true as the encryption is randomized, but allows us to explain the idea
more easily.

90 S. Garg et al.

2.1 Obfuscation

The definition of IO below has a subroutine for evaluating the obfuscated code.
The reason for defining the evaluation as a subroutine of its own is that when we
want to construct IO in oracle/idealized models, we allow the obfuscated circuit
to call the oracle as well. Having an evaluator subroutine to run the obfuscated
code allows to have such oracle calls in the framework of black-box constructions
of [RTV04] where each primitive Q is simply a class of acceptable functions that
we (hope to) efficiently implement given oracle access to implementations of
another primitive P (see Definition 12).

Definition 1 (Indistinguishability Obfuscation (IO)). An Indistinguisha-
bility Obfuscation (IO) scheme consists of two subroutines:

– Obfuscator iO is a PPT that takes as inputs a circuit C and a security para-
meter 1κ and outputs a “circuit” B.

– Evaluator Ev takes as input (B, x) and outputs y (supposedly, equal to C(x)).

The completeness and soundness conditions assert that:

– Completeness: For every C, with probability 1 over the randomness of O, we
get B ← iO(C, 1κ) such that: For all x it holds that Ev(B, x) = C(x).

– Security: For every distinguisher D there exists a negligible function μ(·) such
that for every two circuits C0, C1 that are of the same size and compute the
same function, we have:

|Pr
iO

[D(iO(C0, 1κ) = 1] − Pr
iO

[D(iO(C1, 1κ) = 1]| ≤ μ(κ)

Definition 2 (Approximate IO). For function 0 < ε(n) ≤ 1, an ε-
approximate IO scheme is defined similarly to an IO scheme with a relaxed
completeness condition:

– ε-Approximate Completeness. For every C and n we have:

Pr
x,iO

[B = iO(C, 1κ),Ev(B, x) = C(x)] ≥ 1 − ε(κ)

2.2 Functional Encryption

We will mainly be concerned with single-key functional encryption schemes
which we define below so in the rest of this work whenever we refer to func-
tional encryption, it is of the single-key type. We define a single-key functional
encryption for function family F = {Fn}n∈N (represented as a circuit family) as
follows:

Definition 3 (Single-Key Functional Encryption [BV15]). A single-key
functional encryption (FE) for function family F consists of three PPT algo-
rithms (Setup,Enc,Dec) defined as follows:

When Does Functional Encryption Imply Obfuscation? 91

– Setup(1κ): Given as input the security parameter 1κ, it outputs a master
public key and master secret key pair (MPK,MSK).

– KGen(MSK, f): Given master secret key MSK and function f ∈ F, outputs a
decryption key SKf .

– Enc(MPK, x): Given the master public key MPK and message x, outputs
ciphertext c ∈ {0, 1}p.

– Dec(SKf , c): Given a secret key SKf and a ciphertext c ∈ {0, 1}m, outputs a
string y ∈ {0, 1}s.

The following completeness and security properties must be satisfied:

– Completeness: For any security parameter κ, any f ∈ F with domain {0, 1}n

and message x ∈ {0, 1}n, the following holds:

Dec(SKf ,Enc(MPK, x)) = f(x)

where (MPK,MSK) ← Setup(1κ) and SKf ← KGen(MSK, f)
– Security: For any PPT adversary A, there exists a negligible function negl(·)

such that:
Pr[IND1FE

A (1κ) = 1] ≤ 1
2

+ negl(κ),

where IND1FE
A is the following experiment.

Experiment IND1FE
A (1κ):

1. (MSK,MPK) ← Setup(1κ)
2. (f, x0, x1) ← A(MPK) where |x0| = |x1| and f(x0) = f(x1)

3. b
$←− {0, 1}, c ← Enc(MPK, xb),SKf ← KGen(MSK, f)

4. b′ ← A(MPK,SKf , c)
5. Output 1 if b = b′ and 0 otherwise.

– Efficiency: We define two notions of efficiency for single-key FE supporting
the function family F:

• Compactness: An FE scheme is said to be compact if the size of the
encryption circuit is bounded by some fixed polynomial poly(n, κ) where
n is the size of the message, independent of the function f chosen by the
adversary.5

• Function Output Length: An FE scheme is said to be t-bit-output
if outlen(f) ≤ t(n, κ) for any f ∈ F, where outlen(f) denotes the output
length of f . Given ciphertext length p(n, κ), we say an FE scheme is long-
output if it is (p + i)-bit-output for some i ≥ 1 and short-output if it is
only (p − ω(n + κ))-bit-output where n is the size of the message.

5 A couple of other weaker notions of compactness for FE have also been considered in
the literature. However, all these notions are known to be monolithically equivalent
to compact single-key FE. Therefore, we restrict our discussion just to compact
single-key FE.

92 S. Garg et al.

Definition 4 (Functional Witness Encryption (FWE) [BCP14]). Let V
be a PPT algorithm that takes as input an instance-message pair x = (a,m) and
witness w then outputs a bit. Furthermore, let F be a PPT Turing machine that
accepts as input a witness w and a message m then outputs a string y ∈ {0, 1}s.
For any given security parameter κ, a functional witness encryption scheme
consists of two PPT algorithms P = (Enc,DecV,F) defined as follows:

– Enc(1κ, a,m) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and
security parameter κ, outputs c ∈ {0, 1}∗.

– DecV,F(w, c) : given ciphertext c and “witness” string w ∈ {0, 1}∗, outputs a
message m′ ∈ {0, 1}∗.

A functional witness encryption scheme satisfies the following completeness and
security properties:

– Correctness: For any security parameter κ, any m ∈ {0, 1}∗, and any
(w, (a,m)) such that VP (w, a) = 1, it holds that

Pr
Enc,Dec

[DecV,F(w,Enc(1κ, a,m)) = FP (w,m)] = 1

– Extractability: For any PPT adversary A and polynomial p1(.), there exists
a PPT extractor E and a polynomial p2(.) such that for any security para-
meter κ, any a for which VP (w, a) = 1 for some w, and any m0,m1 where
|m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b

$←− {0, 1}, c ← Enc(1κ, a,mb)
]

≥ 1
2

+ p1(κ)

Then:

Pr
[
EA(1κ, a, m0, m1) = w : VP (w, a) = 1 ∧ FP (w, m0) �= FP (w, m1)

] ≥ p2(κ)

2.3 Background on Black-Box Constructions

Definition 5 (Cryptographic Primitive [RTV04]). A primitive P =
(F ,R) is defined as set of functions F and a relation R between functions. A
(possibly inefficient) function F ∈ {0, 1}∗ → {0, 1}∗ is a correct implementation
of P if F ∈ F , and a (possibly inefficient) adversary A breaks an implementation
F ∈ F if (A,F) ∈ R. We sometimes refer to an implementation F ∈ F as a set
of t functions (or subroutines) F = {F1, ..., Ft}.
Definition 6 (Indexed primitives). Let W be a set of (possibly ineffi-
cient) functions. An W-indexed primitive P[W] is indeed a set of primi-
tives {P[W]}W∈W indexed by W ∈ W where, for each W ∈ W, P[W] =
(F [W],R[W]) is a primitive according to Definition 5.

When Does Functional Encryption Imply Obfuscation? 93

Definition 7 (Restrictions of indexed primitives). For P[W] =
{(F [W],R[W])}W∈W and P ′[W ′] = {(F ′[W],R′[W])}W∈W′ , we say P ′[W ′] is
a restriction of P[W] if the following conditions hold: (1) W ′ ⊆ W, and (2) for
all W ∈ W ′, F ′[W] ⊆ F [W], and (3) for all W ∈ W ′, R′[W] = R[W].

We now proceed to apply the above definition of restrictions on indexed prim-
itives to give the definition of monolithic (and restricted monolithic) primitives.
We will then apply them to the case of functional encryption. We refer the reader
to [GMM17] for a more in-depth study of the monolithic framework.

Definition 8 (Universal Circuit Evaluator). We call an oracle algorithm
w(·) a universal circuit evaluator if it accepts a pair of inputs (C, x) where C(·)

is an oracle-aided circuit and x is a string in the domain of C then outputs
C(·)(x) by forwarding all of C’s oracle queries to its own oracle.

Definition 9 (Monolithic Primitive [GMM17]). We call the restricted
primitive P ′[W ′] = {(F ′[W],R[W])}W∈W′ the monolithic variant of P[W] =
{(F [W],R[W])}W∈W if the following holds:

– For any F and W ∈ W, if W = wF for some universal circuit evaluator w(·)

and F ∈ F [W] then W ∈ W ′ and F ∈ F ′[W].

Definition 10 (Restricted Monolithic Primitive [GMM17]). We call the
restricted primitive P ′[W ′] = {(F ′[W],R[W])}W∈W′ the restricted monolithic
variant of P[W] = {(F [W],R[W])}W∈W if is satisfies Definition 9 but the con-
dition is replaced with the following:

– For any F and W ∈ W, if W = wF ′
for some universal circuit evaluator

w(·), F ′ ⊂ F ∈ F [W] then W ∈ W ′ and F ∈ F ′[W].

That is, the subroutines of F that w(·) may call are a strict subset of all the
subroutines contained in implementation F .

Definition 11 (Monolithic Functional Encryption). A monolithic func-
tional encryption scheme FE = (FE.Setup, FE.Enc,FE.Keygen,FE.Dec) for
the function family F is defined the same as Definition 3 except that, for any
f ∈ F, f is an oracle-aided circuit that can call any subroutine of FE.

Definition 12 (Black-box Construction [RTV04]). A (fully) black-box con-
struction of a primitive Q from a primitive P consists of two PPT algorithms
(Q,S):

1. Implementation: For any oracle P that implements P, QP implements Q.
2. Security reduction: for any oracle P implementing P and for any (computa-

tionally unbounded) oracle adversary A successfully breaking the security of
QP , it holds that SP,A breaks the security of P .

94 S. Garg et al.

Definition 13 (Monolithic Construction of IO from FE). A monolithic
construction of IO from FE is a fully black-box construction of IO from mono-
lithic FE.

2.4 Tools for Lower Bounds of IO

Definition 14 (Sub-models). We call the idealized model/oracle O a sub-
model of the idealized oracle I with subroutines (I1, . . . , Ik), denoted by O � I,
if there is a (possibly empty) S ⊆ {1, . . . , k} such that the idealized oracle O
works as follows:

– First sample I ← I where the subroutines are I = (I1, . . . , Ik).
– Provide access to subroutine Ii iff i ∈ S.

If S = ∅ then the oracle O will be empty and we will be back to the plain model.

Definition 15 (Simulatable Compiling Out Procedures for IO). Suppose
O � I. We say that there is a simulatable compiler from IO in idealized model
I into idealized model O with correctness error ε if the following holds.

For every implementation PI = (iOP ,EvP) of δ-approximate IO in idealized
model I there is a implementation PO = (iOO,EvO) of (δ + ε)-approximate IO
in idealized model O such that the security of the two are related as follows:

Simulation: There is an efficient PPT simulator S and a negligible function
μ(·) such that for any C:

Δ(S(iOI(C, 1κ)), iOO(C, 1κ)) ≤ μ(κ)

where Δ(., .) denotes the statistical distance between any two given random vari-
ables.

Lemma 1 (Lower Bounds for IO using Oracle Compilers [GMM17]).
Suppose ∅ = I0 � I1 · · · � Ik = I for constant k = O(1) are a sequence of
idealized models. Suppose for every i ∈ [k] there is a simulatable compiler for IO
in model Ii into model Ii−1 with correctness error εi < 1/(100k). Also suppose
primitive P can be black-box constructed in the idealized model I. Then there is
no fully black-box construction of IO from P.

3 Monolithic Separation of IO from Short-Output FE

In this section, we prove our main impossibility result which states that we can-
not construct an IO scheme in a monolithic way from any single-key functional
encryption scheme that is restricted to handling only functions of “short” output
length. More formally, we prove the following theorem.

When Does Functional Encryption Imply Obfuscation? 95

Theorem 2. Assume the existence of one-way functions and that NP �⊆
co-NP. Then there exists no monolithic construction of IO from any single-
key t-bit-output functional encryption scheme where t(n, κ) ≤ p(n, κ)−ω(n+κ),
n is the message length, p is the ciphertext length, and κ is the security parameter
of the functional encryption scheme.

To prove Theorem 2, we will apply Lemma 1 for the idealized functional
witness encryption model Γ (formally defined in Sect. 3.1) to prove that there
is no black-box construction of IO from any primitive P that can be black-box
constructed from the Γ . In particular, we will do so for P that is the monolithic
functional encryption primitive. Our task is thus twofold: (1) to prove that P
can black-box constructed from Γ and (2) to show a simulatable compilation
procedure that compiles out Γ from any IO construction. The first task is proven
in Sect. 3.2 and the second task is proven in Sect. 3.3. By Lemma 1, this would
imply the separation result of IO from P and prove Theorem 2.

Our oracle, which is more formally defined in Sect. 3.1, acts an idealized
version of a single-key short-output functional encryption scheme, which makes
the construction of secure FE quite straightforward. As a result, the main chal-
lenge lies in showing a simulatable compilation procedure for IO that satisfies
Definition 15 in this idealized model, and therefore, it is instructive to look at
how the compilation process works and what challenges are faced with dealing
with oracle Γ .

3.1 The Ideal Model

In this section, we define the distribution of our idealized (randomized) oracle
that can be used to realize (restricted-monolithic) functional witness encryption.
We also provide several definitions regarding the algorithms in this model and
the types of queries that these algorithms can make.

Definition 16 (Randomized Functional Witness Encryption Oracle).
Let V be a PPT algorithm that takes as input (w, a), outputs b ∈ {0, 1} and runs
in time poly(|a|). Also, let F be a PPT algorithm that accepts as input a witness
w and a message m then outputs a string y ∈ {0, 1}s. We denote the random
(V,F, p)-functional witness encryption (rFWE) oracle as ΓV,F,p = {ΓV,F,p}n∈N

where ΓV,F,p = (Enc,DecV,F,RevAtt,RevMsgV) is defined as follows:

– Enc : {0, 1}n �→ {0, 1}p(n) is a random injective function mapping strings
x ∈ {0, 1}n to “ciphertexts” c ∈ {0, 1}p where p(n) ≥ n.

– DecV,F : {0, 1}� �→ {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}� as input where c ∈
{0, 1}p(n), DecV,F(w, c) allows us to decrypt the ciphertext c = Enc(x) to get
back x, parse it as x = (a,m), then get F(w,m) as long as the predicate test
is satisfied on (w, a). More formally, the following steps are performed:
1. If � x such that Enc(x) = c, output ⊥. Otherwise, continue to the next

step.
2. Find x such that Enc(x) = c, and parse it as x = (a,m).
3. If V(w, a) = 1, output F(w,m). Otherwise, output ⊥.

96 S. Garg et al.

– RevAtt : {0, 1}p(n) �→ {0, 1}∗ ∪ {⊥} is a function that, given an input c ∈
{0, 1}p(n), would output the corresponding attribute a ∈ {0, 1}∗ for which
Enc((a,m)) = c. If there is no such a then output ⊥.

– RevMsgV : {0, 1}�′ �→ {0, 1}∗ ∪ {⊥}: Given (w1, w2, c) where w1 �= w2 and
c ∈ {0, 1}p(n), if there exist x = (a,m) such that Enc(x) = c and V(wi, a) = 1
for i ∈ {1, 2} then reveal m. Otherwise, output ⊥.

When it is clear from context, we sometimes omit the subscripts from DecV,F,
RevMsgV, and ΓV,F and simply write them as Dec, RevMsg, and Γ , respec-
tively. Furthermore, we denote any query-answer pair (q, β) asked by some oracle
algorithm A to a subroutine T ∈ {Enc,Dec,RevAtt,RevMsg} as (q �→ β)T .

Definition 17 (Restricted-Monolithic Randomized FunctionalWitness
Encryption Oracle). We define a randomized restricted-monolithic functional
witness encryption oracleΓV,F,p as an rFWEoracleΓV,F,p = (Enc,DecV,F,RevAtt,
RevMsg) where V and F satisfy the following properties:

– V is a PPT oracle algorithm that takes as input (w, a), interprets a(·) as an
oracle-aided circuit that can only make Enc calls, then outputs aEnc(w).

– F is a PPT oracle algorithm that takes as input (w,m), parses w = (z1, z2),
interprets z

(·)
1 as an oracle-aided circuit that can make calls to any subroutine

in Γ = (Enc,Dec,RevAtt, RevMsg), then outputs zΓ
1 (m).

While the above oracle shares similar traits to a restricted-monolithic prim-
itive (see Definition 10), the actual functionality of F is slightly modified to
simplify the notion of using only part of w. For the purposes of this section,
we will use the restricted-monolithic rFWE Γ in order to prove our separation
result of IO from monolithic functional encryption - mainly because this oracle
is sufficient for getting monolithic FE. Nevertheless, we will still make use of Γ
later on in in the full version of this paper to prove the fully black-box separation
of IO from (non-monolithic) functional encryption.

Next, we present the following definition of canonical executions that is a
property of algorithms in this ideal model. This normal form of algorithms helps
us in reducing the query cases to analyze since there are useless queries whose
answers can be computed without needing to ask the oracle.

Definition 18 (Canonical executions). We define an oracle algorithm AΓ

relative to the restricted-monolithic rFWE oracle to be in canonical form if the
following conditions are satisfied:

– If A has issued a query of the form Enc(x) = c, then it will not ask DecV,F(., c),
RevAtt(c), or RevMsgV(., ., c) as it can compute the answers of these queries
on its own. In particular, for DecV,F and RevMsgV queries, it would run V
and F directly to compute the query answers correctly.

– Before asking any DecV,F(w, c) query where Enc(x) = c for some x = (a,m),
A would go through the following steps first:

When Does Functional Encryption Imply Obfuscation? 97

• A would get a ← RevAtt(c) then run VEnc(w, a) on its own, making sure
to answer any queries of V using Enc. If VEnc(w, a) = 0 then do not issue
DecV,F(w, c) to Γ and use ⊥ as the answer instead. Otherwise, continue
to the next step.

• If A has beforehand ran VEnc(w′, a) = 1 for some w′ �= w then it does
not ask DecV,F(w, c) and instead computes the answer to this query on its
own. That is, it first gets m ← RevMsg(w,w′, c), computes on its own
FΓ (w,m) and outputs FΓ (w,m) if VEnc(w, a) = 1 or otherwise ⊥.

• If A has not asked DecV,F(w′, c) for any w′ �= w (or did but it received ⊥
as the answer) then it directly asks DecV,F(w, c) from the oracle.

– Before asking any RevMsgV(w1, w2, c) query where Enc(x) = c for some x =
(a,m), A would go through the following steps first:

• A would get a ← RevAtt(c) then run VEnc(wi, a) for all i ∈ {1, 2} on its
own, making sure to answer any queries of V using Enc. If VEnc(wi, a) = 0
for some i then do not issue RevMsgV(w1, w2, c) to Γ and use ⊥ as the
answer instead. Otherwise, continue to the next step.

• After issuing RevMsgV(w1, w2, c) to Γ and getting back an answer m �=
⊥, ask the query Enc(x) where x = (a,m) then run FΓ (w1,m) and
FΓ (w2,m).

Note that any oracle algorithm A can be easily modified into a canonical form
by increasing its query complexity by at most a polynomial factor assuming that
F has extended polynomial query complexity.

Remark 1. We observe the following useful property regarding the number of
queries of a specific type that a canonical algorithm in the Γ oracle model can
make. Namely, given a canonical A, for any ciphertext c = Enc(x) where x =
(a,m) for which A has not asked Enc(x) before, A would ask at most one query
of the form RevAtt(c), at most one query of the form DecV,F(w, c) for which
VEnc(w, a) = 1, and at most one query of the form RevMsgV(w1, w2, c) for
which VEnc(wi, a) = 1 where i ∈ {1, 2}. Furthermore, A would never ask a query
if VEnc(w, a) = 0 since this condition can be verified independently by A and
the answer can be simulated as it would invariably be ⊥.

Looking ahead, we will use this property later on to prove an upper bound on
the number of ciphertexts that an adversary can decrypt without knowing the
underlying message. Furthermore, we stress that this property holds specifically
due to the presence of the RevMsg subroutine which leaks the entire message of a
given ciphertext once two different valid witnesses are provided. As a result, this
shows that decrypting a ciphertext more than once (under different witnesses)
does not help as the message could be revealed instead.

We also provide the following definitions to classify the ciphertext and query
types. This would simplify our discussion and clarify some aspects of the details
later in the proof.

Definition 19 (Ciphertext Types). Let A be a canonical algorithm in the
Γ ideal model and suppose that QA is the set of query-answer pairs that A

98 S. Garg et al.

asks during its execution. For any q of the form DecV,F(w, c), RevAtt(c), or
RevMsgV(w1, w2, c), we say that c is valid if there exists x such that c = Enc(x),
and we say that c is unknown if the query-answer pair (x �→ c)Enc is not in QA.

Definition 20 (Query Types). Let A be a canonical algorithm in the Γ ideal
model and let QA be the query-answer pairs that it has asked so far. For any
query new query q issued to Γ , we define several properties that such a query
might have:

– Determined: We say q is determined with respect to QA if there exists (q �→
β)T ∈ QA for some answer β or there exists some query (q′ �→ β′)T ∈ QA

that determines that answer of q without needing to issue q to Γ .
– Direct: We say q is a direct query if A issues this query to Γ to get back

some answer β. The answers to such queries are said to be visible to A.
– Indirect: We say q is an indirect query if q is issued by FΓ during a Dec

query that was issued by A. The answers to such queries are said to be hidden
from A.

3.2 Monolithic Functional Encryption Exists Relative to Γ

In this section, we show how to construct a semantically-secure monolithic FE
scheme. Namely, we prove the following:

Lemma 2. There exists a correct and subexponentially-secure implementation
of monolithic functional encryption in the Γ oracle model with measure one of
oracles.

We do this in two steps: we first show how to construct a restricted-monolithic
variant of a functional witness encryption from the ideal oracle Γ and then show
how to use it to construct the desired functional encryption scheme. Our variant
of FWE that we will construct is defined as follows.

Definition 21 (Customized Functional Witness Encryption (CFWE)).
Given any one-way function R, let V be a PPT oracle algorithm that takes as
input an instance-message pair x = (a,m) and witness w, interprets a as an
oracle circuit then outputs aR(w) while only making calls to R. Furthermore, let
F be a PPT oracle algorithm that accepts as input a string w = (z1, z2) and a
message m, interprets z1 as a circuit then outputs a string y = z1(m). For any
given security parameter κ, a customized functional witness encryption scheme
defined by V and F consists of three PPT algorithms P = (Enc,DecV,F,RevAtt)
defined as follows:

– Enc(1κ, a,m): given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and secu-
rity parameter κ, outputs c ∈ {0, 1}∗.

– RevAtt(c): given a ciphertext c, outputs the corresponding attribute a under
which the message is encrypted.

– DecV,F(w, c): given ciphertext c and “witness” string w ∈ {0, 1}∗, outputs a
message m′ ∈ {0, 1}∗.

When Does Functional Encryption Imply Obfuscation? 99

A customized functional witness encryption scheme satisfies the following com-
pleteness and security properties:

– Correctness: For any security parameter κ, any m ∈ {0, 1}∗, and any
(w, (a,m)) such that w and VR(w, a) = 1, it holds that

Pr
Enc,Dec

[DecV,F(w,Enc(1κ, a,m)) = FP (w,m)] = 1

– Instance-Revealing: For any security parameter κ, any m ∈ {0, 1}∗, and
any (w, (a,m)) such that VR(w, a) = 1, it holds that

Pr[RevAtt(Enc(1κ, a,m)) = a] = 1

– Weak Extractability: For any PPT adversary A and polynomial p1(.), there
exists a PPT extractor E and a polynomial p2(.) such that for any security
parameter κ, any a for which VR(w, a) = 1 for some w, and any m0,m1

where |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b

$←− {0, 1}, c ← Enc(1κ, a,mb)
]

≥ 1
2

+ p1(κ)

Then:

Pr

⎡
⎣

EA(1κ, a, m0, m1) = w : VR(w, a) = 1 ∧ FP (w, m0) �= FP (w, m1)
∨

EA(1κ, a, m0, m1) = (w1, w2) : w1 �= w2 ∧ VR(w1, a) = 1 ∧ VR(w2, a) = 1

⎤
⎦ ≥ p2(κ)

Customized FWE in the Γ Ideal Model. Here we provide the construction
of customized FWE using the ΓV,F oracle. We note that Γ can be thought of as
an ideal customized FWE and hence the construction of the CFWE primitive is
straightforward.

Construction 3 (Customized Functional Witness Encryption). Let V
and F be as defined in Definition 21. For any security parameter κ and oracle
ΓV,F sampled according to Definition 17, we will implement a customized FWE
scheme P defined by V and function class F as follows:

– CFWE.Enc(1κ, a,m): Given a ∈ {0, 1}∗, message m ∈ {0, 1}n′
and security

parameter 1κ, let n = Θ(n′+|a|+κ). Sample r ← {0, 1}κ uniformly at random
then output c = Enc(x) where x = (a, (m, r)).

– CFWE.Dec(w, c): Given string w and ciphertext c ∈ {0, 1}p, get y ←
DecV,F(w, c), then output y.

– CFWE.Rev(c): Given ciphertext c ∈ {0, 1}p, outputs RevAtt(c).

Lemma 3. Construction 3 is a correct and subexponentially-secure implemen-
tation of customized functional witness encryption in the Γ oracle model with
measure one.

For the proof of correctness and security for this construction, we refer the
reader to the full version of this paper.

100 S. Garg et al.

From CFWE to Functional Encryption

Construction 4 (Functional Encryption). Let PF = (FE.Setup,
FE.Keygen,FE.Enc, FE.Dec) be the functional encryption scheme for the
function family F that we would like to construct. Suppose Sig = (Sig.Gen,
Sig.Sign,Sig.Ver) is a secure signature scheme.

Define a language L with an associated PPT verifier V such that an instance
a of the language corresponds to the signature verification circuit Sig.Ver(vk, .)
that takes as input w = (f, skf) so that V(w, a) = a(w) = 1 if and only if
Sig.Ver(vk,w) = 1 for some oracle-aided f ∈ F, skf ← Sig.Sign(sk, f), and
(sk, vk) ← Sig.Gen(1κ). Furthermore, let F′ be a PPT algorithm that takes as
input w = (f, skf) and a message m then outputs y = F′(w,m) = f(m).

Given a customized functional witness encryption scheme CFWE =
(CFWE.Enc, CFWE.DecV,F′ , CFWE.Rev) for V and F′ defined above, signa-
ture scheme Sig, and security parameter κ, we implement the monolithic FE
scheme PF as follows:

– FE.Setup(1κ): Generate (sk, vk) ← Sig.Gen(1κ). Output (MPK,MSK) where
MPK = vk and MSK = sk.

– FE.Keygen(MSK, f): Given MSK = sk and f ∈ F, output SKf = (f, skf)
where skf ← Sig.Sign(MSK, f).

– FE.Enc(MPK,m): Given MPK ∈ {0, 1}κ and message m ∈ {0, 1}n′
, output

ciphertext c = CFWE.Enc(1κ,MPK,m).
– FE.Dec(SKf , c): Given SKf = (f, skf) and ciphertext c ∈ {0, 1}p, call and

output the value returned by CFWE.DecV,F′(SKf , c).

Lemma 4. Construction 4 is a fully black-box construction of monolithic func-
tional encryption from customized FWE.

Proof. We first show that the construction is correct. Given (MPK,MSK) ←
FE.Setup(1κ), for any encryption c ← FE.Enc(MPK,m) of a message m ∈
{0, 1}n′

and functional decryption key SKf ← FE.Keygen(MSK, f) for a function
f ∈ F , we get that, if V(w, a) = aSig(w) = Sig.Ver(vk, (f, skf)) = 1 then:

FE.Dec(SKf , c) = CFWE.DecV,F′((f, skf), c) = F′((f, skf),m) = fPF(m)

Note that, since this is an monolithic construction, f can have oracle gates to any
subroutine in PF. As a result, we need to make sure that V are F′ are specified
in a way so that all monolithic computations are valid. First, V only has one
Sig.Ver gate which is supported by OWFs. Furthermore, F′ calls f which has
oracle gates to any subroutine in PF. Nevertheless, we can reduce each gate to
PF to CFWE or OWF gates. In particular, FE.Setup can be reduced to Sig.Gen
gates, FE.Keygen can be reduced to Sig.Sign gates, FE.Enc can be reduced to
CFWE.Enc gates, and FE.Dec can be reduced to CFWE.Dec gates. Thus, all
gates in F′ can be reduced to those in FWE or one-way functions.

Next, we prove the security of the scheme by reducing it to the underlying
security of CFWE and Sig. Let A be a computationally bounded adversary that

When Does Functional Encryption Imply Obfuscation? 101

asks one functional secret key query and breaks the security of the FE scheme.
That is, for some non-negligible ε(.):

Pr[IND1FE
A (1κ) = 1] ≥ 1

2
+ ε(κ)

where IND1FE
A is the experiment of Definition 3.

Towards contradiction, we will now show that, given A, we can build an
attacker B that can break the strong existential unforgeability of the signa-
ture scheme under chosen message attack. On receiving the public-key MPK
from the (signature game) challenger, B forwards MPK to A and upon receiving
(f,m0,m1), requests the signature for f and then randomly chooses a message
to encrypt. Note that, since FE.Enc(MPK,mb) = CFWE.Enc(1κ,MPK,mb), B
can use A to build a distinguisher A′ against CFWE. B then runs the black-
box straight-line extractor EA′

(guaranteed to exist by the security definition of
CFWE) where at least one of the following events will happen with non-negligible
probability:

– The extractor returns a single witness w∗ = (f∗, skf∗) such that V(w∗,MPK)
outputs 1 and F′(w∗,m0) �= F′(w∗,m1) =⇒ f∗(m0) �= f∗(m1). Note that
this implies that skf∗ is a valid forgery since f∗ cannot be the function f
that A requests the signature for (because f(m0) = f(m1) in that case) and
w∗ passed verification thus violating the security of the signature scheme.

– The extractor returns a pair of witnesses (w∗
1 , w

∗
2) such that w∗

1 �= w∗
2 and

V(w∗
1 ,MPK) = V(w∗

2 ,MPK) = 1. This either implies that w∗
i = (f∗, skf∗)

for some i ∈ {1, 2} is a valid witness and f∗ �= f in which case we have a
signature forgery, or it implies that w∗

i = (f, sk′
f) for some i ∈ {1, 2} and

hence sk′
f �= skf (since even if w∗

i−1 = (f, skf) we have that w∗
i �= w∗

i−1)
which is also signature forgery.

In both of the above cases, an attack against the FE scheme results in an attack
against the underlying signature scheme.

3.3 Compiling Out Γ from IO

In this section, we show a simulatable compiler for compiling out ΓV,F when
F is short-output. We adapt the approach outlined in Sect. 2 to the restricted-
monolithic rFWE oracle ΓV,F = (Enc,DecV,F, RevAtt,RevMsgV) while making
use of Lemma 1, which allows us to compile out ΓV,F in two phases: we first
compile out part of ΓV,F to get an approximately-correct obfuscator ÔΘ in the
random instance-revealing witness encryption model (that produces an obfusca-
tion B̂Θ in the Θ-model), and then use the previous result of [GMM17] to com-
pile out Θ and get an obfuscator O′ in the plain-model. Since we are applying
this lemma only a constant number of times, security should still be preserved.
Specifically, we will prove the following lemma:

102 S. Garg et al.

Lemma 5. Let F be a PPT oracle Turing machine that accepts as input a wit-
ness w and a message m then outputs a string y ∈ {0, 1}s where s(n) ≤ t(n).
Let Θ be a random instance-revealing witness encryption oracle. Then for any
ΓV,F,p satisfying t(n) ≤ p(n) − ω(n) and for Θ � ΓV,F,p, the following holds:

– For any IO in the ΓV,F,p ideal model, there exists a simulatable compiler with
correctness error ε < 1/200 for it that outputs a new obfuscator in the random
instance-revealing witness encryption oracle Θ model.

– [GMM17] For any IO in the Θ oracle model, there exists a simulatable com-
piler with correctness error ε < 1/200 for it that outputs a new obfuscator in
the plain model.

We observe that by compiling out only the Dec queries of Γ , we will end
up with queries only to Enc,RevAtt, and RevMsg. However, we note that Enc
and RevAtt already are part of Θ and RevMsg can in fact be interpreted as
the decryption subroutine of Θ where w′ = (w1, w2) is defined as the witness
to the decryption subroutine. Therefore, the second part of Lemma5 follows
directly by [GMM17], where they showed how to compile out the ideal witness
encryption oracle from any IO scheme, and thus we focus on proving the first
part of the lemma. We will present the construction of the obfuscator in the
random instance-revealing witness encryption model that, given an obfuscator
in the Γ model, would compile out and emulate queries to Dec, while forwarding
any Enc,RevAtt,RevMsg queries to Θ. Throughout this section, for simplicity of
notation, we will denote Γ = ΓV,F,p to be the oracle satisfying t(n) ≤ p(n)−ω(n).

Remark 2. For simplicity of exposition, we assume that the compiler only asks
the oracle for queries from Γn. However, our argument directly extends to handle
arbitrary calls to the oracle Γ using the following standard technique. As we will
show, the “error” in our poly-query compiler in the ideal model will be at most
poly(q)/2n (where q = poly(κ) is a fixed polynomial over the security parameter
κ of the IO construction) when we only call Γn. It is also the case that this
error adds up when we work with several input lengths n1, n2, . . . , but it is
still bounded by union bound. Therefore, the total error of the transformation
will be at most O(poly(n1)/2n1) where n1 is the smallest integer for which Γn1

is queried at some point. To make n1 large enough (to keep the error small
enough) we can modify all the parties to query Γ on all oracle queries up to
input parameter n1 = c(log(κ)) for sufficiently large c. (Note that this will be a
polynomial number of queres in total.)

The new obfuscator ÔΘ in the instance-revealing witness encryption
model. Given a δ-approximate obfuscator O = (iO,Ev) in the rFWE oracle
model, we construct an (δ + ε)-approximate obfuscator Ô = (îO, Êv) in the Θ
oracle model. Throughout this process, we can assume that iO and Ev are in
their canonical form as in Definition 18.

When Does Functional Encryption Imply Obfuscation? 103

Algorithm 1. EmulateCall
Input: Query-answer set Q, query q to a subroutine of

T ∈ {Enc, Dec, RevAtt, RevMsg} of Γ
Oracle: Random Instance-Revealing Witness Encryption Oracle

Θ = (WEnc, WDec, WRevAtt)
Output: A query-answer pair ρq, and the set W of hidden queries
Begin:
if ∃ (q �→ β)T ∈ Q for some answer β then

Set ρq = (q �→ β)T

end
if q = x is a query to Enc then

Set ρq = (x �→ WEnc(x))Enc

end
if q = c is a query to RevAtt then

Set ρq = (c �→ WRevAtt(c))Enc

end
if q = (w1, w2, c) is a query to RevMsgV then

Set ρq = (x �→ WDecV′((w1, w2), c))Enc

end
/* We simulate Dec queries */
if q = (w, c) is a query to DecV,F then

Let aR be the attribute returned by EmulateCall(Q, qR) where qR is the
query RevAtt(c)
Emulate b ← VEnc(w, aR) while emulating any queries using EmulateCall

if b = 1 and ∃ ((a, m) �→ c)Enc ∈ Q then
Emulate y ← FΓ (w, m) while simulating any queries using EmulateCall

Set W to be the set of query-answer pairs asked by F
Set ρq = ((w, c) �→ y)Dec

else
Set ρq = ((w, c) �→ ⊥)Dec

end

end
Return (ρq, W)

Subroutine îO
Θ

(C):

1. Emulation phase: Emulate iOΓ (C). Initialize QO = ∅ to be the set of query-
answer pairs asked by the obfuscation algorithm iO. For every query q asked
by iOΓ (C), call (ρq,W) ← EmulateCallΘ(QO, q) and add ρq to QO.

2. Learning phase: Set QB = ∅ to be the set of direct (visible) query-answer
pairs asked during this phase (so far) and Qh

B = ∅ to be the set of indirect
(hidden) query-answer pairs (see Definition 20). Let k = (�O + κ)/ε where

�O ≤ |iO| represents the number of queries asked by iO. Choose λ
$←− [k]

uniformly at random then for i = {1, ..., λ} do the following:
– Choose zi

$←− {0, 1}|C| uniformly at random
– Run EvΓ (B, zi). For every query q asked by EvΓ (B, zi), run (ρq,W) ←
EmulateCallΘ(QO ∪ QB ∪ Qh

B , q), then add ρq to QB and W to Qh
B .

104 S. Garg et al.

3. The output of the Θ-model obfuscation algorithm îO
Θ

(C) will be B̂ =
(B,QB).

Subroutine Êv
Θ

(B̂, z): Initialize Q
̂B = ∅ to be the set of queries asked when

evaluating B̂. To evaluate B̂ = (B,QB) on a new random input z we simply
emulate EvΓ (B, z) as follows. For every query q asked by EvΓ (B, z), run and
set (ρq,W) = EmulateCallΘ(QB ∪ Q

̂B , q) then add (ρq ∪ W) to Q
̂B .

The running time of îO. We note that the running time of the new obfuscator
îO remains polynomial time since we are emulating the original obfuscation once
followed by a polynomial number λ of learning iterations. Furthermore, since we
are working with the restricted-monolithic oracle (see Definition 17), the way
that F is defined (as a universal circuit evaluator) makes it so that the number
of recursive calls that appear due to emulating FΓ is upper-bounded by some
polynomial (in fact even quadratic).

Proving Approximate Correctness. Define Qh
̂B

to be the set of hidden queries
asked during the final execution phase. Set QT = QO ∪ QB ∪ Qh

B ∪ Q
̂B ∪ Qh

̂B
to be the set of all (visible and hidden) query-answer pairs asked during all the
phases. We consider two distinct experiments that construct the Θ oracle model
obfuscator exactly as described above but differ when evaluating B̂:

– Real Experiment: Êv
Θ

(B̂, z) emulates EvΓ (B, z) on a random input z and
answers any queries using EmulateCall.

– Ideal Experiment: Êv
Γ
(B̂, z) executes EvΓ (B, z) and answers all the

queries of EvΓ (B, z) using the actual oracle Γ .

Note that the actual emulation of the new obfuscator is statistically close to
an ideal emulation of the obfuscation and learning phases using Γ and so it
suffices to compare only the real and ideal final execution phases. In essence,
in the real experiment, we can think of the execution as Ev

̂Γ (B, z) where Γ̂
is the oracle simulated using the learned query-answer pairs QB and oracle Θ.
We will compare the real experiment with the ideal experiment and show that
the statistical distance between these two executions is at most ε. In order to
achieve this, we will identify the events that make the executions EvΓ (B, z) and
Ev
̂Γ (B, z) diverge (i.e. without them happening, they proceed statistically the

same).
Let q be a new query that is being asked by Ev

̂Γ (B, z) (i.e. in the real
experiment) and handled using EmulateCallΘ(QB ∪ Q

̂B , q). The following are
the cases that should be handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the
same in both experiments as they will be both answered using the subroutine
WEnc(c) of Θ.

When Does Functional Encryption Imply Obfuscation? 105

2. If q is a query of type RevAtt(c), then the answer to q will be distributed the
same in both experiments as they will be both answered using the subroutine
WRevAtt(c) of Θ.

3. If q is a query of type RevMsgV(w1, w2, c), then the answer to q will be
distributed the same in both experiments as they will be both answered using
the subroutine WDecV′(w′, c) where w′ = (w1, w2).

4. If q is a query of type DecV,F(w, c) whose answer is determined by QB ∪ Q
̂B

in the real experiment then it is also determined by QT ⊇ (QB ∪ Q
̂B) in the

ideal experiment and the answers are therefore distributed the same.
5. Suppose q is a query of type DecV,F(w, c) that is not determined by QB ∪Q

̂B
in the real experiment. Then the answer returned by EmulateCall is ⊥ since
the underlying encryption query ((a,m) �→ c)Enc is not known. In that case,
we have to consider three different counterparts in the ideal experiment:
(a) Bad Event 1: If q is not determined by QT in the ideal experiment then

this implies that the ideal execution EvΓ (B, z) is for the first time hitting
a valid ciphertext that was never generated by an encryption query asked
during any of the phases. In that case, since Enc is injective, the answer
returned by Γ would be ⊥ with overwhelming probability.

(b) Bad Event 2: The query q is determined by QT \ (QB ∪Q
̂B) in the ideal

experiment and the ideal execution EvΓ (B, z) has hit a valid unknown
ciphertext that was generated by an encryption query in the obfuscation
phase that was never learned. In this case, the answer will be FΓ (w,m)
if the verification passes and ⊥ otherwise.

(c) Bad Event 3: The query q is determined by QT \ (QB ∪ Q
̂B) in the

ideal experiment then and the ideal execution EvΓ (B, z) has hit a valid
unknown ciphertext that was generated as a hidden query (i.e. issued by
inner F executions) during the learning or evaluation phases. In this case,
the answer will be FΓ (w,m) if the verification passes and ⊥ otherwise.

Notice that the answer to such a query in the ideal experiment differs from
that in the real experiment (which always outputs ⊥). However, we will show
below that such an event is unlikely to occur.

For circuit input z, let E(z) be the event that either one of Cases 5a, 5b,
or 5c happen. More specifically, this is the event that Ev

̂Γ (B, z) asks a query q
of the form DecV,F(w, c) where c is a valid ciphertext that was either (i) never
generated before during any of the phases, (ii) generated during the obfuscation
phase, or (iii) generated by a hidden query in the learning and/or final eval-
uation phases. Assuming that event E(z) does not happen, both experiments
will proceed identically the same and the output distributions of EvΓ (B, z) and
Ev
̂Γ (B, z) will be statistically close. More formally, the probability of correctness

for îO is:

Pr
z
[Ev

̂Γ (B, z) �= C(z)] = Pr
z
[Ev

̂Γ (B, z) �= C(z) ∧ ¬E(z)] + Pr
z
[Ev

̂Γ (B, z) �= C(z) ∧ E(z)]

≤ Pr
z
[Ev

̂Γ (B, z) �= C(z) ∧ ¬E(z)] + Pr
z
[E(z)]

106 S. Garg et al.

By the approximate functionality of iO, we have that:

Pr
z

[iOΓ (C)(z) �= C(z)] = Pr
z

[EvΓ (B, z) �= C(z)] ≤ δ(κ)

Therefore,

Pr
z

[Ev
̂Γ (B, z) �= C(z) ∧ ¬E(z)] = Pr

z
[EvΓ (B, z) �= C(z) ∧ ¬E(z)] ≤ δ (1)

We are thus left to show that Pr[E(z)] ≤ ε. Since both experiments proceed the
same up until E happens, the probability of E happening is the same in both
worlds and we will thus choose to bound this bad event in the ideal world.

Proof Intuition. At a high-level, in order to show that E is unlikely, we will
show that the learning procedure and final execution phases, when treated as a
single non-uniform query-adaptive algorithm A, will only ask a bounded num-
ber of queries for valid ciphertexts whose corresponding underlying message is
unknown to this algorithm. Then, given this upper bound on such queries, we
ensure that by running the learning procedure for sufficient number of times, the
final execution phase will not ask such queries to unknown ciphertexts with high
probability and we maintain the approximate correctness of the obfuscation.

In order to prove this upper bound on the number of ciphertexts that will
be hit, we start with the query-adaptive A which consists of the combination
of the learning and final execution phases that accepts as input an obfuscation
B in the Γ oracle model and is able to adaptively query Γ when running B on
multiple randomly chosen inputs. We then show through a sequence of reductions
to other adversaries that the advantage of such an attacker in hitting a specific
number of unknown ciphertexts is upper bounded by the advantage of a different
non-adaptive attacker Â in hitting the same number of ciphertexts (up to some
factor). We then finally show that Â has a negligible advantage in succeeding.

We begin by defining the notion of query adaptivity for oracle algorithms
and specify what it means for an adversary to hit a ciphertext.

Definition 22 (Query Adaptivity). Let A be a poly-query randomized oracle
algorithm that asks τ queries to some idealized oracle I. Suppose Q is the set of
queries that A will ask. We define the level of query adaptivity of A as being
one of two possible levels:

– Non-adaptive: Q consists of τ queries, possibly from different domains, and
chosen by A before it issues any query and/or independently of the answers
of any previous query.

– Fully adaptive: Q = (q1, ..., qτ) consists of τ queries possibly from different
domains where, for each i ∈ [τ], qi+1 is determined by the answer returned
by qi.

Definition 23 (Ciphertext Hit). Let A be a τ -query oracle algorithm that
has access to Γ . We say that A has hit a ciphertext c if it queries Dec(., c),
RevAtt(c), or RevMsg(., ., c) and c is a valid unknown ciphertext (that is, A has
never asked Enc(x) = c). We denote the set of ciphertexts that A has hit by HA.

When Does Functional Encryption Imply Obfuscation? 107

Our goal is to prove the following lemma which provides the desired upper
bound on the number of ciphertexts that an attacker A can hit.

Lemma 6 (Hitting Ciphertexts). Let ΓV,F be as in Definition 17, n be a fixed
number, and t(n) ≤ p(n)−ω(n), where t is the upper bound on the output length
of F and p is the ciphertext length. Let A be an adaptive τ -query oracle algorithm
that takes as input z and has access to ΓV,F. Let HA be the set of unknown valid
ciphertexts that A hits. Then for security parameter (of the obfuscation scheme)
κ, n ≥ lg κ, τ ≤ poly(κ) ≤ κO(1) we have that for any s ≤ τ :

Pr[|HA| ≥ s] ≤ O(2α−(t+ω(n))s)

where α = |z| + (t + 2n)s.

Proof. We will define a sequence of adversaries and show reductions between
them in order to prove the upper bound stated above. Throughout, we assume
that the algorithms are in canonical form (see Definition 18).

1. Attacker A: This is the original adaptive τ -query attacker as defined in the
statement of the lemma where it will receive some input z and can ask τ
queries to Γ . The goal of the adversary is to hit at least s unknown valid
ciphertexts via queries to Dec,RevAtt or RevMsg.

2. Attacker Au: This is the same attacker as A but does not accept any input
and is modified as follows. For any Dec,RevAtt or RevMsg queries asked to
Γ with some answer y �= ⊥, Au will instead use an answer that is part of
some fixed string u ∈ {0, 1}α hardcoded within Au where α = |z| + (t + 2n)s.
The Enc queries are handled normally as before. The goal of this adversary
is to hit at least s unknown valid ciphertexts via queries to Dec,RevAtt or
RevMsg.

3. Attacker A′: This is the same attacker as Au for any fixed u. However,
aside from Enc queries which are handled normally using Γ , the other query
types are instead replaced with a single subroutine Test that takes as input
a ciphertext c and outputs 1 if c is valid, and 0 otherwise. The goal of this
adversary is to hit at least s unknown valid ciphertexts via queries to Test.

4. Attacker Â: This is the non-adaptive attacker where it will ask all its queries
at once at the start of the experiment. Furthermore, it will not ask any Enc
queries but will be constrained to asking only Test queries. The goal of this
adversary is to hit at least s unknown valid ciphertexts via queries to Test.

Lemma 7. For every A, there exists some u ∈ {0, 1}α such that Pr[|HA| ≥ s] ≤
2α Pr[|HAu

| ≥ s]

Proof. Recall that A accepts z as input and, when it hits s ciphertexts, it would
receive back at most (t + 2n) since we can either get back t bits information as
a result of getting back an answer from DecV,F or at most n bits of information
from queries of RevAtt and RevMsgV. Furthermore, by the canonicalization of
A, it can ask for any c at most one query of each type DecV,F, RevAtt, and
RevMsgV. Thus, in order to say that Au would succeed at hitting s with the

108 S. Garg et al.

same amount of information, the length of u has to be α = |z| + (t + 2n)s. Now,
by a union bound over all u, the probability of success for A is given as follows:

Pr[|HA| ≥ s] ≤ Pr[∃ u : |HAu
| ≥ s] ≤

∑
u

Pr[|HAu
| ≥ s] ≤ 2α Pr[|HAu

| ≥ s]

Lemma 8. For any u ∈ {0, 1}α, Pr[|HAu
| ≥ s] = Pr[|HA′ | ≥ s]

Proof. Since Au does not obtain any information regarding the actual answers
to the Dec,RevAtt and RevMsg queries that it asks, we can think of these
subroutines simply as a testing procedure that Au can use to determine whether
any given ciphertext c is valid or not, and this is signaled by whether the oracle
returns ⊥ or not to any of these queries. Therefore, we can interpret Au as an
adversary A′ that simply calls Test instead of Dec,RevAtt and RevMsg queries
as this yields the same result.

Lemma 9. Pr[|HA′ | ≥ s] ≤ Pr[
∣∣H
̂A

∣∣ ≥ s]

Proof. Given attacker A′ we can define Â that uses A′ and only issues Test
queries (non-adaptively). Any Enc queries that A′ asks (from a specific Enc
domain of size n) can be lazily evaluated (emulated) by Â. Furthermore, any Test
queries that A′ asks will be answered using one of Â’s pre-issued Test queries
while remaining consistent with the previous Enc queries that were issued.

Lastly, we state and prove the following lemma which will be used to bound
the number of ciphertexts that any (poly-query) non-adaptive algorithm might
obtain and use for its decryption and/or reveal queries.

Lemma 10 (Hitting Ciphertexts for Non-Adaptive Learners). Let Γ be
as in Definition 16 and t(n) ≤ p(n) − ω(n) where t is an upper bound on the
output length of F and p is the ciphertext length. Let Â be a non-adaptive τ -
query canonical algorithm as defined above and H

̂A be the set of unknown valid
ciphertexts that Â hits via Test queries. Then for security parameter κ, fixed
n ≥ lg κ, τ ≤ poly(κ), we have that for any s ≤ τ :

Pr[
∣∣H
̂A

∣∣ ≥ s] ≤ O(2−(t+ω(n))s)

Proof. Suppose t ≤ p − dn for d = ω(1) and let τ ≤ κd′
= 2d′ lg κ ≤ 2d′n where

d′ = d/2 = ω(1) for the purposes of upper-bounding the probability for all
poly-query algorithms Â. Recall that the function Enc(.) is injective and maps
messages x ∈ {0, 1}n to ciphertexts c ∈ {0, 1}p(n). For simplicity, assume that
we want to compute the probability that |H

̂A| = s. For any set of s ciphertexts
that are in the image of some fixed s-sized set of the domain Enc(.), the prob-
ability that the τ queries will hit these s ciphertexts is given by

(
τ
s

)
/
(
2p

s

)
. By a

union bound over all the different s-sized sub-domains of Enc(.), we find that

When Does Functional Encryption Imply Obfuscation? 109

for sufficiently large security parameter κ:

Pr[
∣∣H
̂A

∣∣ = s] ≤
(2n

s

) (τ
s

)
(2p

s

) ≤

(
2ne

s

)s (τe

s

)s

(
2p

s

)s ≤

⎛
⎜⎜⎝

2ne

s
× 2d′ne

s
2p

s

⎞
⎟⎟⎠

s

≤
(
2n(1+d′)e2

2ps

)s

≤
(
2n(1+d/2)e2

2p

)s

≤ O(2−(t+ω(n))s)

The last inequality follows from the short-output property, that is t ≤ p − d · n
for some d = ω(1). Note that Pr[|H

̂A| = s + 1] ≤ Pr[|H
̂A| = s] and therefore

Pr[|H
̂A| ≥ s] is dominated by the largest term represented by Pr[|H

̂A| = s].

Putting things together. By Lemmas 7, 8, and 9, and using Lemma 10, we
find that:

Pr[|HA| ≥ s] ≤ O(2α−(t+ω(n))s)

Note that, for simplicity, Lemma 6 only considers hitting unknown ciphertexts
from some fixed domain of size n. However, we observe that this argument can
be extended for learners that can ask queries for different domain sizes as well.

Lemma 11. Pr[E(x)] ≤ ε + negl(κ)

Proof. Let A to be an adaptive non-uniform oracle algorithm in the ideal hybrid
that has access to Γ and works as follows:

– Initialize the query-answer set QA = ∅

– For i = {1, ..., k}, run EvΓ (B, zi). For any query q asked by EvΓ (B, zi), if
(q �→ a)T ∈ QA for subroutine T then answer with a. Otherwise, handle the
query in the canonical form as in Definition 18, and if a query was sent to Γ ,
add the new query-answer pair (q �→ a)T to QA.

– Output EvΓ (B, zk)

In essence, A would run the learning and final execution phases (in total k exe-
cutions) making sure to only forward to Γ the queries that are distinct and which
cannot be computed from QA so far. Given the above canonical A, we observe that
for any unknown valid ciphertext c = Enc(x) where x = (a,m), A would ask at
most one query of the form RevAtt(c), at most one query of the form Dec(w, c) for
which VEnc(w, a) = 1, and at most one query of the form RevMsg(w1, w2, c) for
which VEnc(wi, a) = 1 where i ∈ {1, 2}. Furthermore, A would never ask a query
if VEnc(w, a) = 0 since this condition can be verified independently by A and the
answer can be simulated as it would invariably be ⊥.

110 S. Garg et al.

Given A, we can bound the number of distinct unknown ciphertexts that
the k executions will hit, which we denote by |HB | =

∣∣∣⋃k
i=1 HBi

∣∣∣ where HBi
is

the set of ciphertexts hit by the ith evaluation EvΓ (B, zi). Note that the total
number of queries that will be asked across all executions is k�B = poly(κ)
where �B is the circuit size of Ev(B, .). It is straightforward to see that, for any
s, Pr[|HA| ≥ s] = Pr[|HB | ≥ s] since whenever one of the k executions hits an
unknown ciphertext c for this first time, A will also forward it to the oracle and
hit it for the first time as well.

Since A accepts as input the obfuscated circuit of size |iO| = �O, by Lemma 6,
the probability that A hits at least s = (�O +κ) ciphertexts is at most 2�O−ω(n)s ≤
2−ω(n)κ = negl(κ). Therefore, the k�B-query algorithm A will hit at most s =
(�O + κ) new unknown ciphertexts with overwhelming probability. Therefore we
have that,

Pr[|HB | ≥ s] = Pr[|HA| ≥ s] ≤ 2�O−ω(n)s

Since the maximum possible number of learning iterations k > s and
⋃i

j=1 HBj
⊆⋃i+1

j=1 HBj
for any i, the number of learning iterations that increase the size of the

set HB of unknown ciphertext hits (via one of the bad event queries) is at most s.
A ciphertext that was hit could have its encryption query generated during the
obfuscation phase or as one of the hidden queries issued by F during one of the k

executions. We say λ
$←− [k] is bad if it is the case that

⋃λ
j=1 HBj

⊆ ⋃λ+1
j=1 HBj

(i.e.
λ is an index of a learning iteration that increases the size of the hit ciphertexts).
This would imply that after λ learning iterations in the ideal experiment, the
final execution with H

̂B :=
⋃λ+1

j=1 HBj
would contain an unknown ciphertext

that it we will hit for this first time and for which we cannot consistently answer
the queries that reference it. Thus, given that we have set k = (�O + κ)/ε, the
probability (over the selection of λ) that λ is bad is at most s/k < ε.

Proving Security. To show that the resulting obfuscator is secure, it suffices to
show that the compilation process represented as the new obfuscator’s construc-
tion is simulatable. We show a simulator Sim (with access to Γ) that works as
follows: given an obfuscated circuit B in the Γ ideal model, it runs the learning
procedure as shown in Step 2 of the new obfuscator îO to learn the heavy queries
QB then outputs B̂ = (B,QB). Note that this distribution is statistically close
to the output of the real execution of îO and, therefore, security follows.

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 21

[ADGM16] Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indis-
tinguishability obfuscations of circuits over ggh13. Cryptology ePrint
Archive, Report 2016/1003 (2016). http://eprint.iacr.org/2016/1003

https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
http://eprint.iacr.org/2016/1003

When Does Functional Encryption Imply Obfuscation? 111

[AGIS14] Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
avoiding Barrington’s theorem. In: Ahn, G.-J., Yung, M., Li, N. (eds.)
ACM CCS 2014: 21st Conference on Computer and Communications
Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 646–658. ACM
Press (2014)

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 15

[AS15] Asharov, G., Segev, G.: Limits on the power of indistinguishability obfus-
cation and functional encryption. In: 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 191–209. IEEE (2015)

[AS16] Ananth, P., Sahai, A.: Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. Cryp-
tology ePrint Archive, Report 2016/1097 (2016). http://eprint.iacr.org/
2016/1097

[BBF16] Brakerski, Z., Brzuska, C., Fleischhacker, N.: On statistically secure
obfuscation with approximate correctness. Cryptology ePrint Archive,
Report 2016/226 (2016). http://eprint.iacr.org/

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54242-8 3

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 13

[BKSY11] Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power
of zero-knowledge proofs in cryptographic constructions. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 34

[BLP16] Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings
from functional encryption. Cryptology ePrint Archive, Report 2016/962
(2016). http://eprint.iacr.org/2016/962

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: new mathematical tools, and the case of evasive circuits.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 27

[BNPW16] Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From crypto-
mania to obfustopia through secret-key functional encryption. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 15

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of
finding a Nash equilibrium. In: Guruswami, V. (ed.) 56th Annual Sym-
posium on Foundations of Computer Science, Berkeley, CA, USA, 17–20
October 2015, pp. 1480–1498. IEEE Computer Society Press (2015)

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
http://eprint.iacr.org/2016/1097
http://eprint.iacr.org/2016/1097
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-19571-6_34
http://eprint.iacr.org/2016/962
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-53644-5_15

112 S. Garg et al.

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all
circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 1

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd Annual Sym-
posium on Foundations of Computer Science, Palm Springs, CA, USA,
22–25 October 2011, pp. 97–106, IEEE Computer Society Press (2011)

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22792-9 29

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) 56th Annual Symposium
on Foundations of Computer Science, Berkeley, CA, USA, 17–20 October
2015, pp. 171–190. IEEE Computer Society Press (2015)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 27

[CGH+15] Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E.,
Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes:
new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-47989-6 12

[CGH16] Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branch-
ing program obfuscators. Cryptology ePrint Archive, Report 2016/998
(2016). http://eprint.iacr.org/2016/998

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 1

[CKP15] Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random
oracles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 456–467. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 18

[CLLT15] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. Cryptology ePrint Archive, Report 2015/1037
(2015). http://eprint.iacr.org/2015/1037

[CLLT16] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on
indistinguishability obfuscation over clt13. Cryptology ePrint Archive,
Report 2016/1011 (2016). http://eprint.iacr.org/2016/1011

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 26

[Dac16] Dachman-Soled, D.: Towards non-black-box separations of public key
encryption and one way function. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 169–191. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 7

https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-47989-6_12
http://eprint.iacr.org/2016/998
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46497-7_18
https://doi.org/10.1007/978-3-662-46497-7_18
http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2016/1011
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-53644-5_7
https://doi.org/10.1007/978-3-662-53644-5_7

When Does Functional Encryption Imply Obfuscation? 113

[DGG+16] Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfusca-
tion from low noise multilinear maps. Cryptology ePrint Archive, Report
2016/599 (2016). http://eprint.iacr.org/2016/599

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of
Computing, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178.
ACM Press (2009)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th Annual Symposium on Foundations of Computer
Science, Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Com-
puter Society Press (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 20

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54242-8 4

[GK05] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with
auxiliary input. In: 46th Annual Symposium on Foundations of Computer
Science, Pittsburgh, PA, USA, 23–25 October 2005, pp. 553–562. IEEE
Computer Society Press (2005)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM
Symposium on Theory of Computing, Palo Alto, CA, USA, 1–4 June
2013, pp. 555–564. ACM Press (2013)

[GLSW15] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. In:
Guruswami, V. (ed.) 56th Annual Symposium on Foundations of Com-
puter Science, Berkeley, CA, USA, 17–20 October 2015, pp. 151–170.
IEEE Computer Society Press (2015)

[GMM+16] Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.:
Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 10

[GMM17] Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfusca-
tion from all-or-nothing encryption primitives. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 661–695. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 22

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: conceptually-simpler, asymptotically-faster, attribute-
based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 5

http://eprint.iacr.org/2016/599
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5

114 S. Garg et al.

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption
for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA,
1–4 June 2013, pp. 545–554. ACM Press (2013)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for
circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 25

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments
from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.)
STOC. ACM (2011)

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 21

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: 21st Annual ACM Symposium on Theory of Com-
puting, Seattle, WA, USA, 15–17 May 1989, pp. 44–61. ACM Press (1989)

[Lin16a] Lin, H.: Indistinguishability obfuscation from constant-degree graded
encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 2

[Lin16b] Lin, H.: Indistinguishability obfuscation from ddh on 5-linear maps and
locality-5 prgs. Cryptology ePrint Archive, Report 2016/1096 (2016).
http://eprint.iacr.org/2016/1096

[LT17] Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps
and block-wise local prgs. Cryptology ePrint Archive, Report 2017/250
(2017). http://eprint.iacr.org/2017/250

[LV16] Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.)
57th Annual Symposium on Foundations of Computer Science, New
Brunswick, NJ, USA, 9–11 October 2016, pp. 11–20. IEEE Computer
Society Press (2016)

[MMN15] Mahmoody, M., Mohammed, A., Nematihaji, S.: More on impossibility
of virtual black-box obfuscation in idealized models. Cryptology ePrint
Archive, Report 2015/632 (2015). http://eprint.iacr.org/

[MMN+16a] Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: A
note on black-box separations for indistinguishability obfuscation. Cryp-
tology ePrint Archive, Report 2016/316 (2016). http://eprint.iacr.org/
2016/316

[MMN+16b] Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat,
A.: Lower bounds on assumptions behind indistinguishability obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 49–66. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49096-9 3

[MSW14] Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic
attacks. Cryptology ePrint Archive, Report 2014/878 (2014). http://
eprint.iacr.org/2014/878

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for mul-
tilinear maps: cryptanalysis of indistinguishability obfuscation over
GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.

https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2016/1096
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/
http://eprint.iacr.org/2016/316
http://eprint.iacr.org/2016/316
https://doi.org/10.1007/978-3-662-49096-9_3
https://doi.org/10.1007/978-3-662-49096-9_3
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878

When Does Functional Encryption Imply Obfuscation? 115

9815, pp. 629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53008-5 22

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 6

[Pas11] Pass, R.: Limits of provable security from standard assumptions. In: Pro-
ceedings of the Forty-third Annual ACM Symposium on Theory of Com-
puting, pp. 109–118. ACM (2011)

[Pas15] Pass, R., Shelat, A.: Impossibility of VBB obfuscation with ideal
constant-degree graded encodings. Cryptology ePrint Archive, Report
2015/383 (2015). http://eprint.iacr.org/

[PTV11] Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-
box lower bounds in cryptography. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 579–596. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19571-6 35

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between
cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol.
2951, pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24638-1 1

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM
Symposium on Theory of Computing, New York, NY, USA, 31 May–
June 3 2014, pp. 475–484. ACM Press (2014)

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 439–467. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-540-45146-4_6
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-19571-6_35
https://doi.org/10.1007/978-3-642-19571-6_35
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-46803-6_15

	When Does Functional Encryption Imply Obfuscation?
	1 Introduction
	1.1 Our Results
	1.2 Comparison with Known Lower Bounds on IO
	1.3 Technical Overview

	2 Preliminaries
	2.1 Obfuscation
	2.2 Functional Encryption
	2.3 Background on Black-Box Constructions
	2.4 Tools for Lower Bounds of IO

	3 Monolithic Separation of IO from Short-Output FE
	3.1 The Ideal Model
	3.2 Monolithic Functional Encryption Exists Relative to
	3.3 Compiling Out from IO

	References

