
Bandwidth Hard Functions for ASIC Resistance

Ling Ren(B) and Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA, USA
{renling,devadas}@mit.edu

Abstract. Cryptographic hash functions have wide applications includ-
ing password hashing, pricing functions for spam and denial-of-service
countermeasures and proof of work in cryptocurrencies. Recent progress
on ASIC (Application Specific Integrated Circuit) hash engines raise con-
cerns about the security of the above applications. This leads to a grow-
ing interest in ASIC resistant hash function and ASIC resistant proof
of work schemes, i.e., those that do not give ASICs a huge advantage.
The standard approach towards ASIC resistance today is through mem-
ory hard functions or memory hard proof of work schemes. However, we
observe that the memory hardness approach is an incomplete solution.
It only attempts to provide resistance to an ASIC’s area advantage but
overlooks the more important energy advantage. In this paper, we pro-
pose the notion of bandwidth hard functions to reduce an ASIC’s energy
advantage. CPUs cannot compete with ASICs for energy efficiency in
computation, but we can rely on memory accesses to reduce an ASIC’s
energy advantage because energy costs of memory accesses are compara-
ble for ASICs and CPUs. We propose a model for hardware energy cost
that has sound foundations in practice. We then analyze the bandwidth
hardness property of ASIC resistant candidates. We find scrypt, Catena-
BRG and Balloon are bandwidth hard with suitable parameters. Lastly,
we observe that a capacity hard function is not necessarily bandwidth
hard, with a stacked double butterfly graph being a counterexample.

1 Introduction

Cryptographic hash functions have a wide range of applications in both theory
and practice. Two of the major applications are password protection and more
recently proof of work. It is well known that service providers should store hashes
of user passwords. This way, when a password hash database is breached, an
adversary still has to invert the hash function to obtain user passwords. Proof
of work, popularized by its usage in the Bitcoin cryptocurrency for reaching
consensus [43], has earlier been used as “pricing functions” to defend against
email spam and denial-of-service attacks [19,30].

In the last few years, driven by the immense economic incentives in the Bit-
coin mining industry, there has been amazing progress in the development of
ASIC (Application Specific Integrated Circuit) hash units. These ASIC hash
engines are specifically optimized for computing SHA-256 hashes and offer

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 466–492, 2017.
https://doi.org/10.1007/978-3-319-70500-2_16

Bandwidth Hard Functions for ASIC Resistance 467

incredible speed and energy efficiency that CPUs cannot hope to match. A state-
of-the-art ASIC Bitcoin miner [1] computes 13 trillion hashes at about 0.1 nJ
energy cost per hash. This is roughly 200,000× faster and 40,000× more energy
efficient than a state-of-the-art multi-core CPU. These ASIC hash engines call
the security of password hashing and pricing functions into question. For ASIC-
equipped adversaries, brute-forcing a password database seems quite feasible,
and pricing functions are nowhere near deterrent if they are to stay manageable
for honest CPU users. ASIC mining also raises some concerns about the decen-
tralization promise of Bitcoin as mining power concentrates to ASIC-equipped
miners.

As a result, there is an increasing interest in ASIC resistant hash func-
tions and ASIC resistant proof of work schemes, i.e., those that do not give
ASICs a huge advantage. For example, in the recent Password Hashing Com-
petition [34], the winner Argon2 [21] and three of the four “special recog-
nitions” — Catena [35], Lyra2 [9] and yescrypt [47] — claimed ASIC resis-
tance. More studies on ASIC resistant hash function and proof of work include
[10–15,18,23,25,39,46,49,53].

The two fundamental advantages of ASICs over CPUs (or general purpose
GPUs) are their smaller area and better energy efficiency when speed is nor-
malized. The speed advantage can be considered as a derived effect of the area
and energy advantage (cf. Sect. 3.1). A chip’s area is approximately proportional
to its manufacturing cost. From an economic perspective, this means when we
normalize speed, an adversary purchasing ASICs can lower its initial investment
(capital cost) due to area savings and its recurring electricity cost due to energy
savings, compared to a CPU user. To achieve ASIC resistance is essentially to
reduce ASICs’ area and energy efficiency advantages.

Most prior works on ASIC resistance have thus far followed the memory hard
function approach, first proposed by Percival [46]. This approach tries to find
functions that require a lot of memory capacity to evaluate. To better distin-
guish from other notions later in the paper, we henceforth refer to memory hard
functions as capacity hard functions. For a traditional hash function, an ASIC
has a big area advantage because one hash unit occupies much smaller chip area
than a whole CPU. The reasoning behind a capacity hard function is to reduce
an ASIC’s area advantage by forcing it to spend significant area on memory.
Historically, the capacity hardness approach only attempts to resist the area
advantage. We quote from Percival’s paper [46]:

A natural way to reduce the advantage provided by an attacker’s ability to
construct highly parallel circuits is to increase the size of the key derivation
circuit — if a circuit is twice as large, only half as many copies can be
placed on a given area of silicon ...

Very recently, some works [10,11,14] analyze capacity hard functions from an
energy angle (though they try to show negative results). However, an energy
model based on memory capacity cannot be justified from a hardware perspec-
tive. We defer a more detailed discussion to Sects. 6.2 and 6.3.

468 L. Ren and S. Devadas

It should now be clear that the capacity hardness approach does not pro-
vide a full solution to ASIC resistance since it only attempts to address the
area aspect, but not the energy aspect of ASIC advantage. Fundamentally, the
relative importance of these two aspects depends on many economic factors,
which is out of the scope of this paper. But it may be argued that the energy
aspect is more important than the area aspect in many scenarios. Area advan-
tage, representing lower capital cost, is a one-time gain, while energy advantage,
representing lower electricity consumption, keeps accumulating with time. The
goal of this paper is to fill in the most important but long-overlooked energy
aspect of ASIC resistance.

1.1 Bandwidth Hard Functions

We hope to find a function f that ensures the energy cost to evaluate f on
an ASIC cannot be much smaller than on a CPU. We cannot change the fact
that ASICs have much superior energy efficiency for computation compared to
CPUs. Luckily, to our rescue, off-chip memory accesses incur comparable energy
costs on ASICs and CPUs, and there are reasons to believe that it will remain
this way in the foreseeable future (cf. Sect. 6.1). Therefore, we would like an
ASIC resistant function f to be bandwidth hard, i.e., it requires a lot of off-chip
memory accesses to evaluate f . Informally, if off-chip memory accesses account
for a significant portion of the total energy cost to evaluate f , it provides an
opportunity to bring the energy cost on ASICs and CPUs onto a more equal
ground.

A capacity hard function is not necessarily bandwidth hard. Intuitively, an
exception arises when a capacity hard function has good locality in its memory
access pattern. In this case, an ASIC adversary can use some on-chip cache
to “filter out” many off-chip memory accesses. This makes computation the
energy bottleneck again and gives ASICs a big advantage in energy efficiency.
A capacity hard function based on a stacked double butterfly graph is one such
example (Sect. 5.4).

On the positive side, most capacity hard functions are bandwidth hard.
Scrypt has a data-dependent and (pseudo-)random memory access pattern. A
recent work shows that scrypt is also capacity hard even under amortization and
parallelism [13]. Adapting results from the above work, we prove scrypt is also
bandwidth hard in Sect. 5.1 with some simplifying assumptions. Thus, scrypt
offers nearly optimal ASIC resistance from both the energy aspect and the area
aspect. But scrypt still has a few drawbacks. First, scrypt is bandwidth hard only
when its memory footprint (i.e., capacity requirement) is much larger than the
adversary’s cache size. In practice, we often see protocol designers adopt scrypt
with too small a memory footprint (to be less demanding for honest users) [5],
which completely undermines its ASIC resistance guarantee [6]. Second, in pass-
word hashing, a data-dependent memory access pattern is considered to be less
secure for fear of side channel attacks [25]. Thus, it is interesting to also look
for data-independent bandwidth hard functions, especially those that achieve
bandwidth hardness with a smaller memory footprint.

Bandwidth Hard Functions for ASIC Resistance 469

To study data-independent bandwidth hard functions, we adopt the graph
labeling framework in the random oracle model, which is usually modeled by
the pebble game abstraction. The most common and simple pebble game is the
black pebble game, which is often used to study space and time complexity. To
model the cache/memory architecture that an adversary may use, we adopt the
red-blue pebble game [33,50]. In a red-blue game, there are two types of pebbles.
A red (hot) pebble models data in cache and a blue (cold) pebble models data in
memory. Data in memory must be brought into the cache before being computed
on. Accordingly, a blue pebble must be “turned into” a red pebble (i.e., brought
into the cache) before being used by a computation unit. We incorporate an
energy cost model into red-blue pebble games, and then proceed to analyze
data-independent bandwidth hard function candidates. We show that Catena-
BRG [35] and Balloon [25] are bandwidth hard in the pebbling model. But we
could not show a reduction from graph labeling with random oracles to red-
blue pebble games. Thus, all results on data-independent graphs are only in the
pebbling mode. A reduction from labeling to pebbling remains interesting future
work.

Our idea of using memory accesses resembles, and is indeed inspired by, a
line of work called memory bound functions [8,29,31]. Memory bound functions
predate capacity hard functions, but unfortunately have been largely overlooked
by recent work on ASIC resistance. We mention one key difference between our
work and memory bound functions here and defer a more detailed comparison
in Sect. 2. Memory bound functions assume computation is free for an adversary
and thus aim to put strict lower bounds on the number of memory accesses.
We, on the other hand, assume computation is cheap but not free for an adver-
sary (which we justify in Sect. 4.1). As a result, we just need to guarantee that
an adversary who attempts to save memory accesses has to compensate with
so much computation that it ends up increasing its energy consumption. This
relaxation of “bandwidth hardness” leads to much more efficient and practical
solutions than existing memory bound functions [8,29,31]. To this end, the term
“bandwidth hard” and “memory hard” may be a little misleading as they do
not imply strict lower bounds on bandwidth and capacity. Memory (capacity)
hardness as defined by Percival [46] refers to a lower bound on the space-time
product ST , while bandwidth hardness in this paper refers to a lower bound on
an ASICs’ energy consumption under our model.

1.2 Our Contributions

We observe that energy efficiency, as the most important aspect of ASIC resis-
tance, has thus far not received much attention. To this end, we propose using
bandwidth hard functions to reduce the energy advantage of ASICs. We propose
a simple energy model and incorporate it into red-blue pebble games. We note
that ASIC resistance is a complex real-world notion that involves low-level hard-
ware engineering. Therefore, in this paper we go over the reasoning and basic
concepts of ASIC resistance from a hardware perspective and introduce a model
based on hardware architecture and energy cost in practice.

470 L. Ren and S. Devadas

Based on the model, we study the limit of ASIC energy resistance. Roughly
speaking, an ASIC adversary can always achieve an energy advantage that equals
the ratio between a CPU’s energy cost per random oracle evaluation and an
ASIC’s energy cost per memory access. We observe that if we use a hash function
(e.g., SHA-256) as the random oracle, which is popular among ASIC resistant
proposals, it is impossible to reduce an ASIC’s energy advantage below 100×
in today’s hardware landscape. Fortunately, we may be able to improve the
situation utilizing CPUs’ AES-NI instruction extensions.

We then turn our attention to analyzing the bandwidth hardness properties
of ASIC resistant candidate constructions. We prove in the pebbling model that
scrypt [46], Catena-BRG [35] and Balloon [25] enjoy tight bandwidth hardness
under suitable parameters. Lastly, we point out that a capacity hard function
is not necessarily bandwidth hard, using a stacked double butterfly graph as a
counterexample.

2 Related Work

Memory (capacity) hard functions. Memory (capacity) hard functions are
currently the standard approach towards ASIC resistance. The notion was first
proposed by Percival [46] along with the scrypt construction. There has been
significant follow-up that propose constructions with stronger notions of capac-
ity hardness [9,15,21,25,35,39,49]. As we have noted, capacity hardness only
addresses the area aspect of ASIC resistance. It is important to consider the
energy aspect for a complete solution to ASIC resistance.

Memory (capacity) hard proof of work. Memory (capacity) hard proofs of
work [18,23,49,53] are proof of work schemes that require a prover to have a lot
of memory capacity, but at the same time allow a verifier to check the prover’s
work with a small amount of space and time. The motivation is also ASIC resis-
tance, and similarly, it overlooks the energy aspect of ASIC resistance.

Memory bound functions. The notion of memory bound functions was first
proposed by Abadi et al. [8] and later formalized and improved by Dwork
et al. [29,31]. A memory bound function requires a lot of memory accesses to
evaluate. Those works do not relate to an energy argument, but rather use speed
and hence memory latency as the metrics. As we discuss in Sect. 3.1, using speed
as the only metric makes it hard to interpret the security guarantee in a normal-
ized sense. Another major difference is that memory bound functions assume
computation is completely free and aim for strict lower bounds on bandwidth
(the number of memory accesses), while we assume computation is cheap but not
free. To achieve its more ambitious goal, memory bound function constructions
involve traversing random paths in a big table of true random numbers. This
results in a two undesirable properties. First, the constructions are inherently
data-dependent, which raises some concerns for memory access pattern leakage
in password hashing. Second, the big random table needs to be transferred over

Bandwidth Hard Functions for ASIC Resistance 471

the network between a prover (who computes the function) and a verifier (who
checks the prover’s computation). A follow-up work [31] allows the big table to
be filled by pebbling a rather complex graph (implicitly moving to our model
where computation is cheap but not free), but still relies on the random walk in
the table to enforce memory accesses. Our paper essentially achieves the same
goal just through pebbling and from simpler graphs, thus eliminating the ran-
dom walk and achieving better efficiency and data-independence.

Parallel attacks. An impressive recent line of work has produced many inter-
esting results regarding capacity hardness in the presence of parallel attacks.
These works show that a parallel architecture can reduce the area-time prod-
uct for any data independent capacity hard function [10,12,15]. The practi-
cal implications of these attacks are less clear and we defer a discussion to
Sect. 6.3. We would also like to clarify a direct contradiction between some paral-
lel attacks’ claims [10,11,14] and our results. We prove that Catena-BRG [35] and
Balloon [25] enjoy great energy advantage resistance while those works conclude
the exact opposite. The contradiction is due to their energy model that we con-
sider flawed, which we discuss in Sect. 6.3.

Graph pebbling. Graph pebbling is a powerful tool in computer science, dating
back at least to 1970s in studying Turing machines [27,36] and register alloca-
tion [51]. More recently, graph pebbling has found applications in various areas
of cryptography [18,25,31–33,35,40,49,52]. Some of our proof techniques are
inspired by seminal works in pebbling lower bounds and trade-offs by Paul and
Tarjan [44] and Lengauer and Tarjan [38].

3 Preliminaries

3.1 A Hardware Perspective on ASIC Resistance

The first and foremost question we would like to answer is: what advantages of
ASICs are we trying to resist? The most strongly perceived advantage of ASIC
miners may be their incredible speed, which can be a million times faster than
CPUs [1]. But if speed were the sole metric, we could just deploy a million CPUs
in parallel to catch up on speed. Obviously, using a million CPUs would be at
a huge disadvantage in two aspects: capital cost (or manufacturing cost) and
power consumption. The manufacturing cost of a chip is often approximated
by its area in theory [41]. Therefore, the metrics to compare hardware systems
should be:

1. the area-speed ratio, or equivalently the area-time product, commonly
referred to as AT in the literature [10,11,22,41], and

2. the power-speed ratio, which is equivalent to energy cost per function evalu-
ation.

Area and energy efficiency are the two major advantages of ASICs. The speed
advantage can be considered as a derived effect from them. Because an ASIC

472 L. Ren and S. Devadas

hash unit is small and energy efficient, ASIC designers can pack thousands of
them in a single chip and still have reasonable manufacturing cost and manage-
able power consumption and heat dissipation.

Bandwidth hard functions to address both aspects. Percival proposes
using capacity hard functions to reduce ASIC area advantage [46]. With band-
width hard functions, we hope to additionally reduce ASIC’s energy advantage.
We note that a bandwidth hard function also needs to be capacity hard. Thus, a
hardware system evaluating it, be it a CPU or an ASIC, needs off-chip external
memory. This has two important implications. First, a bandwidth hard function
inherits the area advantage resistance from capacity hardness (though some-
what weakened by parallel attacks). Second, a bandwidth hard function forces
an ASIC into making a lot of off-chip memory accesses, which limits the ASIC’s
energy advantage. To study hardware energy cost more formally, we need to
introduce a hardware architecture model and an energy cost model.

Hardware architecture model. The adversary is allowed to have any cache
policy on its ASIC chip, e.g., full associativity and optimal replacement [20].
Our proofs do not directly analyze cache hit rate, but the results imply that a
bandwidth hard function ensures a low hit rate even for an optimal cache. We
assume a one-level cache hierarchy for convenience. This does not affect the accu-
racy of the model. We do not charge the adversary for accessing data from the
cache, so only the total cache size matters. Meanwhile, although modern CPUs
are equipped with large caches, honest users cannot utilize it since a bandwidth
hard function has very low cache hit rate. We simply assume a 0% cache hit rate
for honest users.

Energy cost model. We assume it costs cb energy to transfer one bit of data
between memory and cache, and cr energy to evaluate the random oracle on one
bit of data in cache. If an algorithm transfers B bits of data and queries the
random oracle on R bits of data in total, its energy cost is ec = cbB + crR. A
compute unit and memory interface may operate at a much larger word gran-
ularity, but we define cb and cr to be amortized per bit for convenience. The
two coefficients are obviously hardware dependent. We write cb,cpu, cr,cpu and
cb,asic, cr,asic when we need to distinguish them. The values of these coefficients
are determined experimentally or extracted from related studies or sources in
Sect. 4.1. Additional discussions and justifications of the models are presented
in Sect. 6.

Energy fairness. Our ultimate goal is to achieve energy fairness between CPUs
and ASICs. For a function f , suppose honest CPU users adopt an algorithm
with an energy cost ec0 = cb,cpuB0 + cr,cpuR0. Let ec = ec(f,M, cb,asic, cr,asic)
be the minimum energy cost for an adversary to evaluate f with cache size M
and ASIC energy parameters cb,asic and cr,asic. Energy fairness is then measured
by the energy advantage of an ASIC adversary over honest CPU users (under

Bandwidth Hard Functions for ASIC Resistance 473

those parameters): Aec = ec0/ec > 1 . A smaller Aec indicates a smaller energy
advantage of ASICs, and thus better energy fairness between CPUs and ASICs.

We remark that while an ASIC’s energy cost for computation cr,asic is small,
we assume it is not strictly 0. It is assumed in some prior works that com-
putation is completely free for the adversary [31,33]. In that model, we must
find a function that simultaneously satisfies the following two conditions: (1)
it has a trade-off-proof space lower bound (even an exponential computational
penalty for space reduction is insufficient), and (2) it requires a comparable
amount of computation and memory accesses. We do not know of any candi-
date data-independent construction that satisfies both conditions. We believe
our assumption of a non-zero cr,asic is realistic, and we justify it in Sect. 4.1
with experimental values. In fact, our model may still be overly favorable to the
adversary. It has been noted that the energy cost to access data from an on-chip
a cache is roughly proportional to the square root of the cache size [16]. Thus,
if an adversary employs a large on-chip cache, the energy cost of fetching data
from this cache needs to be included in cr,asic.

3.2 The Graph Labeling and Pebbling Framework

We adopt the graph labeling and pebbling framework that is common in the
study of ASIC resistant [15,18,25,31,35].

Graph labeling. Graph labeling is a computational problem that evaluates
a random oracle H in a directed acyclic graph (DAG) G. A vertex with no
incoming edges is called a source and a vertex with no outgoing edges is called
a sink. Vertices in G are numbered, and each vertex vi is associated with a label
l(vi), computed as:

l(vi) =

{
H(i, x) if vi is a source
H(i, l(u1), · · · , l(ud)) otherwise, u1 to ud are vi’s predecessors

The output of the graph labeling problem are the labels of the sinks. It is com-
mon to hash the labels of all sinks into a final output (of the ASIC resistant
function) to keep it short.

Adversary. We consider a deterministic adversary that has access to H that
runs in rounds, starting from round 1. In round i, the adversary receives an
input state σi and produces an output state σ̄i. Each input state σi = (τi, ηi, hi)
consists of

– τi, M bits of data in cache,
– ηi, an arbitrary amount of data in memory, and
– a w-bit random oracle response hi if a random oracle query was issued in the

previous round.

474 L. Ren and S. Devadas

Each output state σ̄i = (τ̄i, ηi, qi) consists of

– τ̄i, M bits of data in cache, which can be any deterministic function of σi and
hi.

– ηi, data in memory, which is unchanged from the input state, and
– an operation qi that can either be a random oracle query or a data transfer

operation between memory and cache.

If the operation qi is a random oracle query, then in the input state of the next
round, the random oracle response is hi+1 = H(qi) and the contents of the
cache/memory is unchanged (σi+1, ηi+1) = (σ̄i, ηi). If the operation qi is a data
transfer operation, then it has the form (xi, yi, zi, bi) in which xi is an offset in
the cache, yi is an offset in memory, zi specifies whether the direction of the
transfer is from cache to memory (zi = 0) or from memory to cache (zi = 1),
and bi is the number of bits to be transfered. In the input state of the next
round, the contents of the cache/memory (σi+1, ηi+1) are obtained by applying
the data transfer operation on (σ̄i, ηi), and hi+1 = ⊥. The energy cost of the
adversary is defined as follows. A random oracle call on ri = |qi| bits if input
costs crri units of energy. A data transfer of bi bits in either direction costs cbbi

units of energy. Any other computation that happens during a round is free for
the adversary. The total energy cost of the adversary is the sum of cost in all
rounds.

Pebble games. Graph labeling is often abstracted as a pebble game. Comput-
ing l(v) is modeled as placing a pebble on vertex v. The goal of the pebble game
in our setting is to place pebbles on the sinks. There exist several variants of
pebble games. The simplest one is the black pebble game where there is only
one type of pebbles. In each move, a pebble can be placed on vertex v if v is a
source or if all predecessors of v have pebbles on them. Pebbles can be removed
from any vertices at any time.

Red-blue pebble games. To model a cache/memory hierarchy, red-blue pebble
games have been proposed [33,50]. In this game, there are two types of pebbles. A
red (hot) pebble models data in cache, which can be computed upon immediately.
A blue (cold) pebble models data in memory, which must first be brought into
cache to be computed upon. The rule of a red-blue pebble game is naturally
extended as follows:

1. A red pebble can be placed on vertex v if v is a source or if all predecessors
of v have red pebbles on them.

2. A red pebble can be placed on vertex v if there is a blue pebble on v. A blue
pebble can be placed on vertex v if there is a red pebble on v.

We refer to the first type of moves as red moves and the second type as blue
moves. Pebbles (red or blue) can be removed from any vertices at any time.
A pebbling strategy can be represented as a sequence of transitions between
pebble placement configurations on the graph, P = (P0, P1, P2 · · · , PT). Each

Bandwidth Hard Functions for ASIC Resistance 475

configuration consists of two vectors of size |V |, specifying for each vertex if a
red pebble exists and if a blue pebble exists. The starting configuration P0 does
not have to be empty; pebbles may exist on some vertices in P0. Each transition
makes either a red move or a blue move, and then removes any number of
pebbles for free.

We introduce some extra notations. If a pebble (red or blue) exists on a
vertex v in a configuration Pi, we say v is pebbled in Pi. We say a sequence P
pebbles a vertex v if there exists Pi ∈ P such that v is pebbled in Pi. We say a
sequence P pebbles a set of vertices if P pebbles every vertex in the set. Note
that blue pebbles cannot be directly created on unpebbled vertices. If a vertex
v is not initially pebbled in P0, then the first pebble that gets placed on v in P
must be a red pebble, and it must result from a red move.

Energy cost of red-blue pebbling. In red-blue pebbling, red moves model
computation on data in cache and blue moves model data transfer between cache
and memory. It is straightforward to adopt the energy cost model in Sect. 3.1 to
a red-blue pebbling sequence P. We charge cb cost for each blue move. For each
red move (i.e., random oracle call), we charge a cost proportional to the number
of input vertices. Namely, if a vertex v has d predecessors, a red move on v costs
crd units of cost. Similarly, we write cb,cpu, cr,cpu and cb,asic, cr,asic when we need
to distinguish them. The energy coefficients in Sect. 3.1 are defined per bit and
here they are per label. This is not a problem because only the ratio between
these coefficients matter. As before, removing pebbles (red or blue) is free. If P
uses B blue moves and R red moves each with d predecessors, it incurs a total
energy cost ec(P) = cbB + crdR.

The adversary’s cache size M translates to a bounded number of red peb-
bles at any given time, which we denote as m. For a graph G, given parameters
m, cb and cr, let ec = ec(G,m, cb, cr) be the minimum cost to pebble G in a
red-blue pebble game starting with an empty initial configuration under those
parameters. Let ec0 be the cost of an honest CPU user. The energy advantage
of an ASIC is Aec = ec0/ec.

Definition of bandwidth hardness. The ultimate goal of a bandwidth hard
function is to achieve fairness between CPUs and ASICs in terms of energy cost.
In the next section, we will establish Aec = cb,cpu+cr,cpu

cb,asic+cr,asic
as a lower bound on the

adversary’s energy advantage Aec for any function. We say a function under a
particular parameter setting is bandwidth hard if it ensures Aec = Θ(Aec), i.e., if
it upper bounds an adversary’s energy advantage to a constant within the best
we can hope for.

In the above definition, we emphasize “under a particular parameter set-
ting” because we will frequently see that a function’s bandwidth hardness kicks
in only when its memory capacity requirement n is sufficiently large compared
to the adversary’s cache size m. This should be as expected: if the entire memory
footprint fits in cache, then a function must be computation bound rather than
bandwidth bound. As an example, we will later show that scrypt is bandwidth

476 L. Ren and S. Devadas

hard when it requires sufficiently large memory capacity. But when scrypt is
adopted in many practical systems (e.g., Litecoin), it is often configured to use
much smaller memory, thus losing its bandwidth hardness and ASIC resistance.

Connection between labeling and pebbling. The labeling-to-pebbling reduc-
tion has been established for data-independent graphs [31,33] and for scrypt [13]
when the metric is space complexity or cumulative complexity. Unfortunately,
for bandwidth hard functions and energy cost, we do yet know how to reduce
the graph labeling problem with a cache to the red-blue pebbling game with-
out making additional assumptions. The difficulty lies in how to transform the
adversary’s data transfer between a memory and a cache into blue moves. Thus,
all results for data-independent graphs in this paper will be in the red-blue peb-
bling model. This is equivalent to placing a restriction on the adversary that
it can only transfer whole labels between cache and memory. Showing a reduc-
tion for data-independent graphs without the above restriction is an interesting
open problem. We mention that for general data-dependent graphs and proofs
of space [32], a reduction from labeling to black pebbling also remains open.

4 The Limit of Energy Fairness

While our goal is to upper bound the energy advantage AE , it is helpful to first
look at a lower bound to know how good a resistance we can hope for. Suppose
honest users adopt an algorithm that transfers B0 bits and queries H on R0 bits
in total. Even if an adversary does not have a better algorithm, it can simply adopt
the honest algorithm but implements it on an ASIC. In this case, the adversary’s
energy advantage is

Aec =
cb,cpuB0 + cr,cpuR0

cb,asicB0 + cr,asicR0
=

cb,cpu + cr,cpuR0/B0

cb,asic + cr,asicR0/B0
.

Since we expect cr,cpu � cr,asic and cb,cpu ≈ cb,asic, the above value is smaller
when R0/B0 is smaller (more memory accesses and less computation). Any data
brought into the cache must be consumed by the compute unit (random oracle) —
otherwise, the data transfer is useless and should not have happened. Given that
B0 ≤ R0, the adversary can at least have an energy consumption advantage of:

Aec ≥ cb,cpu + cr,cpu

cb,asic + cr,asic
= Aec.

In Sects. 5.2 and 5.3, we prove that bit reversal graphs and stacked expanders essen-
tially reduce Aec very close to the lower bound Aec. So Aec is quite tight and rep-
resents both the lower and upper limit of the energy advantage resistance we can
achieve.

Since we expect cr,asic to be small, and cb,cpu ≈ cb,asic, the above lower bound
is approximately 1 + cr,cpu/cb,cpu. So we hope cr,cpu to be small and cb,cpu to be
large, in which case memory accesses account for a significant portion of the total

Bandwidth Hard Functions for ASIC Resistance 477

energy cost on CPUs. It is often mentioned that computation is cheap compared
to memory accesses even for CPUs, which seems to be in our favor. However, the
situation is much less favorable for our scenario because a cryptographic hash is
a complex function that involves thousands of operations. It would be unrealistic
for us to assume cr,cpu � cb,cpu. To estimate the concrete value of Aec, in Sect. 4.1
we conduct experiments to measure cr,cpu and cb,cpu and cite estimates of cr,asic

and cb,asic from reliable sources.

4.1 Experiments to Estimate Energy Cost Coefficients

All values we report here are approximates as their exact values depend on many
low level factors (technology process, frequency, voltage, etc.). Nevertheless, they
should allow us to estimate Aec to the correct order of magnitude.

We keep a CPU fully busy with the task under test, i.e., compute hashes and
making memory accesses. We use Intel Power Gadget [4] to measure the CPU
package energy consumption in a period of time, and then divide by the number
of Bytes processed (hashed or transferred). We run tests on an Intel Core I7-
4600U CPU in 22 nm technology clocked at 1.4 GHz. The operating system is
Ubuntu 14.04 and we use Crypto++ Library 5.6.3 compiled with GCC 4.6.4.

Table 1. Measured energy cost (in nJ) per Byte for memory accesses and cryptographic
operations on CPUs.

Operation Memory access SHA-256 AES-NI

Energy, CPU 0.5 30 1.5

Energy, ASIC 0.3 0.0012 /

Table 1 reports the measured CPU energy cost per Bytes. For comparison,
we take the memory access energy estimates for ASICs from two papers [37,
45], which have very close estimations. We take the SHA-256 energy cost for
ASIC from the state-of-the-art Antminer S9 specification [1]. Antminer S9 spends
0.098 nJ to hash 80 Bytes, which normalizes to 0.0012 nJ/Byte.

4.2 Better Energy Fairness with AES-NI

From the above results, we have cb,cpu ≈ 0.5, cb,asic ≈ 0.3, and if we use SHA-256
to implement the random oracle H, then cr,cpu ≈ 30 and cr,asic ≈ 0.1. With these
parameters, any function in the graph labeling framework can at most reduce
an ASIC’s energy advantage to Aec ≈ (0.5 + 30)/(0.3 + 0.0012) ≈ 100×. While
this represents an improvement over plain SHA-256 hashing (which suffers from
an energy advantage of roughly 30/0.0012 = 25, 000×), 100× is still a quite
substantial advantage.

Is 100× the limit of energy fairness or can we do better? To push Aec lower, we
need a smaller cr,cpu. The AES-NI extension gives exactly what we need. AES-NI

478 L. Ren and S. Devadas

(AES New Instructions) [3] is a set of new CPU instructions specifically designed
to improve the speed and energy efficiency of AES operations on CPUs. Today
AES-NI is available in all mainstream Intel processors. In fact, AES-NI is an
ASIC-style AES circuit that Intel builds into its CPUs, which is why it reduces
ASIC advantage. But also we cannot expect AES-NI to completely match stand-
alone AES ASICs because it is subject to many design constrains imposed by
Intel CPUs.

We repeat our previous experiments to measure the energy efficiency of AES
operations on CPUs. As expected, AES-NI delivers much better energy efficiency,
1.5 nJ per Byte. We do not know for sure what cr,asic would be for AES, but
expect it to be no better than SHA-256 (and the bounds are insensitive to cr,asic

since cb,asic dominates in the denominator). Therefore, if we use AES for pebbling,
the lower bound drops to Aec ≈ (0.5 + 1.5)/0.3 ≈ 6.7×. It is worth noting that
using AES for pebbling also reduces an ASIC’s AT advantage as it makes CPUs
run faster (smaller T).

Great care needs to be taken when instantiating the random oracle with a
concrete function. Boneh et al. [25] point out that the pebbling analogy breaks
down if the random oracle H is instantiated with a cryptographic hash func-
tion based on the Merkle-Damg̊ard construction [28,42]. The problem is that a
Merkle-Damg̊ard construction does not require its entire input to be present at
the same time, but instead absorbs the input chunk by chunk. The same caveat
exists when we use AES for pebbling. We leave a thorough study on pebbling
with AES to future work. If we want even smaller cr,cpu and Aec or to avoid the
complication of using AES, we may have to count on Intel’s SHA instruction
extensions. Intel announced plans to add SHA extensions a few years ago [7],
but no product has incorporated them so far.

5 Bandwidth Hardness of Candidate Constructions

Some candidate constructions we analyze in this section are based on a class
of graphs called “sandwich graphs” [15,25]. A sandwich graph is a directed
acyclic graph G = (V ∪ U,E) that has 2n vertices V ∪ U = (v0, v1, · · · vn−1) ∪
(u0, u1, · · · un − 1), and two types of edges:

– chain edges, i.e., (vi, vi+1) and (ui, ui+1) ∀i ∈ [0..n − 2], and
– cross edges from V to U .

Figure 1 is a random sandwich graph with n = 8. In other words, a sand-
wich graph is a bipartite graph with the addition of chain edges. We call the
path consisting of (v0, v1), (v1, v2), · · · (vn − 2, vn − 1) the input path, and the path
consisting of (u0, u1), (u1, u2), · · · (un − 2, un − 1) the output path.

Bandwidth Hard Functions for ASIC Resistance 479

V

U

Fig. 1. A random sandwich graph with n = 8.

5.1 Scrypt

Scrypt [46] can be thought of as a sandwich graph where the cross edges are
dynamically generated at random in a data-dependent fashion. Each vertex ui

on the output path has one incoming cross edge from a vertex vj that is chosen
uniformly random from the input path based on the previous label l(ui − 1) (or
l(vn − 1) for u0), and thus cannot be predicted beforehand.

The default strategy to compute scrypt is to first compute each l(vi) on the
input path sequentially and store each one in memory, and then compute each
l(ui) on the output path, fetching each l(vj) from memory as needed. The total
cost of this strategy is (cr + cb)n+(cb +2cr)n = (2cb +3cr)n (every node on the
output path has in-degree 2).

To lower bound the energy cost, we make a simplifying assumption that if the
adversary transfers data from memory to cache at all, it transfers at least w bits
where w = |l(·)| is the label size. We also invoke the “single-challenge time lower
bound” theorem on scrypt [13], which we paraphrase below. The adversary can
fill a cache of M bits after arbitrary computation and preprocessing on the input
path. The adversary then receives a challenge j chosen uniformly at random from
0 to n − 1 and tries to find l(vj) using only the data in the cache. Let t be the
random variable that represents the number of sequential random oracle calls to
H made by the adversary till it queries H with l(vj) for the first time.

Theorem 1 (Alwen et al. [13]). For all but a negligible fraction of random
oracles, the following holds: given a cache of M bits, Pr[t > n

2p] > 1
2 where

p = (M + 1)/(w − 3 log n + 1) and w = |l(·)| is the label size.

The above theorem states that in the parallel random oracle model, with
at least 1/2 probability, an adversary needs n/2p sequential random oracles to
answer the random challenge. (Note that the above theorem does not directly
apply to scrypt, since challenges in scrypt come from the random oracle rather
than from an independent external source. This issue can be handled similarly
as in [13].) A lower bound on the number of sequential random oracle calls in the
parallel model is also a lower bound on the number of total random oracle calls in
our sequential model. Theorem 1 states that if the adversary wishes to compute
a label on the output path only using the M bits in cache without fetching from
memory, there is a 1/2 chance that doing so requires n/2p random oracle calls.
If we choose a sufficiently large n such that crn/2p > cb, then making n/2p

480 L. Ren and S. Devadas

random oracle calls is more expensive than simply fetching the challenged input
label from memory. Since we assume the adversary fetches w bits at a time, so if
it fetches from memory at all, it rather fetches the challenged input label. Then,
for any adversary, the expected cost to compute a label on the output path
is at least cb/2 and the energy advantage is at most Aec <

2cb,cpu+3cr,cpu
0.5cb,asic

. This
parameterization requires n > 2p · cb,asic

cr,asic
> 2m · cb,asic

cr,asic
, which means the capacity

requirement of scrypt should be a few hundred times larger than an adversary’s
conceivable cache size.

5.2 Bit-Reversal Graphs

A bit-reversal graph is a sandwich graph where n is a power of 2 and the cross
edges (vi, uj) follow the bit-reversal permutation, namely, the binary represen-
tation of j reverses the bits of the binary representation of i. Figure 2 is a bit-
reversal graph with n = 8. Catena-BRG [35] is based on bit-reversal graphs.

Black pebbling complexity. For a black pebble game, Lenguaer and Tarjan [38]
showed an asymptotically tight space-time trade-off ST = Θ(n2) for bit-reversal
graphs.

V

U

Fig. 2. A bit-reversal graph with n = 8.

Red-Blue pebbling complexity. For a red-blue pebble game, the default strat-
egy is the same as the one for scrypt in Sect. 5.1 The total cost of this strategy
is (cr + cb)n + (cb + 2cr)n = (2cb + 3cr)n. We now show a lower bound on the
red-blue pebbling complexity for bit-reversal graphs. The techniques are similar
to Lenguaer and Tarjan [38].

Theorem 2. Let G be a bit-reversal graph with 2n vertices, and m be the num-
ber of red pebbles available. If n > 2mcb/cr, then the red-blue pebbling cost
ec(G,m, cb, cr) is lower bounded by (cb + cr)n(1 − 2(m+1)cb

ncr
).

Proof. Suppose a sequence P pebbles un − 1 of a bit-reversal graph starting from
an empty initial configuration. Let m′ be the largest power of 2 satisfying m′ <
ncr/cb. We have m′ ≥ ncr/(2cb) > m.

Let the output path be divided into n/m′ intervals of length m′

each. Denote the j-th interval Ij , j = 1, 2, · · · , n/m′. Ij contains vertices

Bandwidth Hard Functions for ASIC Resistance 481

u(j − 1)m′ , u(j − 1)m′+1, . . . , ujm′−1. The first time these intervals are pebbled
must be in topological order, so P can be divided into n/m′ subsequences
(P1,P2, · · · ,Pn/m′) such that all vertices in Ij are pebbled for the first time
by Pj . The red blue pebbling costs of subsequences are additive, so we can
consider each Pj separately.

Suppose Pj uses b blue moves. For any Ij , 1 ≤ j ≤ n/m′, let vj1 , vj2 , . . . , vjm′
be the immediate predecessors on the input path. Note that these immediate pre-
decessors are n/m′ edges apart from each other due to the bit-reversal property.
Pj must place red pebbles on all these immediate predecessors at some point
during Pj . An immediate predecessor v may get its red pebble in one of the
following three ways below:

1. v has a red pebble on it at the beginning of Pj .
2. v has a “close” ancestor (can be itself) that gets a red pebble through a blue

move, where being “close” means being less than n/m′ edges away. Pj can
then place a red pebble on v using less than n/m′ red moves utilizing its
“close” ancestor.

3. v gets its red pebble through a red move and has no “close” ancestor that
gets a red pebble through a blue move. To place a red pebble on v, Pj must
use at least n/m′ red moves (except for one v that may be “close” to the
source vertex v0).

The first category accounts for at most m immediate predecessors due to the
cache size limit m. The second category accounts for at most b immediate pre-
decessors since each uses a blue move. If b + m < m′ − 1, then Pj must use
at least n/m′ red moves for each immediate predecessor in the third category.
Under the conditions in the theorem, the cost of n/m′ red moves is greater than
a blue move since crn/m′ > cb. Thus, the best strategy is to use blue moves over
red moves for vertices on the input path whenever possible. Therefore,

ec(Pj) ≥ crm
′ + cb(m′ − m − 1) > (cb + cr)(m′ − m − 1)

ec(P) = Σ
n/m′

j =1 ec(Pj) > (cb + cr)n(1 − 2(m + 1)cb

ncr
). ��

When n is sufficiently large, a bit-reversal graph is bandwidth hard. Its red-
blue pebbling complexity has a lower bound close to (cb + cr)n. An ASIC’s
energy advantage is similar to that of scrypt, Aec ≈ 2cb,cpu+3cr,cpu

cb,asic+cr,asic
and Aec ≈ 18

with parameters in Table 1. The capacity requirement on bit-reversal graphs to
remain bandwidth hard is also similar to the requirement for scrypt.

5.3 Stacked Expanders

An (n, α, β) bipartite expander (0 < α < β < 1) is a directed bipartite graph
with n sources and n sinks such that any subset of αn sinks are connected
to at least βn sources. Prior work has shown that bipartite expanders for any
0 < α < β < 1 exist given sufficiently many edges. For example, Pinsker’s con-
struction [48] simply connects each sink to d independent sources. It yields an

482 L. Ren and S. Devadas

V0

V1

V2

Fig. 3. A stacked random sandwich graph with n = 4, k = 2 and d = 2.

(n, α, β) bipartite expander for sufficiently large n with overwhelming probabil-
ity [25] if

d >
Hb(α) + Hb(β)

−α log2 β

where Hb(α) = −α log2 α − (1 − α) log2(1 − α).
An (n, k, α, β) stacked expander graph is constructed by stacking k bipartite

expanders back to back. It has n(k + 1) vertices, partitioned into k +1 sets each
of size n, V = {V0, V1, V2, · · · , Vk} with all edges are directed from Vi − 1 to Vi

(i ∈ [1..k]). Vi − 1 and Vi plus all edges between them form an (n, α, β) bipartite
expander ∀i ∈ [1..k]. The bipartite expanders at different layers can but do
not have to be the same. Its maximum in-degree is the same as the underlying
(n, α, β) bipartite expanders.

In the Balloon hashing algorithm, the vertices are furthered chained sequen-
tially, i.e., there exist edges (vi,j , vi,j +1) for each 0 ≤ i ≤ k, 0 ≤ j ≤ n−2 as well
as an edge (vi,n − 1, vi+1,0) for each 0 ≤ i ≤ k. In other words, Balloon hashing
uses a stacked random sandwich graph in which each vertex has d > 1 predeces-
sors from the previous layer. Figure 3 is a stacked random sandwich graph with
n = 4, k = 2 and d = 2. In the figure, two consecutive layers form a (4, 4, 1

4 , 1
2)

expander.
A large in-degree can be problematic for the pebbling abstraction since the

random oracle in graph labeling cannot be based on a Merkle-Damg̊ard con-
struction. In the case of stacked expanders, we can apply a transformation to
make the in-degree to be 2: we simply replace each d-to-1 connection with a
binary tree where the d predecessors are at the leaf level, the successor is the
root and each edge in the tree points from a child to its parent. This transfor-
mation preserves the expanding property between layers and increases the cost
of a red move by a factor of 2 at most (the number of edges in a binary tree is
at most twice the number of its leaves).

We remark that the latest version of the Balloon hash paper [25] analyzes
random sandwich graphs using a new “well-spread” property rather than the
expanding property, in an attempt to tighten the required in-degree. We may be
able to adopt their new framework to analyze bandwidth hardness, but we leave
it to future work.

Bandwidth Hard Functions for ASIC Resistance 483

Black pebbling complexity. Black pebble games on stacked expanders have
been well studied. Obviously, simply pebbling each expander in order and remov-
ing pebbles as they are no longer needed results in a sequence P that uses 2n
space and n(k + 1) moves. An exponentially sharp space-time trade-off in black
pebble games is shown by Paul and Tarjan [44] and further strengthened by
Ren and Devadas [49]. The result says that to pebble any subset of αn initially
unpebbled sinks of G requires either at least (β − 2α)n pebbles or at least 2k

moves.

Red-blue pebbling complexity. We now consider red-blue pebble games on
stacked expanders. An honest user would simply pebble each expander in order
in a straightforward way. First, for each vertex v in the source layer V0, the
honest user places a red pebble on v and then immediately replaces it with a
blue pebble. Then, for each vertex v ∈ V1, the honest user places red pebbles
on its d predecessors through blue moves, pebbles v using a red move, replacing
the red pebble with a blue pebble, and lastly removing all red pebbles. The cost
to pebble each source vertex is (cb + cr) and the cost to pebble each non-source
vertex is cb(d + 1) + crd. The total cost to pebble the entire graph is therefore
≈ nkd(cb + cr).

Following the proof of the sharp space-time trade-off in a black pebble
game [44,49], we can similarly derive a sharp trade-off between red and blue
moves in a red-blue pebble game. It will then lead to a lower bound on red-blue
pebbling cost for stacked expander graph G.

Theorem 3. Let G be an (n, k, α, β) stacked expander. In a red-blue pebble
game, if a sequence P pebbles any subset of αn sinks of G through red moves,
using at most m red pebbles (plus an arbitrary number of blue pebbles) and at
most (β − 2α)n − m blue moves, then P must use at least 2kαn red moves.

Informally, if there is a strategy that pebbles any subset of αn vertices using
at most m red pebbles and at most b blue moves, it implies a strategy that
pebbles those αn vertices using at most m + b black pebbles. The reason is that
while there may be arbitrarily many blue pebbles, at most b blue pebbles can be
utilized since there are at most b blue moves. Therefore, either m+b ≥ (β−2α)n
or an exponential number of red moves are needed. Below is a rigorous proof.

Proof. The proof is similar to the inductive proof for the black pebble game
trade-off [44,49]. For the base case k = 0, an (n, 0, α, β) stacked expander is
simply a collection of n isolated vertices with no edges. The theorem is trivially
true since the αn are pebbled through red moves.

Now we show the inductive step for k ≥ 1 assuming the theorem holds for
k − 1. The αn sinks in Vk that are pebbled through red moves collectively are
connected to at least βn predecessors in Vk − 1 due to the (n, α, β) expander
property. Each of these βn vertices in Vk − 1 must have a red pebble on it at
some point to facilitate the red moves on the αn sinks. These βn vertices may
get their red pebbles in one of the three ways below. Up to m of them may
initially have red pebbles on them. Up to (β − 2α)n − m of them may initially

484 L. Ren and S. Devadas

have blue pebbles on them get red pebbles through blue moves. The remaining
2αn of them must get their red pebbles through red moves. These 2αn vertices
in Vk − 1 are sinks of an (n, k − 1, α, β) stacked expander. Divide them into two
groups of αn each in the order they get red pebbles in P for the first time. P
can be then divided into two parts P = (P1,P2) where P1 places red pebbles
on the first group (P1 does not place red pebbles on any vertices in the second
group) and P2 places red pebbles on the second group. Both P1 and P2 use no
more than m red pebbles and (β − 2α)n − m blue moves. Due to the inductive
hypothesis, both use at least 2k − 1αn red moves. Therefore, P uses at least 2kαn
red moves. ��
Theorem 4. Let G be an (n, k, α, β) stacked expander with in-degree d. Its red-
blue pebbling complexity ec(G,m, cb, cr) is lower bounded by (cb+cr)·((β−2α)n−
m) · (k − log2(cb/dcr)�)/α.

Proof. With the chain edges, if a sequence starts from an empty configuration,
then it must pebble vertices in G in topological order. For simplicity, let us
assume each layer of n vertices can be divided into an integer number of groups
of size αn each (i.e., αn divides n). Now we can break up the sequence into
(k + 1)n/αn sub-sequences; each one pebbles the next consecutive αn vertices
for the first time. Since the red-blue pebbling costs from multiple sub-sequences
are additive, we analyze and lower bound them independently.

Consider a sub-sequence P′ that pebbles αn vertices in Vi for the first time.
Theorem 3 shows a trade-off on the usage of red versus blue moves. We note
that Theorem 3 can be generalized. If P′ uses at most m red pebbles (plus an
arbitrary number of blue pebbles) and at most (β − qα)n − m blue moves, then
P′ must use at least qiαn red moves. For a proof, simply notice that there will
be qαn vertices in Vi − 1 that need to get their red pebbles through red moves.
The qi factor follows from a similar induction. This means P′ must choose one
of the following options:

– use at least (β − 2α)n − m blue moves, plus αn red moves;
– use less than (β − 2α)n − m but at least (β − 3α)n − m blue moves, plus at

least 2iαn red moves;
– use less than (β − 3α)n − m but at least (β − 4α)n − m blue moves, plus at

least 3iαn red moves;
– · · ·
Comparing these options, we see that in order to save αn blue moves, P′ needs to
compensate with (2i − 1)αn more red moves. For i > log2(cb/dcr)�, blue moves
are not worth saving because αn blue moves cost cbαn which is less than the cost
of 2i − 1 red moves. To save (q +1)αn blue moves, P′ needs to compensate with
(qi −1)αn more red moves, which is even less economical. This means, for layers
relatively deep, the best strategy is to use blue moves whenever possible. The cost
of the first option is ec(P′) ≥ cb((β−2α)n−m)+crdαn > (cb+cr)((β−2α)n−m).
The latter inequality is due to dα > β − 2α, which is easy to check from the
requirement on d for expanders. Lastly, there are (k − log2(cb/dcr)�) layers Vi

Bandwidth Hard Functions for ASIC Resistance 485

satisfying i > log2(cb/dcr)� and each contains 1/α vertex groups of size αn.
The bound in the theorem follows. ��

For a stacked expander graph to be bandwidth hard, we only need n and k
to be a constant factor larger than m/(β − 2α) and log2(cb/dcr)�, respectively,
which can be much less space and time from honest users compared to scrypt and
bit-reversal graphs under some parameters. When n and k are sufficiently large,
an ASIC’s advantage Aec ≈ cb,cpu+cr,cpu

cb,asic+cr,asic
· dα
β−2α = Aec · dα

β−2α . For an example design
point, if we can choose α = 0.01 and β = 0.05, we have d = 9, dα/(β − 2α) = 3
and Aec ≈ 20.

5.4 Stacked Butterfly Graphs Are Not Bandwidth Hard

In this section, we demonstrate that a capacity hard function in the sequential
model may not be bandwidth hard using a stacked double butterfly graph as a
counterexample. A double butterfly graph consists of two fast Fourier transform
graphs back to back. It has n sources, n sinks and 2n log2 n vertices in total
for some n that is a power of 2. The intermediate vertices form two smaller
double butterfly graphs each with n/2 sources and n/2 sinks. Figure 4 shows an
example double butterfly graph with n = 8. A stacked double butterfly graph
further stacks copies of double butterfly graphs back to back (not shown in the
figure).

Fig. 4. A double butterfly graph with n = 8 sources and sinks. Vertices marked in red
have locality assuming a cache size of m = 4. (Color figure online)

A double butterfly graph is a superconcentrator [26], and it has been shown
that stacked superconcentrators have an exponentially sharp space-time trade-
off in sequential pebble games [38]. However, a stacked double butterfly graph
is not bandwidth hard due to locality in its memory access pattern. One can
fetch a batch of operands into the cache and perform a lot of computation with
them before swapping in another batch of operands. For example, in Fig. 4, one
can pebble the red vertices layer by layer without relying on other vertices, since

486 L. Ren and S. Devadas

the red vertices only have incoming edges from themselves. If equipped with
a cache of size m (assume m is a power of 2 for simplicity), we can adopt the
following pebbling strategy to save blue moves without sacrificing red moves. We
first place red pebbles on m vertices in the same layer that are n/m away from
each other, possibly through blue moves. We then use red moves to proceed
log2 m layers horizontally, placing red pebbles on the m vertices in the same
horizontal positions. For a stacked double butterfly with N vertices in total, this
strategy uses N red moves and only N/ log2 m blue moves. Its cost is therefore
(2cr + cb/ log2 m)N . As demonstrated in Sect. 4.1, cr,cpu is larger or at least
comparable to cb,cpu while cr,asic � cb,asic. Therefore, the red-blue pebbling of a
stacked double butterfly graph costs more than 2cr,cpuN on CPUs and roughly
cb,asicN/ log2 m on ASICs. This results in an advantage proportional to log2 m.

Stacked double butterfly graphs are used by the capacity hard function
Catena-DBG [35] and the capacity hard proof of work by Ateniese et al. [18]. We
note that Catena-DBG designers further add chain edges within each layer [35].
These chain edges will prevent our proposed pebbling strategy, so Catena-DBG
may not suffer from the log2 m ASIC energy advantage. Our goal here is to show
that capacity hard functions in the sequential model are not necessarily band-
width hard, and a stacked double butterfly graph without chain edges serves
as an example. We also remark that since stacked double butterfly graphs are
not capacity hard under parallel attacks, it remains unclear whether parallel
capacity hardness implies bandwidth hardness. But since capacity and band-
width are quite different metrics, we currently do not expect that to be the case.
(Bandwidth hardness certainly does not imply parallel capacity hardness with
Catena-BRG and Balloon being counterexamples.)

6 Discussion

6.1 The Role of Memory

It is not a coincidence that memory plays a central role in both the area and
the energy approach, and this point may be worth some further justification.
As mentioned, CPUs are at a huge disadvantage over ASICs in computation
because CPUs are general purpose while ASICs are specifically optimized for
a certain task. Memory does not suffer from this problem because memory is,
for the most part, intrinsically general purpose. Memory’s job is to store bits
and deliver them to the compute units regardless of what the computational
task is. New technologies like 3D-stacked memory [24], high speed serial [2] and
various types of non-volatile memory do not undermine this argument: they are
also general purpose and will be adopted by both CPUs and ASICs when they
become successful.

6.2 Capacity Hardness and Energy?

Here a reader may wonder whether we can make an energy argument for capac-
ity hard functions. Specifically, one may argue that holding a large capacity of

Bandwidth Hard Functions for ASIC Resistance 487

data in memory also costs energy, and it must be similar for ASICs and CPUs
due to the general purpose nature of memory. The problem is that the energy
cost of holding data in memory depends on the underlying memory technol-
ogy, and can be extremely small. We call the power spent on holding data idle
power, and the power spent on transferring data busy power. Volatile memory like
DRAM needs to periodically refresh data and thus has a noticeable idle power
consumption. For non-volatile memory/storage, idle power is negligible or even
strictly 0, independent of memory capacity [54]. Think about hard disks in one’s
garage — they consume no energy no matter how much data they are holding.
The energy argument for capacity hardness breaks down for non-volatile mem-
ory/storage. Energy consumption in non-volatile memory/storage only occurs
when data transfer happens, which is exactly what our model assumes.

In fact, even with volatile memory like DRAM, the energy model cannot be
solely based on memory capacity. While DRAM idle power is indeed proportional
to memory capacity, idle power will never be the dominant part in a reasonable
system. Section 6.3 further discusses this issue.

6.3 Implications of Parallel Attacks

Parallel attacks and area. Percival [46] defines memory hard functions to be
functions that (1) can be computed using T0 time and S0 = O(T 1− ε

0) space,
and (2) cannot be computed using T time and S space where ST = O(T 2− ε

0).
The ST lower bound at the first glance makes intuitive sense as it lower bounds
the AT product assuming that memory rather than the compute unit dominates
chip area. However, concerns have been raised about the above reasoning [10,22].
Because a ST lower bound allows space-time trade-off, a chip designer can reduce
the amount of memory by a factor of q, and then use q compute units in parallel
to keep the running time at T0. If q is not too large, chip area may still be
dominated by memory, so in theory this parallel architecture reduces the AT
product by roughly a factor of q. To address this issue, subsequent proposals
introduce stronger notions of capacity hardness that, for example, require a
linear space lower bound (in a computational sense) S = cS0 [18,25,35]. But
it is later uncovered that parallel architectures can asymptotically decrease the
amortized AT product of these constructions as well, and even stronger, the
amortized AT product of any data independent functions [10].

However, we would like to note that the above parallel attacks adopt an
oversimplified hardware model [10,12,14,15,22]: most of them assume unlim-
ited bandwidth for free. In practice, memory bandwidth is a scarce resource
and is the major bottleneck in parallel computing, widely known as the “mem-
ory wall” [17]. Increasing memory bandwidth would inevitably in turn increase
chip area and the more fundamental metric manufacturing cost. Only one paper
presents simulation results with concrete bandwidth requirements [11]. We laud
this effort, but unfortunately, the paper incorrectly chooses energy as the met-
ric, as we explain below. The area model in those attacks [10] looks reasonable,
though the memory bandwidth they assume is still too high. It would improve
our understanding on this issue if the authors provide simulation results with
area as the metric and for a wide range of bandwidth values from GB/s to TB/s.

488 L. Ren and S. Devadas

Parallel attacks and energy. We adopt a sequential model for bandwidth
hard functions in which parallelism does not help by definition. We believe this
model is reasonable because, to first-order effects, transferring data sequentially
or in parallel should consume roughly the same amount of energy. However, some
recent works [10,12,15] conclude that parallel attacks will have an asymptotic
energy gain for any data independent function, bit-reversal graphs and stacked
expanders included in particular, which is the exact opposite of our conclusion.
Their conclusions result from a flawed energy model. They assume memory’s
idle power is proportional to its capacity, which is reasonable assuming volatile
memory like DRAM. The flaw is that they explicitly assume that memory idle
power keeps increasing with memory capacity to the extent that it eventually
dwarfs all other power consumption. On a closer look, the energy advantage
they obtain under this model is not due to a parallel ASIC architecture having
superb energy efficiency, but rather because the sequential baseline has absurdly
high memory idle energy cost (i.e., energy cost for holding data). Under their
concrete parameterization [11], if we hash 1 GB of data using one CPU core, the
memory idle power/energy will be 5000× greater than all other power/energy
cost combined! The mistake in their concrete parameterization is that they incor-
rectly cite an estimated conversion rate for area density in a prior work [22] as
a conversion rate for energy cost, which leads to an overestimate of memory
idle power/energy by at least 100, 000×. But if only the constant is off, asymp-
totically speaking, isn’t it true that as DRAM capacity increases, eventually
memory idle power/energy will dwarf other components? The answer is yes, but
its implication is rather uninteresting and not concerning. It tells us that a com-
puter with a single CPU core and Terabytes of DRAM will have terrible energy
efficiency because it spends too much energy refreshing DRAM. Obviously, no
manufacturer will produce and no user will buy such a computer — long before
reaching this design point, manufacturers will switch to non-volatile memory or
simply stop adding DRAM capacity.

7 Conclusion

ASIC resistance requires both theoretical advancement and accurate hardware
understanding. With this work, we would like call attention to arguably the most
important aspect of ASIC resistance: energy efficiency. We illustrate that the
popular memory (capacity) hardness notion does not capture energy efficiency,
and indeed a capacity hard function may not achieve energy fairness. We propose
the notion of bandwidth hardness to achieve energy fairness between ASICs
and CPUs. We analyze candidate constructions and show that scrypt, Catena-
BRG and Balloon hashing provide good energy efficiency fairness with suitable
parameters.

We conclude the paper with a summary of provable security of different con-
structions under different thread models. (1) If memory access pattern leakage
is not a concern, then scrypt is a good option, since it enjoys capacity hard-
ness under parallel attacks as well as bandwidth hardness (for which parallel

Bandwidth Hard Functions for ASIC Resistance 489

attacks do not help). (2) If we assume the adversary has limited parallelism,
then Balloon hash is a good choice since it achieves sequential capacity hard-
ness and bandwidth hardness. (3) In some scenarios (e.g., Bitcoin mining), it
may be argued that energy advantage resistance alone is sufficient to thwart
ASIC attackers, in which case data-independent bandwidth hard functions (e.g.,
Catena-BRG and Balloon) can be used despite parallel attacks on their area
resistance. (4) If both area and energy resistance are required, memory access
pattern must be data-independent and additionally the adversary has extremely
high parallelism, then we know of no good candidates. In this situation, area
resistance alone must suffer poly-logarithmic loss. Furthermore, good parallel
capacity hard constructions to date are highly complex and we have not been
able to analyze their bandwidth behaviors. Lastly, we mention that in the first
three models, a possible alternative is Argon2 [21], the winner of the Password
Hashing Competition. We have not been able to analyze the bandwidth hardness
of Argon2, and it remains interesting future work.

Acknowledgements. The authors are grateful to Krzysztof Pietrzak, Joël Alwen and
Jeremiah Blocki for valuable discussions.

References

1. Antminer S9 - Bitmain. https://shop.bitmain.com/market.htm?name=antminer
s9 asic bitcoin miner. Accessed 04 Feb 2017

2. High Speed Serial - Xilinx. https://www.xilinx.com/products/technology/high-
speed-serial.html. Accessed 04 Feb 2017

3. Intel advanced encryption standard instructions (AES-NI). https://software.
intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni.
Accessed 04 Feb 2017

4. Intel power gadget. https://software.intel.com/en-us/articles/intel-power-gadget-
20. Accessed 04 Feb 2017

5. Litecoin. https://litecoin.org/
6. Zoom Hash Scrypt ASIC. http://zoomhash.com/collections/asics. Accessed 20

May 2016
7. Intel SHA extensions (2013). https://software.intel.com/en-us/articles/intel-sha-

extensions. Accessed 04 Feb 2017
8. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-

bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)
9. Almeida, L.C., Andrade, E.R., Barreto, P.S.L.M., Simplicio Jr., M.A.: Lyra:

password-based key derivation with tunable memory and processing costs. J. Cryp-
togr. Eng. 4(2), 75–89 (2014)

10. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 241–
271. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 9

11. Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and balloon hashing.
In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
142–157. IEEE (2017)

12. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative mem-
ory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 3–32. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 1

https://shop.bitmain.com/market.htm?name=antminer_s9_asic_bitcoin_miner
https://shop.bitmain.com/market.htm?name=antminer_s9_asic_bitcoin_miner
https://www.xilinx.com/products/technology/high-speed-serial.html
https://www.xilinx.com/products/technology/high-speed-serial.html
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://litecoin.org/
http://zoomhash.com/collections/asics
https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions
http://dx.doi.org/10.1007/978-3-662-53008-5_9
http://dx.doi.org/10.1007/978-3-319-56617-7_1

490 L. Ren and S. Devadas

13. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 33–62. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 2

14. Alwen, J., Gazi, P., Kamath, C., Klein, K., Osang, G., Pietrzak, K., Reyzin, L.,
Rolınek, M., Rybár, M.: On the memory-hardness of data-independent password-
hashing functions. Cryptology ePrint Archive, Report 2016/783 (2016)

15. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pp. 595–603. ACM (2015)

16. Amrutur, B., Horowitz, M.: Speed and power scaling of SRAM’s. IEEE J. Solid-
State Circ. 35(2), 175–185 (2000)

17. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W. et al.: The landscape
of parallel computing research: A view from berkeley. Technical report, Technical
Report UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley (2006)

18. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is
of the essence. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642,
pp. 538–557. Springer, Cham (2014). doi:10.1007/978-3-319-10879-7 31

19. Back, A.: Hashcash-a denial of service counter-measure (2002)
20. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.

IBM Syst. J. 5(2), 78–101 (1966)
21. Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient memory-hard

functions for cryptocurrencies and password hashing (2015)
22. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.

Cryptology ePrint Archive, Report 2015/227 (2015)
23. Biryukov, A., Khovratovich, D.: Equihash: asymmetric proof-of-work based on the

generalized birthday problem. In: NDSS (2016)
24. Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh, G.H.,

McCaule, D., Morrow, P., Nelson, D.W., Pantuso, D. et al.: Die stacking (3D)
microarchitecture. In: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 469–479. IEEE Computer Society (2006)

25. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 220–248. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53887-6 8

26. Bradley, W.F.: Superconcentration on a pair of butterflies. CoRR abs/1401.7263
(2014)

27. Cook, S.A.: An observation on time-storage trade off. In: Proceedings of the Fifth
Annual ACM Symposium on Theory of Computing, pp. 29–33. ACM (1973)

28. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). doi:10.
1007/0-387-34805-0 39

29. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 25

30. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). doi:10.1007/3-540-48071-4 10

http://dx.doi.org/10.1007/978-3-319-56617-7_2
http://dx.doi.org/10.1007/978-3-319-10879-7_31
http://dx.doi.org/10.1007/978-3-662-53887-6_8
http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/978-3-540-45146-4_25
http://dx.doi.org/10.1007/3-540-48071-4_10

Bandwidth Hard Functions for ASIC Resistance 491

31. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). doi:10.
1007/11535218 3

32. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 29

33. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 9

34. Forler, C., List, E., Lucks, S., Wenzel, J.: Overview of the candidates for the pass-
word hashing competition. In: Mjølsnes, S.F. (ed.) PASSWORDS 2014. LNCS, vol.
9393, pp. 3–18. Springer, Cham (2015). doi:10.1007/978-3-319-24192-0 1

35. Forler, C., Lucks, S., Wenzel, J.: Catena : a memory-consuming password-
scrambling framework. Cryptology ePrint Archive, Report 2013/525 (2013)

36. Hopcroft, J., Paul, W., Valiant, L.: On time versus space and related problems. In:
16th Annual Symposium on Foundations of Computer Science, pp. 57–64. IEEE
(1975)

37. Horowitz, M.: Computing’s energy problem (and what we can do about it). In: 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 10–14. IEEE (2014)

38. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (1982)

39. Lerner, S.D.: Strict memory hard hashing functions (preliminary v0. 3, 01–19-14)
40. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential

work. In: Proceedings of the 4th Conference on Innovations in Theoretical Com-
puter Science, pp. 373–388. ACM (2013)

41. Mead, C.A., Rem, M.: Cost and performance of vlsi computing structures. IEEE
Trans. Electron Devices 26(4), 533–540 (1979)

42. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). doi:10.1007/
0-387-34805-0 40

43. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
44. Paul, W.J., Tarjan, R.E.: Time-space trade-offs in a pebble game. Acta Inf. 10(2),

111–115 (1978)
45. Pedram, A., Richardson, S., Galal, S., Kvatinsky, S., Horowitz, M.: Dark memory

and accelerator-rich system optimization in the dark silicon era. IEEE Des. Test
34, 39–50 (2016)

46. Percival, C.: Stronger key derivation via sequential memory-hard functions (2009)
47. Peslyak, A.: yescrypt - a password hashing competition submission (2014). https://

password-hashing.net/submissions/specs/yescrypt-v2.pdf. Accessed Aug 2016
48. Pinsker, M.S.: On the complexity of a concentrator. In: 7th International Telegraffic

Conference, vol. 4 (1973)
49. Ren, L., Devadas, S.: Proof of space from stacked expanders. In: Hirt, M., Smith,

A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 262–285. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53641-4 11

50. Savage, J.E.: Models of Computation. Addison-Wesley, Boston (1998)
51. Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4(3), 226–248

(1975)
52. Smith, A., Zhang, Y.: Near-linear time, leakage-resilient key evolution schemes

from expander graphs. Cryptology ePrint Archive, Report 2013/864 (2013)

http://dx.doi.org/10.1007/11535218_3
http://dx.doi.org/10.1007/11535218_3
http://dx.doi.org/10.1007/978-3-662-48000-7_29
http://dx.doi.org/10.1007/978-3-642-19571-6_9
http://dx.doi.org/10.1007/978-3-319-24192-0_1
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/0-387-34805-0_40
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
http://dx.doi.org/10.1007/978-3-662-53641-4_11

492 L. Ren and S. Devadas

53. Tromp, J.: Cuckoo cycle: a memory-hard proof-of-work system (2014)
54. Xue, C.J., Sun, G., Zhang, Y., Yang, J.J., Chen, Y., Li, H.: Emerging non-volatile

memories: opportunities and challenges. In: 2011 Proceedings of the 9th Inter-
national Conference on Hardware/Software Codesign and System Synthesis, pp.
325–334. IEEE (2011)

	Bandwidth Hard Functions for ASIC Resistance
	1 Introduction
	1.1 Bandwidth Hard Functions
	1.2 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 A Hardware Perspective on ASIC Resistance
	3.2 The Graph Labeling and Pebbling Framework

	4 The Limit of Energy Fairness
	4.1 Experiments to Estimate Energy Cost Coefficients
	4.2 Better Energy Fairness with AES-NI

	5 Bandwidth Hardness of Candidate Constructions
	5.1 Scrypt
	5.2 Bit-Reversal Graphs
	5.3 Stacked Expanders
	5.4 Stacked Butterfly Graphs Are Not Bandwidth Hard

	6 Discussion
	6.1 The Role of Memory
	6.2 Capacity Hardness and Energy?
	6.3 Implications of Parallel Attacks

	7 Conclusion
	References

