
Yael Kalai
Leonid Reyzin (Eds.)

 123

LN
CS

 1
06

77

15th International Conference, TCC 2017
Baltimore, MD, USA, November 12–15, 2017
Proceedings, Part I

Theory
of Cryptography

Lecture Notes in Computer Science 10677

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Yael Kalai • Leonid Reyzin (Eds.)

Theory
of Cryptography
15th International Conference, TCC 2017
Baltimore, MD, USA, November 12–15, 2017
Proceedings, Part I

123

Editors
Yael Kalai
Microsoft Research New England
Cambridge, MA
USA

Leonid Reyzin
Boston University
Boston, MA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-70499-9 ISBN 978-3-319-70500-2 (eBook)
https://doi.org/10.1007/978-3-319-70500-2

Library of Congress Control Number: 2017957860

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 15th Theory of Cryptography Conference (TCC 2017) was held during November
12–15, 2017, at Johns Hopkins University in Baltimore, Maryland. It was sponsored by
the International Association for Cryptographic Research (IACR). The general chair
of the conference was Abhishek Jain. We would like to thank him for his great work in
organizing the conference.

The conference received 150 submissions, of which the Program Committee
(PC) selected 51 for presentation (with three pairs of papers sharing a single presen-
tation slot per pair). Each submission was reviewed by at least three PC members, often
more. The 33 PC members (including PC chairs) were helped by 170 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised version of the 51 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent web-review software, and are
extremely grateful to him for writing, maintaining, and adding features to it, and for
providing fast and reliable technical support whenever we had any questions. Based on
the experience from previous years, we made extensive use of the interaction feature
supported by the review software, where PC members may directly and anonymously
interact with authors. This was used to clarify specific technical issues that arose during
reviews and discussions, such as suspected bugs or suggested simplifications. We felt
this approach helped us prevent potential misunderstandings and improved the quality
of the review process.

This was the fourth time TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, presented at TCC 2006: “Efficient Collision-Resistant
Hashing from Worst-Case Assumptions on Cyclic Lattices,” by Chris Peikert and Alon
Rosen, “for advancing the use of hard algebraic lattice problems in cryptography,
paving the way for major theoretical and practical advances.” The authors delivered an
invited talk at TCC 2017.

The conference also featured an invited talk by Cynthia Dwork.
We are greatly indebted to many people and organizations who were involved in

making TCC 2017 a success. First of all, a big thanks to the most important contrib-
utors: all the authors who submitted fantastic papers to the conference. Next, we would
like to thank the PC members for their hard work, dedication, and diligence in
reviewing and selecting the papers. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering
questions, often under time pressure. We thank Stefano Tessaro for organizing the
Program Committee meeting. For running the conference itself, we are very grateful to
the general chair, Abhishek Jain, and the people who helped him, including Anton

Dahbura, Revelie Niles, Jessica Finkelstein, Arka Rai Choudhuri, Nils Fleishhacker,
Aarushi Goel, and Zhengzhong Jin. For help with these proceedings, we thank Anna
Kramer, Alfred Hofmann, Abier El-Saeidi, Reegin Jeeba Dhason, and their staff at
Springer. We appreciate the sponsorship from the IACR, the Department of Computer
Science and the Information Security Institute at Johns Hopkins University, Microsoft
Research, IBM, and Google. Finally, we are thankful to the TCC Steering Committee
as well as the entire thriving and vibrant TCC community.

November 2017 Yael Kalai
Leonid Reyzin

VI Preface

TCC 2017

Theory of Cryptography Conference

Baltimore, Maryland, USA
November 12–15, 2017

Sponsored by the International Association for Cryptologic Research.

General Chair

Abhishek Jain Johns Hopkins University, USA

Program Committee

Benny Applebaum Tel Aviv University, Israel
Elette Boyle IDC Herzliya, Israel
Nir Bitansky MIT, USA and Tel Aviv University, Israel
Zvika Brakerski Weizmann Institute of Science, Israel
Ran Canetti Boston University, USA and Tel Aviv University,

Israel
Alessandro Chiesa University of California, Berkeley, USA
Kai-Min Chung Academia Sinica, Taiwan
Dana Dachman-Soled University of Maryland, USA
Stefan Dziembowski University of Warsaw, Poland
Serge Fehr CWI Amsterdam, The Netherlands
Ben Fuller University of Connecticut, USA
Divya Gupta Microsoft Research India, USA
Carmit Hazay Bar-Ilan University, Israel
Yael Kalai (Co-chair) Microsoft Research New England, USA
Anja Lehmann IBM Research Zurich, Switzerland
Benoît Libert CNRS and ENS de Lyon, France
Pratyay Mukherjee Visa Research, USA
Omer Paneth MIT, USA
Rafael Pass Cornell University, USA
Krzysztof Pietrzak IST Austria
Mariana Raykova Yale University, USA
Leonid Reyzin (Co-chair) Boston University, USA
Guy Rothblum Weizmann Institute of Science, Israel
Ron Rothblum MIT, USA
Amit Sahai University of California, Los Angeles, USA
Elaine Shi Cornell University, USA
Stefano Tessaro University of California, Santa Barbara, USA
Salil Vadhan Harvard University, USA

Daniel Wichs Northeastern University, USA
Hoeteck Wee CNRS and ENS, France
Yu Yu Shanghai Jiao Tong University, China
Mark L. Zhandry Princeton University, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

TCC Steering Committee

Mihir Bellare University of California, San Diego, USA
Ivan Damgård Aarhus University, Denmark
Shai Halevi (Chair) IBM Research, USA
Russell Impagliazzo University of California, San Diego, USA
Tal Malkin Columbia University, USA
Ueli Maurer ETH, Switzerland
Moni Naor Weizmann Institute of Science, Israel

Additional Reviewers

Divesh Aggarwal
Hamidreza Amini
Prabhanjan Ananth
Gilad Asharov
Saikrishna
Badrinarayanan
Marshall Ball
Boaz Barak
Carsten Baum
Amos Beimel
Fabrice Benhamouda
Itay Berman
Jeremiah Blocki
Adam Bouland
Mark Bun
Angelo De Caro
Ignacio Cascudo
Nishanth Chandran
Binyi Chen
Yen-Tsung Chen
Yi-Hsiu Chen
Yilei Chen
Ran Cohen
Geoffroy Couteau
Akshay Degwekar
Nico Döttling

Manu Drijvers
Leo Ducas
Yfke Dulek
Tuyet Duong
Frédéric Dupuis
Naomi Ephraim
Leo Fan
Pooya Farshim
Sebastian Faust
Rex Fernando
Marc Fischlin
Tore Kasper Frederiksen
Tommaso Gagliardoni
Romain Gay
Peter Gaži
Ran Gelles
Marios Georgiou
Satrajit Ghosh
Irene Giacomelli
Huijing Gong
Junqing Gong
Rishab Goyal
Vipul Goyal
Jens Groth
Chun Guo
Siyao Guo

Tom Gur
Shai Halevi
Shuai Han
Ethan Heilman
Justin Holmgren
Kristina Hostáková
I-Hung Hsu
Ziyuan Hu
Yan Huang
Yin-Hsun Huang
Pavel Hubáček
Shih-Han Hung
Yuval Ishai
Tibor Jager
Aayush Jain
Abhishek Jain
Stanislaw Jarecki
Chethan Kamath
Yuan Kang
Bhavana Kanukurthi
Tomasz Kazana
Dakshita Khurana
Sam Kim
Susumu Kiyoshima
Ilan Komargodski
Swastik Kopparty

VIII TCC 2017

Venkata Koppula
Pravesh Kothari
Luke Kowalczyk
Mukul Kulkarni
Ashutosh Kumar
Alptekin Küpçü
Eyal Kushilevitz
Kim Laine
Tancrède Lepoint
Zengpeng Li
Jyun-Jie Liao
Han-Hsuan Lin
Huijia Rachel Lin
Wei-Kai Lin
Feng-Hao Liu
Qipeng Liu
Yamin Liu
Xianhui Lu
Lin Lyu
Vadim Lyubashevsky
Fermi Ma
Mohammad Mahmoody
Hemanta K. Maji
Daniel Malinowski
Alex Malozemoff
Antonio Marcedone
Daniel Masny
Peihan Miao
Daniele Micciancio
Pratyush Mishra
Payman Mohassel
Tal Moran

Andrew Morgan
Kirill Morozov
Fabrice Mouhartem
Tamalika Mukherjee
Gregory Neven
Hai H. Nguyen
Adam O’Neill
Claudio Orlandi
Alain Passelègue
Valerio Pastro
Alice Pellet-Mary
Thomas Peters
Benny Pinkas
Oxana Poburinnaya
Antigoni Polychroniadou
Manoj Prabhakaran
Baodong Qin
Willy Quach
Somindu C. Ramanna
Peter Rasmussen
Ling Ren
Silas Richelson
Peter Byerley Rindal
Aviad Rubinstein
Alexander Russell
Alessandra Scafuro
Christian Schaffner
Peter Scholl
Adam Sealfon
Maciej Skórski
Pratik Soni
Akshayaram Srinivasan

Damien Stehlé
Ron Steinfeld
Noah
Stephens-Davidowitz
Björn Tackmann
Qiang Tang
Aishwarya
Thiruvengadam
Eran Tromer
Dominique Unruh
Vinod Vaikuntanathan
Margarita Vald
Eduardo Soria Vazquez
Muthuramakrishnan

Venkitasubramaniam
Daniele Venturi
Frederik Vercauteren
Damien Vergnaud
Emanuele Viola
Satyanarayana Vusirikala
Wen Weiqiang
Mor Weiss
David Wu
Keita Xagawa
Haiyang Xue
Sophia Yakoubov
Avishay Yanay
Arkady Yerukhimovich
Karol Żebrowski
Bingsheng Zhang
Cong Zhang
Giorgos Zirdelis

Sponsors

Platinum Sponsors:

– Department of Computer Science, Johns Hopkins University
– Johns Hopkins University Information Security Institute

Gold Sponsors:

– Microsoft Research
– IBM

Silver Sponsor:

– Google

TCC 2017 IX

Contents – Part I

Impossibilities and Barriers

Barriers to Black-Box Constructions of Traitor Tracing Systems 3
Bo Tang and Jiapeng Zhang

On the Impossibility of Entropy Reversal, and Its Application
to Zero-Knowledge Proofs . 31

Shachar Lovett and Jiapeng Zhang

Position-Based Cryptography and Multiparty Communication Complexity . . . 56
Joshua Brody, Stefan Dziembowski, Sebastian Faust,
and Krzysztof Pietrzak

When Does Functional Encryption Imply Obfuscation? 82
Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed

Obfuscation

Limits on the Locality of Pseudorandom Generators and Applications
to Indistinguishability Obfuscation. 119

Alex Lombardi and Vinod Vaikuntanathan

Decomposable Obfuscation: A Framework for Building Applications
of Obfuscation from Polynomial Hardness . 138

Qipeng Liu and Mark Zhandry

Functional Encryption

Functional Encryption for Bounded Collusions, Revisited. 173
Shweta Agrawal and Alon Rosen

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 206
Hoeteck Wee

Constrained PRFs

Constrained Keys for Invertible Pseudorandom Functions. 237
Dan Boneh, Sam Kim, and David J. Wu

Private Constrained PRFs (and More) from LWE . 264
Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan,
and Hoeteck Wee

Encryption

The Edited Truth. 305
Shafi Goldwasser, Saleet Klein, and Daniel Wichs

A Modular Analysis of the Fujisaki-Okamoto Transformation. 341
Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz

From Selective IBE to Full IBE and Selective HIBE 372
Nico Döttling and Sanjam Garg

Multi-key Authenticated Encryption with Corruptions: Reductions
Are Lossy . 409

Tibor Jager, Martijn Stam, Ryan Stanley-Oakes, and Bogdan Warinschi

Moderately Hard Functions

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i. 445
Jeremiah Blocki and Samson Zhou

Bandwidth Hard Functions for ASIC Resistance . 466
Ling Ren and Srinivas Devadas

Moderately Hard Functions: Definition, Instantiations, and Applications. 493
Joël Alwen and Björn Tackmann

Blockchains

Overcoming Cryptographic Impossibility Results Using Blockchains 529
Rishab Goyal and Vipul Goyal

Multiparty Computation

Secure Two-Party Computation with Fairness - A Necessary
Design Principle . 565

Yehuda Lindell and Tal Rabin

Designing Fully Secure Protocols for Secure Two-Party Computation
of Constant-Domain Functions . 581

Vanesa Daza and Nikolaos Makriyannis

On Secure Two-Party Computation in Three Rounds 612
Prabhanjan Ananth and Abhishek Jain

Four Round Secure Computation Without Setup . 645
Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou

XII Contents – Part I

Round-Optimal Secure Two-Party Computation
from Trapdoor Permutations . 678

Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti

Delayed-Input Non-Malleable Zero Knowledge and Multi-Party
Coin Tossing in Four Rounds . 711

Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti

Round Optimal Concurrent MPC via Strong Simulation. 743
Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain,
Dakshita Khurana, and Amit Sahai

A Unified Approach to Constructing Black-Box UC Protocols
in Trusted Setup Models . 776

Susumu Kiyoshima, Huijia Lin,
and Muthuramakrishnan Venkitasubramaniam

Author Index . 811

Contents – Part I XIII

Contents – Part II

Garbled Circuits and Oblivious RAM

Actively Secure Garbled Circuits with Constant Communication
Overhead in the Plain Model . 3

Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam

Adaptively Indistinguishable Garbled Circuits . 40
Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs

Circuit OPRAM: Unifying Statistically and Computationally Secure
ORAMs and OPRAMs . 72

T.-H. Hubert Chan and Elaine Shi

Zero-Knowledge and Non-Malleability

Resettably-Sound Resettable Zero Knowledge in Constant Rounds 111
Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti

Round Optimal Concurrent Non-malleability from Polynomial Hardness 139
Dakshita Khurana

Zero Knowledge Protocols from Succinct Constraint Detection 172
Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon,
Michael Riabzev, and Nicholas Spooner

Leakage and Tampering

How to Construct a Leakage-Resilient (Stateless) Trusted Party 209
Daniel Genkin, Yuval Ishai, and Mor Weiss

Blockwise p-Tampering Attacks on Cryptographic Primitives, Extractors,
and Learners. 245

Saeed Mahloujifar and Mohammad Mahmoody

Delegation

On Zero-Testable Homomorphic Encryption and Publicly Verifiable
Non-interactive Arguments . 283

Omer Paneth and Guy N. Rothblum

http://dx.doi.org/10.1007/978-3-319-70503-3_1
http://dx.doi.org/10.1007/978-3-319-70503-3_1
http://dx.doi.org/10.1007/978-3-319-70503-3_2
http://dx.doi.org/10.1007/978-3-319-70503-3_3
http://dx.doi.org/10.1007/978-3-319-70503-3_3
http://dx.doi.org/10.1007/978-3-319-70503-3_4
http://dx.doi.org/10.1007/978-3-319-70503-3_5
http://dx.doi.org/10.1007/978-3-319-70503-3_6
http://dx.doi.org/10.1007/978-3-319-70503-3_7
http://dx.doi.org/10.1007/978-3-319-70503-3_8
http://dx.doi.org/10.1007/978-3-319-70503-3_8
http://dx.doi.org/10.1007/978-3-319-70503-3_9
http://dx.doi.org/10.1007/978-3-319-70503-3_9

Non-Malleable Codes

Inception Makes Non-malleable Codes Stronger . 319
Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski

Four-State Non-malleable Codes with Explicit Constant Rate 344
Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar

Secret Sharing

Evolving Secret Sharing: Dynamic Thresholds and Robustness 379
Ilan Komargodski and Anat Paskin-Cherniavsky

Linear Secret-Sharing Schemes for Forbidden Graph Access Structures 394
Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter

Near-Optimal Secret Sharing and Error Correcting Codes in AC0 424
Kuan Cheng, Yuval Ishai, and Xin Li

OT Combiners

Resource-Efficient OT Combiners with Active Security 461
Ignacio Cascudo, Ivan Damgård, Oriol Farràs, and Samuel Ranellucci

Signatures

An Equivalence Between Attribute-Based Signatures and Homomorphic
Signatures, and New Constructions for Both. 489

Rotem Tsabary

On the One-Per-Message Unforgeability of (EC)DSA and Its Variants. 519
Manuel Fersch, Eike Kiltz, and Bertram Poettering

Verifiable Random Functions

A Generic Approach to Constructing and Proving Verifiable Random
Functions . 537

Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters

Verifiable Random Functions from Non-interactive
Witness-Indistinguishable Proofs . 567

Nir Bitansky

Fully Homomorphic Encryption

Batched Multi-hop Multi-key FHE from Ring-LWE with Compact
Ciphertext Extension . 597

Long Chen, Zhenfeng Zhang, and Xueqing Wang

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-70503-3_10
http://dx.doi.org/10.1007/978-3-319-70503-3_11
http://dx.doi.org/10.1007/978-3-319-70503-3_12
http://dx.doi.org/10.1007/978-3-319-70503-3_13
http://dx.doi.org/10.1007/978-3-319-70503-3_14
http://dx.doi.org/10.1007/978-3-319-70503-3_15
http://dx.doi.org/10.1007/978-3-319-70503-3_16
http://dx.doi.org/10.1007/978-3-319-70503-3_16
http://dx.doi.org/10.1007/978-3-319-70503-3_17
http://dx.doi.org/10.1007/978-3-319-70503-3_18
http://dx.doi.org/10.1007/978-3-319-70503-3_18
http://dx.doi.org/10.1007/978-3-319-70503-3_19
http://dx.doi.org/10.1007/978-3-319-70503-3_19
http://dx.doi.org/10.1007/978-3-319-70503-3_20
http://dx.doi.org/10.1007/978-3-319-70503-3_20

Database Privacy

Strengthening the Security of Encrypted Databases: Non-transitive JOINs . . . 631
Ilya Mironov, Gil Segev, and Ido Shahaf

Can We Access a Database Both Locally and Privately? 662
Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters

Towards Doubly Efficient Private Information Retrieval. 694
Ran Canetti, Justin Holmgren, and Silas Richelson

Assumptions

On Iterative Collision Search for LPN and Subset Sum 729
Srinivas Devadas, Ling Ren, and Hanshen Xiao

Can PPAD Hardness be Based on Standard Cryptographic Assumptions? . . . 747
Alon Rosen, Gil Segev, and Ido Shahaf

Author Index . 777

Contents – Part II XVII

http://dx.doi.org/10.1007/978-3-319-70503-3_21
http://dx.doi.org/10.1007/978-3-319-70503-3_22
http://dx.doi.org/10.1007/978-3-319-70503-3_23
http://dx.doi.org/10.1007/978-3-319-70503-3_24
http://dx.doi.org/10.1007/978-3-319-70503-3_25

Impossibilities and Barriers

Barriers to Black-Box Constructions
of Traitor Tracing Systems

Bo Tang1 and Jiapeng Zhang2(B)

1 University of Oxford, Oxford, UK
tangbonk1@gmail.com

2 University of California, San Diego, USA
jpeng.zhang@gmail.com

Abstract. Reducibility between different cryptographic primitives is a
fundamental problem in modern cryptography. As one of the primitives,
traitor tracing systems help content distributors recover the identities
of users that collaborated in the pirate construction by tracing pirate
decryption boxes. We present the first negative result on designing effi-
cient traitor tracing systems via black-box constructions from symmetric
cryptographic primitives, e.g. one-way functions. More specifically, we
show that there is no secure traitor tracing scheme in the random oracle
model, such that �k · �2c < ˜Ω(n), where �k is the length of user key, �c is
the length of ciphertext and n is the number of users, under the assump-
tion that the scheme does not access the oracle to generate private user
keys. To our best knowledge, all the existing cryptographic schemes (not
limited to traitor tracing systems) via black-box constructions from one-
way functions satisfy this assumption. Thus, our negative results indicate
that most of the standard black-box reductions in cryptography cannot
help construct a more efficient traitor tracing system.

We prove our results by extending the connection between traitor
tracing systems and differentially private database sanitizers to the set-
ting with random oracle access. After that, we prove the lower bound for
traitor tracing schemes by constructing a differentially private sanitizer
that only queries the random oracle polynomially many times. In order to
reduce the query complexity of the sanitizer, we prove a large deviation
bound for decision forests, which might be of independent interest.

1 Introduction

Traitor tracing systems, introduced by Chor et al. [11], are broadcast encryp-
tion schemes that are capable of tracing malicious “traitor” coalitions aiming
at building pirate decryption devices. Such schemes are widely applicable to the
distribution of digital commercial content (e.g. Pay-TV, news websites subscrip-
tion, online stock quotes broadcast) for fighting against copyright infringement.
In particular, consider a scenario where a distributor would like to send digital
contents to n authorized users via a broadcast channel while users possess dif-
ferent secret keys that allow them to decrypt the broadcasts in a non-ambiguous

J. Zhang—Research supported by NSF CAREER award 1350481.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 3–30, 2017.
https://doi.org/10.1007/978-3-319-70500-2_1

4 B. Tang and J. Zhang

fashion. Clearly, a pirate decoder, built upon a set of leaked secret keys, could
also extract the cleartext content illegally. To discourage such piracy in a traitor
tracing system, once a pirate decoder is found, the distributor can run a tracing
algorithm to recover the identity of at least one user that collaborated in the
pirate construction.

As a cryptographic primitive, traitor tracing system, together with its various
generalizations, has been studied extensively in the literature (e.g., [6,15,24,28,
31]). Considerable efforts have been made on the construction of more efficient
traitor tracing scheme from other primitives, in terms of improving two decisive
performance parameters – the length of user key and the length of ciphertext. To
illustrate, we exhibit in Table 1 the relation between cryptographic assumptions
and the performance of the fully collusion resistant traitor tracing systems where
tracing succeeds no matter how many users keys the pirate has at his disposal.

Table 1. Some previous results on fully collusion resistant traitor tracing systems.

Hardness assumption User key length Ciphertext length Reference

Existence of one-way functions ˜O(n2) O(1)a [7]

Existence of one-way functions O(1) ˜O(n) [11,32]

Bilinear group assumptionsb O(1) ˜O(
√

n) [8]

Indistinguishability obfuscation O(1) (log n)O(1) [9,16]
aAll terms in the table including O(1) terms should depend on the security para-
meters.
bSpecifically, they need to assume the Decision 3-party Diffie-Hellman Assump-
tion, the Subgroup Decision Assumption and the Bilinear Subgroup Decision
Assumption.

Obviously, as we illustrate in Table 1, more efficient traitor tracing schemes
can be constructed based on stronger assumptions. Nonetheless, it is natural to
ask whether the known constructions can be made more efficient if we only rely
on the most fundamental cryptographic assumption – the existence of one-way
functions. Impagliazzo and Rudich [21] first studied this type of questions in the
context of key agreement. They observed that for most constructions in cryp-
tography, the starting primitive is treated as an oracle, or a “black-box” and the
security of the constructed scheme is derived from the security of the primitive
in a black-box sense. Based on this observation, they showed that a black-box
construction of key agreement built upon one-way functions implies a proof that
P �= NP . This approach has been subsequently adopted in investigating the
reducibility between other cryptographic primitives, such as one-way permuta-
tions [23], public-key encryption [18,19], universal one-way hash functions [25].
In particular, in the context of traitor tracing, the question is whether there
exists a more efficient traitor tracing scheme via black-box constructions based
on one-way functions. In this paper, we focus on this problem and provide a
partial answer to it.

Barriers to Black-Box Constructions of Traitor Tracing Systems 5

1.1 Our Results

We consider traitor tracing systems in the random oracle model [4], which is an
ideal model using one way functions in the strongest sense. In this model, the
constructed cryptographic scheme can access a random oracle O which can be
viewed as a fully random function. In spite of the criticism on its unjustified
idealization in practical implementations [10], the random oracle model seems
to be an appropriate model and a clean way to establish lower bounds in cryp-
tography (e.g. [1,21]). As there is no security measure defined on the oracle, one
common way to prove security for oracle based constructions is to rely on the
fully randomness of the oracle and the restriction on the number of queries the
adversary (even computationally unbounded) can ask.

Our main result is a lower bound on the performance of traitor tracing sys-
tems satisfying a property we call IndKeys. Roughly speaking, a cryptographic
scheme is said to be IndKeys if the scheme does not use the black-box hard-
ness of the starting primitive to generate private keys. Here we give an informal
definition of the IndKeys property for any cryptographic systems and defer the
formal definition tailored for traitor tracing systems to Sect. 2.

Definition 1 (informal). Let Π(·) be a cryptographic scheme that takes other
cryptographic primitives or ideal random functions as oracles. We say that Π(·)

is IndKeys if Π(·) does not access the oracles while generating private keys.

Remark 1. Considering all cryptographic primitives (not restriced in the private-
key traitor tracing systems we study here), it should be mentioned that the Ind-
Keys property does not require any independence between the public keys and
the oracles. Indeed, some of the known black-box constructions of cryptographic
primitives use the black-box hardness to generate public keys, (e.g. one time sig-
nature [26]), but the private keys are still generated independent of the oracles
as requested in IndKeys. To our best knowledge, all the exisiting cryptographic
schemes via black-box reductions from one-way functions are IndKeys. Thus,
our negative result for IndKeys systems shows that most of the standard black-
box reductions in cryptography cannot help to construct a more efficient traitor
tracing system. At last, as the IndKeys property is defined on all cryptographic
schemes, it might be helpful to investigate the technical limitations of known
black-box reductions and derive more lower bounds for other primitives.

In this paper, we show a lower bound on the performance (or efficiency) of
the IndKeys traitor tracing systems in terms of the lengths of user keys and
ciphertexts. We summarize the main theorem informally as follows and defer the
rigorous statement to Sect. 2.

Theorem 1 (informal). Let Π
(·)
TT be a secure traitor tracing system that is

IndKeys, then
�k · �c

2 ≥ ˜Ω(n)

where �k is the length of user key, �c is the length of ciphertext and n is the
number of users.

6 B. Tang and J. Zhang

1.2 Our Approach

We prove our results by building on the connection between traitor tracing
systems and differentially private sanitizers for counting queries discovered by
Dwork et al. [13]. Informally, a database sanitizer is differentially private if its
outputs on any two databases that only differ in one row, are almost the same.
Dwork, Naor, Reingold, et al. showed that any differentially private and accurate
sanitizer (with carefully calibrated parameters) can be used as a valid pirate
decoder to break the security of traitor tracing systems. Intuitively, a pirate
decoder can be viewed as a sanitizer of databases consist of leaked user keys.

Built upon this connection, we show the lower bound on traitor tracing sys-
tems by constructing a sanitizer in the random oracle model. We first build a
natural extension of sanitizers and differential privacy in presence of random
oracles in Sect. 3. The main difference from standard definitions is that we relax
the accuracy requirement by asking sanitizer to be accurate with high probabil-
ity w.r.t. the random oracle. That is, an accurate sanitizer under our definition
might be (probabilistic) inaccurate for some oracle but must be accurate for
most oracles. This relaxation allows us to derive a query-efficient sanitizer.

Our sanitizer is developed upon the median mechanism designed by Roth and
Roughgarden [30], which maintains a set D of databases and for each counting
query: (1) compute the results of the query for all databases in D; (2) Use the
median med of these results to answer the query if med is close to the answer
a∗ of the true database; (3) If not, output a∗ added with a Laplacian noise and
remove the databases in D whose result of the query is not close to a∗. Note
that when computing med , the median mechanism need to query the oracle for
all databases in D whose size might be exponential in �k. Thus, it will make
exponentially many queries to the oracle.

We design a query-efficient implementation of the median mechanism by
using the expectations of query results (taken over all oracles) to compute
med without querying the real oracle. Our mechanism would be accurate if
the answers are concentrated around their expectations taken over all random
oracles. Unfortunately, such concentration property does not hold for arbitrary
queries and databases. But fortunately, we can show that it holds if there is no
“significant” variables in the decryption (or query answering). More specifically,
we generalize the deviation bound proved in [2] where they required the size of
the database (decision forest) to be relatively larger than the “significance” of
the variable (see formal definitions in Sect. 6). Our bound does not make this
requirement and is much more applicable. We prove this bound by generalizing
two previous deviation bounds proved by Beck et al. [2] and Gavinsky et al. [17].
Note that the IndKeys property is essential in our proof since the deviation
bound only holds for uniformly distributed oracles.

To put it together, our mechanism maintains a set of databases D and for each
counting query: (a) remove the variables which are significant for most databases
in D; (b) privately check whether the decryption process corresponding to the
true database has a significant variable; (c) if there is a significant variable x∗,
output the noisy true answer and remove the databases that do not view x∗ as a

Barriers to Black-Box Constructions of Traitor Tracing Systems 7

significant variable; (d) otherwise, compute the median med among all expected
answers of databases in D; (e) if med is close to true answer, use it to answer
the query; (f) otherwise, output the noisy answer and remove databases in D
whose expected answer is not close to the true answer.

1.3 Related Work

Starting with the seminal paper by Impagliazzo and Rudich [21], black-box
reducibility between primitives has attracted a lot of attention in modern cryp-
tography. Reingold et al. [29] revisited existing negative results and gave a more
formal treatment of the notions of black-box reductions. In their notions, our
results can be viewed as a refutation of the fully black-box reduction of IndKeys
traitor tracing systems to one-way functions. Our usage of the random oracle
model also follows the work by Barak and Mahmoody-Ghidary [1], where they
proved lower bounds on the query complexity of every black-box construction
of one-time signature schemes from symmetric cryptographic primitives as mod-
eled by random oracles. To our best knowledge, there is no lower bound results
on the performance of traitor tracing systems prior to our work.

Differential privacy, as a well studied notion of privacy tailored to private data
analysis was first formalized by Dwork et al. [12]. They also gave an efficient san-
itizer called Laplace Mechanism that is able to answer n2 counting queries. A
remarkable following result of Blum et al. [5] shows that the number of counting
queries can be increased to sub-exponential in n by using the exponential mech-
anism of McSherry and Talwar [27]. Subsequently, interactive mechanisms, with
running time in polynomial of n and universe size, are developed to answer sub-
exponentially many queries adaptively by Roth and Roughgarden [30] (median
mechanism) and Hardt and Rothblum [20] (multiplicative weights mechanism).
On the other hand, based on the connection between traitor tracing systems and
sanitizers, Ullman [32] proved that no differentially private sanitizer with running
time in polynomial of n and the logarithm of the universe size can answer ˜Θ(n2)
queries accurately assuming one-way functions exist. Our sanitizer constructions
are inspired by the above mechanisms and also rely on the composition theorem
of differentially private mechanisms by Dwork et al. [14]. Thus, our results can
be viewed as an application of advanced techniques of designing differentially
private sanitizer in proving cryptographic lower bounds.

This paper is also technically related to previous deviation bounds on Boolean
decision forests. Gavinsky et al. [17] showed that for any decision forest such
that every input variable appears in few trees, the average of the decision trees’
outputs should concentrate around its expectation when the input variables are
distributed independently and uniformly. Similar bounds have also been proved
by Beck et al. [2] for low depth decision tress but with a weaker “average”
condition (see Sect. 6). As an application, they used this deviation bound to show
that AC0 circuits can not sample good codes uniformly. By a finer treatment
on the conditions stated in the above two works, we are able to prove a more
general deviation bounds for decision forests, which we believe should have other
applications.

8 B. Tang and J. Zhang

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2, we review the for-
mal definition of traitor tracing systems in the random oracle model and state
our main theorem. Then we review the connection between traitor tracing sys-
tems and differentially private sanitizers in Sect. 3. In Sect. 4, we prove a weaker
lower bound which is ˜Ω(n1/3) to illustrate the main ideas via using a general
large deviation bound for decision forests. Then we improve the bound to ˜Ω(n)
as stated in our main theorem in Sect. 5 by more elaborate arguments. Then,
in Sect. 6, we exhibit the proof the large deviation bound for decision forests
which is omitted in the proof in Sect. 2. Due to space limit, some proofs are
deferred in AppendixA. Furthermore, in AppendixB, we show an oralce sepa-
ration result between one-way functions and secure traitor tracing systems as a
straight-forward implication of our main theorem.

2 Traitor Tracing Systems

In this section, we give a formal definition of traitor tracing systems in the
random oracle model and state our main theorem. For any security parameter
κ ∈ N, an oracle can be viewed as a Boolean function O : {0, 1}�o(κ) :→ {0, 1},
where �o is a function from N to N.

Definition 2. Let n, m, �k, �c, and �o be functions : N → N, a traitor tracing
system in the random oracle model denoted by ΠTT with n users, user-key length
�k, ciphertext length �c, m tracing rounds and access to an oracle with input
length �o, also contains the following four algorithms. We allow all the algorithms
to be randomized except Dec.

– GenO(1κ), the setup algorithm, takes a security parameter κ as input and a
Boolean function O : {0, 1}�o(κ) → {0, 1} as an oracle, and outputs n = n(κ)
user-keys k1, . . . , kn ∈ {0, 1}lk(κ). Formally, k = (k1, . . . , kn) ←R GenO(1κ).

– EncO(k, b), the encrypt algorithm, takes n user-keys k and a message b ∈
{0, 1} as input, and outputs a ciphertext c ∈ {0, 1}lc(κ) via querying an oracle
O. Formally, c ←R EncO(k, b).

– DecO(ki, c), the decrypt algorithm takes a user-key ki and a ciphertext c as
input, and outputs a message b ∈ {0, 1} via querying an oracle O. Formally,
b = DecO(ki, c).

– TraceO,PO

(k), the tracing algorithm, takes n user-keys k as input, an oracle
O and a pirate decoder PO as oracles, and makes m(κ) queries to PO, and
outputs the name of a user i ∈ [n]. Formally, i ←R TraceO,PO

(k).

Formally, ΠTT = (n,m, �k, �c, �o, Gen(·), Enc(·), Dec(·), Trace(·,·)).

For simplicity, when we use the notation ΠTT without any specification, we also
mean all these functions and algorithms are defined correspondingly. We also
abuse the notations of functions of κ to denote the values of functions when κ
is clear from the context, (e.g., n denotes n(κ)).

Barriers to Black-Box Constructions of Traitor Tracing Systems 9

Intuitively, the pirate decoder P can be viewed as a randomized algorithm
that holds a set of user-keys kS = (ki)i∈S with S ⊆ [n]. The tracing algorithm
Trace is attempting to identify a user i ∈ S by making queries to P interactively.
In particular, in each round j ∈ [m], Trace submits a ciphertext cj to P and then
P answers a message ̂bj ∈ {0, 1} based on all the previous ciphertexts c1, . . . , cj .
Formally, ̂bj ←R PO(kS , c1, . . . , cj). Note that we allow the tracing algorithm
to be stateful. That our lower bounds apply to stateful Traitor Tracing Systems
makes our results stronger. Given a function �o and a security parameter κ, let
Ounif denote the uniform distribution over all oracles with size �o(κ), i.e. the
uniform distribution for all Boolean functions with input {0, 1}�o(κ). We also
abuse Ounif to denote the support of this distribution. As a pirate decoder,
P should be capable of decrypting ciphertext with high probability as defined
formally as follows.

Definition 3. Let ΠTT be a traitor tracing system and P(·) be a pirate decoder,
we say that P is m-available if for every S ⊆ [n] s.t. |S| ≥ n − 1,

Pr
O∼Ounif ,k←RGenO(1κ)

cj←RTraceO,P(k,̂b1,...,̂bj−1)
̂bj←RPO(kS ,c1,...,cj)

[∃j ∈ [m], b ∈ {0, 1}
(∀i ∈ S, DecO(ki, cj) = b

) ∧ (̂bj �= b)

] ≤ neg(n(κ))

Similarly, a traitor tracing system should decrypt the ciphertext correctly.

Definition 4. A traitor tracing system ΠTT is said to be correct if for all oracle
O, user i ∈ [n] and message b ∈ {0, 1},

Pr
k←RGenO(1κ)

c←REncO(k,b)

[DecO(ki, c) = b] = 1

In addition, we require the traitor tracing system to be efficient in terms of the
number of queries it makes. In particular, we use QC(AO) to denote the query
complexity of AO, i.e. the number of queries AO makes to O.

Definition 5. A traitor tracing system ΠTT is said to be efficient if for any
oracle O with input size �o(κ) and for any pirate decoder P, the query com-
plexity of GenO, EncO, DecO, TraceO are in polynomial of their input size respec-
tively. Formally, QC(GenO) = poly(κ), QC(EncO) = poly(n, �k), QC(DecO) =
poly(�k, �c) and QC(TraceO,P) = poly(n,m, �k).

Note that we do not make any restriction on the computational power of the trai-
tor tracing systems. Obviously, any computationally efficient ΠTT is also query
efficient but the other direction does not hold. That our lower bounds apply
to efficient ΠTT in the above definition makes our results apply to computa-
tional efficient ΠTT directly. Similarly, we say a pirate decoder P is efficient if
QC(PO) = poly(n, �k, �c) in each round of its interaction with Trace.

10 B. Tang and J. Zhang

Definition 6. A traitor tracing system ΠTT is said to be secure if for any effi-
cient m(κ)-available pirate decoder P and S ⊆ [n(κ)],

Pr
O∼Ounif
k←RGenO

[TraceO,PO(kS)(k) �∈ S] ≤ o

(

1
n(κ)

)

Definition 7 (IndKeys). A traitor tracing system ΠTT is said to be IndKeys
if for all a security parameter κ ∈ N and any two oracles O and O′, the dis-
tribution of k generated by GenO(1κ) and GenO′

(1κ) are the same distribution.
Equivalently, conditioned on any particular user-keys k, the oracle O can still be
viewed as a random variable drawn from Ounif .

Remark 2. Note that all known traitor tracing systems via black-box hardness
are IndKeys. The scheme designed by with �k = O(n2κ) and �c = O(κ) does not
require oracles and the one designed by Chor et al. [11] and modified by Ullman
[32] with �k = O(κ) and �c = O(nκ) does not need the oracle to generate private
keys.

The following theorem is our main theorem whose proof is deferred to Sects. 4
and 5.

Theorem 2. In the random oracle model, for any θ > 0, there is no query-
efficient, correct and secure traitor tracing system Π

(·)
TT which is IndKeys, such

that for any security parameter κ ∈ N,

�k(κ) · �c(κ)2 ≤ n(κ)1−θ.

3 Differentially Private Sanitizers in Random Oracle
Model

In this section, we formally define differentially private sanitizers for counting
queries in the random oracle model by extending the standard definitions. After
that we show its connection with traitor tracing systems by slightly modifying
the proofs in [13,32]. For ease of presentation, we reuse the notations used in
Sect. 2, (e.g. n,m, �k, �c, �o) to denote their counterparts in the context of private
data analysis.

A counting query on {0, 1}�k is defined by a deterministic algorithm q(·) where
given any oracle O : {0, 1}�o → {0, 1}, qO is a Boolean function {0, 1}�k → {0, 1}.
Abusing notation, we define the evaluation of the query q(·) on a database
D = (x1, . . . , xn) ∈ ({0, 1}�k)n with access to O to be qO(D) = 1

n

∑

i∈[n] q
O(xi).

Let Q be a set of counting queries. A sanitizer M(·) for Q can be viewed as
a randomized algorithm takes a database D ∈ ({0, 1}�k)n and a sequence of
counting queries q(·) = (q(·)1 , . . . , q

(·)
m) ∈ Qm as input and outputs a sequence

of answers (a1, . . . , am) ∈ R
m by accessing an oracle O. We consider interactive

mechanisms, that means M(·) should answer each query without knowing subse-
quent queries. More specifically, the computation of ai can only depends on the

Barriers to Black-Box Constructions of Traitor Tracing Systems 11

first i queries, i.e. (q(·)1 , . . . , q
(·)
i). One might note that our definition differs from

the traditional definition of sanitizers by allowing both sanitizers and queries to
access oracles. Actually, this kind of sanitizers are defined in such a specific way
which makes them useful in proving the hardness for the traitor tracing systems
defined in Sect. 2. It is also not clear for us if it has any real application in the
context of privately data analysis. Here we use the term “query” in two ways,
one referring to the query answered by the santizer and the other one meaning
the query sent by algorithms to oracles. Without specification, only when we say
“query complexity” or “query efficient”, we are referring the oracle queries.

We say that two databases D,D′ ∈ ({0, 1}�k)n are adjacent if they differ
only on a single row. We use q(·) = (q(·)1 , . . . , q

(·)
m) to denote a sequence of m

queries. Next, we give a natural extension of differential privacy to the setting
with oracle access.

Definition 8. A sanitizer M(·) for a set of counting queries Q is said to be
(ε, δ)-differentially private if for any two adjacent databases D and D′, oracle
O, query sequence q(·) ∈ Qm and any subset S ⊆ R

m,

Pr[MO(D,qO) ∈ S] ≤ eε Pr[MO(D′,qO) ∈ S] + δ

If M(·) is (ε, δ)-differentially private for some constant ε = O(1) and δ = o(1/n),
we will drop the parameters ε and δ and just say that M(·) is differentially
private.

Proposition 1 (Lemma 3.7 from [20]). The following condition implies
(ε, δ)-differential privacy. For any two adjacent databases D and D′, oracle O
and any query sequence q(·) ∈ Qm,

Pr
a←RMO(D,qO)

[∣

∣

∣

∣

log
(

Pr[MO(D,qO) = a]
Pr[MO(D′,qO) = a]

)∣

∣

∣

∣

> ε

]

≤ δ

Moreover, a sanitizer should answer any sequence of queries accurately with
high probability.

Definition 9. A sanitizer M(·) is said to be (α, β)-accurate for a set of counting
queries Q if for any database D

Pr
O∼Ounif

[

∀q(·) ∈ Qm,
∥

∥MO(D,qO) − qO(D)
∥

∥

∞ ≤ α
]

≥ 1 − β

If M(·) is (α, β)-accurate for some constant α < 1/2 and β = o(1/n10), we will
drop parameters α and β and just say that M(·) is accurate.

Finally, we consider the query complexity of sanitizers. Clearly, a sanitizer
cannot be query efficient if the evaluation of some counting query q(·) is not
query efficient. Let QEnf be the set of all efficient queries, i.e. for any database
D = ({0, 1}�k)n and any oracle O, any qO(D) ∈ QEnf can be evaluated in
poly(n, �k, �c) number of queries to O. A sanitizer is said to be efficient if for
any oracle O, database D and any query sequence q(·) ∈ Qm

Enf, MO(D,qO) can
be computed in poly(n,m, �k) number of queries to O.

12 B. Tang and J. Zhang

Theorem 3. Given functions n,m, �k, �c and �o : N → N, if for any query set
Q ⊆ QEnf with size |Q| ≤ 2�c(κ), there exists an efficient, differentially private
and accurate sanitizer for any database D ∈ ({0, 1}�k(κ))n(κ) and any m-query
sequence in Qm, then there exists no efficient, correct and secure traitor tracing
system ΠTT = (n,m, �k, �c, �o, Gen, Enc, Dec, Trace).

Remark 3. The proof idea is similar to [13,32], that is if there exist such a san-
tizer and a traitor tracing system, we can slightly modify the sanitizer to be an
available pirate decoder for the traitor tracing system. The only technical differ-
ence is that the traitor tracing system and the sanitizer defined here have access
to a random oracle O. So we need to modify the proof in [32] to accommodate
these oracle accesses and the definitions in Sects. 2 and 3.

4 Lower Bounds on Traitor Tracing Systems

In this section, we exhibit the proof of a weaker version of Theorem2. That is,
there is no efficient, correct and secure traitor tracing system such that �k(κ) ·
�c(κ)2 ≤ n(κ)

1
3−θ for any θ > 0. Assume to the contrary that there exists

such a system ΠTT, let qπ denote the maximum query complexity of DecO(k, c)
over all database k, ciphertext c and oracle O. We will construct an efficient,
differentially private and accurate sanitizer M for any m queries from the query
set {Dec(·)(·, c) | c ∈ {0, 1}�c} and any database D ∈ ({0, 1}�k)n (inspired by
[20,30]). In this section, we abuse the notation Dec(·)(k, c) to denote the function
1
n · ∑

i∈[n] Dec
(·)(ki, c). Before describing the santizer, we first define significant

variable for decryption.

Definition 10. Given a database k ∈ ({0, 1}�k)n, a decrypt algorithm Dec(·)

and a ciphertext c, we say a variable x ∈ {0, 1}�o is β-significant for Dec(·)(ki, c)
if

Pr
O∼Ounif

[

DecO(ki, c) queries x
] ≥ β

We say x is β-significant for Dec(·)(k, c), if x is β-significant for at least one
ki ∈ k. We say x is (α, β)-significant for Dec(·)(k, c), if x is β-significant for at
least αn entries of k.

Our sanitizer is described as Algorithm 1 by setting the parameters σ, α, β to
be

σ = nθ/3

√

�k

n
, α =

1
�cnθ

, β =
1

54n4q3π

The intuition behind the calibration of parameters is that we need the condition
that α dominates σ�k which will be used in the later analysis. Since �k · �c

2 ≤
n

1
3−θ, by simple calculation, we have α/(σ�k) ≥ nθ/6.

The main idea is to maintain a set of potential databases denoted by Dj

for each round j. Note that the IndKeys property of the system guarantees
that conditioned on any particular database, the oracles are always distributed

Barriers to Black-Box Constructions of Traitor Tracing Systems 13

uniformly. This allows us to focus on the available databases not the database and
oracle pairs. For each ciphertext cj , the sanitizer consists of three phases. In phase
1, we examine all x ∈ {0, 1}�o and determine a set (denoted by Wj) of significant
variables which is queried with probability at least β/2 over randomness over
all O ∈ Ounif and k ∈ Dj−1. Roughly speaking, we pick all variables which
are significant for most databases. It should be emphasized that even though
some variables are not picked in this phase, they might be significant for some
database. Then for each variable in Wj , we query O∗ on it and simplify the
decrypt algorithm by fixing the value of this specific variable. Note that, this
phase does not depend on the true database k∗ so it is clear that there is no
privacy loss here. On the other hand, as we will show in Lemma 1, the total
number of queries we ask to the oracle O∗ in this phase is polynomial in n.

In phase 2, we check if the Dec(·)(k∗, cj) has (α, β)-significant variables by
using a variant of the exponential mechanism. If there is a significant variable,
the santizer outputs âj the true answer with a noise and modifies Dj . If there are
no (α, β)-significant variables, the sanitizer runs phase 3, where it “guesses” the
answer by using the median of database set D′

j−1 which is the set of all databases
in Dj−1 which has no (α, β)-significant variables. The sanitizer outputs the guess
med j if it is close to the true answer. Otherwise, the sanitizer outputs âj and
modify Dj .

4.1 Efficiency Analysis

Lemma 1. The query complexity of Algorithm1 is O(n�kqπ/β) which is poly-
nomial in n.

Proof. Let x = (x1, . . . , xqπ
) be a sequence of qπ oracle variables where xi ∈

{0, 1}�o and b = (b1, . . . , bqπ
) be a sequence of qπ bits where bi ∈ {0, 1}. We

define an indicator function of x,b, O and k as follows.

1x,b(O,k) =

{

1 if DecO(k, cj) queries x1, . . . , xqπ
sequentially and b = O(x)

0 otherwise.

Then we define a potential function Φ =
∑

x,b

∑

O∈Ounif ,k∈Dj−1
1x,b(O,k).

Clearly, the value of Φ at the beginning of Phase 1 is at most 2n�kqπ since
|Dj−1| ≤ 2n�k and for any particular k and cj , the number of all possible query
histogram of Dec(·)(k, cj) is at most 2qπ .

We will show that when fixing a variable x ∈ Wj such that

Pr
k∼Unif(Dj−1),O∼Ounif

[DecO(ki, cj) queries x for some ki ∈ k] ≥ β/2

the value of Φ will decrease by a factor (1−β/4). This is because fixing the value
of x will kill all pair of O and k such that DecO(k, cj) queries x but O is not
consistent to O∗ on x. Since Φ can be less than 1, there are at most O(n�kqπ/β)
elements in Wj . �

14 B. Tang and J. Zhang

Algorithm 1. Sanitizer for Traitor Tracing Lower Bound
Input: n, m, an oracle O∗ : {0, 1}�o → {0, 1}, a database k∗ = {k∗

1 , . . . , k∗
n} with

k∗
i ∈ {0, 1}�k , a sequence of queries

(

Dec(·)(·, c1), . . . , Dec(·)(·, cm)
)

with

cj ∈ {0, 1}�c

Output: A sequence of answers ans1, . . . , ansm with aj ∈ R or a fail symbol
FAIL

1 Initialize D0 ← the set of all databases of size n over {0, 1}�k ;

2 for each query Dec(·)(·, cj) where j = 1, . . . , m do
3 Sample a noise Δaj ∼ Lap(σ);

4 Compute the true answer aj ← DecO∗
(k∗, cj) and the noisy answer

âj ← aj + Δaj ;
/* Phase 1: Fix significant variables by querying O∗ */

5 Initialize the set of significant variables Wj ← ∅;

6 repeat foreach x ∈ {0, 1}�o \ Wj do
7 if Prk∼Unif(Dj−1),O∼Ounif [Dec

O(ki, cj) queries x for some ki ∈ k] ≥ β/2

then

8 Query O∗ on x and fix x to be O∗(x) in Dec(·)(·, cj);
9 Wj ← Wj ∪ {x};

10 until Wj is not changed in the last iteration;
/* Phase 2: Examine whether k∗ has (α, β)-significant variables.

*/

11 Uj ← {x /∈ Wj | ∃k ∈ Dj−1 s.t. x is β-significant for Dec(·)(k, cj)};
12 foreach x ∈ Uj do

13 Sj(x) ← {k∗
i | x is β-significant for Dec(·)(k∗

i , cj)};
14 Sample ΔIj(x) ∼ Lap(σ);
15 Ij(x) ← |Sj(x)|/n;

16 ̂Ij(x) ← Ij(x) + ΔIj(x);

17 x∗
j ← argmax{̂Ij(x)};

18 if ̂Ij(x
∗
j) ≥ α/2 then

19 uj ← 1; if
∑j

t=1 ut > n�k then abort and output FAIL;

20 Dj ← Dj−1 \ {k | x∗
j is not β-significant for Dec(·)(k, cj)};

21 Output ansj ← âj ;

22 else /* Phase 3: Check whether the median is a good estimation. */

23 D′
j−1 ← Dj−1 \ {k | ∃x ∈

{0, 1}�o \ Wj , x is (α, β)-significant for Dec(·)(k, cj)};

24 medj ← the median value of EO∼Ounif [Dec
O(k, cj)] among all k ∈ D′

j−1;
25 if |med j − âj | > 0.2 then

26 uj ← 1; if
∑j

t=1 ut > n�k then abort and output FAIL;

27 Dj ← D′
j−1 \ {k | |âj − EO∼Ounif [Dec

O(k, cj)]| > 0.2};
28 Output ansj ← âj ;

29 else uj ← 0; Dj ← Dj−1; Output ansj ← medj ;

Barriers to Black-Box Constructions of Traitor Tracing Systems 15

4.2 Utility Analysis

In this section, we show that the sanitizer is (1/3,neg(n))-accurate. We use c =
(c1, . . . , cm) to denote a sequence of m ciphertexts. Let MO(k, c) be the sanitizer
described as Algorithm 1 running on database k and ciphertext sequence c. We
first show that with high probability, âj is close to aj for all round j.

Lemma 2. For any O∗ ∈ Ounif , any database k∗ ∈ ({0, 1}�k)n and any sequence
of m ciphertexts c ∈ ({0, 1}�c)m,

Pr
â←RMO∗(k∗,c)

[∃j ∈ [m], |âj − aj | > 0.1] ≤ neg(n)

Proof. Since Δaj is drawn from Lap(σ), Pr[|Δaj | > 0.1] ≤ e−0.1/σ = neg(n).
The lemmas follows by using union bound on all j ∈ [m]. �

Then we show that with high probability, the phase 2 can successfully detect
the significant variable in Dec(·)(k∗, cj) for all round j.

Lemma 3. In the execution of Algorithm1, for any round j where Dec(·)(k∗, cj)
has a (α, β)-significant variable after Phase 1,

Pr
[

̂Ij(x∗
j) < α/2

]

< neg(n)

Proof. Let τ be maxx{Ij(x)}. Note that τ ≥ α since Dec(·)(k∗, cj) has a (α, β)-
significant variable. So we have

Pr[τ + Lap(σ) < α/2] <
1
2

· e− α
2σ = neg(n)

The lemma follows the fact that ̂Ij(x∗
j) < α/2 implies τ + Lap(σ) < α/2. �

Before bounding the failure probability of the sanitizer, we first exhibit a
large deviation bound for decision forest whose proof is deferred to Sect. 6.

Proposition 2. For any cj ∈ {0, 1}�c and k ∈ ({0, 1}�k)n, if there is no (α, β)-
significant variable in Dec(·)(k, cj) then for any δ1 > 0 and δ2 > 0,

Pr
O∗∼Ounif

[∣

∣

∣

∣

∣

Dec
O∗

(k, cj) − E
O∼Ounif

[

Dec
O∗

(k, cj)
]

∣

∣

∣

∣

∣

> δ1 + hδ2 + n
2
h
√

β

]

≤ e
−2δ21/α

+ h
8
e

−δ22/β

where h is the query complexity of Dec(·)(k, cj).

Lemma 4. For any database k∗ ∈ ({0, 1}�k)n, if there is no (α, β)-significant
variables in DecO(k∗, c), then

Pr
O∗∼Ounif

[

∃c ∈ {0, 1}�c ,

∣

∣

∣

∣

DecO∗
(k∗, c) − E

O∼Ounif

[

DecO(k∗, c)
]

∣

∣

∣

∣

> 0.1
]

≤ neg(n)

16 B. Tang and J. Zhang

Proof. Let T = 0.1, by Proposition 2 (setting δ1 = T/3, δ2 = T/(3qπ), h = qπ)
and noting that β = T/(3n4q3π),

Pr
O∗∼Ounif

[∣

∣

∣

∣

Dec
O∗

(k∗, c) − E
O∼Ounif

[

Dec
O(k∗, c)

]

∣

∣

∣

∣

> T

]

≤ 2e−T2/(9α) + 2q8πe−2Tn4qπ/3

By taking union bound over all c ∈ {0, 1}�c , the lemma follows that
α = 1/(�cn

θ). �
Remark 4. Note that the statement of Lemma 4 requires that, with high proba-
bility, for all ciphertext c ∈ {0, 1}�c , DecO∗

(k∗, c) should concentrate around the
expectation. One might wonder whether this requirement is too stringent as the
sanitizer only answers m (which may be far less than 2�c) queries. Unfortunately,
it seems that this condition cannot be relaxed because the m queries asked by
the adversary might depend on the oracle O∗. So when considering all O∗, the
number of possible queries can be much greater than m.

In order to bound the failure probability of the sanitizer, we divide all the
query rounds 1, . . . ,m into three types.

– Type 1: Dec(·)(k∗, cj) has a (α, β)-significant variable. So âj is used to answer
the query.

– Type 2: The median med j is not close to âj . So âj is used to answer the query.
– Type 3: The mechanism use med j to answer the query.

We say a round is bad if it is in Type 1 or 2 otherwise it is said to be good.

Lemma 5. For any database k ∈ ({0, 1}�k)n,

Pr
O∗∼Ounif

[

∀c ∈ ({0, 1}�c)m, the number of bad rounds in MO∗
(k, c) > n�k

]

≤ neg(n)

Proof. We first show that, in any bad round j, the size of Dj will shrink by at
least a factor of 2, i.e. |Dj | ≤ |Dj−1|/2. Consider any Type 1 round j. Let x∗

j be
the significant variable picked at this round. Since x∗

j �∈ Wj ,

∑

O∈Ounif ,k∈Dj−1

1DecO(k,cj) queries x∗
j

≤ |Dj−1| · |Ounif | · β/2

On the other hand, since Dj is obtained by removing all database k where x∗
j is

not β-significant for Dec(k, cj), we have
∑

O∈Ounif ,k∈Dj−1

1DecO(k,cj) queries x∗
j

≥ |Dj | · |Ounif | · β

Combine above two inequalities, we have |Dj | ≤ |Dj−1|/2. Consider any Type 2
round j. Suppose |Dj | > |Dj−1|/2 ≥ |D′

j−1|/2. By the definition of Dj and med j ,
we have |med j − âj | ≤ T which contradicts the fact that j is a Type 2 round.

Next we show that k∗ ∈ Dm with probability 1 − neg(n) by induction on j.
Clearly, k∗ ∈ D0. If j is Type 1, in order to show k∗ /∈ Dj−1 \ Dj , it suffices to

Barriers to Black-Box Constructions of Traitor Tracing Systems 17

show that x∗
j is β-significant for Dec(·)(k∗, cj) with probability 1 − neg(n). For

any x which is not β-significant for Dec(·)(k∗, cj)n, we have Ij(x) = 0. Thus, a

Pr[̂Ij(x) ≥ α/2] ≤ 1
2
e−α/2σ

On the other hand, |Uj | is at most 2�kβ/qπ since

|Uj | · |Ounif | · β ≤
∑

O∈Ounif ,k∈Dj−1,x
∈Wj

1DecO(k,cj) queries x ≤ |Dj−1| · |Ounif | · qπ

By taking union bound over all x ∈ Uj , we have the probability that x∗
j is not

β-significant for Dec(·)(k∗, cj) is at most |Uj | · e−α/2σ ≤ 2�kβ/qπ · e−α/2σ. Since
α/(σ�k) ≥ nθ/6, this probability is negligible.

If j is Type 2, by Lemma 3, k∗ ∈ D′
j−1 with probability at least 1 − neg(n).

Then by Lemmas 2 and 4, with probability at least 1 − neg(n), |âj − aj | ≤ 0.1
and

∣

∣aj − EO∼Ounif

[

DecO(k∗, cj)
]∣

∣ ≤ 0.1. Thus, k∗ /∈ D′
j−1 \ Dj by triangle

inequality. If j is Type 3, it is obvious since Dj−1 = Dj .
Putting it all together, the lemma follows the facts that |D0| = 2n�k , |Dm| ≥ 1

with probability 1 − neg(n) and |Dj | ≤ |Dj−1|/2 for all bad rounds. �
Lemma 6 (Utility). Algorithm1 is (0.3,neg(n))-accurate, i.e., for any database
k∗ ∈ ({0, 1}�k)n,

Pr
O∗∼Ounif

[∀c ∈ ({0, 1}�c)m,∀j ∈ [m], |ansj − aj | < 0.3
] ≥ 1 − neg(n)

where ansj is the answer output by MO∗
(k∗, c) at round j and aj is the true

answer DecO∗
(k∗, cj).

Remark 5. Actually, the outermost probability should also be taken over the
random coins in M, i.e. the randomness of the Laplace noises. We omit this
for the ease of presentation since these random coins are independent from the
choice of O∗ and c.

Proof. By the description of Algorithm 1, if the sanitizer succeeds, |ansj − âj | ≤
0.2 for all round j. Thus the lemma follows from Lemmas 2 and 5. �

4.3 Privacy Analysis

Our goal in this section is to demonstrate that, Algorithm1 is (ε,neg(n))-
differentially private. We first simplify the output of our sanitizer as a vector
v, which will be shown to determine the output transcript of the sanitizer.

vj =

⎧

⎨

⎩

âj , x
∗
j if round j is Type 1

âj ,⊥ if round j is Type 2
⊥,⊥ if round j is Type 3

18 B. Tang and J. Zhang

Lemma 7. Given the oracle O∗ and v, the output of Algorithm1 can be deter-
mined.

Fix an oracle O∗ and two adjacent databases k,k′ ∈ ({0, 1}�k)n. Let A and B
denote the output distributions of our sanitizer when run on the input database
k and k′ respectively. We also use A and B to denote their probability density
function dA and dB. The support of both distributions is denoted by V =
({⊥}∪R, {⊥}∪{0, 1}�o)n. For any v ∈ V, we define the loss function L : V → R

as

L(v) = log
(

A(v)
B(v)

)

By Proposition 1, it suffices to show that

Pr
v∼A

[L(v) > ε] < neg(n)

Given a transcript v, by chain rule,

L(v) = log
(

A(v)
B(v)

)

=
∑

j∈[m]

log
(

Aj(vj | v<j)
Bj(vj | v<j)

)

where Aj(vj | v<j) is the probability density function of the conditional distri-
bution of Algorithm1 outputting vj , conditioned on v<j = (v1, . . . , vj−1).

Now fix a round j ∈ [m] and v<j . We define two borderline events on the
noise values ΔIj(x) and Δaj . Let E1 be the event that ̂Ij(x∗

j) > α/2 − σ and E2

be the event that |âj − med j | > T − σ. It should be emphasized that given v<j ,
both E1 and E2 are events only depends on the Laplacian noises {ΔIj(x)}x∈Uj

and Δaj . Equivalently, E1 is the event that {ΔIj(x)}x∈Uj
is in the set of noises

such that ̂Ij(x∗
j) > α/2 − σ and E2 is the event that Δaj > T − σ + med j − aj

or Δaj < medj − aj − T + σ. In the following lemma, we show that conditioned
on E1 ∨ E2, with probability at least 1/e, a round j is a bad round.

Lemma 8. Pr [j is of Type 1 | E1] ≥ 1/e and Pr
[

j is of Type 2 | E1, E2

] ≥ 1/e.

Then we show upper bounds on the privacy loss for three cases E1∧E2, E1∧E2

and E1. By combining all these three cases, we are able to show the following
lemma. Due to space limit, we defer all the proofs in AppendixA.

Lemma 9. Algorithm1 is (ε,neg(n))-differently private.

5 Improved Lower Bound

In this section, we show how to improve the bound proved in Sect. 4 to ˜Ω(n)
by modifying the sanitizer and the proof a bit. Suppose �k · �c

2 ≤ n1−θ. Set
parameters σ, α, β to be

σ = nθ/3

√

�k

n
, α =

1
�cnθ

, β =
1

54n4q3π

Barriers to Black-Box Constructions of Traitor Tracing Systems 19

Since �k · �c
2 ≤ n1−θ, by simple calculation, we have α/σ ≥ nθ/6.

We modify the definition of Uj in the line 10 of Algorithm 1 as follows.

Algorithm 1 : Uj ← {x /∈ Wj | ∃k ∈ Dj−1 s.t. x is β-significant for Dec
(·)(k, cj)}

New Algorithm : Uj ← {x /∈ Wj | x is β-significant for Dec
(·)(k∗, cj)}

The efficiency of the new sanitizer follows Lemma 1. The only difference in
the utility analysis is in the proof of Lemma5 where we show k∗ ∈ Dm if j is
Type 1. In the new algorithm, this is straight forward since x∗

j ∈ Uj must be a
β-significant variable for Dec(·)(k∗, cj).

In the privacy analysis, the only difference is that the new definition of Uj

does depend on the true database. Given any adjacent databases k,k′, we fix a
round j and v<j . Let U and U ′ denote the set Uj when the sanitizer running
on k and k′ respectively. We also use x∗ and x∗′ to denote the variable x∗

j =
argmaxx{̂Ij(x)} for k and k′ respectively. Let Hj be the event that there exists
x ∈ U \ U ′ such that ΔIj(x) ≥ α/2 − σ − 1/n or there exists x ∈ U ′ \ U such
that ΔI ′

j(x) ≥ α/2 − σ − 1/n.

Lemma 10. Pr[Hj |v<j] ≤ neg(n).

Proof. First, note that |U| ≤ qπ/β since

|U| · |Ounif | · β ≤
∑

O∈Ounif ,x
∈Wj

1DecO(k,cj) queries x ≤ |Ounif | · qπ

On the other hand, since ΔIj(x) is drawn from Lap(σ) and α/σ ≥ nθ/6,

Pr[ΔIj(x) ≥ α/2 − σ − 1/n] ≤ 1
2

· e−(α/2−σ)/σ = neg(n)

The lemma follows by taking union bound over all x ∈ U \ U ′ and applying
similar arguments for x ∈ U ′ \ U . �

We define another random variable A′
j such that dtv(Aj , A

′
j) ≤ neg(n) and

Hj never occurs with respect to A′
j (similar ideas has been also used in proving

Theorem 3.5 of [14]). Observe that, conditioned on Hj , E1 implies x∗, x∗′ ∈ U∩U ′

and E1 implies the round j is not Type 1 for both k and k′. Let L′(v) be the
analogues of L(v) by replacing Aj by A′

j for all j ∈ [m]. Clearly dtv(L,L′) ≤
m · neg(n) = neg(n). Following the proof of Lemma9, we can show Pr[L′(v) ≥
ε] ≤ neg(n) for any ε = Ω(1). Thus Pr[L(v) ≥ ε] ≤ neg(n) follows.

6 Large Deviation Bound for Decision Forests

In this section, we show the large deviation bound for Dec(·)(k, cj) for any given
k ∈ ({0, 1}�k)n and cj ∈ {0, 1}�c . Intuitively, a decrypt algorithm Dec(·)(ki, cj)
can be viewed as a decision tree and similarly, Dec(·)(k, cj) represents a decision

20 B. Tang and J. Zhang

forest (see formal definition below). So throughout this section, we will use the
terms like decision trees/forest instead of decrypt algorithms to present our result
on large deviation bound for decision forest.

A decision tree D is a binary tree whose internal nodes are labeled with
Boolean variables while leaves labeled with 0 or 1. Given an input assignment
a = (a1, . . . , am) ∈ {0, 1}n to the variables x1, . . . , xm, the value computed by D
on this input a is denoted by D(a). This value D(a) is the value of the leaf at a
path on D determined in the following way. The path starts from the root of D
and then moves to the left child if the current internal node is assigned 0 and to
right otherwise. A variable xi is said to be queried by D(a) if the corresponding
path passes through a node labeled xi. Clearly, every xi can only be queried by
D(a) at most once.

A decision forest F is a collection of |F| decision trees. For any assignment
a of x, F(a) denotes the |F|-dimensional vector computed by F on a, whose ith
component is the value computed by the ith tree. We use w(F(a)) to denote the
fractional hamming weight of F(a), i.e.,

w(F(a)) =

∑

Dj∈F Dj(a)

|F| .

In most cases, we assume the assignment a are drawn from the uniform
distribution on {0, 1}m. We also use the shorthand notations Pra and Ea to
denote the probability and expectation when a are uniformly distributed when
it is clear from the context. We may also abuse the Pra or Ea inside another Pra
or Ea to denote the probability or expectation corresponding to another random
variable when it is not ambiguous, e.g. Pra

[

w(F(a)) > Ea[w(F(a))]
]

.

Definition 11 ((α, β)-significant). For a decision forest F and an input x, a
Boolean variable xi is said to be (α, β)-significant if at least α fraction of trees
D in F satisfy Pra

[

D(a) queries xi

] ≥ β.

For comparison, we discuss the difference between the above definition and
the notion called “average significance” used in [2]. Recall that the average sig-
nificance of xi on F is defined as

1
|F| ·

∑

D∈F
Pr
a

[

D(a) queries xi

]

.

Obviously, if xi is (α, β)-significant, the average significance of xi is at least α ·β.
On the other hand, if xi is not (α, β)-significant, it can be shown that the average
significance of xi is at most α + β. To see this, let F1 ⊆ F be the set of trees D
such that Pra[D(a) queries xi] ≥ β.

Barriers to Black-Box Constructions of Traitor Tracing Systems 21

1
|F| ·

∑

D∈F
Pr
a

[D(a) queries xi]

≤ 1
|F|

⎛

⎝

∑

D∈F1

Pr
a

[D(a) queries xi] +
∑

D∈F\F1

Pr
a

[D(a) queries xi]

⎞

⎠

≤ 1
|F|

⎛

⎝|F1| +
∑

D∈F\F1

β

⎞

⎠ ≤ α + β

We restate two theorems from [2,17] in our terms.

Theorem 4 (Theorem 1.1. in [17]). Let F be a decision forest that has no
(α, 0)-significant variable and n be |F|. Then for any δ > 0,

Pr
a

[∣

∣

∣

∣

w(F(a)) − E
a
[w(F(a))]

∣

∣

∣

∣

≥ δ

]

≤ e−2δ2/α

Theorem 5 ([2]). Let F be a decision forest of height at most h that has no
(β, β)-significant variable. Then for any δ > 0,

Pr
a

[∣

∣

∣

∣

w(F(a)) − E
a
[w(F(a))]

∣

∣

∣

∣

≥ hδ

]

≤ h8e−δ2/β

We state the main theorem that we will prove in this section.

Theorem 6. Let F be a decision forest of height at most h that has no (α, β)-
significant variable. Then for any δ1 > 0 and δ2 > 0,

Pr
a

[∣

∣

∣

∣

w(F(a)) − E
a
[w(F(a))]

∣

∣

∣

∣

> δ1 + hδ2 + n2h
√

β

]

≤ e−2δ2
1/α + h8e−δ2

2/β

For the rest of this section, we fix F to be a decision forest of size n and
height h, which has no (α, β)-significant variables. Let S denote the set of all
variables xi such that there exists D ∈ F , Pra[D(a) queries xi] ≥ √

β. Clearly,
|S| ≤ nh/

√
β. We use S̄ to denote the complement set of S and aS to denote

the partial assignment truncated on S.

Definition 12 (pruning). Let FP be the pruned forest of F defined as follows.
For each variable xi ∈ S and D ∈ F , if Pra[D(a) queries x] ≤ β, we deleted xi

from the corresponding tree in FP and instead replaced with leaves assigning the
value 0.

We only show one side of the Theorem 6, i.e.

Pr
a

[

w(F(a)) < E
a
[w(F(a))] − δ1 − hδ2 − n2h

√

β

]

≤ e−2δ2
1/α + h8e−δ2

2/β

The proof of the other side is symmetric by changing the definition of pruning
to replacing xi by 1.

22 B. Tang and J. Zhang

The proof sketch of Theorem 6 can be described as follows. Note that for
any assignment a, w(F(a)) ≥ w(FP(a)). On the other hand, Ea[w(FP(a))] ≥
Ea[w(F(a))]−nβ ·nh/

√
β since pruning each variable in |S| decreases the expec-

tation value at most βn and |S| ≤ nh/
√

β. Hence, to prove Theorem 6, it suffices
to prove that w(FP(a)) is close to Ea[w(FP(a))] with high probability, which
can be established in two steps. We first show that, in Lemma11, for any partial
assignment aS̄ , w(FP(aS ,aS̄)) is close to EaS

[w(FP(aS ,aS̄))] with high prob-
ability (w.r.t. the randomness of aS). Then in Lemma 12, we prove that with
respect to the randomness of aS̄ , EaS

[w(FP(aS ,aS̄))] is close to Ea[w(FP(a))]
with high probability. Therefore, Theorem6 follows union bound.

Lemma 11. For any partial assignment aS̄ and δ > 0,

Pr
aS

[∣

∣

∣

∣

w(FP(aS ,aS̄)) − E
aS

[w(FP(aS ,aS̄))]
∣

∣

∣

∣

≥ δ

]

≤ e−2δ2
1/α

Proof. Given an assignment aS̄ , it is not hard to see that the decision forest
FP(xS ,aS̄), which only takes xS as input, has no (α, 0)-significant variable.
Otherwise, such variable must be (α, β)-significant in F . Hence the lemma follows
Theorem 4. �
Lemma 12. For any δ > 0,

Pr
aS̄

[∣

∣

∣

∣

E
aS

[

w(FP(aS ,aS̄))
] − E

a
[w(FP(a))]

∣

∣

∣

∣

≥ hδ

]

≤ h8e−δ2/β

Before proving Lemma 12, we define an operation on FP .

Definition 13 (truncating). Let FT be a truncated forest of FP with size
2|S| · |FP |. For each tree D ∈ FP , there are 2|S| trees in FT that corresponds to
all possible assignments of xS.

Proof. We first show that there is no (
√

β,
√

β)-significant variables in FT . Note
that all the variables in FT are in S̄. Assume to the contrary that there exists
xi ∈ S̄ that is (

√
β,

√
β)-significant. Then

∑

D∈FP

Pr
a

[D(a) queries xi]/n =
∑

DT ∈FT

Pr
aS̄

[DT (aS̄) queries xi]/(n · 2|S|) ≥
√

β ·
√

β = β

which implies there is a D ∈ FP such that Pra[D(a) queries xi] ≥ β. This is a
contradiction with the definition of S̄.

Thus, by Theorem 5,

Pr
aS̄

[∣

∣

∣

∣

w(FT (aS̄)) − E
aS̄

[w(FT (aS̄))]
∣

∣

∣

∣

≤ hδ

]

≤ h8e−δ2/β

Therefore, the lemma follows the fact that w(FT (aS̄)) = EaS
[w(FP(aS ,aS̄))]. �

Proof (Proof of Theorem 6). Combining Lemmas 11 and 12, with probability
at least 1 − e−2δ2

1/α − h8e−δ2
2/β , we have w(FP(a)) ≥ Ea[w(FP(a))] − δ1 −

hδ2. Then the theorem follows that w(F(a)) ≥ w(FP(a)) and Ea[w(FP(a))] ≥
Ea[w(F(a))] − n2h

√
β. �

Barriers to Black-Box Constructions of Traitor Tracing Systems 23

Acknowledgement. We would like to thank Shachar Lovett, Jon Ullman and Salil
Vadhan for helpful discussion. Jiapeng Zhang would also like to thank his wife,
Yingcong Li.

A Missing Proofs

Proof (of Theorem 3). Assume there exist such a traitor tracing system ΠTT and
a sanitizer M. We define the pirate decoder P as follows. The database of M
is the set of user keys hold by the pirate decoder. For each ciphertext sent from
Trace to P, we use M to answer it and then return 1 is the answer is at least
1/2 and return 0 otherwise.

Clearly, the P is efficient and available since M is efficient and accurate. Let
S = {ki}i∈[n]. Now consider two experiments: in the first one, we run Trace on
P(·)(S, ·). Since Trace is secure, there must exist a user i∗ such that

Pr
O∼Ounif
k←RGenO

[TraceO,PO(S)(k) = i∗] ≥ 1
n(κ)

− o

(

1
n(κ)

)

Let S′ = S \{i∗}. We run the second experiments on Trace and P(·)([n]\{i∗}, ·).
Since M is differentially private for any O ∈ Ounif , we have

Pr
O∼Ounif
k←RGenO

[TraceO,PO(S′)(k) = i∗] ≥ Ω

(

1
n(κ)

)

To complete the proof, notice that since i∗ �∈ S′, a secure ΠTT can only output
i∗ with probability o(1/n(κ)), a contradiction. �
Proof of Lemma 7). By the description of Algorithm 1, the only variable (or
information) passed from round j − 1 to round j is Dj−1. So it suffices to show
that given v, the adversary can recover Dj for all j ∈ [m]. We prove this by
induction on j. Clearly, it holds when j = 0. Given Dj−1, Dj can be construct
as follows. Since Phase 1 does not use any information about k∗, the adversary
first simulate it by querying O∗ on significant variables and simplifying DecO(,̇cj).
Next, if v = (âj , x

∗
j), Dj ← Dj−1\{k |x∗

j is not β-significant for Dec(·)(k, cj)}. If
v = (âj ,⊥), Dj ← D′

j−1 \ {k | |âj −EO∼Ounif [Dec
O(k, cj)]| > 0.2}. If v = (⊥,⊥),

Dj ← Dj−1. Obviously, this Dj is exactly is the same one used in Algorithm 1.
Finally, we need to argue the case where the sanitizer outputs FAIL. It is not
hard to see, the santizer fails only if vj �= (⊥,⊥) for more than n�k number of
rounds. So the adversary can recognize the failure of the sanitizer. �

Before proceeding, we first state two obvious probability facts.

Lemma 13. For any μ ∈ R and σ > 0, Pr[Lap(σ) > μ | Lap(σ) > μ − σ] ≥ 1/e
and Pr[Lap(σ) < μ | Lap(σ) < μ + σ] ≥ 1/e.

24 B. Tang and J. Zhang

Proof. We only prove the first inequality. The second follows similar arguments.
If μ ≥ σ, the probability is

1
2e−μ/σ

1
2e−(μ−σ)/σ

= 1/e

If μ ∈ (0, σ), the probability is

1
2e−μ/σ

1 − 1
2e−(μ−σ)/σ

≥
1
2e
1
2

= 1/e

If μ ≤ 0, the probability is

1 − 1
2eμ/σ

1 − 1
2e(μ−σ)/σ

≥ 1
2

�
Lemma 14. Let A,B,C,D be four random events such that Pr[A ∧ B] = 0.
Then

Pr[A ∨ B | C ∨ D] ≥ min{Pr[A | C],Pr[B | D]}
Proof.

Pr[A ∨ B | C ∨ D] = Pr[A | C ∨ D] + Pr[B | C ∨ D]

≥ Pr[A | C] Pr[C | C ∨ D] + Pr[B | D] Pr[D | C ∨ D]

≥ min{Pr[A | C], Pr[B | D]} · (Pr[C | C ∨ D] + Pr[D | C ∨ D])

≥ min{Pr[A | C], Pr[B | D]} �
Proof (of Lemma 8). Note that j is of Type 1 iff ̂Ij(x∗

j) ≥ α/2. So by Lemma 13,

Pr
[

̂Ij(x∗
j) ≥ α/2 | ̂Ij(x∗

j) ≥ α/2 − σ
]

= Pr[Lap(σ) ≥ α/2 − Sj(x∗
j)/n | Lap(σ) ≥ α/2 − Sj(x∗

j)/n − σ] ≥ 1/e

Similarly, conditioned on E1, j is of Type 2 iff âj −med j > T or âj −med j < −T .
By Lemma 13,

Pr [âj − medj ≤ −T | âj − med j ≤ −(T − σ)] ≥ 1/e

Pr [âj − med j ≥ T | âj − med j ≥ T − σ] ≥ 1/e

Since T ≥ σ, the second part of the lemma follows by combining the above two
inequalities. �

Then in the following three lemmas, we show upper bounds on the privacy
loss for three cases E1 ∧ E2, E1 ∧ E2 and E1.

Barriers to Black-Box Constructions of Traitor Tracing Systems 25

Lemma 15. For every vj ∈ V,

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)

= 0

Proof. Conditioned on E1 and E2, we have ̂Ij(x∗
j) ≤ α/2 − σ and |âj − med j | ≤

T −σ. Then the round j must be of Type 3 for both k and k′ since |aj −a′
j | ≤ 1/n

and |Ij(x) − I ′
j(x)| ≤ 1/n. �

Lemma 16. For every vj ∈ V,

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)

≤ 1
σn

Proof. Following similar argument in Lemma 15, the round j cannot be Type
1 for k and k′. For any vj ∈ (R,⊥), the sanitizer outputs vj is either with
probability 0 for both k,k′ or with probabilities differing by an e1/σn ratio.
Similarly, for vj = (⊥,⊥), the probabilities by k and k′ differ by an e1/σn ratio
since |aj − a′

j | ≤ 1/n. �
Lemma 17. For every vj ∈ V,

log
(

Aj(vj | E1,v<j)
Bj(vj | E1,v<j)

)

≤ 3
σn

Proof. If vj ∈ (R, {0, 1}�o), let vj = (a∗, z). We couple the random noise ΔIj(x)
and ΔI ′

j(x) for all x ∈ Uj \ {z}. Let h and h′ denote maxx∈Uj\{z}{̂Ij(xj)} and
maxx∈Uj\{z}{̂I ′

j(xj)} respectively. Then we have,

Aj(vj | E1,v<j) = Pr[aj + Δaj = a∗ ∧ ΔIj(z) ≥ max{α/2, h} − Ij(z) | E1,v<j]
Bj(vj | E1,v<j) = Pr[a′

j + Δa′
j = a∗ ∧ ΔI ′

j(z) ≥ max{α/2, h′} − I ′
j(z) | E1,v<j]

Thus the ratio between the above two probabilities is at most e
3

σn since |aj−a′
j | ≤

1/n, |Ij(z) − I ′
j(z)| ≤ 1/n and |h − h′| ≤ 1/n.

If vj ∈ (⊥ ∪ R,⊥), the santizer outputs vj only if the round j is not of
Type 1. Similarly to the above argument, it is not hard to see that the probabil-
ities that the round j is not of Type 1 for k and k′ differ at a e2/σn ratio. Then
the lemma follows the similar arguments in Lemmas 15 and 16. �

Combining all the above three cases, we are able to bound the expected
privacy loss for each round j by using the following two propositions.

Proposition 3 (Lemma 3.2 in [14]). For any two distributions A,B on a
common support V, if

sup
v∈V

∣

∣

∣

∣

log
(

A(v)
B(v)

)∣

∣

∣

∣

≤ ε

then

E
v∼A

[

log
(

A(v)
B(v)

)]

≤ 2ε2

26 B. Tang and J. Zhang

Proposition 4 (Convexity of KL Divergence). Let A,B,A1, B1, A2, B2

be distributions over a common probability space such that for some λ ∈ [0, 1],
A = λA1 + (1 − λ)A2 and B = λB1 + (1 − λ)B2. Then

E
v∼A

[

log
(

A(v)
B(v)

)]

≤ λ E
v∼A1

[

log
(

A1(v)
B1(v)

)]

+ (1 − λ) E
v∼A2

[

log
(

A2(v)
B2(v)

)]

Lemma 18. For all j ∈ [m],

E

[

log
(

Aj(vj | v<j)
Bj(vj | v<j)

)]

≤ 9
(σn)2

Proof. Applying Proposition 3 to Lemmas 15, 16 and 17, we have

E

[

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)]

= 0

and E

[

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)]

≤ 1
(σn)2

and E

[

log
(

Aj(vj | E1, E2,v<j)
Bj(vj | E1, E2,v<j)

)]

≤ 9
(σn)2

Then we can express Aj(vj | v<j) as a convex combination in the form

Pr[E1, E2 | v<j]Aj(vj | E1, E2,v<j) + Pr[E1, E2 | v<j]Aj(vj | E1, E2,v<j)
+ Pr[E1 | v<j]Aj(vj | E1,v<j)

and express Bj(vj | v<j) similarly. By Proposition 4,

E

[

log
(

Aj(vj | v<j)
Bj(vj | v<j)

)]

≤ 9
(σn)2

· Pr[E1 ∨ E2 | v<j]

The lemma follows the fact that any probability is at most 1. �
We say a round j is a borderline round if in this round, either E1 or E2 occurs.

The following lemma gives a bound on the number of borderline round.

Lemma 19. Let m′ be the number of borderline rounds in Algorithm1.

Pr[m′ > n1+θ/3�k] ≤ neg(n)

Proof. By Lemmas 8 and 14,

Pr [j is a borderline round | j is Type 1 or Type 2] ≥ 1/e

Thus, E[m′] ≤ e ·n�k. Note that the noises added in each round are independent
from other rounds. Hence, by Hoeffding’s bound, the lemma follows. �
Proposition 5 (Azuma’s Inequality). Let A1, . . . , Am be real-valued random
variables such that for every i ∈ [m],

Barriers to Black-Box Constructions of Traitor Tracing Systems 27

1. Pr[|A1| ≤ α] = 1, and
2. for every (a1, . . . , an) ∈ Supp(A1, . . . , Am),

E[Ai|A1 = a1, . . . , Ai−1 = ai−1] ≤ β.

Then for any z > 0, we have

Pr

[

m
∑

i=1

Ai > mβ + z
√

m · α

]

≤ e−z2/2

Proof (of Lemma 9). We apply Proposition 5 the set of m′ borderline rounds.
Let J ⊂ [m] be the set of borderline rounds. For each j ∈ J , let

Xj = log
(

Aj(vj | v<j)
Bj(vj | v<j)

)

.

Note that E[Xj |v<j] ≤ 9/(σn)2, |Xj | ≤ 3/(σn) and L(v) =
∑

j∈J Xj . By
Proposition 5 (setting α = 3/(σn), β = 9/(σn)2 and z = nθ/7n),

Pr[L(v) > 9m′/(σn)2 + 3nθ/7
√

m′/(σn)] < neg(n)

Since m′ ≤ n1+θ/6�k with probability 1 − neg(n), we have

9m′/(σn)2 + 3nθ/7
√

m′/(σn) ≤ 9�kn1+θ/3

�kn1+2θ/3
+

3nθ/7+θ/6
√

n�k

nθ/3
√

n�k

= o(1) �

B Oracle Separation

In this section, we prove that there exists an oracle such that relative to this ora-
cle, there exist one-way functions but no secure traitor tracing systems. Indeed,
we show that given an NP-oracle and a random oracle, one can implement the
sanitizer designed in Sects. 4 and 5 computationally efficiently (instead of query
efficiently as required before). Recall that the sanitizer in Sect. 4 (with modifica-
tion described in Sect. 5) need to take exponential time to compute the median
value. To make it run in polynomial time, we use the NP-oracle to uniformly
sample an NP-set by adopting the algorithms in [3,22].

Proposition 6 ([3]). Let R be an NP-relation. Then there is a uniform gen-
erator for R which is implementable in probabilistic polynomial time with an
NP-oracle.

By using the above proposition we can prove the following theorem.

Theorem 7. Given an NP-oracle and a random oracle, there is a computation-
ally efficient, accurate and differentially private sanitizer.

28 B. Tang and J. Zhang

Proof. We prove this theorem by implementing the sanitizer designed in Sect. 4
(with modification described in Sect. 5) efficiently. We first show that given an
uniform generator for all Dj , one can implement the sanitizer in polynomial
time. Then we show how to construct the desired uniform generator by using
Proposition 6.

First, we modify the Phase 3 of the sanitizer such that the estimation can
be computed in polynomial time. The idea is that, instead of recording all
the Dj and D′

j , we use the uniform generator to sample databases from them
uniformly. Indeed, we sample n times from the uniform generator of Dj and
compute EO∼Ounif [Dec

O(k, cj)] where k is sampled from generator. Note that
EO∼Ounif [Dec

O(k, cj)] can be approximately computed efficiently by sampling
O ∼ Ounif . Let avgj be the average value of these samples. By Chernoff bound,
we have

Pr
[∣

∣

∣

∣

avgj − E
k∼Dj ,O∼Ounif

[DecO(k, cj)]
∣

∣

∣

∣

> 0.01
]

≤ neg(n)

Then we replace med j by avgj in the sanitizer. To prove the correctness of the
sanitizer, it suffices to show that if |avgj − âj | > 0.2, the size of Dj is at most
0.9 · |Dj−1|. Suppose not. We have

∣

∣

∣

∣

E
k∼Dj ,O∼Ounif

[DecO(k, cj)] − âj

∣

∣

∣

∣

≤ |Dj−1 \ Dj |
|Dj−1| · 1 +

|Dj |
|Dj−1| · 0.2 = 0.19

that contradicts the triangle inequality. Similar modifications can be made in
other phases of the sanitizer to remove the explicit use of Dj .

Finally, we show how to construct such uniform generators for Dj and D′
j .

By Proposition 6, it suffices to define the corresponding NP-relations. We prove
this by induction on the round number j. For the base case where j = 1, we have
Dj−1 = D0 is the uniform distribution over all databases. Clearly, this can be
sampled without using the NP-oracle. For the inductive step, we define the NP-
relation between the databases and the algorithm running histories (including
the first j queries and all the random coins used). A database is in the NP-
relation if and only if it is in the set Dj−1 that is consistent with algorithm
running history. In other words, the databases are the witness of histories in the
relation. It is easy to see that this relation can be verified in polynomial time.
Therefore we get uniform generators for them by Proposition 6. �

References

1. Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmetric
primitives. In: FOCS 2007, pp. 680–688. IEEE (2007)

2. Beck, C., Impagliazzo, R., Lovett, S.: Large deviation bounds for decision trees
and sampling lower bounds for AC0-circuits. In: FOCS 2012, pp. 101–110. IEEE
(2012)

3. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using
an NP-oracle. Inf. Comput. 163(2), 510–526 (2000)

Barriers to Black-Box Constructions of Traitor Tracing Systems 29

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993. ACM Request Permissions, December 1993

5. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive data-
base privacy. In: STOC 2008, New York, USA, p. 609. ACM Request Permissions,
New York, May 2008

6. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg
(1999). doi:10.1007/3-540-48405-1 22

7. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: CCS 2008,
pp. 501–510. ACM (2008)

8. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006). doi:10.1007/11761679 34

9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC 1998, pp. 209–218. ACM (1998)

11. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 25

12. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878 14

13. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity
of differentially private data release. In: STOC 2009, pp. 381–390. ACM Press, New
York (2009)

14. Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and differential privacy. In:
FOCS 2010, pp. 51–60. IEEE (2010)

15. Fiat, A., Tassa, T.: Dynamic traitor tracing. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 23

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE (2013)

17. Gavinsky, D., Lovett, S., Saks, M., Srinivasan, S.: A tail bound for read-k families
of functions. Random Struct. Algorithms 47(1), 99–108 (2015)

18. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

19. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: FOCS 2000, pp.
325–335. IEEE (2000)

20. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-
preserving data analysis. In: FOCS 2010, pp. 61–70. IEEE (2010)

21. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC 1989, pp. 44–61. ACM Request Permissions, New York, Feb-
ruary 1989

22. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

http://dx.doi.org/10.1007/3-540-48405-1_22
http://dx.doi.org/10.1007/11761679_34
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/3-540-48405-1_23
http://dx.doi.org/10.1007/3-540-48405-1_23

30 B. Tang and J. Zhang

23. Kahn, J., Saks, M., Smyth, C.: A dual version of Reimer’s inequality and a proof
of Rudich’s conjecture. In: CCC 2000, pp. 98–103. IEEE (2000)

24. Kiayias, A., Yung, M.: On crafty pirates and foxy tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002). doi:10.1007/
3-540-47870-1 3

25. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way
permutation-based hash functions. In: FOCS 1999, p. 535. IEEE Computer Society,
Washington, D.C. (1999)

26. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report, October 1979

27. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS
2007, pp. 94–103. IEEE (2007)

28. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

29. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 1

30. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In:
STOC 2010, pp. 765–774. ACM Request Permissions, New York, June 2010

31. Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000). doi:10.
1007/3-540-44598-6 20

32. Ullman, J.: Answering n2+o(1) counting queries with differential privacy is hard.
In: STOC 2013. ACM Request Permissions, June 2013

http://dx.doi.org/10.1007/3-540-47870-1_3
http://dx.doi.org/10.1007/3-540-47870-1_3
http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1007/978-3-540-24638-1_1
http://dx.doi.org/10.1007/3-540-44598-6_20
http://dx.doi.org/10.1007/3-540-44598-6_20

On the Impossibility of Entropy Reversal,
and Its Application to Zero-Knowledge Proofs

Shachar Lovett(B) and Jiapeng Zhang

University of California, San Diego, USA
slovett@cs.ucsd.edu, jpeng.zhang@gmail.com

Abstract. Zero knowledge proof systems have been widely studied in
cryptography. In the statistical setting, two classes of proof systems stud-
ied are Statistical Zero Knowledge (SZK) and Non-Interactive Statistical
Zero Knowledge (NISZK), where the difference is that in NISZK only very
limited communication is allowed between the verifier and the prover. It is
an open problem whether these two classes are in fact equal. In this paper,
we rule out efficient black box reductions between SZK and NISZK.

We achieve this by studying algorithms which can reverse the entropy
of a function. The problem of estimating the entropy of a circuit is com-
plete for NISZK. Hence, reversing the entropy of a function is equivalent
to a black box reduction of NISZK to its complement, which is known to
be equivalent to a black box reduction of SZK to NISZK [Goldreich et
al. CRYPTO 1999]. We show that any such black box algorithm incurs
an exponential loss of parameters, and hence cannot be implemented effi-
ciently.

Keywords: Entropy reversal · Statistical zero-knowledge proofs ·
Black-box reductions

1 Introduction

The notion of Zero-Knowledge Proof Systems was introduced in the seminal
paper of Goldwasser et al. [11]. Informally, an interactive proof system is a
protocol that involves a computational unbounded prover P and a polynomial
time verifier V . The prover attempts to convince the verifier that an assertion
is a YES instance x of some promise problem.

A promise problem Π consists of two disjoint sets ΠY and ΠN , e.g., yes
instances and no instances. A zero-knowledge proof system for the problem Π
requires the following three conditions:

– Completeness: If x ∈ ΠY , then Pr[(P, V)(x) accepts] ≥ 2/3.
– Soundness: If x ∈ ΠN , then for every adversary P ∗, Pr[(P ∗, V)(x) accepts] ≤

1/3.

S. Lovett and J. Zhang—Research supported by NSF CAREER award 1350481.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 31–55, 2017.
https://doi.org/10.1007/978-3-319-70500-2_2

32 S. Lovett and J. Zhang

– Zero-knowledge: There is a polynomial time simulator S such that S(x) and
(P, V)(x) are “indistinguishable”, for every x ∈ ΠY .

Different zero knowledge proof systems differ in the allowed communication
protocol, and in the notion of indistinguishability applied to the simulator. In this
paper, we restrict our attention to statistical proof systems (SZK and NISZK),
where the corresponding notion is that of statistical indistinguishability.

Statistical zero knowledge (SZK). The complexity class SZK consists of the prob-
lems that have a statistical zero-knowledge proof, where any efficient interactive
communication is allowed between the verifier and the prover. Surprisingly, there
are complete problems for SZK which have nothing to do with interaction. This
was first discovered by Sahai and Vadhan [17].

A distribution D over {0, 1}m is said to be efficiently sampleable if there
exists a polynomial size boolean circuit C : {0, 1}n → {0, 1}m, such that the
distribution D can be obtained by applying C to uniformly sampled input bits.
By an abuse of notation, we identify C with this distribution. Given two distri-
butions C1, C2 over {0, 1}m, we denote by dist(C1, C2) their statistical distance.
The following problem, called Statistical Difference, was shown by Sahai and
Vadhan [17] to be complete for SZK.

Definition 1 (Statistical Difference [17]). The promise problem Statistical
Difference, denoted by SD = (SDY ,SDN), consists of

– SDY = {(C1, C2) : dist(C1, C2) ≤ 1/3}
– SDN = {(C1, C2) : dist(C1, C2) ≥ 2/3}
Here C1, C2 denote polynomial size circuits with the same output length.

Theorem 1 [17]. SD is SZK-complete.

In a follow up work, Goldreich and Vadhan [10] gave another SZK-complete
problem, called Entropy Difference. Below, H(C) denotes the Shannon entropy
of the distribution induced by C.

Definition 2 (Entropy Difference [10]). The promise problem Entropy Dif-
ference, denoted by ED = (EDY ,EDN), consists of

– EDY = {(C1, C2) : H(C1) ≥ H(C2) + 1}
– EDN = {(C1, C2) : H(C2) ≥ H(C1) + 1}
Here C1, C2 denote polynomial size circuits with the same output length.

Theorem 2 [10]. The problem ED is SZK-complete.

This in particular gives a slick proof to the fact that SZK is closed under
complement, which might be hard to guess from the original definition. Given
an input (C1, C2) to ED, one can simply reverse their order.

On the Impossibility of Entropy Reversal, and Its Application 33

Non-interactive statistical zero knowledge (NISZK). ThenotionofNon-Interactive
Zero-Knowledge Proof Systems, or NISZK was introduced by Blum et al. [2], allows
for very restricted communication between the verifier and the prover. Both parties
share a common uniformly random string (a random challenge), and the prover
sends a single message to the verifier based on this random challenge.

Since the model has been introduced, several problems have been shown to
be in NISZK. Originally these were problems arising in number theory, such as
Quadratic Nonresiduosity and its variants [1,2,4,6,7]. More recently, this was
extended to several natural problems in lattices [16].

The problem of finding complete problems for NISZK arose naturally. De
Santis et al. [5], introduced a problem called Image Density, and proved that is
complete for NISZK. Subsequently, Goldreich et al. [9] studied the following two
problems and showed that they too are complete for NISZK.

Definition 3 (Statistical Difference from Uniform [9]). The promise prob-
lem Statistical Difference from Uniform, denoted by SDU = (SDUY ,SDUN),
consists of

– SDUY = {C : dist(C,U) ≤ 1/n}
– SDUN = {C : dist(C,U) ≥ 1 − 1/n}
Here C denotes a polynomial size circuit which outputs n bits, and U denotes
the uniform distribution on {0, 1}n.

Definition 4 (Entropy Approximation [9]). The promise problem Entropy
Approximation, denoted by EA = (EAY ,EAN), consists of

– EAY = {(C, k) : H(C) ≥ k + 1}
– EAN = {(C, k) : H(C) ≤ k − 1}
Here C denotes a polynomial size circuit and k ≥ 1 is an integer parameter.

Theorem 3 [9]. SDU and EA are NISZK-complete.

The main open problem that motivated the current paper is what is the
relationship between NISZK and SZK. Goldreich et al. [9] made a significant
progress towards resolving this problem.

Theorem 4 [9]. The following statements are equivalent:

(1). SZK = NISZK.
(2). NISZK is closed under complement.
(3). NISZK is closed under NC1 truth-table reductions.
(4). ED, or SD Karp-reduces to EA, or SDU respectively.
(5). EA or SDU Karp-reduces to its complement.

The main goal of the current paper is to show that these statements are all
false, at least in a limited model of computation. Concretely, our goal is to rule
out black box reductions between NISZK and its complement. When we consider
black box reductions, the notion of efficient computation disappears, and we
replace the study of circuits with the study of arbitrary functions (which can be
seen as oracle functions).

34 S. Lovett and J. Zhang

1.1 Black-Box Reductions

We describe the notion of black box reductions of functions in this section.
Let Fn,m denote the family of functions f : {0, 1}n → {0, 1}m. A promise

problem Π over Fn,m consists of a family of yes instances ΠY and a family of
no instances ΠN , where ΠY ,ΠN ⊂ Fn,m and ΠY ∩ ΠN = ∅.

Definition 5 (Black-Box Reduction). LetΠ =(ΠY ,ΠN) andΠ ′ =(Π ′
Y ,Π ′

N)
be promise problems over functions Fn,m and Fn′,m′ , respectively. a black-box
reduction from Π to Π ′ is an algorithm A(·) : {0, 1}n′ → {0, 1}m′

with oracle
access to a function f ∈ Fn,m, such that the following holds:

– If f ∈ ΠY then Af ∈ Π ′
Y .

– If f ∈ ΠN then Af ∈ Π ′
N .

Given an input w ∈ {0, 1}n′
, the algorithm makes a number of queries to f

(the query locations may depend on w and be adaptive), and outputs a value
z ∈ {0, 1}m′

. We define Af (w) = z. The query complexity of A, denoted QC(A),
is the maximal number of queries to f performed over an input.

Our definition of black-box reduction does not relate to decidability, and
instead relates to functionality. This type of black-box reduction is well studied in
cryptography. Many reductions in the literature are in fact black-box reductions.
Examples include the the flatting lemma of [9], the polarization lemma of [17],
the reduction from Statistical Difference to its complement [17], constructions
of pseudorandom generators from one-way functions [12,13], constructions of
pseudorandom functions from pseudorandom generators [8], and many more.

1.2 Our Results

We define the function version of the Entropy Approximation (EA) problem.

Definition 6 (Function Entropy Approximation). The promise problem
Function Entropy Approximation, denoted by FEA=(FEAY ,FEAN), consists of

– FEAY = {(f, k) : H(f) ≥ k + 1}
– FEAN = {(f, k) : H(f) ≤ k − 1}
Here n,m, k ≥ 1 and f ∈ Fn,m. Note that the interesting regime of parameters
(where the problem is not trivial) is when 1 ≤ k ≤ n − 1.

A black box reduction from NISZK to its complement needs to map FEA to
its complement. In particular, an efficient reduction would stay efficient even if
we fix n,m, k to favourable values (we will later set m = 3n, k = n−3). We call
such a reduction an Entropy Reverser.

On the Impossibility of Entropy Reversal, and Its Application 35

Definition 7 (Entropy Reverser). Let n,m, k, n′,m′, k′ ≥ 1. An (n,m, k;
n′,m′, k′) entropy reverser is a black box reduction A from Fn,m to Fn′,m′ such
that

– If H(f) ≥ k + 1 then H(Af) ≤ k′ − 1.
– If H(f) ≤ k − 1 then H(Af) ≥ k′ + 1.

Our main result is that entropy reversers require either exponential out-
put length n′,m′ or exponential query complexity. In particular, when they are
applied to a function f computed by a polynomial size circuit, their output Af

is computed by an exponential size circuit. We state and prove our result for a
concrete setting of parameters m = 3n, k = n − 3. We note that our work can
be extended to a much wider set of parameters. However, we did not see any
applications of pursuing this.

Theorem 5 (Main theorem). Let A be an (n,m, k;n′,m′, k′) Entropy
Reverser for m = 3n, k = n − 3. Then QC(A) ≥ 2n/5/poly(n′,m′).

1.3 Related Works

Relations between zero knowledge proofs have been previously studied [14,18],
where certain black box reductions were ruled out. However, previous works
only ruled out restricted forms of black box reductions, where the only access
to a function f is via independent and uniform samples. In particular, these
reductions are non adaptive. We note that this is a much weaker notion of
black box reductions, and indeed some of the black box reductions we already
mentioned (e.g. the reduction from Statistical Difference to its complement [17])
require the ability to correlate inputs. As far as we know, ours is the first work in
this context which rules out general black box reductions without any restriction
on the access pattern or adaptivity.

1.4 Proof Overview

Let n ≥ 1 and fix m = 3n, k = n − 3.
The first step in our proof is to apply a black box reduction of Goldreich

et al. [9], which converts high/low entropy distributions to distributions which
are close to uniform, or supported on a small set, respectively (Lemma 1). This
allows us to assume stronger properties of the functions generated by the sup-
posed Entropy Reverser. Concretely, that we are given a black box reduction A
from Fn,m to Fn′,m′ such that:

– If H(f) ≥ k + 1 then Af is distributed close to uniform (concretely,
dist(Af ,U) ≤ 0.1).

– If H(f) ≤ k − 1 then the distribution of Af is supported on a small set
(concretely, of size ≤ 0.1 · 2m′

).

As this black box reduction is efficient, it incurs a blowup of only poly(n′,m′)
in the query complexity. See Sect. 3.1 for the details. From now on, we focus on
this stronger notion of an Entropy Reverser, and show that for it it holds that
QC(A) ≥ Ω(2n/5).

36 S. Lovett and J. Zhang

Next, we consider several distributions over functions Fn,m. Fix b = 256. We
denote by B = (B1, . . . , Bs) a partition of the input space {0, 1}n into s blocks,
each of size b. For 0 ≤ j ≤ s we define a distribution Dj over Fn,m as follows:

– Sample a random partition B = (B1, . . . , Bs) of {0, 1}n.
– Sample y1, . . . , yj ∈ {0, 1}m uniformly and independently.
– If x ∈ Bi, i ≤ j then set fj(x) = yi.
– If x ∈ Bi, i > j then sample fj(x) ∈ {0, 1}m uniformly and independently.

It is not hard to show that as j increases, the entropy of fj ∼ Dj decreases.
Concretley, we show (Claim 3.2) that with very high probability it holds that

H(fs/4) = n − 2, H(fs/2) = n − 4.

Thus, by the assumptions of our Entropy Reverser (as we set k = n−3), it should
hold that Afs/4 is supported on a small set, while Afs/2 is distributed close to
uniform. We show that this requires exponential query complexity. From now
onwards, let q = QC(A) denote this query complexity.

Let z ∈ {0, 1}m′
be chosen uniformly, and let pj for 0 ≤ j ≤ s denote the

probability that z belongs to the support of Afj :

pj = Pr[∃w ∈ {0, 1}n′
, z = Afj (w)].

By our assumptions, ps/2 ≥ 0.9 while ps/4 ≤ 0.1. Our goal is to apply a hybrid
argument and show that if q is small then pj−1 ≈ pj for all s/4 ≤ j ≤ s/2.

We can couple the choice of fj−1, fj , so that we jointly sample B, y1, . . . , yj ,
and the only difference between fj−1 and fj is that they differ on the block
Bj (fj−1 maps each point in Bj to a uniformly chosen point in {0, 1}m′

, while
fj maps all the points in Bj to a single point). As the partition to blocks is
random, the probability that a specific query belongs to the block Bj is 1/s. As
the algorithm makes q queries, this should “intuitively” give the bound

pj − pj−1 ≤ q

s
.

(we say “intuitively” as the black box reduction is an adaptive algorithm, while
the above analysis works straightforwardly only for non-adaptive algorithms).
However, such a bound is useless for us, as we need to apply it Ω(s) times.
Thus, we need a more refined analysis.

In order to do so, let f ∈ {fj−1, fj}. We say that an input w to Af respects
the block structure of B if any block Bi in B is queried at most once by Af (w).
Intuitively, such an input should not be able to “distinguish” between fj−1 and
fj . On the other hand, the probability over a random partition that any two
fixed points belong to Bj is ≈1/s2, and hence as there are q queries, this should
“intuitively” give an improved bound of

pj − pj−1 ≤ q2

s2
.

On the Impossibility of Entropy Reversal, and Its Application 37

If such a bound is indeed true, then applying it (s/2)− (s/4) = s/4 times would
give that |ps/4 − ps/2| ≤ O(q2/s), which would imply that q2 ≥ Ω(s) = Ω(2n),
and hence we obtain an exponential lower bound on q.

Formalizing this intuition turns out to be quite delicate, as the algorithm Af

is an adaptive algorithm, and hence various choices are dependent on each other.
Our main technical Lemma (Lemma 3) show that, if we restrict our attention
to inputs which respect the block structure and define

p′
j = Pr[∃w ∈ {0, 1}n′

, z = Afj (w), w respects the block structure of B]

then p′
j is a good proxy for pj (Lemma 2), for which a better bound can be

obtained:

p′
j − p′

j−1 ≤ O

(
q5/3

s4/3

)
.

While this bound is worse than the “intuitive” bound of q2/s2, it still suffices
for our purposes, as when we apply it Θ(s) times we obtain that p′

s/2 − p′
s/4 ≤

O(q5/3/s1/3) and hence we still get an exponential lower bound on q, namely
q ≥ Ω(2n/5).

Paper organization. We give some preliminary definitions in Sect. 2. In Sect. 3
we formalize the above proof overview, and give the proof of our main theo-
rem, Theorem 5, assuming our main technical lemma, Lemma 3. The proof of
Lemma 3 is given in Sect. 4. We conclude with some open problems in Sect. 5.

2 Preliminaries

Let Fn,m denote the family of functions f : {0, 1}n → {0, 1}m. A black box
reduction from Fn,m to Fn′,m′ with is an algorithm which, given query access
to f ∈ Fn,m, computes a function Af ∈ Fn′,m′ as follows. Given an input
w ∈ {0, 1}n′

, the algorithm makes a number of queries to f (the query locations
can depend on w and be adaptive), and outputs a value z ∈ {0, 1}m′

. We define
Af (w) = z. The query complexity of A is the maximum number of queries to f
performed over an input, which we denote by QC(A).

Let X be a random variable taking values in {0, 1}m. We recall some basic
definitions. The support of X is supp(X) = {x : Pr[X = x] > 0}. The Shannon
entropy of X is

H(X) =
∑

x

Pr[X = x] · log2(1/Pr[X = x]).

The statistical distance of two random variables X,Y is

dist(X,Y) = 1
2

∑
x

|Pr[X = x] − Pr[Y = x]|.

We denote by Um the uniform distribution over {0, 1}m.

38 S. Lovett and J. Zhang

We will identify f ∈ Fn,m with the random variable of its output distribution
in {0, 1}m, given a uniformly sampled input in {0, 1}n. As such, we extend the
definition of support, Shannon entropy and statistical distance to functions. In
the special case where f is computable by a circuit C : {0, 1}n → {0, 1}m of size
poly(m), we say that this distribution is an efficiently sampleable distribution.

3 Proof of Main Theorem: Theorem 5

3.1 A Useful Reduction

As a first step towards proving Theorem 5, we make use of a black box reduction
of Goldreich et al. [9]. It allows us to strengthen the assumptions in Theorem 5.

Lemma 1 [9]. Let n′,m′, k′ ≥ 1. There exists a black box reduction A1 from
Fn′,m′ to Fn′′,m′′ , where n′′,m′′,QC(A1) ≤ poly(n′,m′), such that the following
holds for any f ∈ Fn′,m′ :

– If H(f) ≥ k′ + 1 then dist(Af
1 ,Um′′) ≤ 0.1.

– If H(f) ≤ k′ − 1 then |supp(Af
1)| ≤ 0.1 · 2m′′

.

Let A5 denote the black box reduction from Fn,m to Fn′,m′ assumed in
Theorem 5. Let A1 denote the black box from Fn′,m′ to Fn′′,m′′ given in
Lemma 1. Let A be their composition. Namely, A is a black box reduction from
Fn,m to Fn′′,m′′ , obtained by first applying A5 and then A1. That is,

Af = A
Af

5
1 .

Observe that QC(A) ≤ QC(A5)QC(A1) ≤ QC(A5)poly(n′,m′), that n′′,m′′ ≤
poly(n′,m′), and that A satisfies the following:

– If H(f) ≥ k + 1 then |supp(Af)| ≤ 0.1 · 2m′′
.

– If H(f) ≤ k − 1 then dist(Af ,Um′′) ≤ 0.1.

We will prove a lower bound on the query complexity of A, which would then
imply a lower bound on the query complexity of A5.

3.2 Preparations

In order to prove Theorem 5, we will exhibit two distributions over functions,
one of high entropy functions, the other of low entropy functions, and show that
black box reductions with low query complexity cannot “reverse” the entropy
relation between them.

On the Impossibility of Entropy Reversal, and Its Application 39

Definition 8 (Sample distribution). Let n,m ≥ 1 and let b ≥ 2 be a para-
meter (block size) to be determined later, and set s = 2n/b. We denote by
B = (B1, . . . , Bs) a partition of {0, 1}n into s blocks of equal size 2n/s = b.
For any 0 ≤ j ≤ s we define a distribution over partitions B and functions
fj ∈ Fn,m as follows:

– Sample a random partition B = (B1, . . . , Bs) of {0, 1}n.
– Sample y1, . . . , yj ∈ {0, 1}m uniformly and independently.
– If x ∈ Bi, i ≤ j then set fj(x) = yi.
– If x ∈ Bi, i > j then sample fj(x) ∈ {0, 1}m uniformly and independently.

We denote the joint distribution of (B, fj) as Dj . With an abuse of notation,
when we write fj ∼ Dj , we simply omit the block structure from the sample.
Note that f0 ∼ D0 is uniformly distributed over Fn,m. The following simple claim
argues that as we increase j, the entropy of fj ∼ Dj decreases. It is specialized
to our desired application.

Claim. Let m = 3n. Sample fj ∼ Dj . Then with probability 1 − 2−n over the
choice of fj , it holds that

H(fj) = n − (j/s) log b.

In particular, if we set b = 256 then

H(fs/4) = n − 2, H(fs/2) = n − 4.

Proof. Let 0 ≤ j ≤ s and sample fj ∼ Dj . Let y1, . . . , yj be the single value that
fj obtains on blocks B1, . . . , Bj . Consider y1, . . . , yj , (fj(x) : x ∈ Bi, i > j). Lets
denote by E0 the event that no two values in this list collide. The probability that
any two of these values are equal is 2−m. As there are ≤ 2n values, the probability
that any two intersect is bounded by 22n−m ≤ 2−n. Thus Pr[E0] ≥ 1 − 2−n.

Lets assume that E0 holds. Then, the distribution of fj is as follows: there are
j values (namely, y1, . . . , yj) that each is obtained with probability 1/s = b/2n.
All other 2n − bj values are each obtained with probability 2−n. Thus

H(fj |E0) = j · (b/2n) · log(2n/b) + (2n − bj) · 2−n · log(2n) = n − (j/s) log b.

We treat Ds/4 as a distribution over (mostly) high entropy functions, and
Ds/2 as a distribution over (mostly) lower entropy functions.

3.3 Block Compatible Inputs

Given w ∈ {0, 1}n′′
and f ∈ Fn,m, we denote by Query(Af (w)) ⊂ {0, 1}n the

set of inputs of f queried by Af on input w. To recall, the functions that we
focus attention on are defined together with a block structure B = (B1, . . . , Bs).
Below, we specialize our attention to inputs and their corresponding outputs,
for which at most one value in each block is queried.

40 S. Lovett and J. Zhang

Definition 9 (Block compatible inputs). Let B = (B1, . . . , Bs) be a par-
tition of {0, 1}n, f : {0, 1}n → {0, 1}m. We say that w ∈ {0, 1}n′′

is a block
compatible input with respect to (f,B) if, when computing Af (w), each block of
B is queried at most once. We denote by I(f,B) the set of all block compatible
inputs:

I(f,B) = {w ∈ {0, 1}n′′
: |Query(Af (w)) ∩ Bi| ≤ 1 ∀i = 1, . . . , s}

Definition 10 (Block compatible outputs). Let B be a partition of {0, 1}n,
f : {0, 1}n → {0, 1}m. We say that z ∈ {0, 1}m′′

is a block compatible output
with respect to (f,B) if Af (w) = z for a block compatible input w. We denote
by O(f,B) the set of all block compatible inputs:

O(f,B) = {z ∈ {0, 1}m′′
: ∃w ∈ I(f,B), Af (w) = z}.

Observe that the definition of I(f,B), O(f,B) does not depend on the order
of the blocks in B. This will turn out to be crucial later on in the analysis. Thus,
for B = (B1, . . . , Bs) define {B} = {B1, . . . , Bs} (that is, forgetting the order of
the blocks) and note that

I(f,B) = I(f, {B}) O(f,B) = O(f, {B}).

It is obvious that O(f,B) ⊂ supp(Af). Next, we argue that if the distribution
of Afj is close to uniform, then O(fj ,B) is large.

Lemma 2. Sample (B, fj) ∼ Dj, and assume that

Pr
fj

[
dist(Afj ,Um′′) ≤ ε

] ≥ 1 − δ.

Then

E[|O(fj ,B)|] ≥
(

1 − q2

s
− ε − 3δ

)
2m′′

.

Proof. We first argue that for each fixed w,

Pr
(B,fj)∼Dj

[w ∈ I(fj ,B)] ≥ 1 − q2

s
.

To see that, let Q = {(x1, y1, . . . , xq, yq)} ⊂ {0, 1}q(n+m) be all possible queries
and answers made by Af (w). That is, x1 = x1(w) is the first query made. If
f(x1) = y1 then x2 is the second query made, and so on. Note that each xi is
determined by w, x1, y1, . . . , xi−1, yi−1, while yi can take any value in {0, 1}m.
In particular, |Q| = 2mq.

Next, fix x1, . . . , xq and let B be a randomly chosen partition. Then

Pr
B

[x1, . . . , xq in distinct blocks] ≥ 1 −
∑
i�=j

Pr
B

[xi, xj in the same block] ≥ 1 − q2

s
.

On the Impossibility of Entropy Reversal, and Its Application 41

Note that if x1, . . . , xq are in distinct blocks, then fj(x1), . . . , fj(xq) are inde-
pendently and uniformly chosen in {0, 1}m. Thus

Pr
(B,fj)∼Dj

[w ∈ I(fj ,B)]

=
∑

(x1,y1,...,xq,yq)∈Q

Pr[w ∈ I(fj ,B) ∧ fj(x1) = y1 ∧ . . . ∧ fj(xq) = yq]

=
∑

(x1,y1,...,xq,yq)∈Q

Pr[x1, . . . , xq in distinct blocks ∧ fj(x1) = y1 ∧ . . . ∧ fj(xq) = yq]

=
∑

(x1,y1,...,xq,yq)∈Q

Pr[x1, . . . , xq in distinct blocks]·

Pr[fj(x1) = y1 ∧ . . . ∧ fj(xq) = yq|x1, . . . , xq in distinct blocks]

≥
∑

(x1,y1,...,xq,yq)∈Q

(
1 − q2

s

)
2−mq

=1 − q2

s
.

We next consider O(fj ,B). Recall that we assume that the distribution of Afj

is ε-close in statistical distance to the uniform distribution Um′′ . Let w ∈ {0, 1}n′′

be chosen uniformly and consider the random variable z = Afj (w). We have

Pr
(B,fj)∼Dj ,w∈{0,1}n′′

[z ∈ O(fj ,B)] ≥ Pr[w ∈ I(fj ,B)] ≥ 1 − q2

s
.

On the other hand, let u ∈ {0, 1}m′′
be chosen uniformly and independently of

all other random variables. Let E = E(fj) denote the event

E :=
[
dist(Afj ,Um′′) ≤ ε

]
.

If we condition that E holds then dist(z, u) = dist(Afj ,Um′′) ≤ ε. Thus for every
fixing of B, fj for which E holds we get

Pr[u ∈ O(fj ,B)|B, fj , E] ≥ Pr[z ∈ O(fj ,B)|B, fj , E] − ε.

Averaging over the choices of B, fj we obtain that

Pr[u ∈ O(fj ,B)|E] ≥ Pr[z ∈ O(fj ,B)|E] − ε.

We next remove the conditioning on E. As Pr[E] ≥ 1 − δ, we can bound

Pr[u ∈ O(fj ,B)] ≥ Pr[u ∈ O(fj ,B)|E] Pr[E] ≥ Pr[u ∈ O(fj ,B)|E] − δ

and

Pr[z ∈ O(fj ,B)] ≤ Pr[z ∈ O(fj ,B)]
Pr[E]

≤ Pr[z ∈ O(fj ,B)|E] + Pr[¬E]/Pr[E]
≤ Pr[z ∈ O(fj ,B)|E] + 2δ.

42 S. Lovett and J. Zhang

Thus

Pr[u ∈ O(fj ,B)] ≥ Pr[z ∈ O(fj ,B)] − 3δ ≥ 1 − q2

s
− ε − 3δ.

This concludes the proof as

E[|O(fj ,B)|] = 2m′′
Pr[u ∈ O(fj ,B)] ≥

(
1 − q2

s
− ε − 4δ

)
2m′′

.

3.4 Main Technical Lemma

The main step in proving Theorem 5 is showing that O(fj−1,B) is not much
smaller than O(fj ,B).

Definition 11. Let us jointly sample B, fj−1, fj as follows:

– Sample (B, fj−1) ∼ Dj−1.
– Sample yj ∈ {0, 1}m independently and uniformly, and set

fj(x) =
{

fj−1(x) x /∈ Bj

yj x ∈ Bj .

We denote this joint distribution over B, fj−1, fj by Dj−1,j . Observe that if we
omit fj−1, then the marginal distribution over (B, fj) is indeed Dj .

Lemma 3 (Main lemma). Assume that δs ≤ j ≤ (1 − δ)s and sample
(B, fj−1, fj) ∼ Dj. Then for any z ∈ {0, 1}m′′

it holds that

Pr [z ∈ O(fj−1,B)] ≥ Pr [z ∈ O(fj ,B)] − ε,

where ε = 4q5/3b2/3

δ4/3s4/3 . In particular, if we set b = 256 and δ = 1/4 then ε =
O(q5/3/s4/3). Averaging over a uniform choice of z gives that

E [|O(fj−1,B)|] ≥ E [|O(fj ,B)|] − ε2m′′
.

We note that it is crucial in Lemma 3 that ε 1/s, as we will apply it to
relate O(fs/4,B) to O(fs/2,B), which will incur an additional factor of s. Most
of the technical challenge in proving Lemma 3 is achieving that, as achieving
weaker bounds of the form ε = poly(q)/s is much easier. We defer the proof of
Lemma 3 to Sect. 4, and next show how it implies Theorem 5.

3.5 Deducing Theorem 5

Let A5 be the assumed black box reduction given in Theorem 5, specialized for
m = 3n, k = n−3. Let n′,m′ denote the input and output size of Af

5 in this case
and let k′ = k′(n,m, k). Let A be the black box reduction obtained by first apply-
ing A5 to f ∈ Fn,m, then applying A1 to Af

5 . Thus Af ≤ Fn′′,m′′ where n′′,m′′ ≤
poly(n′,m′). We have QC(A) ≤ QC(A5)QC(A1) ≤ QC(A5)poly(n′,m′).

On the Impossibility of Entropy Reversal, and Its Application 43

Definition 12 (Hybrid distribution). Sample (fj : j = 0, . . . , s) jointly as
follows:

– Sample a random partition B = (B1, . . . , Bs) of {0, 1}n.
– Sample y1, . . . , ys ∈ {0, 1}m uniformly and independently.
– Sample a uniform function g : {0, 1}n → {0, 1}m.
– If x ∈ Bi, i ≤ j then set fj(x) = yi.
– If x ∈ Bi, i > j then sample fj(x) = g(x).

Observe that the marginal distribution of (B, fj) is Dj , and moreover, the mar-
ginal distribution of (B, fj−1, fj) is Dj−1,j . According to Claim 3.2, we have the
following statements by setting b = 256,

– Prfs/4∼Ds/4 [H(fs/4) = n − 2] ≥ 1 − 2−n.
– Prfs/2∼Ds/2 [H(fs/2) = n − 4] ≥ 1 − 2−n.

By the guarantees of A we have that

– If H(fs/4) ≥ (n − 3) + 1 then |supp(Afs/4)| ≤ 0.1 · 2m′′
.

– If H(fs/2) ≤ (n − 3) − 1 then dist(Afs/2 , Um′′) ≤ 0.1.

Let q = QC(A). Applying Lemma 2 to fs/2, and assuming that q2/s ≤ 0.1 gives
that

E
[|O(Afs/2 ,B)|] ≥ 0.8 · 2m′′

.

On the other hand,

E
[|O(Afs/4 ,B)|] ≤ |supp(Afs/4)| ≤ 0.1 · 2m′′

.

Lemma 3, applied for s/4 ≤ j ≤ s/2, gives that

E
[|O(Afj−1 ,B)|] ≥ [|O(Afj ,B)|] − ε2m′′

,

where ε = O(q5/3/s4/3). For all these to hold we need to have

ε(s/2 − s/4) ≥ 0.7

which gives the required bound

QC(A) = q ≥ Ω(s1/5).

This then gives us the bound

QC(Af
5) ≥ Ω(2n/5/poly(n′,m′)).

44 S. Lovett and J. Zhang

4 Proof of Main Technical Lemma: Lemma 3

We prove Lemma 3 in this section. To recall, A is a black box reduction from
Fn,m to Fn′′,m′′ . We fix 1 ≤ j ≤ s and z ∈ {0, 1}m′′

from here onwards. We
sample (B, fj−1, fj) ∼ Dj−1,j and wish to compare Pr[z ∈ O(fj−1,B)] and
Pr[z ∈ O(fj ,B)]. To simplify notations define

O(fj−1) = O(fj−1,B) I(fj−1) = I(fj−1,B).

Define the events

X := [z ∈ O(fj−1)] Y := [z ∈ O(fj)].

Our goal is to show that if Y holds, then with high probability also X holds.
The “common information” between X,Y is captured by the random variable

C := ({(Bi, fj |Bi
)}1≤i≤j−1, Bj , {(Bi, fj |Bi

)}j+1≤i≤s) .

Observe that {B} can be computed from C, which we denote as {B} = {B}(C),
and that furthermore

fj−1 = fj−1(C, fj−1|Bj
) fj = fj(C, fj |Bj

).

Thus
X = X(C, fj−1|Bj

) Y = Y (C, fj |Bj
).

In particular, given any fixing of C, we have that fj−1|Bj
is a uniform function

from Bj to {0, 1}m, that fj |Bj
is a random constant function, and that the two

are independent of each other. We obtain the following claim:

Claim. For any fixing of C, the random variables X|C and Y |C are independent.

Recall that fj−1 and fj differ only in their evaluation on the block Bj . We
define a partial function f̂ to be the set of inputs where fj−1 and fj agree,
namely all inputs outside Bj , and outputs “?” otherwise. Formally, we define
the function f̂ : {0, 1}n → ({0, 1}m ∪ {?}) as follows:

f̂(x) =
{

fj−1(x) if x /∈ Bj

? if x ∈ Bj

if x /∈ Bj then f̂(x) = fj−1(x) = fj(x). As we now allow for partial functions, we
will also need to allow running the black box reduction A on partial functions.
We do so by outputing a “?” if the black box reduction queries a point where
the partial function is not defined. Observe that f̂ can be computed given C:

f̂ = f̂(C).

On the Impossibility of Entropy Reversal, and Its Application 45

Definition 13 (Black box reduction of a partial function). Let A be a
black box reduction from Fn,m to Fn′′,m′′ . Let f : {0, 1}n → ({0, 1}m ∪ {?}) be a
partial function. We define Af : {0, 1}n′′ → ({0, 1}m′′ ∪ {?}) to be the following
partial function. When computing Af (w), follows the queries made by A as if f
was a total function. However, if at any point we query a point x where f(x) =?
then we abort and output ?.

We also extend the definition of block compatible inputs and outputs to
partial functions in the obvious manner. Define O(f̂) := O(f̂ , {B}) and define
the event E1 as

E1 = E1(C) := [z ∈ O(f̂)].

Claim. If E1 holds then both X and Y also hold: E1 ⇒ X ∧ Y .

Proof. If E1 holds then by definition, there exists w ∈ I(f̂) for which Af̂ (w) = z.
This implies that Afj−1(w) = Afj (w) = z, as since Af̂ (w) didn’t return a “?”, it
only queried locations outside Bj , where fj−1, fj agree. Also, as w ∈ I(f̂) this
means that Af̂ (w) queries each block Bi at most once, while block Bj is never
queried. Thus also w ∈ I(fj−1), w ∈ I(fj). This implies that z ∈ O(fj−1), z ∈
O(fj) which means that X,Y hold.

According to Claim 4 we have,

Pr[X ∧ E1] = Pr[Y ∧ E1] = Pr[E1]

and hence

Pr[X] − Pr[Y]
= Pr[X ∧ E1] + Pr[X ∧ ¬E1] − Pr[Y ∧ E1] − Pr[Y ∧ ¬E1]
= Pr[X ∧ ¬E1] − Pr[Y ∧ ¬E1]

Thus, from now on we focus on the case that ¬E1 holds.

4.1 Analyzing the Case that E1 Doesn’t Hold

For each x ∈ Bj , y ∈ {0, 1}m we define the following extension of f̂ . Define a
partial function f̂x,y : {0, 1}n → ({0, 1}m ∪ {?}) as follows:

f̂x,y(x′) :=

⎧⎨
⎩

f̂(x′) if x′ /∈ Bj

y if x′ = x
? if x′ ∈ Bj and x′ �= x

For each x ∈ Bj define

R(x) = Rf̂ (x) := {y ∈ {0, 1}m : z ∈ O(fx,y)}.

46 S. Lovett and J. Zhang

Namely, R(x) is the set of values y for which, if we allow the algorithm to make a
single query to Bj at point x which returns y, then z becomes a block compatible
output. Observe that the definition of R(x) depends only on f̂ , and hence on C.
Crucially, it does not depend on the values of either fj−1 or fj on Bj . We further
define

r(x) := Pr
y∈{0,1}m

[y ∈ R(x)] =
|R(x)|

2m
.

As R(x), r(x) depend only on C, we may consider the following experimant:
first sample C and then sample fj−1, fj conditioned on C. That is, fj−1, fj are
equal to f̂ = f̂(C) outside Bj = Bj(C), and on Bj we sample fj−1 as a random
function, while fj(x) = yj for all x ∈ Bj , where yj is randomly chosen. Recall
that E1 = E1(C).

Claim. For any fixing of C sample fj−1, fj |C. Then

Pr[X|C,¬E1] = 1 −
∏

x∈Bj

(1 − r(x))

and
Pr[Y |C,¬E1] ≤

∑
x∈Bj

r(x).

Proof. Consider any fixing of C and sample fj−1, fj conditioned on it. Recall
that r(x) is a function of C.

Let f : {0, 1}n → {0, 1}m be any function which agrees with f̂ on all x /∈ Bj .
If z ∈ O(f) then there exists w ∈ I(f) for which Af (w) = z. As we assume
that ¬E1 holds, for any such w, Af (w) must query the block Bj at least once,
and since w ∈ I(f) it is exactly once, say at point xw ∈ Bj . But then also
z ∈ O(f̂xw,f(xw)), which means that f(xw) ∈ R(xw). The converse direction also
holds: if f(x) ∈ R(x) for any x ∈ Bj then by definition of R(x), there exists wx

such that wx ∈ I(f) and Af (wx) = z (and moreover Af (wx) queries the block
Bj exactly at x) and in particular z ∈ O(f). Thus

z ∈ O(f) ⇐⇒
∨

x∈Bj

[f(x) ∈ R(x)] .

Next, we apply this logic to both fj−1 and fj . For fj−1, each point fj−1(x) for
x ∈ Bj is uniformly and independently chosen, hence

Pr[X|C,¬E1] = Pr[z ∈ O(fj−1)|C,¬E1]
= 1 − Pr[fj−1(x) /∈ R(x) ∀x ∈ Bj]

= 1 −
∏

x∈Bj

(1 − r(x)).

On the Impossibility of Entropy Reversal, and Its Application 47

For fj , all the evaluations {fj(x) : x ∈ Bj} are equal to a uniformly chosen point
yj . Hence by the union bound

Pr[Y |C,¬E1] = Pr[z ∈ O(fj)|C,¬E1]

≤
∑

x∈Bj

Pr[yj ∈ R(x)]

≤
∑

x∈Bj

r(x).

The following definition allow us to compare the two bounds appearing in
Claim 4.1.

Definition 14. Let γ > 0. A sequence of numbers r1, . . . , rb ∈ [0, 1] is said to
be γ-balanced if

(1 − γ)
∑

ri ≤ 1 −
∏

(1 − ri).

Let γ > 0 to be determined later, and define the event E2 as

E2 = E2(C) := [(r(x) : x ∈ Bj) is γ-balanced] .

The following is a corollary of Claim 4.1 and the definition of X,Y .

Claim. For any fixing of C for which ¬E1, E2 hold, it holds that

Pr[X|C,¬E1, E2] ≥ (1 − γ) Pr[Y |C,¬E1, E2].

Proof. Fix C such that ¬E1, E2 hold. This fixes in particular Bj and (r(x) :
x∈Bj). As E2 holds, we obtain by Claim 4.1 that

Pr[X|C] = 1 −
∏

x∈Bj

(1 − r(x)) ≥ (1 − γ)
∑

x∈Bj

r(x) ≥ (1 − γ) Pr[Y |C].

Following up on (1), we have

Pr[X] − Pr[Y] = (Pr[X ∧ ¬E1 ∧ E2] − Pr[Y ∧ ¬E1 ∧ E2])
+ (Pr[X ∧ ¬E1 ∧ ¬E2] − Pr[Y ∧ ¬E1 ∧ ¬E2])

The second term can simply be bounded by Pr[¬E1 ∧¬E2], which we bound
in the next section. For now, lets focus on the first term. Consider any fixing of
C for which ¬E1, E2 hold. By Claim 4.1 we have that Pr[X|C] ≥ (1−γ) Pr[Y |C].
By averaging over such C, we obtain that

Pr[X ∧ ¬E1 ∧ E2] − Pr[Y ∧ ¬E1 ∧ E2] ≥ −γ Pr[Y ∧ ¬E1 ∧ E2].

We can bound the right hand side by

Pr[Y ∧ ¬E1 ∧ E2] ≤ Pr[Y ∧ ¬E1] = Pr[Y] Pr[¬E1|Y].

48 S. Lovett and J. Zhang

Claim. Pr[¬E1|Y] ≤ q/j.

Proof. Sample (B, fj−1, fj) ∼ Dj−1,j . In addition, sample t ∈ {1, . . . , j} uni-
formly. We will define a “proxy” fj−1 obtained from fj by changing the value
on Bt to a random function. We will then argue that with high probability,
this misses any specific set of queries. To that end, define the following random
variables:

– f ′
j−1 : {0, 1}n → {0, 1}m is a random function defined as follows: if x /∈ Bt

then f ′
j−1(x) = fj(x); and if x ∈ Bt then f ′

j−1(x) is a uniformly random
element in {0, 1}m.

– f̂ ′ : {0, 1}n → ({0, 1}m ∪ {?}) is a partial function defined as follows: f̂ ′(x) =
f ′

j−1(x) = fj(x) if x /∈ Bt, and f̂ ′(x) =? if x ∈ Bt.
– B′ is equal to B with blocks Bt, Bj swapped. Namely,

B′ = (B1, . . . , Bt−1, Bj , Bt+1, . . . , Bj−1, Bt, Bj+1, . . . , Bs).

Observe that the joint distributions of (B, fj , fj−1, f̂) and (B′, fj , f
′
j−1, f̂

′) are
identical. Next, define the following events:

– Y ′ := [z ∈ O(fj , {B′})].
– E′

1 := [z ∈ O(f̂ ′, {B′})].

Observe that Y ′ = Y since {B′} = {B}, and that the joint distributions of
(E1, Y) and (E′

1, Y) = (E′
1, Y

′) are identical. Next, fix B, fj such that Y holds.
This means that there exists w ∈ I(fj , {B}) = I(fj , {B′}) such that Afj (w) = z.
Let Q = Query(Afj (w)) be the set of queries made by the algorithm, where
|Q| ≤ q. Observe that if Bt ∩Q = ∅ then E′

1 holds, and that Q, t are independent
random variables. Let T = T (B, fj) = {i ∈ {1, . . . , j} : Bi ∩ Q �= ∅}, where
|T | ≤ |Q| ≤ q. Thus

Pr[¬E′
1|B, fj , Y] ≤ Pr[Bt ∩ Q �= ∅|B, fj , Y] = Pr[t ∈ T |B, fj , Y] ≤ |T |

j
≤ q

j
.

By averaging over B, fj , we obtain that Pr[¬E′
1|Y] ≤ q/j. Thus also

Pr[¬E1|Y] = Pr[¬E′
1|Y] ≤ q

j
.

We thus have

Pr[X ∧ ¬E1 ∧ E2] − Pr[Y ∧ ¬E1 ∧ E2] ≥ −γ(q/j) Pr[Y]

which implies that

Pr[X] − Pr[Y] ≥ −γ(q/j) Pr[Y] − Pr[¬E1 ∧ ¬E2]

which in turn gives the bound

Pr[X] ≥ (1 − γ(q/j)) Pr[Y] − Pr[¬E1 ∧ ¬E2]. (1)

To conclude, we need to upper bound Pr[¬E1 ∧ ¬E2], which is what we do in
the next section.

On the Impossibility of Entropy Reversal, and Its Application 49

4.2 Bounding the Probability that both E1, E2 Don’t Hold

We first need a simple corollary of the definition of γ-balanced.

Claim. Let r1, . . . , rb ∈ [0, 1] be a sequence which is not γ-balanced. Then there
exist distinct 1 ≤ i, j ≤ b such that ri, rj ≥ γ/b.

Proof. Assume not. Then without loss of generality, r2, . . . , rb ≤ γ/b. By the
inclusion-exclusion principle

1 −
∏

(1 − ri) ≥
∑

ri −
∑
i<j

rirj

and by our assumption

∑
i<j

rirj ≤
⎛
⎝∑

j≥2

rj

⎞
⎠

⎛
⎝∑

i≥1

ri

⎞
⎠ ≤ γ

∑
ri.

Thus
1 −

∏
(1 − ri) ≥ (1 − γ)

∑
ri,

which means that the sequence r1, . . . , rb is γ-balanced.

We next define the notion of critical blocks. Informally, a block Bj is critical
if all block compatible input w for which Af (w) = z, Af (w) queries exactly one
point in Bj .

Definition 15 (Critical block). Given f : {0, 1}n → {0, 1}m and a partition
B = (B1, . . . , Bs) of {0, 1}n, we say that the block Bj is critical for f if

(Af (w) = z) ∧ (w ∈ I(f,B)) ⇒ |Query(Af (w)) ∩ Bj | = 1.

A double critical block is a critical block where the output z can be obtained
by two block compatible inputs w1, w2 which query different points x1, x2 in the
block.

Definition 16 (Double critical block). Given f : {0, 1}n → {0, 1}m and a
partition B = (B1, . . . , Bs) of {0, 1}n, we say that the block Bj is double critical
for f if

(i) Bj is a critical block for f .
(ii) There exist distinct w1, w2 ∈ I(f,B) and distinct x1, x2 ∈ Bj such that

(Af (wi) = z) ∧ (Query(Af (wi)) ∩ Bj = {xi}) i = 1, 2.

Lemma 4. Sample (B, fj−1) ∼ Dj−1. Then

Pr[Bj is double critical for fj−1] ≤ 2q3

(s − j + 1)2
.

50 S. Lovett and J. Zhang

Proof. We can jointly sample B, fj−1 as follows:

(1) Sample disjoint blocks B1, . . . , Bj−1 and y1, . . . , yj−1 ∈ {0, 1}m, and set
fj−1(x) = yi if x ∈ Bi, i < j.

(2) Let U := {0, 1}m \ (B1 ∪ . . . ∪ Bj−1). Sample fj−1(x) ∈ {0, 1}m uniformly
and independently for all x ∈ U .

(3) Sample Bj , . . . , Bs a random partition of U to s − j + 1 blocks of size b.

From now on, we fix fj−1, U and consider only the randomness in step (3),
namely the random partition of U . For simplicity of notation we say that Bj is
critical, or double critical, where in both cases we refer with respect to fj−1.

Define

W := {w ∈ {0, 1}n′′
: Afj−1(w) = z, |Query(Afj−1(w)) ∩ Bi| ≤ 1 ∀i = 1, . . . , j − 1}.

The set W is the set of potential elements in I(fj−1,B), in the sense that they
satisfy the requirement |Query(Afj−1(w)) ∩ Bi| ≤ 1 for the blocks defined so
far, namely B1, . . . , Bj−1. If W is empty then no block can be critical, and the
lemma follows. So, we assume that W is nonempty. For simplicity of notation
define Q(w) := Query(Afj−1(w)) ∩ U . Note that so far these definitions do not
depend on the choice of the partition of U to Bj , . . . , Bs.

Next, sample a random partition (Bj , . . . , Bs) of U . We say that an input w
is legal if Afj−1(w) queries each block at most once:

Wlegal := {w ∈ W : |Q(w) ∩ Bi| ≤ 1 ∀i = j, . . . , s}.

Equivalently, Wlegal = {w ∈ I(f,B) : Afj−1(w) = z}. The definitions of critical
and double critical can then be cast as

Bj is critical ⇔ |Bj ∩ Q(w)| = 1, ∀w ∈ Wlegal ;
Bj is double critical ⇔ Bj is critical and |Bj ∩ (∪w∈WlegalQ(w)

) | ≥ 2.

Fix w1 ∈ W and assume for now that w1 ∈ Wlegal. We will handle the case
that w1 /∈ Wlegal later.

If Bj is critical then |Bj ∩ Q(w1)| = 1. Say Bj ∩ Q(w1) = {x1}. If Bj is double
critical then there must be another legal w2 ∈ Wlegal such that Bj ∩ Q(w2) =
{x2} where x2 �= x1. In particular, x1 /∈ Q(w2). Thus, for each x1 ∈ Q(w1) define

Wx1 := {w ∈ W : x1 /∈ Q(w)}.

Note that if Wx1 is empty then it is impossible that Bj is double critical, w1 is
legal and Bj ∩ Q(w1) = {x1}. Thus let

Q′(w1) := {x1 ∈ Q(w1) : |Wx1 | ≥ 1}.

For each x1 ∈ Q′(w1) fix an arbitrary wx1 ∈ Wx1 . By definition, x1 /∈ Q(wx1). We
can bound the probability that Bj is double critical and w1 is legal by requiring

On the Impossibility of Entropy Reversal, and Its Application 51

that Bj ∩ Q(w1) = {x1} and Bj ∩ Q(wx1) = {x2}, where by definition x1 �= x2,
and summing over all choices for x1, x2:

Pr[Bj is double critical ∧ w1 ∈ Wlegal]

≤
∑

x1∈Q′(w1)

∑
x2∈Q(wx1)

Pr[x1, x2 ∈ Bj]

≤ q2

(s − j + 1)2

where the bound follows from the union bound and the fact that as Bj , . . . , Bs is
a random partition of U , for any fixed distinct x1, x2 ∈ U it holds that Pr[x1, x2 ∈
Bj] ≤ 1/(s − j + 1)2.

To conclude the proof, we need to handle the event that w1 is not legal. First,
note that

Pr[w1 /∈ Wlegal] ≤
∑

x1,x2∈Q(w1),x1 �=x2

Pr[x1, x2 in the same block] ≤ q2

s − j + 1
.

We will bound Pr[Bj is double critical|w1 /∈ Wlegal]. To do that, lets condition
on which block does every element of Q(w1) belong to. Let H1 denote the family
of all functions h : Q(w1) → {j, . . . , s}. Let Fh denote the event

Fh := [x ∈ Bh(x) ∀x ∈ Q(w1)].

Note that the events Fh are disjoint, and that the event w1 /∈ Wlegal is equivalent
to Fh holding where h has at least one collision. Thus let

H2 := {h ∈ H1 : ∃x1, x2 ∈ Q(w1), h(x1) = h(x2)}.

We have w1 /∈ Wl ⇐⇒ ∪h∈H2Fh.
For each h ∈ H2 let Wh denote the set of w ∈ W for which Q(w) is not

already illegal given h, namely

Wh := {w ∈ W : ¬∃x1, x2 ∈ Qw ∩ Qw1 , h(x1) = h(x2)}.

If Wh is empty then it is impossible that Bj is double critical and that Fh holds,
as there are no legal inputs. Thus let

H3 := {h ∈ H2 : |Wh| ≥ 1}.

For each h ∈ H3 fix an arbitrary wh ∈ Wh. By definition, if Bj is double critical
then we must have |Bj ∩ Q(wh)| = 1. We can thus bound

Pr[Bj is double critical|w1 /∈ Wlegal] =
∑

h∈H3

Pr[Bj is double critical|Fh] Pr[Fh|w1 /∈ Wlegal]

≤
∑

h∈H3

∑

x∈Q(wh)

Pr[x ∈ Bj |Fh] Pr[Fh|w1 /∈ Wlegal].

52 S. Lovett and J. Zhang

In order to help bound this expression, note that both h ∈ H3 and Pr[Fh|w1 /∈
Wlegal] are invariant to permutations of the output of h. That is, if we replace
h(x) with π(h)(x) = π(h(x)) for any permutation π on {j, . . . , s}, then h ∈
H3 ⇐⇒ π(h) ∈ H3 and Pr[Fh|w1 /∈ Wlegal] = Pr[Fπ(h)|w1 /∈ Wlegal]. Thus

Pr[Bj is double critical|w1 /∈ Wlegal]

≤Eπ

∑
h∈H3

∑
x∈Q(wh)

Pr[x ∈ Bj |Fπ(h)] Pr[Fπ(h)|w1 /∈ Wlegal]

=Eπ

∑
h∈H3

∑
x∈Q(wh)

Pr[x ∈ Bπ−1(j)|Fh] Pr[Fh|w1 /∈ Wlegal].

When we average over π we get that Pr[x ∈ Bπ−1(j)|Fh] = 1
s−j+1 , and hence

Pr[Bj is double critical|w1 /∈ Wlegal] ≤ 1

s − j + 1

∑

h∈H3

∑

x∈Q(wh)

Pr[Fh|w1 /∈ Wlegal] =
q

s − j + 1
.

We obtained the bound

Pr[Bj is double critical ∧ w1 /∈ Wlegal]
= Pr[Bj is double critical|w1 /∈ Wlegal] Pr[w1 /∈ Wlegal]

≤ q

s − j + 1
· q2

s − j + 1
=

q3

(s − j + 1)2
.

Combining the two bounds we obtained, we conclude that

Pr[Bj is double critical]

= Pr[Bj is double critical ∧ w1 ∈ Wlegal] + Pr[Bj is double critical ∧ w1 /∈ Wlegal]

≤ q2

(s − j + 1)2
+

q3

(s − j + 1)2
≤ 2q3

(s − j + 1)2
.

Claim. Let C be such that ¬E1,¬E2 hold. Sample fj−1|C. Then

Pr[Bj is double critical for fj−1|C] ≥ (γ/b)2.

In particular,

Pr[Bj is double critical for fj−1|¬E1,¬E2] ≥ (γ/b)2.

Proof. Fix any C such that ¬E1,¬E2 hold. By Claim 4.2 there are distinct
x1, x2 ∈ Bj such that r(xi) ≥ γ/b. Note that if fj−1(xi) ∈ R(xi) for both i = 1, 2,
then Bj is double critical for fj−1. As fj−1(xi) are sampled independently, we
have

Pr[Bj is double critical for fj−1|C] ≥ Pr[fj−1(xi) ∈ R(xi), i = 1, 2|C] ≥ (γ/b)2.

On the Impossibility of Entropy Reversal, and Its Application 53

Combining Lemma 4 and Claim 4.2 gives a bound on the probability that
both E1, E2 don’t hold.

Corollary 1. Pr[¬E1 ∧ ¬E2] ≤ 2q3b2

γ2(s−j+1)2 .

Proof. Let F := [Bj is double critical for fj−1]. We have

Pr[¬E1 ∧ ¬E2] =
Pr[¬E1 ∧ ¬E2 ∧ F]
Pr[F |¬E1 ∧ ¬E2]

≤ Pr[F]
Pr[F |¬E1,¬E2]

≤ 2q3b2

γ2(s − j + 1)2
.

The claim then follows.

We can finally prove Lemma 3. Appealing to (1) we have that

Pr[X] ≥
(

1 − γq

j

)
Pr[Y] − 2q3b2

γ2(s − j + 1)2
≥ Pr[Y] −

(
γq

j
+

2q3b2

γ2(s − j + 1)2

)
.

(2)
Let us denote

ε =
γq

j
+

2q3b2

γ2(s − j + 1)2
.

We now choose γ to minimize ε. Let us assume (as we have) that δs ≤ j ≤ (1−δ)s
for some absolute constant δ > 0. Then

ε ≤ γq

δs
+

2q3b2

γ2δ2s2
.

We choose γ = (2q2b2/δs)1/3 to equate the two terms, so that

ε ≤ 4q5/3b2/3

δ4/3s4/3
.

In particular, as we choose b, δ to be absolute constants, we have ε ≤
O(q5/3/s4/3).

5 Conclusions and Open Problems

In this paper, we studied impossibility of reversing entropy in black-box con-
structions. An obvious question that remains open is whether our result can
be extended to the computational setting, given some complexity assumptions.
Note that if we assume that P = NP then P = NISZK = SZK = NP.

Besides considering the relationship between NISZK and SZK, it is also inter-
esting to explore relationships between other non-computational zero-knowledge
proof systems. Concretely, what are the relationships between NIPZK and PZK,
the perfect statistical analogs of NISZK and SZK, and the statistical versions.
In particular, Malka [15] gave a complete problem for NIPZK, which can be a
good starting point to apply the techniques developed in this paper and sepa-
rate NISZK and NIPZK. In a recent work of Bouland et al. [3] gave an oracle to
separate NISZK and NIPZK, however we are still interested in whether we can
separate them in random oracle model.

54 S. Lovett and J. Zhang

Acknowledgement. We would like to thank Iftach Haitner and Salil Vadhan for
helpful discussion, and we would also like to thank anonymous TCC reviewers for their
comments. Jiapeng Zhang would also like to thank his wife, Yingcong Li.

References

1. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

2. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 103–112. ACM (1988)

3. Bouland, A., Chen, L., Holden, D., Thaler, J., Vasudevan, P.N.: On SZK and PP.
arXiv preprint arXiv:1609.02888 (2016)

4. De Santis, A., Di Crescenzo, G., Persiano, G.: The knowledge complexity of
quadratic residuosity languages. Theoret. Comput. Sci. 132(1–2), 291–317 (1994)

5. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: Image density is complete
for non-interactive-SZK. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP
1998. LNCS, vol. 1443, pp. 784–795. Springer, Heidelberg (1998). doi:10.1007/
BFb0055102

6. De Santis, A., Di Crescenzo, G., Persiano, P.: Randomness-efficient non-interactive
zero knowledge. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)
ICALP 1997. LNCS, vol. 1256, pp. 716–726. Springer, Heidelberg (1997). doi:10.
1007/3-540-63165-8 225

7. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In: Proceedings of the 5th
ACM Conference on Computer and Communications Security, pp. 67–72. ACM
(1998)

8. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

9. Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made
non-interactive? or on the relationship of SZK and NISZK. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 30

10. Goldreich, O., Vadhan, S.: Comparing entropies in statistical zero knowledge with
applications to the structure of SZK. In: Proceedings of the Fourteenth Annual
IEEE Conference on Computational Complexity, pp. 54–73. IEEE (1999)

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

12. Haitner, I., Harnik, D., Reingold, O.: On the power of the randomized iterate. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40. Springer, Heidelberg
(2006). doi:10.1007/11818175 2

13. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

14. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to cir-
cuit polarization and immunization of public-key encryption. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer, Heidelberg (2005). doi:10.
1007/11535218 29

15. Malka, L.: How to achieve perfect simulation and a complete problem for non-
interactive perfect zero-knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 89–106. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8 6

http://arxiv.org/abs/1609.02888
http://dx.doi.org/10.1007/BFb0055102
http://dx.doi.org/10.1007/BFb0055102
http://dx.doi.org/10.1007/3-540-63165-8_225
http://dx.doi.org/10.1007/3-540-63165-8_225
http://dx.doi.org/10.1007/3-540-48405-1_30
http://dx.doi.org/10.1007/3-540-48405-1_30
http://dx.doi.org/10.1007/11818175_2
http://dx.doi.org/10.1007/11535218_29
http://dx.doi.org/10.1007/11535218_29
http://dx.doi.org/10.1007/978-3-540-78524-8_6

On the Impossibility of Entropy Reversal, and Its Application 55

16. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs
for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
536–553. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 30

17. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. J. ACM
(JACM) 50(2), 196–249 (2003)

18. Vadhan, S.: Personal Communication (2016)

http://dx.doi.org/10.1007/978-3-540-85174-5_30

Position-Based Cryptography and Multiparty
Communication Complexity

Joshua Brody1, Stefan Dziembowski2(B), Sebastian Faust3,4,
and Krzysztof Pietrzak5

1 Swarthmore College, Swarthmore, USA
brody@cs.swarthmore.edu

2 University of Warsaw, Warsaw, Poland
s.dziembowski@crypto.edu.pl

3 Ruhr University Bochum, Bochum, Germany
sebastian.faust@rub.de

4 TU Darmstadt, Darmstadt, Germany
5 IST Austria, Klosterneuburg, Austria

pietrzak@ist.ac.at

Abstract. Position based cryptography (PBC), proposed in the semi-
nal work of Chandran, Goyal, Moriarty, and Ostrovsky (SIAM J. Com-
puting, 2014), aims at constructing cryptographic schemes in which the
identity of the user is his geographic position. Chandran et al. construct
PBC schemes for secure positioning and position-based key agreement in
the bounded-storage model (Maurer, J. Cryptology, 1992). Apart from
bounded memory, their security proofs need a strong additional restric-
tion on the power of the adversary: he cannot compute joint functions
of his inputs. Removing this assumption is left as an open problem.

We show that an answer to this question would resolve a long standing
open problem in multiparty communication complexity: finding a func-
tion that is hard to compute with low communication complexity in the
simultaneous message model, but easy to compute in the fully adaptive
model.

On a more positive side: we also show some implications in the other
direction, i.e.: we prove that lower bounds on the communication com-
plexity of certain multiparty problems imply existence of PBC primi-
tives. Using this result we then show two attractive ways to “bypass”
our hardness result: the first uses the random oracle model, the second
weakens the locality requirement in the bounded-storage model to online
computability. The random oracle construction is arguably one of the sim-
plest proposed so far in this area. Our results indicate that constructing
improved provably secure protocols for PBC requires a better under-
standing of multiparty communication complexity. This is yet another

S. Dziembowski—Supported by the ERC starting grant CNTM-207908 and by the
FNP Team grant 2016/1/4.
S. Faust—Supported by the Emmy Noether Program FA 1320/1-1 of the German
Research Foundation (DFG).
K. Pietrzak—Supported by the European Research Council, ERC consolidator grant
(682815 - TOCNeT).

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 56–81, 2017.
https://doi.org/10.1007/978-3-319-70500-2_3

Position-Based Cryptography and Multiparty Communication Complexity 57

example where negative results in one area (in our case: lower bounds in
multiparty communication complexity) can be used to construct secure
cryptographic schemes.

1 Introduction

The standard way to identify participants in cryptographic protocols is to check
their knowledge of some secret data (like a password or a key), to verify some
biometric information, or the possession of some hardware tokens. A new intrigu-
ing idea, known under the name of position-based cryptography (PBC) [16] is to
construct algorithms in which the participating parties are identified by their
geographic position. For example, consider the setting where we want to grant
access to a server only to the personnel within some military base. A position-
based system could be used to give access to every user that is physically located
within the base, but deny it to everybody outside. There are many other exam-
ples one can think of where position-based authentication would be useful. Say,
a protocol for sending confidential documents to everyone who is present in some
conference room, granting WiFi access to people within some building, or check-
ing if a food delivery was indeed ordered from some physical address. Of course,
such protocols can be combined with other means of authentication, and hence
they can also serve for providing an additional layer of security. See [16] for more
on potential applications of this concept.

PBC protocols are typically based on the physical characteristics of wireless
communication channels; concretely, they are based on the fact that electronic
signals are traveling at the speed of light, denoted c (and hence traveling from
point ̂A to ̂B takes time ‖ ̂A ̂B‖/c, where ‖·‖ denotes the length of the segment
̂A ̂B). Thus, if a verifier V sends a message at time T and receives a reply from
a prover P within time T ′, the verifier can be sure that this reply was sent by
a machine that is positioned at distance no more than c · (T ′ − T)/2. A natural
idea would be to exploit this fact, and use some standard trilateration techniques
(like the one used in the GPS system) by having a group of verifiers V1, . . . ,Vn

positioned in space and letting them jointly verify the distance from the prover.
Unfortunately, as shown by Chandran et al. [16], the problem of designing PBC
protocols is harder than it may seem at the first sight. In fact, they show that
in the so-called vanilla model (i.e. without any additional assumptions), PBC
is impossible: There exists an adversarial strategy which places devices around
some point ̂A, and these devices can jointly convince the verifiers in any PBC
protocol that they are at point ̂A, thus breaking the scheme. One way to get
around this would be to restrict the number of adversary’s devices (as the number
of devices required in their attack is as large as the number of the verifiers used in
the protocol). This however is not very realistic, as deploying several adversarial
devices is usually easy in practice, since modern wireless devices are cheap and
small.

Chandran et al. is use Maurer’s bounded-storage model (BSM) [26], studied
in a number of papers, including [3,11,19,25,27,36], the bounded-retrieval model

58 J. Brody et al.

(BRM) is a closely related variant of the BSM [13,17,20]. In this model, it is
assumed that the users of cryptographic protocols have short time access to a
long random string X that is so large that it cannot be stored by the adversary
in its entirety. The only thing that the adversary can do is to compute and store
some function adv on X (where |adv(X)| ≤ ξ|X|, for a constant 0 ≤ ξ � 1). On
the other hand, the honest parties of a protocol should be only required to access
small parts of X in order to complete the protocol. The way this model is used
in [16] is as follows: it is assumed that there is a group of verifiers Vi positioned
in space. Suppose that a prover P claims to be at some position ̂P. Each of the
verifiers broadcasts a long string Xi in such a way that all the Xi’s arrive at ̂P at
the same time T . When this happens, the prover computes some function f on
the Xi’s, and takes some actions that depend on the computed value (e.g. sends
the computed value back to the verifiers in order to prove that he is in point ̂P).
The function f should be very efficiently computable. In particular, to compute
it one should only have to access a small fraction of the Xi’s [16].

In this model Chandran et al. construct a positioning protocol, where a prover
convinces the verifiers that he is physically at some point ̂P. In practice a proto-
col like this is not very useful as a standalone primitive, since it comes with no
guarantee that any future communication will be happening with the machine
that is indeed in ̂P (due to man-in-the-middle attacks). Chandran et al. also
construct a more advanced primitive, called a position-based key-agreement pro-
tocol. Here the final output of the honest parties is a key K which is not known
to a potential adversary. Both the positioning and the position-based key agree-
ment protocols have a very simple structure (see Sect. 2.3). Namely, in case of
the positioning protocol the prover just sends back f(X1, . . . , Xn) to the verifiers
(who check if this value is correct and was received at the right time). For the
position-based key agreement the prover simply lets the agreed key K be equal
to f(X1, . . . , Xn). Such protocols are called one-round, and are very attractive
because of their simplicity. They will also be the focus of this paper.

The proof in [16] requires one additional restriction on the power of the adver-
sary, namely, it is assumed (see [16], p. 1294, Sect. 1.2) that whenever an adver-
sarial device receives strings Xi1 , . . . , Xia

at the same time, it cannot compute an
arbitrary joint function adv on Xi1 , . . . , Xia

(with short output). Instead, it can
only compute several (adaptively chosen) functions on each Xij

independently
(the same restriction applies to the honest parties). Removing this assumption
is left as an “important open problem” in [16] and studying this open question
is the main topic of this work. We show deep connections between the problem
of constructing positioning and position-based key agreement protocols in the
unrestricted BSM model (i.e. without restrictions on the adv function except of a
bound on its output size), and the area of multiparty communication complexity.
Before describing our contribution in more detail (in Sect. 1.2) let us provide a
short introduction to this area (more formal definitions are given in Sect. 2.2,
and for a more comprehensive introduction see [24]).

Position-Based Cryptography and Multiparty Communication Complexity 59

1.1 Multiparty Communication Complexity

In a typical communication complexity problem, there are k players, denoted
plr1, . . . ,plrk. There are also k inputs x1, . . . , xk ∈ {0, 1}n, and the players
must communicate to compute some function f(x1, . . . , xk) of the inputs. The
communication cost of a protocol is measured as the worst-case maximal num-
ber of bits communicated, taken over all possible inputs and all choices for the
random string.

In the multiplayer setting (when k > 2) there are two different models for
how the input is shared. In the number-in-hand (NIH) model, each player plri

sees the ith input xi. In the number-on-the-forehead (NOF) model, each plri

sees all inputs except xi. One can imagine in an NOF protocol that all players
meet in a room, and plri has xi written on her forehead. In this way, players can
see all inputs except what is written on their foreheads. When k = 2, the NIH
and NOF models are one and the same, but for k > 2, they are quite different.
In particular, communication in the NOF model becomes intuitively very easy,
because so much information is shared. This makes proving NOF communication
lower bounds harder. In this paper, we focus on NOF communication complexity.

It is particularly interesting to understand what role interaction plays in com-
munication complexity. In an arbitrary (“fully adaptive”) protocol, players are
allowed to speak back and forth, and messages are broadcast. It is also interesting
to consider a more restrictive model, where each player sends a single message
to a referee, who does not see the inputs, and must compute f(x1, . . . , xk) only
from the messages sent by the players. This restricted model of communication
is called the Simultaneous Messages (SM) model. Occasionally, the communica-
tion complexity of problems can be the same in the SM and interactive model,
but for other problems, allowing interactive communication can even lead to an
exponential decrease in the communication complexity. The NOF communica-
tion model was invented thirty years ago in [15], who also gave as an application
lower bounds for branching programs.

Position based cryptography was partly inspired by the area called secure
positioning [8,12,33,37]. More recently there was work towards constructing
PBC protocols based on other “physical” assumptions, such as quantum chan-
nels [10,14,35]1 (see also [9] and the webpage [34]) or noisy channels [21].

1.2 Our Contribution

We show that constructing a one-round positioning protocol in the unrestricted
BSM gives a construction of a function π with linear SM complexity (in the
NOF model). If we additionally require that the computation on the prover is
local (i.e. he only needs to look at small parts of the input), then π has low
complexity in the fully adaptive model. Finding a function with such properties
is a longstanding open problem in communication complexity, and therefore this
result can be viewed as a “negative” answer to the question posted in [16].

1 Note that [35] uses the random oracle model, that we use in this work (in Sect. 4.1).

60 J. Brody et al.

On a more positive side: we show some implications in the other direction.
Namely, we prove that any function that has high communication complexity in
the so-called “one-round almost SM model” (see Sect. 2.2 for the definition) can
be transformed into a secure positioning protocol. The assumed hardness has
to hold in a strong, randomized sense, i.e., the probability that any “adaptive
SM” protocol computes the output correctly has to be negligible. Fortunately,
we show a function that satisfies this requirement. Our function uses a hash
function as a building block, and the security proof models this hash function as
a random oracle (hence, our construction does not contradict the negative result
mentioned above). The resulting positioning protocol is very simple: essentially,
one verifier sends a long string X, the other verifiers send much shorter strings
Zi, and the output is the sub-string of X on the positions determined by the
hash of the concatenated Zi’s.

We also construct positioning and position-based key agreement schemes
from any function that has high complexity in the “fully adaptive SM model”
(see Sect. 2.2). For our construction to work we need to assume even stronger
hardness: the output of the function has to be “close to uniform” (in the sense of
“statistical distance”, see Sect. 2 for the definition). We show that the so-called
“generalized inner product” function has this property. The resulting protocol
does not have the “locality” property, i.e., the prover in the protocol needs to
read its entire input. The good news is that this computation is very simple, can
be performed very efficiently in an “online” fashion, and hence it may still be
possible to implement it in practice.

2 Preliminaries

Let A and B be random variables distributed over set A. The statistical distance
between A and B is defined as Δ(A;B) := 1

2

∑

a∈A |P (A = a) − P (B = a)|. The
statistical distance of A from uniformity is defined as d(A) := Δ(A;UA), where
UA has uniform distribution over A. The statistical distance of A from uniformity
conditioned on B is defined as d(A | B) = Δ((A,B); (UA, B)) (where UA is
uniform and independent from B). The min-entropy of a random variable W is
defined as H∞(W) := − log2(maxw P[W = w]). We will use the following fact
that can be viewed as a chain-rule for the statistical distance from uniformity
(see, e.g., [19], Lemma 3).

Lemma 1. For any random variables X1, . . . , Xn, and Y we have that

d(X1, . . . , Xn|Y) ≤
n

∑

i=1

d(Xi|X1, . . . , Xi−1, Y).

We also have the following (see, e.g., [19], Lemma 1).

Lemma 2. For every random variables X and Y taking values from X and
Y (respectively) we have that maxα:Y→X (P (X = α(Y))) ≤ d(X | Y) + 1/|X |.
Moreover, if X = {0, 1}, then 2maxα:Y→X (P (X = α(Y))) − 1 = d(X | Y).

Position-Based Cryptography and Multiparty Communication Complexity 61

2.1 Guessing Bits from “compressed” Information

The following machinery will be needed in Sect. 4.1. Consider the following
natural question. Suppose X ← {0, 1}n is chosen uniformly at random. Let
compress : {0, 1}n → {0, 1}βn be any function that “compresses” X, i.e.,
such that β < 1. Let us ask what is the maximal probability that given
compress(X) one can compute the substring consisting of t random positions
in X? More precisely, let guess : {1, . . . , n}t ×{0, 1}βn → {0, 1}t be any function
that tries to “predict” these bits. We ask what is the maximal (over compress
and guess) probability that guess(R, compress(X)) = (X[R1], . . . , X[Rt]), where
R = (R1, . . . , Ra) ← {1, . . . , n}t is random. This question was first answered by
Nisan and Zuckerman [29]. In what follows, we use the presentation from [16]
(which, in turn, is partly based on [36]). The following lemma can be derived
from the discussion in Sect. 4.3 (p. 1306) of [16].

Lemma 3 ([16,29,36]). Take any β < 1. For every t take n such that n > t.
Then for every compress : {0, 1}n → {0, 1}βn and guess : {1, . . . , n}t×{0, 1}βn →
{0, 1}t and a uniformly random X ← {0, 1}n and R = (R1, . . . , Rt) ←
{1, . . . , n}t we have that

P (guess(R, compress(X)) = (X[R1], . . . , X[Rt])) ≤ negl(t).

Proof. Simple inspection of the argument in Sect. 4.3 of [16]. Observe that EG
in [16] is defined as EG(X,R) := (X[Z1], . . . , X[Zt]). The argument in [16] uses
parameters β and δ in, where β is defined as the “adversarial storage rate“(and is
the same parameter as in our notation), and the δ is such that the min-entropy
rate of X is β + δ. Since in our case X is uniform, thus we can simply set
δ := (1 − β). Observe that δ > 0. In [16] the authors use a security parameter
κ and require that t ≥ (2/δ)κ. We can however also treat t as the security
parameter, and then set κ := tδ/2. In [16] it is shown that the probability p of
guessing EG(X,R) correctly is negligible in κ. Therefore it is also negligible in t
(as δ is a positive constant). 	

If A is a finite set, then A ← A denotes the fact that A is sampled uniformly
at random from A. For a natural q the symbol GF(q) denotes the Galois field
of order q. The “||” symbol denotes the concatenation of strings, and for X =
(X1, . . . , Xn) ∈ X n (for some set X) and i, j ∈ {1, . . . , n} (such that i ≤ j) by
writing X[i] we mean Xi, and by X[i, . . . , j] we mean (Xi, . . . , Xj). We will use
the random oracle model (ROM) [7].

2.2 Multiparty Communication Complexity

A brief introduction to the multiparty complexity was already given in Sect. 1.1.
We now introduce more formally the concrete computation models that are used
later in this paper. A protocol is a tuple prot := (plr1, . . . ,plrk,ref) of players
(modeled as Turing machines) that interact with each other. We assume that
the protocol is in the public coins model, i.e., the players have access to some

62 J. Brody et al.

common source of randomness. The input of the protocol is a tuple (x1, . . . , xk) ∈
X1 × · · · × Xk (where Xi’s are some sets). Informally speaking, the goal of the
players is to jointly compute some function f : X1 × · · · × Xk → Y (where Y
is some set). The models that are considered in the literature differ in terms of
what access the players have to the input, and how can they communicate. The
player ref is called the referee and typically takes no input. In the number-on-
the-forehead (NOF) model each plri sees all inputs except xi. We also impose
some restrictions on the communication between the parties. We say that the
protocol prot operates in fully adaptive simultaneous message (SM) model if the
parties communicate as follows.

1. Every player plri (for i = 1 to k) receives input x1, . . . , xi−1, xi+1, . . . , xk

(where each xi ∈ Xi), and the referee ref receives no input.
2. The computation is structured in some number of rounds. In the jth round

the following happens:
For i = 1, . . . , k every player plri (for i = 1, . . . , k) broadcasts some
value wj

i , which is a function of his input variables and the messages
broadcast by other players in the previous rounds.

3. Finally, ref computes the output of the protocol, denoted prot(x1, . . . , xk),
that is a function of the values wj

i that were broadcast by the plri’s during
the computation.

We say that the protocol operates in one-round SM model if the number of
rounds in Step 2 above is 1 (in the literature this has also been called simply
the “SM model”). The one-round almost SMmodel [31] is the same as the one-
round SM model, except that one of the players, plrk, say, is the referee (and
hence there is no need to specify ref separately, and we can write prot =
(plr1, . . . ,plrk)). Compared to the one-round SM model the only difference is
in Step 3, that in case of the one-round almost SM model becomes:

3’. plrk computes the output of the protocol, denoted prot(x1, . . . , xk), that
is a function of his own input (x1, . . . , xk−1) and the values wj

i that were
broadcast by the plri’s during the computation.

Observe that in case of the one-round almost SM model we can assume that the
message w1

k (sent by plrk) is empty, since the only receiver of this message is
plrk himself.

For a protocol prot the maximal total length of the wj
i ’s (where the maxi-

mum is taken over all (x1, . . . , xk) ∈ X1 × · · · × Xk) is called the communication
cost of prot. The communication complexity of a function f is the minimum
communication cost of any protocol computing f .

As explained above, we are mostly interested in the average-case complexity
of the multiparty protocols.

Definition 1. We say that a function f : X1 × · · · × Xk → Y is (s, ε)-hard
in the one-round SM model (or the fully adaptive model) if for every protocol
prot whose communication complexity is at most s, and that operates in the

Position-Based Cryptography and Multiparty Communication Complexity 63

one-round SM model (or the fully adaptive model, respectively), the probability
that prot computes f correctly is at most ε, i.e.,

P (prot(X1, . . . , Xk) = f(X1, . . . , Xk)) ≤ ε, (1)

where the probability is taken over (X1, . . . , Xk) ← X1 × · · · × Xk and the pub-
lic randomness available to the players (the probability in Eq. (1) is called the
correctness probability).

Observe that the adversary can always achieve ε = 1/|Y|. As we will be inter-
ested in protocols where ε is negligible, we will usually use Y’s that are of size
exponential in the security parameter t (e.g., Y = {0, 1}t). We will also use a
stronger notion of hardness that informally speaking requires that the informa-
tion about f(X1, . . . , Xk) obtained by a referee in a multiparty protocol with
communication complexity s is small.

Definition 2. We say that a function f : X1 × · · · × Xk → Y is (s, ε)-strongly-
hard in the one-round SM model (or the fully adaptive model) if for every
protocol prot whose communication complexity is at most s, and that operates
in the one-round SM model (or the fully adaptive model, respectively) we have
that

d
(

f(X1, . . . , Xk) | {W j
1 , . . . , W j

k}t
j=1

)

≤ ε, (2)

where the experiment in (2) consists of sampling (X1, . . . , Xk) ← X1 × · · · × Xk

and the public randomness of the players, and each W j
i is the message broadcast

by plri in the jth round.

To see why the notion defined in Definition 1 is at least as strong as the one from
Definition 2, observe that, by Lemma 2, Eq. (2) implies that

P (prot(X1, . . . , Xk) = f(X1, . . . , Xk)) ≤ 1/|Y| + ε

(see Eq. (1)), which is small for large Y (and small ε).

2.3 Secure Positioning and the Position-Based Key Agreement

In this section we describe in details the model that was already informally
discussed in Sect. 1 (for the full formal definition see [16]). A secure positioning
protocol in D dimensions is a tuple Π = (V1, . . . ,VD+1, P), where the Vi’s are
the verifiers positioned in a D-dimensional space (and not lying on one (D − 1)-
dimensional hyperspace) and a P is a prover, positioned within the polytope
determined by the verifiers. The protocol will be attacked be a set of adversaries
{A1, . . . ,At}, each Ai positioned in place ̂Ai. The Vi’s, Ai’s, and P are modeled
as randomized Turing machines. We also assume that the Ai’s have access to
the common public randomness.

We assume that all the machines are equipped with perfect clocks and that
their computation takes no time. Each machine is aware of its own position
in space (more formally: it gets it as an auxiliary input). The position of each

64 J. Brody et al.

verifier Vi is denoted by ̂Vi. The verifiers also get as input a position ̂P where
the prover “claims to be”. Their goal is to check if he indeed is in this position.
The decision (yes/no) of the verifiers is communicated at the end of the protocol
by one of them (V1, say).

The only messages that are sent are of a broadcast type (i.e. there are no
directional antennas). A message sent by a machine positioned in point U arrives
to a machine in point U ′ in time ‖UU ′‖/c, where c is the speed of light. We
assume that the adversary cannot block or delay the messages sent between the
honest participants. It is clear that such an assumption is unavoidable, as, by
blocking all the messages, the adversary can always prevent any protocol from
succeeding. The communication links between the verifiers are secure (secret and
authenticated), which can be achieved by standard cryptographic techniques.

As already highlighted in Sect. 1, the important difference between our model
and the one of [16] is that we assume that if in some moment T several messages
Xi1 , . . . , Xi�

meet at point ̂Ai, then Ai can compute any joint function advT
i of

(Xi1 , . . . , Xi�
). Let AT

i be the result of this computation, and let A be the random
variable denoting the concatenation of all the AT

i . We require that |A| ≤ s,
where s is called the retrieval bound. Informally speaking, the adversary can
either broadcast AT

i or store it in his memory, but to keep the model as simple
as possible we will make no distinction between these two cases. Namely, we
assume that (1) each adversary always broadcasts every value immediately after
he computed it, and (2) each adversary stores every message broadcast by any
adversary.2 Hence a value of a function advT

i can depend on all the adversarial
messages received by Ai at or before time T (including the messages sent by Ai

himself in time T).
We assume that several adversaries can be put in one place in space, but

for simplicity we require that the adversaries that are in the same place do
not broadcast messages at the same time (clearly, this assumption can be made
without loss of generality, as such adversaries can be “simulated” by one).

We also assume that every adversary computes (and broadcasts) a value
only once. Note that this also does not affect the generality of the model, as
we do not put any restrictions on the number of adversaries, and moreover,
several adversaries can be put in the same point in space. Therefore an adversary
that computes m values (in different moments in time), can be “simulated”
by m adversaries placed in the same point. We say that Π is an (s, ρ)-secure
positioning protocol if the following two conditions hold:

correctness: If the prover P is placed in the claimed position ̂P ∈ G then V1

produces as output “yes”,
security: For any set of adversaries {A1, . . . ,At} with retrieval bound s (such

that no adversary or honest prover is in position ̂P), the verifier V1 produces
as output “yes” with probability at most ρ. (If V1 produced “yes” then we
say that the adversaries broke the scheme.)

2 Observe that these assumptions can be made without loss of generality, as storing
the computed values does not affect the retrieval bound.

Position-Based Cryptography and Multiparty Communication Complexity 65

Following [16], we also consider a stronger type of protocols called the
position-based key agreement. In such a protocol the goal of the prover and
the verifiers is to agree on a key K ∈ {0, 1}m. More formally, at the end of
the execution the prover produces as output KP , and one of the verifiers, V1

(say) produces KV . We say that Π is an (s, ρ)-secure position-based key agree-
ment protocol in D dimensions if the following two conditions hold (assuming
the prover P is placed in the claimed position ̂P ∈ G):

correctness: The agreed keys are identical, i.e., KP = KV .
security: For any set of adversaries {A1, . . . ,At} with retrieval bound s (such

that no adversary is in position ̂P) we have that d(KP | A) ≤ ρ (recall
that A is the random variable denoting all the information computed by the
adversaries).3

For reasons explained in the introduction we are interested in protocols that
have the following simple structure (let T be some moment in time):

1. Each Vi sends a message Xi ← Xi (where Xi is some set) to P in time
T − ‖̂Vi

̂P‖/c (in this way all Xi’s arrive to P in time T).
2. P computes Y = π(X1, . . . , XD+1) (for some function π : X1 × · · · × XD+1 →

Y) and
– in case of the positioning protocols: P broadcasts Y ,
– in case of the key-agreement protocols: P sets KP = Y .

3. In the last step the verifiers compute π(X1, . . . , XD+1) in some way (e.g.,
they may simply send to one verifier all the inputs and let him compute the
output). The details of this computation depend on the function that they
compute. In many cases there also exist techniques that allow to save on the
communication and space complexities of this procedure, e.g., each Xi can
be generated pseudorandomly from some seed Si, in which case it is enough
that the verifiers store and send to each other only the Si’s. We write more
about it when we consider the concrete implementations in Sect. 4.

– in case of the positioning protocols: each Vi accepts the proof only
if y that he received is indeed equal to π(X1, . . . , XD+1) and it arrived to
him in time T + ‖̂Vi

̂P‖/c,
– in case of the key-agreement protocols: the verifier V1 produces

KV = π(X1, . . . , XD+1) as the agreed key.

A protocol of this type will be called a one-round protocol parametrized by π.
We say that a protocol is for positions in the set W ⊆ R

D if it works only if
̂P ∈ W (note, however, that we do not restrict the set of positions where the
adversary can be placed). Let us also comment on the assumption that Xi is
sampled uniformly from some set. This is done mostly for the sake of simplicity,

3 In [16] the security of a key agreement is defined using the “indistinguishability”
paradigm (cf. Definition 2.2 in [16]): no adversary, after learning A, should be able
to distinguish KP from a uniformly random key, with advantage larger than ρ. It is
easy to see that these definitions are equivalent.

66 J. Brody et al.

and to keep our model consistent with the one in Sect. 2.2. We could also have
a more general definition where the Xi’s would come from some more general
class of distributions, e.g., the distributions with high min-entropy (as is done
in [16]). For the equivalence results shown in Sect. 3 to hold, we would need
to extend the hardness definitions in Sect. 2.2 to cover also the case when the
Xi’s are not uniform, but this can be done in a straightforward way. Also our
constructions can be easily generalized to cover the case when the inputs come
from a high-min entropy source (this generalization will be described in the full
version of this paper).

It is natural to ask how do these two primitives relate to each other. Obvi-
ously, every (s, ρ)-secure position-based key agreement protocol can be converted
into an (s, ρ′)-secure positioning protocol with ρ′ = 2−|K| + ρ in the following
way: let the prover send KP to V1, and let V1 output “yes” only if KP = KV . It
easily follows from Lemma 2 that if P is not in the position ̂P then the probability
that he can guess KP is at most ρ′.

On the other hand, it is also possible to convert every secure (s, ρ)-secure
positioning protocol (for some negligible ρ) into an (s, ρ′)-secure position-based
key agreement protocol (for negligible ρ′), at a cost of introducing computa-
tional assumptions. Concretely, pubilc-key encryption and non-malleable com-
mitments, we refer to [16] (Sect. 6, p. 1311) for further details.

2.4 Prover’s Efficiency

The function π needs to be computed also by the prover P, and it is important
to choose π such that this computation can be done efficiently. Note that the
advantage of P over the adversaries is that he has simultaneous access to all
the π’s inputs X1, . . . , XD+1. Since the Xi’s are very long, we would ideally like
to be able to compute π by looking only on some small parts of the inputs
(polylogaritmic in |X|, say). This property, called locality, was stated as an
explicit requirement in [16]. It is also common in the previous papers on the
bounded-storage model [3,18,20,26]. One of our constructions in this paper (see
Sect. 4.2) does not have this property (the one in Sect. 4.1 has it). Instead it has
the property of being online computable which means that π reads its input by
just processing its input online in small memory. We remark that in some cases
such algorithms may actually be easier to implement than some of the locally
computable ones (think of a locally computable algorithm that is required to
access many bits on its input that are located far away).

3 The Reductions

In this section we show strong connections between the two areas described in
Sect. 2. We start (Sect. 3.1) with showing that a construction of a positioning pro-
tocol immediately gives a construction of a function with a high one-round SM
complexity. Note that this means that a similar implication holds for position-
based key agreement (since, as explained in Sect. 2.3, position-based key agree-
ment is a stronger primitive than secure positioning). Then, in Sect. 3.2, we show

Position-Based Cryptography and Multiparty Communication Complexity 67

an implication in the opposite direction, namely, we prove that every function
with high one-round almost SM complexity gives rise to a secure positioning
protocol, and every function with high fully adaptive SM complexity gives rise
to a secure position-based key agreement protocol.

From an application point of view, the results in Sect. 3.1 are “negative”,
as they show that in order to construct secure positioning protocols (and the
position-based key agreement protocols) we need to show multiparty functions
that have high communication complexity, which seems to be non-trivial, espe-
cially if the locality is required (see end of Sect. 3.1 for a discussion on this). On
the other hand, the results from Sect. 3.2 can be viewed as “positive”, since they
provide a way to construct secure positioning (and position-based key agree-
ment) protocols. Notice that these positive results yield a constructive use of
lower bounds in communication complexity. We instantiate these constructions
with concrete protocols is Sect. 4.

3.1 Secure Positioning in the BRM Implies Lower Bounds for SM
Complexity

We now show that existence of a one-round protocol for secure positioning
implies lower bounds for the multiparty communication complexity. Note that,
as described in Sect. 2.3, the secure positioning protocols are a weaker primi-
tive than the position-based key agreement protocols, and a similar implication
also holds for the position-based key agreement. To keep the exposition simple
we address only the case when the verifiers are placed on vertices of a regular
D-dimensional simplex, but it should be clear that our argument can be eas-
ily extended to more general cases. The statement of the lemma assumes that
D = 2 or D = 3. This is because, obviously, the case of D > 3 has no prac-
tical relevance, and for D = 1 the function π has only two arguments, so, as
described in the introduction, it makes little sense to talk about the NOF com-
plexity. Recall that a regular 2-dimensional simplex is an equilateral triangle,
and a regular 3-dimensional simplex is a regular tetrahedron. We now have the
following theorem.

Theorem 1. Suppose Π is an (s, ρ)-secure one-round positioning protocol in D
dimensions (for D = 2 or D = 3) parametrized by π : X1 × · · · × XD+1 → Y
with verifiers positioned on vertices of a regular D-dimensional simplex. Then π
is (s, ρ)-hard in the 1-round SM model.

Proof. Let a denote the length of the edge of the simplex, or, in other
words, the distance between any pair of verifiers. For the sake of contra-
diction suppose π can be computed in a one-round SM model by a proto-
col prot = (plr1, . . . ,plrD+1,ref) with communication complexity s and
correctness probability ρ′ > ρ. For every plrj ∈ {plr1, . . . ,plrD+1} let
Msgj = Msgj(X1, . . . , Xj−1,Xj+1, . . . , XD+1) denote the message computed by
plrj , and let Ref(Msg1, . . . ,MsgD+1) be the value computed by the referee ref

68 J. Brody et al.

V1 V2

V3

P

a

a a

a
√
3/3

V1 V2

V3

P

X1

X
2

X
3

Y

Y

Y

Fig. 1. On the left: the configuration of the prover and the verifiers for in the two-
dimensional case. On the right: the execution of the positioning protocol in this con-
figuration. The dashed lines indicate the messages sent back by the prover. Note that
the Xi’s and Y are broadcast (there are no directional antennas in our model), and
the lines are only indicating the communication that matters for the protocol.

(equal to π(X1, . . . , XD+1) with probability ρ′). We now show a set of adver-
saries A1, . . . ,AD+1,B1, . . . ,BD+1 with retrieval bound s that break Π with
probability ρ′ (and none of them is positioned in position ̂P).

We assume that position ̂P is the center of mass of the simplex determined
by the verifiers. Hence, ̂P is in the same distance to all the verifiers, and therefore
all the messages Xi are sent in the same moment U = T −‖ ̂P ̂V1‖/c, where (as it
can be easily verified using basic geometric arguments) ‖ ̂P ̂V1‖ is equal to a

√
3/3

(if D = 2) and is equal to a
√

6/4 (if D = 3). This situation is depicted on Fig. 1
for the case D = 2.

Obviously, all the verifiers expect to receive the answer from the prover in
time T +‖ ̂P ̂V1‖/c = U +2‖ ̂P ̂V1‖/c. The adversaries A1, . . . ,AD+1,B1, . . . ,BD+1

behave in the following way (see Fig. 2).

Position-Based Cryptography and Multiparty Communication Complexity 69

V1 V2

V3

A3

A2 A1

X1

X
1

X2

X
2

X
3

X
3

W3 W3

W
2

W
2

W
1

W
1

V1,B1
W1

V2,B2
W2

V3,B3
W3

X1

X
1

X2

X
2

X
3

X
3

Fig. 2. On the left: the actions of the Ai’s, on the right: the actions of the Bi’s (recall
that each Wi is a function of all the Xj ’s except of Xi).

– Each Aj is positioned in point ̂Aj defined as follows: ̂Aj is the center of
mass of the facet determined by the points ̂V1, . . . , ̂Vj−1, ̂Vj+1, . . . , ̂VD+1. This
facet is either a line segment—in case D = 2, or an equilateral triangle—
in case D = 3. From the regularity of this facet we get that the messages
X1, . . . , Xj−1,Xj+1, . . . , XD+1 (sent by the verifiers V1, . . . ,Vj−1,Vj+1, . . . ,

VD+1) arrive to point ̂Aj in the same moment. In the moment when they
arrive there, the adversary Aj computes Wj = Msgj(X1, . . . , Xj−1,Xj+1, . . . ,

XD+1) and broadcasts the result. This happens in time U + ‖ ̂Aj
̂Vi‖/c.

– Each Bi is positioned in point ̂Vi.4 He does the following:
• When the messages X1, . . . , Xi−1,Xi+1, . . . , XD+1 arrive to him (observe

that, from the regularity of the simplex, they all arrive in the same

4 The reader may object that it is not realistic to assume that an adversary is posi-
tioned at zero distance from a verifier. At the end of the proof we argue that Bi can
actually be put at some place far from any verifier. We decided to assume that Bi is
positioned exactly in point ̂Vi to keep the exposition simple.

70 J. Brody et al.

moment T ′ = U + a/c) he computes Wi := Msgi(X1, . . . , Xi−1,
Xi+1, . . . , XD+1) and stores the result.

• He also stores each message Wj broadcast by Aj (for j ∈ {1, . . . , i −
1, i + 1, . . . , D + 1}) when it arrives to him. This happens in time T ′′ =
U + ‖ ̂Aj

̂Vi‖/c + ‖ ̂Aj
̂Bi‖/c (where ̂Bi is the position of Bi, which is equal

to ̂Vi). Hence T ′′ is equal to U + 2‖ ̂Aj
̂Vi‖/c.

Additionally since ‖ ̂Aj
̂Bi‖ is nonnegative, it follows that ‖ ̂Aj

̂Vi‖+‖ ̂Aj
̂Bi‖

≥ ‖ ̂Aj
̂Vi‖ = a, and therefore T ′′ ≥ T ′.

• After the two steps above are completed (which happens in time max(T ′,
T ′′) = T ′′) the adversary Bi knows all W1, . . . , WD+1 and he can simply
compute the output Y as Ref(W1, . . . , WD+1), and pass it Vi (which takes
zero time, since Bi is positioned exactly in ̂Vi). Moreover, he can do
it exactly in time U + 2‖ ̂P ̂V1‖/c when Vi expects to receive y. This is
possible, because (as we show below)

T ′′ < U + 2‖ ̂P ̂V1‖/c. (3)

We now show (3). Let us start with case D = 2. Since in this case each facet
of the simplex is a line segment of length a, hence ‖ ̂Aj

̂Vi‖ = a/2. Therefore (3)
becomes

U + a/c < U + 2a
√

3/(3c), (4)

which holds because 1 < 2
√

3/3. In case D = 3 each facet is a regular triangle
with edge of length a. Thus ‖ ̂Aj

̂Vi‖ =
√

3/3, and therefore (3) becomes

U + 2a
√

3/(3c) < U + 2a
√

6/(4c), (5)

which holds because 2
√

3/3 < 2
√

6/4. Clearly the adversaries constructed this
way compute function π correctly with exactly the same probability σ′ as the
SM protocol computes it. It remains to calculate how much communication was
generated by the adversaries. Observe that each Msgj is computed by each Aj

and Bj , respectively. Each Bj can compute the final answer by storing Msgj

and receiving {Msgi}i�=j , hence the total amount of retrieved information is
∑D+1

i=1 Msgi = s. This finishes the proof.
Finally, note that both inequalities (4) and (5) are sharp, and the differences

between the left hand sides and the right hand sides are non-negligible. This
means that Bi has to wait some noticeable amount of time before he sends y to
the verifier Vi. Hence, it is also ok to place Bi in some position ̂Bi further away
from Vi (as long as the ̂Bi is in equal distance to the remaining verifiers). 	

Recall that according to the standard definitions (see Sect. 2.4) we want
function π to be locally computable, which means that it should be possible
to compute it by looking only at a polylogarithmic number of bits of its input
(X1, . . . , XD+1). It is easy to see that such an algorithm is trivial to implement
by a multiparty protocol that has polylogarithmic communication complexity
in the fully adaptive settings. On the other hand, function π, by Theorem 1,

Position-Based Cryptography and Multiparty Communication Complexity 71

needs to have a linear complexity in the one-round SM model. Since finding
such functions is an open problem we view this result as an indication why
showing one-round positioning protocols in the unrestricted BSM model is hard.
The reader may object that typically the communication complexity literature
is more focused on deterministic functions that compute one bit, while here we
consider randomized functions (with small correctness probability) with multi-
bit output. This is not a problem for the following reasons: (1) it is easy to see
that a lower bound on the communication complexity of our multi-bit output
randomized function also implies a lower bound on a single-bit output functions
(since there has to be at least one bit of output that is hard to guess with good
probability), and (2) randomized lower bounds imply the deterministic ones.

3.2 Lower Bounds for SM Complexity Imply Results for PBC

In this section we show implications in the other direction than in Sect. 3.1,
i.e., we show how to build positioning and position-based key agreement pro-
tocols from functions that have high communication complexity. Unlike in case
of Sect. 3.1 we consider these two cases separately (the first one in Theorem 2),
and the second one in Theorem 3. Although in principle the second construc-
tion would suffice for showing the general implication (as the key agreement is
a stronger primitive than the positioning), such a separation makes sense, since
the requirements for the communication complexity that we need in Theorem2
are weaker (and hence Theorem 2 does not directly follow from Theorem3). Also
the conditions on the position of the prover P are more restrictive in Theorem 3.
First, we need the following geometric fact (see [16]).

Lemma 4. Suppose D ∈ {2, 3}. Consider pairwise distinct points ̂V1, . . . , ̂VD+1

positioned in a D-dimensional space, and let ̂P be any point within the D-
dimensional simplex S whose vertices are in points ̂V1, . . . , ̂VD+1. Then, for any
point ̂A = ̂P there exists i such that ‖̂Vi

̂A‖ > ‖̂Vi
̂P‖.

We now have the following.

Theorem 2. Suppose D ∈ {2, 3}. Let π : X1 × · · · × XD+1 → Y be an
(s, ρ)-hard function in the one-round almost SM model. Let Π be a one-round
positioning protocol parametrized by π. Then Π is (s, ρ)-secure for positions
within the D-dimensional simplex whose vertices are the positions of the ver-
ifiers ̂V1, . . . , ̂VD+1.

Moreover, something slightly stronger holds, namely the protocol Π is secure
even if only Vk (i.e.: the arbiter in the almost adaptive NOF protocol) receives
the message from the prover.

Proof. We say that an adversary Ai directly computes on some Xj if he produces
his output exactly when Xj passes through ̂Ai. We also recursively define a
partial order dependence relation “�” among the verifiers and the adversaries as
follows:

72 J. Brody et al.

– Vi � Aj if the value broadcast by Vi reaches Aj not later than when Aj

produces his output. More precisely let Ti be the time when Vi broadcast
Xi and let Tj be the time when Aj computes his function, then Vi � Aj if
‖ ̂Aj

̂Vi‖/c ≤ Tj − Ti.
– analogously Ai � Aj if the value computed by Ai reaches Aj not later than

when Aj produces his output.

(Clearly the dependence relation is a partial order.) Set k := D + 1. Let P
be the prover, and V1, . . . ,VD+1 be the verifiers. Assume the position ̂P of P is
within the D-dimensional simplex whose vertices are the positions of the verifiers
̂V1, . . . , ̂VD+1. For the sake of contradiction assume that Π can be broken by
adversaries with retrieval bound s with probability ρ′ > ρ. This means that
one of the adversaries is able to send to the verifier Vk a message Y equal to
π(X1, . . . , Xk) with probability ρ′ (assuming (X1, . . . , Xk) ← X1×· · ·×Xk), and
this message arrived to Vk in time T +‖̂Vk

̂P‖/c, where T is the time where all the
Xi’s arrive to point ̂P. We now show a one-round almost adaptive protocol for
computing π with probability ρ′ and communication complexity s. The protocol
works as follows.

Let Adv1 be the set of all adversaries Ai that depend on some proper subset of
verifiers. Our protocol (in the first round) computes all Ai’s such that Ai ∈ Adv1.
This can clearly be done since each such Ai is a function of some proper subset
of the input variables X�.

Let Adv2 be the set of all the remaining adversaries. Take any Ai ∈ Adv2.
We know that Ai depends on all the verifiers (as otherwise it would be in Adv1).
Let ̂Ai be the position of this adversary. By Lemma 4 it has to be the case that
for some ̂Vj we have

‖̂Vj
̂Ai‖ > ‖̂Vj

̂P‖. (6)

Any Ai which depends on ̂Vj must produce its output after receiving Xj . There-
fore (6) implies that the time Ti when Ai produces its output is such that

Ti > T. (7)

Consider some Ai ∈ Adv2 that is positioned further away from Vk than P. By
(7) the output of such Ai will not reach Vk before time T + ‖̂Vk

̂P‖/c, and hence
it is irrelevant for the protocol.

Therefore what remains is to consider the adversaries Ai ∈ Adv2 that are
closer to Vk than P. From (7) we have that the computation of such Ai happens
after Xk passed through Ai, and therefore Ai does not compute on Xk directly.
Thus, every computation performed by the Ai’s from Adv2 (that are closer to Vk

than P) can be performed if one knows the set X1, . . . , Xk−1 plus the outputs
of the Aj ’s from Adv1. Hence, it can be done by plrk acting as a referee.

Since the SM protocol that we constructed simply simulates the adversaries
Ai by computing their outputs, its communication complexity is s. This com-
pletes the proof. 	

Position-Based Cryptography and Multiparty Communication Complexity 73

We now show Theorem 3 that is similar to Theorem 2, but it holds for
position-based key agreement. Observe that for the lemma to hold we need
a stronger assumption than in Theorem 2, namely that π is hard in the fully-
adaptive SM model. Also, unlike in Theorem2, we do not specify explicitly what
geometric configurations of the verifiers and the prover are allowed. Instead, we
simply say that they need to be such that the messages sent by the verifier (see
Sect. 2.3) never “meet” at any place other than the position ̂P of the prover.
More precisely, we require that there does not exist time U and place ̂Z = ̂P
such that at time U all the Xi’s are in ̂Z. We refer the reader to [16], Sect. 7.3.1 as
to what these valid configurations for the parties are. We now prove the following
theorem.

Theorem 3. Suppose D ∈ {2, 3}. Let π : X1 × · · · × XD+1 → Y be an (s, ρ)-
strongly-hard function in the fully adaptive SM model. Let Π be a one-round
key-agreement protocol in D dimensions parametrized by π. Then Π is a (s, ρ)-
secure key-agreement protocol assuming all the messages sent by the verifiers
never meet at any other place than the position ̂P of the prover.

Proof. For the sake of contradiction suppose Π is not (s, ρ)-secure, i.e. there
exists adversaries A1, . . . ,At, each positioned in ̂Ai, . . . , ̂At (resp.), such that

d(π(X1, . . . , XD+1) | A) = ρ′ > ρ, (8)

where X1, . . . , XD+1 ← X1 × · · ·×XD+1 are the input variables, and A is a con-
catenation of the outputs AT

i of the advT
i functions computed by the adversaries

when the protocol Π is executed on input (X1, . . . , XD+1). To finish the proof
we show an NOF protocol with communication complexity s such that

d(π(X1, . . . , XD+1) | W) = ρ′, (9)

where W is a concatenation of the messages sent by the players when the NOF
protocol is executed on variables (X1, . . . , XD+1). Clearly, showing (9) will con-
tradict the assumption that π is (s, ρ)-strongly-hard in the NOF model.

Let � be the partial order from the proof of Lemma2. The NOF protocol
simply computes all the AT

i starting least Ai’s in the “�” order, and maintaining
the invariant that a given AT

j can be computed only if the A�’s that precede Aj

in this order were computed. By our assumption, its never the case that a Ai

computes directly on all the Xi’s. Therefore this computation can be performed
by a (fully adaptive) NOF protocol. It is also easy to see that the output W of
this protocol has identical distribution to A. This finishes the proof. 	

4 Concrete Constructions

In this section we provide two concrete constructions of positioning and position-
based key agreement protocols. This is done using the theory developed in
Sect. 3.2, i.e., we first prove that some function π has high communication com-
plexity, and then use this function to construct a position-based protocol. We

74 J. Brody et al.

start with a construction of a positioning protocol that has the “locality” prop-
erty (see Sect. 2.4), and works in the random oracle model. Note, that using
the techniques from [16], this positioning protocol can be transformed into a
position-based key agreement, using the computational assumptions discussed
in Sect. 2.3. Then, in Sect. 4.2, we show a construction of a position-based key
agreement in the plain model (i.e. without a random oracle assumption). This
second construction comes without the locality property, i.e., the prover has to
read the entire random strings Xi that are sent to him by the verifiers. On the
other hand, it has the on-line-computability property, i.e., the Xi’s need to be
read only once in an on-line fashion, by an a machine with very small memory
(see Sect. 2.4).

4.1 Protocols in the Random Oracle Model

As proven in Sect. 3.2 (see Theorem 2), to construct such a protocol it is enough
to show a function π : X1 × · · · × Xk → Y whose one-round almost SM
complexity is high. Let t be a security parameter. We assume that the par-
ties have access to t random oracles containing functions {Hj : {0, 1}∗ →
{1, . . . , n}}t

j=1 (let H denote this family of functions). The function π will
depend on the functions in H. Also every party will have access to the functions
in H. More concretely, let πH,t

k,n : ({0, 1}t)k−1 × {0, 1}n → {0, 1}t be a func-
tion defined as: πH,t

k,n (Z1, . . . , Zk−1,X) := (X[H1(Z)], . . . ,X[Ht(Z)]), where
Z = (Z1|| · · · ||Zk−1).

Our positioning protocol ΠH,t
D,n in D dimensions (for D ∈ {2, 3}) is simply

the one-round positioning protocol parametrized by πH,t
D+1,n (see Sect. 2.3). More

concretely: it consists of D+1 verifiers V1, . . . ,VD+1 (positioned in ̂V1, . . . , ̂VD+1,
resp.). Each Vi (for i ≤ D) sends a random Zi ← {0, 1}t in time T − ‖̂Vi

̂P‖/c

(where ̂P is the claimed position of the prover), and VD+1 sends a random
X ← {0, 1}n (in time T − ‖̂VD+1

̂P‖/c). All the messages arrive to P in time T .
Then, P computes X[H1(Z)], . . . , X[Ht(Z)], and sends the result back to VD+1,
who checks if the result is correct (at the end of this section we discuss how this
check can be done very efficiently). The security of ΠH,t

D,n follows directly from
Theorem 3, and the following fact.

Lemma 5. Consider an almost adaptive one-round SM protocol plr1, . . . ,plrk

with plrk being the referee, and every player having random oracle access to the
functions in H. Let βn denote the total communication complexity of this protocol
(where n ∈ N and β < 1 is some constant) and let q be the number of times the
parties query the random oracles. Assume q is polynomial in t and n is any
function of t such that n ≥ t. Let Y denote the output of plrk. Then we have

P

(

Y = πH,t
k,n (Z1, . . . , Zk−1,X)

)

≤ negl(t), (10)

where negl denotes a negligible function, the probability in (10) is taken over
random X ← {0, 1}n, (Z1, . . . , Zk−1) ← ({0, 1}t)k−1, and the random choice of
the functions on H.

Position-Based Cryptography and Multiparty Communication Complexity 75

Proof. Suppose we have an almost adaptive one-round SM protocol plr1, . . . ,
plrk (with plrk being the referee) such that the probability in (10) is non-
negligible. Recall the guessing game from Sect. 2.1. We now show how to use
plr1, . . . ,plrk to construct a pair of functions compress : {0, 1}n → {0, 1}βn

and guess : {1, . . . , n}t × {0, 1}βn → {0, 1}t such that the probability that
guess(R, compress(X)) = (X[R1], . . . , X[Rt]) is non-negligible in t, where X ←
{0, 1}n and R = (R1, . . . , Rt) ← {1, . . . , n}t. Since by Lemma 3 we know that
this is impossible, we will obtain that the probability in (10) has to be negligible.

The functions compress and guess that we construct are randomized, i.e., they
depend on some external fresh randomness. In particular, we will assume that
the hash functions H that the players have access to (via the random oracle) were
sampled in advance. Of course, such sampling cannot be done efficiently (since
the set of all such functions is of exponential size), but this is ok, since our con-
struction is anyway information-theoretic (note that Lemma3 does not involve
any complexity-theoretic assumptions). We will later argue why the assumption
about the availability of external randomness can be done without loss of gener-
ality. First, however, let us present the definitions of the functions compress and
guess.

The function compress is defined as follows. First it samples (Z1, . . . , Zk−1) ←
({0, 1}t)k−1. Then, on input (X,R1, . . . , Rk−1) it produces as output a tuple
(V1, . . . , Vk−1), where each Vi is equal to the output of player plri on input
(R1, . . . , Ri−1, Ri+1, . . . , Rk−1,X) (recall that in this model the referee plrk

does not produce any output in the first phase). Note that simulating the plri’s
may require replying to their random oracle queries. We reply to each such
query using the hash functions H that were sampled beforehand. Observe that
|(V1, . . . , Vk−1)| ≤ βn, and therefore compress can fit this output in the set
{0, 1}βn.

On input (R1, . . . , Rt) and X the function guess does the following. It simu-
lates the referee plrk on input (Z1, . . . , Zk−1) (which are the values that were
already sampled by compress). It answers all the random oracle queries using H,
with one important exception. Namely, every query of a form (Z1|| · · · ||Zk−1) to
an oracle containing a hash function Hj (for j = 1, . . . , t) is answered with Rj .

Now, let E denote the event that it never happened that any of the plr1, . . . ,
plrk−1 queried any of the random oracles on (Z1|| · · · ||Zk−1). It is easy to see
that we have the following:

P

(

Y = πH,t
k,n (Z1, . . . , Zk−1,X) | E

)

= P (guess(R, compress(X)) = (X[R1], . . . , X[Rt]) | E) . (11)

This is because if E occurred then the functions compress and guess perfectly
“emulated” the execution of plr1, . . . ,plrk. Observe that here we use the
assumption that the Rj ’s are uniform, which implies that our answers to the
“(Z1|| · · · ||Zk−1)” queries are indistinguishable from the answers of the “real”
random oracle. Of course, this would not be true if such a query was earlier asked
by one of plr1, . . . ,plrk−1, but this did not happen, since in (11) we condition
on the event E .

76 J. Brody et al.

On the other hand, it is clear that P (¬E) ≤ q/2t. This is because querying
the oracle on “(Z1|| · · · ||Zk−1)” requires the knowledge of all the Zi’s, and every
plri (for i = 1, . . . , k − 1) does not know one of them. Hence the probability
that any plri guesses “(Z1|| · · · ||Zk−1)” in one query is 2−t (remember that each
of them is uniformly random on {0, 1}t). Consequently, the probability that it
guesses it in at least one of its q queries is at most q/2t. Since we assumed that
q is polynomial in t, thus we get that P (¬E) ≤ negl(t). Combining it with (11)
we obtain

P

(

Y = πH,t
k,n (Z1, . . . , Zk−1,X)

)

(12)

≤ P (guess(R, compress(X)) = (X[R1], . . . , X[Rt])) + negl(t). (13)

Thus, since we assumed that (12) is non-negligible, we obtain that the prob-
ability in (13) is non-negligible.

What remains is to describe how to “derandomize” the compress and guess
functions that we constructed. This can be done via a very standard argument.
Since the inequality (13) holds when the probability is computed including the
internal randomness ρ of compress and guess thus there has to exist a concrete
value ρ0 such that (13) holds if we fix ρ to ρ0. We can therefore derandomize these
functions by simply “hardwiring” these randomness into them. This finishes the
proof. 	

Let us also discuss the nature of the πH,t
k,n function, focusing on the (simplest)

case when t = 1, i.e., only one bit is produced as output. The reader familiar
with the communication complexity literature may observe that this function
is similar to so-called shift function [28], and more general notion called the
general addressing function (GAF) [4,31]. The shift function is defined very
similarly to πH,1

k,n , except that the Zi’s take values in the Zn group, and H1 is
defined as H(Z1, . . . , Zn) := X[Z1 + · · · Zk−1] (in case of GAF we can also have
groups other than Zn). Somewhat surprisingly it appears very hard to prove the
lower bounds for the SM complexity in this model. The only known non-trivial
lower bound in the shift function is Ω(n1/k) [28,31]. Moreover, sublinear upper
bounds on this complexity are known [1,2,30,31]. The hardness of this problem
can in some sense serve as a justification for the use of the random oracles in
our construction. Theorem3 and Lemma 5 together imply the following.

Corollary 1. For any β < 1 and for n > t the protocol ΠH,t
D,n is a (βn, negl(t))-

secure positioning protocol for positions within the D-dimensional simplex whose
vertices are the positions of the protocol’s verifiers.

Let us also now mention that in a practical implementation one can let the
verifiers choose the Zi’s in advance. Therefore VD+1 can compute Hi(Zi)’s and
store only the X[Hi(Zi)]’s. Thus, the storage requirements of this protocol are
very low.

Position-Based Cryptography and Multiparty Communication Complexity 77

4.2 Protocols in the Plain Model

In this section we propose an alternative construction of positioning and key
agreement protocols. The protocols presented in this section are online com-
putable (see Sect. 2.4), and do not require the random oracle assumption.
Let us first recall the definition of the generalized inner product function
[5]. Let F = GF(2m) be a finite field (for simplicity we restrict ourselves
to the Galois fields of order 2m, but our results can be generalized to arbi-
trary finite fields). For some natural parameters � and k (such that k ≥ 2)
define the generalized inner product (GIP) function as GIP�,k : (F�)k → F as
GIPF

�,k((x1
1, . . . , x

1
�), . . . , (x

k
1 , . . . , x

k
�)) =

∑�
i=1

∏k
j=1 xj

i .
The positioning and the position-based key agreement protocols (in D ∈

{2, 3} dimensions), denoted Γ pos
�,D,t and Γ ka

�,D,t (resp.), are simply the one-
round protocols parameterized by GIPF

�,D+1 (see Sect. 2.3), i.e., the verifiers
V1, . . . ,VD+1 broadcast random strings Xi ← F

�, and the prover computes
GIP(X1, . . . , XD+1), which he either keeps as the agreed key, or broadcasts back
to the verifiers (depending on whether the protocol is for key agreement or for
positioning). The verifiers compute GIP(X1, . . . , XD+1) and keep it as the agreed
key (in the first case), or simply check if it is identical to what they got from the
prover (in the second case). We now have the following lemma that states that
GIP is hard in the fully adaptive model. Note that this lemma implies hardness
in the almost adaptive one-round SM model (since this model is more restric-
tive), and hence, together with Theorems 2 and 3, implies security of the Γ pos

�,D,t

and Γ ka
�,D,t protocols. The communication complexity of the GIP function has

been studied in multiple papers [5,6,22,23,32], but up to our knowledge, not in
the strong randomized settings that we need in this work. Our proof is a rather
straightforward adaptation of the techniques from this prior work.

Lemma 6. Suppose F = GF(2m) (for any m such that 2m ≥ k1+ξ for some
ξ > 0). Then for every �, k, the GIPF

�,k function is (s, δ)-strongly hard in the fully
adaptive model, for some s = Ω(m�/2k) and δ = negl(�).

Proof. Consider an arbitrary fully adaptive protocol (plr1, . . . , plrk). Let s

denote its communication complexity. Suppose that
−→
X 1, . . . ,

−→
Xk are sampled

uniformly and independently, each from F
�. Let V denote the sequence of all

the messages that were broadcast by the parties during the execution of the
protocol on input (

−→
X 1, . . . ,

−→
Xk). Let Y := GIPF

�,k(
−→
X 1, . . . ,

−→
Xk). We will now

treat Y ∈ GF(2m) as bit-strings of length m. We start with the following.

Claim 1. For any i ∈ 1, . . . , m and s = Ω(m�/2k) we have that

d(Y [i] | Y [1, . . . , i − 1], V)) ≤ negl(�). (14)

Proof (Proof of the Claim). We use the results of [5] which introduced the so-
called multiparty communication complexity with help. More precisely, in [5] the
authors consider protocols where the players can obtain an extra “help” from

78 J. Brody et al.

an external entity in a form of a function H that gets as input all the inputs of
all the players, the only restriction being that the output of H has to be one bit
shorter than the output of the computed function. Hence, in our case H is any
function of a type H : (F�)k → {0, 1}m−1. What they prove in their Lemma 3.3
can be translated to our notation as follows:

For any protocol whose communication complexity is at most

log
(

1/2 − ε

Γ (f, C)

)

(15)

(we will comment on the “Γ (f, C)” term in a moment) and for any H :
(F�)k → {0, 1}m−1 and any function α we have that

P

(

GIPF

�,k(
−→
X 1, . . . ,

−→
Xk) = α(H(

−→
X 1, . . . ,

−→
Xk), V)

)

≤ 1 − ε. (16)

(provided 2m ≥ k1+ξ for some ξ > 0).

Above Γ (f, C) is a value called the strong discrepancy of f in C (for this discus-
sion it is irrelevant what C is). Moreover, as inspection of the proof of Corollary
4.12 [5] shows we have that

log(1/Γ (f, C)) ≥ Ω(m�/2k). (17)

Now, set ε := 1/2 − √

Γ (f, C). It is easy to see that (15) now becomes equal to

log(1/
√

Γ (f, C)) ≥ Ω(m�/2k).

This also implies that ε − 1/2 is negligible in �. Moreover, by Lemma2, we
have that

d(GIPF

�,k(
−→
X 1, . . . ,

−→
Xk) | H(

−→
X 1, . . . ,

−→
Xk), V) ≤ 2(1 − ε) − 1 ≤ negl(�), (18)

Now set H(
−→
X 1, . . . ,

−→
Xk) := (Y [1, . . . , i − 1], Y [i + 1], . . . , Y [m]). Then, (18)

becomes

negl(�) ≥ d(Y | Y [1, . . . , i − 1], Y [i + 1], . . . , Y [m], V)
≥ d(Y [i] | Y [1, . . . , i − 1], V), (19)

where (19) follows from Lemma 2. Hence (14) is proven.

To finish the proof of Lemma6 we just apply the chain-rule for the statistical
distance (Lemma 1), obtaining

d(Y | V) ≤ m · negl(�) = negl(�).

We therefore obtain that for any protocol with the communication complex-
ity Ω(m�/2k) we have d(GIPF

�,k(
−→
X 1, . . . ,

−→
Xk) | V) ≤ negl(�), and the lemma is

proven. 	

Now, combining Lemma 6 with Theorems 2 and 3 we obtain the following.

Position-Based Cryptography and Multiparty Communication Complexity 79

Corollary 2. For D ∈ {2, 3} and for k,m, and � as in Lemma 6, we have that
Γ pos

�,D,t is one-round (Ω(m�), negl(�))-secure positioning protocol in D dimensions
for positions inside of a simplex determined by the verifiers, and Γ ka

�,D,t is a
one-round (Ω(m�), negl(�))-secure key agreement protocol in D dimensions for
positions such that the messages sent by the verifiers never meet at any other
position than the one claimed by the prover (see [16], Sect. 7.3.1).

Since the generalized inner product is a multi-source extractor, the reader
might be tempted to think that our construction works when GIP�,k is replaced
with any k-source extractor. We note that this is not the case, as the gener-
alized inner product has additional properties, that multi-source extractors do
not have. Namely the multi-source extractors require that their inputs are fully
independent (conditioned on adversary’s information), which is not the case for
GIP.

4.3 Practical Considerations for the GIP-based Protocol

Note that, unlike in the case of protocol ΠH,t
D,n (see remark after Corollary 1),

there is no simple trick to avoid the need for the verifiers to store large amounts of
data (the Xi’s), as long as we want the protocols to be information-theoretically
secure. However, if we move to the “computational world” we can simply let the
Xi’s be generated pseudorandomly: for i = 1, . . . , D + 1 sample a short random
seed Si, and let Xi := prg(Si), where prg is a pseudorandom generator. In this
case, the verifiers need to store only the Si’s. Also, instead of sending the Xi’s
(via a private channel) to each other, they can just send the Si.

References

1. Ambainis, A.: Upper bounds on multiparty communication complexity of shifts.
In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 631–642.
Springer, Heidelberg (1996). doi:10.1007/3-540-60922-9 51

2. Ambainis, A., Lokam, S.V.: Improved upper bounds on the simultaneous messages
complexity of the generalized addressing function. In: Gonnet, G.H., Viola, A.
(eds.) LATIN 2000. LNCS, vol. 1776, pp. 207–216. Springer, Heidelberg (2000).
doi:10.1007/10719839 21

3. Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the
limited storage space model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 65–79. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 5

4. Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of
simultaneous messages. SIAM J. Comput. 33(1), 137–166 (2004)

5. Babai, L., Hayes, T.P., Kimmel, P.G.: The cost of the missing bit: communication
complexity with help. Combinatorica 21(4), 455–488 (2001)

6. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, Fairfax, Virginia, USA, pp.
62–73. ACM Press, 3–5 November 1993

http://dx.doi.org/10.1007/3-540-60922-9_51
http://dx.doi.org/10.1007/10719839_21
http://dx.doi.org/10.1007/3-540-48405-1_5

80 J. Brody et al.

8. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). doi:10.
1007/3-540-48285-7 30

9. Brassard, G.: Quantum information: the conundrum of secure positioning. Nature
479, 307–308 (2011)

10. Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R.,
Schaffner, C.: Position-based quantum cryptography: impossibility and construc-
tions. SIAM J. Comput. 43(1), 150–178 (2014)

11. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). doi:10.1007/BFb0052243

12. Capkun, S., Hubaux, J.-P.: Secure positioning of wireless devices with application
to sensor networks. In: Proceedings of the 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM 2005, vol. 3, pp. 1917–
1928. IEEE, March 2005

13. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R., Walfish, S.: Intrusion-
resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70936-7 26

14. Chakraborty, K., Leverrier, A.: Practical position-based quantum cryptography.
Phys. Rev. A 92, 052304 (2015)

15. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings of
the 15th Annual ACM Symposium on the Theory of Computing, pp. 94–99 (1983)

16. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position-based cryptography.
SIAM J. Comput. 43(4), 1291–1341 (2014)

17. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006). doi:10.1007/11681878 11

18. Dziembowski, S., Maurer, U.M.: Tight security proofs for the bounded-storage
model. In: 34th ACM STOC, pp. 341–350, Montréal, Québec, Canada. ACM Press,
19–21 May 2002

19. Dziembowski, S., Maurer, U.M.: Optimal randomizer efficiency in the bounded-
storage model. J. Crypt. 17(1), 5–26 (2004)

20. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In 48th FOCS,
Providence, USA, pp. 227–237. IEEE Computer Society Press, 20–23 October 2007

21. Dziembowski, S., Zdanowicz, M.: Position-based cryptography from noisy channels.
In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469,
pp. 300–317. Springer, Cham (2014). doi:10.1007/978-3-319-06734-6 19

22. Ford, J., Gál, A.: Hadamard tensors and lower bounds on multiparty communica-
tion complexity. Comput. Complex. 22(3), 595–622 (2013)

23. Graham, F.C.: Quasi-random hypergraphs revisited. Random Struct. Algorithms
40(1), 39–48 (2012)

24. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

25. Lu, C.-J.: Encryption against storage-bounded adversaries from on-line strong
extractors. J. Crypt. 17(1), 27–42 (2004)

26. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized
cipher. J. Crypt. 5(1), 53–66 (1992)

27. Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the
bounded-storage model. J. Crypt. 22(2), 189–226 (2009)

http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1007/BFb0052243
http://dx.doi.org/10.1007/978-3-540-70936-7_26
http://dx.doi.org/10.1007/978-3-540-70936-7_26
http://dx.doi.org/10.1007/11681878_11
http://dx.doi.org/10.1007/978-3-319-06734-6_19

Position-Based Cryptography and Multiparty Communication Complexity 81

28. Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. In: 23rd
ACM STOC, New Orleans, Louisiana, USA, pp. 419–429. ACM Press, 6–8 May
1991

29. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

30. Pudlák, P.: Unexpected upper bounds on the complexity of some communication
games. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 1–10.
Springer, Heidelberg (1994). doi:10.1007/3-540-58201-0 53

31. Pudlk, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks, and communication
complexity. SIAM J. Comput. 26(3), 605–633 (1997)

32. Raz, R.: The BNS-Chung criterion for multi-party communication complexity.
Comput. Complex. 9(2), 113–122 (2000)

33. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
Proceedings of the 2nd ACM Workshop on Wireless Security, WiSe 2003, pp. 1–
10. ACM, New York (2003)

34. Schaffner, C.: Position-based quantum cryptography. Webpage. http://homepages.
cwi.nl/schaffne/positionbasedqcrypto.php. Accessed 17 Feb 2016

35. Unruh, D.: Quantum position verification in the random oracle model. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 1

36. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in
the bounded-storage model. J. Crypt. 17(1), 43–77 (2004)

37. Vora, A., Nesterenko, M.: Secure location verification using radio broadcast.
In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 369–383. Springer,
Heidelberg (2005). doi:10.1007/11516798 27

http://dx.doi.org/10.1007/3-540-58201-0_53
http://homepages.cwi.nl/schaffne/positionbasedqcrypto.php
http://homepages.cwi.nl/schaffne/positionbasedqcrypto.php
http://dx.doi.org/10.1007/978-3-662-44381-1_1
http://dx.doi.org/10.1007/11516798_27

When Does Functional Encryption Imply
Obfuscation?

Sanjam Garg1, Mohammad Mahmoody2, and Ameer Mohammed2(B)

1 UC Berkeley, Berkeley, USA
sanjamg@berkeley.edu

2 University of Virginia, Charlottesville, USA
{mohammad,ameer}@virginia.edu

Abstract. Realizing indistinguishablility obfuscation (IO) based on well
understood computational assumptions is an important open problem.
Recently, realizing functional encryption (FE) has emerged as a promis-
ing direction towards that goal. This is because: (1) compact single-key FE
(where the functional secret-key is of length double the ciphertext length)
is known to imply IO [Anath and Jain, CRYPTO 2015; Bitansky and
Vaikuntanathan, FOCS 2015] and (2) several strong variants of single-key
FE are known based on various standard computation assumptions.

In this work, we study when FE can be used for obtaining IO. We
show any single-key FE for function families with “short” enough out-
puts (specifically the output is less than ciphertext length by a value at
least ω(n+κ), where n is the message length and κ is the security parame-
ter) is insufficient for IO even when non-black-box use of the underlying
FE is allowed to some degree. Namely, our impossibility result holds even
if we are allowed to plant FE sub-routines as gates inside the circuits for
which functional secret-keys are issued (which is exactly how the known
FE to IO constructions work).

Complementing our negative result, we show that our condition of
“short” enough is almost tight. More specifically, we show that any com-
pact single-key FE with functional secret-key output length strictly larger
than ciphertext length is sufficient for IO. Furthermore, we show that
non-black-box use of the underlying FE is necessary for such a construc-
tion, by ruling out any fully black-box construction of IO from FE even
with arbitrary long output.

S. Garg—University of California, Berkeley. Research supported in part from 2017
AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR
Award FA9550-15-1-0274, NSF CRII Award 1464397, and research grants by the
Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC
Berkeley). The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.
M. Mahmoody—Supported by NSF CAREER award CCF-1350939.
A. Mohammed—Supported by University of Kuwait.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 82–115, 2017.
https://doi.org/10.1007/978-3-319-70500-2_4

When Does Functional Encryption Imply Obfuscation? 83

1 Introduction

The goal of program obfuscation is to make computer programs “unintelligible”
while preserving their functionality. Over the past four years, we have come a
long way from believing that obfuscation is impossible [BGI+01,GK05] to having
plausible candidate constructions [GGH+13b,BR14,BGK+14,AGIS14,MSW14,
AB15,GGH15,Zim15,GLSW15,BMSZ16,GMM+16], [DGG+16,Lin16a,LV16,
AS16,Lin16b,LT17]. Furthermore, together with one-way functions, obfusca-
tion has been shown to have numerous consequences, e.g. [GGH+13b,SW14,
GGHR14,BZ14,BPR15].

However, all these constructions are based on the conjectured security of new
computational assumptions [GGH13a,CLT13,GGH15] the security of which is
not very well-understood [GGH13a,CHL+15,CGH+15,CLLT15,HJ16,MSZ16,
CGH16,CLLT16,ADGM16]. In light of this, it is paramount that we base secu-
rity of IO on better understood assumptions. Towards this goal, one of the
suggested approaches is to first realize some kind of a Functional Encryption
(FE) scheme based on standard computational assumptions and then use that
to realize IO. This directions is particularly promising because of the following.

1. Compact single-key FE is known to imply IO. Recent results by Ananth and
Jain [AJ15] and Bitansky and Vaikuntanathan [BV15] show how to base
IO on a compact FE scheme — namely, a single-key FE scheme for which
the encryption circuit is independent of the function circuit for which the
functional secret-key is given out. Furthermore, these results can even be
realized starting with FE for which at most one functional secret-key can be
given out (i.e., the functional encryption scheme is single-key secure, and this
is what we refer to by FE all along this paper). Furthermore, the construction
works even if the ciphertext is weakly compact, i.e. the length of the ciphertext
grows sub-linearly in the circuit size but is allowed to grow arbitrarily with
the depth of the circuit.

2. Positive results on single-key FE. The construction of IO from compact single-
key FE puts us in close proximity to primitives known from standard assump-
tions. One prominent work, is the single-key functional encryption scheme of
Goldwasser et al. [GKP+13] that is based on LWE. Interestingly, this encryp-
tion scheme is weakly compact for boolean circuits. However, in this scheme
the ciphertext grows additionally with the output length of the circuit for
which the functional secret-key is given out. Hence, it doesn’t imply IO.

In summary, the gap between the known single-key FE constructions from LWE
and the single-key FE schemes known to imply IO (for the same ciphertext length
properties) is only in the output length of circuit for which the functional secret-
key is issued. In light of this, significant research continues to be invested towards
realizing IO starting with various kinds of FE schemes (e.g. [BNPW16,BLP16]).
This brings us to the following question.

Main Question: What kind of FE schemes are sufficient for IO?

84 S. Garg et al.

1.1 Our Results

The main result of this work is to show that single-key FE schemes that support
only functions with ‘short output’ are incapable of producing IO even when non-
black-box use of the FE scheme is allowed in certain ways. The non-black-box use
of FE is modeled in a way similar to prior works by Brakerski et al. [BKSY11],
Asharov and Segev [AS15], and Garg et al. [GMM17]. We specifically use the
monolithic framework of [GMM17] which is equivalent to the fully black-box
framework of [IR89,RTV04] applied to monolithic primitives (that can include
all of their subroutines as gates inside circuits given to them as input). This
monolithic model captures the most commonly used non-black-box techniques in
cryptography, including the ones used by Ananth and Jain [AJ15] and Bitansky
and Vaikunthanathan [BV15] for realizing IO from FE. More formally, we prove
the following theorem.

Theorem 1 (Main Result–Informal). Assuming one-way functions exist
and NP �⊆ coAM, there is no construction of IO from “short” output single-key
FE where one is allowed to plant FE gates arbitrarily inside the circuits that are
given to FE as input. An FE scheme is said to be “short” output if

t(n, κ) ≤ p(n, κ) − ω(n + κ),

where n is the plaintext length, κ is the security parameter, p is the ciphertext
length (for messages of length n) and t is the output length of the functions
evaluated on messages of length n.

As a special case, the above result implies that single-key FE for boolean circuits
and other single-key FE schemes known from standard assumptions are insuffi-
cient for IO in an monolithic black-box way.

“Long-output” FE implies IO. Complementing this negative result, we show
that above condition on ciphertext length t is almost tight. In particular, we
show that a “long output” single-key FE — namely, a single-key FE scheme
with t = p + 1 (supporting an appropriate class of circuits) is sufficient for real-
izing IO. This construction is non-black-box (or, monolithic to be precise) and is
obtained as a simple extension of the previous results of Ananth and Jain [AJ15]
and Bitansky and Vaikuntanathan [BV15]. We refer the reader to the full version
of this paper for this result.

Fully Black-Box Separation of IO from FE. Finally, we show that some
form of non-black-box techniques (beyond the fully black-box framework of
[RTV04]) is necessary for getting IO from FE, regardless of the output lengths.
Namely, we prove a fully black-box separation from FE to IO. Previously, Lin
[Lin16a] (Corollary 1 there) showed that the existence of such fully black-box
construction from FE to IO would imply a construction of IO from LWE and
constant-degree PRGs. Our result shows that no such fully black-box construc-
tion exists (but the possibility of IO from LWE and constant-degree PRGs
remains open). We refer the reader to the full version of this paper for this
result.

When Does Functional Encryption Imply Obfuscation? 85

1.2 Comparison with Known Lower Bounds on IO

Sequence of works [AS15,CKP15,Pas15,MMN15,BBF16,MMN+16a],
[MMN+16b], under reasonable complexity assumptions,1 proved lower bounds for
building IO in a black-box manner from one-way functions, collision resistant hash
functions, trapdoor permutations or even constant degree graded encoding oracles.
Building on these work, authors [GMM17] showed barriers to realizing IO based
on non-black-box use of “all-or-nothing encryption” primitives — namely, encryp-
tionprimitiveswhere theprovided secret-keys either allow for completedecryption,
or keep everything hidden. This includes encryption primitives such as attribute-
based encryption [GVW13], predicate encryption [GVW15], and fully homomor-
phic encryption [Gen09,BV11b,BV11a,GSW13]. In comparison, this work aims
to show barriers to getting IO through a non-black-box use of single-key FE, an
encryption primitive that is not all-or-nothing, but has been previously shown to
imply IO in certain settings. The work of Asharov and Segev [AS15] proved lower
bounds on the complexity of assumptions behind IO with oracle gates (in our ter-
minology, restricted monolithic) which is a stronger primitive than IO.2

On the Relation to [GMM17,GKP+13]. Note that, as mentioned above,
the work [GMM17] rules out the existence of monolithic IO constructions from
attribute-based encryption (ABE) and the existence of monolithic IO construc-
tions from fully homomorphic encryption (FHE). Furthermore, this result can
be further broadened to separate IO from ABE and FHE in a monolithic way.
One can then ask why the result in this paper does not follow as a corollary
from [GMM17,GKP+13], where they construct single-key (non-compact) FE
for general circuits from ABE and FHE.

We note that our result does not follow from the above observation for two
reasons. First, the single-key FE construction of [GKP+13] also uses a garbling
scheme in order to garble circuits with FHE decryption gates, whereas the impos-
sibility of [GMM17] does not capture such garbling mechanisms in the monolithic
model. However, if one could improve the result of [GMM17] in the monolithic
model by adding a garbling subroutine that can accept ABE and FHE gates,
then we can compose the results of [GMM17,GKP+13] and obtain an impos-
sibility of IO from t-bit output (non-compact) FE. Secondly, we note that this
resulting t-bit output FE scheme has the property that t ≤ p/poly(κ) (i.e. the
ciphertext size is a (polynomial) multiplicative factor of the output length of the
function), whereas in this work we show the stronger impossibility of basing IO
on single-key FE for output-length t ≤ p − ω(κ).

Other Non-Black-Box Separations. Proving separations for non-black-box
constructions are usually very hard. However, there are several works that go

1 Note that since statistically secure IO exists if P = NP, therefore we need computa-
tional assumptions for proving lower bounds for assumptions implying IO.

2 In fact, their separation is unconditional, while statistical IO can be built if P = NP.
So any separation for IO needs to rely on computational assumptions before proving
P �= NP.

86 S. Garg et al.

done this line. The work of Pass et al. [PTV11] showed that, under believable
assumptions, there are no non-black-box constructions of certain cryptographic
primitives (e.g., one-way permutations) from one-way functions, as long as the
security reductions are black-box. Pass [Pas11] and Gentry and Wichs [GW11]
proved further separations in this model by separating certain primitives from
any falsifiable assumptions [Nao03], again, as long as the security proof is black-
box. Finally, the recent work of Dachman-Soled [Dac16] showed that certain
classes of constructions with some carefully defined non-black-box power are not
capable of basing public-key encryption on one way functions.

1.3 Technical Overview

In order to demonstrate the ideas behind our impossibility, we start by recalling
the constructions of IO from FE [AJ15,BV15]. The key point here is that their
IO constructions crucially rely on the ability of the underlying FE scheme to
generate functional secret keys for functions that generate outputs of sizes that
are larger than the ciphertexts that are decrypted using these functional secret
keys. In particular, when evaluating the obfuscation of some circuit C on some
input x = (x1, ..., xn), they would need to decrypt a ciphertext using a functional
secret key for a function that generates two ciphertexts – which is an output
that is double the size of the input. Then, by successively decrypting cx1,...,xi

for all i under a functional secret key that has the property described above
to get two encryptions (cx1,...,xi,0, cx1,...,xi,1) where cy is an encryption of y, the
evaluator will obtain a ciphertext of the entire input x that it wants to evaluate
the obfuscated circuit on. The obtained cx1,...,xn

is then decrypted using one
final functional secret key that corresponds to the circuit C to get C(x).

On the other hand, in case the output of a functional secret key is “sufficiently
smaller” than a ciphertext, then this explosion in number of ciphertexts does
not seem possible anymore. This is also the key to our impossibility. Roughly
speaking, at the core of the proof of our impossibility result is to show that in
this “small” output setting, the total number of ciphertexts that an evaluator
can compute remains polynomially bounded. Turning this high level intuition
into an impossibility proof requires several new ideas that we now elaborate
upon below.

The Details of the Proof of Separation. As mentioned before, monolithic
constructions of IO from FE are the same as fully black-box constructions of IO
from monolithic FE which is a primitive that is similar to FE but it allows FE
gates to be used in the circuits for which keys are issued. Therefore, to prove
the separation, we can still use oracle separation techniques from the literature
on black-box constructions [IR89].

In fact, for any candidate construction IO(·) of indistinguishability obfusca-
tion from monolithic FE, we construct an oracle O relative to which secure mono-
lithic FE exists but the construction IOO becomes insecure (against polynomial-
query attackers). In order to do this, we will employ an intermediate primitive:

When Does Functional Encryption Imply Obfuscation? 87

a variant of functional witness encryption defined by Boyle et al. [BCP14]. We
call this variant customized FWE (cFWE for short) and show that (1) relative
to our oracle cFWE exists, (2) cFWE implies monolithic FE in a black-box way,
and that (3) the construction IOO is insecure. We opted to work with this inter-
mediate primitive of cFWE since it is conceptually easier to work with than an
ideal FE oracle and allows us to leverage the previous results of [GMM17] to
prove our separation in a modular way. Now in order to get (1) we directly define
our oracle O to be an idealized version of cFWE. To get (2) we use the power
of cFWE.3 To get (3) we rely on the fact that cFWE is weakened in a careful
way so that it does not imply IO. Below, we describe more details about our
idealized oracle for cFWE and how to break the security of a given candidate
IO construction relative to this oracle. We first recap the general framework for
proving separations for IO.

GeneralRecipe forProvingSeparations for IO.Let I be our idealized cFWE
oracle. A general technique developed over the last few years [CKP15,MMN+16b,
GMM17] for breaking IOI using a polynomial number of queries to the oracle (i.e.
the step (3) above) is to “compile out” the oracle I from the obfuscation scheme
and get a new secure obfuscator IO′ = (iO′,Ev′) in the plain-model that is only
approximately-correct. Namely, by obfuscating iO′(C) = B and running B over
a random input we get the correct answer with probability 99/100. By the result
of [BBF16], doing so implies a polynomial query attacker against IOI in model
I. Note that this compiling out process (of I from IOI) is not independent of the
oracle being removed since different oracles may require different approaches to
be emulated. However, the general high-level of the compiler that is used in pre-
vious work [CKP15,MMN+16b,GMM17], and we use as well, is the same: The
new plain-model obfuscator iO′, given a circuit C to obfuscate would work in two
steps. The first step of iO′ is to emulate iOI(C) (by simulating the oracle I) to
get an ideal-model obfuscation B, making sure to ‘lazily’ evaluate (emulate) any
queries issued to I. The second step of the compiler is to learn the queries that are
likely to be asked by EvI(B, x) for a uniformly random input x, denote by QB ,
which can be found by by emulating EvI(B, xi) enough number of times for differ-
ent uniformly random xi. Finally, the output of iO′ is the plain-model obfuscation
B′ = (B,QB), where B is the ideal-model obfuscation and QB is the set of learned
queries. To evaluate the obfuscation over a new random input x, we simply execute
Ev′(B, x) = EvI(B, x) while emulating any queries to I consistently relative to
QB . Any compiler (for removing I from IO) that uses the approach describe above
is in fact secure, because we only send emulated queries to the evaluator that could
be simulated in the ideal world I. The challenge, however, is to prove the correct-
ness of the new obfuscator. So we shall prove that, by having enough iterations of
the learning process (in the learning step of iO′), the probability that we ask an
unlearned emulation query occurs with sufficiently small probability.

3 In fact, as shown in [BCP14], without our customization, the original FWE implies,
not just IO itself, but even di-IO.

88 S. Garg et al.

The Challenge Faced for Compiling Out Our Customized Functional
Witness Encryption Oracle. When I is defined to be our idealized cFWE
oracle, in order to prove the approximate correctness of the plain-model obfus-
cator, we face two problems.

1. The Fuzzy Nature of FWE: Unlike ‘all-or-nothing’ primitives such as
witness encryption and predicate encryption, functional witness encryption
mechanisms allow for more relaxed decryption functionalities. In particular,
decrypting a ciphertext does not necessarily reveal the whole message m.
In fact, the decryptor will learn only f(w,m), which is a function of the
encrypted message and witness. As a result, even after many learning steps,
when the actual execution of the obfuscated circuit starts, we might aim for
evaluating a ciphertext (generated during the obfuscation phase) on a new
function. This challenge did not exist in the previous separations of [GMM17]
that deals with the ‘all-or-nothing’ primitives, because the probability of not
decrypting a ciphertext during all the learning steps and then suddenly trying
to decrypt it during the final evaluation phase could be bounded to be arbi-
trary small. However, here we might try to decrypt this ciphertext in all these
steps, every time with a different function, which could make the information
gathered during the learning step useless for the final evaluation.

2. Unlearnable Hidden Queries: To get monolithic FE from our cFWE (step
(2) above), our cFWE needs to be restricted monolithic. Namely, we allow the
functions evaluated by cFWE to accept circuits with all possible gates that
compute the subroutines of cFWE itself. However, for technical reasons, we
limit how the witness verification is done in cFWE to only accept one-way
function gates. Now, since we are dealing with an oracle that is an ideal version
of our cFWE primitive, the function f cFWE(m,w) may also issue queries of
their own. The challenge is that there could be many such indirect/hidden
queries asked during the obfuscation phase (in particular during the learning
step) that we cannot send over to the final evaluator simply because these
queries are not suitable in the ideal world.

Resolving Challenges. Here we describe main ideas to resolve the challenges
above.

1. To resolve the first challenge, we add a specific feature to cFWE so that no
ciphertext c = Enc(x = (a,m)) would be decrypted more than once by the
same person. More formally, we add a subroutine to FWE (as part of our
cFWE) that reveals the message x = (a,m) fully, if one can provide two
correct witnesses w1 �= w2 for the attribute a. This way, the second time that
we want to decrypt c, instead we can recover the whole message x and run
the function f on our own! By this trick, we will not have to worry about the
fuzzy nature of FWE, as each message is now decryped at most once. In fact,
adding this subroutine is the exact reason that cFWE is a weaker primitive
than FWE.

When Does Functional Encryption Imply Obfuscation? 89

2. To resolve the second challenge, we rely on an information theoretic argument.
Suppose for simplicity that the encryption algorithm does not take an input
other than the message4 x. Suppose we use a random (injective) function
Enc: x �→ c for encryption, mapping strings of length n to strings of length
p = p(n). Then, if p � n, information theoretically, any q query algorithm
who has no special advice about the oracle has a chance of ≈ q · 2n−p to find
a valid ciphertext. If p � n this probability is very small, so intuitively we
would need about p−n− log(q) bits of advice to find such ciphertext. On the
other hand, any decryption query over a ciphertext c will only return t = t(n)
bits, which in our paper is assumed to be t 	 p−n. Therefore, if we interpret
the decryption like a ‘trade’ of information, we need to spend ≈ Ω(p−n) bits
to get back only s ≤ o(p−n) bits. This is the main idea behind our argument
showing that during the learning phase, we will not discover more than a
polynomial number of new ciphertexts, unless we have encrypted them! By
running the learning step of the compiler enough number of times, we will
learn all such queries and can successfully finish the final evaluation.

By the using above two ideas, we can successfully compile out our oracle I from
any IOI construction. The compilation process itself consists of two steps. The
first step being compiling out just the decryption queries where we face and
resolve the challenges that we described above. Once we do that, we get an
approximate obfuscator in a new oracle model I ′ that is actually a variant of an
idealized witness encryption oracle. The second step would be to compile out the
oracle I ′, which was already shown by [GMM17], to get the desired approximate
obfuscator in the plain model.

2 Preliminaries

In this section we define the primitives that we deal with in this work and are
defined prior to our work. We also give a brief background on black-box con-
structions and their monolithic variants.

Notation.We use “|” to concatenate strings and we use “,” for attaching strings in
a way that they could be retrieved. Namely, one can uniquely identify x and y from
(x, y). For example (00|11) = (0011), but (0, 011) �= (001, 1). When writing the
probabilities, by putting an algorithm A in the subscript of the probability (e.g.,
PrA[·]) wemean the probability is overA’s randomness.Wewill usen orκ to denote
the security parameter.We call an efficient algorithmV a verifier for anNP relation
R if V(w, a) = 1 iff (w, a) ∈ R. We call LR = LV = {a | ∃w, (a,w) ∈ R} the
corresponding NP language. By PPT we mean a probabilistic polynomial time
algorithm. By an oracle PPT/algorithm we mean a PPT that might make oracle
calls.

4 This is not true as the encryption is randomized, but allows us to explain the idea
more easily.

90 S. Garg et al.

2.1 Obfuscation

The definition of IO below has a subroutine for evaluating the obfuscated code.
The reason for defining the evaluation as a subroutine of its own is that when we
want to construct IO in oracle/idealized models, we allow the obfuscated circuit
to call the oracle as well. Having an evaluator subroutine to run the obfuscated
code allows to have such oracle calls in the framework of black-box constructions
of [RTV04] where each primitive Q is simply a class of acceptable functions that
we (hope to) efficiently implement given oracle access to implementations of
another primitive P (see Definition 12).

Definition 1 (Indistinguishability Obfuscation (IO)). An Indistinguisha-
bility Obfuscation (IO) scheme consists of two subroutines:

– Obfuscator iO is a PPT that takes as inputs a circuit C and a security para-
meter 1κ and outputs a “circuit” B.

– Evaluator Ev takes as input (B, x) and outputs y (supposedly, equal to C(x)).

The completeness and soundness conditions assert that:

– Completeness: For every C, with probability 1 over the randomness of O, we
get B ← iO(C, 1κ) such that: For all x it holds that Ev(B, x) = C(x).

– Security: For every distinguisher D there exists a negligible function μ(·) such
that for every two circuits C0, C1 that are of the same size and compute the
same function, we have:

|Pr
iO

[D(iO(C0, 1κ) = 1] − Pr
iO

[D(iO(C1, 1κ) = 1]| ≤ μ(κ)

Definition 2 (Approximate IO). For function 0 < ε(n) ≤ 1, an ε-
approximate IO scheme is defined similarly to an IO scheme with a relaxed
completeness condition:

– ε-Approximate Completeness. For every C and n we have:

Pr
x,iO

[B = iO(C, 1κ),Ev(B, x) = C(x)] ≥ 1 − ε(κ)

2.2 Functional Encryption

We will mainly be concerned with single-key functional encryption schemes
which we define below so in the rest of this work whenever we refer to func-
tional encryption, it is of the single-key type. We define a single-key functional
encryption for function family F = {Fn}n∈N (represented as a circuit family) as
follows:

Definition 3 (Single-Key Functional Encryption [BV15]). A single-key
functional encryption (FE) for function family F consists of three PPT algo-
rithms (Setup,Enc,Dec) defined as follows:

When Does Functional Encryption Imply Obfuscation? 91

– Setup(1κ): Given as input the security parameter 1κ, it outputs a master
public key and master secret key pair (MPK,MSK).

– KGen(MSK, f): Given master secret key MSK and function f ∈ F, outputs a
decryption key SKf .

– Enc(MPK, x): Given the master public key MPK and message x, outputs
ciphertext c ∈ {0, 1}p.

– Dec(SKf , c): Given a secret key SKf and a ciphertext c ∈ {0, 1}m, outputs a
string y ∈ {0, 1}s.

The following completeness and security properties must be satisfied:

– Completeness: For any security parameter κ, any f ∈ F with domain {0, 1}n

and message x ∈ {0, 1}n, the following holds:

Dec(SKf ,Enc(MPK, x)) = f(x)

where (MPK,MSK) ← Setup(1κ) and SKf ← KGen(MSK, f)
– Security: For any PPT adversary A, there exists a negligible function negl(·)

such that:
Pr[IND1FE

A (1κ) = 1] ≤ 1
2

+ negl(κ),

where IND1FE
A is the following experiment.

Experiment IND1FE
A (1κ):

1. (MSK,MPK) ← Setup(1κ)
2. (f, x0, x1) ← A(MPK) where |x0| = |x1| and f(x0) = f(x1)

3. b
$←− {0, 1}, c ← Enc(MPK, xb),SKf ← KGen(MSK, f)

4. b′ ← A(MPK,SKf , c)
5. Output 1 if b = b′ and 0 otherwise.

– Efficiency: We define two notions of efficiency for single-key FE supporting
the function family F:

• Compactness: An FE scheme is said to be compact if the size of the
encryption circuit is bounded by some fixed polynomial poly(n, κ) where
n is the size of the message, independent of the function f chosen by the
adversary.5

• Function Output Length: An FE scheme is said to be t-bit-output
if outlen(f) ≤ t(n, κ) for any f ∈ F, where outlen(f) denotes the output
length of f . Given ciphertext length p(n, κ), we say an FE scheme is long-
output if it is (p + i)-bit-output for some i ≥ 1 and short-output if it is
only (p − ω(n + κ))-bit-output where n is the size of the message.

5 A couple of other weaker notions of compactness for FE have also been considered in
the literature. However, all these notions are known to be monolithically equivalent
to compact single-key FE. Therefore, we restrict our discussion just to compact
single-key FE.

92 S. Garg et al.

Definition 4 (Functional Witness Encryption (FWE) [BCP14]). Let V
be a PPT algorithm that takes as input an instance-message pair x = (a,m) and
witness w then outputs a bit. Furthermore, let F be a PPT Turing machine that
accepts as input a witness w and a message m then outputs a string y ∈ {0, 1}s.
For any given security parameter κ, a functional witness encryption scheme
consists of two PPT algorithms P = (Enc,DecV,F) defined as follows:

– Enc(1κ, a,m) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and
security parameter κ, outputs c ∈ {0, 1}∗.

– DecV,F(w, c) : given ciphertext c and “witness” string w ∈ {0, 1}∗, outputs a
message m′ ∈ {0, 1}∗.

A functional witness encryption scheme satisfies the following completeness and
security properties:

– Correctness: For any security parameter κ, any m ∈ {0, 1}∗, and any
(w, (a,m)) such that VP (w, a) = 1, it holds that

Pr
Enc,Dec

[DecV,F(w,Enc(1κ, a,m)) = FP (w,m)] = 1

– Extractability: For any PPT adversary A and polynomial p1(.), there exists
a PPT extractor E and a polynomial p2(.) such that for any security para-
meter κ, any a for which VP (w, a) = 1 for some w, and any m0,m1 where
|m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b

$←− {0, 1}, c ← Enc(1κ, a,mb)
]

≥ 1
2

+ p1(κ)

Then:

Pr
[
EA(1κ, a, m0, m1) = w : VP (w, a) = 1 ∧ FP (w, m0) �= FP (w, m1)

] ≥ p2(κ)

2.3 Background on Black-Box Constructions

Definition 5 (Cryptographic Primitive [RTV04]). A primitive P =
(F ,R) is defined as set of functions F and a relation R between functions. A
(possibly inefficient) function F ∈ {0, 1}∗ → {0, 1}∗ is a correct implementation
of P if F ∈ F , and a (possibly inefficient) adversary A breaks an implementation
F ∈ F if (A,F) ∈ R. We sometimes refer to an implementation F ∈ F as a set
of t functions (or subroutines) F = {F1, ..., Ft}.
Definition 6 (Indexed primitives). Let W be a set of (possibly ineffi-
cient) functions. An W-indexed primitive P[W] is indeed a set of primi-
tives {P[W]}W∈W indexed by W ∈ W where, for each W ∈ W, P[W] =
(F [W],R[W]) is a primitive according to Definition 5.

When Does Functional Encryption Imply Obfuscation? 93

Definition 7 (Restrictions of indexed primitives). For P[W] =
{(F [W],R[W])}W∈W and P ′[W ′] = {(F ′[W],R′[W])}W∈W′ , we say P ′[W ′] is
a restriction of P[W] if the following conditions hold: (1) W ′ ⊆ W, and (2) for
all W ∈ W ′, F ′[W] ⊆ F [W], and (3) for all W ∈ W ′, R′[W] = R[W].

We now proceed to apply the above definition of restrictions on indexed prim-
itives to give the definition of monolithic (and restricted monolithic) primitives.
We will then apply them to the case of functional encryption. We refer the reader
to [GMM17] for a more in-depth study of the monolithic framework.

Definition 8 (Universal Circuit Evaluator). We call an oracle algorithm
w(·) a universal circuit evaluator if it accepts a pair of inputs (C, x) where C(·)

is an oracle-aided circuit and x is a string in the domain of C then outputs
C(·)(x) by forwarding all of C’s oracle queries to its own oracle.

Definition 9 (Monolithic Primitive [GMM17]). We call the restricted
primitive P ′[W ′] = {(F ′[W],R[W])}W∈W′ the monolithic variant of P[W] =
{(F [W],R[W])}W∈W if the following holds:

– For any F and W ∈ W, if W = wF for some universal circuit evaluator w(·)

and F ∈ F [W] then W ∈ W ′ and F ∈ F ′[W].

Definition 10 (Restricted Monolithic Primitive [GMM17]). We call the
restricted primitive P ′[W ′] = {(F ′[W],R[W])}W∈W′ the restricted monolithic
variant of P[W] = {(F [W],R[W])}W∈W if is satisfies Definition 9 but the con-
dition is replaced with the following:

– For any F and W ∈ W, if W = wF ′
for some universal circuit evaluator

w(·), F ′ ⊂ F ∈ F [W] then W ∈ W ′ and F ∈ F ′[W].

That is, the subroutines of F that w(·) may call are a strict subset of all the
subroutines contained in implementation F .

Definition 11 (Monolithic Functional Encryption). A monolithic func-
tional encryption scheme FE = (FE.Setup, FE.Enc,FE.Keygen,FE.Dec) for
the function family F is defined the same as Definition 3 except that, for any
f ∈ F, f is an oracle-aided circuit that can call any subroutine of FE.

Definition 12 (Black-box Construction [RTV04]). A (fully) black-box con-
struction of a primitive Q from a primitive P consists of two PPT algorithms
(Q,S):

1. Implementation: For any oracle P that implements P, QP implements Q.
2. Security reduction: for any oracle P implementing P and for any (computa-

tionally unbounded) oracle adversary A successfully breaking the security of
QP , it holds that SP,A breaks the security of P .

94 S. Garg et al.

Definition 13 (Monolithic Construction of IO from FE). A monolithic
construction of IO from FE is a fully black-box construction of IO from mono-
lithic FE.

2.4 Tools for Lower Bounds of IO

Definition 14 (Sub-models). We call the idealized model/oracle O a sub-
model of the idealized oracle I with subroutines (I1, . . . , Ik), denoted by O � I,
if there is a (possibly empty) S ⊆ {1, . . . , k} such that the idealized oracle O
works as follows:

– First sample I ← I where the subroutines are I = (I1, . . . , Ik).
– Provide access to subroutine Ii iff i ∈ S.

If S = ∅ then the oracle O will be empty and we will be back to the plain model.

Definition 15 (Simulatable Compiling Out Procedures for IO). Suppose
O � I. We say that there is a simulatable compiler from IO in idealized model
I into idealized model O with correctness error ε if the following holds.

For every implementation PI = (iOP ,EvP) of δ-approximate IO in idealized
model I there is a implementation PO = (iOO,EvO) of (δ + ε)-approximate IO
in idealized model O such that the security of the two are related as follows:

Simulation: There is an efficient PPT simulator S and a negligible function
μ(·) such that for any C:

Δ(S(iOI(C, 1κ)), iOO(C, 1κ)) ≤ μ(κ)

where Δ(., .) denotes the statistical distance between any two given random vari-
ables.

Lemma 1 (Lower Bounds for IO using Oracle Compilers [GMM17]).
Suppose ∅ = I0 � I1 · · · � Ik = I for constant k = O(1) are a sequence of
idealized models. Suppose for every i ∈ [k] there is a simulatable compiler for IO
in model Ii into model Ii−1 with correctness error εi < 1/(100k). Also suppose
primitive P can be black-box constructed in the idealized model I. Then there is
no fully black-box construction of IO from P.

3 Monolithic Separation of IO from Short-Output FE

In this section, we prove our main impossibility result which states that we can-
not construct an IO scheme in a monolithic way from any single-key functional
encryption scheme that is restricted to handling only functions of “short” output
length. More formally, we prove the following theorem.

When Does Functional Encryption Imply Obfuscation? 95

Theorem 2. Assume the existence of one-way functions and that NP �⊆
co-NP. Then there exists no monolithic construction of IO from any single-
key t-bit-output functional encryption scheme where t(n, κ) ≤ p(n, κ)−ω(n+κ),
n is the message length, p is the ciphertext length, and κ is the security parameter
of the functional encryption scheme.

To prove Theorem 2, we will apply Lemma 1 for the idealized functional
witness encryption model Γ (formally defined in Sect. 3.1) to prove that there
is no black-box construction of IO from any primitive P that can be black-box
constructed from the Γ . In particular, we will do so for P that is the monolithic
functional encryption primitive. Our task is thus twofold: (1) to prove that P
can black-box constructed from Γ and (2) to show a simulatable compilation
procedure that compiles out Γ from any IO construction. The first task is proven
in Sect. 3.2 and the second task is proven in Sect. 3.3. By Lemma 1, this would
imply the separation result of IO from P and prove Theorem 2.

Our oracle, which is more formally defined in Sect. 3.1, acts an idealized
version of a single-key short-output functional encryption scheme, which makes
the construction of secure FE quite straightforward. As a result, the main chal-
lenge lies in showing a simulatable compilation procedure for IO that satisfies
Definition 15 in this idealized model, and therefore, it is instructive to look at
how the compilation process works and what challenges are faced with dealing
with oracle Γ .

3.1 The Ideal Model

In this section, we define the distribution of our idealized (randomized) oracle
that can be used to realize (restricted-monolithic) functional witness encryption.
We also provide several definitions regarding the algorithms in this model and
the types of queries that these algorithms can make.

Definition 16 (Randomized Functional Witness Encryption Oracle).
Let V be a PPT algorithm that takes as input (w, a), outputs b ∈ {0, 1} and runs
in time poly(|a|). Also, let F be a PPT algorithm that accepts as input a witness
w and a message m then outputs a string y ∈ {0, 1}s. We denote the random
(V,F, p)-functional witness encryption (rFWE) oracle as ΓV,F,p = {ΓV,F,p}n∈N

where ΓV,F,p = (Enc,DecV,F,RevAtt,RevMsgV) is defined as follows:

– Enc : {0, 1}n �→ {0, 1}p(n) is a random injective function mapping strings
x ∈ {0, 1}n to “ciphertexts” c ∈ {0, 1}p where p(n) ≥ n.

– DecV,F : {0, 1}� �→ {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}� as input where c ∈
{0, 1}p(n), DecV,F(w, c) allows us to decrypt the ciphertext c = Enc(x) to get
back x, parse it as x = (a,m), then get F(w,m) as long as the predicate test
is satisfied on (w, a). More formally, the following steps are performed:
1. If � x such that Enc(x) = c, output ⊥. Otherwise, continue to the next

step.
2. Find x such that Enc(x) = c, and parse it as x = (a,m).
3. If V(w, a) = 1, output F(w,m). Otherwise, output ⊥.

96 S. Garg et al.

– RevAtt : {0, 1}p(n) �→ {0, 1}∗ ∪ {⊥} is a function that, given an input c ∈
{0, 1}p(n), would output the corresponding attribute a ∈ {0, 1}∗ for which
Enc((a,m)) = c. If there is no such a then output ⊥.

– RevMsgV : {0, 1}�′ �→ {0, 1}∗ ∪ {⊥}: Given (w1, w2, c) where w1 �= w2 and
c ∈ {0, 1}p(n), if there exist x = (a,m) such that Enc(x) = c and V(wi, a) = 1
for i ∈ {1, 2} then reveal m. Otherwise, output ⊥.

When it is clear from context, we sometimes omit the subscripts from DecV,F,
RevMsgV, and ΓV,F and simply write them as Dec, RevMsg, and Γ , respec-
tively. Furthermore, we denote any query-answer pair (q, β) asked by some oracle
algorithm A to a subroutine T ∈ {Enc,Dec,RevAtt,RevMsg} as (q �→ β)T .

Definition 17 (Restricted-Monolithic Randomized FunctionalWitness
Encryption Oracle). We define a randomized restricted-monolithic functional
witness encryption oracleΓV,F,p as an rFWEoracleΓV,F,p = (Enc,DecV,F,RevAtt,
RevMsg) where V and F satisfy the following properties:

– V is a PPT oracle algorithm that takes as input (w, a), interprets a(·) as an
oracle-aided circuit that can only make Enc calls, then outputs aEnc(w).

– F is a PPT oracle algorithm that takes as input (w,m), parses w = (z1, z2),
interprets z

(·)
1 as an oracle-aided circuit that can make calls to any subroutine

in Γ = (Enc,Dec,RevAtt, RevMsg), then outputs zΓ
1 (m).

While the above oracle shares similar traits to a restricted-monolithic prim-
itive (see Definition 10), the actual functionality of F is slightly modified to
simplify the notion of using only part of w. For the purposes of this section,
we will use the restricted-monolithic rFWE Γ in order to prove our separation
result of IO from monolithic functional encryption - mainly because this oracle
is sufficient for getting monolithic FE. Nevertheless, we will still make use of Γ
later on in in the full version of this paper to prove the fully black-box separation
of IO from (non-monolithic) functional encryption.

Next, we present the following definition of canonical executions that is a
property of algorithms in this ideal model. This normal form of algorithms helps
us in reducing the query cases to analyze since there are useless queries whose
answers can be computed without needing to ask the oracle.

Definition 18 (Canonical executions). We define an oracle algorithm AΓ

relative to the restricted-monolithic rFWE oracle to be in canonical form if the
following conditions are satisfied:

– If A has issued a query of the form Enc(x) = c, then it will not ask DecV,F(., c),
RevAtt(c), or RevMsgV(., ., c) as it can compute the answers of these queries
on its own. In particular, for DecV,F and RevMsgV queries, it would run V
and F directly to compute the query answers correctly.

– Before asking any DecV,F(w, c) query where Enc(x) = c for some x = (a,m),
A would go through the following steps first:

When Does Functional Encryption Imply Obfuscation? 97

• A would get a ← RevAtt(c) then run VEnc(w, a) on its own, making sure
to answer any queries of V using Enc. If VEnc(w, a) = 0 then do not issue
DecV,F(w, c) to Γ and use ⊥ as the answer instead. Otherwise, continue
to the next step.

• If A has beforehand ran VEnc(w′, a) = 1 for some w′ �= w then it does
not ask DecV,F(w, c) and instead computes the answer to this query on its
own. That is, it first gets m ← RevMsg(w,w′, c), computes on its own
FΓ (w,m) and outputs FΓ (w,m) if VEnc(w, a) = 1 or otherwise ⊥.

• If A has not asked DecV,F(w′, c) for any w′ �= w (or did but it received ⊥
as the answer) then it directly asks DecV,F(w, c) from the oracle.

– Before asking any RevMsgV(w1, w2, c) query where Enc(x) = c for some x =
(a,m), A would go through the following steps first:

• A would get a ← RevAtt(c) then run VEnc(wi, a) for all i ∈ {1, 2} on its
own, making sure to answer any queries of V using Enc. If VEnc(wi, a) = 0
for some i then do not issue RevMsgV(w1, w2, c) to Γ and use ⊥ as the
answer instead. Otherwise, continue to the next step.

• After issuing RevMsgV(w1, w2, c) to Γ and getting back an answer m �=
⊥, ask the query Enc(x) where x = (a,m) then run FΓ (w1,m) and
FΓ (w2,m).

Note that any oracle algorithm A can be easily modified into a canonical form
by increasing its query complexity by at most a polynomial factor assuming that
F has extended polynomial query complexity.

Remark 1. We observe the following useful property regarding the number of
queries of a specific type that a canonical algorithm in the Γ oracle model can
make. Namely, given a canonical A, for any ciphertext c = Enc(x) where x =
(a,m) for which A has not asked Enc(x) before, A would ask at most one query
of the form RevAtt(c), at most one query of the form DecV,F(w, c) for which
VEnc(w, a) = 1, and at most one query of the form RevMsgV(w1, w2, c) for
which VEnc(wi, a) = 1 where i ∈ {1, 2}. Furthermore, A would never ask a query
if VEnc(w, a) = 0 since this condition can be verified independently by A and
the answer can be simulated as it would invariably be ⊥.

Looking ahead, we will use this property later on to prove an upper bound on
the number of ciphertexts that an adversary can decrypt without knowing the
underlying message. Furthermore, we stress that this property holds specifically
due to the presence of the RevMsg subroutine which leaks the entire message of a
given ciphertext once two different valid witnesses are provided. As a result, this
shows that decrypting a ciphertext more than once (under different witnesses)
does not help as the message could be revealed instead.

We also provide the following definitions to classify the ciphertext and query
types. This would simplify our discussion and clarify some aspects of the details
later in the proof.

Definition 19 (Ciphertext Types). Let A be a canonical algorithm in the
Γ ideal model and suppose that QA is the set of query-answer pairs that A

98 S. Garg et al.

asks during its execution. For any q of the form DecV,F(w, c), RevAtt(c), or
RevMsgV(w1, w2, c), we say that c is valid if there exists x such that c = Enc(x),
and we say that c is unknown if the query-answer pair (x �→ c)Enc is not in QA.

Definition 20 (Query Types). Let A be a canonical algorithm in the Γ ideal
model and let QA be the query-answer pairs that it has asked so far. For any
query new query q issued to Γ , we define several properties that such a query
might have:

– Determined: We say q is determined with respect to QA if there exists (q �→
β)T ∈ QA for some answer β or there exists some query (q′ �→ β′)T ∈ QA

that determines that answer of q without needing to issue q to Γ .
– Direct: We say q is a direct query if A issues this query to Γ to get back

some answer β. The answers to such queries are said to be visible to A.
– Indirect: We say q is an indirect query if q is issued by FΓ during a Dec

query that was issued by A. The answers to such queries are said to be hidden
from A.

3.2 Monolithic Functional Encryption Exists Relative to Γ

In this section, we show how to construct a semantically-secure monolithic FE
scheme. Namely, we prove the following:

Lemma 2. There exists a correct and subexponentially-secure implementation
of monolithic functional encryption in the Γ oracle model with measure one of
oracles.

We do this in two steps: we first show how to construct a restricted-monolithic
variant of a functional witness encryption from the ideal oracle Γ and then show
how to use it to construct the desired functional encryption scheme. Our variant
of FWE that we will construct is defined as follows.

Definition 21 (Customized Functional Witness Encryption (CFWE)).
Given any one-way function R, let V be a PPT oracle algorithm that takes as
input an instance-message pair x = (a,m) and witness w, interprets a as an
oracle circuit then outputs aR(w) while only making calls to R. Furthermore, let
F be a PPT oracle algorithm that accepts as input a string w = (z1, z2) and a
message m, interprets z1 as a circuit then outputs a string y = z1(m). For any
given security parameter κ, a customized functional witness encryption scheme
defined by V and F consists of three PPT algorithms P = (Enc,DecV,F,RevAtt)
defined as follows:

– Enc(1κ, a,m): given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and secu-
rity parameter κ, outputs c ∈ {0, 1}∗.

– RevAtt(c): given a ciphertext c, outputs the corresponding attribute a under
which the message is encrypted.

– DecV,F(w, c): given ciphertext c and “witness” string w ∈ {0, 1}∗, outputs a
message m′ ∈ {0, 1}∗.

When Does Functional Encryption Imply Obfuscation? 99

A customized functional witness encryption scheme satisfies the following com-
pleteness and security properties:

– Correctness: For any security parameter κ, any m ∈ {0, 1}∗, and any
(w, (a,m)) such that w and VR(w, a) = 1, it holds that

Pr
Enc,Dec

[DecV,F(w,Enc(1κ, a,m)) = FP (w,m)] = 1

– Instance-Revealing: For any security parameter κ, any m ∈ {0, 1}∗, and
any (w, (a,m)) such that VR(w, a) = 1, it holds that

Pr[RevAtt(Enc(1κ, a,m)) = a] = 1

– Weak Extractability: For any PPT adversary A and polynomial p1(.), there
exists a PPT extractor E and a polynomial p2(.) such that for any security
parameter κ, any a for which VR(w, a) = 1 for some w, and any m0,m1

where |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b

$←− {0, 1}, c ← Enc(1κ, a,mb)
]

≥ 1
2

+ p1(κ)

Then:

Pr

⎡
⎣

EA(1κ, a, m0, m1) = w : VR(w, a) = 1 ∧ FP (w, m0) �= FP (w, m1)
∨

EA(1κ, a, m0, m1) = (w1, w2) : w1 �= w2 ∧ VR(w1, a) = 1 ∧ VR(w2, a) = 1

⎤
⎦ ≥ p2(κ)

Customized FWE in the Γ Ideal Model. Here we provide the construction
of customized FWE using the ΓV,F oracle. We note that Γ can be thought of as
an ideal customized FWE and hence the construction of the CFWE primitive is
straightforward.

Construction 3 (Customized Functional Witness Encryption). Let V
and F be as defined in Definition 21. For any security parameter κ and oracle
ΓV,F sampled according to Definition 17, we will implement a customized FWE
scheme P defined by V and function class F as follows:

– CFWE.Enc(1κ, a,m): Given a ∈ {0, 1}∗, message m ∈ {0, 1}n′
and security

parameter 1κ, let n = Θ(n′+|a|+κ). Sample r ← {0, 1}κ uniformly at random
then output c = Enc(x) where x = (a, (m, r)).

– CFWE.Dec(w, c): Given string w and ciphertext c ∈ {0, 1}p, get y ←
DecV,F(w, c), then output y.

– CFWE.Rev(c): Given ciphertext c ∈ {0, 1}p, outputs RevAtt(c).

Lemma 3. Construction 3 is a correct and subexponentially-secure implemen-
tation of customized functional witness encryption in the Γ oracle model with
measure one.

For the proof of correctness and security for this construction, we refer the
reader to the full version of this paper.

100 S. Garg et al.

From CFWE to Functional Encryption

Construction 4 (Functional Encryption). Let PF = (FE.Setup,
FE.Keygen,FE.Enc, FE.Dec) be the functional encryption scheme for the
function family F that we would like to construct. Suppose Sig = (Sig.Gen,
Sig.Sign,Sig.Ver) is a secure signature scheme.

Define a language L with an associated PPT verifier V such that an instance
a of the language corresponds to the signature verification circuit Sig.Ver(vk, .)
that takes as input w = (f, skf) so that V(w, a) = a(w) = 1 if and only if
Sig.Ver(vk,w) = 1 for some oracle-aided f ∈ F, skf ← Sig.Sign(sk, f), and
(sk, vk) ← Sig.Gen(1κ). Furthermore, let F′ be a PPT algorithm that takes as
input w = (f, skf) and a message m then outputs y = F′(w,m) = f(m).

Given a customized functional witness encryption scheme CFWE =
(CFWE.Enc, CFWE.DecV,F′ , CFWE.Rev) for V and F′ defined above, signa-
ture scheme Sig, and security parameter κ, we implement the monolithic FE
scheme PF as follows:

– FE.Setup(1κ): Generate (sk, vk) ← Sig.Gen(1κ). Output (MPK,MSK) where
MPK = vk and MSK = sk.

– FE.Keygen(MSK, f): Given MSK = sk and f ∈ F, output SKf = (f, skf)
where skf ← Sig.Sign(MSK, f).

– FE.Enc(MPK,m): Given MPK ∈ {0, 1}κ and message m ∈ {0, 1}n′
, output

ciphertext c = CFWE.Enc(1κ,MPK,m).
– FE.Dec(SKf , c): Given SKf = (f, skf) and ciphertext c ∈ {0, 1}p, call and

output the value returned by CFWE.DecV,F′(SKf , c).

Lemma 4. Construction 4 is a fully black-box construction of monolithic func-
tional encryption from customized FWE.

Proof. We first show that the construction is correct. Given (MPK,MSK) ←
FE.Setup(1κ), for any encryption c ← FE.Enc(MPK,m) of a message m ∈
{0, 1}n′

and functional decryption key SKf ← FE.Keygen(MSK, f) for a function
f ∈ F , we get that, if V(w, a) = aSig(w) = Sig.Ver(vk, (f, skf)) = 1 then:

FE.Dec(SKf , c) = CFWE.DecV,F′((f, skf), c) = F′((f, skf),m) = fPF(m)

Note that, since this is an monolithic construction, f can have oracle gates to any
subroutine in PF. As a result, we need to make sure that V are F′ are specified
in a way so that all monolithic computations are valid. First, V only has one
Sig.Ver gate which is supported by OWFs. Furthermore, F′ calls f which has
oracle gates to any subroutine in PF. Nevertheless, we can reduce each gate to
PF to CFWE or OWF gates. In particular, FE.Setup can be reduced to Sig.Gen
gates, FE.Keygen can be reduced to Sig.Sign gates, FE.Enc can be reduced to
CFWE.Enc gates, and FE.Dec can be reduced to CFWE.Dec gates. Thus, all
gates in F′ can be reduced to those in FWE or one-way functions.

Next, we prove the security of the scheme by reducing it to the underlying
security of CFWE and Sig. Let A be a computationally bounded adversary that

When Does Functional Encryption Imply Obfuscation? 101

asks one functional secret key query and breaks the security of the FE scheme.
That is, for some non-negligible ε(.):

Pr[IND1FE
A (1κ) = 1] ≥ 1

2
+ ε(κ)

where IND1FE
A is the experiment of Definition 3.

Towards contradiction, we will now show that, given A, we can build an
attacker B that can break the strong existential unforgeability of the signa-
ture scheme under chosen message attack. On receiving the public-key MPK
from the (signature game) challenger, B forwards MPK to A and upon receiving
(f,m0,m1), requests the signature for f and then randomly chooses a message
to encrypt. Note that, since FE.Enc(MPK,mb) = CFWE.Enc(1κ,MPK,mb), B
can use A to build a distinguisher A′ against CFWE. B then runs the black-
box straight-line extractor EA′

(guaranteed to exist by the security definition of
CFWE) where at least one of the following events will happen with non-negligible
probability:

– The extractor returns a single witness w∗ = (f∗, skf∗) such that V(w∗,MPK)
outputs 1 and F′(w∗,m0) �= F′(w∗,m1) =⇒ f∗(m0) �= f∗(m1). Note that
this implies that skf∗ is a valid forgery since f∗ cannot be the function f
that A requests the signature for (because f(m0) = f(m1) in that case) and
w∗ passed verification thus violating the security of the signature scheme.

– The extractor returns a pair of witnesses (w∗
1 , w

∗
2) such that w∗

1 �= w∗
2 and

V(w∗
1 ,MPK) = V(w∗

2 ,MPK) = 1. This either implies that w∗
i = (f∗, skf∗)

for some i ∈ {1, 2} is a valid witness and f∗ �= f in which case we have a
signature forgery, or it implies that w∗

i = (f, sk′
f) for some i ∈ {1, 2} and

hence sk′
f �= skf (since even if w∗

i−1 = (f, skf) we have that w∗
i �= w∗

i−1)
which is also signature forgery.

In both of the above cases, an attack against the FE scheme results in an attack
against the underlying signature scheme.

3.3 Compiling Out Γ from IO

In this section, we show a simulatable compiler for compiling out ΓV,F when
F is short-output. We adapt the approach outlined in Sect. 2 to the restricted-
monolithic rFWE oracle ΓV,F = (Enc,DecV,F, RevAtt,RevMsgV) while making
use of Lemma 1, which allows us to compile out ΓV,F in two phases: we first
compile out part of ΓV,F to get an approximately-correct obfuscator ÔΘ in the
random instance-revealing witness encryption model (that produces an obfusca-
tion B̂Θ in the Θ-model), and then use the previous result of [GMM17] to com-
pile out Θ and get an obfuscator O′ in the plain-model. Since we are applying
this lemma only a constant number of times, security should still be preserved.
Specifically, we will prove the following lemma:

102 S. Garg et al.

Lemma 5. Let F be a PPT oracle Turing machine that accepts as input a wit-
ness w and a message m then outputs a string y ∈ {0, 1}s where s(n) ≤ t(n).
Let Θ be a random instance-revealing witness encryption oracle. Then for any
ΓV,F,p satisfying t(n) ≤ p(n) − ω(n) and for Θ � ΓV,F,p, the following holds:

– For any IO in the ΓV,F,p ideal model, there exists a simulatable compiler with
correctness error ε < 1/200 for it that outputs a new obfuscator in the random
instance-revealing witness encryption oracle Θ model.

– [GMM17] For any IO in the Θ oracle model, there exists a simulatable com-
piler with correctness error ε < 1/200 for it that outputs a new obfuscator in
the plain model.

We observe that by compiling out only the Dec queries of Γ , we will end
up with queries only to Enc,RevAtt, and RevMsg. However, we note that Enc
and RevAtt already are part of Θ and RevMsg can in fact be interpreted as
the decryption subroutine of Θ where w′ = (w1, w2) is defined as the witness
to the decryption subroutine. Therefore, the second part of Lemma5 follows
directly by [GMM17], where they showed how to compile out the ideal witness
encryption oracle from any IO scheme, and thus we focus on proving the first
part of the lemma. We will present the construction of the obfuscator in the
random instance-revealing witness encryption model that, given an obfuscator
in the Γ model, would compile out and emulate queries to Dec, while forwarding
any Enc,RevAtt,RevMsg queries to Θ. Throughout this section, for simplicity of
notation, we will denote Γ = ΓV,F,p to be the oracle satisfying t(n) ≤ p(n)−ω(n).

Remark 2. For simplicity of exposition, we assume that the compiler only asks
the oracle for queries from Γn. However, our argument directly extends to handle
arbitrary calls to the oracle Γ using the following standard technique. As we will
show, the “error” in our poly-query compiler in the ideal model will be at most
poly(q)/2n (where q = poly(κ) is a fixed polynomial over the security parameter
κ of the IO construction) when we only call Γn. It is also the case that this
error adds up when we work with several input lengths n1, n2, . . . , but it is
still bounded by union bound. Therefore, the total error of the transformation
will be at most O(poly(n1)/2n1) where n1 is the smallest integer for which Γn1

is queried at some point. To make n1 large enough (to keep the error small
enough) we can modify all the parties to query Γ on all oracle queries up to
input parameter n1 = c(log(κ)) for sufficiently large c. (Note that this will be a
polynomial number of queres in total.)

The new obfuscator ÔΘ in the instance-revealing witness encryption
model. Given a δ-approximate obfuscator O = (iO,Ev) in the rFWE oracle
model, we construct an (δ + ε)-approximate obfuscator Ô = (îO, Êv) in the Θ
oracle model. Throughout this process, we can assume that iO and Ev are in
their canonical form as in Definition 18.

When Does Functional Encryption Imply Obfuscation? 103

Algorithm 1. EmulateCall
Input: Query-answer set Q, query q to a subroutine of

T ∈ {Enc, Dec, RevAtt, RevMsg} of Γ
Oracle: Random Instance-Revealing Witness Encryption Oracle

Θ = (WEnc, WDec, WRevAtt)
Output: A query-answer pair ρq, and the set W of hidden queries
Begin:
if ∃ (q �→ β)T ∈ Q for some answer β then

Set ρq = (q �→ β)T

end
if q = x is a query to Enc then

Set ρq = (x �→ WEnc(x))Enc

end
if q = c is a query to RevAtt then

Set ρq = (c �→ WRevAtt(c))Enc

end
if q = (w1, w2, c) is a query to RevMsgV then

Set ρq = (x �→ WDecV′((w1, w2), c))Enc

end
/* We simulate Dec queries */
if q = (w, c) is a query to DecV,F then

Let aR be the attribute returned by EmulateCall(Q, qR) where qR is the
query RevAtt(c)
Emulate b ← VEnc(w, aR) while emulating any queries using EmulateCall

if b = 1 and ∃ ((a, m) �→ c)Enc ∈ Q then
Emulate y ← FΓ (w, m) while simulating any queries using EmulateCall

Set W to be the set of query-answer pairs asked by F
Set ρq = ((w, c) �→ y)Dec

else
Set ρq = ((w, c) �→ ⊥)Dec

end

end
Return (ρq, W)

Subroutine îO
Θ

(C):

1. Emulation phase: Emulate iOΓ (C). Initialize QO = ∅ to be the set of query-
answer pairs asked by the obfuscation algorithm iO. For every query q asked
by iOΓ (C), call (ρq,W) ← EmulateCallΘ(QO, q) and add ρq to QO.

2. Learning phase: Set QB = ∅ to be the set of direct (visible) query-answer
pairs asked during this phase (so far) and Qh

B = ∅ to be the set of indirect
(hidden) query-answer pairs (see Definition 20). Let k = (�O + κ)/ε where

�O ≤ |iO| represents the number of queries asked by iO. Choose λ
$←− [k]

uniformly at random then for i = {1, ..., λ} do the following:
– Choose zi

$←− {0, 1}|C| uniformly at random
– Run EvΓ (B, zi). For every query q asked by EvΓ (B, zi), run (ρq,W) ←
EmulateCallΘ(QO ∪ QB ∪ Qh

B , q), then add ρq to QB and W to Qh
B .

104 S. Garg et al.

3. The output of the Θ-model obfuscation algorithm îO
Θ

(C) will be B̂ =
(B,QB).

Subroutine Êv
Θ

(B̂, z): Initialize Q
̂B = ∅ to be the set of queries asked when

evaluating B̂. To evaluate B̂ = (B,QB) on a new random input z we simply
emulate EvΓ (B, z) as follows. For every query q asked by EvΓ (B, z), run and
set (ρq,W) = EmulateCallΘ(QB ∪ Q

̂B , q) then add (ρq ∪ W) to Q
̂B .

The running time of îO. We note that the running time of the new obfuscator
îO remains polynomial time since we are emulating the original obfuscation once
followed by a polynomial number λ of learning iterations. Furthermore, since we
are working with the restricted-monolithic oracle (see Definition 17), the way
that F is defined (as a universal circuit evaluator) makes it so that the number
of recursive calls that appear due to emulating FΓ is upper-bounded by some
polynomial (in fact even quadratic).

Proving Approximate Correctness. Define Qh
̂B

to be the set of hidden queries
asked during the final execution phase. Set QT = QO ∪ QB ∪ Qh

B ∪ Q
̂B ∪ Qh

̂B
to be the set of all (visible and hidden) query-answer pairs asked during all the
phases. We consider two distinct experiments that construct the Θ oracle model
obfuscator exactly as described above but differ when evaluating B̂:

– Real Experiment: Êv
Θ

(B̂, z) emulates EvΓ (B, z) on a random input z and
answers any queries using EmulateCall.

– Ideal Experiment: Êv
Γ
(B̂, z) executes EvΓ (B, z) and answers all the

queries of EvΓ (B, z) using the actual oracle Γ .

Note that the actual emulation of the new obfuscator is statistically close to
an ideal emulation of the obfuscation and learning phases using Γ and so it
suffices to compare only the real and ideal final execution phases. In essence,
in the real experiment, we can think of the execution as Ev

̂Γ (B, z) where Γ̂
is the oracle simulated using the learned query-answer pairs QB and oracle Θ.
We will compare the real experiment with the ideal experiment and show that
the statistical distance between these two executions is at most ε. In order to
achieve this, we will identify the events that make the executions EvΓ (B, z) and
Ev
̂Γ (B, z) diverge (i.e. without them happening, they proceed statistically the

same).
Let q be a new query that is being asked by Ev

̂Γ (B, z) (i.e. in the real
experiment) and handled using EmulateCallΘ(QB ∪ Q

̂B , q). The following are
the cases that should be handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the
same in both experiments as they will be both answered using the subroutine
WEnc(c) of Θ.

When Does Functional Encryption Imply Obfuscation? 105

2. If q is a query of type RevAtt(c), then the answer to q will be distributed the
same in both experiments as they will be both answered using the subroutine
WRevAtt(c) of Θ.

3. If q is a query of type RevMsgV(w1, w2, c), then the answer to q will be
distributed the same in both experiments as they will be both answered using
the subroutine WDecV′(w′, c) where w′ = (w1, w2).

4. If q is a query of type DecV,F(w, c) whose answer is determined by QB ∪ Q
̂B

in the real experiment then it is also determined by QT ⊇ (QB ∪ Q
̂B) in the

ideal experiment and the answers are therefore distributed the same.
5. Suppose q is a query of type DecV,F(w, c) that is not determined by QB ∪Q

̂B
in the real experiment. Then the answer returned by EmulateCall is ⊥ since
the underlying encryption query ((a,m) �→ c)Enc is not known. In that case,
we have to consider three different counterparts in the ideal experiment:
(a) Bad Event 1: If q is not determined by QT in the ideal experiment then

this implies that the ideal execution EvΓ (B, z) is for the first time hitting
a valid ciphertext that was never generated by an encryption query asked
during any of the phases. In that case, since Enc is injective, the answer
returned by Γ would be ⊥ with overwhelming probability.

(b) Bad Event 2: The query q is determined by QT \ (QB ∪Q
̂B) in the ideal

experiment and the ideal execution EvΓ (B, z) has hit a valid unknown
ciphertext that was generated by an encryption query in the obfuscation
phase that was never learned. In this case, the answer will be FΓ (w,m)
if the verification passes and ⊥ otherwise.

(c) Bad Event 3: The query q is determined by QT \ (QB ∪ Q
̂B) in the

ideal experiment then and the ideal execution EvΓ (B, z) has hit a valid
unknown ciphertext that was generated as a hidden query (i.e. issued by
inner F executions) during the learning or evaluation phases. In this case,
the answer will be FΓ (w,m) if the verification passes and ⊥ otherwise.

Notice that the answer to such a query in the ideal experiment differs from
that in the real experiment (which always outputs ⊥). However, we will show
below that such an event is unlikely to occur.

For circuit input z, let E(z) be the event that either one of Cases 5a, 5b,
or 5c happen. More specifically, this is the event that Ev

̂Γ (B, z) asks a query q
of the form DecV,F(w, c) where c is a valid ciphertext that was either (i) never
generated before during any of the phases, (ii) generated during the obfuscation
phase, or (iii) generated by a hidden query in the learning and/or final eval-
uation phases. Assuming that event E(z) does not happen, both experiments
will proceed identically the same and the output distributions of EvΓ (B, z) and
Ev
̂Γ (B, z) will be statistically close. More formally, the probability of correctness

for îO is:

Pr
z
[Ev

̂Γ (B, z) �= C(z)] = Pr
z
[Ev

̂Γ (B, z) �= C(z) ∧ ¬E(z)] + Pr
z
[Ev

̂Γ (B, z) �= C(z) ∧ E(z)]

≤ Pr
z
[Ev

̂Γ (B, z) �= C(z) ∧ ¬E(z)] + Pr
z
[E(z)]

106 S. Garg et al.

By the approximate functionality of iO, we have that:

Pr
z

[iOΓ (C)(z) �= C(z)] = Pr
z

[EvΓ (B, z) �= C(z)] ≤ δ(κ)

Therefore,

Pr
z

[Ev
̂Γ (B, z) �= C(z) ∧ ¬E(z)] = Pr

z
[EvΓ (B, z) �= C(z) ∧ ¬E(z)] ≤ δ (1)

We are thus left to show that Pr[E(z)] ≤ ε. Since both experiments proceed the
same up until E happens, the probability of E happening is the same in both
worlds and we will thus choose to bound this bad event in the ideal world.

Proof Intuition. At a high-level, in order to show that E is unlikely, we will
show that the learning procedure and final execution phases, when treated as a
single non-uniform query-adaptive algorithm A, will only ask a bounded num-
ber of queries for valid ciphertexts whose corresponding underlying message is
unknown to this algorithm. Then, given this upper bound on such queries, we
ensure that by running the learning procedure for sufficient number of times, the
final execution phase will not ask such queries to unknown ciphertexts with high
probability and we maintain the approximate correctness of the obfuscation.

In order to prove this upper bound on the number of ciphertexts that will
be hit, we start with the query-adaptive A which consists of the combination
of the learning and final execution phases that accepts as input an obfuscation
B in the Γ oracle model and is able to adaptively query Γ when running B on
multiple randomly chosen inputs. We then show through a sequence of reductions
to other adversaries that the advantage of such an attacker in hitting a specific
number of unknown ciphertexts is upper bounded by the advantage of a different
non-adaptive attacker Â in hitting the same number of ciphertexts (up to some
factor). We then finally show that Â has a negligible advantage in succeeding.

We begin by defining the notion of query adaptivity for oracle algorithms
and specify what it means for an adversary to hit a ciphertext.

Definition 22 (Query Adaptivity). Let A be a poly-query randomized oracle
algorithm that asks τ queries to some idealized oracle I. Suppose Q is the set of
queries that A will ask. We define the level of query adaptivity of A as being
one of two possible levels:

– Non-adaptive: Q consists of τ queries, possibly from different domains, and
chosen by A before it issues any query and/or independently of the answers
of any previous query.

– Fully adaptive: Q = (q1, ..., qτ) consists of τ queries possibly from different
domains where, for each i ∈ [τ], qi+1 is determined by the answer returned
by qi.

Definition 23 (Ciphertext Hit). Let A be a τ -query oracle algorithm that
has access to Γ . We say that A has hit a ciphertext c if it queries Dec(., c),
RevAtt(c), or RevMsg(., ., c) and c is a valid unknown ciphertext (that is, A has
never asked Enc(x) = c). We denote the set of ciphertexts that A has hit by HA.

When Does Functional Encryption Imply Obfuscation? 107

Our goal is to prove the following lemma which provides the desired upper
bound on the number of ciphertexts that an attacker A can hit.

Lemma 6 (Hitting Ciphertexts). Let ΓV,F be as in Definition 17, n be a fixed
number, and t(n) ≤ p(n)−ω(n), where t is the upper bound on the output length
of F and p is the ciphertext length. Let A be an adaptive τ -query oracle algorithm
that takes as input z and has access to ΓV,F. Let HA be the set of unknown valid
ciphertexts that A hits. Then for security parameter (of the obfuscation scheme)
κ, n ≥ lg κ, τ ≤ poly(κ) ≤ κO(1) we have that for any s ≤ τ :

Pr[|HA| ≥ s] ≤ O(2α−(t+ω(n))s)

where α = |z| + (t + 2n)s.

Proof. We will define a sequence of adversaries and show reductions between
them in order to prove the upper bound stated above. Throughout, we assume
that the algorithms are in canonical form (see Definition 18).

1. Attacker A: This is the original adaptive τ -query attacker as defined in the
statement of the lemma where it will receive some input z and can ask τ
queries to Γ . The goal of the adversary is to hit at least s unknown valid
ciphertexts via queries to Dec,RevAtt or RevMsg.

2. Attacker Au: This is the same attacker as A but does not accept any input
and is modified as follows. For any Dec,RevAtt or RevMsg queries asked to
Γ with some answer y �= ⊥, Au will instead use an answer that is part of
some fixed string u ∈ {0, 1}α hardcoded within Au where α = |z| + (t + 2n)s.
The Enc queries are handled normally as before. The goal of this adversary
is to hit at least s unknown valid ciphertexts via queries to Dec,RevAtt or
RevMsg.

3. Attacker A′: This is the same attacker as Au for any fixed u. However,
aside from Enc queries which are handled normally using Γ , the other query
types are instead replaced with a single subroutine Test that takes as input
a ciphertext c and outputs 1 if c is valid, and 0 otherwise. The goal of this
adversary is to hit at least s unknown valid ciphertexts via queries to Test.

4. Attacker Â: This is the non-adaptive attacker where it will ask all its queries
at once at the start of the experiment. Furthermore, it will not ask any Enc
queries but will be constrained to asking only Test queries. The goal of this
adversary is to hit at least s unknown valid ciphertexts via queries to Test.

Lemma 7. For every A, there exists some u ∈ {0, 1}α such that Pr[|HA| ≥ s] ≤
2α Pr[|HAu

| ≥ s]

Proof. Recall that A accepts z as input and, when it hits s ciphertexts, it would
receive back at most (t + 2n) since we can either get back t bits information as
a result of getting back an answer from DecV,F or at most n bits of information
from queries of RevAtt and RevMsgV. Furthermore, by the canonicalization of
A, it can ask for any c at most one query of each type DecV,F, RevAtt, and
RevMsgV. Thus, in order to say that Au would succeed at hitting s with the

108 S. Garg et al.

same amount of information, the length of u has to be α = |z| + (t + 2n)s. Now,
by a union bound over all u, the probability of success for A is given as follows:

Pr[|HA| ≥ s] ≤ Pr[∃ u : |HAu
| ≥ s] ≤

∑
u

Pr[|HAu
| ≥ s] ≤ 2α Pr[|HAu

| ≥ s]

Lemma 8. For any u ∈ {0, 1}α, Pr[|HAu
| ≥ s] = Pr[|HA′ | ≥ s]

Proof. Since Au does not obtain any information regarding the actual answers
to the Dec,RevAtt and RevMsg queries that it asks, we can think of these
subroutines simply as a testing procedure that Au can use to determine whether
any given ciphertext c is valid or not, and this is signaled by whether the oracle
returns ⊥ or not to any of these queries. Therefore, we can interpret Au as an
adversary A′ that simply calls Test instead of Dec,RevAtt and RevMsg queries
as this yields the same result.

Lemma 9. Pr[|HA′ | ≥ s] ≤ Pr[
∣∣H
̂A

∣∣ ≥ s]

Proof. Given attacker A′ we can define Â that uses A′ and only issues Test
queries (non-adaptively). Any Enc queries that A′ asks (from a specific Enc
domain of size n) can be lazily evaluated (emulated) by Â. Furthermore, any Test
queries that A′ asks will be answered using one of Â’s pre-issued Test queries
while remaining consistent with the previous Enc queries that were issued.

Lastly, we state and prove the following lemma which will be used to bound
the number of ciphertexts that any (poly-query) non-adaptive algorithm might
obtain and use for its decryption and/or reveal queries.

Lemma 10 (Hitting Ciphertexts for Non-Adaptive Learners). Let Γ be
as in Definition 16 and t(n) ≤ p(n) − ω(n) where t is an upper bound on the
output length of F and p is the ciphertext length. Let Â be a non-adaptive τ -
query canonical algorithm as defined above and H

̂A be the set of unknown valid
ciphertexts that Â hits via Test queries. Then for security parameter κ, fixed
n ≥ lg κ, τ ≤ poly(κ), we have that for any s ≤ τ :

Pr[
∣∣H
̂A

∣∣ ≥ s] ≤ O(2−(t+ω(n))s)

Proof. Suppose t ≤ p − dn for d = ω(1) and let τ ≤ κd′
= 2d′ lg κ ≤ 2d′n where

d′ = d/2 = ω(1) for the purposes of upper-bounding the probability for all
poly-query algorithms Â. Recall that the function Enc(.) is injective and maps
messages x ∈ {0, 1}n to ciphertexts c ∈ {0, 1}p(n). For simplicity, assume that
we want to compute the probability that |H

̂A| = s. For any set of s ciphertexts
that are in the image of some fixed s-sized set of the domain Enc(.), the prob-
ability that the τ queries will hit these s ciphertexts is given by

(
τ
s

)
/
(
2p

s

)
. By a

union bound over all the different s-sized sub-domains of Enc(.), we find that

When Does Functional Encryption Imply Obfuscation? 109

for sufficiently large security parameter κ:

Pr[
∣∣H
̂A

∣∣ = s] ≤
(2n

s

) (τ
s

)
(2p

s

) ≤

(
2ne

s

)s (τe

s

)s

(
2p

s

)s ≤

⎛
⎜⎜⎝

2ne

s
× 2d′ne

s
2p

s

⎞
⎟⎟⎠

s

≤
(
2n(1+d′)e2

2ps

)s

≤
(
2n(1+d/2)e2

2p

)s

≤ O(2−(t+ω(n))s)

The last inequality follows from the short-output property, that is t ≤ p − d · n
for some d = ω(1). Note that Pr[|H

̂A| = s + 1] ≤ Pr[|H
̂A| = s] and therefore

Pr[|H
̂A| ≥ s] is dominated by the largest term represented by Pr[|H

̂A| = s].

Putting things together. By Lemmas 7, 8, and 9, and using Lemma 10, we
find that:

Pr[|HA| ≥ s] ≤ O(2α−(t+ω(n))s)

Note that, for simplicity, Lemma 6 only considers hitting unknown ciphertexts
from some fixed domain of size n. However, we observe that this argument can
be extended for learners that can ask queries for different domain sizes as well.

Lemma 11. Pr[E(x)] ≤ ε + negl(κ)

Proof. Let A to be an adaptive non-uniform oracle algorithm in the ideal hybrid
that has access to Γ and works as follows:

– Initialize the query-answer set QA = ∅

– For i = {1, ..., k}, run EvΓ (B, zi). For any query q asked by EvΓ (B, zi), if
(q �→ a)T ∈ QA for subroutine T then answer with a. Otherwise, handle the
query in the canonical form as in Definition 18, and if a query was sent to Γ ,
add the new query-answer pair (q �→ a)T to QA.

– Output EvΓ (B, zk)

In essence, A would run the learning and final execution phases (in total k exe-
cutions) making sure to only forward to Γ the queries that are distinct and which
cannot be computed from QA so far. Given the above canonical A, we observe that
for any unknown valid ciphertext c = Enc(x) where x = (a,m), A would ask at
most one query of the form RevAtt(c), at most one query of the form Dec(w, c) for
which VEnc(w, a) = 1, and at most one query of the form RevMsg(w1, w2, c) for
which VEnc(wi, a) = 1 where i ∈ {1, 2}. Furthermore, A would never ask a query
if VEnc(w, a) = 0 since this condition can be verified independently by A and the
answer can be simulated as it would invariably be ⊥.

110 S. Garg et al.

Given A, we can bound the number of distinct unknown ciphertexts that
the k executions will hit, which we denote by |HB | =

∣∣∣⋃k
i=1 HBi

∣∣∣ where HBi
is

the set of ciphertexts hit by the ith evaluation EvΓ (B, zi). Note that the total
number of queries that will be asked across all executions is k�B = poly(κ)
where �B is the circuit size of Ev(B, .). It is straightforward to see that, for any
s, Pr[|HA| ≥ s] = Pr[|HB | ≥ s] since whenever one of the k executions hits an
unknown ciphertext c for this first time, A will also forward it to the oracle and
hit it for the first time as well.

Since A accepts as input the obfuscated circuit of size |iO| = �O, by Lemma 6,
the probability that A hits at least s = (�O +κ) ciphertexts is at most 2�O−ω(n)s ≤
2−ω(n)κ = negl(κ). Therefore, the k�B-query algorithm A will hit at most s =
(�O + κ) new unknown ciphertexts with overwhelming probability. Therefore we
have that,

Pr[|HB | ≥ s] = Pr[|HA| ≥ s] ≤ 2�O−ω(n)s

Since the maximum possible number of learning iterations k > s and
⋃i

j=1 HBj
⊆⋃i+1

j=1 HBj
for any i, the number of learning iterations that increase the size of the

set HB of unknown ciphertext hits (via one of the bad event queries) is at most s.
A ciphertext that was hit could have its encryption query generated during the
obfuscation phase or as one of the hidden queries issued by F during one of the k

executions. We say λ
$←− [k] is bad if it is the case that

⋃λ
j=1 HBj

⊆ ⋃λ+1
j=1 HBj

(i.e.
λ is an index of a learning iteration that increases the size of the hit ciphertexts).
This would imply that after λ learning iterations in the ideal experiment, the
final execution with H

̂B :=
⋃λ+1

j=1 HBj
would contain an unknown ciphertext

that it we will hit for this first time and for which we cannot consistently answer
the queries that reference it. Thus, given that we have set k = (�O + κ)/ε, the
probability (over the selection of λ) that λ is bad is at most s/k < ε.

Proving Security. To show that the resulting obfuscator is secure, it suffices to
show that the compilation process represented as the new obfuscator’s construc-
tion is simulatable. We show a simulator Sim (with access to Γ) that works as
follows: given an obfuscated circuit B in the Γ ideal model, it runs the learning
procedure as shown in Step 2 of the new obfuscator îO to learn the heavy queries
QB then outputs B̂ = (B,QB). Note that this distribution is statistically close
to the output of the real execution of îO and, therefore, security follows.

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 21

[ADGM16] Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indis-
tinguishability obfuscations of circuits over ggh13. Cryptology ePrint
Archive, Report 2016/1003 (2016). http://eprint.iacr.org/2016/1003

https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
http://eprint.iacr.org/2016/1003

When Does Functional Encryption Imply Obfuscation? 111

[AGIS14] Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
avoiding Barrington’s theorem. In: Ahn, G.-J., Yung, M., Li, N. (eds.)
ACM CCS 2014: 21st Conference on Computer and Communications
Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 646–658. ACM
Press (2014)

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 15

[AS15] Asharov, G., Segev, G.: Limits on the power of indistinguishability obfus-
cation and functional encryption. In: 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 191–209. IEEE (2015)

[AS16] Ananth, P., Sahai, A.: Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. Cryp-
tology ePrint Archive, Report 2016/1097 (2016). http://eprint.iacr.org/
2016/1097

[BBF16] Brakerski, Z., Brzuska, C., Fleischhacker, N.: On statistically secure
obfuscation with approximate correctness. Cryptology ePrint Archive,
Report 2016/226 (2016). http://eprint.iacr.org/

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54242-8 3

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 13

[BKSY11] Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power
of zero-knowledge proofs in cryptographic constructions. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 34

[BLP16] Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings
from functional encryption. Cryptology ePrint Archive, Report 2016/962
(2016). http://eprint.iacr.org/2016/962

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: new mathematical tools, and the case of evasive circuits.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 27

[BNPW16] Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From crypto-
mania to obfustopia through secret-key functional encryption. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 15

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of
finding a Nash equilibrium. In: Guruswami, V. (ed.) 56th Annual Sym-
posium on Foundations of Computer Science, Berkeley, CA, USA, 17–20
October 2015, pp. 1480–1498. IEEE Computer Society Press (2015)

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
http://eprint.iacr.org/2016/1097
http://eprint.iacr.org/2016/1097
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-19571-6_34
http://eprint.iacr.org/2016/962
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-53644-5_15

112 S. Garg et al.

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all
circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 1

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd Annual Sym-
posium on Foundations of Computer Science, Palm Springs, CA, USA,
22–25 October 2011, pp. 97–106, IEEE Computer Society Press (2011)

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22792-9 29

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) 56th Annual Symposium
on Foundations of Computer Science, Berkeley, CA, USA, 17–20 October
2015, pp. 171–190. IEEE Computer Society Press (2015)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 27

[CGH+15] Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E.,
Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes:
new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-47989-6 12

[CGH16] Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branch-
ing program obfuscators. Cryptology ePrint Archive, Report 2016/998
(2016). http://eprint.iacr.org/2016/998

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 1

[CKP15] Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random
oracles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 456–467. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 18

[CLLT15] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. Cryptology ePrint Archive, Report 2015/1037
(2015). http://eprint.iacr.org/2015/1037

[CLLT16] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on
indistinguishability obfuscation over clt13. Cryptology ePrint Archive,
Report 2016/1011 (2016). http://eprint.iacr.org/2016/1011

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 26

[Dac16] Dachman-Soled, D.: Towards non-black-box separations of public key
encryption and one way function. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 169–191. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 7

https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-47989-6_12
http://eprint.iacr.org/2016/998
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46497-7_18
https://doi.org/10.1007/978-3-662-46497-7_18
http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2016/1011
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-53644-5_7
https://doi.org/10.1007/978-3-662-53644-5_7

When Does Functional Encryption Imply Obfuscation? 113

[DGG+16] Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfusca-
tion from low noise multilinear maps. Cryptology ePrint Archive, Report
2016/599 (2016). http://eprint.iacr.org/2016/599

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of
Computing, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178.
ACM Press (2009)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th Annual Symposium on Foundations of Computer
Science, Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Com-
puter Society Press (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 20

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54242-8 4

[GK05] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with
auxiliary input. In: 46th Annual Symposium on Foundations of Computer
Science, Pittsburgh, PA, USA, 23–25 October 2005, pp. 553–562. IEEE
Computer Society Press (2005)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM
Symposium on Theory of Computing, Palo Alto, CA, USA, 1–4 June
2013, pp. 555–564. ACM Press (2013)

[GLSW15] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. In:
Guruswami, V. (ed.) 56th Annual Symposium on Foundations of Com-
puter Science, Berkeley, CA, USA, 17–20 October 2015, pp. 151–170.
IEEE Computer Society Press (2015)

[GMM+16] Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.:
Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 10

[GMM17] Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfusca-
tion from all-or-nothing encryption primitives. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 661–695. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 22

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: conceptually-simpler, asymptotically-faster, attribute-
based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 5

http://eprint.iacr.org/2016/599
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5

114 S. Garg et al.

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption
for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA,
1–4 June 2013, pp. 545–554. ACM Press (2013)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for
circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 25

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments
from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.)
STOC. ACM (2011)

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 21

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: 21st Annual ACM Symposium on Theory of Com-
puting, Seattle, WA, USA, 15–17 May 1989, pp. 44–61. ACM Press (1989)

[Lin16a] Lin, H.: Indistinguishability obfuscation from constant-degree graded
encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 2

[Lin16b] Lin, H.: Indistinguishability obfuscation from ddh on 5-linear maps and
locality-5 prgs. Cryptology ePrint Archive, Report 2016/1096 (2016).
http://eprint.iacr.org/2016/1096

[LT17] Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps
and block-wise local prgs. Cryptology ePrint Archive, Report 2017/250
(2017). http://eprint.iacr.org/2017/250

[LV16] Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.)
57th Annual Symposium on Foundations of Computer Science, New
Brunswick, NJ, USA, 9–11 October 2016, pp. 11–20. IEEE Computer
Society Press (2016)

[MMN15] Mahmoody, M., Mohammed, A., Nematihaji, S.: More on impossibility
of virtual black-box obfuscation in idealized models. Cryptology ePrint
Archive, Report 2015/632 (2015). http://eprint.iacr.org/

[MMN+16a] Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: A
note on black-box separations for indistinguishability obfuscation. Cryp-
tology ePrint Archive, Report 2016/316 (2016). http://eprint.iacr.org/
2016/316

[MMN+16b] Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat,
A.: Lower bounds on assumptions behind indistinguishability obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 49–66. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49096-9 3

[MSW14] Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic
attacks. Cryptology ePrint Archive, Report 2014/878 (2014). http://
eprint.iacr.org/2014/878

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for mul-
tilinear maps: cryptanalysis of indistinguishability obfuscation over
GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.

https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2016/1096
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/
http://eprint.iacr.org/2016/316
http://eprint.iacr.org/2016/316
https://doi.org/10.1007/978-3-662-49096-9_3
https://doi.org/10.1007/978-3-662-49096-9_3
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878

When Does Functional Encryption Imply Obfuscation? 115

9815, pp. 629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53008-5 22

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 6

[Pas11] Pass, R.: Limits of provable security from standard assumptions. In: Pro-
ceedings of the Forty-third Annual ACM Symposium on Theory of Com-
puting, pp. 109–118. ACM (2011)

[Pas15] Pass, R., Shelat, A.: Impossibility of VBB obfuscation with ideal
constant-degree graded encodings. Cryptology ePrint Archive, Report
2015/383 (2015). http://eprint.iacr.org/

[PTV11] Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-
box lower bounds in cryptography. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 579–596. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19571-6 35

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between
cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol.
2951, pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24638-1 1

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM
Symposium on Theory of Computing, New York, NY, USA, 31 May–
June 3 2014, pp. 475–484. ACM Press (2014)

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 439–467. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-540-45146-4_6
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-19571-6_35
https://doi.org/10.1007/978-3-642-19571-6_35
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-46803-6_15

Obfuscation

Limits on the Locality of Pseudorandom
Generators and Applications

to Indistinguishability Obfuscation

Alex Lombardi(B) and Vinod Vaikuntanathan

MIT, Cambridge, USA
{alexjl,vinodv}@mit.edu

Abstract. Lin and Tessaro (ePrint 2017) recently proposed indistin-
guishability obfuscation (IO) and functional encryption (FE) candidates
and proved their security based on two assumptions: a standard assump-
tion on bilinear maps and a non-standard assumption on “Goldreich-like”
pseudorandom generators. In a nutshell, their second assumption requires
the existence of pseudorandom generators G : [q]n → {0, 1}m for some
poly(n)-size alphabet q, each of whose output bits depend on at most two
in put alphabet symbols, and which achieve sufficiently large stretch. We
show polynomial-time attacks against such generators, invalidating the
security of the IO and FE candidates. Our attack uses tools from the lit-
erature on two-source extractors (Chor and Goldreich, SICOMP 1988)
and efficient refutation of random 2-XOR instances (Charikar and Wirth,
FOCS 2004).

1 Introduction

There has been much recent progress on constructing indistinguishability
obfuscation (IO) schemes [BGI+01,GR07] starting from the work of Garg
et al. [GGH+16]. Most recently, Lin [Lin16a] and Lin et al. [LV16,Lin16b,AS16,
LT17] showed a pathway to constructing IO schemes using two ingredients: multi-
linear maps of constant degree and pseudorandom generators of constant locality.
In particular, Lin and Tessaro [LT17] construct an IO candidate from standard
assumptions on bilinear maps and non-standard assumptions on “Goldreich-like”
pseudorandom generators [Gol00] with “blockwise” locality 2.

This is a remarkable development: until recently, we had IO candidates
based on constant degree (most recently, degree 5) multilinear maps and

A. Lombardi—Supported by an Akamai Presidential Fellowship and the grants of
the second author.
V. Vaikuntanathan—Research supported in part by NSF Grants CNS-1350619 and
CNS-1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the
NEC Corporation, a Steven and Renee Finn Career Development Chair from MIT.
This work was also sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-
C-0226 and W911NF-15-C-0236.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 119–137, 2017.
https://doi.org/10.1007/978-3-319-70500-2_5

120 A. Lombardi and V. Vaikuntanathan

constant locality (most recently, locality 5) PRGs. We did not have any can-
didates for the degree 5 multilinear maps that satisfied the required assump-
tions (namely, a version of the decisional Diffie-Hellman assumption); however,
we did have candidates for locality 5 PRGs that are known to resist a large
class of attacks [OW14,AL16]. The Lin-Tessaro result dramatically changed the
landscape by shifting the burden of existence from degree 5 multilinear maps to
pseudorandom generators with (so-called) blockwise locality 2 and polynomial
stretch. In other words, we have candidates for degree 2 multilinear maps (also
known as bilinear maps) [BF03,Jou02,Jou00]; however, there are no locality 2
PRGs, and the security of blockwise locality 2 PRGs is highly questionable. (For
the formal definitions of all these technical terms, see below and Sect. 2.)

In this work, we show a polynomial-time attack against the pseudorandom
generators required for the Lin-Tessaro construction. As such, this constitutes
a break of the Lin-Tessaro IO (as well as functional encryption) constructions
that use bilinear maps.

We remark that our attacks do not apply to the Lin-Tessaro IO construction
based on 3-linear maps. This leaves us in a curious state of affairs regarding
constructions of IO from multilinear maps.

– There is a construction [LT17] of IO from trilinear maps (whose existence
is questionable) and “blockwise 3-local PRGs” (for which we have plausible
candidates); and

– There is a construction [LT17] of IO from bilinear maps (for which we have
candidates that have been around for almost two decades) and “blockwise
2-local PRGs” (which are broken in this work).

Since cryptographically secure trilinear maps have so far eluded us, it is not
surprising that the difficulty of achieving IO arises from the gap between bilinear
and trilinear maps. However, we find it quite surprising that this transition
appears to be related to the pseudorandomness of 2-local functions and 3-local
functions (over a large alphabet, no less)!

Goldreich’s PRGs with Blockwise 2-Local Predicates. We start by describing the
object we attack. Let P be a predicate from Σ2 to {0, 1}, for some polynomial
size alphabet |Σ| = q = poly(n). Let H be a (directed) graph with n vertices
and m edges; we will refer to H as the constraint graph. The pseudorandom
generator GH,P : Σn → {0, 1}m is defined in the following way. Let e = (i, j)
be a directed edge in G. Then, the eth bit of the output of the generator is
computed as P (xi, xj). We call this an (n,m, q)-Goldreich-like pseudorandom
generator since it uses predicates over a large alphabet.

This construction can also be thought of as a “blockwise local” pseudorandom
generator, a terminology that Lin and Tessaro introduce and use [LT17]. In an
(L,w)-block-wise PRG, the nw-bit input is divided into blocks of size w bits
each, and each output bit of the PRG can depend on at most L blocks. It is
easy to see that a Goldreich PRG as defined above with alphabet size q is a
(2, �log q�)-block-wise PRG. In fact, Lin and Tessaro’s definition of block-wise
PRGs is more general in that it allowed each output bit to be computed using

Limits on the Locality of Pseudorandom Generators 121

a different (publicly known) predicate. However, their candidate PRG used the
same predicate to compute all the output bits.

With this terminology, we are ready to state our main result.

Theorem 1. There is a poly(n, q) time algorithm D which, for any m ≥ Ω̃(q·n),
any predicate P : [q]2 → {0, 1}, and any graph H with n vertices and m edges,
distinguishes between a uniformly random string z ← Um and a random output
z ← GH,P (Un,q) (with a constant distinguishing advantage).

The Lin-Tessaro Theorem and Connection to Goldreich-like PRGs. Lin and
Tessaro [LT17], building on earlier work [BV15,AJ15,Lin16a,LV16,Lin16b,
AS16] showed an IO candidate based on the hardness of standard assumptions on
bilinear maps and the existence of a Goldreich-like PRG with blockwise locality
2 and sufficiently large stretch. That is, they show:

Under standard assumptions on bilinear maps and the existence of a
subexponentially secure (n,m, q)-Goldreich-like PRG with q = poly(n)
and m = (nq3)1+ε for some constant ε > 0, there is an IO scheme. Assum-
ing the existence of such a generator with quasipolynomial security, there
is a compact FE scheme.

In a nutshell, they utilize the reductions of Ananth and Jain [AJ15] and
Bitansky and Vaikuntanathan [BV15] who show how to construct an IO scheme
from any sub-exponentially secure compact FE scheme. By compact FE, roughly
speaking, we mean a functional encryption scheme for functions of large output
size k with ciphertexts of size k1−ε for some absolute constant ε > 0. Such
ciphertexts simply do not have enough space to hold the function output, so
they, in a sense, have to do non-trivial computation as part of the FE decryption
process. Since IO is the ultimate truth-table compression algorithm, the moral
bottomline of [AJ15,BV15], formalized in [LPST16], is that “any compression
implies the ultimate compression”. On the other hand, non-compact FE schemes
can be constructed essentially from any public-key encryption scheme [SS10,
GVW12].

Thus, [LT17] construct a compact functional encryption scheme using their
ingredients. Using their bootstrapping theorem, it turns out to be sufficient to
construct an FE scheme that encrypts the seed of a PRG (which they instan-
tiate with a Goldreich-like PRG as defined above) and whose functional key
corresponds to the computation of the PRG itself (plus some). In a high level,
their encryption algorithm takes as input the seed x = x1x2 . . . xn ∈ [q]n, pre-
computes all possible monomials on the bits of each alphabet symbol xi ∈ [q]
(i = 1, . . . , n), of which there are roughly q, and includes it in the ciphertext.
Computing the PRG output, then, can be written as a degree-2 computation
which can be performed using a bilinear map (leveraging on an earlier result
of Lin [Lin16b]). Thus, the number of bits being encrypted is n · q. To achieve
sublinear compactness which, by the above discussion, is necessary to apply the
FE-to-IO transformations, they need the output length of the PRG m to be

122 A. Lombardi and V. Vaikuntanathan

large enough, namely m = Ω((nq)1+ε) for some constant ε > 0. In fact, since
they need to support computations that are a bit more complex than simply
computing the PRG, they need the stretch to be Ω((nq3)1+ε).

Our main theorem (Theorem 1) now implies that a natural class of candidates
for such PRGs, proposed and analyzed in [LT17], can be broken in polynomial-
time. In fact, we show something stronger: even a potential extension of the
Lin-Tessaro theorem that requires only blockwise 2-local PRGs with minimal
expansion, namely m = Ω̃(nq), can be broken using our attack.

Comparison to [BBKK17]. The presentation of this work has changed sig-
nificantly since the original preprint [LV17]. We originally proved the following
weaker version of Theorem 1; see also the first line of Fig. 1.

Theorem 2. There is a poly(n, q) time algorithm D which, for any m ≥
Ω̃(q · n), any predicate P : [q]2 → {0, 1}, and a (1 − o(1)) fraction of graphs H
with n vertices and m edges, distinguishes between a uniformly random string
z ← Um and a random output z ← GH,P (Un,q) (with a constant distinguishing
advantage).

In a concurrent work, Barak et al. [BBKK17] showed a completely different
attack on a blockwise 2-local PRG with different parameter settings. Barak et al.
show how to attack blockwise 2-local PRGs for worst-case graphs and a worst-
case collection of possibly different predicates for each output bit. However, they
need to assume that the PRG had a larger stretch, namely that m = Ω̃(q2 · n).
They also achieve a threshold of m = Ω̃(q · n) for the restricted case of random
graphs and random, single predicate. See the second and third line of Fig. 1.

Our main theorem draws inspiration from [BBKK17] and applies our main
technique that we refer to as alphabet reduction in a different way than we orig-
inally conceived. See the fourth line of Fig. 1.

There is a gap between our main theorem, namely Theorem 1, and a complete
break of the [LT17] candidate: Theorem1 breaks blockwise 2-local PRGs in
which the predicate computing each output bit is the same. This breaks Lin and
Tessaro’s concrete PRG candidate. However, their theorem can be instantiated
with more general block-wise local PRGs where each output bit is computed
using a different predicate, a setting that [BBKK17] break. We remark here that
our techniques (to be described below) can also be used to break this multiple-
predicate variant at the cost of the same worse distinguishing threshold, namely
m ≥ Ω̃(nq2).

On the negative side, we provide evidence that our own technique is unlikely
to achieve a better threshold than m ≥ Ω̃(q2 · n) for worst-case graphs and
worst-case multiple predicates; it would be very interesting to understand the
limits of the techniques in [BBKK17].

The current state of attacks against blockwise 2-local PRGs is summarized
in Fig. 1. As one can see from the table, there is a very narrow set of possibilities
that neither our attack nor [BBKK17] rule out just yet. Namely, we cannot
rule out the possibility that (a) the Lin-Tessaro theorem could be improved to
work with stretch Ω((nq)1+ε); and (b) there is a PRG with such a stretch that

Limits on the Locality of Pseudorandom Generators 123

Fig. 1. The state of the art on attacks against blockwise 2-local PRGs.

necessarily has to employ a specially tailored graph and different predicates for
each output bit. An exceedingly narrow window, indeed!

1.1 Outline of Our Attack

We start with a description of our original attack, namely the proof of Theorem2,
which exploited the well-known connection between our problem of distinguish-
ing a Goldreich PRG output from a uniform string and problems studied in
the setting of random constraint satisfaction (CSP). In particular, we utilized a
result of Allen et al. [AOW15] who developed a polynomial-time algorithm for
a problem related to ours, namely that of refutation of random CSPs.

Any graph H with n nodes and m edges, any predicate P , and any string
z ∈ {0, 1}m together define an instance I of the following constraint satisfaction
problem with predicates P and ¬P .

P (xi, xj) = 1 for every e = (i, j) where ze = 1
¬P (xi, xj) = 1 for every e = (i, j) where ze = 0

The task of breaking the PRG GH,P can be thought of as distinguishing CSP
instances I in which the negations of P are chosen uniformly at random from
instances I in which the negations of P are determined by a random planted
solution x ∈ [q]n.

Allen et al. [AOW15] developed a polynomial time algorithm for a different
problem, namely that of random CSP refutation. In their setting (specialized to
2-CSPs), a random instance I is generated by choosing a random graph H along
with random negation patterns (ae, be) ∈ Z

2
q for each edge e = (i, j) ∈ E(H),

and including constraints

P (xi + ae, xj + be) = 1

Their algorithm can certify that Opt(I), the largest fraction of constraints sat-
isfied by any input, is less than 1 provided at least Ω̃(n · poly(q)) constraints
(for an unspecified polynomial poly). Namely, their algorithm outputs 1 with
probability 1 − o(1), but never outputs 1 if I is satisfiable. Clearly, this suffices

124 A. Lombardi and V. Vaikuntanathan

to distinguish satisfiable instances I from uniformly random instances.1 In fact,
they achieve a much stronger property called strong refutation which will turn
out to be crucial for us: given Ω̃(n

ε2 ·poly(q)) constraints, their algorithm outputs
1 with probability 1−o(1), but never outputs 1 if I is “somewhat close” to being
satisfiable, that is, if Opt(I) ≥ 1/2 + ε (when P is balanced). Finally, we note
that their result only holds over random graphs H, but analogous results in the
so-called semi-random setting, in which the graph H is worst-case but negation
patterns are still random, have been shown in, e.g., [Wit17].

The most glaring difference between our setting and that of random CSP refu-
tation [AOW15] is that our CSP instance has an “outer negation pattern” (ran-
domly negating the predicate P) while theirs have an “inner negation pattern” as
described above. However, it turns out that a refutation algorithm for the random
CSP model of [AOW15] can nevertheless be turned into a distinguishing algo-
rithm, but at a cost; the resulting algorithm requires m ≥ Ω̃(n·poly(q)) for some
large polynomial (roughly q2 times the unspecified polynomial in [AOW15]).

Such a result is already nontrivial in the PRG setting, although it is far from
the m ≥ Ω̃(q · n) threshold that we would like to achieve. This is the major
challenge that this paper overcomes: how can we reduce this potentially large
poly(q)-dependence to an explicit, small poly(q)-dependence?

Our main idea called alphabet reduction now comes to the rescue. Alphabet
reduction is a way to convert our CSP on an alphabet of size q to a related CSP on
a new alphabet whose size is an absolute constant independent of q. If the original
CSP is random, so is the new CSP. If the original CSP is satisfiable, the new one is
“somewhat close to being satisfiable”, that is, there is an assignment that satisfies
at least 1/2 + Ω(1/

√
q) of its clauses. We then leverage the “strong refutation”

property of the algorithm in [AOW15] to break the pseudorandomness of GH,P

by certifying that a random CSP with constant-sized predicate Q is not 1/2 +
Ω(1/

√
q)-satisfiable, which can be done using the algorithm of [AOW15] with

only Ω̃(n · q′/ε2) = Ω̃(n · q) clauses, since q′ = O(1) and ε = Ω(1/
√

q). In
other words, we traded a dependence on q in the number of required clauses
for a dependence on q in the error parameter ε = Ω(1/

√
q); since the required

number of clauses is proportional to 1/ε2, this reduces the overall dependence
on q to linear.

We achieve alphabet reduction by showing that any predicate P : [q]2 →
{0, 1} is (1/2 + Ω(1/

√
q))-correlated to another predicate P ′ : [q]2 → {0, 1}

which “depends on only one bit of each input”. This uses, and refines, a classical
lower bound due to Chor and Goldreich [CG88] on 2-source extractors.

If our alphabet reduction produced a CSP instance whose alphabet size was
some large constant, then this would be the end of the story. However, we can
actually reduce to the binary alphabet. In the binary alphabet setting, it turns out
that we can use the old MAX-2-XOR approximation algorithm of Charikar and

1 We note that refutation seems to give us a significantly stronger guarantee than dis-
tinguishing. An analogous “refutation algorithm” in our PRG setting would be able
to distinguish a random string z ← {0, 1}m from z ← GH,P (x) for any distribution
of the input x, not just the uniformly random one.

Limits on the Locality of Pseudorandom Generators 125

Wirth [CW04] which achieves the following guarantee: for stretch m = Ω̃(n
ε2),

it can distinguish between a random string z ← Um and any string z ∈ {0, 1}m

which is within 1
2−ε (fractional) Hamming distance of the image G({0, 1}n) of the

PRG.2 This allows us to obtain a much simpler algorithm (making a single black
box call to the [CW04] algorithm instead of the [AOW15] algorithm) achieving
the same m = Ω̃(n · q) threshold, even for worst-case graphs.

Organization of the Paper. We start with some basic preliminaries in Sect. 2.
Our alphabet reduction technique is presented in Sect. 3, and our attack which
combines alphabet reduction with the 2-XOR algorithm of [CW04] is presented
in Sect. 4.

2 Preliminaries

Notation. We let Un denote the uniform distribution on {0, 1}n. Additionally,
we let Un,q denote the uniform distribution on the set [q]n. Let negl(n) : N → R

denote a function that is smaller than any inverse polynomial in n. That is, we
require that for every polynomial p, there is an np ∈ N such that negl(n) < 1/p(n)
for all n > np.

2.1 Pseudorandom Generators

We say that a function G : {0, 1}n → {0, 1}m is a pseudorandom generator
(PRG) if it has the following properties: (1) G is computable in (uniform) time
poly(n), and (2) for any probabilistic polynomial time adversary A : {0, 1}m →
{0, 1}, there is a negligible function negl such that

∣
∣
∣
∣

E
x←Un

[A(G(x))] − E
z←Um

[A(z)]
∣
∣
∣
∣
= negl(n)

We say that a PRG G : {0, 1}n → {0, 1}m has stretch m−n = m(n)−n. In this
paper, we focus on the polynomial stretch regime, namely where m = O(nc) for
some constant c > 1.

If G is computable in NC0, we define the locality of G to be the maximum
number of input bits on which any output bit of G depends.

2.2 Goldreich’s Candidate (Blockwise) Local PRG

Goldreich’s candidate pseudorandom generator, first introduced in [Gol00] (then
as a candidate one-way function), can be instantiated with any k-ary predicate
P : [q]k → {0, 1} and any k-uniform (directed) hypergraph H on n vertices and
m hyperedges. (To the best of our knowledge, the generalization to predicates P
that take symbols from a larger alphabet was first considered by Lin and Tessaro
2 The problem in the PRG setting that Charikar-Wirth solves is called the image
refutation problem for G.

126 A. Lombardi and V. Vaikuntanathan

under the name of “block-wise local” PRGs). Given H and P , we identify each
vertex in H with an index in [n] and each hyperedge with an index i ∈ [m]. For
each i ∈ [m], let ΓH(i) ∈ [n]k be the sequence of k vertices in the ith hyperedge.

Definition 1. Given a predicate P and hypergraph H, Goldreich’s PRG is the
function from [q]n to {0, 1}m defined by

GH,P (x) =
(

P (x|ΓH(i))
)

i∈[m]
.

That is, the ith bit of GH,P (x) is the output of P when given the ΓH(i)-restriction
of x as input.

Goldreich’s function is often instantiated with a uniformly random choice of
hypergraph H; in this setting, we say that “Goldreich’s function instantiated
with P is a PRG” for some predicate P if for a random k-uniform hypergraph
H, GH,P is a PRG with probability 1 − o(1). Often, instead of proving hardness
results for random hypergraphs it suffices to use hypergraphs with “good expan-
sion” for varying definitions of expansion [AL16,OW14,ABR12]. For a more
in-depth survey and discussion of Goldreich’s PRG, see [App16].

For the rest of the paper, we specialize to the case of k = 2, that is, blockwise
2-local PRGs. Ultimately, the attacks on GH,P that we describe in this paper
hold for all graphs H, rather than just random graphs.

Finally, we note that one can analogously define GH,�P for a collection of m

predicates P1, ..., Pm (in which the ith output bit of GH,�P is obtained using Pi).

3 Alphabet Reduction

Our main result relies on a technique that we call alphabet reduction which
reduces the problem of distinguishing the Goldreich PRG that uses a predicate
P : Σ2 → {0, 1} to that of distinguishing the PRG that uses a different predicate
Q : Σ′2 → {0, 1} that acts on a smaller alphabet Σ′. In this section, we show the
existence of such a suitable predicate Q (for every predicate P) and in the next,
we use it to break the PRG. We start with the definition of alphabet reduction.

Definition 2 ((Σ,Σ′, δ)-Alphabet Reduction). Let P : Σ2 → {0, 1} be
a balanced predicate in two variables. A (Σ,Σ′, δ)-alphabet reduction for P is
defined to be a tuple (Q, f, g) where Q : Σ′2 → {0, 1} is a balanced predicate
defined on an alphabet Σ′, and f and g are (exactly) |Σ|

|Σ′| -to-one maps from Σ

to Σ′, and
E

(x,y)
$←Σ2

[P (x, y) ⊕ Q(f(x), g(y))] < δ.

In other words, P (x, y) is nontrivially correlated to the decomposed predicate
Q(f(x), g(y)). We use the shorthand “(q′, δ)-alphabet reduction” when |Σ′| = q′.

Limits on the Locality of Pseudorandom Generators 127

Note that if P (x, y) is perfectly correlated to P ′(x, y) := Q(f(x), g(y)), then
the expectation defined above is 0, and if they are perfectly uncorrelated, it is
1/2. In words, this definition asks for a way to approximately compute P by
first compressing the two inputs x and y independently, and then computing a
different predicate Q on the compressed inputs.

In this section, we prove a feasibility result for alphabet reduction: namely,
that any predicate P : Σ2 → {0, 1} has a (Σ,Σ′, 1/2 − Ω(1/

√|Σ|)-alphabet
reduction where Σ′ = {0, 1} is an alphabet of size two. In other words
Q(f(x), g(y)) is mildly, but non-trivially, correlated to P . The predicate Q as
well as the compression functions f and g are efficently computable given the
truth table of P . Our result is a refinement of a lower bound on the possible
error of two-source extractors, due to Chor and Goldreich [CG88].

Theorem 3. Suppose that P : Σ2 → {0, 1} is a balanced predicate and |Σ|
is divisible by 2. Then, there exists a (Σ,Σ′, 1/2 − c/

√|Σ|)-alphabet reduction
(Q, f, g) for P , for some universal constant c. Moreover, given P we can find
such a triple (Q, f, g) in (expected) poly(|Σ|) time.

Proof. Throughout this proof, we will equate Σ with the set [q] (so that |Σ| = q)
and Σ′ with the set {0, 1} (so that |Σ′| = 2). Also, for ease of exposition, we
consider P taking values in {±1} instead of {0, 1}.

Given P : [q]2 → {±1}, consider P as a ±1-valued q × q matrix. At a
high level, the proof goes as follows: we first find a q

2 × q
2 submatrix of P with

substantially more +1s than −1s in it (or vice-versa). Such a submatrix is not
hard to construct: picking a random collection T of q

2 columns and then choosing
the collection S of q

2 rows optimizing the number of +1s (or −1s) in the S × T
submatrix suffices. Then, we pick f (a function of the q rows) and g (a function
of the q columns) to be indicator functions for S and T respectively; there then
turns out to be a choice of function Q : {0, 1} × {0, 1} → {±1} (in particular,
with Q(1, 1) set to be the majority value of P in the submatrix S ×T) such that
(Q, f, g), with outputs transformed back to {0, 1}, is a valid alphabet reduction
for P .

We now proceed with the full proof. For each x ∈ [q] and subset T ⊂ [q],
define

B(x, T) =

∣
∣
∣
∣
∣
∣

∑

y∈T

P (x, y)

∣
∣
∣
∣
∣
∣

,

that is, the absolute value of the T -partial row sum of row x. In [CG88]
(Lemma 2), Chor and Goldreich show that if we choose T to be a uniformly
random subset of q

2 columns, then for every x,

Pr
T⊂[q],|T |= q

2

[

B(x, T) ≥
√

q

2

]

≥ 1
8
.

Therefore, we have that

E
T⊂[q],|T |= q

2

[
1
q

· #
{

x ∈ [q] : B(x, T) ≥
√

q

2

}]

≥ 1
8
.

128 A. Lombardi and V. Vaikuntanathan

Since the random variable 1
q · #

{

x ∈ [q] : B(x, T) ≥ √
q
2

}

takes values in the
interval [0, 1] and has expectation at least 1

8 , we conclude by Markov’s inequality
that

Pr
T⊂[q],|T |= q

2

[
1
q

· #
{

x ∈ [q] : B(x, T) ≥
√

q

2

}

≤ 1
16

]

≤ 14
15

,

so that with probability ≥ 1
15 over the choice of T , there will be at least q

16 rows
x ∈ [q] such that B(x, T) ≥ √

q
2 . Fixing any such set T , we then have that

∑

x∈[q]

B(x, T) ≥ q
√

q

16
√

2
.

Now, let S ⊂ [q] be the set of q
2 rows x1, ..., x q

2
with the largest values of

B̃(x, T) :=
∑

y∈T P (x, y). We claim that

∣
∣
∣
∣
∣

∑

x∈S

B̃(x, T)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∑

x�∈S

B̃(x, T)

∣
∣
∣
∣
∣
∣

≥ q
√

q

48
√

2
,

that is, we claim that a significant fraction of the B̃(x, T) terms do not cancel
with each other when we sum over x ∈ S and x �∈ S separately. To see this, let

C1 =
∑

x:B̃(x,T)≥0

B(x, T)

and
C2 =

∑

x:B̃(x,T)<0

B(x, T)

so that C1 + C2 =
∑

x∈[q] B(x, T). We note that without loss of generality, we
have that B̃(x, T) ≥ 0 for all x ∈ S, so that

∣
∣
∣
∣
∣

∑

x∈S

B̃(x, T)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∑

x�∈S

B̃(x, T)

∣
∣
∣
∣
∣
∣

=
∑

x∈S

B(x, T) + max(
∑

x�∈S

B̃(x, T),−
∑

x�∈S

B̃(x, T))

≥ max(C1 − C2, C2) ≥ 1
3
(C1 − C2) +

2
3
C2 ≥ q

√
q

48
√

2
.

as desired. Thus, either the submatrix S×T or ([q]−S)×T has the intermediate
property we were looking for.

Finally, we can construct Q, f , and g as follows: let S0 = S, S1 = [q] − S,
T0 = T , T1 = [q] − T , and for i, j ∈ {0, 1} we define

Eij =
1
q2

∑

(x,y)∈Si×Tj

P (x, y).

Limits on the Locality of Pseudorandom Generators 129

For i, j ∈ {0, 1}, define Q(i, j) = 1 if Eij is one of the two largest elements of the
(multi)set {Eij , i, j ∈ {0, 1}} (and Q(i, j) = −1 otherwise). Moreover, we define
f(x) = i if and only if x ∈ Si, and we define g(y) = j if and only if y ∈ Tj .
Intuitively, for (x, y) ∈ Si × Tj we want to set Q(f(x), g(y)) to be the majority
value of P (x′, y′) for (x′, y′) ∈ Si × Tj , but to make Q a balanced predicate we
may have to disagree with this majority function on some inputs.

By essentially the same argument about cancellation as before, we will show
that P (x, y) is 1

2 + Ω(1√
q)-correlated to Q(f(x), g(y)). That is, we show that

E
(x,y)←U2,q

[P (x, y)Q(f(x), g(y))] ≥ 1
2

(|E00| + |E01| + |E10| + |E11|) = Ω(
1√
q
).

To see this, re-order the four numbers Eij into E1 ≤ E2 ≤ E3 ≤ E4; we know
that E1 + E2 + E3 + E4 = 0 since P (x, y) is balanced. If exactly two of these
four numbers are negative, then the expected value above is exactly equal to
|E1|+ |E2|+ |E3|+ |E4|, so we are done. On the other hand, it may be that three
of {E1, E2, E3, E4} have the same sign; suppose without loss of generality that
E3 ≤ 0. Then, we see that

E
(x,y)←U2,q

[P (x, y)Q(f(x), g(y))] = |E1| + |E2| − |E3| + |E4|

≥ |E4| =
1
2

(|E1| + |E2| + |E3| + |E4|) ,

completing the existence proof. Moreover, our existence proof above is construc-
tive: to find a valid triple (Q, f, g), we repeatedly choose T ⊂ [q] of size q

2
uniformly at random, check if

∑

x∈[q] B(x, T) = Ω(q
√

q) (for suitably chosen
constant c), and proceed to construct S, Q, f , and g as described. In expecta-
tion only a constant number of sets T will be selected before S, Q, f , and g are
successfully constructed, so we are done. �

3.1 Limits of Alphabet Reduction

Alphabet reduction is one of the two main ingredients to our distinguishing
algorithm. In order to obtain distinguishers for an even larger class of PRGs,
namely, instantiations of Goldreich’s PRG in which m possibly different pred-
icates P (1), P (2), ..., P (m) are used instead of a repeated single predicate, one
can analogously define an “average case alphabet reduction” for an m-tuple of
predicates �P .

Definition 3 (Average Case (Σ,Σ′, δ)-Alphabet Reduction). Let P (1),
P (2), . . . , P (m) : Σ2 → {0, 1} be a collection of balanced predicates in two vari-
ables. A (Σ,Σ′, δ)-average case alphabet reduction for �P is defined to be a tuple
(�Q, f, g) such that each Q(i) : Σ′2 → {0, 1} is a balanced predicate defined on an
alphabet of size q′, f and g are (exactly) q

q′ -to-one maps from Σ → Σ′, and

E
(x,y)

$←Σ2,i
$←[m]

[P (i)(x, y) ⊕ Q(i)(f(x), g(y))] < δ.

130 A. Lombardi and V. Vaikuntanathan

In other words, P (i)(x, y) is nontrivially correlated to Q(i)(f(x), g(y)) on aver-
age over the choice of i. We use the shorthand “(q′, δ)-average case alphabet
reduction” for �P when |Σ′| = q′.

Note that we require the same alphabet reduction functions f and g to work for
all the predicates P (i) simultaneously.

It turns out that average case alphabet reduction is significantly more difficult
to achieve than alphabet reduction. In general, one cannot find a constant size
average case alphabet reduction with δ < 1

2 − Õ(1q).

In particular, when �P is a good 3-source extractor �P : [q]× [q]× [m] → {0, 1},
no such alphabet reduction can be done. Our impossibility result for alphabet
reduction boils down to a (slightly modified) folklore construction of 3-source
extractors, which we include for completeness.

Theorem 4. Let �P = (P (k)
ij) be a uniformly random ±1-entry q×q×m 3-tensor

subject to the contraint that P (k) is balanced for every k, and suppose that q ≤ m.
Then, for any constant C, we have that with overwhelming probability, every
q
C × q

C × m
C subtensor �P |S×T×U of �P has discrepancy

∣
∣
∣
∑

(i,j,k)∈S×T×U
�P
(k)
ij

∣
∣
∣ =

O(log(mq)
q).

Corollary 1. If �P is a uniformly random collection of m balanaced predicates
P (i) : [q]2 → {0, 1}, then for any constant C, there is no

(

C, 1
2 − O(log(mq)

q)
)

-

average case alphabet reduction for �P with overwhelming probability.

Proof. First, consider any fixed subtensor �P |S×T×U of size q
C × q

C × m
C , and sup-

pose that (P (k)
ij) is a uniformly random tensor (not constrained to be balanced).

Then, �P |S×T×U is a uniformly random ±1-tensor whose discrepancy is governed
by the Chernoff bound:

Pr

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

i∈S,j∈T,k∈U

P
(k)
ij

∣
∣
∣
∣
∣
∣

≥ ε

⎤

⎦ ≤ 2 · 2−Ω(mq2

C3 ε2).

The number of subtensors we are considering is
(

m
m
C

)(
q
q
C

)(
q
q
C

)

, and the proba-

bility that a random tensor �P has the property that P (k) is balanced for all
k is bounded by (Ω(1q))m (as the discrepancy of each P (k) follows the distri-

bution Binomial(q2, 1
2)). Thus, the probability that a random �P satisfies this

ε-discrepancy property after conditioning on balanced is bounded by

O(q)m

(
m
m
C

)(
q
q
C

)2

· 2−Ω(mq2

C3 ε2).

Choosing ε = O(C1.5 log(mq)
q) suffices to make this probability negligible, so we

are done. �

Limits on the Locality of Pseudorandom Generators 131

As a result of Theorem 4, it is unlikely for alphabet reduction to be sufficient
for breaking GH,�P with m = Ω̃(q ·n) output length, because the refutation algo-
rithms with which we combine predicate reduction have a 1

ε2 dependence in the
required output length for ε-refutation (and this dependence is typical). There-
fore, it is unlikely for average case alphabet reduction to lead to a distinguisher
for GH,�P when the output length m = |E(H)| is less than q2n.

However, we note for completeness’ sake that Theorem 4 is tight up to log
factors; that is,

(
1
2 − Ω(1q)

)

-average case alphabet reduction is possible. The

construction is as follows: pick sets S, T uniformly at random (of size |Σ|
2), choose

f, g : Σ → {0, 1} to be indicator functions for S and T , as before, and for each
� ∈ [m] define Q(�)(i, j) to be 1 if and only if the average value E

(�)
i,j is in the

top two out of four E
(�)
·,· , as before. Using average-case alphabet reduction, one

can distinguish multiple-predicate Goldreich PRGs GH,�P when m ≥ Ω̃(q2 · n);
we will elaborate on this in Sect. 4.2.

4 From Small Alphabet Refutation to Large Alphabet
Distinguishing

We now describe how alphabet reduction is used to obtain distinguishing algo-
rithms for the (single predicate) Goldreich PRG GH,P ; combining this section
with Theorem 3 yields Theorem 1. The cleanest interpretation of our application
of alphabet reduction uses the notion of an “image refutation algorithm” for a
function G : [q]n → {0, 1}m, which was formally defined in [BBKK17]. Inter-
preted in this language, our result says that any image refutation algorithm for
Goldreich’s PRG can be converted into a distinguishing algorithm for Goldre-
ich’s PRG with a significantly improved dependence on the alphabet size. The
new distinguishing threshold is a simple function of the quality of the alphabet
reduction that was used and the refutation threshold for the image refutation
algorithm.

Definition 4 (Image Refutation). Let G : [q]n → {0, 1}m be any function.
An image refutation algorithm for G is an algorithm A which receives G and a
string z ∈ {0, 1}m as input, with the following properties:

1. (Soundness) If z ∈ G([q]n), then A(G, z) = “fail”.
2. (Completeness) If z ← Um, then A(G, z) = “z is not in the image of G” with

probability 1 − o(1).

Furthermore, A is an (12 − δ)-image refutation algorithm for G if it has the
following properties:

1. (Strong Soundness) If z has Hamming distance less than or equal to (12 −δ)m
from G([q]n), then A(G, z) = “fail”.

2. (Strong Completeness) If z ← Um, then A(G, z) = “z is (12 − δ)-far from the
image of G” with probability 1 − o(1).

132 A. Lombardi and V. Vaikuntanathan

Given this definition, we are ready to state our reduction theorem.

Theorem 5. Let P : [q]2 → {0, 1} be a predicate. Assume the existence of the
following two ingredients:

– An efficiently computable (q′, 1
2 − ε)-alphabet reduction for P that produces a

tuple (Q, f, g) where Q : [q′]2 → {0, 1}; and
– An image refutation algorithm A that runs in poly(n,m, q′, 1

δ) time and does
(12 − δ)-image refutation for the function GH,Q for any predicate Q : [q′]2 →
{0, 1}, any δ > 0 and any graph H satisfying m = |E(H)| ≥ T (n, q′, δ) for
some threshold function T (·).

Then, there is a distingusher D that, for any graph H with m = |E(H)| ≥
T (2n, q′, ε − O(

√
n
m)), runs in poly(n, q, 1

ε) time and distinguishes a random
string z ← Um from a random output z ← GH,P (Un,q) of GH,P .

In particular, since Theorem 3 efficiently produces a (2, 1
2 −Ω(1√

q))-alphabet
reduction for any balanced predicate P , Theorem 5 implies that any strong image
refutation algorithm for Goldreich’s PRG over the binary alphabet immediately
yields a distinguishing algorithm for Goldreich’s PRG over larger alphabets.

Image Refutation Algorithms for Goldreich’s PRG. We originally combined an
alphabet reduction (with q′ = O(1)) with the random CSP refutation algorithm
of [AOW15] in place of a PRG image refutation algorithm, which turned out
to be sufficient to obtain a distinguisher for GH,P over random graphs for all
m = Ω̃(q · n).

However, with an alphabet reduction using q′ = 2, the state of affairs is
much simpler; indeed, the Charikar-Wirth algorithm [CW04] directly gives us
a PRG image refutation algorithm which can then be used to obtain a distin-
guisher for worst case graphs and worst case single predicates for m = Ω̃(q · n)
(for a sufficiently large logarithmic factor). This is because Charikar-Wirth
(12−ε)-refutes random 2-XOR instances with m = Ω̃(n

ε2) constraints, and strongly
refuting Goldreich’s PRG instantiated with a balanced predicate Q : {0, 1}2 →
{0, 1} is exactly the same as strongly refuting a random 2-XOR instance (or a
random 1-XOR instance, which is even easier). In particular, a balanced predi-
cate Q : {0, 1}2 → {0, 1} is either Q(x, y) = x, Q(x, y) = y, Q(x, y) = x ⊕ y,
or a negation of the previous three examples. Thus, any Goldreich PRG GH,Q

defines a random 2-XOR instance or a random 1-XOR instance, either of which
can be efficiently (strongly) refuted.

In the multiple predicate case, a Goldreich PRG GH, �Q (still over the binary
alphabet) defines both a random 2-XOR instance and a random 1-XOR instance.
It is not hard to see that if m is sufficiently large, at least one of these two
CSP instances will be above its refutation threshold, yielding the necessary
strong image refutation algorithm for GH̃, �Q. We will use this stronger fact for
Theorem 6.

Furthermore, we note that this theorem can still be useful in regimes
where general alphabet reduction is impossible; it says that if a predicate

Limits on the Locality of Pseudorandom Generators 133

P : [q]2 → {0, 1} happens to have an alphabet reduction, then GH,P may be
less secure than one would expect for the given alphabet size q.

We now prove Theorem 5. The intuition is quite simple: given an alpha-
bet reduction (Q, f, g) for P and an image z = GH,P (x) for a random x, one
would expect that z is noticeably closer to the point GH,P ′(x) for P ′(x, y) =
Q(f(x), g(y)). Indeed, this is true in expectation over x, and holds with high
probability by a concentration argument. Therefore, a strong refutation algo-
rithm for the predicate Q should be able to distinguish GH,P (x) from a random
string.

4.1 Proof of Theorem5

Fix any predicate P : [q]2 → {0, 1}, efficiently computable (q′, δ)-alphabet reduc-
tion (Q, f, g),3 and graph H with n vertices and m edges. Let GH,P : [q]n →
{0, 1}m be Goldreich’s PRG instantiated with P and H. We want to construct a
distinguisher D(H,P, z) which, given P,H, and a string z ∈ {0, 1}m (where m is
the number of edges in H), outputs a bit b ∈ {0, 1} such that E

z←Um

[D(P,H, z)] is

noticeably different from E
z←GH,P (Un)

[D(P,H, z)]. Our distinguisher D is defined

as follows.

1. Compute (Q, f, g) given P .
2. Let H̃ be the bipartite double-cover of H, i.e. a graph with vertex set [n] ×

{0, 1} and edges from (i, 0) to (j, 1) for every (i, j) ∈ E(H).
3. Call A(H̃,Q, ε − 5

√
n
m , z).

4. Return 1 if and only if the call to A returns “z is (12 − ε + 5
√

n
m)-far from

the image of GH̃,Q”.

Note that by assumption on A, for z ← Um, D(P,H, z) will output 1 with
probability 1 − o(1) as long as m ≥ T (2n, q′, ε − 5

√
n
m). What remains is to

analyze the “pseudorandom” case.

Lemma 1. With constant probability over x ← Un,q, z = GH,P (x) will have
Hamming distance at most (12 − ε + 5

√
n
m)m from GH̃,Q(x̃), where x̃ ∈ (Zn

2)2 is
defined by x̃i,0 = f(xi) and x̃i,1 = g(xi).

Since the call to A(H̃,Q, ε − 5
√

n
m , z) must return “fail” whenever z has

Hamming distance at most (12 − ε + 5
√

n
m)m from GH̃,Q(Zn

q′) (again for m ≥
T (2n, q′, ε − 5

√
n
m)), Lemma 1 suffices to prove that

E
x←Un,q

[D(H,P,GH,P (x))] = 1 − Ω(1).

Proof. Let P ′(x, y) = Q(f(x), g(y)) so that Pr
(x,y)←U2,q

[P (x, y) = P ′(x, y)] = α ≥
1
2 + ε, as guaranteed by the fact that (Q, f, g) is a (12 − ε)-alphabet reduction for

3 This alphabet reduction may be randomized; this does not affect the proof.

134 A. Lombardi and V. Vaikuntanathan

P . We are interested in the quantity dH(z,GH̃,Q(x̃)) = dH(z,GH,P ′(x)), where
dH denotes fractional Hamming distance. First, we note that in expectation over
x ← Un,q,

E := 1 − E
x←Un,q

[dH(GH,P (x), GH̃,Q(x̃))]

= E
x←Un,q

[

Pr
(i,j)

$←E(H)

[P ′(xi, xj) = P (xi, xj)]

]

≥ α − n

m

≥ 1
2

+ ε − n

m
,

where the n
m term comes from the fraction of edges in H which are self loops

(we cannot say that P (xi, xi) is necessarily correlated to P ′(xi, xi)). Now, we
compute the variance (over x) of this quantity to be

Var
x←Un,q

[1 − dH(GH,P (x), GH̃,Q(x̃))]

= E
x←Un,q

[(
Pr

(i,j)
$←E(H)

[
P ′(xi, xj) = P (xi, xj)

])2]
− E2

= E
x←Un,q

⎡
⎢⎢⎣ 1

m2

∑
(i,j)∈E(H)
(k,l)∈E(H)

χ
(
P ′(xi, xj) = P (xi, xj)

)
χ
(
P ′(xk, xl) = P (xk, xl)

)
⎤
⎥⎥⎦− E2

=
1

m2

∑
(i,j)∈E(H)
(k,l)∈E(H)

Pr
x←Un,q

[
P ′(xi, xj) = P (xi, xj) and P ′(xk, xl) = P (xk, xl)

]− E2.

Note that if the edges (i, j), (k, l) ∈ E(H) have no vertices in common, the
events “P ′(xi, xj) = P (xi, xj)” and “P ′(xk, xl) = P (xk, xl)” are independent.
This means that our variance is upper bounded by

1

m2

∑
(i,j)∈E(H)
(k,l)∈E(H)

Pr
x

[
P ′(xi, xj) = P (xi, xj)

]
Pr
x

[
P ′(xk, xl) = P (xk, xl)

]
+

mbad

m2
− E2

=
mbad

m2
,

where mbad is defined to be the number of pairs of edges ((i, j), (k, l)) which
have a vertex in common. This is bounded by the quantity

mbad ≤
∑

i∈[n]

degH(i)2 ≤ 2n ·
∑

i∈[n]

degH(i) = 4mn.

Therefore, we conclude that

Var
x←Un,q

[1 − dH(GH,P (x), GH̃,Q(x̃))] ≤ 4n

m
.

Limits on the Locality of Pseudorandom Generators 135

By Chebyshev’s inequality, this means that with constant probability over x ←
Un,q, we have that

1 − dH(GH,P (x), GH,Q̃(x̃)) ≥ α − n

m
− 4

√
n

m
≥ 1

2
+ ε − 5

√
n

m
,

so that dH(GH,P (x), GH,Q̃(x̃)) ≤ 1
2 − ε + 5

√
n
m , completing the proof of the

lemma. �
Lemma 1 tells us that for m ≥ T (2n, q′, ε− 5

√
n
m), with constant probability

over x ← Gn,q the call made to A will return “fail”, and so

E
x←Gn,q

[D(H,P,GH,P (x))] = 1 − Ω(1).

Thus, we conclude that D achieves a constant distinguishing advantage between
the “truly random z” case and the “pseudorandom z” case, completing the proof
of Theorem 5.

4.2 Generalization of Theorem5 to Multiple Predicates

We note that the proof of Theorem 5 does not fundamentally use the fact that
the predicates used in Goldreich’s PRG GH,P are identical. Indeed, the following
result holds by the same argument.

Theorem 6. Let P (1), P (2), . . . , P (m) : [q]2 → {0, 1} be a collection of m predi-
cates. Assume the existence of the following two ingredients:

– An efficiently computable (q′, 1
2 −ε)-average case alphabet reduction for �P that

produces a tuple (�Q, f, g) where each Q(�) : [q′]2 → {0, 1}; and
– An image refutation algorithm A that runs in poly(n,m, q′, 1

δ) time and does
(12 − δ)-image refutation for the function GH, �Q for any predicate collection
Q(�) : [q′]2 → {0, 1}, any δ > 0 and any graph H satisfying m = |E(H)| ≥
T (n, q′, δ) for some threshold function T (·).

Then, there is a distingusher D that, for any graph H with m = |E(H)| ≥
T (2n, q′, ε − O(

√
n
m)), runs in poly(n, q, 1

ε) time and distinguishes a random
string z ← Um from a random output z ← GH,�P (Un,q) of GH,�P .

Theorem 6, combined with the Charikar-Wirth algorithm and an average-case
alphabet reduction with correlation Ω(1q), gives us a distinguisher for multiple
predicate Goldreich PRGs GH,�P : [q]n → {0, 1}m for all m ≥ Ω̃(q2n).

Acknowledgements. We thank Gil Cohen, Dana Moshkovitz and Prasad
Raghavendra for their quick responses to our oracle calls about two-source extractors
and CSPs. We also thank our anonymous TCC reviewers for their helpful comments
and suggestions.

136 A. Lombardi and V. Vaikuntanathan

References

[ABR12] Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias
generators. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 600–617.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 34

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 15

[AL16] Applebaum, B., Lovett, S.: Algebraic attacks against random local func-
tions and their countermeasures. In: Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 1087–1100. ACM (2016)

[AOW15] Allen, S.R., O’Donnell, R., Witmer, D.: How to refute a random CSP. In:
2015 IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 689–708. IEEE (2015)

[App16] Applebaum, B.: Cryptographic hardness of random local functions. Comput.
Complex. 25(3), 667–722 (2016)

[AS16] Prabhanjan, A., Amit, S.: Projective arithmetic functional encryption
and indistinguishability obfuscation from degree-5 multilinear maps. IACR
Cryptology ePrint Archive 2016:1097 (2016)

[BBKK17] Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-
degree pseudorandom generators (or: Sum-of-squares meets program obfus-
cation) (2017). http://eprint.iacr.org/2017/312. Version 20170411:133059.
Submitted 9 April 2017

[BF03] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing.
SIAM J. Comput. 32(3), 586–615 (2003)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 1

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17–20 October 2015, pp. 171–190. IEEE Computer Society (2015)

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261
(1988)

[CW04] Charikar, M., Wirth, A.: Maximizing quadratic programs: extending
Grothendieck’s inequality. In: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 54–60. IEEE (2004)

[GGH+16] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all cir-
cuits. SIAM J. Comput. 45(3), 882–929 (2016)

[Gol00] Goldreich, O.: Candidate one-way functions based on expander graphs.
IACR Cryptology ePrint Archive 2000:63 (2000)

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-70936-7 11

http://dx.doi.org/10.1007/978-3-642-28914-9_34
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://eprint.iacr.org/2017/312
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-540-70936-7_11

Limits on the Locality of Pseudorandom Generators 137

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32009-5 11

[Jou00] Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma,
W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg
(2000). doi:10.1007/10722028 23

[Jou02] Joux, A.: The weil and tate pairings as building blocks for public key cryp-
tosystems. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369,
pp. 20–32. Springer, Heidelberg (2002). doi:10.1007/3-540-45455-1 3

[Lin16a] Lin, H.: Indistinguishability obfuscation from constant-degree graded encod-
ing schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 2

[Lin16b] Lin, H.: Indistinguishability obfuscation from DDH on 5-linear maps and
locality-5 PRGs (2016). Preprint: http://eprint.iacr.org/2016/1096.pdf

[LPST16] Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with
non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49387-8 17

[LT17] Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and
block-wise local PRGs. IACR Cryptology ePrint Archive 2017:250 (2017).
Version 20170320:142653

[LV16] Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In: 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 11–
20. IEEE (2016)

[LV17] Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-
local PRGs with applications to indistinguishability obfuscation. Cryptology
ePrint Archive, Report 2017/301 (2017). http://eprint.iacr.org/2017/301.
Version 20170409:183008. Submitted 6 April 2017

[OW14] O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In: 2014 IEEE 29th Conference on Computational Com-
plexity (CCC), pp. 1–12. IEEE (2014)

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with
public keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010, pp. 463–472.
ACM (2010)

[Wit17] Witmer, D.: Refutation of random constraint satisfaction problems using
the sum of squares proof system. Ph.D. thesis, Carnegie Mellon University
(2017)

http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/10722028_23
http://dx.doi.org/10.1007/3-540-45455-1_3
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2016/1096.pdf
http://dx.doi.org/10.1007/978-3-662-49387-8_17
http://eprint.iacr.org/2017/301

Decomposable Obfuscation: A Framework
for Building Applications of Obfuscation

from Polynomial Hardness

Qipeng Liu(B) and Mark Zhandry

Princeton University, Princeton, USA
qipengl@cs.princeton.edu

Abstract. There is some evidence that indistinguishability obfus-
cation (iO) requires either exponentially many assumptions or
(sub)exponentially hard assumptions, and indeed, all known ways of
building obfuscation suffer one of these two limitations. As such, any
application built from iO suffers from these limitations as well. However,
for most applications, such limitations do not appear to be inherent to
the application, just the approach using iO. Indeed, several recent works
have shown how to base applications of iO instead on functional encryp-
tion (FE), which can in turn be based on the polynomial hardness of just
a few assumptions. However, these constructions are quite complicated
and recycle a lot of similar techniques.

In this work, we unify the results of previous works in the form of
a weakened notion of obfuscation, called Decomposable Obfuscation. We
show (1) how to build decomposable obfuscation from functional encryp-
tion, and (2) how to build a variety of applications from decomposable
obfuscation, including all of the applications already known from FE.
The construction in (1) hides most of the difficult techniques in the prior
work, whereas the constructions in (2) are much closer to the compara-
tively simple constructions from iO. As such, decomposable obfuscation
represents a convenient new platform for obtaining more applications
from polynomial hardness.

1 Introduction

Program obfuscation has recently emerged as a powerful cryptographic concept.
An obfuscator is a compiler for programs, taking an input program, and scram-
bling it into an equivalent output program, but with all internal implementation
details obscured. Indistinguishability obfuscation (iO) is the generally-accepted
notion of security for an obfuscator, which says that the obfuscations of equiva-
lent programs are computationally indistinguishable.

In the last few years since the first candidate indistinguishability obfusca-
tor of Garg et al. [GGH+13], obfuscation has been used to solve many new
amazing tasks such as deniable encryption [SW14], multiparty non-interactive
key agreement [BZ14], polynomially-many hardcore bits for any one-way func-
tion [BST14], and much more. Obfuscation has also been shown to imply most
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 138–169, 2017.
https://doi.org/10.1007/978-3-319-70500-2_6

Decomposable Obfuscation: A Framework for Building Applications 139

traditional cryptographic primitives1 such as public key encryption [SW14], zero
knowledge [BP15], trapdoor permutations [BPW16], and even fully homomor-
phic encryption [CLTV15]. This makes obfuscation a “central hub” in cryptogra-
phy, capable of solving almost any cryptographic task, be it classical or cutting
edge. Even more, obfuscation has been shown to have important connections
to other areas of computer science theory, from demonstrating the hardness of
finding Nash equilibrium [BPR15] to the hardness of certain tasks in differential
privacy [BZ14,BZ16].

The power of obfuscation in part comes from the power of the underlying
tools, but its power also lies in the abstraction, by hiding away the complicated
implementation details underneath a relatively easy to use interface. In this
work, we aim to build a similarly powerful abstraction that avoids some of the
limitations of iO.

1.1 The Sub-exponential Barrier in Obfuscation

Indistinguishability obfuscation (iO), as an assumption, has different flavor than
most assumptions in cryptography. Most cryptographic assumptions look like

“Distribution A is computationally indistinguishable from distribution B, ” or
“Given a sample a from distribution A, it is computationally infeasible

to compute a value b such that a, b satisfy some given relation.”

Such assumptions are often referred to as falsifiable [Nao03], or more generally
as complexity assumptions [GT16]. In contrast, iO has the form

“For every pair of circuits C0, C1 that are functionally equivalent ,
iO(C0) is computationally indisitnguishable from iO(C1).”

In other words, for each pair of equivalent circuits C0, C1, there is an instance
of a complexity assumption: that iO(C0) is indistinguishable from iO(C1). iO
then is really a collection of exponentially-many assumptions made simultane-
ously, one per pair of equivalent circuits. iO is violated if a single assumption in
the collection is false. This is a serious issue, as the security of many obfuscators
relies on new assumptions that essentially match the schemes. To gain confidence
in the security of the schemes, it would seem like we need to investigate the iO
assumption for every possible pair of circuits, which is clearly infeasible.

Progress has been made toward remedying this issue. Indeed, Gentry
et al. [GLSW15] show how to build obfuscation from a single assumption—
multilinear subgroup elimination—on multilinear maps. Unfortunately, the secu-
rity reduction loses a factor exponential in the number of input bits to the
program. As such, in order for the reduction to be meaningful, the multi-
linear subgroup elimination problem must actually be sub-exponentially hard.
Similarly, Bitansky and Vaikuntanathan [BV15] and Ananth and Jain [AJ15]
demonstrate how to construct iO from a tool called functional encryption (FE).

1 With additional mild assumptions such as the existence of one-way functions.

140 Q. Liu and M. Zhandry

In turn, functional encryption can be based on simple assumptions on multilinear
maps [GGHZ16]. However, while the construction of functional encryption can
be based on the polynomial hardness of just a couple multilinear map assump-
tions, the construction of iO from FE incurs an exponential loss. This means
the FE scheme, and hence the underlying assumptions on multilinear maps, still
need to be sub-exponentially secure.

All current techniques for building iO suffer one of these two limitations:
either security is based on an exponential number of assumptions, or the reduc-
tion incurs an exponential loss. Unfortunately, this means every application of
iO also suffers from the same limitations. As iO is the only known instantiation
of many new cryptographic applications, an important research direction is to
devise new instantiations that avoid this exponential loss.

1.2 Breaking the Sub-exponential Barrier

A recent line of works starting with Garg et al. [GPS16] and continued
by [GPSZ16,GS16] have shown how to break the sub-exponential barrier for
certain applications. Specifically, these works show how to base certain applica-
tions on functional encryption, where the loss of the reduction is just polynomial.
Using [GGHZ16], this results in basing the applications on the polynomial hard-
ness of a few multilinear map assumptions. The idea behind these works is to
compose the FE-to-iO conversion of [BV15,AJ15] with the iO-to-Application
conversion to get an FE-to-Application construction. While this construction
requires an exponential loss (due to the FE-to-iO conversion), by specializing
the conversion to the particular application and tweaking things appropriately,
the reduction can be accomplished with a polynomial loss. Applications treated
in this way include: the hardness of computing Nash equilibria, trapdoor permu-
tations, universal samplers, multiparty non-interactive key exchange, and multi-
key functional encryption2.

While the above works represent important progress, the downside is that,
in order to break the sub-exponential barrier, they also break the convenient
obfuscation abstraction. Both the FE-to-iO and iO-to-Application conversions
are non-trivial, and the FE-to-iO conversion is moreover non-black box. Add
to that the extra modifications to make the combined FE-to-Application con-
version be polynomial, and the resulting constructions and analyses become
reasonably cumbersome. This makes translating the techniques to new appli-
cations rather tedious—not to mention potentially repetitive given the common
FE-to-iO core—and understanding the limits of this approach almost impossible.

1.3 A New Abstraction: Decomposable Obfuscation

In this work, we define a new notion of obfuscation, called Decomposable Obfus-
cation, or dO, that addresses the limitations above. This notion abstracts away

2 The kind of functional encryption that is used as a starting point only allows for a
single secret key query.

Decomposable Obfuscation: A Framework for Building Applications 141

many of the common techniques in [GPS16,GPSZ16,GS16]; we use those tech-
niques to build dO from the polynomial hardness of functional encryption. Then
we can show that the dO can be used to build the various applications. With our
new notion in hand, the dO-to-Application constructions begin looking much
more like the original iO-to-Application constructions, with easily identifiable
modifications that are necessary to prove security using our weaker notion.

The Idea

Functional Encryption (FE). As in the works of [GPS16,GPSZ16,GS16], we will
focus on obtaining our results from the starting point of polynomially-secure
functional encryption. Functional encryption is similar to regular public key
encryption, except now the secret key holder can produce function keys corre-
sponding to arbitrary functions. Given a function key for a function f and a
ciphertext encrypting m, one can learn f(m). Security requires that even given
the function key for f , encryptions of m0 and m1 are indistinguishable, so long
as f(m0) = f(m1)3.

The FE-to-iO Conversion. The FE-to-iO conversions of [BV15,AJ15] can be
thought of very roughly as follows. To obfuscate a circuit C, we generate the
keys for an FE scheme, and encrypt the description of C under the FE scheme’s
public key, obtaining c. We also produce function keys fki for particular functions
fi that we will describe next. The obfuscated program consists of c and the fki.

To evaluate the program on input x, we first use fk1 and c to learn f1(C).
f1(C) is defined to produce two ciphertexts c0, c1, encrypting (C, 0) and (C, 1),
respectively. We keep cx1 , discarding the other ciphertext. Now, we actually
define fk1 to encrypt (C, 0) and (C, 1) using the functional encryption scheme
itself—therefore, we can continue applying function keys to the resulting plain-
texts. We use fk2 and cx1 to learn f2(C, x1). f2(C, b) is defined to produce two
ciphertexts cb0, cb1, encrypting (C, b0) and (C, b1). Again, these ciphertexts will
be encrypted using the functional encryption scheme. We will repeat this process
until we obtain the encryption cx of (C, x). Finally, we apply the last function
key for the function fn+1, which is the universal circuit evaluating C(x).

This procedure implicitly defines a complete binary tree of all strings of
length at most 2n, where a string x is the parent of the two string x||0 and
x||1. At each node y ∈ {0, 1}≤n, consider running the evaluation above for the
first |y| steps, obtaining a ciphertext cy encrypting (C, y). We then assign the
circuit C to the node y, according the circuit that is encrypted in cy. The root is
explicitly assigned C by handing out the ciphertext c since we explicitly encrypt
C to obtain c. All subsequent nodes are implicitly assigned C as cy is derived
from c during evaluation time. Put another way, by explicitly assigning a circuit
C to a node (in this case, the root) we implicitly assign the same circuit C to

3 The two encryptions would clearly be distinguishable if f(m0) �= f(m1) just by
decrypting using the secret function key. Thus, this is the best one can hope for with
an indistinguishability-type definition.

142 Q. Liu and M. Zhandry

all of its descendants. The exception is the leaves: if we were to assign a circuit
C to a leaf x, we instead assign the output C(x). In this way, the leaves contain
the truth table for C.

Now, we start from an obfuscation of C0 (assigning C0 to the root of the tree)
and we wish to change the obfuscation to an obfuscation of C1 (assigning C1 to
the root). We cannot do this directly, but the functional encryption scheme does
allow us to do the following: un-assign a circuit C from any internal node y4, and
instead explicitly assign C to the two children of that node. This is accomplished
by changing cy to encrypt (⊥, x), explicitly constructing the ciphertexts cy||0 and
cy||1, and embedding cy||0, cy||1 in the function key fk|y| in a particular way. If
the children are leaves, explicitly assign the outputs of C on those leaves. Note
that this process does not change the values assigned to the leaves; as such, the
functionality of the tree remains unchanged, so this change cannot be detected
by functionality alone. The security of functional encryption shows that, in fact,
the change is undetectable to any polynomial-time adversary.

The security reduction works by performing a depth-first traversal of the
binary tree. When processing a node y on the way down the tree, we un-assign
C0 from y and instead explicitly assign C0 to the children of y. When we get
to a leaf, notice that by functional equivalence, we actually simultaneously have
the output of C0 and C1 assigned. Therefore, when processing a node y on our
way up the tree from the leaves, we can perform the above process in reverse
but for C1 instead of C0. We can un-assign C1 from the children of y, and then
explicitly assign C1 to y. In this way, when the search is complete, we explicitly
assign C1 to the root, which implicitly assigns C1 to all nodes in the tree. At this
point, we are obfuscating C1. By performing a depth-first search, we ensure that
the number of explicitly assigned nodes never exceeds n + 1, which is crucial
for the efficiency of the obfuscator, as we pay for explicit assignments (since
they correspond to explicit ciphertexts embedded in the function keys) but not
implicit ones (since they are computed on the fly). Note that while the obfuscator
itself is polynomial, the number of steps in the proof is exponential: we need to
un-assign and re-assign every internal node in the tree, which are exponential in
number. This is the source of the exponential loss.

Shortcutting the Conversion Process. The key insight in the works of [GPS16,
GPSZ16,GS16] is to modify the constructions in a way so that it is possible to
re-assign certain internal nodes in a single step, without having to re-assign all
of its descendants first. By doing this it is possible to shortcut our way across
an exponential number of steps using just a few steps.

In these prior works, the process is different for each application. In this
work, we generalize the conditions needed for and the process of shortcutting in
a very natural way. To see how shortcutting might work, we introduce a slightly
different version of the above assignment setting. Like before, every node can
be assigned a circuit. However, now the circuit assigned to a node u of length
k must work on inputs of length n − k; essentially, it is the circuit that is “left

4 By assigning ⊥ instead, which does not propagate down the tree.

Decomposable Obfuscation: A Framework for Building Applications 143

over” after reading the first k bits and which operates on the remaining n − k
bits.

If we explicitly assign a circuit Cy to a node y, its children are implicitly
assigned the partial evaluations of Cy on 0 and 1. That is, the circuit Cy||b
assigned to y||b is Cy(b, ·). We will actually use Cy(b, ·) to denote the circuit
obtained by hard-coding b as the first input bit, and then simplifying using
simple rules: (1) any unary gate with a constant input wire is replaced with an
appropriate input wire, (2) any binary gate with a constant input is replaced with
just a unary gate (a passthrough or a NOT) or a hardwired output according
to the usual rules, (3) any wire that is not used is deleted, and (4) this process
is repeated until there are no gates with hardwired inputs and no unused wires.
An important observation is that our rules guarantee that circuits assigned to
leaves are always constants, corresponding to the output of the circuit at that
point.

Now when we obfuscate by assigning C to the root, the internal nodes are
implicitly assigned the simplified partial evaluations of C on the prefix corre-
sponding to that node: node y is assigned C(y, ·) (simplified). The move we are
allowed to make is now to un-assign C from a node where C was explicit, and
instead explicitly assign the simplified circuits C(0, ·) and C(1, ·) to its children.
We call the partial evaluations C(0, ·) and C(1, ·) fragments of C, and we call this
process of un-assigning the parent and assigning the fragments to the children
decomposing the node to its children fragments. The reverse of decomposing is
merging.

This simple transformation to the binary tree rules allows for, in some
instances, the necessary shortcutting to avoid an exponential loss. When trans-
forming C0 to C1, the crucial observation is that if any fragment C0(x, ·) is equal
to C1(x, ·) as circuits (after simplification), it suffices to stop when we explicitly
assign a circuit to x; we do not need to continue all the way down to the leaves.
Indeed, once we explicitly assign the fragment C0(y, ·) to a node y, y already
happens to be assigned the fragment C1(y, ·) as well, and all of its descendants
are therefore implicitly assigned the corresponding partial evaluations of C1 as
well. By not traversing all the way to the leaves, we cut out potentially expo-
nentially many steps. For certain circuit pairs, it may therefore be possible to
transform C0 to C1 in only polynomially-many steps.

Our New Obfuscation Notion. Our new obfuscation notion stems naturally from
the above discussion. Consider two circuits C0, C1 of the same size, and consider
assigning C0 to the root of the binary tree. Suppose there is a set S of tree nodes
of size τ that (1) exactly cover all of the leaves5, and (2) for every nodes x ∈ S, the
(simplified) fragments C0(y, ·) and C1(y, ·) are identical as circuits. Then we say
the circuits C0, C1 are τ -decomposing equivalent. Our new obfuscation notion,
called decomposable obfuscation, is parameterized by τ and says, roughly, that the
obfuscations of two τ -decomposing equivalent circuits must be indistinguishable.

5 In the sense that for each leaf, the path from root to leaf contains exactly one element
in S.

144 Q. Liu and M. Zhandry

1.4 Our Results

Our results are as follows:

– We show how to use (compact, single key) functional encryption to attain our
notion of dO. The construction is similar to the FE-to-iO conversion, with
the key difference that each step simplifies the circuit as must as possible;
this implements the new tree rules we need for shortcutting.
The number of steps in the process of converting C0 to C1, and hence the
loss in the security reduction is proportional to τ . However, we show that by
performing the decompose/merge steps in the right order, we can make sure
the number of explicitly assigned nodes is always at most n + 1, independent
of τ . This means the obfuscator itself does not depend on τ , and therefore
τ can be taken to be an arbitrary polynomial or even exponential and the
obfuscator will still be efficient. If we restrict τ to a polynomial, we obtain dO
from polynomially secure FE. Our results also naturally generalize to larger
τ : we obtain dO for quasipolynomial τ from quasipolynomially secure FE,
and we obtain dO for exponential τ from (sub)exponentially secure FE.

– We note that by setting τ to be 2n, τ -decomposing equivalence corresponds to
standard functional equivalence, since we can take the set S of nodes to consist
of all leaf nodes. Then dO coincides with the usual notion of indistinguisha-
bility obfuscation, giving us iO from sub-exponential FE. This re-derives the
results of [BV15,AJ15]. In our reduction, the loss is O(2n).

– We then show how to obtain several applications of obfuscation from dO with
polynomial τ . Thus, for all these applications, we obtain the application from
the polynomial hardness of FE, re-deriving several known results. In these
applications, there is a single input, or perhaps several inputs, for which
the computation must be changed from using the original circuit to using
a hard-coded value. This is easily captured by decomposing equivalence: by
decomposing each node from the root to the leaf for a particular input x,
the result is that that the program’s output on x is hard-coded into the
obfuscation. Applications include:

• Proving the hardness of finding Nash equilibria (in the full version [LZ17];
Nash hardness from FE was originally shown in [GPS16])

• Trapdoor Permutations (originally shown in [GPSZ16])
• Universal Samplers (Sect. 3.3; originally shown in [GPSZ16])
• Short Signatures (Sect. 3.2; not previously known from functional encryp-

tion, though known from obfuscation [SW14])
• Multi-key functional encryption (in the full version [LZ17]; originally

shown in [GS16])
We note that Nash, universal samplers, and short signatures only require
(polynomially hard) dO and one-way functions. In contrast, trapdoor permu-
tations and multi-key functional encryption both additionally require public
key encryption. If basing the application on public key functional encryption,
this assumption is redundant. However, unlike the case for full-fledged iO,
we do not know how to obtain public key functional encryption from just

Decomposable Obfuscation: A Framework for Building Applications 145

polynomially hard dO and one-way functions (more on this below). We do
show that a weaker multi-key secret key functional encryption scheme does
follow from dO and one-way functions.

Thus, we unify the techniques underlying many of the applications of FE—
namely iO, Nash, trapdoor permutations, universal samplers, short signatures,
and multi-key FE—under a single concept, dO. The constructions and proofs
starting from dO are much simpler than the original proofs using functional
encryption, due to the convenient dO abstraction hiding many of the common
details. We hope that dO will also serve as a starting point for further construc-
tions based on polynomially-hard assumptions.

1.5 Discussion

A natural question to ask is: what are the limits of these techniques? Could
they be used to give full iO from polynomially-hard assumptions? Or at least all
known applications from polynomial hardness? Here, we discuss several difficul-
ties that arise.

Difficulties in Breaking the Sub-exponential Barrier. First, exponential loss may
be inherent to constructing iO. Indeed, the following informal argument is
adapted from Garg et al. [GGSW13]. Suppose we can prove iO from a single
fixed assumption. This means that for every pair of equivalent circuits C0, C1,
we prove under this assumption that iO(C0) is indistinguishable from iO(C1).
Fix two circuits C0, C1, and consider the proof for those circuits. If C0 is equiv-
alent to C1, then the proof succeeds. However, if C0 is not equivalent to C1,
then the proof must fail: let x be a point such that C0(x) �= C1(x). Then a
simple adversary with x hard-coded can distinguish iO(C0) from iO(C1) simply
by running the obfuscated program on x.

This intuitively means that the proof must some how decide whether C0 and
C1 are equivalent. Since the proof consists of an efficient algorithm R reducing
breaking the assumption to distinguishing iO(C0) from iO(C1), it seems that
R must be efficiently deciding circuit equivalence. Assuming P �= NP , such a
reduction should not exist.6

The reductions from iO to functional encryption/simple multilinear map
assumptions avoid this argument by not being efficient. Indeed, the reductions
traverse the entire tree of 2n nodes as described above. In essence, the proof in
each step just needs to check a local condition such as C0(x) = C1(x) for some

6 One may wonder whether the same arguments apply to the seemingly similar setting
of zero knowledge, where zero knowledge must hold for true instances, but sound-
ness must hold for false instances. The crucial difference is that soundness does not
prevent the zero knowledge simulator from working on false instances. Therefore,
a reduction from a hard problem to zero knowledge does not need to determine
whether the instance is in the language. In contrast, for iO, the security property
must apply to equivalent circuits, but correctness implies that it cannot apply to
inequivalent circuits.

146 Q. Liu and M. Zhandry

particular x—which can be done efficiently—as opposed to checking equivalence
for all inputs.

While this argument is far from a proof of impossibility, it does represent an
significant inherent difficulty in building full-fledged iO from polynomial hard-
ness. We believe that overcoming this barrier, or showing that it is insurmount-
able, is an important and fascinating open question. For example, imagine trans-
lating the arguments above to iO for computational models with unbounded
input lengths such as Turing machines. In this case, equivalence is not only inef-
ficient, but undecidable. As such, the above arguments demonstrate a barrier to
basing Turing machine obfuscation on a finite number of even (sub)exponentially
hard assumptions. An important open question is whether it is possible to build
iO from Turing machines from iO for circuits; we believe achieving this goal will
likely require techniques that can also be used to overcome the sub-exponential
barrier.

For the remainder of the discussion, we will assume that building iO from
polynomial hardness is beyond reach without significant breakthroughs.

Avoiding the Barrier. We observe that poly-decomposing equivalence is an NP
relation: the polynomial-sized set of nodes where the fragments are identical
provides a witness that two circuits are equivalent: it is straightforward to check
that a collection of nodes covers all of the leaves and that the fragments at those
nodes are identical. In contrast, general circuit equivalence is co-NP -complete,
and therefore unlikely to be in NP unless the polynomial hierarchy collapses.
This distinction is exactly what allows us to avoid the sub-exponential barrier.

Our security reduction has access to the witness for equivalence, which guides
how the reduction operates. The reduction can use the witness to trivially verify
that the two circuits are equivalent; if the witness is not supplied or is invalid, the
reduction does not run. The sub-exponential barrier therefore no longer applies
in this setting.

More generally, the sub-exponential barrier will not apply to circuit pairs for
which there is a witness proving equivalence; in other words, languages of circuit
pairs in NP ∩co-NP 7. Any languages outside NP ∩co-NP are likely to run into
the same sub-exponential barrier as full iO since witnesses for equivalence do
not exist, and meanwhile there remains some hope that languages inside might
be obfuscatable without a sub-exponential loss by feeding the witness to the
reduction.

In fact, almost all applications of obfuscation we are aware of can be modified
so that the pairs of circuits in question have a witness proving equivalence. For
example, consider obtaining public key encryption from one-way functions using
obfuscation [SW14]. The secret key is the seed s for a PRG, and the public
key is the corresponding output x. A ciphertext encrypting message m is an
obfuscation of the program Px,m, which takes as input a seed s′ and checks that
PRG(s′) = x. If the check fails, it aborts and outputs 0. Otherwise if the check

7 Circuit equivalence is trivially in co-NP ; a point on which the two circuits differ is
a witness that they are not equivalent.

Decomposable Obfuscation: A Framework for Building Applications 147

passes, it outputs m. To decrypt using s, simply evaluate obfuscated program
on s.

In the security proof, iO is used for the following two programs: Px,m where x
is a truly random element in the co-domain of PRG, and Z, the trivial program
that always outputs 0. We note that since PRG is expanding, with high probabil-
ity x will not have a pre-image, and therefore Px,m will also output 0 everywhere.
Therefore, Px,m and Z are (with high probability) functionally equivalent.

For general PRGs, there is no witness for equivalence of these two programs.
However, by choosing the right PRG, we can remedy this. Let P be a one-way
permutation, and let h be a hardcore bit for P . Now let PRG(s) = (P (s), h(s)).
Instead of choosing x randomly, we choose x as P (s), 1⊕h(s) for a random seed
s8. This guarantees that x has no pre-image under PRG. Moreover, s serves as
a witness that x has no pre-image. Therefore, the programs Px,m and Z have a
witness for equivalence.

Limits of the dO Approach. Unfortunately, decomposable obfuscation is not
strong enough to prove security in many settings. In fact, we demonstrate
(Sect. 4) that τ -decomposing equivalence can be decided in time proportional to
τ , meaning poly-decomposing equivalence is actually in P . However, for exam-
ple, the equivalence of programs Px,m and Z above cannot possibly be in P—
otherwise we could break the PRG: on input x, check if Px,m is equivalent to
Z. A random output will yield equivalence with probability 1/2, whereas a PRG
sample will never yield equivalence circuits. In other words, Px,m and Z are
provably not poly-decomposing equivalent, despite being functionally equivalent
programs.

One can also imagine generalizing dO to encompass more general paths
through the binary tree of prefixes. For example, one could decompose the circuit
into fragments, partially merge some of the fragments back together, decompose
again, etc. We show that this seemingly more general path decomposing equiv-
alence is in fact equivalent to (standard) decomposing equivalence. Therefore,
this path dO is equivalent to (standard) dO, and only works for pairs of circuits
that can be easily verified as equivalent.

Unsurprisingly then, all the applications we obtain using poly-decomposable
obfuscation obfuscate circuits for which it is easy to verify equivalence. This
presents some interesting limitations relative to iO:

– All known ways of getting public key encryption from iO and one-way func-
tions suffer from a similar problem, and cannot to our knowledge be based on
poly-dO. In other words, unlike iO, dO might not serve as a bridge between
Minicrypt and Cryptomania. Some of our applications—namely multi-key
functional encryption and trapdoor permutations—imply public key encryp-
tion; for these applications, we actually have to use public key encryption as
an additional ingredient. Note that if we are instantiating dO from functional

8 This is no longer a random element in the codomain of the PRG, but it suffices for
the security proof.

148 Q. Liu and M. Zhandry

encryption, we get public key encryption for free. However, if we are inter-
ested in placing dO itself in the complexity landscape, the apparent inability
to give public key encryption is an interesting barrier.
More generally, a fascinating question is whether any notion of obfuscation
that works only for efficiently-recognizable equivalent circuits can imply pub-
lic key encryption, assuming additionally just one-way functions.

– While iO itself does not imply one-way functions9, iO can be used in con-
junction with a worst-case complexity assumption, roughly NP � BPP , to
obtain one-way functions [KMN+14]. The proof works by using a hypothet-
ical inverter to solve the circuit equivalence problem; assuming the circuit
equivalence problem is hard, they reach a contradiction. The solver works
exactly because iO holds for the equivalent circuits.
This strategy simply does not work in the context of dO. Indeed, dO only
applies to circuits for which equivalence is easily decidable anyway, mean-
ing no contradiction is reached. In order to obtain any results analogous
to [KMN+14] for restricted obfuscation notions, the notion must always work
for at least some collection of circuit pairs for which circuit equivalence is hard
to decide. Put another way, dO could potentially exist in Pessiland.

– More generally, dO appears to roughly capture the most general form of the
techniques in [GPS16,GPSZ16,GS16], and therefore it appears that these
techniques will not extend to the case of non-efficiently checkable equivalence.
Many constructions using obfuscation fall in this category of non-checkable
equivalence: deniable encryption and non-interactive zero knowledge [SW14],
secure function evaluation with optimal communication complexity [HW15],
adaptively secure universal samples [HJK+16], and more.

We therefore leave some interesting open questions:

– Build iO for a class of circuit pairs for which equivalence is not checkable
in polynomial time, but for which security can be based on the polynomial
hardness of just a few assumptions.

– Modify the constructions in deniable encryption/NIZK/function evalua-
tion/etc so that obfuscation is only ever applied on program pairs for which
equivalence can be easily verified—ideally, the circuits would be decomposing
equivalent.

– Prove that for some applications, obfuscation must be applied to program
pairs with non-efficiently checkable equivalence.

2 Decomposing Equivalence and dO Definitions

In this section, we define several basic definitions including decomposing equiv-
alence and dO.

9 If P = NP , one-way functions do not exist but circuit minimization can be used to
obfuscate.

Decomposable Obfuscation: A Framework for Building Applications 149

2.1 Partial Evaluation on Circuits

Definition 1. Consider a circuit C defined on inputs of length n > 0, for any
bit b ∈ {0, 1}, a partial evaluation of C on bit b denoted as C(b, ·) is a circuit
defined on inputs of length n − 1, where we hardcode the input bit x1 to b, and
then simplify. To simplify, while there is a gate that has a hard-coded input,
replace it with the appropriate gate or wire in the usual way (e.g. AND(1, b)
gets replaced with the pass-through wire b, and AND(0, b) gets replaced with the
constant 0). Then remove all unused wires.

Also we can define a partial evaluation of a circuit C on a string x which is
repeatedly applying partial evaluations and simplifying bit by bit.

From now on, whenever we use the expression C(x, ·), we always refer to the
result of simplifying C after hardcoding the prefix x.

2.2 Circuit Assignments

A binary tree Tn is a tree of depth n + 1 where the root is labeled ε (an empty
string), and for any node that is not a root whose parent is labeled as x, it is
labeled x||0 if it is a left-child of its parent; it is labeled as x||1 if it is a right-child
of its parent.

Definition 2 (Tree Covering). We say a set of binary strings {xi}�
i=1 is a

tree covering for all strings of length n if the following holds: for every string
x ∈ {0, 1}n, there exists exactly one xj in the set such that xj is a prefix of x.

A tree covering {xi}�
i=1 also can be viewed as a set of nodes in Tn such that

for every leaf in the tree, the path from root ε to this leaf will pass exactly one
node in the set.

Yet another equivalent formulation is that a tree covering is either (1) a set
consisting of the root node of the tree, or (2) the union of two tree coverings for
the two subtrees rooted at the children of the root node.

Definition 3 (Circuit Assignment). We say L = {(xi, Cxi
)}�

i=1 is a circuit
assignment with size � where {xi}�

i=1 is a tree covering for Tn and {Cxi
}�

i=1 is
a set of circuits where Cxi

is assigned to the node xi in the covering.
We say a circuit assignment is valid if for each Cxi

, it is defined on input
length n − |xi|.

An evaluation of L on input x is defined as: find the unique xj which is a
prefix of x = xj ||x−j and return Cxj

(x−j).
We call each circuit in the assignment a fragment. The cardinality of the

circuit assignment is the size of the tree covering, and the circuit size is the
maximum size of any fragment in the assignment.

A circuit assignment L = {(xi, Cxi
)}�

i=1 naturally corresponds to a function:
on input y ∈ {0, 1}n, scan the prefix of y from left to right until we find the
smallest i such that y[i] equals to some xj , output Cxj

(y[i+1···n]). We will override
the notation and write this function as L(x).

We associate a circuit C with the assignment LC = {(ε, C)} which assigns
C to the root of the tree. Notice that LC and C are equivalent as functions.

150 Q. Liu and M. Zhandry

Definition 4 (one shot decomposing equivalent). Given two circuits
C0, C1 defined on inputs of length n, we say they are τ -one shot decomposing
equivalent or simply τ -decomposing equivalent if the following hold:

– There exists a tree covering X = {xi}i of size at most τ ;
– For all xi ∈ X , C0(xi, ·) = C1(xi, ·) as circuits (they are exactly the same

circuit).

Definition 5. dO with two PPT algorithms {dO.ParaGen, dO.Eval} is a
τ(n, s, κ)-decomposing obfuscator if the following conditions hold

– Efficiency: dO.ParaGen, dO.Eval are efficient algorithms;
– Functionality preserving: dO.ParaGen takes as input a security parame-

ter κ and a circuit C, and outputs the description Ĉ of an obfuscated pro-
gram. For all κ and all circuit C, for all input x ∈ {0, 1}n, we have
dO.Eval(dO.ParaGen(1κ, C), x) = C(x);

– Decomposing indistinguishability: Consider a pair of PPT adversaries
(Samp,D) where Samp outputs a tuple (C0, C1, σ) where C0, C1 are circuits
of the same size s = s(κ) and input length n = n(κ). We require that, for any
such PPT (Samp,D), if

Pr[C0 is τ -decomposing equivalent to C1 : (C0, C1, σ) ← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, dO.ParaGen(1κ, C0)) = 1]
−Pr[D(σ, dO.ParaGen(1κ, C1)) = 1]| ≤ negl(κ)

Note that the size of parameters generated by dO.ParaGen is bounded by
poly(n, κ, τ, |C|). But however you will see later that τ can always be replaced
by n so even if τ = Ω(2n), the size is still bounded by poly(n, κ, |C|) (but you
will have τ -loss in the security analysis).

And in the next section we will discuss about the applications of dO and later
come back to more discussions about dO including constructions and relations
between different iO.

3 Applications

3.1 Notations

Before all the applications, let us first introduce several definitions for conve-
nience.

First let us look at some operations defined on circuits (or circuit assign-
ments).

1. Decompose(L, x) takes a circuit assignment L and a string x as parameters.
This operation is invalid if x is not in the tree covering. The new circuit
assignment has a slightly different tree covering: the new tree covering includes
x||0 and x||1 but not x. It decomposes the fragment Cx into two fragments
Cx(0, ·) and Cx(1, ·) and assigns them to x||0 and x||1 respectively.

Decomposable Obfuscation: A Framework for Building Applications 151

2. CanonicalMerge(L, x) operates on an assignment L where the tree cover-
ing includes both children of node x but not x itself. It takes two circuits
Cx||0, Cx||1 assigned to the node x||0 and x||1 and merge them to get the
following circuit Cx(b, y) = (b ∧ Cx||0(y)) ∨ (b ∧ Cx||1(y)) (Here we assume
the output length of both circuits is 1. It is straightforward to extend the
definition to circuits with any output length). The new tree covering has x
but not x||0 or x||1.
One observation is that for any circuit assignment whose tree covering has
x||0 and x||1 but not x and Cx||0, Cx||1 can not be simplified any further,
Decompose(CanonicalMerge(L, x), x) = L.

3. DecomposeTo(L, TC): It takes a circuit assignment L (if the first parameter is
a circuit C, then L = {(C, ε)}) and a tree covering TC where TC is below the
covering in L. This procedure keeps taking the lexicographically first circuit
fragment Cx which x is not in TC and do Decompose(L, x). Because the
covering in L is above TC, the procedure halts when the covering in the new
circuit assignment is exactly TC.
We can also define DecomposeTo(L, x) = DecomposeTo(L, TCx) where TCx

is a tree covering that consists all the nodes adjacent to the path from root
to node x, in other words, TCx = {¬x1, x1¬x2, x1x2¬x3, · · · , x|x|−1¬x|x|, x}
(a full description is in Sect. 4).

4. CanonicalMerge(L): it canonically merges all the way to the root. In other
words, the procedure keeps taking the lexicographically first circuit fragment
pair Cx||0 and Cx||1 and doing CanonicalMerge(L, x) until the tree covering in
the circuit assignment is {ε}, in other words, it becomes a single circuit.

Note that the functionality of a circuit assignment is preserved under applying
any valid operation above.

We now define an decomposing compatible pseudo random function. The
construction [GGM86] automatically satisfies the definition below.

Definition 6. An decomposing compatible pseudo random function DPRF con-
sists the following algorithms DPRF.KeyGen and DPRF.Eval where

– DPRF.Eval takes a input of length n and the output is of length p(n) where p
is a fixed polynomial;

– (PRF Security). For any poly sized adversary A, there exists a negligible
function negl, for any string y0 ∈ {0, 1}n and any κ,

|Pr[A(DPRF.Eval(S, y0)) = 1] − Pr[A(r) = 1]| ≤ negl(κ)

where S ← DPRF.KeyGen(1κ) and r ∈ {0, 1}p(n) is a uniformly random
string.

– (EPRF Security). Consider the following game, let Gameκ,A,b be
• The challenger prepares S ← DPRF.KeyGen(1κ);
• The adversary makes queries about x and gets DPRF.Eval(S, x) back from

the challenger;
• The adversary gives a tree covering TC and y∗ ∈ TC to the challenger

where y∗ is not a prefix of any x that has been asked;

152 Q. Liu and M. Zhandry

• The challenger sends the distribution Db back to the adversary A where
∗ D0: let the circuit D to be D(·) = DPRF.Eval(S, ·) defined on

{0, 1}n, the circuit assignment is DecomposeTo(D,TC). We observe
that the fragment corresponding to y is DPRF.Eval(S, y, ·) defined on
{0, 1}n−|y|.

∗ D1: For each y �= y∗ ∈ TC, let the fragment corresponding to
y be Dy(·) = DPRF.Eval(S, y, ·) defined on {0, 1}n−|y| and for y∗,
Dy∗(·) = DPRF.Eval(S′, y∗, ·) defined on {0, 1}n−|y∗| where S′ ←
DPRF.KeyGen(1κ).

• The adversary can keep making queries about x which does not have prefix
y∗ and gets DPRF.Eval(S, x) back from the challenger;

• The output of this game is the output of A.
For any poly sized adversary A, there exists a negligible function negl such
that:

|Pr[Gameκ,A,0 = 1] − Pr[Gameκ,A,1 = 1]| ≤ negl(κ)

Let us define an another operation on a circuit assignment and a circuit.

Definition 7. By given a circuit C and a circuit assignment L where C takes
two inputs x and L(x), C(·, L(·)) is a circuit assignment defined below:

– Let TC be the tree covering inside L = {(x,Dx)}x∈TC .
– Let L′ = DecomposeTo(C, TC) = {(x,Cx)}x∈TC .
– For each fragment in the output circuit assignment corresponding to x ∈ TC,

it is Cx(·,Dx(·)) simplified, which is defined on {0, 1}n−|x|.

We can also define similar operations on several circuit assignments and one
circuit as long as these circuit assignments have the same tree covering. In other
words, let L1, · · · , Lm(Li = {(x,Di

x)} are circuit assignments with the same tree
covering TC, then C(·, L1(·), L2(·), · · · , Lm(·)) is a circuit assignment whose
fragment corresponding to y ∈ TC is C(y, ·,D1

y(·), · · · ,Dm
y (·)) simplified.

Then we have the following lemma:

Lemma 1. For any two circuits C,D where D takes a single input x and C
takes two inputs x and D(x), for any tree covering TC, we have

DecomposeTo(C(·,D(·)), TC) = C(·, [DecomposeTo(D,TC)](·))

For m+1 circuits C,D1,D2, · · · ,Dm, where D1, · · · ,Dm take a single input
x and C takes x and D1(x) · · · Dm(x) as inputs, we have

DecomposeTo(C(·,D1(·), · · · ,Dm(·)), TC)
= C(·,DecomposeTo(D1, TC), · · · ,DecomposeTo(Dm, TC))

Proof. Let us first look at the left side. It is a circuit assignment with the
tree covering TC. For the fragment corresponding to y ∈ TC, it is the partial
evaluation of C(·,D(·)) on y.

Decomposable Obfuscation: A Framework for Building Applications 153

For the right side, we first have a circuit assignment DecomposeTo(D,TC)
where the fragment corresponding to y is D(y, ·). So by the definition of our
operation, the fragment corresponding to y in the right side is C(y, ·,D(y, ·))
simplified.

Since each pair of fragments are the same, the left side is equal to the right
side.

3.2 Short Signatures

Here, we show how to use dO to build short signatures, following [SW14]. As
in [SW14], we will construct statically secure signatures.

The signature is simply of the following form f(DPRF.Eval(S,m)) where f is
a one-way function.

Definition 8. A signature scheme SS consists of the following algorithms:

– SS.Setup(1κ): it outputs a verification key vk and a signature key sk;
– SS.Sign(sk,m): it is a deterministic procedure; it takes a signature key and a

message, then outputs a signature σ;
– SS.Ver(vk,m, σ): it is a deterministic algorithm; it takes a verification key, a

message m and a signature σ, it outputs 1 if it accepts; 0 otherwise.

We say a short signature scheme is correct if for any message m ∈ {0, 1}�:

Pr

[
SS.Ver(vk,m, σ) = 1

∣∣∣∣∣ (vk, sk) ← SS.Setup(1κ)
σ ← SS.Sign(sk,m)

]
= 1

We now define security for short signatures.

Definition 9. We denote Gameκ,A to be the following where κ is the security
parameter and A is an adversary:

– First A announces a message m∗ of length �;
– The challenger gets m∗ and prepares two keys sk and vk; it then sends vk back

to A;
– A can keep making queries m′ to the challenger and gets Sign(sk,m′) back for

any m′ �= m∗;
– Finally A sends a forged signature σ∗ and the output of the game is

Ver(vk,m∗, σ∗).

We say SS is secure if for any polysized A, there exists a negligible function
negl,

Pr[Gameκ,A = 1] ≤ negl(κ)

154 Q. Liu and M. Zhandry

Algorithm 1. Verification Algorithm
1: procedure V (m, σ,DPRF.Eval(S, m))
2: it computes σ′ ← DPRF.Eval(S, m)
3: if f(σ) = f(σ′) then
4: return 1
5: else
6: return 0
7: end if
8: end procedure

Construction. We now give a signature scheme where signatures are short.
The construction is similar with that in [SW14] but we use dO instead of iO.
Our SS has the following algorithms:

– SS.Setup(1κ): it takes a security parameter κ and prepares a key S ←
DPRF.KeyGen(1κ). S is the secret key sk. Then it computes the verifica-
tion key as vk ← dO.ParaGen(1κ, V (·,DPRF.Eval(S, ·))) where V is given in
Algorithm 1 (we will pad programs to a length upper bound before applying
dO).

– SS.Sign(sk,m) = DPRF.Eval(S,m)
– SS.Ver(vk,m, σ) = dO.Eval(vk, {m,σ})

It is straightforward to see that the construction satisfies correctness.

Security

Theorem 1. If dO is a secure poly-dO, DPRF is a secure decomposing compat-
ible PRF, and f is a one-way function, then the construction above is a short
secure signature scheme.

Proof. Now prove security through a sequence of hybrid experiments.

– Hyb 0: In this hybrid, we are in Gameκ,A;
– Hyb 1: In this hybrid, since the challenger gets m∗ before it releases
vk, we decompose the circuit to get L = DecomposeTo(V (·,DPRF.
Eval(S, ·)),m∗). By Lemma 1, the circuit assignment is V (·,DecomposeTo
(DPRF.Eval(S, ·),m∗)).
Therefore we have that the distributions dO.ParaGen(1κ, V (·,DPRF.Eval
(S, ·))) and dO.ParaGen(1κ,CanonicalMerge(L)) are indistinguishable, since
these two circuits are � + 1-decomposing equivalent by applying dO.

– Hyb 2: This is the same as Hyb 1, except that we replace the frag-
ment in DecomposeTo(DPRF.Eval(S, ·),m∗) corresponding to m∗—which is
“return DPRF.Eval(S,m∗)”—by “return DPRF.Eval(S′,m∗)” where S′ ←
DPRF.KeyGen(1κ) is a fresh random DPRF key that is independent of S. We
call the new circuit assignment L′. Hyb 1 and Hyb 2 are indistinguishable
because of the DPRF security.

Decomposable Obfuscation: A Framework for Building Applications 155

– Hyb 3: This is the same as Hyb 2, except that we replace the fragment
in L′, which is “return DPRF.Eval(S′,m∗)” by “return r∗” where r∗ is a
uniformly random string. We call the new circuit assignment L′′. As we don’t
have S′ in the program anywhere except this fragment, Hyb 2 and Hyb 3
are indistinguishable because of the PRF security.
We find that in CanonicalMerge(L′′), the fragment corresponding to m∗ is:
on input σ, it returns 1 if f(σ) = v∗; 0 otherwise, where v∗ = f(r∗) for a
uniformly random r∗.

Lemma 2. If there exists a poly sized adversary A for Hyb 3, then we can break
one-way function f .

Proof. Given z∗ which is f(r∗) for a truly random r∗, we can actually simulate
Hyb 3. If we successfully find a forged signature for Hyb 3 with non-negligible
probability, it is actually a pre-image of z∗ which means we break one-way func-
tion with non-negligible probability.

This completes the security proof.

3.3 Universal Samplers

Here we construct universal samplers from dO. For the sake of simplicity, we
will show how to construct samplers meeting the one-time static definition
from [HJK+16]. However, note that the same techniques also can be used to con-
struct the more complicated k-time interactive simulation notion of [GPSZ16].

Let US denote an universal sampler. It has the following procedures:

– params ← US.Setup(1κ, 1�, 1t): the Setup procedure takes a security parameter
κ, a program size upper bound � and a output length t and outputs an
parameter params;

– US.Sample(params, C) is a deterministic procedure that takes a params and
a sampler C of length at most � where C outputs a sample of length t. This
procedure outputs a sample s;

– params′ ← US.Sim(1κ, 1�, 1t, C∗, s∗) takes a security parameter κ, a program
size upper bound � and a output length t, also a circuit C∗ and a sample s∗

in the image of C∗.

Correctness. For any C∗ and s∗ in the image of C∗, and for any � ≥ |C∗|, and
t is a upper bound for C∗’s outputs, we have

Pr
[
US.Sample(params′, C∗)] = s∗ | params′ ← US.Sim(1κ, 1�, 1t, C∗, s∗)

]
= 1

Security. For any � and t, for any C∗ of size at most � and output size at most
t, for any poly sized adversary A, there exists a negligible function negl, such
that
∣
∣
∣Pr[A(params, C∗) = 1 | params ← US.Setup(1κ, 1�, 1t)]

− Pr

[

A(params′, C∗) = 1
∣
∣
params′ ← US.Sim(1κ, 1�, 1t, C∗, s∗),
s∗ ←

R
C∗(·)

]
∣
∣
∣ ≤ negl(κ)

156 Q. Liu and M. Zhandry

where s∗ ←
R

C∗(·) means s∗ is a truly random sample from C∗(·).

Construction. Now we give the detailed construction for our universal sampler:

– Define U to be the size upper bound among all the circuits being obfus-
cated in our proof (not the size of circuits fed into the universal sampler).
It is straightforward to see that U = poly(κ, �, t); Whenever we mention
dO.ParaGen(1κ, C), we will pad C to have size U .

– For simplicity, we will assume circuits C fed into the universal sampler will
always be padded to length � so that we can consider only circuits of a fixed
size.

– US.Setup(1κ, 1�, 1t) randomly samples a key S ← DPRF.KeyGen(1κ), and
constructs a circuit Sampler (see Algorithm 2) as follows: on input cir-
cuit C of size �, it outputs a sample based on the randomness gener-
ated by DPRF; and the output of the procedure US.Setup is params =
dO.ParaGen(1κ,Sampler(·,DPRF.Eval(S, ·))).

Algorithm 2. Sampler Algorithm
1: procedure Sampler(C = c1c2 · · · c�,DPRF.Eval(S, C))
2: rC ← DPRF.Eval(S, C)
3: return C(; rC)
4: end procedure

– US.Sample(params, C): it simply outputs dO.Eval(params, C);
– US.Sim(1κ, 1�, 1t, C∗, s∗): it randomly samples a key S ← DPRF.KeyGen(1κ),

let L be a circuit assignment Sampler(·,DecomposeTo(DPRF.Eval(S, ·), C∗)).
And finally it replaces the fragment corresponding to C∗ in L
with “return s∗” instead of returning C∗(;DPRF.Eval(S,C∗)). Let
Sampler′ = CanonicalMerge(L) and the output of US.Sim is params′ =
dO.ParaGen(1κ,Sampler′).

Theorem 2. If dO and one-way functions exist, then there exists an universal
sampler.

Proof. First, it is straightforward that correctness is satisfied. Next we prove
security. Fix a circuit C∗ and suppose there is an adversary A for the sampler
security game for C∗. We prove the indistinguishability through a sequence of
hybrids:

– Hyb 0: Here, the adversary receives params ← US.Setup(1κ, 1�, 1t);
– Hyb 1: In this hybrid, let s∗ ← C∗(;DPRF.Eval(S,C∗)). We get params1 ←
US.Sim(1κ, 1�, 1t, C∗, s∗) where Sampler1 is the circuit constructed in US.Sim
where we are using the same S in Hyb 0.
It is straightforward that Sampler1 and Sampler are � + 1-decomposing
equivalent. Therefore params1 = dO.ParaGen(1κ,Sampler1) and params =
dO.ParaGen(1κ,Sampler) are indistinguishable by dO security, meaning Hyb
0 and Hyb 1 are indistinguishable.

Decomposable Obfuscation: A Framework for Building Applications 157

– Hyb 2: This is the same as Hyb 1, except we replace the fragment in
DecomposeTo(DPRF.Eval(S, ·), C∗) corresponding to C∗ with the fragment
“return DPRF.Eval(S′, C∗)” where S′ ← DPRF.KeyGen(1κ) is a new key
generated by a uniformly random string. We call the new circuit assignment
L′. The indistinguishability between Hyb 1 and Hyb 2 follows from the
DPRF security.

– Hyb 3: In this hybrid, since the fragment in L′ corresponding to C∗ is now
returning C∗(;DPRF.Eval(S′, C∗)) and we don’t have S′ in the program, by
PRF security, we can replace the return value with C(; r∗) where r∗ is a
truly random string. This is equivalent to the adversary receiving params ←
US.Sim(1κ, 1�, 1t, C∗, s∗) for a fresh sample s∗ ← C∗.

4 Constructions of dO

In this section, we give more discussions about decomposing equivalence and dO.
And finally we give the constructions of dO from compact functional encryption
schemes.

4.1 New Notions of Equivalence for Circuits

We will define a partial order on nodes in a binary tree. We say that x y
(alternatively, x is above y) if x is a prefix of y. We also extend our partial order
 to tree coverings. We say a tree covering TC0 TC1, or TC0 is above TC1,
if for every node u in TC1, there exists a node v in TC0 such that v u (that is,
v is equal to u or an ancestor of u). A tree covering TC0 is below TC1 if TC1 is
above TC0. It is straightforward that if TC0 TC1, then |TC0| ≤ |TC1| where
|TC0| = |TC1| if and only if TC0 = TC1. We can also extend to compare tree
coverings to nodes. We have u TC if there is a node v ∈ TC such that u v.
TC u if there exists a v ∈ TC such that v u.

We give more operations defined on circuits and circuit assignments for con-
venience.

– Decompose(L, x): mentioned in Sect. 3.1.
– CanonicalMerge(L, x): mentioned in Sect. 3.1.
– TargetedMerge(L, x,C) operates on an assignment L where the tree covering

includes both children of node x but not x itself. This operation is invalid if
either C(0, ·) �= Cx||0 or C(1, ·) �= Cx||1 as circuits. It takes the two circuits
Cx||0, Cx||1 assigned to the node x||0 and x||1 and merges them to get Cx = C.
The new tree covering has x but not x||0 or x||1.
We observe that

• Decompose(TargetedMerge(L, x,C), x) = L where Cx||0 and Cx||1 in L can
not be simplified any further, and all the operations are valid

• TargetedMerge(Decompose(L, x), x, C) = L where C is the fragment at
node x in L (as long as the operations are valid).

158 Q. Liu and M. Zhandry

– DecomposeTo(L, x): takes a circuit assignment L and a string x as parame-
ters. The operation is valid if TC x, where TC is the tree covering for L.
Let u be ancestor of x in TC. Let p0 = u, p1, . . . , pt = x be the path from u to
x. DecomposeTo first sets L0 = L, and then runs Li ← Decompose(Li−1, pi−1)
for i = 1, . . . , t. The output is the new circuit assignment L′ = Lt. The new
tree covering TC ′ for L′ is the minimal TC ′ that is both below TC and con-
tains x.
We will also extend DecomposeTo to operate on circuits in addition to assign-
ments, by first interpreting the circuit as an assignment, and performing
DecomposeTo on the assignment.

– DecomposeTo(L, TC): mentioned in Sect. 3.1.
– CanonicalMerge(L, TC): It takes a circuit assignment L and a tree cov-

ering TC where TC is below the covering in L. It repeatedly performs
CanonicalMerge(L, x) at different x until the tree covering in the assignment
becomes TC. To make the merging truly canonical, we need to specify an
order that nodes are merged in. We take the convention that the lowest nodes
in the tree are merged first, and between nodes in the same level, the leftmost
nodes are merged first.

– CanonicalMerge(L) = CanonicalMerge(L, {ε}): mentioned in Sect. 3.1.

4.2 Locally, Path, One Shot Decomposing Equivalence

We define two new equivalence notions for circuits based on the decomposing and
merging operations defined above. First, we define a local equivalence condition
on circuit assignments:

Definition 10 (locally decomposing equivalent). We say two circuit
assignments L1 = {(xi, Cxi

)}, L2 = {(yi, C
′
yi

)} are (�, s)-locally decomposing
equivalent if the following hold:

– The circuit size of L1, L2 is at most s;
– The cardinality of L1, L2 is at most �;
– L1 can be obtained from L2 by applying Decompose(L2, x) for some x or by

applying TargetedMerge(L2, x, C) for some x and C is the fragment assigned
in L1 to the string (node) x;

Local decomposing equivalence (Local DE) means that we can transform
L1 into L2 by making just a single local change, namely decomposing a node
or merging two nodes. Notice that since decomposing a node does not change
functionality, local DE implies that L1 and L2 compute equivalent functions.
For any �, s, (�, s)-local decomposing equivalence forms a graph, where nodes
are circuit assignments and edges denote local decomposing equivalence. Next,
we define a notion of path decomposing equivalence for circuits (which can be
thought of as nodes in the graph), which says that two circuits are equivalent if
they are connected by a reasonably short path through the graph.

Decomposable Obfuscation: A Framework for Building Applications 159

Definition 11 (path decomposing equivalent). We say two circuits C1, C2

are (�, s, t)-path decomposing equivalent if there exists at most t − 1 circuit
assignments L′

1, L
′
2, · · · , L′

t−1 such that, for any 1 ≤ i ≤ t, L′
i−1 and L′

i are
(�, s)-locally decomposing equivalent, where L′

0 = {(ε, C1)} and L′
t = {(ε, C2)}.

Now let’s recall the definition of one shot decomposing equivalent which
allows for exactly two steps to get between C1 and C2. Now the steps are not
confined to be local, but instead the first step is allowed to decompose the root
to a given tree covering, and the second then merges the tree covering all the
way back to the root.

Recall Definition 4 (one shot decomposing equivalent). Given two cir-
cuits C0, C1 defined on inputs of length n, we say they are τ -one shot decom-
posing equivalent or simply τ -decomposing equivalent if the following hold:

– There exists a tree covering X = {xi}i of size at most τ ;
– For all xi ∈ X , C0(xi, ·) = C1(xi, ·) as circuits.

An equivalent definition for “τ -one shot decomposing equivalent” is that there
exists a tree covering X of size at most τ , such that DecomposeTo({(ε, C0)},X) =
DecomposeTo({(ε, C1)},X), in other words, the tree coverings are the same and
the corresponding fragments for each node are the same.

We note that since the operations defining path and one shot decomposing
equivalence all preserve functionality, we have that these notions imply standard
functional equivalence for the circuits:

Lemma 3. If C0, C1 are (�, s, t)-path decomposing equivalent for any �, s, t, or
if C0, C1 are τ -one shot decomposing equivalent for any τ , then C0, C1 compute
equivalent functions (C0(x) = C1(x),∀x ∈ {0, 1}n).

We also observe a partial converse:

Lemma 4. Two circuits C0, C1 (defined on n bits string) are 2n-one shot
decomposing equivalent if and only if they are functionally equivalent (C0(x) =
C1(x),∀x ∈ {0, 1}n).

Proof. We only need to show the case that functional equivalence implies 2n-
one shot decomposing equivalence. If C0, C1 are functionally equivalent, we can
let the tree covering be X = {0, 1}n. Because C0(x) = C1(x) for all x ∈ {0, 1}n =
X , we have DecomposeTo({(ε, C0)},X) = DecomposeTo({(ε, C1)},X). Therefore
C0, C1 are 2n-one shot decomposing equivalent.

4.3 Locally, One Shot dO

Here, we will recall decomposing obfuscation (dO) and give one more defini-
tion. Let us recall the definition of dO. Decomposable obfuscator, roughly, is
an indistinguishability obfuscator, but where the indistinguishability security
requirement only applies to pairs of circuits that are decomposing equivalent (as
opposed to applying to all equivalent circuits).

160 Q. Liu and M. Zhandry

Recall Definition 5. dO wtih two PPT algorithms {dO.ParaGen, dO.Eval} is
a τ(n, s, κ)-decomposable obfuscator if the following conditions hold

– Efficiency: dO.ParaGen, dO.Eval are efficient algorithms;
– Functionality preserving: dO.ParaGen takes as input a security parame-

ter κ and a circuit C, and outputs the description Ĉ of an obfuscated pro-
gram. For all κ and all circuit C, for all input x ∈ {0, 1}n, we have
dO.Eval(dO.ParaGen(1κ, C), x) = C(x);

– Decomposing indistinguishability: Consider a pair of PPT adversaries
(Samp,D) where Samp outputs a tuple (C0, C1, σ) where C0, C1 are circuits
of the same size s = s(κ) and input length n = n(κ). We require that, for any
such PPT (Samp,D), if

Pr[C0 is τ(n, s, κ)-decomposing equivalent to C1 : (C0, C1, σ) ← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, dO.ParaGen(1κ, C0)) = 1]
−Pr[D(σ, dO.ParaGen(1κ, C1)) = 1]| ≤ negl(κ)

Since 2n-equivalence corresponds to standard equivalence, 2n-dO is equivalent to
the standard notion of iO. In this work, we will usually consider a much weaker
setting, where τ is restricted to a polynomial.

The following tool, called local dO (ldO), will be used to help us build dO.
Roughly, ldO is an obfuscator for circuit assignments with the property that local
changes to the assignment (that is, decomposing operations) are computationally
undetectable.

Definition 12. ldO with two PPT algorithms {ldO.ParaGen, ldO.Eval} is a
locally decomposable obfuscator if the following conditions hold

– Efficiency: ldO.ParaGen, ldO.Eval are efficient algorithms;
– Functionality preserving: ldO.ParaGen takes as input a security para-

meter κ, a circuit assignment L, a cardinality bound �, and a circuit
size bound s. For all κ and all circuit assignment L with cardinality at
most � and circuit size at most s, for all input x ∈ {0, 1}n, we have
ldO.Eval(ldO.ParaGen(1κ, L, �, s), x) = L(x);

– Local decomposing indistinguishability: Consider polynomials � = �(κ)
and s = s(κ). For any such polynomials, and any pair of PPT adversaries
(Samp,D), we require that if

Pr[L0 is (�(κ), s(κ))-local decomp. equiv. to L1 : (L0, L1, σ) ← Samp(κ)] = 1

then there exists a negligible function negl(κ) such that

|Pr[D(σ, ldO.ParaGen(1κ, L0, �, s)) = 1]
− Pr[D(σ, ldO.ParaGen(1κ, L1, �, s)) = 1]| ≤ � · negl(κ)

We will also consider a stronger variant, called sub-exponentially secure local
dO, where in the definition of local decomposing indistinguishability, the negli-
gible function negl is replaced by a subexponential function subexp.

Decomposable Obfuscation: A Framework for Building Applications 161

4.4 Locally dO Implies One Shot dO

Lemma 5. If two circuits C0, C1 are (t/2+1)-one shot decomposing equivalent,
then they are (n+1, s, t)-path decomposing equivalent where s = max{|C0|, |C1|}.
Proof. We start from the covering that has C0 assigned to the root. We perform
a depth-first traversal of the binary search tree consisting of the “bad” nodes:
nodes for which the partial evaluations of C0 and C1 are different. Equivalently,
we search over the ancestors of nodes in the tree covering. There are t/2 such
nodes. When we first visit a node on our way down the tree, we Decompose the
fragment at that node to its children. When we visit a node x for the second
time after processing both children, we merge the fragments in the two children,
using a TargetedMerge toward the circuit (C1)x. This operation is always valid
since for each child either: (1) the child is a “good” node, in which case the
partial evaluations at that node is identical to the partial evaluation of (C1)x||b;
or (2) the child is a “bad” node, in which case it was, by induction, already
processed and replaced with the partial evaluation of (C1)x||b. The cardinality of
any circuit assignment in this path is at most n+1 since we will only have frag-
ments adjacent to the path from the root to the node we are visiting. The circuit
size is moreover always bounded by s = max{|C0|, |C1|} because all the inter-
mediate fragments are partial evaluations of either C0 or C1. Finally, the path
performs an Decompose and TargetedMerge for each “bad” node, corresponding
to t operations.

Now we show that the existence of ldO implies the existence of dO.

Lemma 6. If ldO exists, then τ -dO exists, where the loss in the security reduc-
tion is 2(τ −1). In particular, if polynomially secure ldO exists, then τ -dO exists
for any polynomial function τ . Moreover, if subexponentially secure ldO exists,
then 2n-dO, and hence iO, exists.

Proof. The construction of ldO from dO is the natural one: to obfuscate a
circuit C, we simply consider the circuit as a circuit assignment with C assigned
to the root node, and obfuscate this circuit assignment. We take the maximum
cardinality for ldO to be n + 1 and the circuit size to be |C|.
– dO.ParaGen(1κ, C) = ldO.ParaGen(1κ, {(ε, C)}, n + 1, |C|);
– dO.Eval(params, x) = ldO.Eval(params, x);

Efficiency and functionality preservation are straightforward to prove. Now
we focus on security. Let (Samp,D) be two PPT adversaries, and s, n be poly-
nomials in κ. Suppose the circuits C0, C1 outputted by Samp(κ) always have
the same size s(κ), same input length n(κ), and are τ(n, s, κ)-decomposing
equivalent with probability 1. Then C0 and C1 are also (n + 1, s, 2(τ − 1))-
path decomposing equivalent by Lemma 5. By the definition of path decom-
posing equivalence and Lemma 8 (which states that the minimum tree cov-
ering is efficiently computable), there exist L′

1, L
′
2, · · · , L′

2(τ−2), L
′
2(τ−1)−1 and

162 Q. Liu and M. Zhandry

L′
0 = {(ε, C0)}, L′

2(τ−1) = {(ε, C1)} such that any two adjacent circuit assign-
ments are (n + 1, s)-locally decomposing equivalent. So we have that

|Pr[D(dO.ParaGen(1κ, C0))] − Pr[D(dO.ParaGen(1κ, C1))]|

≤
2(τ−1)∑

i=1

∣∣∣∣Pr[D(ldO.ParaGen(1κ, L′
i−1), n + 1, |C0|)]

−Pr[D(ldO.ParaGen(1κ, L′
i), n + 1, |C0|)]

∣∣∣∣
≤ 2(τ − 1) · ε(κ)

Here, ε is the advantage of the following adversary pair (Samp′,D) in the local
dO security game (where D is from above). Samp′ runs (C0, C1, σ) ← Samp′,
computes the path L′

0, · · · , L′
2(τ−1), chooses a random i ∈ [2(τ −1)], and outputs

(L′
i−1, L

′
i, σ).

Therefore, as desired, we get an adversary for the local dO where the loss is
2(τ −1). If we assume the polynomial hardness of ldO, the adversary (Samp′,D)
must have negligible advantage ε, and so we get τ − dO for any polynomial
τ . If we assume the subexponential hardness of ldO, we can set κ so that ε =
2−nnegl(κ) for some negligible function negl. In this case, we even get 2n-dO,
which is equivalent to iO. In the regime of subexponential hardness, we can even
set ε = 2−nsubexp(κ) for some subexponential function subexp, in which case we
get subexponentially secure 2n-dO and hence subexponentially secure iO. ��

Next, we focus on constructing ldO, which we now know is sufficient for
constructing dO.

4.5 Compact FE Implies dO

Theorem 3. If compact single-key selective secure functional encryption
schemes exist, then there exists local decomposable obfuscators ldO.

With Theorem 3 and Lemma 6, we have the following Theorem 4.

Theorem 4. If compact single-key selective secure functional encryption
schemes exist, then there exist decomposable obfuscators dO.

Now we prove Theorem 3.

Proof. Let us first give the construction of our ldO.ParaGen (see Algorithm 3)
where FE is a compact functional encryption scheme, SKE is a symmetric key
encryption scheme and PRG is a pseudo random generator.

For each function f
b,Zb

i
i (1 ≤ i ≤ n), it basically computes a partial evaluation

of an input circuit and encrypts it under two different functional encryption
schemes (See Algorithm 5). But instead of doing this, this function also allows
us to cheat and output a result given a secret key.

For each function f b
n+1, it is given a circuit with no input, and simply eval-

uates it (see Algorithm 6).

Decomposable Obfuscation: A Framework for Building Applications 163

Algorithm 3. Locally decomposable obfuscator ldO.ParaGen
1: procedure ldO.ParaGen(1κ, L = {(xi, Cxi)}, �, s)
2: for i = 1, 2, · · · , n, n + 1 do
3: (mpkb

i ,mskb
i) ← FE.Gen(1κ) for b ∈ {0, 1}

4: end for
5: prepare a list of secret keys skb

i,j ← SKE.KeyGen(1κ) for 1 ≤ i ≤ n, 1 ≤ j ≤ �
and b ∈ {0, 1}

6: prepare Zb
i = Zb

i,1, Z
b
i,2, · · · , Zb

i,� for 1 ≤ i ≤ n and b ∈ {0, 1} where Zb
i,j =

SKE.Enc(skb
i,j , 0

t1) and t1 is a length bound specified later;
7: generate c0, c1 by calling a recursive algorithm CGen(ε, L)
8: for i = 1, 2, · · · , n do

9: fskb
i ← FE.KeyGen(mskb

i , f
b,Zb

i
i) for b ∈ {0, 1}

10: end for
11: fskb

n+1 ← FE.KeyGen(mskb
n+1, f

b
n+1) for b ∈ {0, 1}

12: return the parameters {c0, c1, {mpk0i ,mpk1i }n+1
i=1 , {fsk0i , fsk1i }n+1

i=1 }
13: end procedure

Algorithm 4. Generating c0, c1 recursively
1: procedure CGen(x, L)
2: if L only contains one pair, it must be (x, Cx) then
3: Generate Kb ← {0, 1}κ for b ∈ {0, 1}
4: cb ← FE.Enc(mpkb

d, 〈Cx, Kb, 0, 0t2〉) for b ∈ {0, 1}, and d = |x| + 1
5: return c0, c1
6: end if
7: Split L into L0, L1 where L0 contains all the pairs (y, Cy) where y starts with

x||0 and L1 contains all the pairs (y, Cy) where y starts with x||1
8: (c′

0, c
′
1) ← CGen(x||0, L0) and (c′′

0 , c′′
1) ← CGen(x||1, L1)

9: Choose an integer j0 randomly from 1 to � that has not been used yet in Z0
d

and replace Z0
d,j0 with SKE.Enc(sk0d,j0 , 〈c′

0, c
′
1〉)

10: Choose j1 in the same way and replace Z1
d,j1 with SKE.Enc(sk1d,j1 , 〈c′′

0 , c′′
1 〉)

11: return c0, c1 where c0 = FE.Enc(mpk0d, 〈⊥, ⊥, j0, sk
0
d,j0〉) and c1 =

FE.Enc(mpk1d, 〈⊥, ⊥, j1, sk
1
d,j1〉)

12: end procedure

Evaluation and Correctness. Now let us look at how ldO.Eval works. By
fixing the first two ciphers and keys, given a input x ∈ {0, 1}n,

– It begins with c0, c1;
– For i = 1, 2, · · · , n, it picks the function key fskxi

i and cxi
; then does the

update: (c0, c1) ← FE.Dec(fskxi
i , cxi

);
– Finally we can either output FE.Dec(fsk0n+1, c0) or FE.Dec(fsk1n+1, c1);

ldO.Eval(c0, c1, {mpk0i ,mpk1i }n+1
i=1 , {fsk0i , fsk1i }n+1

i=1 , · · ·) actually has the same
functionalities with the circuit assignment L since basically on input x, it finds
a fragment corresponding to a prefix y of x = y||x′ and keeps doing partial
evaluations on each input bit of x′. Since the cardinality is at most �, � different
Zb

i,j in Zb
i are enough for use.

164 Q. Liu and M. Zhandry

Algorithm 5. f
b,Zb

i
i for 1 ≤ i ≤ n

1: procedure f
b,Zb

i
i (C, K, σ, sk)

2: Hardcoded : Zb
i

3: if σ �= 0 then
4: return SKE.Dec(sk, Zb

i,σ)
5: else
6: C′ ← C(b, ·) and pad C′ to have length s
7: return {FE.Enc(mpk0i+1, 〈C′, K0

i+1, 0, 0t2〉; r1),
8: FE.Enc(mpk1i+1〈C′, K1

i+1, 0, 0t2〉; r2)} where
9: K0

i+1 ← r3
10: K1

i+1 ← r4
11: using randomness r1, r2, r3, r4 ← PRG(K)
12: end if
13: end procedure

Algorithm 6. f b
n+1

1: procedure fb
n+1(C, K, σ, sk)

2: return the evaluation of C on an empty input
3: end procedure

Efficiency. Let us look at the parameter size. All the master keys
{mpk0i ,mpk1i }n+1

i=1 are of length poly(κ). t2 is the length of a secret key for
SKE scheme so it is also of poly(κ). And we assume FE is a compact func-
tional encryption scheme which means the size of ciphers c0, c1 is bounded by
O(poly(s, log �, κ)) and also the size of f circuit is bounded by O(poly(s, �, κ))
which implies the size {fskb

i} is bounded by O(poly(s, �, κ)). Finally t1 is bounded
by O(poly(s, log �, κ)).

So ldO.ParaGen and ldO.Eval run in time poly(s, �, n, κ).

Security. Without loss of generality, we have two circuit assignments L0 and
L1 where Decompose(L0, x) = L1. We are going to prove the indistinguishability
when we are given either L0 or L1.

– Hyb 0: Here, an adversary is given an instance ldO.ParaGen(1κ, L0, �, s). In
the process of generating c0, c1, we will get to CGen on x and L′ where L′ is
the current partial circuit assignment. Since L′ only contains (x,Cx), CGen
will return FE.Enc(mpkb

d, 〈Cx,Kb, 0, 0t2〉) for b ∈ {0, 1} and d = |x| + 1; we
denote them as ĉ0, ĉ1.

– Hyb 1: In this hybrid, we change Zb
d. Assume ĉb,0, ĉb,1 = FE.Dec(fskb

d, ĉb). In
ldO.ParaGen, Zb

d are assigned to an array of encryptions of 0t1 before calling
CGen. We instead choose random j0, j1 from the unused indices (not used in
CGen process) and change Z0

d,j0
and Z1

d,j1
to encryptions of 〈ĉb,0, ĉb,1〉. Since

an adversary does not have any secret key skb
i,j , SKE security means Hyb 0

and Hyb 1 are indistinguishable.

Decomposable Obfuscation: A Framework for Building Applications 165

– Hyb 2: In this hybrid, we change the ciphertexts ĉ0, ĉ1 to

ĉb = FE.Enc(mpkb
d, 〈⊥,⊥, jb, sk

b
d,jb

〉)

where ⊥ means filling it with zeroes and jb are the indices chosen in Hyb 1.
Notice that

f
b,Zb

d

d (⊥,⊥, jb, sk
b
d,jb

) = f
b,Zb

d

d (Cx,Kb, 0, 0t2)

Therefore, FE security means Hyb 1 and Hyb 2 are indistinguishable.
– Hyb 3: In this hybrid, we change Z0

d,j0
and Z1

d,j1
. In Hyb 1, ĉb,0, ĉb,1 were

computed using the randomness from a pseudo random generator. In Hyb
2, we removed the seed feed to PRG. Therefore we can replace ĉb,0, ĉb,1 to
be the values computed using uniformly chosen randomness. Indistinguisha-
bility from Hyb 2 easily follows from PRG security. We observe that the
distribution of the instances in Hyb 3 is identical to the distribution of
ldO.ParaGen(1κ, L1, �, s).

This completes our proof for Theorem 3.

5 Discussion

5.1 Deciding Decomposing Equivalence

Definition 13. A tree covering TC is a witness that C0 ≡ C1 if TC satis-
fies DecomposeTo({(ε, C0)},X) = DecomposeTo({(ε, C1)},X). In other words,
decomposing C0 and C1 to TC give the same circuit assignment (as in, the cir-
cuit fragments themselves are identical).

TC is an minimal witness if, for all other TC ′ that are witnesses to C0 ≡ C1,
we have that TC TC ′. In particular, this means that TC is strictly smaller
than all other witnesses.

We define a node x as “good” for C0, C1 if C0(x, ·) = C1(x, ·) as circuits.
Notice that the children of a good node are also good. We say that a good node
x is “minimal” if its parent is not good.

Lemma 7. For any two equivalent circuits C0, C1, there is always exactly one
minimal witness TC∗, and it consists of all of the minimal good nodes for C0, C1.

Proof. Since C0 ≡ C1, all the leaves are good, and at least the set of leaves
form a tree covering that is a witness. Now, for each leaf, consider the path
from the leaf to the root. There will be some node x on the path such that all
nodes in the path before x are not good, but x and all nodes after x are good.
Therefore, that x is an minimal good node. Moreover, no minimal good node
can be a descendant of any other minimal good node (since no minimal good
node can be the descendant of any good node). Therefore, the set of minimal
good nodes form a tree covering.

166 Q. Liu and M. Zhandry

Lemma 8. τ -one shot decomposing equivalence can be decided deterministically
in time τ × poly(n,max{|C0|, |C1|}). Moreover, if C0 ≡ C1, then the optimal
witness TC∗ can also be computed in this time.

Proof. The algorithm is simple: process the nodes in a depth-first manner,
keeping a global list R. When processing a node x, if C0(x, ·) = C1(x, ·) as
circuits, add x to R, and then do not recurse. Otherwise, recurse on the children
as normal. If the list R every grows to exceed τ elements, abort the search and
report non-decomposing equivalence. If the search finishes with |R| ≤ τ , then
report decomposing equivalence and output R.

The total running time is bounded by O(nτ · poly(max{|C0|, |C1|})): at most
nτ nodes are processed (the up to τ nodes in R, plus their ancestors), and
processing each node takes time proportional to the sizes of C0, C1.

5.2 One Shot DE Is Equivalent to Path DE

We have already proved that path DE implies one shot DE. Now let us prove
the converse.

Lemma 9. If two circuits C0, C1 are (�, s, t)-path decomposing equivalent, then
they are (t/2 + 1)-one shot decomposing equivalent

Proof. If C0, C1 are (�, s, t)-path decomposing equivalent, there exists a minimal
tree covering TC∗. We observe that, for each of the ancestors of nodes in TC∗,
there must be a step in the path where that node is decomposed, and there must
also be a step in the path where that node is merged. It is straightforward to
show that the number of ancestors for any tree covering is exactly one less than
the size of the covering. From this, we deduce that |TC∗| ≤ t/2 + 1. Since TC∗

exists and the size is bounded by t/2 + 1, these two circuits are (t/2 + 1)-one
shot decomposing equivalent.

We emphasize that the above lemma and proof were independent of the bounds
� and s. Putting together Lemmas 5 and 9, we find that the path equivalence
definition is independent of the parameters �, s.

We also see that path decomposing equivalence can be computed efficiently,
following Lemmas 5, 8, and 9.

5.3 One Shot DE Is Strictly Stronger Than Functional Equivalence

We then show that path/one-shot decomposing equivalence is a strictly stronger
notion than standard functional equivalence, when a reasonable bound is placed
on the path length/witness size. The rough idea is the use the fact that, say,
polynomial decomposing equivalence can be decided in polynomial time, whereas
in general deciding equivalence is hard.

Lemma 10. For any n, there exist two circuits on n bit inputs C0 ≡ C1 that
are not 2n−1 − 1-one-shot decomposing equivalent.

Decomposable Obfuscation: A Framework for Building Applications 167

Proof. Let D0,D1 be two equivalent but non-identical circuits on 2 input bits
(for example, two different circuits computing the XOR). Let TC∗ be the tree
covering consisting of all 2n−1 nodes in the layer just above the leaves. Let Lb for
b = 0, 1 be the circuit assignment assigning Db to every node in TC∗. Finally,
Let Cb be the result of canonically merging Lb all the way to the root node.

Now, TC∗ is clearly the optimal witness that C0 ≡ C1. Therefore, any witness
must have size at least |TC∗| = 2n−1. Therefore, C0, C1 are not 2n−1−1 one-shot
decomposing equivalent.

Note that the above separation constructed exponentially-large C0, C1. We
can even show a similar separation in the case where C0, C1 have polynomial
size, assuming P �= NP . Indeed, since poly-one shot decomposing equivalence
is decidable in polynomial time, but functional equivalence is not (assuming
P �= NP), there must be circuits pairs that are equivalent but not poly-one shot
decomposing equivalent.

Next, we even demonstrate an explicit ensemble of circuit pairs that are
equivalent but not poly-decomposing equivalent, assuming one-way functions
exist.

Lemma 11. Assuming one-way functions exist, there is an explicit family
of circuit pairs (C0, C1) that are equivalent, but are not poly(n)-decomposing
equivalent for any polynomial poly(n).

Proof. Let PRG be a length-doubling pseudorandom generator (which can be
constructed from any one-way function). Let C0(x) = “return 0” and C1(x) =
‘return 1 if PRG(x) = v; 0 otherwise‘’ where v is uniformly chosen from {0, 1}2κ.
When v is uniformly chosen, except with probability 1

2κ , v has no pre-image
under PRG. Therefore, with probability 1− 1

2κ , C0 and C1 are functionally equiv-
alent.

Next, assume there exists a polynomial τ and a non-negligible probability δ
such that C0 and C1 are τ -decomposing equivalent with probability δ. Now let
us build an adversary B for this length-doubling PRG:

– The adversary B gets u from the challenger;
– B prepares the following two circuits: C0(x) =“return 0” and C1(x) =

“return 1 if PRG(x) = u; 0 otherwise”.
– B runs the algorithm to see if they are τ -decomposing equivalent. If the

algorithm returns true, B guesses u is a truly random string; otherwise it
guesses u is generated by PRG.

When u is generated by PRG, it will always return the correct answer
since C1 does not return 0 at some point but C0 does; when u is truly ran-
dom, the probability that B is correct equal to the probability C0 and C1 are
τ -decomposing equivalent which is a non-negligible δ. So B has non-negligible
advantage δ in breaking PRG.

168 Q. Liu and M. Zhandry

References

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 15

[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46497-7 16

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of
finding a nash equilibrium. In: 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 1480–1498. IEEE (2015)

[BPW16] Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–
502. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 20

[BST14] Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-
way function and a framework for differing-inputs obfuscation. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 102–121.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 6

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: 2015 IEEE 56th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 171–190. IEEE (2015)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidel-
berg (2014). doi:10.1007/978-3-662-44371-2 27

[BZ16] Bun, M., Zhandry, M.: Order-revealing encryption and the hardness
of private learning. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9562, pp. 176–206. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49096-9 8

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7 19

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: Proceedings of the 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, FOCS 2013, Washington, DC, USA,
pp. 40–49. IEEE Computer Society (2013)

[GGHZ16] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption
without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 18

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM (JACM) 33(4), 792–807 (1986)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC 2013, pp. 467–476. ACM, New York
(2013)

http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-46497-7_16
http://dx.doi.org/10.1007/978-3-662-49096-9_20
http://dx.doi.org/10.1007/978-3-662-45608-8_6
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-49096-9_8
http://dx.doi.org/10.1007/978-3-662-49096-9_8
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-49099-0_18
http://dx.doi.org/10.1007/978-3-662-49099-0_18

Decomposable Obfuscation: A Framework for Building Applications 169

[GLSW15] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. In: Proceed-
ings of the 2015 IEEE 56th Annual Symposium on Foundations of Com-
puter Science (FOCS), FOCS 2015, Washington, DC, USA, pp. 151–170.
IEEE Computer Society (2015)

[GPS16] Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness
of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53008-5 20

[GPSZ16] Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-
exponential barrier in obfustopia. Technical report, Cryptology ePrint
Archive, Report 2016/102 (2016). http://eprint.iacr.org/2016/102

[GS16] Garg, S., Srinivasan, A.: Single-key to multi-key functional encryp-
tion with polynomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9986, pp. 419–442. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 16

[GT16] Goldwasser, S., Tauman Kalai, Y.: Cryptographic assumptions: a posi-
tion paper. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 505–522. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49096-9 21

[HJK+16] Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry,
M.: How to generate and use universal samplers. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53890-6 24

[HW15] Hubacek, P., Wichs, D.: On the communication complexity of secure func-
tion evaluation with long output. In: Proceedings of the 2015 Conference
on Innovations in Theoretical Computer Science, ITCS 2015, pp. 163–172.
ACM, New York (2015)

[KMN+14] Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-
way functions and (im)perfect obfuscation. In: 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 374–383,
October 2014

[LZ17] Liu, Q., Zhandry, M.: Exploding obfuscation: a framework for building
applications of obfuscation from polynomial hardness. Cryptology ePrint
Archive, Report 2017/209 (2017). http://eprint.iacr.org/2017/209

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45146-4 6

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Proceedings of the 46th Annual ACM Sympo-
sium on Theory of Computing, pp. 475–484. ACM (2014)

http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://eprint.iacr.org/2016/102
http://dx.doi.org/10.1007/978-3-662-53644-5_16
http://dx.doi.org/10.1007/978-3-662-53644-5_16
http://dx.doi.org/10.1007/978-3-662-49096-9_21
http://dx.doi.org/10.1007/978-3-662-49096-9_21
http://dx.doi.org/10.1007/978-3-662-53890-6_24
http://eprint.iacr.org/2017/209
http://dx.doi.org/10.1007/978-3-540-45146-4_6

Functional Encryption

Functional Encryption for Bounded Collusions,
Revisited

Shweta Agrawal1(B) and Alon Rosen2

1 IIT Madras, Chennai, India
shweta.a@cse.iitm.ac.in

2 Efi Arazi School of Computer Science, IDC Herzliya, Herzliya, Israel
alon.rosen@idc.ac.il

Abstract. We provide a new construction of functional encryption (FE)
for circuits in the bounded collusion model. In this model, security of the
scheme is guaranteed as long as the number of colluding adversaries can
be a-priori bounded by some polynomial Q. Our construction supports
arithmetic circuits in contrast to all prior work which support Boolean
circuits. The ciphertext of our scheme is sublinear in the circuit size for
the circuit class NC1; this implies the first construction of arithmetic
reusable garbled circuits for NC1.

Additionally, our construction achieves several desirable features:
– Our construction for reusable garbled circuits for NC1 achieves the

optimal “full” simulation based security.
– When generalised to handle Q queries for any fixed polynomial Q,

our ciphertext size grows additively with Q2. In contrast, previ-
ous works that achieve full security [5,39] suffered a multiplicative
growth of Q4.

– The ciphertext of our scheme can be divided into a succinct data
dependent component and a non-succinct data independent compo-
nent. This makes it well suited for optimization in an online-offline
model that allows a majority of the computation to be performed in
an offline phase, before the data becomes available.

Security of our reusable garbled circuits construction for NC1 is based on
the Ring Learning With Errors assumption (RLWE), while the bounded
collusion construction (with non-succinct ciphertext) may also be based
on the standard Learning with Errors (LWE) assumption. To achieve our
result, we provide new public key and ciphertext evaluation algorithms.
These algorithms are general, and may find application elsewhere.

1 Introduction

Functional encryption (FE) [52,53] generalizes public key encryption to allow
fine grained access control on encrypted data. In functional encryption, a secret
key SKf corresponds to a function f , and a ciphertext CTx corresponds to some
input x from the domain of f . Given SKf and CTx, functionality posits that the

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 173–205, 2017.
https://doi.org/10.1007/978-3-319-70500-2_7

174 S. Agrawal and A. Rosen

user may run the decryption procedure to learn the value f(x), while security
guarantees that nothing about x beyond f(x) can be learned.

Recent years have witnessed significant progress towards constructing func-
tional encryption for advanced functionalities [3,4,11,13,15,16,21,25,31,32,35,
40–42,45,46,54]. However, for the most general notion of functional encryption –
one that allows the evaluation of arbitrary efficient functions and is secure against
general adversaries, the only known constructions rely on indistinguishability
obfuscation (iO) [31] or on the existence of multilinear maps [33]. For full-fledged
functional encryption, reliance on such strong primitives is not a co-incidence,
since functional encryption has been shown to imply indistinguishability obfus-
cation [7,8,12].

Unfortunately, all known candidate multi-linear map constructions [27,30,34]
as well as some candidates of indistinguishability obfuscation have recently been
broken [22–24,26,43,49]. To support general functionalities and base hardness on
standard assumptions, a prudent approach is to consider principled relaxations of
the security definition, as studied in [37,39,41].

The notion of bounded collusion functional encryption, inspired from the
domain of secure multiparty computation (MPC), was introduced by Gorbunov,
Vaikuntanathan and Wee [39]. This notion assumes that the number of collud-
ing adversaries against a scheme can be upper bounded by some polynomial
Q, which is known at the time of system design. It is important to note that
Q-bounded security does not impose any restriction on the functionality of
FE – in particular, it does not disallow the system from issuing an arbitrary
number of keys. It only posits, à la MPC, that security is guaranteed as long as
any collusion of attackers obtains at most Q keys. Note that multiple indepen-
dent collusions of size at most Q are supported.

The notion of Q-bounded FE is appealing – proving security under the
assumption that not too many parties are dishonest is widely accepted as reason-
able in protocol design. Even in the context of FE, for the special case of Identity
Based Encryption (IBE), bounded collusion security has been considered in a
number of works [28,29,38].

Structure versus Generality. Gorbunov et al. [39] showed that Q-bounded FE
can be constructed generically from any public key encryption (PKE) scheme
by leveraging ideas from multiparty computation. Considering that most con-
structions of FE for general functionalities rely on the existence of sophisticated
objects such as multilinear maps or indistinguishability obfuscation, basing a
meaningful relaxation of FE on an assumption as generic and mild as PKE
is both surprising, and aesthetically appealing. However, this generality comes
at the cost of efficiency and useful structural properties. The ciphertext of the
scheme is large and grows multiplicatively as O(Q4) to support collusions of
size Q. Additionally, the entire ciphertext is data dependent, making the scheme
unsuitable for several natural applications of FE, as discussed below.

Functional Encryption for Bounded Collusions, Revisited 175

1.1 Our Results

In this work, we provide a new construction of bounded key functional encryp-
tion. Our construction makes use of the recently developed Functional Encryp-
tion for Linear Functions [1,5], denoted by LinFE, and combines this with
techniques developed in the context of Fully Homomorphic Encryption (FHE)1

[18,19]. Since LinFE and FHE can be based on LWE/Ring LWE, our construction
inherits the same hardness assumption. Our construction offers several advan-
tages:

1. Our construction supports arithmetic circuits as against Boolean circuits.
2. The ciphertext of our scheme is succinct for circuits in NC1 under Ring LWE

and any constant depth under standard LWE. This gives the first construction
of arithmetic reusable garbled circuits. We note that even single use arithmetic
garbled circuits have only been constructed recently [10].

3. Our construction achieves the optimal “full” simulation based security.
4. When generalised to handle Q queries for any fixed polynomial Q, our cipher-

text size grows additively with Q2. In contrast, previous works that achieve
full security [5,39] suffered a multiplicative growth of Q4.

5. The ciphertext of our scheme can be divided into a succinct data dependent
component and a non-succinct data independent component. This makes it
well suited for optimization in an online-offline model that allows a majority of
the computation to be performed in an offline phase, before the data becomes
available. This is followed by an efficient online phase which is performed after
the data is available.

1.2 Related Work

The first functional encryption scheme for circuits was provided by Gorbunov,
Vaikuntanathan and Wee [39]. Surprisingly, the security of this construction may
be based only on the existence of public key encryption. However, the ciphertext
size of this construction is large and does not enjoy the online-offline property
described above. The online component of [39] depends on the circuit size and the
number of queries in addition to the message size, whereas that of our scheme
depends only on the message size. Additionally, the overall ciphertext size of
[39] grows multiplicatively with Q4, whereas that in our scheme grows additively
with Q2. More recently, Agrawal et al. [5] provided a construction for bounded
collusion FE. However, their ciphertext size grows as O(Q6) and does not support
online-offline computation.

Concurrent and Subsequent Work. Subsequent to our work, Agrawal [2] also con-
structed Q collusion Functional Encryption where the ciphertext size grows addi-
tively with O(Q2). However, this construction only achieves semi-adaptive rather
than full security in a weak security game where the attacker must announce all
1 We emphasise that we do not rely on FHE in a black box way, but rather adapt

techniques developed in this domain to our setting.

176 S. Agrawal and A. Rosen

Q queries “in one shot”. Additionally, it supports Boolean rather than arithmetic
circuits and makes black box use of “heavy machinery” such fully homomorphic
encryption and attribute based encryption.

In another recent work, Canetti and Chen [20] provide a new construction
for single key FE for NC1 achieving full security. However, their construction
supports Boolean rather than arithmetic circuits, which is the main focus of this
work. Moreover, to generalise this construction to support Q queries, one must
rely on the [39] compiler, which incurs a multiplicative blowup of O(Q4) in the
ciphertext size. For more details about related work, please see Appendix A.

1.3 Techniques

In this section, we describe our techniques. We begin by outlining the approach
taken by previous work. [39] begin with a single key FE scheme for circuits
[51] and generalize this to a Q query scheme for NC1 circuits. This is the most
sophisticated part of the construction, and leverages techniques from multiparty
computation. Then, the Q query FE for NC1 is bootstrapped to Q query FE for
all circuits by replacing the circuit in the key by a tuple of low degree polynomials
admitted by computational randomized encodings [9].

Recently, Agrawal et al. [5] observe that a different construction for bounded
collusion FE can be obtained by replacing the single key FE [51] and its generali-
sation to Q query FE for NC1, with an FE that computes inner products modulo
some prime p. Such a scheme, which we denote by LinFE, was constructed by
[1,5] and computes the following functionality: the encryptor provides a cipher-
text CTx for some vector x ∈ F �

p , the key generator provides a key SKv for
some vector v ∈ F �

p , and the decryptor, given CTx and SKv can compute 〈x,v〉
mod p2. Since the bootstrapping theorem in [39] only requires FE for degree
3 polynomials, and FE for linear functions trivially implies FE for bounded
degree polynomials simply by linearizing the message terms x and encrypting
each monomial xixjxk separately, LinFE may be used to compute degree 3 poly-
nomials.

Thus, in [5], the challenge of supporting multiplication is “brute-forced” by
merely having the encryptor encrypt each monomial separately so that the FE
must only support linear functions in order to achieve bounded degree polyno-
mials. This brute force approach has several disadvantages: the ciphertext is not
online-offline and its size grows as O(Q6). See Appendix A for more details.

Our Approach. In this work, we observe that viewing functional encryption
through the lens of fully homomorphic encryption (FHE) enables a more sophis-
ticated application of the Linear FE scheme LinFE, resulting in a bounded col-
lusion FE scheme for circuits that is decomposable, online-succinct as well as
achieves ciphertext dependence of O(Q2) additively on Q.
2 We note that the FE scheme by Abdalla et al. [1] also supports linear functions but

only over Z, while the bounded collusion FE of [5] requires an FE scheme that sup-
ports Zp. Also note the difference from Inner Product orthogonality testing schemes
[4,45] which test whether 〈x,v〉 = 0 mod p or not.

Functional Encryption for Bounded Collusions, Revisited 177

We begin on FE for quadratic polynomials for ease of exposition. Addition-
ally, here and in the rest of the paper, we present our construction from Ring-
LWE rather than standard LWE, for notational convenience and clarity. Our
construction can be ported to the standard LWE setting, by performing stan-
dard transformations such as replacing ring products by vector tensor products.
Details are provided in the full version [6].

Consider the ring LWE based symmetric key FHE scheme by Brakerski and
Vaikuntanathan [19]. Recall that the ciphertext of this scheme, as in [50], is
structured as (u, c) where c = u · s + 2 · μ + x. Here, s is the symmetric key
chosen randomly over an appropriate ring R, u is an element chosen by the
encryptor randomly over R, x is a message bit and μ is an error term chosen by
the encryptor from an appropriate distribution over R. Given secret key s, the
decryptor may compute c − u · s mod 2 to recover the bit x.

The main observation in [19] was that if:

ci = ui · s + 2 · μi + xi

cj = uj · s + 2 · μj + xj

then the decryption equation can be written as

xixj ≈ cicj + (uiuj)s2 − (ujci)s − (uicj)s

Thus, the 3 tuple (cicj , uicj +ujci, uiuj) is a legitimate level 2 FHE cipher-
text, decryptable by the secret key s. [19] observed that it is sufficient to add
one ciphertext element per level of the circuit to propagate the computation.

In the context of FE, things are significantly more complex even for quadratic
polynomials, since we must return a key that allows the decryptor to learn
xixj and nothing else. Hence, providing s to the decryptor is disastrous for FE
security. Here we use our first trick: observe that in the above equation, the
parenthesis can be shifted so that:

xixj ≈ cicj + uiuj(s2) − uj(cis) − ui(cjs)

Now, if we use the Linear FE scheme to encrypt the terms in parenthesis,
then we can have the decryptor recover the term uiuj(s2) − uj(cis) − ui(cjs).
More formally, let |x| = w. Now if,

CT = LinFE.Enc(s2, c1s, . . . , cws)
SKij = LinFE.KeyGen(uiuj ,−0−, ui,−0−, uj ,−0−)

then, LinFE.Dec(SKij ,CT) should yield the above term by correctness. Since
c1, . . . , cw may be provided directly in the ciphertext, the decryptor may itself
compute the term cicj . Now, LinFE decryption yields uiuj(s2)−uj(cis)−ui(cjs),
so the decryptor may recover (approximately) xixj as desired3.

A bit more abstractly, we observe that a quadratic plaintext xixj can be
represented as a quadratic polynomial which is quadratic in public terms ci, cj ,

3 As in FHE, approximate recovery is enough since the noise can be modded out.

178 S. Agrawal and A. Rosen

and only linear in secret terms cis. In particular, since the number of secret
terms cis which must be encrypted is only linear in |x|, we appear to avoid the
quadratic blowup caused by linearization.

This intuition, while appealing, is very misleading. To begin, note that if we
permit the decryptor to learn the term uiujs

2 − ujcis − uicjs exactly, then he
can recover exact quadratic equations in the secret s, completely breaking the
security of the scheme. To handle this, we resort to our second trick: add noise
artificially to the decryption equation. This takes care of the above attack, but to
handle Q queries, we need Q fresh noise terms to be encrypted in the ciphertext.
This step introduces the dependence of the ciphertext size on Q. Providing a
proof of security requires crossing several additional hurdles. The details of the
proof are provided in Sect. 3.

New Public Key and Ciphertext Evaluation Algorithms. To generalize our con-
struction to NC1, we develop new algorithms to compute on the public key
and ciphertext. Designing these algorithms is the most challenging part of our
work. Intuitively, the ciphertext evaluation algorithm enables the decryptor to
compute a “functional” ciphertext CTf(x) encoding f(x) on the fly, using the
function description f , and encodings of x provided by the encryptor obliviously
of f . The public key evaluation algorithm enables the key generator to compute
the “functional” public key PKf given the public key PK and the function f ,
obliviously of x so that the functional public key PKf matches the functional
ciphertext CTf(x) enabling the key generator to provide a functional secret key
which allows decryption of CTf(x).

We note that a previous work by Boneh et al. [14] also provided a ciphertext
evaluation algorithm which enables computing CTf(x) given CTx and f , but this
algorithm crucially requires the evaluator to have some knowledge of x in order
to support multiplications. In more detail, the evaluator must know at least one
of encoded values x1, x2 in the clear in order to compute an encoding of x1 ·x2. In
contrast, our ciphertext evaluation algorithm is completely oblivious of x even
for multiplication gates.

We give a brief description of our approach below. Recall that the “level 1”
encodings c of message x along with “level 2” encodings of message c · s in the
LinFE ciphertext were sufficient to compute encodings of degree two polynomials
in x. Generalizing, we get that at any level k in the circuit, given an encoding
ck−1 of message fk−1(x) where fk−1 is the output of the circuit at level k − 1,
as well as encodings of ck−1 · s, we would be in a position to compute encod-
ings ck of level k output of the circuit using the method to evaluate quadratic
polynomials described above.

This intuition is complicated by the fact that the encryptor may not pro-
vide ck−1 directly as this depends on f which it does not know. Thus, the
encryptor must provide advice which enables the decryptor to compute ck−1 on
the fly. Moreover, this advice must be sublinear in the size of the circuit. We
design advice encodings that enable a decryptor to compute functional cipher-
texts dynamically via nested FHE decryptions. Please see Sect. 4 for more details.

Functional Encryption for Bounded Collusions, Revisited 179

Organization of the paper. We provide preliminaries in Sect. 2. Our bounded
collusion functional encryption scheme for quadratic polynomials is described in
Sect. 3. To generalize our method beyond quadratic polynomials, we describe our
public key and ciphertext evaluation procedures in Sect. 4. The succinct single
key FE using these procedures is constructed in Sect. 5. The bounded collusion
scheme is provided in Sect. 6, and parameters in Appendix B.

2 Preliminaries

In this section, we define the preliminaries we require for our constructions.

2.1 Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ

is a finite set. Let C =
{Cλ

}
λ∈N

denote an ensemble where each Cλ is a finite
collection of circuits, and each circuit C ∈ Cλ takes as input a string x ∈ Xλ and
outputs C(x) ∈ Yλ.

A functional encryption scheme F for C consists of four algorithms F =
(FE.Setup,FE.Keygen, FE.Encrypt,FE.Decrypt) defined as follows.

– FE.Setup(1λ) is a p.p.t. algorithm takes as input the unary representation
of the security parameter and outputs the master public and secret keys
(PK,MSK).

– FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as input the master secret
key MSK and a circuit C ∈ Cλ and outputs a corresponding secret key SKC .

– FE.Encrypt(PK,x) is a p.p.t. algorithm that takes as input the master public
key PK and an input message x ∈ Xλ and outputs a ciphertext CTx.

– FE.Decrypt(SKC ,CTx) is a deterministic algorithm that takes as input the
secret key SKC and a ciphertext CTx and outputs C(x).

Definition 2.1 (Correctness). A functional encryption scheme F is correct
if for all C ∈ Cλ and all x ∈ Xλ,

Pr
[(PK,MSK) ← FE.Setup(1λ);
FE.Decrypt

(
FE.Keygen(MSK, C),FE.Encrypt(PK,x)

)
�= C(x)

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and
FE.Encrypt.

2.2 Simulation Based Security for Single Key FE

In this section, we define simulation based security for single key FE, as in [37,
Definition 4.1].

Definition 2.2 (FULL-SIM Security). Let F be a functional encryption
scheme for a circuit family C. For every stateful p.p.t. adversary Adv and a
stateful p.p.t. simulator Sim, consider the following two experiments:

180 S. Agrawal and A. Rosen

ExprealF,Adv(1
λ): ExpidealF,Sim(1λ):

1: (PK,MSK) ← FE.Setup(1λ)

2: C ← Adv(1λ,PK)
3: SKC ← FE.Keygen(MSK, C)
4: x ← Adv(SKC)
5: CTx ← FE.Encrypt(PK,x)

6: α ←Adv(CTx)

7: Output (x, α)

1: (PK,MSK) ← FE.Setup(1λ)

2: C ← Adv(1λ,PK)
3: SKC ← FE.Keygen(MSK, C)
4: x ← Adv(SKC)
5: CTx ← Sim(1λ, 1|x|,PK, C, SKC , C(x))

6: α ←Adv(CTx)

7: Output (x, α)

The functional encryption scheme F is then said to be FULL-SIM-secure if
there is an admissible stateful p.p.t. simulator Sim such that for every stateful
p.p.t. adversary Adv, the following two distributions are computationally indis-
tinguishable. {

ExprealF,Adv(1
λ)

}

λ∈N

c≈
{
ExpidealF,Sim(1λ)

}

λ∈N

In the bounded collusion variant of the above definition, the adversary is
permitted an a-priori fixed Q queries in Step 2, and Q is input to the FE.Setup
algorithm.

2.3 Lattice Preliminaries

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ
is a linearly independent set of vectors whose span is Λ.

Gaussian distributions. Let L be a discrete subset of Z
n. For any vector

c ∈ R
n and any positive parameter σ ∈ R>0, let ρσ,c(x) := Exp

(−π‖x − c‖2/σ2
)

be the Gaussian function on R
n with center c and parameter σ. Let ρσ,c(L) :=∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c over L, and let DL,σ,c be the discrete
Gaussian distribution over L with center c and parameter σ. Specifically, for all
y ∈ L, we have DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0

are abbreviated as ρσ and DL,σ, respectively.
The following lemma gives a bound on the length of vectors sampled from a

discrete Gaussian.

Lemma 2.3 ([48, Lemma 4.4]). Let Λ be an n-dimensional lattice, let T be
a basis for Λ, and suppose σ ≥ ‖T‖GS · ω(

√
log n). Then for any c ∈ R

n we have

Pr
[‖x − c‖ > σ

√
n : x R← DΛ,σ,c

] ≤ negl(n)

Lemma 2.4 (Flooding Lemma). [36] Let n ∈ N. For any real σ = ω(
√

log n),
and any c ∈ Z

n,
SD(DZn,σ, DZn,σ,c) ≤ ‖c‖/σ

2.4 Hardness Assumptions

Our main construction of arithmetic reusable garbled circuits for NC1 is based on
the hardness of Ring Learning with Errors, defined below. Our bounded collusion
construction for circuits may also be based on the standard Learning with Errors
problem, but we defer this discussion to the full version [6].

Functional Encryption for Bounded Collusions, Revisited 181

Ring Learning with Errors. Let R = Z[x]/(φ) where φ = xn +1 and n is a power
of 2. Let Rq � R/qR where q is a large prime satisfying q = 1 mod 2n. Let
χ be a probability distribution on Rq. For s ∈ Rq, let As,χ be the probability
distribution on Rq × Rq obtained by choosing an element a ∈ Rq uniformly at
random, choosing e ← χ and outputting (a, a · s + e).

Definition 2.5 (Ring Learning With Errors- RLWEφ,q,χ). [47,50] The decision
R-LWEφ,q,χ problem is: for s ← Rq, given a poly(n) number of samples that are
either (all) from As,χ or (all) uniformly random in Rq × Rq, output 0 if the
former holds and 1 if the latter holds.

The hardness of the ring LWE problem was studied in [47] and is summarised
in the following theorem.

Theorem 2.6 ([47]). Let r ≥ ω(
√

log n) be a real number and let R, q be as
above. Then, there is a randomized reduction from 2ω(log n) · (q/r) approximate
RSVP to RLWEφ,q,χ where χ is the discrete Gaussian distribution with parameter
r. The reduction runs in time poly(n, q).

3 Warm-Up: Bounded Query Functional Encryption
for Quadratic Polynomials

As a warm-up, we present our bounded key FE for the special case of quadratic
functions, which we denote by QuadFE. Our construction will make use of the
linear functional encryption scheme, denoted by LinFE, constructed by [1,5].

Our construction makes use of two prime moduli p0 < p1 where p0 serves as
the message space for QuadFE, and p1 serves as the message space for LinFE. Let
L = |1 ≤ j ≤ i ≤ w|. Below, let distributions D0,D1 be discrete Gaussians with
width σ0, σ1 respectively. Please see Appendix B for parameters.

For ease of exposition, our key generation algorithm receives the index of the
requested key as input. This restriction can be removed using standard tricks,
see the full version [6] for details. Additionally, we present our construction using
Ring-LWE. This is both for efficiency and ease of exposition. The transformation
to standard LWE follows standard machinery, please see the full version [6] for
details.

FE.Setup(1λ, 1w, 1Q): On input a security parameter λ, a parameter w denoting
the length of message vectors and a parameter Q denoting the number of keys
supported, do:

1. Invoke LinFE.Setup(1λ, 1w+1+Q) to obtain LinFE.PK and LinFE.MSK.
2. Sample u ← Rw

p1
.

3. Output PK = (LinFE.PK,u), MSK = (LinFE.MSK).

FE.Enc(PK,x): On input public parameters PK, and message vector x ∈ Rw
p0

do:
1. Sample s1 ← Rp1 and μ ← Dw

0 , and compute an encoding of the message
as:

c = u · s1 + p0 · μ + x ∈ Rw
p1

.

182 S. Agrawal and A. Rosen

2. For i ∈ [Q], sample ηi ← D1 and let η = (η1, . . . , ηQ).
3. Let b = LinFE.Enc (s21, c1s1, . . . , cws1, p0 · η).
4. Output CT = (c,b).

FE.KeyGen(PK,MSK, k,g): On input the public parameters PK, the master secret
key MSK, a counter k ∈ [Q] denoting the index of the requested function
key and a function g =

∑

1≤j≤i≤w

gijxixj , represented as a coefficient vector

(gij) ∈ Z
L
p0

do:
1. Let ek denote the binary unit vector with a 1 in the kth position and 0

elsewhere. Compute

ug =
(∑

1≤j≤i≤w

gij (uiuj , 0....0,−ui, 0...0,−uj , 0...0)
)

∈ Rw+1
p1

.

2. Compute SKg = LinFE.KeyGen
(
LinFE.PK, LinFE.MSK, (ug‖ek)

)
and out-

put it.
FE.Dec(PK,SKg,CTx): On input the public parameters PK, a secret key SKg for

polynomial
∑

1≤j≤i≤w

gijxixj , and a ciphertext CTx = (c,b), compute

∑

1≤j≤i≤w

gijcicj + LinFE.Dec(b,SKg) mod p1 mod p0

and output it.

3.1 Correctness

We establish correctness of the above scheme. Let 1 ≤ j ≤ i ≤ w. Let us assume
g is the kth key constructed by KeyGen, where k ∈ [Q]. By definition

xi + p0 · μi = ci − uis1 mod p1, xj + p0 · μj = cj − ujs1 mod p1

Letting μij = xiμj + xjμi + p0μiμj , we have

xixj + p0 · μij = cicj − ciujs1 − cjuis1 + uiujs
2
1 mod p1 (3.1)

By correctness of the linear scheme LinFE, we have that

LinFE.Dec(b,SKg) =
∑

1≤j≤i≤w

gij

(− ciujs1 − cjuis1 + uiujs
2
1

)
+ p0 · ηk

Therefore we have,
∑

1≤j≤i≤w

gijcicj + LinFE.Dec(b,SKg)

=
∑

1≤j≤i≤w

gij

(
cicj − ciujs1 − cjuis1 + uiujs

2
1

)
+ p0 · ηk

=
∑

1≤j≤i≤w

gij

(
xixj + p0 · μij

)
+ p0 · ηk

=
∑

1≤j≤i≤w

gij xixj mod p1 mod p0 as desired. (3.2)

Functional Encryption for Bounded Collusions, Revisited 183

3.2 Security

Theorem 3.7. The construction in Sect. 3 achieves full simulation based secu-
rity as per Definition 2.2.

Proof. We describe our simulator.

Simulator Sim
(

1λ, 1|x|,PK, {gk,SKgk
,gk(x)}k∈[Q]

)
. The simulator given input

the security parameter, length of message x, the functions g1, . . . ,gQ, the secret
keys SKg1 , . . . ,SKgQ

and the values g1(x), . . . ,gQ(x) does the following:

1. It picks the ciphertext c ← Rw
p1

randomly.
2. It parses gk =

∑

1≤j≤i≤w

gk,ij xixj for some gk,ij ∈ Rp0 . For k ∈ [Q], it samples

ηk ← D1 and computes dk =
∑

1≤j≤i≤w

gk,ij

(
xixj − cicj) + p0 · ηk.

3. It invokes the Q key LinFE simulator with input d = (d1, . . . , dQ). It sets as
b the output received by the LinFE simulator.

4. It outputs CTx = (c,b).

We will prove that the output of the simulator is indistinguishable from the
real world via a sequence of hybrids.

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world.

Hybrid 1. In this hybrid, the only thing that is different is that b is computed
using the LinFE simulator as b = LinFE.Sim

(
1λ, 1w+1+Q, {gk,SKgk

, dk}k∈[Q]

)

where

dk =
∑

1≤j≤i≤w

gk,ij

(
xixj − cicj) + p0 · (

∑

1≤j≤i≤w

gk,ijμij + ηk) ∀ k ∈ [Q]

Above, μij is as defined in Eq. 3.1.

Hybrid 2. In this hybrid, let dk =
∑

1≤j≤i≤w

gk,ij

(
xixj − cicj) + p0 · ηk for k ∈ [Q].

Hybrid 3. In this hybrid, sample c at random. This is the simulated world.

Indistinguishability of Hybrids. Below we establish that consecutive hybrids are
indistinguishable.

Claim. Hybrid 0 is indistinguishable from Hybrid 1 assuming that LinFE is
secure.

184 S. Agrawal and A. Rosen

Proof. Recall that for j ≤ i ≤ w, we have:

xixj + p0 · μij = cicj − ciujs1 − cjuis1 + uiujs
2
1

∴
∑

j≤i≤w

gk,ij

(
xixj + p0 · μij

)
=

∑

j≤i≤w

gk,ij

(
cicj + uiujs

2
1 − ujcis1 − uicjs1

)

This implies,
∑

j≤i≤w

gk,ij

(
xixj − cicj) + p0 · (∑

j≤i≤w

gk,ijμij + ηk

)

=
∑

j≤i≤w

gk,ij

(
uiujs

2
1 − ujcis1 − uicjs1

)
+ p0 · ηk

In Hybrid 0, we have by Eq. 3.2 that the output of LinFE decryption is:
∑

1≤j≤i≤w

gij

(− ciujs1 − cjuis1 + uiujs
2
1

)
+ p0 · ηk

=
∑

j≤i≤w

gk,ij

(
xixj − cicj

)
+ p0 · (∑

j≤i≤w

gk,ijμij + ηk

)

In Hybrid 1, the LinFE simulator is invoked with the above value, hence by
security of LinFE, Hybrids 0 and 1 are indistinguishable.

Claim. Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Proof. This follows by our choice of parameters since for k ∈ [Q], we have

SD
(∑

1≤j≤i≤w

gk,ijμij + ηk, ηk

)
= negl(λ)

Hybrid 2 and Hybrid 3 are indistinguishable assuming the hardness of ring LWE.
In more detail, we show:

Claim. Assume Regev public key encryption is semantically secure. Then,
Hybrid 2 is indistinguishable from Hybrid 3.

Proof. Recall that by semantic security of Regev’s (dual) public key encryption,
we have that the ciphertext c = u · s1 + p0 · μ + x is indistinguishable from
random, where u is part of the public key and μ ← D0 is suitably chosen noise.
We refer the reader to [35] for more details.

Given an adversary B who distinguishes between Hybrid 2 and Hybrid 3,
we build an adversary A who breaks the semantic security of Regev public key
encryption. The adversary A receives PK = u and does the following:

– Run LinFE.Setup to obtain LinFE.PK and LinFE.MSK. Return PK =
(LinFE.PK,u) to B.

– When B requests a key gk for k ∈ [Q], construct it honestly as in Hybrid 0.
– When B outputs challenge x, A outputs the same.

Functional Encryption for Bounded Collusions, Revisited 185

– A receives c where c = u · s1 + p0 · μ + x or random.
– A samples η1, . . . , ηQ as in Hybrid 2 and computes dk =

∑

1≤j≤i≤w

gk,ij

(
xixj −

cicj) + p0 · ηk. It invokes LinFE.Sim
(
1λ, 1w+1+Q, {gk,SKgk

, dk}k∈[Q]

)
and

receives LinFE ciphertext b. It returns (c,b) to B.
– B may request more keys (bounded above by Q) which are handled as before.

Finally, when B outputs a guess bit b, A outputs the same.

Clearly, if b = 0, then B sees the distribution of Hybrid 2, whereas if b = 1, it
sees the distribution of Hybrid 3. Hence the claim follows.

4 Public Key and Ciphertext Evaluation Algorithms

In this section, we provide the tools to extend our construction for quadratic
polynomials to circuits in NC1. Throughout this section, we assume circular
security of LWE. This is for ease of exposition as well as efficiency. This assump-
tion can be removed by choosing new randomness si for each level i as in levelled
fully homomorphic encryption. Since the intuition was discussed in Sect. 1, we
proceed with the technical overview and construction.

Notation. To begin, it will be helpful to set up some notation. We will consider
circuits of depth d, consisting of alternate addition and multiplication layers.
Each layer of the circuit is associated with a modulus pk for level k. For an
addition layer at level k, the modulus pk will be the same as the previous modulus
pk−1; for a multiplication layer at level k, we require pk > pk−1. This results in
a tower of moduli p0 < p1 = p2 < p3 = . . . < pd. The smallest modulus p0 is
associated with the message space of the scheme.

We define encoding functions Ek for k ∈ [d] such that Ek : Rpk−1 → Rpk
. At

level k, the encryptor will provide Lk encodings Ck for some Lk = O(2k). For
i ∈ [Lk] we define

Ek(yi) = uk
i · s + pk−1 · ηk

i + yi mod pk

Here uk
i ∈ Rpk

, ηk
i ← χk and yi ∈ Rpk−1 . The RLWE secret s is reused across

all levels as discussed above, hence is chosen at the first level, i.e. s ← Rp1 . We
will refer to Ek(yi) as the Regev encoding of yi. At level k, the decryptor will be
able to compute a Regev encoding of fk(x) where fk is the circuit f restricted
to level k.

It will be convenient for us to denote encodings of functional values at every
level, i.e. fk(x) by ck, i.e. ck = Ek

(
fk(x)

)
. Here, ck are encodings computed

on the fly by the decryptor whereas Ck (described above) are a set of level k
encodings provided by the encryptor to enable the decryptor to compute ck. We
will denote the public key or label of an encoding Ek(·) (resp. ck) by PK(Ek(·))
(resp. PK(ck)).

In our construction, we will compose encodings, so that encodings at a given
level are messages to encodings at the next level. We refer to such encodings as

186 S. Agrawal and A. Rosen

nested encodings. In nested encodings at level k + 1, messages may be level k
encodings or level k encodings times the RLWE secret s. We define the notions
of nesting level and nested message degree as follows.

Definition 4.1 (Nesting level and Nested Message Degree). Given
a composition of successive encodings, i.e. a nested encoding of the form
Ek

(Ek−1
(
. . . (E�+1(E�(y) · s) · s) . . . · s

) · s
)
, we will denote as nesting level the

value k − �, the nested message of the encoding as y, and the nested message
degree of the encoding as the degree of the innermost polynomial y.

Note that in the above definition of nested message, we consider the message in
the innermost encoding and ignore the multiplications by s between the layers.

We prove the following theorem.

Theorem 4.2. There exists a set of encodings Ci for i ∈ [d], such that:

1. Encodings have size sublinear in circuit. ∀i ∈ [d] |Ci| = O(2i).
2. Efficient public key and ciphertext evaluation algorithms. There exist

efficient algorithms EvalPK and EvalCT so that for any circuit f of depth d,
if PKf = EvalPK(PK, f) and CT(f(x)) = EvalCT(∪

i∈[d]
Ci, f), then CT(f(x)) is a

“Regev encoding” of f(x) under public key PKf . Specifically, for some LWE
secret s, we have:

CT(f(x)) = PKf · s + pd−1 · ηd−1
f + μf(x) + f(x) (4.1)

where pd−1 ·ηd−1
f is RLWE noise and μf(x) +f(x) is the desired message f(x)

plus some noise μf(x)
4. Here, μf(x) = pd−2 · ηd−2

f + . . . p0 · η0
f for some noise

terms ηd−2
f , . . . , η0

f .
3. Ciphertext and public key structure. The structure of the functional

ciphertext is as:

CTf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 (4.2)

where Polyf (C1, . . . , Cd−1) ∈ Rpd−1 is a high degree polynomial value obtained
by computing a public f-dependent function on level k ≤ d − 1 encodings
{Ck}k∈[d−1] and Linf ∈ RLd

pd
is an f-dependent linear function. We also have

f(x) + μf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 (4.3)

where Md are the messages encoded in Cd and μf(x) is functional noise. The
public key for the functional ciphertext is structured as:

PK
(
CTf(x)

)
=

〈
Linf ,

(
PK(Cd

1), . . . ,PK(Cd
Ld

)
)〉

(4.4)

4 Here μf(x) is clubbed with the message f(x) rather than the RLWE noise pd−1 ·ηd−1
f

since μf(x) + f(x) is what will be recovered after decryption of CTf(x), whereas
pd−1 · ηd−1

f will be removed by the decryption procedure. This is merely a matter of
notation.

Functional Encryption for Bounded Collusions, Revisited 187

The Encodings. We define Ck recursively as follows:

1. C1 � {E1(xi), E1(s)}
2. If k is a multiplication layer, Ck = {Ek(Ck−1), Ek(Ck−1 · s), Ek(s2)}. If k is an

addition layer, let Ck = Ck−1.

We prove that:

Lemma 4.3. Assume that k is a multiplication layer. Given Ck for any 2 <
k < d,

1. Level k encodings Ek(ck−1 · s) and Ek(ck−1) may be expressed as quadratic
polynomials in level k − 1 encodings and level k advice encodings Ck. In par-
ticular, the polynomials are linear in terms Ck and quadratic in level k − 1
encodings Ek−1(yi)Ek−1(yj). The messages yi, yj of the form ck−3

� or ck−3
� · s

for some level k − 3 ciphertext ck−3
� .

Since the exact value of the coefficients is not important, we express this as:

Ek(ck−1 · s), Ek(ck−1) = LinComb
(Ck, Ek−1(yi)Ek−1(yj)

) ∀ i, j (4.5)

2. We can compute ck and ck+1 as a linear combination of quadratic terms in
level k − 1 encodings and linear in level k encodings Ck. In particular,

ck = CT(fk(x) + μk
f(x)) = 〈Linfk , Ck〉 + LinComb

(
Quad(Ek−1(yi) Ek−1(yj))

)

= 〈Linfk , Ck〉 + Polyfk

(C1, . . . , Ck−1
)

Proof by induction.

Base Case. While the quadratic scheme described in Sect. 3 suffices as a base case,
we work out an extended base case for level 4 circuits, since this captures the more
general case. Moreover polynomials of degree 4 suffice for computing randomized
encodings of circuits in P [44], which we use in our general construction.

We claim that C4 defined according to the above rules, permits the evaluator
to compute :

1. E4(c3 · s) and E4(c3) by taking linear combinations of elements in C4 and
adding to this a quadratic term of the form E3(yi)E3(yj) where E3(yi)E3(yj) ∈
C3 = C2. We note that since k − 1 is an addition layer, C3 = C2.

2. Encodings of level 4 functions of x, namely c4.

Note that our level 2 ciphertext may be written as:

c2i,j = E2(xixj + p0 · μij) = E2
(
c1i c

1
j + u1

i u
1
j (s

2) − u1
j (c

1
i s) − u1

i (c
1
js)

)

= E2(xixj + p0 · μij) = c1i c
1
j + E2

(
u1

i u
1
j (s

2) − u1
j (c

1
i s) − u1

i (c
1
js)

)

= c1i c
1
j + u1

i u
1
j E2(s2) − u1

j E2(c1i s) − u1
i E2(c1js) ∈ Rp2 (4.6)

In the above, the first equality follows by additive malleability of RLWE: here,
c1i c

1
j ∈ Rp1 is a message added to the encoding E2(u1

i u
1
j (s

2) − u1
j (c

1
i s) − u1

i (c
1
js)) .

188 S. Agrawal and A. Rosen

The second equality follows by additive homomorphism of the encodings.
Additionally, the public key and the noise of the resultant encoding may be
computed as:

u2
� � PK

(E2(xixj + p0 · μij)
)
= u1

i u1
j PK

(E2(s2)
)− u1

j PK
(E2(c1i s)

)− u1
i PK

(E2(c1js)
)

Nse2� � Nse
(E2(xixj + p0 · μij)

)
= u1

i u1
j Nse

(E2(s2)
)− u1

j Nse
(E2(c1i s)

)− u1
i Nse

(E2(c1js)
)

Above, Nse(E2(·)) refers to the noise level in the relevant encoding. Note that
even though u1

i are chosen uniformly in Rp1 , they do not blow up the noise in the
above equation since the above noise is relative to the larger ring Rp2 . This noise
growth can be controlled further by using the bit decomposition trick [17,18] –
we do not do this here for ease of exposition.

The Quadratic Method. Thus, we may compute a level 2 encoding as:

E2(xixj+p0 ·μij) = E1(xi)E1(xj) + u1
i u1

j E2(s2) − u1
j E2(E1(xi)·s) − u1

i E2(E1(xj)·s) (4.7)

Note that the above equation allows us to express the encoding of the desired
product at level 2, namely (a noisy version of) xixj , as a quadratic polynomial
of the following form: level 1 encodings are in the quadratic terms and level 2
encodings are in the linear terms. This equation will be used recursively in our
algorithms below, and will be referred to as the “quadratic method”.

The key point is that our level 2 ciphertext has the exact same structure as a
level 1 encoding, namely it is a Regev encoding using some secret s, some label
and noise as computed in Eq. 4.7. Thus, letting y� = xixj , we may write

E2(y�) = u2
� · s + Nse2� + y� ∈ Rp2 (4.8)

Addition (Level 3). To add two encoded messages y� = xixj + p0 · μij and
y�′ = xi′xj′ + p0 · μi′j′ , it is easy to see that adding their encodings suffices. The
resultant public key and noise is just the summation of the individual public
keys and noise terms. Thus, if the �th wire is the sum of the ith and jth wires,
we have:

c3� = c2i + c2j (4.9)

and
PK(c3�) = PK(c2i) + PK(c2j) (4.10)

Multiplication (Level 4). The nontrivial case is that of multiplication. We
next compute an encoding for the product of y� = xixj + xmxt + p0 · μ4

� and
y�′ = xi′xj′ + xm′xt′ + p0 · μ4

�′ where μ4
� , μ

4
�′ are level 4 noise terms computed as

μ4
� = μij + μmt (analogously for μ4

�′). Let c3� and c3�′ denote the encodings of y�

and y�′ computed using the first three levels of evaluation. As before, we have
by the quadratic method:

c4t = E4(y�y�′) = c3�c
3
�′ + E4

(
u3

�u
3
�′(s2) − u3

�′(c3�s) − u3
�(c

3
�′s)

) ∈ Rp4

= c3�c
3
�′ + u3

�u
3
�′ E4(s2) − u3

�′ E4(c3�s) − u3
� E4(c3�′s) (4.11)

Functional Encryption for Bounded Collusions, Revisited 189

By correctness of first three levels of evaluation as described above, the
decryptor can compute the encoding of y�, namely c3� correctly, hence the
quadratic term c3�c

3
�′ may be computed. It remains to compute the terms E4(c3�s).

Note that the encryptor may not provide the encodings E4(c3�s) directly and pre-
serve succinctness because c3� = E2(xi xj + p0 · μij) + E2(xm xt + p0 · μmt) and
E2(xi xj + p0 · μij) contains the cross term c1i c

1
j as shown by Eq. 4.6.

Consider the term E4(c3�s). In fact, we will only be able to compute a noisy
version of this encoding, i.e. E4(c3�s + p1 · μ3

�) for some p1 · μ3
� .

E4(c3�s) = E4
(
(E2(xi xj + p0 · μij) + E2(xm xt + p0 · μmt)) · s

)

= E4
((

c1i c1j + u1
i u1

j E2(s2) − u1
j E2(c1i s) − u1

i E2(c1js)
) · s

)

+ E4
((

c1mc1t + u1
mu1

t E2(s2) − u1
t E2(c1ms) − u1

m E2(c1t s)
) · s

)

= E4(c1i c1js) + E4
(
u1

i u1
j E2(s2) s

) − E4
(
u1

j E2(c1i s) s
)− E4

(
u1

i E2(c1js) s
)

+ E4
(
c1mc1t s) + E4

(
u1

mu1
t E2(s2) s

)− E4
(
u1

t E2(c1ms)s
)− E4

(
u1

m E2(c1t s) s
)

= E4(c1i c1js) + u1
i u1

j E4
(E2(s2) s

) − u1
j E4
(E2(c1i s) s

)− u1
i E4
(E2(c1js) s

)

+ E4
(
c1mc1t s) + u1

mu1
t E4
(E2(s2) s

)− u1
t E4
(E2(c1ms)s

)− u1
m E4

(E2(c1t s) s
)

(4.12)

Thus, to compute E4(c3�s) by additive homomorphism, it suffices to compute
the encodings E4(c1i c

1
js), E4

(E2(s2) s
)

and E4
(E2(c1js) s

)
for all i, j. Note that

by definition of C4, we have that for m ∈ [w],
{

E4
(E2(s2) s

)
, E4

(E2(c1ms)s
)} ⊆ C4 (4.13)

Note that since level 3 is an addition layer, E3 = E2.
The only terms above not accounted for are E4(c1i c

1
js) and E4

(
c1mc1t s), which

are symmetric. Consider the former. To compute this, we view c1i c
1
js as a

quadratic term in c1i and c1j · s and re-apply the quadratic method given in
Eq. 4.7. This will enable us to compute a noisy version of E4(c1i c

1
js), namely

E4(c1i c
1
js + p1 · μ2

ij) for some noise μ2
ij .

Applying the Quadratic Method (Eq. 4.7): Given E2(c1i), E2(c1j · s) along with
E4

(E2(c1i) s
)

and E4
(E2(c1j · s) s

)
we may compute E4(c1i c

1
js + p1 · μ2

ij) using the
quadratic method. In more detail, we let

di � E2(c1i) , hj � E2(c1j · s) ∈ Rp2 and d̂i � E4
(E2(c1i) s

)
, ĥj � E4

(E2(c1j · s) s
) ∈ Rp4

Then, we have:

E4(c1i c
1
js + p1 · μ2

ij) = dihj + PK
(E2(c1i)

)
PK

(E2(c1j · s)
) E4(s2) (4.14)

− PK
(E2(c1i)

)
ĥj − PK

(E2(c1j · s)
)

d̂i ∈ Rp4

where μ2
ij = c1i ·Nse(E2(c1j · s))+c2j ·s·Nse(E2(c1i))+p1·Nse(E2(c1j · s))·Nse(E2(c1i)).

190 S. Agrawal and A. Rosen

Again, note that though ci are large in Rp1 , they are small in Rp2 upwards,
and may be clubbed with noise terms as done above.

Also, the public key for E4(c1i c
1
js + p1 · μ2

ij) may be computed as:

PK
(E4(c1i c

1
js + p1 · μ2

ij)
)

= PK
(E2(c1i)

)
PK

(E2(c1j · s)
)
PK

(E4(s2)
)

(4.15)

− PK
(E2(c1i)

)
PK(ĥj) − PK

(E2(c1j · s)
)
PK(d̂i)

Thus we have, E4(c3�s + p1 · μ3
�) is a Regev encoding with public key

PK
(E4(c3�s + p1 · μ3

�))

= PK
(
E4(c1i c1js + p1 · μ2

ij) + u1
i u1

j E4
(E2(s2) s

) − u1
j E4
(E2(c1i s) s

)− u1
i E4
(E2(c1js) s

)

+ E4(
(
c1mc1t s + p1 · μ2

mt) + u1
mu1

t E4
(E2(s2) s

)− u1
t E4
(E2(c1ms)s

)− u1
m E4

(E2(c1t s) s
))

= PK
(E4(c1i c1js + p1 · μ2

ij)
)

+ u1
i u1

j PK
(E4
(E2(s2) s

)) − u1
j PK

(E4
(E2(c1i s) s

))

− u1
i PK

(E4
(E2(c1js) s

))
+ PK

(E4(
(
c1mc1t s + p1 · μ2

mt)
)

+ u1
mu1

t PK
(E4
(E2(s2) s

))

− u1
t PK

(E4
(E2(c1ms)s

))− u1
m PK

(E4
(E2(c1t s) s

))
(4.16)

Above PK
(E4(c1i c

1
js+p1 ·μ2

ij)
)

may be computed by Eq. 4.15 and the remain-
ing public keys are provided in C4 as described in Eq. 4.13. Also, we have
μ3

� = μ2
ij + μ2

mt.
By Eqs. 4.12, 4.13 and 4.14, we may compute E4(c3�s + p1 · μ3

�) for any �.
Note that,

E4(c3�s + p1 · μ3
�) = LinComb

(
E2(c1i) · E2(c1j · s), E4

(E2(c1i) s
)
, E4

(E2(c1j · s) s
))

= 〈Linf4 , C4〉 + Quad
(E2(c1i) · E2(c1j · s)

)

for some linear function Linf4 .

4.1 Ciphertext and Public Key Structure

By Eq. 4.11, we then get that

c4t = c3� c3�′ + u3
� u3

�′E4(s2) − u3
�

(
〈Lin′

f4 , C4〉 + Quad′(E2(c1i) · E2(c1j · s)
))

− u3
�′

(
〈Lin′′

f4 , C4〉 + Quad′′(E2(c1i) · E2(c1j · s)
))

= 〈Lin′′′
f4 , C4〉 + Polyf4(C1, C2, C3)

for some linear functions Lin′
f4 , Lin′′

f4 , Lin′′′
f4 and quadratic functions

Quad′, Quad′′ and polynomial Polyf4 .

Thus, we have computed E4(c3�s+p1 ·μ3
�) and hence, c4 by Eq. 4.11. The final

public key for c4 is given by:

PK(c4) = u3
�u

3
�′ PK(E4(s2)) − u3

�′ PK(E4(c3�s)) − u3
� PK(E4(c3�′s)) (4.17)

Functional Encryption for Bounded Collusions, Revisited 191

E4(c3) and E4(c1i c
1
j) are computed analogously. Thus, we have established

correctness of the base case.

Note. In the base case, we see that each time the quadratic method is applied
to compute an encoding of a product of two messages, we get an encoding of the
desired product plus noise.

Induction Step. Assume that the claim is true for level k − 1. Then we establish
that it is true for level k.

By the I.H, we have that:

1. We can compute Ek−1(ck−2 · s) and Ek−1(ck−2) by taking linear combinations
of elements in Ck−1 and quadratic terms of the form Ek−2(yi)Ek−2(yj) for
some yi, yj of the form ck−4

i , ck−4
j s.

2. We can compute ck−1.

To compute ck using the quadratic method, it suffices to compute Ek(ck−1 ·s).

Computing Ek(ck−1 · s). We claim that:

Claim. The term Ek(ck−1
� s) (hence ck) can be computed as a linear combination

of elements in Ck and quadratic terms of the form Ek−1(·) · Ek−1(·).
Proof. The term Ek(ck−1 · s) may be written as:

Ek(ck−1 · s)

= Ek
((

ck−2
i ck−2

j − uk−2
i Ek−1(ck−2

j · s) − uk−2
j Ek−1(ck−2

i · s) + uk−2
i uk−2

j Ek−1(s2)
) · s
)

= Ek(ck−2
i ck−2

j s) − uk−2
i Ek

(Ek−1(ck−2
j · s) · s

)

− uk−2
j Ek

(Ek−1(ck−2
i · s) · s

)
+ uk−2

i uk−2
j Ek

(Ek−1(s2) · s
)

(4.18)

Consider Ek
(Ek−1(s2) · s

)
. Since Ek−1(s2) ∈ Ck−1 and Ek

(Ck−1 · s
)

is con-
tained in Ck, we have that Ek

(Ek−1(s2) · s
) ∈ Ck.

Consider the term Ek(ck−2
i ck−2

j s). We may compute Ek(ck−2
i ck−2

j s) using
the quadratic method with messages ck−2

i and ck−2
j s as:

Ek(ck−2
i ck−2

j s)

=
(
Ek−1(ck−2

i) · Ek−1(ck−2
j · s)

)
+ PK

(Ek−1(ck−2
i)

)
PK
(Ek−1(ck−2

j · s)
) Ek(s2)

− PK
(Ek−1(ck−2

i)
)(Ek

(Ek−1(ck−2
j · s) · s

))− PK
(Ek−1(ck−2

j · s)
)(Ek

(Ek−1(ck−2
i) · s

))

(4.19)

Thus, to compute Ek(ck−1 · s), it suffices to compute the term Ek(ck−2
i ck−2

j s)
since the additional terms such as Ek

(Ek−1(ck−2
i · s) · s

)
that appear in Eq. 4.18

also appear in Eq. 4.19 and will be computed in the process of computing
Ek(ck−2

i ck−2
j s).

192 S. Agrawal and A. Rosen

Note. We observe that in Eq. 4.19, by “factoring out” the quadratic term
Ek−1(ck−2

i) · Ek−1(ck−2
j · s) (which can be computed by I.H.), we reduce the

computation of Ek(ck−1 · s) to Ek
(Ek−1(ck−2

j · s) · s
)

where the latter value has
half the nested message degree (ref. Definition 4.1) of the former at the cost of
adding one more level of nesting and a new multiplication by s. By recursively
applying Eq. 4.19, we will obtain O(k) quadratic encodings in level k − 1 and a
linear term in level k advice encodings Ck.

Proceeding, we see that to compute Ek(ck−2
i ck−2

j s), we are required to com-
pute the following terms:

1. Ek−1(ck−2
i) and Ek−1(ck−2

j · s). These can be computed by the induction
hypothesis using linear combinations of elements in Ck−1 and quadratic terms
of the form Ek−2(yi)Ek−2(yj) for some yi, yj . Since the precise linear coeffi-
cients are not important, we shall denote:

Ek−1(ck−2
j · s) = LinComb

(Ck−1, Ek−2(·)Ek−2(·)) (4.20)

2. Ek
(Ek−1(ck−2

i) · s
)

and Ek
(Ek−1(ck−2

j · s) · s
)
: Consider the latter term (the

former can be computed analogously).

By the induction hypothesis,

Ek
(Ek−1(ck−2

j · s) · s
)

= Ek
(
LinComb

(Ck−1, Ek−2(·)Ek−2(·)) · s
)

= Ek
(
LinComb

(Ck−1 · s
))

+ Ek
(
LinComb

(Ek−2(ya)Ek−2(yb) · s
))

= LinComb
(
Ek

(Ck−1 · s
))

+ LinComb
(
Ek

(Ek−2(ya)Ek−2(yb) · s
))

(4.21)

Again, we note that the terms Ek
(Ck−1 ·s) ∈ Ck by definition hence it remains

to construct Ek
((Ek−2(ya)Ek−2(yb)

) · s
)

for some ya, yb ∈ {ck−3
a , ck−3

b · s}.

To proceed, again, we will consider za = Ek−2(ya) and zb = Ek−2(yb) · s as
messages and apply the quadratic method to compute an encoding of their
product. In more detail,

Ek
((Ek−2(ya)Ek−2(yb)

) · s
)

= LinComb
(
Ek−1(Ek−2(ya)) · Ek−1(Ek−2(yb) · s),

Ek
(Ek−1(Ek−2(ya)) · s

)
, Ek

(Ek−1(Ek−2(yb) · s) · s
))

(4.22)

Thus, we are required to compute:
(a) Ek−1(Ek−2(ya)), Ek−1(Ek−2(yb)·s): These can be computed via the induc-

tion hypothesis.

Functional Encryption for Bounded Collusions, Revisited 193

(b) Ek
(
Ek−1

(Ek−2(ya)
) ·s

)
and Ek

(Ek−1(Ek−2(yb) ·s) ·s
)
: Consider the latter

term (the former may be computed analogously). Note that

Ek−2(yb) = LinComb
(Ck−2, Ek−3(·)Ek−3(·))

∴ Ek(Ek−1(Ek−2(yb) · s) · s
)

= Ek
(
Ek−1(LinComb

(Ck−2, Ek−3(·)Ek−3(·)) · s) · s
)

Again, Ek(Ek−1(Ck−2 · s) · s) ∈ Ck so we are left to compute:

Ek
(
Ek−1(Ek−3(·)Ek−3(·) · s) · s

)

= Ek
(
LinComb

(
Ek−2

(Ek−3(·) · s
) · Ek−2(Ek−3(·)),

Ek−1
(Ek−2

(Ek−3(·) · s
) · s

)))

= LinComb
(
Ek−1

(Ek−2
(Ek−3(·) · s

)) · Ek−1
(Ek−2

(Ek−3(·) · s
) · s

)
,

Ek
(
Ek−1

(Ek−2
(Ek−3(·) · s

) · s
) · s

)
· s

)

Thus, again by “factoring out” quadratic term Ek−1
(Ek−2

(Ek−3(·) ·
s
)) · Ek−1

(Ek−2
(Ek−3(·) · s

) · s
)
, we have reduced computation of

Ek
(Ek−1(Ek−2(yb)·s)·s

)
to Ek

(
Ek−1

(Ek−2
(Ek−3(·)·s)·s)·s

)
·s

)
which has

half the nested message degree of the former at the cost of one additional
nesting (and multiplication by s)5.
Proceeding recursively, we may factor out a quadratic term for each level,
to be left with a term which has half the nested message degree and one
additional level of nesting. At the last level, we obtain nested encod-
ings which are contained in Ck by construction. Hence we may com-
pute Ek(ck−1 · s) as a linear combination of quadratic terms of the form
Ek−1(·)Ek−1(·) and linear terms in Ck. Please see Fig. 1 for a graphical
illustration.
Note that the public key PK(Ek(ck−1 · s)) can be computed as a linear
combination of the public keys PK(Ck), as in Eq. 4.16.

PK(Ek(ck−1 · s)) = LinComb(PK(Ck)) (4.23)

Note that for the public key computation, the higher degree encoding
computations are not relevant as these form the message of the final level
k encoding.

Computing level k ciphertext. Next, we have that:

ck
t = ck−1

� ck−1
�′ + Ek

(
uk−1

� uk−1
�′ (s2) − uk−1

�′ (ck−1
� s) − uk−1

� (ck−1
�′ s)

)

= ck−1
� ck−1

�′ + uk−1
� uk−1

�′ Ek(s2) − uk−1
�′ Ek(ck−1

� s) − uk−1
� Ek(ck−1

�′ s) (4.24)

5 We note that the multiplication by s does not impact the nested message degree,
number of nestings or growth of the expression as we proceed down the circuit.

194 S. Agrawal and A. Rosen

Fig. 1. Computing level k functional ciphertext ck encoding fk(x) using induction. A
term in any node is implied by a quadratic polynomial in its children, quadratic in the
terms of the left child, and linear in the terms of the right child. The solid arrows on
the left indicate quadratic terms that are computed by the induction hypothesis. The
dashed arrows to the right point to terms whose linear combination suffices, along with
the high degree terms in the left sibling, to compute the parent. The terms in the right
child may be further decomposed into quadratic polynomials in its children, quadratic
in left child terms and linear in right child terms, until we reach the last level, where
the terms in the right child are provided directly by the encryptor as advice encodings
Ck. The functional ciphertext at level k, namely the root ck is thus ultimately linear
in Ck, while being high degree in lower level encodings C1, . . . , Ck−1.

Similarly,

PK(ck
t) = uk−1

� uk−1
�′ PK(Ek(s2)) − uk−1

�′ PK
(Ek(ck−1

� s)
) − uk−1

� PK
(Ek(ck−1

�′ s)
)

(4.25)

Public Key, Ciphertext and Decryption Structure. From the above, we claim:

Claim. The public key for ck
t (for any t) is a publicly computable linear com-

bination of public keys of level k encodings PK(Ek(s2)) and PK
(Ek(ck−1

� s)
)

for
all �.

Regarding the ciphertext, since we computed Ek(ck−1
� s) from Ck above, and

ck−1 may be computed via the induction hypothesis, we may compute ck as
desired. Moreover, since Ek(ck−1

� s) is linear in level k encodings and has quadratic
terms in level k − 1 encodings, we get by unrolling the recursion that Ek(ck−1

� s)

Functional Encryption for Bounded Collusions, Revisited 195

and hence level k ciphertext ck is linear in level k encodings and polynomial in
lower level encodings C1, . . . , Ck−1. Hence, we have that:

ck = CT(fk(x) + μk
f(x)) = 〈Linfk , Ck〉 + LinComb

(
Quad(Ek−1(yi) Ek−1(yj))

)

= 〈Linfk , Ck〉 + Polyfk

(C1, . . . , Ck−1
)

Moreover, note that the computation of the functional message embedded
in a level k ciphertext ck can be viewed as follows. By Eq. 4.6, we see that
the message embedded in ck equals the encoding in the left child plus a linear
combination of the messages embedded in the right child. At the next level, we
see that the message in the right child at level 2 (from the top) again equals the
encoding in the left child plus a linear combination of the messages embedded
in the right child. At the last level, we get that the message embedded in ck is a
quadratic polynomial in all the left children in the tree, and a linear combination
of level k messages Mk. Thus, we have as desired that:

f(x) ≈ Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉

The Public Key and Ciphertext Evaluation Algorithms. Our evaluation algo-
rithms EvalPK and EvalCT are defined recursively, so that to compute the func-
tional public key and functional ciphertext at level k, the algorithms require the
same for level k − 1. Please see Figs. 2 and 3 for the formal descriptions.

Algorithm EvalkPK(∪
i∈[k]

PK(Ci), �)

To compute the label for the �th wire in the level k circuit, do:

1. If the �th wire at level k is the addition of the ith and jth wire at level k − 1, then
do the following:
– If k = 3 (base case), then compute PK(c3�) = PK(c2i) + PK(c2j) as in Equation

4.10.
– Let PKk−1

i = Evalk−1
PK (∪

j∈[k−1]
PK(Cj), i) and PKk−1

j = Evalk−1
PK (∪

i∈[k−1]
PK(Ci), j),

– Let PKk
� = PKk−1

i + PKk−1
j

2. If the �th wire at level k is the multiplication of the ith and jth wire at level k − 1,
then do the following:
– If k = 4 (base case), then compute PKk

� as described in Equation 4.17.

– Let uk−1
i = Evalk−1

PK (∪
j∈[k−1]

PK(Cj), i) and uk−1
j = Evalk−1

PK (∪
i∈[k−1]

PK(Ci), j)

– Let PK(ck
�) = uk−1

i uk−1
j PK(Ek(s2)) − uk−1

j PK Ek(ck−1
i s)

) −
uk−1

i PK Ek(ck−1
j s)

)
as in Equation 4.25.

Here PK(Ek(s2)), PK Ek(ck−1
i s)

)
and PK Ek(ck−1

j s)
)

are computed using Ck

as described in Equation 4.16, 4.23.

Fig. 2. Algorithm to evaluate on public key.

196 S. Agrawal and A. Rosen

Algorithm EvalkCT(∪
i∈[k]

Ci, �)

To compute the encoding for the �th wire in the level k circuit, do:

1. If the �th wire at level k is the addition of the ith and jth wire at level k − 1, then
do the following:
– If k = 3 (base case), then compute c3� = c2i + c2j as in Equation 4.9.
– Let CTk−1

i = Evalk−1
CT (∪

j∈[k−1]
Cj , i) and CTk−1

j = Evalk−1
CT (∪

i∈[k−1]
Ci, j),

– Let CTk
� = CTk−1

i + CTk−1
j

2. If the �th wire at level k is the multiplication of the ith and jth wire at level k − 1,
then do the following:
– If k = 4 (base case) then compute c4� (for any �) using Equations 4.11 and 4.12.
– Let ck−1

i = Evalk−1
CT (∪

j∈[k−1]
Cj , i) and ck−1

j = Evalk−1
CT (∪

i∈[k−1]
Ci, j),

– Let ck
� = ck−1

i ck−1
j +uk−1

i uk−1
j Ek(s2)−uk−1

j Ek(ck−1
i s)−uk−1

i Ek(ck−1
j s) as in

Equation 4.24. Here, the terms Ek(s2), Ek(ck−1
i s) and Ek(ck−1

j s) are computed

using Ck as described in claim 4.1

Fig. 3. Algorithm to evaluate on ciphertext.

5 Succinct Functional Encryption for NC1

In this section, we extend the construction for quadratic functional encryption pro-
vided in Sect. 3 to circuits of depth O(log n). The construction generalises directly
theQuadFE scheme using the public key and ciphertext evaluation algorithms from
the previous section. We make black box use of the LinFE scheme [1,5].

We proceed to describe the construction.

NC1.Setup(1λ, 1w, 1d): Upon input the security parameter λ, the message dimen-
sion w, and the circuit depth d, do:
1. For k ∈ [d], let Lk = |Ck| where Ck is as defined in Theorem 4.2. For

k ∈ [d − 1], i ∈ [Lk], choose uniformly random ui,k ∈ Rpk
. Denote uk =

(ui,k) ∈ RLk
pk

.
2. Invoke LinFE.Setup(1λ, 1Ld+1, pd) to obtain PK = LinFE.PK and MSK =

LinFE.MSK.
3. Output PK = (LinFE.PK,u1, . . . ,ud−1) and MSK = LinFE.MSK.

NC1.KeyGen(MSK, f)): Upon input the master secret key MSK and a circuit f
of depth d, do:
1. Let Linf ∈ RLd

pd
be an f dependent linear function output by the algorithm

EvalPK(PK, f). as described in claim 4.1.
2. Compute SKLin = LinFE.KeyGen

(
MSK, (Linf‖1)

)
and output it.

NC1.Enc(x,PK): Upon input the public key and the input x, do:
1. Compute the encodings Ck for k ∈ [d − 1] as defined in Theorem 4.2.
2. Sample flooding noise η as described in Appendix B.
3. Define Md =

(Cd−1, Cd−1 · s, Ed(s2)
) ∈ RLd

pd
. Compute CTLin =

LinFE.Enc
(
PK, (Md‖η)

)

4. Output CTx = ({Ck}k∈[d−1],CTLin).

Functional Encryption for Bounded Collusions, Revisited 197

NC1.Dec(PK,CTx,SKf): Upon input a ciphertext CTx for vector x, and a secret
key SKf = kf for circuit f , do:
1. Compute Polyf (C1, . . . , Cd−1) as described in Sect. 4 by running

EvalCT({Ck}k∈[d−1], f).
2. Compute LinFE.Dec(CTLin,SKLin) + Polyf (C1, . . . , Cd−1) mod pd

mod pd−1 . . . mod p0 and output it.

Correctness follows from correctness of EvalPK, EvalCT and LinFE. In more
detail, we have by Theorem 4.2 that,

f(x) + μf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉
Since CTLin is a LinFE encryption of (Md‖η) and SKLin is a LinFE functional key
for (Linf‖1), we have by correctness of LinFE that LinFE.Dec(CTLin,SKLin) =
〈Linf ,Md〉 + η mod pd. By correctness of EvalCT, we have that
Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 outputs f(x) + μf(x) + η. Since μf(x) as well
as η is a linear combination of noise terms which are multiples of moduli pi for
i ∈ [0, . . . , d−1], i.e. μf(x) = pd−1 ·βf

d−1+. . .+p0 ·βf
0 for some βf

i , and f(x) ∈ Rp0 ,
we have that f(x)+μf(x)+η = f(x) mod pd mod pd−1 . . . mod p0, as desired.

Analysis of Ciphertext Structure. Note that the ciphertext consists of encodings
Ck for k ∈ [d−1] and LinFE ciphertext for (Md‖η). Since each message-dependent
encoding depends only on a single bit of the message, the ciphertext is decom-
posable, and enjoys local-updates: if a single bit of the message changes, then
only O(d) encodings need updating, not the entire ciphertext. Also, since the
LinFE ciphertext is succinct, the message-dependent component of our cipher-
text is also succinct. The ciphertext is not succinct overall, since we need to
encode a fresh noise term per requested key.

Theorem 5.4. The construction in Sect. 5 achieves full simulation based secu-
rity as per Definition 2.2.

Proof. We describe our simulator.

Simulator NC1.Sim(1λ, 1|x|,PK, f,SKf , f(x)). The simulator given input the
security parameter, length of message x, the circuit f , the secret key SKf and
the value f(x) does the following:

1. It computes Linf = EvalPK(PK, f). Note that by claim 4.1 that Linf ∈ RLd
pd

.
2. It samples all encodings upto level d−1 randomly, i.e. Ck ← RLk

pk
for k ∈ [d−1].

3. It samples η ← Dd as described in Appendix B and computes d′ = f(x) +
η − Polyf (C1, . . . , Cd−1).

4. It invokes the single key LinFE simulator as

CTLin = LinFE.Sim(1λ, 1Ld ,PK, Linf ,SK(Linf), d′)

5. It outputs CTx = ({Ck}k∈[d−1],CTLin).

We will prove that the output of the simulator is indistinguishable from the
real world via a sequence of hybrids.

198 S. Agrawal and A. Rosen

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world.

Hybrid 1. In this hybrid, the only thing that is different is that CTLin is computed
using the LinFE simulator. In more detail,

– It computes Polyf (C1, . . . , Cd−1) = EvalCT
({Ck}k∈[d−1], f

)
.

– It computes f(x) + μf(x) = Polyf (C1, . . . , Cd−1) + 〈Md, Linf 〉
– It samples η such that

SD
(
η + μf(x), η

) ≤ negl(λ) (5.1)

– It invokes the single key LinFE simulator with input f(x) + μf(x) + η −
Polyf (C1, . . . , Cd−1).

Hybrid 2. In this hybrid, invoke the LinFE simulator with f(x) + η −
Polyf (C1, . . . , Cd−1).

Hybrid 3. In this hybrid, sample Ck for k ∈ [d − 1] at random. This is the
simulated world.

Indistinguishability of Hybrids proceeds as in Sect. 3. Indistinguishability of
Hybrids 0 and 1 follows from security of LinFE. It is easy to see that Hybrids 1
and 2 are statistically indistinguishable by Eq. 5.1. Hybrids 2 and 3 are indistin-
guishable due to semantic security of Regev encodings Ck for k ∈ [d − 1].

In the full version [6], we describe how to generalize the above construction
to bounded collusion FE scheme for all circuits in P, for any a-priori fixed poly-
nomial bound Q. The approach follows the (by now) standard bootstrapping
method of using low depth randomized encodings to represent any polynomial
sized circuit [39]. The ciphertext of the final scheme enjoys additive quadratic
dependence on the collusion bound Q.

6 Bounded Collusion FE for All Circuits

In this section, we describe how to put together the pieces from the previous
sections to build a bounded collusion FE scheme for all circuits in P, denoted
by BddFE. The approach follows the (by now) standard bootstrapping method
of using low depth randomized encodings to represent any polynomial sized
circuit. This approach was first suggested by Gorbunov et al. [39], who show
that q query FE for degree three polynomials can be bootstrapped to q query
FE for all circuits.

At a high level, their approach can be summarized as follows. Let C be a
family of polynomial sized circuits. Let C ∈ C and let x be some input. Let
C̃(x, R) be a randomized encoding of C that is computable by a constant depth

Functional Encryption for Bounded Collusions, Revisited 199

circuit with respect to inputs x and R. Then consider a new family of circuits G
defined by:

GC,Δ(x, R1, . . . , RS) = C̃
(
x; ⊕

a∈Δ
Ra

)

Note that GC,Δ(·, ·) is computable by a degree three polynomial, one for each
output bit. Given an FE scheme for G, one may construct a scheme for C by
having the decryptor first recover the output of GC,Δ(x, R1, . . . , RS) and then
applying the decoder for the randomized encoding to recover C(x). Since our
construction from Sect. 5 is capable of evaluating degree 3 polynomials, it suffices
for bootstrapping, to yield q-query FE for all circuits. We will denote this scheme
by PolyFE as against NC1FE to emphasize that it needs to only compute degree
3 polynomials.

As in [5,39], let (S, v,m) be parameters to the construction. Let Δi for i ∈ [q]
be a uniformly random subset of [S] of size v. To support q queries, the key
generator identifies the set Δi ⊆ [S] with query i. If v = O(λ) and S = O(λ · q2)
then the sets Δi are cover free with high probability as shown by [39]. Let
L � (�3 + S · m).

BddFE.Setup(1λ, 1�): Upon input the security parameter λ and the message space
{0, 1}�, invoke (mpk,msk) = PolyFE.Setup(1λ, 1L) and output it.

BddFE.KeyGen(msk, C)): Upon input the master secret key and a circuit C, do:
1. Choose a uniformly random subset Δ ⊆ [S] of size v.
2. Express C(x) by GC,Δ(x, R1, . . . , RS), which in turn can be expressed as

a sequence of degree 3 polynomials P1, . . . , Pk, where k ∈ poly(λ).
3. Set BddFE.SKC = {SKi = PolyFE.KeyGen(PolyFE.msk, Pi)}i∈[k] and out-

put it.
BddFE.Enc(x,mpk): Upon input the public key and the input x, do:

1. Choose R1, . . . , RS ← {0, 1}m, where m is the size of the random input
in the randomized encoding.

2. Set CTx = PolyFE.Enc(PolyFE.mpk,x, R1, . . . , Rs) and output it.
BddFE.Dec(mpk,CTx,SKC): Upon input a ciphertext CTx for vector x, and a

secret key SKC for circuit C, do the following:
1. Compute GC,Δ(x, R1, . . . , RS) = PolyFE.Dec(CTx,SKC).
2. Run the Decoder for the randomized encoding to recover C(x) from

GC,Δ(x, R1, . . . , RS).

Correctness follows immediately from the correctness of PolyFE and the cor-
rectness of randomized encodings. The proof of security follows easily from the
security of randomized encodings and of the PolyFE scheme. Please see the full
version [6] for details.

Acknowledgements. We thank Damien Stehlé and Chris Peikert for helpful discus-
sions.

200 S. Agrawal and A. Rosen

Appendix

A Previous Constructions for Bounded Collusion FE

The GVW12 Construction. The scheme of [39] can be summarized as follows.

– The first ingredient they need is a single key FE scheme for all circuits.
A construction for this was provided by Sahai and Seyalioglu in [51].

– Next, the single FE scheme is generalized to a q query scheme for NC1 cir-
cuits. This gerenalization is fairly complex, we provide an outline here. At
a high level, they run N copies of the single key scheme, where N = O(q4).
The encryptor encrypts the views of the BGW MPC protocol for N parties,
computing some functionality related to C. They rely on the fact that BGW
is non-interactive when used to compute bounded degree functions. To gen-
erate a secret key, KeyGen chooses a random subset of the single query FE
keys, where the parameters are set so that the subsets have small pairwise
intersections. This subset of keys enables the decryptor to recover sufficiently
many shares of C(x) which allows him to recover C(x). [39] argue that an
attacker with q keys only learns a share xi when two subsets of keys intersect,
but since the subsets were chosen to have small pairwise intersections, this
does not occur often enough to recover enough shares of x. Finally, by the
security of secret sharing, x remains hidden.

– As the last step they “bootstrap” the q query FE for NC1 to q query FE
for all circuits using computational randomized encodings [9]. They must
additionally use cover free sets to ensure that fresh randomness is used for
each randomized encoding.

Thus, to encrypt a message x, the encryptor must secret share it into N =
O(q4) shares, and encrypt each one with the one query FE. Since they use
Shamir secret sharing with polynomial of degree t and t = O(q2), note that at
most O(q2) shares can be generated offline, since t + 1 points will determine the
polynomial. Hence O(q4) shares must be generated in the online phase. This
results in an online encryption time that degrades as O(q4).

The ALS16 construction. [5] provide a conceptually simpler way to build
q-query Functional Encryption for all circuits. Their construction replaces steps
1 and 2 described above with a inner product modulo p FE scheme, and then
uses step 3 as in [39]. Thus, the construction of single key FE in step 1 by Sahai
and Seyalioglu, and the nontrivial “MPC in the head” of step 2 can both be
replaced by the simple abstraction of an inner product FE scheme. For step 3,
observe that the bootstrapping theorem of [39] provides a method to bootstrap
an FE for NC1 that handles q queries to an FE for all polynomial-size circuits
that is also secure against q queries. The bootstrapping relies on the result of
Applebaum et al. [9, Theorem 4.11] which states that every polynomial time
computable function f admits a perfectly correct computational randomized
encoding of degree 3.

Functional Encryption for Bounded Collusions, Revisited 201

In more detail, let C be a family of polynomial-size circuits. Let C ∈ C and let
x be some input. Let C̃(x,R) be a randomized encoding of C that is computable
by a constant depth circuit with respect to inputs x and R. Then consider a new
family of circuits G defined by:

GC,Δ(x,R1, . . . , RS) =
{

C̃
(
x; ⊕

a∈Δ
Ra

)
: C ∈ C, Δ ⊆ [S]

}
,

for some sufficiently large S (quadratic in the number of queries q). As observed
in [39], circuit GC,Δ(·, ·) is computable by a constant degree polynomial (one
for each output bit). Given an FE scheme for G, one may construct a scheme
for C by having the decryptor first recover the output of GC,Δ(x,R1, . . . , RS)
and then applying the decoder for the randomized encoding to recover C(x).

However, to support q queries the decryptor must compute q randomized
encodings, each of which needs fresh randomness. This is handled by hardcod-
ing S random elements in the ciphertext and using random subsets Δ ⊆ [S]
(which are cover-free with overwhelming probability) to compute fresh random-
ness ⊕

a∈Δ
Ra for every query. [5] observe that bootstrapping only requires support

for the particular circuit class G described above. This circuit class, being com-
putable by degree 3 polynomials, may be supported by a linear FE scheme, via
linearization of the degree 3 polynomials.

Putting it together, the encryptor encrypts all degree 3 monomials in the
inputs R1, . . . , RS and x1, . . . , x�. Note that this ciphertext is polynomial in
size. Now, for a given circuit C, the keygen algorithm samples some Δ ⊆ [S]
and computes the symbolic degree 3 polynomials which must be released to
the decryptor. It then provides the linear FE keys to compute the same. By
correctness and security of Linear FE as well as the randomizing polynomial
construction, the decryptor learns C(x) and nothing else.

Note that in this construction the challenge of supportingmultiplication is side-
stepped by merely having the encryptor encrypt each monomial xixj separately so
that the FE need only support addition. This “brute force” approach incurs sev-
eral disadvantages. For instance, decomposability is lost – even though the cipher-
text can be decomposed into |x|2 components, any input bit x1 (say) must fea-
ture in |x| ciphertext components x1x2, . . . , x1xw, where w = |x|. This makes the
scheme inapplicable for all applications involving distributed data, where a centre
or a sensor device knows a bit xi but is oblivious to the other bits. Additionally,
the scheme is not online-offline, since all the ciphertext components depend on
the data, hence the entire encryption operation must be performed after the data
becomes available. For applications where a centre or sensor must transmit data-
dependent ciphertext after the data is observed, this incurs a significant cost in
terms of bandwidth. Indeed, the work performed by the sensor device in comput-
ing the data dependent ciphertext becomes proportional to the size of the function
being computed on the data, which may be infeasible for weak devices.

Another approach to obtain bounded collusion FE is to compile the single
key FE of Goldwasser et al. [37] with the compiler of [39] to support Q queries.
Again, this approach yields succinct CTs but the CT grows as O(q4) rather than
O(q2) as in our scheme.

202 S. Agrawal and A. Rosen

B Parameters

In this section, we discuss the parameters for our constructions. We denote the
magnitude of noise used in the level i encodings by Bi. We require Bi ≤ O(pi/4)
at every level for correct decryption. We have that the message space for level
1 encodings E1 is Rp0 and encoding space is Rp1 . Then message space for E2 is
O(p20 +B2

1) = O(B2
1) since the noise at level 1 is a multiple of p0. Then, p2 must

be chosen as O(B2
1). At the next multiplication level, i.e. level 4, we have the

message space as O(p22 + B2
2) = O(B4

1). In general, for d levels, it suffices to set
pd = O(B2d

). We require all the distinct moduli to be relatively prime, hence
we choose all the moduli to be prime numbers of the aforementioned size.

We must also choose the size of the noise that is added for flooding. As
described in Sect. 3, for quadratic polynomials we require L·p0·σ2

0
σ1

= negl(λ) where
σ1 is the standard deviation for the noise ηi for i ∈ [Q] encoded in the cipher-

text. For depth d (Sect. 5), we require
Ld· ∏

i∈[0,d]
pi·B2d

σ = negl(λ) where σ is the
standard deviation of the noise η encoded in the ciphertext. Since Ld = poly(λ)
by definition, we require σ ≥ O(poly(λ)B2d+1

.
We may set p0 = n with initial noise level as B1 = poly(n) and any Bi, pi =

O(B2i

1). Also, the number of encodings provided at level d is Ld = O(2d), so in
general we may let d = O(log n), thus supporting the circuit class NC1. Note
that unlike FHE constructions [18,19], computation in our case proceeds UP a
ladder of moduli rather than down, and we may add fresh noise at each level.
Hence we never need to rely on subexponential modulus to noise ratio, and may
support circuits in NC1 even without modulus switching tricks.

We note that by the definition of efficiency of reusable garbled circuits [37], it
suffices to have ciphertext size that is sublinear in circuit size, which is achieved
by our construction.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 33

2. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
3–35. Springer, Cham (2017). doi:10.1007/978-3-319-63688-7 1

3. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13190-5 28

4. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 2

5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for lin-
ear functions from standard assumptions, and applications. In: CRYPTO (2016).
https://eprint.iacr.org/2015/608

http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://dx.doi.org/10.1007/978-3-319-63688-7_1
http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-25385-0_2
https://eprint.iacr.org/2015/608

Functional Encryption for Bounded Collusions, Revisited 203

6. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited.
Eprint (2016). https://eprint.iacr.org/2016/361.pdf

7. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

8. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Eprint 2015/730 (2015)

9. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

10. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, 22–25 October 2011, pp. 120–129 (2011)

11. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. IACR Cryptology ePrint Archive 2015, p. 163 (2015). http://eprint.
iacr.org/2015/163

13. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

14. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit abe and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 30

15. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-70936-7 29

16. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006). doi:10.1007/11818175 17

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325 (2012)

18. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 97–106
(2011)

19. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

20. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFS for NC1 from LWE.
In: Eurocrypt (2017)

21. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 27

22. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

https://eprint.iacr.org/2016/361.pdf
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://eprint.iacr.org/2015/163
http://eprint.iacr.org/2015/163
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/11818175_17
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1

204 S. Agrawal and A. Rosen

23. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 20

24. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for ntru problems and cryptanalysis
of the ggh multilinear map without a low level encoding of zero. Eprint 2016/139

25. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Proceedings of 8th International Conference on IMA, pp. 360–363 (2001)

26. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new mmap attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 12

27. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

28. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-76900-2 31

29. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002). doi:10.1007/3-540-46035-7 5

30. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

31. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013). http://eprint.iacr.org/

32. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 27

33. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. In: IACR Cryptology ePrint Archive, p. 666 (2014). http://
eprint.iacr.org/2014/666

34. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 20

35. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

36. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ITCS (2010)

37. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555–
564 (2013)

38. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28914-9 32

http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-540-76900-2_31
http://dx.doi.org/10.1007/3-540-46035-7_5
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/666
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-642-28914-9_32

Functional Encryption for Bounded Collusions, Revisited 205

39. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 11

40. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for cir-
cuits. In: STOC (2013)

41. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 25

42. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

43. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 21

44. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). doi:10.1007/3-540-45465-9 22

45. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

46. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

47. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

48. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007). Extended abstract in FOCS
2004

49. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53008-5 22

50. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005 (Extended Abstract), J. ACM 56(6) (2009)

51. Sahai, A., Seyalioglu, H.: Worry-free encryption: Functional encryption with public
keys. In: Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, CCS 2010 (2010)

52. Sahai, A., Waters, B.: Functional encryption: beyond public key cryptogra-
phy. Power Point Presentation (2008). http://userweb.cs.utexas.edu/bwaters/
presentations/files/functional.ppt

53. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

54. Waters, B.: Functional encryption for regular languages. In: Crypto (2012)

http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://userweb.cs.utexas.edu/bwaters/presentations/files/functional.ppt
http://userweb.cs.utexas.edu/bwaters/presentations/files/functional.ppt
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27

Attribute-Hiding Predicate Encryption
in Bilinear Groups, Revisited

Hoeteck Wee(B)

CNRS and ENS, Paris, France
wee@di.ens.fr

Abstract. We present new techniques for achieving strong attribute-
hiding in prime-order bilinear groups under the standard k-Linear
assumption. Our main result is a “partially hiding” predicate encryp-
tion scheme for functions that compute an arithmetic branching pro-
gram on public attributes, followed by an inner product predicate on pri-
vate attributes. This constitutes the first “best of both worlds” result in
bilinear groups that simultaneously generalizes existing attribute-based
encryption schemes and inner product predicate encryption. Our scheme
achieves a variant of simulation-based security in the semi-adaptive set-
ting. Along the way, we introduce a conceptually simpler and more mod-
ular approach towards achieving the strong attribute-hiding guarantee.

1 Introduction

Predicate encryption is a novel paradigm for public-key encryption that enables
both fine-grained access control and selective computation on encrypted data
[12,23,26,34]. In a predicate encryption scheme, ciphertexts are associated with
descriptive attributes x and a plaintext M , secret keys are associated with
boolean functions f , and a secret key decrypts the ciphertext to recover M
if f(x) is true, corresponding to a so-called authorized key. The most basic secu-
rity guarantee for predicate encryption stipulates that M should remain private
if f(x) is false. A stronger security guarantee is attribute-hiding, which stipu-
lates that the attribute x remains hidden apart from leaking whether f(x) is
true or false and it comes in two flavors: (i) weak attribute-hiding which guaran-
tees privacy of x provided the adversary only gets unauthorized keys for which
f(x) is false; and (ii) strong attribute-hiding where the adversary can get both
authorized and unauthorized keys. Henceforth, we use attribute-based encryp-
tion (ABE) to refer to schemes which only satisfy the basic guarantee, and reserve
predicate encryption for schemes which are attribute-hiding.1 Throughout, we

H. Wee—INRIA and Columbia University. Supported in part by ERC Project
aSCEND (H2020 639554) and NSF Award CNS-1445424.

1 Some early works around 2010–2011 use functional encryption (FE) to refer to ABE.
Some more recent works also use predicate encryption to refer to ABE. For instance,
we clarify here that the OT10 “KP-FE Scheme” in [29] for boolean formula with
inner product gates is in fact an ABE and does not provide any attribute-hiding
guarantee.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 206–233, 2017.
https://doi.org/10.1007/978-3-319-70500-2_8

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 207

also require that the keys are resilient to collusion attacks, namely any group
of users holding different secret keys learns nothing beyond what each of them
could individually learn.

Over the past decade, tremendous progress has been made towards realizing
expressive ABE and weak attribute-hiding predicate encryption [14,21–23,25,
29]; along the way, we developed extremely powerful techniques for building
these primitives under standard assumptions in bilinear groups and lattices.
However, much less is known for strong attribute-hiding predicate encryption
schemes: the only examples we have are for very simple functionalities related
to the inner product predicate [12,26,31,32], and we only have instantiations
from bilinear groups. And for the more important setting of prime-order bilinear
groups, the only instantiations are the works of Okamoto and Takashima [31,32].

There is good reason why strong attribute-hiding predicate encryption
schemes, even in the simpler selective setting, are so elusive. The security defini-
tion requires that we reason about an adversary that gets hold of authorized keys,
something that is forbidden for both ABE (even adaptively secure ones) and for
weak attribute-hiding, and which we do not have a good grasp of. Moreover,
we now know that strong attribute-hiding for sufficiently expressive predicates,
namely NC1, imply indistinguishability obfuscation for circuits, the new holy
grail of cryptography [6,10,20]. For this, selective security already suffices; in
any case, there is a generic transformation from selective to adaptive security
for this class [7].

1.1 Our Contributions

We present new techniques for achieving strong attribute-hiding in prime-order
bilinear groups under the standard k-Linear assumption. We achieve a variant of
simulation-based security in a semi-adaptive setting [17], the latter a strength-
ening of selective security where the adversary can choose its encryption chal-
lenge after seeing mpk. We proceed to describe the new schemes that we obtain
using these techniques, and then our new approach and techniques for strong
attribute-hiding.

New Schemes. Our main result is a “partially hiding” predicate encryption
(PHPE) scheme that compute an arithmetic branching program (ABP) on public
attributes x, followed by an inner product predicate on private attributes z. This
simultaneously generalizes ABE for boolean formula and ABPs and attribute-
hiding predicate encryption for inner product. This means that we can support
richer variants of prior applications captured by inner product predicate encryp-
tion, as we can support more complex pre-processing on public attributes before
a simple computation on private attributes; see Sect. 4.1 for some concrete exam-
ples. Our result constitutes one of the most expressive classes we have to date for
predicate encryption based on static assumptions in bilinear groups. See Fig. 1
for a comparison of our results with prior works in the context of expressiveness.

Our scheme achieves simulation-based security, but with respect to an
unbounded simulator [4] (which is nonetheless still a strengthening of

208 H. Wee

indistinguishability-based security). Prior results for inner product predicate
encryption in [26,31,32] only achieve indistinguishability-based security. Our
scheme also enjoys short ciphertexts whose size grows linearly with the total
length of the attributes (as with prior selectively secure ABE for boolean for-
mula and branching programs [23,25]) but independent of the size of f .

Along the way, we also obtain the following additional results:

– A scheme for inner product functional encryption –where ciphertexts and
keys are associated with vectors z,y and decryption recovers 〈z,y〉, pro-
vided the value falls in a polynomially bounded domain [1]– that achieves
simulation-based security (cf. AppendixB). Prior works like [1,5] only achieve
indistinguishability-based security, and in fact, our scheme is essentially the
same as the adaptively secure scheme in [5] (our techniques can also be
extended to yield a slightly different proof of adaptive security). This scheme
has already been used as a building block for a multi-input functional encryp-
tion scheme (MIFE) for the inner product functionality based on the k-Linear
assumption in prime-order bilinear groups [2].

– A simple and direct construction of a strongly attribute-hiding inner product
predicate encryption scheme with constant-size keys (cf. Sect. 5.1). The previ-
ous prime-order schemes with constant-size keys in [31,32] are fairly complex:
they start with a scheme with linear-size keys, and then use carefully crafted
subgroups of sparse matrices [30] to compress the keys.

Our Approach. We introduce a conceptually simpler and more modular app-
roach towards achieving the strong attribute-hiding guarantee. In particular,
we deviate from the “two parallel sub-systems” paradigm introduced in [26] (cf.
Sect. 4.3) and used in all subsequent works on inner product predicate encryption
[31,32].

The main challenge in designing and proving security of strongly attribute-
hiding predicate encryption schemes is that the following two invariants must be
satisfied throughout the proof of security: (1) all secret keys (including simulated
ones) must satisfy decryption correctness with respect to freshly and honestly
generated ciphertexts; and (2) authorized secret keys must correctly decrypt the
challenge ciphertext. Note that (1) already arises in ABE, whereas (2) does not.

To overcome this challenge, we follow a “private-key to public-key” paradigm
[11,18,27,36], which in turn builds on Waters’ dual system encryption method-
ology [28,35], introduced in the context of adaptively secure ABE. That is, we
will start by building a private-key scheme where encryption requires the pri-
vate key msk, and for security, the adversary gets a single ciphertext and no
mpk, but an unbounded number of secret keys, and then provide a “compiler”
from the private-key scheme to a public-key one. The advantage of working with
a private-key scheme is that we need not worry about satisfying the first invari-
ant, since an adversary cannot generate ciphertexts by itself in the private-key
setting. Roughly speaking, the first invariant would be handled by the compiler,
which ensures that if decryption correctness holds for honestly generated keys

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 209

in the private-key scheme, then decryption correctness holds for both honestly
generated and simulated keys in the public-key scheme.

In the case of building ABE schemes or weak attribute-hiding schemes as in
prior works, then we are basically done at this point, since the security game
does not allow the adversary access to authorized keys, and the second invariant
is moot. Indeed, the main conceptual and technical novelty of this work lies in
combining prior compilers with a new analysis to handle the second invariant.

The Compiler and Our Analysis. We proceed to describe the compiler
and our analysis in a bit more detail. The compiler relies on the k-Linear
(and more generally MDDH assumption) in prime-order groups, which says that(
[A], [As]

) ≈c

(
[A], [c]

)
, where A ←R Z

k×(k + 1)
q , s ←R Z

k
q , c ←R Z

k + 1
q , and

[·] corresponds to exponentiation.
Suppose we have a private-key scheme where the private key is given by

w1, . . . , wn ∈ Zq. We require that encryption and key generation be linear with
respect to the private key. As with prior compilers, the private key in the “com-
piled” public-key scheme is given by vectors w1, . . . ,wn ∈ Z

k + 1
q and the public

key is given by:

mpk := [A], [A�w1], . . . , [A�wn]

The new ciphertexts and secret keys are defined as follows:

– Encryption now samples s ←R Z
k
q and the new ciphertext is essentially the

original ciphertext with [s�A�w1], . . . , [s�A�wn] as the private key, along
with [As]. For instance, if the original ciphertext was 2w1 + w2 ∈ Zq, then
the new ciphertext is [As], [s�A�(2w1 + w2)].

– Key generation outputs the original secret key with w1, . . . ,wn as the private
key. For instance, if the original secret key was w1 + 2w2 ∈ Zq, then the new
secret key is w1 + 2w2 ∈ Z

k
q .

The first step in the security proof is to use the MDDH assumption to replace
[As] in the challenge ciphertext with [c] where c ← Z

k + 1
q . Now, the challenge

ciphertext is a ciphertext in the private-key scheme with

msk∗ := ([c�w1], . . . , [c�wn])

as the private key. A key observation is that given mpk, the private key msk∗

is completely random, since A, c are linearly independent and forms a full basis
(with overwhelming probability). We can then leverage the security of the under-
lying private-key scheme with msk∗ as the private key.

What we have done so far is similar to prior works (e.g. [11,18,27]) and this
is where the difference begins. Given a secret key sk in the new scheme (think
of it as a column vector over Zq), we define:

(sk1, sk2) = (A�sk, c�sk)

210 H. Wee

Since A, c form a full basis, we have that (sk1, sk2) completely determine
sk (a weaker statement, for instance, already suffices for the ABE schemes in
[18]2) and it is essentially sufficient to reason about sk1, sk2. We observe that by
linearity:

– sk1 is a secret key in the private-key scheme with A�w1, . . . ,A�wn as the
private key, and is therefore completely determined given mpk. This means
that the adversary learns nothing given sk1 beyond what it already learns
from mpk.

– sk2 is a secret key in the private-key scheme with c�w1, . . . , c�wn (i.e., msk∗)
as the private key.

That is, the view of the adversary given challenge ciphertext together with sk2

is essentially the same as the view of the adversary in the private-key scheme
with msk∗ as the private key! Therefore, we may then deduce the security of the
compiled public-key scheme from the security of the original private-key scheme.
In particular,

– if the original private-key scheme achieves selective security for a single chal-
lenge ciphertext and many secret keys, then the ensuing public-key scheme
achieves semi-adaptive security with many secret keys. (The strengthening
from selective to semi-adaptive comes from the fact that msk∗ is completely
hidden given mpk.)

– if the original private-key scheme achieves simulation-based security, then the
ensuing public-key scheme also achieves simulation-based security.

Building Private-Key Schemes. To complete the construction, we provide
a brief overview of the corresponding private-key schemes achieving selective
security for a single challenge ciphertext and many secret keys; we refer the
reader to Sect. 2 for a more detailed technical overview.

As it turns out, the private-key scheme for inner product functional encryp-
tion is fairly straight-forward and can be realized unconditionally. Here, the
ciphertext is associated with a vector z ∈ Z

n
q , and the secret key with a vector

y ∈ Z
n
q , and decryption recovers 〈z,y〉:

msk := w ←R Z
n
q , ct := w + z, sky := 〈w,y〉

The private-key scheme for inner product predicate encryption requires DDH in
cyclic groups (without pairings) in order to (computationally) hide the value of
2 Consider ABE in composite-order groups of order p1p2. It is sufficient to show that

the p2-component of the encapsulated key accompanying the challenge ciphertext is
completely hidden in the final hybrid, since we can always hash the encapsulated
key, even if the p1-component is completely leaked. In the case of strong attribute-
hiding predicate encryption, it is not okay to leak the private attribute modulo p1,
even if the p2-component is completely hidden. For this reason, we need to ensure
that there is no leakage in sk beyond sk1, sk2, which means that sk1, sk2 need to
completely determine sk.

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 211

〈z,y〉 beyond whether it is zero or non-zero. Together, these partially explain why
in the public-key setting, the former does not require pairings whereas the latter
does and why constructions for the former are much simpler (cf. [1] vs [26]).

The private-key scheme for the class FABP◦IP of functions considered in our
main result, namely an arithmetic branching program on public attributes, fol-
lowed by an inner product predicate on private attribute, is more involved.
We briefly mention that our private-key scheme builds upon the information-
theoretic “partial” garbling schemes for FABP◦IP in [25]. Our construction exploits
the fact that for, these schemes enjoy so-called linear reconstruction (analogous
to linear reconstruction for secret-sharing schemes). Using these partial garbling
schemes, it is easy to build a private-key scheme for FABP◦IP that is uncondi-
tionally secure for a single ciphertext and a single secret key, but where the
ciphertext size grows with the size of the function (or alternatively, if we impose
a read-once condition where each attribute variable appears once in the func-
tion). We then rely on the DDH assumption to (i) compress the ciphertext [3,17]
so that it is linear in the length of the attribute rather than the size of the func-
tion, and (ii) to achieve security against many secret keys. To abstract some of
these technical issues, we present a somewhat modular approach by appealing to
a notion similar to “pair encodings” [3,8] developed in the context of adaptively
secure ABE; see Sect. 4.

Fig. 1. Comparison amongst attribute-based and predicate encryption over bilinear
groups. Recall that arithmetic branching programs (ABP) simultaneously generalize
boolean and arithmetic formulas and branching programs with a small constant blow-
up in representation size.

212 H. Wee

1.2 Discussion

On Simulation-Based Security. There are now several results ruling out
simulation-based predicate encryption [4,13,33], but none of which applies to
the selective or semi-adaptive setting with a single ciphertext and unbounded
secret key queries, as considered in this work. De Caro et al. [15] gave a feasibility
result for all circuits in this setting, but under non-standard assumptions. Our
work is the first to achieve simulation-based security in this setting for a non-
trivial class of functions under standard cryptographic assumptions.

Perspective. Our (admittedly subjective) perspective is that developing strong
attribute-hiding techniques from lattices is a promising route towards basing
indistinguishability obfuscation on well-understood cryptographic assumptions.
As a first small step towards this goal, we believe (again, admittedly subjective)
that it would be useful to gain a better grasp of strongly attribute-hiding tech-
niques in prime-order bilinear groups that work with vectors and matrices of
group elements, with a minimal requirement on orthogonality relations amongst
these vectors; indeed, this is the case for the schemes in this work (which rely
on the “associative relation” framework introduced in [16,18]), but not for the
prior works based on dual vector pairing spaces.

Open Problems. We conclude with a number of open problems:

– Our work clarifies functional encryption for linear functions as studied in
[1,5] – the reason why this is much easier than inner product predicate is
that it is very easy to construct a private-key scheme that is information-
theoretically secure against unbounded number of secret key queries. This
raises a number of questions pertaining to quadratic functions: (1) Is there
a private-key functional encryption scheme for quadratic functions that is
information-theoretically secure with a single ciphertext and an unbounded
number of secret keys? (2) Can we construct public-key schemes for quadratic
functions in to achieve either semi-adaptive or simulation-based security in the
standard model? Note that the construction in [9] follows a “two parallel sub-
systems” strategy where two copies of the selective challenge are embedded
into the public key.

– Can we construct partial garbling schemes with linear reconstruction for func-
tions outside of FABP◦IP? It is easy to see that for linear reconstruction, we
can only support degree one computation in the private input, so we cannot
hope to extend substantially beyond FABP◦IP.

– Can we construct PHPE schemes for FABP◦IP that are adaptively secure under
standard assumptions (extending [31])? A first step would be to make the
private-key scheme adaptively secure.

2 Detailed Technical Overview

We provide a more detailed technical overview in this section for the inner prod-
uct functional and predicate encryption schemes.

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 213

Notation. Throughout, we fix a pairing group (G1,G2,GT) with e : G1 × G2 →
GT of prime order q, and rely on implicit representation notation for group
elements: for fixed generators g1 and g2 of G1 and G2, respectively, and for a
matrix M over Zq, we define [M]1 := gM1 and [M]2 := gM2 , where exponentiation
is carried out component-wise. In addition, we will rely on the k-Linear (and more
generally MDDH assumption) which says that

(
[A]1, [As]1

) ≈c

(
[A]1, [c]1

)
,

where A ← Dk, s ←R Z
k
q , c ←R Z

k + 1
q .

2.1 Inner Product Functional Encryption

For the inner product functional encryption, the ciphertext is associated with a
vector z ∈ Z

n
q , and the secret key with a vector y ∈ Z

n
q , and decryption recovers

〈z,y〉, provided the value falls in a polynomially bounded domain.

Private-Key Variant. We present a private-key scheme where the ciphertexts
and secret keys are over Zq and which achieves information-theoretic security
(for a single challenge ciphertext and many secret keys):

msk :=w ←R Z
n
q

ct :=w + z

sky := 〈w,y〉
Decryption simply returns 〈ct,y〉 − sky.

For security, fix the selective challenge z∗. The simulator picks w̃ ←R Z
n
q

uniformly at random, and program

w̃ = w + z∗

Then, we can rewrite ct, sky in terms of w̃ as

ct = w̃, sky = 〈w̃,y〉 − 〈z∗,y〉
It is clear that we can simulate an unbounded number of sky given just w̃,y

and the output of the ideal functionality 〈z∗,y〉.

The Actual Scheme. To transform the warm-up scheme into one that remains
secure even if the adversary sees mpk, we apply the “compiler” described in
Sect. 1.1 where we replace w ∈ Z

n
q with a matrix W ∈ Z

(k + 1) × n
q , upon which

we arrive at the following public-key scheme:

msk :=W ←R Z
(k + 1) × n
q

mpk :=
(
[A]1, [A�W]1

)

ct :=
(
[s�A�]1, [s�A�W + z�]1

)

sky :=Wy

Decryption computes [〈z,y〉]1 = [(s�A�W + z�)y]1 · ([s�A�Wy])−1 and uses
brute-force discrete log to recover 〈z,y〉 as in [1]. We refer to AppendixB for the
security proof.

214 H. Wee

On Adaptive Security. As alluded to in the introduction, the same proof
plus one small observation essentially yields indistinguishability-based adaptive
security as shown in [5] with a somewhat different argument (the approach
here was used in the follow-up work [2]). Observe that the private-key scheme
achieves perfect indistinguishability-based security in the selective setting (as
implied by perfect simulation-based security); by complexity leveraging, this
implies indistinguishability-based security in the adaptive setting. Moreover, it
is straight-forward to verify that the adaptive security is preserved by the “com-
piler” since the use of the MDDH Assumption in the first step to switch [As]1
to [c]1 is oblivious to selective vs adaptive security.

2.2 Inner Product Predicate Encryption

We define predicate encryption in the framework of key encapsulation. For the
inner product predicate, the ciphertext is associated with a vector z, and the
secret key with a vector y, and decryption is possible iff 〈z,y〉 = 0. In particular,
decryption only leaks the predicate 〈z,y〉 ?= 0 and not the exact value of 〈z,y〉.

Private-Key Variant. We present a private-key scheme where the ciphertexts
are over Zq and secret keys are over G2 and which achieves simulation-based
security under the DDH assumption in G2. Roughly speaking, we start with
the inner product functional encryption scheme, with an additional u in the
ciphertext (i.e. uz + w instead of z + w) to hide any leakage beyond 〈z,y〉 ?= 0;
this would already be secure if there was only one secret key (since we cannot
reuse the masking factor u). To achieve security against unbounded number of
secret keys, we randomize the secret keys and rely on the DDH assumption.

msk :=
(
u,w, κ

) ←R Zq × Z
n
q × Zq

(ct, kem) :=
(
uz + w, [κ]2

)

sky :=
(
[κ − 〈w,y〉r]2, [r]2

)
, r ←R Zq

Decryption recovers

[

(κ − 〈w,y〉r) + 〈uz+w,y〉r
︷ ︸︸ ︷
κ + ur〈z,y〉]2,

which equals [κ]2 when 〈z,y〉 = 0 and uniformly random otherwise.
For security, fix the selective challenge z∗. The simulator picks w̃ ←R Z

n
q

uniformly at random, and program

w̃ = uz∗ + w

Then, we can rewrite ct, sky in terms of w̃ as

ct = w̃

sky =
(
[κ + ur〈z∗,y〉 − 〈w̃,y〉r]2, [r]2

)

≈c

(
[κ + δ 〈z∗,y〉 − 〈w̃,y〉r]2, [r]2

)
, δ ←R Zq

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 215

where we applied the DDH assumption to replace ([ur]2, [r]2) with ([δ]2, [r]2).
Now, we can easily simulate sky given κ+ δ〈z∗,y〉 (which we can easily simulate
given the output from the ideal functionality) along with y, w̃.

To achieve security under the k-Lin assumption, we replace u, r with u, r ←R

Z
k
q , as well as w with w1, . . . ,wn ←R Z

k
q . For the public-key variant, we then

end up replacing u with U ←R Z
(k + 1) × k
q , w with W1, . . . ,Wn ←R Z

(k + 1) × k
q ,

and κ with κ ←R Z
k + 1
q .

3 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout, we use 1λ as the security parameter. We use lower case
boldface to denote (column) vectors and upper case boldcase to denote matrices.
We use ≡ to denote two distributions being identically distributed.

Arithmetic Branching Programs. A branching program is defined by a
directed acyclic graph (V,E), two special vertices v0, v1 ∈ V and a labeling
function φ. A arithmetic branching program (ABP), where q ≥ 2 is a prime
power, computes a function f : Fn′

q → Fq. Here, φ assigns to each edge in E an
affine function in some input variable or a constant, and f(x) is the sum over all
v0-v1 paths of the product of all the values along the path. We refer to |V |+ |E|
as the size of Γ.

We note that there is a linear-time algorithm that converts any boolean for-
mula, boolean branching program or arithmetic formula to an arithmetic branch-
ing program with a constant blow-up in the representation size. Thus, ABPs can
be viewed as a stronger computational model than all of the above. Recall also
that branching programs and boolean formulas correspond to the complexity
classes LOGSPACE and NC1 respectively.

3.1 Cryptographic Assumptions

We follow the notation and algebraic framework for Diffie-Hellman-like assump-
tions in [19]. We fix a pairing group (G1,G2,GT) with e : G1 × G2 → GT of
prime order q, where q is a prime of Θ(λ) bits.

k-Linear and MDDH Assumptions. The k-Linear Assumption in G1 –more
generally, the Matrix Decisional Diffie-Hellman (MDDH) Assumption– specifies
an efficiently samplable distribution Dk over full-rank matrices in Z

(k + 1) × k
q ,

and asserts that

(
[A]1, [As]1

) ≈c

(
[A]1, [c]1

)

216 H. Wee

where A ← Dk, s ←R Z
k
q , c ←R Z

k + 1
q . We use Advmddh

G1,A(λ) to denote the distin-
guishing advantage of an adversary A for the above distributions, and we define
Advmddh

G2,A(λ) analogously for G2. For the k-Linear assumption, the distribution
Dk is given by

⎛

⎜
⎜
⎝

1 1 1 ... 1
a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 0

.

.

.
. . .

. . .
0 0 0 ... ak

⎞

⎟
⎟
⎠

where a1, . . . , ak ←R Z
∗
q . Another example of Dk is the uniform distribution over

full-rank matrices in Z
(k + 1) × k
q .

3.2 Partially Hiding Predicate Encryption

We define PHPE for arithmetic functionalities with non-boolean output, in the
framework of key encapsulation. Following [14,22,26], we associate = 0 with
being true, and
= 0 with being false.

Syntax. A partially-hiding predicate encryption (PHPE) scheme for a family
F = {f : Zn′

q ×Z
n
q → Zq} consists of four algorithms (setup, enc,keygen,dec):

setup(1λ, 1n′+ n) → (mpk,msk). The setup algorithm gets as input the security
parameter λ and the attribute length n′+n and outputs the public parameter
mpk, and the master key msk. All the other algorithms get mpk as part of its
input.

enc(mpk, (x, z)) → (ct, kem). The encryption algorithm gets as input mpk, an
attribute (x, z) ∈ Z

n′
q × Z

n
q . It outputs a ciphertext ct and a symmetric-key

kem ∈ M.
keygen(msk, f) → skf . The key generation algorithm gets as input msk and a

function f ∈ F. It outputs a secret key skf .
dec((skf , f), (ct, x)) → kem. The decryption algorithm gets as input skf and ct,

along with f and x. It outputs a symmetric key kem.

For notational simplicity, we often write dec(skf , ct) and omit the inputs f, x
to dec. Alternatively, we can think of x and f as part of the descriptions of ct
and skf respectively.

Correctness. We require that for all (x, z) ∈ Z
n′
q × Z

n
q , f ∈ F and for all

(mpk,msk) ← setup(1λ, 1n′
) and skf ← keygen(msk, f),

– (authorized) if f(x, z) = 0, then Pr[(ct, kem) ← enc(mpk, (x, z));dec((skf ,
f), ct) = kem] = 1;

– (unauthorized) if f(x, z)
= 0, then dec((skf , f), ct) is uniformly distributed
over M, where (ct, kem) ← enc(mpk, (x, z)).

where both probability distributions are taken over the coins of enc.

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 217

Security Definition. The security definition for semi-adaptively partially
(strong) attribute-hiding stipulates that there exists a randomized simulator
(setup∗, enc∗,keygen∗) such that for every efficient stateful adversary A,

⎡
⎢⎢⎢⎣

(mpk,msk) ← setup(1λ, 1n′
);

(x∗, z∗) ← A(mpk);

(ct, kem) ← enc(mpk, (x∗, z∗));
output Akeygen(msk,·)(mpk, ct, kem);

⎤
⎥⎥⎥⎦ ≈c

⎡
⎢⎢⎢⎣

(mpk,msk∗) ← setup∗(1λ, 1n′
);

(x∗, z∗) ← A(mpk);

ct ← enc∗(msk∗, x∗); kem ←R M;

output Akeygen∗(msk∗,x∗,·,·)(mpk, ct, kem);

⎤
⎥⎥⎥⎦

such that whenever A makes a query f to keygen, the simulator keygen∗ gets
f along with

– kem if f is authorized (i.e., f(x∗, z∗) = 0), and
– ⊥ if f is unauthorized (i.e., f(x∗, z∗)
= 0), and

Remark 1 (security definition). Note that the security definition is the straight-
forward adaptation of strongly attribute-hiding from [12,26,32] to PHPE,
in the semi-adaptive setting. This simulation-based definition implies the
indistinguishability-based formulation of strongly attribute-hiding. Also, work-
ing with key encapsulation simplifies the security definition, since the adversary
may as well receive the challenge ciphertext before making any secret key queries
(indeed, this phenomenon was first noted in the context of CCA security).

4 FABP◦IP and Encodings

In this section, we formally describe the class FABP◦IP which our PHPE supports,
as well as the encoding algorithm rEf used in the PHPE scheme. Throughout,
we work over Zq where q is prime.

4.1 The Class FABP◦IP

We consider the class

FABP◦IP =
{

f : Zn′
q × Z

n
q → Zq

}

where f on input x = (x1, . . . , xn′) ∈ Z
n′
q and z = (z1, . . . , zn) ∈ Z

n
q outputs

f1(x)z1 + · · · + fn(x)zn

where f1, . . . , fn : Zn′
q → Zq are ABPs which are part of the description of f .

We should think of x as the “public attribute”, and z as the “private attribute”.
We will also use m to denote the ABP size of f , which is the total number of
edges and vertices in the underlying DAG.

218 H. Wee

Fig. 2. Examples of functions in FABP◦IP

Examples. It is clear that FABP◦IP contains both standard branching programs
with public attributes by setting n = 1, z1 = 1, as well as inner product with
private attributes by setting n′ = 0 and f1, . . . , fn to output constants y1, . . . , yn.
We refer to Fig. 2 for additional examples.

Next, we outline two concrete examples of new functionalities captured by
our PHPE for FABP◦IP:

– conjunctive comparison predicates [12, Sect. 3.1]: secret keys are associated
with boolean functions Pa1,...,an

that compute

Pa1,...,an
(z1, . . . , zn) =

n∧

i = 1

(zi ≥ ai)

Here, the ai’s and zi’s lie in polynomial-size domains. With inner product
predicate encryption, a1, . . . , an are fixed constants that are specified in the
secret key. With PHPE for FABP◦IP, we can carry out more complex compu-
tation where a1, . . . , an are derived as the output of an ABP computation on
public ciphertext attribute x. (Fixed a1, . . . , an are a special case since we
can have ABPs that ignore x and output the fixed constant.)

– polynomial evaluation [26, Sect. 5.3]: secret keys are associated with polyno-
mials in z of degree less than n. With inner product predicate encryption,
the coefficients of the polynomial are fixed constants that are specified in the
secret key. With PHPE for FABP◦IP, we may derive the coefficients as the
output of an ABP computation on public ciphertext attribute x.

4.2 Encodings rEf for FABP◦IP

Suppose we want to build a private-key PHPE for FABP◦IP secure against a
single ciphertext and a single secret key. Our ciphertext corresponding to public
attribute x ∈ Z

n′
q and private attribute z ∈ Z

n
q will be of the form:

{
u′

jxi + v′
ij

}
i∈[n′],j∈[m]

,
{

zi + w′
i

}
i∈[n]

where u′
j , v

′
ij , w

′
i are part of the private key. In particular, the ciphertext size

grows linearly with n′ +n and is independent of the function f ∈ FABP◦IP. Then,

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 219

we can think of the output of rEf as a secret key for f that combined with the
ciphertext, allows us to learn κ + f(x, z), where κ is the “master secret key”
which is used to mask the plaintext.

The Encoding rEf . We require a randomized algorithm rEf parameterized
by a function f ∈ FABP◦IP that takes as input

κ,
{

w′
i

}
i∈[n]

,
{

u′
j

}
j∈[m]

,
{

v′
ij

}
i∈[n′],j∈[m]

∈ Zq,

along randomness t ←R Z
m + n
q , which satisfies the following properties:

– linearity: rEf computes a linear function of its inputs and randomness over
Zq;

– reconstruction: there exists an efficient algorithm rec that on input

f, x, rEf

(
κ,

{
w′

i

}
i∈[n]

,
{

u′
j

}
j∈[m]

,
{

v′
ij

}
i∈[n′],j∈[m]

; t
)
,

{
u′

jxi + v′
ij

}
i∈[n′],j∈[m]

,
{

zi + w′
i

}
i∈[n]

outputs κ + f(x, z). This holds for all f,x, z, κ, t. Moreover, rec(f,x, ·) com-
putes a linear function of the remaining inputs.

– privacy: there exists an efficient simulator sim such that for all f,x, z, κ, the
output of sim(f,x, κ + f(x, z)) is identically distributed to that of

rEf

(
κ,

{ −zi

}
i∈[n]

,
{

δj

}
j∈[m]

,
{ −δjxi

}
i∈[n′],j∈[m]

; t
)
,

where
{

δj ←R Zq

}
j∈[m]

, t ←R Z
m + n
q are random.

We defer the description of the algorithm to AppendixA, which builds upon
the “partial garbling scheme” for FABP◦IP from [24,25] in a somewhat straight-
forward manner.

Extension to Vectors. In the scheme, we will run rEf with vectors instead
of scalars as inputs, by applying rEf to each coordinate. That is, rEf takes as
input

κ,
{
w′

i

}
i∈[n]

,
{
u′

j

}
j∈[m]

,
{
v′

ij

}
i∈[n′],j∈[m]

∈ Z
k
q ,

along randomness T ←R Z
k×(m + n)
q , and outputs

(
κ + τ ,

{
σi − w′

i

}
i∈[n]

,
{

βj + u′
j , γj + v′

ρ(j)j

}
j∈[m]

)
∈ Z

k×(1 + n + m)
q

The first row of the output is obtained by applying rEf to the first coordi-
nate/row of each input, etc. Linearity (as captured by left-multiplication by
a matrix) is clearly preserved, whereas we will only invoke reconstruction and
privacy for scalar inputs.

220 H. Wee

5 Our PHPE Construction

In this section, we present our partially-hiding predicate encryption scheme for
the class

FABP◦IP =
{

f : Zn′
q × Z

n
q → Zq

}

defined in Sect. 4. We also fix a pairing group (G1,G2,GT) with e : G1×G2 → GT

of prime order q.

5.1 Warm-Up I: Inner Product Predicate, i.e. n′ = 0

As a warm-up, we sketch the scheme and the proof for inner product predicate
encryption, corresponding to the special case:

n′ = 0, fy(z) = 〈y, z〉, rEf

(
κ,wr0, . . .

)
= κ − 〈wr0,y〉.

That is, the ciphertext is associated with a vector z, and the secret key with a
vector y, and decryption is possible iff 〈z,y〉 = 0. We refer the reader to the
private-key variant in Sect. 2.2.

The scheme. The scheme is as follows:

msk :=
(
U,W1, . . . ,Wn,κ

) ←R Z
(k + 1) × k
q × · · · × Z

(k + 1) × k
q × Z

k + 1
q

mpk :=
(
[A]1, [A�U]1,

{
[A�Wi]

}
i∈[n′], [A

�κ]T
)

(ct, kem) :=
((

[s�A�]1,
{

[s�A�(ziU + Wi)]1
}

i∈[n]

)
, [s�A�κ]T

)

sky :=
(
[κ −

n∑

i = 1

yiWir]2, [r]2
)
, r ←R Z

k
q

Decryption relies on the fact that whenever 〈z,y〉 = 0, we have

s�A� · (κ −
n∑

i = 1

yiWir) +
n∑

i = 1

yi · (s�A�(ziU + Wi)) · r = s�A�κ

Proof sketch. The proof of security follows a series of games:

Game 1. Switch (ct, kem) to
((

[c�]1,
{

[c�(ziU + Wi)]1
}

i∈[n]

)
, [c�κ]T

)

where c ←R Z
k + 1
q . That is, we used the MDDH assumption in G1 to replace

[As]1 with [c]1.

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 221

Game 2. Given the semi-adaptive challenge z∗, the simulator picks W̃i ←R

Z
(k + 1) × k
q , ŝ ←R Z

k
q , and programs

c�U = ŝ�, W̃i = Wi + z∗
i a

⊥ŝ�

where a⊥ ∈ Z
k + 1
q satisfies A�a⊥ = 0, c�a⊥ = 1. Note that A�Wi = A�W̃i,

which allows us to program z∗
i into W̃i even though z∗

i is chosen after the
adversary sees mpk. This parallels the step in the private-key variant where
we program w̃ = uw + z∗. Now, we can rewrite (ct, kem) and sky as

(ct, kem) :=
((

[c�]1,
{

[c�W̃i]1
}

i∈[n]

)
, [c�κ]T

)

sky :=
(
[κ + 〈z∗,y〉a⊥ŝ�r −

n∑

i = 1

yiW̃ir]2, [r]2
)

Game 3. We use the MDDH assumption in G2 to replace ([ŝ�r]2, [r]2) in sky
with ([δ]2, [r]2): that is, we switch sky to

sky :=
(
[κ + 〈z∗,y〉a⊥ δ −

n∑

i = 1

yiW̃ir]2, [r]2
)
, δ ←R Zq

This parallels the step in the private-key variant where we applied the DDH
assumption to switch ur to δ.

Game 4. To complete the proof, it suffices to show that we can simulate κ +
〈z∗,y〉a⊥δ (and thus sky) given a = c�κ + δ〈z∗,y〉 (which we can simulate
given the output from the ideal functionality). This follows from the fact that
we can compute

[A | c]�(κ + 〈z∗,y〉a⊥δ) =
[
A�κ

a

]

and then invert [A | c].

5.2 Warm-Up II: A Private-Key Scheme

We sketch a private-key PHPE scheme for FABP◦IP where the ciphertexts are over
Zq and secret keys are over G2 and which achieves simulation-based security for
a single challenge ciphertext and many secret keys under the DDH assumption
in G2.

The scheme. The scheme uses the algorithm rEf described in the previous
section.

msk :=
(

u,
{

wi

}
i∈[n],

{
vi

}
i∈[n′], κ

)←R Zq × Z
n
q × Z

n′
q × Zq

(ct, kem) :=
({

uzi + wi

}
i∈[n′],

{
uxi + vi

}
i∈[n], [κ]2

)

skf :=
([

rEf

(
κ,
{

wir0
}
i∈[n],

{
urj

}
j∈[m],

{
virj

}
i∈[n′],j∈[m]; t

)]
2, [r0]2,

{
[rj]2

}
j∈[m]

)

Decryption computes rec “in the exponent” over G2 to recover [κ]2. The proof
is similar to that for the private-key inner product predicate encryption; we omit
the details here since we will directly prove security of the public-key scheme.

222 H. Wee

5.3 Our PHPE Scheme

Our PHPE scheme for FABP◦IP also uses the algorithm rEf described in the
previous section:

setup(1λ, 1n′+n) : pick A ← Dk, U,W1, . . . ,Wn,V1, . . . ,Vn′ ←R

Z
(k + 1)×k
q ,κ ← Z

k + 1
q and output

mpk :=
(

[A]1, [A�U]1,
{

[A�Wi]1
}

i∈[n]
,
{

[A�Vi]1
}

i∈[n′], [A�κ]T
)
,

msk :=
(

κ,U,
{
Wi

}
i∈[n]

,
{
Vi

}
i∈[n′]

)

enc(mpk, (x, z)) : pick s ←R Z
k
q and output

ct :=
(

C0︷ ︸︸ ︷
[s�A�]1,

{
C1,i

︷ ︸︸ ︷
[s�A�(Uzi + Wi)]1

}
i∈[n]

,
{

C2,i
︷ ︸︸ ︷
[s�A�(Uxi + Vi)]1

}
i∈[n′]

)

kem := [s�A�κ]T

keygen(msk, f) : pick r0, r1, . . . , rm ←R Z
k
q , sample T, and output

skf :=
([

rEf

(
κ,
{
Wir0

}
i∈[n],

{
Urj

}
j∈[m],

{
Virj

}
i∈[n′],j∈[m];T

)]
2, [r0]2,

{
[rj]2

}
j∈[m]

)

dec((skf , f), (ct,x)) : parse ct =
(
C0,

{
C1,i

}
i∈[n]

,
{

C2,i

}
i∈[n′]

)
, skf =

(
D0, [r0]2,

{
[rj]2

}
j∈[m]

)
, and output

rec
(
f,x, e(C0,D0),

{
e(C2,i, [rj]2)

}
i∈[n′],j∈[m]

,
{

e(C1,i, [r0]2)
}

i∈[n]

)

where rec is computed “in the exponent” over GT .

5.4 Analysis

Theorem 1. Our PHPE scheme for FABP◦IP described in Sect. 5.3 achieves
simulation-based semi-adaptively partially (strongly) attribute-hiding under the
MDDH assumption in G1 and in G2, with an unbounded simulator.

Note that unbounded simulation as considered in [4] implies (and is therefore
stronger than) indistinguishability-based security.

Correctness. By the linearity and reconstruction properties for rEf , we have

rec
(

C0
︷ ︸︸ ︷

s
�
A ·

D0
︷ ︸︸ ︷
rEf

(
κ, Wir0, Urj , Virj

)
,
{

C2,i
︷ ︸︸ ︷

s
�
A(Uxi+Vi) ·rj

}
i∈[n′],j∈[m],

{

C1,i
︷ ︸︸ ︷

s
�
A(Uzi+Wi) ·r0

}
i∈[n]

)

= rec
(

rEf
(
s
�
Aκ, s

�
AWir0, s

�
AUrj , s

�
AVirj

)
,
(
s
�
A(Uxi + Vi)rj

)
,
(
s
�
A(Uzi + Wi)r0

))

= s
�
Aκ + r0f(x, (s

�
AU)z)

= s
�
Aκ + s

�
AUr0 · f(x, z)

Therefore, dec outputs [s�Aκ]T if f(x, z) = 0 and a uniformly random value in
GT otherwise.

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 223

5.5 Simulator

We start by describing the simulator for our scheme. Fix the semi-adaptive
challenge x∗, z∗. Recall that for a query f to keygen, the simulated keygen∗

gets kem from the ideal functionality if f(x∗, z∗) = 0, and ⊥ otherwise. In the
first case, we assume that keygen∗ gets kem as a value in Zq instead of GT ,
in which case it can be implemented efficiently. Otherwise, we would have an
unbounded simulator (that computes discrete log via brute force) as considered
in [4], which still implies indistinguishability-based security. In fact, to avoid the
case analysis, we assume that the simulator gets kem+ δ0f(z∗, z∗) where a fresh
δ0 ←R Zq is chosen for each f ; it is easy to simulate this quantity given the
output of the ideal functionality.

setup∗(1λ, 1n′+n) : pick A ← Dk, W̃1, . . . ,W̃n, Ṽ1, . . . , Ṽn′ ←R Z
(k + 1) × k
q ,

Ũ ←R Z
k×k
q ,κ ← Z

k + 1
q , c ←R Z

k + 1
q and output

mpk :=
(

[A]1, [A�Ũ]1,
{

[A�W̃i]1
}

i∈[n]
,
{

[A�Ṽi]1
}

i∈[n′], [A�κ]T
)
,

msk∗ :=
(

κ, Ũ,
{
W̃i

}
i∈[n]

,
{
Ṽi

}
i∈[n′], c,C

⊥,a⊥
)

where (A|c)�(C⊥|a⊥) = Ik + 1. In particular, A�a⊥ = 0, c�C⊥ = 0, c�a⊥ =
1.

enc∗(msk∗,x∗) : output

ct :=
(
[c�]1,

{
[c�W̃i]1

}
i∈[n]

,
{

[c�Ṽi]1
}

i∈[n′]

)

kem := [c�κ]T

keygen∗(msk∗,x∗, f, a = c�κ + δ0f(x∗, z∗)) : pick r0, r1, . . . , rm ←R Z
k
q , sam-

ple T, and output

skf :=
([

rEf

(
0,
{
W̃ir0

}
i∈[n]

,
{
C⊥Ũrj

}
j∈[m]

,
{
Ṽirj

}
i∈[n′],j∈[m]

;T
)]

2

+
[
C⊥ · rEf

(
A�κ,0,0,0; T̃

)
+ a⊥ · sim(f,x∗, a)

]
2
, [r0]2,

{
[rj]2

}
j∈[m]

)

5.6 Security Proof

We show that for any adversary A against the scheme, there exist adversaries
A1,A2 whose running times are essentially the same as that of A, such that

AdvphpeA (λ) ≤ Advmddh
G1,A1

(λ) + Advmddh
G2,A2

(λ) + 2−Ω(λ)

We proceed via a series of games and we use Advi to denote the advantage of A
in Game i.

224 H. Wee

Game 0. Real game.

Game 1. We replace [As]1 in enc(mpk, (x∗, z∗)) with [c]1 where c ←R Z
k + 1
q .

That is, the challenge ciphertext is now given by

ct :=
(
[c�]1,

{
[c�(Uz∗

i + Wi)]1
}

i∈[n]
,
{

[c�(Ux∗
i + Vi)]1

}
i∈[n′]

)

kem := [c�κ]T

This follows readily from the MDDH Assumption (cf. Sect. 3.1), so we have

|Adv0 − Adv1| ≤ Advmddh
G1,A1

(λ)

Game 2. We sample ŝ ←R Z
k
q and replace setup, enc with setup∗, enc∗ and

keygen with keygen∗
2 where

keygen∗
2(msk, f,x∗): pick r0, r1, . . . , rm ←R Z

k
q , sample T, and output

skf :=
([

rEf

(
κ,

{
W̃ir0 − z∗

i a
⊥ŝ�r0

}
i∈[n]

,
{
C⊥Ũrj − a⊥ŝ�rj

}
j∈[m]

,

{
Ṽirj − x∗

i a
⊥ŝ�rj

}
i∈[n′],j∈[m]

;T
)]

2
, [r0]2,

{
[rj]2

}
j∈[m]

)

The differences between keygen and keygen∗
2 is that we have replaced occur-

rences of (U,Wi,Vi) with those of (Ũ,W̃i, Ṽi) and introduced additional terms
involving a⊥ and the semi-adaptive challenge x∗, z∗.

The change from Game 1 to Game 2 follows from the following change of
variables which embeds the semi-adaptive challenge into the U,Wi,Vi:

U → C⊥Ũ + a⊥ŝ�

Wi → W̃i − z∗
i a

⊥ŝ�

Vi → Ṽi − x∗
i a

⊥ŝ�

which in particular implies that
(
c�(Uz∗

i + Wi), c�(Ux∗
i + Vi), c�κ

)
=

(
c�W̃i, c�Ṽi, c�κ

)
,

where the LHS corresponds to enc and the RHS to enc∗ and we use the fact
that (A | c)�(C⊥ | a⊥) = Ik + 1.

For semi-adaptive security, we crucially rely on the fact that the terms(
Ũ,A�W̃i,A�Ṽi

)
in mpk in Game 2 only depends on Ũ,W̃i, Ṽi (since

A�a⊥ = 0), which allows us to embed the semi-adaptive challenge even though
it may depend on mpk. Formally, to justify the change of variables, observe that
for all A,C⊥,a⊥, ŝ,x∗, z∗, we have

(
A�U,A�Wi,A�Vi,U,Wi,Vi

)

≡
(
Ũ,A�W̃i,A�Ṽi, Ũ + a⊥ŝ�,W̃i − z∗

i a
⊥ŝ�, Ṽi − x∗

i a
⊥ŝ�

)

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 225

where the distributions are taken over the random choices of U,Wi,Vi,

Ũ,W̃i, Ṽi. Then, by a complexity leveraging argument, we have that the dis-
tributions are identically distributed even if (x∗, z∗) is adaptively chosen after
seeing the first three terms in these distributions, as is the case for semi-adaptive
security. Therefore, we have

Adv1 = Adv2

Game 3. We replace keygen∗
2 with keygen∗

3 where

keygen∗
3(msk, f,x∗): pick r0, r1, . . . , rm ←R Z

k
q , δ0, δ1, . . . , δm ←R Zq,

sample T, and output

skf :=
([

rEf

(
κ,

{
W̃ir0 − z∗

i a
⊥ δ0

}
i∈[n]

,
{
C⊥Ũrj − a⊥ δj

}
j∈[m]

,

{
Ṽirj − x∗

i a
⊥ δj

}
i∈[n′],j∈[m]

;T
)]

2
, [r0]2,

{
[rj]2

}
j∈[m]

)

where the grayed terms indicate the changes from keygen∗
2. This follows from

the MDDH Assumption (cf. Sect. 3.1), which tells us that
(
[ŝ�r0]2, [r0]2,

{
[ŝ�rj]2, [rj]2

}
j∈[m]

) ≈c

(
[δ0]2, [r0]2,

{
[δj]2, [rj]2

}
j∈[m]

)

In fact, this tightly reduces to the MDDH Assumption [19] (think of the con-
catenation of r0, r1, . . . , rm as a uniformly random matrix in Z

k × (m + 1)
q , corre-

sponding to the matrix A� in the original MDDH formulation).
Therefore, we have

|Adv2 − Adv3| ≤ Advmddh
G2,A2

(λ)

Game 4. We replace keygen∗
3 with keygen. By linearity of rEf , we can write

the output of keygen∗
3 as

skf :=
([

rEf

(
0,

{
W̃ir0

}
i∈[n]

,
{
C⊥Ũrj

}
j∈[m]

,
{
Ṽirj

}
i∈[n′],j∈[m]

;0
)]

2

+ rEf

(
κ,

{ −z∗
i a

⊥δ0

}
i∈[n]

,
{ −a⊥δj

}
j∈[m]

,
{ −x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)]

2
,

[r0]2,
{

[rj]2
}

j∈[m]

)

Write T = CT̃+ a⊥t where T̃, t are uniformly random and independent. Then,
again by linearity, we have

A� · rEf

(
κ,
{−z∗

i a
⊥δ0
}

i∈[n]
,
{−a⊥δj

}
j∈[m]

,
{−x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)

= rEf

(
A�κ,0,0,0; T̃

)

c� · rEf

(
κ,
{−z∗

i a
⊥δ0
}

i∈[n]
,
{−a⊥δj

}
j∈[m]

,
{−x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)

= rEf

(
c�κ,

{−z∗
i δ0
}

i∈[n]
,
{−δj

}
j∈[m]

,
{−x∗

i δj

}
i∈[n′],j∈[m]

; t
)

≡ sim(f,x∗, c�κ+ f(x∗, δ0z
∗))

≡ sim(f,x∗, c�κ+ δ0f(x∗, z∗))

226 H. Wee

And therefore,

rEf

(
κ,

{ −z∗
i a

⊥δ0

}
i∈[n]

,
{ −a⊥δj

}
j∈[m]

,
{ −x∗

i a
⊥δj

}
i∈[n′],j∈[m]

;T
)

≡ C⊥ · rEf

(
A�κ,0,0,0; T̃

)
+ a⊥ · sim(f,x∗, c�κ + δ0f(x∗, z∗))

where the latter is exactly as computed in keygen∗. This means

Adv3 = Adv4

Acknowledgments. I would like to thank the anonymous reviewers for helpful feed-
back.

A Instantiating rEf for FABP◦IP

In this section, we present our encoding algorithm rEf .

A.1 Partial Garbling for FABP◦IP

Our encoding algorithm rEf uses as a building block the “partial garbling
scheme” for FABP◦IP from [24,25]. Informally, a partial garbling scheme for each
f ∈ FABP◦IP takes as input as a secret κ along with (x, z) and randomness t and
outputs a collection of m + n + 1 shares

(
κ + τ,

{
zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

)
,where ρ : [m] → [n′]

Here, m, ρ depends only on f , and τ, σi, βj , γj depend on both f and t. Given
the shares along with f,x, we should be able to recover κ + f(x, z) but learn
nothing else about κ, z.

Syntax and Properties of pgb. We will rely on a randomized algorithm pgb
that takes as input f ∈ FABP◦IP and randomness t ∈ Z

m + n
q and outputs

pgb(f ; t) =
(
τ,

{
σi

}
i∈[n]

,
{

βj , γj

}
j∈[m]

) ∈ Z
1+n+m
q .

Together with x, z, κ, this specifies a collection of m + n + 1 “shares”
(

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

)
,where ρ : [m] → [n′] (1)

Here, m is the ABP size of f and ρ is deterministically derived from f . The
algorithm satisfies the following properties:

– linearity: for a fixed f , pgb(f ; ·) computes a linear function of its randomness
over Zq.

– reconstruction: there exists an efficient algorithm rec that on input f, x and
the shares in (1), outputs κ + f(x, z). This holds for all f,x, z, κ. Moreover,
rec(f,x, ·) computes a linear function of the shares.

– privacy: there exists an efficient simulator sim such that for all f,x, z, κ, the
output of sim(f,x, κ + f(x, z)) is identically distributed to the shares in (1)
(for a random t).

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 227

The Algorithm. For completeness, we sketch the algorithm pgb from [25];
we omit the analysis for reconstruction and privacy which follows from [25,
Theorem 3, Corollary 1] with t = 1.

1. Let f ′ denote the ABP computing (x, z, κ) → κ + f(x, z) as shown in Fig. 3,
such that κ, z only appear on edges leading into the sink node.

2. Compute the matrix representation Lx,z,κ ∈ Z
(m + n + 1) × (m + n + 1)
q of f ′

using the algorithm in [25, Lemma 1], where Lx,z,κ satisfies the following
properties as shown in Fig. 3:

– det(Lx,z,κ) = κ + f(x, z).

– for j = 1, . . . ,m, each entry in its j’th row is an affine function in xρ(j),
where ρ : [n′] → [m].3

– Lx,z,κ contains only 1’s in the second diagonal (the diagonal below the
main diagonal) and 0’s below the second diagonal.

– the last column of Lx,z,κ is (0, . . . , 0, z1, . . . , zn, κ)�.
Specifically, Lx,z,κ is obtained by removing the first column and the last
row in the matrix Af ′ − I, where Af ′ is the adjacency matrix for the ABP
computing f ’.

Fig. 3. The figure at the top shows an ABP computing f1(x)z1 + · · · + fn(x)zn + κ.
The figure at the bottom shows the corresponding partial garbling scheme.

3 To achieve this, we need to also pre-process f ′ by first replacing every edge e for the
public variable x with a pair of edges labeled 1 and φ(e).

228 H. Wee

3. Write Lx,z,κ

(
t
1

)
as

(
β1xρ(1) + γ1, . . . , βmxρ(1) + γm, z1 + σ1, . . . , zn + σn, κ + τ

)�

4. Output
(
τ,

{
σi

}
i∈[n]

,
{

βj

}
j∈[m]

, γj

)
.

It is straight-forward to verify that each of τ,
{

σi

}
i∈[n]

,
{

βj

}
j∈[m]

, γj are
indeed linear functions in t.

The Algorithm. The algorithm rEf proceeds as follows:

1. run pgb(f ; t) to sample
(
τ,

{
σi

}
i∈[n]

,
{

βj , γj

}
j∈[m]

)

2. output
(

κ + τ,
{

σi − w′
i

}
i∈[n]

,
{

βj + u′
j , γj + v′

ρ(j)j

}
j∈[m]

)
∈ Z

1 + n + m
q

We proceed to verify that rEf satisfies the above properties:

– linearity: Linearity follows from that for pgb.
– reconstruction: We are given

f, x, κ + τ,{
σi − w′

i, zi + w′
i

}
i∈[n]

,
{

βj + u′
j , γj + v′

ρ(j)j , u′
jxi + v′

ij

}
i∈[n′],j∈[m]

We can compute

zi + σi = (σi − w′
i) + (zi + w′

i), i ∈ [n]
βjxρ(j) + γj = (βj + u′

j)xρ(j) + (γj + v′
ρ(j)j) − (u′

jxρ(j) + v′
ρ(j)j) j ∈ [m]

We can then apply linear reconstruction for pgb to

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

to recover κ + f(x, z).
– privacy: The distribution we need to simulate is given by

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βj + δj

}
j∈[m]

,
{

γj − δjxρ(j)

}
j∈[m]

.

Given f,x, κ + f(x, z), we can run the simulator for pgb to obtain

κ + τ,
{

zi + σi

}
i∈[n]

,
{

βjxρ(j) + γj

}
j∈[m]

.

For each j ∈ [m], we can simulate
(
βj+δj , γj−δjxρ(j)

)
given xρ(j), βjxρ(j)+γj

as follows:
• pick δ̃j ←R Zq;
• output

(
δ̃j , (βjxρ(j) + γj) − δ̃jxρ(j)

)
.

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 229

B Our Inner Product Functional Encryption Scheme

In this section, we present our inner product functional encryption scheme. The
ciphertext is associated with a vector z ∈ Z

n
q , and the secret key with a vector

y ∈ Z
n
q , and decryption recovers 〈z,y〉, provided the value falls in a polynomially

bounded domain. Our scheme achieves simulation-based security as defined in
Sect. 3.2, where the simulator keygen∗ gets y, 〈z∗,y〉 whenever the adversary
makes a query y to keygen.

B.1 Our Scheme

setup(1λ, 1n): pick A ← Dk, W ←R Z
(k + 1) × n
q and output

mpk :=
(

[A]1, [A�W]1
)
,

msk := W

enc(mpk, z): pick s ←R Z
k
q and output

ct :=
(

C0︷ ︸︸ ︷
[s�A�]1,

C1︷ ︸︸ ︷
[s�A�W + z�]1

)

keygen(msk,y):

sky := Wy

dec((sky,y), ([C0]1, [C1]1)): output the discrete log of

[C1 · y]1 · [C0 · sky]−1
1

B.2 Analysis

Theorem 2. Our Inner Product FE scheme described in AppendixB.1 achieves
simulation-based semi-adaptively (strongly) attribute-hiding under the MDDH
assumption in G1 with an efficient simulator.

Correctness. Follows readily from

(s�AW + z�) · y − s�AW · y = 〈z,y〉

B.3 Simulator

setup∗(1λ, 1n′ + n) : pick A ← Dk,W̃ ←R Z
(k + 1) × n
q , c ←R Z

k + 1
q and output

mpk :=
(

[A]1, [A�W̃]1
)
,

msk∗ := (A,W̃, c,a⊥)

where a⊥ ∈ Z
k + 1
q satisfies A�a⊥ = 0, c�a⊥ = 1.

230 H. Wee

enc∗(msk∗) : output

ct :=
(
[c�]1, [c�W̃]1

)

keygen∗(msk∗,y, a = 〈z∗,y〉) : output

sky := W̃y − a · a⊥

B.4 Security Proof

We proceed via a series of games.

Game 0. Real game.

Game 1. We replace [As]1 in enc(mpk, z∗) with [c]1 where c ←R Z
k + 1
q . That

is, the challenge ciphertext is now given by

ct :=
(
[c�]1, [c�W + (z∗)�]1

)

This follows readily from the MDDH Assumption (cf. Sect. 3.1), so we have

|Adv0 − Adv1| ≤ Advmddh
G1,A1

(λ)

Game 2. We switch to the simulated game. The change from Game 1 to Game
2 follows from the following change of variables which embeds the semi-adaptive
challenge z∗ into the W:

W̃ = W + a⊥(z∗)�

which in particular implies that

A�W = A�W̃
c�W + (z∗)� = c�W̃

Wy = W̃y − a⊥ · 〈z∗,y〉
Formally, to justify the change of variables, observe that for all A, z∗, we have

(
A�W,W + a⊥(z∗)�

)

≡
(
A�W̃,W̃

)

where the distributions are taken over the random choices of W,W̃. Then, by
a complexity leveraging argument, we have that the distributions are identically
distributed even if z∗ is adaptively chosen after seeing the first term in these
distributions, as is the case for semi-adaptive security. Therefore, we have

Adv1 = Adv2

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 231

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 33

2. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product func-
tional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). doi:10.
1007/978-3-319-56620-7 21

3. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 259–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 10

4. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 28. Also, Cryptology ePrint Archive, Report 2012/468

5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 12

6. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

7. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 32

8. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 31

9. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryp-
tion for quadratic functions with applications to predicate encryption. Cryptology
ePrint Archive, Report 2017/151 (2017)

10. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

11. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from
affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 23

12. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

14. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 30

http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://dx.doi.org/10.1007/978-3-319-56620-7_21
http://dx.doi.org/10.1007/978-3-319-56620-7_21
http://dx.doi.org/10.1007/978-3-662-49099-0_10
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-642-55220-5_31
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-642-55220-5_30

232 H. Wee

15. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40084-1 29

16. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 25

17. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). doi:10.1007/978-3-319-10879-7 16

18. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46803-6 20

19. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic frame-
work for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 8

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49. Also, Cryptology ePrint Archive, Report 2013/451 (2013)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554. Also, Cryptology ePrint Archive, Report 2013/337
(2013)

22. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 25

23. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

24. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). doi:10.1007/3-540-45465-9 22

25. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572,
pp. 650–662. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43948-7 54. Also,
Cryptology ePrint Archive, Report 2014/995

26. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

27. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 4

28. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

http://dx.doi.org/10.1007/978-3-642-40084-1_29
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/978-3-319-10879-7_16
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1007/978-3-662-43948-7_54
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-662-46803-6_4
http://dx.doi.org/10.1007/978-3-642-11799-2_27

Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited 233

29. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

30. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25513-7 11

31. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 35

32. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. 96–A(1),
42–52 (2013)

33. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

34. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

35. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

36. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 26

http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-25513-7_11
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-54242-8_26
http://dx.doi.org/10.1007/978-3-642-54242-8_26

Constrained PRFs

Constrained Keys for Invertible Pseudorandom
Functions

Dan Boneh, Sam Kim(B), and David J. Wu

Stanford University, Stanford, USA
skim13@cs.stanford.edu

Abstract. A constrained pseudorandom function (PRF) is a secure
PRF for which one can generate constrained keys that can only be used
to evaluate the PRF on a subset of the domain. Constrained PRFs are
used widely, most notably in applications of indistinguishability obfus-
cation (iO). In this paper we show how to constrain an invertible PRF
(IPF), which is significantly harder. An IPF is a secure injective PRF
accompanied by an inversion algorithm. A constrained key for an IPF
can only be used to evaluate the IPF on a subset S of the domain, and
to invert the IPF on the image of S. We first define the notion of a con-
strained IPF and then give two main constructions: one for puncturing
an IPF and the other for (single-key) circuit constraints. Both construc-
tions rely on recent work on private constrained PRFs. We also show that
constrained pseudorandom permutations for many classes of constraints
are impossible under our definition.

1 Introduction

Pseudorandom functions (PRFs) [34] and pseudorandom permutations
(PRPs) [41] have found numerous applications in cryptography, such as encryp-
tion, data integrity, user authentication, key derivation, and others. Invertible
PRFs are a natural extension that borrows features from both concepts. An
invertible PRF (IPF) is an efficiently-computable injective function F : K×X →
Y equipped with an efficient inversion algorithm F−1 : K × Y → X ∪ {⊥}. The
inversion algorithm is required to satisfy the following two properties for all
k ∈ K:

– (1) F−1
(
k, F(k, x)

)
= x for all x ∈ X .

– (2) F−1(k, y) = ⊥ whenever y is not in the image of f(x) := F(k, x).

We say that an IPF F is secure if no poly-bounded adversary can distinguish
the following two experiments. In one experiment the adversary is given oracles
for the function f(x) := F(k, x) and its inverse f−1(x) := F−1(k, x), where k is
randomly chosen in K. In the other experiment, the adversary is given oracles
for a random injective function g : X → Y and its inverse g−1 : Y → X ∪ {⊥}.
These two experiments should be indistinguishable. We define this in detail in

The full version of this paper is available at https://eprint.iacr.org/2017/477.pdf.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 237–263, 2017.
https://doi.org/10.1007/978-3-319-70500-2_9

https://eprint.iacr.org/2017/477.pdf

238 D. Boneh et al.

Sect. 3. Note that when X = Y, an IPF is the same as a strong pseudorandom
permutation [41].

IPFs come up naturally in the context of deterministic authenticated encryp-
tion (DAE) [50], as discussed below. A closely related concept called a pseudoran-
dom injection (PRI) [50] is similar to an IPF except for some syntactic differences
(an IPF is a pseudorandom injection without additional length constraints and
with an empty header).

Constrained PRFs. In this paper we define and construct constrained IPFs.
It is helpful to first review constrained PRFs [19,21,40]. Recall that a PRF
F : K × X → Y is said to be a constrained PRF if one can derive constrained
keys from the master PRF key k. A constrained key kg is associated with a
predicate g : X → {0, 1}, and this kg enables one to evaluate F (k, x) for all
x ∈ X where g(x) = 1, but at no other points of X . A constrained PRF is secure
if given constrained keys for predicates g1, . . . , gQ of the adversary’s choosing,
the adversary cannot distinguish the PRF from a random function at points not
covered by the given keys, namely at points x where g1(x) = · · · = gQ(x) = 0.
We review the precise definition in Sect. 3.1.

Constrained PRFs have found numerous applications in cryptography
[19,21,40]: they imply identity-based key exchange and broadcast encryption,
and are a crucial ingredient in many applications of indistinguishability obfus-
cation (iO) [51].

The simplest non-trivial constraint is a puncturing constraint, a constraint
that enables one to evaluate the function on its entire domain except for one
point. For x ∈ X we denote by kx a punctured key that lets one evaluate the
PRF at all points in X , except for the punctured point x. Given the key kx,
the adversary should be unable to distinguish F (k, x) from a random element
in Y. PRFs supporting puncturing constraints can be easily constructed from
the tree-based PRF of [34], as discussed in [19,21,40].

Constrained IPFs. Given the wide applicability of constrained PRFs, it is natural
to look at constraining other symmetric primitives such as PRPs and, more
generally, IPFs. A constrained key kg for an IPF enables one to evaluate the IPF
at all points x ∈ X for which g(x) = 1, and invert at all points y = F(k, x′) ∈ Y
for which g(x′) = 1. Security for a constrained IPF is defined as for a PRF: the
adversary is given a number of constrained keys and tries to distinguish the IPF
from a random injective function at points not covered by any of the given keys.
See Sect. 3.1 for more details.

We first show in Sect. 3.3 that constrained PRPs for many constraint classes
do not exist in our model. However constrained IPFs, where the range can be
larger than the domain, can exist. The challenge is to construct them. Surpris-
ingly, constraining an IPF is significantly harder than constraining a PRF, even
for simple puncturing constraints. For example, it is not difficult to see that
puncturing a Luby-Rackoff cipher by puncturing the underlying PRFs does not
work.

Constrained Keys for Invertible Pseudorandom Functions 239

In this paper, we present constrained IPFs for both puncturing constraints
and for arbitrary circuit constraints. Both constructions make use of a recent
primitive called a private constrained PRF [18] that can be constructed from
the learning with errors (LWE) problem [15,22,24]. Roughly speaking, a private
constrained PRF is a constrained PRF where a constrained key kg reveals noth-
ing about the constraint g. Before we describe our constructions, let us first look
at an application.

IPFs and deterministic encryption. While constrained IPFs are interesting in
their own right, they come up naturally in the context of deterministic encryp-
tion. IPFs are related to the concept of deterministic authenticated encryption
(DAE) introduced by Rogaway and Shrimpton [50] where encryption is deter-
ministic and does not take a nonce as input. A DAE provides the same security
guarantees as (randomized) authenticated encryption, as long as all the messages
encrypted under a single key are distinct. Rogaway and Shrimpton show that an
IPF whose range is sufficiently larger than its domain is equivalent to a secure
DAE. They further require that the length of the IPF output depend only on
the length of the input, and this holds for all our constructions. Hence, our con-
strained IPFs give the ability to constrain keys in a DAE encryption scheme: the
constrained key holder can only encrypt/decrypt messages that satisfy a certain
predicate.

1.1 Building Constrained IPFs

In Sect. 4, we present two constructions for constrained IPFs on a domain
X = {0, 1}n. Our first construction, a warm-up, only supports puncturing con-
straints. Our second construction gives a constrained IPF for arbitrary circuit
constraints, but is only secure if a single constrained key is released. Here we
give the main ideas behind the constructions. Both rely heavily on the recent
development of private constrained PRFs. In Sect. 5, we show how to instantiate
our constructions from the LWE assumption. In Sect. 7, we also show that using
iO, it is possible to construct a multi-key, circuit-constrained IPF.

A puncturable IPF. Let F1 : K1 × X → V and F2 : K2 × V → X be two secure
PRFs. Define the following IPF F on domain X using a key k = (k(1), k(2)) ∈
K1 × K2:

F
(
(k(1), k(2)), x

)
:= F−1

(
(k(1), k(2)), (y1, y2)

)
:=

⎧
⎨

⎩

y1 ← F1(k(1), x)
y2 ← x ⊕ F2(k(2), y1)
output (y1, y2)

⎫
⎬

⎭

⎧
⎪⎪⎨

⎪⎪⎩

x ← F2(k(2), y1) ⊕ y2
if F1(k(1), x) �= y1

then x ← ⊥
output x

⎫
⎪⎪⎬

⎪⎪⎭

(1.1)

It is not difficult to show that F is a secure IPF. In fact, one can view this
IPF as an instance of a DAE construction called SIV (Synthetic-IV) [50].

The question is how to securely puncture F. As a first attempt, suppose F1 is
a puncturable PRF, say constructed from the tree-based GGM construction [34].

240 D. Boneh et al.

To puncture the IPF F at a point x ∈ X , one can puncture F1 at x to obtain the
IPF punctured key kx := (k(1)

x , k(2)). This key kx prevents the evaluation F at the
point x, as required. However, this is completely insecure. To see why, observe
that given kx, the adversary can easily distinguish F(k, x) from a random pair
in V × X : given a challenge value (y1, y2) for F(k, x), the adversary can simply
test if x = F2(k(2), y1) ⊕ y2. This will be satisfied by F(k, x), but is unlikely to
be satisfied by a random pair in V × X .

To properly puncture F at x we must puncture F1 at x and puncture F2 at
y1 := F1(k(1), x). The punctured key for F is then kx := (k(1)

x , k
(2)
y1). Here, it is

vital that the punctured key k
(2)
y1 reveal nothing about the punctured point y1.

Otherwise, it is again easy to distinguish F(k, x) = (y1, y2) from a random pair
in V × X using the exposed information about y1. To ensure that y1 is hidden,
we must use a private puncturable PRF for F2. Currently the best constructions
for a private puncturable PRF rely on the LWE assumption [15,22,24]. It is not
known how to construct a private puncturable PRF from one-way functions. We
show in Theorem 4.3 that with this setup, the puncturable IPF in (1.1) is secure.

A constrained IPF for circuit constraints. Next we generalize (1.1) to support
an arbitrary circuit constraint g. As a first step we can constrain k(1) to g so
that the IPF constrained key is kg := (k(1)

g , k(2)). We can use for F1 any of the
candidate circuit-constrained PRFs [19,23].

As before, this is insecure: for security we must also constrain F2. However
we immediately run into a problem. Following the blueprint in (1.1) we must
puncture F2 at all points F1(k(1), x) where g(x) = 0. However, because the
size of this set can be super-polynomial, we would need to constrain F2 to a
set containing super-polynomially-many pseudorandom points. The difficulty is
that F2 cannot efficiently test if an input v ∈ V satisfies v = F1(k(1), x) with
g(x) = 0. Because F1 is not invertible, this cannot be done even given k(1).

We solve this problem by replacing F1(k(1), x) with a CCA-secure public-
key encryption PKE.Encrypt(pk, x; rx), where the randomness rx = F1(k(1), x)
is derived from F1 and pk is the public key. In this case, the input to F2 is
a ciphertext ct that encrypts the point x. The output of the IPF is the pair
(ct, F2(k(2), ct)⊕x). When constraining F2, we embed the secret decryption key
sk for the public-key encryption scheme in the constrained key. Then, on an input
ciphertext ct, the constraint function first decrypts ct (using sk) to obtain a value
x ∈ X , and then checks if g(x) = 1. Because knowledge of sk allows one to invert
on all points, it is critical that the constrained key hides sk. Here, we rely on
a strong simulation-based notion of constraint privacy [15,24]. In Theorem 4.7,
we show that as long as the underlying PKE scheme is CCA-secure and F2 is a
(single-key) private constrained PRF, then the resulting scheme is a (single-key)
secure circuit-constrained IPF.

By design, our circuit-constrained IPF provides two ways to invert: the
“honest” method where on input (ct, y2), the evaluator uses the PRF key k(2)

to compute a (candidate) preimage x ← F2(k(2), ct) ⊕ y2, and the “trapdoor”
method where an evaluator who holds the decryption key for the public-key

Constrained Keys for Invertible Pseudorandom Functions 241

encryption scheme simply decrypts ct to recover the (candidate) preimage x.
The inversion trapdoor plays an important role in the security analysis of our
circuit-constrained IPF because it enables the reduction algorithm to properly
simulate the inversion oracle queries in the IPF security game. We refer to the
full version of this paper [16] for the complete details.

Theorems 4.3 and 4.7 state that our puncturable IPF and circuit-constrained
IPF are secure assuming the security (and privacy) of the underlying constrained
PRFs (and in the latter case, CCA-security of the public-key encryption scheme).
While it may seem that security of the IPF should directly follow from security
of the underlying puncturable (or constrained) PRFs, several complications arise
in the security analysis because we give the adversary access to an IPF inversion
oracle in the security game. As a result, our security analysis requires a more
intricate hybrid argument where we appeal to the security of the underlying
constrained PRFs multiple times. We provide the complete proofs in the full
version [16].

A multi-key constrained IPFs from iO. In Sect. 7, we also show that an indis-
tinguishability obfuscation of the puncturable IPF from (1.1) gives a multi-
key circuit-constrained IPF. This construction parallels the Boneh-Zhandry
construction of multi-key circuit-constrained PRFs from standard puncturable
PRFs and indistinguishability obfuscation [20].

Supporting key-delegation. Several constrained PRF constructions support a
mechanism called key-delegation [19,26,27], where the holder of a constrained
PRF key can further constrain the key. For instance, the holder of a constrained
key kf for a function f can further constrain the key to a function of the form
f ∧ g where (f ∧ g)(x) = 1 if and only if f(x) = g(x) = 1. In Sect. 6, we describe
how our circuit-constrained IPF can be extended to support key-delegation.

Open problems. Our impossibility results for constrained PRPs rule out any con-
straint class that enables evaluation on a non-negligible fraction of the domain.
For example, this rules out the possibility of a puncturable PRP. Can we
build constrained PRPs for constraint families that allow evaluation on a more
restricted subset of the domain? For instance, do prefix-constrained PRPs exist?

Our circuit-constrained IPF from LWE is secure only if a single constrained
key is issued. In Sect. 6, we show how to modify our construction to support
giving out a pre-determined number of keys, provided that each successive key
adds a further constraint on the previous key (i.e., via key delegation). Is there
an IPF that supports multiple constrained keys for an arbitrary set of circuit
constraints (and does not rely on strong assumptions such as iO or multilin-
ear maps)? A positive answer would also give a circuit-constrained PRF that
supports multiple keys, which is currently an open problem.

Our circuit-constrained IPF relies on the LWE assumption. Can we build
constrained IPFs from one-way functions? For example, the tree-based PRF
of [34] gives a prefix-constrained PRF from one-way functions. Can we build a
prefix-constrained IPF from one-way functions?

242 D. Boneh et al.

1.2 Related Work

Authenticated encryption was first formalized over a sequence of works [10,11,
39,48,49]. Deterministic authenticated encryption, and the notion of a pseudo-
random injection, were introduced in [50]. These notions have been further stud-
ied in [37,38]. Our circuit-constrained IPF relies on derandomizing a public-key
encryption scheme. Similar techniques have been used in the context of con-
structing deterministic public-key encryption [6,7,12,31]. Note however that an
IPF is a secret-key primitive, so in our setting, the randomness used for encryp-
tion can be derived using a PRF on the message rather than as a publicly-
computable function on the input. This critical difference eliminates the need to
make entropic assumptions on the inputs.

Since the introduction of constrained PRFs in [19,21,40], numerous works
have studied constraining other cryptographic primitives such as verifiable ran-
dom functions (VRFs) [26,27,29] and signatures [8,21]. Other works have focused
on constructing adaptively-secure constrained PRFs [30,35,36] and constrained
PRFs for inputs of unbounded length [27,28].

2 Preliminaries

For a positive integer n, we write [n] to denote the set {1, 2, . . . , n}. For a distri-
bution D, we write x ← D to denote that x is sampled from D; for a finite set S,
we write x ←R S to denote that x is sampled uniformly from S. Throughout this
work, we write λ for the security parameter. We say a function f(λ) is negligible
in λ if f(λ) = o(1/λc) for all c ∈ N. We denote this by writing f(λ) = negl(λ).
We say that an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. We write poly(λ) to denote a quantity that is bounded
by some polynomial in λ. We say that an event occurs with overwhelming prob-
ability if its complement occurs with negligible probability, and that it occurs
with noticeable probability if it occurs with non-negligible probability. We say
that two families of distributions D1 and D2 are computationally indistinguish-
able if no efficient algorithm can distinguish between D1 and D2, except with
negligible probability. We say that D1 and D2 are statistically indistinguishable
if the statistical distance between D1 and D2 is negligible.

Function families. For two sets X , Y, we write Funs[X ,Y] to denote the set
of functions from X to Y. We write InjFuns[X ,Y] to denote the set of injective
functions from X to Y. For an injective function f ∈ InjFuns[X ,Y], we denote by
f−1 : Y → X ∪ {⊥} the function where f−1(y) = x if y = f(x), and ⊥ if there
is no such x ∈ X . We sometimes refer to f−1 as the (generalized) inverse of f .
When the domain and range are the same, the set InjFuns[X ,X] is precisely the
set of permutations on X .

Constrained Keys for Invertible Pseudorandom Functions 243

2.1 CCA-Secure Public-Key Encryption

A PKE scheme consists of three algorithms PKE = (PKE.Setup,PKE.Encrypt,
PKE.Decrypt) over a message space M and a ciphertext space T with the fol-
lowing properties:

– PKE.Setup(1λ) → (pk, sk): On input the security parameter λ, the setup algo-
rithm generates a public key pk and a secret key sk.

– PKE.Encrypt(pk,m) → ct: On input a public key pk and a message m ∈ M,
the encryption algorithm returns a ciphertext ct ∈ T .

– PKE.Decrypt(sk, ct) → m: On input a secret key sk and a ciphertext ct ∈ T ,
the decryption algorithm outputs a message m ∈ M ∪ {⊥}.

We say that a PKE scheme is correct if for all keys (pk, sk) ← PKE.Setup(1λ),
and for all messages m ∈ M, we have that

Pr[PKE.Decrypt(sk,PKE.Encrypt(pk,m)) = m] = 1.

Definition 2.1 (CCA-Security [43,46]). Let PKE = (PKE.Setup,
PKE.Encrypt,PKE.Decrypt) be a PKE scheme with message space M and cipher-
text space T , and let A be an efficient adversary. For a security parameter λ

and a bit b ∈ {0, 1}, we define the CCA-security experiment Expt
(CCA)
A,PKE(λ, b) as

follows. The challenger first samples (pk, sk) ← PKE.Setup(1λ). The adversary
can then issue decryption oracle queries and up to one challenge oracle query.1

Depending on the bit b ∈ {0, 1}, the challenger responds to each query as follows:

– Decryption oracle. On input a ciphertext ct ∈ T , the challenger responds
with the decryption m ← PKE.Decrypt(sk, ct).

– Challenge oracle. On input two messages m0,m1 ∈ M, the challenger
responds with the ciphertext ct∗ ← PKE.Encrypt(pk,mb).

At the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1} which is
the output of the experiment. An adversary A is admissible if A does not submit
the ciphertext ct∗ it received from the challenge oracle to the decryption oracle.
We say that PKE is secure against chosen-ciphertext attacks (CCA-secure) if for
all efficient and admissible adversaries A,

∣
∣
∣Pr[Expt(CCA)A,PKE(λ, 0) = 1] − Pr[Expt(CCA)A,PKE(λ, 1) = 1]

∣
∣
∣ = negl(λ).

1 In the public-key setting, security against adversaries that make a single challenge
query implies security against adversaries that make multiple challenge queries (via
a standard hybrid argument).

244 D. Boneh et al.

Smoothness. In our security analysis, we require that our public-key encryp-
tion scheme satisfy an additional smoothness property. We say that a public-key
encryption scheme is smooth if every message can encrypt to a super-polynomial
number of potential ciphertexts. This property is satisfied by most natural
public-key encryption schemes. After all, if the adversary can find a message
m that has only polynomially-many ciphertexts, then the adversary can triv-
ially break semantic security of the scheme. Of course, it is possible to craft
public-key encryption schemes [9] where there exist (hard-to-find) messages that
encrypt to only polynomially-many ciphertexts. We give the formal definition of
smoothness in Definition 2.2.

Definition 2.2 (Smoothness [9, adapted]). A PKE scheme PKE =
(PKE.Setup,PKE.Encrypt,PKE.Decrypt) with message space M and ciphertext
space T is smooth if for all messages m ∈ M and all strings ct ∈ T ,

Pr
[
(pk, sk) ← PKE.Setup(1λ) : PKE.Encrypt(pk,m) = ct

]
= negl(λ),

where the probability is taken over the randomness in PKE.Setup and
PKE.Encrypt.

3 Invertible PRFs

In this section, we introduce the notion of an invertible pseudorandom function
(IPF). We then extend our notions to that of a constrained IPF. We begin by
recalling the definition of a pseudorandom function (PRF) [34].

Definition 3.1 (Pseudorandom Function [34]). A pseudorandom function
(PRF) with key-space K, domain X , and range Y is a function F : K × X → Y
that can be computed by a deterministic polynomial-time algorithm.APRF can also
include a setup algorithm F.Setup(1λ) that on input the security parameter λ, out-
puts a key k ∈ K. A function F is a secure PRF if for all efficient adversaries A,
∣
∣
∣Pr

[
k ← F.Setup(1λ) : AF(k,·)(1λ) = 1

]

− Pr
[
R ←R Funs[X ,Y] : AR(·)(1λ) = 1

]∣∣
∣ = negl(λ).

An invertible pseudorandom function (IPF) is an injective PRF whose inverse
function can be computed efficiently (given the secret key). This requirement
that the inverse be efficiently computable is the key distinguishing factor between
IPFs and injective PRFs. For instance, injective PRFs can be constructed by
composing a sufficiently-expanding PRF with a pairwise-independent hash func-
tion. However, it is unclear how to invert such a PRF. We now give the definition
of an IPF.

Definition 3.2 (Invertible Pseudorandom Functions). An invertible
pseudorandom function (IPF) with key-space K, domain X , and range Y consists
of two functions F : K × X → Y and F−1 : K × Y → X ∪ {⊥}. An IPF can also
include a setup algorithm F.Setup(1λ) that on input the security parameter λ,
outputs a key k ∈ K. The functions F and F−1 satisfy the following properties:

Constrained Keys for Invertible Pseudorandom Functions 245

– Both F and F−1 can be computed by deterministic polynomial-time algorithms.
– For all security parameters λ and all keys k output by F.Setup(1λ), the func-

tion F(k, ·) is an injective function from X to Y. Moreover, the function
F−1(k, ·) is the (generalized) inverse of F(k, ·).

Definition 3.3 (Pseudorandomness). An IPF F : K × X → Y is secure if
for all efficient adversaries A,
∣
∣
∣Pr
[

k ← F.Setup(1λ) : AF(k,·), F−1(k,·)(1λ)
]

− Pr
[

R ←R InjFuns[X , Y] : AR(·), R−1(·)(1λ)
]∣
∣
∣ = negl(λ).

Remark 3.4 (Strong vs. Weak Pseudorandomness). The pseudorandomness
requirement for an IPF (Definition 3.3) requires that the outputs of an IPF
be indistinguishable from random against adversaries that can query the IPF in
both the forward direction as well as the backward direction. We can also con-
sider a weaker notion of pseudorandomness where the adversary is given access
to an evaluation oracle F(k, ·), but not an inversion oracle F−1(k, ·). Motivated
by the applications we have in mind, in this work, we focus exclusively on build-
ing IPFs satisfying the strong notion of pseudorandomness from Definition 3.3,
where the adversary can evaluate the IPF in both directions.

3.1 Constrained PRFs and IPFs

We next review the notion of a constrained PRF [19,21,40] and then extend
these definitions to constrained IPFs.

Definition 3.5 (Constrained PRF [19,21,40]). A PRF F : K×X → Y is said
to be constrained with respect to a predicate family F = {f : X → {0, 1}} if there
are two additional algorithms (F.Constrain,F.Eval) with the following properties:

– F.Constrain(k, f) → kf : On input a PRF key k ∈ K and a function f ∈ F ,
the constraining algorithm outputs a constrained key kf .

– F.Eval(kf , x) → y: On input a constrained key kf and a point x ∈ X , the
evaluation algorithm outputs a value y ∈ Y.

We say that a constrained PRF is correct for a function family F if for all
k ← F.Setup(1λ), every function f ∈ F , and every input x ∈ X where f(x) = 1,
we have that

F.Eval(F.Constrain(k, f), x) = F(k, x).

Definition 3.6 (Constrained PRF Security Experiment). Let F : K ×
X → Y be a constrained PRF with respect to a function family F , and
let A be an efficient adversary. In the constrained PRF security experiment
Expt

(PRF)
A,F (λ, b) (parameterized by a security parameter λ and a bit b ∈ {0, 1}),

the challenger begins by sampling a key k ← F.Setup(1λ) and a random func-
tion R ←R Funs[X ,Y]. The adversary is allowed to make constrain, evaluation,
and challenge oracle queries. Depending on the value of the bit b ∈ {0, 1}, the
challenger responds to each oracle query as follows:

246 D. Boneh et al.

– Constrain oracle. On input a function f ∈ F , the challenger responds with
a constrained key kf ← F.Constrain(k, f).

– Evaluation oracle. On input a point x ∈ X , the challenger returns y =
F(k, x).

– Challenge oracle. On input a point x ∈ X , the challenger returns y =
F(k, x) to A if b = 0 and y = R(x) if b = 1.

Finally, at the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1}
which is also the output of the experiment.

Definition 3.7 (Constrained PRF Security). Let F : K×X → Y be a con-
strained PRF for a function family F . We say that an adversary A is admissible
for the constrained PRF security experiment (Definition 3.6) if the following
conditions hold:

– For all constrain queries f ∈ F and challenge queries x∗ ∈ X the adversary
makes, f(x∗) = 0.

– For all evaluation queries x ∈ X and challenge queries x∗ ∈ X the adversary
makes, x �= x∗.

We say that F is a secure constrained PRF if for all efficient and admissible
adversaries A,

∣
∣
∣Pr[Expt(PRF)A,F (λ, 0) = 1] − Pr[Expt(PRF)A,F (λ, 1) = 1]

∣
∣
∣ = negl(λ).

Without loss of generality, we restrict the adversary to make at most one chal-
lenge query in the constrained PRF security experiment.2

Remark 3.8 (Selective vs. Adaptive Security). The constrained PRF security game
(Definition 3.6) allows the adversary to adaptively choose the challenge point after
making constrain and evaluation queries. We can also define a selective notion of
security where the adversary must commit to its challenge query at the beginning
of the security game (before it starts making queries). Using a standard technique
called complexity leveraging [13], selective security implies adaptive security at the
expense of a super-polynomial loss in the security reduction. For instance, this is
the technique used in [19] in the context of constrained PRFs.

Remark 3.9 (Single-Key Security). Brakerski and Vaikuntanathan [23] consid-
ered another relaxation of Definition 3.7 where in the constrained PRF security
game (Definition 3.6), the adversary is restricted to making a single query to the
constrain oracle. In the single-key setting, we can consider the notion of selective-
function security, where the adversary must commit to its constrain oracle query
at the beginning of the security experiment. Thus, in this setting, there are two
different notions of selectivity: the usual notion where the adversary commits

2 As noted in [19], a standard hybrid argument shows that security against adversaries
making a single challenge query implies security against adversaries making multiple
challenge queries.

Constrained Keys for Invertible Pseudorandom Functions 247

to the challenge point (Remark 3.8) and selective-function security where the
adversary commits to the function. Many of the lattice-based (single-key) con-
strained PRF constructions [15,22–24] are selectively secure in the choice of the
constraint function, but adaptively secure in the choice of the challenge point.

Definition 3.10 (Constrained IPF). An IPF (F,F−1) with key-space K,
domain X , and range Y is said to be constrained with respect to a function fam-
ily F = {f : X → {0, 1}} if there are three additional algorithms (F.Constrain,
F.Eval,F.Eval−1) with the following properties:

– F.Constrain(k, f) → kf : On input a PRF key k ∈ K and a function f ∈ F ,
the constraining algorithm outputs a constrained key kf .

– F.Eval(kf , x) → y: On input a constrained key kf and a value x ∈ X , the
evaluation algorithm outputs a value y ∈ Y.

– F.Eval−1(kf , y) → x: On input a constrained key kf and a value y ∈ Y, the
evaluation algorithm outputs a value x ∈ X ∪ {⊥}.

We say that a constrained IPF is correct for a function family F if for all
keys k ← F.Setup(1λ), every function f ∈ F , and kf ← F.Constrain(k, f), the
following two properties hold:

– For all inputs x ∈ X where f(x) = 1, F.Eval(kf , x) = F(k, x).
– For all inputs y ∈ Y where there exists x ∈ X such that F(k, x) = y and

f(x) = 1, then F.Eval−1(kf , y) = F−1(k, y).

Definition 3.11 (Constrained IPF Security Experiment). Let (F,F−1)
be an IPF with key-space K, domain X , range Y, and constrained with respect to
a function family F . Let A be an efficient adversary. The constrained IPF secu-
rity experiment Expt(IPF)A,F (λ, b) is defined exactly as the constrained PRF security

experiment Expt
(PRF)
A,F (λ, b) (except with the IPF in place of the PRF and the

random function R is sampled from InjFuns[X ,Y]), and in addition to the con-
strain, evaluation, and challenge oracles, the adversary is also given access to
an inversion oracle:

– Inversion oracle. On input a point y ∈ Y, the challenger returns F−1(k, y).

At the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment.

Definition 3.12 (Constrained IPF Security). Let (F,F−1) be an IPF with
key-space K, domain X , range Y, and constrained with respect to a function
family F . We say that an adversary A is admissible for the constrained IPF
security experiment (Definition 3.11) if the following conditions hold:

– For all constrain queries f ∈ F and challenge queries x∗ ∈ X the adversary
makes, f(x∗) = 0.

– For all evaluation queries x ∈ X and challenge queries x∗ ∈ X the adversary
makes, x �= x∗.

248 D. Boneh et al.

– For all inversion queries y ∈ Y the adversary makes, y /∈ Y∗, where Y∗

is the set of responses to the adversary’s challenge oracle queries from the
challenger.

We say that F is a secure constrained IPF if for all efficient and admissible
adversaries A,

∣
∣
∣Pr[Expt(IPF)A,F (λ, 0) = 1] − Pr[Expt(IPF)A,F (λ, 1) = 1]

∣
∣
∣ = negl(λ).

As in Definition 3.7, we restrict the adversary to making at most one challenge
query in the constrained IPF security experiment.

Remark 3.13 (Selective vs. Adaptive Security for IPFs). As with constrained
PRFs, we can define a notion of selective security for IPFs, where the adversary
commits to its challenge query at the beginning of the constrained IPF security
experiment (Remark 3.8). Similarly, we can consider a single-key variant of the
security game, where the adversary makes a single constrain oracle query. In this
case, we can also define the corresponding notion of selective-function security
(Remark 3.9).

Puncturable PRFs and IPFs. An important subclass of constrained PRFs is
the class of punctured PRFs [19,21,40]. A punctured PRF over a domain
X is a PRF constrained with respect to the family of point functions: F =
{fx∗ : X → {0, 1} | x∗ ∈ X}, where fx∗(x) = 1 for all x �= x∗ and fx∗(x∗) = 0.
For notational convenience, when working with a puncturable PRF F : K×X →
Y, we replace the F.Constrain algorithm with the F.Puncture algorithm that takes
as input a PRF key k and a point x∗ ∈ X and outputs a punctured key kx∗ (a
key constrained to the point function fx∗). We extend these notions accordingly
to puncturable IPFs.

3.2 Private Constrained PRFs

One of the key primitives we will need to build constrained IPFs is a private
constrained PRF [18]. A private constrained PRF is a constrained PRF with
the additional property that the constrained keys hide the underlying constrain-
ing function. Boneh et al. [18] showed how to construct private constrained
PRFs for all circuits using indistinguishability obfuscation. Recently, a number
of works have shown how to construct private constrained PRFs for puncturing
constraints [15], NC1 constraints [24], and general circuit constraints [22] from
standard lattice assumptions. We now review the simulation-based notion of
privacy considered in [15,24].

Definition 3.14 (Single-Key Constraint Privacy [15,24]). Let F : K×X →
Y be a constrained PRF with respect to a function family F . We say that F is
a single-key, selectively-private constrained PRF for F if for all efficient adver-
saries A = (A1,A2), there exists a stateful simulator S = (S1,S2) such that the
following two distributions are computationally indistinguishable:

Constrained Keys for Invertible Pseudorandom Functions 249

Experiment RealA,F(λ):

– (f, stA) ← A(1λ)
– k ← F.Setup(1λ)
– kf ← F.Constrain(k, f)
– b ← AF(k,·)(kf , stA)
– Output b

Experiment IdealA,S,F(λ):

– (f, stA) ← A(1λ)
– (kf , stS) ← S1(1λ)
– b ← AOEval(·)(kf , stA), where the ideal

evaluation oracle OEval(·) takes as input
a point x ∈ X , computes (y, stS) ←
S2(x, f(x), stS), and returns y

– Output b

Observe that the simulator (S1, S2) in the ideal experiment is not given the
function f as input. Nevertheless, the simulator can simulate kf as in the real
experiment. This implies that the adversary learns nothing about f from kf

beyond the value of f at points x ∈ X where the adversary asks for F(k, x).
Leaking this minimal information about f is unavoidable.

3.3 Special Cases: PRPs and Constrained PRPs

Invertible pseudorandom functions can be viewed as a generalization of pseudo-
random permutations (PRPs) where we allow the range of the function to be
larger than its domain. A PRP is an IPF where the domain and range are identi-
cal. Our definitions for constrained IPFs can be similarly adapted to the setting
of constrained PRPs. In this section, we make several observations on the (non)-
existence of constrained PRPs, as well as discuss some possible relaxations of the
security requirements to circumvent the impossibility results. We first show that
constrained PRPs (for any family of constraints) on polynomial-size domains do
not exist. Next, we show that even over large domains, security for many natural
classes of constraints, including puncturing, is impossible to achieve. Our argu-
ment here can be extended to derive a lower bound on the size of the range of
any IPF that supports puncturing constraints (or more generally, any constraint
that enables evaluation a non-negligible fraction of the domain).

Remark 3.15 (Small-Domain Constrained PRPs are Insecure). No constrained
PRP over a polynomial-size domain can be secure under the standard pseudo-
randomness definition of Definition 3.12. This follows from the fact that a PRP is
easily distinguishable from a PRF when the domain is small—given even a single
input-output pair (x∗, y∗) for the PRP, the adversary already learns something
about the values of the PRP at any point x �= x∗ (namely, the value of the PRP
at x cannot be y∗). Thus, the adversary can distinguish the real output of the
PRP at x �= x∗ (which cannot be y∗) from a uniformly random value (which can
be y∗ with noticeable probability when the domain is small).

Theorem 3.16 (Limitations on Constrained PRPs). Let F : K × X → X
be a PRP constrained with respect to a predicate family F . For each predicate

250 D. Boneh et al.

f ∈ F , let Sf = {x ∈ X : f(x) = 1} denote the set of allowable points for f . If
there exists f ∈ F where the quantity |Sf | / |X | is non-negligible, then F cannot
be secure in the sense of Definition 3.12.

Proof. Suppose there exists f ∈ F where |Sf | / |X | is non-negligible. We con-
struct the following adversary for the constrained security game:

1. First, A makes a constrain query for f and a challenge query on an arbitrary
x∗ ∈ X where f(x∗) = 0. It receives from the challenger a punctured key kf

and a challenge value y∗.
2. Then, A computes x ← F.Eval−1(kf , y∗), and outputs 1 if either of the fol-

lowing conditions hold:
– if f(x) = 0, or
– if F.Eval(kf , x) �= y∗.

Otherwise, A outputs 0.

To complete the analysis, we compute the probability that A outputs 1:

– Suppose y∗ = F(k, x∗). Consider the case where f(x) = 1. Note in particular
that this means x �= x∗. By correctness of F, we have that F.Eval(kf , x) =
F(k, x). Moreover, since F(k, ·) is a permutation, it follows that F(k, x) �=
F(k, x∗) = y∗. Thus, in this case, either f(x) = 0 or F.Eval(kf , x) �= y∗, so we
conclude that A outputs 1 with probability 1.

– Suppose y∗ is uniformly random over X . Let x̂ = F−1(k, y∗). Suppose that
f(x̂) = 1. Then, by correctness of F, we have that

x = F.Eval−1(kf , y∗) = F−1(k, y∗) = x̂.

Moreover, since f(x̂) = 1, we have

F.Eval(kf , x) = F.Eval(kf , x̂) = F(k, x̂) = y∗.

Thus, whenever f(x̂) = 1, adversary A outputs 1 with probability 0. Since y∗

is uniformly random over X and F(k, ·) is a permutation,

Pr[A outputs 1] ≤ Pr[f(x̂) = 0] = 1 − |Sf | / |X | .

We conclude that A breaks the constrained security of F with advantage
|Sf | / |X |, which is non-negligible by assumption. ��

Corollary 3.17 (Puncturable PRPs are Insecure). Let F : K × X → X
be a puncturable PRP. Then, F is insecure in the sense of Definition 3.12.

Proof. The set of allowable points Sf for a puncturing constraint f is always
|X | − 1, so the ratio |Sf | / |X | is always non-negligible. The claim then follows
from Theorem 3.16. ��

Constrained Keys for Invertible Pseudorandom Functions 251

Remark 3.18 (Constrained PRPs for Very Restricted Constraint Classes).
Theorem 3.16 rules out any constrained PRP that supports issuing constrained
keys that can be used to evaluate on a non-negligible fraction of the domain. It
does leave open the possibility of building constrained PRPs where each con-
strained key can only be used to evaluate on a negligible fraction of the domain.
A natural class of constraints that satisfies this property is the class of prefix-
constrained PRPs (for a prefix of super-logarithmic size). We leave it as an open
problem to construct a prefix-constrained PRP, or more generally, a constrained
PRP where all of the constrained keys can only be used to evaluate on a negli-
gible fraction of the domain.

Remark 3.19 (Constrained IPFs Must be Expanding). The attack from the proof
of Theorem 3.16 also extends to the setting where F : K×X → Y is a constrained
IPF with a small range. Specifically, if |Y| ≤ |X |·poly(λ), and F supports issuing
a constrained key for a function f : X → {0, 1} where |Sf | / |X | is non-negligible,
then F cannot be secure in the sense of Definition 3.12. In this setting, we would
modify the distinguisher in the proof of Theorem3.16 to additionally output 1
if x = ⊥. With this modification, the distinguishing advantage of the attack
only decreases by a polynomial factor |X | / |Y| = 1/poly(λ). Therefore, any
constrained IPF that admits a constraint that can be used to evaluate the IPF
on a non-negligible fraction of the domain must necessarily have a range that
is larger than the domain by at least a super-polynomial factor. Concretely, a
puncturable IPF must have a range that is super-polynomially larger than the
domain.

Remark 3.20 (Weaker Security Relations). The lower bound in Theorem3.16
only applies when we require that the IPF value at a constrained point appear
pseudorandom given the constrained key. One way to circumvent the lower bound
is to consider a weaker security notion where we just require the IPF value at
a constrained point to be unpredictable rather than pseudorandom (given the
constrained key). In other words, no efficient adversary should be able to predict
F(k, x) given a constrained key kf that does not allow evaluation at x. While the
weaker security properties are potentially satisfiable, they may not be sufficient
for specific applications.

4 Constructing Constrained IPFs

We now turn to constructing constrained IPFs and give two main constructions
in this section. Our main constructions use private constrained (non-invertible)
PRFs as the primary tool. As a warm-up, we first construct a puncturable IPF
from a private puncturable PRF in Sect. 4.1. We then show how the basic IPF
construction can be extended to obtain a (single-key) circuit-constrained IPF in
Sect. 4.2. In Sect. 7, we also show that an indistinguishability obfuscation of the
basic puncturable IPF gives a multi-key circuit-constrained IPF.

252 D. Boneh et al.

4.1 Warm-Up: Puncturable IPF from Private Puncturable PRFs

We begin by showing how to construct a puncturable IPF on a domain X from
a private puncturable PRF on X . We describe the construction and then show
in Theorems 4.2 and 4.3 that it is a secure puncturable IPF.

Construction 4.1. Fix a domain X = {0, 1}n where n = n(λ). Let F1 : K1 ×
X → V be an injective puncturable PRF with key-space K1 and range V. Let
F2 : K2 × V → X be a private puncturable PRF with key-space K2. The punc-
turable IPF F : K × X → Y with key-space K = K1 × K2, domain X , and range
Y = V × X is defined as follows:

– The IPF key is a pair of keys k = (k(1), k(2)) ∈ K1 × K2 for the puncturable
PRFs F1 and F2.

– On input k = (k(1), k(2)) ∈ K1 × K2 = K, and x ∈ X the IPF is defined as
the pair

F
(
(k(1), k(2)), x

)
:=

(
F1(k(1), x), x ⊕ F2(k(2),F1(k(1), x)

)
.

– On input k = (k(1), k(2)) ∈ K1 × K2 = K, and y = (y1, y2) ∈ V × X = Y, the
inversion algorithm F−1(k, y) first computes x ← F2(k(2), y1)⊕y2 and outputs

F−1(k, (y1, y2)) :=

{
x if y1 = F1(k(1), x)
⊥ otherwise.

Next, we define the setup and constraining algorithms for (F,F−1).

– F.Setup(1λ): On input the security parameter λ, the setup algorithm samples
two puncturable PRF keys k(1) ← F1.Setup(1λ) and k(2) ← F2.Setup(1λ). The
setup algorithm outputs the IPF key k = (k(1), k(2)).

– F.Puncture(k, x∗): On input the IPF key k = (k(1), k(2)) and a point x∗ ∈ X
to be punctured, the puncturing algorithm first computes v∗ ← F1(k(1), x∗).
It then generates two punctured keys k

(1)
x∗ ← F1.Puncture(k(1), x∗) and k

(2)
v∗ ←

F2.Puncture(k(2), v∗) and returns kx∗ =
(
k
(1)
x∗ , k

(2)
v∗

)
.

– F.Eval(kx∗ , x): On input the punctured key kx∗ = (k(1)
x∗ , k

(2)
v∗) and a point x ∈

X , the evaluation algorithm first computes y1 ← F1.Eval(k
(1)
x∗ , x) and returns

y = (y1,F2.Eval(k
(2)
v∗ , y1) ⊕ x).

– F.Eval−1(kx∗ , y): On input the punctured key kx∗ = (k(1)
x∗ , k

(2)
v∗), and y =

(y1, y2) ∈ V × X = Y, the inversion algorithm begins by computing the quan-
tity x ← F2.Eval(k

(2)
v∗ , y1) ⊕ y2. It returns x if F1.Eval(k

(1)
x∗ , x) = y1 and ⊥

otherwise.

We now state our correctness and security theorems. We provide the formal
proofs in the full version [16].

Theorem 4.2. Suppose F1 is an injective puncturable PRF and F2 is a punc-
turable PRF. Then, the IPF (F,F−1) from Construction 4.1 is correct.

Constrained Keys for Invertible Pseudorandom Functions 253

Theorem 4.3. Suppose F1 is a selectively-secure puncturable PRF, F2 is a
selectively-secure, private puncturable PRF, and |X | / |V| = negl(λ). Then
(F,F−1) from Construction 4.1 is a selectively-secure puncturable IPF.

Remark 4.4 (Adaptive Security). Theorem 4.3 shows that if the underlying punc-
turable PRFs in Construction 4.1 are selectively secure, then the resulting IPF
is selectively secure. We note that if we instantiate the underlying PRFs with
an adaptively-secure (private) puncturable PRF (for instance, the construction
due to Canetti and Chen [24]), then the resulting IPF can also be shown to
be adaptively secure (following a similar argument as that used in the proof of
Theorem 4.3).

4.2 Circuit-Constrained IPF from Private Circuit-Constrained
PRFs

In this section, we show how to extend our puncturable IPF construction from
Sect. 4.1 to obtain a (single-key) constrained IPF for arbitrary circuit constraints.
Our security analysis for our circuit-constrained IPF construction relies critically
on the assumption that one of the underlying PRFs is a circuit-constrained PRF
satisfying a strong simulation-based notion of privacy (Definition 3.14). Canetti
and Chen [24] previously showed that even a 2-key private constrained PRF sat-
isfying this simulation-based notion of privacy implies virtual black-box (VBB)
obfuscation for the same underlying circuit class. Since VBB obfuscation for all
circuits is impossible in the standard model [5], our construction is instantiat-
able only in the single-key setting, and thus, we present our construction in the
single-key setting.

Construction 4.5. Fix a domain X = {0, 1}n where n = n(λ). Our circuit-
constrained IPF construction for NC1 (resp., P/poly) relies on several primitives:

– Let PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) be a PKE scheme with
message space X , ciphertext space T , and whose decryption function can be
computed in NC1 (resp., P/poly). Let PK and SK denote the space of public
keys and the space of secret keys, respectively, for PKE. Let V denote the space
from which the randomness for encryption is sampled.

– Let F1 : K1 × X → V be a circuit-constrained PRF for NC1 (resp., P/poly).
– Let F2 : K2 × T → X be a private circuit-constrained PRF for NC1 (resp.,

P/poly).3

3 To simplify the presentation, we implicitly assume that the PRFs F1 and F2 sup-
port general circuit constraints (i.e., NC1 constraints or P/poly constraints). How-
ever, we can also instantiate our construction using private constrained PRFs for
weaker constraint classes, provided that the constraint class is expressive enough to
include the decryption algorithm for a CCA-secure public-key encryption scheme
(see Remark 4.8).

254 D. Boneh et al.

The constrained IPF F : K×X → Y with key-space K = K1×K2×PK×SK,
domain X , and range Y ⊆ T × X is defined as follows:

– The IPF key consists of two PRF keys (k(1), k(2)) ∈ K1 × K2 for F1 and F2,
respectively, and a public/secret key-pair (pk, sk) ∈ PK×SK for the public-key
encryption scheme PKE.

– On input a key k = (k(1), k(2), pk, sk) ∈ K, and x ∈ X , the IPF F(k, x) com-
putes randomness rx ← F1(k(1), x), a ciphertext ct ← PKE.Encrypt(pk, x; rx),
and outputs

F(k, x) :=
(
ct, F2(k(2), ct) ⊕ x

)
.

Note that the public key pk can also be included as part of the public parame-
ters for the IPF.

– On input a key k = (k(1), k(2), pk, sk) ∈ K, and (y1, y2) ∈ Y, the inver-
sion function F−1(k, (y1, y2)) first computes x ← F2(k(2), y1) ⊕ y2 and rx ←
F1(k(1), x). Finally, it outputs

F−1(k, (y1, y2)) :=

{
x if y1 = PKE.Encrypt(pk, x; rx)
⊥ otherwise.

– The range of the IPF Y is defined to be the space T ′ × X where T ′ =
{PKE.Encrypt(pk, x; r)}x∈X ,r∈V is the subset of ciphertexts that correspond
to a valid encryption of some message under the public key pk.

Next, we define the setup and constraining algorithms for (F,F−1).

– F.Setup(1λ): On input the security parameter λ, the setup algorithm samples
two PRF keys k(1) ← F1.Setup(1λ), k(2) ← F2.Setup(1λ), and a public/secret
key-pair for the PKE scheme: (pk, sk) ← PKE.Setup(1λ). It outputs the IPF
key k = (k(1), k(2), pk, sk).

– F.Constrain(k, f): On input the IPF key k = (k(1), k(2), pk, sk) and a constraint
function f ∈ F , the algorithm first constrains k

(1)
f ← F1.Constrain(k(1), f).

Then, it defines the function Fsk,f : T → {0, 1} as follows:

Fsk,f (ct) :=

{
1 if PKE.Decrypt(sk, ct) �= ⊥ and f(PKE.Decrypt(sk, ct)) = 1
0 otherwise.

(4.1)
The constrain algorithm constrains the key k(2) to Fsk,f and obtains k

(2)
F ←

F2.Constrain(k(2), Fsk,f). It then defines and returns the constrained key kf =
(k(1)

f , k
(2)
F , pk). Note that if PKE.Decrypt(sk, ·) can be computed in NC1 (resp.,

P/poly), then the function Fsk,f can also be computed in NC1 (resp., P/poly).
– F.Eval(kf , x): On input the constrained key kf = (k(1)

f , k
(2)
F , pk), and

a point x ∈ X , the algorithm first computes rx ← F1.Eval(k
(1)
f , x).

Then, it encrypts ct ← PKE.Encrypt(pk, x; rx) and returns the tuple y =(
ct, F2.Eval(k

(2)
F , ct) ⊕ x

)
.

Constrained Keys for Invertible Pseudorandom Functions 255

– F.Eval−1(kf , y): On input the constrained key kf = (k(1)
f , k

(2)
F , pk), and a point

y = (y1, y2) ∈ Y, the algorithm first computes x ← F2.Eval(k
(2)
F , y1) ⊕ y2.

Then, it computes rx ← F1.Eval(k
(1)
f , x) and ct ← PKE.Encrypt(pk, x; rx). If

y1 = ct, then the algorithm returns x. Otherwise, it returns ⊥.

We now state our correctness and security theorems. We provide the formal
proofs in the full version [16].

Theorem 4.6. Suppose PKE is a public-key encryption scheme, and F1, F2 are
circuit-constrained PRFs for NC1 (resp., P/poly). Then, the IPF (F,F−1) from
Construction 4.5 is a circuit-constrained IPF for NC1 (resp., P/poly).

Theorem 4.7. Suppose PKE is a smooth, CCA-secure public-key encryption
scheme, F1 is a single-key selective-function-secure circuit-constrained PRF for
NC1 (resp., P/poly), and F2 is a single-key, selective-function-secure private
circuit-constrained PRF for NC1 (resp., P/poly). Then, (F,F−1) from Construc-
tion 4.5 is a single-key, selective-function-secure circuit-constrained IPF for NC1

(resp., P/poly).

Remark 4.8 (Weaker Constraint Classes). While Construction 4.5 gives a
circuit-constrained IPF from private circuit-constrained PRFs, the same con-
struction also applies for building constrained PRFs that support a weaker class
of constraints. Specifically, given a private constrained PRF for some constraint
family F , if F is expressive enough to support the decryption operation of a
CCA-secure PKE scheme (composed with the constraining function), then the
constrained PRF for F can be leveraged to construct an IPF for the family F
(via Construction 4.5).

Remark 4.9 (Computational Notion of Smoothness). As stated, Theorem 4.7
imposes an additional smoothness requirement (Definition 2.2) on the under-
lying public-key encryption scheme. While most semantically-secure public-key
encryption schemes naturally satisfy this property, a weaker notion of “com-
putational smoothness” also suffices for Theorem 4.7. In particular, we say a
public-key encryption scheme PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt)
with message space M and ciphertext space T satisfies computational smooth-
ness if for all messages m ∈ M output by an efficient adversary (on input
the security parameter λ and the public key pk), and all strings ct ∈ T ,
Pr[PKE.Encrypt(pk,m) = ct] = negl(λ). Clearly, if PKE is semantically secure,
then PKE satisfies computational smoothness. It is straightforward to modify the
proof of Theorem 4.7 to rely on the computational version of smoothness. In this
case, we can use any CCA-secure public-key encryption scheme to instantiate
Construction 4.5.

5 Concrete Instantiations of Constrained IPFs

In this section, we describe how to concretely instantiate Constructions 4.1
and 4.5 using existing lattice-based private constrained PRFs [15,22,24] to

256 D. Boneh et al.

obtain puncturable IPFs and circuit-constrained IPFs (for both NC1 and P/poly),
respectively, from standard lattice assumptions.

Puncturable IPFs from lattices. To apply Construction 4.1, we require an injec-
tive puncturable PRF and a private puncturable PRF. As shown in [51], (sta-
tistically) injective puncturable PRFs4 can be built from any one-way function.
Next, the recent works of [15,22,24] show how to construct private puncturable
PRFs from standard lattice assumptions. Thus, applying Construction 4.1, we
obtain puncturable IPFs from standard lattice assumptions. In fact, the con-
struction of Canetti and Chen [24] gives an adaptively-secure private puncturable
PRF from the (polynomial) hardness of the learning with errors (LWE) prob-
lem [47], and so, combining their construction with Theorem4.3, we obtain an
adaptively-secure puncturable IPF from the (polynomial) hardness of LWE with
subexponential error rate.

Circuit-constrained IPFs from lattices. Starting from (single-key) private circuit-
constrained PRFs for NC1 [24] and P/poly [22], we can leverage Construction 4.5
to obtain (single-key) circuit-constrained IPFs for NC1 and P/poly, respectively.
We give two candidate instantiations based on standard lattice assumptions:

– To construct a circuit-constrained IPF for NC1-constraints, we require a pri-
vate circuit-constrained PRF for NC1 and a CCA-secure public-key encryption
scheme with an NC1 decryption circuit. We can instantiate the private circuit-
constrained PRF for NC1 using the construction of Canetti and Chen [24]. The
CCA-secure encryption scheme with NC1 decryption can be instantiated using
existing lattice-based CCA-secure PKE schemes [42,44,45] or by applying the
Boneh et al. [14] transformation to a suitable identity-based encryption (IBE)
scheme [1,2,25,33] and a message authentication code (MAC) with verifica-
tion in NC1, which can be built from lattice-based PRFs [3,4,17]. Putting
these pieces together, we obtain a (single-key) circuit-constrained IPF for
NC1 constraints from standard lattice assumptions.

– To construct a circuit-constrained IPF forP/poly, we primarily require a private
constrainedPRF forP/poly.We instantiate theprivate circuit-constrainedPRF
using the recent construction of Brakerski et al. [22], and the CCA-secure public
key encryption as above. This yields a secure (single-key) circuit-constrained
IPF for general predicates from standard lattice assumptions.

Remark 5.1 (Relaxed Notions of Correctness). Several lattice-based constrained
PRF constructions [15,22,23] satisfy a weaker “computational” notion of cor-
rectness which roughly states that an efficient adversary with a constrained key
kf cannot find an input x where F.Eval(kf , x) �= F(k, x), where k is the PRF key.
If we instantiate Constructions 4.1 and 4.5 with a constrained PRF that satisfies

4 A statistically injective puncturable PRF is a puncturable PRF F where F(k, ·) is
injective with overwhelming probability over the choice of coins used for sampling
the key k ← F.Setup(1λ).

Constrained Keys for Invertible Pseudorandom Functions 257

a computational notion of correctness, then the resulting constrained IPF also
achieves computational correctness. It is straightforward to modify the correct-
ness analysis (Theorems 4.2 and 4.6) to work under a computational notion of
correctness. The security analysis remains unchanged since none of the proofs
rely on perfect correctness of the underlying constrained PRFs.

6 An Extension: Supporting Delegation

In a delegatable constrained IPF, the holder of a constrained IPF key kf for a
function f can further constrain the key to some function g (i.e., construct a key
kf∧g that allows IPF evaluation only on points x where f(x) = g(x) = 1). Many
constrained PRF constructions either support or can be modified to support
some flavor of key delegation [19,26,27]. In this section, we describe (informally)
how to extend our constrained IPF construction from Sect. 4.2 to support key
delegation.

Delegatable constrained PRFs. A constrained PRF that supports one level of
delegation can be generically constructed from any constrained PRF by defining
the PRF output to be the xor of the outputs of two constrained PRFs. For
instance, we can define a PRF F as follows:

F((k1, k2), x) := F1(k(1), x) ⊕ F2(k(2), x),

where F1 and F2 are constrained PRFs. The master secret key is k(1) and
k(2), and the constrained key for a function f is (k(1)

f , k(2)) where k(1) ←
F1.Constrain(k(1), f). The holder of the constrained key (k(1)

f , k(2)) can fur-

ther constrain to a function of the form f ∧ g by computing (k(1)
f , k

(2)
g) where

k
(2)
g ← F2.Constrain(k(2), g). Security of this construction follows by a simple

hybrid argument. This general technique can be extended to support any a pri-
ori polynomially-bounded delegation depth.

Delegatable constrained IPFs. We can define a similar notion of key delegation
for constrained IPFs. However, the above method of xoring together the outputs
of several constrained IPFs does not directly give a delegatable constrained IPF.
In fact, xoring together the outputs of several IPFs may not even give an injective
function, let alone an efficiently invertible one. Thus, to support delegation for
a constrained IPF, we need a different construction. One method is to use a
variant of the xoring trick in conjunction with Construction 4.5. We describe a
construction for achieving one level of delegation here. Our construction relies
on a CCA-secure public-key encryption scheme PKE, three constrained PRFs
F1, F2, F3, and a constrained IPF IPF. The master secret key consists of keys
k(1), k(2), k(3) for F1, F2, and F3, respectively, a key k(IPF) for IPF, and the

258 D. Boneh et al.

public/secret key-pair pk, sk for the PKE scheme. Our delegatable IPF works as
follows:

F
(
(k(1), k(2), k(3), k(IPF), pk, sk), x

)
:= F−1((k(1), k(2), k(3), k(IPF), pk, sk), (ct, z)

)
:=

⎧
⎪⎪⎨

⎪⎪⎩

r ← F1(k
(1), x) ⊕ F3(k

(3), x)
ct ← PKE.Encrypt(pk, x; r)

z ← F2(k
(2), ct) ⊕ IPF(k(IPF), x)

output (ct, z)

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ← IPF−1(k(IPF), z ⊕ F2(k
(2), ct))

r ← F1(k
(1), x) ⊕ F3(k

(3), x)
if ct 	= PKE.Encrypt(pk, x; r)
then x ← ⊥

output x

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

To constrain a key (k(1), k(2), k(3), k(IPF), pk, sk) to a function f , we first con-
strain the PRF keys k(1), k(2) exactly as described in Construction 4.5. In
particular, the constrain algorithm computes k

(1)
f ← F1.Constrain(k(1), f) and

k
(2)
F ← F2.Constrain(k(2), Fsk,f), where Fsk,f is defined as in Eq. (4.1). The con-

strained key is the tuple kf = (k(1)
f , k

(2)
F , k(3), k(IPF), pk). To further constrain

(that is, delegate) to a function g, we constrain F3 and IPF to g. In other words,
we compute k

(3)
g ← F3.Constrain(k(3), g) and k

(IPF)
g ← IPF.Constrain(k(IPF), g).

The constrained key kf∧g for the function f ∧ g is defined to be kf∧g :=
(k(1)

f , k
(2)
F , k

(3)
g , k

(IPF)
g , pk). Security of this construction follows by a similar argu-

ment as that used in the proof of Theorem 4.7 (namely, by appealing to security
of F1 and privacy as well as security of F2), in addition to security of F3 and the
underlying IPF. Our construction can be viewed as taking a standard constrained
IPF (that does not support key delegation), and constructing a constrained IPF
that supports one level of delegation. Iterating this construction multiple times
yields an IPF that can support any a priori bounded number of delegations.

7 Multi-key Constrained IPF from Obfuscation

In this section, we construct a multi-key circuit-constrained IPF from
(polynomially-hard) indistinguishability obfuscation and one-way functions. Our
construction of a circuit-constrained IPF from iO (and one-way functions) mirrors
the Boneh-Zhandry construction [20] of a circuit-constrained PRF from iO (and
one-way functions). More precisely, Boneh and Zhandry show that obfuscating a
puncturable PRF effectively gives a circuit-constrained PRF. Similarly, our con-
struction works by obfuscating our punctured IPF construction (Construction 4.1)
using iO. In our construction, each constrained IPF key contains two obfuscated
programs: one for evaluating the IPF, and one for inverting the IPF. The constraint
function f is embedded within the obfuscated evaluation and inversion programs.
We now describe our scheme more formally. First, we review the standard defini-
tion of indistinguishability obfuscation [5,32].

Definition 7.1 (Indistinguishability Obfuscation [5,32]). An indistin-
guishability obfuscator iO for a circuit class C is a uniform and efficient algo-
rithm satisfying the following requirements:

– Correctness. For all security parameter λ ∈ N, all circuits C ∈ C, and all
inputs x, we have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.

Constrained Keys for Invertible Pseudorandom Functions 259

– Indistinguishability. For all security parameter λ ∈ N, and any two cir-
cuits C0, C1 ∈ Cλ, if C0(x) = C1(x) for all inputs x, then for all efficient
adversaries A, we have that

|Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| = negl(λ).

Construction 7.2. Fix a domain X = {0, 1}n where n = n(λ). Let F1 : K1 ×
X → V be a puncturable PRF with key-space K1 and range V. Let F2 : K2 ×V →
X be a puncturable PRF with key-space K2. The constrained IPF F : K×X → Y
with key-space K = K1 × K2, domain X , and range Y = V × X is defined as
follows:

– The IPF key is a pair of keys k = (k(1), k(2)) ∈ K1 × K2 = K. On input a key
(k(1), k(2)) and an input x ∈ X , the value of the IPF is defined to be

F(k, x) :=
(
F1(k(1), x), F2(k(2),F1(k(1), x)) ⊕ x

)
.

– On input k = (k(1), k(2)) ∈ K1 × K2 = K, and y = (y1, y2) ∈ V × X = Y, the
inversion algorithm F−1(k, y) first computes x ← F2(k(2), y1)⊕y2 and outputs

F−1(k, (y1, y2)) :=

{
x if y1 = F1(k(1), x)
⊥ otherwise.

Next, we define the setup and constraining algorithms for the IPF (F,F−1).

– F.Setup(1λ): On input the security parameter λ, the setup algorithm samples
two puncturable PRF keys k(1) ← F1.Setup(1λ) and k(2) ← F2.Setup(1λ), and
outputs k = (k(1), k(2)).

– F.Constrain(k, f): On input the IPF key k = (k(1), k(2)) and a constraint
function f ∈ F , the constrain algorithm outputs two obfuscated programs
P0 = iO(P Eval[f, k(1), k(2)]) and P1 = iO(P Inv[f, k(1), k(2)]) where the pro-
grams P Eval[f, k(1), k(2)] and P Inv[f, k(1), k(2)] are defined in Figs. 1 and 2.
Note that the programs P Eval and P Inv are padded to the maximum size of any
program that appears in the proof of Theorem7.4.

– F.Eval(kf , x): On input the constrained key kf = (P1, P2), and a point x ∈ X ,
the evaluation algorithm outputs P1(x).

– F.Eval−1(kf , y): On input the constrained key kf = (P1, P2), and a point
y ∈ Y, the inversion algorithm outputs P2(y).

We now state our correctness and security theorems. We provide the formal
proofs in the full version [16].

Theorem 7.3. Suppose F1 and F2 are puncturable PRFs, and iO is an indistin-
guishability obfuscator. Then, the IPF (F,F−1) from Construction 7.2 is correct.

Theorem 7.4. Suppose F1 and F2 are selectively-secure puncturable PRFs, iO
is an indistinguishability obfuscator, and |X | / |V| = negl(λ). Then (F,F−1) from
Construction 7.2 is a selectively-secure circuit-constrained IPF.

260 D. Boneh et al.

Constants: a function f ∈ F , and two keys k(1) and k(2) for F1 and F2,
respectively.

On input x ∈ X :

1. If f(x) = 0, output ⊥.
2. Otherwise, output F(k, x) = F1(k(1), x), F2(k(2),F1(k(1), x)) ⊕ x

)
.

Fig. 1. The program P Eval[f, k(1), k(2)]

Constants: a function f ∈ F , and two keys k(1) and k(2) for F1 and F2,
respectively.

On input y = (y1, y2) ∈ V × X

1. Compute x ← F2(k(2), y1) ⊕ y2.
2. If f(x) = 0 or y1 �= F1(k(1), x), output ⊥.
3. Otherwise, output x.

Fig. 2. The program P Inv[f, k(1), k(2)]

Acknowledgments. We thank the anonymous TCC reviewers for helpful comments
on this work. This work was funded by NSF, the DARPA/ARL SAFEWARE project,
a grant from ONR, and the Simons Foundation. Opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimen-
sion and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14623-7 6

3. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudoran-
dom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2 20

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20

Constrained Keys for Invertible Pseudorandom Functions 261

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 42

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

7. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 20

8. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

9. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: when
and how should challenge decryption be disallowed? J. Cryptol. 28(1), 29–48 (2015)

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

11. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 24

12. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 19

13. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

14. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

15. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard
lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 15

16. Boneh, D., Kim, S., Wu, D.J.: Constrained keys for invertible pseudorandom func-
tions. Cryptology ePrint Archive, Report 2017/477 (2017). http://eprint.iacr.org/
2017/477

17. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
http://eprint.iacr.org/2017/477
http://eprint.iacr.org/2017/477
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23

262 D. Boneh et al.

18. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54388-7 17

19. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–
300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 15

20. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

21. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

22. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: TCC (2017)

23. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions - or: how to secretly embed a circuit in your PRF. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 1

24. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

25. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

26. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: verifiable and delegatable. IACR Cryptology ePrint Archive 2014 (2014)

27. Datta, P., Dutta, R., Mukhopadhyay, S.: Constrained pseudorandom functions for
unconstrained inputs revisited: achieving verifiability and key delegation. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 463–493. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54388-7 16

28. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for
unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 5

29. Fuchsbauer, G.: Constrained verifiable random functions. IACR Cryptology ePrint
Archive 2014 (2014)

30. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 5

31. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28914-9 33

32. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

33. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-662-54388-7_16
https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-642-28914-9_33
https://doi.org/10.1007/978-3-642-28914-9_33

Constrained Keys for Invertible Pseudorandom Functions 263

34. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
FOCS (1984)

35. Hofheinz, D.: Fully secure constrained pseudorandom functions using random ora-
cles. IACR Cryptology ePrint Archive 2014 (2014)

36. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 4

37. Iwata, T., Yasuda, K.: BTM: a single-key, inverse-cipher-free mode for determin-
istic authenticated encryption. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R.
(eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05445-7 20

38. Iwata, T., Yasuda, K.: HBS: a single-key mode of operation for determin-
istic authenticated encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 394–415. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 24

39. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

40. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: ACM CCS (2013)

41. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

42. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 41

43. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC (1990)

44. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). IACR
Cryptology ePrint Archive 2009 (2009)

45. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
(2008)

46. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 35

47. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

48. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS (2002)
49. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for

efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. (TISSEC) 6(3),
365–403 (2003)

50. Rogaway, P., Shrimpton, T.: Deterministic authenticated encryption: a provable-
security treatment of the key-wrap problem. In: EUROCRYPT (2006)

51. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-642-05445-7_20
https://doi.org/10.1007/978-3-642-03317-9_24
https://doi.org/10.1007/978-3-642-03317-9_24
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35

Private Constrained PRFs (and More)
from LWE

Zvika Brakerski1, Rotem Tsabary1, Vinod Vaikuntanathan2(B),
and Hoeteck Wee3

1 Weizmann Institute of Science, Rehovot, Israel
2 MIT, Cambridge, USA

vinodv@mit.edu
3 CNRS and ENS, Paris, France

Abstract. In a constrained PRF, the owner of the PRF key K can
generate constrained keys Kf that allow anyone to evaluate the PRF
on inputs x that satisfy the predicate f (namely, where f(x) is “true”)
but reveal no information about the PRF evaluation on the other inputs.
A private constrained PRF goes further by requiring that the constrained
key Kf hides the predicate f .

Boneh, Kim and Montgomery (EUROCRYPT 2017) recently pre-
sented a construction of private constrained PRF for point function
constraints, and Canetti and Chen (EUROCRYPT 2017) presented a
completely different construction for more general NC1 constraints. In
this work, we show two constructions of LWE-based constraint-hiding
constrained PRFs for general predicates described by polynomial-size
circuits.

The two constructions are based on two distinct techniques that
we show have further applicability, by constructing weak attribute-
hiding predicate encryption schemes. In a nutshell, the first construction
imports the technique of modulus switching from the FHE world into the
domain of trapdoor extension and homomorphism. The second construc-
tion shows how to use the duality between FHE secret-key/randomness
and ABE randomness/secret-key to construct a scheme with dual use of
the same values for both FHE and ABE purposes.

1 Introduction

Lattice-based cryptography, and in particular the construction of cryptographic
primitives based on the learning with errors (LWE) assumption [Reg05], has seen

Z. Brakerski and R. Tsabary—Supported by the Israel Science Foundation (Grant
No. 468/14), Binational Science Foundation (Grants No. 2016726, 2014276) and
ERC Project 756482 REACT.
V. Vaikuntanathan—Research supported in part by NSF Grants CNS-1350619 and
CNS-1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship and
by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
H. Wee—Supported in part by ERC Project aSCEND (H2020 639554) and NSF
Award CNS-1445424.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 264–302, 2017.
https://doi.org/10.1007/978-3-319-70500-2_10

Private Constrained PRFs (and More) from LWE 265

a significant leap in recent years. Most notably, we now have a number of con-
structions of cryptographic primitives that “compute on encrypted data”. For
example, fully homomorphic encryption (FHE) [Gen09,BV11,BGV12,GSW13],
which enables arbitrary computation on encrypted data without knowledge
of the secret key; attribute-based encryption (ABE) [SW05,GPSW06,GVW13,
BGG+14], which supports fine-grained access control of encrypted data via the
creation of restricted secret keys; new forms of pseudo-random functions (PRF)
such as constrained PRFs [BW13,KPTZ13,BGI14]; and many more.

In this paper, we continue this line of inquiry and develop two new
constructions of weak attribute-hiding predicate encryption schemes [BW07,
KSW08,BSW11,O’N10] and two new constructions of private constrained
PRFs [BLW17]. These are private variants of ABE and constrained PRFs respec-
tively, that take us further along in the quest to extend the limits of computing
on encrypted data using LWE-based techniques. Our private constrained PRFs
support polynomial-time computable constraints, generalizing the recent results
of Boneh, Kim and Montgomery [BKM17] for point functions and Canetti and
Chen [CC17] for NC1 functions.

In constructing these schemes, we develop two new techniques that we believe
are as interesting in their own right as the end results themselves. We proceed to
introduce the protagonists of our work and describe our results and techniques.

Predicate Encryption. Predicate Encryption (PE) is a strengthening of ABE
with additional privacy guarantees [BW07,KSW08,BSW11,O’N10]. In a predi-
cate encryption scheme, ciphertexts are associated with descriptive attributes x
and a plaintext M ; secret keys are associated with Boolean functions f ; and a
secret key decrypts the ciphertext to recover M if f(x) is true (henceforth, for
convenience of notation later in the paper, we denote this by f(x) = 0).

The most basic security guarantee for attribute-based encryption as well as
predicate encryption, called payload hiding, stipulates that M should remain
private given its encryption under attributes x∗ and an unbounded number
of unauthorized keys, namely secret keys skf where f(x∗) is false (we denote
this by f(x∗) = 1). The additional requirement in predicate encryption refers
to hiding the attribute x∗ (beyond leaking whether f(x∗) is true or false). It
turns out that this requirement, called attribute-hiding, can be formalized in
two ways. The first is the definition of weak attribute-hiding, which stipulates
that x∗ remains hidden given an unbounded number of unauthorized keys. The
second, called strong attribute-hiding, stipulates that x∗ remains hidden given an
unbounded number of keys, which may comprise of both authorized and unau-
thorized keys. Both these requirements can be formalized using simulation-based
and indistinguishability-based definitions (simulation based strong attribute hid-
ing is known to be impossible [AGVW13]); jumping ahead, we remark that our
constructions will achieve the stronger simulation-based definition but for weak
attribute hiding.

A sequence of works showed the surprising power of strong attribute-
hiding predicate encryption [BV15a,AJ15,BKS16]. A strong attribute-hiding
PE scheme (for sufficiently powerful classes of predicates) gives us a functional

266 Z. Brakerski et al.

encryption scheme [BSW11], which in turn can be used to build an indistin-
guishability obfuscation (IO) scheme [BV15a,AJ15], which in turn has emerged
as a very powerful “hub of cryptography” [GGH+16,SW14].

The only strong attribute-hiding predicate encryption schemes we have under
standard cryptographic assumptions are for very simple functionalities related to
the inner product predicate [KSW08,BW07,OT12], and build on bilinear groups.
On the other hand, Gorbunov, Vaikuntanathan and Wee (GVW) [GVW15a]
recently constructed a weak attribute-hiding predicate encryption scheme for all
circuits (of an a-priori bounded polynomial depth) from the LWE assumption.
They also pointed out two barriers, two sources of leakage, that prevent their con-
struction from achieving the strong attribute-hiding guarantee. Indeed, Agrawal
[Agr16] showed that both sources of leakage can be exploited to recover the
private attribute x∗ in the GVW scheme, under strong attribute-hiding attacks
(that is, using both authorized and unauthorized secret keys).1

Private Constrained PRFs (CPRFs). Constrained Pseudorandom Functions,
denoted CPRFs, [BW13,KPTZ13,BGI14] are pseudorandom functions (PRF)
where it is possible to delegate the computation of the PRF on a subset of the
inputs. Specifically, an adversary can ask for a constrained key σf corresponding
to a function f , which is derived from the (global) seed σ. Using σf it is pos-
sible to compute PRFσ(x) for all x where f(x) is true (in our notation, again,
f(x) = 0). However, if f(x) = 1 then PRFσ(x) is indistinguishable from uniform
even for an adversary holding σf . The original definition considers the case of
unbounded collusion, i.e. security against an adversary that can ask for many dif-
ferent σfi

, but this is currently only achievable for very simple function classes
or under strong assumptions such as multilinear maps or indistinguishability
obfuscation. Many of the applications of CPRFs (e.g. for broadcast encryption
[BW13] and identity based key exchange [HKKW14]) rely on collusion resilience,
but some (such as the puncturing paradigm [SW14]) only require releasing a sin-
gle key. Brakerski and Vaikuntanathan [BV15b] showed that single-key CPRF is
achievable for all functions with a priori depth bound and non-uniformity bound
under the LWE assumption.

Boneh, Lewi and Wu [BLW17] recently considered constraint hiding CPRFs
(CH-CPRF or private CPRFs) where the constrained key σf does not reveal f
(so, in a sense, the constrained key holder cannot tell whether it is computing
the right value or not). They showed various applications for this new primi-
tive, as well as constructions from multilinear maps and obfuscation for various
function classes. Very recently, Boneh, Kim and Montgomery [BKM17] showed
how to construct single-key private CPRFs for point functions, and Canetti and
Chen [CC17] showed how to construct a single-key private CPRF for the class of
NC1 circuits (i.e. polynomial-size formulae). Both their constructions are secure

1 In addition, we also have several constructions of functional encryption schemes for
computing inner products over large fields [ABCP15,BJK15,ALS16] (as opposed
to the inner product predicate) and for quadratic functions [Lin16,Gay16] from
standard assumptions.

Private Constrained PRFs (and More) from LWE 267

under the LWE assumption. They also showed that even collusion resistance
against 2-keys would imply indistinguishability obfuscation.

The technical core of these constructions is lattice-based constructions of
PRFs, initiated by Banerjee, Peikert and Rosen [BPR12] and developed in a line
of followup works [BP14,BLMR15,BFP+15,BV15b].

1.1 Our Results

In this work, we present two new techniques for achieving the attribute-hiding
guarantee from the LWE assumption. We exemplify the novelty and usefulness of
our techniques by showing that they can be used to derive new predicate encryp-
tion schemes and new constraint-hiding constrained PRFs [BLW17,CC17]. In
particular, under the (polynomial hardness of the subexponential noise rate)
LWE assumption, we construct:

– Two single-key constraint-hiding constrained PRF families for all circuits (of
an a-priori bounded polynomial depth). This generalizes recent results of
[BKM17] who handle point functions and [CC17] who handle NC1 circuits.
Our new techniques allow us to handle arbitrary polynomial-time constraints
(of an a-priori bounded depth), which does not seem to follow from previous
PE techniques, e.g., [GVW15a]. We describe constrained PRFs, constraint-
hiding and our constructions in more detail in the sequel.

– Two new predicate encryption schemes that achieve the weak attribute-hiding
security guarantee. Our predicate secret keys are shorter than in [GVW15a]
by a poly(λ) factor. They also avoid the first source of leakage identified in
[GVW15a,Agr16]. We will describe these features in more detail in the sequel.

Technical Background. Following [GVW15a] (henceforth GVW), we build a
predicate encryption scheme starting from an FHE and an ABE, following the
“FHE+ABE” paradigm introduced in [GVW12,GKP+13] for the setting of a-
priori bounded collusions. The idea is to first use FHE to produce an encryption
Ψ of the attribute x, and use Ψ as the attribute in an ABE. This paradigm
allows us to reduce the problem of protecting arbitrary polynomial-time com-
putation f on a private attribute x to protecting a fixed computation, namely
FHE decryption, on the FHE secret key. Henceforth, we suppress the issue of
carrying out FHE homomorphic evaluation on the encrypted attribute, which
can be handled via the underlying ABE as in [GVW15a], and focus on the issue
of FHE decryption, which is where we depart from prior works.

With all LWE-based FHE schemes [BV11,BGV12,GSW13,BV14,AP14],
decryption corresponds to computing an inner product modulo q followed by a
threshold function. While constructing a strongly attribute hiding PE scheme for
this function class is still beyond reach,2 GVW construct an LWE-based weakly

2 There are constructions for function classes that semantically seem astonishingly sim-
ilar, such as inner product over the integers (and not modulo q) followed by rounding
[ALS16] but there appears to be a big technical gap between these classes.

268 Z. Brakerski et al.

attribute hiding scheme by extending previous works [AFV11,GMW15], and show
how to attach it to the end of the decryption process of [BGG+14] ABE. Specif-
ically, Agrawal, Freeman and Vaikuntanathan [AFV11] showed how to construct
weakly attribute hiding PE for orthogonality checking modulo q, i.e. the class
where attributes x and functions fy correspond to vectors and decryption is possi-
ble if 〈x,y〉 = 0 (mod q). GVW rely on an additional feature of LWE-based FHE:
that the value to be rounded after the inner product can be made polynomially
bounded. Thus inner product plus rounding can be interpreted as a sequence of
shifted inner products that are supported by [AFV11]. This in particular means
that an authorized decryptor learns which of the shifts had been the successful
one, a value that depends on the FHE randomness. This is one of the reasons why
the GVW scheme is not strongly attribute hiding; there are others as described
in [Agr16]. Interestingly, these shifts are also what prevent us from combining the
PE techniques in [GVW15a] with the “constrained PRF from ABE” paradigm of
[BV15b] to obtain constraint-hiding constrained PRFs.

First New Technique: Dual Use. In this technique, we use the same LWE
secret for the FHE and the ABE.3 Our main observation is that the structure
of the [BGG+14] ABE scheme and that of the [GSW13] FHE scheme are so
very similar that we can use the same LWE secret in both schemes. This can
be viewed as encrypting the attribute under some FHE key, and then provid-
ing partly decrypted pieces as the ABE ciphertext. The PE decryption process
first “puts the pieces together” according to the FHE homomorphic evaluation
function, which makes the ABE ciphertext decrypt its own FHE component,
leaving us with an ABE ciphertext which is ready to be decrypted using the
ABE key. Proving security for this approach requires to delicately argue about
the randomness used in the FHE encryption.

Second New Technique: Modulus Switching and HNF Lattice Trap-
doors. In this technique, we attempt to implement the rounding post inner-
product straightforwardly by rounding the resulting ciphertext. This does not
work since the attribute is encoded in the ciphertext in a robust way, so it is not
affected by rounding (this is why more sophisticated methods were introduced in
the past). However, we show how to homomorphically modify the rounding in a
way that makes it effective for small noise, and yet preserves the most significant
bits properly encoded. We note that a similar idea was also used in [BKM17].
Interestingly, for the proof of security of our PE scheme, we utilize the ability
of generating trapdoors for LWE lattices of the form [I‖A] (which corresponds
to Hermite Normal Form), even when generating a trapdoor for A itself is not
possible.

We first construct predicate encryption schemes using our techniques, on
the way to our main result, namely constructions of constraint-hiding CPRFs
for general constraints. With this executive summary, we move on to a more
in-depth technical discussion of our results and techniques.

3 An LWE instance contains multiple samples of the form (ai, sai + ei), the vector s
is referred to as the LWE secret.

Private Constrained PRFs (and More) from LWE 269

2 Technical Overview

We provide a brief overview of the GVW predicate encryption scheme, along
with our constructions, focusing on the points where they differ and suppressing
many technical details.

2.1 The [GVW15a] Scheme

We will largely ignore how ciphertexts and keys are generated and instead start
by looking at what happens when one decrypts an encryption with respect to
attribute x using the secret key for a function (predicate) f . The decryption
algorithm computes a vector over Zq of the form:

sT [A‖Af − (f(x) · t + δ)G] + noise (1)

where s is the LWE secret (chosen as part of the encryption algorithm) and
the matrix Af is deterministically derived from the public parameters and the
predicate f (the precise derivation is not relevant for the overview). An additional
component of the ciphertext, not described here, carries the encrypted message.
For this overview, the only property we require is that the message is recoverable
given a lattice trapdoor for the lattice defined by [A‖Af − (f(x) · t + δ)G]. A
lattice trapdoor allows to sample low norm vectors in the kernel of the respective
matrix.

The first thing we will zoom into is the term f(x) · t + δ which corresponds
to the inner product of an FHE ciphertext (upon homomorphic evaluation) and
the corresponding secret key. Here, δ is a small noise value bounded by B, and
t � B is a large constant, most commonly t =

⌊
q
2

⌉
(but we will also use other

values, see below). As usual in LWE-based constructions, the vector s is an
“LWE secret”, and we use noise to denote non-specific low norm noise that is
added to the ciphertext and accumulates as it is processed.4

Decryption should be permitted when f(x) = 0, which indicates that the
policy f accepts the attribute x (and forbidden when f(x) = 1). Therefore, in
the GVW scheme, skf contains trapdoors for the 2B + 1 lattices

[A‖Af − βG], ∀|β| ≤ B,

and decryption tries all trapdoors until one works. This is called the “lazy OR”
evaluation in [GVW15a] and has at least two problems: (1) In the context of a
predicate encryption scheme, this ruins security by letting a successful decryption
leak the FHE noise δ; and (2) Looking ahead, in the context of a constraint-hiding
CPRF scheme (where one switches the function f and the input x), it ruins even
correctness, preventing the holder of a constrained key from recovering the PRF

4 A knowledgeable reader might notice that in [GVW15a] there is a plus sign in Eq. (1)
instead of the minus sign. This alternative notation is equivalent and will be more
useful for us.

270 Z. Brakerski et al.

value sT [A‖Ax];5 rather, she only gets sT [A‖Ax − βG] for some small noise
term β = β(f, x).

Moving on, in the proof of security, a simulator needs to generate secret
keys whenever f(x∗) = 1 where x∗ is the challenge attribute. To this end, the
reduction knows a short Rf for which

ARf = Af − (f(x∗) · t + δ∗)G (2)

where δ∗ is the noise that results from decrypting a homomorphically evaluated
encryption of f(x∗) using the FHE secret key. We can then rewrite

[A‖Af − βG] = [A‖ARf + (t + δ∗ − β)G]

and since δ∗ + t − β �= 0, we will be able to generate trapdoors for this lattice
knowing only Rf , using the trapdoor extension techniques of [ABB10b,MP12].

2.2 Dual-Use of Secret and Randomness

Our first technique hinges on the key observation that the structure of the
[BGG+14] ABE scheme and that of the [GSW13] FHE scheme are so very sim-
ilar that we can use the same LWE secret in both schemes; we refer to this as
the “dual use” technique.

Let us consider the [GSW13] homomorphic encryption scheme (using the
later “gadget” formulation). In this scheme, the public key is of the form

(
B

sT B+e

)
,

the secret key is the vector (sT ,−1) (note that (sT ,−1) ·
(

B
sT B+e

)
≈ 0). A cipher-

text Ψ encrypting the message μ is of the form Ψ =
(

B
sT B+e

)
R + μG, and has

the property that (sT ,−1) · Ψ ≈ μ · (sT ,−1)G. The structure of the secret key
suggests that it might be beneficial to treat the bottom row of Ψ differently than
the other rows. Let us denote Ψ =

(
Ψ
Ψ

)
and likewise G =

(
G
G

)
. It follows that

(sT ,−1) ·Ψ = sT Ψ −Ψ ≈ μsT G−μG. Specifically when μ = 0 we have sT Ψ ≈ Ψ .
We note that the chopped gadget G has all of the useful properties of G itself.

Back to our predicate encryption construction, instead of (1), we will com-
pute a vector of the form

sT [B‖Bf − Ψf] + noise, (3)

where Ψf is the matrix containing the top rows of a known matrix Ψf which in
turn is an encryption of f(x) under the key (sT ,−1).6

5 In the constrained PRF setting, the role of the function f and input x are reversed,
and hence Ax.

6 We use B instead of A to denote the public matrices here. This is since actually the
matrix A is analogous to

(
B

sT B+e

)
(as is hinted from B being matching in dimension

to Ψ,G). In fact, the dual use technique can be viewed as a method for working with
A which is different for every ciphertext.

Private Constrained PRFs (and More) from LWE 271

If we can compute such a vector from our ciphertexts, then it will follow that
if f(x) = 0 then

sT [B‖Bf − Ψf] + noise = sT [B‖Bf] + [0‖Ψf] + noise,

and thus we can define skf as containing a trapdoor for sT [B‖Bf − G] (note
that the value [0‖Ψf] can easily be subtracted off since Ψf is known).

It is left to explain first how to define the ciphertext to allow computing a
vector of this form, and second, how to prove security.

Compactification. The problem of defining ciphertexts that will allow comput-
ing the term in Eq. (3) is almost solved by previous works [BGG+14,GVW15a].
As in GVW, given an attribute x, we create an ABE ciphertext with respect to
the FHE encryption of the bits of x. Then, using techniques from [BGG+14],
these bits can be manipulated to apply the FHE homomorphic evaluation of f
on the attribute bits. All in all, these techniques show how to create ciphertexts
with respect to a hidden attribute x that can be processed into vectors of the
form:

sT [B‖Bfj
− ψf,jG] + noise (4)

where ψf,j ∈ Zq are the entries of Ψ j , and we work with respect to the truncated
gadget matrix G instead of G. This means that we can formally write Ψf as

Ψf =
∑

j

ψf,j · Ej

where Ej is a 0, 1-matrix whose j’th entry is 1 and 0 everywhere else. This
suggests the following manipulation:

Bf + Ψf =
∑

j

(Bfj
− ψf,jG) · G−1

(Ej),

can be applied to the vectors from Eq. (4), thus creating the value from Eq. (3).

Dual Use Decryption. As explained above, the secret key for f is a trapdoor
for the lattice [B‖Bf]. We now explain how to set up the parameters of the
scheme so as to be able to generate secret keys whenever f(x) = 1 in the proof of
security (i.e. without being able to decrypt the challenge ciphertext or generate
keys when f(x) = 0). Given an LWE instance

(
B

sT B+e

)
, we will generate all

parameters of the scheme such that for all f , the reduction can compute a short
Wf for which

BWf = Bf − Ψf .

We can then rewrite
[B‖Bf] = [B‖BWf + Ψf].

However, Ψf is an encryption of f(x) = 1 under public key
(

B
sT B+e

)
, i.e. Ψf =

(
B

sT B+e

)
Rf + G, which means that Ψf = BRf + G, and so

[B‖Bf] = [B‖BWf + Ψf] = [B‖B(Wf + Rf) + G]

and we will be able to generate trapdoors for this lattice knowing only Rf ,Wf .

272 Z. Brakerski et al.

2.3 Modulus Switching and Trapdoor Extension in Hermite Normal
Form

The crux of this technique is to replace Eq. (1) with a computation producing a
vector of the form

sT [A′‖A′
f − f(x)G′] + noise (5)

where G′ is a different gadget matrix and A′
f is again deterministically derived

from the public parameters and f . We will also make sure to sample a small s,
specifically from the LWE noise distribution (this is known as LWE in Hermite
Normal Form (HNF) and was shown equivalent to the standard form [ACPS09]),
the reason for doing so will be clear in a little bit. Next, we will address two
challenges: first, how to arrive at a vector of this form, and second, how to
generate secret keys for such vectors, both of which require new techniques.

Modulus Switching. We first describe how to get to Eq. (5) starting from Eq. (1)
(to get to the latter, we will proceed as in GVW). We would like to use the magni-
tude gap between t and δ, and, inspired by modulus switching techniques in FHE
[BV11,BGV12], “divide by t” to remove the dependence on δ. This seems odd
at first since t · G and δ · G actually have the same magnitude, so dividing by t
will not eliminate the δ component. Therefore we will first find a linear transfor-
mation that maps δG into a matrix of small entries, while mapping t · G into a
gadget matrix with big entries. Recall that eventually this transformation is to be
applied to the processed ciphertext from Eq. (1), so due to the noise component,
we are only allowed linear operations with small coefficients (or more explicitly,
multiplying on the right by a matrix with small values).

As we pointed out δG and tG have the same magnitude so it might seem
odd that a low-magnitude linear transformation can shift them so far apart.
However, since G is a matrix with public trapdoor, it is possible to convert G
into any other matrix M using a small magnitude linear transformation which
is denoted by G−1(M) (note that this is just a formal notation, since G doesn’t
have an actual inverse). Specifically, we will multiply by G−1(Gp), where Gp is
the gadget matrix w.r.t a smaller modulus p = q/t (we assume that p is integer).
Recall that our conceptual goal is to divide by t, and end up with a ciphertext
in Zp, we can now reveal that indeed G′ = Gp. Applying this transformation to
the ciphertext results in

sT [A‖AfG−1(Gp) − f(x)tGp] − [0‖δsT Gp] + noise, (6)

and indeed, since we use low-norm s, we have that
∥
∥δsT Gp

∥
∥ � q, and we can now

think about it as part of the noise. However, tGp is still not a valid gadget matrix
over Zq. Still, we can now divide the entire expression by t which results in

sT
[
�A/t
︸ ︷︷ ︸

A′

‖
⌊
AfG−1(Gp)/t

⌉

︸ ︷︷ ︸
A′

f

−f(x)Gp

]
+ noise (mod p), (7)

Private Constrained PRFs (and More) from LWE 273

as in Eq. (5). This technique is reminiscent of the one used by Boneh, Kim and
Montgomery [BKM17] in constructing a private CPRF for point functions (but
was obtained independently of theirs).

HNF Trapdoor Extension. The standard way to generate keys that decrypt
whenever f(x) = 0 is to provide a trapdoor for [A′‖A′

f] (over Zp) as in previous
ABE schemes. Indeed, this will provide the required functionality, but introduce
problems in the proof. As in Eq. (2), the simulator can find a low-magnitude Rf

s.t. ARf = Af +(t+δ∗)G, however, when applying our modulus switching from
above, we get

A′R′
f = A′

f − Gp − E,

where E is a low-magnitude error matrix which is the result of the bias introduced
by δ∗ and various rounding errors (note that E is easily computable given R′

f).
Therefore, we have that

[A′‖A′
f] = [A′‖A′R′

f + Gp + E],

which is no longer a form for which we can find a trapdoor using R′
f .

To resolve this, we observe that we can find a trapdoor for the matrix
[I‖A′‖A′

f] = [I‖A′‖A′R′
f +Gp +E], which corresponds to generating trapdoors

for lattices in Hermite Normal Form. This follows from the trapdoor extension
methods of [ABB10b,MP12] since

[I‖A′‖A′R′
f + Gp + E] ·

⎡

⎣
−E
−R′

f

I

⎤

⎦ = Gp.

We will therefore change the way secret keys are generated in our scheme,
and generate them as trapdoors for [I‖A′‖A′

f] instead of trapdoors for [A′‖A′
f].

This might seem problematic because our ciphertext processes to sT [A′‖A′
f −

f(x)G′]+noise as in Eq. (5) and not to sT [I‖A′‖A′
f −f(x)G′]+noise. However,

since s is short, the zero vector itself has the form 0 = sT I+ noise (with noise =
−sT), and therefore we can always extend our ciphertext to this new form just
by concatenating the zero vector.

Comparison with GVW15 Predicate Encryption. [GVW15a] pointed out that
there are two barriers to achieving strongly attribute-hiding predicate encryp-
tion from LWE. First, multiple shifts approach to handle threshold inner product
for FHE decryption leaks the exact inner product and therefore cannot be used
to achieve full attribute-hiding. That is, authorized keys leak the FHE decryption
key and in turn the private attribute x. Second, we do not currently know of a
fully attribute-hiding inner product encryption scheme under the LWE assump-
tion. Here, authorized keys leak the error terms used in the ciphertext. Indeed,
Agrawal [Agr16] showed that both sources of leakage can be exploited to recover
the private attribute x in the GVW scheme. Both of our new constructions do
not explicitly contain the first source of leakage.

274 Z. Brakerski et al.

2.4 From PE to Constraint Hiding CPRF

It was shown in [BV15b] that the [BGG+14] ABE structure can be used to
construct constrained PRFs for arbitrary bounded-uniformity bounded-depth
functions, without collusion. Namely, a pseudorandom function where it is pos-
sible to produce a constrained key σf for a function f whose description length is
a-priori bounded by � and its depth is a-priori bounded by d, s.t. the constrained
key can be used to compute PRF(x) for all x where f(x) = 0. At a high level, they
considered a set of public parameters for the ABE scheme, and some ciphertext
randomness s (currently not corresponding to any concrete ciphertext). To com-
pute the PRF at point x, they considered the circuit Ux which is the universal
circuit that takes an �-bit long description of a depth-d function, and evaluates
it on x. Now, they compute PRFs(x) =

⌊
sT AUx

T

⌉
for a sufficiently large T . This

essentially the deterministic variant to setting PRFs(x) = sT AUx
+ noise except

here the noise is deterministic since the PRF computation needs to be deter-
ministic. The matrix AUx

is exactly the matrix that would be computed in the
ABE decryption process if given a key skUx

. The constrained key corresponds to
an ABE ciphertext encrypting the description of f Therefore, constrained keys
can be processed like ABE ciphertexts into the form sT (AUx

−Ux(f)G)+ noise,
for any circuit Ux. Indeed, when f(x) = 0 the constrained key can be used to
compute PRF(x). The construction itself is more complicated and contains addi-
tional features to ensure pseudorandomness in all of the points that cannot be
computed using the constrained key.

This seems to be readily extendable to the PE setting, where the attribute
hiding property should guarantee the constraint hiding of the CPRF. Indeed,
now as in Eq. (1), the constrained key will only process to sT (AUx

− (tf(x) +
δ)G) + noise. When f(x) = 0 this is equal to sT (AUx

− δG) + noise which does
not allow to compute the correct value.

However, it is easy to see how using either of our new methods it is possible
to overcome this issue. In a sense, in both methods the FHE noise which is
embodied in the δ term is made small enough to be conjoined with the noise.
The modulus switching technique allows to remove the δ term via multiplication
by G−1(Gp) and dividing by t, and in the dual use method, the FHE noise is
not multiplied by G to begin with. There are many other technical details to
be dealt with, but they are resolved in ways inspired by [BV15b]. One technical
difference between our solution and [BV15b] is that we do not use admissible
hash functions to go from unpredictability to pseudorandomness, but instead
we “compose” with the Banerjee-Peikert [BP14] pseudorandom function, which
saves some complication as well as tightens the reduction somewhat. This could
be used even in the setting of [BV15b] when constraint hiding is not sought.

Organization of the Paper. We start the rest of this paper with background
information on lattices, LWE, trapdoors and FHE schemes in Sect. 3. Our first
technique, namely dual-use, and the resulting PE and private CPRF scheme are
presented in Sect. 4. Our second technique, namely HNF trapdoors and modulus
switching, and the resulting PE and private CPRF schemes are presented in

Private Constrained PRFs (and More) from LWE 275

Sect. 5. These two sections can be read independently of each other. In each
section, we first present the PE scheme and then the private CPRF scheme.

3 Preliminaries

3.1 Constrained Pseudo-Random Functions

In a constrained PRF family [BW13,BGI14,KPTZ13], the owner of a PRF
key σ can compute a constrained PRF key σf corresponding to any Boolean
circuit f . Given σf , anyone can compute the PRF on inputs x such that
f(x) = 0. (As described before, our convention throughout this paper is that
f(x) = 0 corresponds to the predicate f being satisfied). Furthermore, σf

does not reveal any information about the PRF values at the other loca-
tions. A constrained PRF family is constraint-hiding if σf does not reveal
any information about the internals of f . This requirement can be formal-
ized through either an indistinguishability-based or simulation-based defini-
tion [BLW17,CC17,BKM17]. Below, we present the definition of a constrained
PRF adapted from [BV15b].

Definition 1 (Constrained PRF). A constrained pseudo-random function
(PRF) family is defined by algorithms (KeyGen,Eval,Constrain,ConstrainEval)
where:

– KeyGen(1λ, 1�, 1d, 1r) is a ppt algorithm that takes as input the security para-
meter λ, a circuit max-length �, a circuit max-depth d and an output space r,
and outputs a PRF key σ and public parameters pp.

– Evalpp(σ, x) is a deterministic algorithm that takes as input a key σ and a
string x ∈ {0, 1}∗, and outputs y ∈ Zr;

– Constrainpp(σ, f) is a ppt algorithm that takes as input a PRF key σ and a
circuit f : {0, 1}∗ → {0, 1}, and outputs a constrained key σf ;

– ConstrainEvalpp(σf , x) is a deterministic algorithm that takes as input a con-
strained key σf and a string x ∈ {0, 1}∗, and outputs either a string y ∈ Zr

or ⊥.

Previous works define and analyze the correctness, pseudorandomness and
constraint hiding properties separately. However, for our purposes it will be
easiest to define a single game that captures all of these properties at the same
time. This definition is equivalent to computational correctness and selective
punctured pseudorandomness [BV15b], and selective constraint hiding [BLW15].

Definition 2. Consider the following game between a PPT adversary A and a
challenger:

1. A sends 1�, 1d and f0, f1 ∈ {0, 1}� to the challenger.
2. The challenger generates (pp, seed) ← Keygen(1λ, 1�, 1d, 1r). It flips three

coins b1, b2, b3
$← {0, 1}, intuitively b1 selects whether f0 or f1 are used for the

constraint, b2 selects whether a real or random value is returned on queries

276 Z. Brakerski et al.

non-constrained queries, and b3 selects whether the actual or constrained value
is returned on constrained queries.
The challenger creates seedf ← Constrainpp(seed, fb1), and sends (pp, seedf)
to A.

3. A adaptively sends unique queries x ∈ {0, 1}∗ to the challenger (i.e. no x is
queried more than once). The challenger returns:

y =

⎧
⎪⎪⎨

⎪⎪⎩

⊥, if f0(x) �= f1(x).
U(Zr), if (f0(x) = f1(x) = 1) ∧ (b2 = 1).
ConstrainEvalpp(σf , x), if (f0(x) = f1(x) = 0) ∧ (b3 = 0).
Evalpp(σ, x), otherwise.

4. A sends a guess (i, b′).

The advantage of the adversary in this game is Adv[A] = |Pr[b′ = bi] − 1/2|. A
family of PRFs (KeyGen,Eval,Constrain,ConstrainEval) is a single-key constraint-
hiding selective-function constrained PRF if for every PPT adversary A, Adv[A] =
negl(λ).

3.2 Weakly Attribute Hiding Predicate Encryption

Following prior works, we associate C(x) = 0 as true and authorized, and C(x) �=
0 as false and unauthorized.

Syntax. A Predicate Encryption scheme PE for input universe X , a predicate
universe C, a message space M, consists of four algorithms (PE.Setup,PE.Enc,
PE.KeyGen,PE.Dec):

PE.Setup(1λ,X , C,M) → (mpk,msk). The setup algorithm gets as input the
security parameter λ and a description of (X , C,M) and outputs the pub-
lic parameter mpk, and the master key msk.

PE.Enc(mpk, x, μ) → ct. The encryption algorithm gets as input mpk, an
attribute x ∈ X and a message μ ∈ M. It outputs a ciphertext ct.

PE.KeyGen(msk, C) → skC . The key generation algorithm gets as input msk
and a predicate C ∈ C. It outputs a secret key skC .

PE.Dec((skC , C), ct) → μ. The decryption algorithm gets as input the secret key
skC , a predicate C, and a ciphertext ct. It outputs a message μ ∈ M or ⊥.

Correctness. We require that for all PE.Setup(1λ,X , C,M) → (mpk,msk), for
all (x,C) ∈ X × C such that C(x) = 0, for all μ ∈ M,

Pr
[
PE.Dec((skC , C), ct) = μ

]
≥ 1 − negl(λ),

where the probabilities are taken over the coins of the setup algorithm PE.Setup,
secret keys skC ← PE.KeyGen(msk, C) and ciphertexts ct ← PE.Enc(mpk, x, μ).

Private Constrained PRFs (and More) from LWE 277

Definition 3 (PE (Weak) Attribute-Hiding). Fix a predicate encryp-
tion scheme (PE.Setup,PE.Enc,PE.KeyGen, PE.Dec). For every stateful PPT
adversary Adv, and a PPT simulator Sim, consider the following two experi-
ments:

expreal
PE,Adv(1

λ): expideal
PE,Sim(1λ):

1: x ← Adv(1λ,X , C,M)
2: (mpk,msk) ←

PE.Setup(1λ,X , C,M)
3: μ ← AdvPE.KeyGen(msk,·)(mpk)
4: ct ← PE.Enc(mpk, x, μ)
5: α ← AdvPE.KeyGen(msk,·)(ct)
6: Output (x, μ, α)

1: x ← Adv(1λ,X , C,M)
2: (mpk,msk) ←

PE.Setup(1λ,X , C,M)
3: μ ← AdvPE.KeyGen(msk,·)(mpk)
4: ct ← Sim(mpk,X ,M)
5: α ← AdvPE.KeyGen(msk,·)(ct)
6: Output (x, μ, α)

We say an adversary Adv is admissible if all oracle queries that it makes C ∈ C
satisfy C(x) �= 0 (i.e. false). The Predicate Encryption scheme PE is then said
to be (weak) attribute-hiding if there is a PPT simulator Sim such that for every
stateful PPT adversary Adv, the following two distributions are computationally
indistinguishable:

{
expreal

PE,Adv(1
λ)

}

λ∈N

c≈
{

expideal
PE,Sim(1λ)

}

λ∈N

3.3 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [Reg05].
Our scheme relies on the hardness of its decisional version.

Definition 4 (DecisionalLWE(DLWE) [Reg05] and itsHNF[ACPS09]).
Let λ be the security parameter, n = n(λ) and q = q(λ) be integers and let χ =
χ(λ) be a probability distribution over Z. The DLWEn,q,χ problem states that for
all m = poly(n), letting A ← Z

n×m
q , s ← Z

n
q , e ← χm, and u ← Z

m
q , it holds

that
(
A, sT A + e

)
and

(
A,u

)
are computationally indistinguishable. The problem

is equally hard in its “Hermite Normal Form”: when sampling s ← χn.

In this work we only consider the case where q ≤ 2n. Recall that GapSVPγ

is the (promise) problem of distinguishing, given a basis for a lattice and a
parameter d, between the case where the lattice has a vector shorter than d, and
the case where the lattice doesn’t have any vector shorter than γ · d. SIVP is the
search problem of finding a set of “short” vectors. The best known algorithms
for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ) time. We refer the reader
to [Reg05,Pei09] for more information.

There are known reductions between DLWEn,q,χ and those problems, which
allows us to appropriately choose the LWE parameters for our scheme. We sum-
marize in the following corollary (which addresses the regime of sub-exponential
modulus-to-noise ratio).

278 Z. Brakerski et al.

Corollary 1 ([Reg05,Pei09,MM11,MP12,BLP+13]). For any function
B = B(n) ≥ Õ(

√
n) there exists a B-bounded distribution ensemble χ = χ(n)

over the integers s.t. for all q = q(n), letting γ = Õ(
√

nq/B), it holds that
DLWEn,q,χ is at least as hard as the quantum hardness of GapSVPγ and SIVPγ .
Classical hardness GapSVPγ follows if q(n) ≥ 2n/2 or for other values of q for
Ω̃(

√
n) dimensional lattices and approximation factor q/B · poly(n�log q).

3.4 Trapdoors and Discrete Gaussians

Let n, q ∈ Z,
g = (1, 2, 4, . . . , 2�log q�−1) ∈ Z

�log q�
q

and m = n�log q. The gadget matrix G is defined as the diagonal concatenation
of g n times. Formally, G = g ⊗ In ∈ Z

n×m
q . For any t ∈ Z, the function

G−1 : Zn×t
q → {0, 1}m×t expands each entry a ∈ Zq of the input matrix into a

column of size �log q consisting of the bit-representation of a. For any matrix
A ∈ Z

n×t
q , it holds that G · G−1(A) = A (mod q).

The (centered) discrete Gaussian distribution over Z
m with parameter τ ,

denoted DZm,τ , is the distribution over Z
m where for all x, Pr[x] ∝ e−π‖x‖2/τ2

.
Let n,m, q ∈ N and consider a matrix A ∈ Z

n×m
q . For all v ∈ Z

n
q we let

A−1
τ (v) denote the random variable whose distribution is the Discrete Gaussian

DZm,τ conditioned on A · A−1
τ (v) = v (mod q). If h $← A−1

τ (v) then ‖h‖ ≤
kτ

√
m with probability at least 1 − e−Ω(k2).

A τ -trapdoor for A is a procedure that can sample from a distribution within
2−n statistical distance of A−1

τ (v) in time poly(n,m, log q), for any v ∈ Z
n
q . We

denote a τ -trapdoor for A by Tτ
A. The following properties have been established

in a long sequence of works.

Corollary 2 (Trapdoor Generation [Ajt96,MP12]). There is a proba-
bilistic polynomial-time algorithm TrapGen(1n, q,m) that for all m ≥ m0 =
m0(n, q) = O(n log q), outputs (A,Tτ

A) s.t. A ∈ Z
n×m
q is within statistical dis-

tance 2−n from uniform and τ0 = O(
√

n log q log n).

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 1 (Trapdoor Extension [ABB10b,MP12]). Given A ∈ Z
n×m
q ,

with a trapdoor Tτ
A, and letting B ∈ Z

n×m′
q be s.t. A = BS (mod q) where

S ∈ Z
m′×m with largest singular value s1(S) ≤ σ, then (Tτ

A,S) can be used to
sample from B−1

στ .

Note that since only an upper bound on the singular value is required, this
theorem implies that Tτ ′

A is derived from Tτ
A whenever τ ≤ τ ′. A few additional

important corollaries are derived from this theorem. We recall that s1(S) ≤√
nm ‖S‖∞ and that a trapdoor TO(1)

G is trivial.
The first is a trapdoor extension that follows by taking S = [I ‖ 0].

Private Constrained PRFs (and More) from LWE 279

Corollary 3. Given A ∈ Z
n×m
q , with a trapdoor Tτ

A, it is efficient to sample
from [A‖B]−1

τ for all B.

Next is a trapdoor extension that had been used extensively in prior work.
It follows from Theorem 1 with S = [−RT ‖I]T .

Corollary 4. Given Ā ∈ Z
n×m′
q , and R ∈ Z

m′×m with m = n�log q, it is
efficient to sample from [Ā‖ĀR + G]−1

τ for τ = O(
√

mm′ ‖R‖∞).

Note that by taking Ā uniform and R to be a high entropy small matrix, e.g.
uniform in {−1, 0, 1} and relying on the leftover hash lemma, Corollary 2 is in
fact a special case of this one.

The following shows a different method for trapdoor extension which corre-
sponds to matrices in Hermite Normal Form. This trapdoor generation method
is mentioned in passing in [MP12] as a method for improving parameters by rely-
ing on computational assumptions. Our use of this property is quite different.
Technically it follows from Theorem1 with S = [−ET ‖ − RT ‖I]T .

Corollary 5 (Trapdoor Extension in HNF). Let n, q,m′ ≥ 1 and let
m = n�log q. Given Ā $← Z

n×m′
q , R ∈ Z

m′×m and E ∈ Z
n×m, the trapdoor

Tτ
[I‖Ā‖ĀR+G+E]

is efficiently computable for τ = O(
√

mm′ ‖R‖∞+
√

mn ‖E‖∞).

3.5 Lattice Evaluation

The following is an abstraction of the evaluation procedure in recent LWE based
FHE and ABE schemes that developed in a long sequence of works [ABB10b,
MP12,GSW13,AP14,BGG+14,GVW15b]. We use a similar formalism as in
[BV15b,BCTW16] but slightly rename the functions.

Theorem 2. There exist efficient deterministic algorithms EvalF and EvalFX
such that for all n, q, � ∈ N, and for any sequence of matrices (A1, . . . ,A�) ∈
(Zn×n�log q�

q)�, for any depth-d Boolean circuit f : {0, 1}� → {0, 1} and for every
x = (x1, . . . , x�) ∈ {0, 1}�, the following properties hold.

– The outputs Hf = EvalF(f,A1, . . . ,A�) and Hf,x = EvalFX(f, x,A1, . . . ,A�)
are both matrices in Z

(�n�log q�)×n�log q�;
– It holds that ‖Hf‖∞ , ‖Hf,x‖∞ ≤ (n log q)O(d).
– It holds that

[A1 − x1G‖A2 − x2G‖ . . . ‖A� − x�G] · Hf,x

= [A1‖A2‖ . . . ‖A�] · Hf − f(x)G (mod q) (8)

We will call this the “key equation” for matrix evaluation.

For a proof of this theorem, we refer the reader to [BV15b]. This evaluation
method was extended by [AFV11,GVW15a] to show that in the case of the
inner product function it is possible to compute EvalFX with only one of the two
operands.

280 Z. Brakerski et al.

Theorem 3. There exist efficient deterministic algorithms EvalFip and EvalFXip

as follows. Let n, q, �, �A = (A1, . . . ,A�),x be as above. Let �′ ∈ N and �B =
(B1, . . . ,B�′) ∈ (Zn×n�log q�

q)�′
, and let f : {0, 1}� → {0, 1}�′

be a depth d boolean
circuit with �′ output bits. Then:

– Hf = EvalFip(f, �A, �B) and Hf,x = EvalFXip(f,x, �A, �B) are both in
Z
((�+�′)n�log q�)×n�log q�;

– It holds that ‖Hf‖∞ , ‖Hf,x‖∞ ≤ �′(n log q)O(d);
– It holds that for all y ∈ Z

�′

(
[�A‖�B] − [x‖y] ⊗ G

)
· Hf,x = [�A‖�B] · Hf − 〈f(x),y〉G (mod q), (9)

where the inner product is over the integers (or equivalently modulo q).

We note that EvalFXip does not take y as input and furthermore that y can
have arbitrary integer values (not necessarily binary). We will later extend these
theorems to functions that output matrices in Sect. 4.1.

3.6 Fully Homomorphic Encryption (FHE)

A (secret-key) homomorphic encryption (HE) scheme w.r.t a function class F
is a semantically secure encryption scheme adjoined with an additional PPT
algorithm Eval s.t. for all f ∈ F and x ∈ {0, 1}� it holds that if sk is properly
generated and cti = Encsk(xi), then Decsk(Eval(f, ct1, . . . , ct�)) = f(x) with all
but negligible probability. The following is a corollary of the [GSW13] encryption
scheme. We note that the common use of the scheme is with t = q/2 but we will
use t ≈ √

q in this work.

Lemma 1 (Leveled FHE [GSW13]). Let q, n, t, d ≥ 1 and let χ be
B-bounded. If q > 2t ≥ 4B(n�log q)O(d) then there exists an FHE scheme for
the class Fd of depth d circuits based on DLWEn,q,χ with the following properties.

– The ciphertext length is �c = poly(n�log q).
– Decryption involves (i) preprocessing the ciphertext (independently of the

secret key) into a binary vector c ∈ {0, 1}�s for �s = poly(n�log q); (ii)
taking inner product 〈c, s〉 (mod q) for an integer secret-key vector s, which
results in tμ+ δ with |δ| ≤ B(n�log q)O(d); (iii) extracting the output μ from
the above expression.
Moreover, for any f ∈ Fd, the depth of f ′(·) = FHE.Eval(f, ·) is at most
d′ = d · polylog(n�log q).

3.7 The Banerjee-Peikert Pseudorandom Function

Banerjee and Peikert [BP14] introduced an LWE-based key homomorphic
pseudorandom function which was the basis for the [BV15b] constrained PRF.
While [BV15b] only drew from the ideas in [BP14], we use their construction

Private Constrained PRFs (and More) from LWE 281

explicitly as a building block, which simplifies our analysis. We present their
construction using our instance evaluation terminology.

For all x ∈ {0, 1}�, consider the circuit (more precisely, arithmetic formula)
Tx(y0, y1) which computes the product

∏
i∈[�] yxi

using a balanced binary multi-
plication tree. Note that we are never actually computing Tx on any input. We
are only using its formal combinatorial structure for the purpose of evolution as
described next.

Corollary 6 (follows from [BP14, Theorems 3.7 and 3.8]). Let n, p, � ≥ 1
be integers, let χ be B-bounded and assume DLWEn,p,χ. Then there exists an
efficiently computable randomized function E : {0, 1}� → Z

n�log p� with bounded
norm ‖E‖∞ ≤ B

√
� · (n�log p)log �, such that, letting C0,C1

$← Z
n×n�log p�
p and

denoting �C = (C0,C1), Cx = EvalF(Tx, �C) for all x.

Fs(x) = sT Cx + E(x) (mod p)

is pseudorandom, where s $← Z
n
p . Furthermore, the same holds for

F ′
d(x) = dT G−1

p (Cx) + E(x) (mod p)

where d $← Z
n�log p�
p and Cx, E as above.

4 Our First Construction: The Dual-Use Technique

In this section, we present the dual-use technique and construct a new weakly
attribute-hiding PE scheme and a constraint-hiding constrained PRF based on
LWE. We will use the machinery for lattice evaluation developed in Sect. 3.5.
First, in Sect. 4.1, we extend this machinery to work for computations that out-
put not just scalars but matrices. Then, in Sects. 4.2 and 4.3, we describe our
weakly attribute-hiding PE scheme and a constraint-hiding constrained PRF
scheme, respectively.

4.1 Lattice Evaluation of Matrix-Valued Functions

We first extend evaluation of matrices from Sect. 3.5 to deal with functions whose
output is a matrix instead of a bit (we still treat the input as bits).

Notation. Given a matrix X ∈ Z
n×n log q
q , we will index its n2 log q entries by

numbers, for convenience of notation (as opposed to the standard practice of
using a pair of numbers to index the row and column separately). We use xj,τ ∈
{0, 1} where j ∈ [n2 log q], τ ∈ [log q] to denote the τ ’th bit of the j’th entry of
X. This means that we can write

X =
∑

j,τ

xj,τ · 2τEj

where Ej is a 0, 1-matrix whose j’th entry is 1 and 0 everywhere else. Through-
out, we use j ∈ [n2 log q], τ ∈ [log q] and i ∈ [�] and we avoid explicitly quantify-
ing over these variables.

282 Z. Brakerski et al.

Matrix Computation. Suppose f : x1, . . . , x� �→ Xf where these matrices have
the same dimensions as A1,A2, . . . ,A�. Then, we require the following key rela-
tion between Hf and Hf,x:

[
A1 − x1G

∣
∣ · · ·

∣
∣A� − x�G

]
· Hf,x =

[
A1

∣
∣ · · ·

∣
∣A�

]
· Hf − Xf (10)

Constructing Hf,x and Hf . Let fj,τ : x1, . . . , x� �→ {0, 1} denote the function
that outputs τ ’th bit of the j’th entry of Xf . Then, we define Hf as follows.

Hf,j,τ := EvalF(fj,τ , {Ai}), Hf :=
∑

j,τ

Hf,j,τ · G−1(2τEj)

Then, the key relation (Eq. 10) follows readily from the following relations:
[
A1 − x1G

∣
∣ · · ·

∣
∣A� − x�G

]
· Hf,j,τ,x =

[
A1

∣
∣ · · ·

∣
∣A�

]
· Hf,j,τ − xf,j,τG

and
∑

j,τ

xf,j,τG · G−1(2τEj) = Xf

where the first equation is the key relation for functions with scalar output.
These two relations together show us that the setting of

Hf :=
∑

j,τ

Hf,j,τG−1(2τEj), Hf,x :=
∑

j,τ

Hf,j,τ,xG−1(2τEj)

satisfies Eq. 10.

4.2 Weakly Attribute-Hiding Predicate Encryption

In this section, we describe the dual use technique and use it to construct a
weakly attribute-hiding predicate encryption scheme.

Notation. We use gadget matrices G ∈ Z
(n+1)×(n+1) log q
q and we write G ∈

Z
n×(n+1) log q
q to denote all but the last row of G. Given a circuit computing a

function f : {0, 1}� → {0, 1}, and GSW FHE encryptions Ψ := (Ψ1, . . . , Ψ�) of
x1, . . . , x�, we write Ψf to denote FHE.Eval(f, Ψ). Noting that Ψf is a matrix,
we let Ψf denote the last row of Ψf , and Ψf to denote all but the last row of Ψf .
In addition, we write f̂ to denote the circuit that computes Ψ �→ Ψf , namely it
takes as input the bits of Ψ and outputs the matrix Ψf .

We let e σ←− Z
m denote the process of sampling a vector e where each of

its entries is drawn independently from the discrete Gaussian with mean 0 and
standard deviation σ over Z.

Private Constrained PRFs (and More) from LWE 283

Our predicate encryption scheme works as follows.

– Setup(1λ, 1�, 1d): sample (B,TB) where B ∈ Z
n×(n+1) log q
q and TB denotes

the trapdoor for B. Pick Bj
$← Z

n×(n+1) log q
q and p $← Z

n
q . Output

mpk :=
(

B, {Bj}j∈[L],p
)
,

msk :=
(

TB

)

where L = � · (n + 1)2 log2 q.
– Enc(mpk,x,M ∈ {0, 1}): pick s $← Z

n
q , e, e0, ej

σ←− Z
m, e′ σ←− Z,Ri ∈

{0, 1}(n+1) log q×(n+1) log q and compute

Ψi :=
(

B
sT B + eT

)
Ri + xiG

Let ψ1, . . . , ψL denote the binary representation of Ψ := [Ψ1 | · · · | Ψ�]. Com-
pute

cT
0 := sT B + eT

0 , cT
j := sT [Bj − ψjG] + eT

j

and κ := sT p + e′ + M · �q/2� (mod q).
The PE ciphertext consists of the FHE ciphertext Ψ and the ABE ciphertexts
computed as above. That is,

ct :=
(
Ψ, c0, {cj}j∈[L], κ

)

– KeyGen(msk, f): Let f̂ denote the circuit computing Ψ �→ Ψf and

Hf̂ := EvalF(f̂ , {Bj}j∈[L]), Bf̂ := [B1 | · · · | BL] · Hf̂

Sample a short skf using TB such that

[B | Bf̂] · skf = p

Output skf .
– Dec((skf , f), ct): Let f̂ denote the circuit computing Ψ �→ Ψf and parse the

ciphertext ct as (Ψ, c0, {cj}j∈L, κ). Compute:

Ψf := f̂(Ψ)

Hf̂ ,Ψ := EvalFX(f̂ , Ψ, {Bj}j∈[L])

cf̂ := [c1 | · · · | cL] · Hf̂ ,Ψ + Ψf

Compute
κ′ := [c0 | cf̂] · skf

and output the MSB of κ − κ′.

284 Z. Brakerski et al.

We now analyze the correctness of the PE scheme (in the process setting the
parameters) and prove its (selective) security under the polynomial hardness of
LWE with a sub-exponential modulus-to-noise ratio.

Theorem 4 (Correctness). The PE construction above is correct as per
Definition 3.

Proof. The key relation tells us that

[B1 − ψ1G | · · · | BL − ψLG] · Hf̂ ,Ψ = [B1 | · · · | BL] · Hf̂ − Ψf = Bf̂ − Ψf

Multiplying both sides by sT , we have

cf̂ ≈ sT [B1 − ψ1G | · · · | BL − ψLG] · Hf̂ ,Ψ + Ψf

= sT Bf̂ − sT Ψf + Ψf

= sT Bf̂ − [sT | −1] · Ψf

≈ sT Bf̂ − f(x) · [sT | −1] · G

where the first approximate equality is because of the accumulated error which is
a product of the LWE errors and the low-norm matrix Hf̂ ,Ψ , the second equality
is because of the key relation, and the final approximate equality is because of
the decryption equation of the GSW FHE scheme. Then, when f(x) = 0,

κ′ := [c0 | cf̂] · skf ≈ sT [B | Bf̂] · skf = sT p

Now, decryption succeeds in recovering M since κ := sT p + e′ + M · �q/2�
(mod q).

Setting Parameters. The error growth on FHE evaluation is by a multi-
plicative factor of (n log q)O(df) where df is the depth of the circuit computing
f . Furthermore, the error growth on ABE evaluation has magnitude at most
(n log q)O(df̂) where df̂ is the depth of the circuit that performs GSW FHE eval-
uation for the function f . We know that df̂ = d · poly(log n, log log q). The total
error growth thus has magnitude (n log q)d·poly(log n,log log q) which should be at
most q/4 for correctness.

On the other hand, we would like to set q = O(2nε

) for some constant ε so
as to rely on the hardness of sub-exponential-error LWE. It is possible to find a
setting of parameters that satisfy all these conditions, analogous to Sect. 5.1.

Theorem 5 (Security). The scheme PE is secure as per Definition 3 under the
LWEn,q,χ assumption, and thus under the worst case hardness of approximating
GapSVP,SIVP to within a 2 ˜O(nε) factor in polynomial time.

Proof. We provide a proof sketch for selective security of the PE scheme.
First, we describe a set of auxiliary algorithms consisting of alternative

algorithms (Setup∗,KeyGen∗,Enc∗) that will be used in the proof of security.
We are given A =

(
B
c

)
,p, p′ and the selective challenge x∗. Here, (c, p′) is either

(sT B + e, sT p + e′) or uniformly random.

Private Constrained PRFs (and More) from LWE 285

Setup∗(B,p,x∗): Pick W′
j

$← {0, 1}n×(n+1) log q,Ri ∈ {0, 1}(n+1) log q×(n+1) log q.
Compute

Ψi := ARi + x∗
i G

Bj = BW′
j + ψjG

where, as before, ψj denote the bits of Ψ = [Ψ1 | · · · | Ψ�]. Output

mpk :=
(

B, {Bj}j∈[L],p
)
,

msk∗ :=
(

{W′
j}j∈[L]

)

Enc∗(B,p,x∗): Compute

cT
0 := cT , cT

j := cT W′
j

Output
ct :=

(
Ψ, c0, {cj}j∈[L], p

′ + M · q/2
)

KeyGen∗(msk∗, f): On input f such that f(x∗) �= 0,

Bf̂ = [BW′
1 + ψ1G | · · · | BW′

L + ψLG] · Hf̂

= [BW′
1 | · · · | BW′

L] · Hf̂ ,Ψ + Ψf

= B(W′
f̂

+ Rf) + f(x∗)G

where

W′
f̂

:= [W′
1 | · · · | W′

L] · Hf̂ ,Ψ , Ψf = ARf + f(x∗)G

We can then sample a short skf using W′
f̂

+ Rf such that

[B | Bf̂] · skf = p

Output skf .

We now proceed to describe a sketch of the proof of security through a
sequence of games, using the auxiliary algorithms described above.

Hybrid H0. Real world.

Hybrid H1. Switch to Setup∗,Enc∗ that are given A =
(
B
c

)
and use W′

j . When c
is the LWE vector relative to B, game 0 and game 1 are statistically close by an
application of the leftover hash lemma. (In this proof sketch, we ignore the issue
of smoothing the errors in the ciphertext, which can be done by noise flooding).
Note that in this game, the challenger does not know the LWE secret s.

286 Z. Brakerski et al.

Hybrid H2. Switch to KeyGen∗ that uses (W′
j ,Ri) instead of TB. The difference

between game 1 and game 2 is that in the former, secret keys are generated using
TB whereas in the latter, they are generated using W′

f̂
+Rf , by employing the

ABB trick [ABB10a]. Thus, games 1 and 2 are statistically indistinguishable.

Hybrid H3. Switch c in A from sT B + e to a random c (this changes both
abe.ct and Ψ). Games 2 and 3 are computationally indistinguishable by the
LWE assumption.

Hybrid H4. Switch from KeyGen∗ back to KeyGen. Games 3 and 4 are statistically
indistinguishable by the same argument as Games 1 versus 2.

Now, in game 4, we argue that x∗
1, . . . , x

∗
n is information-theoretically hidden,

as follows:

– First, note that the distribution of the NO keys only depends on [B | Bf̂],
that is, on (mpk, f,TB), and leak no information about the FHE encryption
randomness R1, . . . ,Rn.

– Secondly, mpk and the ciphertext depend on the ψi’s and the W′
j ’s, but not

on the FHE encryption randomness R1, . . . ,Rn.
– Using these two observations, we argue that ψi hides x∗

i . Indeed, by left-
over hash lemma, we know that ARi is statistically close to uniform given
A =

(
B
c

)
, and therefore completely hides x∗

i .

Remark: Relation to the GVW15 Security Proof. Many of the steps in the proof
are analogous to what happens in GVW15. The crucial difference is that in
GVW15, the leftover hash lemma (LHL) was used to hide the FHE secret key
which is embedded as part of the ABE attributes. Using the fact that NO keys
do not leak any information about the randomness Wj used to simulate the ABE
ciphertext, one can apply LHL to this randomness and therefore, hide the FHE
secret key, and consequently, hiding the attributes. In our scheme, LHL is applied
to the randomness Rj used for FHE encryption, and not on the randomness W′

j

used to simulate the ABE ciphertext.

4.3 Constraint Hiding Constrained PRF

We now present a Constraint Hiding CPRF construction that relies on the
[BV15b] CPRF together with the dual use technique from Sect. 4.2.

Our constraint hiding CPRF scheme works as follows.

– CPRF.Keygen(1λ, 1�, 1�x , 1d) takes as input the security parameter λ, the max-
imum description length � of constraint functions, their input length �x and
depth d, and outputs public parameters pp and a secret key σ for the CPRF
scheme. Let L = � · (n + 1)2 log2 q.
Sample B,B1, . . . ,BL

$← Z
n×(n+1) log q
q and D,C1, . . . ,C�x

∈ Z
n×m
q for some

Private Constrained PRFs (and More) from LWE 287

m = Ω(n log q). Sample a uniformly random vector s ∈ Z
n
q . Output

pp :=
(

B, {Bj}j∈[L], {Cj}j∈[�x],D
)
,

σ := s

– CPRF.Evalpp(σ, x) outputs the evaluation of the PRF on an input x.
Let Ux : {0, 1}� → {0, 1} be the circuit that takes as input a description
of a function f and outputs f(x). Now consider the circuit Ûx : {0, 1}L →
Z

n×(n+1) log q
q that takes as input a GSW encryption f̂ of the description of f

and outputs Ψx where Ψx = FHE.Eval(Ux, f̂).
Let Ûx denote the circuit computing Ψ �→ Ψx and

H
̂Ux

:= EvalF(Ûx, {Bj}j∈[L]), B
̂Ux

:= [B1 | · · · | BL] · H
̂Ux

Compute Cx = EvalF(Tx,C1, . . . ,C�x
) (as defined in Sect. 3.7) and fix Mx =

DG−1(Cx). The PRF output is

y =
⌊
sT · B

̂Ux
G−1(Mx)

⌉
.

– CPRF.Constrainpp(σ, f) outputs a constrained key σf .
Pick e, e0, ej

σ←− Z
m,Ri ∈ {0, 1}(n+1) log q×(n+1) log q and compute GSW

ciphertexts

Ψi :=
(

B
sT B + eT

)
Ri + fiG

where (f1, . . . , f�) is the description of the function f .
Let ψ1, . . . , ψL denote the binary representation of Ψ := [Ψ1 | · · · | Ψ�]. Com-
pute

cT
0 := sT B + eT

0 , cT
j := sT [Bj − ψjG] + eT

j

The constrained key consists of the FHE ciphertext Ψ and the “ABE cipher-
texts” computed as above. That is,

ct :=
(
Ψ, c0, {cj}j∈[L]

)

– CPRF.ConstrainEvalpp(σf , x) takes as input a constrained key σf and an input
x and outputs a (potential) PRF output.
Let f̂ denote the circuit computing Ψ �→ Ψx (as above) and parse the con-
strained key ct as (Ψ, c0, {cj}j∈L). Compute:

Ψx := Ûx(Ψ)

H
̂Ux,Ψ := EvalFX(Ûx, Ψ, {Bj}j∈[L])

c
̂Ux

:= [c1 | · · · | cL] · H
̂Ux,Ψ + Ψx

Output
y′ =

⌊
c
̂Ux

G−1(Mx)
⌉

288 Z. Brakerski et al.

Theorem 6 (Correctness, Pseudorandomness, Constraint Hiding).
Under the DLWEn,q,χ hardness assumption, CPRF is correct, pseudorandom and
constraint hiding.

Proof. Correctness follows from a computation similar to the one in Sect. 4.2. In
particular, the key relation tells us that

[B1 − ψ1G | · · · | BL − ψLG] · H
̂Ux,Ψ = [B1 | · · · | BL] · H

̂Ux
− Ψx = B

̂Ux
− Ψx

Multiplying both sides by sT , we have

c
̂Ux

≈ sT [B1 − ψ1G | · · · | BL − ψLG] · H
̂Ux,Ψ + Ψx

= sT B
̂Ux

− sT Ψx + Ψx

= sT B
̂Ux

− [sT | −1] · Ψx

≈ sT B
̂Ux

− f(x) · [sT | −1] · G

Then, when f(x) = 0, the constrained evaluation algorithm outputs

y =
⌊
c
̂Ux

G−1(Mx)
⌉

=
⌊
sT B

̂Ux
G−1(Mx)

⌉

which is indeed the PRF output on x. The error growth behaves as in the PE
scheme and thus, the parameters are set as in Theorem 4.

The proof of security closely follows the outline of Theorem 9 for our modulus-
switching based private CPRF construction. We omit the details from this version.

5 Our Second Technique: Modulus Switching in HNF

This section contains our PE and CH-CPRF constructions based on the modulus
switching method. We start with a technical lemma that explains how rounding is
used to push the FHE noise into the ABE noise, as explained in the introduction.
This is followed by our construction of a Weakly Attribute Hiding Predicate
Encryption in Sect. 5.1 and our construction of Constraint Hiding Constrained
PRF in Sect. 5.2.

Throughout this section we denote �xp =
⌊

x
q/p

⌉
when the operand is x ∈ Zq

and output in Zp, for q, p that will be defined appropriately in the relevant
sections. We extend this operator to vectors and matrices by applying it element-
wise. We start with the aforementioned rounding lemma.

Lemma 2. Let n,m′, t, p be integers and consider q = t · p. Let FHE be the
scheme guaranteed in Lemma 1, with some depth bound d, let d′, B as in the
lemma statement, and assume that t conforms with the conditions of the lemma.
Denote m = n�log q.

Private Constrained PRFs (and More) from LWE 289

Let sk ∈ Z
�s
q ← FHE.Keygen(1λ) and x̃ ∈ Z

�p
q ← FHE.Enc(sk, x) for some x ∈

{0, 1}�, and for any circuit f : {0, 1}� → {0, 1} define the circuit f ′ : {0, 1}�p →
{0, 1}�s as f ′(·) = FHE.Eval(f, ·). Let M ∈ Z

n×m′
p , �A ∈ Z

n×�pm
q , �B ∈ Z

n×�sm
q .

Denote

Af := [�A ‖ �B] · Hf

Ψf := [�A − x̃ ⊗ �G ‖ �B − sk ⊗ �G] · Hf,x

where Hf = EvalFip(f ′, �A, �B) and Hf,x = EvalFXip(f ′, x̃, �A, �B) as in Theorem3.
Then

1. Ψf = Af − (f(x) · t + e)G where |e| ≤ BFHE = B(n�log q)O(d).
2.

⌊
ΨfG−1(M)

⌉
p

=
⌊
AfG−1(M)

⌉
p
−f(x)M+E where ‖E‖∞ ≤ 2 + BFHE‖M‖∞

t .

Proof. By Theorem 3,

Ψf =
[
�A − x̃ ⊗ �G ‖ �B − sk ⊗ �G

]
· Hf,x

= [�A‖�B] · Hf − 〈f ′(x̃), sk〉G
= Af − 〈FHE.Eval(f, x̃), sk〉G

where by Lemma 1, 〈FHE.Eval(f, x̃), sk〉 = t ·f(x)+e with |e| ≤ B(n�log q)O(d),
so (1) follows. Moreover,

⌊
ΨfG−1(M)

⌉
p

=
⌊
(Af − (t · f(x) + e)G)G−1(M)

⌉
p

=
⌊
AfG−1(M) − t · f(x)M − eM

⌉
p

=
⌊
AfG−1(M) − eM

⌉
p

− f(x)M

=
⌊
AfG−1(M)

⌉
p

− f(x)M − E

where E = (e/t)M + Δ for a rounding-errors matrix ‖Δ‖∞ ≤ 2, and therefore
‖E‖∞ ≤ 2 + |e| · (‖M‖∞ /t).

5.1 Weakly Attribute Hiding Predicate Encryption

The scheme is parameterized by ε ∈ (0, 1) which governs the lattice hardness
assumption that underly the construction. Essentially, with parameter ε the
scheme will be secure under the polynomial hardness of approximating lattice
problems to within a 2 ˜O(nε)-factor.

– PE.Setup(1λ, 1d) → (mpk,msk). Define � = λ (this is the supported attribute
length). Set n = (λd)1/ε. Let χ be the B = Õ(

√
n)-bounded distribution from

Corollary 1. Let p, τ be integer parameters set such that τ ≥ z1, p ≥ 4z2 ·τ for
parameters z1, z2 = 2d·polylog(n) that will be specified throughout the analy-
sis. Let t = Θ(p) and q = p · t. Denote m = n�log q. Recall Corollary 2 and

290 Z. Brakerski et al.

let m0 = m0(n, q) as in the corollary statement. Let FHE be the scheme from
Lemma 1 with depth parameter d, define �s, �c, d

′ as in the lemma statement,
and let �p = � · �c.
Recall Corollary 2 and let m0 = m0(n, p) as in the corollary statement. Con-
sider m′ = max{(n + 1)�log q + 2λ,m0} (note that m0 is w.r.t p but m′

needs to be larger than (n + 1)�log q). Generate a matrix with a trapdoor
(A,TA) ← TrapGen(1n, p,m′), i.e. A ∈ Z

n×m′
p . Sample a uniform v $← Z

n
p .

Generate uniform �A $← (Zn×m
q)�p and �B $← (Zn×m

q)�s .
Output msk := TA and mpk := (A,v, �A, �B).

– PE.Enc(mpk, μ, x) → ct. Generate sk ← FHE.Keygen(1λ), s.t. sk ∈ Z
�s
p and

compute x̃ ← FHE.Enc(sk, x). Sample a vector s $← χn, an error vector
e $← χm′

and an error scalar e
$← χ. Sample RA

$← {0, 1}m′×m�p and RB
$←

{0, 1}m′×m�s . Sample a matrix At
$← Z

n×m′
t and a vector vt

$← Z
n
t . Encrypt

as follows:

u0 := sT A +
⌊
sT At + e

⌉
p

(mod p)

uμ := sT v +
⌊
sT vt + e

⌉
p

+ μ�p/2 (mod p)

�a := sT (�A − x̃ ⊗ Gq) + eRA (mod q)
�b := sT (�B − sk ⊗ Gq) + eRB (mod q)

Output ct := (x̃,u0,uμ, �a, �b).
– PE.Keygen(msk, f) → skf . Define f ′(·) := FHE.Eval(f, ·) and compute Af :=

[�A‖�B] ·Hf , where Hf ← EvalFip(f ′, �A, �B). Compute Âf :=
⌊
AfG−1(Gp)

⌉
p
.

Use TA to sample [hf‖kf] := [I‖A‖Âf]−1
τ (v), i.e. s.t. [A‖Âf]kf = v − hf

(mod p). Output skf := kf .
– PE.Dec(mpk, ct, skf) → μ. Compute Hf,x ← EvalFXip(f ′, x̃, �A, �B) and set

af,x := [�a‖�b] · Hf,x. Compute âf,x := (1/t)(af,xG−1(Gp)) and b′ := uμ −
[u0‖âf,x]kf (mod p). Return 0 if |b′| < p

4 and 1 otherwise.

Analysis. Correctness and security are stated and proven next. We note that
since q ≤ 2n regardless of the exact manner we choose p, τ we have that
any polynomial of the form poly(λ,B, (n�log q)O(d′)) is upper bounded by a
function of the form 2d·polylog(n). This is since n�log q ≤ n2, λ < n and
d′ = d · polylog(n�log q) = d · polylog(n).

Theorem 7 (Correctness). The PE construction above is correct as per
Definition 3.

Proof. Let ct be an encryption of message μ under attribute x and let kf

be a secret key for a function f . Let Hf := EvalFip(f ′, �A, �B), Hf,x :=
EvalFXip(f ′, �A, �B), Af := [�A‖�B] · Hf , and denote Ψf := [�A − x̃ ⊗ Gq‖�B −

Private Constrained PRFs (and More) from LWE 291

sk ⊗ Gq] · Hf,x. By Lemma 2, Ψf = Af − (f(x) · t + e)G where |e| ≤ BFHE =
B(n�log q)O(d). Then

af,x = [�a‖�b]Hf,x

=
(
sT ([�A‖�B] − [x̃‖sk] ⊗ G) + e[RA‖RB]

)
Hf,x

= sT Ψf + e[RA‖RB]Hf,x

= sT (Af − (f(x) · t + e)G) + e[RA‖RB]Hf,x

Therefore,

âf,x =
af,xG−1(Gp)

t

=
sT (Af − (f(x) · t + e)G)G−1(Gp)

t
+

e[RA‖RB]Hf,xG−1(Gp)
t︸ ︷︷ ︸
e1

=
sT AfG−1(Gp)

t
− f(x)sT Gp −(e/t)sT Gp︸ ︷︷ ︸

e2

+e1

= sT ·
⌊
AfG−1(Gp)

t

⌉
− f(x)sT Gp + e1 + e2 + sT Δ︸︷︷︸

e3

,

where Δ is the matrix of rounding errors, i.e. ‖Δ‖∞ ≤ 1/2. We can bound the
error e′ = e1+e2+e3 as follows: ‖e1‖∞ ≤ Bm′(�p +�s)(n�log q)O(d′)n�log p/t,
‖e2‖∞ ≤ nBp(n�log q)O(d)/t, ‖e3‖∞ ≤ nB/2. Note that �p, �s = poly(n�log q),
hence ‖e′‖∞ ≤ poly(λ,B, (n�log q)O(d′)).

It follows that if indeed f(x) = 0 then âf,x = sT Âf + e′. Now, recall that
the distribution of kf ,hf is Gaussian with parameter τ subject to [A‖Âf]kf =
v − hf (mod p). Therefore ‖kf‖∞ ≤ τ

√
λ(m + m′) and ‖hf‖∞ ≤ τ

√
λn with

all but 2−λ = negl(λ) probability. By definition,

u0 = sT A +
⌊
sT At + e

⌉
p
, uμ = sT v +

⌊
sT vt + e

⌉
p

+ μ�p/2

Denote e0 =
⌊
sT At + e

⌉
p

and eμ =
⌊
sT vt + e

⌉
p
, then ‖e0‖∞ , |eμ| ≤ (n + 1)B.

Therefore,

b′ = uμ − [u0‖âf,x]kf

= sT v + eμ + μ�p/2 − sT [A‖Âf − f(x)Gp]kf − [e0‖e′]kf

= μ�p/2 + eμ − sT hf − [e0‖e′]kf︸ ︷︷ ︸
e′′

+f(x)sT [0‖Gp]kf

where |e′′| < τ · poly(λ,B, (n�log q)O(d′)). Therefore there exists some z2 =
2dpolylog(n) s.t. when we set p > 4z2τ we get that |e′′| < p

4 . Hence, if f(x) = 0
then b′ = μ�p/2 + e′′ ∈ μ�p/2 ± p

4 and in particular μ = 0 implies |b′| < p
4 and

μ = 1 implies |b′| > p
4 . ��

292 Z. Brakerski et al.

Theorem 8 (Security). The scheme PE is secure as per Definition 3 under the
LWEn,q,χ assumption, and thus under the worst case hardness of approximating
GapSVP,SIVP to within a 2 ˜O(nε) factor in polynomial time.

Proof (Sketch). Define the simulator Sim(mpk) → ct that generates a ciphertext
ct = (x̃,u0,uμ, �a, �b) by computing x̃ ← FHE.Enc(sk, 0�) and sampling all the
other ct parts uniformly from Zq as required. We now show a sequence of hybrids,
where the first hybrid corresponds to expreal and the last hybrid corresponds to
expideal with the simulator Sim we just defined.

Hybrid H0. This is expreal.

Hybrid H1. We change the Setup algorithm, specifically the generation of �A, �B:
Let x be the attribute declared by the adversary. Generate sk ← FHE.Keygen(1λ)
and compute x̃ ← FHE.Enc(sk, x). Sample RA

$← {0, 1}m′×(m�p) and RB
$←

{0, 1}m′×(m�s), and define

�A := (tA + At)RA + x̃ ⊗ Gq, �B := (tA + At)RB + sk ⊗ Gq.

A is statistically close to uniform in Z
n×m′
p and At is uniform in Z

n×m′
t , therefore

the matrix tA + At is close to uniform in Zq. Since each RA,RB are sampled
uniformly and independently and m′ ≥ (n + 1)�log q + 2λ, indistinguishability
follows from the extended leftover hash lemma.

Hybrid H2. We change the Enc algorithm. Sample s ← χn
q , e ← χm′

q and e ← χq

as in the original encryption algorithm, then compute

u′
0 := sT (tA + At) + e, u′

μ := sT (tv + vt) + e.

Encrypt as follows:

u0 := �u′
0p , uμ :=

⌊
u′

μ

⌉
p
, �a := u′

0RA, �b := u′
0RB .

The distributions remain as in the original scheme so statistical indistinguisha-
bility is maintained:

u0 = �u′
0p =

⌊
sT (tA + At) + e

⌉
p

= sT A +
⌊
sT At + e

⌉
p

uμ =
⌊
u′

μ

⌉
p

=
⌊
sT (tv + vt) + e

⌉
p

= sT v +
⌊
sT vt + e

⌉
p

�a = u′
0RA = (sT (tA + At) + e)RA = sT (�A − x̃ ⊗ Gq) + eRA

�b = u′
0RB = (sT (tA + At) + e)RB = sT (�B − sk ⊗ Gq) + eRB

Hybrid H3. We change the Keygen algorithm. We’re only required to generate
keys for f s.t. f(x) = 1, otherwise the adversary is not admissible. Recall that
in PE.Keygen we sample from [I‖A‖Âf]−1

τ (v), where Âf =
⌊
AfG−1(Gp)

⌉
p

and

Af = [�A‖�B] · Hf . Using the notation

Ψf := [�A − x̃ ⊗ Gq‖�B − sk ⊗ Gq] · Hf,x,

Private Constrained PRFs (and More) from LWE 293

after the changes that were made in the previous hybrid, we have:

Ψf = [�A − x̃ ⊗ Gq‖�B − sk ⊗ Gq] · Hf,x = (tA + At)[RA‖RB] · Hf,x.

so
⌊
ΨfG−1(Gp)

⌉
p

=
⌊
(tA + At)[RA‖RB] · Hf,xG−1(Gp)

⌉
p

= A[RA‖RB] · Hf,xG−1(Gp) +
⌊
At[RA‖RB] · Hf,xG−1(Gp)

⌉
p

= A[RA‖RB] · Hf,xG−1(Gp) + E′ ‖E′‖∞ ≤ (n�log q)O(d′)

and by Lemma 2,

⌊
ΨfG−1(Gp)

⌉
p

=
⌊
AfG−1(Gp)

⌉
p

− f(x)Gp + E ‖E‖∞ ≤ 2 +
BFHE · p

t

Therefore, when f(x) = 1,

Âf =
⌊
AfG−1(Gp)

⌉
p

=
⌊
ΨfG−1(Gp)

⌉
p

+ Gp − E

= A[RA‖RB] · Hf,xG−1(Gp) + Gp + E′ − E

where ‖E′ − E‖∞ ≤ poly(λ,B, (n�log q)O(d′)). Given [RA‖RB]Hf,xG−1(Gp)
we can also compute E′ − E, and then, by Corollary 5, we can compute the
trapdoor [I‖A‖Âf]−1

τ for any τ ≥ z1 for

z1 = O(
√

mm′ ∥∥[RA‖RB]Hf,xG−1(Gp)
∥
∥

∞ +
√

mn ‖E′ − E‖∞)

≤ poly(λ,B, (n�log q)O(d′)) ≤ 2d·polylog(n).

We will choose our parameters so that indeed τ ≥ z1 which will allow us to
sample from [In‖A‖Âf]−1

τ (v). Note that in this hybrid TA is no longer used.

Hybrid H4. In Setup: Generate A uniformly instead of generating it with a
trapdoor. Statistical indistinguishability holds by Corollary 2.

Hybrid H5. In Enc: Generate u′
0,u

′
μ uniformly in Z

n
q ,Zq respectively. This is

indistinguishable assuming hardness of DLWEq,n,χ. Note that now u0 = �u′
0p

and uμ =
⌊
u′

μ

⌉
p

are uniform in Z
n
p ,Zp as well.

Hybrid H6. In Enc: Generate �a and �b uniformly from Z
m
p . This is indistinguish-

able by the extended leftover hash lemma since u′
0 is uniform, RA,RB were

randomly and independently generated and m′ ≥ (n + 1)�log q + 2λ. The only
information that ct reveals now is x̃.

Hybrid H7. In Setup: Generate A together with a trapdoor (the opposite of
Hybrid 4). Statistical indistinguishability holds by Corollary 2.

294 Z. Brakerski et al.

Hybrid H8. In Keygen: Generate keys with TA (the opposite of Hybrid 3).
Indistinguishability holds since the keys are sampled from the same distribution.

Hybrid H9. In Setup: Generate the matrices �A, �B as in the real Setup algorithm
(the opposite of Hybrid 1). Indistinguishability holds by the leftover hash lemma.

Hybrid H10. Change x̃ to x̃ ← FHE.Enc(sk, 0�). By Lemma 1, those hybrids are
indistinguishable under DLWEn,q,χ. In this hybrid the Enc algorithm is equiva-
lent to the simulator Sim that was defined at the beginning of the proof, therefore
it is equivalent to expideal. ��

5.2 Constraint Hiding Constrained PRF

We present a constraint hiding constrained PRF scheme that supports all func-
tions expressible by boolean circuits of depth d, input length k and descrip-
tion length �, for predefined polynomials �, k, d. We will rely on the hardness of
LWE with sub-exponential noise to modulus ratio, as in our predicate encryp-
tion scheme. Working with a predefined polynomial input length k makes the
analysis much simpler than [BV15b], however we note that relying on a different
hardness assumption (a variant of one dimensional SIS) it is possible to support
a-priori unbounded inputs as in [BV15b].

– CPRF.Keygen(1λ, 1�, 1k, 1d) → (pp, σ). We let n be a parameter to be chosen
later as a function of λ, �, k, d. We let q = p · t and t′ be s.t. t′|p. If we wish
to rely on the hardness of lattice problems with approximation ratio 2Õ(nε),
then all values p, t, t′ will be of size 2Õ(nε) as well. The resulting constrained
PRF scheme will support constraint functions of description length �, input
length k and depth d. The PRF itself outputs random elements in Zp/t′ , i.e.
log(p/t′) bits of randomness.
Denote m = n�log q and m′ = n�log p. Let FHE be the scheme from
Lemma 1 with depth parameter d, define �c, �s, d

′ as in the lemma statement,
where �c is the FHE ciphertext length, �s is the FHE key length and d′ is the
max depth of FHE.Evalpp(f, ·) for any f of depth at most d. Denote �p = � ·�c.
Let Gq and Gp denote the gadget matrices of dimensions n × n�log q and
n × n�log p respectively.
Generate �A $← (Zn×m

q)�p and �B $← (Zn×m
q)�s . Generate D $← Z

n×m′
p

and �C = [C0‖C1]
$← (Zn×m′

p)2. Sample a vector s $← χn and com-

pute sk ← FHE.Keygen(1λ). Sample an error vector eb
$← χm�s and let

�b = sT (�B − sk ⊗ Gq) + eb. The public parameters are pp = (�A, �B, �C,D, �b)
and the master seed is σ = (s, sk).

– CPRF.Evalpp(σ, x) → y ∈ Zp/t′ . Let Ux : {0, 1}� → {0, 1} be the circuit that
takes as input a description of a function f and outputs f(x). Now consider
the circuit U ′

x : {0, 1}�p → {0, 1}�s that takes as input an encryption of
a description of f , i.e. f̃ = FHE.Enc(sk, f), and outputs FHE.Eval(Ux, f̃),
i.e. an FHE encryption of f(x). Compute Ax := [�A‖�B] · Hx, where Hx ←

Private Constrained PRFs (and More) from LWE 295

EvalFip(U ′
x, �A, �B). Compute Cx := EvalF(Tx, �C) (as defined in Sect. 3.7) and

fix Mx := DG−1
p (Cx) mod p. Output

y :=

⌊

sT ·
AxG−1

q (Mx)
t′ · t

⌉

.

– CPRF.Constrainpp(σ, f) → σf . Compute f̃ := FHE.Enc(sk, f). Sample an error
vector ea

$← χm�p and compute �a := sT (�A−f̃⊗Gq)+ea. Output σf := (�a, f̃).
– CPRF.ConstrainEvalpp(σf , x) → y′ ∈ Zr. Compute af,x := [�a‖�b] · Hf,x, where

Hf,x ← EvalFXip(U ′
x, f̃ , �A, �B), and output

y′ :=

⌊
af,xG−1

q (Mx)
t′ · t

⌉

Analysis. The following will be useful in the security and correctness proof.

Lemma 3. Let d′ denote the depth of the circuit U ′
x. Consider af,x and Ax as

defined in CPRF.ConstrainEval and CPRF.Eval, then:

af,xG−1
q (Mx)
t

= sT
AxG−1

q (Mx)
t

− f(x)sT Mx + e′′

where ‖e′′‖∞ ≤ poly(λ,B, (n�log q)O(d′)).

Proof. Recall that ‖[ea‖eb]‖∞ ≤ B and ‖Hf,x‖∞ ≤ (n�log q)O(d′). Hence

af,x = [�a‖�b] · Hf,x

= sT [�A − f̃ ⊗ Gq‖�B − sk ⊗ Gq] · Hf,x︸ ︷︷ ︸
Ψx

+ [ea‖eb] · Hf,x︸ ︷︷ ︸
e

where ‖e‖∞ ≤ poly(λ,B, (n�log q)O(d′)). Therefore

af,xG−1
q (Mx)
t

=
(sT Ψx + e)G−1

q (Mx)
t

= sT ·
ΨxG−1

q (Mx)
t

+ e/t · G−1
q (Mx)

︸ ︷︷ ︸
e′

(11)

where ‖e′‖∞ ≤ poly(λ,B, (n�log q)O(d′)).
By Lemma 2, Ψx = Ax−(f(x)·t+e)Gq where |e| ≤ BFHE = B(n�log q)O(d),

therefore

ΨxG−1
q (Mx)
t

=
AxG−1

q (Mx)
t

− f(x)Mx − e/tMx︸ ︷︷ ︸
E

‖E‖∞ ≤ BFHE · (p/t)

(12)

296 Z. Brakerski et al.

From Eqs. 11 and 12, we get

af,xG−1
q (Mx)
t

= sT ·
ΨxG−1

q (Mx)
t

+ e′

= sT ·
(

AxG−1
q (Mx)
t

− f(x)Mx − E

)

+ e′

= sT
AxG−1

q (Mx)
t

− f(x)sT Mx + −sT E + e′
︸ ︷︷ ︸

e′′

where ‖e′′‖∞ ≤ poly(λ,B, (n�log q)O(d′)).

Theorem 9 (Correctness, Pseudorandomness, Constraint Hiding).
Under the DLWEn,q,χ hardness assumption, CPRF is correct, pseudorandom and
constraint hiding.

Proof. Let A be a PPT adversary against CPRF and consider the game from
Definition 2. The proof proceeds with a sequence of hybrids.

Hybrid H0. The game from the definition.

Hybrid H1. Change the way that the vectors �a and �b are computed in Constrain
and Keygen respectively: Define the matrices Â := �A− f̃ ⊗Gq and B̂ := �B−sk⊗
Gq. Then let �a := sT Â + ea and �b := sT B̂ + eb where ea

$← χm�p , eb
$← χm�s .

This is simply a change in notation.

Hybrid H2. Change the Eval algorithm. Up to this hybrid, in Eval we computed
Mx := DG−1

p (Cx) and the output was

y :=

⌊

sT ·
AxG−1

q (Mx)
t′ · t

⌉

.

Consider the vector d := sT D + ed where ed ← χn�log p�. In this hybrid the
output of Eval will be

y∗ :=
⌊v
t′

⌉
where v :=

af,xG−1
q (Mx)
t

+ f(x)
(
dG−1

p (Cx) + E(x)
)

and E(·) is the function from Corollary 6, and in particular |E(x)| ≤ B
√

k ·
(n�log p)log k.

We analyse now the event that y∗ �= y. Note that

dG−1
p (Cx) = sT DG−1

p (Cx)
︸ ︷︷ ︸

Mx

+edG−1
p (Cx)

︸ ︷︷ ︸
e

= sT Mx + e ‖e‖∞ ≤ B · n�log p

Private Constrained PRFs (and More) from LWE 297

By Lemma 3,

af,xG−1(Mx)
t

= sT · AxG−1(Mx)
t

− f(x)sT Mx + e′′

where ‖e′′‖∞ ≤ poly(λ,B, (n�log q)O(d′)). Hence

y =

⌊
sT · AxG−1(Mx)

t′ · t
⌉

=

⌊
1

t′

(
af,xG

−1(Mx)

t
+ f(x)sTMx − e′′

)⌉

=

⌊
1

t′

(
af,xG

−1(Mx)

t
+ f(x)

(
dG−1

p (Cx)− e
)− e′′

)⌉

=

⎢⎢⎢⎢⎣ 1

t′

⎛
⎜⎝af,xG

−1(Mx)

t
+ f(x)

(
dG−1

p (Cx) + E(x)
)− (f(x)E(x) + f(x)e+ e′′)︸ ︷︷ ︸

e′′′

⎞
⎟⎠
⎤
⎥⎥⎥⎥

=

⌊
1

t′
(
v − e′′′)⌉

where ‖e′′′‖∞ is bounded by a value E′ = poly(λ,B, (n�log q)O(d′), B
√

k ·
(n�log p)log k). Therefore y∗ �= y only when there exists i ∈ [n�log p] such
that the ith entry of the vector v is E′-close to t′Z + t′/2, i.e. when the ith
entry of the vector tv is tE′-close to (t · t′)Z + (t · t′)/2. Let Borderlinex denote
this event, then ¬Borderlinex =⇒ y∗ = y. We can bound the advantage in
distinguishing between this hybrid and the previous one by the probability of
Borderline =

∨
x Borderlinex:

|AdvH2(A) − AdvH1(A)| ≤ Pr
H2

[Borderline]

Lemma 4. The following holds:

Pr
[∨

x∈{0,1}k

Borderlinex

]
≤ n�log p2kE′/t′ = negl(λ), (13)

where the probability is over the randomness of the key generation algorithm
in H2.

Proof. Fix an arbitrary value for x and some coordinate i ∈ [n�log p] and note
that

tv = af,xG−1
q (Mx) + f(x)t

(
dG−1

p (Cx) + E(x)
)

where af,x = [�a‖�b]Hf,x = sT [Â‖B̂]Hf,x + [ea‖eb]Hf,x. Recall that ‖s‖∞ ≤
B < t < p, where p, t are prime and q = p · t, so each entry of s is a unit in
Zq. Similarly,

∥
∥Hf,xG−1

q (Mx)
∥
∥ ≤ (n�log q)O(d′) < t ≤ p and so each entry of

Hf,xG−1
q (Mx) is a unit in Zq.

Since [Â‖B̂] is uniform over Zn×m(�p+�s)
q , it follows that each entry of the vec-

tor sT [Â‖B̂]Hf,xG−1
q (Mx) is uniform over Zq and so the marginal distribution

298 Z. Brakerski et al.

of the ith entry of tv as a function of the randomness of Keygen is uniform over
Zq. Therefore, the probability of this value being tE′-close to (t · t′)Z+ (t · t′)/2
is at most E′/t′. Applying the union bound over all possible values of x and i,
the lemma follows.

Note that in this hybrid, if f(x) = 0 then the output of Eval is identical to
the output of ConstrainEval, so the adversary has no advantage in guessing b3.

Hybrid H3. Change d: sample it uniformly from Z
n�log p�
p . This change is com-

putationally indistinguishable under DLWEn,p,χ.

Hybrid H4. Change again Eval: compute v by first sampling a vector ux
$← Z

m
p

and setting

v :=
af,xG−1

q (Mx)
t

+ f(x)ux.

Recall that the adversary can query each distinct x once. By Corollary 6, those
hybrids are indistinguishable under DLWEn,p,χ.

In this hybrid, if f(x) = 1 then the output of Eval is uniformly distributed
over Z

m
p , so the adversary has no advantage in guessing b2.

Hybrid H5. Change Constrain: compute f̃ as f̃ ← FHE.Enc(sk, 0). By Lemma 1,
those hybrids are indistinguishable under DLWEn,q,χ. At this stage the adversary
has no information about f and therefore it has no advantage in guessing b1,
which completes the proof.

Choice of Parameters. In order to satisfy the requirements in the above proof,
we require that n�log p2kE′/t′ = negl(λ). For the sake of concreteness, we
will set negl(λ) to 2−λ. Recalling that E′ = poly(λ,B, (n�log q)O(d′), B

√
k ·

(n�log p)log k), we get t′ ≥ 2O(λ+k+(d+log k)·polylog(n)). This can be satisfied by
setting n = (λkd)1/ε and setting t′ = 2Õ(nε) appropriately. Then p, t can be
chosen to be polynomially related in size to t′ s.t. t, t′, p/t′ are prime.

References

[ABB10a] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard
model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–
572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 28

[ABB10b] Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimen-
sion and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 6

[ABCP15] Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional
encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015.
LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 33

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-14623-7_6
http://dx.doi.org/10.1007/978-3-642-14623-7_6
http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://dx.doi.org/10.1007/978-3-662-46447-2_33

Private Constrained PRFs (and More) from LWE 299

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03356-8 35

[AFV11] Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption
for inner product predicates from learning with errors. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-25385-0 2

[Agr16] Agrawal, S.: Interpolating predicate and functional encryption from learn-
ing with errors. IACR Cryptology ePrint Archive, 2016:654 (2016)

[AGVW13] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption: new perspectives and lower bounds. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40084-1 28

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 15

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108 (1996)

[ALS16] Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for
inner products, from standard assumptions. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53015-3 12

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
297–314. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

[BCTW16] Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic
attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 13

[BFP+15] Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46497-7 2

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryp-
tion, arithmetic circuit abe and compact garbled circuits. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–
556. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 30

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: ITCS (2012)

[BJK15] Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner prod-
uct encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 20

http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-662-53644-5_13
http://dx.doi.org/10.1007/978-3-662-53644-5_13
http://dx.doi.org/10.1007/978-3-662-46497-7_2
http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-48797-6_20
http://dx.doi.org/10.1007/978-3-662-48797-6_20

300 Z. Brakerski et al.

[BKM17] Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from stan-
dard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017).
doi:10.1007/978-3-319-56620-7 15

[BKS16] Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryp-
tion in the private-key setting: stronger security from weaker assump-
tions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 852–880. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 30

[BLMR15] Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homo-
morphic PRFs and their applications. IACR Cryptology ePrint Archive,
2015:220 (2015)

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: Boneh, D., et al. (eds.) [BRF13], pp.
575–584 (2013)

[BLW15] Boneh, D., Lewi, K., David, J.W.: Constraining pseudorandom functions
privately. IACR Cryptology ePrint Archive, 2015:1167 (2015)

[BLW17] Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions
privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524.
Springer, Heidelberg (2017). doi:10.1007/978-3-662-54388-7 17

[BP14] Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudo-
random functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 20

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 42

[BRF13] Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory
of Computing Conference, STOC 2013, Palo Alto, CA, USA. ACM, 1–4
June 2013

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 16

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: FOCS (2011)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: Naor, M. (ed.) Innovations in Theoretical Computer Science, ITCS
2014, Princeton, NJ, USA, pp. 1–12. ACM, 12–14 January 2014

[BV15a] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, pp. 171–190. IEEE Computer Society, 17–20 October 2015

[BV15b] Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs
from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 1

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

http://dx.doi.org/10.1007/978-3-319-56620-7_15
http://dx.doi.org/10.1007/978-3-662-49896-5_30
http://dx.doi.org/10.1007/978-3-662-49896-5_30
http://dx.doi.org/10.1007/978-3-662-54388-7_17
http://dx.doi.org/10.1007/978-3-662-44371-2_20
http://dx.doi.org/10.1007/978-3-662-44371-2_20
http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://dx.doi.org/10.1007/978-3-540-70936-7_29

Private Constrained PRFs (and More) from LWE 301

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and
their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42045-0 15

[CC17] Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1

from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017). doi:10.1007/
978-3-319-56620-7 16

[CHKP12] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. J. Crypt. 25(4), 601–639 (2012)

[Gay16] Gay, R.: Functional encryption for quadratic functions, and applications to
predicate encryption. IACR Cryptology ePrint Archive, 2016:1106 (2016)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, pp. 169–178.
ACM, 31 May–2 June 2009

[GGH+16] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. SIAM J. Comput. 45(3), 882–929 (2016)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: STOC,
pp. 555–564 (2013)

[GMW15] Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional
range queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 752–776. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 34

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryp-
tion for fine-grained access control of encrypted data. In: Juels, A.,
Wright, R.N., De Capitani di Vimercati, S. (eds.) Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, pp. 89–98. ACM, 30 October–3 November 2006

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Dwork, C. (ed.) Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, pp. 197–206. ACM, 17–20 May 2008

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32009-5 11

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In Boneh, D., et al. (eds.) [BRF13], pp. 545–554 (2013)

[GVW15a] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for cir-
cuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 25

http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-319-56620-7_16
http://dx.doi.org/10.1007/978-3-319-56620-7_16
http://dx.doi.org/10.1007/978-3-662-46447-2_34
http://dx.doi.org/10.1007/978-3-662-46447-2_34
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-662-48000-7_25

302 Z. Brakerski et al.

[GVW15b] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.)
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, pp. 469–477. ACM, 14–17
June 2015

[HKKW14] Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure
constrained pseudorandom functions. Cryptology ePrint Archive, Report
2014/720 (2014)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2013, Berlin, Germany, pp. 669–684. ACM,
4–8 November 2013

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78967-3 9

[Lin16] Lin, H.: Indistinguishability obfuscation from constant-degree graded
encoding schemes. IACR Cryptology ePrint Archive 2016:257 (2016)

[MM11] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22792-9 26

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 41

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010)

[OT12] Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical)
inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29011-4 35

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing, STOC 2009, Bethesda, MD, USA, pp.
333–342, 31 May–2 June 2009

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, pp. 84–93, 22–24 May 2005

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53, 201–224 (1987)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg
(2005). doi:10.1007/11426639 27

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of
Computing, STOC 2014, pp. 475–484. ACM, New York, 31 May–03 June
2014

http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/11426639_27

Encryption

The Edited Truth

Shafi Goldwasser1,2, Saleet Klein1(B), and Daniel Wichs3

1 MIT, Cambridge, MA, USA
{shafi,saleet}@csail.mit.edu

2 Weizmann Institute of Science, Rehovot, Israel
3 Northeastern University, Boston, MA, USA

wichs@ccs.neu.edu

Abstract. We introduce two new cryptographic notions in the realm of
public and symmetric key encryption.

– Encryption with invisible edits is an encryption scheme with two tiers
of users: “privileged” and “unprivileged”. Privileged users know a
key pair (pk, sk) and “unprivileged” users know a key pair (pke, ske)
which is associated with an underlying edit e to be applied to mes-
sages encrypted. When an unprivileged user attempts to decrypt a
ciphertext generated by a privileged user of an underlying plaintext
m, it will be decrypted to an edited m′ = Edit(m, e). Here, Edit is a
supported edit function and e is a description of the particular edit.
A user shouldn’t be able to tell whether he’s an unprivileged or a
privileged user.

– An encryption with deniable edits is an encryption scheme which
allows a user who owns a ciphertext c encrypting a large corpus
of data m under a secret key sk, to generate an alternative but
legitimate looking secret key skc,e that decrypts c to an “edited”
version of the data m′ = Edit(m, e). This generalizes classical receiver
deniable encryption, which is a special case of deniable edits where
the edit function completely replaces the original data. The new
flexibility allows to design solutions with much smaller key sizes than
required in classical receiver deniable encryption allowing the key
size to only scale with the description size of the edit e which can be
much smaller than the plaintext data m.

We construct encryption schemes with deniable and invisible edits for any
polynomial-time computable edit function under minimal assumptions:
in the public-key setting we require the existence of standard public-key
encryption and in the symmetric-key setting require the existence of one-
way functions.

The solutions to both problems use common ideas, however there is
a significant conceptual difference between deniable edits and invisible
edits. Whereas encryption with deniable edits enables a user to modify
the meaning of a single ciphertext in hindsight, the goal of encryption
with invisible edits is to enable ongoing modifications of multiple cipher-
texts.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 305–340, 2017.
https://doi.org/10.1007/978-3-319-70500-2_11

306 S. Goldwasser et al.

1 Introduction

In this paper, we introduce two novel cryptographic notions in the realm of
public and symmetric key encryption: Encryption with invisible edits (IEdit)
and Encryption with deniable edits (DEdit).

We construct both asymmetric and symmetric key versions of IEdit and
DEdit schemes, under minimal assumptions using the machinery of garbled cir-
cuits. In particular, we can get such schemes in the public-key setting using
only public key encryption and in the symmetric-key setting using only one-
way functions. Our constructions rely on a simple but delicate use of functional
encryption (FE), further illustrating the incredible versatility of this powerful
abstraction.

We proceed to describe the new notions and our constructions.

1.1 Invisible Edits

Alice is a company boss and her secretary Bob is in charge of going through
her e-mail (which is naturally all encrypted) and responding to routine requests.
However, sometimes other bosses will send e-mails containing information that
Bob should not see, for example discussing layoffs among the secretarial staff.
Alice would like to give Bob a secret key which will invisibly introduce some
careful edits to all such e-mails (e.g., replaces the word “layoffs” with “bonuses”),
even ones sent in the future. Ideally, Bob should not know anything about what
edits are being introduced and should even be oblivious to the fact that he does
not have Alice’s real secret key which decrypts all e-mails correctly.

Encryption with Invisible Edits. To solve the above problem, we introduce a
new cryptographic primitive that we call encryption with invisible edits (IEdit).
IEdit is an encryption system which allows dispensing computationally indistin-
guishable decryption keys which each decrypt a ciphertext to a different “edited”
plaintexts. A user cannot tell whether or not his decryption key is introducing
edits.

In more detail, such a scheme allows us to create “privileged” encryp-
tion/decryption key pairs (pk, sk) and “unprivileged” encryption/decryption key
pairs (pke, ske) tied to some edit e. Both key pairs individually work correctly,
meaning that a message encrypted under pk (resp. pke) will decrypt correctly
under sk (resp. ske). However, when a privileged user encrypts some message
m under pk, the unprivileged user will decrypt it to m′ = Edit(m, e) under ske.
Here, we think of Edit as some edit function which is specified as part of the
scheme and e is the description of the particular edit that should be applied. For
example, we might consider an edit function that performs a small number of
insertions and deletions on blocks of the data, as specified by e. Alternatively,
the edit function could be a complex suite of image-editing tools and e could
specify a series of transformations (e.g., crop, rotate, blur, airbrush, etc.) to be
performed on the encrypted image. More generally, we can think of the edit e

The Edited Truth 307

as a Turing Machine and the edit function as a universal Turing Machine which
runs e(m).

A user shouldn’t be able to tell whether he is privileged or unprivileged.
In particular, the user can’t tell whether he’s an unprivileged user that has
(pke, ske) and is receiving ciphertexts from privileged users that are encrypting
some messages mi under pk while he is decrypting the edited versions m′

i =
Edit(mi, e), or whether he is a privileged user that gets (pk, sk) and is receiving
ciphertexts from other privileged users that are really encrypting m′

i under pk.
In addition to considering the problem of invisible edits in the public-key

setting, we also consider a symmetric-key variant of the problem where the key
sk (resp. ske) is used for both encryption and decryption. In the symmetric-key
case, we consider two potential variants.

Dual-Key Variant. In the dual key variant, the privileged/unprivileged keys
sk and ske look indistinguishable and a user cannot tell which key he has.

Dual-Scheme Variant. In the dual scheme variant, the privileged and unpriv-
ileged users have completely different keys and even encryption/decryption
procedures. Therefore users can tell whether they are privileged or unprivi-
leged. However, unprivileged users still cannot tell whether their key always
decrypts all ciphertexts correctly or whether it is introducing edits to data
encrypted by privileged users.

Intuitively, the dual-key variant is more desirable.

Invisible Edits: Our Results. We construct encryption with invisible edits in the
public-key setting, under the minimal assumption that public-key encryption
exists. In the symmetric-key setting, we construct the weaker dual-scheme vari-
ant under one-way functions but leave it as an interesting open problem to also
construct the stronger dual-key variant under one-way functions or show that it
requires public key encryption.

The secret key (and public key) size of our schemes is linear in the edit
description size |e|. The run-time of the encryption/decryption procedures and
the ciphertext size are linear in the circuit size of the edit function. In the public-
key setting, we can use identity based encryption (IBE) to further reduce the
public-key size to only depend on the security parameter.

1.2 Deniable Edits

DEdit is a different but technically related notion to IEdit, which extends the
classical notion of receiver deniable encryption [CDNO97] to allow the legal
owner (and originator) of a secret key to produce an alternative computationally
indistinguishable secret key under which a targeted ciphertext decrypts to an
“edited” plaintext. The description size of the edits to be applied to the original
plaintext can be much smaller than the size of the plaintext itself. This will
allow us to design solutions, where the secret key size is only proportional to the
description size of the edit, but can be much smaller than the message size.

308 S. Goldwasser et al.

As a motivating scenario, consider Alice who is an owner of a private server
hosting a large corpus of data which is encrypted under a small secret key held
by Alice on a separate device. Circumstances cause Alice to become the subject
of scrutiny, the server is seized by investigators, and Alice must hand over her
secret key. Although most of the data is innocuous, the server might contain
a few private photos, confidential recommendation letters, etc. Alice wants to
comply, but give a different secret key which looks legitimate but decrypts the
data to a “lightly edited” version where the sensitive content is appropriately
modified. Typically, the description of the edits to be broadly applied can be
succinctly summarized and is much smaller than the size of the data.

New Primitive: Encryption with Deniable Edits. To solve the above problem, we
introduce a new cryptographic primitive that we call encryption with deniable
edits. Such a scheme can be used to encrypt a potentially huge message m using
a relatively short secret key sk to derive a ciphertext c. Later, it should be
possible to come up with a legitimate looking secret key skc,e that decrypts the
ciphertext c to an edited message m′ = Edit(m, e), where Edit is some “edit
function” specified by the scheme and e is a description of the particular edit
that should be applied. We envision that the description-size of the edit |e| is
relatively small, and much smaller than the potentially huge message size |m|.
Therefore, although we necessarily need to allow the secret key size |sk| to grow
with the edit description size |e|, we do not want it to depend on the message
size |m|. The exact same notion can be defined in either public or symmetric key
settings.

Relation to Deniable Encryption and its Limitations. One can think of encryp-
tion with deniable edits as a more flexible version of receiver deniable encryp-
tion, introduced by Canetti et al. [CDNO97]. In receiver deniable encryption,
it is possible to come up with a secret key skc,m′ that decrypts a ciphertext
c to an arbitrary message m′. However, the size of the secret key in deniable
encryption schemes must necessarily be at least as large as the message size.
This makes such schemes unsuitable for encrypting a large messages such as the
entire hard-disk contents. Encryption with deniable edits provides flexibility by
allowing the secret key size to only scale with the edit description size which can
potentially be much smaller than the message size. Naturally, we can recover
the notion of receiver deniable encryption as a special case by taking the edit
function Edit(m, e) = e which simply overwrites the encrypted message m with
the value e, of size |e| = |m|. We discuss the relevant literature on deniable
encryption and its relation to our work in Sect. 1.5.

Since encryption with deniable edits generalizes receiver deniable encryption,
it also inherits its limitations. In particular, Bedlin et al. [BNNO11] show that
the most natural definition of deniability, where the original secret key sk can
be used to create a legitimate-looking sk′ which is indistinguishable from sk
but decrypts a selected ciphertext c differently, cannot be achieved. Instead, we
consider two potential ways to weaken the definition:

The Edited Truth 309

Dual-Key Variant. The key-generation algorithm outputs a secret decryption
key sk along with a secret denying key dk. Most users can immediately discard
dk since it is not needed for decryption. However, users that keep dk (e.g.,
hidden in their basement) can use it to later produce a modified secret key
skc,e which looks legitimate but decrypts a selected ciphertext c to an edited
message.

Dual-Scheme Variant. There are two entirely different encryption schemes: a
“default” scheme and a “denying” scheme. Most users are expected to use the
default scheme. However, if a user instead uses the denying scheme, she can
take her secret key sk and a ciphertext c and produce a secret key skc,e which
makes it look as though she was using the default scheme but c decrypts to
an edited message.1

Intuitively, one can think of the dual-key variant as a special case of the dual-
scheme variant, where the default and denying schemes are essentially identical,
except that in the latter the user keeps both (sk, dk) while in the former she
only keeps sk. Therefore, we view the dual-key variant as more desirable. In the
public-key setting, it turns out that the two variants are essentially identical and
therefore we can only consider the more compelling dual-key variant. However,
we do not know if equivalence holds in the symmetric-key setting and therefore
consider both variants there.

Deniable Edits: Our Results. We construct encryption with deniable edits for
arbitrary polynomial-time edit functions under essentially minimal assumptions.
In the public-key setting, we construct such a scheme from any standard public-
key encryption. In the symmetric-key setting, we show how to construct the dual-
scheme variant under the minimal assumption that one-way functions exist. How-
ever, we leave it as an interesting open problem whether one can also construct
the stronger dual-key variant under one-way functions or whether it requires
public key encryption.

The secret key (and public key) size of our schemes is linear in the edit
description size |e|. The run-time of the encryption/decryption procedures and
the ciphertext size are linear in the circuit size of the edit function. In the public-
key setting, we can use identity based encryption (IBE) to further reduce the
public-key size to only depend on the security parameter.

We also discuss an extension of our schemes to deniably editing some bounded
number of ciphertexts (rather than just one) at the cost of having the secret key
size scale with this bound. Furthermore we show how to extend our schemes to
be able to deniably produce not just a secret key but also the randomness of the
key generation algorithm (see Sect. 4.4).

1.3 Comparison: Deniable Edits, Invisible Edits and Functional
Encryption

It is useful to compare the notions of deniable edits, invisible edits and func-
tional encryption. For concreteness, we consider the comparison in the public-key
1 This variant was also called multi-distributional deniable encryption in recent works.

310 S. Goldwasser et al.

setting. In all three cases, we can produce a secret key tied to some edit e and
ensure that it decrypts encrypted data m to some modified value Edit(m, e).
However, there are crucial differences between the three primitives.

– In functional encryption, we are not hiding the fact that the secret key ske is
introducing edits to the encrypted data. In fact, a user that has the (master)
public key pk will be immediately aware of the fact that when he encrypts a
message m via pk and decrypts via ske he gets an edited value m′ = Edit(m, e).
This is in contrast to both encryption with deniable and invisible edits, where
we do want to hide the fact that edits are being introduced.

– In encryption with deniable edits, we create a secret key skc,e which only
introduces edits to the decryption of a single specified ciphertext c. Therefore,
even if a user has pk and can create his own ciphertexts, he will not observe
any edits being introduced.

– In encryption with invisible edits, we hide the fact that the secret key ske

is introducing edits by also creating a matching public key pke. Encryptions
under pke decrypt correctly (with no edits) under ske and therefore a user
that has (pke, ske) cannot tell that edits are being introduced. However, if
other users encrypt data under pk, it will consistently decrypt to an edited
version under ske.

Despite the major differences between the three primitives, we will use func-
tional encryption (based on garbled circuits) as a tool to get relatively simple
constructions of the other two primitives.

We can think of using a scheme with invisible edits, which targets multiple
ciphertexts, in scenarios involving deniability. In particular, consider the case
where Alice is running an e-mail server storing a large corpus of individually
encrypted e-mails c1 = Encpk(m1), . . . , cT = Encpk(mT). She comes under an
investigation and wants to give a secret key that applies some simple edit across
all the e-mails (e.g., replaces one word with a different word). Using an encryp-
tion scheme with deniable edits this would only be possible if all of the e-mails
were encrypted simultaneously in one ciphertext, but that’s not the case here.
Using encryption with invisible edits, we can solve the problem at the cost of
Alice having to be able to convincingly hand over to the investigators not only
her modified secret key (giving ske instead of sk) but also her modified encryption
key (giving pke instead of pk). This makes sense in the symmetric-key setting
if we think of the encryption key pk as also being private or even in scenarios
where Alice gives her encryption key pk to a small circle of semi-trusted parties
but does not publish it widely.

1.4 Our Techniques

All of our constructions rely on simple but delicate use of functional encryption
(FE), further illustrating the versatility of this powerful abstraction. A public-key
FE scheme for some function F (x, y) comes with a master public key mpk that
can be used to generate ciphertexts c ← Encmpk(x) encrypting some values x, and

The Edited Truth 311

a master secret key msk that can be used to generate secret keys sky ← Genmsk(y)
associated with values y. When we decrypt the ciphertext c with the secret key
sky we get Decsky

(c) = F (x, y). We only need FE schemes that are secure in
the setting where the adversary sees a single secret key, which we know how to
construct under minimal assumptions using the machinery of garbled circuits. In
particular, we can get such schemes in the public-key setting using only public
key encryption and in the symmetric-key setting using only one-way functions
by the work of Sahai and Seyalioglu [SS10]

Invisible Edits. Let us start with our construction of public-key encryption with
invisible edits, for some edit function Edit(m, e).

As an initial idea, we might consider taking a functional encryption scheme
for the function F (m, e) = Edit(m, e) where ciphertexts encrypt messages m and
secret keys are associated with edits e, and set the privileged secret key skid
to be a secret key for the identity edit id such that Edit(m, id) = m, whereas
unprivileged secret key pair would be ske such that Decske

(c) = Edit(m, e). Unfor-
tunately, this initial idea does not work since it’s easy to distinguish ske from
skid by generating encryptions of known plaintexts and seeing how they decrypt.

To fix the above idea, we take a functional encryption scheme for a more
complicated function F (x, y) which interprets x = (m, k) and tests if y ⊕ k is of
the form 0λ||e where λ is the security parameter; if so it outputs Edit(m, e) and
else it outputs m. A “privileged” key pair consists of a public key (mpk, k) and
secret key sky where k, y are random and independent. To encrypt a message m,
we use the FE scheme to encrypt the tuple x = (m, k) where k comes from the
public key. An “unprivileged” key pair consists of a public key (mpk, k′) and a
secret key sky′ where k′ is random and y′ = (0λ||e) ⊕ k.

Notice that the privileged and unprivileged key pairs are individually iden-
tically distributed, but there is a correlation between them. If we encrypt a
message m with a privileged (resp. unprivileged) public-key and then decrypt
the resulting ciphertext with a privileged (resp. unprivileged) secret key than
since k, y (resp. k′, y′) are random and independent we decrypt the correct value
F (x, y) = m with all but negligible probability. However, if we encrypt a mes-
sage m with a privileged public key which corresponds to an FE encryption of
x = (m, k) and then decrypt with an unprivileged secret key sky′ then we get
F (x, y′) = Edit(m, e).

We argue that one cannot distinguish between having a privileged key pair
((mpk, k), sky) and seeing privileged encryptions of m′ = Edit(m, e) which cor-
responds to FE encryptions of x′ = (m′, k), versus having an unprivileged key
pair ((mpk, k′), sky′) and seeing privileged encryptions of m which corresponds
to FE encryptions of x = (m, k). In particular, since the key pairs are identically
distributed, the only difference between these games is the conditional distribu-
tion of x versus x′, but since F (x′, y) = F (x, y′) = m′, this difference is hidden
by FE security.

Our solution for symmetric-key encryption with invisible edits is again anal-
ogous, but relying on symmetric-key FE instead of public-key FE.

312 S. Goldwasser et al.

Deniable Edits. As an initial idea, we might consider taking a functional encryp-
tion scheme for the function F (m, e) = Edit(m, e) where ciphertexts encrypt
messages m and secret keys are associated with edits e. We set the public-key of
our scheme to be the FE master public-key mpk and the secret key skid would be
a secret key for the identity edit id such that Edit(m, id) = m. A user that wants
to be able to deny in the future would also keep a “denying key” dk which we set
to be the FE master secret key dk = msk. To later claim that some ciphertext
c encrypting a message m is really an encryption of m′ = Edit(m, e) the user
would use dk = msk to generate the secret key ske for the edit e. Unfortunately,
this initial idea does not work since it’s easy to distinguish ske from skid by gen-
erating encryptions of known plaintexts and seeing how they decrypt. What we
really need is for the denying procedure to output a secret key that only edits the
value in one particular targeted ciphertext c, but otherwise decrypts all other
ciphertexts correctly.

To fix the above, we use a similar idea as in the case of invisible edits. We
take a functional encryption scheme for a more complicated function F (x, y)
which interprets x = (m, k) and tests if y ⊕ k is of the form 0λ||e where λ is the
security parameter; if so it outputs Edit(m, e) and else it outputs m. We set the
public-key of our encryption scheme to be mpk, the secret key to be sky for a
uniformly random value y, and the denying key to be dk = msk. To encrypt a
message m, the encryption procedure chooses a fresh value k on each invocation
(this is in contrast to the invisible edits construction where k was part of the
public key) and uses the FE scheme to encrypt the tuple x = (m, k) resulting in
some ciphertext c. Notice that, since k, y are random and independent, y ⊕ k is
not of the form 0λ||e except with negligible probability and therefore decrypting
the ciphertext c with the key sky results in the correct value F (x, y) = m. If the
user wants to later claim that this particular ciphertext c is really an encryption
of m′ = Edit(m, e), she would use dk = msk to generate a secret key sky′ for the
value y′ = (0λ||e) ⊕ k which decrypts c to F (x, y′) = Edit(m, e). Notice that the
original key sky and the new key sky′ are identically distributed. We claim that
one cannot distinguish between seeing (c, sky′) and (c′, sky) where c′ is an actual
encryption of m′ = Edit(m, e), meaning that it is an FE encryption of x′ =
(m′, k′) for a uniform k′. Since y and y′ are individually identically distributed,
the only difference between these tuples is the conditional distribution of x vs.
x′, but since F (x′, y) = F (x, y′) = m′, this difference is hidden by FE security.

Our solution for symmetric-key encryption with deniable edits is analogous,
but relying on symmetric-key FE instead of public-key FE.

1.5 Related Work

The notion of deniable encryption was introduced by Canetti et al. [CDNO97].
They considered two separate facets of this notion: sender deniability considers
the scenario where the encryptor is coerced to produce the random coins of the
encryption algorithm, whereas receiver deniability considers the scenario where
the decryptor is coerced to produce the secret key (or even the random coins
of the key generation algorithm). As noted in several prior works, it is easy to

The Edited Truth 313

protect against sender coercion by simply having senders erase the randomness
they use after each encryption operation, and similarly the receiver can erase the
randomness of the key generation algorithm. However, the receiver needs to keep
her secret key for the long term in order to decrypt. Therefore, we view receiver
deniability, where the receiver is coerced to produce her secret key, as the most
important deniability scenario and focus on this in our work. Nevertheless, we
mention that the other notions of deniability are also interesting and meaningful
in settings where erasure is not technically or legally feasible.

Canetti et al. [CDNO97] construct both sender and receiver deniable public-
key encryption schemes where it is possible to distinguish between the real
key/randomness and the fake key/randomness with an inverse polynomial advan-
tage. The work of Sahai and Waters [SW14] constructs a sender deniable with
negligible distinguishing advantage using indistinguishability obfuscation. Bedlin
et al. [BNNO11] show that a negligible distinguishing advantage cannot be
achieved for receiver deniability if we consider the most natural notion where,
given a secret key sk and a honestly generated ciphertext c encrypting some
message m, it is possible to generate a secret key skc,m′ that decrypts c to an
arbitrarily different message m′. Although they show this for public-key encryp-
tion, the result also naturally extends to CPA secure symmetric-key encryption
(but not for one-time encryption, where the one-time pad is optimally deniable).

As we discussed, it is possible to circumvent the results of Bedlin et al.
[BNNO11] by relaxing the notion of receiver deniability and considering dual-key
or dual-scheme (also called multi-distributional) variants. The work of O’Neill
et al. [OPW11] constructs a dual-scheme deniable public-key encryption which is
simultaneously sender and receiver deniable (bi-deniable). The work of [DIO16]
construct both dual-scheme and dual-key variants of receiver deniable functional
encryption. Whereas in that work, functionality and deniability were orthogonal
properties (i.e., the goal was to get a scheme which is simultaneously a functional
encryption scheme and deniable), one can see our notion of deniable edits as
a type of functional-deniability where the fake secret key invisibly applies a
function to the encrypted message.

Deniable encryption is also very related to the concept of non-committing
encryption [CFGN96,DN00,CDMW09]. On a very high level, the latter notion
only requires the ability to equivocate ciphertexts that were specially generated
by a simulator whereas the former notion requires the ability to equivocate
honestly generated ciphertexts.

In both receiver-deniable and non-committing encryption, the secret key size
is necessarily at least as large as the message size [Nie02]. This is because for
every possible message m′, there has to be a different secret key skc,m′ that
decrypts the given ciphertext c to m′. Our work flexibly circumvents this lower
bound in the setting of deniable encryption by restricting the set of messages m′

to which we can open the ciphertext to only be values of the type m′ = Edit(m, e)
where m is the message that was originally encrypted and e is the description
of an edit. This allows the secret key size to only scale with the edit description
size |e| instead of the message size |m|.

314 S. Goldwasser et al.

The idea of restricting the set of messages to which a ciphertext can be
opened in order to reduce the secret key size has been considered in several
other prior works, both in the context of deniability and non-committing encryp-
tion. For example, the notions of plan-ahead deniability [CDNO97,OPW11] and
somewhat-non committing encryption [GWZ09] fix a small set of messages to
which a ciphertext can be opened at encryption time. In somewhere equivocal
(non-committing) encryption [HJO+16] it is possible to modify a few blocks of
the encrypted data. Perhaps the closest concept to our work is the notion of func-
tionally equivocal (non-committing) encryption from the recent work of Canetti
et al. [CPV16]. In that work, it’s possible to open a simulated encryption to any
message m′ = f(x) which is in the range of some function f , where f can be
an expanding function and the secret key size is only proportional to |x| rather
than to |m′|. The main differences with our work on deniable edits are: (1) we
study deniability rather than the non-committing setting, meaning that we start
with a real ciphertext of some message m rather than a simulated ciphertext,
(2) we want to open the ciphertext to an edited messages m′ = Edit(m, e) that
depends on the original value m rather than just an arbitrary value in the range
of some fixed function f .

2 Preliminaries

We introduce several preliminaries including notation and definitions of func-
tional encryption. See Appendix A for additional standard cryptographic defin-
itions.

Notation. We denote by [n] the set {1, . . . , n}. For a string x ∈ {0, 1}∗ we denote
by x[i] the i-th bit of x. If X is a random variable, a probability distribution, or a
randomized algorithm we let x ← X denote the process of sampling x according
to X. If X is a set, we let x ← X denote the process of sampling x uniformly at
random from X .

2.1 Single-Key Functional-Encryption

We now present definition of public and symmetric key functional encryption.
We only require a weak notions of security where (1) the adversary only sees
at most a single secret key and (2) the adversary has to selectively choose the
secret key before it gets the challenge ciphertext.

Definition 1 (Single-Key PK FE). A single-key public-key functional-
encryption scheme (PK FE) for a function F : {0, 1}n1(λ) × {0, 1}n2(λ) →
{0, 1}n3(λ) consists of PPT algorithms (Setup,Gen,Enc,Dec) with the following
syntax:

– (mpk,msk) ← Setup(1λ) generates a master secret-key msk and master public
key mpk.

– sky ← Genmsk(y) takes an input y ∈ {0, 1}n2(λ), generates a secret-key sky.

The Edited Truth 315

– c ← Encmpk(x) takes an input x ∈ {0, 1}n1(λ), outputs an encryption of x.
– F (x, y) = Decsky (c) outputs F (x, y) ∈ {0, 1}n3(λ).

The scheme should satisfy the following properties:

Correctness. For every security parameter λ, message x ∈ {0, 1}n1(λ), and
y ∈ {0, 1}n2(λ):

Pr
[
F (x, y) = Decsky

(Encmpk(x))
∣∣∣∣ (mpk,msk) ← Setup(1λ)
sky ← Genmsk(y)

]
= 1.

Single-Key PK FE Security. We define the “single-key public-key functional
encryption game” FEGameb

A(λ) between an adversary A and a challenger with
a challenge bit b ∈ {0, 1} as follows:
– Sample (mpk,msk) ← Setup(1λ) and send mpk to A.
– The adversary A chooses y ∈ {0, 1}n2(λ) ∪ {⊥}.
– If y �= ⊥, sample sky ← Genmsk(y) and send sky to A.
– The adversary A chooses messages x0, x1 ∈ {0, 1}n1(λ) such that if y �= ⊥

then F (x0, y) = F (x1, y).
– The adversary A gets a challenge Encmpk(xb) and eventually outputs a bit

b′ which we define as the output of the game.
We require that for all PPT adversary A we have

|Pr[FEGame0A(λ) = 1] − Pr[FEGame1A(λ) = 1]| ≤ negl(λ).

Definition 2 (Single-Key SK FE). A single-key symmetric-key functional-
encryption scheme (SK FE) for a function F : {0, 1}n1(λ) × {0, 1}n2(λ) →
{0, 1}n3(λ) consists of PPT algorithms (Setup,Gen,Enc,Dec) with the following
syntax:

– msk ← Setup(1λ) generates a master secret-key msk.
– sky ← Genmsk(y) takes an input y ∈ {0, 1}n2(λ), generates a functional secret-

key sky.
– c ← Encmsk(x) takes an input x ∈ {0, 1}n1(λ), outputs an encryption of x
– F (x, y) = Decsky (c) outputs a message F (x, y) ∈ {0, 1}n3(λ).

The scheme should satisfy the following properties:

Correctness. For every security parameter λ, message x ∈ {0, 1}n1(λ), and
y ∈ {0, 1}n1(λ):

Pr
[
F (x, y) = Decsky

(Encmsk(x))
∣∣∣∣msk ← Setup(1λ)
sky ← Genmsk(y)

]
= 1.

Single-Key SK FE Security. We define the “single-key secret-key functional
encryption game” FEGameb

A(λ) between an adversary A and a challenger with
a challenge bit b ∈ {0, 1} as follows:
– Sample msk ← Setup(λ) and let O(·) be an encryption oracle O(·) :=

Encmsk(·)

316 S. Goldwasser et al.

– The adversary gets access to the encryption oracle AO and eventually
chooses y ∈ {0, 1}n2(λ) ∪ {⊥}.

– If y �= ⊥, sample sky ← Genmsk(y) and send sky to A
– The adversary AO(sky) gets further access to the encryption oracle and

eventually chooses messages x0, x1 such that if y �= ⊥ then F (x0, y) =
F (x1, y).

– The adversary AO(sky, c) gets a challenge message c ← Encmsk(xb) and
further access to the encryption oracle, and eventually outputs a bit b′

which we define as the output of the game.
We require that for all PPT adversary A we have

|Pr[FEGame0A(λ) = 1] − Pr[FEGame1A(λ) = 1]| ≤ negl(λ).

Special Encryption/Decryption. We will require two additional properties from
our FE schemes. Informally, a symmetric-key FE with a special encryption allows
one to encrypt given a secret-key sky instead of msk while ensuring that the two
methods are indistinguishable even given sky. A symmetric-key or public-key
FE with special decryption allows one to decrypt with msk to recover the entire
value x.

Definition 3 (Special Encryption). We say that a symmetric-key functional
encryption scheme FE = (Setup,Gen,Enc,Dec) has a special encryption if the
syntax of the Enc algorithm can be extended to work with a secret key sky instead
of a master secret key msk, and for all PPT adversary A we have

|Pr[EncGame0A(λ) = 1] − Pr[EncGame1A(λ) = 1]| ≤ negl(λ).

where EncGameb
A(λ) is a game between an adversary and a challenger with a

challenge bit b ∈ {0, 1}, defined as follows:

– The adversary A chooses y ∈ {0, 1}n2(λ)

– Sample msk ← Setup(λ) and sky ← Genmsk(y), and let O(·) be an encryption
oracle

– The adversary AO(sky) gets access to the encryption oracle and the secret key,
and eventually outputs a bit b′ which we define as the output of the game.

Definition 4 (Special Decryption). We say that a symmetric-key functional
encryption scheme FE = (Setup,Gen,Enc,Dec) has a special decryption if the
syntax of the Dec algorithm can be extended to work with a master secret key
msk instead of a secret key sk, and for every security parameter λ and message
x ∈ {0, 1}n(λ):

Pr
[
Decmsk (Encmsk (x)) = x

∣∣msk ← Setup
(
1λ

)]
= 1

Similarly, we say that a public-key functional encryption scheme FE =
(Setup,Gen,Enc,Dec) has a special decryption if the syntax of the Dec algo-
rithm can be extended to work with a master secret key msk instead of a secret
key sk, and for every security parameter λ and message x ∈ {0, 1}n(λ):

Pr
[
Decmsk (Encmpk (x)) = x

∣∣(mpk,msk) ← Setup
(
1λ

)]
= 1

The Edited Truth 317

Constructions. We now summarize what is known about FE schemes as defined
above. The following theorem essentially follows from prior work [SS10,GVW12]
using the machinery of garbled circuits and, for completeness, we describe the
constructions in Appendix B.

Theorem 1. Under the assumption that standard public-key encryption
schemes exist, there exists a single-key public-key functional-encryption scheme
with the special decryption property for any polynomial-time function F . Under
the assumption that one-way functions exist, there exists a single-key symmetric-
key functional-encryption scheme with the special encryption and special decryp-
tion properties for any polynomial-time function F .

There is some fixed polynomial poly(λ) such that for a function
F : {0, 1}n1(λ) × {0, 1}n2(λ) → {0, 1}n3(λ) with circuit size s(λ), the result-
ing FE schemes have a master public key mpk (in the case of public-key FE),
master secret key msk, and secret keys sky of size n2(λ)poly(λ) and encryp-
tion/decryption time and ciphertext size s(λ)poly(λ). Assuming identity-based
encryption (IBE) we can further reduce the size of mpk to be just poly(λ).

See Appendix B for a proof of the above.

3 Invisible-Edits

We begin by defining and constructing encryption schemes with invisible edits.
We start with the public key setting and then move on to the symmetric-key
setting.

3.1 Public-Key Invisible-Edits

Our definition of public-key encryption with invisible edits follows the dual-key
paradigm. The key generation algorithm outputs a “privileged” key pair (pk, sk)
along with an edit key ek. The edit key can be used to generate an “unprivileged”
key pair (pke, ske) ← InvEditek(e) corresponding to some edit e. An encryption
of a message m encrypted under pk will decrypt to m′ = Edit(m, e) under ske.
A user cannot tell the difference between the following two scenarios:

– The user is an unprivileged user that gets (pke, ske) and sees encryptions
ci ← Encpk(mi) of messages mi under the privileged public key pk which he
decrypts incorrectly to m′

i = Edit(mi, e) under ske.
– The user is a privileged user that gets (pk, sk) and sees encryptions ci ←

Encpk(m′
i) of messages m′

i = Edit(mi, e) under the privileged public key pk
which he decrypts correctly to m′

i under sk.

The above even holds under chosen message attack where the user can choose
the messages mi. Note that since (pk, sk) and (pke, ske) are indistinguishable it
implies that correctness must hold when using the latter key pair and for any
m with all but negligible probability Decske(Encpke

(m)) = m since otherwise it
would be easy to distinguish (pke, ske) from (pk, sk).

318 S. Goldwasser et al.

Definition 5 (Public-Key Invisible Edits). An Edit-invisible public-key
encryption with message-length n = n(λ), edit description length � = �(λ), and
edit function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ) consists of PPT algo-
rithms (Gen,Enc,Dec, InvEdit) with the following syntax:

– (pk, sk, ek) ← Gen(1λ) generates a public-key pk, secret-key sk, and edit key
ek.

– c ← Encpk(m),m = Decsk(c) have the standard syntax of public-key encryp-
tion and decryption.

– (pke, ske) ← InvEditek(e) takes as input an edit e and outputs a public/secret
key pair pke, ske.

The scheme should satisfy the following properties:

Correctness & Encryption Security. The scheme (Gen,Enc,Dec) satisfies the
standard notions of public-key encryption correctness and semantic security
(see Definition 12) if we ignore the edit-key ek.

Invisibility of Edits. We define the “invisible edits game” InvGameb
A(λ)

between an adversary A and a challenger with a challenge bit b ∈ {0, 1}
as follows:
– The adversary A chooses an edit function e ∈ {0, 1}�.
– Sample (pk, sk, ek) ← Gen(1λ) and (pke, ske) ← InvEditek(e). If b = 0, give

(pk, sk) to A and let O(·) := Encpk(Edit(·, e)), else if b = 1 give (pke, ske)
to A and let O(·) := Encpk(·).

– AO gets access to the oracle O and eventually outputs a bit b′ which we
define as the output of the game.

We require that for all PPT adversary A we have |Pr[InvGame0A(λ) = 1] −
Pr[InvGame1A(λ) = 1]| ≤ negl(λ).

Construction. We now present our construction of public-key invisible encryp-
tion using public-key FE. The construction follows the outline presented in the
introduction. Before we give the construction, we define the function FEdit which
will be used throughout the paper.

Definition 6. For every polynomial-time edit function Edit : {0, 1}n(λ) ×
{0, 1}�(λ) → {0, 1}n(λ), we define the function FEdit : {0, 1}n(λ)+(λ+�(λ)) ×
{0, 1}λ+�(λ) → {0, 1}n(λ) as follows:

FEdit(x = (m, k), y) :=

{
Edit(m, e) if ∃e s.t. y ⊕ k = (0λ, e)
m otherwise

where we parse x = (m, k) with m ∈ {0, 1}n(λ) and k ∈ {0, 1}λ+�(λ).

Construction 2 (Public-Key Invisible Edits). For any polynomial-time
edit function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ), we construct an Edit-
invisible public-key encryption using a single-key public-key functional encryp-
tion FE = (Setup,Gen,Enc,Dec) for the function FEdit (Definition 6). The con-
struction proceeds as follows.

The Edited Truth 319

– IEdit.Gen(1λ):
• (mpk,msk) ← FE.Setup(1λ)
• Select uniform (y, k) ← {0, 1}λ+� × {0, 1}λ+�

• sky ← FE.Genmsk(y)
• Output (pk := (mpk, k), sk := sky, ek := (mpk, k,msk))

– IEdit.Encpk(m):
• Output c ← FE.Encmpk((m, k))

– IEdit.Decsk(c):
• Output m = FE.Decsky

(c)
– IEdit.InvEditek(e):

• Select uniform k′ ← {0, 1}λ+�

• sky′ ← FE.Genmsk(y′) where y′ = k ⊕ (0λ, e)
• Output (pke := (mpk, k′), ske := sky′)

Theorem 3. The scheme IEdit given in the above Construction 2 is a secure
Edit-invisible public-key encryption if FE is a single-key public-key functional
encryption for the function FEdit. In particular, the construction only relies on
the existence of standard public-key encryption.

Proof. We now prove that the above Construction 2 satisfies the properties of
Edit-invisible public-key encryption in Definition 5.

Correctness: For every security parameter λ, and message m ∈ {0, 1}n:

Pr
[
m = IEdit.Decsk(IEdit.Encpk(m))

∣∣ (pk, sk, dk) ← IEdit.Gen(1λ)
]

= Pr

⎡
⎣m = FE.Decsky

(FE.Encpk((m, k)))

∣∣∣∣∣∣
(k, y) ← {0, 1}λ+� × {0, 1}λ+�

(mpk,msk) ← FE.Setup(1λ)
sky ← FE.Genmsk(y)

⎤
⎦

= Pr
[
m = F ((m, k), y)

∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�
]

= 1 − Pr
[
y ⊕ k = (0λ, r)

∣∣∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�

r ∈ {0, 1}�

]

= 1 − 1
2λ

Encryption Security: We want to show that for any PPT adversary A:

|Pr[CPAGame0A(λ) = 1] − Pr[CPAGame1A(λ) = 1]| ≤ negl(λ).

This follows since an adversary A who breaks the CPA security also wins in
the single-key public-key functional-encryption security game FEGame (with
no secret key, when y = ⊥).

Invisibility of Edits. We want to show that for any PPT adversary A:

|Pr[InvGame0A(λ) = 1] − Pr[InvGame1A(λ) = 1]| ≤ negl(λ).

320 S. Goldwasser et al.

Informally, an adversary A who wins the “invisible edits game” InvGameb
A(λ)

with an edit e and oracle queries mi, wins the single-key public-key functional-
encryption security game with a random y ← {0, 1}λ+�, and messages x0 =
(Edit(mi, e), k) and x1 = (mi, k

′) where k ← {0, 1}λ+� and k′ = y ⊕ (0λ, e).
Formally, we prove it by a sequence of q hybrids where q is a bound of the
number of queries that A makes to its oracle O. We define the hybrid games
HybGamej

A(λ) for j = 0, . . . , q by modifying InvGameb
A(λ) and defining the

encryption oracle Oj and the challenge key pair (pk, sk) given to the adversary
as follows:

Oj(·) :=

{
FE.Encmpk(Edit(·, e), k) i > j

FE.Encmpk(·, k′) i ≤ j

(pk, sk) := ((mpk, k), sky)

where y, k ← {0, 1}λ+�, k′ = y ⊕ (0�, e), and i is the index of the current
query.
Observe that HybGame0A(λ) ≡ InvGame0A(λ). This is because the value k used
by the encryption oracle O matches the one in pk, the value y is random and
independent of k, and the encryption oracle is encrypting edited messages.
Also observe that HybGameq

A(λ) ≡ InvGame1A(λ). This is because the value
k′ used by the encryption oracle is independent of the value k given in pk,
the value y contained in sk is correlated to the value k′ used by the encryp-
tion oracle via the relationship y ⊕ k′ = (0�, e), and the encryption oracle is
encrypting un-edited messages.
Therefore, is suffices to show that for each j, the hybrids HybGamej

A(λ)
and HybGamej+1

A (λ) are indistinguishable. This follows directly by public-
key functional-encryption security. In particular, the only difference between
the games is whether query (j+1) to O is answered as FE.Encmpk(Edit(·, e), k)
or FE.Encmpk(·, k′). But, since for any m we have F (x0, y) = F (x1, y) where
x0 = (Edit(m, e), k), x1 = (m, k′), this is indistinguishable by functional-
encryption security.

3.2 Symmetric-Key Invisible-Edits

In the symmetric-key setting, we present two different definitions of encryption
with invisible edits.

First, we present a definition that follows the dual-key paradigm and can
be seen as a direct analogue of our public-key definition for the symmetric-key
setting. We can always interpret a public-key encryption with invisible edits
as a symmetric-key scheme and therefore we can achieve this definition assum-
ing the existence of standard public-key encryption using the results from the
previous section. However, it remains as a fascinating open problem whether
one can construct symmetric-key encryption with invisible edits following the
dual-key paradigm by relying only one one-way functions or whether public-key
encryption is necessary.

The Edited Truth 321

Definition 7 (Dual-Key Invisible Edits). A dual-key Edit-invisible
symmetric-key encryption scheme with message-length n = n(λ), edit descrip-
tion length � = �(λ), and edit function Edit : {0, 1}n×{0, 1}� → {0, 1}n consists
of PPT algorithms (Gen,Enc,Dec, InvEdit) with the following syntax:

– (sk, ek) ← Gen(1λ) generates a secret-key sk and edit key ek.
– c ← Encsk(m),m = Decsk(c) have the standard syntax of symmetric-key

encryption and decryption.
– ske ← InvEditek(e) takes as input an edit e and outputs a secret key ske.

The scheme should satisfy the following properties:

Correctness & Encryption Security. The scheme (Gen,Enc,Dec) satisfies the
standard notions of symmetric-key encryption correctness and CPA security
(see Definition 13) if we ignore the edit-key ek.

Invisibility of Edits. We define the “invisible edits game” InvGameb
A(λ)

between an adversary A and a challenger with a challenge bit b ∈ {0, 1}
as follows:
– The adversary A chooses an edit function e ∈ {0, 1}�.
– Sample (sk, ek) ← Gen(1λ) and ske ← InvEditek(e). If b = 0, let O(·) :=

Encsk(Edit(·, e)) and if b = 1 let O(·) := Encsk(·).
– AO gets the secret key sk if b = 0, and ske if b = 1 together with an

access to the oracle O. Eventually A outputs a bit b′ which we define as
the output of the game.

We require that for all PPT adversary A we have |Pr[InvGame0A(λ) = 1] −
Pr[InvGame1A(λ) = 1]| ≤ negl(λ).

Below, we present a definition of symmetric-key encryption with invisible
edits that follows the weaker dual-scheme paradigm. In this case there are two
different encryption schemes: an unprivileged scheme (Gen,Enc,Dec) and a privi-
leged scheme (PrivGen,PrivEnc,PrivDec). Given a secret key sk∗ for the privileged
scheme, it’s possible to create a secret key ske ← InvEditsk∗(e) that looks like a
legitimate secret key of the unprivileged scheme but is tied to some edit e. An
encryption of a message m encrypted under sk∗ will decrypt to m′ = Edit(m, e)
under ske. A user cannot tell the difference between the following two scenarios:

– The user is an unprivileged user that gets ske ← InvEditsk∗(e) and sees encryp-
tions ci ← Encsk∗(mi) of messages mi under the privileged secret key sk∗

which he decrypts incorrectly to m′
i = Edit(mi, e) under ske.

– The user is an unprivileged user that gets sk ← Gen(1λ) created using the
legitimate unprivileged key generation algorithm and sees encryptions ci ←
Encsk(m′

i) of messages m′
i = Edit(mi, e) under the unprivileged secret key sk

which he then decrypts correctly to m′
i using the same sk.

In other words, the user can tell that he’s unprivileged. But he does’t know
whether everyone else is also unprivileged and he’s correctly decrypting the
messages they are sending or whether some other users are privileged and he’s
decrypting edited messages.

322 S. Goldwasser et al.

Definition 8 (Dual-Scheme Invisible Edits). A dual-scheme Edit-invisible
symmetric-key encryption scheme with message-length n = n(λ), edit descrip-
tion length � = �(λ), and edit function Edit : {0, 1}n × {0, 1}� → {0, 1}n

consists of PPT algorithms Gen,Enc,Dec, PrivGen,PrivEnc,PrivDec, InvEdit. The
schemes (Gen,Enc,Dec), (PrivGen,PrivEnc,PrivDec) have the usual symmetric-
key encryption syntax. The algorithm ske ← InvEditsk(e) takes as input an edit e
and a privileged secret key sk and outputs an unprivileged secret key ske tied to
an edit e.

Correctness & Encryption Security. The schemes (Gen,Enc,Dec) and
(PrivGen,PrivEnc,PrivDec) satisfy the standard notions of symmetric-key
encryption correctness and CPA security (Definition 13).

Invisibility of Edits. We define the “invisible edits game” InvGameb
A(λ)

between an adversary A and a challenger with a challenge bit b ∈ {0, 1}
as follows:
– The adversary A chooses an edit function e ∈ {0, 1}�.
– If b = 0 sample sk ← Gen(1λ) and if b = 1 sample sk∗ ← PrivGen(1λ) and

ske ← InvEditsk∗(e). If b = 0, let O(·) := Encsk(Edit(·, e)) and if b = 1 let
O(·) := PrivEncsk∗(·).

– The adversary AO gets the secret key sk if b = 0, or ske if b = 1. It
also gets oracle access to O(·) and eventually it outputs a bit b′ which we
define as the output of the game.

We require that for all PPT adversary A we have |Pr[InvGame0A(λ) = 1] −
Pr[InvGame1A(λ) = 1]| ≤ negl(λ).

Construction. Our construction for the dual-scheme symmetric-key encryp-
tion with invisible edits roughly follows the same outline as the public-key con-
struction with the main difference that we rely on symmetric-key rather than
public-key FE.

Construction 4 (Dual-Scheme Invisible Edits). For any polynomial time
edit function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ), we construct a
dual-scheme Edit-invisible symmetric-key encryption DSInvE = (Gen,Enc,Dec,
PrivGen,PrivEnc, PrivDec, InvEdit), using a single-key symmetric-key functional
encryption FE = (Setup,Gen,Enc,Dec) with special encryption (see Definition 3)
for the function F := FEdit (see Definition 6). The construction proceeds as fol-
lows.

– DSInvE.PrivGen(1λ):
• FE.msk ← FE.Setup(1λ)
• Select uniform k∗ ← {0, 1}λ+�

• Output sk∗ = (FE.msk, k∗)
– DSInvE.PrivEncsk∗(m):

• Output c ← FE.Encmsk((m, k∗))
– DSInvE.PrivDecsk∗(c):

• (m, k∗) = FE.Decmsk(c)

The Edited Truth 323

• Output m
– DSInvE.Gen(1λ):

• FE.msk ← FE.Setup(1λ)
• Select uniform y ← {0, 1}λ+�

• FE.sky ← FE.Genmsk(y)
• Output sk = FE.sky

– DSInvE.Encsk(m):
• Select uniform k ← {0, 1}λ+�

• Output c ← FE.Encsky
((m, k))

– DSInvE.Decsk(c):
• Output m = FE.Decsky

(c)
– DSInvE.InvEditsk∗(e):

• FE.sky′ ← FE.Genmsk(y′) where y′ = k∗ ⊕ (0λ, e)
• Output ske = FE.sky′

Theorem 5. The scheme DSInvE given in the above Construction 4 is a
secure dual-scheme Edit-invisible symmetric-key encryption if FE is a single-
key symmetric-key functional encryption scheme with special encryption for the
function FEdit. In particular, the construction only relies on the existence of one-
way functions.

Proof. We now prove that Construction 4 satisfies the properties of dual-scheme
Edit-invisible symmetric-key encryption in Definition 8.

Correctness. For every security parameter λ, and message m ∈ {0, 1}n:

Pr
[
m = DSInvE.Decsk(DSInvE.Encsk(m))

∣∣ sk ← DSInvE.Gen(1λ)
]

= Pr

⎡
⎣m = FE.Decsky

(FE.Encsky
((m, k)))

∣∣∣∣∣∣
(k, y) ← {0, 1}λ+� × {0, 1}λ+�

msk ← FE.Setup(1λ)
sky ← FE.Genmsk(y)

⎤
⎦

= Pr
[
m = F ((m, k), y)

∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�
]

= 1 − Pr
[∃e ∈ {0, 1}� : y ⊕ k = (0λ, e)

∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�
]

= 1 − 1
2λ

Therefore, the scheme (DSInvE.Gen,DSInvE.Enc,DSInvE.Dec) is correct.
Moreover, for every security parameter λ, and message m ∈ {0, 1}n:

Pr
[
m = DSInvE.PrivDecsk∗(DSInvE.PrivEnc∗

sk(m))
∣
∣ sk∗ ← DSInvE.PrivGen(1λ)

]

= Pr

[
m = FE.Decmsk(FE.Encmsk((m, k∗)))

∣∣
∣
∣
k∗ ← {0, 1}λ+�

msk ← FE.Setup(1λ)

]

= 1

Thus, also the scheme(DSInvE.PrivGen,DSInvE.PrivEnc,DSInvE.PrivDec) is
correct.

324 S. Goldwasser et al.

Encryption Security. The scheme (DSInvE.PrivGen,DSInvE.PrivEnc,DSInvE.
PrivDec) is symmetrically secure (i.e., CPA secure). Namely, for every PPT
adversary A there exists a negligible function negl(·) such that for every secu-
rity parameter λ,

|Pr[CPAGame0A(λ) = 1] − Pr[CPAGame1A(λ) = 1]| ≤ negl(λ).

A PPT adversary A who wins the CPA security also wins the single-key
symmetric-key functional-encryption security game FEGame (with no secret
key).
The scheme (DSInvE.Gen,DSInvE.Enc,DSInvE.Dec) is also symmetrically
secure. The underline functional encryption scheme FE has a special encryp-
tion, therefore no PPT can distinguish between the CPA game CPAGameb

A(λ)
and the hybrid game HybGameb

A(λ) where the encryption oracle and the chal-
lenge ciphertext instead of:

O(·) := FE.Encsky
((·, k))k←{0,1}λ+�

c ← DSInvE.Encsk(·) := FE.Encsky ((mb, k))k←{0,1}λ+�

are replaced with:

O(·) := FE.Encmsk((·, k))k←{0,1}λ+�

c ← DSInvE.Encsk(·) := FE.Encmsk((mb, k))k←{0,1}λ+�

The HybGame game is the same as the FEGame (with no secret-key, when
y = ⊥).

Invisibility of Edits. For any PPT adversary A there exists a negligible func-
tion negl(·), such that for every security parameter λ

|Pr[InvGame0A(λ) = 1] − Pr[InvGame1A(λ) = 1]| ≤ negl(λ).

An PPT adversary who wins the”invisible edits game” InvGameb
A(λ) with

an edit e and an oracle query mi, wins the single-key symmetric-key func-
tional encryption security with a random y ← {0, 1}λ+� and messages m0 =
(Edit(mq̃, e), k) and m1 = (mq̃, k

∗) where k ← {0, 1}λ+� and k∗ = y ⊕ (0�, e).
Formally, we prove it by a sequence of (q + 1) hybrids where q is a bound of
the number of query messages that A is able to make.
We define the hybrid game HybGameq̃,b

A (λ) (a modification of InvGameb
A), in

which the encryption oracle O(·) and challenge sk are:

Oq̃
b (·) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FE.Encmsk(Edit(·, e), k)k←{0,1}λ+� i < q̃

FE.Encmsk(Edit(mq̃, e), k)k←{0,1}λ+� b = 0 ∧ i = q̃

FE.Encmsk(mq̃, k
∗) b = 1 ∧ i = q̃

FE.Encmsk(·, k∗) i > q̃

sk ← FE.Genmsk(y)

where y ← {0, 1}λ+�, k∗ = y ⊕ (0�, e), and i is the number of queries that
were asked.

The Edited Truth 325

By the public-key functional-encryption security2 it holds that for every q̃ ∈
[q] and every PPT adversary A there exists a negligible function negl(·), such
that for every security parameter λ

|Pr[HybGameq̃,0
A (λ) = 1] − Pr[HybGameq̃,1

A (λ) = 1]| ≤ negl(λ). (1)

Note that syntactically for every q̃:

HybGameq̃,1
A (λ) = HybGame

(q̃−1),0
A (λ). (2)

Hybrid 0: we start with the invisibility game with b = 0, InvGame0A(λ). The
encryption oracle and challenge are:

O(·) := IEdit.Encsk(Edit(·, e)) = FE.Encsky
(Edit(·, e), k)k←{0,1}λ+�

sk ← IEdit.Gen(1λ) = sky

where y ← {0, 1}λ+�, sky ← FE.Genmsk(y), and msk ← FE.Setup(1λ).
Hybrid 1: we move to a the hybrid game HybGameq,0

A (λ) in which we encrypt
using FE.Encmsk (instead of using FE.Encsky

). The encryption oracle and
the challenge are:

O(·) := FE.Encmsk(Edit(·, e), k)k←{0,1}λ+�

sk := FE.Genmsk(y)

where y ← {0, 1}λ+�, and msk ← FE.Setup(1λ). By the special encryption
property3,

InvGame0A(λ)
c≈ HybGameq,0

A (λ)

.
Hybrid 2: we move to the hybrid game HybGame1,1

A (λ) by a sequence of q
hybrids (each start with Eq. (1) and follows by Eq. (2)). Namely,

HybGameq,0
A (λ)

c≈ HybGameq,1
A (λ) = HybGame

(q−1),0
A (λ)

HybGame
(q−1),0
A (λ)

c≈ HybGame
(q−1),1
A (λ) = HybGame

(q−2),0
A (λ)

...

HybGame1,0
A (λ)

c≈ HybGame1,1
A (λ)

Observe that HybGame1,1
A (λ) = InvGame1A(λ) in which the encryption

oracle O and challenge sk are:

O(·) := IEdit.PrivEncsk∗(·) = FE.Encmsk(·, k∗)
ske ← IEdit.InvEditsk∗(e) = FE.Genmsk(y)

where y = k∗ ⊕ (0�, e), k∗ ← {0, 1}λ+�, and msk ← FE.Setup(1λ).
2 With random y ← {0, 1}λ+� and m0 = (Edit(mq̃, e), k),m1 = (mq̃, k

∗) where y, k ←
{0, 1}λ+� and k∗ = y ⊕ (0�, e).

3 See Definition 3.

326 S. Goldwasser et al.

3.3 Efficiency

For an edit function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ) with n(λ) size
message, �(λ) edit description size, and where the circuit size of Edit is s(λ) the
efficiency of our public-key and symmetric-key Edit-invisible encryption schemes
given in Constructions 2 and 4 is summarized as follows. There is some fixed
polynomial poly(λ) such that:

– The secret key size is �(λ)poly(λ).
– The run-time of the encryption/decryption procedures and the ciphertext size

s(λ)poly(λ).
– In the case of public-key deniable encryption, the public-keys size is

�(λ)poly(λ). If we’re willing to use a stronger assumption of identity-based
encryption (IBE) we can use a more efficient FE instantiation in our con-
struction which reduces the public-key size to just poly(λ).

One open problem would be to reduce the encryption time and the ciphertext
size to only depend on the message size n(λ) rather than the circuit size s(λ)
without increasing the secret key size. However, we envision that most interesting
Edit functions that we’d want to apply anyway have relatively small circuit size
which is roughly linear in the message size s(λ) = O(n(λ)).

4 Deniable-Edits

We now define and construct encryption schemes with deniable edits. We start
with the public key setting and then move on to the symmetric-key setting.

4.1 Public-Key Deniable-Edits

Our definition of public-key encryption with deniable edits follows the dual-key
paradigm outlined in the introduction. The key generation algorithm outputs a
secret decryption key sk and denying key dk, and most users are expected to
discard dk since it is not needed for decryption. In particular, this means that
users might be later coerced to give up their secret key sk which they need to
keep for decryption but we assume they cannot be coerced to give up dk since
they can plausibly claim they discarded it. Users that keep dk can use it to
later “deny” the contents of a particular ciphertext c encrypting some message
m by producing a legitimate secret key skc,e ← Denydk(c, e) that decrypts c to
m′ = Edit(m, e). Given a ciphertext c and a secret key sk∗, the coercer cannot
distinguish whether c is really an encryption of m′ and sk∗ = sk is the original
secret key output by the key generation algorithm or whether c is an encryption
of m and sk∗ = skc,e is the modified secret key output by the denying algorithm.

Definition 9 (Public-Key Deniable Edits). An Edit-deniable public-key
encryption with message-length n(λ), edit description length �(λ), and a PPT edit
function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ) consists of PPT algorithms
(Gen,Enc,Dec,Deny) having the following syntax:

The Edited Truth 327

– (pk, sk, dk) ← Gen(1λ) generates a public-key pk, secret-key sk and denying
key dk.

– c ← Encpk(m),m = Decsk(c) have the standard syntax of public-key encryp-
tion and decryption.

– skc,e ← Denydk(c, e) takes as input some ciphertext c encrypting data m along
with an edit e and outputs a secret key skc,e that decrypts c to m′ = Edit(m, e).

The scheme should satisfy the following properties:

Encryption Correctness & Security: The scheme (Gen,Enc,Dec) should
satisfy the standard correctness and CPA security definitions of public-key
encryption (see Definition 12), if we ignore the denying key dk.

Deniability Security. We define the “deniability game” DenGameb
A(λ) between

an adversary A and a challenger with a challenge bit b ∈ {0, 1} as follows:
– Sample (pk, sk, dk) ← Gen(1λ) and give pk to A.
– A chooses a message m ∈ {0, 1}n(λ) and an edit e ∈ {0, 1}�(λ).
– If b = 0, sample c ← Encpk(Edit(m, e)) and give (sk, c) to A.

If b = 1, sample c ← Encpk(m), skc,e ← Denydk(c, e) and give (skc,e, c) to
A.

– A outputs a bit b′ which we define as the output of the game.
For all PPT adversary A, we require

|Pr[DenGame0A(λ) = 1] − Pr[DenGame1A(λ) = 1]| ≤ negl(λ).

Construction. The construction of public-key encryption with deniable edits is
similar to our earlier construction of public-key encryption with invisible edits.
The main difference is that we previously chose a random value k in the public
key and use it for all encryptions whereas we now chose a fresh random value k
during each encryption operation. The secret key sky is associated with a random
value y. When we want to deny a particular ciphertext c which was created using
k, we create a new secret key sky′ with y′ = k ⊕ (0λ, e). This ensures that the
edit is applied when decrypting the ciphertext c via sky′ .

Construction 6 (Public-Key Deniable Edit). For any polynomial-time
edit function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ), we construct an Edit-
deniable public-key encryption DEdit = (Gen,Enc,Dec,Deny) using a single-key
public-key functional encryption FE = (Setup,Gen,Enc,Dec) with special decryp-
tion (see Definition 4) for the function F := FEdit (see Definition 6). The con-
struction proceeds as follows.

– DEdit.Gen(1λ):
• (mpk,msk) ← FE.Setup(1λ)
• Select uniform y ← {0, 1}λ+�

• sky ← FE.Genmsk(y)
• Output (pk := mpk, sk := sky, dk := msk)

– DEdit.Encpk(m):
• Select uniform k ← {0, 1}λ+�

328 S. Goldwasser et al.

• Output c ← FE.Encmpk((m, k))
– DEdit.Decsk(c):

• Output m := FE.Decsky
(c)

– DEdit.Denydk(c, e):
• (m, k) = FE.Decmsk(c)
• sky ← FE.Genmsk(y) where y = k ⊕ (0λ, e)
• Output skc,e := sky

Theorem 7. The scheme DEdit given in the above Construction 6 is a secure
Edit-deniable public-key encryption if FE is a single-key public-key functional
encryption with special decryption for the function FEdit. In particular, the con-
struction only relies on the existence of standard public-key encryption.

Proof. We now prove that Construction 6 satisfies the properties in Definition 9

Correctness: For every security parameter λ, and message m ∈ {0, 1}n:

Pr
[
m = DEdit.Decsk(DEdit.Encpk(m))

∣∣ (pk, sk, dk) ← DEdit.Gen(1λ)
]

= Pr

⎡
⎣m = FE.Decsky

(FE.Encmpk((m, k)))

∣∣∣∣∣∣
(k, y) ← {0, 1}λ+� × {0, 1}λ+�

(mpk,msk) ← FE.Setup(1λ)
sky ← FE.Genmsk(y)

⎤
⎦

= Pr
[
m = F ((m, k), y)

∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�
]

= 1 − Pr
[∃e ∈ {0, 1}� : y ⊕ k = (0λ, e)

∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�
]

= 1 − 1
2λ

Encryption Security: We want to show that for any PPT adversary A:

|Pr[CPAGame0A(λ) = 1] − Pr[CPAGame1A(λ) = 1]| ≤ negl(λ).

This follows since an adversary A who breaks the CPA security also breaks
the single-key public-key functional-encryption security game FEGame (with
no secret key, when y = ⊥).

Deniability Security. We want to show that for any PPT adversary A:

|Pr[DenGame0A(λ) = 1] − Pr[DenGame1A(λ) = 1]| ≤ negl(λ).

This follows since an adversary A who wins the deniability game DenGame
with message m and edit e, also wins the single-key public-key functional-
encryption security game FEGame with random y ← {0, 1}λ+�, and messages
x0 = (m, k) and x1 = (Edit(m, e), k′) where k = y ⊕ (0λ+�, e), and k′ ←
{0, 1}λ+�. Note that FEdit(x0, y) = FEdit(x1, y) = Edit(m, e) unless k′ ⊕ y =
(0λ, e′) for some e′ which happens with negligible probability. Formally, we
construct A′ (who uses an adversary A that wins in the DenGame) to win the
FEGame:

– The challenger samples (mpk,msk) ← FE.Setup(λ) and sends mpk to A′.
The adversary A′ chooses a random y ← {0, 1}λ+�.

The Edited Truth 329

– The challenger samples sky ← FE.Genmsk(y) and sends sky to A′.
The adversary A′ forward pk := mpk to A and receives back a message
m ∈ {0, 1}n and an edit e ∈ {0, 1}�. The adversary A′ chooses two mes-
sages x0 = (m, k) and x1 = (Edit(m, e), k′) where k′ ← {0, 1}λ+� and
k = y ⊕ (0λ+�, e).

– The challenge samples a ciphertext c ← FE.Encmpk(mb) and sends c to A′.
The adversary A′ forwards (sky, c) to A and receives back a bit b′ to
output.

The advantage of A′ in FEGame is the same as the advantage of A in DenGame,
up to the negligible probability that k′ ⊕ y = (0λ, e′) for some e′.

4.2 Symmetric-Key Deniable-Edits

In the symmetric-key setting, we present two different definitions of encryption
with deniable edits analogously to our two definitions of symmetric-key encryp-
tion with invisible edits.

First, we present a definition that follows the dual-key paradigm and can
be seen as a direct analogue of our public-key definition for the symmetric-key
setting. In particular, the key generation algorithm outputs a secret decryption
key sk and denying key dk which can use it to later “deny” the contents of a par-
ticular ciphertext c encrypting some message m by producing a legitimate secret
key skc,e ← Denydk(c, e) that decrypts c to m′ = Edit(m, e). For both encryption
security and deniability we assume that the adversary has access to an encryp-
tion oracle. We can always interpret a public-key deniable encryption scheme
as a symmetric-key one and therefore we can achieve this definition assuming
the existence of standard public-key encryption using the results from the pre-
vious section. However, it remains as a fascinating open problem whether one
can construct symmetric-key deniable encryption following the dual-key para-
digm by relying only one one-way functions or whether public-key encryption is
necessary.

Definition 10 (Dual-Key Deniable Edits). A dual-key Edit-deniable
symmetric-key encryption scheme with message-length n(λ), edit description
length �(λ), and edit function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ) consists
of PPT algorithms (Gen,Enc,Dec,Deny) with the following syntax:

– (sk, dk) ← Gen(1λ) generates a secret-key sk and deniability key dk.
– c ← Encsk(m),m = Decsk(c) have the standard syntax of public-key encryption

and decryption.
– skc,e ← Denydk(c, e) takes as input some ciphertext c encrypting data m along

with an edit e and outputs a secret key skc,e that decrypts c to m′ = Edit(m, e).

The scheme should satisfy the following properties:

Correctness & Encryption Security. The scheme (Gen,Enc,Dec) satisfies the
standard notions of symmetric-key encryption correctness and CPA security
(see Definition 13) if we ignore the key dk.

330 S. Goldwasser et al.

Deniability. We define the “deniability game” DenGameb
A(λ) between an adver-

sary A and a challenger with a challenge bit b ∈ {0, 1} as follows:
– Sample (sk, dk) ← Gen(1λ).
– AEncsk(·) gets access to the encryption oracle. Eventually, it chooses a mes-

sage m ∈ {0, 1}n(λ) and an edit e ∈ {0, 1}�(λ).
– If b = 0, sample c ← Encsk(Edit(m, e)) and give (sk, c) to A.

If b = 1, sample c ← Encsk(m), skc,e ← Denydk(c, e) and give (skc,e, c) to
A.

– AEncsk(·) outputs a bit b′ which we define as the output of the game.
We require that for all PPT adversary A we have |Pr[DenGame0A(λ) = 1] −
Pr[DenGame1A(λ) = 1]| ≤ negl(λ).

Below, we present a definition of symmetric-key encryption with deniable
edits that follows the weaker dual-scheme paradigm. In this case there are two
different encryption schemes: a default scheme (Gen,Enc,Dec) and a denying
scheme (DenGen,DenEnc,DenDec). Most users are expected to use the default
scheme. However, if a user decides to use the denying scheme instead, she can
“deny” the contents of a particular ciphertext c encrypting some message m
under sk by producing a secret key skc,e ← Denysk(c, e) that looks like a legiti-
mate key for the default scheme and decrypts c to m′ = Edit(m, e). Even given
access to an encryption oracle, a ciphertext c and a key sk, the coercer cannot
tell whether (1) all ciphertexts are generated using the default scheme, c is an
encryption of m′, and sk is the honestly generated key of the default scheme, ver-
sus (2) all ciphertexts are generated using the denying scheme, c is an encryption
of m and sk = skc,e is the output of the Deny algorithm.

Definition 11 (Dual-Scheme Deniable Edits). A dual-scheme Edit-
deniable symmetric-key encryption scheme with message-length n = n(λ),
edit description length � = �(λ), and edit function Edit : {0, 1}n(λ) ×
{0, 1}�(λ) → {0, 1}n(λ) consists of PPT algorithms (Gen,Enc,Dec,DenGen,
DenEnc,DenDec,Deny). The default scheme (Gen,Enc,Dec) and the denying
scheme (DenGen,DenEnc,DenDec) have the usual symmetric-key encryption syn-
tax. The algorithm skc,e ← Denysk(c, e) takes as input some ciphertext c encrypt-
ing data m under the denying scheme with secret key sk, along with an edit e
and outputs a secret key skc,e that decrypts c to m′ = Edit(m, e).

Correctness & Encryption Security. The schemes (Gen,Enc,Dec) and
(DenGen,DenEnc,DenDec) satisfy the standard notions of symmetric-key
encryption correctness and CPA security (Definition 13).

Deniability. We define the “deniability game” DenGameb
A(λ) between an adver-

sary A and a challenger with a challenge bit b ∈ {0, 1} as follows:
– If b = 0 sample sk ← Gen(1λ) and if b = 1 sample sk∗ ← DenGen(1λ).

Let O(·) be the encryption oracle with O(·) := Encsk(·) if b = 0 and
O(·) := DenEncsk∗(·) if b = 1.

– AO gets access to the encryption oracle and eventually chooses a message
m ∈ {0, 1}n(λ) and an edit e ∈ {0, 1}�(λ).

The Edited Truth 331

– If b = 0, sample c ← Encsk(Edit(m, e)) and give (sk, c) to A.
If b = 1, sample c ← DenEncsk∗(m), skc,e ← Denysk∗(c, e) and give
(skc,e, c) to A.

– AO gets further access to the encryption oracle and eventually outputs a
bit b′ which we define as the output of the game.

For all PPT adversary A we require

|Pr[DenGame0A(λ) = 1] − Pr[DenGame1A(λ) = 1]| ≤ negl(λ).

Construction. Our construction of dual-scheme symmetric-key encryption
with deniable edits follows the same general approach as out public-key con-
struction.

Construction 8 (Dual-Scheme Deniable Edit). For any polynomial-time
edit function Edit : {0, 1}n(λ) × {0, 1}�(λ) → {0, 1}n(λ) we construct a dual-
scheme Edit-deniable symmetric-key encryption DSDenE = (Gen,Enc,Dec,
DenGen, DenEnc, DenDec, Deny), using a single-key symmetric-key functional
encryption FE = (Setup,Gen,Enc,Dec) with special encryption and decryption
(Definitions 3 and 4) for the function F := FEdit (Definition 6). The construc-
tion proceeds as follows.

– DSDenE.DenGen(1λ):
• msk ← FE.Setup(1λ)
• Output sk∗ := msk

– DSDenE.DenEncsk∗(m):
• Select uniform k ← {0, 1}λ+�

• Output c ← FE.Encmsk((m, k))
– DSDenE.DenDecsk∗(c):

• (m, k) = FE.Decmsk(c)
• Output m

– DSDenE.Gen(1λ):
• msk ← FE.Setup(1λ)
• Select uniform y ← {0, 1}λ+�

• sky ← FE.Genmsk(y)
• Output sk := sky

– DSDenE.Encsk(m):
• Select uniform k ← {0, 1}λ+�

• Output c ← FE.Encsky
((m, k))

– DSDenE.Decsk(c):
• Output m = FE.Decsky (c)

– DSDenE.Denysk∗(c, e):
• (m, k) = FE.Decmsk(c)
• sky ← FE.Genmsk(y) where y = k ⊕ (0λ, e)
• Output skc,e = sky

332 S. Goldwasser et al.

Theorem 9. The scheme DSDenE given in the above Construction 8 is a
secure dual-scheme Edit-deniable symmetric-key encryption if FE is a single-
key symmetric-key functional encryption with special encryption and decryption
for the function FEdit. In particular, the construction only relies on the existence
of one-way functions.

Proof. We now prove that Construction 8 satisfies the properties of dual-scheme
Edit-deniable symmetric-key encryption in Definition 11.

Correctness. For every security parameter λ, and message m ∈ {0, 1}n:

Pr
[
m = DSDenE.Decsk(DSDenE.Encsk(m))

∣∣ sk ← DSDenE.Gen(1λ)
]

= Pr

⎡
⎣m = FE.Decsky

(FE.Encsky
((m, k)))

∣∣∣∣∣∣
(k, y) ← {0, 1}λ+� × {0, 1}λ+�

msk ← FE.Setup(1λ)
sky ← FE.Genmsk(y)

⎤
⎦

= Pr
[
m = F ((m, k), y)

∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�
]

= 1 − Pr
[∃e ∈ {0, 1}� : y ⊕ k = (0λ, e)

∣∣ (k, y) ← {0, 1}λ+� × {0, 1}λ+�
]

= 1 − 1
2λ

Therefore, the scheme (DSDenE.Gen,DSDenE.Enc,DSDenE.Dec) is correct.
Moreover, for every security parameter λ, and message m ∈ {0, 1}n:

Pr
[
m = DSDenE.DenDecsk∗(DSDenE.DenEncsk∗(m))

∣
∣ sk∗ ← DSDenE.DenGen(1λ)

]

= Pr

[
(m, k) = FE.Decmsk(FE.Encmsk((m, k)))

∣
∣∣
∣
k ← {0, 1}λ+�

msk ← FE.Setup(1λ)

]

= 1

Thus, also the scheme (DSDenE.DenGen,DSDenE.DenEnc,DSDenE.DenDec)
is correct.

Encryption Security. The scheme (DSDenE.DenGen,DSDenE.DenEnc,
DSDenE.DenDec) is symmetrically secure (i.e., CPA secure). Namely, for every
PPT adversary A:

|Pr[CPAGame0A(λ) = 1] − Pr[CPAGame1A(λ) = 1]| ≤ negl(λ).

This holds because a PPT adversary A who breaks the CPA security also
breaks the single-key symmetric-key functional-encryption security game
FEGame (with no secret key, when y = ⊥).
The scheme (DSDenE.Gen,DSDenE.Enc,DSDenE.Dec) is also CPA secure. To
prove this we introduce two hybrid games HybGameb

A(λ) where, instead of
using the encryption oracle and the challenge ciphertext defined as follows:

O(·) := DSDenE.Enc(·) = FE.Encsky
(·, k)k←{0,1}λ+�

c ← DSDenE.Enc(mb) = FE.Encsky
(mb, k)k←{0,1}λ+�

The Edited Truth 333

we replace them with the following modification:

O(·) := FE.Encmsk(·, k)k←{0,1}λ+�

c ← FE.Encmsk(mb, k)k←{0,1}λ+�

Now we argue that CPAGame0 is indistinguishable from HybGame0 which
follows by the special encryption property of the FE scheme (Definition 3).
Furthermore HybGame0 is indistinguishable from HybGame1 by the single-key
symmetric-key functional-encryption security game FEGame (with no secret
key, when y = ⊥). Lastly HybGame1 is indistinguishable from CPAGame1 by
the special encryption property.

Deniability. We want to show that for any PPT adversary A:

|Pr[DenGame0A(λ) = 1] − Pr[DenGame1A(λ) = 1]| ≤ negl(λ).

This follows since an adversary A who wins the “deniability game” DenGame
with message m and edit e also wins in the single-key symmetric-key
functional-encryption security game FEGame with random y ← {0, 1}λ+�,
and messages x0 = (Edit(m, e), k) and x1 = (m, k′) where k ← {0, 1}λ+� and
k′ = y ⊕ (0λ+�, e). Formally, we prove it by a sequence of hybrids where we
change the distribution of the encryption oracle O(·) and the challenge (c, sk).
Hybrid 0: we starts with the deniability game with b = 0, DenGame0A(λ).

The encryption oracle and the challenge are:

O(·) := DSDenE.Encsk(·) = FE.Encsky (·, k)k←{0,1}λ+�

(c, sk) := (DSDenE.Encsk(Edit(m, e)), sk) = (FE.Encsky (Edit(m, e), k′), sky)

and (y, k′) ← {0, 1}λ+� × {0, 1}λ+�.
Hybrid 1: we move to a hybrid game HybGameA(λ) (a modification of

DenGame0A(λ)), in which we encrypt using FE.Encmsk (instead of using
FE.Encsky

). The encryption oracle and the challenge are:

O(·) := FE.Encmsk(·, k)k←{0,1}λ+�

(c, sk) := (FE.Encmsk(Edit(m, e), k′), sky)

where (y, k′) ← {0, 1}λ+� × {0, 1}λ+�. By the special encryption property
(Definition 3) of the underline functional encryption scheme,

DenGame0A(λ)
c≈ HybGameA(λ)

Hybrid 2: we move to the deniability game with b = 1, DenGame1A(λ). The
encryption oracle and the challenge are:

O(·) := DSDenE.Encsk(·)
= FE.Encmsk(·, k)k←{0,1}λ+�

(c, sk) := (DSDenE.Encmsk(m),DSDenE.Denymsk(c, e))
= (FE.Encmsk(m, k′), sky)

334 S. Goldwasser et al.

where k′ ← {0, 1}λ+� and y := k′ ⊕ (0λ, e). This is equivalent to
y ← {0, 1}λ+� and k′ := y ⊕ (0λ, e). By the security of the functional
encryption4.

HybGameA(λ)
c≈ DenGame1A(λ)

4.3 Efficiency

We note that the efficiency of our public-key and symmetric-key encryption
schemes with deniable edits are the same as the analogous constructions of
schemes with invisible edits, see Sect. 3.3.

4.4 Extensions

We now briefly and informally describe two extensions of our deniable schemes.

Bounded-Ciphertext Deniability. Our notion of deniable edits allows us to edit
the contents of a single targeted ciphertext c via an edit e by producing a legit-
imate looking secret key skc,e. We can also extend our scheme to allowing us
to edit the contents of some bounded number of ciphertexts c = (c1, . . . , ct)
via edits e = (e1, . . . , et) by producing a secret key skc,e. The construction
is essentially the same as before but we use an FE scheme for the function
F (x = (m, k),y = (y1, . . . , yt)) which checks whether there exists some yi such
that k ⊕ yi = (0λ||e) and if so outputs Edit(m, e) else outputs m. The key gen-
eration algorithm would output an FE secret key sky for a uniformly random
vector y. To deny a vector of ciphertexts c = (c1, . . . , ct) where each ci is an
FE encryption of xi = (mi, ki) we would create an FE secret key for the vector
y = (y1, . . . , yt) where yi = (0λ||ei) ⊕ ki. The cost of this construction is that
now the secret key size scales with � · t where � is the edit description size and t
is the number of ciphertexts.

We could also consider yet another variant where we want to edit the contents
of t ciphertexts c = (c1, . . . , ct) via a single edit e to be applied to all of them
by creating a secret key skc,e. In that case we could use an FE scheme for the
function F (x = (m, k), (y∗, y1, . . . , yt)) which checks if k ⊕ (yi||y∗) = (0λ||e) and
if so output Edit(m, e) else m. Otherwise the scheme would be analogous to the
previous one. The allows us to get a construction where the secret key size scales
with � + t instead of � · t.

Later, when we consider invisible edits, we will be able to edit the contents
of an unbounded number of ciphertexts via an edit e by generating a secret key
ske of some fixed size. However, in that case we will also need to be able to
also plausibly lie about the public key by giving out a modified public key pke

instead of pk. This is in contrast to bounded-ciphertext deniability discussed
above where the secret key skc,e looks like a legitimate secret key for the original
public key pk.
4 FE game with a random y and messages m0 = (m, y⊕ (0λ, e)), m1 = (Edit(m, e), k′)

for a random k′.

The Edited Truth 335

Denying Randomness of Key Generation. For simplicity, we previously assumed
that the coercing adversary can only ask the user for her secret key but not for
the randomness of the key generation algorithm which the user can plausibly
delete. However, it would be relatively easy to also allow the user to deniably
generate fake randomness for the key generation algorithm as well. We briefly
sketch this extension.

Let’s start by considering this extension in the public-key setting. The way we
defined the syntax of deniable public-key encryption, we had a single key genera-
tion algorithm that outputs (pk, sk, dk) ← Gen(1λ). In order for the above exten-
sion to be possible we must now consider two algorithms (moving us closer to the
two-scheme rather than two-key setting), a default one that outputs (pk, sk) ←
Gen(1λ) and a deniable one that outputs (pk, sk, dk) ← DenGen(1λ). Given dk, c, e
where c = Encpk(m), the denying procedure should now output r ← Denydk(c, e)
such that if we run skc,e = Gen(1λ; r) then Decskc,e

(c) = Edit(m, e). Security is
defined analogously except that the adversary gets the key generation random-
ness r rather than sk.

It turns out that our construction (Construction 6) already essentially
achieves this if we start with a simulatable Functional Encryption scheme
where it’s possible to obliviously generate (mpk, sky) = OGen(1λ, y; r) with-
out knowing msk so that even given the randomness r one cannot distinguish
encryptions of x0, x1 if F (x0, y) = F (x1, y). Moreover given mpk,msk and sky

it’s possible to come up with legitimate looking random coins r such that
(mpk, sky) ← OGen(1λ; r). Using this type of FE we can modify the DEdit.Gen
algorithm to run FE.OGen. Using dk = msk we’d then be able to sample legiti-
mate looking random coins for OGen.

It furthermore turns out that the construction of FE from PKE already gives
us the simulatable FE property if we start with a simulatable PKE [DN00].

The same idea also works in the symmetric key setting analogously, using
only one-way functions.

Acknowledgment. Thanks to Omer Paneth for interesting discussions on the topics
of this work.

Shafi Goldwasser was supported by NSF MACS - CNS-1413920, DARPA IBM -
W911NF-15-C-0236, SIMONS Investigator award Agreement Dated 6-5-12. Saleet Klein
was supported by an Akamai Presidential Fellowship and NSF MACS - CNS-1413920,
DARPA IBM - W911NF-15-C-0236, SIMONS Investigator award Agreement Dated 6-5-
12. Daniel Wichs was supported by NSF grants CNS-1314722, CNS-1413964.

A Standard Cryptographic Definitions

A.1 Encryption Scheme Definitions

Definition 12 (Public-Key Encryption). A public-key encryption consists
of PPT algorithms (Gen,Enc,Dec) with the following syntax:

336 S. Goldwasser et al.

– (pk, sk) ← Gen(1λ).
– c ← Encpk(m) outputs an encryption of m.
– m ← Decsk(c) outputs a message m.

The scheme should satisfy the following properties:

Correctness: For every security parameter λ and message m,

Pr[Decsk(Encpk(m)) = m|(pk, sk) ← Gen(1λ)] = 1 − negl(λ)

CPA Security. We define the “CPA game” CPAGameb
A(λ) between an adversary

A and a challenger with a challenge bit b{0, 1} as follows:
– Sample (pk, sk) ← Gen(1λ) and give pk to A.
– The adversary A chooses two messages m0,m1 ∈ {0, 1}n

– The adversary A gets a challenge c ← Encsk(mb), and eventually outputs
a bit b′ which we define as the output of the game.

We require that for all PPT adversary A we have |Pr[CPAGame0A(λ) = 1] −
Pr[CPAGame1A(λ) = 1]| ≤ negl(λ).

Definition 13 (Symmetric-Key Encryption). A symmetric-key encryption
consists of PPT algorithms (Gen,Enc,Dec) with the following syntax:

– sk ← Gen(1λ).
– c ← Encsk(m) outputs an encryption of m.
– m ← Decsk(c) outputs a message m.

The scheme should satisfy the following properties:

Correctness: For every security parameter λ and message m,

Pr[Decsk(Encsk(m)) = m|sk ← Gen(1λ)] = 1 − negl(λ)

CPA Security. We define the “CPA game” CPAGameb
A(λ) between an adversary

A and a challenger with a challenge bit b{0, 1} as follows:
– Sample sk ← Gen(1λ).
– The adversary AEncsk(·) gets the encryption oracle. Eventually, it chooses

two messages m0,m1 ∈ {0, 1}n

– The adversary A gets a challenge c ← Encsk(mb) and further access to
the encryption oracle AEncsk(·)(c), and eventually output a bit b′ which we
define as the output of the game.

We require that for all PPT adversary A we have |Pr[CPAGame0A(λ) = 1] −
Pr[CPAGame1A(λ) = 1]| ≤ negl(λ).

A.2 Garbled Circuits

Definition 14 (Garbling). A garbling scheme for a class of circuits C = {C :
{0, 1}n1(λ) → {0, 1}n2(λ)} consists of PPT algorithms (Setup,Garble,Encode,
Eval) with the following syntax:

The Edited Truth 337

– K ← Setup(1λ) generates K = {ki,b : i ∈ [n1(λ)], b ∈ {0, 1}}
– Ĉ ← Garble(C,K) outputs a garbled circuit of the circuit C.
– Kx ← Encode(x,K) outputs an encoding of the input x ∈ {0, 1}n1(λ), Kx =

{ki,x[i]}i∈[n1(λ)] where x[i] is the i-th bit of x.
– C(x) = Eval(Ĉ,Kx) outputs C(x) ∈ {0, 1}n2(λ).

The scheme should satisfy the following properties:

Correctness. For every security parameter λ, circuit C : {0, 1}n1(λ) →
{0, 1}n2(λ), and input x ∈ {0, 1}n1(λ):

Pr

⎡
⎣C(x) = Eval(Ĉ,Kx)

∣∣∣∣∣∣
K ← Setup(1λ)
Ĉ ← Garble(C,K)
Kx ← Encode(x,K)

⎤
⎦ = 1.

Security. For every security parameter λ, circuit C : {0, 1}n1(λ) → {0, 1}n2(λ),
and pair of inputs x0, x1 ∈ {0, 1}n1(λ) such that C(x0) = C(x1):{

Ĉ,Kx0 |Kx0 ← Encode(x0,K)
}

c≈
{

Ĉ,Kx1 |Kx1 ← Encode(x1,K)
}

where Ĉ ← Garble(C,K) and K ← Setup(1λ).

B Constructions of Single-Key Functional-Encryption
Schemes

Notation: Garbling Two-Input Circuits. It will be useful for us to define
some notation for garbling circuits C(x, y) that take two inputs. Let GC =
(Setup,Garble,Encode,Eval) be a garbling scheme for a class of circuits C =
{C : {0, 1}n1(λ) × {0, 1}n2(λ) → {0, 1}n3(λ)}, and let K ← GC.Setup(1λ). Recall
K = {ki,b : i ∈ [n1 + n2], b ∈ {0, 1}}.

We denote by k1
i,b = ki,b for every i ∈ [n1(λ)], by k2

i,b = k(n1(λ)+i),b for every
i ∈ [n2(λ)], by K1 the sets of keys for the first input, and by K2 the sets of keys
for the second input i.e.,

K1 = {k1
i,b : i ∈ [n1(λ)], b ∈ {0, 1}} = {ki,b : i ∈ [n1(λ)], b ∈ {0, 1}}

K2 = {k2
i,b : i ∈ [n2(λ)], b ∈ {0, 1}} = {k(n1(λ)+i),b : i ∈ [n2(λ)], b ∈ {0, 1}}.

Moreover, if (K1,K2) ← GC.Setup(1λ), we also define notation for encoding part
of the input K1

x ← GC.Encode(x,K1) and similarly K2
y ← GC.Encode(y,K2).

B.1 Single-Key Public-Key Functional-Encryption Construction

Construction 10 (Single-Key PK FE). We construct FE = (Setup,Gen,
Enc,Dec) a single-key public-key functional-encryption for a function F :
{0, 1}n1(λ) × {0, 1}n2(λ) → {0, 1}n3(λ) that has a special decryption algo-
rithm using PKE = (Gen,Enc,Dec) a public-key encryption scheme and GC =

338 S. Goldwasser et al.

(Setup,Garble,Encode,Eval) a garbling scheme for a class of circuits C = {C :
{0, 1}n1(λ)+n2(λ) → {0, 1}n3(λ)}.

We denote by n1 = n1(λ), n2 = n2(λ) and n3 = n3(λ), and abuse notation
and denote by F the circuit that compute the function F .

– FE.Setup(1λ):
• For i ∈ [n2], b ∈ {0, 1}: select (ski,b, pki,b) ← PKE.Gen(1λ).
• Output (mpk := {pki,b}i∈[n2],b∈{0,1},msk := {ski,b}i∈[n2],b∈{0,1}).

– FE.Genmsk(y):
• Output sky := {ski,y[i] : i ∈ [n2]}.

– FE.Encmpk(x):
• (K1,K2) ← GC.Setup(1λ).
• F̂ ← GC.Garble(F, (K1,K2)).
• K1

x ← GC.Encode(x,K1).
• For i ∈ [n2], b ∈ {0, 1}: select ci,b ← PKE.Encpki,b

(k2
i,b).

• Output c = (F̂ ,K1
x, {ci,b : i ∈ [n2], b ∈ {0, 1}}).

– FE.Decsky (c) :
• For every i ∈ [n2] : k2

i,y[i] = PKE.Decski,y[i](ci,y[i]).
• K2

y = {k2
i,y[i] : i ∈ [n2]}.

• Output F (x, y) = GC.Eval(F̂ , (K1
x,K2

y)).

The correctness and security (as in Definition 1) of Construction 10 follows
directly from the security of the garbling and public-key encryption schemes.5

Additionally, a simple modification for the construction above results a scheme
with a special decryption algorithm. We change the encryption algorithm to
garble the circuit Fspecial (instead of F) where Fspecial : {0, 1}n1 × {0, 1}n2+1 →
{0, 1}max{n1,n3},

Fspecial(x, (y, b)) :=

{
x If (y, b) = (0n2 , 0)
F (x, y) otherwise

To make the output length the same in both cases, pad with zeros.

Using an IBE scheme. We change the construction above to work with an iden-
tity based encryption scheme IBE = (Setup,Gen,Enc,Dec) to reduce the master
public-key size mpk. In the resulting scheme the master public-key is of the same
size as the master public-key in the IBE scheme.

Instead of generating for every (i, b) ∈ [n2] × {0, 1} a pair of public-
key and secret-key, the setup algorithm generates a pair of master public-key
and master secret-key for an IBE scheme, (mpk,msk) ← IBE.Setup(1λ). In
addition, the key generating algorithm generates n2 private-keys of the IBE
scheme, namely for each identity (i, y[i])i∈[n2] generates an IBE private-key,
ski,y[i] ← IBE.Genmsk(id = (i, y[i])). Further, the FE encryption algorithm now
samples ci,b ← IBE.Encmpk(id = (i, b), k2

i,b) using the IBE encryption algorithm.

5 If we assume perfect correctness of the underline GC and PKE, also the constructed
FE has a perfect correctness (as in Definition 1).

The Edited Truth 339

B.2 Single-Key Symmetric-Key Functional-Encryption
Construction

Construction 11 (Single-Key SK FE). We construct FE = (Setup,Gen,
Enc,Dec) a single-key symmetric-key functional-encryption for a function F :
{0, 1}n1(λ) × {0, 1}n2(λ) → {0, 1}n3(λ) that has a special encryption and decryp-
tion algorithm using Sym = (Gen,Enc,Dec) a symmetric-key encryption scheme
with pseudorandom ciphertexts and GC = (Setup,Garble,Encode,Eval) a garbling
scheme for a class of circuits C = {C : {0, 1}n1(λ)+n2(λ) → {0, 1}n3(λ)}.

We denote by n1 = n1(λ), n2 = n2(λ) and n3 = n3(λ), and abuse notation
and denote by F the circuit that compute the function F .

– FE.Setup(1λ):
• For i ∈ [n2], b ∈ {0, 1}: select (ski,b) ← Sym.Gen(1λ).
• Output (msk := {ski,b : i ∈ [n2], b ∈ {0, 1}}.)

– FE.Genmsk(y):
• Output sky := {ski,y[i] : i ∈ [n2]}.

– FE.Encmsk(x):
• (K1,K2) ← GC.Setup(1λ).
• F̂ ← GC.Garble(F, (K1,K2)).
• K1

x ← GC.Encode(x,K1).
• For i ∈ [n2], b ∈ {0, 1}: select ci,b ← PKE.Encski,b

(k2
i,b).

• Output c = (F̂ ,K1
x, {ci,b : i ∈ [n2], b ∈ {0, 1}}).

– FE.Decsky
(c) :

• For every i ∈ [n2] : k2
i,y[i] = PKE.Decski,y[i](ci,y[i]).

• K2
y = {k2

i,y[i] : i ∈ [n2]}.

• Output F (x, y) = GC.Eval(F̂ , (K1
x,K2

y)).

The correctness and security (as in Definition 2) of Construction 11 follows
directly from the security of the garbling and symmetric-key encryption schemes
(see footnote 5). If ciphertexts of the underline symmetric-key encryption are
computationally indistinguishable from random strings, then we also get a
symmetric-key functional encryption with a special encryption algorithm. In
particular, to encrypt with sky, the encryption algorithm outputs uniformly ran-
dom strings in place of ci,1−y[i] ← Sym.Encski,(1−y[i]) [k

2
i,(1−y[i])] for every i ∈ [n2].

Additionally, we cam use the same trick we did in the public-key case to get the
special decryption property.

References

[BNNO11] Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper
bounds for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-25385-0 7

http://dx.doi.org/10.1007/978-3-642-25385-0_7

340 S. Goldwasser et al.

[CDMW09] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-
committing encryption with applications to adaptively secure protocols.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 17

[CDNO97] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer,
Heidelberg (1997). doi:10.1007/BFb0052229

[CFGN96] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-
party computation. In: 28th Annual ACM Symposium on Theory of Com-
puting, Philadephia, PA, USA, 22–24 May 1996, pp. 639–648. ACM Press
(1996)

[CPV16] Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Equivocating
yao: Constant-round adaptively secure multiparty computation in the
plain model. Cryptology ePrint Archive, Report 2016/1190 (2016). http://
eprint.iacr.org/2016/1190

[DIO16] De Caro, A., Iovino, V., O’Neill, A.: Deniable functional encryption. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016.
LNCS, vol. 9614, pp. 196–222. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49384-7 8

[DN00] Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes
based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi:10.
1007/3-540-44598-6 27

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32009-5 11

[GWZ09] Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryp-
tion and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03356-8 30

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53015-3 6

[Nie02] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic
proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 8

[OPW11] O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 30

[SS10] Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption
with public keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.)
ACM CCS 2010: 17th Conference on Computer and Communications
Security, Chicago, Illinois, USA, 4–8 October 2010, pages 463–472. ACM
Press (2010)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM
Symposium on Theory of Computing, 31 May–3 June 2014, pp. 475–484.
ACM Press, New York (2014)

http://dx.doi.org/10.1007/978-3-642-10366-7_17
http://dx.doi.org/10.1007/BFb0052229
http://eprint.iacr.org/2016/1190
http://eprint.iacr.org/2016/1190
http://dx.doi.org/10.1007/978-3-662-49384-7_8
http://dx.doi.org/10.1007/978-3-662-49384-7_8
http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/978-3-662-53015-3_6
http://dx.doi.org/10.1007/3-540-45708-9_8
http://dx.doi.org/10.1007/3-540-45708-9_8
http://dx.doi.org/10.1007/978-3-642-22792-9_30

A Modular Analysis of the Fujisaki-Okamoto
Transformation

Dennis Hofheinz1, Kathrin Hövelmanns2(B), and Eike Kiltz2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
Dennis.Hofheinz@kit.edu

2 Ruhr Universität Bochum, Bochum, Germany
{Kathrin.Hoevelmanns,Eike.Kiltz}@rub.de

Abstract. The Fujisaki-Okamoto (FO) transformation (CRYPTO 1999
and Journal of Cryptology 2013) turns any weakly secure public-key
encryption scheme into a strongly (i.e., IND-CCA) secure one in the ran-
dom oracle model. Unfortunately, the FO analysis suffers from several
drawbacks, such as a non-tight security reduction, and the need for a
perfectly correct scheme. While several alternatives to the FO transfor-
mation have been proposed, they have stronger requirements, or do not
obtain all desired properties.

In this work, we provide a fine-grained and modular toolkit of transfor-
mations for turning weakly secure into strongly secure public-key encryp-
tion schemes. All of our transformations are robust against schemes with
correctness errors, and their combination leads to several tradeoffs among
tightness of the reduction, efficiency, and the required security level of the
used encryption scheme. For instance, one variant of the FO transforma-
tion constructs an IND-CCA secure scheme from an IND-CPA secure one
with a tight reduction and very small efficiency overhead. Another vari-
ant assumes only an OW-CPA secure scheme, but leads to an IND-CCA
secure scheme with larger ciphertexts.

We note that we also analyze our transformations in the quantum ran-
dom oracle model, which yields security guarantees in a post-quantum
setting.

Keywords: Public-Key Encryption · Fujisaki-Okamoto transforma-
tion · Tight reductions · Quantum Random Oracle Model

1 Introduction

The notion of INDistinguishability against Chosen-Ciphertext Attacks
(IND-CCA) [34] is now widely accepted as the standard security notion for asym-
metric encryption schemes. Intuitively, IND-CCA security requires that no effi-
cient adversary can recognize which of two messages is encrypted in a given
ciphertext, even if the two candidate messages are chosen by the adversary him-
self. In contrast to the similar but weaker notion of INDistinguishability against
Chosen-Plaintext Attacks (IND-CPA), an IND-CCA adversary is given access to
a decryption oracle throughout the attack.
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 341–371, 2017.
https://doi.org/10.1007/978-3-319-70500-2_12

342 D. Hofheinz et al.

Generic Transformations achieving IND-CCA Security. While IND-CCA
security is in many applications the desired notion of security, it is usually much
more difficult to prove than IND-CPA security. Thus, several transformations
have been suggested that turn a public-key encryption (PKE) scheme with
weaker security properties into an IND-CCA one generically. For instance, in
a seminal paper, Fujisaki and Okamoto [23,24] proposed a generic transforma-
tion (FO transformation) combining any One-Way (OW-CPA) secure asymmet-
ric encryption scheme with any one-time secure symmetric encryption scheme
into a Hybrid encryption scheme that is (IND-CCA) secure in the random oracle
model [7]. Subsequently, Okamoto and Pointcheval [32] and Coron et al. [18]
proposed two more generic transformations (called REACT and GEM) that
are considerably simpler but require the underlying asymmetric scheme to be
One-Way against Plaintext Checking Attacks (OW-PCA). OW-PCA security is a
non-standard security notion that provides the adversary with a plaintext check-
ing oracle Pco(c,m) that returns 1 iff decryption of ciphertext c yields message
m. A similar transformation was also implicitly used in the “Hashed ElGamal”
encryption scheme by Abdalla et al. [1].

KEMs. In his “A Designer’s Guide to KEMs” paper, Dent [20] provides “more
modern” versions of the FO [20, Table 5] and the REACT/GEM [20, Table 2]
transformations that result in IND-CCA secure key-encapsulation mechanisms
(KEMs). Recall that any IND-CCA secure KEM can be combined with any
(one-time) chosen-ciphertext secure symmetric encryption scheme to obtain a
IND-CCA secure PKE scheme [19]. Due to their efficiency and versatility, in prac-
tice one often works with such hybrid encryption schemes derived from a KEM.
For that reason the primary goal of our paper will be constructing IND-CCA
secure KEMs.

We remark that all previous variants of the FO transformation require the
underlying PKE scheme to be γ-spread [23], which essentially means that cipher-
texts (generated by the probabilistic encryption algorithm) have sufficiently large
entropy.

Security against Quantum Adversaries. Recently, the above mentioned
generic transformations have gathered renewed interest in the quest of finding an
IND-CCA secure asymmetric encryption scheme that is secure against quantum
adversaries, i.e., adversaries equipped with a quantum computer. In particular,
the NIST announced a competition with the goal to standardize new asymmet-
ric encryption systems [31] with security against quantum adversaries. Natural
candidates base their IND-CPA security on the hardness of certain problems over
lattices and codes, which are generally believed to resists quantum adversaries.
Furthermore, quantum computers may execute all “offline primitives” such as
hash functions on arbitrary superpositions, which motivated the introduction of
the quantum (accessible) random oracle model [11]. Targhi and Unruh recently
proved a variant of the FO transformation secure in the quantum random oracle
model [38]. Helping to find IND-CCA secure KEM with provable (post-quantum)
security will thus be an important goal in this paper.

A Modular Analysis of the Fujisaki-Okamoto Transformation 343

Discussion. Despite their versatility, the above FO and REACT/GEM trans-
formations have a couple of small but important disadvantages.

– Tightness. The security reduction of the FO transformation [23,24] in the
random oracle model is not tight, i.e., it loses a factor of qG, the number
of random oracle queries. A non-tight security proof requires to adapt the
system parameters accordingly, which results in considerably less efficient
schemes. The REACT/GEM transformations have a tight security reduction,
but they require the underlying encryption scheme to be OW-PCA secure.
As observed by Peikert [33], due to their decision/search equivalence, many
natural lattice-based encryption scheme are not OW-PCA secure and it is not
clear how to modify them to be so. In fact, the main technical difficulty is to
build an IND-CPA or OW-PCA secure encryption scheme from an OW-CPA
secure one, with a tight security reduction.

– Correctness error. The FO, as well as the REACT/GEM transformation
require the underlying asymmetric encryption scheme to be perfectly correct,
i.e., not having a decryption error. In general, one cannot exclude the fact that
even a (negligibly) small decryption error could be exploited by a concrete
IND-CCA attack against FO-like transformed schemes.
Dealing with imperfectly correct schemes is of great importance since many
(but not all) practical lattice-based encryption schemes have a small correct-
ness error, see, e.g., DXL [21], Peikert [33], BCNS [14], New Hope [3], Frodo
[13], Lizard [17], and Kyber [12].1

These deficiencies were of little or no concern when the FO and
REACT/GEM transformations were originally devised. Due to the emergence
of large-scale scenarios (which benefit heavily from tight security reductions)
and the increased popularity of lattice-based schemes with correctness defects,
however, we view these deficiencies as acute problems.

1.1 Our Contributions

Our main contribution is a modular treatment of FO-like transformations. That
is, we provide fine-grained transformations that can be used to turn an OW-CPA
secure PKE scheme into an IND-CCA secure one in several steps. For instance,
we provide separate OW-CPA → OW-PCA and OW-PCA → IND-CCA transfor-
mations that, taken together, yield the original FO transformation. However, we
also provide variants of these individual transformations that achieve different
security goals and tightness properties. All of our individual transformations are

1 Lattice-based encryption schemes can be made perfectly correctness by putting a
limit on the noise and setting the modulus of the LWE instance large enough, see
e.g. [9,27]. But increasing the size of the modulus makes the LWE problem easier
to solve in practice, and thus the dimension of the problem needs to be increased
in order to obtain the same security levels. Larger dimension and modulus increase
the public-key and ciphertext length.

344 D. Hofheinz et al.

robust against PKE schemes with correctness errors (in the sense that the cor-
rectness error of the resulting schemes can be bounded by the correctness error
of the original scheme).

The benefit of our modular treatment is not only a conceptual simplification,
but also a larger variety of possible combined transformations (with different
requirements and properties). For instance, combining two results about our
transformations T and U�⊥, we can show that the original FO transformation
yields IND-CCA security from IND-CPA security with a tight security reduction.
Combining S� with T and U�⊥, on the other hand, yields tight IND-CCA security
from the weaker notion of OW-CPA security, at the expense of a larger ciphertext.
(See Fig. 1 for an overview.)

Our Transformations in Detail. In the following, we give a more detailed
overview over our transformations. We remark that all our transformations
require a PKE scheme (and not a KEM). We view it as an interesting open prob-
lem to construct similar transformations that only assume (and yield) KEMs,
since such transformations have the potential of additional efficiency gains.

Fig. 1. Our modular transformations. Top: solid arrows indicate tight reductions,
dashed arrows indicate non-tight reductions. Bottom: properties of the transforma-
tions. The tightness row only refers to tightness in the standard random oracle model;
all our reductions in the quantum random oracle model are non-tight.

T: from OW-CPA to OW-PCA Security (“Derandomization” + “re-
encryption”). T is the Encrypt-with-Hash construction from [6]: Starting from

A Modular Analysis of the Fujisaki-Okamoto Transformation 345

an encryption scheme PKE and a hash function G, we build a deterministic
encryption scheme PKE1 = T[PKE,G] by defining

Enc1(pk ,m) := Enc(pk ,m;G(m)),

where G(m) is used as the random coins for Enc. Note that Enc1 is deterministic.
Dec1(sk , c) first decrypts c into m′ and rejects if Enc(pk ,m′;G(m′) �= c (“re-
encryption”). Modeling G as a random oracle, OW-PCA security of PKE1 non-
tightly reduces to OW-CPA security of PKE and tightly reduces to IND-CPA
security of PKE. If PKE furthermore is γ-spread (for sufficiently large γ), then
PKE1 is even OW-PCVA secure. OW-PCVA security2 is PCA security, where the
adversary is additionally given access to a validity oracle Cvo(c) that checks c’s
validity (in the sense that it does not decrypt to ⊥, see also Definition 1).
U�⊥ (U⊥): from OW-PCA (OW-PCVA) to IND-CCA Security (“Hashing”).
Starting from an encryption scheme PKE1 and a hash function H, we build a
key encapsulation mechanism KEM�⊥ = U�⊥[PKE1,H] with “implicit rejection”
by defining

Encaps(pk) := (c ← Enc1(pk ,m),K := H(c,m)), (1)

where m is picked at random from the message space.

Decaps �⊥(sk , c) =

{
H(c,m) m �= ⊥
H(c, s) m = ⊥ , (2)

where m := Dec(sk , c) and s is a random seed which is contained in sk . Modeling
H as a random oracle, IND-CCA security of KEM�⊥ tightly reduces to OW-PCA
security of PKE1.

We also define KEM⊥ = U⊥[PKE1,H] with “explicit rejection” which differs
from KEM �⊥ only in decapsulation:

Decaps⊥(sk , c) =

{
H(c,m) m �= ⊥
⊥ m = ⊥ , (3)

where m := Dec(sk , c). Modeling H as a random oracle, IND-CCA of KEM⊥ secu-
rity tightly reduces to OW-PCVA security of PKE1. We remark that transforma-
tion U⊥ is essentially [20, Table 2], i.e., a KEM variant of the REACT/GEM
transformations.
U�⊥
m (U⊥

m): from deterministic OW-CPA (OW-VA) to IND-CCA Security
(“Hashing”). We consider two more variants of U�⊥ and U⊥, namely U�⊥

m and
U⊥
m. Transformation U�⊥

m (U⊥
m) is a variant of U�⊥ (U⊥), where K = H(c,m)

from Eqs. (1)−(3) is replaced by K = H(m). We prove that IND-CCA security
of KEM �⊥

m := U�⊥
m[PKE1,H] (KEM⊥

m := U⊥
m[PKE1,H]) in the random oracle model

tightly reduces to IND-CPA (IND-VA3) security of PKE1, if encryption of PKE1

is deterministic.
2 OW-PCVA security is called OW-CPA+ security with access to a Pco oracle in [20].
3 OW-VA security is OW-CPA security, where the adversary is given access to a validity

oracle Cvo(c) that checks c’s validity (cf. Definition 1).

346 D. Hofheinz et al.

QU⊥
m: from OW-PCA to IND-CCA Security in the Quantum ROM.

We first prove that transformation T also works in the quantum random oracle
model. Next, to go from OW-PCA to IND-CCA in the QROM, we build a key
encapsulation mechanism QKEM⊥

m = QU⊥
m[PKE1,H,H′] with explicit rejection

by defining

QEncapsm(pk) := ((c ← Enc1(pk ,m), d := H′(m)),K := H(m)),

where m is picked at random from the message space.

QDecaps⊥m(sk , c, d) =

{
H(m′) m′ �= ⊥
⊥ m′ = ⊥ ∨ H′(m′) �= d

,

where m′ := Dec(sk , c). QU⊥
m differs from U�⊥ only in the additional hash value

d = H′(m) from the ciphertext and H′ is a random oracle with matching domain
and image. This trick was introduced in [40] and used in [38] in the context of the
FO transformation. Modeling H and H′ as a quantum random oracles, IND-CCA
security of KEM reduces to OW-PCA security of PKE1.

The Resulting FO Transformations. Our final transformations FO �⊥ (“FO
with implicit rejection”), FO⊥ (“FO with explicit rejection”), FO �⊥

m (“FO with
implicit rejection, K = H(m)”), FO⊥

m (“FO with explicit rejection, K = H(m)”),
and QFO⊥

m (“Quantum FO with explicit rejection, K = H(m)”) are defined in
the following table.

Transformation QROM?
ROM

Tightness?
Requirements

FO�⊥[PKE,G,H] := U �⊥[T[PKE,G],H] — � none

FO⊥[PKE,G,H] := U⊥[T[PKE,G],H] — � γ-spread

FO�⊥
m[PKE,G,H] := U �⊥

m[T[PKE,G],H] — � none

FO⊥
m[PKE,G,H] := U⊥

m[T[PKE,G],H] — � γ-spread

QFO⊥
m[PKE,G,H,H′] := QU⊥

m[T[PKE,G],H,H′] � � none

As corollaries of our modular transformation we obtain that IND-CCA secu-
rity of FO �⊥[PKE,G,H], FO⊥[PKE,G,H], FO �⊥

m[PKE,G,H], and FO⊥
m[PKE,G,H]

non-tightly reduces to the OW-CPA security of PKE, and tightly reduces to the
IND-CPA security of PKE, in the random oracle model. We remark that trans-
formation FO⊥

m essentially recovers a KEM variant [20, Table 5] of the original
FO transformation [23]. Whereas the explicit rejection variants FO⊥ and FO⊥

m

require PKE to be γ-spread, there is no such requirement on FO �⊥ and FO �⊥
m. Fur-

ther, IND-CCA security of QFO⊥
m[PKE,G,H,H′] reduces to the OW-CPA security

of PKE, in the quantum random oracle model. Our transformation QFO⊥
m essen-

tially recovers a KEM variant of the modified FO transformation by Targhi and
Unruh [38]. As it is common in the quantum random oracle model, all our reduc-
tions are (highly) non-tight. We leave it as an open problem to derive a tighter
security reduction of T, for example to IND-CPA security of PKE.

A Modular Analysis of the Fujisaki-Okamoto Transformation 347

Correctness Error. We stress that all our security reductions also take non-
zero correctness error into account. Finding the “right” definition of correctness
that is achievable (say, by currently proposed lattice-based encryption schemes)
and at the same time sufficient to prove security turned out to be a bit subtle.
This is the reason why our definition of correctness (see Sect. 2.1) derives from
the ones previously given in the literature (e.g. [10,22]). The concrete bounds
of FO �⊥, FO⊥, FO �⊥

m, and FO⊥
m give guidance on the required correctness error of

the underlying PKE scheme. Concretely, for “κ bits security”, PKE requires a
correctness error of 2−κ.

Example Instantiations. In the context of ElGamal encryption one can apply
{FO �⊥,FO⊥,FO �⊥

m,FO⊥
m} to obtain the schemes of [4,25,28] whose IND-CCA secu-

rity non-tightly reduces to the CDH assumption, and tightly reduces to the
DDH assumption. Alternatively, one can directly use U�⊥/U⊥ to obtain the more
efficient schemes of [1,18,32,36] whose IND-CCA security tightly reduces to the
gap-DH (a.k.a. strong CDH) assumption. In the context of deterministic encryp-
tion schemes such as RSA, Paillier, etc., one can apply U�⊥/U⊥ to obtain schemes
mentioned in [20,36] whose IND-CCA security tightly reduces to one-way secu-
rity. Finally, in the context of lattices-based encryption (e.g., [30,35]), one can
apply FO �⊥, FO⊥, FO �⊥

m, FO⊥
m, and QFO⊥

m to achieve IND-CCA security.

Transformation S�: From OW-CPA to IND-CPA, Tightly. Note that T
requires PKE to be IND-CPA secure to achieve a tight reduction. In case one
has to rely on OW-CPA security, transformation S� offers the following tradeoff
between efficiency and tightness. It transforms an OW-CPA secure PKE into
an IND-CPA secure PKE�, where � is a parameter. The ciphertext consists of �
independent PKE ciphertexts:

Enc�(pk ,m) := (Enc(pk , x1), . . . ,Enc(pk , x�),m ⊕ G(x1, . . . , x�)).

The reduction (to the OW-CPA security of PKE) loses a factor of q
1/�
G , where qG

is the number of G-queries an adversary makes.
Observe that the only way to gather information about m is to explicitly

query G(x1, . . . , xn), which requires to find all xi. The reduction can use this
observation to embed an OW-CPA challenge as one Enc(pk , xi∗) and hope to learn
xi∗ from the G-queries of a successful IND-CPA adversary. In this, the reduction
will know all xi except xi∗ . The difficulty in this reduction is to identify the
“right” G-query (that reveals xi∗) in all of the adversary’s G-queries. Intuitively,
the more instances we have, the easier it is for the reduction to spot the G-query
(x1, . . . , x�) (by comparing the xi for i �= i∗), and the less guessing is necessary.
Hence, we get a tradeoff between the number of instances � (and thus the size
of the ciphertext) and the loss of the reduction.

1.2 Related Work

As already pointed out, FO⊥
m = U⊥

m ◦ T is essentially a KEM variant of the
Fujisaki-Okamoto transform from [20, Table 5]. Further, U⊥ is a KEM variant

348 D. Hofheinz et al.

[20] of the GEM/REACT transform [1,18,32]. Our modular view suggest that
the FO transform implicitly contains the GEM/REACT transform, at least the
proof technique. With this more general view, the FO transform and its vari-
ants remains the only known transformation from CPA to CCA security. It is an
interesting open problem to come up with alternative transformations that get
rid of derandomization or that dispense with re-encryption (which preserving
efficiency). Note that for the ElGamal encryption scheme, the “twinning” tech-
nique [15,16] does exactly this, but it uses non-generic zero-knowledge proofs
that are currently not available for all schemes (e.g., for lattice-based schemes).

In concurrent and independent work, [2] considers the IND-CCA security of
LIMA which in our notation can be described as FO⊥

m[RLWE,G,H]. Here RLWE
is a specific encryption scheme based on lattices associated to polynomial rings
from [29], which is IND-CPA secure under the Ring-LWE assumption. As the
main result, [2] provides a tight reduction of LIMA’s IND-CCA security to the
Ring-LWE assumption, in the random oracle model. The proof exploits “some
weakly homomorphic properties enjoyed by the underlying encryption scheme”
and therefore does not seem to be applicable to other schemes. The tight security
reduction from Ring-LWE is recovered as a special case of our general security
results on FO⊥

m. We note that the security reduction of [2] does not take the
(non-zero) correctness error of RLWE into account.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. For a set S, |S| denotes the cardinality of S. For
a finite set S, we denote the sampling of a uniform random element x by x $← S,
while we denote the sampling according to some distribution D by x ← D. For
a polynomial p(X) with integer coefficients, we denote by Roots(p) the (finite)
set of (complex) roots of p. By �B� we denote the bit that is 1 if the Boolean
Statement B is true, and otherwise 0.

Algorithms. We denote deterministic computation of an algorithm A on input
x by y := A(x). We denote algorithms with access to an oracle O by AO. Unless
stated otherwise, we assume all our algorithms to be probabilistic and denote
the computation by y ← A(x).

Random Oracles. We will at times model hash functions H : DH →
(H) as
random oracles. To keep record of the queries issued to H, we will use a hash list
LH that contains all tuples (x,H(x)) of arguments x ∈ DH that H was queried
on and the respective answers H(x). We make the convention that H(x) = ⊥ for
all x �∈ DH.

Games. Following [8,37], we use code-based games. We implicitly assume
boolean flags to be initialized to false, numerical types to 0, sets to ∅, and strings
to the empty string ε. We make the convention that a procedure terminates once
it has returned an output.

A Modular Analysis of the Fujisaki-Okamoto Transformation 349

2.1 Public-Key Encryption

Syntax. A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of
three algorithms and a finite message space M (which we assume to be efficiently
recognizable). The key generation algorithm Gen outputs a key pair (pk , sk),
where pk also defines a randomness space R = R(pk). The encryption algorithm
Enc, on input pk and a message m ∈ M, outputs an encryption c ← Enc(pk ,m)
of m under the public key pk . If necessary, we make the used randomness of
encryption explicit by writing c := Enc(pk ,m; r), where r $← R and R is the
randomness space. The decryption algorithm Dec, on input sk and a ciphertext
c, outputs either a message m = Dec(sk , c) ∈ M or a special symbol ⊥ /∈ M to
indicate that c is not a valid ciphertext.

Correctness. We call a public-key encryption scheme PKE δ-correct if

E[max
m∈M

Pr [Dec(sk , c) �= m | c ← Enc(pk ,m)]] ≤ δ,

where the expectation is taken over (pk , sk) ← Gen. Equivalently, δ-correctness
means that for all (possibly unbounded) adversaries A, Pr[CORA

PKE ⇒ 1] ≤ δ,
where the correctness game COR is defined as in Fig. 2 (left). That is, an
(unbounded) adversary obtains the public and the secret key and wins if it finds a
message inducingacorrectness error.Note thatourdefinitionof correctness slightly
derives fromprevious definitions (e.g. [10,22]) but it has been carefully crafted such
that it is sufficient to prove our main theorems (i.e., the security of the Fujisaki-
Okamoto transformation) and at the same time it is fulfilled by all recently pro-
posed lattice-based encryption schemes with correctness error.

If PKE = PKEG is defined relative to a random oracle G, then defining cor-
rectness is a bit more subtle as the correctness bound might depend on the
number of queries to G.4 We call a public-key encryption scheme PKE in the
random oracle model δ(qG)-correct if for all (possibly unbounded) adversaries A
making at most qG queries to random oracle G, Pr[COR-ROA

PKE ⇒ 1] ≤ δ(qG),
where the correctness game COR-RO is defined as in Fig. 2 (right). If PKE is
defined relative to two random oracles G, H, then the correctness error δ is a
function in qG and qH.

Note that our correctness definition in the standard model is a special case of
the one in the random oracle model, where the number of random oracle queries
is zero and hence δ(qG) is a constant.

Min-Entropy. [24] For (pk , sk) ← Gen and m ∈ M, we define the min-entropy
of Enc(pk ,m) by γ(pk,m) := − log maxc∈C Prr←R [c = Enc(pk ,m; r)]. We say
that PKE is γ-spread if, for every key pair (pk , sk) ← Gen and every message m ∈
M, γ(pk ,m) ≥ γ. In particular, this implies that for every possible ciphertext
c ∈ C, Prr←R [c = Enc(pk ,m; r)] ≤ 2−γ .

Security. We now define three security notions for public-key encryption:
One-Wayness under Chosen Plaintext Attacks (OW-CPA), One-Wayness under
4 For an example why the number of random oracle queries matters in the context of

correctness, we refer to Theorem 1.

350 D. Hofheinz et al.

Fig. 2. Correctness game COR for PKE in the standard model (left) and COR-RO for
PKE defined relative to a random oracle G (right).

Fig. 3. Games OW-ATK (ATK ∈ {CPA,PCA,VA,PCVA}) for PKE, where OATK is
defined in Definition 1. Pco(·, ·) is the Plaintext Checking Oracle and Cvo(·) is the
Ciphertext Validity Oracle.

Plaintext Checking Attacks (OW-PCA) and One-Wayness under Plaintext and
Validity Checking Attacks (OW-PCVA).

Definition 1 (OW-ATK). Let PKE = (Gen,Enc,Dec) be a public-key encryp-
tion scheme with message space M. For ATK ∈ {CPA,PCA,VA,PCVA}, we
define OW-ATK games as in Fig. 3, where

OATK :=

⎧⎪⎪⎨
⎪⎪⎩

− ATK = CPA
Pco(·, ·) ATK = PCA
Cvo(·) ATK = VA
Pco(·, ·),Cvo(·) ATK = PCVA

.

We define the OW-ATK advantage function of an adversary A against PKE
as AdvOW-ATK

PKE (A) := Pr[OW-ATKA
PKE ⇒ 1].

A few remarks are in place. Our definition of the plaintext checking oracle
Pco(m, c) (c.f. Fig. 3) implicitly disallows queries on messages m ∈ M. (With
the convention that Pco(m �∈ M, c) yields ⊥.) This restriction is important since
otherwise the ciphertext validity oracle Cvo(·) could be simulated as Cvo(m) =
Pco(⊥, c). Similarly, the ciphertext validity oracle Cvo(c) implicitly disallows
queries on the challenge ciphertext c∗.

Usually, the adversary wins the one-way game iff its output m′ equals the
challenge message m∗. Instead, in game OW-ATK the correctness of m′ is checked
using the Pco oracle, i.e., it returns 1 iff Dec(sk , c∗) = m′. The two games have
statistical difference δ, if PKE is δ-correct.

Additionally, we define Indistinguishability under Chosen Plaintext Attacks
(IND-CPA).

A Modular Analysis of the Fujisaki-Okamoto Transformation 351

Definition 2 (IND-CPA). Let PKE = (Gen,Enc,Dec) be a public-key encryption
scheme with message space M. We define the IND-CPA game as in Fig. 4, and
the IND-CPA advantage function of an adversary A = (A1,A2) against PKE (such
that A2 has binary output) as AdvIND-CPA

PKE (A) := |Pr[IND-CPAA ⇒ 1] − 1/2|.
We also define OW-ATK and IND-CPA security in the random oracle model,

where PKE and adversary A are given access to a random oracle H. We make the
convention that the number qH of the adversary’s random oracle queries count
the total number of times H is executed in the experiment. That is, the number
of A explicit queries to H(·) plus the number of implicit queries to H(·) made by
the experiment.

It is well known that IND-CPA security of PKE with sufficiently large message
space implies its OW-CPA security.

Lemma 1. For any adversary B there exists an adversary A with the same
running time as that of B such that AdvOW-PCA

PKE (B) ≤ AdvIND-CPA
PKE (A) + 1/|M|.

2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) con-
sists of three algorithms. The key generation algorithm Gen outputs a key pair
(pk , sk), where pk also defines a finite key space K. The encapsulation algorithm
Encaps, on input pk , outputs a tuple (K, c) where c is said to be an encapsulation
of the key K which is contained in key space K. The deterministic decapsula-
tion algorithm Decaps, on input sk and an encapsulation c, outputs either a key
K := Decaps(sk , c) ∈ K or a special symbol ⊥ /∈ K to indicate that c is not a
valid encapsulation. We call KEM δ-correct if

Pr [Decaps(sk , c) �= K | (pk , sk) ← Gen; (K, c) ← Encaps(pk)] ≤ δ.

Note that the above definition also makes sense in the random oracle model since
KEM ciphertexts do not depend on messages.

Security. We now define a security notion for key encapsulation: Indistinguish-
bility under Chosen Ciphertext Attacks (IND-CCA).

Definition 3 (IND-CCA). We define the IND-CCA game as in Fig. 4 and the
IND-CCA advantage function of an adversary A (with binary output) against
KEM as AdvIND-CCA

KEM (A) := |Pr[IND-CCAA ⇒ 1] − 1/2| .

3 Modular FO Transformations

In Sect. 3.1, we will introduce T that transforms any OW-CPA secure
encryption scheme PKE into a OW-PCA secure encryption scheme PKE1. If
PKE is furthermore IND-CPA, then the reduction is tight. Furthermore, if
PKE is γ-spread, then PKE1 even satisfied the stronger security notion of
OW-PCVA security. Next, in Sect. 3.2, we will introduce transformations U�⊥, U�⊥

m

352 D. Hofheinz et al.

Fig. 4. Games IND-CPA for PKE and IND-CCA game for KEM.

(U⊥, U⊥
m) that transform any OW-PCA (OW-PCVA) secure encryption scheme

PKE1 into an IND-CCA secure KEM. The security reduction is tight. Transfor-
mations U�⊥

m and U⊥
m can only be applied for deterministic encryption schemes.

Combining T with {U�⊥,U�⊥
m,U⊥,U⊥

m}, in Sect. 3.3 we provide concrete bounds
for the IND-CCA security of the resulting KEMs. Finally, in Sect. 3.4 we intro-
duce S� that transforms any OW-CPA secure scheme into an IND-CPA secure
one, offering a tradeoff between tightness and ciphertext size.

3.1 Transformation T: From OW-CPA/IND-CPA to OW-PCVA

T transforms an OW-CPA secure public-key encryption scheme into an OW-PCA
secure one.

The Construction. To a public-key encryption scheme PKE = (Gen,Enc,Dec)
with message space M and randomness space R, and random oracle G : M → R,
we associate PKE1 = T[PKE,G]. The algorithms of PKE1 = (Gen,Enc1,Dec1) are
defined in Fig. 5. Note that Enc1 deterministically computers the ciphertext as
c := Enc(pk ,m;G(m)).

Fig. 5. OW-PCVA-secure encryption scheme PKE1 = T[PKE,G] with deterministic
encryption.

Non-tight Security from OW-CPA. The following theorem establishes that
OW-PCVA security of PKE1 (cf. Definition 1) non-tightly reduces to the OW-CPA
security of PKE, in the random oracle model, given that PKE is γ-spread (for
sufficiently large γ). If PKE is not γ-spread, then PKE1 is still OW-PCA secure.

A Modular Analysis of the Fujisaki-Okamoto Transformation 353

Theorem 1 (PKE OW-CPA ROM⇒ PKE1 OW-PCVA). If PKE is δ-correct, then
PKE1 is δ1-correct in the random oracle model with δ1(qG) = qG · δ. Assume
PKE to be γ-spread. Then, for any OW-PCVA adversary B that issues at most
qG queries to the random oracle G, qP queries to a plaintext checking oracle
Pco, and qV queries to a validity checking oracle Cvo, there exists an OW-CPA
adversary A such that

AdvOW-PCVA
PKE1

(B) ≤ qG · δ + qV · 2−γ + (qG + 1) · AdvOW-CPA
PKE (A)

and the running time of A is about that of B.

The main idea of the proof is that since Enc1 is deterministic, the PCA(·, ·)
oracle can be equivalently implemented by “re-encryption” and the Cvo(·) oracle
by controlling the random oracles. Additional care has to be taken to account
for the correctness error.

Proof. To prove correctness, consider an adversary A playing the correctness
game COR-RO (Fig. 2) of PKE1 in the random oracle model. Game COR-RO
makes at most qG (distinct) queries G(m1), . . . ,G(mqG) to G. We call such a
query G(mi) problematic iff it exhibits a correctness error in PKE1 (in the sense
that Dec(sk ,Enc(pk ,mi;G(mi))) �= mi). Since G outputs independently random
values, each G(mi) is problematic with probability at most δ (averaged over
(pk , sk)), since we assumed that PKE is δ-correct. Hence, a union bound shows
that the probability that at least one G(mi) is problematic is at most qG · δ.
This proves Pr[COR-ROA ⇒ 1] ≤ qG · δ and hence PKE1 is δ1-correct with
δ1(qG) = qG · δ.

To prove security, let B be an adversary against the OW-PCVA security of
PKE1, issuing at most qG queries to G, at most qP queries to Pco, and at most
qV queries to Cvo. Consider the sequence of games given in Fig. 6.

Game G0. This is the original OW-PCVA game. Random oracle queries are stored
in set LG with the convention that G(m) = r iff (m, r) ∈ LG. Hence,

Pr[GB
0 ⇒ 1] = AdvOW-PCVA

PKE1
(B).

Game G1. In game G1 the ciphertext validity oracle Cvo(c �= c∗) is replaced
with one that first computes m′ = Dec(sk , c) and returns 1 iff there exists a
previous query (m, r) to G such that Enc(pk ,m; r) = c and m = m′.

Consider a single query Cvo(c) and define m′ := Dec(sk , c). If Cvo(c) = 1
in G1, then G(m′) = G(m) = r and hence Enc(pk ,m′;G(m′)) = c, meaning
Cvo(c) = 1 in G0. If Cvo(c) = 1 in G0, then we can only have Cvo(c) = 0
in G1 only if G(m′) was not queried before. This happens with probability 2−γ ,
where γ is the parameter from the γ-spreadness of PKE. By the union bound we
obtain

|Pr[GB
1 ⇒ 1] − Pr[GB

0 ⇒ 1]| ≤ qV · 2−γ .

Game G2. In game G2 we replace the plaintext checking oracle Pco(m, c) and
the ciphertext validity oracle Cvo(c) by a simulation that does not check whether
m = m′ anymore, where m′ = Dec(sk , c)

354 D. Hofheinz et al.

Fig. 6. Games G0-G3 for the proof of Theorem 1.

We claim
|Pr[GB

2 ⇒ 1] − Pr[GB
1 ⇒ 1]| ≤ qG · δ. (4)

To show Eq. (4), observe that the whole Game G1 (and also the whole Game
G2) makes at most qG (distinct) queries G(m1), . . . ,G(mqG) to G. Again, we call
such a query G(mi) problematic iff it exhibits a correctness error in PKE1 (in the
sense that Dec(sk ,Enc(pk ,mi;G(mi))) �= mi). Clearly, if B makes a problematic
query, then there exists an adversary F that wins the correctness game COR-RO
in the random oracle model. Hence, the probability that at least one G(mi) is
problematic is at most δ1(qG) ≤ qG · δ.

However, conditioned on the event that no query G(mi) is problematic, Game
G1 and Game G2 proceed identically (cf. Fig. 6). Indeed, the two games only
differ if B submits a Pco query (m, c) or a Cvo query c together with a G query
m such that G(m) is problematic and c = Enc(pk ,m;G(m)). (In this case, G1

will answer the query with 0, while G2 will answer with 1.) This shows Eq. (4).

Game G3. In Game G3, we add a flag QUERY in line 09 and abort when it
is raised. Hence, G2 and G3 only differ if QUERY is raised, meaning that B
made a query G on m∗, or, equivalently, (m∗, ·) ∈ LG. Due to the difference
lemma [37],

|Pr[GB
3 ⇒ 1] − Pr[GB

2 ⇒ 1]| ≤ Pr[QUERY].

We first bound Pr[GB
3 ⇒ 1] by constructing an adversary C in Fig. 7 against

the OW-CPA security of the original encryption scheme PKE. C inputs (pk , c∗ ←
Enc(pk ,m∗)) for random, unknown m∗, perfectly simulates game G3 for B, and
finally outputs m′ = m∗ if B wins in game G3.

Pr[GB
3 ⇒ 1] = AdvOW-CPA

PKE (C).

A Modular Analysis of the Fujisaki-Okamoto Transformation 355

Fig. 7. Adversaries C and Dagainst OW-CPA for the proof of Theorem 1. Oracles Pco,
Cvo are defined as in game G3, and G is defined as in game G2 of Fig. 6.

So far we have established the bound

AdvOW-PCVA
PKE1

(B) ≤ qG · δ + qV · 2−γ + Pr[QUERY] + AdvOW-CPA
PKE (C). (5)

Finally, in Fig. 7 we construct an adversary D against the OW-CPA security
of the original encryption scheme PKE, that inputs (pk , c∗ ← Enc(pk ,m∗)),
perfectly simulates game G3 for B. If flag QUERY is set in G3 then there exists
en entry (m∗, ·) ∈ LG and D returns the correct m′ = m∗ with probability at
most 1/qG. We just showed

Pr[QUERY] ≤ qG · AdvOW-CPA
PKE (D).

Combining the latter bound with Eq. (5) and folding C and D into one single
adversary A against OW-CPA yields the required bound of the theorem.

By definition, OW-PCA security is OW-PCVA security with qV := 0 queries
to the validity checking oracle. Hence, the bound of Theorem1 shows that PKE1

is in particular OW-PCA secure, without requiring PKE to be γ-spread.

Tight Security from IND-CPA. Whereas the reduction to OW-CPA security
in Theorem 1 was non-tight, the following theorem establishes that OW-PCVA
security of PKE1 tightly reduces to IND-CPA security of PKE, in the random
oracle model, given that PKE is γ-spread. If PKE is not γ-spread, then PKE1 is
still OW-PCA secure.

Theorem 2 (PKE IND-CPA ROM⇒ PKE1 OW-PCVA). Assume PKE to be δ-correct
and γ-spread. Then, for any OW-PCVA adversary B that issues at most qG
queries to the random oracle G, qP queries to a plaintext checking oracle Pco,
and qV queries to a validity checking oracle Cvo, there exists an IND-CPA adver-
sary A such that

AdvOW-PCVA
PKE1

(B) ≤ qG · δ + qV · 2−γ +
2qG + 1

|M| + 3 · AdvIND-CPA
PKE (A)

and the running time of A is about that of B.

Proof. Considering the games of Fig. 6 from the proof of Theorem1 we obtain
by Eq. (5)

AdvOW-PCVA
PKE1

(B) ≤ qG · δ + qV · 2−γ + Pr[QUERY] + AdvOW-CPA
PKE (C)

≤ qG · δ + qV · 2−γ + Pr[QUERY] +
1

|M| + AdvIND-CPA
PKE (C),

356 D. Hofheinz et al.

Fig. 8. Adversary D = (D1,D2) against IND-CPA for the proof of Theorem 2. For fixed
m ∈ M, LG(m) is the set of all (m, r) ∈ LG. Oracles Pco, Cvo are defined as in game
G3, and G is defined as in game G2 of Fig. 6.

where the last inequation uses Lemma 1.
In Fig. 8 we construct an adversary D = (D1,D2) against the IND-CPA secu-

rity of the original encryption scheme PKE that wins if flag QUERY is set in G3.
The first adversary D1 picks two random messages m∗

0,m
∗
1. The second adver-

sary D2 inputs (pk , c∗ ← Enc(pk ,m∗
b), st), for an unknown random bit b, and

runs B on (pk , c∗), simulating its view in game G3. Note that by construction
message m∗

b is uniformly distributed.
Consider game IND-CPAD with random challenge bit b. Let BADG be the

event that B queries random oracle G on m∗
1−b. Since m∗

1−b is uniformly distrib-
uted and independent from B’s view, we have Pr[BADG] ≤ qG/|M|. For the
remainder of the proof we assume BADG did not happen, i.e. |LG(m∗

1−b)| = 0.
If QUERY happens, then B queried the random oracle G on m∗

b , which
implies |LG(m∗

b)| > 0 = |LG(m∗
1−b)| and therefore b = b′. If QUERY does

not happen, then B did not query random oracle G on m∗
b . Hence, |LG(m∗

b)| =
|LG(m∗

1−b)| = 0 and Pr[b = b′] = 1/2 since A picks a random bit b′. Overall, we
have

AdvIND-CPA
PKE (D) +

qG
|M| ≥

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣
=

∣∣∣∣Pr[QUERY] +
1
2

Pr[¬QUERY] − 1
2

∣∣∣∣
=

1
2

Pr[QUERY].

Folding C and D into one single IND-CPA adversary A yields the required
bound of the theorem.

With the same argument as in Theorem 1, a tight reduction to OW-PCA
security is implied without requiring PKE to be γ-spread.

3.2 Transformations U �⊥, U �⊥
m , U⊥, U⊥

m

In this section we introduce four variants of a transformation U, namely U�⊥, U�⊥
m,

U⊥, U⊥
m, that convert a public-key encryption scheme PKE1 into a key encapsu-

lation mechanism KEM. Their differences are summarized in the following table.

A Modular Analysis of the Fujisaki-Okamoto Transformation 357

Transformation Rejection of invalid ciphertexts KEM key PKE1’s requirements

U �⊥ implicit K = H(m, c) OW-PCA
U⊥ explicit K = H(m, c) OW-PCVA

U �⊥
m implicit K = H(m) det. + OW-CPA

U⊥
m explicit K = H(m) det. + OW-VA

Transformation U⊥ : From OW-PVCA to IND-CCA. U⊥ transforms an
OW-PCVA secure public-key encryption scheme into an IND-CCA secure key
encapsulation mechanism. The ⊥ in U⊥ means that decapsulation of an invalid
ciphertext results in the rejection symbol ⊥ (“explicit rejection”).

The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,
Dec1) with message space M, and a hash function H : {0, 1}∗ →
{0, 1}n, we associate KEM⊥ = U⊥[PKE1,H]. The algorithms of KEM⊥ =
(Gen1,Encaps,Decaps⊥) are defined in Fig. 9.

Fig. 9. IND-CCA-secure key encapsulation mechanism KEM⊥ = U⊥[PKE1,H].

Security. The following theorem establishes that IND-CCA security of KEM⊥

tightly reduces to the OW-PCVA security of PKE1, in the random oracle model.

Theorem 3 (PKE1 OW-PCVA ROM⇒ KEM⊥ IND-CCA). If PKE1 is δ1-correct, so
is KEM⊥. For any IND-CCA adversary B against KEM⊥, issuing at most qD

queries to the decapsulation oracle Decaps⊥ and at most qH queries to the ran-
dom oracle H, there exists an OW-PCVA adversary A against PKE1 that makes
at most qH queries both to the Pco oracle and to the Cvo oracle such that

AdvIND-CCA
KEM⊥ (B) ≤ AdvOW-PCVA

PKE1
(A)

and the running time of A is about that of B.

The main idea of the proof is to simulate the decapsulation oracle without
the secret-key. This can be done by answering decryption queries with a random
key and then later patch the random oracle using the plaintext checking oracle
Pco(·, ·) provided by the OW-PCVA game. Additionally, the ciphertext valid-
ity oracle Cvo(·) is required to reject decapsulation queries with inconsistent
ciphertexts.

358 D. Hofheinz et al.

Fig. 10. Games G0 - G2 for the proof of Theorem 3.

Proof. It is easy to verify the correctness bound. Let B be an adversary against
the IND-CCA security of KEM⊥, issuing at most qD queries to Decaps⊥ and at
most qH queries to H. Consider the games given in Fig. 10.

Game G0. Since game G0 is the original IND-CCA game,∣∣∣∣Pr[GB
0 ⇒ 1] − 1

2

∣∣∣∣ = AdvIND-CCA
KEM⊥ (B).

Game G1. In game G1, the oracles H and Decaps⊥ are modified such that they
make no use of the secret key any longer except by testing if Dec1(sk ′, c) = m
for given (m, c) in line 15 and if Dec1(sk , c) ∈ M for given c in line 27. Game
G1 contains two sets: hash list LH that contains all entries (m, c,K) where H
was queried on (m, c), and set LD that contains all entries (c,K) where either
H was queried on (m′, c), m′ := Dec1(sk ′, c), or Decaps⊥ was queried on c. In
order to show that the view of B is identical in games G0 and G1, consider the
following cases for a fixed ciphertext c and m′ := Dec1(sk ′, c).

– Case 1: m′ /∈ M. Since Cvo(c) = 0 is equivalent to m′ = ⊥, Decaps⊥(c)
returns ⊥ as in both games.

– Case 2: m′ ∈ M. We will now show that H in game G1 is “patched”, meaning
that it is ensures Decaps⊥(c) = H(m′, c), where m′ := Dec1(sk , c), for all

A Modular Analysis of the Fujisaki-Okamoto Transformation 359

ciphertexts c with m′ ∈ M. We distinguish two sub-cases: B might either first
query H on (m′, c), then Decaps⊥ on c, or the other way round.

• If H is queried on (m′, c) first, it is recognized that Dec1(sk , c) = m in line
15. Since Decaps was not yet queried on c, no entry of the form (c,K)
can already exist in LD. Therefore, besides adding (m, c,K $← K) to LH ,
H also adds (c,K) to LD in line 22, thereby defining Decaps⊥(c) := K =
H(m′, c).

• If Decaps⊥ is queried on c first, no entry of the form (c,K) exists in
LD yet. Therefore, Decaps⊥ adds (c,K $← K) to LD, thereby defining
Decaps⊥(c) := K. When queried on (m′, c) afterwards, H recognizes that
Dec1(sk , c) = m′ in line 15 and that an entry of the form (c,K) already
exists in LD in line 19. By adding (m, c,K) to LH and returning K, H
defines H(m′, c) := K = Decaps⊥(c).

We have shown that B’s view is identical in both games and

Pr[GB
1 ⇒ 1] = Pr[GB

0 ⇒ 1]|.

Game G2. From game G2 on we proceed identical to the proof of Theorem4.
That is, we abort immediately on the event that B queries H on (m∗, c∗). Denote
this event as CHAL. Due to the difference lemma,

|Pr[GB
2 ⇒ 1] − Pr[GB

1 ⇒ 1]| ≤ Pr[CHAL].

In game G2, H(m∗, c∗) will not be given to B; neither through a hash nor a
decryption query, meaning bit b is independent from B’s view. Hence,

Pr[GB
2] =

1
2
.

It remains to bound Pr[CHAL]. To this end, we construct an adversary A
against the OW-PCVA security of PKE1 simulating G2 for B as in Fig. 11. Note
that the simulation is perfect. Since CHAL implies that B queried H(m∗, c∗)
which implies (m∗, c∗,K ′) ∈ LH for some K ′, and A returns m′ = m∗. Hence,

Pr[CHAL] = AdvOW-PCVA
PKE (A).

Collecting the probabilities yields the required bound.

Transformation U�⊥ : From OW-PCA to IND-CCA. U�⊥ is a variant of U⊥

with “implicit rejection” of inconsistent ciphertexts. It transforms an OW-PCA
secure public-key encryption scheme into an IND-CCA secure key encapsulation
mechanism.

The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,
Dec1) with message space M, and a random oracle H : {0, 1}∗ → M we associate
KEM �⊥ = U�⊥[PKE1,H] = (Gen �⊥,Encaps,Decaps �⊥). The algorithms of KEM �⊥ are

360 D. Hofheinz et al.

Fig. 11. Adversary A against OW-PCVA for the proof of Theorem 3, where Decaps⊥

is defined as in Game G2 of Fig. 10.

Fig. 12. IND-CCA-secure key encapsulation mechanism KEM �⊥ = U�⊥[PKE1,H].

defined in Fig. 12, Encaps is the same as in KEM⊥ (Fig. 9). Note that U⊥ and
U�⊥ essentially differ in decapsulation: Decaps⊥ from U⊥ rejects if c decrypts to
⊥, whereas Decaps �⊥ from U�⊥ returns a pseudorandom key K.

Security. The following theorem establishes that IND-CCA security of KEM�⊥

tightly reduces to the OW-PCA security of PKE1, in the random oracle model.

Theorem 4 (PKE1 OW-PCA ROM⇒ KEM IND-CCA). If PKE1 is δ1-correct, then
KEM �⊥ is δ1-correct in the random oracle model. For any IND-CCA adversary B
against KEM �⊥, issuing at most qD queries to the decapsulation oracle Decaps �⊥

and at most qH queries to the random oracle H, there exists an OW-PCA adver-
sary A against PKE1 that makes at most qH queries to the Pco oracle such
that

AdvIND-CCA
KEM�⊥ (B) ≤ qH

|M| + AdvOW-PCA
PKE1

(A)

and the running time of A is about that of B.

The proof is very similar to the one of Theorem3. The only difference is the
handling of decapsulation queries with inconsistent ciphertexts. Hence, we defer
the proof to the full version [26].

A Modular Analysis of the Fujisaki-Okamoto Transformation 361

Transformations U �⊥m/U⊥m : From OW-CPA/OW-VA to IND-CCA for
deterministic Encryption. Transformation U⊥

m is a variant of U⊥ that derives
the KEM key as K = H(m), instead of K = H(m, c). It transforms a OW-VA
secure public-key encryption scheme with deterministic encryption (e.g., the
ones obtained via T from Sect. 3.1) into an IND-CCA secure key encapsulation
mechanism. We also consider an implicit rejection variant U�⊥

m that only requires
OW-CPA security of the underlying encryption scheme PKE.

The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,
Dec1) with message space M, and a random oracle H : {0, 1}∗ → {0, 1}n, we
associate KEM �⊥

m = U�⊥
m[PKE1,H] = (Gen �⊥,Encapsm,Decaps �⊥m) and KEM⊥

m =
U⊥
m[PKE1,H] = (Gen1,Encapsm,Decaps⊥m). Algorithm Gen�⊥ is given in Fig. 12

and the remaining algorithms of KEM�⊥
m and KEM⊥

m are defined in Fig. 13.

Fig. 13. IND-CCA-secure key encapsulation mechanisms KEM �⊥
m = U�⊥

m[PKE1,H] and
KEM⊥

m = U⊥
m[PKE1,H].

Security of KEM⊥
m. The following theorem establishes that IND-CCA security

of KEM⊥
m tightly reduces to the OW-VA security of PKE1, in the random oracle

model. Again, the proof is similar to the one of Theorem3 and can be found in
[26].

Theorem 5 (PKE1 OW-VA ROM⇒ KEM⊥
m IND-CCA). If PKE1 is δ1-correct, then

so is KEM⊥
m. Let G denote the random oracle that PKE1 uses (if any), and let

qEnc1,G and qDec1,G denote an upper bound on the number of G-queries that Enc1,
resp. Dec1 makes upon a single invocation. If Enc1 is deterministic then, for
any IND-CCA adversary B against KEM⊥

m, issuing at most qD queries to the
decapsulation oracle Decaps⊥

m and at most qG, resp. qH queries to its random
oracles G and H, there exists an OW-VA adversary A against PKE1 that makes
at most qD queries to the Cvo oracle such that

AdvIND-CCA
KEM⊥

m
(B) ≤ AdvOW-VA

PKE1
(A) + δ1(qG + (qH + qD)(qEnc1,G + qDec1,G))

and the running time of A is about that of B.

Security of KEM �⊥
m. The following theorem establishes that IND-CCA security

of KEM �⊥
m tightly reduces to the OW-CPA security of PKE1, in the random oracle

model. Its proof is easily obtained by combining the proofs of Theorems 4 and 5.

362 D. Hofheinz et al.

Theorem 6 (PKE1 OW-CPA ROM⇒ KEM �⊥
m IND-CCA). If PKE1 is δ1-correct, then

so is KEM �⊥
m. Let G denote the random oracle that PKE1 uses (if any), and let

qEnc1,G and qDec1,G denote an upper bound on the number of G-queries that Enc1,
resp. Dec1 makes upon a single invocation. If Enc1 is deterministic then, for
any IND-CCA adversary B against KEM�⊥

m, issuing at most qD queries to the
decapsulation oracle Decaps �⊥

m and at most qG, resp. qH queries to its random
oracles G and H, there exists an OW-CPA adversary A against PKE1 such that

AdvIND-CCA
KEM�⊥

m
(B) ≤ AdvOW-CPA

PKE1
(A) +

qD

|M| + δ1(qG + (qH + qD)(qEnc1,G + qDec1,G))

and the running time of A is about that of B.

3.3 The Resulting KEMs

For completeness, we combine transformation T with {U�⊥,U⊥,U�⊥
m,U⊥

m} from the
previous sections to obtain four variants of the FO transformation FO := U�⊥ ◦T,
FO⊥ := U⊥ ◦T, FO �⊥

m := U�⊥
m ◦T, and FO⊥

m := U⊥
m ◦T. To a public-key encryption

scheme PKE = (Gen,Enc,Dec) with message space M and randomness space R,
and hash functions G : M → R, H : {0, 1}∗ → {0, 1}n we associate

KEM �⊥ = FO �⊥[PKE,G,H] := U�⊥[T[PKE,G],H] = (Gen�⊥,Encaps,Decaps �⊥)
KEM⊥ = FO⊥[PKE,G,H] := U⊥[T[PKE,G],H] = (Gen,Encaps,Decaps⊥)
KEM �⊥

m = FO �⊥
m[PKE,G,H] := U�⊥

m[T[PKE,G],H] = (Gen �⊥,Encapsm,Decaps �⊥m)
KEM⊥

m = FO⊥
m[PKE,G,H] := U⊥

m[T[PKE,G],H] = (Gen,Encapsm,Decaps⊥m) .

Their constituting algorithms are given in Fig. 14.
The following table provides (simplified) concrete bounds of the IND-CCA

security of KEM ∈ {KEM �⊥,KEM⊥,KEM �⊥
m,KEM⊥

m}, directly obtained by combin-
ing Theorems 1−6. Here qRO := qG + qH counts the total number of B’s queries

Fig. 14. IND-CCA secure Key Encapsulation Mechanisms KEM �⊥ = (Gen�⊥,Encaps,
Decaps �⊥), KEM⊥ = (Gen,Encaps,Decaps⊥), KEM�⊥

m = (Gen�⊥,Encapsm,Decaps
�⊥
m), and

KEM⊥
m = (Gen,Encapsm,Decaps

⊥
m) obtained from PKE = (Gen,Enc,Dec).

A Modular Analysis of the Fujisaki-Okamoto Transformation 363

to the random oracles G and H and qD counts the number of B’s decryption
queries. The left column provides the bounds relative to the OW-CPA advan-
tage, the right column relative to the IND-CPA advantage.

KEM Concrete bounds on AdvIND-CCA
KEM (B) ≤

KEM �⊥ qRO · δ +
2qRO
|M| + 2qRO · AdvOW-CPA

PKE (A) qRO · δ +
3qRO
|M| + 3 · AdvIND-CPA

PKE (A′)
KEM⊥ qRO · (δ + 2−γ) + 2qRO · AdvOW-CPA

PKE (A) qRO ·
(

δ + 2−γ
)
+

3qRO
|M| + 3 · AdvIND-CPA

PKE (A′)

KEM �⊥
m (2qRO + qD) · δ +

2qRO
|M| + 2qRO · AdvOW-CPA

PKE (A) (2qRO + qD) · δ +
3qRO
|M| + 3 · AdvIND-CPA

PKE (A′)
KEM⊥

m (2qRO + qD) · δ + qRO · 2−γ + 2qRO · AdvOW-CPA
PKE (A) (2qRO + qD) · δ + qRO · 2−γ + 3 · AdvIND-CPA

PKE (A′)

Concrete parameters. For “κ bits of security” one generally requires that
for all adversaries B with advantage Adv(B) and running in time Time(B), we
have

Time(B)
Adv(B)

≥ 2κ.

The table below gives recommendations for the information-theoretic terms δ
(correctness error of PKE, γ (γ-spreadness of PKE), and M (message space of
PKE) appearing the concrete security bounds above.

Term in concrete bound Minimal requirement for κ bits security
qRO · δ δ ≤ 2−κ

qRO · 2−γ γ ≥ κ
qRO/|M| |M| ≥ 2κ

For example, if the concrete security bound contains the term qRO · δ, then
with δ ≤ 2−κ one has

Time(B)
Adv(B)

≥ qRO
qRO · δ

=
1
δ

≥ 2κ,

as required for κ bits security.

3.4 S�: From OW-CPA to IND-CPA Security, Tightly

S� transforms an OW-CPA secure public-key encryption scheme into an IND-CPA
secure scheme. The security reduction has a parameter � which allows for a trade-
off between the security loss of the reduction and the compactness of ciphertexts.

The Construction. Fix an � ∈ N. To a public-key encryption scheme PKE =
(Gen,Enc,Dec) with message space M = {0, 1}n and a hash function F : M� →
R, we associate PKE� = S�[PKE,F]. The algorithms of PKE� are defined in
Fig. 15.

Security. The following theorem shows that PKE� is IND-CPA secure, pro-
vided that PKE is OW-CPA secure. The proof (sketched in the introduction) is
postponed to [26].

364 D. Hofheinz et al.

Fig. 15. Tightly IND-CPA secure encryption PKE� obtained from PKE.

Theorem 7 (PKE OW-CPA ⇒ PKE� IND-CPA). If PKE is δ-correct (in the
ROM), then PKE� is � · δ-correct. Moreover, for any IND-CPA adversary B that
issues at most qF queries to random oracle F, there exists an OW-CPA adversary
A such that

AdvIND-CPA
PKE�

(B) ≤ q
1/�
F · AdvOW-CPA

PKE (A)

and the running time of A is about that of B.

4 Modular FO Transformation in the QROM

In this section, we will revisit our transformations in the quantum random ora-
cle model. In Sect. 4.1, we give a short primer on quantum computation and
define the quantum random oracle model (QROM). In Sect. 4.2, we will state
that transformation T from Fig. 5 (Sect. 3.1) is also secure in the quantum ran-
dom oracle model. Next, in Sect. 4.3 we will introduce QU⊥

m (QU �⊥
m), a vari-

ant of U⊥
m (U�⊥

m), which has provable security in the quantum random oracle
model. Combining the two above transformations, in Sect. 4.4 we provide con-
crete bounds for the IND-CCA security of QKEM⊥

m = QFO⊥
m[PKE,G,H,H′] and

QKEM �⊥
m = QFO �⊥

m[PKE,G,H,H′] in the QROM.

4.1 Quantum Computation

Qubits. For simplicity, we will treat a qubit as a vector |b〉 ∈ C
2, i.e., a linear

combination |b〉 = α · |0〉 + β · |1〉 of the two basis states (vectors) |0〉 and |1〉
with the additional requirement to the probability amplitudes α, β ∈ C that
|α|2 + |β|2 = 1. The basis {|0〉, |1〉} is called standard orthonormal computational
basis. The qubit |b〉 is said to be in superposition. Classical bits can be interpreted
as quantum bits via the mapping (b �→ 1 · |b〉 + 0 · |1 − b〉).
Quantum Registers. We will treat a quantum register as a collection of mul-
tiple qubits, i.e. a linear combination

∑
(b1,··· ,bn)∈{0,1}n αb1···bn

· |b1 · · · bn〉, where
αb1,··· ,bn

∈ C
n,with the additional restriction that

∑
(b1,··· ,bn)∈{0,1}n |αb1···bn

|2=1.

As in the one-dimensional case, we call the basis {|b1 · · · bn〉}(b1,··· ,bn)∈{0,1}n the
standard orthonormal computational basis.

Measurements. Qubits can be measured with respect to a basis. In this paper,
we will only consider measurements in the standard orthonormal computational

A Modular Analysis of the Fujisaki-Okamoto Transformation 365

basis, and denote this measurement by Measure(·), where the outcome of
Measure(|b〉) is a single qubit |b〉 = α · |0〉 + β · |1〉 will be |0〉 with probability
|α|2 and |1〉 with probability |β|2, and the outcome of measuring a qubit regis-
ter

∑
b1,··· ,bn∈{0,1}

αb1···bn
· |b1 · · · bn〉 will be |b1 · · · bn〉 with probability |αb1···bn

|2.
Note that the amplitudes collapse during a measurement, this means that by
measuring α · |0〉 + β · |1〉, α and β are switched to one of the combinations
in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional case, all amplitudes are
switched to 0 except for the one that belongs to the measurement outcome and
which will be switched to 1.

Quantum oracles and quantum Adversaries. Following [5,11], we view a
quantum oracle as a mapping

|x〉|y〉 �→ |x〉|y ⊕ O(x)〉,

where O : {0, 1}n → {0, 1}m, x ∈ {0, 1}n and y ∈ {0, 1}m, and model quantum
adversaries A with access to O by the sequence U ◦ O, where U is a unitary
operation. We write A|O〉 to indicate that the oracles are quantum-accessible
(contrary to oracles which can only process classical bits).

Quantum random oracle model. We consider security games in the quan-
tum random oracle model (QROM) as their counterparts in the classical random
oracle model, with the difference that we consider quantum adversaries that are
given quantum access to the random oracles involved, and classical access to
all other oracles (e.g., plaintext checking or decapsulation oracles). Zhandry [41]
proved that no quantum algorithm A|f〉, issuing at most q quantum queries to
|f〉, can distinguish between a random function f : {0, 1}m → {0, 1}n and a
2q-wise independent function. It allows us to view quantum random oracles as
polynomials of sufficient large degree. That is, we define a quantum random ora-
cle |H〉 as an oracle evaluating a random polynomial of degree 2q over the finite
field F2n .

Correctness of PKE in the QROM. Similar to the classical random oracle
model, we need to define correctness of encryption in the quantum random oracle
model. If PKE = PKEG is defined relative to a random oracle |G〉, then again
the correctness bound might depend on the number of queries to |G〉. We call a
public-key encryption scheme PKE in the quantum random oracle model δ(qG)-
correct if for all (possibly unbounded, quantum) adversaries A making at most
qG queries to quantum random oracle |G〉, Pr[COR-QROA

PKE ⇒ 1] ≤ δ(qG), where
the correctness game COR-QRO is defined as in Fig. 16.

4.2 Transformation T: From OW-CPA to OW-PCA in the QROM

Recall transformation T from Fig. 5 of Sect. 3.1.

Lemma 2. Assume PKE to be δ-correct. Then PKE1 = T[PKE,G] is δ1-correct
in the quantum random oracle model, where δ1 = δ1(qG) ≤ 8 · (qG + 1)2 · δ.

366 D. Hofheinz et al.

Fig. 16. Correctness game COR-QRO for PKE1 in the quantum random oracle model.

It can be shown that δ1(qG) can be upper bounded by the success probability
of an (unbounded, quantum) adversary against a generic search problem. For
more details, refer to the full version [26].

The following theorem (whose proof is loosely based on [38]) establishes that
IND-PCA security of PKE1 reduces to the OW-CPA security of PKE, in the quan-
tum random oracle model.

Theorem 8 (PKE OW-CPA QROM⇒ PKE1 OW-PCA). Assume PKE to be δ-correct.
For any OW-PCA quantum adversary B that issues at most qG queries to the
quantum random oracle |G〉 and qP (classical) queries to the plaintext checking
oracle Pco, there exists an OW-CPA quantum adversary A such that

AdvOW-PCA
PKE1

(B) ≤ 8 · δ · (qG + 1)2 + (1 + 2qG) ·
√

AdvOW-CPA
PKE (A),

and the running time of A is about that of B.

Similar to the proof of Theorem1, the proof first implements the PCA oracle
via “re-encryption”. Next, we apply an algorithmic adaption of OW2H from [39]
to decouple the challenge ciphertext c∗ := Enc(pk ,m∗;G(m∗)) from the random
oracle G. The decoupling allows for a reduction from OW-CPA security. Again,
we defer to [26] for details.

4.3 Transformations QU⊥
m , QU �⊥

m

Transformation QU⊥
m: From OW-PCA to IND-CCA in the QROM. QU⊥

m

transforms an OW-PCA secure public-key encryption scheme into an IND-CCA
secure key encapsulation mechanism with explicit rejection.

The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,
Dec1) with message space M = {0, 1}n, and hash functions H : {0, 1}∗ → {0, 1}n

and H′ : {0, 1}n → {0, 1}n, we associate QKEM⊥
m = QU⊥

m[PKE1,H,H′]. The
algorithms of QKEM⊥

m = (QGen := Gen1,QEncapsm,QDecaps⊥m) are defined in
Fig. 17. We stress that hash function H′ has matching domain and range.

Security. The following theorem (whose proof is again loosely based on [38]
and is postponed to [26]) establishes that IND-CCA security of QKEM⊥

m reduces
to the OW-PCA security of PKE1, in the quantum random oracle model.

Theorem 9 (PKE1 OW-PCA QROM⇒ QKEM⊥
m IND-CCA). If PKE1 is δ1-correct,

so is QKEM⊥
m. For any IND-CCA quantum adversary B issuing at most qD (clas-

sical) queries to the decapsulation oracle QDecaps⊥
m, at most qH queries to the

A Modular Analysis of the Fujisaki-Okamoto Transformation 367

Fig. 17. IND-CCA-secure key encapsulation mechanism QKEM⊥
m = QU⊥

m[PKE1,H,H
′].

quantum random oracle |H〉 and at most qH′ queries to the quantum random ora-
cle |H′〉, there exists an OW-PCA quantum adversary A issuing 2qDqH′ queries
to oracle Pco such that

AdvIND-CCA
QKEM⊥

m
(B) ≤ (2qH′ + qH) ·

√
AdvOW-PCA

PKE1
(A),

and the running time of A is about that of B.

Transformation QU �⊥m : From OW-PCA to IND-CCA in the QROM. QU�⊥
m

transforms an OW-PCA secure public-key encryption scheme into an IND-CCA
secure key encapsulation mechanism with implicit rejection.

The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,
Dec1) with message space M = {0, 1}n, and hash functions H : {0, 1}∗ →
{0, 1}n and H′ : {0, 1}n → {0, 1}n, we associate QKEM �⊥

m = QU�⊥
m[PKE1,H,H′] =

(QGen := Gen�⊥,QEncapsm,QDecaps �⊥m). Algorithm Gen�⊥ is given in Fig. 12 and
the remaining algorithms of QKEM �⊥

m are defined in Fig. 18. We stress again that
hash function H′ has matching domain and range.

Fig. 18. IND-CCA-secure key encapsulation mechanism QKEM �⊥
m = QU�⊥

m[PKE1,H,H
′].

Security. The following theorem (whose proof is deferred to [26]) establishes
that IND-CCA security of QKEM �⊥

m reduces to the OW-PCA security of PKE1, in
the quantum random oracle model.

Theorem 10 (PKE1 OW-PCA QROM⇒ QKEM �⊥
m IND-CCA). If PKE1 is δ-correct,

so is QKEM �⊥
m. For any IND-CCA quantum adversary B issuing at most qD (clas-

sical) queries to the decapsulation oracle QDecaps �⊥
m, at most qH queries to the

368 D. Hofheinz et al.

quantum random oracle |H〉 and at most qH′ queries to the quantum random ora-
cle |H′〉, there exists an OW-PCA quantum adversary A issuing 2qDqH′ queries
to oracle Pco such that

AdvIND-CCA
QKEM⊥

m
(B) ≤ (2qH′ + qH) ·

√
AdvOW-PCA

PKE1
(A),

and the running time of A is about that of B.

4.4 The Resulting KEMs

For concreteness, we combine transformations T and {QU⊥
m,QU �⊥

m} from the pre-
vious sections to obtain QFO⊥

m = T◦QU⊥
m and QFO �⊥

m = T◦QU�⊥
m. To a public-key

encryption scheme PKE = (Gen,Enc,Dec) with message space M = {0, 1}n and
randomness space R, and hash functions G : M → R, H : {0, 1}∗ → {0, 1}n and
H′ : {0, 1}n → {0, 1}n, we associate

QKEM⊥
m = QFO⊥

m[PKE,G,H,H′] := QU⊥
m[T[PKE,G],H,H′]

= (Gen,QEncapsm,QDecaps⊥m)
QKEM �⊥

m = QFO �⊥
m[PKE,G,H,H′] := QU�⊥

m[T[PKE,G],H,H′]
= (Gen�⊥,QEncapsm,QDecaps �⊥m).

Algorithm Gen�⊥ is given in Fig. 12 and the remaining algorithms are given
in Fig. 19.

Fig. 19. IND-CCA secure QKEM⊥
m and QKEM �⊥

m obtained from PKE.

The following table provides (simplified) concrete bounds of the IND-CCA
security of KEM ∈ {QKEM �⊥

m,QKEM⊥
m} in the quantum random oracle model,

directly obtained by combining Theorems 8−10. Here qRO := qG +qH +q′
H counts

the total number of (implicit and explicit) queries to the quantum random oracles
G, H and H′.

A Modular Analysis of the Fujisaki-Okamoto Transformation 369

KEM Concrete bound on AdvIND-CCA
KEM (B) ≤

QKEM �⊥
m, QKEM⊥

m 8qRO

√
δ · q2RO + qRO ·

√
AdvOW-CPA

PKE (A)

Acknowledgments. We would like to thank Andreas Hülsing, Christian Schaffner,
and Dominique Unruh for interesting discussions on the FO transformation in the
QROM. We are also grateful to Krzysztof Pietrzak and Victor Shoup for discussions
on Sect. 3.4. The first author was supported in part by ERC project PREP-CRYPTO
(FP7/724307) and by DFG grants HO4534/4-1 and HO4534/2-2. The second author
was supported by DFG RTG 1817/1 UbiCrypt. The third author was supported in
part by ERC Project ERCC (FP7/615074) and by DFG SPP 1736 Big Data.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

2. Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly secure
Ring-LWE based key encapsulation with short ciphertexts. Cryptology ePrint
Archive, Report 2017/354 (2017). http://eprint.iacr.org/2017/354

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: 25th USENIX Security Symposium, USENIX Security 2016,
Austin, TX, USA, pp. 327–343, 10–12 August 2016

4. Baek, J., Lee, B., Kim, K.: Secure length-saving ElGamal encryption under the
computational Diffie-Hellman assumption. In: Dawson, E.P., Clark, A., Boyd, C.
(eds.) ACISP 2000. LNCS, vol. 1841, pp. 49–58. Springer, Heidelberg (2000).
https://doi.org/10.1007/10718964 5

5. Beals, R., Buhrman, H., Cleve, R., Mosca, M., Wolf, R.: Quantum lower bounds by
polynomials. In: 39th FOCS, pp. 352–361. IEEE Computer Society Press, Novem-
ber 1998

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

8. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

9. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
Cryptology ePrint Archive, Report 2016/461 (2016). http://eprint.iacr.org/2016/
461

10. Bitansky, N., Vaikuntanathan, V.: A note on perfect correctness by deran-
domization. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 592–606. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 20

https://doi.org/10.1007/3-540-45353-9_12
http://eprint.iacr.org/2017/354
https://doi.org/10.1007/10718964_5
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
http://eprint.iacr.org/2016/461
http://eprint.iacr.org/2016/461
https://doi.org/10.1007/978-3-319-56614-6_20
https://doi.org/10.1007/978-3-319-56614-6_20

370 D. Hofheinz et al.

11. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

12. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: Crystals - Kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Report 2017/634 (2017). http://eprint.iacr.org/
2017/634

13. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: take off the ring! Practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016, pp. 1006–1018. ACM Press, October 2016

14. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 553–570. IEEE Computer Society Press, May
2015

15. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

16. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
J. Cryptol. 22(4), 470–504 (2009)

17. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! Practical post-
quantum public-key encryption from LWE and LWR. Cryptology ePrint Archive,
Report 2016/1126 (2016). http://eprint.iacr.org/2016/1126

18. Coron, J.S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.:
GEM: a generic chosen-ciphertext secure encryption method. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 263–276. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 18

19. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

20. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8 12

21. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012). http://eprint.iacr.org/2012/688

22. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24676-3 21

23. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

24. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

25. Galindo, D., Mart́ın, S., Morillo, P., Villar, J.L.: Fujisaki-Okamoto hybrid encryp-
tion revisited. Int. J. Inf. Secur. 4(4), 228–241 (2005)

26. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017).
https://eprint.iacr.org/2017/604

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
https://doi.org/10.1007/978-3-540-78967-3_8
http://eprint.iacr.org/2016/1126
https://doi.org/10.1007/3-540-45760-7_18
https://doi.org/10.1007/3-540-45760-7_18
https://doi.org/10.1007/978-3-540-40974-8_12
http://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/3-540-48405-1_34
https://eprint.iacr.org/2017/604

A Modular Analysis of the Fujisaki-Okamoto Transformation 371

27. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets
for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30574-3 10

28. Kiltz, E., Malone-Lee, J.: A general construction of IND-CCA2 secure public
key encryption. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS,
vol. 2898, pp. 152–166. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-40974-8 13

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

30. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

31. NIST: National institute for standards and technology. Postquantum crypto
project (2017). http://csrc.nist.gov/groups/ST/post-quantum-crypto

32. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9 13

33. Peikert, C.: Lattice cryptography for the internet. Cryptology ePrint Archive,
Report 2014/070 (2014). http://eprint.iacr.org/2014/070

34. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 35

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

36. Shoup, V.: ISO 18033–2: An emerging standard for public-key encryption, Decem-
ber 2004. http://shoup.net/iso/std6.pdf. Final Committee Draft

37. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/
332

38. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto
and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53644-5 8

39. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 8

40. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random ora-
cle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 25

41. Zhandry, M.: Secure identity-based encryption in the quantum random ora-
cle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32009-5 44

https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1007/978-3-540-40974-8_13
https://doi.org/10.1007/978-3-540-40974-8_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
http://csrc.nist.gov/groups/ST/post-quantum-crypto
https://doi.org/10.1007/3-540-45353-9_13
http://eprint.iacr.org/2014/070
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
http://shoup.net/iso/std6.pdf
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

From Selective IBE to Full IBE and Selective
HIBE

Nico Döttling1,2(B) and Sanjam Garg2

1 Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
nico.doettling@fau.de

2 University of California, Berkeley, USA

Abstract. Starting with any selectively secure identity-based encryp-
tion (IBE) scheme, we give generic constructions of fully secure IBE and
selectively secure hierarchical IBE (HIBE) schemes. Our HIBE scheme
allows for delegation arbitrarily many times.

1 Introduction

Identity-based encryption schemes [Sha84,Coc01,BF01] (IBE) are public key
encryption schemes [DH76,RSA78] for which arbitrary strings can serve as valid
public keys, given short public parameters. Additionally, in such a system, given
the master secret key corresponding to the public parameters, one can efficiently
compute secret keys corresponding to any string id. A popular use case for this
type of encryption is certificate management for encrypted email: A sender Alice
can send an encrypted email to Bob at bob@iacr.org by just using the string
“bob@iacr.org” and the public parameters to encrypt the message. Bob can
decrypt the email using a secret-key corresponding to “bob@iacr.org” which
he can obtain from the setup authority that holds the master secret key corre-
sponding to the public parameters.

Two main security notions for IBE have been considered in the literature—
selective security and full security. In the selective security experiment of
identity-based encryption [CHK04], the adversary is allowed to first choose a
challenge identity and may then obtain the public parameters and the identity
secret keys for identities different from the challenge identity. The adversary’s
goal is to distinguish messages encrypted under the challenge identity, for which
he is not allowed to obtain a secret key. On the other hand, in the fully secure
notion [BF01], the (adversarial) choice of the challenge identity may depend
arbitrarily on the public parameters. That is, the adversary may choose the
challenge identity after seeing the public parameters and any number of identity
secret keys of its choice. It is straightforward to see that any scheme that features

Research supported in part from AFOSR YIP Award, DARPA/ARL SAFEWARE
Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, NSF CRII Award
1464397, and research grants by the Okawa Foundation, Visa Inc., and Center for
Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of
the author and do not reflect the official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 372–408, 2017.
https://doi.org/10.1007/978-3-319-70500-2_13

From Selective IBE to Full IBE and Selective HIBE 373

full security is also selectively secure. On the other hand, example IBE schemes
that are selectively secure but trivially insecure in the full security sense can be
constructed without significant effort.

The first IBE scheme was realized by Boneh and Franklin [BF01] based on
bilinear maps. Soon after, Cocks [Coc01] provided the first IBE scheme based
on quadratic residuocity assumption. However, the security of these construc-
tions was argued in the random oracle model [BR93]. Subsequently, substantial
effort was devoted to realizing IBE schemes without random oracles. The first
constructions of IBE without random oracles were only proved to be selectively
secure [CHK04,BB04a] and achieving full security for IBE without the random
oracle heuristic required significant research effort. In particular, the first IBE
scheme meeting the full security definition in the standard model were con-
structed by Boneh and Boyen [BB04b] and Waters [Wat05] using bilinear maps.
Later, several other IBE schemes based on the learning with errors assump-
tion [Reg05] were proposed [GPV08,AB09,CHKP10,ABB10a]. Very recently,
constructions based on the security of the Diffie-Hellman Assumption and Fac-
toring have also be obtained [DG17].

Basic IBE does not support the capability of delegating the power to issue
identity secret keys. This property is captured by the notion of hierarchical
identity-based encryption (HIBE) [HL02,GS02]. In a HIBE scheme, the owner
of a master secret key can issue delegated master secret keys that enable gen-
erating identity secret keys for identities that start with a certain prefix. For
instance, Alice may use a delegated master secret key to issue an identity
secret key to her secretary for the identity “alice@iacr.org ‖ 05-24-2017”,
allowing the secretary to decrypt all her emails received on this day. While
HIBE trivially implies IBE, the converse question has not been resolved yet.
Abdalla, Fiore and Lyubashevsky [AFL12] provided constructions of fully
secure HIBE from selective-pattern-secure wildcarded identity-based encryption
(WIBE) schemes [ACD+06] and a construction of WIBE from HIBE schemes ful-
filling the stronger notion of security under correlated randomness. Substantial
effort has been devoted to realizing HIBE schemes based on specific assump-
tions [GS02,BB04b,BBG05,GH09,LW10,CHKP10,ABB10b,DG17].

The question whether selectively secure IBE generically implies fully secure
IBE or HIBE remains open hitherto.

1.1 Our Results

In this work, we provide a generalization of the framework developed in [DG17].
Specifically, we replace the primitive chameleon encryption (or, chameleon hash
function with encryption) from [DG17] with a weaker primitive which we call
one-time signatures with encryption (OTSE). We show that this weaker prim-
itive1 also suffices for realizing fully secure IBE and selectively secure HIBE
building on the techniques of [DG17]. We show that OTSE can be realized from

1 Note that chameleon hash functions imply collision resistant hash functions which
one-time signatures with encryption are not known to imply [AS15,MM16].

374 N. Döttling and S. Garg

chameleon encryption, which, as shown in [DG17], can be based on the Compu-
tational Diffie-Hellman Assumption.

In the context of [DG17], OTSE can be seen as an additional layer of abstrac-
tion that further modularizes the IBE construction of [DG17]. More concretely,
when plugging the construction of OTSE from chameleon encryption (Sect. 4)
into the construction of HIBE from OTSE (Sect. 7), one obtains precisely the
HIBE construction of [DG17]2.

The new insight in this work is that OTSE, unlike chameleon encryption,
can be realized generically from any selectively secure IBE scheme. As a conse-
quence, it follows that both fully secure IBE and selectively secure HIBE can
also be constructed generically from any selectively secure IBE scheme. Prior
works on broadening the assumptions sufficient for IBE and HIBE have focused
on first realizing selectively secure IBE. Significant subsequent research has typ-
ically been needed for realizing fully secure IBE and HIBE. Having a generic
construction immediately gives improvements over previously known results and
makes it easier to achieve improvements in the future. For example, using the
new IBE construction of Gaborit et al. [GHPT17] we obtain a new construction
of HIBE from the rank-metric problem. As another example, we obtain a con-
struction of selectively secure HIBE from LWE with compact public parameters,
i.e. a HIBE scheme where the size of the public parameters does not depend on
a maximum hierarchy depth [CHKP10,ABB10b].

1.2 Technical Outline

The results in this work build on a recent work of the authors [DG17], which
provides an IBE scheme in groups without pairings. In particular, we will employ
the tree-based bootstrapping technique of [DG17], which itself was inspired by
the tree-based construction of Laconic Oblivious Transfer, a primitive recently
introduced by Cho et al. [CDG+17]. Below, we start by recalling [DG17] and
expand on how we generalize that technique to obtain our results.

Challenge in Realizing the IBE Schemes. The key challenge in realizing IBE
schemes is the need to “somehow compress” public keys corresponding to all
possible identities (which could be exponentially many) into small public para-
meters. Typically, IBE schemes resolve this challenge by generating the “identity
specific” public keys in a correlated manner. Since these public keys are corre-
lated they can all be described with succinct public parameters. However, this
seems hard to do when relying on an assumption such as the Diffie-Hellman
Assumption. Recently, [DG17] introduced new techniques for compressing mul-
tiple uncorrelated public keys into small public parameters allowing for a con-
struction based on the Diffie-Hellman Assumption. Below we start by describing
the notion of chameleon encryption and how the IBE scheme of [DG17] uses it.

2 The IBE construction of [DG17] is optimized and does not fit nicely into the OTSE
framework.

From Selective IBE to Full IBE and Selective HIBE 375

Chameleon Encryption at a High Level. At the heart of the [DG17] construc-
tion is a new chameleon hash function [KR98] with some additional encryp-
tion and decryption functionality. A (keyed) chameleon hash function Hk :
{0, 1}n × {0, 1}λ → {0, 1}λ on input an n-bit string x (for n > λ) and random
coins r ∈ {0, 1}λ outputs a λ-bit string. The keyed hash function is such that
a trapdoor t associated to k can be used to find collisions. In particular, given
a trapdoor t for k, a pair of input and random coins (x, r) and an alternative
preimage x′ it is easy to compute coins r′ such that Hk(x; r) = Hk(x′, r′). Addi-
tionally, we require the following encryption and decryption procedures. The
encryption function Enc(k, (h, i, b),m) outputs a ciphertext c such that decryp-
tion Dec(k, c, (x, r)) yields the original message m back as long as

h = Hk(x; r) and xi = b,

where (h, i, b) are the values used in the generation of the ciphertext ct. In other
words, the decryptor can use the knowledge of the preimage of h as the secret
key to decrypt m as long as the ith bit of the preimage it can supply is equal to
the value b chosen at the time of encryption. Roughly, the security requirement
of chameleon encryption is that

{k, x, r,Enc(k, (h, i, 1 − xi), 0)} c≈ {k, x, r,Enc(k, (h, i, 1 − xi), 1)},

where
c≈ denotes computational indistinguishability. In other words, if an adver-

sary is given a preimage x of the hash value h, but the ith bit of h is different from
the value b used during encryption, then ciphertext indistinguishability holds.

Realization of Chameleon Encryption. [DG17] provide the following very natural
realization of the Chameleon Encryption under the DDH assumption. Given a
group G of prime order p with a generator g, the hash function H is computed
as follows:

Hk(x; r) = gr
∏

j∈[n]

gj,xj
,

where the key k = (g, {gj,0, gj,1}j∈[n]), r ∈ Zp and xj is the jth bit of x ∈ {0, 1}n.
Corresponding to this chameleon hash function the encryption procedure

Enc(k, (h, i, b),m) proceeds as follows. Sample a random value ρ
$←− Zp and output

the ciphertext ct = (e, c, c′, {cj,0, cj,1}j∈[n]\{i}), where c := gρ, c′ := hρ, ∀j ∈
[n]\{i}, cj,0 := gρ

j,0, cj,1 := gρ
j,1, and e := m⊕gρ

i,b. It is easy to see that if xi = b,
then decryption Dec(ct, (x, r)) can be performed by computing

e ⊕ c′

cr
∏

j∈[n]\{i} cj,xj

.

However, if xi 	= b then the decryptor has access to the value gρ
i,xi

but not gρ
i,b,

and this prevents him from learning the message m. This observation can be

376 N. Döttling and S. Garg

formalized as a security proof based on the DDH assumption3 and we refer the
reader to [DG17] for the details.

From Chameleon Encryption to Identity-Based Encryption [DG17]. As men-
tioned earlier, [DG17] provide a technique for compressing uncorrelated public
keys. [DG17] achieve this compression using the above-mentioned hash function
in a Merkle-hash-tree fashion. In particular, the public parameters of the [DG17]
IBE scheme consist of the key of the hash function and the root of the Merkle-
hash-tree hashing the public keys of all the parties. Note that the number of
identities is too large (specifically it is exponential) to efficiently hash all the
identity-specific public keys into short public parameters. Instead [DG17] use the
chameleon property of the hash function to generate the tree top-down rather
than bottom-up (as is typically done in a Merkle-tree hashing). We skip the
details of this top-down Merkle tree generation and refer to [DG17].

A secret key for an identity id in the [DG17] scheme consists of the hash-values
along the root-to-leaf path corresponding to the leaf node id in the Merkle-hash-
tree. We also include the siblings of the hash-values provided and the random
coins used. Moreover, it includes the secret key corresponding to the public key
at the leaf-node id.

Encryption and decryption are based on the following idea. Let {Yj,0,
Yj,1}j∈[n] be 2n labels. Given a hash-value h, an encryptor can compute the
ciphertexts cj,b := Enc(k, (h, j, b), Yj,b) for j = 1, . . . , n and b ∈ {0, 1}. Given the
ciphertexts {cj,0, cj,1}j∈[n], a decryptor in possession of a message x and coins
r with Hk(x; r) = h can now decrypt the ciphertexts {cj,xj

}j∈[n] and obtain the
labels Yj,xj

:= Dec(k, (x, r), cj,xj
) for j = 1, . . . , n. Due to the security of the

chameleon encryption scheme, the decryptor will learn nothing about the labels
{Yj,1−xj

}j∈[n].
This technique can be combined with a projective garbling scheme to help an

encryptor provide a value C(x) to the decryptor, where C is an arbitrary circuit
that knows some additional secrets chosen by the encryptor. The key point here
being that the encryptor does not need to know the value x, but only a hash-
value h = Hk(x; r). The encryptor garbles the circuit C and obtains a garbled
circuit C̃ and labels {Yj,0, Yj,1} for the input-wires of C. Encrypting the labels in
the above fashion, (i.e. computing cj,b := Enc(k, (h, j + idi ·λ, b), Yj,b)), we obtain
a ciphertext ct := (C̃, {cj,0, cj,1}j∈[n]).

Given such a ciphertext, by the above a decryptor can obtain the labels
{Yj,xj

}j∈[n] corresponding to the inputxandevaluate thegarbled circuit C̃ toobtain
C(x). By the security property of the garbling scheme and the discussion above the
decryptor will learn nothing about the circuit C but the output-value C(x).

The encryption procedure of the IBE scheme provided in [DG17] uses this
technique as follows. It computes a sequence of garbled circuits Q̃(1), . . . , Q̃(n),
where the circuit Q(i) takes as input a hash-value h, and returns chameleon
encryptions {cj,0, cj,1}j∈[n] of the input-labels {Y

(i+1)
j,0 , Y

(i+1)
j,1 }j∈[n] of Q(i+1),

3 In fact, [DG17] show that a variant of this scheme can be proven secure under the
computational Diffie-Hellman assumption.

From Selective IBE to Full IBE and Selective HIBE 377

where cj,b := Enc(k, (h, j + idi · λ, b), Y (i+1)
j,b). The last garbled circuit Q(n) in

this sequence outputs chameleon encryptions of the labels {Tj,0, Tj,1}j∈[n] of a
garbled circuit T, where the circuit T takes as input a public key pk of a standard
public key encryption scheme (KG,E,D) and outputs and encryption E(pk,m)
of the message m. The IBE ciphertext consists of the chameleon encryptions
{c

(1)
j,0 , c

(1)
j,1}j∈[n] of the input labels of the first garbled circuit Q̃(1), the garbled

circuits Q̃(1), . . . , Q̃(n) and the garbled circuit T̃.
The decryptor, who is in possession of the siblings along the root-to-leaf

path for identity id, can now traverse the tree as follows. He starts by decrypting
{c

(1)
j,0 , c

(1)
j,1}j∈[n] to the labels corresponding the first pair of siblings, evaluating

the garbled circuit Q̃(1) on this input and thus obtain chameleon encryptions
{c

(2)
j,0 , c

(2)
j,1}j∈[n] of the labels of the next garbled circuit Q̃(2). Repeating this

process, the decryptor will eventually be able to evaluate the last garbled circuit
T̃ and obtain E(pkid,m), an encryption of the message m under the leaf-public-key
pkid. Now this ciphertext can be decrypted using the corresponding leaf-secret-
key skid.

Stated differently, the encryptor uses the garbled circuits Q̃(1), . . . , Q̃(n) to
help the decryptor traverse the tree to the leaf corresponding to the identity id
and obtain an encryption of m under the leaf-public key pkid (which is not know
to the encryptor).

Security of this scheme follows, as sketched above, from the security of the
chameleon encryption scheme, the garbling scheme and the security of the public
key encryption scheme (KG,E,D).

Connection to a Special Signature Scheme. It is well-known that IBE implies a
signature scheme—specifically, by interpreting the secret key for an identity id
as the signature on the message id. The starting point of our work is the obser-
vation that the [DG17] IBE scheme has similarities with the construction of a
signature scheme from a one-time signature scheme [Lam79,NY89]. In particu-
lar, the chameleon hash function mimics the role of a one-time signature scheme
which can then be used to obtain a signature scheme similar to the IBE scheme
of [DG17]. Based on this intuition we next define a new primitive which we call
one-time signature with encryption which is very similar to (though weaker than)
chameleon encryption. Construction of one-time signature with encryption from
chameleon encryption is provided in Sect. 4.

One-Time Signatures with Encryption. A one-time signature scheme [Lam79,
NY89] is a signature scheme for which security only holds if a signing key is
used at most once. In more detail, a one-time signature scheme consists of three
algorithms (SGen,SSign,Verify), where SGen produces a pair (vk, sk) of verifica-
tion and signing keys, SSign takes a signing key sk and a message x and produces
a signature σ, and Verify takes a message-signature pair (x, σ) and checks if σ is
a valid signature for x. One-time security means that given a verification key vk
and a signature σ on a message of its own choice, an efficient adversary will not
be able to concoct a valid signature σ′ on a different message x′.

378 N. Döttling and S. Garg

As with chameleon encryption, we will supplement the notion of one-time
signature schemes with an additional encryption functionality. More specifically,
we require additional encryption and decryption algorithms SEnc and SDec with
the following properties. SEnc encrypts a message m using parameters (vk, i, b),
i.e. a verification key vk, an index i and a bit b, and any message signature
pair (x, σ) satisfying “Verify(vk, x, σ) = 1 and xi = b” can be used with SDec to
decrypt the plaintext m. In terms of security, we require that given a signature
σ on a selectively chosen message x, it is infeasible to distinguish encryptions for
which the bit b is set to 1 − xi, i.e. SEnc((vk, i, 1 − xi),m0) and SEnc((vk, i, 1 −
xi),m1) are indistinguishable for any pair of messages m0,m1.

Finally, we will have the additional requirement that the verification keys are
succinct, i.e. the size of the verification keys does not depend on the length of
the messages that can be signed.

In the following, we will omit the requirement of a verification algorithm
Verify, as such an algorithm is implied by the SEnc and SDec algorithms4.

Moreover, we remark that in the actual definition of OTSE in Sect. 3, we
introduce additional public parameters pp that will be used to sample verification
and signing keys.

In Sect. 4, we will provide a direct construction of an OTSE scheme from
chameleon encryption [DG17]. We remark that the techniques used in this con-
struction appear in the HIBE-from-chameleon-encryption construction of [DG17].

We will now sketch a construction of an OTSE scheme from any selectively
secure IBE scheme. Assume henceforth that (Setup,KeyGen,Encrypt,Decrypt)
is a selectively secure IBE scheme. We will construct an OTSE scheme
(SGen,SSign,SDec) as follows. SGen runs the Setup algorithm and sets vk := mpk
and sk := msk, i.e. the master public key mpk will serve as verification key vk
and the master secret key msk will serve as signing key sk. To sign a message
x ∈ {0, 1}n, compute identity secret keys for the identities xj‖bin(j) for j ∈ [n].
Here, xj is the j-th bit of x, ‖ is the string concatenation operator and bin(j) is
a
log2(n)� bits representation of the index j ∈ [n]. Thus, a signature σ of x is
computed by

σ = SSign(sk, x) := {KeyGen(msk, xj‖bin(j))}j∈[n].

It can be checked that this is a correct and secure one-time signature scheme.
The encryption and decryption algorithms SEnc and SDec are obtained from
the Encrypt and Decrypt algorithms of the IBE scheme. Namely, to encrypt a
plaintext m using vk = mpk, i, b, compute the ciphertext

c = SEnc((vk, i, b),m) := Encrypt(mpk, b‖bin(i),m),

i.e. we encrypt m to the identity b‖bin(i). Decryption using a signature σ on a
message x is performed by computing

m = SDec((σ, x), c) := Decrypt(skxi‖bin(i), c),
4 To verify a signature σ for a message x using SEnc and SDec, encrypt a random

plaintext m using (vk, i, xi) for all indices i and test whether decryption using (x, σ)
yields m.

From Selective IBE to Full IBE and Selective HIBE 379

which succeeds if xi = b. The succinctness requirement is fulfilled, as the size of
the verification keys (which are master public keys) depends only (polynomially)
on the security parameter, but not on the actual number of identities.

Security can be based on the selective security of the IBE scheme by noting
that if the i-th bit of the message x for which a signature has been issued is dif-
ferent from b, then the identity secret key corresponding to the identity b‖bin(i)
is not contained in σ and we can use the selective security of the IBE scheme.

Realizing Fully Secure IBE. We will now show how an OTSE scheme can be
bootstrapped into a fully secure IBE scheme. As mentioned before, we will use
the tree based approach of the authors [DG17]. For the sake of simplicity, we
will describe a stateful scheme, i.e. the key-generation algorithm keeps a state
listing the identity secret keys that have been issued so far. The actual scheme,
described in Sect. 6, will be a stateless version of this scheme, which can be
obtained via pseudorandom functions.

We will now describe how identity secret keys are generated. The key gener-
ation algorithm of our scheme can be seen as an instance of the tree-based con-
struction of a signature scheme from one-time signatures and universal one-way
hash functions [NY89]. In fact, our OTSE scheme serves as one-time signature
scheme with short verification keys in the construction of [NY89]. In [NY89],
one-time signature scheme with short verification keys are used implicitly via a
combination of one-time signatures and universal one-way hash functions.

Assume that identities are of length n and that we have a binary tree of
depth n. Nodes in this tree are labelled by binary strings v that correspond to
the path to this node from the root, and the root itself is labelled by the empty
string v0 = {}.

We will place public keys lpkv of a standard INDCPA-secure encryption scheme
(KG,E,D) into the leaf-nodes v of the tree and a verification key vkv of the OTSE
scheme into every node v. The nodes are connected in the following manner. If v
is a node with two children v‖0 and v‖1, we will concatenate the keys vkv‖0 and
vkv‖1 and sign them with the signing key skv (corresponding to the verification
key vkv), i.e. define xv := vkv‖0‖vkv‖1 and compute

σv := SSign(skv, x).

If v is a leaf-node, compute

σv := SSign(skv, lpkv),

after padding lpkv to the appropriate length.
The master public key mpk of our scheme consist of the verification key vkv0

at the root node v0. The identity secret key for a root-to-leaf path v0, . . . , vn

consists of the root verification key vkv0 , the xv0 , . . . , xvn
(i.e. the verification

keys for the siblings along the path), the signatures σv0 , . . . , σvn
, and the leaf

public and secrets keys lpkvn
and lskvn

.

380 N. Döttling and S. Garg

We can think of the entire information in the identity secret key as public
information, except the leaf secret key lskvn

. That is, from a security perspec-
tive they could as well be made publicly accessible (they are not, due to the
succinctness constraint of the master public key).

Encryption and Decryption. We will now describe how a plaintext is encrypted
to an identity id and how it is decrypted using the corresponding identity secret
key skid. The basic idea is, as in [DG17], that the encryptor delegates encryption
of the plaintext m to the decryptor. More specifically, while the encryptor only
knows the root verification key, the decryptor is in possession of all verification
keys and signatures along the root-to-leaf path for the identity.

This delegation task will be achieved using garbled circuits along with the
OTSE scheme. The goal of this delegation task is to provide a garbled circuit T̃
with the leaf public key lpkid for the identity id. To ensure that the proper leaf
public key is provided to T̃, a sequence of garbled circuits Q̃(0), . . . , Q̃(n) is used
to traverse the tree from the root to the leaf id.

First consider a tree that consists of one single leaf-node v, i.e. in this case
there is just one leaf public key lpkv and one verification key vkv. The signature
σ is given by

σ := SSign(skv, lpkv)

The encryptor wants to compute an encryption of a plaintext m under lpkv,
while only in possession of the verification key vkv. It will do so using a garbled
circuit T̃. The garbled circuit T̃ has the plaintext m hardwired, takes as input a
local public key lpk and outputs an encryption of the plaintext m under lpk, i.e.
E(lpk,m). Let {Tj,0, Tj,1}j∈[�] be the set of input labels for the garbled circuit T̃.
In this basic case, the ciphertext consists of the garbled circuit T̃ and encryptions
of the labels {Tj,0, Tj,1}j∈[�] under the OTSE scheme. More specifically, for all
j ∈ [�] and b ∈ {0, 1} the encryptor computes cj,b := SEnc((vkv, j, b), Tj,b) and
sets the ciphertext to ct := (T̃, {cj,b}j,b).

To decrypt such a ciphertext ct given lskv, lpkv and a signature σv of lpkv we
proceed as follows. First, the decryptor recovers the labels {Tj,(lpkv)j

}j (where
(lpkv)j is the j-th bit of lpkv) by computing

Tj,(lpkv)j
:= SDec((σ, lpkv), cj,(lpkv)j

).

By the correctness of the OTSE scheme it follows that these are indeed the
correct labels corresponding to lpkv. Evaluating the garbled circuit T̃ on these
labels yields an encryption f = E(lpkv,m) of the plaintext m. Now the secret key
lskv can be used to decrypt f to the plaintext m.

For larger trees, the encryptor is not in possession of the verification
key vkv of the leaf-node v, and can therefore not compute the encryptions
cj,b := SEnc((vkv, j, b), Tj,b) by herself. This task will therefore be delegated
to a sequence of garbled circuits Q̃(0), . . . , Q̃(n). For i = 0, . . . , n − 1, the garbled
circuit Q̃(i) has the bit idi+1 and the labels {Xj,b}j,b of the next garbled circuit
Q̃(i+1) hardwired, takes as input a verification key vkv and outputs {cj,b}j,b,

From Selective IBE to Full IBE and Selective HIBE 381

where cj,b := SEnc((vkv, idi+1 · � + j, b),Xj,b). The garbled circuit Q̃(n) has the
labels {Tj,b}j,b of the garbled circuit T̃ hardwired, takes as input a verification
key vkv and outputs {cj,b}j,b, where cj,b := SEnc((vkv, j, b), Tj,b).

Thus, a decryptor who knows input labels for Q̃(i) corresponding to vkv will
be able to evaluate Q̃(i) and obtain the encrypted labels {cj,b}j,b, where cj,b =
SEnc((vkv, idi+1 · � + j, b),Xj,b). If the decryptor is in possession of the values
xv = vkvi‖0‖vkvi‖1 and a valid signature σv of xv that verifies with respect to vkv,
he will be able to compute

Xj,(vkv‖idi
)j

:= SDec((σv, xv), cj,(vkv‖idi
)j

).

These are the input labels of Q̃(i+1) corresponding to the input vkv‖idi+1 . Conse-
quently, the decryptor will be able to evaluate Q̃(i+1) on input vkv‖idi+1 and so
forth.

Thus, in the full scheme a ciphertext ct consists of the input-labels of the
garbled circuit Q̃(0), the sequence of garbled circuits Q̃(0), . . . , Q̃(n) and a garbed
circuit T̃. To decrypt this ciphertext, proceed as above starting with the garbled
circuit Q̃(0) and traversing the tree to the leaf-node id, where T̃ can be evaluated
and the plaintext m be recovered as above.

In the security proof, we will replace the garbled circuits with simulated
garbled circuits and change the encryptions to only encrypt labels for the next
verification key in the sequence of nodes. One key idea here is that the security
reduction knows all the verification keys and signatures in the tree, which as
mentioned above is not private but not accessible to the real encryptor due to
succinctness requirements of the public parameters. See Sect. 6 for details.

Hierarchical IBE. To upgrade the above scheme into a HIBE scheme, we will
associate a local public key lpkvv with each node v of the tree, i.e. each node of
the tree may serve as a leaf in the above scheme if needed. This means each
node will contain a signature of the verification keys of the two child nodes and
the local public key, i.e. we set x := vkv‖0‖vkv‖1‖lpkv and compute

σv := SSign(skv, x)

Moreover, we can make this scheme stateless using a pseudorandom function
that supports the delegation of keys. In particular, the classic GGM construc-
tion [GGM86] supports delegation of PRF keys for subtrees when instantiated
appropriately. We are only able to prove selective security of the obtained HIBE
scheme, as in the HIBE experiment the delegation keys include PRF keys, some-
thing that was not needed to be done for the case of IBE.

2 Preliminaries

Let λ denote the security parameter. We use the notation [n] to denote the set
{1, . . . , n}. By PPT we mean a probabilistic polynomial time algorithm. For

382 N. Döttling and S. Garg

any set S, we use x
$←− S to denote that x is sampled uniformly at random

from the set S.5 Alternatively, for any distribution D we use x
$←− D to denote

that x is sampled from the distribution D. We use the operator := to represent
assignment and = to denote an equality check. For two strings x and x′, we
denote the concatenation of x and x′ by x‖x′. For an integer j ∈ [n], let bin(j)
be the
log2(n)� bits representation of j.

2.1 Public Key Encryption

Definition 1 (Public Key Encryption). A public key encryption scheme
consists of three PPT algorithms (KG,E,D) with the following syntax.

– KG(1λ) takes as input a security parameter 1λ and outputs a pair of public
and secret keys (pk, sk).

– E(pk,m) takes as input a public key pk and a plaintext m and outputs a
ciphertext c.

– D(sk, c) takes as input a secret key sk and a ciphertext c and outputs a plain-
text m.

We require the following properties to hold.

– Completeness: For every security parameter λ and for all messages m, it
holds that

D(sk,E(pk,m)) = m,

where (pk, sk) := KG(1λ).
– INDCPA Security: For any PPT adversary A = (A1,A2), there exists a neg-

ligible function negl(·) such that the following holds:

Pr[INDCPA(A) = 1] ≤ 1
2

+ negl(λ)

where INDCPA(A) is shown in Fig. 1.

This notion easily extends to multiple challenge-ciphertexts. A simple hybrid
argument shows that if a PPT-adversary A breaks the INDCPA-security in the k
ciphertext setting with advantage ε, then there exists a PPT adversary A′ that
breaks single challenge-ciphertext INDCPA-security with advantage ε/k.

2.2 Identity-Based Encryption

Below we provide the definition of identity-based encryption (IBE).

Definition 2 (Identity-Based Encryption (IBE) [Sha84,BF01]).
An identity-based encryption scheme consists of four PPT algorithms
(Setup,KeyGen,Encrypt,Decrypt) defined as follows:
5 We use this notion only when the sampling can be done by a PPT algorithm and

the sampling algorithm is implicit.

From Selective IBE to Full IBE and Selective HIBE 383

Fig. 1. The INDCPA(A) experiment

– Setup(1λ): given the security parameter, it outputs a master public key mpk
and a master secret key msk.

– KeyGen(msk, id): given the master secret key msk and an identity id ∈ {0, 1}n,
it outputs the identity secret key skid.

– Encrypt(mpk, id,m): given the master public key mpk, an identity id ∈ {0, 1}n,
and a message m, it outputs a ciphertext c.

– Decrypt(skid, c): given a secret key skid for identity id and a ciphertext c, it
outputs a plaintext m.

The following completeness and security properties must be satisfied:

– Completeness: For all security parameters λ, identities id ∈ {0, 1}n and
messages m, the following holds:

Decrypt(skid,Encrypt(mpk, id,m)) = m

where skid ← KeyGen(msk, id) and (mpk,msk) ← Setup(1λ).
– Selective Security [CHK04]: For any PPT adversary A = (A1,A2,A3),

there exists a negligible function negl(·) such that the following holds:

Pr[sel-INDIBE(A) = 1] ≤ 1
2

+ negl(λ)

where sel-INDIBE(A) is shown in Fig. 2, and for each key query id that A sends
to the KeyGen oracle, it must hold that id 	= id∗.

– Full Security: For any PPT adversary A = (A1,A2), there exists a negligible
function negl(·) such that the following holds:

Pr[INDIBE(A) = 1] ≤ 1
2

+ negl(λ)

where INDIBE(A) is shown in Fig. 3, and for each key query id that A sends
to the KeyGen oracle, it must hold that id 	= id∗.

384 N. Döttling and S. Garg

Fig. 2. The sel-INDIBE(A) experiment

The selective security notion easily extends to multiple challenge ciphertexts
with multiple challenge identities. A simple hybrid argument shows that if an
PPT adversary A break sel-INDIBE security in the k ciphertext setting with advan-
tage ε, there exists a PPT adversary A′ that breaks single challenge ciphertext
sel-INDIBE with advantage ε/k.

2.3 Hierarchical Identity-Based Encryption (HIBE)

In a HIBE scheme, there exists an additional algorithm Delegate which allows
to generate hierarchical secret-keys mskHIBE

id for any input identity id. The hier-
archical key for an identity id allows a user holding it to generate regular (or
hierarchical keys) for any identity with prefix id. The syntax of Delegate is as
follows.

– Delegate(msk, id) takes as input a master secret key (or a delegated key) msk
and an identity id and outputs a HIBE key mskHIBE

id .

In terms of correctness, we require that our HIBE additionally has the prop-
erty that identity secret keys computed from delegated master secret keys are
identical to identity secret keys computed by the original master secret key, i.e.
for all identities id and id′ it holds that

KeyGen(msk, id‖id′) = KeyGen(mskHIBE
id , id′),

Delegate(msk, id‖id′) = Delegate(mskHIBE
id , id′),

where mskHIBE
id := Delegate(msk, id). This correctness condition is stronger than

what is typically defined for HIBE and we use this definition as it simplifies our

From Selective IBE to Full IBE and Selective HIBE 385

Fig. 3. The INDIBE(A) experiment

correctness analysis and the security definition. We note that if the distribution
of the secret-key queries obtained via first computing delegation keys is different
from the distribution of the secret-keys obtained directly, then a “complete”
model of HIBE security is needed. This was introduced by [SW08].

The security property is analogous to the sel-INDIBE except that now A is
also allowed to ask for any hierarchical secret-key queries as long as they are not
sufficient for decrypting the challenge ciphertext. We only consider the notion of
selective security for HIBE; namely, the adversary A is required to announce the
challenge identity id∗ before it can make any secret-key or hierarchical secret-key
queries.

Selective Security: For any PPT adversary A = (A1,A2,A3), there exists a
negligible function negl(·) such that the following holds:

Pr[sel-INDHIBE(A) = 1] ≤ 1
2

+ negl(λ)

where sel-INDHIBE(A) is shown in Fig. 4. For each identity key query id that A
sends to the KeyGen oracle, it must hold that id 	= id∗. Moreover, for each HIBE
key query id that A sends to the Delegate oracle, it must hold that id is not a
prefix of id∗.

2.4 Chameleon Encryption

Definition 3 (Chameleon Encryption [DG17]). A chameleon encryption
scheme consists of five PPT algorithms CGen, CHash, CHash−1, CEnc, and CDec
with the following syntax.

– CGen(1λ, n): Takes the security parameter λ and a message-length n (with
n = poly(λ)) as input and outputs a key k and a trapdoor t.

386 N. Döttling and S. Garg

Fig. 4. The sel-INDHIBE(A) experiment

– CHash(k, x; r): Takes a key k, a message x ∈ {0, 1}n, and coins r and outputs
a hash value h, where the size of h is λ bits.

– CHash−1(t, (x, r), x′): Takes a trapdoor t, previously used message x ∈ {0, 1}n

and coins r, and a message x′ ∈ {0, 1}n as input and returns r′.
– CEnc(k, (h, i, b),m): Takes a key k, a hash value h, an index i ∈ [n], b ∈ {0, 1},

and a message m ∈ {0, 1}∗ as input and outputs a ciphertext ct.6

– CDec(k, (x, r), ct): Takes a key k, a message x, coins r and a ciphertext ct, as
input and outputs a value m (or ⊥).

We require the following properties

– Uniformity: For x, x′ ∈ {0, 1}n the two distributions CHash(k, x; r) and
CHash(k, x′; r′) are statistically close (when r, r′ are chosen uniformly at ran-
dom).

– Trapdoor Collisions: For every choice of x, x′ ∈ {0, 1}n and r it holds that

if (k, t) $←− CGen(1λ, n) and r′ := CHash−1(t, (x, r), x′), then it holds that

CHash(k, x; r) = CHash(k, x′; r′),

i.e. CHash(k, x; r) and CHash(k, x′; r′) generate the same hash h. Moreover, if
r is chosen uniformly at random, then r′ is also statistically close to uniform.

– Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and

message m it holds that if (k, t) $←− CGen(1λ, n), h := CHash(k, x; r), and

ct
$←− CEnc(k, (h, i, xi),m) then CDec(k, (x, r), ct) = m.

6 ct is assumed to contain (h, i, b).

From Selective IBE to Full IBE and Selective HIBE 387

– Security: For any PPT adversary A = (A1,A2) there exists a negligible
function negl(·) such that the following holds:

Pr[INDCE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDCE
A is shown in Fig. 5.

Fig. 5. The INDCE
A experiment

2.5 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and
Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further dis-
cussion). A projective circuit garbling scheme is a tuple of PPT algorithms
(Garble,Eval) with the following syntax.

– Garble(1λ,C) takes as input a security parameter λ and a circuit C and outputs
a garbled circuit C̃ and labels eC = {Xι,0,Xι,1}ι∈[n], where n is the number
of input wires of C.

– Projective Encoding: To encode an x ∈ {0, 1}n with the input labels eC =
{Xι,0,Xι,1}ι∈[n], we compute x̃ := {Xι,xι

}ι∈[n].
– Eval(C̃, x̃): takes as input a garbled circuit C̃ and a garbled input x̃, represented

as a sequence of input labels {Xι,xι
}ι∈[n], and outputs an output y.

We will denote hardwiring of an input s into a circuit C by C[s]. The garbling
algorithm Garble treats the hardwired input as a regular input and additionally
outputs the garbled input corresponding to s (instead of all the labels of the
input wires corresponding to s). If a circuit C uses additional randomness, we
will implicitly assume that appropriate random coins are hardwired in this circuit
during garbling.

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}n we have that

Pr
[
C(x) = Eval(C̃, x̃)

]
= 1

where (C̃, eC = {Xι,0,Xι,1}ι∈[n])
$←− Garble(1λ,C) and x̃ := {Xι,xι

}.

388 N. Döttling and S. Garg

Security. For security, we require that there is a PPT simulator GCSim such that
for any circuit C and any input x, we have that

(C̃, x̃)
comp≈ GCSim(C,C(x))

where (C̃, eC = {Xι,0,Xι,1}ι∈[n]) := Garble(1λ,C) and x̃ := {Xι,xι
}.

2.6 Delegatable Pseudorandom Functions

In our HIBE construction we will need a PRF for which the inputs can be
binary strings of unrestricted length and which supports the delegation of seeds
for inputs that start with certain prefixes.

Definition 4. A delegatable pseudorandom function consists of two algorithms
F and F.Delegate with the following syntax.

– F (s, x) takes as input a seed s ∈ {0, 1}λ and a string x ∈ {0, 1}∗ and outputs
a value u ∈ {0, 1}λ.

– F.Delegate(s, x) takes as input a seed s and an input x and outputs a seed sx.

We require the following properties of a delegatable pseudorandom function.

– Delegatability: It holds for all inputs x, x′ ∈ {0, 1}∗ that

F (s, x‖x′) = F (sx, x′),

where sx := F.Delegate(s, x).
– Pseudorandomness: It holds for all PPT distinguishers D and every x ∈

{0, 1}∗ of size at most polynomial in λ that

|Pr[DF (s,·),Delegate(s,·)(1λ) = 1] − Pr[DH(·),Delegate(s,·)(1λ) = 1]| ≤ negl(λ)

where s
$←− {0, 1}λ is chosen uniformly at random, H is a function which is

uniformly random on all prefixes of x (including x) and identical to F (s, ·) on
all other inputs, and Delegate(s, ·) delegates seeds for all inputs x′ ∈ {0, 1}∗

that are not a prefix of x.

We will briefly sketch a simple variant of the GGM construction [GGM84]
which satisfies the above definition. Let G : {0, 1}λ → {0, 1}3λ be a length-
tripling pseudorandom generator and G0,G1 and G2 be the 1 . . . λ, λ + 1 . . . 2λ
and 2λ + 1 . . . 3λ bits of the output of G, respectively. Now define a GGM-type
pseudo-random function F : {0, 1}λ × {0, 1}∗ → {0, 1}λ such that F (s, x) :=
G2(Gxn

(Gxn−1(. . . (Gx1(s)) . . .))), where for each i ∈ [n] xi is the ith bit of x ∈
{0, 1}n. F.Delegate(s, x) computes and outputs Gxn

(Gxn−1(. . . (Gx1(s)) . . .)).

From Selective IBE to Full IBE and Selective HIBE 389

3 One-Time Signatures with Encryption

In this Section, we will introduce a primitive we call One-Time Signatures with
Encryption (OTSE). Syntactically, we will not require the existence of a verifi-
cation algorithm for such signature schemes, but instead require the existence
of accompanying encryption and decryption algorithms. Details follow.

Definition 5. A One-Time Signature with Encryption (OTSE) scheme consists
of five algorithms (SSetup,SGen,SSign,SEnc,SDec) with the following syntax.

– SSetup(1λ, �): Takes as input an unary encoding of the security parameter 1λ

and a message length parameter � and outputs public parameters pp.
– SGen(pp): Takes as input public parameters pp and outputs a pair (vk, sk) of

verification and signing keys.
– SSign(pp, sk, x): Takes as input public parameters pp, a signing key sk and a

message x and outputs a signature σ.
– SEnc(pp, (vk, i, b),m): Takes as input public parameters pp, a verification key

vk, an index i, a bit b and a plaintext m and outputs a ciphertext c. We will
generally assume that the index i and the bit b are included in c.

– SDec(pp, (vk, σ, x), c): Takes as input public parameters pp, a verification key
vk, a signature σ, a message x and a ciphertext c and returns a plaintext m.

We require the following properties.

– Succinctness: For pp := SSetup(1λ, �) and (vk, sk) := SGen(pp, �) it holds
that the size of vk is independent of �, only depending on λ.

– Correctness: It holds for all security parameters λ, every message x and
every plaintext m that if pp := Setup(1λ, �), (vk, sk) := SGen(pp) and σ :=
SSign(sk, x) then

SDec(pp, (vk, σ, x),SEnc(pp, (vk, i.b),m)) = m.

– Selective Security: For any PPT adversary A = (A1,A2,A3), there exists
a negligible function negl(·) such that the following holds:

Pr[INDOTSE(A) = 1] ≤ 1
2

+ negl(λ)

where INDOTSE(A) is shown in Fig. 6.

Again, we remark that multi-challenge security follows via a hybrid argument.

4 One-Time Signatures with Encryption from Chameleon
Encryption

In this Section we provide a construction of an OTSE scheme from chameleon
encryption.

390 N. Döttling and S. Garg

Fig. 6. The INDOTSE(A) experiment

SSetup(1λ, �) : Compute (K, ·) := CGen(1λ, �) and output pp := K.

SGen(pp) : Compute (k, t) := CGen(1λ, λ), sample r′ $←− {0, 1}λ, compute
h := CHash(k, 0λ; r′). Set vk := (k, h), sk := (t, r′) and output (vk, sk).

SSign(pp, sk = (t, r′), x) : Compute y := CHash(K, x) and r :=
CHash−1(t, (0λ, r′), y), output σ := r.

SEnc(pp = K, (vk = (k, h), i, b),m) : Let C be the following circuit.
− C[K, i, b](y) : Compute and output CEnc(K, (y, i, b),m).

(C̃, eC) := Garble(1λ,C[K, i, b])
Parse eC = {Yι,0, Yι,1}ι∈[λ]

fC := {CEnc(k, (h, ι, b′), Yι,b′)}ι∈[λ],b′∈{0,1}
Output ct := (C̃, fC).

SDec(pp = K, (vk = (k, h), σ = r, x), ct = (C̃, fC)) :
Parse fC = {cι,b′}ι∈[λ],b′∈{0,1}
y := CHash(K, x)
ỹ := {CDec(k, (y, r), cι,yι

)}ι∈[λ]

c′ := Eval(C̃, ỹ)
m := CDec(K, x, c′)
Output m

Succinctness and Correctness. By construction the size of vk = (k, h) depends
only on λ, so we have established the succinctness property. To see that the
construction is correct, note that since the hash value h = CHash(k, y; r)
and cι,b′ = CEnc(k, (h, ι, b′), Yι,b′), it holds by the correctness property of the
chameleon encryption scheme (CGen,CHash,CHash−1,CEnc,CDec) that

ỹ = {CDec(k, (y, r), cι,yι
)}ι∈[λ] = {Yι,yι

}.

From Selective IBE to Full IBE and Selective HIBE 391

Therefore, as (C̃, eC) = Garble(1λ,C[K, i, b]), it holds by the correctness of the
garbling scheme (Garble,Eval) that

c′ = Eval(C̃, ỹ) = C[K, i, b](y) = CEnc(K, (y, i, b),m).

Finally, as y = CHash(K, x), it holds by the correctness of the of the chameleon
encryption scheme (CGen,CHash,CHash−1,CEnc,CDec) that

CDec(K, x, c′) = m.

Security. We will now establish the INDOTSE security of (SSetup,SGen,
SSign,SEnc,SDec) from the INDCE-security of (CGen,CHash,CHash−1,CEnc,
CDec) and the security of the garbling scheme (Garble,Eval).

Theorem 1. Assume that (CGen,CHash,CHash−1,CEnc,CDec) is INDCE-secure
and (Garble,Eval) is a secure garbling scheme. Then (SSetup,SGen,SSign,SEnc,
SDec) is INDOTSE-secure.

Proof. Let A be a PPT-adversary against INDOTSE. Consider the following
hybrid experiments.

Hybrid H0. This experiment is identical to INDOTSE(A).

Hybrid H1. This experiment is identical to H0, except that fC is com-
puted by fC := {CEnc(k, (h, ι, b′), Yι,yι

)}ι∈[λ],b′∈{0,1} instead of by the
expression fC := {CEnc(k, (h, ι, b′), Yι,b′)}ι∈[λ],b′∈{0,1}. Computational indistin-
guishability between hybrids H0 and H1 follows by the INDCE-security of
(CGen,CHash,CHash−1,CEnc,CDec). Note that the security reduction has no
access to the collision-trapdoor t. However, as the INDOTSE-experiment is defined
selectively, the reduction gets to see x before it has to provide vk. Consequently,
it can set h := CHash(k,CHash(K, x); r), vk := (k, h) and present σ := r as a
valid signature to the adversary without the need of a collision trapdoor.

Hybrid H2. This experiment is identical to H1, except that we compute C̃
and ỹ by (C̃, ỹ) := GCSim(C, c), where c := CEnc(K, (y, i, b),m) instead of
(C̃, eC) := Garble(1λ,C[K, i, b]), where eC = {Yι,b′}ι∈[λ],b′∈{0,1} and ỹ = {Yι,yι

}.
Computational indistinguishability between hybrids H1 and H2 follows by
the security of the garbling scheme (Garble,Eval). By the INDCE-security of
(CGen,CHash,CHash−1,CEnc,CDec) it follows that the advantage of A in H2

is negligible.

5 One-Time Signatures with Encryption from Selectively
Secure IBE

We will now provide a construction of an OTSE scheme from selectively secure
IBE. Let therefore (Setup,KeyGen,Encrypt,Decrypt) be an IBE scheme.

392 N. Döttling and S. Garg

SSetup(1λ, �): Output pp := �.
SGen(pp): Compute (mpk,msk) := Setup(1λ), set vk := mpk and sk := msk and

output (vk, sk).
SSign(pp, sk = msk, x): Compute and output σ := {KeyGen(msk, xι‖bin(ι))}ι∈[�].
SEnc(pp, (vk = mpk, i, b),m): Compute and output

c := Encrypt(mpk, b‖bin(i),m).
SDec(pp, (vk, σ, x), c): Parse σ = {skxι‖bin(ι)}ι∈[�]. Compute and output m :=

Decrypt(skxi‖bin(i), c).

Succinctness and Correctness. The succinctness property follows directly form
the fact the size of the master public key mpk does not depend on this length of
the identities, but is a fixed polynomial in cλ.

On the other hand, correctness follows from the correctness of the IBE scheme
(Setup,KeyGen,Encrypt,Decrypt).

Security. We will now show that the INDOTSE-security of (SSetup,SGen,SSign,
SEnc,SDec) follows from the sel-INDIBE-security of the IBE scheme (Setup,
KeyGenEncrypt,Decrypt).

Theorem 2. Assume that (Setup,KeyGen,Encrypt,Decrypt) is sel-INDIBE

secure. Then (·,SGen,SSign,SEnc,SDec) is INDOTSE-secure.

Proof. Let A be a PPT adversary that breaks the INDOTSE-security of (SSetup,
SGen,SSign,SEnc,SDec) with advantage ε. We will provide a reduction R such
that RA breaks the sel-INDIBE-security of (Setup,KeyGen,Encrypt,Decrypt) with

advantage ε. R proceeds as follows. R first guesses a random index i∗ $←− [�].
It then simulates the INDOTSE-experiment with A until A outputs a message
x (that is, R runs A1(1λ)). R now declares its challenge identity id∗ := (1 −
xi∗)‖bin(i∗) to the sel-INDIBE experiment and also asks for identity secret keys
corresponding to the identities {xι‖bin(ι)}ι∈[�]. R now receives the master public
key mpk and the identity secret keys {skxι‖bin(ι)}ι∈[�]. Next, R sets vk := mpk and
σ := {skxι‖bin(ι)}ι∈[�] and provides vk and σ to A. R now continues the simulation
until A outputs a triple (i,m0,m1). If i 	= i∗, R aborts the simulation and outputs
a random bit. Otherwise, R sends (m0,m1) to the sel-INDIBE-experiment, obtains
a challenge ciphertext c∗ and forwards c∗ to A. R now continues the simulation
and outputs whatever A outputs.

We will now analyze the advantage of RA. Clearly, if i∗ 	= i, then the advan-
tage of RA is 0. On the other hand, if i∗ = i, then from the view of A the
INDOTSE-experiment is simulated perfectly, where the challenge bit of the simu-
lated INDOTSE-experiment is identical to the challenge bit b∗ of the sel-INDIBE-
experiment. Consequently, in this case the advantage of RA is identical to the
advantage of A. Since i∗ is chosen uniformly at random, it holds i∗ = i with
probability 1/�. We can conclude that the advantage of RA is

Advsel-INDIBE(RA) =
1
�

· AdvINDOTSE(A) =
ε

�
,

which concludes the proof.

From Selective IBE to Full IBE and Selective HIBE 393

6 Achieving Fully Secure IBE

Let in the following (SSetup,SGen,SSign,SEnc,SDec) be an OTSE scheme.
Without loss of generality, we will assume that the signing algorithm SSign is
deterministic. This can always be achieved by making an additional pseudo-
random function seed part of the signing key and generating random coins
for the signing algorithm as needed. Let F be a pseudorandom function. We
assume for convenience that the pseudorandom function F has two output reg-
isters, F1 and F2. Moreover, let (KG,E,D) be a standard public key encryp-
tion scheme. Without loss of generality we assume that the verification keys of
(SSetup,SGen,SSign,SEnc,SDec) and the public keys of the public-key encryp-
tion scheme (KG,E,D) have the same length �. This can always be achieved by
an appropriate padding.

As we are working with an exponentially sized tree, we will define two func-
tions NodeGen and LeafGen that provide access to the keys and thus implicitly
define the tree. The NodeGen function generates keys for the root node and all
internal nodes, whereas the LeafGen function generates public and private keys
for the leaf nodes. More specifically, the NodeGen function takes as input a node
identifier v and a pseudorandom function seed s and outputs a verification key
vkv for this node, a signature σv authenticating the verification keys of its chil-
dren and an auxiliary value xv which is the concatenation of the verification keys
of the children of v.

Recall that ‖ is the concatenation operator. In the rest of this Section and
the next Section we will use the following convention. The variable ι will always
run over the range [l] and b will always run over {0, 1}.

NodeGen(pp, v, s):
(vkv, skv) := SGen(pp;F1(s, v))
Compute vkv‖0 and vkv‖1 in the same way.
xv := vkv‖0‖vkv‖1
σv := SSign(pp, skv, x)
Output (vkv, σv, xv)

The function LeafGen takes as input public parameters pp, a node-identifier v
of a leaf-node and a pseudorandom function seed s and outputs the verification
key vkv of the leaf, a signature σv authenticating the leaf public key, a leaf public
key lpkv and a leaf secret key lskv.

LeafGen(pp, v, s)
(vkv, skv) := SGen(pp;F1(s, v))
(lpkv, lskv) := KG(1λ;F2(s, v))
xv := lpkv
σv := SSign(pp, skv, xv)
Output (vkv, σv, lpkv, lskv)

We will now provide the construction of our IBE scheme (Setup,KeyGen,
Encrypt,Decrypt).

394 N. Döttling and S. Garg

Setup(1λ, n) : Choose a random seed s for the PRF F . Compute the public
parameters pp := SSetup(1λ, 2�) and (vkv0 , ·, ·) := NodeGen(pp, v0, s). Output
mpk := (pp, vkv0) and msk := s.

KeyGen(msk = s, id ∈ {0, 1}n) : Let v0, v1, . . . , vn be the root-to-leaf path for the
identity id, i.e. all the prefixes of id. For j = 0, . . . , n−1 compute (·, σvj

, xvj
) :=

NodeGen(pp, vj , s). Further compute (·, σid, lpkid, lskid) := LeafGen(pp, vn, s).
Output skid := ((σv0 , xv0), . . . , (σvn

, xvn
), σid, lpkid, lskid).

Encrypt(mpk = (pp, vkv0), id ∈ {0, 1}n,m) : We will first describe two circuits
that will be used by the encryption algorithm.

– Q[pp, β ∈ {0, 1}, eQ = {(Yι,0, Yι,1)}ι](vk) : Compute and output
{SEnc(pp, (vk, β · � + ι, b), Yι,b)}ι,b

– T[m](lpk): Compute and output E(lpk,m).

(T̃, eT) := Garble(1λ,T[m])
(Q̃(n), e

(n)
Q) := Garble(1λ,Q[pp, 0, eT])

For j = n − 1, . . . , 0
(Q̃(j), e

(j)
Q) := Garble(1λ,Q[pp, idj+1, e

(j+1)
Q])

Parse e
(0)
Q = {Yι,0, Yι,1}ι

y := vkv0
ỹ(0) := {Yι,yι

}ι

Output c := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

Decrypt(skid = ((σv0 , xv0), . . . , (σvn , xvn), σid, lpkid, lskid), c = (ỹ(0), Q̃(0), . . . , Q̃(n), T̃))

For j = 0, . . . , n − 1:
{c

(j)
ι,b }ι,b := Eval(Q̃(j), ỹ(j))

ỹ(j+1) := {SDec(pp, (vkvj
, σvj

, xvj
), c(j)ι,(xvj)ι

)}ι

{c
(n)
ι,b }ι,b := Eval(Q̃(n), ỹ(n))

z := lpkid
z̃ := {SDec(pp, (vkvn

, σid, z), c
(n)
ι,zι)}ι

f := Eval(T̃, z̃)
Output m := D(lskid, f)

6.1 Correctness

We will first show that our scheme is correct. Note that by correct-
ness of the garbling scheme (Garble,Eval), we have that the evaluation
of Q̃(0) on the labels ỹ(0) yields correctly formed ciphertexts of the
OTSE scheme (SSetup,SGen,SSignSEnc,SDec). Next, by the correctness of
(SSetup,SGen,SSign,SEnc,SDec), we get that the decrypted values ỹ(1) are cor-
rect labels for the next garbled circuit Q̃(1). Repeating this argument, we can
argue that all Q̃(j) output correct encryptions that are subsequently decrypted
to correct input labels of the next garbled circuit in the sequence. Finally, the
circuit Q̃(n) outputs correct encryptions of the input labels of T̃, which are again

From Selective IBE to Full IBE and Selective HIBE 395

correctly decrypted to input labels for T̃. Finally, the correctness of the gar-
bling scheme (Garble,Eval) guarantees that T̃ outputs a correct encryption of
the plaintext m under the leaf public key lpkid, and the correctness of the public-
key-encryption scheme (KG,E,D) ensures that the decryption function D outputs
the correct plaintext m.

6.2 Proof of Security

We will now show that our scheme is fully secure.

Theorem 3. Assume that (KG,E,D) is an INDCPA-secure public key encryp-
tion scheme, (SSetup,SGen,SSign,SEnc,SDec) is a INDOTSE-secure OTSE
scheme and that (Garble,Eval) is a garbling scheme. Then the scheme
(Setup,KeyGen,Encrypt,Decrypt) is a fully secure IBE scheme.

We will split the proof of Theorem3 into several lemmas. Let A be a PPT
adversary with advantage ε against the fully secure INDIBE-experiment and let
in the following v0, . . . , vn always denote the root-to-leaf path for the challenge
identity id∗. Consider the following hybrids.

Hybrid H0 is identical to the real experiment INDIBE(A), except that we
replace the pseudorandom function F used for the generation of the identity
keys by a lazily evaluated truly random function. In particular, each time we
visit a new node during key generation we generate fresh keys for this node and
store them. If these keys are needed later on, we retrieve them from a table of
stored keys instead of generating new ones. By a standard argument it follows
that the INDIBE(A)-experiment and H0 are computationally indistinguishable,
given that F is a pseudorandom function.

In the remaining hybrids we will only change the way the challenge ciphertext
c∗ is computed. First consider the computation of the challenge ciphertext c∗

in the extremal hybrids H0 and H2n+3 (Fig. 7). While in H0 all garbled circuits
are computed by the garbling algorithm Garble, in H2n+3 all garbled circuits
are simulated. Moreover, in H2n+3 the messages encrypted in the ciphertexts
computed by the garbled circuits do not depend on the bit b, i.e. decryption
of these ciphertexts always yields the same labels, regardless of which message-
signature pair has been used to decrypt the encrypted labels. Notice that in
H2n+3 the garbled circuit T̃ is simulated using f := E(lpkid∗ ,m∗), the encryption
of the challenge message m∗ under the leaf public key lpkid∗ .

We will show indistinguishability of H0 and H2n+3 via the following hybrids.
For i = 0, . . . , n − 1 define:

Hybrid H2i+1. This hybrid is the same as H2i, except that we change the way Q̃(i)

and ỹ(i) are computed. Compute Q̃(i) and ỹ(i) by (Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q).

Hybrid H2(i+1). This hybrid is identical to H2i+1, except for the following change.
Instead of computing f

(i+1)
Q := {SEnc(pp, (vkvi

, id∗
i+1·�+ι, b), Yι,b)}ι,b we compute

f
(i+1)
Q := {SEnc(pp, (vkvi

, id∗
i+1 · � + ι, b), ỹ(i+1)

ι)}ι,b.

396 N. Döttling and S. Garg

Fig. 7. The extremal hybrids H0 and H2n+3

The final 3 hybrids are given as follows.

Hybrid H2n+1. This hybrid is the same as H2n, except that we change the
way Q̃(n) and ỹ(n) are computed. Compute Q̃(n) and ỹ(n) by (Q̃(n), ỹ(n)) :=
GCSim(Q, fT), where fT = {(SEnc(pp, (vkid∗ , ι, b), Zι,b)}ι,b.

Hybrid H2n+2. This hybrid is the same as H2n+1, except that we change how
fT is computed. Let eT = {Zι,0, Zι,1}ι. Instead of computing fT by fT :=
{(SEnc(pp, (vkid∗ , ι, b), Zι,b)}ι,b we compute fT := {(SEnc(pp, (vkid∗ , ι, b), z̃(n)ι)}ι,b.

Hybrid H2n+3. This hybrid is the same as H2n+2, except that we change the
way T̃ and z̃ are computed. Compute T̃ and z̃ by (T̃, z̃) := GCSim(Q, f), where
f := E(lpkid,m).

Lemma 1. We claim that for i = 0, . . . , n − 1 the hybrids H2i and H2i+1 are
computationally indistinguishable, given that (Garble,Eval) is a secure garbling
scheme.

Proof. Assume towards contradiction that A distinguishes between H2i and
H2i+1 with non-negligible advantage ε. We will construct a distinguisher RA

that breaks the security of the garbling scheme with advantage ε. R simulates
the H2i experiment faithfully with the adversary A until A requests a challenge
ciphertext. Once A does request the challenge ciphertext, R computes

(T̃, eT) := Garble(1λ,T[m∗])
(Q̃(n), e

(n)
Q) := Garble(1λ,Q[pp, 0, eT])

For j = n − 1, . . . , i + 1
(Q̃(j), e

(j)
Q) := Garble(1λ,Q[pp, id∗

j+1, e
(j+1)
Q]).

(Q̃(i), e
(i)
Q) := Garble(1λ,Q[pp, id∗

i+1, e
(i+1)
Q])

and sends the circuit Q[e(i)Q] and the input y(i) to the experiment. Once the
experiment returns Q̃(i), ỹ(i), R computes

From Selective IBE to Full IBE and Selective HIBE 397

For j = i − 1, . . . , 0
f
(j)
Q := {SEnc(pp, (vkvj

, id∗
j+1 · � + ι, b), ỹ(j+1)

ι)}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q)

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

and returns c∗ to A. R now continues the simulation of the H2i experiment and
outputs whatever the simulated H2i experiment outputs.

Clearly, if R’s challenge Q̃(i), ỹ(i) is distributed according to the real distrib-
ution, then the view of A in R’s simulation is identical to the view of A in H2i.
On the other hand, if R’s challenge is distributed according to the simulated
distribution, then the view of A in R’s simulation is identical to the view of A
in H2i+1. We conclude that

Adv(RA) = |Pr[H2i(A) = 1] − Pr[H2i+1(A) = 1]| ≤ ε,

which contradicts the security of the garbling scheme (Garble,Eval).

Lemma 2. We claim that for i = 0, . . . , n−1 the hybrids H2i+1 and H2(i+1) are
computationally indistinguishable, given that (SSetup,SGen,SSign,SEnc,SDec) is
a selectively INDOTSE-secure OTSE scheme.

Proof. Let q be the number of queries by A (including the challenge query),
which gives us an upper bound for the number of distinct nodes visited at
level i. We will construct an adversary RA that breaks the INDOTSE-security
of (SSetup,SGen,SSign,SEnc,SDec) in the multi-challenge setting with advan-
tage ε/q. R first guesses an index k∗ ∈ [q]. R then generates keys

(vk∗
0, sk

∗
0) := SGen(pp)

(vk∗
1, sk

∗
1) := SGen(pp)

and sets x∗ := vkvi‖0‖vkvi‖1 and sends the challenge message x∗ to the INDOTSE-
experiment and receives a verification key vk and a signature σ from the INDOTSE-
experiment.

R continues simulating the H2i+1 experiment. Once the k∗-th distinct node
v∗ on level i is visited, R modifies the NodeGen function for this node as follows.

vkv∗ := vk
vkv∗‖0 := vk∗

0

skv∗‖0 := sk∗
0

vkv∗‖1 := vk∗
1

skv∗‖1 := sk∗
1

xv∗ := vkv∗‖0‖vkv∗‖1
σv∗ := σ
Output (vkv∗ , σv∗ , xv∗)

398 N. Döttling and S. Garg

When the corresponding signing keys are required for the NodeGen procedure
on v∗‖0 and v∗‖1, use the corresponding signing keys skv∗‖0 and skv∗‖1 computed
in the modified procedure above.

R now continues the simulation. Once A requests a challenge-ciphertext for
an identity id∗, R checks if v∗ is on the root-to-leaf path for id∗ (i.e. if v∗ is a
prefix of id∗), and if not aborts and outputs a random bit. Otherwise, R generates
the challenge ciphertext c∗ for A in the following way.

(T̃, eT) := Garble(1λ,T[m∗])
(Q̃(n), e

(n)
Q) := Garble(1λ,Q[pp, 0, eT])

For j = n − 1, . . . , i + 1
(Q̃(j), e

(j)
Q) := Garble(1λ,Q[pp, id∗

j+1, e
(j+1)
Q])

Parse e
(i+1)
Q = {(Yι,0, Yι,1)}ι

R now computes the messages M∗
0 := {Y

ι,1−x
(i+1)
ι

}ι and M∗
1 := {Y

ι,x
(i+1)
ι

}ι,

sends the challenge messages (M∗
0 ,M∗

1) to the INDOTSE experiment and receives
a challenge ciphertext C∗ = (C∗

1 , . . . , C∗
�). Now R computes f

(i+1)
Q by f

(i+1)
Q :=

{Cι,b}ι, where Cι,xι
:= SEnc(pp, (vkvi

, id∗
i+1 · �+ ι, x

(i+1)
ι), Y

ι,x
(i+1)
ι

) and Cι,1−xι
:=

C∗
ι . R continues the computation of the challenge ciphertext as follows.

(Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q)

For j = i − 1, . . . , 0
f
(j)
Q := {SEnc(pp, (vkvj

, id∗
j+1 · � + ι, b), ỹ(j+1)

ι)}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q)

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

and returns c∗ to A. R now continues the simulation of the H2i+1 experiment
and outputs whatever the simulated H2i+1 experiment outputs.

We will now compute the advantage of RA. First notice that the keys pro-
vided by R to A are distributed exactly as in H2i+1 (and therefore do not depend
on k∗). If R guesses k∗ wrongly its advantage is 0. Let E be the event that k∗

has been guessed correctly. It clearly holds that Pr[E] ≥ 1/q. Assume now that
the event E holds. If the challenge bit b∗ of the INDOTSE experiment is 0, then
the view of A in R’s simulation is distributed exactly as in experiment H2i+1.
On the other hand, if b∗ = 1 then the view of A is distributed exactly as in
experiment H2(i+1). Thus we can conclude

Adv(RA) = Pr[E] · |Pr[H2i+1(A) = 1] − Pr[H2(i+1)(A) = 1]|
≥ Pr[E] · ε

≥ ε/q.

Lemma 3. We claim that the hybrids H2n and H2n+1 are computationally
indistinguishable, given that (Garble,Eval) is a secure garbling scheme.

From Selective IBE to Full IBE and Selective HIBE 399

The proof proceeds analogous to the proof of Lemma1.

Lemma 4. We claim that the hybrids H2n+1 and H2n+2 are computationally
indistinguishable, given that the OTSE-scheme (SSetup,SGen,SSign,SEnc,SDec)
is INDOTSE-secure.

The proof follows analogous to the proof of Lemma2.

Lemma 5. We claim that the hybrids H2n+2 and H2n+3 are computationally
indistinguishable, given that (Garble,Eval,GCSim) is a secure garbling scheme.

Again, the proof follows analogous to the proof of Lemma1.

Lemma 6. The advantage of A in H2n+3 is negligible, given that (KG,E,D) is
INDCPA-secure.

Proof. We will construct an adversary RA that breaks the INDCPA security of
(KG,E,D) with advantage ε. R simulates H2n+3 faithfully, with the exception
that it uses its own challenge public key pk∗ as public key for the leaf id∗, i.e. it
sets lpkid∗ := pk∗. It forwards A’s challenge messages m0 and m1 to the INDCPA

experiment and uses its own challenge ciphertext c∗ as the ciphertext f in the
computation of the challenge ciphertext c∗. It follows that R simulates H4n+3

perfectly and therefore AdvINDCPA(RA) = AdvH4n+3(A).

This concludes the proof of Theorem3.

7 Achieving Selectively Secure HIBE

We will now add a delegation mechanism to the IBE scheme constructed in the
last Section, yielding the construction of a hierarchical IBE scheme. The basic
idea is as follows. Instead of putting the public keys of the INDCPA-secure scheme
only into the leaf nodes of the tree, we will put such public keys into every node of
the tree. This means that every node of the (unbounded size) tree can effectively
be used in the same way we used the leaf nodes in the scheme of the last Section.

Since we want to be able to delegate the ability to delegate HIBE keys for
entire sub-trees, we need to work with a pseudorandom function supporting this
kind of delegation. We therefore use the delegatable pseudorandom functions
defined in Sect. 2.6 for this task.

In our scheme, the delegated master secret key for an identity id consist of
the identity secret key for id and a delegated PRF seed sid. This enables the
delegator to compute identity secret keys for all the nodes in the sub-tree of id.

Let (SSetup,SGen,SSign,SEnc,SDec) be an INDOTSE-secure OTSE scheme,
(F, F.Delegate) be a delegatable pseudorandom function and (KG,E,D) be a
standard public key encryption scheme. We assume for convenience that the
pseudorandom function F has two output registers, F1 and F2. Assume that
both the verification keys of (SSetup,SGen,SSign,SEnc,SDec) and the public
keys of (KG,E,D) have length � and let d = 3�.

400 N. Döttling and S. Garg

Again, we will first define a function NodeGen that provides access to the keys
stored in the tree. As mentioned above, we do not make distinctions between
leaf nodes and non-leaf nodes anymore but store a local public key lpkv at every
node v. NodeGen takes as input a node identifier v and a pseudorandom function
seed s and outputs a verification key vkv, signatures σv, auxiliary information xv
and a secret key lskv. Again, we use the convention that the variable ι runs over
[�] and b over {0, 1}.

NodeGen(pp, v, s):
(vkv, skv) := SGen(pp;F1(s, v))
Compute vkv‖0 and vkv‖1 in the same way.
(lpkv, lskv) := KG(1λ;F2(s, v))
xv := vkv‖0‖vkv‖1‖lpkv
σv := SSign(pp, skv, xv)
Output (vkv, σv, xv, lskv)

The HIBE scheme (Setup,Delegate,KeyGen,Encrypt,Decrypt) is given by the
following algorithms.

Setup(1λ) : Let v0 be the root-node. Choose a random seed s for the pseudo-
random function F . Compute pp := SSetup(1λ, 3 · �) and (vkv0 , ·, ·, ·) :=
NodeGen(pp, v0, s). Output mpk := vkv0 and msk := s.

Delegate(msk = s, id ∈ {0, 1}∗): Set n := |id|. Let v0, v1, . . . , vn be the root-to-
leaf path for the identity id, i.e. all the prefixes of id. For j = 0, . . . , n − 1
compute (·, σvj

, xv, ·) := NodeGen(pp, vj , s). Compute sid := F.Delegate(s, id).
Output ((σv0 , xv0), . . . , (σvn

, xvn
), sid)7

KeyGen(mskHIBE
id′ = ((σv0 , xv0), . . . , (σv|id′| , xv|id′|), sid′), id ∈ {0, 1}∗) : Set n := |id|.

Let v|id′|, . . . , v|id′|+|id| be the path from id′ to id′‖id, i.e. id′ concate-
nated with all the prefixes of id. For j = |id′|, . . . , |id′| + |id| −
1 compute (·, σvj

, xv, lskv) := NodeGen(pp, vj , sid′). Output skid :=
((σv0 , xv0), . . . , (σv|id′|+|id| , xv|id′|+|id|), σid, lskid)

Encrypt(mpk = vkv0 , id ∈ {0, 1}∗,m) : We will first describe two circuits that will
be used by the encryption algorithm. The mode β = 2 of the circuit Q targets
a local public key.

– Q[pp, β ∈ {0, 1, 2}, eQ = {(Yι,0, Yι,1)}ι](vk) : Compute and then output
{SEnc(pp, (vk, β · � + ι, b), Yι,b)}ι,b

– T[m](lpk): Compute and output E(lpk,m).

n := |id|
(T̃, eT) := Garble(1λ,T[m])
(Q̃(n), e

(n)
Q) := Garble(1λ,Q[pp, 2, eT])

For j = n − 1, . . . , 0
(Q̃(j), e

(j)
Q) := Garble(1λ,Q[pp, idj+1, e

(j+1)
Q])

7 To delegate keys from delegated keys at an identity id, treat id as a root node,
compute the delegated keys, and the concatenate the root-to-node paths.

From Selective IBE to Full IBE and Selective HIBE 401

Parse e
(0)
Q = {Yι,0, Yι,1}ι

y := mpkv0
ỹ(0) := {Yι,yι

}ι

Output c := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

Decrypt(skid = ((σv0 , xv0), . . . , (σvn , xvn), σid, lpkid, lskid), c = (ỹ(0), Q̃(0), . . . , Q̃(n), T̃))

For i = 0, . . . , n − 1:
{c

(i)
ι,b}ι,b := Eval(Q̃(i), ỹ(i))

ỹ(i+1) := {SDec(pp, (vkvi
, σvi

, xvi
), c(i)ι,(xvi)ι

)}ι

{c
(n)
ι,b }ι,b := Eval(Q̃(n), ỹ(n))

z := lpkid
z̃ := {SDec(pp, (vkvn

, σid, z), c
(n)
ι,zι)}ι

c† := Eval(T̃, z̃)
Output m := D(lskid, c†)

7.1 Correctness

Correctness of the scheme follows by the same argument as for the scheme in
Sect. 6. Moreover, correctness of the delegation mechanism follows directly from
the the correctness of the delegation mechanism F.Delegate.

7.2 Proof of Security

We will now show that our scheme is sel-INDHIBE-secure.

Theorem 4. Assume that (KG,E,D) is an INDCPA-secure public-key-encryption
scheme, (SSetup,SGen,SSign,SEnc,SDec) is an INDOTSE-secure one-time signa-
ture with encryption scheme and that (Garble,Eval) is a garbling scheme. Then
(Setup,Delegate,KeyGen,Encrypt,Decrypt) is a sel-INDHIBE-secure HIBE scheme.

We will split the proof of Theorem4 into several lemmas. Let A be a PPT
adversary with advantage ε against the sel-INDHIBE-experiment, let id∗ be the
challenge identity, which is selectively chosen by A at the beginning of the
experiment and let n∗ := |id∗| be the length of the challenge identity. Let in
the following v0, . . . , vn∗ always denote the root-to-leaf path for the challenge
identity id∗.

We will start by providing an overview of the hybrids.

Hybrid H0. This hybrid is identical to the real experiment sel-INDHIBE
A , except

that on the challenge-path v0, . . . , vn we replace the pseudorandom function F
used for the generation of the identity keys by a function H, which is truly
random on the path from the root to the challenge identity and identical to
F (s, ·) everywhere else. This means, in particular, that we can choose the all the
keys on the path from the root to the challenge identity in advance and with

402 N. Döttling and S. Garg

truly random coins. It follows directly from the pseudorandomness property
of the delegatable pseudorandom function (F, F.Delegate) that the experiments
INDIBE(A) and H0 are computationally indistinguishable.

In the remaining hybrids, we will only change the way the challenge ciphertext
c∗ is computed. For i = 0, . . . , n∗ − 1 we define the hybrids H0, . . . ,H2n∗+3. As
in the last Section, we will first provide an overview of the extremal hybrids H0

and H2n∗+3 in Fig. 8.

Fig. 8. The extremal hybrids H0 and H2n∗+3

For i = 0, . . . , n∗ − 1 define the following hybrids.

Hybrid H2i+1. This hybrid is the same as H2i, except that we change the way Q̃(i)

and ỹ(i) are computed. Compute Q̃(i) and ỹ(i) by (Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q).

Hybrid H2(i+1). This hybrid is identical to H2i+1, except for the following change.
Instead of computing f

(i+1)
Q := {SEnc(pp, (vkvi

, id∗
i+1 ·�+ι, b), Yι,b)}ι,b we compute

f
(i+1)
Q := {SEnc(pp, (vkvi

, id∗
i+1 · � + ι, b), ỹ(i+1)

ι)}ι,b

The final 3 hybrids are given as follows.

Hybrid H2n∗+1. This hybrid is the same as H2n∗ , except that we change the
way Q̃(n∗) and ỹ(n

∗) are computed. Compute Q̃(n∗) and ỹ(n
∗) by (Q̃(n∗), ỹ(n

∗)) :=
GCSim(Q, fT).

Hybrid H2n∗+2. This hybrid is the same as H2n∗+1, except that we
change how fT is computed. Let eT = {Zι,0, Zι,1}ι. Instead of com-
puting fT by fT := {(SEnc(pp, (vkvkvn∗ , ι, b), Zι,b)}ι,b we compute fT :=
{(SEnc(pp, (vkn∗ , ι, b), z̃(n

∗)
ι)}ι,b.

Hybrid H2n∗+3. This hybrid is the same as H2n∗+2, except that we change the
way T̃ and z̃ are computed. Compute T̃ and z̃ by (T̃, z̃) := GCSim(Q, f), where
f := E(lpkid∗ ,m∗).

From Selective IBE to Full IBE and Selective HIBE 403

Lemma 7. We claim that for i = 0, . . . , n∗ − 1 the hybrids H2i and H2i+1 are
computationally indistinguishable, given that (Garble,Eval) is a secure garbling
scheme.

Proof. Assume towards contradiction that A distinguishes between H2i and
H2i+1 with non-negligible advantage ε. We will construct a distinguisher RA

that breaks the security of the garbling scheme with advantage ε. R simulates
the H2i experiment faithfully with the adversary A until A requests a challenge
ciphertext. Once A does request the challenge ciphertext, R computes

(T̃, eT) := Garble(1λ,T[m∗])
(Q̃(n∗), e

(n∗)
Q) := Garble(1λ,Q[pp, 2, eT])

For j = n∗ − 1, . . . , i + 1
(Q̃(j), e

(j)
Q) := Garble(1λ,Q[pp, id∗

j+1, e
(j+1)
Q]).

(Q̃(i), e
(i)
Q) := Garble(1λ,Q[pp, id∗

i+1, e
(i+1)
Q])

and sends the circuit Q[e(i)Q] and the input y(i) to the experiment. Once the
experiment returns Q̃(i), ỹ(i), R computes

For j = i − 1, . . . , 0
f
(j)
Q := {SEnc(pp, (vkvi

, id∗
j+1 · � + ι, b), ỹ(j+1)

ι)}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q)

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n∗), T̃)

and returns c∗ to A. R now continues the simulation of the H2i experiment and
outputs whatever the simulated H2i experiment outputs.

Clearly, if R’s challenge Q̃(i), ỹ(i) is distributed according to the real distrib-
ution, then the view of A in R’s simulation is identical to the view of A in H2i.
On the other hand, if R’s challenge is distributed according to the simulated
distribution, then the view of A in R’s simulation is identical to the view of A
in H2i+1. We conclude that

Adv(RA) = |Pr[H2i(A) = 1] − Pr[H2i+1(A) = 1]| ≤ ε,

which contradicts the security of the garbling scheme (Garble,Eval).

Lemma 8. We claim that for i = 0, . . . , n∗−1 the hybrids H2i+1 and H2(i+1) are
computationally indistinguishable, given that (SSetup,SGen,SSign,SEnc,SDec) is
an INDOTSE-secure IBE scheme.

Proof. We will construct an adversary RA that breaks the multi-challenge
INDOTSE-security of (SSetup,SGen,SSign,SEnc,SDec) with advantage ε. Let v∗ =
vi be the i-th node on the challenge-path. Let pp be the public parameters passed
to R. R first generates keys for the children v∗‖0 and v∗‖1 of v∗ by

(vk∗
b , sk

∗
b) := SGen(pp)

404 N. Döttling and S. Garg

if v∗‖b is on the challenge path and

(vk∗
b , sk

∗
b) := SGen(pp;F (s, v∗‖b))

otherwise. Next, R generates the local key lpkv∗ by (lpk∗, lsk∗) := KeyGen(1λ).
Now R sets x∗ := vkv∗‖0‖vkv∗‖1‖lpkv∗ , sends the challenge message x∗ to the
INDOTSE-experiment and receives a verification key vk and a signature σ.

R now chooses the keys for all nodes on the root-to-leaf path as in H2i+1,
except for the keys of v∗, which are chosen as follows.

vkv∗ := vk
vkv∗‖0 := vk∗

0

skv∗‖0 := sk∗
0

vkv∗‖1 := vk∗
1

skv∗‖1 := sk∗
1

xv∗ := vkv∗‖0‖vkv∗‖1‖lpkv∗

σv∗ := σ
Output (vkv∗ , σv∗ , xv∗ , lskv∗)

When the corresponding secret keys are required for the NodeGen procedure
on v∗‖0 and v∗‖1, use the corresponding secret keys skv∗‖0 and skv∗‖1 set above
in the modified procedure above.

R now continues the simulation. Once A requests a challenge-ciphertext for
the identity id∗, R generates the challenge ciphertext c∗ for A in the following
way.

(T̃, eT) := Garble(1λ,T[m∗])
(Q̃(n∗), e

(n∗)
Q) := Garble(1λ,Q[pp, 2, eT])

For j = n∗ − 1, . . . , i + 1
(Q̃(j), e

(j)
Q) := Garble(1λ,Q[pp, id∗

j+1, e
(j+1)
Q])

Parse e
(i+1)
Q = {(Yι,0, Yι,1)}ι

R now computes the messages M∗
0 := {Y

ι,1−x
(i+1)
ι

}ι and M∗
1 := {Y

ι,x
(i+1)
ι

}ι,

sends the challenge messages (M∗
0 ,M∗

1) to the INDOTSE-experiment and receives
a challenge ciphertext C∗ = (C∗

1 , . . . , C∗
�). Now R computes f

(i+1)
Q by f

(i+1)
Q :=

{Cι,b}ι∈[�], where Cι,xι
:= SEnc(pp, (vkv∗ , β · �+ ι, x

(i+1)
ι), Y

ι,x
(i+1)
ι

) and Cι,1−xι
:=

C∗
ι .

(Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q)

For j = i − 1, . . . , 0
f
(j)
Q := {SEnc(pp, (vkvj

, id∗
j+1 · � + ι, b), ỹ(j+1)

ι)}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q)

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n∗), T̃)

and returns c∗ to A. R now continues the simulation of the H2i+1 experiment
and outputs whatever the simulated H2i+1 experiment outputs.

From Selective IBE to Full IBE and Selective HIBE 405

We will now compute the advantage of RA. First notice that the keys pro-
vided by R to A are distributed exactly as in H2i+1 (and therefore do not depend
on i∗). If the challenge bit b∗ of the INDOTSE-experiment is 0, then the view of
A in R’s simulation is distributed exactly as in experiment H2i+1. On the other
hand, if b∗ = 1 then the view of A is distributed exactly as in experiment H2(i+1).
Thus we can conclude

Adv(RA) = |Pr[H2i+1(A) = 1] − Pr[H2(i+1)(A) = 1]| ≥ ε

Lemma 9. We claim that the hybrids H2n and H2n+1 are computationally
indistinguishable, given that (Garble,Eval) is a secure garbling scheme.

The proof proceeds analogous to the proof of Lemma7.

Lemma 10. We claim that the hybrids H2n+1 and H2n+2 are computationally
indistinguishable, given that the OTSE scheme (SSetup,SGen,SSign,SEnc,SDec)
is INDOTSE-secure.

The proof follows analogous to the proof of Lemma8.

Lemma 11. We claim that the hybrids H2n+2 and H2n+3 are computationally
indistinguishable, given that (Garble,Eval) is a secure garbling scheme.

Again, the proof follows analogous to the proof of Lemma7.

Lemma 12. The advantage of A in H2n+3 is negligible, given that (KG,E,D)
is INDCPA-secure.

Proof. We will construct an adversary RA that breaks the INDCPA-security of
(KG,E,D) with advantage ε. R simulates H2n∗+3 faithfully, with the exception
that it uses its own challenge public key pk∗ as public key lpkid∗ for the identity
id∗, i.e. it sets lpkid∗ := pk∗. It forwards A’s challenge messages m0 and m1 to the
INDCPA-experiment and uses its own challenge ciphertext c∗ as the ciphertext f
in the computation of the challenge ciphertext c∗. It follow directly that R
simulates H4n∗+3 perfectly and therefore AdvINDCPA(RA) = AdvH4n∗+3(A).

This concludes the proof of Theorem4.

References

[AB09] Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the
standard model (2009)

[ABB10a] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the
standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 28

[ABB10b] Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimen-
sion and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14623-7 6

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6

406 N. Döttling and S. Garg

[ACD+06] Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart,
N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–
311. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006 26

[AFL12] Abdalla, M., Fiore, D., Lyubashevsky, V.: From selective to full
security: semi-generic transformations in the standard model. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 316–333. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30057-8 19

[AS15] Asharov, G., Segev, G.: Limits on the power of indistinguishability obfus-
cation and functional encryption. In: Guruswami, V. (ed.) 56th Annual
Symposium on Foundations of Computer Science, Berkeley, CA, USA,
17–20 October 2015, pp. 191–209. IEEE Computer Society Press (2015)

[BB04a] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 14

[BB04b] Boneh, D., Boyen, X.: Secure identity based encryption without ran-
dom oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8 27

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.
org/10.1007/11426639 26

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) 19th Conference on Computer
and Communications Security, ACM CCS 2012, Raleigh, NC, USA, 16–18
October 2012, pp. 784–796. ACM Press (2012)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) 1st Conference on Com-
puter and Communications Security, ACM CCS 1993, Fairfax, Virginia,
USA, 3–5 November 1993, pp. 62–73. ACM Press (1993)

[CDG+17] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou,
A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 2

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-
based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 13

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 27

https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/978-3-642-30057-8_19
https://doi.org/10.1007/978-3-642-30057-8_19
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27

From Selective IBE to Full IBE and Selective HIBE 407

[Coc01] Cocks, C.: An identity based encryption scheme based on quadratic
residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS,
vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45325-3 32

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 18

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: 25th Annual Symposium on Foundations of
Computer Science, Singer Island, Florida, 24–26 October 1984, pp. 464–
479. IEEE Computer Society Press (1984)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GH09] Gentry, C., Halevi, S.: Hierarchical identity based encryption with poly-
nomially many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 437–456. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00457-5 26

[GHPT17] Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based
encryption from codes with rank metric. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 7

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.)
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, 17–20 May 2008, pp. 197–206. ACM Press (2008)

[GS02] Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 34

[HL02] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 31

[KR98] Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Cryptology
ePrint Archive, Report 1998/010 (1998). http://eprint.iacr.org/1998/010

[Lam79] Lamport, L.: Constructing digital signatures from a one-way function.
Technical report, October 1979

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[LW10] Lewko, A., Waters, B.: New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 27

[MM16] Mahmoody, M., Mohammed, A.: On the power of hierarchical identity-
based encryption. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 243–272. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49896-5 9

https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-642-00457-5_26
https://doi.org/10.1007/978-3-642-00457-5_26
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-46035-7_31
http://eprint.iacr.org/1998/010
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-662-49896-5_9
https://doi.org/10.1007/978-3-662-49896-5_9

408 N. Döttling and S. Garg

[NY89] Naor, M., Yung, M.: Universal one-way hash functions and their cryp-
tographic applications. In: 21st Annual ACM Symposium on Theory of
Computing, Seattle, WA, USA, 15–17 May 1989, pp. 33–43. ACM Press
(1989)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Sym-
posium on Theory of Computing, Baltimore, MA, USA, 22–24 May 2005,
pp. 84–93. ACM Press (2005)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signature and public-key cryptosystems. Commun. Assoc. Comput. Mach.
21(2), 120–126 (1978)

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blak-
ley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 5

[SW08] Shi, E., Waters, B.: Delegating capabilities in predicate encryption
systems. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 560–578. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 46

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 7

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, 3–5 November 1982, pp. 160–164. IEEE Computer Society Press
(1982)

https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-540-70583-3_46
https://doi.org/10.1007/978-3-540-70583-3_46
https://doi.org/10.1007/11426639_7

Multi-key Authenticated Encryption
with Corruptions: Reductions Are Lossy

Tibor Jager1, Martijn Stam2, Ryan Stanley-Oakes2(B), and Bogdan Warinschi2

1 Department of Computer Science, Paderborn University, Paderborn, Germany
tibor.jager@upb.de

2 Department of Computer Science, University of Bristol, Bristol, UK
{martijn.stam,ryan.stanley-oakes,bogdan.warinschi}@bristol.ac.uk

Abstract. We study the security of symmetric encryption schemes in
settings with multiple users and realistic adversaries who can adaptively
corrupt encryption keys. To avoid confinement to any particular defini-
tional paradigm, we propose a general framework for multi-key security
definitions. By appropriate settings of the parameters of the framework,
we obtain multi-key variants of many of the existing single-key security
notions.

This framework is instrumental in establishing our main results. We
show that for all single-key secure encryption schemes satisfying a mini-
mal key uniqueness assumption and almost any instantiation of our gen-
eral multi-key security notion, any reasonable reduction from the multi-
key game to a standard single-key game necessarily incurs a linear loss in
the number of keys. We prove this result for all three classical single-key
security notions capturing confidentiality, authenticity and the combined
authenticated encryption notion.

Keywords: Encryption · Multi-key · Corruption · Reductions · Tight-
ness

1 Introduction

In theory, most symmetric and public key cryptosystems are considered by
default in a single-key setting, yet in reality cryptographic ecosystems provide
an abundance of keys—and hence targets—for an adversary to attack. Often
one can construct a reduction that shows that single-key security implies multi-
key security, but typically such a reduction is lossy: an adversary’s multi-key
advantage is roughly bounded by the single-key advantage times the number of
keys n in the ecosystem. The ramifications of such a loss can be debated [16],
but undeniably in a concrete setting with perhaps 230 to 240 keys in circulation,
an actual loss of 30 to 40 bits of security would be considerable. Therefore the
natural question arises to what extent this loss in the reduction is inevitable.

This inevitable loss of reductions from multi-key to single-key has previ-
ously been addressed by Bellare et al. [6] when introducing multi-key security
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 409–441, 2017.
https://doi.org/10.1007/978-3-319-70500-2_14

410 T. Jager et al.

for public key schemes. Specifically, they provided a counterexample: namely
a pathological encryption scheme that has a small chance (about 1

n , where n
is a parameter) of leaking the key when used in a single-key environment. In
a multi-key scenario, where there are n key pairs, insecurity of the scheme is
amplified to the point where it becomes a constant. It follows that any generic
reduction, i.e. a reduction that works for any scheme, from the multi-key to
single-key security must lose a factor of about n. A similar example can be con-
cocted for symmetric schemes to conclude that there cannot be a tight generic
reduction from a multi-key game to a single-key game for symmetric encryption,
i.e. a reduction that works for all encryption schemes, since the reduction will
not be tight when instantiated by the pathological scheme. However, this does
not rule out all reductions, since a tighter reduction could exist that exploits
specific features of a certain class of (non-pathological) schemes.

Consider a setting with a security notion G for primitives (e.g. pseudoran-
domness for blockciphers), a security notion H for constructions (e.g. ciphertext
integrity for authenticated encryption), and suppose we are given a specific con-
struction C[E] building on any instantiation E of the primitive. A reduction R
would take adversary A against the H property of the construction and turn it
into one against the G property of the primitive. To be black-box, the reduction
R should not depend on A, but instead only use A’s input/output behaviour.
However, when considering black-box reductions, it turns out there are many
shades of black. Baecher et al. [4] presented a taxonomy of black-box reductions;
the shades of black emerge when considering whether R may depend on the con-
struction C and/or the primitive E or not. A fully black-box (BBB) reduction
works for all C and E , while partially black-box (NBN) reductions can depend
on the specific choice of C and E .

The pathological encryption schemes used as counterexamples are by nature
rather contrived and the one used by Bellare et al. is of dubious security even
in the single-key setting [6]. The counterexamples suffice to rule out tight BBB
reductions, but they do not rule out the existence of potentially large classes of
encryption schemes—perhaps practical ones, or even all secure ones—for which
a tight NBN reduction does exist. Clearly, such an NBN reduction could not be
generic, but instead would have to exploit some feature of the specific primitive
or construction under consideration. Even when the primitive is assumed ‘ideal’
as is common in symmetric cryptology, the relevant reductions typically still
depend on the details of the construction at hand, and are therefore not fully
(BBB) black-box. Concluding, for secure schemes the relation between single-key
and multi-key security is still largely unsettled.

Our Contribution. Focusing on authenticated encryption (AE) schemes, we
make two main contributions: a general multi-key security definition including
corruptions and lower-bounds on the tightness of black-box (NBN) reductions
from the multi-key security to the single-key security of AE schemes.

General Security Definition. The first complication we face is the choice of secu-
rity notions. As we recall in more detail in Sect. 2.1, there are many different

Multi-key Authenticated Encryption with Corruptions 411

ways of defining single-key security for AE. For instance, confidentiality can
be expressed in several (not necessarily equivalent) ways, including left-or-right
indistinguishability (LRIND) and ciphertexts being indistinguishable from ran-
dom strings (IND). Moreover there are different ways of treating nonces; each
defines a slightly different security notion.

When moving to a multi-key setting, the water becomes even more muddied,
especially when considering adaptive corruptions as we do. Adaptive corruptions
allow an adversary to learn some of the keys during the course of the multi-key
game; it models the real-life circumstance that not all keys will remain secret
and some will leak. In this setting, security can be formulated in (at least) two
ways: firstly using a hidden bit bi for each key Ki, with the adversary having to
guess the bit bi for a key Ki that has not been corrupted; and secondly, using a
single hidden bit b determining the ‘challenge’ oracles for all n keys (e.g. left or
right, real or random) with the adversary having to guess this bit b, under the
restriction that no single key gets both corrupted and challenged.

As we explain in the full version of the paper [31], these two approaches do
not appear to be tightly equivalent to each other. Furthermore, notions that used
to be equivalent in the single-key setting suddenly start drifting apart, something
previously observed in the multi-instance setting [8]. Again, this creates a bit of
a conundrum as to what is the ‘right’ multi-key security notion, where we want
to avoid a situation where we show that a reduction loss targeting one security
notion is inevitable, while leaving the door open for tight reductions targeting
another.

To avoid having to make a choice, we instead provide a general definition
for multi-key security game (Definition 7) that allows us to plug in the ‘flavour’
of AE security we desire, and of which the two approaches for dealing with
corruptions in a multi-key setting are special cases.

Lower Bounds on the Loss for Simple Reductions. Roughly speaking, we show
that for any member Gn of a large class of n-key security games that allow for
adaptive corruptions and for most AE schemes C[E] built on a single-key secure
AE scheme E (including C[E] = E), any black-box reduction from Gn for C[E]
to a standard single-key security game H1 for E incurs a loss that is close to n.
By ‘black-box’, we mean at least NBN: the reduction must be black-box with
respect to the adversary against Gn but can depend on C and E .

Figure 1 shows both the logic of our approach and the overall results. The
main idea is to first consider a very weak n-key security game, Kn, and show
that reductions from Kn to H1 are lossy. Then, for any n-key game Gn that
tightly implies Kn, the loss from Gn to H1 will have to match that from Kn to
H1 (or a contradiction would appear when composing the reduction from Kn to
Gn with that from Gn to H1). Our weak security notion Kn is a 1-out-of-n key
recovery game where the adversary first sees encryptions of fixed messages under
all n keys, then corrupts all but one key and must try to guess the uncorrupted
key. The choice for the three H1 notions AE−PAS, IND−PAS, and CTI−CPA is
inspired by their ubiquity in current AE literature (the naming convention is
clarified in Sect. 2.1).

412 T. Jager et al.

Fig. 1. A roadmap of our results, showing that some reductions between the security
notions for authenticated encryption are necessarily lossy. A green arrow G → G′

indicates that there is a non-lossy reduction from G′ to G (so security in the sense of G
implies security in the sense of G′). A red arrow G → G′ indicates that all reductions
from G′ to G have a loss that is linear in n. Theorem 15 and Corollary 18 concern
H1 = AE−PASX,1

E ; the other choices of H1 are treated in the full version of the paper
[31]. (Color figure online)

To show for each choice of H1 that reductions from Kn for C[E] to H1 for
E are lossy, we use three meta-reductions. Unlike using pathological schemes
as counterexamples, meta-reductions can easily deal with NBN reductions that
depend on the construction C and scheme E : a meta-reduction M simulates an
ideal adversary A against C[E] for a reduction R and then uses R to break E [3,
14,19]. Then one finds the inevitable loss factor of R by bounding the advantage
of M (in its interaction with R) by the advantage of the best possible adversary
against E . We remark that this technique is vacuous for insecure schemes E as
the resulting bound on the advantage of M is not meaningful.

More precisely, we show that for the three choices of H1, any black-box reduc-
tion running in time at most t from Kn for C[E] to H1 for E must lose

(
1
n + ε

)−1,
where ε is essentially the maximum advantage in H1 of an adversary running in
time n · t. These results hold provided that C[E] is key-unique: given sufficient
plaintext–ciphertext pairs the key is always uniquely determined. For almost all
variants Gn of our general n-key security game, there is a tight reduction from
Kn to Gn (Lemma 12); combining this tight reduction with the unavoidable loss
from Kn to H1 shows that any black-box reduction from Gn to H1 is lossy.

In summary, we show that for almost any variant Gn of the general n-key
security game and for H1 ∈

{
AE−PASX,1

E , IND−PASX,1
E ,CTI−CPAX,1

E
}

, if E is

“secure” in the sense of H1 and C[E] is key-unique, then any black-box reduction
from Gn to H1 with a “reasonable” runtime loses approximately n.

Related Work. The idea of using a weak auxiliary security game to prove
that reductions are lossy for more meaningful games was pioneered by Bader
et al. for public key primitives [3]. Bader et al. considered as their H1 notion a
non-interactive assumption, whereas our H1 games are highly interactive. The
main obstacle here is that our meta-reduction needs to simulate an appropriate

Multi-key Authenticated Encryption with Corruptions 413

environment towards n copies of the reduction, while having access only to
a single set of oracles for the considered single-key game. Thus we are forced
to devise an additional mechanism that allows the meta-reduction to simulate
responses to the oracle queries made by R and prove that R cannot distinguish
this simulation from the real oracles in its game.

Multi-key security was first considered in the public key setting [6], extending
the LRIND−CCA notion to a single-bit multi-key setting without corruptions. A
simple hybrid argument shows the loss of security is at most linear in the number
of keys; furthermore this loss is inevitable as demonstrated by a counterexample.
Relatedly, for many schemes a generic key recovery attack exists whose success
probability is linear in both time and the number of keys n [10,11,22]. For
schemes where this generic key recovery attack is actually the best attack (in
both the single-key and n-key games), this shows that security in the n-key
setting is indeed n times less than in the single-key setting. However, even for
very secure schemes it is unlikely that key recovery is the optimum strategy for
e.g. distinguishing genuine ciphertexts from random strings.

The danger of ignoring the loss in reductions between security notions is
by now widely understood [15,16] and has served as motivation for work on
improved security analysis that avoid the loss of generic reductions. Recent
results include multi-user security for Even–Mansour [34], AES-GCM with nonce
randomisation [9], double encryption [26], and block ciphers [42].

Tightness is better understood in the public key setting than in the sym-
metric setting. There are, for instance, many constructions of (identity-based)
public-key encryption [6,13,17,24,28], digital signatures [1,12,27,32,33,40], key
exchange protocols [2], as well as several different types of lower bounds and
impossibility results [18,21,23,29,36]. We emphasise that, for signature schemes
and public key encryption schemes, ‘tightly secure’ means that the reduction
from the scheme to some complexity assumption does not incur a multiplicative
loss equal to the number of signing or encryption queries.

There exist several other previous works describing meta-reductions from
interactive problems, such as the one-more discrete logarithm (OMDL) problem
[19,23,36,41]. However, all these works have in common that they consider a
significantly simpler setting, where the reduction is rewound a much smaller
number of times (typically only once), and with only a single oracle (the discrete
logarithm oracle).

2 Preliminaries

Notation. For any integer n ≥ 1 we use [n] to denote the set {1, . . . , n} and
for any i ∈ [n] we use [n \ i] to denote the set [n] \ {i}. For any finite set S we
write x←$S to indicate that x is drawn uniformly at random from S. In any
security experiment, if an adversary A has worst-case runtime t, then we say
A is a t-adversary. When A is clear from the context, we write tA for its worst
case runtime. Since our security notions are concrete, rather than asymptotic (as
is standard for symmetric cryptography), we loosely use the term “secure” to

414 T. Jager et al.

mean that, for all reasonable values of t, the advantage of any t-adversary in the
relevant security game is close to 0. Of course, what constitutes a “reasonable”
runtime depends on the model of computation and is beyond the scope of this
work.

2.1 Authenticated Encryption

Syntax. Both the syntax and security definitions for symmetric and then
authenticated encryption have evolved over the years. We will use the mod-
ern perspective where encryption is deterministic and takes in not just a key
and a message, but also a nonce, which could be used to provide an explicit
form of randomization. Our syntax is summarised in Definition 1 and is a sim-
plification of that used for subtle authenticated encryption [5]. For simplicity,
we omit any associated data, though our later results could be extended to that
setting; moreover we are not interested in the ‘subtle’ aspect, where decryption
might ‘leak’, e.g. unverified plaintext or multiple error symbols.

Definition 1 (Authenticated Encryption). An authenticated encryption
scheme is a pair of deterministic algorithms (E ,D) satisfying

E : K × N × M → C

D : K × N × C → M ∪ {⊥}

where K, M, N and C are subsets of {0, 1}∗ whose elements are called keys, mes-
sages, nonces and ciphertexts respectively. The unique failure symbol ⊥ indicates
that C was not a valid encryption under the key K with nonce N .

As is customary, we abbreviate E(K,N,M) by EN
K (M) and D(K,N,C) by

DN
K(C) and assume throughout that all authenticated encryption schemes satify,

for all K ∈ K, N ∈ N,M ∈ M and all C ∈ C, the following three properties:

1. (correctness) DN
K

(EN
K (M)

)
= M ,

2. (tidiness) DN
K(C) �= ⊥ ⇒ EN

K

(DN
K(C)

)
= C,

3. (length-regularity) |EN
K (M)| = enclen(|M |) for some fixed function enclen.

Correctness and tidiness together imply that D is uniquely determined by E ,
allowing us to refer to the pair (E ,D) simply by E [35].

Single-key Security Notions. An authenticated encryption scheme should
provide both confidentiality and authenticity. When defining an adversary’s
advantage, we separate these orthogonal properties by looking at the IND−PAS
and CTI−CPA security games, while also considering their combination AE−PAS
in a single game [38]. Below we discuss these notions in more detail, however
we defer formal definitions of the relevant games and advantages to the next
section, where they will be viewed as a special case of the multi-key games given
in Definition 7 (cf. Remark 9).

Multi-key Authenticated Encryption with Corruptions 415

The notions IND−PAS, CTI−CPA and AE−PAS are commonly called
IND−CPA, for indistinguishability under chosen plaintext attack; INT−CTXT,
for integrity of ciphertexts; and AE, for authenticated encryption (respectively).
However, we adhere to the GOAL−POWER naming scheme [5]. It makes explicit
that, in the first case, the adversary’s goal is to distinguish between real cipher-
texts and random strings (IND, for indistinguishability) without access to any
additional oracles (PAS, for passive); in the second case, the adversary’s goal is
to forge a well-formed ciphertext (CTI, for ciphertext integrity) and has access
to an ‘always-real’ encryption oracle (CPA, for chosen plaintext attack); and in
the third case, the adversary tries to either distinguish real ciphertexts from ran-
dom strings or forge a well-formed ciphertext (AE, for authenticated encryption),
without having access to any additional oracles (PAS). For the notions above,
we opted for minimal adversarial powers: it is often possible to trade queries to
additional oracles (such as a true encryption oracle) for queries to the challenge
oracle. We refer to Barwell et al. [5] for an overview of known relations between
various notions.

Nonce Usage Convention. All three of the games above have variants according
to how nonces may be used by the adversary in the game:

1. In the IV-based setting, denoted IV, the adversary is required to choose nonces
uniformly at random for each encryption query.

2. In the nonce-respecting setting, denoted NR, the adversary chooses nonces
adaptively for each encryption query, but may never use the same nonce in
more than one encryption query.

3. In the misuse-resistant setting, denoted MR, the adversary chooses nonces
adaptively for each encryption query and may use the same nonce in more
than one encryption query.

Remark 2. The customary definition for IV-based security lets the game select
the IVs [35]. We prefer the recent alternative [5] that provides the same inter-
face across the various notions by restricting the class of valid adversaries in
the IV-based setting to those who always provide uniformly random nonces
in encryption queries. (Note that there is no need to check the distribution of
nonces). This gives a subtly stronger notion, as a reduction will no longer be able
to ‘program’ the IV, which it would be allowed to do in the classical definition
(cf. [20,30]).

The results in this paper hold with the alternative, customary formulation
of IV-based encryption, with only cosmetic changes to the proof (to take into
account the changed interface).

Different Confidentiality Goals. Above we captured the confidentiality goal IND
as distinguishing between real ciphertexts and random strings of the appropriate
length. However, there are several competing notions to capture confidentiality,
all captured by considering a different challenge encryption oracle:

416 T. Jager et al.

– In left-or-right indistinguishability (LRIND) the challenge oracle is LR; on
input (M0,M1, N), this oracle returns EN

K (Mb) (here b is the hidden bit that
the adversary must try to learn).

– In real-or-random indistinguishability the challenge oracle, on input (M,N),
returns either EN

K (M) or EN
K ($), where $ is a random string of the same length

as M .
– In pseudorandom-injection indistinguishability the challenge oracle, on input

(M,N), returns either EN
K (M) or ρN (M), where ρ is a suitably sampled family

of random injections [25,38].

In the single-key setting, these four notions can be partitioned into two
groups of two each, namely left-or-right and real-or-random on the one hand and
IND and pseudorandom-injection indistinguishability on the other. Within each
group, the two notions can be considered equivalent, as an adversary against one
can be turned into an adversary against the other with the same resources and
a closely related advantage. Furthermore, security in the IND setting trivially
implies security in the LRIND setting, but not vice versa.

Summary. Thus, for each authenticated encryption scheme E , we potentially
obtain 5 × 4 = 20 security games (see Fig. 2) and for each we need to consider
three classes of adversary depending on nonce usage behaviour. However, for
single-key security, we will concentrate on nine notions only, namely GX,1

E , where

G ∈ {AE−PAS, IND−PAS,CTI−CPA},

X ∈ {IV,NR,MR}
and where the 1 in the superscript indicates that these are single-key security
games.

Remark 3. In this paper we use meta-reductions to analyse reductions from
multi-key games to single-key games for authenticated encryption. We show
that, for any AE scheme that is secure in a single-key sense, any reduction from
the multi-key game to the single-key game is lossy. We do not need to consider
equivalent single-key notions separately, as any scheme that is secure according
to one notion will be secure according to the other, and one can convert between
the single-key games without (significant) additional loss. From this perspec-
tive, we can leverage known equivalences as mentioned above. However, the set
{AE−PAS, IND−PAS,CTI−CPA} does not provide a comprehensive set of meta-
reduction results; for that we would have to consider for example LRIND−PAS
and IND−CCA as well (the full set would contain eight games). Nevertheless,
our results capture the single-key notions that are most commonly used.

2.2 Black-Box Reductions

Informally, a reduction R is an algorithm that transforms an adversary A in
some security game G into an adversary R(A) in a different security game G′.

Multi-key Authenticated Encryption with Corruptions 417

Fig. 2. The oracles available to the adversary for each GOAL−POWER security notion.
Formal definitions of each oracle are given in Fig. 4. (Many thanks to Guy Barwell for
providing this diagram.)

One hopes that, if the advantage AdvG(A) of A in G is high, then the advantage
AdvG

′
(R(A)) is also high. Here R breaks some scheme E , given an adversary

A that breaks a construction C[E] that uses E . The construction C is typically
fixed, so the reduction R may depend on it (though to unclutter notation we
leave this dependency implicit). On the contrary, when discussing the reduction
R, E is crucially quantified over some class of schemes C.

Three properties of a reduction R are usually of interest: how the resources,
specifically run-time, of the resulting adversary R(A) relate to those of A; how
the reduction translates the success of A to that of R(A); and how ‘lossy’ this
translation is, i.e. how AdvG

′
(R(A)) compares to AdvG(A). The overall picture

for a reduction, especially its loss, strongly depends on the class C of schemes
considered.

Formally, we take into account both the translation S and the relation T in
runtime into account by considering the quotient of A and R(A)’s work factors,
themselves defined as the quotient of time over success probability (cf. [3]).

Definition 4. We say that R is a (S,T) reduction from G to G′ if for every tA-
adversary A against G, RA is an T(tA)-adversary against G′ and AdvG

′
(R(A)) =

S(AdvG(A)). Furthermore, the tightness of a reduction R relative to the class of
schemes C is defined as

sup
A,E

AdvG(A) · tR(A)

AdvG
′
(R(A)) · tA

= sup
A,E

T(tA) · AdvG(A)
tA · S(AdvG(A))

where the supremum is taken over all schemes E in C and all (valid) adversaries
A against E.

Remark 5. Our quantification over valid adversaries only is inspired by the AE
literature’s reliance on only considering adversaries satisfying certain behaviour

418 T. Jager et al.

(e.g. to avoid trivial wins, or distinguish between IV, NR, and MR settings). In all
cases, one can recast to a security game that incorporates checks and balances
to deal with arbitrary adversarial behaviour. This recasting is without loss of
generality as an adversary in this more general game will be ‘aware’ that it is
making a ‘bad’ query and this bad behaviour does not influence the state of the
game (cf. [7]). Of course, when determining S we do need to take into account
whether the reduction R preserves validity.

In this paper we are concerned with simple, black-box reductions: these are
reductions that have only black-box access to adversary A, and that run A
precisely once (without rewinding). For a (S,T) simple reduction R we have that
T(tA) = tA+tR, where tR is the time taken for whatever additional work R does.
Henceforth, we write tR for this quantity, whenever R is a simple reduction.

These reductions compose in the obvious way: if R1 is a simple (S1,T1)
reduction from G1 to G2 and R2 is a simple (S2,T2) reduction from G2 to G3,
then we can construct a simple (S3,T3) reduction R3 from G1 to G3, where
S3(ε) = S2(S1(ε)) and T3(t) = T2(T1(t)).

Bounding Tightness. Precisely evaluating the tightness of a reduction can be
difficult, yet to show that for schemes in C any simple reduction R loses at least
some factor L, it suffices to show that for any R there exists a scheme E ∈ C
and a valid adversary A such that

AdvG(A)
AdvG

′
(R(A))

≥ L. (1)

Indeed, the desired lower bound follows since, for simple reductions,
T(tA) ≥ tA.

We briefly discuss two distinct techniques to establish a bound such as the
one above, in which the order of quantifiers is (∀R∃E∃A):

– Counterexample (∃E∀A∀R). Here, one shows that there exists a scheme E ∈ C
such that for any adversary A and any reduction R, inequality 1 is satisfied.
One drawback of such results is that they only imply the desired lowerbound
for a class of schemes C containing E ; tighter reductions might be possible
in the class C′ := C \ {E}. Moreover, if the counterexample scheme E is an
artificially insecure scheme (e.g. the one used by Bellare et al. [6]), then the
lowerbound might not hold within the class of secure schemes, which are
obviously of greater significance in practice.

– Meta-reduction Lowerbound (∀E∃A∀R). For any E ∈ C, this technique con-
structs an idealised adversary A with advantage 1 and then shows, via a
meta-reduction simulating A, that any simple reduction interacting with A
must have advantage at most L−1, yielding inequality 1. Thus we show that
the loss is a property of the reduction R, and not of the particular choice
of E ∈ C. The results in this paper, using the meta-reduction approach, hold
when C is any non-empty subset of the class of secure schemes that satisfy
the key uniqueness assumption. Since C could contain just one element E , our

Multi-key Authenticated Encryption with Corruptions 419

results show that even a reduction that is tailored to the specific details of E
cannot be tight. On the other hand, our results are not directly comparable
to those of Bellare et al. [6], since the artificially insecure scheme used in their
counterexample does not belong to any class C we consider here.

Remark 6. An alternative definition of tightness might consider only ‘reason-
able’ adversaries A in the supremum, namely those for which tA is not too large.
Our meta-reduction approach would not work in this setting, since the idealised
adversary A we construct has an extremely large (and wholly unfeasible) run-
time as it performs an exhaustive search over all possible keys. Nevertheless,
reductions R that are black-box with respect to A have no way of ‘excluding’
such unrealistic adversaries and so we feel it is not reasonable to exclude them
in the definition of tightness. We remark that unrealistic adversaries are not
uncommon in the meta-reduction literature [3].

3 Multi-key Security Notions

Multi-key Security with Adaptive Corruptions. In the single-key case,
the challenge oracles depend on a single hidden bit b and it is the job of the
adversary to try and learn b. The straightforward generalization [6] to a multi-
key setting (with n keys) is to enrich all the oracles to include the index i ∈ [n]
of the key Ki that will then be used by the oracle. Thus the challenge oracles
for distinct keys will all depend on the same single hidden bit b.

However, in a realistic multi-key setting, an adversary might well learn some
of the keys. For instance, consider the situation where an attacker passively mon-
itors millions of TLS connections and adaptively implants malware on particular
endpoint devices in order to recover the session keys for those devices. We still
want security for those keys that have not been compromised; the question is
how to appropriately model multi-key security.

There are two natural approaches to model multi-key security games in the
presence of an adaptive corruption oracle Cor that, on input i ∈ [n], returns the
key Ki. The approaches differ in how they avoid trivial wins that occur when the
adversary corrupts a key that was used for a challenge query. In one approach,
the same bit is used for the challenge queries throughout, but the adversary is
prohibited from using the same index i for both a corruption and challenge query
(cf. [37]). In another approach, for each index i there is an independent hidden
bit bi to guess and the adversary has to specify for which uncorrupted index its
guess b′ is intended (cf. [8]).

As far as we are aware, these two approaches have not been formally com-
pared; moreover we could not easily establish a tight relationship between them.
However, as we show, both options lead to a reduction loss linear in n. To do so,
we will use a novel way of formalizing a multi-key security game with adaptive
corruptions that encompasses both options mentioned above.

In our generalised game (Definition 7) there are n independently, uniformly
sampled random bits b1, . . . , bn. Each challenge query from the adversary must

420 T. Jager et al.

Fig. 3. The GOAL−POWERX,n
E games, where X ∈ {IV,NR,MR}, n ≥ 1, GOAL ∈

{AE, LRAE, IND, LRIND,CTI} and POWER ∈ {CCA,CPA,CDA,PAS}. The oracles O
available to the adversary always include the corruption oracle Cor; the other oracles
depend on GOAL and POWER, as indicated in Fig. 2.

specify two indices, i, j ∈ [n], such that the response to the query depends on
key Ki and hidden bit bj . The two ‘natural’ multi-key games are special cases of
this general game: in the single-bit game the adversary is restricted to challenge
queries with j = 1, whereas in the multi-bit game only challenge queries with
i = j are allowed.

Our impossibility results hold regardless how the hidden bits are used: we
only require that for any i ∈ [n] there exists some j ∈ [n] such that the adversary
can make a challenge query corresponding to Ki and bj . In other words, our
impossibility results hold provided that the adversary can win the game by
‘attacking’ any of the n keys in the game, not just some subset of the keys.

Definition 7 (Security of AE). Let GOAL ∈ {AE, LRAE, IND, LRIND,CTI},
POWER ∈ {CCA,CPA,CDA,PAS}, X ∈ {IV,NR,MR} and n ≥ 1. Then for any
authenticated encryption scheme E and adversary A, the advantage of A against
E with respect to GOAL−POWERX,n is defined as

AdvGOAL−POWER,X,n
E (A) := 2 · Pr

[
GOAL−POWERX,n

E (A) = 1
]

− 1 ,

where the experiment GOAL−POWERX,n
E (A) is defined in Fig. 3, with the oracles’

behaviour shown in Fig. 4 and their GOAL−POWER-dependent availability in
Fig. 2 (all games have access to Cor).

Whenever the experiment G = GOAL−POWERX,n
E (A) is clear from the con-

text, we write AdvG(A) for the advantage of A in experiment G.
The outline games are deliberately kept simple, but are trivial to win: if A

corrupts a key Ki and then issues a challenge query corresponding to Ki and
a hidden bit bj , then it is trivial for A to compute bj from the response to the
query; successfully ‘guessing’ bj does not represent a meaningful attack. In our
formal syntax, we say j is compromised iff there is some i ∈ [n] such that A has
issued a query Cor(i) and A has also issued some challenge query of the form
Enc(i, j,−,−), LR(i, j,−,−,−) or Dec(i, j,−,−). We disallow such trivial wins.

Relatedly, we follow the AE literature in disallowing certain combinations
of queries that lead to trivial wins (prohibited queries), or that are inconsistent

Multi-key Authenticated Encryption with Corruptions 421

Fig. 4. Oracles for the GOAL−POWERX,n
E security games. Without loss of generality,

we assume that all oracles return � if the input arguments do not belong to the relevant
sets. For example, the E oracle will return � on any input (i,M,N) that is not a member
of [n] × M × N.

with the nonce notion under consideration. Without loss of generality, we also
disallow queries where the response from the oracle can be computed by the
adversary directly without making the query, e.g. using correctness (pointless
queries). The relevant—and standard—definitions are given in Combining the
various restrictions leads to the notion of valid adversaries (cf. Remark 5), as
summarised in Definition 8 below.

Definition 8 (Valid Adversaries). An adversary against GOAL−POWERX,n
E

is valid iff:

1. it does not output
(
j, b′

j

)
where j was compromised;

2. it does not make pointless or prohibited queries;
3. it uses nonces correctly with respect to X.

Remark 9 (Recovering the Single-Key Security Notions). Setting n = 1 in
Definition 7 yields formal definitions of the single-key security games for authen-
ticated encryption, albeit with a more complicated interface than one is used to:
the specification of i and j becomes redundant, as does the corruption oracle for
valid adversaries. Indeed, to simplify notation in the case n = 1, we often omit
i and j from the queries made, refer to the hidden bit b1 as b, and only expect
a simple guess b′ by an adversary.

Relations Among Multi-key Notions. We discuss the relations between
different single-user and multi-user security notions in the full version of the
paper [31].

422 T. Jager et al.

Fig. 5. Key recovery game with n keys and the hard-coded messages M1, . . . ,Ml. With-
out loss of generality, we separate the adversary A into two components A1 and A2.

Key Recovery Notions. For our meta-reduction, we use an auxiliary, key
recovery game KEYRECM ,n

E (Definition 10). Here there are n unknown keys and
the adversary is provided with encryptions under each of the keys of the hard-
coded (and hence known) messages M ∈ Ml, using known, yet random, nonces.
Then the adversary provides an index i∗ ∈ [n], learns the n − 1 keys (Ki)i∈[n\i∗]
and tries to guess the uncorrupted key.

Definition 10. For any integers n, � ≥ 1, messages M = (M1, . . . ,M�) ∈ M�,
AE scheme E and any adversary A = (A1,A2), the advantage of A against
KEYRECM ,n

E is defined as

AdvKEYREC,M ,n
E (A) := Pr

[
KEYRECM ,n

E (A) = 1
]
,

where the experiment KEYRECM ,n
E (A) is given in Fig. 5.

Of course, it might be the case that it is impossible to win the key recovery
game with certainty, since there could be more than one key that ‘matches’ the
messages, nonces and ciphertexts. For our tightness results, we need to assume
that there is some reasonably small l and some messages M1, . . . ,Ml such that
the key recovery game corresponding to M1, . . . ,Ml can be won with certainty;
we call this the key uniqueness property; its definition is below.

Definition 11. Let E be an authenticated encryption scheme. Suppose there is
some integer l ≥ 1 and certain messages M1, . . . ,Ml ∈ M such that,for all keys
K ∈ K and all nonces N1, . . . , Nl ∈ N,

{
K ′ ∈ K : ENi

K′ (Mi) = ENi

K (Mi) for all i ∈ 1, . . . , l
}

= {K}.

Then we say E is M -key-unique, where M = (M1, . . . ,Ml) ∈ Ml. This means
that encryptions of M1, . . . ,Ml under the same key uniquely determine the key,
regardless of the nonces used.

Multi-key Authenticated Encryption with Corruptions 423

As mentioned above, KEYRECM ,n
E corresponds to a very weak notion of

security. In the following Lemma, we prove that this weak notion of security
is implied, with only a small loss, by many of the more reasonable n-key security
notions given in Definition 7. For succinctness we present the reduction in a com-
pact way, but split the analysis in different cases (depending on the adversary
goal and on the requirements to respect uniqueness or not).

Lemma 12. Let GOAL ∈ {AE, LRAE, IND, LRIND,CTI}, POWER ∈ {CCA,
CPA} and suppose E is M -key-unique. Then there exists an (S,T) simple reduc-
tion from KEYRECM ,n

E to GOAL−POWERX,n
E with T(tA) = tA + (l + mGOAL)tE

and S(εA) = δX ·δGOAL·εA, where mIND = m ≥ 1, an arbitrary integer; mGOAL = 1
if GOAL �= IND; tE is a bound on the runtime of a single encryption with E;

δX =

{
1 − nl(l−1)+mGOAL(mGOAL+2l−1)

2|N| , if X = NR

1, if X �= NR

and

δGOAL =

{
1 − 1

2m , if GOAL = IND

1, if GOAL �= IND.

Note that δX and δGOAL are both close to 1: m can be set arbitrarily large and,
for useful encryption schemes, the nonce space N is very large.

Remark 13. We are unable to show a corresponding result for POWER = CDA
or POWER = PAS. This is because we need the ‘always real’ encryption oracle E
to simulate the environment of A in the key recovery game. As a consequence,
looking forward, our lower bounds for tightness of simple reductions hold only
for n-key games with such an oracle. Nevertheless, we feel it is natural to give
the n-key adversary access to the E oracle so that, for example, the adversary
can use queries to this oracle to determine which keys to corrupt and which to
challenge.

Proof. We construct RA that runs the key recovery adversary A to obtain the
key used by the challenge oracle(s) and then uses it to guess the hidden bit b1.
Therefore RA will return (1, b′

1) and wins if b′
1 = b1.

For each i ∈ [n] and j ∈ [l], RA samples Ni,j←$N and then queries the
encryption oracle E on input (i,Mj , Ni,j), receiving Ci,j (unless RA has made
this query before, since this is a pointless query, in which case it just sets Ci,j

to be the response from the last time the query was made). Then RA passes
(Ci,j , Ni,j)i∈[n],j∈[l] to the key recovery adversary A.

When A returns an index i∗, RA queries Cor on each i ∈ [n \ i∗] and passes
(Ki)i∈[n\i∗] to A.

When A returns a key K∗, RA checks if ENi∗,j

K∗ (Mj) = Ci∗,j for each j ∈ [l]. If
not, then A has been unsuccessful, so RA samples a random bit b′

1←${0, 1} and
returns (1, b′

1). If the tests all succeed, then by M -key-uniqueness, K∗ = Ki∗ .
Then RA does the following:

424 T. Jager et al.

– If GOAL = IND, for i = 1, 2, . . . ,m (for some “large” m), RA chooses random
M∗

i ←$M and N∗
i ←$N such that M∗

i �= Mj for all j ∈ [l]. Then RA queries
Enc on input (i∗, 1,M∗

i , N∗
i), receiving C∗

i . If for all i = 1, 2, . . . ,m it holds
that EN∗

i

K∗ (M∗
i) = C∗ then RA returns (1, 0). Else, RA returns (1, 1).

– If GOAL = LRIND, RA chooses random M∗
0 ,M∗

1 ←$M and N∗←$N such that
|M∗

0 | = |M∗
1 |, M∗

0 �= Mj and M∗
1 �= Mj for all j ∈ [l]. Then RA queries LR

on input (i∗, 1,M∗
0 ,M∗

1 , N∗), receiving C∗. If EN∗

K∗ (M∗
0) = C∗, RA returns

(1, 0). Else, RA returns (1, 1).
– If GOAL ∈ {AE, LRAE,CTI}, RA chooses random M∗←$M and N∗←$N such

that M∗ �= Mj for all j ∈ [l]. Then RA computes C∗ ← EN∗

K∗ (M∗) and queries
Dec on input (i∗, 1, C∗, N∗), receiving M . If M �= ⊥, RA returns (1, 0). Else,
RA returns (1, 1).

For GOAL ∈ {LRIND,AE, LRAE,CTI}, the adversary RA returns (1, b) with
b = b1 whenever the adversary A against key recovery is successful.

For GOAL ∈ {IND}, the adversary RA always returns the correct bit if b1 = 1.
It also returns the correct bit b1 = 0, provided that the random ciphertexts
(C∗

i)i∈[m] that oracle Enc returns do not all collide with the true ciphertexts

EN∗
i

K∗ (M∗
i). This collision event occurs with probability at most 1

2m .
In other words, for GOAL ∈ {IND, LRIND,AE, LRAE,CTI}, R succeeds when-

ever A succeds if b1 = 0, while, if b1 = 1, then R succeeds with the same
probability that A succeds multiplied by δGOAL, where δGOAL = 1 for GOAL ∈
{LRIND,AE, LRAE,CTI} and δGOAL =

(
1 − 1

2m

)
for GOAL = IND.

Whenever A does not recover K∗, RA guesses correctly with probability 1
2 .

Putting it all together we get the following:

Pr
[
GOAL−POWERX,n

E (RA) = 1
]

= Pr
[
KEYRECM ,n

E (A) = 1
]

·
(

1 − 1 − δGOAL

2

)

+
1
2

·
(
1 − Pr

[
KEYRECM ,n

E (A) = 1
])

= Pr
[
KEYRECM ,n

E (A) = 1
]

·
(

1
2

− 1 − δGOAL

2

)
+

1
2
,

from which we obtain

AdvGOAL−POWER,X,n
E (RA) = 2

(
Pr

[
GOAL−POWERX,n

E (RA) = 1
]

− 1
2

)

= δGOAL · Pr
[
KEYRECM ,n

E (A) = 1
]

= δGOAL · AdvKEYREC,M ,n
E (A)

= δGOAL · εA.

Ignoring the time taken for random sampling, the runtime of RA is precisely
the runtime of A, plus the time taken for additional encryptions using K∗: if

Multi-key Authenticated Encryption with Corruptions 425

GOAL = IND, there are l + m additional encryptions and, if GOAL �= IND, there
are l + 1 additional encryptions. It follows that

tRA = tA + (l + mGOAL)tE ,

where mIND = m and mGOAL = 1 for GOAL �= IND.
Moreover, RA, doesn’t compromise b1 and makes no pointless or prohibited

queries: no queries are repeated, the messages used to generate the challenge
queries do not appear in any of the previous encryption queries under key Ki∗

and, in the LRIND case, the challenge messages are of equal length. It follows
that RA is a valid adversary against GOAL−POWERX,n

E for X ∈ {IV,MR}, since
nonces are always chosen uniformly at random.

If X = NR, RA might not be a valid adversary, since the randomly chosen
nonces might accidentally collide. So we modify RA to abort and output a
random bit whenever there is a collision among the l randomly chosen nonces
(Ni,j)j∈[l] for each i ∈ [n\i∗], or among the l+mGOAL randomly chosen nonces for
encryptions under Ki∗ : the l + m nonces (Ni∗,j)j∈[l] and (N∗

i)i∈[m], if GOAL =
IND, and the l + 1 nonces (Ni∗,j)j∈[l] and N∗, if GOAL �= IND. Then RA is
a valid adversary and its advantage is εA multiplied by the probability that
no such nonce collisions happen. By a simple union bound the probability of
a collision among the l randomly chosen nonces (Ni,j)j∈[l] is at most l(l−1)

2|N| for
each i ∈ [n\ i∗] and the probability of a collision among the l+mGOAL randomly
chosen nonces for i∗ is at most (l+mGOAL)(l+mGOAL−1)

2|N| . Thus the probability of a
collision among the nonces for any of the n keys is at most

(n − 1)
l(l − 1)

2|N| +
l + mGOAL(l + mGOAL − 1)

2|N|
=

nl(l − 1) + mGOAL (mGOAL + 2l − 1)
2|N|

= 1 − δNR.

Thus the advantage of RA is εRA ≥ δNR · δGOAL · εA, as desired. �
Remark 14. In the proof, we assumed that the adversary is allowed to associate
the bit b1 with any of the n keys K1, . . . ,Kn. While this is permitted according
to our definition of the GOAL−POWERn,X

E game, in fact the result holds for
more restrictive games: we only require that for all i ∈ [n] there exists some
j ∈ [n] such that the adversary can associate the bit bj with the key Ki. In this
case, RA uses the recovered key K∗ from A to determine the value of any hidden
bit bj that can be associated with Ki∗ .

4 Multi-key to Single-Key Reductions Are Lossy

In this section we present our main results: any simple black-box reduction from
multi-key security (in its many definitional variants) to single-key security loses

426 T. Jager et al.

a linear factor in the number of keys. Two remarks are in order. First, we show
the lower bound for reductions from the security of an arbitrary construction of
an (authenticated) encryption scheme C[E] to that of E (and in particular for
the case where C[E] = E). This more general setting encompasses interesting
cases, e.g. where C[E] is double encryption with E , i.e.

C[E](N1,N2)
(K1,K2)

(M) = EN2
K2

(
EN1

K1
(M)

)
,

which has been shown to have desirable multi-key properties [26]. Furthermore,
showing the separation for C[E] and E also suggests how to circumvent the lower
bound for the loss that we provide. Our lower bound requires that C[E] satisfies
key-uniqueness. It may therefore be possible to start from a secure single-key
security that satisfies key-uniqueness, and show a tight reduction from multi-
key security of a variant C[E] of E , provided that C[E] somehow avoids key
uniqueness.

We consider separately reductions between different security flavours
(authenticated encryption, privacy, integrity). For each case in turn, we pro-
ceed in two steps. First, we establish that if E is a (single-key) secure encryption
scheme and C[E] is a key-unique encryption scheme, then all simple reductions
from the multi-key key recovery game for C[E] to the single-key security game
for E are lossy. Since by Lemma 12 there is a tight reduction from multi-key key
recovery to multi-key security, it is an immediate corollary that there is no tight
reduction from the multi-key security of C[E] to the single-key security of E .

An interesting remark is that the bound on the inherent loss of simple reduc-
tions depends on the security of the scheme E : the more secure the scheme, the
tighter the bound. While our bound is therefore not meaningful for insecure
schemes, this case is of little interest in practice.

Authenticated Encryption. We give the formal results for the case of authenti-
cated encryption below.

Theorem 15. Let E and C[E] be AE schemes such that C[E] is M -key-unique
for some M ∈ Ml. Then, for X ∈ {IV,NR,MR}, any simple reduction R from
KEYRECM ,n

C[E] to AE−PASX,1
E loses at least

(
1
n + 2ε

)−1, where ε is the maximum

advantage for a valid adversary against AE−PASX,1
E running in time at most

ntR + 2l(n − 1)tC[E] (where tC[E] is an upper-bound on the runtime of a single
encryption with C[E]).

We sketch the proof before giving its details below. The crucial idea, following
[3], is to construct a meta-reduction M that rewinds the reduction R in order to
simulate its interaction with an ideal adversary A against KEYRECM ,n

C[E] . If the
simulation works correctly, then the output of R can be used by M to win the
AE−PASX,1

E game with probability εR. Then the (single-key) security of E yields
an upper-bound on the success probability of M, i.e. an upper-bound on εR.

We view R as a collection of three algorithms, R = (R1,R2,R3). The first,
R1, makes oracle queries in the AE−PASX,1

E game, then produces the ciphertexts

Multi-key Authenticated Encryption with Corruptions 427

and nonces that A expects to receive in the KEYRECM ,n
C[E] game. The second, R2,

receives an index i∗ from A and the state st1 of the previous algorithm, R1.
Then R2 makes oracle queries and eventually produces the vector of keys that
A expects to receive in the KEYRECM ,n

C[E] game. Finally, R3 receives a guessed key
K∗ from A and the state st2 of R2. Then R3 makes oracle queries and outputs
a guessed bit b′.

M only rewinds R2: M executes R2 on each of the n possible indices i∗ that
could be returned by A and each R2 then returns a set of keys. Then M uses
the keys returned by one execution of R2 to construct the input to a different
execution of R3, i.e. st2 given to R3 will not be from the same execution of R2

used to construct the ‘guessed’ key K∗.
The main obstacle in arguing that the above strategy works is that M needs

to break AE−PASX,1
E , which is an interactive assumption. This is in contrast

to the meta-reductions from [3], which are designed to violate a non-interactive
complexity assumption. In our case, M needs to simulate an appropriate envi-
ronment towards multiple copies of R, each of which may make oracle queries,
yet M has access to a single set of oracles for the AE−PASX,1

E game. It is not
obvious that M can simply forward queries from all copies of R to these oracles,
since queries across different invocations of R may interfere with one-another
and render M invalid. The key observation is that we can leverage the single-
key security of E : instead of forwarding queries, M simply simulates the Enc
and Dec oracles by sampling random ciphertexts and returning ⊥, respectively.
We argue, based on the security of E , that R cannot distinguish this simulation
from the real oracles in its game.

Proof. For ease of notation, let K, M, N and C be the sets of keys, messages,
nonces and ciphertexts, respectively, for the construction C[E] (even though they
may differ from the corresponding sets for E , but we shall not need to refer to
those in the proof).

Consider the following (inefficient) adversary A = (A1,A2) in the game
KEYRECM ,n

C[E] . On input

(Ci,j , Ni,j)i∈[n],j∈[l] ,

A1 first checks that each Ci,j ∈ C and each Ni,j ∈ N. If this check fails, then A1

aborts (by outputting a random index i∗ ∈ [n] and recording an abort message
in the state stA for A2, triggering the latter to output ⊥). If the check succeeds,
then A1 chooses i∗ ∈ [n] uniformly at random, sets

stA ←
(
i∗, (Ci,j , Ni,j)i∈[n],j∈[l]

)

and outputs (i∗, stA). On input
(
(Ki)i∈[n\i∗] , stA

)
, A2 checks that Ki is valid

for each i ∈ [n \ i∗], that is:

1. Ki ∈ K
2. For each j ∈ [l], C[E]Ni,j

Ki
(Mj) = Ci,j .

428 T. Jager et al.

If this check fails, then A2 outputs ⊥. If the check succeeds, then A2 uses exhaus-
tive search to find some K∗ ∈ K such that C[E]Ni∗,j

K∗ (Mj) = Ci∗,j for each j ∈ [l].
Since C[E] is M -key-unique, either K∗ exists and is unique, or the ciphertexts
Ci∗,j were not all encryptions of the messages Mj with the nonces Ni∗,j under
the same key. So if A2 does not find a K∗ with this property, it outputs ⊥.
Otherwise it outputs K∗.

It is clear that the advantage of A is εA = 1 since, in the real KEYRECM ,n
C[E]

game, all the checks performed by A will succeed and K∗ is uniquely defined.
We construct a meta-reduction M that simulates the environment of R in

its interaction with this ideal adversary A. Then M will use the output of R to
play the AE−PASX,1

E game. In what follows, we describe M in detail. A diagram
showing the overall structure of the interaction between M and R is given in
Fig. 6.

Fig. 6. An overview of the meta-reduction M, which rewinds a reduction R =
(R1,R2,R3). The inputs to each component of the reduction R are shown in teal,
while the outputs are shown in blue. Some oracle queries from R are forwarded to
the oracles in the game played by M and the responses sent back, while other oracle
queries from R are faked by M. (Color figure online)

First, K∗ is initialised to ⊥. Then, M uses its oracles to simulate the oracles
used by R1 by simply forwarding the queries from R1 and the responses from
the oracles, until R1 returns

(
(Ci,j , Ni,j)i∈[n],j∈[l] , st1

)
.

Then M checks that each Ci,j ∈ C and each Ni,j ∈ N. If this check fails, M
‘aborts’ just as A would. That is, M runs R2 on input (i, st1) for a random index
i∗ ∈ [n], forwarding oracle queries and responses, receives

(
(Ki)i∈[n\i∗] , st2

)

from R2, runs R3 on input (⊥, st2), receives a bit b′ and outputs this in its
game. If, on the other hand, the check succeeds, then M chooses i∗ uniformly
at random from [n] and does the following for each i ∈ [n]:

Multi-key Authenticated Encryption with Corruptions 429

1. M runs R2 on input (i, st1), which we call Ri
2 for ease of readability.

2. When Ri
2 makes oracle queries:

(a) If i = i∗, M uses its oracles to honestly answer all oracle queries; for-
warding the queries to its oracles and then forwarding the replies to
Ri∗

2 .
(b) If i �= i∗, M simulates the ‘fake’ oracles, i.e. the oracles Enc and Dec in

the case b = 1. Concretely, when Ri
2 makes an encryption query (M,N),

M samples C←${0, 1}enclen(|M |) and returns this to Ri
2.

1 When Ri
2 makes

a decryption query (C,N), M returns ⊥ to Ri
2.

3. When Ri
2 outputs

((
Ki

r

)
r∈[n\i]

, sti2

)
, if i �= i∗ then M checks if Ki

i∗ is valid,
i.e.
(a) Ki

i∗ ∈ K,
(b) For each j ∈ [l], C[E]Ni∗,j

Ki
i∗

(Mj) = Ci∗,j .

If Ki
i∗ is valid, then K∗ ← Ki

i∗ . By M -key-uniqueness, Ki
i∗ is the only key

with this property.

At the end of these runs of R2, if Ri∗

2 did not provide a full set of valid keys,
i.e. Ki∗

r is not valid for some r ∈ [n \ i∗], then M sets K∗ ← ⊥ (mirroring the
check performed by A2).

If Ri∗

2 did provide a full set of valid keys, but K∗ = ⊥, (so none of the
Ri

2, i �= i∗ provided a valid key Ki
i∗), M aborts the simulation and returns a

random bit. We call this event BAD.
Otherwise, M runs R3 on input

(
K∗, sti

∗

2

)
, forwarding oracle queries from

R3 to its oracles and sending back the responses.
When R3 outputs a bit b′, M returns this bit in its game.
Now we consider the resources of M and its advantage in the AE−PASX,1

E
game.

M performs n runs of (part of) R and carries out 2(n−1)l encryptions with
C[E] (checking validity of Ki

i∗ for each i �= i∗ and checking validity of Ki∗

r for
each r �= i∗), so if we ignore the time taken for random sampling and checking
set membership, the runtime of M is at most ntR + 2l(n − 1)tC[E]. Moreover,
M makes at most qR oracle queries, since it only forwards the queries from R1,
Ri∗

2 and R3.
Now consider the advantage εM of M in AE−PASX,1

E . From the definition
of a simple reduction, R must be a valid adversary in AE−PASX,1

E whenever A
is a valid adversary in KEYRECM ,n

C[E] . But all adversaries are automatically valid

in KEYRECM ,n
C[E] , so R must always be a valid adversary against AE−PASX,1

E .
Now the oracle queries M makes are exactly the same queries as

(R1,Ri∗

2 ,R3

)

makes in the same game. Since R is a valid adversary, this shows that M does
not make pointless or prohibited queries and uses nonces correctly with respect
to X. Therefore M is a valid adversary against AE−PASX,1

E and so εM ≤ ε.
Note that for R1,Ri∗

2 and R3, M answers the oracle queries honestly with its
own oracles. Therefore M correctly simulates the view of

(R1,Ri∗

2 ,R3

)
in the

1 Of course, here enclen refers to the lengths of ciphertexts from E , not C[E].

430 T. Jager et al.

game AE−PASX,1
E . However, M might not correctly simulate the responses from

A. Indeed, to correctly simulate A, M requires that some Ri
2, i �= i∗ provides a

valid key Ki
i∗ , but the oracle queries from Ri

2, i �= i∗ are not handled honestly.
The imperfect simulation of the view of Ri

2 might make it less likely to provide a
valid key Ki

i∗ . We will therefore need to show that the change in behaviour of the
Ri

2 due to the imperfect simulation is small. The intuition for this claim is that
if Ri

2 could distinguish between the honest and the simulated oracles (having
only received an index i from the key-recovery adversary A, not a key), then one
can use (R1,Ri

2) directly, without A, to win the single-key game AE−PASX,1
E .

Consider the three possible scenarios:

1. Ri∗

2 did not provide a full set of valid keys.
2. Ri∗

2 did provide a full set of valid keys and, for some i �= i∗, Ri
2 provided a

valid key Ki
i∗ .

3. Ri∗

2 did provide a full set of valid keys, but, for each i �= i∗, Ri
2 did not

provide a valid key Ki
i∗ .

In the first case, both M and A submit ⊥ to R3 as their ‘key’, so the
simulation is correct. In the second case, both M and A submit a key K∗ to R3

that satisfies C[E]Ni∗,j

K∗ (Mj) = Ci∗,j for all j ∈ [l], and K∗ is the only key with
this property by the M -key-uniqueness of C[E]. So the simulation is correct in
this case too.

The third case is the event BAD and is where the simulation fails. By con-
struction M aborts the simulation if BAD occurs and outputs a random bit.
Given that BAD does not occur, the view of

(R1,Ri∗

2 ,R3

)
in its interaction

with A and the AE−PASX,1
E oracles is identical to its view in its interaction with

M and M returns the bit b′ returned by R3. This shows that

Pr
[
AE−PASX,1

E (R) = 1
]

= Pr
[
AE−PASX,1

E (M) = 1 | ¬BAD
]
.

Write WX(M) (‘Win’) for the event AE−PASX,1
E (M) = 1. Then, as M out-

puts a random bit if BAD occurs, we have Pr
[
WX(M) | BAD]

= 1
2 and it follows

that:

Pr
[
WX(M)

]

= Pr
[
WX(M) ∩ ¬BAD]

+ Pr
[
WX(M) ∩ BAD

]

= Pr
[
WX(M) | ¬BAD]

(1 − Pr [BAD]) + Pr
[
WX(M) | BAD]

Pr [BAD]

= Pr
[
WX(M) | ¬BAD] − Pr [BAD]

(
Pr

[
WX(M) | ¬BAD] − 1

2

)
.

Multi-key Authenticated Encryption with Corruptions 431

Then,

AdvAE−PAS,X,1
E (M) = 2

(
Pr

[
WX(M)

] − 1
2

)

= 2
[
Pr

[
WX(M) | ¬BAD] − Pr [BAD]

(
Pr

[
WX(M) | ¬BAD] − 1

2

)
− 1

2

]

= 2
(

Pr
[
WX(M) | ¬BAD] − 1

2

)
− Pr [BAD] · 2

(
Pr

[
WX(M) | ¬BAD] − 1

2

)

= (1 − Pr [BAD])AdvAE−PAS,X,1
E (R) .

It follows that:

AdvAE−PAS,X,1
E (M) ≥ AdvAE−PAS,X,1

E (R) − Pr [BAD] .

To complete the proof we bound the probability of BAD (see the next lemma)
by Pr [BAD] ≤ 1

n + ε.
We therefore get that

ε ≥ εM ≥ εR − Pr [BAD] ≥ εR − 1
n

− ε.

So, εR ≤ (1
n + 2ε). Since εA = 1, we get that

εA
εR

≥
(

1
n

+ 2ε

)−1

,

as required to show that R loses
(
1
n + 2ε

)−1. �
Lemma 16

Pr [BAD] ≤ 1
n

+ ε.

Proof. Consider a meta-reduction M′ in the AE−PASX,1
E game that executes R1

and each Ri
2, i ∈ [n] exactly as M does, but without treating Ri∗

2 differently.
That is, encryption and decryption queries from Ri∗

2 are ‘faked’ in the same
way as for the other Ri

2, i �= i∗. Such an M′ could have chosen i∗←$[n] after
executing each Ri

2, simply by storing all the keys output by each Ri
2, and then,

once i∗ had been chosen, checking if Ri∗

2 returned a full set of valid keys and if
each Ki

i∗ was valid for i �= i∗.

Note that the probability of BAD occuring for M′ does not depend on
whether i∗ was chosen at the start of executing the Ri

2, or at the end, since
M′ runs each Ri

2 in the same way. Moreover, after executing each Ri
2, there can

be at most one j ∈ [n] such that Rj
2 returned a full set of valid keys but for

each i �= j, Ri
2 did not provide a full set of valid keys. Therefore there can be

at most one j ∈ [n] such that Rj
2 returned a full set of valid keys but for each

i �= j, Ri
2 did not provide a valid key Ki

j . Since i∗ was sampled uniformly from

432 T. Jager et al.

[n], the probability that i∗ has the latter property, i.e. that BAD occurs for M′,
is at most 1

n .
Now we compare the probability that BAD occurs for the two meta-reductions

M and M′. Let BADM = BAD and let BADM′ be the event that BAD occurs
in the game played by M′.

Consider the hidden bit b in the game played by M and M′. If b = 1, then
the views of R1 and each Ri

2 are identically distributed in their interactions
with M and M′ (since Ri∗

2 receives ‘fake’ responses to its queries, regardless of
whether the meta-reduction forwards them to its own oracles or simulates the
responses.) It follows that Pr [BADM′ | b = 1] = Pr [BADM | b = 1] .

Then

Pr [BAD] = Pr [BADM] − Pr [BADM′] + Pr [BADM′]

≤ Pr [BADM] − Pr [BADM′] +
1
n

=
1
2

(Pr [BADM | b = 0] − Pr [BADM′ | b = 0]) +
1
n

.

Now we construct an adversary B that simulates the environment of R1 and
the Ri

2 in their interaction with either M or M′, depending on the hidden bit
b′ in the game played by B. If BAD occurs, B will output 0. Otherwise B will
output 1.

Consider B in the AE−CCAX,1
E game. That is, B has access to the usual

challenge oracles Enc and Dec, but can also query the ‘always real’ oracles E
and D (provided it does not make pointless or prohibited queries). But if B has
significant advantage in this game, then there is another adversary, with the
same resources as B, that has significant advantage against AE−PASX,1

E :

Lemma 17. Suppose A is a valid adversary against AE−CCAX,1
E , where X ∈

{IV,NR,MR}. Then
AdvAE−CCA,X,1

E (A) ≤ 2ε,

where ε is the maximum advantage of a valid adversary against AE−PASX,1
E that

runs in the same time as A and makes the same number of oracle queries as A.

The proof of Lemma 17 is in the full version of the paper [31]. We remark that
a similar statement can be easily derived by combining results from an existing
work [5]. However, this approach only shows that the advantage in AE−CCAX,1

E
is at most four times the maximum advantage in AE−PASX,1

E , whereas proving
the statement directly gives a tighter bound.

Now we describe the adversary B in the AE−CCAX,1
E game. First, B runs R1,

but all queries are forwarded to the genuine oracles E and D. Then B carries out
the same checks as M (or M′) and, if the checks succeed, B samples i∗←$[n]
and, for each i ∈ [n], B runs R2 on input (i, st1).

When Ri
2 makes oracle queries:

1. If i = i∗, B uses its challenge oracles Enc and Dec to honestly answer all
oracle queries; forwarding the queries to its oracles and then forwarding the
replies to Ri∗

2 .

Multi-key Authenticated Encryption with Corruptions 433

2. If i �= i∗, B simulates the ‘fake’ oracles, i.e. the oracles Enc and Dec with
b = 1, just as M (or M′) does.

Finally, B checks if BAD has occured. If so B outputs 0. Otherwise, B
outputs 1.

Let b′ be the hidden bit in the game played by B. So the oracle queries from
R1 will always be ‘real’ (as they are for M and M′, given that b = 0), the oracle
queries from Ri

2 for i �= i∗ will always be ‘fake’ (as they are for M and M′) and,
depending on b′, the oracle queries from Ri∗

2 will be real (like M, given that
b = 0), or fake (like M′). It follows that Pr [0 ← B | b′ = 0] = Pr [BADM | b = 0]
and Pr [0 ← B | b′ = 1] = Pr [BADM′ | b = 0]. Now,

Pr
[
AE−CCAX,1

E (B) = 1
]

=
1
2

(Pr [0 ← B | b′ = 0] + Pr [1 ← B | b′ = 1])

=
1
2

(Pr [0 ← B | b′ = 0] − Pr [0 ← B | b′ = 1]) +
1
2

and so

AdvAE−CCA,X,1
E (B) = 2

(
Pr

[
AE−CCAX,1

E (B) = 1
]

− 1
2

)

= Pr [0 ← B | b′ = 0] − Pr [0 ← B | b′ = 1]
= Pr [BADM | b = 0] − Pr [BADM′ | b = 0]

≥ 2
(

Pr [BAD] − 1
n

)
.

Like M (or M′), B performs n runs of (part of) R and carries out 2(n − 1)l
encryptions to check if BAD has occured. So the runtime of B is at most ntR +
2l(n − 1)tC[E]. Moreover B makes at most qR oracle queries (only forwarding
queries from R1 and Ri∗

2).
Consider AdvAE−CCA,X,1

E (B). Firstly, note that B uses nonces correctly with
respect to X, since any query to Enc or E is a query made to Enc by(R1,Ri∗

2 ,R3

)
and R is a valid adversary against AE−PASX,1

E . Also, B will not
make pointless queries:

– A repeated query to E or D by B would be a repeated query to Enc or Dec
from R1, which is a pointless or prohibited query in the game played by R.

– A repeated query to Dec by B would be a repeated query to Dec from Ri∗

2 ,
which is a pointless query in the game played by R.

– A query D(C,N) by B, where C was the response to a query E(M,N),
would be a query Dec(C,N) from R1, where C was the response to a query
Enc(M,N), which is a prohibited query in the game played by R.

– A query E(M,N) by B, where M �= ⊥ was the response to a query D(C,N),
would be a query Enc(M,N) from R1, where M �= ⊥ was the response to a
query Dec(C,N), which is a pointless query in the game played by R.

– Finally, suppose B makes a query E(M,N) or Enc(M,N), where M �= ⊥
was the response to a query Dec(C,N). The query Dec(C,N) from B would

434 T. Jager et al.

correspond to a query Dec(C,N) from Ri∗

2 and so the subsequent encryption
query would correspond to a query Enc(M,N) from Ri∗

2 . But as M �= ⊥ this
is a pointless query for R.

Moreover, B will not make prohibited queries:

– A repeated query to Enc by B would be a repeated query to Enc from Ri∗

2 ,
which is a prohibited query in the game played by R.

– Suppose B makes two queries of the form Enc(M,N) and E(M,N). Each of
these queries would correspond to the same query Enc(M,N) from R, which
is prohibited in the game played by R.

– A query D(C,N) from B, where C was the response to a query Enc(M,N),
is impossible since B only queries Enc and Dec after querying E and D.

– A query Dec(C,N) from B, where C was the response to a query E(M,N) or
Enc(M,N), would correspond to a query Dec(C,N) from Ri∗

2 , where C was
the response to a query Enc(M,N) from R1 or Ri∗

2 , which is a prohibited
query in the game played by R.

– A query Enc(M,N) from B, where M �= ⊥ was the response to a query
D(C,N), would correspond to a query Enc(M,N) from Ri∗

2 , where M �= ⊥
was the response to a query Dec(C,N) from R1, which is a pointless query
in the game played by R.

It follows that B is a valid adversary against AdvAE−CCA,X,1
E (B). Then, by

Lemma 17, we have

2
(

Pr [BAD] − 1
n

)
≤ AdvAE−CCA,X,1

E (B) ≤ 2ε,

from which the result follows. �
Theorem 15 establishes that reductions from KEYRECM ,n

C[E] to AE−PASX,1
E

are lossy. By Lemma 12, there exists a tight reduction from KEYRECM ,n
C[E] to

GOAL−POWERX′,n
C[E] (for POWER ∈ {CCA,CPA}); it immediately follows that

reductions from GOAL−POWERX′,n
C[E] to AE−PASX,1

E must be lossy (for POWER ∈
{CCA,CPA}). We formalise this intuition in the following corollary:

Corollary 18. Let E and C[E] be AE schemes such that C[E] is M -key-
unique for some M ∈ Ml. Then for GOAL ∈ {AE, LRAE, IND, LRIND,CTI},
POWER ∈ {CCA,CPA}, X,X ′ ∈ {IV,NR,MR} and n > 1, all simple reductions
from GOAL−POWERX′,n

C[E] to AE−PASX,1
E must lose

L = δGOAL · δX′ ·
(

1
n

+ 2ε

)−1

,

where δGOAL and δX′ are as in Lemma 12 and ε is as given in Theorem 15.

We emphasise that the ‘nonce use’ parameters X ′,X ∈ {IV,NR,MR} can
differ between the n-key game and the single key game. While it is natural

Multi-key Authenticated Encryption with Corruptions 435

to consider X ′ = X we prefer to state the result in full generality and show
that a very large class of reductions are necessarily lossy. Note that multi-
key games for POWER ∈ {PAS,CDA} are not known to be (tightly) equiva-
lent to those where POWER ∈ {CCA,CPA} (see the full version of the paper
[31]). It therefore remains an open problem to obtain tightness lowerbounds for
POWER ∈ {PAS,CDA}.

Proof. Recall from Lemma 12 the (S,T)-simple reduction from KEYRECM ,n
E

to GOAL−POWERX,n
E , where S(εA) = δX · δGOAL · εA and T(tA) = tA + (l +

mGOAL)tE . Relabelling, we obtain a (S′,T′)-simple reduction from KEYRECM ,n
C[E]

to GOAL−POWERX′,n
C[E] , where S

′(εA) = δX′ · δGOAL · εA and T
′(tA) = tA + (l +

mGOAL)tC[E], which we call R.
We argue by contradiction. Suppose there is a simple reduction R′ from

GOAL−POWERX′,n
C[E] to AE−PASX,1

E such that, for all valid adversaries B against

AE−PASX,n
E , εR′ > L−1εB.

Then we can form a simple reduction R′′ from KEYRECM ,n
C[E] to AE−PASX,1

E :

for any adversary A against KEYRECM ,n
C[E] , running R with A provides a valid

adversary B against GOAL−POWERX′,n
C[E] for R′ to turn into a valid adversary

against AE−PASX,1
E .

By construction, the advantage εR′′ of R′′ is equal to the advantage of R′

with access to an adversary with advantage εR, i.e. εR′′ > L−1εR. Since εR ≥
δX′ · δGOAL · εA for all adversaries A against KEYRECM ,n

C[E] , we have

εR′′ > L−1 · δX′ · δGOAL · εA =
(

1
n

+ 2ε

)
εA.

But this is a contradiction since, by Theorem 15, for any simple reduc-
tion R′′ from KEYRECM ,n

C[E] to AE−PASX,1
E , there exists an adversary A against

KEYRECM ,n
C[E] such that

εR′′ ≤
(

1
n

+ 2ε

)
εA.

Thus for any simple reduction R′ from GOAL−POWERX′,n
C[E] to AE−PASX,1

E there

exists a valid adversary B against GOAL−POWERX′,n
C[E] such that εR′ ≤ L−1εB,

i.e. R′ loses L. �

Privacy and Integrity. The above results hold for notions of authenticated
encryption schemes. It is natural to ask whether the loss for simple reduc-
tions from GOAL−POWERX′,n

C[E] to AE−PASX,1
E is an artefact of considering the

two orthogonal single-key security properties of secrecy and authenticity at
the same time. Perhaps it is possible to circumvent the loss when looking at

436 T. Jager et al.

these properties separately, e.g. there could there be non-lossy simple reduc-
tions from GOAL−POWERX′,n

C[E] to IND−PASX,1
E and from GOAL−POWERX′,n

C[E]
to CTI−CPAX,1

E . We show that this is not the case.
We proceed as for the authenticated encryption case. For privacy and

integrity, in turn, we show that reductions from multi-key recovery to single-
key security are inherently lossy; the lower bound then follows by Lemma 12.
We give the details in the full version of the paper [31].

Other Single-Key Security Notions. Given the results above concerning reduc-
tions from multi-key AE security notions to the single-key notions AE−PAS,
IND−PAS and CTI−CPA, one can obtain analogous results for equivalent or
weaker single key notions, such as where ciphertexts being indistinguishable
from random strings (IND, AE) is replaced by (weaker) left-or-right indistin-
guishability (LRIND, LRAE). The idea is that if there were a tight reduction
from an n-key game to single-key LRAE−PAS, say, then this reduction could be
combined with the tight reduction from LRAE−PAS to AE−PAS to obtain a tight
reduction from the n-key game to AE−PAS that contradicts Corollary 18. How-
ever, “tight” is defined here with respect to a number of parameters including,
crucially, ε: the maximum advantage in the AE−PAS game. If ε is close to 1, then
so is the “loss”. In other words, the tightness lowerbounds that one can prove
using our existing results for strictly weaker single-key security notions are only
meaningful for schemes that are secure according to the stronger notions. This
leaves open the possibility that tight multi-key to single-key reductions exist for
schemes that achieve the weaker single-key security notions, but not the stronger
ones. Moreover, our meta-reduction techniques cannot be directly applied to left-
or-right indistinguishability, since the meta-reduction cannot correctly simulate
left-or-right encryption queries during the rewinding phase without making its
own (possibly prohibited) oracle queries (unlike for IND when the meta-reduction
simply samples random strings of the appropriate length).

Public Key Encryption. It should be possible to adapt our existing techniques
to the public key setting. Let LRIND−CPA be the standard game in which the
adversary is given the public key and can query a left-or-right encryption oracle.
Note that the honest encryption oracle is omitted as it is rendered superfluous
by the public key. Since public key encryption is typically randomised rather
than nonce-based, repeated left-or-right encryption queries are not prohibited,
so a meta-reduction M can use its own left-or-right challenge oracle to cor-
rectly simulate left-or-right queries from the reduction R during the rewinding
phase, without M becoming an invalid adversary. However, if R can also make
decryption queries, then simulating these queries during the rewinding phase
might force M to be invalid (such as if one instance of R attempts to decrypt
the output of the left-or-right encryption oracle sent to an earlier instance of
R). In summary, it should be possible to show reductions from multi-key games
to single-key LRIND−CPA are lossy for public key encryption schemes secure
according to LRIND−CPA, but to show an analogous result for LRIND−CCA one

Multi-key Authenticated Encryption with Corruptions 437

needs to additionally assume that ciphertexts are indistinguishable from random
strings (which is a rather strong assumption in the public key setting). We leave
formally proving these claims for future work.

5 Conclusion

We have presented a general family of multi-key security definitions for authen-
ticated encryption, where the adversary can adaptively corrupt keys. We have
shown, for a very large class of authenticated encryption schemes, for most mem-
bers of our family of definitions and for widely-accepted single-key security def-
initions, that any black-box reduction from the n-key security of an encryption
scheme to its single-key security will incur a loss close to n.

For practitioners who set security parameters based on provable guarantees,
this shows that security reductions have an inherent shortcoming. Since keys are
sampled independently, the corruption of one key should not affect the security
of another, yet it is impossible in many cases to prove that security does not
degrade from the single-key setting to the n-key setting. It appears that the loss
of n is an unfortunate, unavoidable artefact of the proof.

We have shown that the loss of reductions is inevitable for multi-key defini-
tions where the adversary has access to an honest encryption oracle. We there-
fore left open the possibility that for security notions without such an oracle,
tight reductions may be found. Furthermore, our impossibility results apply to
schemes where ciphertexts are indistinguishable from random strings. It may
be possible that tight reductions exist for schemes that achieve weaker forms of
confidentiality, such as left-or-right indistinguishability. Historically, the commu-
nity has tended to opt for stronger and stronger security notions, but perhaps a
slightly weaker single-key notion would be preferred if it tightly implied a mean-
ingful multi-key notion. Finally, it was pointed out by an anonymous reviewer
that, in practice, the number of keys an adversary can corrupt is likely to be
much smaller than the number of keys in use; it might be possible to find tighter
multi-key to single-key reductions for multi-key games where the adversary can
corrupt at most qc keys (with qc � n). We leave these interesting open questions
for future work.

Acknowledgements. This work was supported by an EPSRC Industrial CASE award
and DFG grant JA 2445/1-1. The authors would also like to thank the anonymous TCC
reviewers for their constructive comments on our paper.

Appendix

Valid Adversarial Behaviour for AE Games

Pointless and Prohibited Queries. Since encryption is deterministic, the response
to certain oracle queries can be predicted in advance. Therefore the adversary

438 T. Jager et al.

learns nothing from these queries; we call them pointless. Without loss of gener-
ality we assume that valid adversaries do not make such queries. The following
queries are pointless:

– Repeat a query to any oracle other than Enc(the Enc oracle sometimes sam-
ples random ciphertexts, but all other oracles are deterministic).

– Make a query D(i, C,N), where C was the response to a query E(i,M,N)
(since the response will be M , by correctness).

– Make a query E(i,M,N), where M �= ⊥ was the response to a query
D(i, C,N) (since the response will be C, by tidiness).

– Make a query E(i,M,N) or Enc(i, j,M,N), where a query Dec(i, j, C,N) was
made with response M �= ⊥ (since the response M �= ⊥ reveals bj = 0 and
EN

Ki
(M) = C by tidiness).

Some other queries lead to hidden bits being trivial to recover (without having
to corrupt a key); we call these queries prohibited, since valid adversaries are not
permitted to make them. The following queries are prohibited:

– Repeat a query Enc(i, j,M,N) (if the response to both queries is the same,
then with very high probability bj = 0 and otherwise bj = 1).

– Make a query of the form LR(i, j,M0,M1, N) with |M0| �= |M1| (since the
length of the ciphertext reveals the length of the plaintext, trivially revealing
which of M0 or M1 was encrypted).

– Make two queries of the form LR(i, j,M0,M1, N), LR(i, j,M ′
0,M

′
1, N) such

that Mb = M ′
b and M1−b �= M ′

1−b for some b ∈ {0, 1} (if the response to both
queries is the same, then bj = b by correctness, and otherwise bj = 1 − b).

– Make two queries of the form Enc(i, j,M,N) and E(i,M,N), in any order
(which trivially reveals bj).

– Make two queries of the form LR(i, j,M0,M1, N) and E(i,Mb, N), in any
order, for some b ∈ {0, 1} (which trivially reveals bj).

– Make a query D(i, C,N), where C was the response to a query Enc(i, j,M,N)
or LR(i, j,M0,M1, N) (which trivially reveals bj , by correctness).

– Make a query Dec(i, j, C,N), where a query E(i,M,N), Enc(i, j,M,N) or
LR(i, j,M0,M1, N) was previously made with response C (which trivially
reveals bj , by correctness).

– Make a query Enc(i, j,M,N), LR(i, j,M,M1, N) or LR(i, j,M0,M,N),
where M �= ⊥ was the response to a query D(i, C,N) (which trivially reveals
bj , by tidiness).

It is not necessary to prohibit queries being forwarded between the Enc and LR
oracles, since we do not consider games where both these challenge oracles are
present.

Correct Nonce Use. The parameter X ∈ {IV,NR,MR} determines how the adver-
sary may use nonces in encryption queries. We say A uses nonces correctly with
respect to X if the following statements hold:

– If X = IV, then for each query of the form E(−,−, N), Enc(−,−,−, N), or
LR(−,−,−,−, N), N is sampled uniformly at random from N.

Multi-key Authenticated Encryption with Corruptions 439

– If X = NR, then each nonce appears in at most one encryption query under
the same key. That is, for each i ∈ [n], each nonce N appears in at most one
query of the form Enc(i,−,−, N), LR(i,−,−,−, N) or E(i,−, N).

– If X = MR, then nonces may chosen be arbitrarily and repeated in different
queries (modulo the pointless and prohibited queries specified above).

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29011-4 34

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 26

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 10

4. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 296–315.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 16

5. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: reconciling AE robust-
ness notions. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 94–111.
Springer, Cham (2015). doi:10.1007/978-3-319-27239-9 6

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 18

7. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: When
and how should challenge decryption be disallowed? J. Cryptol. 28(1), 29–48 (2015)

8. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 19

9. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 247–276. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 10

10. Biham, E.: How to decrypt or even substitute DES-encrypted messages in 228 steps.
Inf. Process. Lett. 84(3), 117–124 (2002). doi:10.1016/S0020-0190(02)00269-7

11. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006). doi:10.1007/11693383 8

12. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 12

13. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) Identity-based encryption from
affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 23

http://dx.doi.org/10.1007/978-3-642-29011-4_34
http://dx.doi.org/10.1007/978-3-662-46494-6_26
http://dx.doi.org/10.1007/978-3-662-49896-5_10
http://dx.doi.org/10.1007/978-3-642-42033-7_16
http://dx.doi.org/10.1007/978-3-319-27239-9_6
http://dx.doi.org/10.1007/3-540-45539-6_18
http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/978-3-662-53018-4_10
http://dx.doi.org/10.1016/S0020-0190(02)00269-7
http://dx.doi.org/10.1007/11693383_8
http://dx.doi.org/10.1007/978-3-662-46447-2_12
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/978-3-662-44371-2_23

440 T. Jager et al.

14. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). doi:10.1007/BFb0054117

15. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness
II: Practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360
(2016). http://eprint.iacr.org/2016/360

16. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28496-0 18

17. Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 25

18. Coron, J.-S.: Security proof for partial-domain hash signature schemes. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 613–626. Springer, Heidelberg
(2002). doi:10.1007/3-540-45708-9 39

19. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 27

20. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro,
S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 18

21. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 512–531. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 27

22. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 22

23. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 6

24. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 1

25. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 2

26. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 381–411.
Springer, Cham (2017). doi:10.1007/978-3-319-56614-6 13

27. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562,
pp. 251–281. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 11

28. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 35

http://dx.doi.org/10.1007/BFb0054117
http://eprint.iacr.org/2016/360
http://dx.doi.org/10.1007/978-3-642-28496-0_18
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/3-540-45708-9_39
http://dx.doi.org/10.1007/978-3-642-38348-9_27
http://dx.doi.org/10.1007/978-3-642-38348-9_27
http://dx.doi.org/10.1007/978-3-642-17373-8_18
http://dx.doi.org/10.1007/978-3-642-17373-8_18
http://dx.doi.org/10.1007/978-3-662-45611-8_27
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-540-85174-5_6
http://dx.doi.org/10.1007/978-3-662-49890-3_1
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-319-56614-6_13
http://dx.doi.org/10.1007/978-3-662-49096-9_11
http://dx.doi.org/10.1007/978-3-642-32009-5_35

Multi-key Authenticated Encryption with Corruptions 441

29. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 5

30. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 6

31. Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: Reductions are lossy. Cryptology ePrint Archive,
Report 2017/495 (2017). http://eprint.iacr.org/2017/495

32. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 32

33. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003

34. Mouha, N., Luykx, A.: Multi-key security: The Even-Mansour construction revis-
ited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
209–223. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 10

35. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 15

36. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). doi:10.1007/11593447 1

37. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-70936-7 2

38. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

39. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32009-5

40. Schäge, S.: Tight proofs for signature schemes without random oracles. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-20465-4 12

41. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 33

42. Tessaro, S.: Optimally secure block ciphers from ideal primitives. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 437–462. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 18

http://dx.doi.org/10.1007/978-3-642-30057-8_5
http://dx.doi.org/10.1007/978-3-540-28628-8_6
http://eprint.iacr.org/2017/495
http://dx.doi.org/10.1007/978-3-642-29011-4_32
http://dx.doi.org/10.1007/978-3-662-47989-6_10
http://dx.doi.org/10.1007/978-3-642-55220-5_15
http://dx.doi.org/10.1007/11593447_1
http://dx.doi.org/10.1007/978-3-540-70936-7_2
http://dx.doi.org/10.1007/11761679_23
http://dx.doi.org/10.1007/978-3-642-32009-5
http://dx.doi.org/10.1007/978-3-642-20465-4_12
http://dx.doi.org/10.1007/978-3-642-29011-4_33
http://dx.doi.org/10.1007/978-3-662-48800-3_18

Moderately Hard Functions

On the Depth-Robustness and Cumulative
Pebbling Cost of Argon2i

Jeremiah Blocki(B) and Samson Zhou

Department of Computer Science, Purdue University, West Lafayette, IN, USA
jblocki@purdue.edu, samsonzhou@gmail.com

Abstract. Argon2i is a data-independent memory hard function that
won the password hashing competition. The password hashing algorithm
has already been incorporated into several open source crypto libraries
such as libsodium. In this paper we analyze the cumulative memory cost
of computing Argon2i. On the positive side we provide a lower bound
for Argon2i. On the negative side we exhibit an improved attack against
Argon2i which demonstrates that our lower bound is nearly tight. In
particular, we show that

(1) An Argon2i DAG is
(
e, O
(
n3/e3

))
)-reducible.

(2) The cumulative pebbling cost for Argon2i is at most O
(
n1.768

)
. This

improves upon the previous best upper bound of O
(
n1.8
)

[AB17].

(3) Argon2i DAG is
(
e, Ω̃
(
n3/e3

))
-depth robust. By contrast, analysis

of [ABP17a] only established that Argon2i was
(
e, Ω̃
(
n2/e2

))
-depth

robust.
(4) The cumulative pebbling complexity of Argon2i is at least Ω̃

(
n1.75

)
.

This improves on the previous best bound of Ω
(
n1.66

)
[ABP17a] and

demonstrates that Argon2i has higher cumulative memory cost than
competing proposals such as Catena or Balloon Hashing.

We also show that Argon2i has high fractional depth-robustness which
strongly suggests that data-dependent modes of Argon2 are resistant to
space-time tradeoff attacks.

1 Introduction

Memory-hard functions (MHFs) are a promising primitive to help protect low
entropy user passwords against offline attacks. MHFs can generally be divided
into two categories: data-dependent (dMHF) and data-independent (iMHF).
A data-independent MHF (iMHF) is characterized by the property that the
memory-access pattern induced by an honest evaluation algorithm is not depen-
dent on the input to the function (e.g., the password). In contexts such as pass-
word hashing, iMHFs are useful for their resistance to side-channel attacks such
as cache-timing [Ber]1.
1 Unfortunately, this resistance to side-channel attacks has a price; we now know that

the dMHFs scrypt enjoys strictly greater memory-hardness [ACP+17] than can
possibly be achieved for a very broad class of iMHFs [AB16].

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 445–465, 2017.
https://doi.org/10.1007/978-3-319-70500-2_15

446 J. Blocki and S. Zhou

Both in theory and in practice, iMHFs (e.g.,[BDK16,CGBS16,CJMS14,
Cox14,Wu15,Pin14,AABSJ14]) can be viewed as a directed acyclic graph (DAG)
which describes how inputs and outputs of various calls to an underlying com-
pression function are related. That is, the function fG,h can be fully specified
in terms of a DAG G and a round function h. The input to the function is the
label of the source node(s) and the output of the function is the label of the sink
node(s). The label of node v is computed by applying the round function h to
the labels of v’s parents.

The goal of a MHF is to ensure that it is cost prohibitive for an attacker to
evaluate fG,t millions or billions of times even if the attacker can use customized
hardware (e.g., FPGAs, ASICs). Thus, we wish to lower bound the “cumulative
memory complexity” or “amortized area-time complexity” of any algorithm that
computes fG,h.

1.1 iMHFs, Graph Pebbling and Depth-Robustness

In the parallel random oracle model, the memory hardness of the iMHF fG,h

can be characterized using the parallel black pebbling game on the graph
G [AS15,CGBS16,FLW13]. In particular, the “cumulative memory complexity”
or “amortized area-time complexity” of fG,h is (essentially) equivalent to the
cumulative cost of any legal black pebbling of G in the parallel Random Oracle
Model (pROM) [AS15]. Given a directed acyclic graph (DAG) G = (V,E), the
goal of the (parallel) black pebbling game is to place pebbles on all sink nodes
of G (not necessarily simultaneously). The game is played in rounds and we use
Pi ⊆ V to denote the set of currently pebbled nodes on round i. Initially all nodes
are unpebbled, P0 = ∅, and in each round i ≥ 1 we may only include v ∈ Pi if
all of v’s parents were pebbled in the previous configuration (parents(v) ⊆ Pi−1)
or if v was already pebbled in the last round (v ∈ Pi−1). The cumulative cost of
the pebbling is defined to be |P1| + . . . + |Pt|.

Graph pebbling is a particularly useful as a tool to analyze the security of
an iMHF [AS15]. A pebbling of G naturally corresponds to an algorithm to
compute the iMHF. Alwen and Serbinenko [AS15] proved that in the parallel
random oracle model (pROM) of computation, any algorithm evaluating such an
iMHF could be reduced to a pebbling strategy with (approximately) the same
cumulative memory cost.

Recently it has been shown that for a DAG G to have high “amortized area-
time complexity” it is both necessary [ABP17a] and sufficient [AB16] for G to be
very depth-robust, where an (e, d, b)-block depth robust DAG G has the property
that after removing any subset S ⊆ V (G) of up to e blocks of b-consecutive
nodes (and adjacent edges) there remains a directed path of length d in G − S
(when b = 1 we simply say that G is (e, d)-depth robust). It is particularly
important to understand the depth-robustness and cumulative pebbling cost of
iMHF candidates.

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 447

1.2 Argon2i

Of particular importance is the iMHF candidate Argon2i [BDK15], winner of the
password hashing competition. Argon2i is being considered for standardization
by the Cryptography Form Research Group (CFRG) of the IRTF [BDKJ16]2.

While significant progress has been made in the last two years in under-
standing the depth-robustness and cumulative pebbling complexity of candidate
iMHFs (e.g., see Table 1) there is still a large gap in the lower and upper bounds
for Argon2i, which is arguably the most important iMHF candidate to under-
stand. A table summarizing the asymptotic cumulative complexity of various
iMHFs can be found in Table 1.

Table 1. Overview of the asymptotic cumulative complexity of various iMHF.

Algorithm Lowerbound Upperbound Appearing In

Argon2i-A Ω̃
(
n1.6̄
)

Õ
(
n1.708

)
[ABP17a]

Argon2i-B O
(
n1.8
)

[AB17]

Argon2i-B Ω̃
(
n1.6̄
)

[ABP17a]

Argon2i-B Ω̃
(
n1.75

)
O
(
n1.767

)
This Work

Balloon-Hashing Ω̃
(
n1.5
)

Õ
(
n1.625

)
[ABP17a]

Balloon-Hashing: Single Buffer (SB) Ω̃
(
n1.6̄
)

Õ
(
n1.708

)
[ABP17a]

Catena Ω̃
(
n1.5
)

Õ
(
n1.625

)
[ABP17a]

(Existential Result) Ω
(

n2

logn

)
[ABP17a]

DRSample Ω
(

n2

logn

)
[ABH17]

Arbitrary iMHF O
(

n2 log logn
logn

)
[AB16]

1.3 Results

We first completely characterize the depth-robustness of Argon2i in Theorem 1,
and then apply our bounds to develop (nearly tight) upper and lower bounds

2 The specification of Argon2i has changed several times. Older versions of the specifi-
cation constructed G by sampling edges uniformly at random, while this distribution
has been modified to a non-uniform distribution in newer versions. Following [AB17]
we use Argon2i-A to refer to all (older) versions of the algorithm that used a uni-
form edge distribution. We use Argon2i-B to refer to all versions of the algorithm
that use the new non-uniform edge distribution (including the current version that
is being considered for standardization by the Cryptography Form Research Group
(CFRG) of the IRTF [BDKJ16]). Since we are primarily interested in analyzing the
current version of the algorithm we will sometimes simply write Argon2i instead of
Argon2i-B. By contrast, we will always write Argon2i-A whenever we refer to the
earlier version.

448 J. Blocki and S. Zhou

on the cumulative pebbling cost of Argon2i — see Theorems 2 and 3. For com-
parison, the previous best known upper bound for Argon2i was O

(
n1.8

)
and

the best known lower bound was Ω
(
n5/3

)
. Our new bounds are O

(
n1.7676

)
and

Ω̃
(
n7/4

)
respectively.

Interestingly, Theorem 1 shows that Argon2i is more depth-robust than
Argon2i-A as well as other competing iMHFs such as Catena [FLW13] or
BalloonHashing [CGBS16]3. Furthermore,Theorem2 in combinationwith attacks
of Alwen et al. [ABP17a] show that Argon2i enjoys strictly greater cumulative
memory complexity than Catena [FLW13] or Balloon Hashing [CGBS16] as well
as the earlier version Argon2i-A.

Theorem 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(n/e)

)
-block depth robust with high

probability.

Theorem 2. For any ε > 0 the cumulative pebbling cost of a random Argon2i
DAG G is at most Π

‖
cc(G) = O(n1+a+ε) with high probability, where a =

1/3+
√

1+4/9

2 ≈ 0.7676.

Theorem 3. With high probability, the cumulative pebbling cost of a random
Argon2i DAG G is at least Π

‖
cc(G) = Ω̃

(
n7/4

)
with high probability.

Theorem 4. If G contains all of the edges of the form (i − 1, i) for 1 < i ≤ n
and is (e, d, b)-block depth robust, then G is

(
e
2 , d, eb

2n

)
-fractional depth robust.

Techniques. To upper bound the depth-robustness of Argon2i we use the layered
attack of [AB16]. Once we know that Argon2i is depth-reducible for multiple
different points (ei, di) along a curve, then we can apply a recursive pebbling
attack of Alwen et al. [ABP17a] to obtain the upper bounds on cumulative
pebbling complexity from Theorem 2.

Lower bounding the depth-robustness of Argon2i is significantly more chal-
lenging. We adapt and generalize techniques from Erdos et al. [EGS75] to reason
about the depth-robustness of meta-graph Gm of an Argon2i DAG G (essentially,
the meta-graph is formed by compressing each group of m sequential nodes in G
into a single point to obtain a new graph with n′ = n/m nodes). We prove that
for appropriate choice of m and r∗ that the meta-graph is a local expander mean-
ing that for every r ≥ r∗ every node x ≤ (n/m) + 1 − 2r the sets [x, x + r − 1]
and [x + r, x + 2r − 1] are connected by an expander graph. We then use local
expansion to lower bound the depth-robustness of Gm. Finally, we can apply a
result of Alwen et al. [ABP17a] to translate this bound to a lower bound on the
block depth robustness of Gm.

Finally, we extend ideas from [ABP17a] to lower bound the cumulative peb-
bling complexity of an Argon2i DAG. Essentially, we show that any pebbling

3 Argon2i is not as depth-robust as the theoretically optimal constructions of [ABP17a],
but at the moment this construction is purely theoretical while Argon2i has been
deployed in crypto libraries such as libsodium.

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 449

strategy must either keep Ω̃
(
n0.75

)
pebbles on the graph during most peb-

bling rounds or repebble a
(
Ω̃

(
n0.75

)
, Ω̃

(
n0.75

))
-depth robust graph Ω̃

(
n0.25

)

times. In the first case the cumulative cost is at least Ω
(
n × n0.75

)
since

we have at least n pebbling rounds and in the second case we also have
that cumulative cost is at least Ω

(
n0.25 × n1.5

)
since the cost to repebble a(

e = Ω̃
(
n0.75

)
, d = Ω̃

(
n0.75

))
-depth robust graph is at least ed [ABP17a].

2 Related Work

[ABW03] noticed that that cache-misses are more egalitarian than computation
and therefore proposed the use of functions which maximize the number of expen-
sive cache misses, “memory-bound” functions. Percival [Per09] observed that
memory costs seemed to be more stable across different architectures and pro-
posed the use of memory-hard functions (MHFs) for password hashing. Since the
cost of computing the function is primarily memory related (storing/retrieving
data values) and cannot be significantly reduced by constructing an ASIC, there
presently seems to be a consensus that memory hard functions are the “right
tool” for constructing moderately expensive functions. In fact, all entrants in the
password hashing competition claimed some form of memory hardness [PHC].
Percival [Per09] introduced a candidate memory hard function called scrypt,
which has subsequently been shown to be vulnerable to side-channel attacks as
its computation yields a memory access pattern that is data-dependent (i.e.,
depends on the secret input/password). On the positive side this function has
been shown to require maximum possible cumulative memory complexity to
evaluate [ACP+17].

Alwen and Blocki [AB16] gave an attack on Argon2i-A (an earlier version of
Argon2i) with cumulative memory complexity O(n1.75 log n) as well as several
other iMHF candidates. They later extended the attack to Argon2i-B (the cur-
rent version) showing that the function has complexity O(n1.8) [AB17]. Alwen
and Blocki [AB16] also showed that any iMHF has cumulative memory com-
plexity at most O

(
n2 log log n

log n

)
, and Alwen et al. [ABP17a] later constructed

a graph with cumulative pebbling complexity at least Ω
(

n2 log log n
log n

)
. Alwen

et al. [ABP17a] also found a “recursive version” of the [AB16] attack which fur-
ther reduced the cumulative memory complexity of Argon2i-A to Õ

(
n1.708

)
. At

the same time they established a lower bound of Ω̃
(
n1.6̄

)
for Argon2i-A and

Argon2i-B.
Depth-robust graphs have found several applications in theoretical computer

science e.g., proving lowerbounds on circuit complexity and Turing machine
time [Val77,PR80,Sch82,Sch83]. [MMV13] constructed proofs of sequential work
using depth-robust graph and more recently depth-robust graphs were used
to prove lower bounds in the domain of proof complexity [AdRNV16]. Recent
results [AB16,ABP17a] demonstrate that depth-robustness is a necessary and
sufficient property for a secure iMHF. Several constructions of graphs with low

450 J. Blocki and S. Zhou

indegree exhibiting this asymptotically optimally depth-robustness are given in
the literature [EGS75,PR80,Sch82,Sch83,MMV13,ABP17b] but none of these
constructions are suitable for practical deployment.

3 Preliminaries

Let N denote the set {0, 1, . . .} and N
+ = {1, 2, . . .}. Let N≥c = {c, c+1, c+2, . . .}

for c ∈ N. Define [n] to be the set {1, 2, . . . , n} and [a, b] = {a, a+1, . . . , b} where
a, b ∈ N with a ≤ b.

We say that a directed acyclic graph (DAG) G = (V,E) has size n if |V | = n.
We shall assume that G is labeled in topological order. A node v ∈ V has indegree
δ = indeg(v) if there exist δ incoming edges δ = |(V ×{v})∩E|. More generally,
we say that G has indegree δ = indeg(G) if the maximum indegree of any node of
G is δ. A node with indegree 0 is called a source node and a node with no outgoing
edges is called a sink. We use parentsG(v) = {u ∈ V : (u, v) ∈ E} to denote the
parents of a node v ∈ V . In general, we use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to

denote the set of all ancestors of v — here, parents2G(v) = parentsG (parentsG(v))
denotes the grandparents of v and parentsi+1

G (v) = parentsG
(
parentsiG(v)

)
. When

G is clear from context we will simply write parents (ancestors). We denote the
set of all sinks of G with sinks(G) = {v ∈ V : �(v, u) ∈ E} — note that
ancestors (sinks(G)) = V . We often consider the set of all DAGs of equal size
Gn = {G = (V,E) : |V | = n} and often will bound the maximum indegree
Gn,δ = {G ∈ Gn : indeg(G) ≤ δ}. For directed path p = (v1, v2, . . . , vz) in
G, its length is the number of nodes it traverses, length(p) := z. The depth
d = depth(G) of DAG G is the length of the longest directed path in G.

We will often consider graphs obtained from other graphs by removing sub-
sets of nodes. Therefore if S ⊂ V , then we denote by G − S the DAG obtained
from G by removing nodes S and incident edges. The following is a central
definition to our work.

Definition 1 (Block Depth-Robustness). Given a node v, let N(v, b) = {v−
b+1, . . . , v} denote a segment of b consecutive nodes ending at v. Similarly, given
a set S ⊆ V, let N(S, b) = ∪v∈SN(v, b). We say that a DAG G is (e, d, b)-block-
depth-robust if for every set S ⊆ V of size |S| ≤ e, we have depth(G−N(s, b)) ≥
d. If b = 1, we simply say G is (e, d)-depth-robust and if G is not (e, d)-depth-
robust, we say that G is (e, d)-depth-reducible.

Observe when b > 1 (e, d, b)-block-depth robustness is a strictly stronger notion
that (e, d)-depth-robustness since the set N(S, b) of nodes that we remove may
have size as large as |N(S, b)| = eb. Thus, (e, d, b ≥ 1)-block depth robustness
implies (e, d)-depth robustness. However, (e, d)-depth robustness only implies
(e/b, d, b)-block depth robustness.

We fix our notation for the parallel graph pebbling game following [AS15].

Definition 2 (Parallel/Sequential Graph Pebbling). Let G = (V,E) be a
DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling config-
uration (of G) is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 451

P = (P0, . . . , Pt) of pebbling configurations of G where P0 = ∅ and which satisfies
conditions 1 & 2 below.

1. At some step every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t : x ∈ Pz.

2. Pebbles are added only when their predecessors already have a pebble at the
end of the previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1.

We denote with PG,T (and P‖
G,T) the set of all legal (parallel) pebblings of G

with target set T . We will be mostly interested in the case where T = sinks(G)
and then will simply write P‖

G.

We remark that in the sequential black pebbling game, we face the additional
restriction that at most one pebble is place in each step (∀i ∈ [t] : |Pi\Pi−1| ≤ 1),
while in the parallel black pebbling game there is no such restriction. The cumu-
lative complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖

G is defined to be Πcc(P) =∑
i∈[t] |Pi|. The cumulative cost of pebbling a graph G a target set T ⊆ V is defined

to be
Π‖

cc(G,T) = min
P∈P‖

G,T

Πcc(P) .

When T = sinks(G), we simplify notation and write Π
‖
cc(G) = min

P∈P‖
G

Πcc(P).

3.1 Edge Distribution of Argon2i-B

Definition 3 gives the edge distribution for the single-lane/single-pass version
of Argon2i-B. The definition also captures the core of the Argon2i-B edge dis-
tribution for multiple lane/multiple-pass variants of Argon2i-B. While we focus
on the single-lane/single-pass variant for ease of exposition, we stress that all of
our results can be extended to multiple-lane/multiple-pass versions of Argon2i-B
provided that the parameters τ, � = O(1) are constants. Here, � is the number
of lanes and τ is the number of passes and in practice these parameters � and τ
will be always be constants.

Definition 3. The Argon2i-B is a graph G = (V = [n], E), where E = {(i, i +
1) : i ∈ [n−1]}∪{(r(i), i)}, where r(i) is a random value distributed as follows:

Pr[r(i) = j] = Pr
x∈[N]

[
i

(
1 − x2

N2

)
∈ (j − 1, j]

]
,

since i
(
1 − x2

N2

)
is not always an integer. Note that we assume n � N . In the

current Argon2i-B implementation we have, N = 232. By contrast, we will have
n ≤ 224 in practice.

452 J. Blocki and S. Zhou

3.2 Metagraphs

We will use the notion of a metagraph in our analysis. Fix an arbitrary integer
m ∈ [n] and set n′ = �n/m�. Given a DAG G, we will define a DAG Gm called
the metagraph of G. For this, we use the following sets. For all i ∈ [n′], let
Mi = [(i − 1)m + 1, im] ⊆ V . Moreover, we denote the first and last thirds
respectively of Mi with

MF
i =

[
(i − 1)m + 1, (i − 1)m +

⌊m

3

⌋]
⊆ Mi ,

and

ML
i =

[
(i − 1)m +

⌈
2m

3

⌉
+ 1, im

]
⊆ Mi .

We define the metagraph Gm = (Vm, Em) as follows:

Nodes: Vm contains one node vi per set Mi. We call vi the simple node and Mi

its meta-node.
Edges: If the end of a meta-node ML

i is connected to the beginning MF
j of

another meta-node we connect their simple nodes.

Vm = {vi : i ∈ [n′]} Em = {(vi, vj) : E ∩ (ML
i × MF

j) �= ∅}.

Claim 1 is a simple extension of a result from [ABP17a], which will be useful in
our analysis.

Claim 1 ([ABP17a], Claim 1). If Gm is (e, d)-depth robust, then G is(
e
2 , dm

3 ,m
)
-block depth robust.

4 Depth-Reducibility of Argon2iB

In this section, we show that the Argon2i-B is depth reducible with high probabil-
ity. Then, using results from previous layered attacks (such as [AB16,ABP17a]),
we show an upper bound on the computational complexity of Argon2i-B.

Theorem 5. With high probability, the Argon2i-B graph is
(
e,Ω

((
n
e

)3))
-

depth reducible.

Proof. Recall that for node i, Argon2i-B creates an edge from i to parent node
i
(
1 − x2

N2

)
, where x ∈ [N] is picked uniformly at random. Suppose we remove

a node between every g nodes, leaving gap size g. Suppose also that we have L

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 453

layers, each of size n
L . Let i be in layer α, so that i ∈ [

(α − 1) n
L , α n

L

]
. Then the

probability that the parent of i is also in layer α, for α > 1, is

Pr
[
(α − 1)

n

L
≤ i

(
1 − x2

N2

)]
≤ Pr

[
(α − 1)

n

iL
≤

(
1 − x2

N2

)]

= Pr
[(

x2

N2

)
≤ iL − (α − 1)n

iL

]

≤ Pr
[(

x2

N2

)
≤ αn − (α − 1)n

iL

]

≤ Pr
[(

x2

N2

)
≤ n

(α − 1)n

]

≤ 1√
α − 1

Thus, the expected number of in-layer edges is at most

n

L

(
1 +

1√
1

+
1√
2

+
1√
3

+ . . .

)
<

n

L

(

2
∫ L

1

1√
α − 1

dα

)

= 4
n√
L

.

Hence, if we remove a node between every g nodes, as well as all in-layer edges,
we have e = n

g + 4n√
L

. We can apply standard concentration bounds to show
that the number of in-layer edges is tightly concentrated around the mean. As a
result, the depth is at most g nodes each gap over all L layers, d = gL. Therefore,
Argon2i-B is

(
n
g + 4n√

L
, gL

)
depth reducible. Setting g =

√
L shows

(
5n√

L
, L3/2

)

depth reducibility. Consequently, for e = 5n√
L

, then L3/2 =
(
5n
e

)3, and the result
follows.

Given function f , we say that G is f -reducible if G is (f(d), d)-reducible for each
value d ∈ [n]. Theorem 6, due to Alwen et al. [ABP17a], upper bounds Π

‖
cc(G)

for any f -reducible DAG.

Theorem 6 ([ABP17a], Theorem 8). Let G be a f-reducible DAG on n nodes
then if f(d) = Õ

(
n
db

)
for some constant 0 < b ≤ 2

3 then for any constant
ε > 0, the cumulative pebbling cost of G is at most Π

‖
cc(G) = O(n1+a+ε), where

a = 1−2b+
√
1+4b2

2 .

Reminder of Theorem 2. For any ε > 0 the cumulative pebbling cost of a
random Argon2i DAG G is at most Π

‖
cc(G) = O(n1+a+ε) with high probability,

where a = 1/3+
√

1+4/9

2 ≈ 0.7676.

Proof of Theorem 2: By Theorem 5, the Argon2i-B graph is f -reducible for
b = 1

3 with high probability, and the result follows. ��

454 J. Blocki and S. Zhou

5 Depth-Robustness for Argon2iB

In this section we show the general block-depth robustness curve of a random
Argon2i-B DAG. We will ultimately use these results to lower bound the cumu-
lative pebbling of an Argon2i-B DAG in Sect. 6. Interestingly, our lower bound
from Theorem 1 matches the upper bound from Theorem 5 in the last section
up to logarithmic factors. Thus, both results are essentially tight.

Reminder of Theorem 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(n/e)

)
-block depth

robust with high probability.

The notion of a (δ, r∗)-local expander will be useful in our proofs. Definition
4 extends the basic notion of a δ-local expander from [EGS75]. [EGS75] showed
that for a sufficiently small constant δ, any δ-local expander is (Ω(n), Ω(n))-
depth robust.

Definition 4. A directed acyclic graph G (with n nodes) is a (δ, r∗)-local
expander if for all r ≥ r∗ and for all x ≤ n−2r+1 and all A ⊆ {x, . . . , x+r−1},
B ⊆ {x+ r, . . . , x+2r−1} such that |A|, |B| ≥ δr, we have E(G)∩ (A×B) �= ∅.
That is, there exists an edge from some node in A to some node in B. If r∗ = 1,
then we say G is a δ-local expander.

Proof Overview: We set m = Ω(n/e) and construct a metagraph Gm for a
random Argon2i-B graph, and bound the probability that two metanodes in
Gm are connected, using Claims 2 and 3. Using these bounds, we show that
the metagraph Gm for a random Argon2i-B graph is a (δ, r∗)-local expander
with high probability for r∗ = Ω̃(e3/n2) (we will be interested in the realm
where e = Ω(n2/3)) and some suitably small constant δ > 0. We then divide the
metagraph into several layers. With respect to a set S, we call a layer “good” if
S does not remove too many elements from the layer. We then show that there
exists a long path between these layers, which indicates that the remaining graph
has high depth.

We now show that the Argon2i-B class of graphs is a (δ, r∗)-local expander
with high probability. Given a directed acyclic graph G with n nodes sampled
from the Argon2i-B distribution, let Gm be the graph with the metanodes of G,
where each metanode has size m = 6n1/3 log n, so that Gm has n

m = n2/3

6 log n nodes.
First, given two metanodes x, y ∈ Gm with x < y, we bound the probability that
for node i in metanode y, there exists an edge from x to i.

Claim 2. For each x, y ∈ Gm with y > x and node i in metanode y, there
exists an edge from the last third of metanode x to node i with probability at
least 1

12
√

y
√

y−x+1
.

Claim 3. For any two metanodes x, y ∈ Gm with x < y, the last third of x is
connected to the first third of y with probability at least m

√
m

m
√

m+36
√

n(y−x+1)
.

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 455

This allows us to show that the probability there exist subsets A ⊆ [x, x+ r − 1]
and B ⊆ [x + r, x + 2r − 1] of size δr such that A has no edge to B is at most
e−δr log(1+

√
log n)

(
r
δr

)2. We then use Stirling’s approximation to show this term
is negligible, and then apply the union bound over all vertices x and all r ≥ r∗,
which shows that the metagraph Gm (for Argon2i) is a (δ, r∗)-local expander
with high probability.

Lemma 1. Let m = n/(20000e) then for r∗ = Ω̃(e3/n2) = Ω̃(n/m3) the meta-
graph Gm (for Argon2i) is a (δ, r∗)-local expander with high probability.

We now divide Gm into layers L1, L2, . . . Ln/(mr∗) of size r∗ each. Say that a
layer Li is c-good with respect to a subset S ⊆ V (Gm) if for all t ≥ 0 we have
∣
∣
∣
∣
∣
∣

S ∩
⎛

⎝

i+t−1⋃

j=i

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ c

∣
∣
∣
∣
∣
∣

⎛

⎝

i+t−1⋃

j=i

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

, and

∣
∣
∣
∣
∣
∣

S ∩
⎛

⎝

i⋃

j=i−t+1

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ c

∣
∣
∣
∣
∣
∣

⎛

⎝

i⋃

j=i−t+1

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

,

We ultimately want to argue that Gm −S has a path through these good layers.

Claim 4. If |S| < n/(10000m) then at least half of the layers L1, L2, . . . Ln/(mr∗)
are (1/1000)-good with respect to S.

Fixing a set S let H1,S ,H2,S , . . . , denote the c-good layers and let R1,S = H1,S −
S and let Ri+1,S = {x ∈ Hi+1,S | x can be reached from some y ∈ Ri,S in
Gm − S}.

Lemma 2. Suppose that for any S with |S| ≤ e and i ≤ n/(2mr∗), the set
Ri,S �= ∅. Then Gm is (e = n/(10000m), n/(2mr∗))-depth robust and G is (e =
n/(20000m), n/(6r∗),m)-block depth robust.

Proof. Removing any e = n/(10000m) nodes from Gm, there is still a path
passing through each good layer since Ri,S �= ∅ and there are at least n/(2mr∗)
good layers. Thus, Gm is (e = n/(10000m), n/(2mr∗))-depth robust. Then block
depth robustness follows from Claim 1. Intuitively, removing e = n/(20000m)
blocks of nodes of size m from G can affect at most n/(10000m) metanodes.
Thus, there is a path of length (m/3)n/(2mr∗) = n/(6r∗) through G, and so G
is (e = n/(20000m), n/(6r∗),m)-block depth robust.

We now show that the number of nodes in each reachable good layer Ri,S is
relatively high, which allows us to construct a path through the nodes in each
of these layers. We first show that if two good layers Hi,S and Hi+1,S are close
to each other, then no intermediate layer contains too many nodes in S, so we
can use expansion to inductively argue that each intermediate layer has many
reachable nodes from Ri,S , and it follows that Ri+1,S is large. On the other
hand, if Hi,S and Hi+1,S have a large number of intermediate layers in between,
then the argument becomes slightly more involved. However, we can use local
expansion to argue that most of the intermediate layers have the property that
most of the nodes in that layer are reachable. We then use a careful argument
to show that as we move close to layer Hi+1,S , the density of layers with this
property increases. It then follows that Ri+1,S is large. See Fig. 1 for example.

456 J. Blocki and S. Zhou

Lemma 3. Suppose that Gm is a (δ, r∗)-local expander with δ = 1/16 and let
S ⊆ V (Gm) be given such that |S| ≤ n/(10000m). Then, |Ri,S | ≥ 7r∗/8.

Proof of Theorem 1: Let m = n/20000e and let G be a random Argon2i
DAG. Lemma 1 shows that the metagraph Gm of a random Argon2i DAG G is
a (δ, r∗)-local expander with high probability for r∗ = Ω̃

(
e3/n2

)
. Now fix any

set S ⊆ Gm of size |S| ≤ e. Claim 4 now implies we have at least n/(2mr∗) good
layers H1,S , . . . ,Hn/(2mr∗). Theorem 1 now follows by applying Lemma 3 and
Lemma 2. ��

6 Cumulative Pebbling Cost of Argon2iB

We now use the depth-robust results to show a lower bound on the cumulative
pebbling complexity of Argon2iB. Given a pebbling of G, we show in Theorem 7
that if at any point the number of pebbles on G is low, then we must completely
re-pebble a depth-robust graph. We then appeal to a result which provides a
lower bound on the cost of pebbling a depth-robust graph.

Theorem 7. Suppose G is a DAG that has an edge from [i, i + b − 1] to[
j, j + 128n log n

b

]
for all n

2 ≤ j ≤ n − 128n log n
b and 1 ≤ i ≤ n

2 − b + 1. If

the subgraph induced by nodes
[
1, n

2

]
is (e, d, b)-block depth robust, then the cost

to pebble G is at least min
(

en
8 , edb

1024 log n

)
.

First, we exhibit a property which occurs if the number of pebbles on G is low:

Lemma 4. Suppose G is a DAG that has an edge from [i, i + b − 1] to[
j, j + 128n log n

b

]
for all n

2 ≤ j ≤ n − 128n log n
b and 1 ≤ i ≤ n

2 − b + 1. Sup-

pose also that the subgraph induced by nodes
[
1, n

2

]
is (e, d, b)-block depth robust.

For a subset S ⊂ [
1, n

2

]
, if |S| < e

2 , then H = ancestorsG−S

([
j, j + 128n log n

b

])

is
(

e
2 , d

)
-depth robust.

Proof. Let G1 denote the subgraph induced by first n
2 nodes. Note that H con-

tains the graph W = G1 − ⋃
x∈S [x − b + 1, x] since there exists an edge from

each interval [x − b + 1, x]. Moreover, W is
(

e
2 , d, b

)
-block depth robust since G1

is (e, d, b)-block depth robust contains only e
2 additional blocks. Finally, since W

is a subgraph of H, then H is
(

e
2 , d

)
-depth robust.

Lemma 5 ([ABP17a], Corollary 2). Given a DAG G = (V,E) and subsets
S, T ⊂ V such that S ∩ T = ∅, let G′ = G − (V/ancestorsG−S(T)). If G′ is (e, d)-
depth robust, then the cost of pebblingG−S with target set T isΠ

‖
cc(G−S, T) > ed.

We now prove Theorem 7.

Proof of Theorem 7: For each interval of length 256n log n
b , let t1 denote the

first time we pebble the first node, let t2 denote the first time we pebble the
middle node of the interval, and let t3 denote the first time we pebble the last
node of the interval. We show

∑
t∈[t1,t3]

|Pt| ≥ min{en log(n)/(2b), ed/2}. Then
a pebbling do at least one of the following:

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 457

1. Keep e
2 pebbles on G for at least 128n log n

b steps (i.e., during the entire interval
[t1, t2])

2. Pay
(

e
2

)
d to repebble a (e/2, d)-depth robust DAG during before round t3.

(Lemma 4)

In the first case, |Pt| ≥ e
2 for each t ∈ [t1, t2], which is at least 128n log n

b time
steps. In the second case, there exists t ∈ [t1, t2] such that |Pt| < e

2 . Then by
Lemmas 4 and 5,

∑
t∈[t1,t3]

|Pt| ≥ ed
2 . The cost of the first case is 64en log n

b and
the cost of the second case is ed

2 . Since the last n/2 nodes can be partitioned
into (n/2)/(256(n/b) log n) = b/(512 log n) such intervals, then the cost is at
least

(
b

512 log n

)
min

(
64en log n

2b , ed
2

)
, and the result follows. ��

We now provide a lower bound on the probability that there exists an edge
between two nodes in the Argon2iB graph.

Claim 5. Let i, j ∈ [n] be given (i �= j) and let G be a random Argon2iB DAG on
n nodes. There exists an edge from node j to i in G with probability at least 1

4n .

Using the bound on the probability of two nodes being connected, we can also
lower bound the probability that two intervals are connected in the Argon2iB
graph.

Lemma 6. Let b ≥ 1 be a constant. Then with high probability, an Argon2iB
DAG has the property that for all pairs i, j such that n

2 ≤ j ≤ n − 128n log n
b and

1 ≤ i ≤ n
2 − b + 1 there is an edge from [i, i + b − 1] to

[
j, j + 128n log n

b

]
.

Proof. By Claim 5, the probability that there exists an edge from a specific
node y ∈ [i, i+ b−1] to a specific node x ∈

[
j, j + 128n log n

b

]
is at least 1

4n . Then

the expected number of edges from [i, i + b − 1] to
[
j, j + 128n log n

b

]
is at least

1
4n (128n log n) = 32 log n. By Chernoff bounds, the probability that there exists

no edge from [i, i + b − 1] to
[
j, j + 128n log n

b

]
is at most 1

n4 . Taking a union
bound over all possible intervals, the graph of Argon2iB is a DAG that has an
edge from [i, i + b − 1] to

[
j, j + 128n log n

b

]
and all n

2 + j ≤ n − 128n log n
b and

1 ≤ i ≤ n
2 − b + 1 with probability at least 1 − 1

n2 .

We now have all the tools to lower bound the computational complexity of
Argon2iB.

Reminder of Theorem 3. With high probability, the cumulative pebbling cost
of a random Argon2i DAG G is at least Π

‖
cc(G) = Ω̃

(
n7/4

)
with high probability.

Proof of Theorem 3: The result follows Theorem 7, Lemma 6, and setting
e = d = n3/4 and b = n1/4. ��

458 J. Blocki and S. Zhou

7 Fractional Depth-Robustness

Thus far, our analysis has focused on Argon2i, the data-independent mode
of operation for Argon2. In this section, we argue that our analysis of the
depth-robustness of Argon2i has important security implications for both data-
dependent modes of operation: Argon2 and Argon2id. In particular, we prove
a generic relationship between block-depth robustness and fractional depth-
robustness of any block-depth robust DAG such as Argon2i. Intuitively, frac-
tional depth-robustness says that even if we delete e vertices from the DAG that
a large fraction of the remaining vertices have depth ≥ d in the remaining graph.

In the context of a dMHF fractional depth-robustness is a significant met-
ric because the attacker will be repeatedly challenged for a random data-label.
Intuitively, if the attacker reduces memory usage and only stores e data labels,
then there is a good chance that the attacker will need time ≥ d to respond to
each challenge. It is known that SCRYPT has cumulative memory complexity
Ω(n2). However, SCRYPT allows for dramatic space-time trade-off attacks (e.g.,
attackers could evaluate SCRYPT with memory O(1) if they are willing to run in
time O(n2)). Our results are compelling evidence for the hypothesis that similar
time space-trade offs are not possible for Argon2 or Argon2id without incurring
a dramatic increase in cumulative memory complexity (We believe that provid-
ing a formal proof of this claim could be a fruitful avenue of future research).
In particular, our results provide strong evidence that any evaluation algorithm
either (1) requires space Ω

(
n0.99

)
for at least n steps, or (2) has cumulative

memory complexity ω
(
n2

)
since it should take time Ω̃

(
n3/e3

)
= Ω̃

(
n2ε × n

e

)

on average to respond to a random challenge on with any configuration with
space e = O(n1−ε). By contrast for SCRYPT, it may only take time Ω(n/e)
to respond to a random challenge starting from a configuration with space e —
while this is sufficient to ensure cumulative memory complexity Ω(n2), it does
not prevent space-time trade-off attacks.

Definition 5. Recall that the depth of a specific vertex v in graph G, denoted
depth(v,G) is the length of the longest path to v in G. We say that a DAG
G = (V,E) is (e, d, f)-fractionally depth robust if for all S ⊆ V with |S| ≤ e,
we have

|{v ∈ V : depth(v,G − S) ≥ d}| ≥ f · n.

Then we have the following theorem which relates fractional depth-robustness
and block depth-robustness.

Reminder of Theorem 4. If G contains all of the edges of the form (i − 1, i)
for 1 < i ≤ n and is (e, d, b)-block depth robust, then G is

(
e
2 , d, eb

2n

)
-fractional

depth robust.

Proof of Theorem 4: Suppose, by way of contradiction, that G is not(
e
2 , d, eb

2n

)
-fractionally depth robust. Then let S be a set of size e

2 such that at
most eb

2n nodes in G have depth at least d. Now consider the following procedure:

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 459

Let S′ = ∅.
Repeat until depth

(
G − (⋃

v∈S′ [v, v + b − 1] ∪ S
))

< d:

(1) Let v be the topologically first node s.t

depth

(

v,G −
(

S ∪
⋃

v∈S′
[v, v + b − 1]

))

≥ d .

(2) Set S′ = S′ ∪ {v}.

Return S′ ∪ (
S \ ⋃

v∈S′ [v, v + b − 1]
)
.

We remark that during round i, the interval [v, v + b − 1] either (1) covers
b nodes at depth at least d in G − Si, or (2) covers some node in the set S0.
Since at most eb

2 nodes in G − (Si ∪ S) have depth at least d the first case
can happen at most e/2 times. Similarly, the second case can happen at most
|S| = e

2 times, and each time we hit this case we decrease the size of the set∣
∣S \ ⋃

v∈S′ [v, v + b − 1]
∣
∣ by at least one. Thus, the above procedure returns a set

S′ of size |S′| ≤ e such that depth(G − ⋃
v∈S′ [v, v + b − 1]) < d. But then, the

longest path in the resulting graph is at most d − 1, which contradicts that G is
(e, d, b)-block depth robust. ��

Corollary 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(1)

)
-fractional depth robust with high

probability.

Acknowledgements. We would like to thank Ling Ren and anonymous TCC review-
ers for comments that have helped us to improve the presentation of the paper. The
work was supported by the National Science Foundation under NSF Awards #1649515
and #1704587. The opinions expressed in this paper are those of the authors and do
not necessarily reflect those of the National Science Foundation.

A Missing Proofs

Reminder of Claim 2. For each x, y ∈ Gm with y > x and node i in metanode
y, there exists an edge from the last third of metanode x to node i with probability
at least 1

12
√

y
√

y−x+1
.

Proof of Claim 2: Recall that for node i, Argon2iB creates an edge from i to
parent node i

(
1 − k2

N2

)
, where k ∈ [N] is picked uniformly at random. Thus, for

nodes i, j ∈ G with i > j, there exists an edge from node j to i with probability
at least

460 J. Blocki and S. Zhou

Pr
[
(x − 1)m + 1 ≤ i

(
1 − k2

N2

)
≤

(
x − 1 +

1
3

)
m

]

= Pr
[(

x − 1 +
1
6

)
m ≤ ym

(
1 − k2

N2

)
≤

(
x − 1 +

1
3

)
m

]

≥ Pr
[
y − x + 5

6

y
≥ k2

N2
≥ y − x + 2

3

y

]

≥
√

y − x + 5
6

y
−

√
y − x + 2

3

y

≥ 1
6
√

y(2
√

y − x + 1)
=

1
12

√
y
√

y − x + 1
.

��
Reminder of Claim 3. For any two metanodes x, y ∈ Gm with x < y, the
last third of x is connected to the first third of y with probability at least

m
√

m

m
√

m+36
√

n(y−x+1)
.

Proof of Claim 3: Let p be the probability that the final third of x is connected
to the first third of y. Let Ei be the event that the ith node of metanode y is
the first node in y to which there exists an edge from the last third of metanode
x, so that by Claim 2, Pr [E1] ≥ 1

12
√

y
√

y−x+1
. Note that furthermore, Pr [Ei] is

the probability that there exists an edge from the last third of metanode x to
the ith node of metanode y and no previous metanode of y. Hence, Pr [Ei] ≥

1
12

√
y
√

y−x+1
(1 − p). Thus,

p = Pr [E1] + Pr [E2] + . . . + Pr
[
Em/3

]

≥
(m

3

) 1
12

√
y
√

y − x + 1
(1 − p).

Setting α =
(

m
3

)
1

12
√

y
√

y−x+1
, then it follows that p + αp ≥ α, so that p ≥ α

1+α .
Since y ≤ n

m ,

p ≥ m/36
√

y(y − x + 1) + m/36
≥ m

√
m

m
√

m + 36
√

n(y − x + 1)

��
Reminder of Lemma 1. Let m = n/(20000e) then for r∗ = Ω̃(e3/n2) =
Ω̃(n/m3) the metagraph Gm (for Argon2i) is a (δ, r∗)-local expander with high
probability.

Proof of Lemma 1: Let r ≥ r∗ and A ⊆ {x, . . . , x+r−1}, B ⊆ {x+r, . . . , x+
2r−1} be subsets of size δr, for some x ≤ n−2r+1. By Stirling’s approximation,

√
2πrr+1/2e−r ≤ r! ≤ err+1/2e−r.

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 461

Then it follows that
(

r

δr

)
≤ err+1/2e−r

2π(δr)δr+1/2(r − δr)r−δr+1/2e−r

≤ e

2πδδr+1/2(1 − δ)r−δr+1/2
√

r

=
e1+δr log 1

δ +(r−δr) log 1
1−δ

2π
√

rδ(1 − δ)

For two specific metanodes in A and B, the probability the pair is connected
is at least m

√
m

m
√

m+36
√

nr
by Claim 3. For 36

√
nr ≥ m

√
m, the probability is at least

m
√

m
72

√
nr

(otherwise, for 36
√

nr < m
√

m, the probability is at least 1
2 > m

√
m

72
√

nr
).

Now, let p be the probability that there exists an edge from A to a specific
metanode in B. Furthermore, let Ei be the event that the ith metanode of A is
the first node from which there exists an edge from a specific metanode of B, so
that, Pr [E1] ≥ m

√
m

72
√

nr
. For Ei to occurs, that must exist an edge from the last

third of metanode x to the ith node of metanode y and no previous metanode
of y, so then Pr [Ei] ≥ m

√
m

72
√

nr
(1 − p). Thus,

p = Pr [E1] + Pr [E2] + . . . + Pr
[
E|A|

]

≥ (δr)
m

√
m

72
√

nr
(1 − p).

Since r ≥ r∗ = Ω̃(n/m3), it follows for an appropriate choice of r′ that p ≥√
log n(1 − p). Thus, p ≥

√
log n

1+
√
log n

is the probability that there exists an edge
from A to a specific metanode in B.

Now, taking the probability over all δr metanodes in B, the probability that
A and B are not connected is at most

(1 − p)δr =
(

1
1 +

√
log n

)δr

= e−δr log(1+
√
log n)

Since there are
(

r
δr

)2 such sets A and B, the probability that there exists A
and B in the above intervals which are not connected by an edge is at most

e−δr log(1+
√
log n)

(
r

δr

)2

by a simple union bound. Then from the above Stirling approximation, the
probability is at most

exp
(

2 + 2δr log
1
δ

+ 2(r − δr) log
1

1 − δ
− δr log(1 +

√
log n)

)
1

4π2rδ(1 − δ)
,

462 J. Blocki and S. Zhou

where −δr log(1 +
√

log n) is the dominant term in the exponent. Again taking
r ≥ r∗ = Ω

(
n log n

m3

)
, the probability that Gm is not a δ-local expander is at

most

Pr [∃r ≥ r∗, x, A,B with no edge] ≤ n
∑

r≥r∗

e−Ω(r log log n)

4π2rδ(1 − δ)

= o

(
1
n

)
.

Thus, Gm is a δ-local expander with high probability. ��
Reminder of Claim 4. If |S| < n/(10000m) then at least half of the layers
L1, L2, . . . Ln/(mr∗) are (1/1000)-good with respect to S.

Proof of Claim 4: Let i1 be the index of the first layer Li1 such that for some
x1 > 0 we have

∣
∣
∣S ∩

(⋃i1+x1−1
t=i1

Lt

)∣
∣
∣ ≥ c

∣
∣
∣
(⋃i1+x1−1

t=i Lt

)∣
∣
∣. Once i1 < . . . <

ij−1 and x1, . . . , xj−1 have been defined we let ij be the least layer such that

ij > ij−1 + xj−1 and there exists xj > 0 such that
∣
∣
∣S ∩

(⋃ij+xj−1
t=ij

Lt

)∣
∣
∣ ≥

c
∣
∣
∣
(⋃ij+xj−1

t=ij
Lt

)∣
∣
∣ (assuming that such a pair ij , xj exists). Let i1 + x1 < i2,

i2 + x2 < i3, . . . ik−1 + xk−1 < ik denote a maximal such sequence and let

F =
k⋃

t=1

[it, xt − 1] .

Observe that by construction of F we have |S| ≥ c
∣
∣
∣
⋃

j∈F Lj

∣
∣
∣ = c|F |r∗,

which means that |F | ≤ |S| /(cr∗) = n/(10000cmr∗). Similarly, we can
define a maximal sequence i∗1 > . . . > i∗k∗ such that i∗j − x∗

j > i∗j+1 and∣
∣
∣S ∩

(⋃i∗
j

t=i∗
j −x∗

j+1 Lt

)∣
∣
∣ ≥ c

∣
∣
∣
(⋃i∗

j

t=i∗
j −x∗

j+1 Lt

)∣
∣
∣ for each j. A similar argument

shows that |B| ≤ |S| /(cr∗) = n/(10000cmr∗), where B =
⋃k

t=1 [i∗t − x∗
t + 1, i∗t].

Finally, we note that if Li is not c-good then i ∈ F ∪ B. Thus, at most
n/(5000cmr∗) layers are not c-good, which means that the number of c =
(1/1000)-good layers is at least

n

mr∗ − n

5mr∗ ≥ n

2mr∗ .

��
Reminder of Lemma 3. Suppose that Gm is a (δ, r∗)-local expander with δ =
1/16 and let S ⊆ V (Gm) be given such that |S| ≤ n/(10000m). Then, |Ri,S | ≥
7r∗/8.

Proof of Lemma 3: We prove by induction. For the base case, we set R1 =
H1,S −S. Thus, |R1| = |H1,S − S| ≥ r∗−(1/1000)r∗, since H1,S is (1/1000)-good
with respect to S.

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 463

Now, suppose that |Rj | ≥ 7r∗/8 for each j ≤ i. If layers Hi,S and Hi+1,S are
within 100 intermediate layers, then since Hi,S is (1/1000)-good with respect to
S, it follows that at most 100/1000 = 1/10 of the nodes in Hi+1,S are also in S.
Moreover, since Gm is a (δ, r∗)-local expander with δ = 1/16, then at most δr∗

additional nodes in Hi+1,S are not reachable from Hi,S . Therefore,

|Ri+1,S | ≥ |Hi+1,S − S| − δr∗ ≥ (1 − 1/1000 − 1/16)r∗ ≥ (7/8)r∗ .

Otherwise, suppose more than 100 intermediate layers separate layers Hi,S

and Hi+1,S . Figure 1 provides a visual illustration of our argument in this second
case. Let Y1, . . . , Yk denote the intermediate layers between Hi,S and Hi+1,S , so
that k > 100. Let j be the integer such that 2j ≤ k < 2j+1. Since Hi,S is
(1/1000)-good with respect to S, at most 2j+1r∗/1000 nodes in Y1 ∪ . . .∪Yk can
be in S. Thus, at least (1/8)-fraction of the nodes in Yk−2j−1 , . . . , Yk−2j−2+1 are
reachable from Ri. We now show this is sufficient.

Suppose that at least (1/8)-fraction of the nodes in Yk−2u, . . . , Yk−u−1 are
reachable from Ri. Then at least (7/8)-fraction of nodes in Yk−u, . . . , Yk−u/2 are
reachable from Ri, since layer Hi+1 is both (1/1000)-good and a (δ, r∗)-local
expander with δ = 1/16. (Note: we are now using layer Hi+1, not layer Hi).
It follows that at least (7/8)-fraction of the nodes in Yk are reachable from Ri.
Again,

|Ri+1,S | ≥ |Hi+1,S − S| − δr∗ ≥ (1 − 1/1000 − 1/16)r∗ ≥ (7/8)r∗ .

Thus, at least (7/8)-fraction of the nodes in Hi+1 are reachable, and so |Ri+1,S | ≥
(7/8)r∗. ��

.

.

.

Hi,S

Ri,S

Hi+1,S

Ri+1,S

Y1 ∪ Y2 Yk−1 ∪ Yk
6⋃

j=3

Yj

k−2⋃

j=k−5

Yj

Fig. 1. The red area represents deleted nodes in the set S ⊆ V (Gm). Because the layers
Hi,S and Hi+1,S are both (1/1000)-good with respect to S the number of deleted nodes
in each oval cannot be too large. The green area in each oval represents nodes that are
reachable from Ri,S and are not in the deleted set S; other nodes are colored white.
An inductive argument shows that the number of white nodes in each oval cannot be
too large since Gm is a local expander. (Color figure online)

464 J. Blocki and S. Zhou

Reminder of Claim 5. Let i, j ∈ [n] be given (i �= j) and let G be a random
Argon2iB DAG on n nodes. There exists an edge from node j to i in G with
probability at least 1

4n .

Proof of Claim 5: Recall that for node i, Argon2iB creates an edge from i to
parent node i

(
1 − x2

N2

)
, where x ∈ [N] is picked uniformly at random. Thus,

for i, j ∈ G with i > j, there exists an edge from node j to i with probability at
least

Pr
[
j ≤ i

(
1 − x2

N2

)
≤ j +

1
2

]
= Pr

[
i − j

i
≥ x2

N2
≥ i − j − 1

2

i

]

≥ Pr
[
1 ≥ x2

N2
≥ 1 − 1

2n

]

≥ 1
4n

.
��

References

[AABSJ14] Almeida, L.C., Andrade, E.R., Barreto, P.S.L.M., Lyra Jr., M.A.S.:
Password-based key derivation with tunable memory and processing costs.
J. Cryptographic Eng. 4(2), 75–89 (2014)

[AB16] Alwen, J., Blocki, J.: Efficiently computing data-independent memory-
hard functions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 241–271. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 9

[AB17] Alwen, J., Blocki, J.: Towards practical attacks on argon2i and balloon
hashing. In: 2nd IEEE European Symposium on Security and Privacy
(EuroS&P 2017) (2017)

[ABH17] Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel
resistant memory-hard functions. In: ACM CCS 17. ACM Press (2017, to
appear). http://eprint.iacr.org/2017/443

[ABP17a] Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumu-
lative memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 1

[ABP17b] Alwen, J., Blocki, J., Pietrzak, K.: Sustained space complexity. arXiv
preprint: arXiv:1705.05313 (2017)

[ABW03] Abadi, M., Burrows, M., Wobber, T.: Moderately hard, memory-bound
functions. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2003, San Diego, California, USA (2003)

[ACP+17] Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is max-
imally memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 2

[AdRNV16] Alwen, J., de Rezende, S.F., Nordstrm, J., Vinyals, M.: Cumulative space
in black-white pebbling and resolution. In: Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, Berkeley,
California USA, pp. 9–11, January 2017

https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-662-53008-5_9
http://eprint.iacr.org/2017/443
https://doi.org/10.1007/978-3-319-56617-7_1
http://arxiv.org/abs/1705.05313
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2

On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i 465

[AS15] Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-
hard functions. In: Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing, STOC 2015 (2015). http://eprint.iacr.org/2014/
238

[BDK15] Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient
memory-hard functions for cryptocurrencies and password hashing. Cryp-
tology ePrint Archive, Report 2015/430 (2015). http://eprint.iacr.org/
2015/430

[BDK16] Biryukov, A., Dinu, D., Khovratovich, D.: Argon2 password hash. Version
1.3 (2016). https://www.cryptolux.org/images/0/0d/Argon2.pdf

[BDKJ16] Biryukov, A., Dinu, D., Khovratovich, D., Josefsson, S.: The memory-
hard Argon2 password hash and proof-of-work function. Internet-Draft
draft-irtf-cfrg-argon2-00, Internet Engineering Task Force, March 2016

[Ber] Bernstein, D.J.: Cache-Timing Attacks on AES (2005). https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

[CGBS16] Corrigan-Gibbs, H., Boneh, D., Schechter, S.: Balloon hashing: Provably
space-hard hash functions with data-independent access patterns. Cryp-
tology ePrint Archive, Report 2016/027, Version: 20160601:225540 (2016).
http://eprint.iacr.org/

[CJMS14] Chang, D., Jati, A., Mishra, S., Sanadhya, S.K.: Rig: A simple, secure and
flexible design for password hashing version 2.0. (2014)

[Cox14] Cox, B.: Twocats (and skinnycat): A compute time and sequential memory
hard password hashing scheme. Password Hashing Competition. v0 edn.
(2014)

[EGS75] Erdös, P., Graham, R.L., Szemeredi, E.: On sparse graphs with dense long
paths. Technical report, Stanford, CA, USA (1975)

[FLW13] Forler, C., Lucks, S., Wenzel, J.: Catena: A memory-consuming password
scrambler. IACR Cryptology ePrint Archive 2013:525 (2013)

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Kleinberg, R.D. (ed.) Innovations in Theoretical Com-
puter Science, ITCS 2013, Berkeley, CA, USA, 9–12 January, 2013, pp.
373–388. ACM (2013)

[Per09] Percival, C.: Stronger key derivation via sequential memory-hard func-
tions. In: BSDCan 2009 (2009)

[PHC] Password hashing competition. https://password-hashing.net/
[Pin14] Pintér, K.: Gambit - A sponge based, memory hard key derivation func-

tion. Submission to Password Hashing Competition (PHC) (2014)
[PR80] Paul, W.J., Reischuk, R.: On alternation II. A graph theoretic approach

to determinism versus nondeterminism. Acta Inf. 14, 391–403 (1980)
[Sch82] Schnitger, G.: A family of graphs with expensive depth reduction. Theor.

Comput. Sci. 18, 89–93 (1982)
[Sch83] Schnitger, G.: On depth-reduction and grates. In: 24th Annual Sympo-

sium on Foundations of Computer Science, Tucson, Arizona, USA, 7–9
November, 1983, pp. 323–328. IEEE Computer Society (1983)

[Val77] Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In:
Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer,
Heidelberg (1977). https://doi.org/10.1007/3-540-08353-7 135

[Wu15] Wu, H.: POMELO - A Password Hashing Algorithm (2015)

http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2015/430
http://eprint.iacr.org/2015/430
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://eprint.iacr.org/
https://password-hashing.net/
https://doi.org/10.1007/3-540-08353-7_135

Bandwidth Hard Functions for ASIC Resistance

Ling Ren(B) and Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA, USA
{renling,devadas}@mit.edu

Abstract. Cryptographic hash functions have wide applications includ-
ing password hashing, pricing functions for spam and denial-of-service
countermeasures and proof of work in cryptocurrencies. Recent progress
on ASIC (Application Specific Integrated Circuit) hash engines raise con-
cerns about the security of the above applications. This leads to a grow-
ing interest in ASIC resistant hash function and ASIC resistant proof
of work schemes, i.e., those that do not give ASICs a huge advantage.
The standard approach towards ASIC resistance today is through mem-
ory hard functions or memory hard proof of work schemes. However, we
observe that the memory hardness approach is an incomplete solution.
It only attempts to provide resistance to an ASIC’s area advantage but
overlooks the more important energy advantage. In this paper, we pro-
pose the notion of bandwidth hard functions to reduce an ASIC’s energy
advantage. CPUs cannot compete with ASICs for energy efficiency in
computation, but we can rely on memory accesses to reduce an ASIC’s
energy advantage because energy costs of memory accesses are compara-
ble for ASICs and CPUs. We propose a model for hardware energy cost
that has sound foundations in practice. We then analyze the bandwidth
hardness property of ASIC resistant candidates. We find scrypt, Catena-
BRG and Balloon are bandwidth hard with suitable parameters. Lastly,
we observe that a capacity hard function is not necessarily bandwidth
hard, with a stacked double butterfly graph being a counterexample.

1 Introduction

Cryptographic hash functions have a wide range of applications in both theory
and practice. Two of the major applications are password protection and more
recently proof of work. It is well known that service providers should store hashes
of user passwords. This way, when a password hash database is breached, an
adversary still has to invert the hash function to obtain user passwords. Proof
of work, popularized by its usage in the Bitcoin cryptocurrency for reaching
consensus [43], has earlier been used as “pricing functions” to defend against
email spam and denial-of-service attacks [19,30].

In the last few years, driven by the immense economic incentives in the Bit-
coin mining industry, there has been amazing progress in the development of
ASIC (Application Specific Integrated Circuit) hash units. These ASIC hash
engines are specifically optimized for computing SHA-256 hashes and offer

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 466–492, 2017.
https://doi.org/10.1007/978-3-319-70500-2_16

Bandwidth Hard Functions for ASIC Resistance 467

incredible speed and energy efficiency that CPUs cannot hope to match. A state-
of-the-art ASIC Bitcoin miner [1] computes 13 trillion hashes at about 0.1 nJ
energy cost per hash. This is roughly 200,000× faster and 40,000× more energy
efficient than a state-of-the-art multi-core CPU. These ASIC hash engines call
the security of password hashing and pricing functions into question. For ASIC-
equipped adversaries, brute-forcing a password database seems quite feasible,
and pricing functions are nowhere near deterrent if they are to stay manageable
for honest CPU users. ASIC mining also raises some concerns about the decen-
tralization promise of Bitcoin as mining power concentrates to ASIC-equipped
miners.

As a result, there is an increasing interest in ASIC resistant hash func-
tions and ASIC resistant proof of work schemes, i.e., those that do not give
ASICs a huge advantage. For example, in the recent Password Hashing Com-
petition [34], the winner Argon2 [21] and three of the four “special recog-
nitions” — Catena [35], Lyra2 [9] and yescrypt [47] — claimed ASIC resis-
tance. More studies on ASIC resistant hash function and proof of work include
[10–15,18,23,25,39,46,49,53].

The two fundamental advantages of ASICs over CPUs (or general purpose
GPUs) are their smaller area and better energy efficiency when speed is nor-
malized. The speed advantage can be considered as a derived effect of the area
and energy advantage (cf. Sect. 3.1). A chip’s area is approximately proportional
to its manufacturing cost. From an economic perspective, this means when we
normalize speed, an adversary purchasing ASICs can lower its initial investment
(capital cost) due to area savings and its recurring electricity cost due to energy
savings, compared to a CPU user. To achieve ASIC resistance is essentially to
reduce ASICs’ area and energy efficiency advantages.

Most prior works on ASIC resistance have thus far followed the memory hard
function approach, first proposed by Percival [46]. This approach tries to find
functions that require a lot of memory capacity to evaluate. To better distin-
guish from other notions later in the paper, we henceforth refer to memory hard
functions as capacity hard functions. For a traditional hash function, an ASIC
has a big area advantage because one hash unit occupies much smaller chip area
than a whole CPU. The reasoning behind a capacity hard function is to reduce
an ASIC’s area advantage by forcing it to spend significant area on memory.
Historically, the capacity hardness approach only attempts to resist the area
advantage. We quote from Percival’s paper [46]:

A natural way to reduce the advantage provided by an attacker’s ability to
construct highly parallel circuits is to increase the size of the key derivation
circuit — if a circuit is twice as large, only half as many copies can be
placed on a given area of silicon ...

Very recently, some works [10,11,14] analyze capacity hard functions from an
energy angle (though they try to show negative results). However, an energy
model based on memory capacity cannot be justified from a hardware perspec-
tive. We defer a more detailed discussion to Sects. 6.2 and 6.3.

468 L. Ren and S. Devadas

It should now be clear that the capacity hardness approach does not pro-
vide a full solution to ASIC resistance since it only attempts to address the
area aspect, but not the energy aspect of ASIC advantage. Fundamentally, the
relative importance of these two aspects depends on many economic factors,
which is out of the scope of this paper. But it may be argued that the energy
aspect is more important than the area aspect in many scenarios. Area advan-
tage, representing lower capital cost, is a one-time gain, while energy advantage,
representing lower electricity consumption, keeps accumulating with time. The
goal of this paper is to fill in the most important but long-overlooked energy
aspect of ASIC resistance.

1.1 Bandwidth Hard Functions

We hope to find a function f that ensures the energy cost to evaluate f on
an ASIC cannot be much smaller than on a CPU. We cannot change the fact
that ASICs have much superior energy efficiency for computation compared to
CPUs. Luckily, to our rescue, off-chip memory accesses incur comparable energy
costs on ASICs and CPUs, and there are reasons to believe that it will remain
this way in the foreseeable future (cf. Sect. 6.1). Therefore, we would like an
ASIC resistant function f to be bandwidth hard, i.e., it requires a lot of off-chip
memory accesses to evaluate f . Informally, if off-chip memory accesses account
for a significant portion of the total energy cost to evaluate f , it provides an
opportunity to bring the energy cost on ASICs and CPUs onto a more equal
ground.

A capacity hard function is not necessarily bandwidth hard. Intuitively, an
exception arises when a capacity hard function has good locality in its memory
access pattern. In this case, an ASIC adversary can use some on-chip cache
to “filter out” many off-chip memory accesses. This makes computation the
energy bottleneck again and gives ASICs a big advantage in energy efficiency.
A capacity hard function based on a stacked double butterfly graph is one such
example (Sect. 5.4).

On the positive side, most capacity hard functions are bandwidth hard.
Scrypt has a data-dependent and (pseudo-)random memory access pattern. A
recent work shows that scrypt is also capacity hard even under amortization and
parallelism [13]. Adapting results from the above work, we prove scrypt is also
bandwidth hard in Sect. 5.1 with some simplifying assumptions. Thus, scrypt
offers nearly optimal ASIC resistance from both the energy aspect and the area
aspect. But scrypt still has a few drawbacks. First, scrypt is bandwidth hard only
when its memory footprint (i.e., capacity requirement) is much larger than the
adversary’s cache size. In practice, we often see protocol designers adopt scrypt
with too small a memory footprint (to be less demanding for honest users) [5],
which completely undermines its ASIC resistance guarantee [6]. Second, in pass-
word hashing, a data-dependent memory access pattern is considered to be less
secure for fear of side channel attacks [25]. Thus, it is interesting to also look
for data-independent bandwidth hard functions, especially those that achieve
bandwidth hardness with a smaller memory footprint.

Bandwidth Hard Functions for ASIC Resistance 469

To study data-independent bandwidth hard functions, we adopt the graph
labeling framework in the random oracle model, which is usually modeled by
the pebble game abstraction. The most common and simple pebble game is the
black pebble game, which is often used to study space and time complexity. To
model the cache/memory architecture that an adversary may use, we adopt the
red-blue pebble game [33,50]. In a red-blue game, there are two types of pebbles.
A red (hot) pebble models data in cache and a blue (cold) pebble models data in
memory. Data in memory must be brought into the cache before being computed
on. Accordingly, a blue pebble must be “turned into” a red pebble (i.e., brought
into the cache) before being used by a computation unit. We incorporate an
energy cost model into red-blue pebble games, and then proceed to analyze
data-independent bandwidth hard function candidates. We show that Catena-
BRG [35] and Balloon [25] are bandwidth hard in the pebbling model. But we
could not show a reduction from graph labeling with random oracles to red-
blue pebble games. Thus, all results on data-independent graphs are only in the
pebbling mode. A reduction from labeling to pebbling remains interesting future
work.

Our idea of using memory accesses resembles, and is indeed inspired by, a
line of work called memory bound functions [8,29,31]. Memory bound functions
predate capacity hard functions, but unfortunately have been largely overlooked
by recent work on ASIC resistance. We mention one key difference between our
work and memory bound functions here and defer a more detailed comparison
in Sect. 2. Memory bound functions assume computation is free for an adversary
and thus aim to put strict lower bounds on the number of memory accesses.
We, on the other hand, assume computation is cheap but not free for an adver-
sary (which we justify in Sect. 4.1). As a result, we just need to guarantee that
an adversary who attempts to save memory accesses has to compensate with
so much computation that it ends up increasing its energy consumption. This
relaxation of “bandwidth hardness” leads to much more efficient and practical
solutions than existing memory bound functions [8,29,31]. To this end, the term
“bandwidth hard” and “memory hard” may be a little misleading as they do
not imply strict lower bounds on bandwidth and capacity. Memory (capacity)
hardness as defined by Percival [46] refers to a lower bound on the space-time
product ST , while bandwidth hardness in this paper refers to a lower bound on
an ASICs’ energy consumption under our model.

1.2 Our Contributions

We observe that energy efficiency, as the most important aspect of ASIC resis-
tance, has thus far not received much attention. To this end, we propose using
bandwidth hard functions to reduce the energy advantage of ASICs. We propose
a simple energy model and incorporate it into red-blue pebble games. We note
that ASIC resistance is a complex real-world notion that involves low-level hard-
ware engineering. Therefore, in this paper we go over the reasoning and basic
concepts of ASIC resistance from a hardware perspective and introduce a model
based on hardware architecture and energy cost in practice.

470 L. Ren and S. Devadas

Based on the model, we study the limit of ASIC energy resistance. Roughly
speaking, an ASIC adversary can always achieve an energy advantage that equals
the ratio between a CPU’s energy cost per random oracle evaluation and an
ASIC’s energy cost per memory access. We observe that if we use a hash function
(e.g., SHA-256) as the random oracle, which is popular among ASIC resistant
proposals, it is impossible to reduce an ASIC’s energy advantage below 100×
in today’s hardware landscape. Fortunately, we may be able to improve the
situation utilizing CPUs’ AES-NI instruction extensions.

We then turn our attention to analyzing the bandwidth hardness properties
of ASIC resistant candidate constructions. We prove in the pebbling model that
scrypt [46], Catena-BRG [35] and Balloon [25] enjoy tight bandwidth hardness
under suitable parameters. Lastly, we point out that a capacity hard function
is not necessarily bandwidth hard, using a stacked double butterfly graph as a
counterexample.

2 Related Work

Memory (capacity) hard functions. Memory (capacity) hard functions are
currently the standard approach towards ASIC resistance. The notion was first
proposed by Percival [46] along with the scrypt construction. There has been
significant follow-up that propose constructions with stronger notions of capac-
ity hardness [9,15,21,25,35,39,49]. As we have noted, capacity hardness only
addresses the area aspect of ASIC resistance. It is important to consider the
energy aspect for a complete solution to ASIC resistance.

Memory (capacity) hard proof of work. Memory (capacity) hard proofs of
work [18,23,49,53] are proof of work schemes that require a prover to have a lot
of memory capacity, but at the same time allow a verifier to check the prover’s
work with a small amount of space and time. The motivation is also ASIC resis-
tance, and similarly, it overlooks the energy aspect of ASIC resistance.

Memory bound functions. The notion of memory bound functions was first
proposed by Abadi et al. [8] and later formalized and improved by Dwork
et al. [29,31]. A memory bound function requires a lot of memory accesses to
evaluate. Those works do not relate to an energy argument, but rather use speed
and hence memory latency as the metrics. As we discuss in Sect. 3.1, using speed
as the only metric makes it hard to interpret the security guarantee in a normal-
ized sense. Another major difference is that memory bound functions assume
computation is completely free and aim for strict lower bounds on bandwidth
(the number of memory accesses), while we assume computation is cheap but not
free. To achieve its more ambitious goal, memory bound function constructions
involve traversing random paths in a big table of true random numbers. This
results in a two undesirable properties. First, the constructions are inherently
data-dependent, which raises some concerns for memory access pattern leakage
in password hashing. Second, the big random table needs to be transferred over

Bandwidth Hard Functions for ASIC Resistance 471

the network between a prover (who computes the function) and a verifier (who
checks the prover’s computation). A follow-up work [31] allows the big table to
be filled by pebbling a rather complex graph (implicitly moving to our model
where computation is cheap but not free), but still relies on the random walk in
the table to enforce memory accesses. Our paper essentially achieves the same
goal just through pebbling and from simpler graphs, thus eliminating the ran-
dom walk and achieving better efficiency and data-independence.

Parallel attacks. An impressive recent line of work has produced many inter-
esting results regarding capacity hardness in the presence of parallel attacks.
These works show that a parallel architecture can reduce the area-time prod-
uct for any data independent capacity hard function [10,12,15]. The practi-
cal implications of these attacks are less clear and we defer a discussion to
Sect. 6.3. We would also like to clarify a direct contradiction between some paral-
lel attacks’ claims [10,11,14] and our results. We prove that Catena-BRG [35] and
Balloon [25] enjoy great energy advantage resistance while those works conclude
the exact opposite. The contradiction is due to their energy model that we con-
sider flawed, which we discuss in Sect. 6.3.

Graph pebbling. Graph pebbling is a powerful tool in computer science, dating
back at least to 1970s in studying Turing machines [27,36] and register alloca-
tion [51]. More recently, graph pebbling has found applications in various areas
of cryptography [18,25,31–33,35,40,49,52]. Some of our proof techniques are
inspired by seminal works in pebbling lower bounds and trade-offs by Paul and
Tarjan [44] and Lengauer and Tarjan [38].

3 Preliminaries

3.1 A Hardware Perspective on ASIC Resistance

The first and foremost question we would like to answer is: what advantages of
ASICs are we trying to resist? The most strongly perceived advantage of ASIC
miners may be their incredible speed, which can be a million times faster than
CPUs [1]. But if speed were the sole metric, we could just deploy a million CPUs
in parallel to catch up on speed. Obviously, using a million CPUs would be at
a huge disadvantage in two aspects: capital cost (or manufacturing cost) and
power consumption. The manufacturing cost of a chip is often approximated
by its area in theory [41]. Therefore, the metrics to compare hardware systems
should be:

1. the area-speed ratio, or equivalently the area-time product, commonly
referred to as AT in the literature [10,11,22,41], and

2. the power-speed ratio, which is equivalent to energy cost per function evalu-
ation.

Area and energy efficiency are the two major advantages of ASICs. The speed
advantage can be considered as a derived effect from them. Because an ASIC

472 L. Ren and S. Devadas

hash unit is small and energy efficient, ASIC designers can pack thousands of
them in a single chip and still have reasonable manufacturing cost and manage-
able power consumption and heat dissipation.

Bandwidth hard functions to address both aspects. Percival proposes
using capacity hard functions to reduce ASIC area advantage [46]. With band-
width hard functions, we hope to additionally reduce ASIC’s energy advantage.
We note that a bandwidth hard function also needs to be capacity hard. Thus, a
hardware system evaluating it, be it a CPU or an ASIC, needs off-chip external
memory. This has two important implications. First, a bandwidth hard function
inherits the area advantage resistance from capacity hardness (though some-
what weakened by parallel attacks). Second, a bandwidth hard function forces
an ASIC into making a lot of off-chip memory accesses, which limits the ASIC’s
energy advantage. To study hardware energy cost more formally, we need to
introduce a hardware architecture model and an energy cost model.

Hardware architecture model. The adversary is allowed to have any cache
policy on its ASIC chip, e.g., full associativity and optimal replacement [20].
Our proofs do not directly analyze cache hit rate, but the results imply that a
bandwidth hard function ensures a low hit rate even for an optimal cache. We
assume a one-level cache hierarchy for convenience. This does not affect the accu-
racy of the model. We do not charge the adversary for accessing data from the
cache, so only the total cache size matters. Meanwhile, although modern CPUs
are equipped with large caches, honest users cannot utilize it since a bandwidth
hard function has very low cache hit rate. We simply assume a 0% cache hit rate
for honest users.

Energy cost model. We assume it costs cb energy to transfer one bit of data
between memory and cache, and cr energy to evaluate the random oracle on one
bit of data in cache. If an algorithm transfers B bits of data and queries the
random oracle on R bits of data in total, its energy cost is ec = cbB + crR. A
compute unit and memory interface may operate at a much larger word gran-
ularity, but we define cb and cr to be amortized per bit for convenience. The
two coefficients are obviously hardware dependent. We write cb,cpu, cr,cpu and
cb,asic, cr,asic when we need to distinguish them. The values of these coefficients
are determined experimentally or extracted from related studies or sources in
Sect. 4.1. Additional discussions and justifications of the models are presented
in Sect. 6.

Energy fairness. Our ultimate goal is to achieve energy fairness between CPUs
and ASICs. For a function f , suppose honest CPU users adopt an algorithm
with an energy cost ec0 = cb,cpuB0 + cr,cpuR0. Let ec = ec(f,M, cb,asic, cr,asic)
be the minimum energy cost for an adversary to evaluate f with cache size M
and ASIC energy parameters cb,asic and cr,asic. Energy fairness is then measured
by the energy advantage of an ASIC adversary over honest CPU users (under

Bandwidth Hard Functions for ASIC Resistance 473

those parameters): Aec = ec0/ec > 1 . A smaller Aec indicates a smaller energy
advantage of ASICs, and thus better energy fairness between CPUs and ASICs.

We remark that while an ASIC’s energy cost for computation cr,asic is small,
we assume it is not strictly 0. It is assumed in some prior works that com-
putation is completely free for the adversary [31,33]. In that model, we must
find a function that simultaneously satisfies the following two conditions: (1)
it has a trade-off-proof space lower bound (even an exponential computational
penalty for space reduction is insufficient), and (2) it requires a comparable
amount of computation and memory accesses. We do not know of any candi-
date data-independent construction that satisfies both conditions. We believe
our assumption of a non-zero cr,asic is realistic, and we justify it in Sect. 4.1
with experimental values. In fact, our model may still be overly favorable to the
adversary. It has been noted that the energy cost to access data from an on-chip
a cache is roughly proportional to the square root of the cache size [16]. Thus,
if an adversary employs a large on-chip cache, the energy cost of fetching data
from this cache needs to be included in cr,asic.

3.2 The Graph Labeling and Pebbling Framework

We adopt the graph labeling and pebbling framework that is common in the
study of ASIC resistant [15,18,25,31,35].

Graph labeling. Graph labeling is a computational problem that evaluates
a random oracle H in a directed acyclic graph (DAG) G. A vertex with no
incoming edges is called a source and a vertex with no outgoing edges is called
a sink. Vertices in G are numbered, and each vertex vi is associated with a label
l(vi), computed as:

l(vi) =

{
H(i, x) if vi is a source
H(i, l(u1), · · · , l(ud)) otherwise, u1 to ud are vi’s predecessors

The output of the graph labeling problem are the labels of the sinks. It is com-
mon to hash the labels of all sinks into a final output (of the ASIC resistant
function) to keep it short.

Adversary. We consider a deterministic adversary that has access to H that
runs in rounds, starting from round 1. In round i, the adversary receives an
input state σi and produces an output state σ̄i. Each input state σi = (τi, ηi, hi)
consists of

– τi, M bits of data in cache,
– ηi, an arbitrary amount of data in memory, and
– a w-bit random oracle response hi if a random oracle query was issued in the

previous round.

474 L. Ren and S. Devadas

Each output state σ̄i = (τ̄i, ηi, qi) consists of

– τ̄i, M bits of data in cache, which can be any deterministic function of σi and
hi.

– ηi, data in memory, which is unchanged from the input state, and
– an operation qi that can either be a random oracle query or a data transfer

operation between memory and cache.

If the operation qi is a random oracle query, then in the input state of the next
round, the random oracle response is hi+1 = H(qi) and the contents of the
cache/memory is unchanged (σi+1, ηi+1) = (σ̄i, ηi). If the operation qi is a data
transfer operation, then it has the form (xi, yi, zi, bi) in which xi is an offset in
the cache, yi is an offset in memory, zi specifies whether the direction of the
transfer is from cache to memory (zi = 0) or from memory to cache (zi = 1),
and bi is the number of bits to be transfered. In the input state of the next
round, the contents of the cache/memory (σi+1, ηi+1) are obtained by applying
the data transfer operation on (σ̄i, ηi), and hi+1 = ⊥. The energy cost of the
adversary is defined as follows. A random oracle call on ri = |qi| bits if input
costs crri units of energy. A data transfer of bi bits in either direction costs cbbi

units of energy. Any other computation that happens during a round is free for
the adversary. The total energy cost of the adversary is the sum of cost in all
rounds.

Pebble games. Graph labeling is often abstracted as a pebble game. Comput-
ing l(v) is modeled as placing a pebble on vertex v. The goal of the pebble game
in our setting is to place pebbles on the sinks. There exist several variants of
pebble games. The simplest one is the black pebble game where there is only
one type of pebbles. In each move, a pebble can be placed on vertex v if v is a
source or if all predecessors of v have pebbles on them. Pebbles can be removed
from any vertices at any time.

Red-blue pebble games. To model a cache/memory hierarchy, red-blue pebble
games have been proposed [33,50]. In this game, there are two types of pebbles. A
red (hot) pebble models data in cache, which can be computed upon immediately.
A blue (cold) pebble models data in memory, which must first be brought into
cache to be computed upon. The rule of a red-blue pebble game is naturally
extended as follows:

1. A red pebble can be placed on vertex v if v is a source or if all predecessors
of v have red pebbles on them.

2. A red pebble can be placed on vertex v if there is a blue pebble on v. A blue
pebble can be placed on vertex v if there is a red pebble on v.

We refer to the first type of moves as red moves and the second type as blue
moves. Pebbles (red or blue) can be removed from any vertices at any time.
A pebbling strategy can be represented as a sequence of transitions between
pebble placement configurations on the graph, P = (P0, P1, P2 · · · , PT). Each

Bandwidth Hard Functions for ASIC Resistance 475

configuration consists of two vectors of size |V |, specifying for each vertex if a
red pebble exists and if a blue pebble exists. The starting configuration P0 does
not have to be empty; pebbles may exist on some vertices in P0. Each transition
makes either a red move or a blue move, and then removes any number of
pebbles for free.

We introduce some extra notations. If a pebble (red or blue) exists on a
vertex v in a configuration Pi, we say v is pebbled in Pi. We say a sequence P
pebbles a vertex v if there exists Pi ∈ P such that v is pebbled in Pi. We say a
sequence P pebbles a set of vertices if P pebbles every vertex in the set. Note
that blue pebbles cannot be directly created on unpebbled vertices. If a vertex
v is not initially pebbled in P0, then the first pebble that gets placed on v in P
must be a red pebble, and it must result from a red move.

Energy cost of red-blue pebbling. In red-blue pebbling, red moves model
computation on data in cache and blue moves model data transfer between cache
and memory. It is straightforward to adopt the energy cost model in Sect. 3.1 to
a red-blue pebbling sequence P. We charge cb cost for each blue move. For each
red move (i.e., random oracle call), we charge a cost proportional to the number
of input vertices. Namely, if a vertex v has d predecessors, a red move on v costs
crd units of cost. Similarly, we write cb,cpu, cr,cpu and cb,asic, cr,asic when we need
to distinguish them. The energy coefficients in Sect. 3.1 are defined per bit and
here they are per label. This is not a problem because only the ratio between
these coefficients matter. As before, removing pebbles (red or blue) is free. If P
uses B blue moves and R red moves each with d predecessors, it incurs a total
energy cost ec(P) = cbB + crdR.

The adversary’s cache size M translates to a bounded number of red peb-
bles at any given time, which we denote as m. For a graph G, given parameters
m, cb and cr, let ec = ec(G,m, cb, cr) be the minimum cost to pebble G in a
red-blue pebble game starting with an empty initial configuration under those
parameters. Let ec0 be the cost of an honest CPU user. The energy advantage
of an ASIC is Aec = ec0/ec.

Definition of bandwidth hardness. The ultimate goal of a bandwidth hard
function is to achieve fairness between CPUs and ASICs in terms of energy cost.
In the next section, we will establish Aec = cb,cpu+cr,cpu

cb,asic+cr,asic
as a lower bound on the

adversary’s energy advantage Aec for any function. We say a function under a
particular parameter setting is bandwidth hard if it ensures Aec = Θ(Aec), i.e., if
it upper bounds an adversary’s energy advantage to a constant within the best
we can hope for.

In the above definition, we emphasize “under a particular parameter set-
ting” because we will frequently see that a function’s bandwidth hardness kicks
in only when its memory capacity requirement n is sufficiently large compared
to the adversary’s cache size m. This should be as expected: if the entire memory
footprint fits in cache, then a function must be computation bound rather than
bandwidth bound. As an example, we will later show that scrypt is bandwidth

476 L. Ren and S. Devadas

hard when it requires sufficiently large memory capacity. But when scrypt is
adopted in many practical systems (e.g., Litecoin), it is often configured to use
much smaller memory, thus losing its bandwidth hardness and ASIC resistance.

Connection between labeling and pebbling. The labeling-to-pebbling reduc-
tion has been established for data-independent graphs [31,33] and for scrypt [13]
when the metric is space complexity or cumulative complexity. Unfortunately,
for bandwidth hard functions and energy cost, we do yet know how to reduce
the graph labeling problem with a cache to the red-blue pebbling game with-
out making additional assumptions. The difficulty lies in how to transform the
adversary’s data transfer between a memory and a cache into blue moves. Thus,
all results for data-independent graphs in this paper will be in the red-blue peb-
bling model. This is equivalent to placing a restriction on the adversary that
it can only transfer whole labels between cache and memory. Showing a reduc-
tion for data-independent graphs without the above restriction is an interesting
open problem. We mention that for general data-dependent graphs and proofs
of space [32], a reduction from labeling to black pebbling also remains open.

4 The Limit of Energy Fairness

While our goal is to upper bound the energy advantage AE , it is helpful to first
look at a lower bound to know how good a resistance we can hope for. Suppose
honest users adopt an algorithm that transfers B0 bits and queries H on R0 bits
in total. Even if an adversary does not have a better algorithm, it can simply adopt
the honest algorithm but implements it on an ASIC. In this case, the adversary’s
energy advantage is

Aec =
cb,cpuB0 + cr,cpuR0

cb,asicB0 + cr,asicR0
=

cb,cpu + cr,cpuR0/B0

cb,asic + cr,asicR0/B0
.

Since we expect cr,cpu � cr,asic and cb,cpu ≈ cb,asic, the above value is smaller
when R0/B0 is smaller (more memory accesses and less computation). Any data
brought into the cache must be consumed by the compute unit (random oracle) —
otherwise, the data transfer is useless and should not have happened. Given that
B0 ≤ R0, the adversary can at least have an energy consumption advantage of:

Aec ≥ cb,cpu + cr,cpu

cb,asic + cr,asic
= Aec.

In Sects. 5.2 and 5.3, we prove that bit reversal graphs and stacked expanders essen-
tially reduce Aec very close to the lower bound Aec. So Aec is quite tight and rep-
resents both the lower and upper limit of the energy advantage resistance we can
achieve.

Since we expect cr,asic to be small, and cb,cpu ≈ cb,asic, the above lower bound
is approximately 1 + cr,cpu/cb,cpu. So we hope cr,cpu to be small and cb,cpu to be
large, in which case memory accesses account for a significant portion of the total

Bandwidth Hard Functions for ASIC Resistance 477

energy cost on CPUs. It is often mentioned that computation is cheap compared
to memory accesses even for CPUs, which seems to be in our favor. However, the
situation is much less favorable for our scenario because a cryptographic hash is
a complex function that involves thousands of operations. It would be unrealistic
for us to assume cr,cpu � cb,cpu. To estimate the concrete value of Aec, in Sect. 4.1
we conduct experiments to measure cr,cpu and cb,cpu and cite estimates of cr,asic

and cb,asic from reliable sources.

4.1 Experiments to Estimate Energy Cost Coefficients

All values we report here are approximates as their exact values depend on many
low level factors (technology process, frequency, voltage, etc.). Nevertheless, they
should allow us to estimate Aec to the correct order of magnitude.

We keep a CPU fully busy with the task under test, i.e., compute hashes and
making memory accesses. We use Intel Power Gadget [4] to measure the CPU
package energy consumption in a period of time, and then divide by the number
of Bytes processed (hashed or transferred). We run tests on an Intel Core I7-
4600U CPU in 22 nm technology clocked at 1.4 GHz. The operating system is
Ubuntu 14.04 and we use Crypto++ Library 5.6.3 compiled with GCC 4.6.4.

Table 1. Measured energy cost (in nJ) per Byte for memory accesses and cryptographic
operations on CPUs.

Operation Memory access SHA-256 AES-NI

Energy, CPU 0.5 30 1.5

Energy, ASIC 0.3 0.0012 /

Table 1 reports the measured CPU energy cost per Bytes. For comparison,
we take the memory access energy estimates for ASICs from two papers [37,
45], which have very close estimations. We take the SHA-256 energy cost for
ASIC from the state-of-the-art Antminer S9 specification [1]. Antminer S9 spends
0.098 nJ to hash 80 Bytes, which normalizes to 0.0012 nJ/Byte.

4.2 Better Energy Fairness with AES-NI

From the above results, we have cb,cpu ≈ 0.5, cb,asic ≈ 0.3, and if we use SHA-256
to implement the random oracle H, then cr,cpu ≈ 30 and cr,asic ≈ 0.1. With these
parameters, any function in the graph labeling framework can at most reduce
an ASIC’s energy advantage to Aec ≈ (0.5 + 30)/(0.3 + 0.0012) ≈ 100×. While
this represents an improvement over plain SHA-256 hashing (which suffers from
an energy advantage of roughly 30/0.0012 = 25, 000×), 100× is still a quite
substantial advantage.

Is 100× the limit of energy fairness or can we do better? To push Aec lower, we
need a smaller cr,cpu. The AES-NI extension gives exactly what we need. AES-NI

478 L. Ren and S. Devadas

(AES New Instructions) [3] is a set of new CPU instructions specifically designed
to improve the speed and energy efficiency of AES operations on CPUs. Today
AES-NI is available in all mainstream Intel processors. In fact, AES-NI is an
ASIC-style AES circuit that Intel builds into its CPUs, which is why it reduces
ASIC advantage. But also we cannot expect AES-NI to completely match stand-
alone AES ASICs because it is subject to many design constrains imposed by
Intel CPUs.

We repeat our previous experiments to measure the energy efficiency of AES
operations on CPUs. As expected, AES-NI delivers much better energy efficiency,
1.5 nJ per Byte. We do not know for sure what cr,asic would be for AES, but
expect it to be no better than SHA-256 (and the bounds are insensitive to cr,asic

since cb,asic dominates in the denominator). Therefore, if we use AES for pebbling,
the lower bound drops to Aec ≈ (0.5 + 1.5)/0.3 ≈ 6.7×. It is worth noting that
using AES for pebbling also reduces an ASIC’s AT advantage as it makes CPUs
run faster (smaller T).

Great care needs to be taken when instantiating the random oracle with a
concrete function. Boneh et al. [25] point out that the pebbling analogy breaks
down if the random oracle H is instantiated with a cryptographic hash func-
tion based on the Merkle-Damg̊ard construction [28,42]. The problem is that a
Merkle-Damg̊ard construction does not require its entire input to be present at
the same time, but instead absorbs the input chunk by chunk. The same caveat
exists when we use AES for pebbling. We leave a thorough study on pebbling
with AES to future work. If we want even smaller cr,cpu and Aec or to avoid the
complication of using AES, we may have to count on Intel’s SHA instruction
extensions. Intel announced plans to add SHA extensions a few years ago [7],
but no product has incorporated them so far.

5 Bandwidth Hardness of Candidate Constructions

Some candidate constructions we analyze in this section are based on a class
of graphs called “sandwich graphs” [15,25]. A sandwich graph is a directed
acyclic graph G = (V ∪ U,E) that has 2n vertices V ∪ U = (v0, v1, · · · vn−1) ∪
(u0, u1, · · · un − 1), and two types of edges:

– chain edges, i.e., (vi, vi+1) and (ui, ui+1) ∀i ∈ [0..n − 2], and
– cross edges from V to U .

Figure 1 is a random sandwich graph with n = 8. In other words, a sand-
wich graph is a bipartite graph with the addition of chain edges. We call the
path consisting of (v0, v1), (v1, v2), · · · (vn − 2, vn − 1) the input path, and the path
consisting of (u0, u1), (u1, u2), · · · (un − 2, un − 1) the output path.

Bandwidth Hard Functions for ASIC Resistance 479

V

U

Fig. 1. A random sandwich graph with n = 8.

5.1 Scrypt

Scrypt [46] can be thought of as a sandwich graph where the cross edges are
dynamically generated at random in a data-dependent fashion. Each vertex ui

on the output path has one incoming cross edge from a vertex vj that is chosen
uniformly random from the input path based on the previous label l(ui − 1) (or
l(vn − 1) for u0), and thus cannot be predicted beforehand.

The default strategy to compute scrypt is to first compute each l(vi) on the
input path sequentially and store each one in memory, and then compute each
l(ui) on the output path, fetching each l(vj) from memory as needed. The total
cost of this strategy is (cr + cb)n+(cb +2cr)n = (2cb +3cr)n (every node on the
output path has in-degree 2).

To lower bound the energy cost, we make a simplifying assumption that if the
adversary transfers data from memory to cache at all, it transfers at least w bits
where w = |l(·)| is the label size. We also invoke the “single-challenge time lower
bound” theorem on scrypt [13], which we paraphrase below. The adversary can
fill a cache of M bits after arbitrary computation and preprocessing on the input
path. The adversary then receives a challenge j chosen uniformly at random from
0 to n − 1 and tries to find l(vj) using only the data in the cache. Let t be the
random variable that represents the number of sequential random oracle calls to
H made by the adversary till it queries H with l(vj) for the first time.

Theorem 1 (Alwen et al. [13]). For all but a negligible fraction of random
oracles, the following holds: given a cache of M bits, Pr[t > n

2p] > 1
2 where

p = (M + 1)/(w − 3 log n + 1) and w = |l(·)| is the label size.

The above theorem states that in the parallel random oracle model, with
at least 1/2 probability, an adversary needs n/2p sequential random oracles to
answer the random challenge. (Note that the above theorem does not directly
apply to scrypt, since challenges in scrypt come from the random oracle rather
than from an independent external source. This issue can be handled similarly
as in [13].) A lower bound on the number of sequential random oracle calls in the
parallel model is also a lower bound on the number of total random oracle calls in
our sequential model. Theorem 1 states that if the adversary wishes to compute
a label on the output path only using the M bits in cache without fetching from
memory, there is a 1/2 chance that doing so requires n/2p random oracle calls.
If we choose a sufficiently large n such that crn/2p > cb, then making n/2p

480 L. Ren and S. Devadas

random oracle calls is more expensive than simply fetching the challenged input
label from memory. Since we assume the adversary fetches w bits at a time, so if
it fetches from memory at all, it rather fetches the challenged input label. Then,
for any adversary, the expected cost to compute a label on the output path
is at least cb/2 and the energy advantage is at most Aec <

2cb,cpu+3cr,cpu
0.5cb,asic

. This
parameterization requires n > 2p · cb,asic

cr,asic
> 2m · cb,asic

cr,asic
, which means the capacity

requirement of scrypt should be a few hundred times larger than an adversary’s
conceivable cache size.

5.2 Bit-Reversal Graphs

A bit-reversal graph is a sandwich graph where n is a power of 2 and the cross
edges (vi, uj) follow the bit-reversal permutation, namely, the binary represen-
tation of j reverses the bits of the binary representation of i. Figure 2 is a bit-
reversal graph with n = 8. Catena-BRG [35] is based on bit-reversal graphs.

Black pebbling complexity. For a black pebble game, Lenguaer and Tarjan [38]
showed an asymptotically tight space-time trade-off ST = Θ(n2) for bit-reversal
graphs.

V

U

Fig. 2. A bit-reversal graph with n = 8.

Red-Blue pebbling complexity. For a red-blue pebble game, the default strat-
egy is the same as the one for scrypt in Sect. 5.1 The total cost of this strategy
is (cr + cb)n + (cb + 2cr)n = (2cb + 3cr)n. We now show a lower bound on the
red-blue pebbling complexity for bit-reversal graphs. The techniques are similar
to Lenguaer and Tarjan [38].

Theorem 2. Let G be a bit-reversal graph with 2n vertices, and m be the num-
ber of red pebbles available. If n > 2mcb/cr, then the red-blue pebbling cost
ec(G,m, cb, cr) is lower bounded by (cb + cr)n(1 − 2(m+1)cb

ncr
).

Proof. Suppose a sequence P pebbles un − 1 of a bit-reversal graph starting from
an empty initial configuration. Let m′ be the largest power of 2 satisfying m′ <
ncr/cb. We have m′ ≥ ncr/(2cb) > m.

Let the output path be divided into n/m′ intervals of length m′

each. Denote the j-th interval Ij , j = 1, 2, · · · , n/m′. Ij contains vertices

Bandwidth Hard Functions for ASIC Resistance 481

u(j − 1)m′ , u(j − 1)m′+1, . . . , ujm′−1. The first time these intervals are pebbled
must be in topological order, so P can be divided into n/m′ subsequences
(P1,P2, · · · ,Pn/m′) such that all vertices in Ij are pebbled for the first time
by Pj . The red blue pebbling costs of subsequences are additive, so we can
consider each Pj separately.

Suppose Pj uses b blue moves. For any Ij , 1 ≤ j ≤ n/m′, let vj1 , vj2 , . . . , vjm′

be the immediate predecessors on the input path. Note that these immediate pre-
decessors are n/m′ edges apart from each other due to the bit-reversal property.
Pj must place red pebbles on all these immediate predecessors at some point
during Pj . An immediate predecessor v may get its red pebble in one of the
following three ways below:

1. v has a red pebble on it at the beginning of Pj .
2. v has a “close” ancestor (can be itself) that gets a red pebble through a blue

move, where being “close” means being less than n/m′ edges away. Pj can
then place a red pebble on v using less than n/m′ red moves utilizing its
“close” ancestor.

3. v gets its red pebble through a red move and has no “close” ancestor that
gets a red pebble through a blue move. To place a red pebble on v, Pj must
use at least n/m′ red moves (except for one v that may be “close” to the
source vertex v0).

The first category accounts for at most m immediate predecessors due to the
cache size limit m. The second category accounts for at most b immediate pre-
decessors since each uses a blue move. If b + m < m′ − 1, then Pj must use
at least n/m′ red moves for each immediate predecessor in the third category.
Under the conditions in the theorem, the cost of n/m′ red moves is greater than
a blue move since crn/m′ > cb. Thus, the best strategy is to use blue moves over
red moves for vertices on the input path whenever possible. Therefore,

ec(Pj) ≥ crm
′ + cb(m′ − m − 1) > (cb + cr)(m′ − m − 1)

ec(P) = Σ
n/m′

j =1 ec(Pj) > (cb + cr)n(1 − 2(m + 1)cb

ncr
). ��

When n is sufficiently large, a bit-reversal graph is bandwidth hard. Its red-
blue pebbling complexity has a lower bound close to (cb + cr)n. An ASIC’s
energy advantage is similar to that of scrypt, Aec ≈ 2cb,cpu+3cr,cpu

cb,asic+cr,asic
and Aec ≈ 18

with parameters in Table 1. The capacity requirement on bit-reversal graphs to
remain bandwidth hard is also similar to the requirement for scrypt.

5.3 Stacked Expanders

An (n, α, β) bipartite expander (0 < α < β < 1) is a directed bipartite graph
with n sources and n sinks such that any subset of αn sinks are connected
to at least βn sources. Prior work has shown that bipartite expanders for any
0 < α < β < 1 exist given sufficiently many edges. For example, Pinsker’s con-
struction [48] simply connects each sink to d independent sources. It yields an

482 L. Ren and S. Devadas

V0

V1

V2

Fig. 3. A stacked random sandwich graph with n = 4, k = 2 and d = 2.

(n, α, β) bipartite expander for sufficiently large n with overwhelming probabil-
ity [25] if

d >
Hb(α) + Hb(β)

−α log2 β

where Hb(α) = −α log2 α − (1 − α) log2(1 − α).
An (n, k, α, β) stacked expander graph is constructed by stacking k bipartite

expanders back to back. It has n(k + 1) vertices, partitioned into k +1 sets each
of size n, V = {V0, V1, V2, · · · , Vk} with all edges are directed from Vi − 1 to Vi

(i ∈ [1..k]). Vi − 1 and Vi plus all edges between them form an (n, α, β) bipartite
expander ∀i ∈ [1..k]. The bipartite expanders at different layers can but do
not have to be the same. Its maximum in-degree is the same as the underlying
(n, α, β) bipartite expanders.

In the Balloon hashing algorithm, the vertices are furthered chained sequen-
tially, i.e., there exist edges (vi,j , vi,j +1) for each 0 ≤ i ≤ k, 0 ≤ j ≤ n−2 as well
as an edge (vi,n − 1, vi+1,0) for each 0 ≤ i ≤ k. In other words, Balloon hashing
uses a stacked random sandwich graph in which each vertex has d > 1 predeces-
sors from the previous layer. Figure 3 is a stacked random sandwich graph with
n = 4, k = 2 and d = 2. In the figure, two consecutive layers form a (4, 4, 1

4 , 1
2)

expander.
A large in-degree can be problematic for the pebbling abstraction since the

random oracle in graph labeling cannot be based on a Merkle-Damg̊ard con-
struction. In the case of stacked expanders, we can apply a transformation to
make the in-degree to be 2: we simply replace each d-to-1 connection with a
binary tree where the d predecessors are at the leaf level, the successor is the
root and each edge in the tree points from a child to its parent. This transfor-
mation preserves the expanding property between layers and increases the cost
of a red move by a factor of 2 at most (the number of edges in a binary tree is
at most twice the number of its leaves).

We remark that the latest version of the Balloon hash paper [25] analyzes
random sandwich graphs using a new “well-spread” property rather than the
expanding property, in an attempt to tighten the required in-degree. We may be
able to adopt their new framework to analyze bandwidth hardness, but we leave
it to future work.

Bandwidth Hard Functions for ASIC Resistance 483

Black pebbling complexity. Black pebble games on stacked expanders have
been well studied. Obviously, simply pebbling each expander in order and remov-
ing pebbles as they are no longer needed results in a sequence P that uses 2n
space and n(k + 1) moves. An exponentially sharp space-time trade-off in black
pebble games is shown by Paul and Tarjan [44] and further strengthened by
Ren and Devadas [49]. The result says that to pebble any subset of αn initially
unpebbled sinks of G requires either at least (β − 2α)n pebbles or at least 2k

moves.

Red-blue pebbling complexity. We now consider red-blue pebble games on
stacked expanders. An honest user would simply pebble each expander in order
in a straightforward way. First, for each vertex v in the source layer V0, the
honest user places a red pebble on v and then immediately replaces it with a
blue pebble. Then, for each vertex v ∈ V1, the honest user places red pebbles
on its d predecessors through blue moves, pebbles v using a red move, replacing
the red pebble with a blue pebble, and lastly removing all red pebbles. The cost
to pebble each source vertex is (cb + cr) and the cost to pebble each non-source
vertex is cb(d + 1) + crd. The total cost to pebble the entire graph is therefore
≈ nkd(cb + cr).

Following the proof of the sharp space-time trade-off in a black pebble
game [44,49], we can similarly derive a sharp trade-off between red and blue
moves in a red-blue pebble game. It will then lead to a lower bound on red-blue
pebbling cost for stacked expander graph G.

Theorem 3. Let G be an (n, k, α, β) stacked expander. In a red-blue pebble
game, if a sequence P pebbles any subset of αn sinks of G through red moves,
using at most m red pebbles (plus an arbitrary number of blue pebbles) and at
most (β − 2α)n − m blue moves, then P must use at least 2kαn red moves.

Informally, if there is a strategy that pebbles any subset of αn vertices using
at most m red pebbles and at most b blue moves, it implies a strategy that
pebbles those αn vertices using at most m + b black pebbles. The reason is that
while there may be arbitrarily many blue pebbles, at most b blue pebbles can be
utilized since there are at most b blue moves. Therefore, either m+b ≥ (β−2α)n
or an exponential number of red moves are needed. Below is a rigorous proof.

Proof. The proof is similar to the inductive proof for the black pebble game
trade-off [44,49]. For the base case k = 0, an (n, 0, α, β) stacked expander is
simply a collection of n isolated vertices with no edges. The theorem is trivially
true since the αn are pebbled through red moves.

Now we show the inductive step for k ≥ 1 assuming the theorem holds for
k − 1. The αn sinks in Vk that are pebbled through red moves collectively are
connected to at least βn predecessors in Vk − 1 due to the (n, α, β) expander
property. Each of these βn vertices in Vk − 1 must have a red pebble on it at
some point to facilitate the red moves on the αn sinks. These βn vertices may
get their red pebbles in one of the three ways below. Up to m of them may
initially have red pebbles on them. Up to (β − 2α)n − m of them may initially

484 L. Ren and S. Devadas

have blue pebbles on them get red pebbles through blue moves. The remaining
2αn of them must get their red pebbles through red moves. These 2αn vertices
in Vk − 1 are sinks of an (n, k − 1, α, β) stacked expander. Divide them into two
groups of αn each in the order they get red pebbles in P for the first time. P
can be then divided into two parts P = (P1,P2) where P1 places red pebbles
on the first group (P1 does not place red pebbles on any vertices in the second
group) and P2 places red pebbles on the second group. Both P1 and P2 use no
more than m red pebbles and (β − 2α)n − m blue moves. Due to the inductive
hypothesis, both use at least 2k − 1αn red moves. Therefore, P uses at least 2kαn
red moves. ��
Theorem 4. Let G be an (n, k, α, β) stacked expander with in-degree d. Its red-
blue pebbling complexity ec(G,m, cb, cr) is lower bounded by (cb+cr)·((β−2α)n−
m) · (k − log2(cb/dcr)�)/α.

Proof. With the chain edges, if a sequence starts from an empty configuration,
then it must pebble vertices in G in topological order. For simplicity, let us
assume each layer of n vertices can be divided into an integer number of groups
of size αn each (i.e., αn divides n). Now we can break up the sequence into
(k + 1)n/αn sub-sequences; each one pebbles the next consecutive αn vertices
for the first time. Since the red-blue pebbling costs from multiple sub-sequences
are additive, we analyze and lower bound them independently.

Consider a sub-sequence P′ that pebbles αn vertices in Vi for the first time.
Theorem 3 shows a trade-off on the usage of red versus blue moves. We note
that Theorem 3 can be generalized. If P′ uses at most m red pebbles (plus an
arbitrary number of blue pebbles) and at most (β − qα)n − m blue moves, then
P′ must use at least qiαn red moves. For a proof, simply notice that there will
be qαn vertices in Vi − 1 that need to get their red pebbles through red moves.
The qi factor follows from a similar induction. This means P′ must choose one
of the following options:

– use at least (β − 2α)n − m blue moves, plus αn red moves;
– use less than (β − 2α)n − m but at least (β − 3α)n − m blue moves, plus at

least 2iαn red moves;
– use less than (β − 3α)n − m but at least (β − 4α)n − m blue moves, plus at

least 3iαn red moves;
– · · ·
Comparing these options, we see that in order to save αn blue moves, P′ needs to
compensate with (2i − 1)αn more red moves. For i > log2(cb/dcr)�, blue moves
are not worth saving because αn blue moves cost cbαn which is less than the cost
of 2i − 1 red moves. To save (q +1)αn blue moves, P′ needs to compensate with
(qi −1)αn more red moves, which is even less economical. This means, for layers
relatively deep, the best strategy is to use blue moves whenever possible. The cost
of the first option is ec(P′) ≥ cb((β−2α)n−m)+crdαn > (cb+cr)((β−2α)n−m).
The latter inequality is due to dα > β − 2α, which is easy to check from the
requirement on d for expanders. Lastly, there are (k − log2(cb/dcr)�) layers Vi

Bandwidth Hard Functions for ASIC Resistance 485

satisfying i > log2(cb/dcr)� and each contains 1/α vertex groups of size αn.
The bound in the theorem follows. ��

For a stacked expander graph to be bandwidth hard, we only need n and k
to be a constant factor larger than m/(β − 2α) and log2(cb/dcr)�, respectively,
which can be much less space and time from honest users compared to scrypt and
bit-reversal graphs under some parameters. When n and k are sufficiently large,
an ASIC’s advantage Aec ≈ cb,cpu+cr,cpu

cb,asic+cr,asic
· dα
β−2α = Aec · dα

β−2α . For an example design
point, if we can choose α = 0.01 and β = 0.05, we have d = 9, dα/(β − 2α) = 3
and Aec ≈ 20.

5.4 Stacked Butterfly Graphs Are Not Bandwidth Hard

In this section, we demonstrate that a capacity hard function in the sequential
model may not be bandwidth hard using a stacked double butterfly graph as a
counterexample. A double butterfly graph consists of two fast Fourier transform
graphs back to back. It has n sources, n sinks and 2n log2 n vertices in total
for some n that is a power of 2. The intermediate vertices form two smaller
double butterfly graphs each with n/2 sources and n/2 sinks. Figure 4 shows an
example double butterfly graph with n = 8. A stacked double butterfly graph
further stacks copies of double butterfly graphs back to back (not shown in the
figure).

Fig. 4. A double butterfly graph with n = 8 sources and sinks. Vertices marked in red
have locality assuming a cache size of m = 4. (Color figure online)

A double butterfly graph is a superconcentrator [26], and it has been shown
that stacked superconcentrators have an exponentially sharp space-time trade-
off in sequential pebble games [38]. However, a stacked double butterfly graph
is not bandwidth hard due to locality in its memory access pattern. One can
fetch a batch of operands into the cache and perform a lot of computation with
them before swapping in another batch of operands. For example, in Fig. 4, one
can pebble the red vertices layer by layer without relying on other vertices, since

486 L. Ren and S. Devadas

the red vertices only have incoming edges from themselves. If equipped with
a cache of size m (assume m is a power of 2 for simplicity), we can adopt the
following pebbling strategy to save blue moves without sacrificing red moves. We
first place red pebbles on m vertices in the same layer that are n/m away from
each other, possibly through blue moves. We then use red moves to proceed
log2 m layers horizontally, placing red pebbles on the m vertices in the same
horizontal positions. For a stacked double butterfly with N vertices in total, this
strategy uses N red moves and only N/ log2 m blue moves. Its cost is therefore
(2cr + cb/ log2 m)N . As demonstrated in Sect. 4.1, cr,cpu is larger or at least
comparable to cb,cpu while cr,asic � cb,asic. Therefore, the red-blue pebbling of a
stacked double butterfly graph costs more than 2cr,cpuN on CPUs and roughly
cb,asicN/ log2 m on ASICs. This results in an advantage proportional to log2 m.

Stacked double butterfly graphs are used by the capacity hard function
Catena-DBG [35] and the capacity hard proof of work by Ateniese et al. [18]. We
note that Catena-DBG designers further add chain edges within each layer [35].
These chain edges will prevent our proposed pebbling strategy, so Catena-DBG
may not suffer from the log2 m ASIC energy advantage. Our goal here is to show
that capacity hard functions in the sequential model are not necessarily band-
width hard, and a stacked double butterfly graph without chain edges serves
as an example. We also remark that since stacked double butterfly graphs are
not capacity hard under parallel attacks, it remains unclear whether parallel
capacity hardness implies bandwidth hardness. But since capacity and band-
width are quite different metrics, we currently do not expect that to be the case.
(Bandwidth hardness certainly does not imply parallel capacity hardness with
Catena-BRG and Balloon being counterexamples.)

6 Discussion

6.1 The Role of Memory

It is not a coincidence that memory plays a central role in both the area and
the energy approach, and this point may be worth some further justification.
As mentioned, CPUs are at a huge disadvantage over ASICs in computation
because CPUs are general purpose while ASICs are specifically optimized for
a certain task. Memory does not suffer from this problem because memory is,
for the most part, intrinsically general purpose. Memory’s job is to store bits
and deliver them to the compute units regardless of what the computational
task is. New technologies like 3D-stacked memory [24], high speed serial [2] and
various types of non-volatile memory do not undermine this argument: they are
also general purpose and will be adopted by both CPUs and ASICs when they
become successful.

6.2 Capacity Hardness and Energy?

Here a reader may wonder whether we can make an energy argument for capac-
ity hard functions. Specifically, one may argue that holding a large capacity of

Bandwidth Hard Functions for ASIC Resistance 487

data in memory also costs energy, and it must be similar for ASICs and CPUs
due to the general purpose nature of memory. The problem is that the energy
cost of holding data in memory depends on the underlying memory technol-
ogy, and can be extremely small. We call the power spent on holding data idle
power, and the power spent on transferring data busy power. Volatile memory like
DRAM needs to periodically refresh data and thus has a noticeable idle power
consumption. For non-volatile memory/storage, idle power is negligible or even
strictly 0, independent of memory capacity [54]. Think about hard disks in one’s
garage — they consume no energy no matter how much data they are holding.
The energy argument for capacity hardness breaks down for non-volatile mem-
ory/storage. Energy consumption in non-volatile memory/storage only occurs
when data transfer happens, which is exactly what our model assumes.

In fact, even with volatile memory like DRAM, the energy model cannot be
solely based on memory capacity. While DRAM idle power is indeed proportional
to memory capacity, idle power will never be the dominant part in a reasonable
system. Section 6.3 further discusses this issue.

6.3 Implications of Parallel Attacks

Parallel attacks and area. Percival [46] defines memory hard functions to be
functions that (1) can be computed using T0 time and S0 = O(T 1− ε

0) space,
and (2) cannot be computed using T time and S space where ST = O(T 2− ε

0).
The ST lower bound at the first glance makes intuitive sense as it lower bounds
the AT product assuming that memory rather than the compute unit dominates
chip area. However, concerns have been raised about the above reasoning [10,22].
Because a ST lower bound allows space-time trade-off, a chip designer can reduce
the amount of memory by a factor of q, and then use q compute units in parallel
to keep the running time at T0. If q is not too large, chip area may still be
dominated by memory, so in theory this parallel architecture reduces the AT
product by roughly a factor of q. To address this issue, subsequent proposals
introduce stronger notions of capacity hardness that, for example, require a
linear space lower bound (in a computational sense) S = cS0 [18,25,35]. But
it is later uncovered that parallel architectures can asymptotically decrease the
amortized AT product of these constructions as well, and even stronger, the
amortized AT product of any data independent functions [10].

However, we would like to note that the above parallel attacks adopt an
oversimplified hardware model [10,12,14,15,22]: most of them assume unlim-
ited bandwidth for free. In practice, memory bandwidth is a scarce resource
and is the major bottleneck in parallel computing, widely known as the “mem-
ory wall” [17]. Increasing memory bandwidth would inevitably in turn increase
chip area and the more fundamental metric manufacturing cost. Only one paper
presents simulation results with concrete bandwidth requirements [11]. We laud
this effort, but unfortunately, the paper incorrectly chooses energy as the met-
ric, as we explain below. The area model in those attacks [10] looks reasonable,
though the memory bandwidth they assume is still too high. It would improve
our understanding on this issue if the authors provide simulation results with
area as the metric and for a wide range of bandwidth values from GB/s to TB/s.

488 L. Ren and S. Devadas

Parallel attacks and energy. We adopt a sequential model for bandwidth
hard functions in which parallelism does not help by definition. We believe this
model is reasonable because, to first-order effects, transferring data sequentially
or in parallel should consume roughly the same amount of energy. However, some
recent works [10,12,15] conclude that parallel attacks will have an asymptotic
energy gain for any data independent function, bit-reversal graphs and stacked
expanders included in particular, which is the exact opposite of our conclusion.
Their conclusions result from a flawed energy model. They assume memory’s
idle power is proportional to its capacity, which is reasonable assuming volatile
memory like DRAM. The flaw is that they explicitly assume that memory idle
power keeps increasing with memory capacity to the extent that it eventually
dwarfs all other power consumption. On a closer look, the energy advantage
they obtain under this model is not due to a parallel ASIC architecture having
superb energy efficiency, but rather because the sequential baseline has absurdly
high memory idle energy cost (i.e., energy cost for holding data). Under their
concrete parameterization [11], if we hash 1 GB of data using one CPU core, the
memory idle power/energy will be 5000× greater than all other power/energy
cost combined! The mistake in their concrete parameterization is that they incor-
rectly cite an estimated conversion rate for area density in a prior work [22] as
a conversion rate for energy cost, which leads to an overestimate of memory
idle power/energy by at least 100, 000×. But if only the constant is off, asymp-
totically speaking, isn’t it true that as DRAM capacity increases, eventually
memory idle power/energy will dwarf other components? The answer is yes, but
its implication is rather uninteresting and not concerning. It tells us that a com-
puter with a single CPU core and Terabytes of DRAM will have terrible energy
efficiency because it spends too much energy refreshing DRAM. Obviously, no
manufacturer will produce and no user will buy such a computer — long before
reaching this design point, manufacturers will switch to non-volatile memory or
simply stop adding DRAM capacity.

7 Conclusion

ASIC resistance requires both theoretical advancement and accurate hardware
understanding. With this work, we would like call attention to arguably the most
important aspect of ASIC resistance: energy efficiency. We illustrate that the
popular memory (capacity) hardness notion does not capture energy efficiency,
and indeed a capacity hard function may not achieve energy fairness. We propose
the notion of bandwidth hardness to achieve energy fairness between ASICs
and CPUs. We analyze candidate constructions and show that scrypt, Catena-
BRG and Balloon hashing provide good energy efficiency fairness with suitable
parameters.

We conclude the paper with a summary of provable security of different con-
structions under different thread models. (1) If memory access pattern leakage
is not a concern, then scrypt is a good option, since it enjoys capacity hard-
ness under parallel attacks as well as bandwidth hardness (for which parallel

Bandwidth Hard Functions for ASIC Resistance 489

attacks do not help). (2) If we assume the adversary has limited parallelism,
then Balloon hash is a good choice since it achieves sequential capacity hard-
ness and bandwidth hardness. (3) In some scenarios (e.g., Bitcoin mining), it
may be argued that energy advantage resistance alone is sufficient to thwart
ASIC attackers, in which case data-independent bandwidth hard functions (e.g.,
Catena-BRG and Balloon) can be used despite parallel attacks on their area
resistance. (4) If both area and energy resistance are required, memory access
pattern must be data-independent and additionally the adversary has extremely
high parallelism, then we know of no good candidates. In this situation, area
resistance alone must suffer poly-logarithmic loss. Furthermore, good parallel
capacity hard constructions to date are highly complex and we have not been
able to analyze their bandwidth behaviors. Lastly, we mention that in the first
three models, a possible alternative is Argon2 [21], the winner of the Password
Hashing Competition. We have not been able to analyze the bandwidth hardness
of Argon2, and it remains interesting future work.

Acknowledgements. The authors are grateful to Krzysztof Pietrzak, Joël Alwen and
Jeremiah Blocki for valuable discussions.

References

1. Antminer S9 - Bitmain. https://shop.bitmain.com/market.htm?name=antminer
s9 asic bitcoin miner. Accessed 04 Feb 2017

2. High Speed Serial - Xilinx. https://www.xilinx.com/products/technology/high-
speed-serial.html. Accessed 04 Feb 2017

3. Intel advanced encryption standard instructions (AES-NI). https://software.
intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni.
Accessed 04 Feb 2017

4. Intel power gadget. https://software.intel.com/en-us/articles/intel-power-gadget-
20. Accessed 04 Feb 2017

5. Litecoin. https://litecoin.org/
6. Zoom Hash Scrypt ASIC. http://zoomhash.com/collections/asics. Accessed 20

May 2016
7. Intel SHA extensions (2013). https://software.intel.com/en-us/articles/intel-sha-

extensions. Accessed 04 Feb 2017
8. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-

bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)
9. Almeida, L.C., Andrade, E.R., Barreto, P.S.L.M., Simplicio Jr., M.A.: Lyra:

password-based key derivation with tunable memory and processing costs. J. Cryp-
togr. Eng. 4(2), 75–89 (2014)

10. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 241–
271. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 9

11. Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and balloon hashing.
In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
142–157. IEEE (2017)

12. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative mem-
ory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 3–32. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 1

https://shop.bitmain.com/market.htm?name=antminer_s9_asic_bitcoin_miner
https://shop.bitmain.com/market.htm?name=antminer_s9_asic_bitcoin_miner
https://www.xilinx.com/products/technology/high-speed-serial.html
https://www.xilinx.com/products/technology/high-speed-serial.html
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://litecoin.org/
http://zoomhash.com/collections/asics
https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions
http://dx.doi.org/10.1007/978-3-662-53008-5_9
http://dx.doi.org/10.1007/978-3-319-56617-7_1

490 L. Ren and S. Devadas

13. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 33–62. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 2

14. Alwen, J., Gazi, P., Kamath, C., Klein, K., Osang, G., Pietrzak, K., Reyzin, L.,
Rolınek, M., Rybár, M.: On the memory-hardness of data-independent password-
hashing functions. Cryptology ePrint Archive, Report 2016/783 (2016)

15. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pp. 595–603. ACM (2015)

16. Amrutur, B., Horowitz, M.: Speed and power scaling of SRAM’s. IEEE J. Solid-
State Circ. 35(2), 175–185 (2000)

17. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W. et al.: The landscape
of parallel computing research: A view from berkeley. Technical report, Technical
Report UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley (2006)

18. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is
of the essence. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642,
pp. 538–557. Springer, Cham (2014). doi:10.1007/978-3-319-10879-7 31

19. Back, A.: Hashcash-a denial of service counter-measure (2002)
20. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.

IBM Syst. J. 5(2), 78–101 (1966)
21. Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient memory-hard

functions for cryptocurrencies and password hashing (2015)
22. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.

Cryptology ePrint Archive, Report 2015/227 (2015)
23. Biryukov, A., Khovratovich, D.: Equihash: asymmetric proof-of-work based on the

generalized birthday problem. In: NDSS (2016)
24. Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh, G.H.,

McCaule, D., Morrow, P., Nelson, D.W., Pantuso, D. et al.: Die stacking (3D)
microarchitecture. In: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 469–479. IEEE Computer Society (2006)

25. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 220–248. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53887-6 8

26. Bradley, W.F.: Superconcentration on a pair of butterflies. CoRR abs/1401.7263
(2014)

27. Cook, S.A.: An observation on time-storage trade off. In: Proceedings of the Fifth
Annual ACM Symposium on Theory of Computing, pp. 29–33. ACM (1973)

28. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). doi:10.
1007/0-387-34805-0 39

29. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting
spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 25

30. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). doi:10.1007/3-540-48071-4 10

http://dx.doi.org/10.1007/978-3-319-56617-7_2
http://dx.doi.org/10.1007/978-3-319-10879-7_31
http://dx.doi.org/10.1007/978-3-662-53887-6_8
http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/978-3-540-45146-4_25
http://dx.doi.org/10.1007/3-540-48071-4_10

Bandwidth Hard Functions for ASIC Resistance 491

31. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). doi:10.
1007/11535218 3

32. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 29

33. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 9

34. Forler, C., List, E., Lucks, S., Wenzel, J.: Overview of the candidates for the pass-
word hashing competition. In: Mjølsnes, S.F. (ed.) PASSWORDS 2014. LNCS, vol.
9393, pp. 3–18. Springer, Cham (2015). doi:10.1007/978-3-319-24192-0 1

35. Forler, C., Lucks, S., Wenzel, J.: Catena : a memory-consuming password-
scrambling framework. Cryptology ePrint Archive, Report 2013/525 (2013)

36. Hopcroft, J., Paul, W., Valiant, L.: On time versus space and related problems. In:
16th Annual Symposium on Foundations of Computer Science, pp. 57–64. IEEE
(1975)

37. Horowitz, M.: Computing’s energy problem (and what we can do about it). In: 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 10–14. IEEE (2014)

38. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (1982)

39. Lerner, S.D.: Strict memory hard hashing functions (preliminary v0. 3, 01–19-14)
40. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential

work. In: Proceedings of the 4th Conference on Innovations in Theoretical Com-
puter Science, pp. 373–388. ACM (2013)

41. Mead, C.A., Rem, M.: Cost and performance of vlsi computing structures. IEEE
Trans. Electron Devices 26(4), 533–540 (1979)

42. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). doi:10.1007/
0-387-34805-0 40

43. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
44. Paul, W.J., Tarjan, R.E.: Time-space trade-offs in a pebble game. Acta Inf. 10(2),

111–115 (1978)
45. Pedram, A., Richardson, S., Galal, S., Kvatinsky, S., Horowitz, M.: Dark memory

and accelerator-rich system optimization in the dark silicon era. IEEE Des. Test
34, 39–50 (2016)

46. Percival, C.: Stronger key derivation via sequential memory-hard functions (2009)
47. Peslyak, A.: yescrypt - a password hashing competition submission (2014). https://

password-hashing.net/submissions/specs/yescrypt-v2.pdf. Accessed Aug 2016
48. Pinsker, M.S.: On the complexity of a concentrator. In: 7th International Telegraffic

Conference, vol. 4 (1973)
49. Ren, L., Devadas, S.: Proof of space from stacked expanders. In: Hirt, M., Smith,

A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 262–285. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53641-4 11

50. Savage, J.E.: Models of Computation. Addison-Wesley, Boston (1998)
51. Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4(3), 226–248

(1975)
52. Smith, A., Zhang, Y.: Near-linear time, leakage-resilient key evolution schemes

from expander graphs. Cryptology ePrint Archive, Report 2013/864 (2013)

http://dx.doi.org/10.1007/11535218_3
http://dx.doi.org/10.1007/11535218_3
http://dx.doi.org/10.1007/978-3-662-48000-7_29
http://dx.doi.org/10.1007/978-3-642-19571-6_9
http://dx.doi.org/10.1007/978-3-319-24192-0_1
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/0-387-34805-0_40
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
http://dx.doi.org/10.1007/978-3-662-53641-4_11

492 L. Ren and S. Devadas

53. Tromp, J.: Cuckoo cycle: a memory-hard proof-of-work system (2014)
54. Xue, C.J., Sun, G., Zhang, Y., Yang, J.J., Chen, Y., Li, H.: Emerging non-volatile

memories: opportunities and challenges. In: 2011 Proceedings of the 9th Inter-
national Conference on Hardware/Software Codesign and System Synthesis, pp.
325–334. IEEE (2011)

Moderately Hard Functions: Definition,
Instantiations, and Applications

Joël Alwen1 and Björn Tackmann2(B)

1 IST Austria, Vienna, Austria
jalwen@ist.ac.at

2 IBM Research – Zurich, Rüschlikon, Switzerland
bta@zurich.ibm.com

Abstract. Several cryptographic schemes and applications are based on
functions that are both reasonably efficient to compute and moderately
hard to invert, including client puzzles for Denial-of-Service protection,
password protection via salted hashes, or recent proof-of-work blockchain
systems. Despite their wide use, a definition of this concept has not yet
been distilled and formalized explicitly. Instead, either the applications
are proven directly based on the assumptions underlying the function,
or some property of the function is proven, but the security of the appli-
cation is argued only informally. The goal of this work is to provide a
(universal) definition that decouples the efforts of designing new moder-
ately hard functions and of building protocols based on them, serving as
an interface between the two.

On a technical level, beyond the mentioned definitions, we instan-
tiate the model for four different notions of hardness. We extend the
work of Alwen and Serbinenko (STOC 2015) by providing a general tool
for proving security for the first notion of memory-hard functions that
allows for provably secure applications. The tool allows us to recover all
of the graph-theoretic techniques developed for proving security under
the older, non-composable, notion of security used by Alwen and Ser-
binenko. As an application of our definition of moderately hard func-
tions, we prove the security of two different schemes for proofs of effort
(PoE). We also formalize and instantiate the concept of a non-interactive
proof of effort (niPoE), in which the proof is not bound to a particular
communication context but rather any bit-string chosen by the prover.

1 Introduction

Several cryptographic schemes and applications are based on (computational)
problems that are “moderately hard” to solve. One example is hashing passwords
with a salted, moderately hard-to-compute hash function and storing the hash
in the password file of a login server. Should the password file become exposed
through an attack, the increased hardness of the hash function relative to a
standard one increases the effort that the attacker has to spend to recover the
passwords in a brute-force attack [33,48,51]. Another widely-cited example of

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 493–526, 2017.
https://doi.org/10.1007/978-3-319-70500-2_17

494 J. Alwen and B. Tackmann

this approach originates in the work of Dwork and Naor [28], who suggested the
use of a so-called pricing function, supposedly moderately hard to compute, as a
countermeasure for junk mail: the sender of a mail must compute a moderately
hard function (MoHF) on an input that includes the sender, the receiver, and the
mail body, and send the function value together with the message, as otherwise
the receiver will not accept the mail. This can be viewed as a proof of effort1

(PoE), which, in a nutshell, is a 2-party (interactive) proof system where the
verifier accepts if and only if the prover has exerted a moderate amount of effort
during the execution of the protocol. Such a PoE can be used to meter access
to a valuable resource like, in the case of [28], the attention of a mail receiver.
As observed by the authors, requiring this additional effort would introduce
a significant obstacle to any spammer wishing to flood many receivers with
unsolicited mails. Security was argued only informally in the original work. A
line of follow-up papers [1,27,29] provides a formal treatment and proves security
for protocols that are intuitively based on functions that are moderately hard to
compute on architectures with limited cache size.

PoEs have many applications beyond combatting spam mail. One widely
discussed special case of PoE protocols are so-called cryptographic puzzles (or
client puzzles, e.g. [12,21,22,36,37,40,52,54]), which are mainly targeted at pro-
tecting Internet servers from Denial-of-Service attacks by having the client solve
the puzzle before the server engages in any costly operation. These PoEs have
the special form of consisting of a single pair of challenge and response messages
(i.e., one round of communication), and are mostly based on either inverting
a MoHF [40], or finding an input to an MoHF that leads to an output with a
certain number of trailing zeroes [2]. More recently, cryptocurrencies based on
distributed transaction ledgers that are managed through a consensus protocol
based on PoEs have emerged, most prominently Bitcoin [49] and Ethereum [19],
and are again based on MoHFs. In a nutshell, to append a block of transactions
to the ledger, a so-called miner has to legitimate the block by a PoE, and as long
as miners that control a majority of a computing power are honest, the ledger
remains consistent [34].

The notions of hardness underlying the MoHFs that have been designed for
the above applications vary widely. The earliest and still most common one is
computational hardness in terms of the number of computation steps that have to
be spent to solve the problem [22,28,40,49]. Other proposals exploit the limited
size of fast cache in current architectures and are aimed at forcing the processor
to access the slower main memory [1,27,29], the use of large amounts of memory
during the evaluation of the function [10,33,51], or even disk space [30].

Given the plethora of work (implicitly or explicitly) designing and using
MoHFs, one question soon comes to mind: is it possible to use the MoHF
designed in one work in the application context of another? The current answer
is sobering. Either the security notion for the MoHF is not quite sufficient for

1 We intentionally use the term effort instead of work since the latter is often asso-
ciated with computational work, while a MoHF in our framework may be based on
spending other types of resources such as memory.

Moderately Hard Functions: Definition, Instantiations, and Applications 495

proving the security of the targeted applications. Or security of the application is
proven directly without separating out the properties used from the underlying
MoHF.

For example, in the domain of memory-hard functions—an increasingly com-
mon type of MoHF first motivated by Percival in [51]—the security of MoHF
applications is generally argued only informally. Indeed, this likely stems from
the fact that proposed definitions seem inadequate for the task. As argued
by Alwen and Serbinenko [10], the hardness notion used by Percival [51] and
Forler et al. [33] is not sufficient in practical settings because it disregards that
an attacker may amortize the effort over multiple evaluations of the function,
or use inherently parallel computational capabilities as provided by a circuit.
Yet the definition of [10], while taking these into account, is also not (known to
be) useful in proving the security of higher-level protocols, because it requires
high average-case, instead of worst-case, complexity. Worse, like all other MoHF
definitions in the literature (e.g. [3,15]), it focuses only on the hardness of evalu-
ating the function; indeed, in most cases the functions modified to append their
inputs to their outputs would be considered to have the same complexity as the
original ones, but become trivially invertible. However, all applications present
the adversary with the task of inverting the MoHF in some form.

In other areas, where the application security is explicitly proven [1,27,29],
this is done directly with out separating out the properties of the underlying
MoHF. This means that (a) the MoHF (security) cannot easily be “extracted”
from the paper and used in other contexts, and (b) the protocols cannot easily
be instantiated with other MoHFs. Furthermore, the security definitions come
with a hard-wired notion of hardness, so it is a priori even more difficult to
replace the in-built MoHF with one for a different type of hardness.

Consequently, as already discussed by Naor in his 2003 invited lecture [50],
what is needed is a unifying theory of MoHFs. The contribution of this paper is
a step toward this direction. Our goal is to design an abstract notion of MoHF
that is flexible enough to model various types of functions for various hardness
notions considered in the literature, but still expressive enough to be useful in
a wide range of applications. We propose such a definition, show (with varying
degrees of formality) that existing constructions for various types of hardness
instantiate it, and show how it can be used in various application scenarios. Not
all proof-of-work schemes, however, fall into the mold of the ones covered in this
work. For example the recently popular Equihash [16] has a different form.2

More Details on Related Work. We briefly summarize related papers beyond
those referenced above. A detailed overview can be found in the full version [11].

2 Nevertheless, we conjecture that Equihash could also be analyzed in out framework.
In particular, if we can always model the underlying hash function used by Equihash
as a (trivially secure) MoHF. Then, by assuming the optimality of Wagner’s collision
finding algorithm (as done in [16]) one could compute the parameters for which
Equihash gives rise to our proof-of-effort definition in Sect. 6. We leave this line of
reasoning for future work.

496 J. Alwen and B. Tackmann

After the initial work of Dwork and Naor [28], most subsequent work on
MoHFs is based on hash functions, such as using the plain hash function [2] or
iterating the function to increase the hardness of inverting it. Iteration seems to
first appear in the Unix crypt function [48] and analyzed by Yao and Yin [56]
and Bellare et al. [14]. A prefixing scheme for iteration has been discussed and
analyzed by Demay et al. [26]. The definitions of [14,26] are conceptually similar
to ours, as they are also based on indifferentiability. Their definitions, however,
are restricted to the complexity measure of counting the number of random-
oracle invocations.

Based on memory-bound functions, which aim at forcing the processor to
access the (slower) main memory because the data needed to compute the func-
tions do not fit into the (fast but small) cache, proofs-of-effort have been devel-
oped and analyzed in [1,27,29]. The rough idea is that during the computation
of the function one has to access various position in a random-looking array that
is too large to fit into cache. We discuss the reduction that will be necessary to
make those functions useful in our framework in Sect. 5.

For memory-hard functions, which rely on a notion of hardness aimed
at ensuring that application-specific integrated circuits (ASICs) have as little
advantage (in terms of dollar per rate of computation) over general-purpose
hardware, the first security notion of memory-hard functions was given by
Percival [51]. The definition asks for a lower bound on the product of mem-
ory and time used by an algorithm evaluating the function on any single input.
This definition was refined by Alwen and Serbinenko [10] by modeling parallel
algorithms as well as the amortized Cumulative Memory Complexity (aCMC)
of the algorithms. aCMC was further refined by Alwen and Blocki [3] to account
for possible trade-offs of decreasing memory consumption at the added cost of
increased logic gates resulting in the notion of amortized Energy Complexity
(aEC).

Our Contributions and Outline of the Paper. The starting point of our MoHF
definition is the observation that—on the one hand—many instantiations of
MoHFs are based on hash functions and analyzed in the random-oracle model,
and—on the other hand—many applications also assume that a MoHF behaves
like a random oracle. More concretely, we base our definition on indifferentiability
from a random oracle [47], and describe each “real-world setting” according to
the computational model underlying the MoHF.

Section 2 covers preliminaries; in particular we recall the notion of indifferen-
tiability and introduce an abstract notion of computational cost and resource-
bounded computation. In Sect. 3, we describe our new indifferentiability-based
definition of MoHF in terms of the real and ideal models considered. Next,
in Sect. 4, we instantiate the MoHF definition for the case of memory-hard func-
tions. This section contains the main technical result of the paper, an exten-
sion of the pebbling reduction of Alwen and Serbinenko [10] to our stricter
MoHF definition. In Sect. 5, we discuss then discuss how other types of mod-
erately hard functions from the literature are captured in our framework, in
particular weak memory-hard functions, memory-bound functions, and one-time

Moderately Hard Functions: Definition, Instantiations, and Applications 497

computable functions. In Sect. 6, we describe a (composable) security definition
for PoE. We present an ideal-world description of a PoE; a functionality where
the prover can convince the verifier in a certain bounded number of sessions. As
this definition starts from the ideal-world description of a MoHF as described
above, it can be easily composed with every type of MoHF in our framework.
We consider two types of PoE—one based on function inversion, and the other
one on hash trail. In Sect. 7, we then continue to describing an analogous defini-
tion for a non-interactive proof of effort (niPoE), and again give an instantiation
based on hash trail. In Sect. 8, we discuss the composition of the MoHF definition
and the PoE and niPoE applications more concretely.

2 Preliminaries

We use the sets N := {1, 2, . . .}, and Z≥c := {c, c + 1, . . .} ∩Z to denote integers
greater than or equal to c. Similarly we write [a, c] to denote {a, a + 1, . . . , c}
and [c] for the set [1, c]. For a set S, we use the notation x ←$ S to denote that x
is chosen uniformly at random from the set S. For arbitrary set I and n ∈ N we
write I

×n to denote the n-wise cross product of I. We refer to sets of functions
(or distributions) as function (or distribution) families.

2.1 Reactive Discrete Systems

For an input set X and an output set Y, a reactive discrete (X,Y)-system repeat-
edly takes as input a value (or query) xi ∈ X and responds with a value yi ∈ Y, for
i ∈ {1, 2, . . . }. Thereby, each output yi may depend on all prior inputs x1, . . . , xi.
As discussed by Maurer [43], reactive discrete systems are exactly modeled by
the notion of a random system, that is, the conditional distribution pYi|XiY i−1 of
each output (random variable) Yi ∈ Y given all previous inputs X1, . . . , Xi ∈ X

and outputs Y1, . . . , Yi−1 ∈ Y of the system.
Discrete reactive systems can have multiple interfaces, where each interface

is labeled by an element in some set I. We then formally consider (I×X, I×Y)-
systems, where providing an input x ∈ X at interface i ∈ I then means evaluating
the system on input (i, x) ∈ I × X, and the resulting output (i′, y) ∈ Y means
that the value y is provided as a response at the interface i′ ∈ I. We generally
denote reactive discrete systems by upper-case calligraphic letters such as S or T
or by lower-case Greek letters such as π or σ.

A configuration of systems is a set of systems which are connected via their
interfaces. Any configuration of systems can again be seen as a system that
provides all unconnected interfaces to its environment. Examples are shown in
Fig. 1, where Fig. 1a shows a two-interface system π connected to the single inter-
face of another system R, and Fig. 1b shows a two-interface system π connected
to the priv-interface of the system S . The latter configuration is denoted by the
term πprivS . Finally, Fig. 1c shows a similar setting, but where additionally a
distinguisher (or environment) D is attached to both interfaces of σpubT . This
setting is denoted as D(σpubT) and is further discussed in Sect. 2.2.

498 J. Alwen and B. Tackmann

Fig. 1. Examples for configurations of systems.

Fig. 2. Indifferentiability. Left: Distinguisher D connected to protocol π using the
priv-interface of the real-world resource S , denoted D

(
πprivS

)
. Right: Distinguisher

D connected to simulator σ attached to the pub-interface of the ideal-world resource
T , denoted D

(
σpubT

)
.

2.2 Indifferentiability

The main definitions in this work are based on the indifferentiability framework
of Maurer et al. [46,47]. We define the indifferentiability notion in this section.

Indifferentiability of a protocol or scheme π, which using certain resources S ,
from resource T requires that there exists a simulator σ such that the two sys-
tems πpubS and σpubT are indistinguishable, as depicted in Fig. 2. The indistin-
guishability is defined via a distinguisher D , a special system that interacts with
either πprivS or σpubT and finally outputs a bit. In the considered “real-world”
setting with πprivS , the distinguisher D has direct access to the pub-interface of
S , but the priv-interface is accessible only through π. In the considered “ideal-
world” setting with σpubT , D has direct access to the priv-interface of T , but the
pub-interface is accessible only through σ. The advantage of the distinguisher is
now defined to be the difference in the probability that D outputs some fixed

Moderately Hard Functions: Definition, Instantiations, and Applications 499

value, say 1, in the two settings, more formally,

ΔD
(
πprivS , σpubT

)
=

∣
∣Pr

[
D(πprivS) = 1

]
− Pr

[
D(σpubT) = 1

]∣∣ .

Intuitively, if the advantage is small, then, for the honest parties, the real-world
resource S is at least as useful (when using it via π) as the ideal-world resource
T . Conversely, for the adversary the real world is at most as useful as the ideal
world. Put differently, from the perspective of the honest parties, the real world
is at least as safe as the ideal world. So any application that makes use of T can
instead use πprivS . This leads to the following definition.

Definition 1 (Indifferentiability). Let π be a protocol and S , T be resources,
and let ε > 0. Then πprivS is ε-indifferentiable from T , if

∃σ : πprivS ≈ε σpubT ,

with πprivS ≈ε σpubT defined as ∀D : ΔD
(
πprivS , σpubT

)
≤ ε.

2.3 Oracle Functions and Oracle Algorithms

We explore several constructions of hard-to-compute functions that are defined
via a sequence of calls to an oracle. To make this dependency explicit, we use
the following notation. For sets D and R, a random oracle (RO) H is a random
variable distributed uniformly over the function family H = {h : D → R}.

Definition 2 (Oracle functions). For (implicit) oracle set H, an oracle func-
tion f (·) (with domain D and range R), denoted f (·) : D → R, is a set of
functions indexed by oracles h ∈ H where each fh maps D → R.

We fix a concrete function in the set f (·) by fixing an oracle h ∈ H to obtain
function fh : D → R. More generally, if f = (f (·)

1 , . . . , f
(·)
n) is an n-tuple of

oracle functions then we write fh to denote the n-tuple (fh
1 , . . . , fh

n).
For an algorithm A we write Ah to make explicit that A has access to oracle h

during its execution. We sometimes refer to algorithms that expect such access as
oracle algorithm. We leave the precise model of computation for such algorithms
unspecified for now as these will vary between concrete notions of MoHFs.

Example 1. The prefixed hash chain of length c ∈ N is an oracle function as

fh
hc,c : D → R, x
→ h

(
c‖h

(
c − 1‖ . . . h(1‖x) . . .

))
.

An algorithm Ahc that computes a hash chain of length c is described as initially
evaluating h at the input 1‖x, and then iteratively (c − 1) times on the outputs
of the previous round, prefixing with the round index. ♦

2.4 Computation and Computational Cost

One main goal of this paper is to introduce a unifying definitional framework for
MoHFs. For any concrete type of MoHF, we have to quantify the (real-world)
resources required for performing computations such as evaluating the function.

500 J. Alwen and B. Tackmann

Cost Measures. For the remainder of this section, we let (V, 0,+,≤) be a commu-
tative group with a partial order ≤ such that the operation “+” is compatible with
the partial order “≤”, meaning that ∀a, b, c ∈ V : a ≤ b ⇒ a + c ≤ b + c.
More concretely, we could consider V = Z or V = R, but also V = R

n for some
n ∈ N if the computational cost cannot be quantified by a single value, for instance
if we want to measure both the computational effort and the memory required to
perform the task. We generally use the notation V≥0 := {v ∈ V : 0 ≤ v}.

The Cost of Computation. We later describe several MoHFs for differing notions
of effort, where the hardness is defined using the following complexity notion
based on a generic cost function. Intuitively a cost function assigns a non-
negative real number as a cost to a given execution of an algorithm A. More
formally, let A be some set of algorithms (in some fixed computational model).
Then an A-cost function has the form cost : A × {0, 1}∗ × {0, 1}∗ → V≥0. The
first argument is an algorithm, the second fixes the input to the execution and
the third fixes the random coins of the algorithm (and, in the ROM, also the
random coins of the RO). Thus any such triple completely determines an exe-
cution which is then assigned a cost. Concrete examples include measuring the
number of RO calls made by A during the execution, the number of cache misses
during the computation [27,29] or the amount of memory (in bits) used to store
intermediate values during the computation [10]. We write y

a� A(x; $) if the
algorithm A computes the output y ∈ {0, 1}∗, when given input x ∈ {0, 1}∗ and
random coins $ ←$ {0, 1}∗, with computation cost a ∈ V.

For concreteness we continue developing the example of a hash-chain of length
c by defining an appropriate cost notion.

Example 2. Let A be an oracle algorithm as in Example 1. The cost of evaluating
the algorithm A is measured by the number b ∈ N = V of queries to the oracle
that can be made during the evaluation of A. Therefore, we write

y
b�# Ah(x)

if A computes y from x with b calls to the oracle h. For the algorithm Ahc

computing the prefixed hash chain of length c ∈ N, the cost of each evaluation is
c and therefore obviously independent of the choice of random oracle, so simply

writing y
b�# Ahc(x) is well-defined. ♦

2.5 A Model for Resource-Bounded Computation

In this section, we describe generically how we model resource-bounded compu-
tation in the remainder of this work. The scenario we consider in the following
section has a party specify an algorithm and evaluate it, possibly repeatedly on
different inputs. We want to model that evaluating the algorithm incurs a certain
computational cost and that the party has bounded resources to evaluate the
algorithm—depending on the available resources—only for a bounded number

Moderately Hard Functions: Definition, Instantiations, and Applications 501

of times, or maybe not at all. Our approach consists of specifying a computation
device to which an algorithm A can be input. Then, one can evaluate the algo-
rithm repeatedly by providing inputs x1, . . . , xk to the device, which evaluates
the algorithm A on each of the inputs. Each such evaluation incurs a certain com-
putational cost, and as long as there are still resources available for computation,
the device responds with the proper outputs y1 = A(x1), y2 = A(x2), Once
the resources are exhausted, the device always responds with the special symbol
⊥. In the subsequent part of this paper, we will often refer to the computation
device as the “computation resource.”

The above-described approach can be used to model arbitrary types of algo-
rithms and computational resources. Examples for such resources include the
memory used during the computation (memory-hardness) or the number of
computational steps incurred during the execution (computational hardness).
Resources may also come in terms of “oracles” or “sub-routines” called by the
algorithms, such as a random oracle, where we may want to quantify the number
of queries to the oracle (query hardness).

As a concrete example, we describe the execution of an algorithm whose use
of resources accumulates over subsequent executions:3

1. Let b ∈ V be the resources available to the party and j = 1.
2. Receive input xj ∈ {0, 1}∗ from the party.
3. Compute yj

c� A(xj), for c ∈ V. If c ≥ b then set b ← 0 and output ⊥.
Otherwise, set b ← b − c and output yj . Set j ← j + 1 and go to step 2.

We denote the resource that behaves as described above for the specific case
of oracle algorithms that are allowed to make a bounded number b ∈ N of
oracle queries by Soa

b . For concreteness we show how to define an appropriate
computational resource for reasoning about the hash-chain example.

Example 3. We continue with the setting described in Examples 1 and 2, and
consider the hash-chain algorithm Ahc with a computational resource that is
specified by the overall number b ∈ V = N that can be made to the oracle.

In more detail, we consider the resource Soa
b described above. Upon startup,

Soa
b samples a uniform h ←$ H. Upon input of the oracle algorithm A (the type

described in Example 1) into the computation resource, the party can query
x1, x2, . . . and the algorithm A is evaluated, with access to h, on all inputs until
b queries to h have been made, and subsequently only returns ⊥.

For algorithm Ahc, chain length c, and resource Soa
b with b ∈ N, the algorithm

can be evaluated �b/c� times before all queries are answered with ⊥. ♦

3 Moderately Hard Functions

In this section, we combine the concepts introduced in Sect. 2 and state our
definition of moderately hard function. The existing definitions of MoHF can be
3 An example of this type of resource restriction is the cumulative number of oracle

calls that the algorithm can make. Other resources may have different characteristics,
such as a bound on the maximum amount of simultaneous memory use during the
execution of the algorithm; which does not accumulate over multiple executions.

502 J. Alwen and B. Tackmann

seen as formalizing that, with a given amount of resources, the function can only
be evaluated a certain (related) number of times. Our definition is different in
that it additionally captures that even an arbitrary computation with the same
amount of resources cannot provide more (useful) results about the function
than making the corresponding number of evaluations. This stronger statement
is essential for proving the security of applications.

We base the definition of MoHFs on the notion of indifferentiability discussed
in Sect. 2.2. In particular, the definition is based on the indistinguishability of a
real and an ideal execution that we describe below. Satisfying such a definition
will then indeed imply the desired statement, i.e., that the best the adversary
can do is evaluate the function in the forward direction, and additionally that
for each of these evaluations it must spend a certain amount of resources.

Fig. 3. Specification of the real-world resource Sl,r.

The real-world resource consists of resource-bounded computational devices
that can be used to evaluate certain types of algorithms; one such resource at the
priv- and one at the pub-interface. For such a resource S with bounds specified
by l, r ∈ P, for some parameter space P that is specified by S , for the priv- and
pub-interfaces, respectively, we usually write Sl,r. The protocol system π used
by the honest party initially inputs an algorithm naı̈ve to Sl,r, further inputs
x1, x2, . . . from D to π are simply forwarded to Sl,r, and the responses are given
back to D . Moreover, D can use the pub-interface of Sl,r to input an algorithm
A′ and evaluate it.

The ideal-world resource also has two interfaces priv and pub. We consider
only moderately hard functions with uniform outputs; therefore, the ideal-world
resource T rro we consider essentially implements a random function D → R and
allows at both interfaces simply to query the random function. (In more detail,
T rro is defined as initially choosing a uniformly random function f : D → R
and then, upon each input x ∈ D at either priv or pub, respond with f(x) ∈ R
at the same interface.) We generally consider resources T rro

a,b for a, b ∈ N, which
is the same as a resource T rro allowing a queries at the priv and b queries at
the pub-interface. All exceeding queries are answered with the special symbol ⊥
(Fig. 4).

Moderately Hard Functions: Definition, Instantiations, and Applications 503

Fig. 4. Lazy-sampling specification of the ideal-world resource T rro
a,b .

It is easy to see that the resource T rro
a,b is one-way: it is a random oracle to

which a bounded number of queries can be made.
Before we provide a more detailed general definitions, we complete the hash-

chain example by instantiating an appropriate security notion.

Example 4. We extend Example 3 where the algorithm Ahc evaluates a hash-
chain of length c on its input by defining the natural security notion such an
algorithm achieves. The real-world resource S2oa

a,b , with a, b ∈ N, behaves as a
resource Soa

a at the priv- and as a resource Soa
b at the pub-interface. That is

S2oa
a,b first samples a random function h ∈ H uniformly, and then uses this for

the evaluation of algorithms input at both interfaces priv and pub analogously
to Soa

a and Soa
B , respectively.

The converter system πhc initially inputs Ahc into S2oa
a,b ; which is a resource

that allows for evaluating such algorithms at both interfaces priv and pub. As
S2oa

a,b allows for a oracle queries for Ahc, the system πhc
privS2oa

a,b allows for �a/c�
complete evaluations of Ahc at the priv-interface. The resource T rro

a′,b′ is a random
oracle that can be queried at both interfaces priv and pub (and indeed the
outside interface provided by π is of that type). The simulator σ, therefore, will
initially accept an algorithm A′ as input and then evaluate A′ with simulating
the queries to h potentially using queries to T rro

a′,b′ . In particular, we can rephrase
the statement about (prefixed) iteration of random oracles of Demay et al. [26]
as follows4: with πhc being the system that inputs the algorithm Ahc, and S2oa

a,b

the resource that allows a and b evaluations of h at the priv- and pub-interfaces,
respectively, πhc

privS2oa
a,b is (b ·2−w)-indifferentiable, where w is the output width

of the oracle, from T rro
a′,b′ allowing a′ = �a/c� queries at the priv- and b′ = �b/c�

queries at the pub-interface. ♦

The security statement ensures both that the honest party is able to perform
its tasks using the prescribed algorithm and resource, and that the adversary
cannot to perform more computations than allowed by its resources. We empha-
size that the ideal execution in Example 4 will allow both the honest party and
the adversary to query a random oracle for some bounded number of times.
4 Similar statements have been proven earlier by Yao and Yin [56] and Bellare

et al. [14]; however, we use the result on prefixed iteration from [26].

504 J. Alwen and B. Tackmann

The fact that in the real execution the honest party can answer the queries with
its bounded resource corresponds to the efficient implementation of the MoHF.
The fact that any adversarial algorithm that has a certain amount of resources
available can be “satisfied” with a bounded number of queries to the ideal
random oracle means that the adversarial algorithm cannot gain more knowl-
edge than by evaluating the ideal function for that number of times. Therefore,
Example 4 models the basic properties that we require from a MoHF.

The security statement for an MoHF with näıve algorithm naı̈ve has the
following form. Intuitively, for resource limits (l, r), the real model with those
limits and the ideal model with limits (a(l), b(r)) are ε-indistinguishable, for
some ε = ε(l, r). I.e., there is a simulator σ such that no distinguisher D can tell
the two models apart with advantage > ε.

We recall that the role of σ is to “fool” D into thinking it is interacting with
A in the real model. We claim that this forces σ to be aware of the concrete
parameters r of the real world D is supposedly interacting with. Indeed, one
strategy D may employ is to provide code A at the pub-interface which consumes
all available computational resources. In particular, using this technique D will
obtain a view encoding r. Thus it had better be that σ is able to produce a
similar encoding itself. Thus in the following definition we allow σ to depend on
the choice of r. Conversely, no such dependency between l and σ is needed.5

For many applications, we also want to parametrize the function by a hard-
ness parameter n ∈ N. In that case we consider a sequence of oracle functions
f
(·)
n and algorithms naı̈ven (which we will often want to be uniform) and also

the functions a, b, ε must be defined separately for each n ∈ N. This leads us to
the following definition.

Definition 3 (MoHF security). For each n ∈ N, let f
(·)
n be an oracle function

and näıven be an algorithm for computing f (·), let P be a parameter space and
a, b : P × N → N, and let ε : P × P × N → R≥0. Then, for a family of models
Sl,r, (f (·)

n , näıven)n∈N is a (a, b, ε)-secure moderately hard function family in the
Sl,r-model if

∀n ∈ N, r ∈ P ∃σ ∀l ∈ P : πpriv
näıven Sl,r ≈ε(l,r,n) σpub T rro

a(l,n),b(r,n),

The function family is called uniform if (näıven)n∈N is a uniform algorithm.
The function family is asymptotically secure if ε(l, r, ·) is a negligible function
in the third parameter for all values of r, l ∈ P.

We sometimes use the definition with a fixed hardness parameter n. Note also
that the definition is fundamentally different from resource-restricted indifferen-
tiability [25] in that there the simulator is restricted, as the idea is to preserve
the same complexity (notion).

5 We remark that in contrast to, say, non-black box simulators, we are unaware of any
actual advantage of this independence between σ and l.

Moderately Hard Functions: Definition, Instantiations, and Applications 505

Fig. 5. Outline for the indifferentiability-based notion.

Further Discussion on the Real Model. In the real model, the resource described
in Fig. 3 is available to the (honest) party at the priv-interface and the adversarial
party at the pub-interface. Since our goal is to model different types of computa-
tional hardness of specific tasks, that is, describe the amount of resources needed
to perform these tasks, the nature of the remaining resources will naturally vary
depending on the particular type of hardness being modeled. For example, when
modeling memory-hardness, the computation resource would limit the amount
of memory available during the evaluation, and a bound on the computational
power available to the party would correspond to defining computational hard-
ness. Each resource is parametrized by two values l and r (from some arbitrary
parameter space P) denoting limits on the amount of the resources available to
the parties at the priv- and pub-interfaces, respectively.6 Beyond the local com-
putation resources described above, oracle algorithms have access to an oracle
that is chosen initially in the resource according to the prescribed distribution
and the same instance is made available to the algorithms at all interfaces. In this
work, the algorithms will always have access to a random oracle, i.e. a resource
that behaves like a random function h.

We generally denote the real-world resource by the letter S and use the super-
script to further specify the type of computational resource and the subscript
for the resource bounds, as S2oa

a,b in Example 4, where P = N, l = a and r = b.
Both interfaces priv and pub of the real-world resource expect as an input

a program that will be executed using the resources specified at the respective
interface. Suppose we wish to make a security statement about the hardness
of a particular MoHF with the näıve algorithm naı̈ve. Besides the resources
themselves, the real world contains a system π that simply inputs naı̈ve to be
executed. Following the specification in Fig. 3, the execution in the real model
can be described as follows:

6 These parameters may specify bounds in terms of the cost function discussed above.

506 J. Alwen and B. Tackmann

– Initially, D is activated and can evaluate naı̈ve on inputs of its choice by
providing inputs at the priv-interface.7

– Next, D can provide as input an algorithm A at the pub-interface, and evaluate
A on one input x. The computation resource will evaluate A on input x.

– Next, D can again provide queries at the priv-interface to evaluate the algo-
rithms naı̈ve (until the resources are exhausted).

– Eventually, D outputs a bit (denoting its guess at whether it just interacted
with the real world or not) and terminates.

At first sight, it might appear counter-intuitive that we allow the algorithm A
input at pub to be evaluated only once, and not repeatedly, which would be
stronger. The reason is that, for most complexity measures we are interested
in, such as for memory-hard functions, continuous interaction with the environ-
ment D would allow A to “outsource” relevant resource-use to D , and contradict
our goal of precisely measuring A’s resource consumption (and thereby some-
times render non-trivial statements impossible). This restriction can be relaxed
wherever possible, as in Example 4.

Further Discussion on Ideal Model. The (ideal-world) resource T also has a
priv- and a pub-interface. In our definition of a MoHF, the ideal-world resource
is always of the type T rro

a,b with a, b ∈ N, that is, a random oracle that allows a
queries at the priv- and b queries at the pub-interface. The priv-interface can be
used by the distinguisher to query the oracle, while the pub-interface is accessed
by the simulator system σ whose job it is to simulate the pub-interface of the
real model consistently.

More precisely, for statements about parametrized real-world resources, we
consider a class of ideal resources T rro

a,b characterized by two functions a and b
which map elements of P to N. For any concrete real model given by parameters
(l, r) we compare with the concrete ideal model with resource T rro

a(l),b(r) parame-
trized by (a(l), b(r)). These numbers denote an upper bound on the number of
queries to the random oracle permitted on the priv- and pub-interfaces, respec-
tively. In particular, after a(l) queries on the priv-interface all future queries on
that interface are responded to with ⊥ (and similarly for the pub-interface with
the limit b(r)).

To a distinguisher D , an execution with the ideal model looks as follows:

– Initially, D is activated, and can make queries to T rro
a(l),b(r) at the priv-interface.

(After a(l) queries T rro
a(l),b(r) always responds with ⊥.)

– Next, D can provide as input an algorithm A at the pub-interface. Overall,
the simulator σ can make at most b(r) queries to T rro

a(l),b(r).
– Next, D can make further queries to T rro

a(l),b(r) on the priv-interface.
– Finally, D outputs a bit (denoting its guess at whether it just interacted with

the real world or not) and terminates.

7 Once the resources at the priv-interface are exhausted, no further useful information
is gained by D in making additional evaluation calls for naı̈ve.

Moderately Hard Functions: Definition, Instantiations, and Applications 507

An ideal model is outlined in Fig. 5 with priv and pub resource limits a′ and
b′ respectively.

4 Memory-Hard Functions

Moving beyond the straightforward example of an MoHF based on computa-
tional hardness developed during the above examples, we describe more advanced
types of MoHFs in this and the next section. Each one is based on a different
complexity notion and computational model. For each one, we describe one (or
more) constructions. Moreover, for the first two we provide a powerful tool for
constructing provably secure MoHFs of those types. We begin, in this section,
with memory-hard functions (MHF).

In the introduction, we discussed shortcomings of the existing definitions of
MHFs. We address these concerns by instantiating MHFs within our general
MoHF framework and providing a pebbling reduction with which we can “res-
cue” the MHF constructions [5,6,10] and security proofs [5,6] of several recent
MHFs from the literature. More generally, the tool is likely to prove useful in
the future as new, more practical graphs are developed [5] and/or new labeling
functions are developed beyond an ideal compression function. (For more details
what is meant by “rescue” we refer to discussion immediately after Theorem 1.)

4.1 The Parallel ROM

To define an MHF, we consider a resource-bounded computational device S
with a priv- and a pub-interface capturing the pROM (adapted from [8]). Let
w ∈ N. Upon startup, Sw-prom samples a fresh random oracle h ←$ Hw with range
{0, 1}w. Now, on both interfaces, Sw-prom accepts as input a pROM algorithm A
which is an oracle algorithm with the following behavior.

A state is a pair (τ, s) where data τ is a string and s is a tuple of strings.
The output of step i of algorithm A is an output state σ̄i = (τi,qi) where qi =
[q1i , . . . , qzi

i] is a tuple of queries to h. As input to step i+1, algorithm A is given
the corresponding input state σi = (τi, h(qi)), where h(qi) = [h(q1i), . . . , h(qzi

i)]
is the tuple of responses from h to the queries qi. In particular, for a given h and
random coins of A, the input state σi+1 is a function of the input state σi. The
initial state σ0 is empty and the input xin to the computation is given a special
input in step 1.

For a given execution of a pROM, we are interested in the following com-
plexity measure. We denote the bit-length of a string s by |s|. The length of a
state σ = (τ, s) with s = (s1, s2, . . . , sy) is |σ| = |τ | +

∑
i∈[y] |si|. The cumula-

tive memory complexity (CMC) of an execution is the sum of the lengths of the
states in the execution. More precisely, let us consider an execution of algorithm
A on input xin using coins $ with oracle h resulting in z ∈ Z≥0 input states
σ1, . . . , σz, where σi = (τi, si) and si = (s1i , s

2
i , . . . , s

yj

i). Then the cumulative
memory complexity (CMC) of the execution is

cmc(Ah(xin; $)) =
∑

i∈[z]

|σi|,

508 J. Alwen and B. Tackmann

while the total number of RO calls is
∑

i∈[z] yj . More generally, the CMC (and
total number of RO calls) of several executions is the sum of the CMC (and total
RO calls) of the individual executions.

We now describe the resource constraints imposed by Sw-prom on the pROM
algorithms it executes. To quantify the constraints, Sw-prom is parametrized by
a left and a right tuple from the following parameter space P

prom = (Z≥0)2

describing the constraints for the priv and pub interfaces respectively. In par-
ticular, for parameters (q,m) ∈ P

prom, the corresponding pROM algorithm is
allowed to make a total of q RO calls and use CMC at most m summed up
across all of the algorithms executions.8

As usual for memory-hard functions, to ensure that the honest algorithm
can be run on realistic devices, Sw-prom restricts the algorithms on the priv-
interface to be sequential. That is, the algorithms can make only a single call to
h per step. Technically, in any execution, for any step j it must be that yj ≤ 1.
No such restriction is placed on the adversarial algorithm reflecting the power
(potentially) available to such a highly parallel device as an ASIC.

We conclude the section with the formal definition of a memory-hard function
in the pROM. The definition is a particular instance of an MoHF defined in
Definition 3 formulated in terms of exact security.

Definition 4 ((Parallel) memory-hard function). For each n ∈ N, let
f
(·)
n be an oracle function and näıven be a pROM algorithm for computing f (·).

Consider the function families:

a = {aw : Pprom × N → N}w∈N, b = {bw : Pprom × N → N}w∈N,

ε = {εw : Pprom × P
prom × N → R≥0}w∈N.

Then F = (f (·)
n , näıven)n∈N is called an (a, b, ε)-memory-hard function

(MHF) if ∀w ∈ N F is an (aw, bw, εw)-secure moderately hard function fam-
ily for Sw-prom.

Data-(In)dependent MHFs. An important distinction in the literature of
memory-hard functions concerns the memory-access pattern of naı̈ve. In par-
ticular, if the pattern is independent of the input x then we call this a data-
independent MHF (iMHF) and otherwise we call it an data-dependent MHF
(dMHF). The advantage of an iMHF is that the honest party running naı̈ve is
inherently more resistant to certain side-channel attacks (such as cache-timing
attacks) which can lead to information leakage about the input x. When the
MHF is used for, say, password hashing on a login server this can be a signif-
icant concern. Above, we have chosen to not make the addressing mechanism
used to store a state σ explicit in Sw-prom, as it would significantly complicate the
exposition with little benefit. Yet, we remark that doing so would definitely be
possible within the wider MoHF framework presented here if needed. Moreover
the tools for constructing MHFs below actually construct iMHFs.
8 In particular, for the algorithm input on the adversarial interface pub the single

permitted execution can consume at most r resources while for the honest algorithm
input on priv the total consumed resources across all execution can be at most l.

Moderately Hard Functions: Definition, Instantiations, and Applications 509

4.2 Graph Functions

Now that we have a concrete definition in mind, we turn to constructions. We
first define a large class of oracle functions (called graph functions) which have
appeared in various guises in the literature [10,29,31] (although we differ slightly
in some details which simplify later proofs). This allows us to prove the main
result of this section; namely a “pebbling reduction” for graph functions. That
is, for a graph function F based on some graph G, we show function families
(a, b, ε) depending on G, for which function F is an MHF.

We start by formalizing (a slight refinement of) the usual notion of a graph
function (as it appears in, say, [10,31]). For this, we use the following common
notation and terminology. For a directed acyclic graph (DAG) G = (V,E), we
call a node with no incoming edges a source and a node with no outgoing edges
a sink. The in-degree of a node is the number of its incoming edges and the
in-degree of G is the maximum in-degree of any of its nodes. The parents of a
node v are the set of nodes with outgoing edges leading to v. We also implicitly
associate the elements of V with unique strings.9

A graph function makes use of a oracle h ∈ Hw defined over bit strings.
Technically, we assume an implicit prefix-free encoding such that h is evaluated
on unique strings. Inputs to h are given as distinct tuples of strings (or even
tuples of tuples of strings). For example, we assume that h(0, 00), h(00, 0), and
h((0, 0), 0) all denote distinct inputs to h.

Definition 5 (Graph function). Let function h : {0, 1}∗ → {0, 1}w ∈ Hw and
DAG G = (V,E) have source nodes {vin

1 , . . . , vina } and sink nodes (vout
1 , . . . , voutz).

Then, for inputs x = (x1, . . . , xa) ∈ ({0, 1}∗)×a, the (h,x)-labeling of G is a
mapping lab : V → {0, 1}w defined recursively to be:

∀v ∈ V lab(v) :=

{
h(x, v, xj)) : v = vin

j

h(x, v, lab(v1), . . . , lab(vd))) : else

where {v1, . . . , vd} are the parents of v arranged in lexicographic order. The graph
function (of G and Hw) is the oracle function

fG : ({0, 1}∗)×a → ({0, 1}w)×z,

which maps x
→ (lab(vout
1), . . . , lab(vout

z)) where lab is the (h,x)-labeling of G.

The above definition differs from the one in [10] in two ways. First, it considers
graphs with multiple source and sink nodes. Second it prefixes all calls to h with
the input x. This ensures that, given any pair of distinct inputs x1 �= x2, no
call to h made by fG(x1) is repeated by fG(x2). Intuitively, this ensures that
finding collisions in h can no longer help avoiding making a call to h for each
new label being computed. Technically, it simplifies proofs as we no longer need

9 For example, we can associate v ∈ V with the binary representation of its position
in an arbitrary fixed topological ordering of G.

510 J. Alwen and B. Tackmann

to compute and carry along the probability of such a collision. We remark that
this is merely a technicality and if, as done in practice, the prefixing (of both x
and the node v) is omitted, security will only degrade by a negligible amount.10

The näıve Algorithm. The näıve oracle algorithm naı̈veG for fG computes one
label of G at a time in topological order appending the result to its state. If G
has |V | = n nodes then naı̈veG will terminate in n steps making at 1 call to h
per step, for a total of n calls, and will never store more than w(i−1) bits in the
data portion of its state in the ith round. In particular for all inputs x, oracles
h (and coins $) we have that cmc(naı̈veh

G(x; $)) = wn(n − 1)/2. Therefore, in
the definition of an MHF we can set aw(q,m) = min(�q/n�, �2m/wn(n − 1)�).
It remains to determine how to set bw and εw, which is the focus of the next
section.

4.3 A Parallel Memory-Hard MoHF

In this section, we prove a pebbling reduction for memory hardness of a graph
function fG in the pROM. To this end, we first recall the parallel pebbling game
over DAGs and associated cumulative pebbling complexity (CPC).

The Parallel Pebbling Game. The sequential version of the following peb-
bling game first appeared in [24,38] and the parallel version in [10]. Put simply,
the game is a variant of the standard black-pebbling game where pebbles can be
placed according to the usual rules but in batches of moves performed in parallel
rather than one at a time sequentially.

Definition 6 (Pebbling a graph). Let G = (V,E) be a DAG and T, S ⊆ V
be node sets. Then a (legal) pebbling of G (with starting configuration S and
target T) is a sequence P = (P0, . . . , Pt) of subsets of V such that:

1. P0 ⊆ S.
2. Pebbles are added only when their predecessors already have a pebble at the

end of the previous step.

∀i ∈ [t] ∀(x, y) ∈ E ∀y ∈ Pi \ Pi−1 x ∈ Pi−1.

3. At some point every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t x ∈ Pz.

10 Prefixing ensures domain separation; that is random oracle calls in a labeling are
unique to that input. However, if inputs are chosen independently of the RO then
finding two inputs that share an oracle call requires finding a collision in the RO.
To concentrate on the more fundamental and novel aspects of the proofs below, we
have chosen to instead assume full prefixing. A formal analysis with less prefixing
can be found in [10].

Moderately Hard Functions: Definition, Instantiations, and Applications 511

We call a pebbling of G complete if S = ∅ and T is the set of sink nodes of G.
We call a pebbling sequential if no more than one new pebble is placed per step,

∀i ∈ [t] |Pi \ Pi−1| ≤ 1.

In this simple model of computation we are interested in the following com-
plexity notion for DAGs taken from [10].

Definition 7 (Cumulative pebbling complexity). Let G be a DAG, P =
(P0, . . . , Pt) be an arbitrary pebbling of G, and Π be the set of all complete peb-
blings of G. Then the (pebbling) cost of P and the cumulative pebbling com-
plexity (CPC) of G are defined respectively to be:

cpc(P) :=
t∑

i=0

|Pi|, cpc(G) := min {cpc(P) : P ∈ Π} .

A Pebbling Reduction for Memory-Hard Functions. We are now ready to
formally state and prove the main technical result: a security statement showing
a graph function to be an MHF for parameters (a, b, ε) expressed in terms of the
CPC of the graph and the number of bits in the output of h.

Theorem 1 (Pebbling reduction). Let Gn = (Vn, En) be a DAG of size
|Vn| = n. Let F = (fG,n, näıveG,n)n∈N be the graph functions for Gn and their
näıve oracle algorithms. Then, for any λ ≥ 0, F is an (a, b, ε)-memory-hard
function where

a = {aw(q,m) = min(�q/n�, �2m/wn(n − 1)�)}w∈N
,

b =
{
bw(q,m) =

m(1 + λ)
cpc(G)(w − log q)

}

w∈N

, ε =
{

εw(q,m) ≤ q

2w
+ 2−λ

}

w∈N

.

We note that cpc charges for keeping pebbles on G which, intuitively, models
storing the label of a node in the data component of an input state. However the
complexity notion cmc for the pROM also charges for the responses to RO queries
included in input states. We discuss three options to address this discrepancy.

1. Modify our definition of the pROM to that used in [10]. There, the ith batch
of queries qi to h is made during step i. So the state stored between steps
only contains the data component τi. Thus cmc in that model is more closely
modeled by cpc. While the techniques used below to prove Theorem1 carry
over essentially unchanged to that model, we have opted to not go with that
approach as we believe the version of the pROM used here (and in [7]) more
closely captures computation for an ASIC. That is, it better models the con-
straint that during an evaluation of the hash function(s) a circuit must store

512 J. Alwen and B. Tackmann

any remaining state it intends to make use of later in separate registers. More-
over, given the depth of the circuit of hash functions used to realize h, at least
one register per output bit of h will be needed.11

2. Modify the notion of cpc to obtain cpc′, which also charges for new pebbles
being placed on the graph. That is use cpc′ = cpc +

∑
i |Pi \ Pi−1| as the

pebbling cost.12 Such a notion would more closely reflect the way cmc is
defined in this work. In particular, it would allow for a tighter lower bound
in Theorem 1, since for any graph cpc′ ≥ cpc. Moreover, it would be easy
to adapt the proof of Theorem1 to accommodate cpc′. Indeed, (using the
terminology from the proof of Theorem1) in the ex-post-facto pebbling P of
an execution, a node v �∈ P x

i−1 is only added to P x
i if it becomes necessary for

x at time i. By definition, this can only happen if there is a correct call for
(x, v) in the input state σi. Thus, we are guaranteed that for each time step
i it holds that

∑
i

∑
x |P x

i \ P x
i−1| ≤ yi, where yi is the number of queries to

h in input state σi. So we can indeed modify the second claim in the proof
to also add the quantity

∑
x |P x

i \ P x
i−1| to the left side of the inequality. The

downside of this approach is that using cpc′ in Theorem 1 would mean that
it is no longer (immediately) clear if we can use any past results from the
literature about cpc.

3. The third option, which we have opted for in this work, is to borrow from
the more intuitive formulation of the pROM of [7] while sticking with the
traditional pebbling complexity notion of cpc. We do this because, on the one
hand, for any graph cpc′ ≤ 2cpc, so at most a factor of 2 is lost the tightness
of Theorem 1 when using cpc instead of cpc′. Yet on the other hand, for cpc
we already have constructions of graphs with asymptotically maximal cpc as
well as a variety of techniques for analyzing the cpc of graphs. In particular
we have upper and lower bounds for the cpc of arbitrary DAGs as well as
for many specific graphs (and graph distributions) used in the literature as
the basis for interesting graph functions [3,4,6,9,10]. Thus we have opted for
this route so as to (A) strengthen the intuition underpinning the model of
computation, (B) leave it clear that Theorem 1 can be used in conjunction
with all of the past concerning cpc while (C) only paying a small price in the
tightness of the bound we show in that theorem.

The remainder of this subsection is dedicated to proving the theorem. For sim-
plicity we will restrict ourselves to DAGs with a single source v∈ and sink vout
but this only simplifies notation. The more general case for any DAG is identical.
The rough outline of the proof is as follows. We begin by describing a simulator
σ as in Definition 3, whose goal is to simulate the pub-interface of Sw-prom to a
distinguisher D while actually being connected to the pub-interface of T rro. In a
nutshell, σ will emulate the algorithm A it is given by D internally by emulating a

11 Note that any signal entering a circuit at the beginning of a clock cycle that does
not reach a memory cell before the end of a clock cycle is lost. Yet, hash functions so
complex and clock cycles so short that it is unrealistic to assume an entire evaluation
of h can be performed within a single cycle.

12 cpc′ is essentially the special case of “energy complexity” for R = 1 in [3].

Moderately Hard Functions: Definition, Instantiations, and Applications 513

copy of Sw-prom to it. σ will keep track of the RO calls made by A and, whenever
A has made all the calls corresponding to a complete and legal (x, h)-labeling of
G, then σ will query T rro at point x and return the result to A as the result of
the final RO call for that labeling.

To prove that σ achieves this goal (with high probability) we introduce a
generalization of the pebbling game, called an m-color pebbling, and state a
trivial lemma showing that the cumulative m-color pebbling complexity of a
graph is m times the CC of the graph. Next, we define a mapping between a
sequence of RO calls made during an execution in the pROM (such as that of A
being emulated by σ) and an m-coloring P of G. We prove a lemma stating that,
w.h.p., if m distinct I/O pairs for fG were produced during the execution, then
P is legal and complete. We also prove a lemma upper-bounding the pebbling
cost of P in terms of the CMC (and number of calls made to the RO) of the
execution. But since the pebbling cost of G cannot be smaller than m · cpc(G),
this gives us a lower bound on the memory cost of any such execution, as desired.
Indeed, any algorithm in the pROM that violates our bound on memory cost
with too high probability implies the existence of a pebbling of G with too low
pebbling cost, contradicting the pebbling complexity of G. But this means that
when σ limits CMC (and number of RO calls) of the emulation of A accordingly,
then w.h.p. we can upper-bound the number of calls σ will need to T rro.

To complete the proof, we have to show that using the above statements about
σ imply that indifferentiability holds. Indeed, the simulation, conditioned on the
events that no lucky queries occur and that the simulator does not need excessive
queries, is perfect. Therefore, the distinguishing advantage can be bounded by the
probability of provoking either of those events, which can be done by the above
statements about σ. A detailed proof can be found in the full version [11].

5 Other Types of MoHFs

Besides MHFs, several other types of MoHFs have been considered in the lit-
erature. In this section, we briefly review weak memory-hard functions and
memory-bound functions. A discussion of one-time computable functions and
uncomputable functions is given in Sect. 5.3.

5.1 Weak Memory-Hard Functions

A class of MoHFs considered in the literature that are closely related to MoHFs
are weak MoHFs. Intuitively, they differ from MoHFs only in that they also
restrict adversaries to being sequential.13 On the one hand, it may be easier to
construct such functions compared to full blown MoHF. In fact, for the data-
independent variant of MoHFs, [3] proves that a graph function based on a
DAG of size n always has cmc of O(wn2/ log(n)) (ignoring log log factors). Yet,

13 If the adversary is restricted to using general-purpose CPUs and not ASICs or
FPGAs with their massive parallelism, this restriction may be reasonable.

514 J. Alwen and B. Tackmann

as discussed below, the results of [33,42] and those described below show that
we can build W-MoHFs from similar DAGs with sequential cmc of O(2n2). Put
differently, W-MoHFs allow for strictly more memory consumption per call to
the RO than is possible with MoHFs. This is valuable since the limiting factor
for an adversary is often the memory consumption while the cost for honest
parties to enforce high memory consumption is the number of calls they must
perform to the RO.

We capture weak MoHFs in the MoHFframework by restricting the real world
resource-bounded computational device Sw-srom to the sequential random ora-
cle model (sROM). Given this definition we can now easily adapt the pebbling
reduction of Theorem 1 to obtain a tool for constructing W-MoHFs, which has
some immediate implications. In [42], Lengaur and Tarjan prove that the DAGs
underlying the two graph functions Catena Dragonfly and Butterfly [33] have
scpc = O(n2). In [33], the authors extend these results to analyze the scpc of
stacks of these DAGs. By combining those results with the pebbling reduction
for the sROM, we obtain parameters (a, b, ε) for which the Catena functions are
provably W-MoHFs. Similar implications hold for the pebbling analysis done for
the Balloon Hashing function in [18]. Weak memory hard functions are discussed
in more detail in the full version [11].

5.2 Memory-Bound Functions

Another important notion of MoHF from the literature has been considered
in [27,29]. These predate MHFs and are based on the observation that while
computation speeds vary greatly across real-world computational devices, this is
much less so for memory-access speeds. Under the assumption that time spent
on a computation correlates with the monetary cost of the computation, this
observation motivates measuring the cost of a given execution by the number
of cache misses (i.e., memory accesses) made during the computation. A func-
tion that requires a large number of misses, regardless of the algorithm used to
evaluate the function, is called a memory-bound function.

Memory-Bound Functions as MoHFs. We show how to formalize memory-bound
functions in the MoHF framework. In particular, we describe the real-world
resource-bounded computational device Sw-mb. It makes use of RO with w-bits
of output and is parametrized by 6 positive integers P

mb = N
×6. That is, fol-

lowing the model of [29], an algorithm A, executed by Sw-mb with parameters
(m, b, s, ω, c, q), makes a sequence of calls to the RO and has access to a two
tiered memory consisting of a cache of limited size and a working memory (as
large as needed). The memory is partitioned into m blocks of b bits each, while
cache is divided into s words of ω bits each. When A requests a location in
memory, if the location is already contained in cache, then A is given the value
for free, otherwise the block of memory containing that location is fetched into
cache. The algorithm is permitted a total of q calls to the RO and c fetches (i.e.
cache misses) across all executions.

Moderately Hard Functions: Definition, Instantiations, and Applications 515

In [27,29] the authors describe such functions (with several parameters each)
and prove that the hash-trail construction applied to these functions results in a
PoE for a notion of “effort” captured by memory-boundedness. (See Sect. 6 for
more on the hash-trail construction and PoEs). We conjecture that the proofs in
those works carry over to the notion of memory-bound MoHFs described above
(using some of the techniques at the end of the proof of Theorem1). Yet, we
believe that a more general pebbling reduction (similar to Theorem1) is possible
for the above definition. Such a theorem would allow us to construct new and
improved memory-bound functions. (On the one hand, the function described
in [27] has a large description—many megabytes—while the function in [29] is
based on superconcentrators which can be somewhat difficult to implement in
practice with optimal constants.) In any case, we believe investigating memory-
bound functions as MoHFs to be an interesting and tractable line of future work.

5.3 One-Time Computable and Uncomputable Functions

Another—less widely used—notion of MoHFs appearing in the literature are one-
time computable functions [31]. Intuitively, these are sets of T pseudo-random
functions (PRFs) f1, . . . , fT with long keys (where T is an a priori fixed, arbi-
trary number). An honest party can evaluate each function fi exactly once, using
a device with limited memory containing these keys. On such a device, evaluat-
ing the ith PRF provably requires deleting all of the first i keys. Therefore, if an
adversary (with arbitrary memory and computational power) can only learn a
limited amount of information about the internal state of the device, then regard-
less of the computation performed on the device, the adversary will never learn
more than one input/output pair per PRF. The authors describe the intuitive
application of a password-storage device secure against dictionary attacks. An
advantage of using the MoHF framework to capture one-time computable func-
tions could be proving security for such an application (using the framework’s
composition theorem).

We describe a model for one-time computable functions and uncomputable
functions in Sect. 5, where we also sketch a new (hypothetical) application for
one-time computable functions in the context of anonymous digital payment
systems. We discuss this notion in more detail in the full version [11].

6 Interactive Proofs of Effort

One important practical application of MoHFs are proofs of effort (PoE), where
the effort may correspond to computation, memory, or other types of resources
that the hardness of which can be used in higher-level protocols to require one
party, the prover, to spend a certain amount of resources before the other party,
the verifier, has checked this spending and allows the protocol to continue.

516 J. Alwen and B. Tackmann

6.1 Definition

Our composable definition of PoE is based on the idea of constructing an “ideal”
proof-of-effort functionality from the bounded assumed resources the parties have
access to in the real setting. Our Definition 3 for MoHFs can already be seen in
a similar sense: from the assumed (bounded) resources available to the parties,
evaluating the MoHF constructs a shared random function that can be evaluated
for some bounded number of times. In the following, we describe the assumed
and constructed resources that characterize a PoE.

The Goal of PoE Protocols. The high-level guarantees provided by a PoE to
higher-level protocols can be described as follows. Prover P and verifier V inter-
act in some number n ∈ N of sessions, and in each of the sessions verifier V
expects to be “convinced” by prover P ’s spending of effort. Prover P can decide
how to distribute the available resources toward convincing verifier V over the
individual sessions; if prover P does not have sufficient resources to succeed in all
sessions, then P can distribute its effort over the sessions. Verifier V ’s protocol
provides as output a bit that is 1 in all sessions where the prover attributed suf-
ficient resources, and 0 otherwise. We formalize these guarantees in the resource
POE that we describe in more detail below.

Proof-of-effort resource POEa
φ,n

The resource is parametrized by the numbers n, a ∈ N and a mapping φ : N → R≥0.
It contains as state bits ei, êi ∈ {0, 1} and counters ci ∈ N for i ∈ N which are initially
set to ei, êi ← 0 and ci ← 0.

Verifier V : On input a session number i ∈ {1, . . . , n}, output the state ei of that
session.

Prover P : – On input a session number i ∈ {1, . . . , n}, set ci ← ci+1. If ei∨êi = 1
or
∑n

i=1 ci > a then return 0. Otherwise, draw ei (if P is honest, else êi) at
random such that it is 1 with probability φ(ci) and 0 otherwise. Output ei

(resp. êi) at interface P .
– If P is dishonest, then accept a special input copyi that sets ei ← êi.

The resource POE that formalizes the guarantee achieved by the PoE in a
given real-world setting is parametrized by values a, a, n ∈ N and φ : N → R≥0,
and is written as POE

a,a
φ,n = (POEa

φ,n,POEa
φ,n). For an honest prover P , the

parameter a ∈ N describes the overall number of “attempts” that P can take.
For a dishonest prover P , the same is described by the parameter a ∈ N.14 The
success probability of a prover in each session depends on the computational
resources spent in that session and can be computed as φ(a), where a ∈ N is the
number of proof attempts in that session.

14 For the numbers a, a ∈ N it may hold that a > a because one may only know rough
bounds on the available resources (at least a, at most a).

Moderately Hard Functions: Definition, Instantiations, and Applications 517

The “real-world” Setting for PoE Protocols. The PoE protocols we consider in
this work are based on the evaluation of an MoHF, which, following Definition 3,
can be abstracted as giving the prover and the verifier access to a shared uniform
random function T rro that they can evaluate for a certain number of times. We
need to consider both the case where the prover is honest (to formalize that the
PoE can be achieved with a certain amount of resources) and the case where
the prover is dishonest (to formalize that not much more can be achieved by a
dishonest prover). In addition to T rro, for n protocol sessions, the prover and
verifier can also access n pairs of channels for bilateral communication, which we
denote by [−→,←−]n in the following. (This insecure communication resource
is implicit in some composable frameworks such as Canetti’s UC [20].)

The resource specifies a bound b ∈ N for the number of queries that the
verifier can make to T rro, and bounds a, a ∈ N for the cases where the prover
is honest and dishonest, respectively. Considering the case a ≤ a makes sense
because only loose bounds on the prover’s available resources may be known.

The Security Definition. Having described the real-world and ideal-world set-
tings, we are now ready to state the security definition. This definition will
consider the above-described cases where the prover is honest (this requires that
the proof can be performed efficiently) and where the prover is dishonest (this
requires that each proof need at least a certain effort), while we restrict our
treatment to the case of honest verifiers. The security definition below follows
the construction notion introduced in [45] for this specific case. The protocol and
definition can additionally be extended by a hardness parameter n analogously
to Definition 3.

Definition 8. A protocol π = (π1, π2) is a (φ, n, b, ε)-proof of effort with respect
to simulator σ if for all a, a ∈ N,

π1
P π2

V
[
T rro

a,b , [−→,←−]n
]

≈ε POE
a
φ,n

and

π2
V

[
T rro

a,b , [−→,←−]n
]

≈ε σPPOEa+n
φ,n .

The reason for the term a+n is that the dishonest prover can in each session
decide to send a guess without verifying its correctness locally.

While the definition is phrased using the language of constructive cryptog-
raphy [44,45], it can intuitively also be viewed as a statement in Canetti’s UC
framework [20].15 For this, one would however have to additionally require the
correctness formalized in the first equation of Definition 8, because UC-security
would only correspond to the second equation.
15 One main difference is that UC is tailored toward asymptotic statements. As UC a

priori allows the environment to create arbitrarily many instances of all protocols
and functionalities, making the precise concrete statements we aim for becomes
difficult.

518 J. Alwen and B. Tackmann

6.2 Protocols

The PoE protocols we discuss in this section are interactive and start by the
verifier sending a challenge to the prover, who responds with a solution. The
verifier then checks this solution; an output bit signifies acceptance or rejection.
There are several ways to build a scheme for PoE from an MoHF; we describe
two particular schemes in this section.

Function Inversion. A simple PoE can be built on the idea of having the prover
invert the MoHF on a given output value. This output value is obtained by eval-
uating the function on a publicly known and efficiently sampleable distribution
over the input space, such as the uniform distribution over a certain subset.

Construction 1. The protocol is parametrized by a set D ⊆ {0, 1}∗. For each
session 1 ≤ i ≤ n, it proceeds as follows:

1. The verifier samples xi ←$ D, queries yi ← T rro(i, xi), and sends yi to the
prover.

2. When activated in session i, the prover checks the next16 possible input value
x′ ∈ D for whether T rro(i, x′) = yi. If equality holds, send x′ to the verifier
and output 1 locally. Otherwise, output 0 locally.

3. Receiving the value x′ ∈ D in session i, the verifier accepts iff T rro(i, x′) = yi.
When activated in session i, output 1 if accepted, and 0 otherwise.

Steps 1 and 3 comprise the verifier’s protocol χ, whereas step 2 describes the
prover’s protocol ξ. For this protocol, we show the following theorem. The proof
is deferred to the full version [11].

Theorem 2. Define ζj := (|D| − j + 1)−1. If b > 2n, then the described proto-
col (ξ, χ) is a (φ, n, b, 0)-proof of effort, with φ : j
→ ζj + 1−ζj

|R| . The simulator is
described in the proof.

Hash Trail. The idea underlying PoEs based on a hash trail is that it is difficult
to compute a value such that the output of a given hash function on input
this value satisfies a certain condition; usually one asks for a preimage x of a
function fi such that the output string fi(x) : {0, 1}m → {0, 1}k starts with some
number d of 0’s, where d ∈ {1, . . . , k} can be chosen to adapt the (expected)
effort necessary to provide a solution. For simplicity and to save on the number of
parameters, we assume for the rest of the chapter that d, the hardness parameter
of the moderately hard function, is also the bit-length of the output.

Construction 2. The protocol is parametrized by sets D,N ⊆ {0, 1}∗ and hard-
ness parameter d ∈ N. For each session 1 ≤ i ≤ n, it proceeds as follows:

1. The verifier samples uniform ni ←$ N and sends ni to the prover.

16 We assume that the elements in D are ordered, e.g. lexicographically.

Moderately Hard Functions: Definition, Instantiations, and Applications 519

2. When activated, the prover chooses one value x′ ∈ D uniformly at random
(but without collisions), computes y ← T rro(i, ni, xi), and checks whether
y[1, . . . , d] = 0d. If equality holds, send x′ to the verifier and output 1 locally.
Otherwise, output 0 locally.

3. Receiving the value x′ ∈ D from the prover, the verifier accepts iff y′ ←
T rro(i, ni, x

′) satisfies y′[1, . . . , d] = 0d. When activated, output 1 if the pro-
tocol has accepted and 0 otherwise.

To capture the described scheme as a pair of algorithms (ξ, χ) as needed for
our security definition, we view steps 1 and 3 as the algorithm χ, whereas step 2
describes the algorithm ξ. For this protocol, we show the following theorem. The
proof is deferred to the full version [11].

Theorem 3. Let d ∈ N be the hardness parameter and b > n. Then the described
protocol (ξ, χ) is a (2−d, b, n, 0)-proof of effort. The simulator σ is described in
the proof.

7 Non-interactive Proofs of Effort

The PoE protocols in Sect. 6.2 require the prover and the verifier to interact,
because the verifier has to generate a fresh challenge for the prover in each
session to prevent the prover from re-using (parts of) proofs in different sessions.
This interaction is inappropriate in several settings, because it either imposes an
additional round-trip on protocols (such as in key establishment) or because a
setting may be inherently non-interactive, such as sending e-mail. In this section,
we describe a non-interactive variant of PoE that can be used in such scenarios.
Each proof is cryptographically bound to a certain value, and the higher-level
protocol has to make sure that this value is bound to the application so that
proofs cannot be re-used.

Although non-interactive PoE (niPoE) have appeared previously in certain
applications, and have been suggested for fighting spam mail [1,27–29], to the
best of our knowledge they have not been formalized as a tool of their own right.

7.1 Definition

Our formalization of non-interactive PoE (niPoE) follows along the same lines as
the one for the interactive proofs. The main difference is that while for interactive
proofs, it made sense to some notion of session to which the PoE is associated and
in which the verifier sends the challenge, this is not the case for niPoE. Instead,
we consider each niPoE as being bound to some particular statement s ∈ {0, 1}∗.
This statement s is useful for binding the PoE to a particular context: in the
combatting-spam scenario this could be a hash of the message to be sent, in the
DoS-protection for key exchange this could be the client’s key share.

For consistency with Sect. 6, the treatment in this section is simplified to deal
with either only honest or only dishonest provers. The case where both honest
and dishonest provers occur simultaneously is deferred to full version [11].

520 J. Alwen and B. Tackmann

The Goal of niPoE Protocols. The constructed resource is similar to the resource
POE described in Sect. 6.1, with the main difference that each proof is not bound
to a session i ∈ N, but rather to a statement s ∈ S ⊆ {0, 1}∗. Consequently,
the resource NIPOE takes as input at the P -interface statements s ∈ S, and
returns 1 if the proof succeeded and 0 otherwise. Upon an activation at the
verifier’s interface V , if for any statement s ∈ S a proof has been successful,
the resource outputs this s, and it outputs ⊥ otherwise. An output s �= ⊥ has
the meaning that the party at the P -interface has spent enough effort for the
particular statement s. Similarly to POE, the resource NIPOE is parametrized
by a bound a ∈ N on the number of proof attempts and a performance function
φ : N → R≥0, but additionally the number of verification attempts b ∈ N at
the verifier is a parameter. The resource is denoted as NIPOEa

φ,b. The behavior
of this resource is described in more formally below. There are two inputs for a
dishonest prover P that need further explanation:

– (copy, s): This corresponds to sending a proof to V . Prover V is convinced
if the proof was successful (i.e., es = 1), and has to spend one additional
evaluation of T rro, so the corresponding counter is increased (d ← d + 1).

– (spend): E forces V to spend one additional evaluation of T rro, for instance
by sending an invalid proof. This decreases the number of verifications that
V can still do (d ← d + 1).

Non-interactive proof-of-effort resource NIPOEa
φ,b

The resource is parametrized by numbers a, b ∈ N and a mapping φ : N → R≥0.
It contains as state bits es ∈ {0, 1} and counters d, cs ∈ N for each s ∈ {0, 1}∗ (all
initially 0), and a list S ∈ ({0, 1}∗)∗ of strings that is initially empty.

Verifier V : On input a unary value, if S is empty then return ⊥. Otherwise remove
the first element of S and return it.

Honest prover P : On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If es = 1 or∑
s∈{0,1}∗ cs > a, then return 0. Otherwise, draw es at random such that it is 1

with probability φ(cs) and 0 otherwise. If es = 1 and d < b, then d ← d + 1 and
then append s to S. Output es at interface P .

Dishonest prover P : – On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If es = 1
or
∑

s∈{0,1}∗ cs > a, then return 0. Otherwise, draw es at random such that

it is 1 with probability φ(cs) and 0 otherwise. Output es at interface P .
– Upon an input (copy, s), if d < b and es = 1, then d ← d + 1 append s to S.
– Upon an input (spend), set d ← d + 1.

The “real-world” Setting for niPoE Protocols. The main difference between PoE
and niPoE is that a PoE requires bidirectional communication, which in Sect. 6.1
we described by the channels −→ and ←− available in each session. A niPoE only
requires communication from the prover to the verifier, which we denote by the
channel −→. Additionally, and as in the PoE case, the proof also requires com-
putational resources, which are again formalized by the shared resource T rro

a,b .

Moderately Hard Functions: Definition, Instantiations, and Applications 521

The Security Definition. The definition of niPoE security is analogous to the
one for PoE.

Definition 9. A protocol π = (π1, π2) is a non-interactive (φ, b, ε)-proof-of-
effort with respect to simulator σ if for all a, a ∈ N,

π1
P π2

V
[
T rro

a,b ,−→
]

≈ε NIPOE
a+b
φ,b

and
π2

V
[
T rro

a,b ,−→
]

≈ε σPNIPOE
a+b
φ,b .

7.2 Protocol

Our protocol for niPoE is similar to the one in Construction 2. Instead of binding
the solution to a session identifier chosen by the server, however, the identifier
is chosen by the client. This makes sense for instance in the setting of sending
electronic mail where the PoE can be bound to a hash of the message, or in
Denial-of-Service protection in the TLS setting, where the client can bind the
proof to its ephemeral key share.

Construction 3. The protocol is parametrized by sets D,S ⊆ {0, 1}∗ and a
hardness parameter d ∈ N. It proceeds as follows:

1. On input a statement s ∈ S, the prover chooses x ∈ D uniformly at random
(but without collisions with previous attempts for the same s), computes y ←
T rro(s, x), and checks whether y[1, . . . , d] = 0d. If equality holds, send
(s, x, y) to the verifier and output 1 locally, otherwise output 0.

2. Upon receiving (s′, x′, y) ∈ S×D×R, the verifier accepts s iff y′ ← T rro(s′, x′)
satisfies y = y′ and y′[1, . . . , d] = 0d. If the protocol is activated by the receiver
and there is an accepted value s′ ∈ S, then output s′.

To capture the described scheme as a pair of converters (ξ, χ) as needed
for our security definition, we view step 2 as the converter χ, whereas step 1
describes the converter ξ. For this protocol, we show the following theorem. The
proof is deferred to the full version [11].

Theorem 4. Let d ∈ N the hardness parameter. Then the described proto-
col (ξ, χ) is a non-interactive (2−d, b, 0)-proof-of-effort.

8 Combining the Results

Before we can compose the MoHFs proven secure according to Definition 3 with
the application protocols described in Sects. 6 and 7 using the respective com-
position theorem [44,45], we have to resolve one apparent incompatibility. The
indifferentiability statement according to Definition 3 is not immediately applica-
ble in the case with two honest parties, as required in the availability conditions

522 J. Alwen and B. Tackmann

of Definitions 8 and 9, where both the prover and verifier are honest.17 We fur-
ther explain how to resolve this issue in the full version [11]; the result is that for
stateless algorithms, Definition 3 immediately implies the analogous statement
for resources with more honest interfaces, written Sl1,l2,r and T rro

a1,a2,b, which have
two “honest” interfaces priv1 and priv2.

We can then immediately conclude the following corollary from composition
theorem [44,45] by instantiating it with the schemes of Definitions 3 and 8. In
more detail, for an (a, b, ε)-MoHF in some model, and a proof of effort para-
metrized by φ, the composition of the MoHF and the PoE construct the PoE
resource described above with a attempts allowed to the prover P , and conse-
quently α + n attempts for the dishonest prover and n sessions. An analogous
corollary holds for the niPoEs.

Corollary 1. Let f (·), näıve,P, π, a, b : P → N, and ε : P × P → R≥0 as in
Definition 3, and let (ξ, χ) be a (φ, n, b, ε′)-proof of effort. Then

ξP χV
[
πP πV ⊥pubSl1,l2,r, [−→,←−]n

]
≈ε POE

a(l1)
φ,n ,

with P = priv1 and V = priv2, for all l1, l2 ∈ P, and where ⊥pubSl1,l2,r means
that the pub-interface is not accessible to the distinguisher. Additionally,

χV
[
πV ⊥priv1Sl1,l2,r, [−→,←−]n

]
≈ε σ̃PPOE

b(r)+n
φ,n ,

with P = pub and V = priv2, for all r, l2 ∈ P, and where σ̃ is the composition
of the two simulators guaranteed by Definitions 3 and 8.

9 Open Questions

We discuss several interesting open questions raised by this work. The topic of
moderately hard functions is an active topic of research both in terms of defi-
nitions and constructions and so many practically interesting (and used) mod-
erately hard function constructions and proof-of-effort protocols could benefit
from a more formal treatment (e.g. Equihash [16], CryptoNight, Ethash). Many
of these will likely result in novel instantiates of the MoHF framework which we
believe to be of independent interest as this requires formalizing new security
goals motivated by practical considerations. In terms of new moderately hard
functions, the recent work of Biryukov and Perrin [17] introduces several new
constructions for use in hardening more conventional cryptographic primitives
against brute-force attacks. For this type of application, a composable security
notion of moderate hardness such as the one in this work would lend itself well
to analyzing the effect on the cryptographic primitives being hardened. Other
examples of recent proof-of-effort protocols designed to for particular higher-
level applications in mind are the results in [13,23,32,35]. In each case, at most
standalone security of the higher-level application can be reasoned about so

17 The verifier is always considered honest in our work.

Moderately Hard Functions: Definition, Instantiations, and Applications 523

using the framework in this paper could help improve the understanding of the
applications composition properties.

A natural question that arises from how the framework is currently formu-
lated is whether the ideal-world resource could be relaxed. While modeling the
ideal resource as a random oracle does make proving security for applications
using the MoHF easier it seems to moot ever proving security for any candidate
MoHF outside the random oracle model. However, it would be nice to show
some form of moderate hardness based on other assumptions or, ideally, even
unconditionally. Especially in the domain of client-puzzles several interesting
constructions already exists based on various computational hardness assump-
tions [39,41,53,55].

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)

2. Back, A.: Hashcash - A Denial of Service Counter-Measure (2002)
3. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-

tions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 241–
271. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 9

4. Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and balloon hashing.
In: EuroS&P 2017 (2017)

5. Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel resis-
tant memory-hard functions. Cryptology ePrint Archive, Report 2017/443 (2017).
http://eprint.iacr.org/2017/443

6. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative
memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 1. https://eprint.iacr.org/

7. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of scrypt and proofs of space in the parallel random oracle model.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 358–
387. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 13

8. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maxi-
mally memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 2

9. Alwen, J., Gaži, P., Kamath, C., Klein, K., Osang, G., Pietrzak, K., Reyzin, L.,
Roĺınek, M., Rybár, M.: On the memory-hardness of data-independent password-
hashing functions. Cryptology ePrint Archive, Report 2016/783 (2016)

10. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: STOC (2015)

11. Alwen, J., Tackmann, B.: Moderately hard functions: definition, instantiations,
and applications moderately hard functions. Cryptology ePrint Archive, September
2017

12. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles.
In: Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Protocols
2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44810-1 22

https://doi.org/10.1007/978-3-662-53008-5_9
http://eprint.iacr.org/2017/443
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1
https://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/3-540-44810-1_22
https://doi.org/10.1007/3-540-44810-1_22

524 J. Alwen and B. Tackmann

13. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of useful work. Cryptology
ePrint Archive, Report 2017/203 (2017). http://eprint.iacr.org/2017/203

14. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 19

15. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 633–657.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 26

16. Biryukov, A., Khovratovich, D.: Equihash: asymmetric proof-of-work based on the
generalized birthday problem. Ledger J. 2, 1–11 (2017)

17. Biryukov, A., Perrin, L.: Symmetrically and asymmetrically hard cryptography
(full version). Cryptology ePrint Archive, Report 2017/414 (2017). http://eprint.
iacr.org/2017/414

18. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 220–248. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 8

19. Buterin, V., Di Lorio, A., Hoskinson, C., Alisie, M.: Ethereum: a distributed cryp-
tographic leger (2013). http://www.ethereum.org/

20. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, pp. 136–145. IEEE (2001)

21. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 2

22. Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security notions and generic
constructions for client puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 505–523. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-10366-7 30

23. Chepurnoy, A., Duong, T., Fan, L., Zhou, H.S.: Twinscoin: a cryptocurrency via
proof-of-work and proof-of-stake. Cryptology ePrint Archive, Report 2017/232
(2017). http://eprint.iacr.org/2017/232

24. Cook, S.A.: An observation on time-storage trade off. In: STOC, pp. 29–33 (1973)
25. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentia-

bility. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 664–683. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 39

26. Demay, G., Gaži, P., Maurer, U., Tackmann, B.: Query-complexity ampli-
fication for random oracles. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015.
LNCS, vol. 9063, pp. 159–180. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17470-9 10

27. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 25

28. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

29. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 3

http://eprint.iacr.org/2017/203
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-662-48800-3_26
http://eprint.iacr.org/2017/414
http://eprint.iacr.org/2017/414
https://doi.org/10.1007/978-3-662-53887-6_8
http://www.ethereum.org/
https://doi.org/10.1007/978-3-540-30576-7_2
https://doi.org/10.1007/978-3-642-10366-7_30
https://doi.org/10.1007/978-3-642-10366-7_30
http://eprint.iacr.org/2017/232
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-319-17470-9_10
https://doi.org/10.1007/978-3-319-17470-9_10
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/11535218_3

Moderately Hard Functions: Definition, Instantiations, and Applications 525

30. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

31. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 9

32. Eckey, L., Faust, S., Loss, J.: Efficient algorithms for broadcast and consensus based
on proofs of work. Cryptology ePrint Archive, Report 2017/915 (2017). http://
eprint.iacr.org/2017/915

33. Forler, C., Lucks, S., Wenzel, J.: Catena: a memory-consuming password scrambler.
Cryptology ePrint Archive, Report 2013/525 (2013)

34. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

35. Garay, J.A., Kiayias, A., Panagiotakos, G.: Proofs of work for blockchain protocols.
Cryptology ePrint Archive, Report 2017/775 (2017). http://eprint.iacr.org/2017/
775

36. Groza, B., Petrica, D.: On chained cryptographic puzzles. In: SACI, pp. 25–26
(2006)

37. Groza, B., Warinschi, B.: Cryptographic puzzles and DoS resilience, revisited. DCC
73(1), 177–207 (2014)

38. Hewitt, C.E., Paterson, M.S.: Record of the project MAC. In: Conference on Con-
current Systems and Parallel Computation, pp. 119–127. ACM, New York (1970)

39. Jerschow, Y.I., Mauve, M.: Non-parallelizable and non-interactive client puzzles
from modular square roots. In: ARES, pp. 135–142. IEEE (2011)

40. Juels, A., Brainard, J.G.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: NDSS (1999)

41. Karame, G.O., Čapkun, S.: Low-cost client puzzles based on modular exponen-
tiation. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010.
LNCS, vol. 6345, pp. 679–697. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15497-3 41

42. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (1982)

43. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 8

44. Maurer, U.: Constructive cryptography – a new paradigm for security defin-
itions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011.
LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27375-9 3

45. Maurer, U., Renner, R.: Abstract cryptography. In: ICS (2011)
46. Maurer, U., Renner, R.: From indifferentiability to constructive cryptography (and

back). In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 3–24.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 1

47. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

48. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-642-19571-6_9
http://eprint.iacr.org/2017/915
http://eprint.iacr.org/2017/915
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2017/775
http://eprint.iacr.org/2017/775
https://doi.org/10.1007/978-3-642-15497-3_41
https://doi.org/10.1007/978-3-642-15497-3_41
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-662-53641-4_1
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2

526 J. Alwen and B. Tackmann

49. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009)
50. Naor, M.: Moderately hard functions: from complexity to spam fighting. In:

Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 434–
442. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24597-1 37

51. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan 2009 (2009)

52. Price, G.: A general attack model on hash-based client puzzles. In: Paterson, K.G.
(ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 319–331. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8 26

53. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
Crypto. Technical report, Cambridge, MA, USA (1996)

54. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 284–301. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19074-2 19

55. Tritilanunt, S., Boyd, C., Foo, E., González Nieto, J.M.: Toward non-parallelizable
client puzzles. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS
2007. LNCS, vol. 4856, pp. 247–264. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-76969-9 16

56. Yao, F.F., Yin, Y.L.: Design and analysis of password-based key derivation func-
tions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 245–261. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 17

https://doi.org/10.1007/978-3-540-24597-1_37
https://doi.org/10.1007/978-3-540-40974-8_26
https://doi.org/10.1007/978-3-642-19074-2_19
https://doi.org/10.1007/978-3-540-76969-9_16
https://doi.org/10.1007/978-3-540-76969-9_16
https://doi.org/10.1007/978-3-540-30574-3_17

Blockchains

Overcoming Cryptographic Impossibility Results
Using Blockchains

Rishab Goyal1(B) and Vipul Goyal2

1 University of Texas at Austin, Austin, USA
goyal@utexas.edu

2 Carnegie Mellon University, Pittsburgh, USA
vipul@cmu.edu

Abstract. Blockchain technology has the potential to disrupt how cryp-
tography is done. In this work, we propose to view blockchains as an
“enabler”, much like indistinguishability obfuscation [5,23,46] or one-
way functions, for building a variety of cryptographic systems. Our con-
tributions in this work are as follows:
1. A Framework for Proof-of-Stake based Blockchains: We provide an

abstract framework for formally analyzing and defining useful secu-
rity properties for Proof-of-Stake (POS) based blockchain protocols.
Interestingly, for some of our applications, POS based protocols are
more suitable. We believe our framework and assumptions would
be useful in building applications on top of POS based blockchain
protocols even in the future.

2. Blockchains as an Alternative to Trusted Setup Assumptions in
Cryptography: A trusted setup, such as a common reference string
(CRS) has been used to realize numerous systems in cryptography.
The paragon example of a primitive requiring trusted setup is a non-
interactive zero-knowledge (NIZK) system. We show that already
existing blockchains systems including Bitcoin, Ethereum etc. can
be used as a foundation (instead of a CRS) to realize NIZK systems.
The novel aspect of our work is that it allows for utilizing an already
existing (and widely trusted) setup rather than proposing a new one.
Our construction does not require any additional functionality from
the miners over the already existing ones, nor do we need to modify
the underlying blockchain protocol. If an adversary can violate the
security of our NIZK, it could potentially also take over billions of
dollars worth of coins in the Bitcoin, Ethereum or any such cryp-
tocurrency!
We believe that such a “trusted setup” represents significant progress
over using CRS published by a central trusted party. Indeed, NIZKs
could further serve as a foundation for a variety of other cryp-
tographic applications such as round efficient secure computation
[33,36].

3. One-time programs and pay-per use programs: Goldwasser et al. [29]
introduced the notion of one time program and presented a con-
struction using tamper-proof hardware. As noted by Goldwasser
et al. [29], clearly a one-time program cannot be solely software

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 529–561, 2017.
https://doi.org/10.1007/978-3-319-70500-2_18

530 R. Goyal and V. Goyal

based, as software can always be copied and run again. While there
have been a number of follow up works [4,6,30], there are indeed no
known constructions of one-time programs which do not rely on self
destructing tamper-proof hardware (even if one uses trusted setup or
random oracles). Somewhat surprisingly, we show that it is possible
to base one-time programs on POS based blockchain systems with-
out relying on trusted hardware. Our ideas do not seem to translate
over to Proof-of-Work (POW) based blockchains.
We also introduce the notion of pay-per-use programs which is sim-
ply a contract between two parties — service provider and customer.
A service provider supplies a program such that if the customer
transfers a specific amount of coins to the provider, it can evaluate
the program on any input of its choice once, even if the provider is
offline. This is naturally useful in a subscription based model where
your payment is based on your usage.

1 Introduction

The last few years have seen a dramatic rise of cryptocurrencies such as
Bitcoin [42] and Ethereum [49]. Some of these cryptocurrencies have a market
capitalization running into several billion dollars. This has fuelled a significant
interest in the underlying blockchain technology. Blockchain technology has the
potential to disrupt how cryptography is done. Much of cryptography can be
seen as eliminating the need to trust (and allow for dealing with adversarial
parties which can’t be trusted). Indeed the purpose of blockchains is something
similar: eliminate the central point of trust in cryptocurrencies and possibly
other applications. Thus we believe that a sustained effort to bring together
“traditional cryptography” with the blockchain technology has the potential to
be truly rewarding.

Blockchain Protocols. In a blockchain protocol, the goal of all parties is to main-
tain a (consistent) global ordered set of records. The set of records is “append
only”, and publicly visible. Furthermore, records can only be added using a
special mechanism to reach consensus on what must be added to the existing
blockchain. A protocol can employ any arbitrary technique or mechanism for
participants to converge on a uniform and reliable blockchain state.

In most cryptocurrencies instantiated in the blockchain model, the special
mechanism to reach consensus is called a mining procedure. It is used by all
parties to extend the blockchain (i.e., add new blocks) and in turn (potentially)
receive rewards for successfully generating a new block consistent with respect
to current blockchain state. The mining procedure is meant to simulate a puzzle-
solving race between protocol participants and could be run by any party. The
rewards mostly consist of freshly generated currency. Presently, the mining pro-
cedures employed by most cryptocurrencies could be classified into two broad
categories — Proof-of-Work (POW) and Proof-of-Stake (POS) based puzzles.
The basic difference being that in POW puzzles, the probability of successful

Overcoming Cryptographic Impossibility Results Using Blockchains 531

mining is proportional to the amount of computational power; whereas in POS,
it is proportional to the number of coins in possession of a miner. Therefore,
POW miners have to spend significant portion of their computational resources
(and in turn, monetary resources) to extend the blockchain and in turn get
rewarded, whereas POS miners spend significantly less computational resources
and just need to have a sufficient balance.

Our Contributions. In this work, we propose to view blockchains as an “enabler”,
much like indistinguishability obfuscation [5,23,46] or one-way functions, for
building a variety of cryptographic systems. Basing cryptographic system on
blockchains can provide very strong guarantees of the following form: If an adver-
sary could break the security of the cryptographic system, then it could also break
the security of the underlying blockchain allowing it to potentially gain billions
of dollars! Indeed, this perspective is not new. Previous works [2,3,11,34,39,40]
in this direction include using blockchains to construct fair secure multi-party
computation, lottery systems, smart contracts and more. Our contributions in
this work include the following:

– A Framework for Proof-of-Stake based Blockchains: We provide an abstract
framework for formally analyzing and defining useful security properties
and hardness relations for POS based blockchain protocols. Interestingly, we
observe that for some of our applications, POS based protocols are more
suitable than their POW counterparts. Furthermore, we also show how our
framework can be instantiated based on existing POS based protocols [13,38].
Previously, various works [12,13,19–21,37,38,43–45] have analyzed the
blockchain consensus protocols (of existing systems like Bitcoin) proving some
fundamental properties as well as proposed new blockchain protocols. It is
important to note that most of these works consider blockchain protocols
with provable security guarantees as an end goal. However, as mentioned
before, we consider blockchains as an “enabler”. Therefore, we believe our
framework and assumptions would be useful in building applications on top
of POS based blockchain protocols even in the future.
Recently, it was suggested that blockchains could potentially be used to obtain
a common random string as they can be used as a source of public random-
ness, thereby allowing to generate trusted random parameters [10,14]. How-
ever, the results presented were limited in the sense that either adversaries
with bounded budget were assumed or no security analysis was provided. We,
on the other hand, proceed in an orthogonal direction by suggesting methods
to directly extract cryptographic hardness from blockchains and developing
hard-to-compute trapdoors with respect to blockchains.

– Blockchains as an Alternative to Trusted Setup Assumptions in Cryptography:
A trusted setup, such as a common reference string (CRS) has been used to
realize numerous systems in cryptography. Indeed, several of these systems
have been shown to be impossible to realize without a trusted setup. In this
work, we explore using blockchains as an alternative to a trusted setup (typ-
ically performed by a central trusted authority). The paragon example of a

532 R. Goyal and V. Goyal

primitive requiring trusted setup is a non-interactive zero-knowledge (NIZK)
system. Most well-known NIZK constructions are in the so called common
reference string (CRS) model where there is a trusted third party which pub-
lishes some public parameters. However if the setup is done dishonestly, all
security guarantees are lost.
We show that already existing blockchains systems includingBitcoin,Ethereum
etc. could potentially be used as a foundation (instead of a CRS) to realize NIZK
systems. Thus, the complex blockchain system consisting of various miners and
users can be seen as a “trusted setup”. The idea of a decentralized setup for real-
izing NIZKs is not entirely new: Groth and Ostrovsky [32] propose NIZKs with
n authorities where a majority of them must be honest. Goyal and Katz [31]
propose a generalized model which allows for placing “differing levels of trust”
in different authorities. However the novel aspect of our work is that it allows
for utilizing an already existing (and widely trusted) setup rather than propos-
ing a new one. Our construction does not require any additional functionality
from the miners over the already existing ones, nor do we need to modify the
underlying blockchain protocol.1 If an adversary can violate the security of our
NIZK, it could potentially also take over billions of dollars worth of coins in the
Bitcoin, Ethereum or any such cryptocurrency!
We believe that such a “trusted setup” represents significant progress over
using CRS published by a central trusted party. Indeed, NIZKs could further
serve as a foundation for a variety of other cryptographic applications such
as round efficient secure computation [33,36].

– One-time programs and pay-per use programs: Say Alice wants to send a pro-
gram to Bob. The program should run only once and then “self destruct”. Is
it possible to realize such “one-time programs”? Goldwasser et al. [29] intro-
duced the notion of one time program and presented a construction using
tamper-proof hardware. A one-time program can be executed on a single
input, whose value can be specified at run time. Other than the result of
the computation on this input, nothing else about the program is leaked.
One-time programs, for example, lead naturally to electronic cash or token
schemes: coins or tokens are generated by a program that can only be run
once, and thus cannot be double spent. In the construction of Goldwasser
et al. [29], a sender sends a set of very simple hardware tokens to a (poten-
tially malicious) receiver. The hardware tokens allow the receiver to execute
a program specified by the sender’s tokens exactly once (or, more generally,
up to a fixed t times).
As noted by Goldwasser et al. [29], clearly a one-time program cannot be
solely software based, as software can always be copied and run again. While
there have been a number of follow up works [4,6,30], there are indeed no
known constructions of one-time programs which do not rely on self destructing

1 We would like to point out that (unlike other works like [2,3,11,39]) none of our appli-
cations require the underlying blockchain protocol to provide a sufficiently expressive
scripting language. This suggests that our applications could be based on top of almost
all existing blockchain protocols.

Overcoming Cryptographic Impossibility Results Using Blockchains 533

tamper-proof hardware (even if one uses trusted setup or randomoracles). Some-
what surprisingly, we show that it is possible to base one-time programs on
POS based blockchain systems without relying on trusted hardware. Our ideas
do not seem to translate over to POW based blockchains. Our construction
assumes the existence of extractable witness encryption (WE) [25,28] (which
in turn requires strong knowledge assumptions related over multi-linear maps
[15,22], see also [24]). However, we stress that our construction does not require
WE for all NP-relations, instead we only need a WE scheme for very spe-
cific blockchain dependent relations. As noted by prior works [34,40], we, for
example, already know efficient WE schemes for hash proof system compati-
ble relations [1,9,16,35,48] with some works even achieving certain notions of
extractability.2

We also introduce the notion of pay-per-use programs. Informally, a pay-per-
use program is a contract between two parties which we call the service provider
and customer. A service provider wants to supply a program (or service) such
that if the customer transfers a specific amount of coins to the provider (over
the blockchain), it can evaluate the program on any input of its choice once.
Additionally, the service provider need not be executing the blockchain proto-
col after supplying the program, i.e. it could go offline. We could also generalize
this notion to k-time pay-per-use programs. This is naturally useful in a sub-
scription based model where your payment is based on your usage. The above
construction of one-time programs can be easily extended to obtain pay-per-use
k-time programs.

1.1 Technical Overview

First, we discuss an abstract model for blockchain protocols as well as the
protocol execution model and describe various desirable security properties of
blockchains. Next, we outline our NIZK construction based on blockchains and
present the main ideas in the security proof. We also overview our construc-
tion for OTPs using blockchains and highlight the necessity of a POS based
blockchain in the security proof. Finally, we briefly discuss how to extend our
idea behind constructing OTPs to building pay-per-use programs.
2 At first sight one might ask whether a strong assumption like extractable WE is nec-

essary, or could it be relaxed. It turns out that, to construct one-time programs, it
is sufficient and necessary to assume a slightly weaker primitive which we call one-
time extractable WE. A one-time extractable WE is same as a standard extractable
WE scheme, except the decryption algorithm could only be run once on each cipher-
text. In other words, if we decrypt a one-time WE ciphertext with a bad witness the
first time, then next time decryption (on that same ciphertext) will always fail even
if we use a correct witness. Again this cannot be solely software based as then cipher-
text could always be copied, and thus one-time decryption wouldn’t make sense. It is
straightforward to verify in our OTP construction that we could instead use such a one-
time extractable WE scheme. Additionally, anologous to construction of extractable
WE from VBB obfuscation, we could show that a OTP already implies a one-time
extractable WE, therefore our assumption of one-time extractable WE for construct-
ing OTPs is both necessary and sufficient.

534 R. Goyal and V. Goyal

Proof-of-Stake Protocols: Abstraction and Properties. Informally, a
blockchain protocol is a distributed consensus protocol in which each partic-
ipant (locally) stores an ordered sequence of blocks/records B (simply called
blockchain). The goal of all (honest) parties is to maintain a globally consistent
blockchain. Each party can try to include new blocks in their local blockchain as
well as attempt to get it added in blockchains of other parties. Such new blocks
are created using a special block generation procedure (simply called mining)
that depends on the underlying consensus mechanism.

In POS based blockchains, each participant (apart from storing a local
blockchain B) is also entitled with some stake in the system, which could be
measured as a positive rational value.3 The ideology behind mining in a POS
based system is that the probability any party succeeds in generating the next
block (i.e., gets to mine a new block) is proportional to its stake. Also, each party
that generates a block must provide a proof-of-stake which could be used as a
certificate by other parties to verify correctness. Such proofs-of-stake are usually
provided in the form of signatures, as it prevents unforgeability and permits
easy verification. An important aspect in such POS systems is that the stake
distribution (among all parties) evolves over time, and is not necessarily static.

Recently, few works [19,37,43] initiated the study of formal analysis of
blockchain protocols. They formalized and put forth some useful properties for
blockchain protocols which were previously discussed only informally [41,42].
The most well-known properties analyzed are chain consistency and chain qual-
ity.4 At a high level, these can be described as follows.

– �-chain consistency: blockchains of any two honest parties at any two (pos-
sibly different) rounds during protocol execution can differ only in the last �
blocks, with all but negligible probability.

– (μ, �)-chain quality: fraction of blocks mined by honest parties in any
sequence of � or more consecutive blocks in an honest party’s blockchain
is at least μ, with all but negligible probability.

Previous works demonstrated usefulness of the above properties by showing that
any blockchain protocol (irrespective of it being POW or POS based) satisfying
these properties could be used a public ledger and for byzantine agreement. While
the above properties are interesting from the perspective of using blockchains as
an end-goal or achieving consensus, it is not clear whether these could be used to
extract some form of cryptographic hardness. In other words, it does not seem
straightforward on how to use these properties if we want to use blockchains as a
primitive/enabler. To this end, we introduce several new security properties that
are aimed directly at extracting cryptographic hardness from POS blockchains.
We exhibit their importance and usability by basing security of all our applica-
tions (NIZKs, OTPs and pay-per-use programs) on these properties. At a high
level, the properties could be described as follows.
3 In cryptocurrencies, stake of any party simply corresponds to the amount of coins

it controls.
4 Previous works also define chain growth as a desideratum, however in this work we

will only focus on chain consistency and quality properties.

Overcoming Cryptographic Impossibility Results Using Blockchains 535

– (β, �)-sufficient stake contribution: the combined amount of stake whose
proof was provided in any sequence of � or more consecutive blocks in an
honest party’s blockchain is at least β fraction of the total stake in the system,
with all but negligible probability.

– (β, �)-sufficient honest stake contribution: the combined amount of hon-
estly held stake whose proof was provided in any sequence of � or more con-
secutive blocks in an honest party’s blockchain is at least β fraction of the
total stake in the system, with all but negligible probability.

– (α, �1, �2)-bounded stake forking: no adversary can create a fork of length
�1+�2 or more such that, in the last �2 blocks of the fork, the amount of proof-
of-stake provided is more than α fraction of the total stake in the system, with
all but negligible probability.5

– (α, β, �1, �2)-distinguishable forking: with all but negligible probability,
any sequence of �1 + �2 or more consecutive blocks in an honest party’s
blockchain could always be distinguished from any adversarially generated
fork of same length by measuring the amount of proof-of-stake proven in
those sequences. The fraction of proof-of-stake proven in the (adversarial)
fork will be at most α, and in honest party’s blockchain will be at least β.
Hence, any fork which is created by the adversary on its own off-line is clearly
distinguishable from a real blockchain.

Interestingly, we show that these properties with appropriate parameters are
already implied (in an almost black-box way) by chain consistency and qual-
ity properties if we assume suitable stake distributions among honest parties.
Since we already know of POS based blockchain protocols [13,38] that fit our
abstract framework and satisfy chain consistency and quality, this provides con-
crete instantiations of our framework and following applications.

We would like to point out that, in our analysis, we make certain simplifying
assumptions about the blockchain execution model. First, we require that the
number of honest miners who actively participate in mining (i.e., are online)
as well as the amount of stake they jointly control does not fall below a cer-
tain threshold. In other words, we expect that (honest) miners which control a
significant amount of stake do not remain offline for arbitrarily long periods.
However, we stress that we do not assume that all honest parties are online, nor
do we assume that all honest parties which control a significant fraction of stake
are online. We only require that the number of such honest parties does not fall
below a reasonable threshold. Second, we also expect each honest party to delete
the signing keys after they lose significance, i.e. once the coins associated with
a particular key are transferred, then the corresponding signing key must be
deleted. More details about our proposed properties as well as their reductions
to other desideratum is provided later in Sects. 4 and 5.

Now our applications give evidence that the above security properties as
well as our POS framework are very useful in using POS based blockchains
as a primitive, and we believe its scope is beyond this work as well. Also, we
5 A fork is simply a private chain of blocks which significantly diverges from global

blockchain in honest parties’ view.

536 R. Goyal and V. Goyal

would like to point out that our reductions are not completely tight since we do
not assume any special structure about underlying POS protocols, but instead
work with an abstract model. We hope that future work on POS blockchains will
consider these properties as desiderata, thereby proving these properties directly
(possibly in a non-black-box way) with better parameters.

Zero-Knowledge Systems Based on Blockchains. For ease of exposition,
assume that all parties executing the blockchain protocol have the same amount
of stake (i.e., each new block contains a proof-of-stake of a fixed amount). Also,
the adversary controls only a minority stake in the system (say α). Below we
describe a simplified construction. A formal treatment is given in the main body.

Defining non-interactive zero-knowledge based on blockchains: We would define
the zero-knowledge property as follows. Very informally, we would require the
existence of a simulator which should be able to simulate the view of the adver-
sary without having access to the witness. In the real experiment, the adver-
sary interacts with the honest parties: the honest prover, the honest miners and
other honest blockchain participants. In the simulated experiment, the adversary
interacts with the simulator alone. The simulator in turn emulates all the honest
parties: including the honest prover, and the honest miners. We would require
the view of the adversarial verifier to be computational indistinguishable in the
two experiments. Note that in the simulated experiment, the simulator emulates
(or controls) all the honest parties including even the honest blockchain miners.
This can be seen as analogous to the simulator emulating the honest party pub-
lishing the CRS in the CRS model, or, the simulator controlling a majority of the
parties in a secure multi-party computation protocol with honest majority [8],
etc.

First, we define the notion of a fork with respect to blockchains. Let B be
some blockchain. A fork w.r.t. B is a sequence of valid blocks that extends some
prefix of blockchain B instead of extending B directly from its end. In other
words, a fork is a sequence of valid blocks that starts extending the chain at
some block which is not the most recently added block in B.

The starting point of our construction is the well-known FLS paradigm [17]
for transforming proof of the statement x ∈ L into a witness-indistinguishable
proof for the statement — “x ∈ L OR the common shared random string σ is the
output of a pseudorandom generator”. Our idea is to use the already established
blockchain B as the CRS σ, and instead of proving that σ is the output of
a pseudorandom generator, we will prove some trapdoor information (which is
hard to compute) w.r.t. to the current blockchain B. A little more formally, we
will generate a witness-indistinguishable proof for the statement — “x ∈ L OR
there exists a long valid fork f w.r.t. blockchain B”.

Suppose Com(·) is a non-interactive statistically binding commitment
scheme. Let B denote the current state of the blockchain and the adversary
controls at most α fraction of total stake in the blockchain network. At a high
level, the scheme works as follows. The prover constructs the NIZK as:

Overcoming Cryptographic Impossibility Results Using Blockchains 537

– Compute commitments c1 ← Com(w) and c2 ← Com(f) where w is the
witness for the given statement x ∈ L, and f is simply an all zeros string of
appropriate length.

– Compute a non-interactive witness indistinguishable (NIWI) argument using
witness w proving that either:
1. c1 is a commitment of a valid witness to x ∈ L, or
2. c2 is a commitment of a long fork w.r.t. blockchain B (i.e., a different

sequence of valid blocks) such that the amount of proof-of-stake present
in the fork is a clear majority (of total stake).

Completeness follows directly from the correctness of underlying primitives.
To prove the zero-knowledge property, we would need to construct a simulator
which would not have the witness w but could still construct proofs which are
indistinguishable from honestly generated proofs. Note that the simulator is
permitted to control all honest parties, thus it can access their signing keys. Since
honest parties are in (stake) majority, therefore the simulator could efficiently
generate a fork of sufficient length that contains a combined proof of majority
stake. Hence, it could alternatively compute c2 as a commitment to the fork,
and generate the NIWI using the witness for second condition.

Proving soundness of the above construction is not straightforward and turns
out to be more complex. Suppose that an adversary manages to produce a NIZK
for a false statement. How could we reduce it to an attack on some reasonable
notion of security of the blockchain? For such a reduction, we would have to
construct an adversary which controls only a minority stake in the system, but
it could still generate a fork which contains a proof of majority stake. However,
the above NIZK only contains a commitment to such a fork. This problem seems
to suggest that some form of extraction (of the fork) would be required for the
security reduction to go through. And yet, we don’t have any CRS! To solve
this problem we need to modify our construction such that extraction is possible
without any CRS.

Allowing Extraction of f. To this end, we rely on the following idea. Note that
each mined block also contains the public key of the corresponding party. At a
very high level, our idea is to secret share the fork into � shares, and encrypt ith

share under public key of the party that mined ith most recent block (instead of
generating a commitment of the fork). If a certain threshold of these � parties
are honest, then we could extract the appropriate secret shares and reconstruct
the fork.

More formally, let the public keys of the parties who mined at least one block
in the last N blocks on blockchain B be pk1, . . . , pk� where N is a sufficiently big
number and � could be smaller than N (as some party could have mined multiple
blocks). Note that in most blockchain protocols, each mined block contains the
public (verification) key of its miner. We assume that these public keys could be
used for encryption as well.6 Also, recall that the fraction of total stake controlled
6 For instance, most blockchain protocols (like Bitcoin, Ethereum etc.) already use

ECDSA based signature schemes for which we could directly use ECIES-like inte-
grated encryption schemes [47].

538 R. Goyal and V. Goyal

by adversary is at most α, and for simplicity we assumed that all parties have
the same amount of stake.

Now, the prover uses a β�-out-of-� secret sharing scheme on f to get shares
f1, . . . , f�. For all i, the share fi will be encrypted under pki, where β(<1) is a
scheme parameter such that it is sufficiently higher than α. The second condition
(i.e., trapdoor condition) in the NIWI would now be that all these shares lead
to a valid reconstruction of a string f which represents a long fork such that it
contains a proof of majority stake w.r.t. blockchain B. With this modification,
we observe the following:

– Given any β� secret keys corresponding to these public keys, f can be
extracted. This is because the number of blocks a party mines is roughly
proportional to its stake. Since we assume that all parties have same amount
of stake, this implies that a set of miners controlling approximately β fraction
of total stake can now extract f .

– Suppose an adversary is able to prove a false statement. As noted above, a set
of miners controlling β fraction of total stake can perform the extraction. Also,
these miners can emulate the adversary given more stake (as the adversary
controls at most α of total stake), therefore for appropriate values of α and
β, this would imply an algorithm using which a set of miners controlling
only a minority amount of total stake could generate a sufficiently long fork
containing a proof of majority stake. This would contradict the bounded stake
forking property of the blockchain for suitable values of α, β and N .

– Further, this does not affect the zero-knowledge property since the amount of
stake controlled by the adversary is significantly lower than β, therefore the
adversary does not learn anything from the secret shares given to it. Also, the
simulator, given signing keys of all honest parties (which control majority of
stake), can still generate such a fork privately thereby using the fork instead
of the actual witness to compute the NIWI.

The above construction could be naturally extended to be an argument of
knowledge by additionally secret sharing the witness w analogous to the fork f .
Note that in the above exposition we made a few simplifying assumptions. Thus
the current construction does not work as is, and there are a number of issues
which must be resolved. For example, we assumed that the stake distribution was
uniform (i.e., all parties had identical stake). Since this may be arbitrary and
not necessarily uniform, the idea of a threshold secret sharing does not work
in general for extraction. Instead we need to use a weighted threshold secret
sharing scheme with the weights being proportional to the respective stakes.
Also, it is likely that different honest parties may have a different view of the
last few blocks w.r.t. their local blockchains so we need to define the notion of
forks with respect to the consistent part of the blockchain. It is also possible that
some honest parties might have mined a few blocks in the adversary’s fork before
converging with other honest participants. To overcome such difficulties due to
small forks (and other ephemeral consensus problems) in honest parties local
blockchains, we need to make some more modifications like only considering the

Overcoming Cryptographic Impossibility Results Using Blockchains 539

amount of proof-of-stake proven in the last few blocks of the fork etc. Finally, we
directly reduce the security of our NIZKAoK construction to chain consistency,
sufficient honest stake contribution, and bounded stake forking properties of the
underlying blockchain protocols in our framework. More details are provided in
Sect. 6

Using POW based blockchains. We note that the above idea could potentially
be ported to the POW based blockchains as well with the following caveat: the
NIZK proof generated by the prover would be valid for a limited period of time.
The main modification will be that now the prover simply proves that c2 is a
commitment to a very long fork instead. The rest of the construction would
be mostly identical. However, the proof of security would now rely on the fact
that any adversary which controls noticeably less than half of the computational
resources can not compute a fork of length much longer than the honest parties
blockchain. Intuitively, this can not happen because it would imply that any
adversary with only minority voting power could fork the blockchain at any
round. It is important to note that unlike the NIZKs based on POS blockchains,
NIZKs based on POW blockchains will only be valid for atmost a bounded
period of time as any verifier must reject such proofs once the length of its local
blockchain is comparable to the length of the fork under c2.

One-Time Programs Using Blockchains. There are two main ideas behind
constructing one-time programs (OTPs) using blockchains — (1) the blockchain
could be used as a public immutable bulletin board, and (2) any adversarially
generated fork can be distinguished from the real blockchain state. Informally,
the scheme works as follows. To compile a circuit C over blockchain B, the
compilation algorithm first garbles the circuit to compute a garbled circuit and
wire keys. Suppose we encrypt the wire keys using public key encryption and
set the corresponding OTP as the garbled circuit and encrypted wire keys. This
suggests that the evaluator must interact with the compiling party to be able
to evaluate the program. Since OTPs are not defined in an interactive setting,
we need to somehow allow conditional release/decryption of encrypted wire keys
for evaluation. Additionally, we need to make sure that the evaluator only learns
the wire keys corresponding to exactly one input as otherwise it will not satisfy
the one-time secrecy condition. To this end, we encrypt the wire keys using
witness encryption scheme. At a high level, an OTP for a circuit C is generated
as follows:

– First, the circuit C is garbled to output a garbled circuit and corresponding
input wire keys. Next, for each input wire, both wire keys are independently
encrypted using a witness encryption (WE) scheme such that to decrypt the
evaluator needs to produce a blockchain B′ as a witness where B′ must satisfy
the following conditions — (1) there exists a block in B′ which contains the
input (on which evaluator wants to evaluate), and (2) B′ contains a certain
minimum number of blocks, say n, after the block containing input. The OTP
for C will simply be this garbled circuit and all the encrypted wire keys.

540 R. Goyal and V. Goyal

– To execute the OTP, the evaluator chooses an input x and must commit it to
the blockchain. Next, it must wait until its input x is added to the blockchain
and is extended by n blocks. Let the resulting blockchain be ˜B. The evaluator
uses ˜B as the witness to decrypt the wire keys corresponding to the input x.
In particular, for the ith input wire, ˜B would serve as the witness to decrypt
exactly one of the two wire keys depending upon the ith bit of x. Finally, it
could evaluate the garbled circuit using the decrypted wire keys.

There are various technical details we omit in the above sketch. For instance,
the n blocks added after the input block must contain a minimum amount of
combined proof-of-stake, as otherwise any adversary could simply generate such
n blocks by itself. Also, the witness must be valid only if the user has committed
to a single unique input x, as otherwise the user can commit to multiple inputs
in the blockchain and be able to run the OTP on all of them. Mostly these could
be dealt with by adding more checks on witness blockchain ˜B as part of the
relation. Next, we briefly talk about the security.

Suppose that the adversarial user controls only minority stake. The security
of this construction relies on the inability of the user to be able to extend the
blockchain B by a sequence of n or more valid blocks without the support of
honest parties. To execute this idea, we additionally check that the sequence
of n blocks added after the input x contain a minimum amount of combined
proof-of-stake. For simplicity, consider that we check whether the sequence of n
blocks contain a proof of majority stake. Now the adversary will not be able to
extend B on its own such that it satisfies this constraint. However, during honest
execution, for sufficiently large values of n this will always hold. Therefore, the
adversary’s inability to fork directly reduces the security of the OTP to security
of garbling scheme. To formally prove one-time secrecy of above construction,
we reduce security of the above scheme to chain consistency and distinguishable
forking properties of the underlying blockchain protocols in our framework. More
details are provided in Sect. 7.

We would like to point out that this idea fails in POW based systems. This
is because after receiving the OTP, the user can simply go offline and compute
multiple forks of the chain starting from B such that each fork has a different
user input. The user can compute such a fork on its own (albeit at a much slower
rate compared to the growth of the original blockchain). Thus, unlike NIZKs,
we do not know how to port the above idea to POW based blockchains.

Input Hiding. We would also like to note that in the above scheme, the evaluator
needs to publicly broadcast its input x. This might not be suitable for applica-
tions of one-time programs which want the evaluator’s input to be hidden. To
this end, the scheme could be modified as follows. The evaluator adds to the
blockchain a statistically binding commitment to its input (instead of its actual
input x). Now the witness to decrypt the wire keys would also includes opening
for the commitment and the witness relation verifies opening as well. We discuss
additional such improvements later in the full version.

Overcoming Cryptographic Impossibility Results Using Blockchains 541

Pay-per-use Programs. Lastly, the above construction of one-time programs can
also be easily extended to obtain pay-per-use k-time programs. This can be
done by requiring in the witness encryption relation that in the extension of the
blockchain B, apart from x, there is also an evidence of cryptocurrency transfer
of some pre-specified amount to the service provider. This is discussed in detail
in the full version.

Comparison with related work. Recently it was shown that in [34,40] that
Bitcoin could be combined with extractable witness encryption to build time-
lock encryptions. Their idea was to exploit the fact that it should be hard for
an adversary to generate blocks (i.e., extend blockchain) faster than the rest of
the network. Very briefly, to encrypt data in their schemes, they encrypted it
using WE under the current blockchain such that after say n more blocks have
mined, those blocks could be used as a witness to decrypt the corresponding
ciphertext. At a high level, they view mining of these n blocks as a proof of
time being elapsed. At first sight, it might seem that our OTP construction is a
straightforward combination of such time-lock encryptions with garbled circuits,
this is not the case. We briefly highlight the important differences. First, time-
lock encryptions used blockchain only as a counter/clock. On the other hand, we
exploit the fact that blockchains could be used as an immutable public bulletin
board. Concretely, in our construction, the evaluator needs to commit its input
on the blockchain. Second, in our construction, it is essential that the under-
lying blockchain protocol is POS based, whereas [34,40] built schemes directy
on top of Bitcoin. Lastly, we reduce the security of our construction to funda-
mental properties over blockchains and give examples of blockchain protocols for
which those properties are satisfied, whereas [34,40] only gave an ad hoc analysis
arguing that Bitcoin could be used implement such reference clocks.

2 Background on Blockchain Protocols

In this section, we present an abstract model for blockchain protocols as well as
the protocol execution model. Our model is an extension of the model used by
Pass et al. [43], which in turn is an extension of [19].

2.1 Blockchain Protocols

A blockchain protocol Γ consists of 3 polynomial-time algorithms (UpdateState,
GetRecords, Broadcast) with the following syntax.

– UpdateState(1λ): It is a stateful algorithm that takes as input the security
parameter λ, and maintains a local state st.7

7 The local state should be considered as the entire blockchain (i.e., sequence of mined
blocks along with metadata) in Bitcoin and other cryptocurrencies.

542 R. Goyal and V. Goyal

– GetRecords(1λ, st): It takes as input the security parameter λ and state st. It
outputs the longest ordered sequence of valid blocks B (or simply blockchain)
contained in the state variable, where each block in the chain itself contains
an unordered sequence of records/messages m.8

– Broadcast(1λ,m): It takes as input the security parameter λ and a message
m, and broadcasts the message over the network to all nodes executing the
blockchain protocol. It does not give any output.

As in [19,43], the blockchain protocol is also parameterized by a validity
predicate V that captures semantics of any particular blockchain application.
The validity predicate takes as input a sequence of blocks B and outputs a bit,
where 1 certifies validity of blockchain B and 0 its invalidity.9 Here we assume
that the reader is familiar with the standard blockchain execution model. In the
full version we will give a comprehensive overview.

3 Preliminaries

Notations. We will use bold letters for vectors (e.g., v). For any finite set S,
x ← S denotes a uniformly random element x from the set S. Similarly, for any
distribution D, x ← D denotes an element x drawn from distribution D.

Let EXECΓ V

(A(x),Z, 1λ) be the random variable denoting the joint view of
all parties in the execution of protocol ΓV with adversary A and environment
Z where A is given an additional private input x. This joint view fully deter-
mines the execution. Also, let viewA(EXECΓ V

(A(x),Z, 1λ)) denote the view of
adversary A in the protocol execution.

Due to space constraints, we do not provide formal definitions of witness
encryption [24,25], garbled circuits [7,50], (non-interactive) witness indistin-
guishable (WI) proofs [18], and weighted threshold secret sharing.

3.1 Public Key Integrated Encryption-Signature Scheme

First, we define an integrated scheme which works both as a public key encryp-
tion scheme as well as public key signature scheme. Let M1 and M2 be the
message spaces for encryption and signature scheme respectively. A public key
integrated encryption-signature scheme HS for message spaces M1 and M2 con-
sists of following polynomial-time algorithms.

– Setup(1λ): The setup algorithm takes as input the security parameter λ, and
outputs a master public-secret key pair (mpk,msk).

8 The sequence B should be considered as the entire transaction history in Bitcoin
and other cryptocurrencies, where the blocks are ordered in the sequence they were
mined.

9 The validity predicate could be used to capture various fundamental properties. E.g.,
In Bitcoin and other cryptocurrencies, it could be used to check for double spending,
correct mining etc.

Overcoming Cryptographic Impossibility Results Using Blockchains 543

– Enc(mpk,m ∈ M1): The encryption algorithm takes as input master public
key mpk and a message m, and outputs a ciphertext ct.

– Dec(msk, ct): The decryption algorithm takes as input master secret key msk
and a ciphertext ct, and outputs a message m.

– Sign(msk,m ∈ M2): The signing algorithm takes as input master secret key
msk and a message m, and outputs a signature σ.

– Verify(mpk,m ∈ M2, σ): The verification algorithm takes as input master
public key mpk, a message m and a signature σ, and outputs a bit.

Correctness. An integrated scheme HS for message spaces M1,M2 is said to be
correct if for all λ, m1 ∈ M1, m2 ∈ M2 and (mpk,msk) ← Setup(1λ), we have
that Dec(msk,Enc(mpk,m1)) = m1 and Verify(mpk,m2,Sign(msk,m2)) = 1.

Security. Informally, an integrated encryption-signature scheme is said to be
secure if it is both an unforgeable signature scheme as well as an IND-CPA
secure public key encryption scheme. More formally,

Definition 1. A public key integrated encryption-signature scheme HS =
(Setup,Enc,Dec,Sign,Verify) is a secure integrated scheme if for every PPT
adversary A = (A0,A1,A2) there exists a negligible functions negl1(·),negl2(·),
such that for all λ ∈ N, the following holds:
∣
∣
∣
∣
∣
Pr

[

A1(ct, st) = b
∣
∣

(mpk,msk) ← Setup(1λ); b ← {0, 1}
(m0, m1, st) ← ASign(msk,·)

0 (mpk); ct ← Enc(mpk, mb)

]

− 1

2

∣
∣
∣
∣
∣
≤ negl1(λ),

and

Pr
[

Verify(msk,m∗, σ∗) = 1
∣

∣

(mpk,msk) ← Setup(1λ)
(m∗, σ∗) ← ASign(msk,·)

2 (mpk)

]

≤ negl2(λ),

where A2 must never have queried m∗ to signing oracle.

While such an integrated scheme could always be generically constructed
from any IND-CPA secure public key encryption scheme and any EUF-CMA
secure public key signature scheme, we hope that the signature schemes used
in current blockchain protocols could be used as integrated encryption-signature
schemes as well. For instance, most blockchain protocols (like Bitcoin, Ethereum
etc.) already use ECDSA based signature schemes for which we could directly use
ECIES-like integrated encryption schemes [47]. However this will be a slightly
stronger assumption.

3.2 Non-interactive Argument Systems

Non-interactive Zero Knowledge Arguments. The notion of Zero Knowl-
edge for interactive protocols was introduced by Goldwasser, Micali and Rackoff
[27]. A non-interactive zero knowledge argument system is a one-message ZK
protocol. However, it is well known that NIZKs are impossible in the standard
model [26]. They are usually defined with trusted setup.

In this work, we construct NIZKs over blockchain protocols without any
additional setup assumption. Below we provide the formal definition.

544 R. Goyal and V. Goyal

Definition 2 (NIZK over Blockchains). A pair of PPT algorithms (P,V) over a
blockchain protocol ΓV is a NIZK argument of knowledge for a language L ∈ NP
with witness relation R if it satisfies the following conditions:

– (Completeness) For all (x,w) such that R(x,w) = 1, all PPT adver-
saries A and players i, j in environment Z, there exists negligible functions
negl1(·),negl2(·) such that

Pr

⎡
⎢⎣V(B̃, x, π) = 1 :

view ← EXECΓ V
(

A, Z, 1λ
)

B = GetRecords(viewi); B̃ = GetRecords(viewj)

π ← P(B, x, w)

⎤
⎥⎦ ≥ 1−negl1(|x|)−negl2(λ),

where viewi and viewj denote the view of players i and j, and both i, j are
honest.10

– (Soundness) For every x /∈ L and all stateful PPT adversaries A and each
player i in environment Z, there exists negligible functions negl1(·),negl2(·)
such that

Pr
[

V(B, x, π) = 1 : view ← EXECΓ V (A(x),Z, 1λ
)

B = GetRecords(viewi); π ← A
]

≤ negl1(|x|)+negl2(λ),

where viewi denotes the view of player i, and i is honest.
– (Knowledge Extractor) There is a stateful PPT algorithm E, such that for all

stateful PPT adversaries A and each player i in environment Z, there exists
negligible functions negl1(·),negl2(·) such that

{

viewA
(

EXECΓ V (A,Z, 1λ
)

)}

≈c

{

viewA
(

EXECΓ V (A, E ,Z, 1λ
)

)}

and

Pr

[
V(B, x, π) = 0

∨ R(x, w) = 1
:
view ← EXECΓ V

(
A, E, Z, 1λ

)
; (x, π) ← A

B = GetRecords(viewi); w ← E(x, π)

]
≥ 1 − negl1(|x|) − negl2(λ),

where viewi denotes the view of player i and i is honest, and
EXECΓ V (A, E ,Z, 1λ

)

is the random variable denoting the joint view of all
parties in the blockchain execution where adversary A controls all the corrupt
parties, and E controls all the honest parties.

– (Zero Knowledge) There is a stateful PPT algorithm Sim for the argument
system such that for all (x, w) subject to R(x,w) = 1 and all stateful PPT
adversaries A and each player i in environment Z, the following holds

{

(π, viewA) : view ← EXECΓ V (A,Sim,Z, 1λ
)

π ← Sim(x)

}

≈c
{

(π, viewA) : view ← EXECΓ V (A,Z, 1λ
)

B = GetRecords(viewi); π ← P(B, x, w)

}

10 We have overloaded the notation by using GetRecords algorithm to take as input the
view of a party instead of its state. This is still well defined since the state of any
party is part of its view.

Overcoming Cryptographic Impossibility Results Using Blockchains 545

where viewi denotes the view of player i and i is honest, and
EXECΓ V (A,Sim,Z, 1λ

)

is the random variable denoting the joint view of all
parties in the blockchain execution where adversary A controls all the corrupt
parties, and Sim controls all the honest parties.

3.3 One-Time Programs and Compilers

The notion of one-time programs was introduced by Goldwasser et al. [29]. Let
{Cn}n be a family of circuits where each circuit in Cn takes n bit inputs. A one-
time compiler OTC for circuit family {Cn}n consists of polynomial-time algo-
rithms Compile and Eval with the following syntax.

– Compile(1λ, C ∈ Cn): The compilation algorithm takes as input the security
parameter λ and a circuit C ∈ Cn. It outputs a compiled circuit CC.

– Eval(CC, x ∈ {0, 1}n): The evaluation algorithm takes as input a compiled
circuit CC and an n-bit input x, and outputs y ∈ {0, 1} ∪ ⊥.

Correctness. A one-time compiler OTC for circuit family {Cn}n is said to be
correct if for all λ, n, x ∈ {0, 1}n and C ∈ Cn,

Pr[Eval(CC, x) = C(x)
∣

∣ CC ← Compile(1λ, C)] ≥ 1 − negl(λ),

where evaluation is run only once, and negl(·) is a negligible function.

One-Time Secrecy. Traditionally, security for one-time compilers have been
defined in presence of secure hardware or memory devices.

In this work we adapt the traditional definition of one-time compilers from a
combination of hardware-software setting to only software setting, but in pres-
ence of a blockchain protocol.

Definition 3. A one-time compiler OTC = (Compile,Eval) for a class of circuits
C = {Cn}n is said to be a B/C-selectively-secure one-time compiler if for every
admissible PPT adversary A, there exists a PPT simulator Sim such that for all
λ, n, C ∈ Cn and x ∈ {0, 1}n, the following holds:

{

viewSim

(

EXECΓ V
(

Sim
(

1n, 1|C|, x, C(x)
)

,Z, 1λ
))}

≈c
{

viewA
(

EXECΓ V (A (CC) ,Z, 1λ
)

)

: CC ← Compile(1λ, C)
}

where adversary A is admissible if it evaluates the one-time program CC on x
before evaluating on any other input.

546 R. Goyal and V. Goyal

4 Proof-of-Stake Protocols: Abstraction and Definitions

In this paper, we work in the execution model for proof-of-stake based protocols
described in previous section. It is reasonable to assume that any adversary in
this model would have full access to the blockchain as well as could possibly affect
the protocol execution by adversarially mining for blocks or deviating from the
protocol. It also seems reasonable to assume that no real-world adversary could
run with a majority stake, or in other words majority voting power, as otherwise
such an adversary could possibly affect the protocol execution arbitrarily, thereby
destroying any guarantee that we could hope to get. All such restrictions could be
captured by defining the adversary and environment to be sufficiently restrictive
by considering appropriate compliant executions as discussed in previous section.

In this section, we define various security properties for proof-of-stake based
blockchain protocols. We would like to point out that prior works [12,13,19–
21,37,38,43–45] have mostly considered only chain consistency, chain quality
and chain growth as desiderata for blockchain protocols. We, on the other hand,
also introduce many new security properties inspired by the notions of stake
contribution and adversarial forking in POS based protocols. Later we also show
that existing POS based protocols [13,38] already satisfy these stronger security
properties. We believe that these new properties will have wider applicability
as already suggested by our NIZK, one-time program and pay-per-use program
constructions.

We also extend the abstraction for blockchain protocols to introduce addi-
tional POS specific abstracts. Below we introduce some necessary notations and
definitions.

Notations. We denote by B�� the chain resulting from the “pruning” last � blocks
in B. Note that for � ≥ |B|, B�� = ε. Also, if B1 is a prefix of B2, then we write
B1 	 B2. We also use B�	 to denote the chain containing last � blocks in B, i.e.
B�	 = B \ B��. Note that for � ≥ |B|, B�	 = B.

Let EXECΓ (A,Z, 1λ) be the random variable denoting the joint view of all
parties in the protocol execution. This fully determines the execution. Recall that
each blockchain protocol is also associated with a validity predicate, however we
avoid explicitly mentioning it whenever possible.

For any POS based blockchain protocol Γ , there exists a polynomial time
algorithm stake : {0, 1}∗ × {0, 1}∗ → Q

+ which takes as inputs the blockchain
B and a public identity id, and outputs a rational value. Concretely, consider a
party P with public identity id, we use stake(B, id) to denote the stake of party
P as per the blockchain B. For an adversary A that controls all parties with
public identities in the set X , its total stake as per blockchain B can computed
as

∑

id∈X stake(B, id). We overload the notation and use stake(B,A) to denote
A’s total stake, and staketotal to denote the combined stake of all parties i.e.
staketotal =

∑

id stake(B, id). Also, we will simply write stakeA whenever B is
clear from context.

Overcoming Cryptographic Impossibility Results Using Blockchains 547

For any PPT adversary A, the adversarial stake ratio stake-ratioA(B) w.r.t.
blockchain B is defined as the ratio of A’s total stake over combined stake of all
parties. More formally,

stake-ratioA(B) =
stakeA
staketotal

.

We will drop dependence of stake-ratioA on blockchain B whenever clear from
context.

Also, let miner : {0, 1}∗ × N → {0, 1}∗ be a function that takes as input the
blockchain B and an index i, and returns the public identity of the party that
mined the ith block, where blocks are counted from the head of the blockchain.11

We overload the notation and use miner(B, [�]) to denote the set of public iden-
tities of all parties that mined at least one block in the last � blocks of the
blockchain B.12

4.1 Chain Consistency

First, we define the chain consistency property for blockchain protocols Γ
with environment Z and adversary A. At a very high level, it states that the
blockchains of any two honest parties at any two (possibly different) rounds dur-
ing protocol execution can differ only in the last � blocks with all but negligible
probability, where � parameterizes strength of the property. In other words, this
suggests that if any party is honestly executing the blockchain protocol, then it
could always assert that any block which is at least � blocks deep in its blockchain
is immutable.

A more general definition appears in [43] which is an extension of the com-
mon prefix property by Garay et al. [19]. As in prior works, we first define the
consistency predicate and then use it to define the chain consistency property
for blockchain protocols.

Predicate 1 (Consistency). Let consistent be the predicate such that
consistent�(view) = 1 iff for all rounds r ≤ r̃, and all players i, j (potentially
the same) in view such that i is honest at round r with blockchain B and j is
honest at round r̃ with blockchain ˜B, we have that B�� 	 ˜B.

Definition 4 (Chain Consistency). A blockchain protocol Γ satisfies �0(·)-
consistency with adversary A in environment Z, if there exists negligible function
negl(·) such that for every λ ∈ N, � > �0(λ) the following holds:

Pr
[

consistent�(view) = 1
∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≥ 1 − negl(λ).

11 The rightmost (i.e., most recently added) block is called the head of the blockchain.
12 Note that a party could potentially mine more than one block in a sequence of �

blocks.

548 R. Goyal and V. Goyal

4.2 Defining Stake Fraction

For any POS based blockchain protocol, we could define special quantitative
measures for a blockchain analogous to the combined difficulty or ‘length’ mea-
sure as in case of POW based protocols. For example, in Bitcoin ‘length’ of a
chain of blocks is computed as the sum of difficulty of all individual blocks where
difficulty is measured as the hardness of puzzle solved.

Note that in any POS based protocol, ideally the number of blocks mined
by any party directly depends on its stake, or in other words, voting power is
proportional to the amount of stake with a party. Also, each new block added
to the blockchain contains an efficiently verifiable proof of stake provided by a
miner in the form of digital signatures. So, for POS based protocols, we could
measure difficulty in terms of the amount of stake proven per block. The analogy
being that solving POW puzzles with high difficulty requires more work (higher
voting power) from a miner, and since voting power in POS based protocols is
measured in terms of stake ratio, so for such protocols difficulty is measured as
the amount of stake proven. Below we formally define such a measure.

Definition 5 (Proof-of-Stake Fraction). The proof-of-stake fraction
u-stakefrac(B, �) w.r.t. blockchain B is defined as the combined amount of
unique stake whose proof is provided in last � mined blocks. More formally, let
M = miner(B, [�]),

u-stakefrac(B, �) =
∑

id∈M stake(B, id)
staketotal

.

In the above definition, it is important to note that we are only interested in
the amount of unique stake proven. To understand this, first note that if some
party added proof of its stake on the blockchain (i.e., mined a new block), then it
would increase the probability of other parties mining on top of the newly mined
block instead of mining on top of the previous block. However, if a certain single
party with a low total stake is mining an unreasonably high proportion of blocks
in a short span of rounds (or for simplicity all the blocks) on some chain, then
other parties might not want to extend on top of such a blockchain as it could
possibly correspond to an adversarial chain of blocks. So, by considering only
unique stake we could use proof-of-stake fraction to (approximately) distinguish
between (possibly) adversarial and honest blockchains as a higher proof-of-stake
fraction increases confidence in that chain.

For some applications, we also need to consider only the amount of stake
whose proof was provided by the honest parties in the blockchain. Below we
define the proof-of-honest-stake fraction.

Definition 6 (Proof-of-Honest-Stake Fraction). The proof-of-honest-stake frac-
tion u-honest-stakefrac(B, �) w.r.t. blockchain B is defined as the combined
amount of unique stake held by the honest parties whose proof is provided in
last � mined blocks. More formally, let M = miner(B, [�]) and Mhonest denote
the honest parties in M, then

Overcoming Cryptographic Impossibility Results Using Blockchains 549

u-honest-stakefrac(B, �) =

∑

id∈Mhonest
stake(B, id)

staketotal
.

4.3 Stake Contribution Properties

In the previous section, we defined the notion of proof-of-stake fraction and
proof-of-honest-stake fraction. Now, we define some useful properties for POS
based blockchain protocols inspired by the above stake abstraction. We know
that in any POS based protocol each mined block contains a proof of stake.
At a very high level, the sufficient stake contribution property says that in a
sufficiently long sequence of valid blocks, a significant amount of stake has been
proven.

In other words, it says that after sufficiently many rounds, the amount of
proof-of-stake added in mining the � most recent blocks is a fairly high fraction
(at least β) of the total stake in the system, where � and β are property para-
meters denoting the length of chain and minimum amount of stake fraction in
it (respectively). More formally, we define it as follows.

Predicate 2 (Sufficient Stake Contribution). Let suf-stake-contr be the predi-
cate such that suf-stake-contr�(view, β) = 1 iff for every round r ≥ �, and each
player i in view such that i is honest at round r with blockchain B, we have that
last � blocks in blockchain B contain a combined proof of stake of more than
β · staketotal, i.e. u-stakefrac(B, �) > β.

Below we define the sufficient stake contribution property for blockchain pro-
tocols.

Definition 7 (Sufficient Stake Contribution). A blockchain protocol Γ satisfies
(β(·), �0(·))-sufficient stake contribution property with adversary A in environ-
ment Z, if there exists a negligible function negl(·) such that for every λ ∈ N,
� ≥ �0(λ) the following holds:

Pr
[

suf-stake-contr�(view, β(λ)) = 1
∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≥ 1 − negl(λ).

Previously we defined the notion of proof-of-honest-stake fraction along the
lines of proof-of-stake fraction in which only the amount of honestly held stake
was measured. Analogously, we could define the sufficient honest stake contri-
bution property which says that in a sufficiently long sequence of valid blocks,
a significant amount of honestly held stake has been proven.

Predicate 3 (Sufficient Honest Stake Contribution). Let honest-suf-stake-contr
be the predicate such that honest-suf-stake-contr�(view, β) = 1 iff for every round
r ≥ �, and each player i in view such that i is honest at round r with blockchain
B, we have that last � blocks in blockchain B contain a combined proof of honest
stake of more than β · staketotal, i.e. u-honest-stakefrac(B, �) > β.

550 R. Goyal and V. Goyal

Definition 8 (Sufficient Honest Stake Contribution). A blockchain protocol Γ
satisfies (β(·), �0(·))-sufficient honest stake contribution property with adversary
A in environment Z, if there exists a negligible function negl(·) such that for
every λ ∈ N, � ≥ �0(λ) the following holds:

Pr
[
honest-suf-stake-contr�(view, β(λ)) = 1

∣∣ view ← EXECΓ
(
A, Z, 1λ

)]
≥ 1 − negl(λ).

4.4 Bounded Forking Properties

Note that during protocol execution, any adversary could possibly generate a pri-
vate chain of blocks which may or may not satisfy blockchain validity predicate,
and may significantly diverge from the local blockchain in the view of honest
parties. We call such a private chain of blocks, created by the adversary, a fork.
In this work, we consider the following bounded forking properties which (at a
very high level) require that no polytime adversary can create a sufficiently long
fork containing valid blocks such that the combined amount of proof of stake
proven in that fork is higher than certain threshold.

We start by defining the bounded stake forking property which says that if
an adversary creates a fork of length at least �1 + �2 then the proof-of-stake
fraction in the last �2 blocks of the fork is not more than α, where α, �1, �2 are
property parameters with α being the threshold and �1 + � denoting the fork
length. More formally, we first define the bounded stake fork predicate and then
use it to define the bounded stake forking property.

Predicate 4 (Bounded Stake Fork). Let bd-stake-fork be the predicate such that
bd-stake-fork(�1,�2)(view, α) = 1 iff for all rounds r ≥ r̃, for each pair of players
i, j in view such that i is honest at round r with blockchain B and j is corrupt

in round r̃ with blockchain ˜B, if there exists �′ ≥ �1 + �2 such that ˜B
��′

	 B and

for all ˜� < �′, ˜B
��̃ �	 B, then u-stakefrac(˜B, �′ − �1) ≤ α.

Definition 9 (Bounded Stake Forking). A blockchain protocol Γ satisfies
(α(·), �1(·), �2(·))-bounded stake forking property with adversary A in environ-
ment Z, if there exists a negligible functions negl(·), δ(·) such that for every
λ ∈ N, � ≥ �1(λ), ˜� ≥ �2(λ) the following holds:

Pr
[
bd-stake-fork(�,�̃)(view, α(λ) + δ(λ)) = 1

∣∣ view ← EXECΓ
(
A, Z, 1λ

)]
≥ 1−negl(λ).

The above property only stipulates that the proof-of-stake fraction of any
adversarially generated fork is bounded. However, we additionally might expect
a POS based blockchain protocol to satisfy the sufficient stake contribution prop-
erty which states that any honest party’s blockchain will have sufficiently high
proof-of-stake fraction. Therefore, combining both these properties, we could
define a stronger property for blockchain protocols which states that a suffi-
ciently long chain of blocks generated during an honest protocol execution could
always be distinguished from any adversarially generated fork. Also, the com-
bined amount of stake proven in those sequences (i.e., its proof-of-stake fraction),
which could be computed in polynomial time, could be used to distinguish such
sequences. Formally, we could define it as follows.

Overcoming Cryptographic Impossibility Results Using Blockchains 551

Definition 10 (Distinguishable Forking). A blockchain protocol Γ satisfies
(α(·), β(·), �1(·), �2(·))-distinguishable forking property with adversary A in envi-
ronment Z, if there exists a negligible functions negl(·), δ(·) such that for every
λ ∈ N, � ≥ �1(λ), ˜� ≥ �2(λ) the following holds:

Pr

[
α(λ) + δ(λ) < β(λ) ∧ suf-stake-contr�̃(view, β(λ)) = 1

∧ bd-stake-fork(�,�̃)(view, α(λ) + δ(λ)) = 1

∣∣∣∣view ← EXECΓ
(

A, Z, 1
λ
)]

≥ 1 − negl(λ).

5 Instantiating Our Framework

In this section, we show that the proposed proof-of-stake based blockchain proto-
cols of [13,38] satisfy all the properties described in Sect. 4 for suitable parame-
ters. We start by defining some additional properties for POS based blockchain
protocols and then discuss relations among all these.

5.1 Chain Quality and Bounded Length Forking

Chain Quality. Another important property defined in prior works is of chain
quality which was initially informally discussed on the Bitcoin forum [41], and
formally defined by [19]. At a high level, it says that the number of blocks
contributed by the adversary should not be very large, or in other words its
contribution must be proportional to its voting power. Alternatively, this could
be interpreted as a measure of fairness in the protocol and used to define a lower
bound on the number of blocks contributed by honest parties. To be consistent
with prior works, we define chain quality predicate with respect to the fraction
of honest blocks.

Predicate 5 (Quality). Let quality be the predicate such that quality�
A(view, μ) =

1 iff for every round r ≥ �, and each player i in view such that i is honest at
round r with blockchain B, we have that out of � blocks in B�	 at least μ fraction
of blocks are “honest”.

Note that a block is said to be honest iff it is mined by an honest party.
Below we recall the chain quality property for blockchain protocols as it appears
in prior works.

Definition 11 (Chain Quality). A blockchain protocol Γ satisfies (μ(·), �0(·))-
chain quality with adversary A in environment Z, if there exists a negligible
function negl(·) such that for every λ ∈ N, � ≥ �0(λ) the following holds:

Pr
[

quality�
A(view, μ(λ)) = 1

∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≥ 1 − negl(λ).

552 R. Goyal and V. Goyal

Bounded Length Forking. Additionally, we would expect a POS based blockchain
protocol to satisfy the property that — no PPT adversary should be able to gen-
erate (with non-negligible probability) a sufficiently long fork that satisfies all
validity conditions and the last block in that fork was mined by an honest party.
The intuition behind this is that if the adversary can generate such a sufficiently
long chain, then it would mean that it could prevent consensus between hon-
est parties for a sufficiently long time. To formally capture this, we define the
bounded length forking property over blockchain protocols as follows.

Predicate 6 (Bounded Length Fork). Let bd-length-fork be the predicate such
that bd-length-fork�(view) = 1 iff there exists rounds r, r̃, players i, j in view such
that i is honest at round r with blockchain B and j is corrupt at round r̃ with

blockchain ˜B, and there exists �′ ≥ � such that ˜B
��′

	 B and for all ˜� < �′,
˜B

��̃ �	 B, and the last block in chain vvB is honest (i.e., not mined by the
adversary).

Definition 12 (Bounded Length Forking). A blockchain protocol Γ satisfies
�0(·)-bounded length forking property with adversary A in environment Z, if
there exists a negligible function negl(·) such that for every λ ∈ N, � ≥ �0(λ) the
following holds:

Pr
[

bd-length-fork�(view) = 1
∣

∣ view ← EXECΓ
(A,Z, 1λ

)

]

≤ negl(λ).

In the full version, we prove the following theorem.

Theorem 1. Let n be the number of nodes executing the blockchain protocol
Γsnowwhite, p be the probability that a node is elected leader in a given round, and
δh, δc be the respective probabilities of the elected node being honest or corrupt,
and δd be the discounted version of δh in presence of adversarial network delays.
If the stake is distributed as a (m,β, γ)-stake distribution and the adversary is α-
stake bounded and proof of stake is unforgeable, then for any constant ε1, ε2 > 0,

any �1 ≥ ε1λ, �2 ≥ log(m) + ω(log(λ))
μγ

where μ = (1 − ε2)(1 − δc/δh), Γsnowwhite

satisfies:

1. �1-consistency,
2. ((1 − ε2)(1 − δc/δh), �1)-chain quality,
3. ((1 − ε2)δd, (1 − ε2)np, �1)-chain growth,
4. (β, �2)-sufficient stake contribution,
5. (β, �2)-sufficient honest stake contribution,
6. �1-bounded length forking,
7. (α, �1, �2)-bounded stake forking,
8. (α, β, �1, �2)-distinguishable forking

against any Γsnowwhite-compliant adversary-environment pair (A,Z).

A similar theorem could also be stated for Γouroboros.

Overcoming Cryptographic Impossibility Results Using Blockchains 553

6 NIZKs over Blockchain

In this section, we provide our construction for NIZKs from NIWIs and weighted
threshold secret sharing scheme over any POS based blockchain protocol under
an additional assumption that each miner’s signing-verification key pair could be
used as an decryption-encryption key pair. In other words, we assume that the
blockchain protocol uses a public key integrated encryption-signature scheme.13

Below we describe the main ideas.

Outline. Suppose the blockchain protocol satisfies �1-chain consistency, (β, �2)-
sufficient honest stake contribution and (1 − α, �3, �4)-bounded stake forking
properties. By chain consistency property, we know that all honest parties agree
on all but last �1 (or less) blocks of blockchain B. Also, bounded stake forking
property suggests that no PPT adversary can generate a fork of length ≥ �3 + �4
such that the proof-of-stake fraction after the first �3 blocks of the fork is more
than 1 − α.

At a high level, the scheme works as follows. An honest prover takes as input
an instance-witness pair (x,w) and a blockchain B. It starts by extracting, from
its blockchain, the public identities (thereby public keys) of all the parties who
mined a block in last �2 blocks of blockchain B��1 . In other words, it selects
a committee of miners from the most recent part of its blockchain which has
become globally persistent. Now, the NIZK proof of the statement x ∈ L consists
of — (1) a set of ciphertexts {ctid} (one for each miner selected as part of the
committee), and (2) a witness-indistinguishable proof for the statement “x ∈ L
OR the ciphertexts {ctid} together encrypt a fork of length more than �3 + �4
such that the proof-of-stake fraction after the first �3 blocks of the fork is more
than 1 − α”. In short, the witness-indistinguishable proof proves that either
x ∈ L or the prover can break the bounded stake forking property. Since the
above language is in NP, an honest prover simply encrypts random values in
ciphertexts {ctid} and uses witness w for the witness-indistinguishable proof.
The prover outputs its blockchain B, ciphertexts {ctid}, witness-indistinguishable
proof and all the blockchain property parameters.

The verifier on input an instance x, proof π and blockchain B performs two
checks — (1) the prover’s blockchain is consistent with its local blockchain, and
(2) the witness-indistinguishable proof gets verified. The completeness follows
directly from the correctness properties of underlying primitives. Intuitively, the
soundness is guaranteed by the fact that the blockchain protocol satisfies the
(1 − α, �3, �4)-bounded stake forking property, and the system is zero-knowledge
because a simulator can generate a witness for the trapdoor part of the state-
ment (i.e., it could generate a long fork satisfying the minimum proof-of-stake
constraint) as it controls all the honest parties executing the blockchain, there-
fore it could use their signing keys to compute such a fork privately. For making
13 As we mentioned before, most blockchain protocols (like Bitcoin, Ethereum etc.)

use ECDSA based signature schemes for which we could directly use ECIES-like
integrated encryption schemes [47]. Thus, our NIZKs are instantiable over existing
blockchain protocols.

554 R. Goyal and V. Goyal

the system an argument of knowledge as well, we could additionally make the
prover secret share the witness and encrypt a share to each member of the com-
mittee it selected. It will be crucial that the secret sharing scheme be a weighted
threshold scheme as will become clearer later in this section.

Below we start by describing the valid-fork predicate which will be used later
while defining the trapdoor part of the statement.

Predicate 7. Let valid-fork be the predicate such that it is satisfied iff the
blockchain ˜B contains a fork of length at least �1 + �2 such that the fork satisfies
the blockchain validity predicate as well as the the proof-of-stake fraction in the
last �2 blocks of the fork is at least γ. More formally, valid-forkV (B, ˜B, �1, �2, γ) =

1 iff there exists �′ ≥ �1 + �2 such that ˜B
��′

	 B and for all ˜� < �′, ˜B
��̃ �	 B,

and u-stakefrac(˜B, �′ − �1) ≥ γ.

6.1 Construction

Let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain proto-
col, and (PNIWI,VNIWI) is a NIWI argument system for NP, and SS =
(Share,Rec) be a weighted threshold secret sharing scheme, and HS =
(Setup,Enc,Dec,Sign,Verify) be a public key integrated encryption-signature
scheme. Below we describe our NIZK construction for an NP language L over
blockchains.

– P (

params = (1�1 , 1�2 , 1�3 , 1�4 , α, β),B, x, w
)

: The prover algorithm takes as
input the length parameters �1, �2, �3, �4, stake fraction parameters α, β, a
blockchain B, an instance x and a witness w such that R(x,w) = 1 where R
is the instance-witness relation for language L.
Let B′ correspond to the blockchain B with last �1 blocks pruned, i.e. B′ =
B��1 . Let M denote the set of miners who mined at least one block in the last
�2 blocks of the blockchain B′, i.e. M = miner(B′, [�2]). Also, let stakeid =
stake(B′, id) and pkid be the stake and public key of party id, respectively.14

First, it secret shares the witness w and an all zeros string (separately) into
|M| shares with weights {stakeid}id∈M and threshold β · staketotal as follows
{shid,1}

id
= Share(w, {stakeid}id , β · staketotal; s1), {shid,2}

id
= Share(0, {stakeid}id , β · staketotal; s2).

Next, it encrypts all these shares as follows

∀ id ∈ M, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2).

Finally, it computes a NIWI proof π′ for the following statement

∃ {shi, ri}i∈M , s such that

({shi}i = Share(w, {stakeid}id , β · staketotal; s) ∧
∀ i, cti,1 = Enc(pki, shi; ri) ∧ R(x, w) = 1

)

∨({shi}i = Share(B̃, {stakeid}id , β · staketotal; s) ∧
∀ i, cti,2 = Enc(pki, shi; ri) ∧ valid-forkV (B′, B̃, �3, �4, 1 − α)

)

14 Observe that since HS is an integrated encryption-signature scheme, therefore the
public verification keys of all parties executing the blockchain protocol could be used
for encryption as well.

Overcoming Cryptographic Impossibility Results Using Blockchains 555

using the NIWI prover algorithm PNIWI with
({shid,1, rid,1}id , s1

)

as the wit-
ness. Finally, it sets the proof π as

π =
(

π′,B, {ctid,1, ctid,2}id , params = (1�1 , 1�2 , 1�3 , 1�4 , α, β)
)

.

– V (B, x, π) : Let π =
(

π′,B, {cti,1, cti,2}i , params = (1�1 , 1�2 , 1�3 , 1�4 , α, β)
)

.
The verifier starts by checking that blockchains B and B are �1-consistent,
i.e. B

��1 	 B, as well as verifier’s blockchain B is at least as long as prover’s
blockchain B, i.e. |B| ≤ |B|. If these check fail, then verifier rejects the proof
and outputs 0. Otherwise, it runs the NIWI verifier algorithm VNIWI to verify
proof π′ and outputs same as the NIWI verifier.

6.2 Security Proof

We will now show that the NIZKs described in Sect. 6.1 is NIZK argument of
knowledge as per Definition 2. More formally, we prove the following theorem
where all the parameters are polynomials in the security parameter λ.

Theorem 2. If (PNIWI,VNIWI) is a NIWI argument system for NP, SS is a
weighted threshold secret sharing scheme, HS is a secure integrated public key
encryption-signature scheme (Definition 1), and blockchain protocol ΓV satis-
fies �1-chain consistency, (β, �2)-sufficient honest stake contribution properties
against all PPT adversaries with at most α stake ratio, and (1−α, �3, �4)-bounded
stake forking property against all PPT adversaries with at most α+β stake ratio,
then (P,V) with parameters α, β, �1, �2, �3, �4 is a NIZK argument of knowledge
for any NP language L over blockchain protocol ΓV against all PPT adversaries
with at most α stake ratio.

We provide the proofs of completeness, soundness, zero-knowledge and argu-
ment of knowledge in the full version.

7 One-Time Programs over Blockchain

In this section, we provide our construction for one-time compilers from gar-
bled circuits and extractable witness encryption over any POS based blockchain
protocol. Below we describe the main ideas.

Outline. Suppose the blockchain protocol satisfies (α, β, �1, �2)-distinguishable
forking property. We know that distinguishable forking property suggests that
no PPT adversary can generate a fork of length ≥ �1 + �2 such that the proof-of-
stake fraction after the first �1 blocks of the fork is more than α. Additionally,
it also implies that the proof-of-stake fraction in any �2 consecutive blocks in an
honest party’s blockchain will be at least β, with β being non-negligibly higher
than α.

At a high level, the scheme works as follows. To compile a circuit C over
blockchain B, the compilation algorithm first garbles the circuit to compute a

556 R. Goyal and V. Goyal

garbled circuit and wire keys. Suppose we encrypt the wire keys using public key
encryption and set the corresponding one-time program as the garbled circuit
and encrypted wire keys. This suggests that the evaluator must interact with the
compiling party to be able to evaluate the program. However, one-time programs
are not defined in an interactive setting. Therefore, we need to somehow allow
conditional release/conditional decryption of encrypted wire keys for evaluation.
Additionally, we need to make sure that the evaluator only learns the wire keys
corresponding to exactly one input as otherwise it will not satisfy the one-time
secrecy condition. To this end, we encrypt the wire keys using witness encryption
scheme such that, to decrypt the wire keys, the evaluator needs to produce a
blockchain B′ as a witness where B′ must satisfy the following conditions — (1)
there exists a block in B′ which contains the input (on which evaluator wants
to evaluate the circuit), (2) there are at least �1 + �2 more blocks after the input
block such that the proof-of-stake fraction in the last �2 blocks of B′ is more
than β, and (3) there does not exists any other block which posts a different
input.

To evaluate such a compiled program, the evaluator needs to post its input on
the blockchain, and then wait for it to get added to blockchain and get extended
by �1 + �2 blocks. Afterwards, it could simply use its blockchain as a witness
to decrypt appropriate wire keys and then evaluate the garbled circuit using
those keys. Intuitively, this would satisfy the one-time secrecy property because
in order to evaluate the program on a second input the adversary needs to fork
the blockchain before the input block. Now, since the distinguishable forking
property guarantees that no PPT adversary can generate such a fork (of length
more than �1 + �2) with non-negligible probability, therefore one-time secrecy
follows.

We start by describing the NP language for which we assume existence of
a secure extractable witness encryption scheme. Next we develop our one-time
compilers on top of a blockchain protocol, and finally show our construction
satisfies one-time secrecy property.

7.1 NP Relation on Blockchain Protocols

Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol with
validity V . Consider the following relation.

Definition 13. Let RΓ V be a relation on the blockchain protocol ΓV . The
instances and witnesses satisfying the relation are of the form

x = (1λ, st, 1�1 , 1�2 , 1n, β, i, b, uid), w = ˜st.

Let B = GetRecords(1λ, st) and ˜B = GetRecords(1λ, ˜st). The instance-witness
pair satisfies the relation ((x,w) ∈ RΓ V) if and only if all the following properties
are satisfied:

– Blockchains B and ˜B are valid, i.e. V (B) = V (˜B) = 1

Overcoming Cryptographic Impossibility Results Using Blockchains 557

– B is a prefix of ˜B, i.e. they are consistent15
– There exists a unique block B∗ ∈ ˜B \ B such that the following are satisfied

• There exists a unique record m∗ in B∗ such that m∗ = (uid, y), y is an
n-bit string and yi = b

• Let �′ be the number of blocks in blockchain ˜B after block B∗, i.e. B∗ ∈
˜B

��′

. It should hold that �′ ≥ �1 + �2 and u-stakefrac(˜B, �′ − �1) > β

Remark 1. The uniqueness of block B∗ and record m∗ is defined in the following
way. There must not exist any other block (i.e., apart from B∗) in the entire
witness blockchain ˜B such that it contains a record m of the form (uid, z) where
z is any n-bit string. Similarly, there must not exist any record m other than
m∗ in block B∗ that satisfies the same property.

Let LΓ V be the language specified by the relation RΓ V . This language is in
NP because verifying validity of blockchains take only polynomial time and all
the properties in Definition 13 could also be verified simultaneously.

7.2 One-Time Compilers

Let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol, and
GC = (GC.Garble,GC.Eval) be a garbling scheme for circuit family C = {Cn}n,
and WE = (Enc,Dec) be a witness encryption scheme for language LΓ V. Below
we describe our one-time compilers OTC = (Compile,Eval) for circuit family
C = {Cn}n in the blockchain model.

– Compile(1λ, 1�1 , 1�2 , β, C ∈ Cn): The compilation algorithm first garbles the
circuit C by computing (G, {wi,b}i≤n,b∈{0,1}) ← GC.Garble(1λ, C). Next, it
encrypts each of the wire keys wi,b separately under instances xi,b as follows:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1�1 , 1�2 , 1n, β, i, b, uid = G), cti,b ← Enc(1λ, xi,b, wi,b),

where st is its local blockchain state. Finally, it sets the compiled circuit as
CC =

(

1λ, 1�1 , 1�2 , G, {cti,b}i≤n,b∈{0,1}
)

.
– Eval(CC, y ∈ {0, 1}n): Let CC =

(

1λ, 1�1 , 1�2 , G, {cti,b}i≤n,b∈{0,1}
)

. It
first posts input y on the blockchain by running Broadcast algorithm as
Broadcast(1λ, (G, y)).
It runs the UpdateState algorithm, and waits for message (G, y) to be posted
on the blockchain and further the chain to be extended by �1 + �2 blocks.
After the blockchain gets extended, it uses its own local state st as a witness
to decrypt the wire keys corresponding to input y as

∀i ≤ n, wi = Dec(cti,yi
, st).

It then uses these n wire keys to evaluate the garbled circuit, and outputs
GC.Eval(G, {wi}i≤n). If the witnes decryption fails (outputs ⊥), then it also
outputs ⊥.

15 Formally, the consistency should be checked as B�κ � B̃ for an appropriate value of
parameter κ (Definition 4), however for ease of exposition we avoid it.

558 R. Goyal and V. Goyal

Correctness. Fix any λ, n, �1, �2, β, and circuit C ∈ Cn. Let
(G, {wi,b}) ← GC.Garble(1λ, C), xi,b = (1λ, st, 1�1 , 1�2 , 1n, β, i, b,G), and cti,b ←
Enc(1λ, xi,b, wi,b).

For any input y ∈ {0, 1}n, consider that an evaluator runs Broadcast
algorithm to post (G, y) on the blockchain. Let ˜st be the local state of the
evaluator after message (G, y) is posted on blockchain and it is extended by
�1 + �2 blocks. Assuming that evaluator and compiler’s blockchain are consistent
(Definition 4), then with all but negligible probability for all i ≤ n, ˜st could
be used as the witness to decrypt ciphertexts cti,yi

as (xi,yi
, ˜st) ∈ RΓ V . This

is true because consistency property guarantees that, with all but negligible
probability, the blockchains B and ˜B will be consistent. Additionally, the stake
quantity property (Definition 7) guarantees that (with all but negligible prob-
ability) the condition u-stakefrac(˜B, �′ − �1) > β will be satisfied. Therefore,
Dec(cti,yi

, st) = wi,yi
which follows from correctness of the witness encryption

scheme. Finally, GC.Eval(G, {wi,yi
}i≤n) = C(y) as it follows from correctness of

the garbling scheme. Therefore, OTC satisfies the one-time compiler correctness
condition.

Remark 2. Our one-time compiler takes additional parameters �1, �2 and β as
inputs, which we refer to as the hardness parameters. The primary purpose of
�1, �2 and β is to connect the efficiency of our compiled circuit to an appropriate
hardness assumption on the blockchain protocol. Informally, increasing value of
�1 and �2 reduces efficiency of our compiled circuit as the evaluator needs to wait
for longer time (more blocks) in order to evaluate the circuit. At the same time,
reducing �1 and �2 increases the strength of the assumption on the blockchain.
The latter will get highlighted in the security proof. The effect of choice of β has
an indirect impact on efficiency, although it affects the same way as �1, �2.

The security proof will be provided in the full version.

Acknowledgements. We thank Krzysztof Pietrzak and anonymous TCC reviewers
for their useful feedback. The second author is supported in part by NSF CNS-1228599
and CNS-1414082, DARPA SafeWare.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6 3

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44774-1 8

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, 18–21 May 2014

http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-662-44774-1_8

Overcoming Cryptographic Impossibility Results Using Blockchains 559

4. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate, or how to compress garbled circuit keys. SIAM J. Comput.
44(2), 433–466 (2015)

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

6. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34961-4 10

7. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS
2012 (2012)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, USA, 2–4 May 1988

9. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 25

10. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv preprint
arxiv:1605.04559 (2016)

11. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 24

12. Bentov, I., Pass, R., Shi, E.: The sleepy model of consensus. Cryptology ePrint
Archive, Report 2016/918 (2016). http://eprint.iacr.org/2016/918

13. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Cryptol-
ogy ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.org/2016/919

14. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
Cryptology ePrint Archive, Report 2015/1015 (2015)

15. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

16. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

17. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

18. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426 (1990)

19. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 10

20. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. Cryptology ePrint Archive, Report 2016/1048 (2016)

21. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain – directly. Cryptology ePrint Archive, Report 2016/991 (2016). http://
eprint.iacr.org/2016/991

http://dx.doi.org/10.1007/978-3-642-34961-4_10
http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://arxiv.org/abs/1605.04559
http://dx.doi.org/10.1007/978-3-662-44381-1_24
http://eprint.iacr.org/2016/918
http://eprint.iacr.org/2016/919
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2016/991
http://eprint.iacr.org/2016/991

560 R. Goyal and V. Goyal

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

24. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 29

25. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC (2013)

26. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptology (1994)

27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989).
http://dx.doi.org/10.1137/0218012

28. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40084-1 30

29. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 3

30. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 19

31. Goyal, V., Katz, J.: Universally composable multi-party computation with an unre-
liable common reference string. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 142–154. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8 9

32. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-74143-5 18

33. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 7

34. Jager, T.: How to build time-lock encryption. Cryptology ePrint Archive, Report
2015/478 (2015). http://eprint.iacr.org/2015/478

35. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42033-7 1

36. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 21

37. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
Cryptology ePrint Archive, Report 2015/1019 (2015). http://eprint.iacr.org/2015/
1019

38. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report 2016/889
(2016). http://eprint.iacr.org/2016/889

http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-44371-2_29
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-540-85174-5_3
http://dx.doi.org/10.1007/978-3-642-11799-2_19
http://dx.doi.org/10.1007/978-3-540-78524-8_9
http://dx.doi.org/10.1007/978-3-540-74143-5_18
http://dx.doi.org/10.1007/978-3-540-74143-5_7
http://eprint.iacr.org/2015/478
http://dx.doi.org/10.1007/978-3-642-42033-7_1
http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/889

Overcoming Cryptographic Impossibility Results Using Blockchains 561

39. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computa-
tions. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, 3–7 November 2014

40. Liu, J., Kakvi, S.A., Warinschi, B.: Extractable witness encryption and timed-
release encryption from bitcoin. Cryptology ePrint Archive, Report 2015/482
(2015). http://eprint.iacr.org/2015/482

41. mtgox (2010). https://bitcointalk.org/index.php?topic=2227.msg29606#
msg29606

42. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
43. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchro-

nous networks. IACR Cryptology ePrint Archive (2016). http://eprint.iacr.org/
2016/454

44. Pass, R., Shi, E.: Fruitchains: a fair blockchain. Cryptology ePrint Archive, Report
2016/916 (2016). http://eprint.iacr.org/2016/916

45. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
Cryptology ePrint Archive, Report 2016/917 (2016). http://eprint.iacr.org/2016/
917

46. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, 31 May–03 June 2014, pp. 475–484 (2014)

47. Shoup, V.: A proposal for an ISO standard for public key encryption (version 2.1)
(2001)

48. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14623-7 17

49. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014)
50. Yao, A.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)

http://eprint.iacr.org/2015/482
https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606
https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606
http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/916
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2016/917
http://dx.doi.org/10.1007/978-3-642-14623-7_17

Multiparty Computation

Secure Two-Party Computation with Fairness -
A Necessary Design Principle

Yehuda Lindell1(B) and Tal Rabin2

1 Deptartment of Computer Science, Bar-Ilan University, Ramat Gan, Israel
lindell@biu.ac.il

2 IBM T.J. Watson Research Center, New York, USA
talr@us.ibm.com

Abstract. Protocols for secure two-party computation enable a pair of
mutually distrustful parties to carry out a joint computation of their
private inputs without revealing anything but the output. One impor-
tant security property that has been considered is that of fairness which
guarantees that if one party learns the output then so does the other.
In the case of two-party computation, fairness is not always possible,
and in particular two parties cannot fairly toss a coin (Cleve, 1986).
Despite this, it is actually possible to securely compute many two-party
functions with fairness (Gordon et al., 2008 and follow-up work). How-
ever, all known two-party protocols that achieve fairness have the unique
property that the effective input of the corrupted party is determined at
an arbitrary point in the protocol. This is in stark contrast to almost
all other known protocols that have an explicit fixed round at which the
inputs are committed.

In this paper, we ask whether or not the property of not having an
input committal round is inherent for achieving fairness for two par-
ties. In order to do so, we revisit the definition of security of Micali
and Rogaway (Technical report, 1992), that explicitly requires the exis-
tence of such a committal round. We adapt the definition of Canetti
in the two-party setting to incorporate the spirit of a committal round,
and show that under such a definition, it is impossible to achieve fair-
ness for any non-constant two-party function. This result deepens our
understanding as to the type of protocol construction that is needed for
achieving fairness. In addition, our result discovers a fundamental differ-
ence between the definition of security of Micali and Rogaway and that
of Canetti (Journal of Cryptology, 2000) which has become the standard
today. Specifically, many functions can be securely computed with fair-
ness under the definition of Canetti but no non-constant function can
be securely computed with fairness under the definition of Micali and
Rogaway.

Keywords: Secure two-party computation · Fairness · Definitions of
security

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 565–580, 2017.
https://doi.org/10.1007/978-3-319-70500-2_19

566 Y. Lindell and T. Rabin

1 Introduction

In the setting of secure two-party computation, a pair of parties P1 and P2 wish
to compute a joint function of their private inputs in a secure manner. The
standard requirements for security are privacy (meaning that nothing but the
output is revealed), correctness (meaning that the output is correctly computed)
and independence of inputs (meaning that a corrupted party cannot make its
input dependent on the honest party’s input). An additional property that is
highly desired in many applications is that of fairness, which guarantees that
corrupted parties cannot receive output without the honest parties also receiving
output. The fundamental question regarding the feasibility of achieving fairness
has been studied since the late 1980 s starting with the seminal work of Cleve [14]
who showed that it is impossible for two parties to securely toss an unbiased coin.
Following this work, a folklore arose that assumed that essentially no interesting
function can be securely computed with fairness. Intuitively, this makes sense
since in order for two parties to compute the function by exchanging messages
in turn, one must at some stage know more information than the other. As a
result, partial notions of fairness were introduced, including gradual release [7]
and the optimistic model that utilizes a trusted third party [2,22] (these models
are not relevant to our work here that focuses on achieving full fairness).

However, over two decades later, it was shown by Gordon et al. [20] that
it is in fact possible to securely compute some specific functions with (full)
fairness. Later, it was shown that it is actually possible to compute many finite-
domain Boolean functions securely with fairness in the presence of malicious
adversaries [3–5,21]. These positive results demonstrate a specific methodology
for protocol construction that achieves fair secure two-party computation. In
contrast to these positive constructions, there has been very little work regard-
ing necessary conditions for achieving fair secure two-party computation. In
particular, there is no proof whether this methodology is in fact needed. In this
paper, we prove that the central design principle used in all of [3–5,20,21] is in
fact necessary.

Background. As we have mentioned, the classic definition of security for two-
party computation guarantees central properties like privacy, correctness and
independence of inputs. The actual security definition formalizes these security
properties by comparing a real protocol execution to an ideal world in which an
incorruptible trusted party computes the function for the parties [6,9,18,19,23].
In more detail, a protocol is proven secure by presenting an ideal-world simulator
machine that interacts with a trusted party, sending the corrupted parties’ inputs
and receiving back their outputs. The requirement is then that for every real
adversary attacking the protocol, the outputs of the adversary and honest parties
in a real protocol execution is computationally indistinguishable from the output
of the simulator and honest parties in the ideal model. Note that in the ideal
model, the honest parties simply send their prescribed inputs to the trusted party
and output whatever they receive back. This guarantees all the aforementioned
security properties since the only thing that the simulator can do in the ideal

Secure Two-Party Computation with Fairness, Design Principle 567

model is modify the corrupted parties’ inputs. Since the outputs in the real and
ideal executions are indistinguishable, the same holds also for the real secure
protocol. Definitions of this type are said to follow the ideal-real model paradigm.

Classically, the literature considers two types of adversaries; semi-honest
adversaries who follow the protocol specification but try to learn more than
allowed by inspecting the transcript, and malicious adversaries who may follow
any arbitrary polynomial-time attack strategy. In this paper, we consider the
setting of malicious adversaries.

In the case of secure multiparty computation with an honest majority, the
additional property of fairness is typically also required. This property guar-
antees that if the corrupted party receives an output then so does the honest
party. However, in the case of two-party computation – where there is no honest
majority and malicious adversaries – fairness is usually not required, since it has
been shown that fairness cannot always be achieved. In particular, it was shown
in [14] that it is impossible for two parties to securely toss an unbiased coin.

The protocol of Gordon et al. [20]. The protocol of [20] and its extensions
in [3,4,21] have a very unique property that there is no specific round at which
the parties’ inputs are “determined”. In order to explain this, let us consider
for a moment the GMW protocol [17,18]. The GMW protocol begins with the
parties running an “input commitment” phase, and then forcing the parties to
use these inputs using zero-knowledge proofs. This paradigm of construction is
not unique to [18], but rather is the norm in all known protocols.1 In contrast,
in the protocols of [3,4,20,21] which are the only protocols that achieve fairness
without an honest majority, the corrupted parties’ input is essentially deter-
mined by the point at which they halt, if they halt before the end. As a result,
there is no input-commitment phase, and indeed no point whereby the input of
a corrupted party is explicitly fixed. A very interesting question that arises from
this is whether or not protocols that achieve fairness must work in this way, or
if this is just one possible approach.

The Micali-Rogaway (MR) definition of security. The definition of security for
multiparty computation, formulated by Micali and Rogaway in [23], is based
on the same ideal/real paradigm described above. One of the central differences
between the definition of MR and Canetti [9] is the requirement that there
exist an explicit committal round, which defines all parties’ inputs. In order to
understand why this requirement was included, we look back at the motivation
provided by Micali and Rogaway for their definition. Micali and Rogaway artic-
ulate a number of key ideas for their notion of security (called “key choices”
in [23, Sect. 1.6]). The three key choices are blending privacy and correctness,
adversarial awareness and tight mimicry. The first two choices are common
with the definition of Canetti (that also follows the ideal-real model paradigm),
which has today become the standard for secure computation in the stand-alone

1 In some cases, it is more subtle and the inputs are more implicitly committed; e.g.,
via oblivious transfer. However, this is still input commitment.

568 Y. Lindell and T. Rabin

model. The requirement of blending privacy and correctness is important since
there are examples showing that they cannot actually be separated (an attack on
correctness can result in a breach of privacy), and the requirement of adversarial
awareness means that the adversary’s input is explicitly known (formulated by
the simulator explicitly providing this input to the trusted party).

In contrast, the requirement of tight mimicry was not adopted by others to
the same extent. This requirement is that the ideal-model simulation tightly
mimics a real protocol execution. Micali-Rogaway observed that in all existing
secure protocols, at the time, there was an explicit round whereby the parties
commit to their inputs. This was true of the protocols of [8,13,18,24] and almost
all protocols known today (with the exception of the fair protocols of [3,4,20,21]
and the protocol of [1]), and they mimicked that. As a result they stated that it
should be possible to know what inputs the adversary is using for the corrupted
parties, when these inputs are determined , and what output is received
by the corrupted parties. The first and third of these requirements of “tight
mimicry” do appear in [9,17], but the second does not. The second requirement
is formalized in [23] by requiring the existence of a committal round so that the
corrupted parties’ inputs are fully determined by this round.

In order to understand the committal round requirement in more depth, we
informally describe how it is formulated. The MR definition formalizes two dif-
ferent phases of simulation. In the first phase, the simulator simulates up to the
committal round and then outputs the inputs of the corrupted parties, suppos-
edly as would be used by the corrupted parties in a real execution. Next, the
function is computed on the corrupted parties’ inputs as output by the simulator
and the honest parties’ prescribed inputs. The simulator receives this function’s
output and continues in the simulation to the end. Note that the simulator
interacts with the real adversary as one interacts with an external real party;
in particular, this means that the simulator has only black-box access to the
adversary and also cannot rewind it. Observe that the aforementioned phases
are distinct since the simulation is “straight line”.2 We refer the reader to [23]
for more details, and to [15] for a more concise version of the definition.

Importantly, Dodis and Micali [15] inherently utilize the existence of a com-
mittal round in order to prove their concurrent composition theorem. Thus,
beyond accurately mimicking the way protocols work, this feature of the defini-
tion also has technical advantages in the context of composition.

Our results – fairness and committal rounds. Interestingly, the requirement of a
committal round rules out the fair protocols of [3,4,20,21], and these protocols
cannot be proven secure under any definition with such a requirement, like the
MR definition. As we have stated, these are the only protocols that achieve

2 This makes some aspects of the definition reminiscent of the much-later UC frame-
work [10]; in particular, in [10] the adversarial environment is external to the simu-
lator and the simulator can interact with it as with a real party (meaning, black box
and no rewinding). Indeed, in [15] it was shown that protocols proven secure under
the MR definition are secure under concurrent composition.

Secure Two-Party Computation with Fairness, Design Principle 569

fairness and they all do not have a committal round. A very natural question
that arises is therefore whether fair protocols must be designed so that there is
no fixed point at which inputs are committed. In particular, we ask:

Is it possible to construct two-party protocols with fairness, with the prop-
erty that the parties’ inputs are committed at a fixed committal round?

Answering this question will also shed light on whether the definition of Canetti
is fundamentally different to the MR definition with respect to fairness.

In this paper, we show that the existence of a committal round does indeed
result in a qualitatively different notion of security. In particular, it is impossible
to securely compute any non-constant function in the two-party setting with
fairness when there is a committal round. We prove the following theorem:

Theorem 1 (Main theorem – informally stated). If f is a non-constant
function, then it cannot be securely computed in the two-party setting with fair-
ness using a definition that requires a committal round.

In order to prove the theorem, we adapt the definition of Canetti in a seem-
ingly minimal way, to include a committal round conceptually similar to that
of MR (with two distinct phases of simulation). Our definition enables rewind-
ing the adversary like Canetti, since otherwise security is not possible without
an honest majority (or some secure setup).3 Our definition suffices for defining
security without fairness, and as evidence, all non-fair protocols that we know
of can be securely computed under our adapted definition.

Our proof of the theorem demonstrates that the effective input of a corrupted
party must depend on when it halts. In addition, we show that in a definition with
a committal round, the simulator must determine the corrupted party’s input
at some point before the end of the protocol. This implies that the simulator
must determine the corrupted party’s input before knowing when it will halt,
preventing it from correctly determining the effective input. Thus, simulation is
not possible.

Conclusions. Our result deepens our understanding of the type of protocol design
needed in order to obtain fairness. Specifically, it is essential that in any fair
protocol the input of the corrupted party not be determined at any fixed point.
Thus, any protocol that achieves fairness in secure two-party computation must
follow the same construction paradigm as [20], at least with respect to the fact
that a party’s input is not committed at any fixed point.

In addition, our results show that the existence or non-existence of a required
committal round is not at all inconsequential, and has actual ramifications on
the feasibility of achieving security, particularly fairness. This in turn implies
that there is actually a fundamental difference between the definitions of Micali-
Rogaway and Canetti.

3 The fact that no rewinding results in impossibility was shown in the framework of
universal composability [10] which does not allow rewinding; see [11,12].

570 Y. Lindell and T. Rabin

2 Defining Secure Two-Party Computation
with a Committal Round

In this section, we present a version of the definition of Canetti [9,17] for the
two-party case that is minimally adapted to include a committal round like that
of MR. As in MR, we formalize the committal round by mandating two distinct
phases for the simulation, but we allow rewinding in each phase (as needed for
proving the security of two-party protocols). The first phase until the simulator
provides the input of the corrupted party, and the second phase from the point
that the simulator receives the output to the end of the protocol. As will become
clear in the definition below, the simulator may rewind the adversary within each
phase but not beyond it, in order to ensure that the phases are indeed distinct.

Our definition below requires fairness, since we aim to show impossibility of
fairness when a committal round is included. However, as we will explain at the
end of this section, an analogous definition which includes a committal round
but not fairness is satisfied by almost all protocols that we are aware of; see
Theorem 2. Thus, the existence of a committal round alone is not a barrier to
achieving security (without fairness).

Preliminaries. We denote the security parameter by n. A function μ(·) is negligi-
ble in n, or just negligible, if for every positive polynomial p(·) and all sufficiently
large n’s it holds that μ(n) < 1

p(n) . We say that two distribution ensembles
X = {X(a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N are computationally
indistinguishable if for every non-uniform probabilistic polynomial-time distin-
guisher D there exists a negligible function μ(·) such that for every a ∈ {0, 1}∗

and every n ∈ N,
∣
∣Pr[D(X(a, n) = 1)] − Pr[D(Y (a, n) = 1)]

∣
∣ ≤ μ(n).

The real model. In the real model, the two parties P1 and P2 interact directly
running protocol π, exchanging messages with each other. To be concrete, we
assume that in each round of the protocol, one party sends a message to the other
party who waits to receive the message (this is the least restrictive and most
general model). Each party Pi is given its input xi and the security parameter n
in unary form. We consider a malicious static adversary, A, that controls one
of the parties. We denote the corrupted party by Pi (i ∈ {1, 2}) and denote
the honest party by Pj (j ∈ {1, 2} with j �= i). The adversary A is given the
corrupted party’s input xi, an auxiliary input z, and the value 1n (the security
parameter in unary) and interacts directly with the honest party Pj . The honest
party outputs whatever is prescribed by the protocol, and the corrupted party
outputs its view in the execution. We denote by realπ,i,A(x1, x2, z, n) the output
of the honest party and the view of the adversary in a real execution, where P1

has input x1, P2 has input x2, the security parameter is n, and the adversary is
given auxiliary input z and controls party Pi.

Secure Two-Party Computation with Fairness, Design Principle 571

The ideal model. In the ideal model, the parties do not interact with each other
at all. Rather, they just send their input to an incorruptible trusted party who
computes the output for them. We consider fairness and therefore the trusted
party always sends output to both parties (if the corrupted party does not pro-
vide an input, then a default input is taken by the trusted party).4 The honest
party Pj always sends its prescribed input to the trusted party, whereas the
corrupted party can send any input it desires or none at all. We denote the
ideal-model adversary by S.

Following the MR definition, we define a committal round, which we view
as a “break point” in the simulation. Let CR be an integer that denotes the
committal round. Our definition is black-box, and so the simulator S is given
black-box (oracle) access to the real adversary A with its input xi, auxil-
iary input z and uniformly-distributed random tape r. As formalized in [16,
Sec. 4.5], such black-box access is modeled by S sending oracle queries of the form
q = (m1, . . . ,m�) and receiving back A(xi, z, r;m1, . . . ,m�), where xi, z, r are as
stated and m1, . . . ,m� is a series of incoming messages (we assume unique delim-
iters between each item in the query and so it is unambiguous). The response
from A is its outgoing message (or output) when invoked on this input, random-
tape and series of messages. We say that an oracle query q is of length � if it
contains � incoming messages.

In our definition, A controls party Pi (i ∈ {1, 2}) and works in two distinct
phases:

1. Phase 1 – up to and including the committal round: In this phase, S is
allowed to send oracle queries of length at most CR only. At the end of
this phase, S outputs a partial view of A up to and including CR – denoted
by view1

SA(xi, z, n) – and also A’s input x′
i to be sent to the trusted party.

The trusted party computes the function output from x′
i and the input

received from the honest party, and sends the honest party its specified out-
put.

2. Phase 2 – post-committal round: In this phase, S receives the corrupted
party’s output from the trusted party, and generates a partial view of A from
the round after CR to the end of the protocol, denoted view2

SA(xi, z, n).

Note that the “break point” of the simulation is the point between the committal
round and the round following it. As we have mentioned, the definition of security
is black-box (as is the original definition of MR); this seems inherent when
formalizing a committal round and break-point.

The output of the ideal execution is the concatenation of view1
SA(xi, z, n)

with view2
SA(xi, z, n), and the honest party’s output. We stress that

4 Our definition requires guaranteed output delivery (meaning that both parties always
receive output), and not just fairness (meaning that if one receives an output then
so does the other but it’s possible that neither receive). In the setting of two-party
computation, these properties are equivalent, since in the case of abort the honest
party can compute the function on its own input and on a default input for the
other party. We therefore arbitrarily chose the definition where parties always receive
output.

572 Y. Lindell and T. Rabin

view1
SA(xi, z, n) must contain exactly CR incoming messages; otherwise

the output of the ideal execution will be ⊥. We denote this output by
idealCR

f,i,SA(x1, x2, z, n).
We are now ready to define security:

Definition 1. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-party func-
tionality. A protocol π securely computes f with a committal round and fairness
if there exists a specific round CR and a probabilistic non-uniform polynomial-
time simulator S for the ideal model such that for every probabilistic non-uniform
polynomial-time real adversary A controlling party Pi with i ∈ {1, 2}:
{
idealCR

f,i,SA (x1, x2, z, n)
}

x1,x2,z∈{0,1}∗;n∈N

c≡
{
realπ,i,A(x1, x2, z, n)

}
x1,x2,z∈{0,1}∗;n∈N

Feasibility of achieving an analogous definition without fairness. We conclude
this section by showing that a committal round in itself is not a barrier to
achieving security, even for the case of no honest majority, as long as fairness is
not also required. In order to see this, consider a modified version of Definition 1
which is exactly the same except that fairness is not guaranteed. In particular,
the only difference is that in phase 2, S receives the corrupted party’s output
first. Then, if S sends abort to the trusted party, then the honest party does
not receive the output (but rather ⊥). In contrast, if S sends continue to the
trusted party, then the honest party does receive the actual output. We say
that a protocol that achieves this definition is secure with a committal round but
without fairness.

By observation of the simulator of the GMW two-party protocol [18] as
described in [17, Chap. 7], we have that the simulator indeed can be separated
into working in these two different phases. The first simulator works in the “input
commitment” phase which essentially consists of each party committing to its
input and proving a zero-knowledge proof of knowledge of the committed value.
The simulator in this phase extracts the corrupted party’s input from the proof
of knowledge. Then, the second simulator simulates the rest of the protocol. We
therefore have:

Theorem 2. For every probabilistic polynomial-time two-party functionality f ,
there exists a protocol π that securely computes f with a committal round but
without fairness. In particular, π can be taken as the protocol of [17,18].

We remark that the protocol of [17,18] is the rule and not the exception.
Indeed, we do not know of any protocol that is not secure under this analogous
definition that requires a committal round but does not require fairness (with
the exception of the fair protocols of [20] and its extensions in [3,4,21] since
they do not meet the committal round requirement).

3 Proof of Impossibility of Fairness

Theorem 3. Let f be a non-constant two-party function with a finite domain.
Then there does not exist a protocol that securely computes f with a committal
round and fairness, as in Definition 1.

Secure Two-Party Computation with Fairness, Design Principle 573

Proof. We will use the notion of a protocol being “honest-correct” in the proof.
We stress that this definition of correctness is very different to – and much
weaker than – the standard notion. Specifically, when we say that a protocol is
honest-correct, we mean that two honest parties running the protocol receive
the correct output (the function computed on their prescribed inputs), and this
does not say anything about the output of the honest party when one of the
parties is malicious or halts before the end of the protocol.

Definition 2. A protocol π for computing a function f is honest-correct if for
every two inputs x1, x2 written on the input tapes of P1 and P2, respectively, the
output of honest P1 and honest P2 running π is f(x1, x2), except with negligible
probability.

The proof of the theorem follows immediately from the following two lemmas.
The first lemma states that in order to correctly compute the function, then
there must be at least one round of communication after the committal round
(formally, if there is no round after the committal round, then the protocol
cannot be honest-correct). In contrast, the second lemma states that any protocol
that is secure with a committal round and fairness can be truncated to the
committal round and will still maintain honest-correctness. We therefore derive
a contradiction.

Lemma 1. Let f be a non-constant two-party function, let π be a protocol that
securely computes f with a committal round and fairness, and let CR be the
index of the committal round. Then, the protocol obtained by truncating π to
exactly CR rounds is not honest-correct.

Proof. This lemma relies on the assumption that f is non-constant, since a
constant function can be securely computed without any interaction. We prove
the lemma by showing that since the simulator S receives the output only in
the post-committal round phase, and after it outputs the view of A up to round
CR, the view of the adversary in all rounds up to and including the CR is
independent of the output. Thus, there must be at least one additional round
in the protocol beyond the CR in order to obtain the correct output. Since the
function being computed is non-constant, this implies either that the simulation
is distinguishable from a real execution (which contradicts the assumed security)
or that the protocol is not honest-correct (does not always provide even honest
parties with the correct output based on their input). We now prove this formally.

Let π′ be the protocol π truncated to round CR (and including round CR).
Assume, by contradiction, that π′ is honest-correct, as in Definition 2. If f is non-
constant then either there exist inputs x1, x2, x̃2 such that f(x1, x2) �= f(x1, x̃2),
or there exist inputs x1, x̃1, x2 such that f(x1, x2) �= f(x̃1, x2). This holds since if
f is non-constant then there must be either a “row” or “column” in its function
matrix with different values. Without loss of generality, assume that there exist
x1, x2, x̃2 such that f(x1, x2) �= f(x1, x̃2). Let A be an adversary attacking the
non-truncated protocol π, who controls P1 and runs P1 honestly on input x1,

574 Y. Lindell and T. Rabin

with the exception that it halts at round CR and outputs whatever the pro-
tocol specifies it to output (as if the other party halted). By the contradicting
assumption, A receives correct output by this round (where correct is defined by
the honest party’s input and by A’s input; this is well defined since A behaves
like an honest party in the truncated protocol π′).

Consider a real execution between A and P2, where P2 has input x2. By the
security of the non-truncated protocol π, we have

{

idealCR
f,1,SA(x1, x2, z, n)

}

n∈N

c≡
{

realπ,1,A(x1, x2, z, n)
}

n∈N

.

Likewise, in a real execution where P2 has input x̃2, the security of the protocol
guarantees that

{

idealCR
f,1,SA(x1, x̃2, z, n)

}

n∈N

c≡
{

realπ,1,A(x1, x̃2, z, n)
}

n∈N

.

Consider now the truncation of the above distributions to include only the
view of the adversary up until and including round CR. The truncation of
these ideal distributions yields view1

SA(x1, z, n) in both cases, and so are iden-
tical. This is due to the fact that S’s view is identical in both cases because
the output is received only after this part of the view is fixed. Denote by
viewA,π(x1, x2, z, n) the view of A alone in the execution. Since A halts at
round CR, we have

{

view1
SA(x1, z, n)

}

n∈N

c≡
{

viewA,π(x1, x2, z, n)
}

n∈N

and {

view1
SA(x1, z, n)

}

n∈N

c≡
{

viewA,π(x1, x̃2, z, n)
}

n∈N

.

Combining the above, we have
{

viewA,π(x1, x2, z, n)
}

n∈N

c≡
{

viewA,π(x1, x̃2, z, n)
}

n∈N

.

However, by the contradicting assumption, A receives correct output by round
CR, and its view defines its output. Thus, the view with input x1, x2 defines
the output f(x1, x2) for A, while the view with input x1, x̃2 defines the output
f(x1, x̃2) for A. Since f(x1, x2) �= f(x1, x̃2), the distributions are easily distin-
guishable, in contradiction. This completes the proof.

We now proceed to prove the second lemma that states that a protocol that
is secure with a committal round and fairness can actually be truncated to the
committal round and remain honest-correct. Intuitively, this holds since in the
ideal model the simulator must provide the input used by the corrupted party
by the committal round. Now, since the output is determined at this point
and cannot change, this implies that the honest party must always output the
function computed on its own input and the input provided by the simulator (it
can also never abort since the corrupted party already learned the output at the

Secure Two-Party Computation with Fairness, Design Principle 575

committal round). This in turn implies that the honest party must always output
the same correct output in a real protocol execution, irrespective of where the
corrupted party halts. In particular, it must hold even if the corrupted party halts
immediately after the committal round. Formally, we prove this by showing that
if correctness does not hold at the committal round, then there exists a specific
round where it transitions from not holding to holding (clearly correctness holds
for the full protocol π). Then, we show that a distinguisher can distinguish the
real and ideal executions with an adversary that halts either at the round before
the transition or at the transition. Note that the lemma does not hold for the
case of multiparty computation with an honest majority; this is explained after
the proof of the lemma.

Lemma 2. Let f be a two-party function with a finite domain, let π be a protocol
that securely computes f with a committal round and fairness, and let CR be
the index of the committal round. Then, the protocol obtained by truncating π to
exactly CR rounds is honest-correct.

Proof. Denote by π0 the protocol π truncated to round CR, and denote by π�

the protocol π truncated to � rounds after round CR. Let m be the number
of rounds in π after the committal round and so πm = π (note that the total
number of rounds in the protocol equals CR + m); clearly, m is polynomial in
the security parameter n. Recall that by our definition of the real model, in
each round of interaction, exactly one party sends a message and the other waits
to receive it. Without loss of generality, we assume that the first message after
round CR is from P1 to P2 (likewise all odd messages), and the second message
after round CR is from P2 to P1 (likewise all even messages). In addition, we
assume that m is even (if this is not true then just add a dummy message to
π). In more detail, in protocol π�, the parties output what π specifies them to
output in the event that the other party halts at this point. For example, if P1

sends the last message in π�, then P2’s output in π� is the same as it would in
π in the case of an adversarial P1 who halts after sending the �th message after
CR. Observe that in this example, P1’s output is the same in π� and π�−1 since
in both cases its last message received is from P2 in the (� − 1)th round after
CR. In contrast, P2’s output may be different in these cases since its view is
different.

Recall that by Definition 2, a protocol is honest-correct, if for every pair
of inputs x1, x2 written on the parties’ input tapes, their output when honestly
running the protocol is f(x1, x2), except with negligible probability. Observe that
protocols π0, . . . , πm are fully specified and that we only consider executions of
pairs of honest parties in these protocols. Thus, the notion of honest-correctness
is well defined with respect to each π� (meaning that each of these protocols is
either honest-correct or not honest-correct, and this is a property of the protocol
alone).

We prove that π0 is honest-correct. In order to see this, observe that πm

is honest-correct since πm = π and π is a secure protocol (since we consider
here the case that both parties behave honestly, security in Definition 1 implies

576 Y. Lindell and T. Rabin

honest-correctness as in Definition 2). By contradiction, assume that π0 is not
honest-correct, meaning that there exist inputs so that at least one of the parties
outputs an incorrect output in π0 with non-negligible probability. Then, there
exists a maximal index � (1 ≤ � ≤ m) such that π� is honest-correct, but π�−1 is
not honest-correct.

Without loss of generality, let P1 be the party who sends the message in the
�th round. This implies that P1’s view in π� and π�−1 is identical, and thus its
output is identical. However, since the protocol π�−1 is not honest-correct, this in
turn implies that P2’s output is correct in π� (except with negligible probability)
but incorrect in π�−1 with non-negligible probability. By definition, π�−1 being
incorrect means that there exist some inputs x1, x2 such that in an execution
of π�−1 on these inputs, P2 receives some output value y′ �= f(x1, x2) with
non-negligible probability. Recall that honest-correctness applies to all inputs,
and thus its negation may apply only to a specific pair of inputs. Let x1, x2

be inputs for which π�−1 is not honest-correct; concretely, this means that with
non-negligible probability P2 outputs y′ �= f(x1, x2).

We first prove that in π�−1, except with negligible probability, the output
received by P2 must be f(x̃1, x2) for some x̃1, where x2 is the input written on
P2’s input tape. Intuitively this follows from the standard correctness property
of secure protocols. Formally, in order to see this, we construct an adversary
A who controls P1 and interacts with an honest P2 running π. A runs the
protocol honestly with the exception that it halts after the (� − 1)th round, and
in particular, does not send its message in the �th round. By the security of
π, simulator S1 when run on adversary A outputs some x̃1 as P1’s input and
it holds that the honest party’s output in a real execution is indistinguishable
from f(x̃1, x2). Thus, P2 must output f(x̃1, x2) for some x̃1.5 (If this does not
hold then the distinguisher can always distinguish since the function has a finite
domain and so it can try all possible inputs for P1 and see if P2’s output is
f(x̃1, x2) for some x̃1.)

By what we have shown so far, when P1 and P2 run on inputs x1 and x2,
respectively, we have that P2 outputs f(x1, x2) in π�, but with non-negligible
probability outputs f(x̃1, x2) �= f(x1, x2) for some x̃1 �= x1 in π�−1. In contrast,
in both π� and π�−1, party P1 has an identical view and thus has the same output.
Since we know that π� is honest-correct, this implies that P1 outputs f(x1, x2)
in both π� and π�−1. We now show that this yields a contradiction. Before
proceeding, we claim that there exist specific x∗

1, x
∗
2, x̃

∗
1 for which the above holds

for infinitely many n’s. That is, we claim that there exist x∗
1, x

∗
2, x̃

∗
1, an infinite

set of integers N ⊆ N and a polynomial p(·), such that when given inputs x∗
1, x

∗
2,

respectively, P1 and P2 output f(x∗
1, x

∗
2) in π� except with negligible probability

and in particular with probability greater than 1− 1
2p(n) . In contrast, P2 outputs

f(x̃∗
1, x

∗
2) �= f(x∗

1, x
∗
2) in π�−1 with probability at least 1

p(n) . This holds since f

5 Note that this actually implies that f is non-constant, since f(x̃1, x2) = y′ �=
f(x1, x2). Nevertheless, we do not need to assume this to prove this lemma (unlike
Lemma 1), since this follows from the contradicting assumption.

Secure Two-Party Computation with Fairness, Design Principle 577

has a finite domain: if f had an infinite domain then it would be possible that for
every n there would exist a different pair of inputs for which the claim holds.6

Let A′ be an adversary who controls P1 and interacts with an honest P2

with input x∗
2 in a real protocol execution of (the untruncated) protocol π. A′

runs the honest party’s instructions with input x∗
1 until the (� − 1)th round

after CR. Then, A′ applies a pseudorandom function (with a randomly chosen
key taken from its random tape) to its view up to round CR to determine if
it sends the �th message. If the pseudorandom function’s output is 0, then A′

sends the (CR + �)th message to P2 and halts; if the pseudorandom function’s
output is 1 then A′ halts immediately in round CR + � − 1 and before it sends
the (CR + �)th message. We stress that S has only black-box access to A′, and
so cannot influence its input, auxiliary input and random-tape.7

We claim that S fails in the simulation of A′. In order to see this, we first
replace the pseudorandom function used by A′ by a truly random function.
By a straightforward reduction, the output of S with A′ using a truly random
function is computationally indistinguishable from when A′ uses a pseudorandom
function.

Next, observe that S must send the corrupted P1’s input to the trusted
party in round CR and thus before it can see whether A′ sends its message
in the (CR + �)th round or not. However, this determines whether P2 outputs
f(x∗

1, x
∗
2) or f(x̃∗

1, x
∗
2) in the real model. Thus, S cannot know whether it should

send x∗
1 or x̃∗

1 to the trusted party. We now formally prove this argument.
Let D be a distinguisher who receives the output (including A′’s view and

P2’s output) and runs A′ on its view to see if A′ aborts at round CR + � or
CR + � − 1. If A′ aborts at round CR + � and P2’s output is f(x∗

1, x
∗
2) or if

A′ aborts at round CR + � − 1 and P2’s output is f(x̃∗
1, x

∗
2) then D outputs 1.

Else, D outputs 0. We now analyze the probability that D outputs 1 in the real
and ideal executions. Fix n ∈ N , where N is the infinite set of integers specified
above.

– Real execution: Recall that if A′ proceeds to round CR + � then P2 outputs
f(x∗

1, x
∗
2) with probability greater than 1 − 1/2p(n), whereas if A′ halts at

round CR + � − 1 then P2 outputs f(x̃∗
1, x

∗
2) with probability at least 1/p(n).

Furthermore, A′ proceeds with probability 1/2. We therefore have that for
every n ∈ N :

Pr[D outputs 1] ≥ 1
2

·
(

1 − 1
2p(n)

)

+
1
2

· 1
p(n)

=
1
2

+
1

4p(n)
.

6 We believe that the proof would still hold for the case of infinite domain by providing
the inputs for which the claim holds as non-uniform advice to the adversary and
distinguisher. However, this would needlessly complicate things.

7 One could define a weaker type of black-box access where the simulator can provide
these values as part of its query. However, this would make no difference since we
would then define A’ to ignore the input, auxiliary input and randomness and use
hardwired values only.

578 Y. Lindell and T. Rabin

– Ideal execution: The main observation here is that the probability that P2

outputs f(x∗
1, x

∗
2) or f(x̃∗

1, x
∗
2) is independent of whether or not A′ proceeds

to round CR + � or halts at CR + � − 1. This holds because P2’s output is
defined by the input provided by S and this is provided before S can know
if A′ halts in round CR + � or CR + � − 1 since S can only send queries of
length CR to A′ before sending the input. (Note that if P2 outputs anything
else then D will output 0 and so this is not included in the calculation below.)
Thus:

Pr[D outputs 1] = Pr[A′ halts at CR + � and P2 outputs f(x∗
1, x

∗
2)]

+ Pr[A′ halts at CR + � − 1 and P2 outputs f(x̃∗
1, x

∗
2)]

= Pr[A′ halts at CR + �] · Pr[P2 outputs f(x∗
1, x

∗
2)]

+ Pr[A′ halts at CR + � − 1] · Pr[P2 outputs f(x̃∗
1, x

∗
2)]

=
1

2
· Pr[P2 outputs f(x∗

1, x
∗
2)] +

1

2
· Pr[P2 outputs f(x̃∗

1, x
∗
2)]

=
1

2
·
(
Pr[P2 outputs f(x∗

1, x
∗
2)] + Pr[P2 outputs f(x̃∗

1, x
∗
2)]
)

≤ 1

2

where the second equality is by the independence of probabilities explained
above. We remark that in the last step, it is not equality since P2 may output
something else.

We have shown that for infinitely many n’s (for every n ∈ N), distinguisher
D distinguishes between the real and ideal executions with probability at least
1/4p(n). Thus, D distinguishes with non-negligible probability, in contradiction
to the assumed security of the protocol.

Lemmas 1 and 2 contradict each other therefore completing the proof of
Theorem 3.

The case of an honest majority. In the setting of multiparty computation with
an honest majority, our proof does not hold. This is due to the fact that our proof
relies inherently on the fact that when the adversary halts, the honest party can
receive no more information towards obtaining its output. Rather, its view until
that halting point is all that it receives. (Formally, this can be seen in the proof
of Lemma 2 where we say that P2’s output changes if A halts in round CR+�−1
or halts in round CR + �.) In contrast, when there is an honest majority, the
honest parties may continue to exchange messages even if all corrupted parties
halt.

Semi-trivial functions. Our proof holds for all non-constant functions, including
functions f that can be singlehandedly determined by one of the parties. In
particular, consider a function f such that for every x1 and all x2, x̃2 it holds that
f(x1, x2) = f(x1, x̃2), meaning that P2’s input is meaningless. Such a function
cannot be securely computed with fairness under our definition with a committal
round. However, observe that all such functions (with a polynomial-size domain)

Secure Two-Party Computation with Fairness, Design Principle 579

can be securely computed with fairness under Canetti’s definition using a trivial
protocol (in particular, the protocol of [20] is not required). Specifically, party
P1 can simply compute the output itself and send it to P2. This protocol is
fair since if P1 does not send the output then P2 can compute the function on
its real input and a default input for P1. (Note that P2 must also check that
the output is valid in that there exists such a value in the domain of f , and
otherwise should also compute a default output. Since we consider finite-domain
functions only here, P2 can always do this.) More formally, a simulator under
the definition of Canetti can obtain the value sent by a corrupted P1 and simply
find an input that leads to such an output (this is possible since the domain is
polynomial-size). Furthermore, when P2 is corrupted, the simulator just receives
the output and simulates P1 sending that value. Note that this protocol is not
secure under our definition with a committal round: if the committal round is
before P1 sends the message then the simulator in the case that P1 is corrupted
cannot send the input to the trusted party, and if the committal round is after
P1 sends the message then the simulator in the case that P2 is corrupted cannot
simulate the first phase.

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th -ranked ele-
ment. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 40–55. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 3

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
The 4th ACM Conference on Computer and Communications Security, pp. 8–17
(1997)

3. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54242-8 13

4. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199–228. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46494-6 10

5. Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that
imply fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 243–262. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36594-2 14

6. Beaver, D.: Foundations of Secure Interactive Computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). doi:10.
1007/3-540-46766-1 31

7. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th
FOCS, pp. 468–473 (1989)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th STOC, pp. 1–10
(1988)

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

http://dx.doi.org/10.1007/978-3-540-24676-3_3
http://dx.doi.org/10.1007/978-3-642-54242-8_13
http://dx.doi.org/10.1007/978-3-662-46494-6_10
http://dx.doi.org/10.1007/978-3-642-36594-2_14
http://dx.doi.org/10.1007/978-3-642-36594-2_14
http://dx.doi.org/10.1007/3-540-46766-1_31
http://dx.doi.org/10.1007/3-540-46766-1_31

580 Y. Lindell and T. Rabin

10. Canetti, R.: Universally Composable Security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145 (2001). Full version http://eprint.iacr.org/
2000/067

11. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

12. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universal compos-
able two-party computation without set-up assumptions. J. Crypt. 19(2), 135–167
(2006)

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multi-party unconditionally secure proto-
cols. In: 20th STOC, pp. 11–19 (1988)

14. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: 18th STOC, pp. 364–369 (1986)

15. Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically secure
computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 5

16. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

17. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a com-
pleteness theorem for protocols with honest majority. In: 19th STOC, pp. 218–229
(1987) For details see [17, Chap. 7]

19. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 6

20. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM 58(6), 24 (2011). An extended abstract appeared at
the 40th STOC, pp. 413–422 (2008)

21. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 2

22. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: The
22nd PODC, pp. 12–19 (2003)

23. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992). doi:10.1007/
3-540-46766-1 32

24. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: The 21st STOC, pp. 73–85 (1989)

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44598-6_5
http://dx.doi.org/10.1007/3-540-38424-3_6
http://dx.doi.org/10.1007/978-3-642-00457-5_2
http://dx.doi.org/10.1007/3-540-46766-1_32
http://dx.doi.org/10.1007/3-540-46766-1_32

Designing Fully Secure Protocols for Secure
Two-Party Computation of Constant-Domain

Functions

Vanesa Daza1 and Nikolaos Makriyannis2(B)

1 Universitat Pompeu Fabra, Barcelona, Spain
vanesa.daza@upf.edu

2 Tel Aviv University, Tel Aviv, Israel
n.makriyannis@gmail.com

Abstract. In a sense, a two-party protocol achieves fairness if the out-
put from the computation is obtained simultaneously by both parties. A
seminal result by Cleve (STOC 1986) states that fairness is impossible, in
general. Surprisingly, Gordon et al. (JACM 2011) showed that there exist
interesting functions that are computable with fairness. The two results
give rise to a distinction between fair functions and unfair ones. The
question of characterizing these functions has been studied in a sequence
of works leading to the complete characterization of (symmetric) Boolean
functions by Asharov et al. (TCC 2015). In this paper, we design new
fully secure protocols for functions that were previously unknown to be
fair. To this end, our main technical contribution is a generic construction
of a fully secure (fair) protocol, starting with a constant-round proto-
col satisfying limited security requirements. Our construction introduces
new conceptual tools for the analysis of fairness that apply to arbitrary
(constant-domain) functions. While the characterization remains open,
we believe that our results lay the foundation for a deeper understanding
of fairness.

Keywords: Fairness · Secure two-party computation · Malicious
adversaries · Cryptographic protocols

1 Introduction

A popular definition of two-party computation is that it enables two mutually
distrusting parties to compute a joint function of their inputs while only revealing
what the output suggests. However, the popular definition does not capture all
the security requirements one may expect from such a computation. Among these
requirements is fairness, which states that either both parties receive output or
none of them do. It is a natural security requirement for many real-world tasks.

V. Daza—Research supported by Project TEC2015-66228-P (MINECO/FEDER,
UE).
N. Makriyannis—Research supported by ERC starting grant 638121.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 581–611, 2017.
https://doi.org/10.1007/978-3-319-70500-2_20

582 V. Daza and N. Makriyannis

For example, when two parties are signing a contract, the contents of which may
be legally binding, it is imperative that one party signs the contract if and only
if the second party signs as well.

The study of two-party computation started with the work of Yao [14] in
1982. Secure computation was expanded to the multiparty case by Goldreich,
Micali, and Wigderson [10] in 1987. Flagship results from the theory of secure
computation state that, when an absolute majority of honest parties can be
guaranteed, every task can be realized with full security, i.e. the relevant pro-
tocols provide correctness, privacy, independence of inputs, as well as fairness.
However, when the honest parties are in the minority, as it happens in the impor-
tant two-party case, classic protocols satisfy a weaker notion of security known
as security-with-abort, which captures all the aforementioned security require-
ments, except for fairness. This relaxation is often attributed to an inherent
limitation that was shown by Cleve [7].

Cleve showed that fairness is impossible to achieve in general when one of
the parties behaves dishonestly. Specifically, Cleve proved that the coin-tossing
functionality, i.e the inputless functionality that returns the same uniform ran-
dom bit to the parties, is not computable with fairness. His proof exploits the
fact that interactive computation involves exchanging messages back and forth,
and thus at some point one party may break fairness by aborting prematurely. It
goes without saying that any function that implies coin-tossing is not computable
with fairness either, as is the case with the XOR function.

Amazingly, for more than two decades, Cleve’s result led to the mistaken
conclusion that interesting functions are not computable with fairness in the two-
party setting, or the multi-party setting with dishonest majority. Only in 2008
was this interpretation proven false by Gordon, Hazay, Katz and Lindell [11],
who showed that Cleve’s impossibility does not apply to all non-trivial functions,
and there are many interesting functions that are inherently fair. The remarkable
work of Gordon et al. begins by making a distinction between XOR-embedded1

and non XOR-embedded functions. Functions of the latter type, which includes
OR and the greater-than function, are shown to be fair. Yet XOR-embedded
functions are not necessarily excluded from fully secure computation. Gordon
et al. propose a specific protocol, referred to as GHKL throughout the present
paper, that computes many XOR-embedded functions with full security. The
authors also show that fair computation of XOR-embedded functions requires
super-logarithmic round complexity.

In this paper, we focus on the fundamental question raised by Gordon, Hazay,
Katz and Lindell; the characterization of functions with respect to fairness. In
particular, we propose a methodology for designing fully secure protocols.

1.1 Previous Works

The problem of characterizing fairness is equivalent to identifying a necessary
and sufficient condition for a given two-party function to be fair. There are thus
1 A function is XOR-embedded if restricting the function to a subset of inputs yields
the XOR function.

Designing Fully Secure Protocols for Secure Two-Party Computation 583

two complementary ways to engage with the problem. The first one attempts
to identify necessary conditions for fairness by means of impossibility results
[1,4,7,13]. The second one attempts to identify sufficient conditions by means of
feasibility results, i.e. by proving fairness for explicit protocols [2,3,11,13]. We
mention that most of these works focus on fair computation of Boolean functions
that are symmetric – the function returns the same output to both parties, deter-
ministic – the output is fully determined by the inputs, and constant-domain –
the function is independent of the security parameter. By abusing terminology,
we refer to such functions simply as Boolean functions.

Necessary conditions can be traced back to Cleve’s seminal work [7]. In [1],
Agrawal and Prabhakaran generalized the impossibility of coin-tossing to non-
trivial sampling functionalities, that is, inputless functionalities that return sta-
tistically correlated outputs are not computable with fairness. Asharov, Lindell,
and Rabin [4] investigated the problem of characterizing Boolean functions that
imply coin-tossing, and are thus inherently unfair. They showed that certain
functions, dubbed balanced, can be used to toss a uniform random coin. Con-
versely, they found that coin-tossing is not reducible to any balanced function in
the information theoretic-sense. Boolean functions that imply non-trivial sam-
pling where identified by Makriyannis [13], who expanded the class of Boolean
functions that are known to be unfair.

Regarding sufficient criteria, Gordon, Hazay, Katz and Lindell laid the foun-
dation with [11], and all subsequent papers [2,3,13] on the topic are based on
the GHKL protocol. By digging deep into the security analysis of the GHKL
protocol, Asharov [2] deduced sufficient conditions for the protocol to compute
functions with full security. Furthermore, the author showed that almost all
Boolean functions with unequal-size domains satisfy these conditions, and thus
a surprisingly large amount of functions are fair. Sufficient conditions for GHKL
were also deduced independently by Makriyannis in [13].

Recently, Asharov, Beimel, Makriyannis and Omri [3] showed that a counter-
intuitive modification of GHKL allows for the complete characterization of all
Boolean functions. The characterization states that a Boolean function is com-
putable with full security if and only if the all-one vector or the all-zero vec-
tor belong to the affine span of either the rows or the columns of the matrix
describing the function. Remarkably, the characterization extends to random-
ized Boolean functions as well as multiparty Boolean functions when exactly
half of the parties are corrupted.

Finally, we mention that Gordon and Katz [12] constructed a fully secure
three-party protocol for the majority function and a n-party protocol for the
AND of n bits.

Limits of the GHKL Approach. While significant progress has been made
towards characterizing fairness in secure computation, we argue that the meth-
ods that appear in the literature have reached their limits in terms of usefulness.
Specifically, regarding the design of fully secure protocols for arbitrary func-
tions, the “standard” approach of generalizing and modifying GHKL to extract

584 V. Daza and N. Makriyannis

sufficient conditions seems to offer few gains. Even for the limited case of Boolean
functions that are not symmetric, straightforward generalizations of GHKL are
either function-specific i.e. the resulting protocol is tailored to a specific function,
or, the protocol computes a family of functions whose description is rather mys-
terious and artificial. Arguably, the present state of affairs calls for a systematic
analysis of fair protocols.

1.2 Our Contributions

In this paper, we propose a framework for designing fully secure protocols. To
this end, we introduce two new conceptual tools, refered to as locking strategies
and sampling attacks, which are inspired by the impossibility results of [1,4,7,13].
Our investigation naturally leads to a new security notion that we call security
against sampling attacks; a strictly weaker notion than fairness and therefore
a necessary requirement for fair protocols. An appealing feature of the pro-
posed security notion is that it bypasses lower-bounds on fairness. Specifically,
as was shown by Gordon et al. [11], fair functions may require computation
in super-logarithmic round-complexity. In contrast, security against sampling
attacks seems to be achievable in a constant number of rounds for the same func-
tions. What’s more, security against sampling attacks can be efficiently tested
via a collection of linear algebraic properties. The appeal of our approach is
further strengthened by our main result, stated next.

We propose a generic construction that transforms any protocol that is –
constant-round – passively secure – secure against sampling attacks, into a fully-
secure protocol. In the spirit of GHKL, this is achieved by introducing a special
threshold round i∗. Our main result may be viewed as a framework for designing
fair protocols, and we believe that it demystifies the “standard” approach that
appears in the literature. What’s more, it applies to any constant-domain two-
party function (i.e. randomized, asymmetric and non-Boolean). Our main result
is stated informally below.

Theorem 1.1 (informal). A two-party function is fair if and only if it admits
a suitable protocol that is secure against sampling attacks.

Our techniques show the existence of a fair non-Boolean function where both
parties have the same number of inputs. We stress that previous results [2] on
non-Boolean functions only applied to functions where one party has at least
twice as many inputs as the other.

Theorem 1.2 (informal). The non-Boolean function described by the matrix
below is computable with full security.

f(x, y) y1 y2 y3 y4
x1 1 1 2 2
x2 1 0 1 2
x3 1 1 0 2
x4 2 2 0 2

Designing Fully Secure Protocols for Secure Two-Party Computation 585

Next, we propose an algorithm for designing suitable protocols (constant-
round, passively secure, secure against sampling attacks). Our algorithm takes
an asymmetric Boolean function as input, and it either returns an appropriate
protocol, or it returns that it failed to do so. The algorithm is accompanied
with a proof of correctness. In Sect. 5.3, we show how our algorithm handles the
asymmetric function that was suggested as an open problem in [3], and we prove
that it is fair.

Theorem 1.3 (informal). The function from [3] described by the matrices
below is computable with full security.

f1(x, y) y1 y2 y3 y4
x1 0 1 1 0
x2 1 0 1 1
x3 1 0 0 0
x4 0 1 0 1

f2(x, y) y1 y2 y3 y4
x1 1 1 1 0
x2 1 0 1 1
x3 0 1 0 1
x4 1 1 0 0

Unfortunately, our methods do not settle the characterization of constant-
domain two-party functions, even for the asymmetric Boolean case. That being
said, we believe that the questions that are left unanswered may be as interesting
as the results themselves. Specifically, for a function that lies in the gap, we show
that it is computable with fairness as long as privacy is relaxed.

Theorem 1.4 (informal). The function described by the matrices below admits
a protocol that is fair-but-not-private.

f1(x, y) y1 y2 y3 y4 y5
x1 1 1 1 1 0
x2 0 1 0 1 1
x3 1 1 1 1 1
x4 0 0 1 0 1
x5 1 0 0 0 1

f2(x, y) y1 y2 y3 y4 y5
x1 1 1 0 0 0
x2 1 0 0 0 1
x3 1 0 0 1 0
x4 0 0 1 1 1
x5 0 1 0 1 0

We emphasize that the function in question may still be computable with
full security. However, we believe that our present analysis together with the
theorem above strongly indicate that there is an inherent trade-off between fair-
ness and privacy. To the best of our knowledge, the literature does not entertain
the idea that fairness and privacy may be attainable only at the expense of one
another; the two notions might as well be incomparable.

Organization of the Paper. After recalling some preliminaries in Sect. 2, we
introduce locking strategies and sampling attacks in Sect. 3. Section 4 is dedi-
cated to our main result and its proof. In Sect. 5, we show how to obtain suitable
protocols by means of the algorithm mentioned above. Finally, open problems
and future directions are discussed in Sect. 6.

For clarity, and to alleviate notation, we have decided to restrict our
analysis to the family of asymmetric (possibly randomized) Boolean functions.

586 V. Daza and N. Makriyannis

We emphasize that, with the exception of Sect. 5, our results generalize to arbi-
trary non-Boolean functions. While the generalization is not straightforward, it
is beyound the scope of the present abstract. We refer to the full version [8] for
the general case.

2 Preliminaries

Throughout this paper, n denotes the security parameter and N denotes the
set of positive integers. All vectors are column vectors over the real field
R. Vectors are denoted using bold letters, e.g. v, 1 (the all-one vector).
The i-th entry of some vector v is denoted v(i). If v1, . . . ,vs denotes a family of
vectors, then 〈v1, . . . ,vs〉 denotes the vector space generated by those vectors,
and let 〈vi |vj〉 = vT

i vj . Matrices are denoted with capital letters, e.g. M , P .
The i-th row and j-th column of some matrix M are denoted [M]i,∗ and [M]∗,j ,
respectively. Furthermore, the element indexed by (i, j) in M is denoted M(i, j).

Definition 2.1. Let A and B be arbitrary matrices. We write C = A∗B if C is
equal to the entry-wise (Hadamard) product of the two matrices, i.e. C(i, j) =
A(i, j) · B(i, j).

Finally, if X and Y denote distribution ensembles, we write X = Y, X s≡ Y
and X c≡ Y, respectively, if the ensembles are perfectly, statistically or compu-
tationally indistinguishable.

2.1 Secure Two-Party Computation

Let P1 and P2 denote the parties. A two-party function f = (f1, f2) is a random
process that maps pair of inputs (one for each party), to pairs of random variables
called outputs (again, one for each party). The domain of f is denoted X×Y . For
our purposes, we assume that X = {1, . . . , �}, Y = {1, . . . , k} and the parties’
outputs are sampled from {0, 1}2. To every function f , we associate four matrices
{M (a,b)}a,b∈{0,1} such that

M (a,b)(x, y) = Pr [f(x, y) = (a, b)] .

In addition, define M (1,∗) and M (∗,1), associated with f1 and f2 respectively, such
that M (1,∗)(x, y) = Pr [f1(x, y) = 1] and M (∗,1)(x, y) = Pr [f2(x, y) = 1]. A two-
party protocol Π for computing f is a polynomial-time protocol such that, on
global input 1n (the security parameter) and private inputs x ∈ X, y ∈ Y , the
joint distribution of the outputs {Π(1n, x, y)}n is statistically close (f1, f2)(x, y),
assuming both parties behave honestly. The parties run in polynomial-time in n.

The Adversary. We introduce an adversary A given auxiliary input z ∈ {0, 1}∗

corrupting one of the parties. We assume the adversary is computationally
bounded and malicious, i.e. the adversary runs in polynomial-time in n and
she may instruct the corrupted party to deviate from the protocol arbitrarily.

Designing Fully Secure Protocols for Secure Two-Party Computation 587

Fig. 1. The ideal model with full-security for computing f .

Write (out, view)RealA(z),Π for the pair consisting of the honest party’s output and
the adversary’s view in an execution of protocol Π. Next, we define security in
terms of the ideal model.

Let S denote the ideal-world adversary. Write (out, view)IdealS(z),f for the pair
consisting of the honest party’s output and the adversary’s view in the ideal
model (Fig. 1).

Definition 2.2. Let Π be a protocol for computing f . We say that Π is fully
secure if for every non-uniform polynomial time adversary A in the real model,
there exists a non-uniform polynomial time adversary S in the ideal model such
that

{
(out, view)RealA(z),Π(1n, x, y)

}
n∈N,(x,y)∈X×Y,z∈{0,1}∗

c≡
{

(out, view)IdealS(z),f (1n, x, y)
}

n∈N,(x,y)∈X×Y,z∈{0,1}∗
.

It is important to note that the only way for the ideal-world adversary to affect
the honest party’s output is through the choice of input. Finally, we remark that
the fully-secure model is the standard model for the honest-majority multi-party
setting.

The Hybrid Model. The hybrid model with ideal access to F is a communi-
cation model where the parties have access to a trusted computing some func-
tionality F with full security. In this model, the parties communicate as in the
plain model and they are allowed to make a single call to the trusted party for
computing F . Protocols and security for this communication model are defined
along the same lines as above. By [6], as long as F admits a secure real-world

588 V. Daza and N. Makriyannis

protocol, the existence of a secure hybrid protocol for f implies the existence of
a secure protocol for f in the real model. By contraposition, if f cannot be real-
ized securely, then the existence of a secure protocol for f in the hybrid model
implies the impossibility of realizing F securely in the real model.

The Dealer Model. Throughout the paper, we define protocols by describing
the number of rounds r(n) and the backup outputs {ai}r

i=0 for P1 and {bi}r
i=0

for P2. When executing a protocol, the parties hand their inputs to an entity
called the dealer. In turn, the dealer performs all the computations and hands
the relevant backup outputs to P1 and then P2 in a sequence of r(n) iterations.
Either party may abort the execution at any time and the protocol terminates at
that point. The remaining party is instructed to output the last backup output
he received. This approach is known as the online dealer model, and it does not
incur any loss of generality as there is a standard transformation from the online
dealer model to the plain model [2,3,5]. The online dealer model is convenient in
that it provides clarity to our presentation and it greatly simplifies the security
analysis.

3 Locking Strategies and Sampling Attacks

In this section, we introduce the notions of locking strategies and sampling
attacks. To motivate our discussion, we use specific functions from the litera-
ture as illustrative examples. Namely, the XOR function encoded by matrices

M (1,∗) = M (∗,1) =
(

0 1
1 0

)
,

the function fnm from [13] encoded by matrices

M (1,∗) = M (∗,1) =

⎛
⎜⎜⎝

0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠ ,

the function f sp from [3] encoded by matrices

M (1,∗) =

⎛
⎜⎜⎝

1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1

⎞
⎟⎟⎠ , M (∗,1) =

⎛
⎜⎜⎝

1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1

⎞
⎟⎟⎠ .

We remark that since the functions above are deterministic, the correspond-
ing matrices fully describe these functions. In addition, we note that f sp is com-
putable with fairness [3], while XOR and fnm are not [7,13]. Next, we briefly
discuss why that is the case.

Designing Fully Secure Protocols for Secure Two-Party Computation 589

3.1 Warm-Up

It is not hard to see that a fully-secure realization of XOR yields a fully-secure
coin-toss. Indeed, by instructing the parties to choose their inputs uniformly at
random, the output from a fully-secure computation of XOR is uniformly dis-
tributed, even in the presence of malicious adversaries. A slightly more involved
procedure allows the parties to sample correlated bit, using a fully-secure pro-
tocol for fnm. Indeed, instruct P1 to choose his input among {x1, x3, x4} with
uniform probability, instruct P2 to choose y4 with probability 2/5 or one of his
other inputs with probability 1/5. Let c denote the the output from the compu-
tation of fnm. Party P1 outputs c, party P2 outputs 1 − c if he chose y2 and c
otherwise.

For us, it is important to note that the procedures described above
are encoded by certain vectors. For XOR, these vectors are (1/2, 1/2) for
P1 and (1/2, 1/2) for P2. For fnm, they are (1/3, 0, 1/3, 1/3) for P1 and
(1/5,−1/5, 1/5, 2/5) for P2. To elaborate further, each vector instructs the rel-
evant party how to choose its input (by taking the absolute value) and whether
to flip the output from the computation of the function (negative values indicate
that the party must flip the output). Observe that

(1/2, 1/2) ·
(

0 1
1 0

)
∈ 〈1T

2 〉,
(

0 1
1 0

)(
1/2
1/2

)
∈ 〈12〉,

and

(1/3, 0, 1/3, 1/3)

⎛
⎜⎜⎝

0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠ ∈ 〈1T

4 〉,

⎛
⎜⎜⎝

0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1/5
−1/5
1/5
2/5

⎞
⎟⎟⎠ ∈ 〈14〉 .

The relations above capture the fact that the procedure encoded by the vector
yields an output whose distribution is independent of the opponent’s input,
i.e. Pi’s output resulting from the procedure is independent of P3−i’s choice of
input, assuming the underlying function is computed with full security. It is
straightforward to check that the parties’ outputs exhibit statistical correlation,
and thus the functions in question are not computable with full-security, by [1,7].

On the other hand, it is interesting to note that similar vectors and procedures
can be defined for function f sp. Specifically, observe that

(1/2, 1/2, 0, 0)

⎛
⎜⎜⎝

1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1

⎞
⎟⎟⎠ ∈ 〈1T

4 〉 ,

⎛
⎜⎜⎝

1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1/2
1/2
0
0

⎞
⎟⎟⎠ ∈ 〈14〉 .

In more detail, by choosing one of their first two inputs uniformly at random,
the outputs from a fully-secure computation of f sp are uniformly random, even
in the presence of malicious adversaries. However, contrary to the previous cases,
the parties’ outputs are independent as random variables.

590 V. Daza and N. Makriyannis

3.2 Locking Strategies

For an arbitrary function f , let L2 denote a basis of the vector space consisting
of all vectors y such that M (∗,1) ·y ∈ 〈1�〉. Similarly, let L1 denote a basis of the
vector space consisting of all vectors x such that M (1,∗)T · x ∈ 〈1k〉.

Definition 3.1. Elements of 〈L1〉 and 〈L2〉 are referred to as locking strategies
for P1 and P2, respectively.

As discussed above, a locking strategy (after normalization) encodes a dis-
tribution over the inputs and a local transformation that depends on the chosen
input. Since M (∗,1) · y ∈ 〈1�〉 and M (1,∗)T · x ∈ 〈1k〉, it follows that the parties’
outputs resulting from the locking strategies are independent of each others’
inputs, assuming ideal access to f . In loose terms, a party applying some locking
strategy “locks” the distribution of its output.

For us, it is important to note that fully-secure protocols “preserve” lock-
ing strategies, even in the presence of malicious adversaries. Specifically, the
distribution of the honest party’s output resulting from some locking strategy
is independent of the adversary’s course of action (e.g. premature abort). We
elaborate on this point next.

3.3 Sampling Attacks

Consider the following single-round protocol for f sp = (f1, f2) defined by means
of the backup outputs {ai, bi}i=0,1:

a0 = f1(x, ỹ) where ỹ ∈U Y b0 = f2(x̃, y) where x̃ ∈U X
a1 = f1(x, y) b1 = f2(x, y)

Suppose that party P2 applies locking strategy y = (1/2, 1/2, 0, 0)T . Notice
that in an honest execution of Π, party P2 outputs a uniform random bit. Now,
suppose that an adversary corrupting P1 uses x3 for the computation, and aborts
the computation prematurely if a1 = 0 (In that case P2 outputs b0). Deduce
that the honest party outputs 1 with probability 3/4 and thus the protocol is
not fully-secure.

On the other hand, consider the following two-round protocol Πsp for f sp

defined by means of the backup outputs {ai, bi}i=0...2:

a0 = f1(x, ỹ) where ỹ ∈U Y b0 = f2(x̃, y) where x̃ ∈U X

a1 =

{
f1(x, y) if x ∈ {x1, x2}
f1(x, ỹ′) where ỹ′ ∈U Y if x ∈ {x3, x4}

b1 = f2(x, y)

a2 = f1(x, y) b2 = f2(x, y)

Already, we see that the attack described above will not work for this pro-
tocol. In fact, a straightforward analysis shows that it is impossible to alter the
distribution of the honest party’s output resulting from a locking strategy, both
for P1 and P2. To see that, let b̂j (resp. âj) denote the bit obtained from bj

Designing Fully Secure Protocols for Secure Two-Party Computation 591

(resp. aj) by applying some locking strategy, and observe that the random vari-
ables b̂i−1 and b̂2 (resp. âi and â2) conditioned on the adversary’s view at round
i are identically distributed. For similar attacks on arbitrary protocols and func-
tions, security is captured by the definition below.

Definition 3.2. Let Π be an arbitrary protocol defined by means of its backup
outputs {ai, bi}i∈{0,...,r}. We say that Π is secure against sampling attacks if

– for every i ≤ r, for every x ∈ X, for every y ∈ 〈L2〉, it holds that the random
sequences (a0, . . . , ai, b̂i−1) and (a0, . . . , ai, b̂r) are statistically close.

– for every i ≤ r, for every y ∈ Y , for every x ∈ 〈L1〉, it holds that the random
sequences (b1, . . . , bi, âi) and (b1, . . . , bi, âr) are statistically close.

Remark 3.3. Rather awkwardly, we define security against sampling attacks
without defining sampling attacks. For the purposes of the present abstract,
sampling attacks are simply fail-stop attacks with the intent of altering the
distribution of the honest party’s output resulting from some locking strategy.
Furthermore, we note that Definition 3.2 is information-theoretic. We remark
that this is probably too strong. However, since the protocols we will consider
are constant-round, it does not affect our analysis.

3.3.1 Sampling Attacks in Linear-Algebraic Terms
In this section, we show how security against sampling attacks can be expressed
in linear-algebraic terms. First, we define closeness for vectors. Let {vn}n∈N and
{un}n∈N denote two families of vectors indexed by N. We say that vn is close to
un if ‖un −vn‖ ≤ negl(n). By abusing notation, we write un

s≡ vn if the vectors
are close.

Definition 3.4. For every i ≤ r, for every �αi = (α1, . . . , αi) ∈ {0, 1}i, and every
β ∈ {0, 1}, define matrices B

(�αi,β)
− , B

(�αi,β)
+ ∈ R

�×k such that

B
(�αi,β)
− (x, y) = Pr [(�ai, bi−1)(x, y) = (�αi, β)]

B
(�αi,β)
+ (x, y) = Pr [(�ai, br)(x, y) = (�αi, β)] .

Similarly, for every �βi = (β1, . . . , βi) ∈ {0, 1}i and every α ∈ {0, 1} define

matrices A
(α,�βi)
− , A

(α,�βi)
+ ∈ R

�×k such that

A
(α,�βi)
− (x, y) = Pr

[
(ai,�bi)(x, y) = (α, �βi)

]

A
(α,�βi)
+ (x, y) = Pr

[
(ar,�bi)(x, y) = (α, �βi)

]
.

Proposition 3.5. Protocol Π is secure against sampling attacks if and only if

592 V. Daza and N. Makriyannis

– for every y ∈ 〈L2〉, for every i ≤ r, for every �αi ∈ {0, 1}i, the vector below is
close to 0�.

(
B

(�αi,1)
+ − B

(�αi,1)
−

)
· y. (1)

– for every x ∈ 〈L1〉, for every i ≤ r, for every �βi ∈ {0, 1}i, the vector below is
close to 0k.

(
A

(1,�βi)T
+ − A

(1,�βi)T
−

)
· x. (2)

For example, for protocol Πsp, the distributions of (a1, b0) and (a1, b2) is given
by the following matrices.

B
(0,1)
− =

⎛
⎜⎜⎝

0 0 0 1/2
3/4 1/4 1/2 0
3/8 1/8 1/4 1/4
3/8 1/8 1/4 1/4

⎞
⎟⎟⎠ , B

(0,1)
+ =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0

1/2 0 0 0
0 1/2 1/2 1/2

⎞
⎟⎟⎠

B
(1,1)
− =

⎛
⎜⎜⎝

3/4 1/4 1/2 0
0 0 0 1/2

3/8 1/8 1/4 1/4
3/8 1/8 1/4 1/4

⎞
⎟⎟⎠ , B

(1,1)
+ =

⎛
⎜⎜⎝

1 0 1 0
0 0 0 1

1/2 0 0 0
0 1/2 1/2 1/2

⎞
⎟⎟⎠ .

Similarly, the distributions of (a1, b1) and (a2, b1) is given by the following
matrices.

A
(0,1)
− =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 1/2 1/2 1/2

1/2 0 0 0

⎞
⎟⎟⎠ , A

(0,1)
+ =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

A
(1,1)
− =

⎛
⎜⎜⎝

1 0 1 0
0 0 0 1

1/2 0 0 0
0 1/2 1/2 1/2

⎞
⎟⎟⎠ , A

(1,1)
+ =

⎛
⎜⎜⎝

1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 1

⎞
⎟⎟⎠ .

Notice that the matrices above satisfy Proposition 3.5.

4 Towards Full Security

In this section, we show that constant-round protocols that satisfy passive secu-
rity and security against sampling attacks are easily transformed into fully secure
protocols. The present section is dedicated to the construction and its security
proof. Let Π be a protocol for computing f . We model the protocol in the
usual way. The parties’ backup outputs for Π will be denoted (c0, . . . , cr′) and
(d0, . . . , dr′), respectively, where r′ denotes the number of rounds.

Designing Fully Secure Protocols for Secure Two-Party Computation 593

Assumption on the round-complexity. We assume that r′ is constant in the
security parameter. This assumption is desirable for for the proof of our main
theorem, and it is good enough for our purposes. Nevertheless, the question of
determining the optimal round complexity for protocols that are passively secure
and secure against sampling attacks may be of independent interest.

We assume that the protocol is passively secure. Therefore, there exist simu-
lators, denoted {Sp

i }i∈{1,2}, that can recreate the backup sequences in the ideal
model. In addition, since the protocol is constant-round, it follows that the ideal
sequences are statistically close to the real ones. Formally,

(c0, . . . , cr′ , dr′)Real
s≡ (c0, . . . , cr′ , f2)Ideal

(d0, . . . , dr′ , cr′)Real
s≡ (d0, . . . , dr′ , f1)Ideal.

Finally, we assume that Π is secure against sampling attacks. Theorem 3.5
applies to Π in a very straightforward way. Using the notation from the previous
section,

– For every y ∈ 〈L2〉, for every i = 1, . . . , r′, for every �αi ∈ {0, 1}i+1, the vector
below is close 0�.

(
B

(�αi,1)
+ − B

(�αi,1)
−

)
· y. (3)

– For every x ∈ 〈L1〉, for every i = 0, . . . , r′ − 1, for every �βi ∈ {0, 1}i+1, the
vector below is close to 0k.

(
A

(1,�βi)T
+ − A

(1,�βi)T
−

)
· x. (4)

4.1 Protocol SecSamp2Fair(Π)

We are going to combine the main ingredient of the GHKL protocol – the thresh-
old round i∗ – with the protocol above. Specifically, we are going to instruct the
parties to run a protocol such that, at some point in the execution, unbeknownst
to them, the parties begin running Π.

This is achieved by choosing a random threshold round according to a
geometric distribution. Prior to that round, the parties exchange backup out-
puts that are independent of each other, and, once the threshold round has been
reached, the parties exchange backups according to the specifications of Π. For-
mally, consider protocol SecSamp2Fair(Π) from Fig. 2. For the new protocol,
i∗ ≥ r′ + 1 is chosen according to a geometric distribution with parameter γ. If
i < i∗ − r′, then ai and bi are independent of one another. If i∗ − r′ ≤ i < i∗,
then ai and bi are equal to ci−i∗+r′ and di−i∗+r′ , respectively. Finally, if i ≥ i∗,
then (ai, bi) = (cr′ , dr′)

s≡ (f1, f2).

594 V. Daza and N. Makriyannis

Fig. 2. Protocol SecSamp2Fair(Π) for computing f .

Theorem 4.1. Suppose that protocol Π for f is constant-round, passively
secure, and secure against sampling attacks. There exists γ0 ∈ [0, 1] such that
protocol SecSamp2Fair(Π) is fully secure for f , for every γ < γ0.

As a corollary, we show the existence of fair non-Boolean function where
both parties have roughly the same number of inputs. We stress that previous
results [2] on non-Boolean functions only applied to functions where one party
has at least twice as many inputs as the other.

Corollary 4.2. The non-Boolean function described by the matrix below is com-
putable with full security.

f(x, y) y1 y2 y3 y4
x1 1 1 2 2
x2 1 0 1 2
x3 1 1 0 2
x4 2 2 0 2

Designing Fully Secure Protocols for Secure Two-Party Computation 595

Proof. Consider the following 2-round protocol defined by means of the backup
outputs {ai, bi}i=1...2.

a0 = f(x, ỹ) where ỹ ∈U Y b0 = 2

a1 =

{
a ∈U {0, 1} if x = x2 and f(x, y)
= 2
f(x, y) otherwise

b1 = f(x, y).

a2 = f(x, y) b2 = f(x, y)

The protocol is constant-round, passively secure and secure against sampling
attacks. By Theorem 4.1, the function is fair.

4.2 Security Analysis

We only deal with the case where P1 is corrupted. The other case is virtually
analogous. Write A for the adversary corrupting P1. We begin with a high-level
description of the simulator. The simulator S chooses i∗ according to the specifi-
cations of the protocol, and simulates the rounds of the protocol as follows. Prior
to iteration/round i∗ −r′, the simulator generates backup outputs in exactly the
same way as the dealer does in the real model. If the adversary decides to abort,
S sends x0 ∈ X to the trusted party, where x0 is sampled according to prob-
ability vector z(�αr′)

x ∈ R
�. As the notation suggests, z(�αr′)

x depends on x (the
input handed by the adversary for the computation) and the last r′ + 1 backup
outputs computed by the simulator. At iteration i∗ − r′, assuming the adversary
is still active, the simulator hands x to the trusted party, and receives output
a = f1(x, y). In order to reconstruct the next values of the backup sequence, the
simulator invokes Sp

2 , and hands one-by-one to A the values computed by Sp
2 .

At every iteration following i∗, the simulator hands a to A. At any given point,
if the adversary aborts, the simulator outputs the sequence of values he handed
to A, and halts.

Intuition. By definition, the simulator’s output together with the honest party’s
output in the ideal model is required to be indistinguishable from the adversary’s
view and the honest party’s output in the real model. In our case, the adversary’s
view corresponds to the sequence of backup outputs she observes. Notice that
the backup up sequences of each world are statistically close, which follows from
the way i∗ is chosen in both worlds, the passive security of Π, and the fact that
prior to i∗ − r′ the backup outputs in the real and ideal world are identically
distributed. The hard part is to argue that there exists z(�αr′)

x from which the
simulator can sample from. As we shall see, the existence of z(�αr′)

x follows from a
corollary of the fundamental theorem of Linear Algebra, which comes into play
because of the security against sampling attacks assumption (Fig. 3).

596 V. Daza and N. Makriyannis

Fig. 3. The simulator S for protocol SecSamp2Fair(Π)

Recall that for i = 1 . . . r′ matrices B
(α0,...,αi,β)
− and B

(α0,...,αi,β)
+ denote

B
(α0...αi,β)
− (x, y) = Pr [(c0, . . . , ci, di−1)(x, y) = (α0, . . . , αi, β)]

B
(α0...αi,β)
+ (x, y) = Pr [(c0, . . . , ci, dr′)(x, y) = (α0, . . . , αi, β)]

Now, define p
(α)
x = Pr [f1(x, ỹ) = α | ỹ ∈U Y]. To alleviate notation, we will

omit the security parameter. As mentioned earlier, the corrupted party’s backup
sequences in the real and ideal world are statistically close. Therefore, if the
adversary quits in the real world, then the adversary quits in the ideal world
as well, with all but negligible probability – and vice versa. The whole point of
the simulation is to show that early aborts do not breach security. In particular,
if the adversary quits after round i∗, then the relevant distributions in the real
and ideal world are statistically close. Our analysis only deals with aborts that
take place prior to round i∗.

We only focus on the last r′ + 1 elements of the corrupted party’s backup
sequence. Having assumed that i∗ has not been surpassed, anything prior to the

Designing Fully Secure Protocols for Secure Two-Party Computation 597

last r′ + 1 elements is essentially noise, and it has no bearing on the security
analysis. For every sequence of elements �αr′ ∈ {0, 1}r′+1 and every β ∈ {0, 1},
we compute the probability that the adversary’s view and honest party’s output
in the real world is equal to (�αr′ , β), and we express the result in terms of the
B

(,)
− -matrices. Similarly, for the ideal world, we compute the probability that

the simulator’s output and honest party’s output is equal to (�αr′ , β), and we
express the result in terms of the B

(,)
+ -matrices and vector z(�ar′)

x .
The point of the exercise is to obtain (linear) constraints for vector z(�ar′)

x .
Then, we ask if the constraints are satisfiable, and, if so, whether solutions can be
found efficiently. The second question can be readily answered. If an appropriate
solution exists, the simulator can compute it efficiently. Indeed, the simulator
can approximate the probability of all possible sequences of size r′ + 1, and,
assuming it exists, the simulator computes z(�ar′)

x by solving a linear system of
size |X| × |Y |. Thus, it suffices to show that z(�ar′)

x exists. The security features
of Π come into play in this regard.

An early abort on the part of the adversary alters the conditional2 probabil-
ity distribution of the honest party’s output. Security against sampling attacks
guarantees that the output remains consistent with the function at hand. Thus,
by introducing a threshold round and fine-tuning its parameter, we restrict the
distribution of the output until it falls within the range of the function, and the
simulator can match it with an appropriate input.

Three Simplifying Assumptions. The case where the adversary aborts before
round r′ needs special consideration. However, the only difference is that z(�ai)

x

depends on fewer elements. The analysis is largely the same and we do not
address this case any further. Furthermore, we assume that p

(α)
x
= 0, for every

α ∈ {0, 1} and x ∈ X. This assumption allows for a smoother exposition by
disregarding degenerate cases. Finally, regarding Π, we will assume that security
against sampling attacks holds perfectly, i.e. (3) and (4) are equal to 0� and 0k

respectively. Again, the latest assumption is not necessary to prove the theorem.
We do so in order to avoid introducing notions from Topology to deal with the
convergent sequences.

4.3 Real vs Ideal

For every sequence �αr′ = (α0, . . . , αr′) ∈ {0, 1}r′+1 and every β ∈ {0, 1}, we
compute the probability that the adversary quitting at round i ≤ i∗ observes
�αr′ and the honest party outputs β. The adversary is assumed to use input
x ∈ X for the computation. To account for every possible input of the honest
party, the relevant probabilities are expressed in terms of vectors.

2 Conditioned on the adversary’s view.

598 V. Daza and N. Makriyannis

Claim 4.3. In the real model, it holds that

Pr
[
(ai−r′ , . . . , ai, bi−1)

Real = (�αr′ , β)
∣∣∣ i ≤ i∗

]

= (1 − γ)r
′+1 · p(α0)

x · · · p(αr′)
x · q(β)T + γ(1 − γ)r

′
· p(α0)

x · · · p(αr′−1)
x ·

[
B

(αr′ ,β)

−

]
x,∗

+ . . . + γ(1 − γ) · p(α0)
x ·

[
B

(α1...αr′ ,β)

−

]
x,∗

+ γ ·
[
B

(�αr′ ,β)

−

]
x,∗

,

where q(β) = M (∗,β)T · 1�/�.

Proof. Simple expansion over possible values of i∗.

Define c(�αr′ ,β)
x ∈ R

k such that c(�αr′ ,β)
x (y) = Pr

[
f2(x0, y) = β

∣∣∣x0 ← z(�αr′)
x

]
.

Claim 4.4. In the ideal model, it holds that

Pr
[
(ai−r′ , . . . , ai, f2)

Ideal = (�αr′ , β)
∣∣∣ i ≤ i∗

]

=(1 − γ)r
′+1 · p

(α0)
x · · · p(αr′)

x · c(�αr′ ,β)T
x + γ(1 − γ)r

′ · p
(α0)
x · · · p(αr′−1)

x ·
[
B

(αr′ ,β)
+

]
x,∗

+ . . . + γ(1 − γ) · p
(α0)
x ·

[
B

(α1...αr′ ,β)
+

]
x,∗

+ γ ·
[
B

(�αr′ ,β)
+

]
x,∗

.

Thus, for every β ∈ {0, 1}, we require that c(�αr′ ,β)T
x is close to

q(β)T +
r′∑

i=0

λi(γ, �αr′) ·
[
B

(αr′−i...αr′ ,β)
− − B

(αr′−i...αr′ ,β)
+

]
x,∗

,

where

λi(γ, �αr′) =
γ(1 − γ)r′−i · p

(α0)
x · · · p(αr′−i−1)

x

(1 − γ)r′+1 · p
(α0)
x · · · p(αr′)

x

=
γ

(1 − γ)i+1
· 1

p
(αr′−i)
x · · · p(αr′)

x

.

Knowing that c(�αr′ ,β)T
x = z(�αr′)T

x · M (∗,β) and that M (∗,0) = 1�×k − M (∗,1),
the simulation is successful if there exists probability vector z(�αr′)

x ∈ R
k such

that

z(�αr′)T
x · M (∗,1)

s≡ q(1)T + λ0 ·
[
B

(αr′ ,1)
+ − B

(αr′ ,1)
−

]
x,∗

+ . . . + λr′ ·
[
B

(�αr′ ,1)
+ − B

(�αr′ ,1)
−

]
x,∗

.

(5)

Designing Fully Secure Protocols for Secure Two-Party Computation 599

Define u(�αr′)
x = z(�αr′)

x − 1�/� and notice that (5) is equivalent to

u(�αr′)T
x · M (∗,1)

s≡ λ0 ·
[
B

(αr′ ,1)
+ − B

(αr′ ,1)
−

]
x,∗

+ · · · + λr′ ·
[
B

(�αr′ ,1)
+ − B

(�αr′ ,1)
−

]
x,∗

, (6)

and
⎧
⎨
⎩

∑
x0

u(�αr′)
x (x0) = 0

∀x0 ∈ X, u(�αr′)
x (x0) ∈ [−1/�, 1 − 1/�]

.

Lemma 4.5. Let c be an arbitrary vector and let M be an arbitrary matrix.
There exists u such that

∑
z u(z) = 0 and uT · M = cT if and only if cTv = 0,

for every v such that Mv ∈ 〈1〉.

Proof. Define

M ′ =

⎛
⎜⎝

−1 1 . . . 0
...

...
. . .

...
−1 0 . . . 1

⎞
⎟⎠ · M.

Observe that the row-space of M ′ is equal to the image of the hyperplane
{u |

∑
z u(z) = 0} by MT and that ker(M ′) = {v |Mv ∈ 〈1〉}. Conclude by

applying the fundamental theorem of linear algebra. �

Proof of Theorem 4.1. We show that there exist suitable vectors u(�αr′)
x satis-

fying (6), for every x ∈ X and �αr′ ∈ {0, 1}r′+1. By assumption, security against
sampling attacks holds perfectly for Π. It follows that

(
B

(�αi,1)
+ − B

(�αi,1)
−

)
· y = 0�,

for every y ∈ 〈L2〉. By Lemma 4.5, there exists u(�αr′)
x,i such that

∑
x0

u(�αr′)T
x,i (x0) = 0 and

u(�αr′)T
x,i · M (∗,1) =

[
B

(�αi,1)
+ − B

(�αi,1)
−

]
x,∗

.

Thus, u(�αr′)
x

def=
∑

i λiu
(�αr′)
x,i satisfies (6). To conclude, we argue that there

exists γ0 such that u(�αr′)
x (x0) ∈ [−1/�, 1 − 1/�], for every γ < γ0. Recall that

λi(γ, �αr′) =
γ

(1 − γ)i+1
· 1

p
(αr′−i)
x · · · p(αr′)

x

.

Observe that λi tends to 0 as γ tends to 0. �

600 V. Daza and N. Makriyannis

5 The Asymmetric Case

Our analysis of locking strategies and sampling attacks culminates in Theorem
4.1 from the previous section. The theorem states that, in order to demonstrate
that a given function is computable with full security, it suffices to design a
constant-round, passively-secure protocol that is secure against sampling attacks.
In this section, we look for relevant protocols for asymmetric Boolean functions.
We propose an algorithm that takes a description of the function as input, and,
depending on the termination step, either returns the description of an appro-
priate protocol, or it returns that it failed to do so.

We begin by visiting some mathematical tools and a few useful lemmas.
Next, we define a game involving the parties computing f and the dealer. The
game simulates the last interaction in a correct protocol computing f , and whose
purpose is for the dealer to hand a backup3 output to the disadvantaged party
without compromising any of the security requirements. Finally, largely as an
extension of the game, we obtain an algorithm for designing constant-round
protocols that are passively secure and secure against sampling attacks. Using
the tools and the lemmas from Sect. 5.1, we demonstrate that our algorithm
satisfies correctness.

Speculative Remark. For what it is worth, numerical results on small cases
indicate that our algorithm accounts for the overwhelmingly majority of non
semi-balanced functions. We also encountered a handful of non semi-balanced
functions for which our algorithm fails to come up with a suitable protocol. These
functions are noteworthy because we suspect that their unknown status cannot
be attributed to potential shortcomings of our algorithm. We believe that our
algorithm is as good at finding suitable protocols as can be expected.

5.1 Irreducible Locking Strategies

Let f : X×Y → {0, 1}2 denote some Boolean asymmetric (possibly randomized)
finite function. Since f is asymmetric, it has four associated matrices M (0,0),
M (0,1), M (1,0), M (1,1) ∈ [0, 1]�×k. Recall that locking strategies for P1 and P2

correspond to elements of the vector spaces 〈L1〉 = {x ∈ R
� |xT M (1,∗) ∈

〈
1T

k

〉
}

and 〈L2〉 = {y ∈ R
k |M (∗,1)y ∈ 〈1�〉}, where L1 and L2 denote arbitrary bases of

each space. Without loss of generality, assume |L1| = s1 and |L2| = s2. Locking
strategies endow a matrix with a matroid structure, in the same way that linear
dependence does. We define the matroid by means of its minimally dependent
sets, i.e. circuits.

Definition 5.1. We say that the columns of M (∗,1) indexed by Y ′ ⊆ Y are
minimally dependent if

–
{
M (∗,1)ey

}
y∈Y ′ ∪ {1�} are linearly dependent,

3 Other than the actual output.

Designing Fully Secure Protocols for Secure Two-Party Computation 601

– for every y0 ∈ Y ′, it holds that
{
M (∗,1)ey

}
y∈Y ′\{y0} ∪ {1�} are linearly inde-

pendent.

Similarly, we say that the rows of M (1,∗) indexed by X ′ ⊆ X are minimally
dependent if

–
{
eT

x M (1,∗)}
x∈X′ ∪

{
1T

k

}
are linearly dependent,

– for every x0 ∈ X ′, it holds that
{
eT

x M (1,∗)}
x∈X′\{x0} ∪

{
1T

k

}
are linearly

independent.

Proposition 5.2. Suppose that the columns of M (∗,1) indexed by Y ′ ⊆ Y are
minimally dependent. Up to a multiplicative factor, there exists a unique q ∈
R

k \ {0k} such that M (∗,1)q ∈ 〈1�〉 and supp(q) = Y ′.

Proof. By definition, there exists q ∈ R
k such that M (∗,1)q ∈ 〈1�〉 and

supp(q) = Y ′. The non-trivial task is to show that this vector is unique, up
to a multiplicative factor. Suppose there exists q′ such that supp(q′) ⊆ Y ′

and M (∗,1)q′ ∈ 〈1�〉. In pursuit of a contradiction, assume that q′
= λq, for
every λ ∈ R. Equivalently, there exists i, j ∈ Y ′ such that q(i) = λiq′(i) and
q(j) = λjq′(j), with λi
= λj . Without loss of generality, say that λi
= 0 and
define q′′ = λi·q′−q. Deduce that M (∗,1)q′′ ∈ 〈1�〉 and supp(q′′) � Y ′, in contra-
diction with the fact that the columns indexed by Y ′ are minimally dependent.

�

Definition 5.3. If q ∈ R
k is as in Proposition 5.2, we say that q is irreducible.

Proposition 5.4. There exists a basis of 〈L2〉 consisting of irreducible strate-
gies.

Proof. It is a well known that any generating set contains a basis. Thus, it suffices
to show that irreducible locking strategies form a generating set. Let y ∈ 〈L2〉
and consider supp(y). Let μ1, . . . , μty denote all the subsets of supp(y) that index
minimally dependent columns, and write q1, . . . ,qty for the associated unique
irreducible locking strategies. We show that y ∈ 〈q1, . . . ,qty〉 by constructing a
sequence of locking strategies y0, . . . ,ysy such that

⎧
⎪⎨
⎪⎩

y0 = y
yj+1 = yj − αj · q(j)

ysy = 0�

,

where αj ∈ R and q(j) ∈ {q1, . . . ,qty}. Let q(0) be an arbitrary element of
{q1, . . . ,qty} and fix j0 such that q(0)(j0)
= 0. Define y1 = y − y(j0)

q(0)(j0)
· q(0).

Notice that y1 is a locking strategy and that supp(y1) � supp(y). Since y1 is a
locking strategy, it follows that μ(1) ⊂ supp(y1), for some μ(1) ∈ {μ1, . . . , μty}.
Write q(1) for the associated locking strategy. Similarly to what we just did, fix
j1 such that q(1)(j1)
= 0, define y2 = y1 − y1(j1)

q(1)(j1)
· q(1), and notice that y2

is a locking strategy and that supp(y2) � supp(y1). Repeat the procedure and
conclude that it terminates in at most |supp(y)| steps. �

602 V. Daza and N. Makriyannis

Define Y0, . . . , Yk′ to be a partitioning of the input domain Y that we construct
as follows. First, y ∈ Y0 if ey is orthogonal to 〈L2〉. Next, for i ≥ 1, let q(i) be an
irreducible locking strategy such that supp(q(i))∩ (Yi−1 ∪ . . . ,∪Y0) = ∅. Finally,
y ∈ Yi if there exist irreducibles q(i)

1 , . . . ,q(i)
ty such that

⎧
⎪⎨
⎪⎩

q(i) = q(i)
1

supp(q(i)
j) ∩ supp(q(i)

j+1)
= ∅
y ∈ supp(q(i)

ty)

.

5.2 The Dealer Game

In this section, we present a game involving the parties computing f and the
dealer. The purpose of the game is to define a simplified variant of the security
against sampling attacks requirement. Assume that the honest party, say P2,
applies some locking strategy y while executing a protocol for computing f .
If the protocol is secure against sampling attacks, then the adversary cannot
distinguish between the correct output and the backup output of the honest
party. In the worst case, the adversary is handed the output of the corrupted
party before the honest party’s receives his. In such an event, we ask what the
honest party’s backup output ought to be, other than the correct output.

Write ai (resp. bi) for P1’s (resp. P2’s) backup output at round i. Let b̂∗
denote the bit obtained from b∗ by applying4 y, and r denotes the number of
rounds. From an honest P2’s perspective, we require that the pairs (ai, b̂i−1)
and (ai, b̂r) are statistically close, for every x ∈ X, y ∈ 〈L2〉 and i ∈ {1 . . . r}.
Consider the following process involving a dealer. The dealer receives inputs x
and y from P1 and P2, respectively, and computes f(x, y) = (f1(x, y), f2(x, y)).
Then, the dealer hands f1(x, y) to P1 and a bit b to P2, where b is a probabilistic
function of P2’s input and f2(x, y). We investigate how to construct b with the
following goals in mind.

1. minimize the information b contains about f2(x, y)
2. (f1, f̂2) is statistically close to (f1, b̂), for every x ∈ X and q ∈ 〈L2〉.

Let us introduce vectors b(0), b(1) ∈ R
k such that

b(β)(y0) = Pr
[
b = 1

∣∣∣ f2(x, y) = β ∧ y = y0

]
.

Fix y ∈ Y , and notice that b ≡ f2 on input y if b(0)(y) = 0 and b(1)(y) = 1. On
the other hand, b contains no information about f2(x, y) if and only if b(0)(y) =
b(1)(y). Consequently, our aim is for b(0) and b(1) to be equal on as many indices
as possible.

4 Recall that y encodes an input distribution but also a certain transformation.

Designing Fully Secure Protocols for Secure Two-Party Computation 603

Claim 5.5. Using the notation above, It holds that (f1, f̂2) is statistically close
to (f1, b̂) if and only if, for every y ∈ 〈L2〉,

{
M (0,0)

(
b(0) ∗ y

)
+ M (0,1)

(
b(1) ∗ y

)
= M (0,1)y

M (1,0)
(
b(0) ∗ y

)
+ M (1,1)

(
b(1) ∗ y

)
= M (1,1)y

. (7)

Proof. Fix x ∈ X, y ∈ 〈L2〉, α ∈ {0, 1}, and note that

Pr
[
(f1, f̂2) = (α, 1)

]
= eT

x

⎛
⎝ ∑

y(y)≥0

[
M (α,1)

]
∗,y

y(y) +
∑

y(y)<0

[
M (α,0)

]
∗,y

|y(y)|

⎞
⎠

= eT
x

⎛
⎝M (α,1)y +

∑
y(y)<0

[
M (α,∗)

]
∗,y

|y(y)|

⎞
⎠

On the other hand, Pr
[
(f1, b̂) = (α, 1)

]

=
∑

y(y)≥0

eT
x

([
M (α,1)

]
∗,y

· b(1)(y) +
[
M (α,0)

]
∗,y

· b(0)(y)
)
y(y)

+
∑

y(y)<0

([
M (α,1)

]
∗,y

· (1 − b(1)(y)) +
[
M (α,0)

]
∗,y

· (1 − b(0)(y))
)

|y(y)|,

and thus Pr
[
(f1, b̂) = (α, 1)

]

= eT
x

⎛
⎝M (α,0)

(
b(0) ∗ y

)
+ M (α,1)

(
b(1) ∗ y

)
+

∑
y(y)<0

[
M (α,∗)

]
∗,y

|y(y)|

⎞
⎠ .

To conclude, note that since b(0),b(1) are fixed vectors, it holds that (f1, f̂2) and
(f1, b̂) are statistically close if and only if they are identically distributed. �

Moving on, fix Yi ∈ {Y0, . . . , Yk′} and suppose there exist b(0),b(1) satisfying
Eq. (7) such that b(0)(y0)
= 0 or b(1)(y0)
= 1, for some y0 ∈ Yi. We show that
there exist b′(0),b′(1) satisfying Eq. (7) such that b′(0)(y) = b′(1)(y), for every
y ∈ Yi. This is where the underlying matroid structure will come in handy.

Proposition 5.6. It holds that b(1)(y)−b(0)(y) = b(1)(y0)−b(0)(y0), for every
y ∈ Yi. In addition, vectors b′(1), b′(0) satisfy Eq. (7), where

b′(b)(y) =

⎧
⎨
⎩
b(b)(y) if y /∈ Yj

b(0)(y)
b(0)(y0) − b(1)(y0) + 1

if y ∈ Yj

.

604 V. Daza and N. Makriyannis

Proof. For the first part of the claim, we apply Proposition 5.2. The case i = 0
is left to the reader. Let i ≥ 1 and fix irreducible q such that y0 ∈ supp(q). We
know that, for any y ∈ 〈L2〉,

M (0,0)
(
b(0) ∗ y

)
+ M (0,1)

(
b(1) ∗ y

)
= M (0,1)y, (8)

M (1,0)
(
b(0) ∗ y

)
+ M (1,1)

(
b(1) ∗ y

)
= M (1,1)y. (9)

Let y = q and add the two expressions.(
1�×k − M (∗,1)

)(
b(0) ∗ q

)
+ M (∗,1)

(
b(1) ∗ q

)
= M (∗,1)q.

By moving a few terms around, deduce that M (∗,1)
(
(b(1) − b(0)) ∗ q

)
∈ 〈1�〉.

Consequently, by Proposition 5.2, b(1)(y) − b(0)(y) = b(1)(y0) − b(0)(y0), for
every y ∈ supp(q). Moving on, fix an arbitrary y ∈ Yi. We know there exists a
sequence of irreducibles q(i)

1 . . .q(i)
t′
y

such that
⎧
⎪⎨
⎪⎩

q = q(i)
1

supp(q(i)
j) ∩ supp(q(i)

j+1)
= ∅
y ∈ supp(q(i)

t′
y
)

,

Apply the same argument as above and, by induction, deduce that b(1)(y) −
b(0)(y) = b(1)(y0) − b(0)(y0). For the second part of the claim, we rely on the
following observations.

– Vectors b(0)
0 and b(1)

0 satisfy Eqs. (8) and (9), where

b(0)
0 =

{
b(0)(y) if y /∈ Yi

0 if y ∈ Yi

, b(1)
0 =

{
b(1)(y) if y /∈ Yi

1 if y ∈ Yi

.

– Solutions to Eqs. (8) and (9) can be combined linearly.

The second item is trivial. For the first item, we show that vectors b(0)
0 and

b(1)
0 are solutions to the equations for a particular basis of 〈L2〉. By Proposition

5.4, consider a basis of 〈L2〉 that consists of irreducible strategies. Conclude by
observing that Yi ∩ supp(q′) = ∅, for every irreducible q′ such that supp(q) � Yi.
Next, define

b′(b) =
1

b(0)(y0) − b(1)(y0) + 1
· b(b) +

(
1 − 1

b(0)(y0) − b(1)(y0) + 1

)
· b(b)

0 .

We note that b′(0), b′(1) admit the right expression. It remains to show that
b′(b)(y) ∈ [0, 1], for every y. Since b′(b)(y) = b(b)(y) if y /∈ Yj , it suffices to show
that

b(0)(y)
b(0)(y) − b(1)(y) + 1

∈ [0, 1], (10)

for y ∈ Yi. We conclude by observing that (10) is equivalent to 0 ≤ b(0)(y) and
b(1)(y) ≤ 1. �

Designing Fully Secure Protocols for Secure Two-Party Computation 605

5.3 The Algorithm

Next, we show how to construct passively-secure protocols that are also secure
against sampling attacks. The idea is to build the backup outputs from the
bottom-up, i.e. start with ar ≡ f1 and br ≡ f2, and construct ar−1 and br−1

such that ar−1 (resp. br−1) only depends on x and f1(x, y) (resp. y and f2(x, y))
without compromising security against sampling attacks.

To this end, we employ a minimization algorithm in combination with
Proposition 5.6. Without loss of generality, we begin by assuming that P1 is
corrupted, and that he observes ar ≡ f1(x, y). To define br−1, we run an opti-
mization algorithm that constructs vectors {b(β)}β∈{0,1}, and we delete any
input y ∈ Y for which b(1)(y) − b(0)(y)
= 1. Then, in order to define ar−1, we
run an optimization algorithm that constructs vectors {a(α)}α∈{0,1}, assuming
P2 is corrupted, and the party is privy to the output only if the input he used
was not deleted in the previous step. We proceed by deleting any input x ∈ X
for which a(1)(y) − a(0)(y)
= 1. We carry on in this fashion until one party runs
out of inputs, or the process does not allow for any further deletions.

Getting ahead of ourselves, we note that deleted inputs cannot be used by
the adversary to mount a successful sampling attack. In light of Proposition 5.6,
if an input was deleted at iteration i, then every backup output until round r− i
contains no information about the output.

Additional Notation. Before we describe the algorithm, let us introduce some
notation. For every q ∈ L2 and X ′ ⊆ X, define

Aq(X ′) =

⎛
⎜⎝

[
M (0,0) ∗ Q

]
X′

[
M

(0,1)
X′ ∗ Q

]
X′[

M (1,0) ∗ Q
]
X′

[
M (1,1) ∗ Q

]
X′

M (∗,0) ∗ Q M (∗,1) ∗ Q

⎞
⎟⎠ , �bq =

⎛
⎝

[
M (0,1)

]
X′ q[

M (1,1)
]
X′ q

M (∗,1)q

⎞
⎠

where Q = 1� ·qT and the notation [·]X′ indicates that only the rows indexed
by X ′ ⊆ X appear. Write L2 = {q1, . . . ,qs2} and consider the following linear
system for unknown (b(0)T ,b(1)T).

⎛
⎜⎜⎜⎝

Aq1(X
′)

Aq2(X
′)

...
Aqs2

(X ′)

⎞
⎟⎟⎟⎠ ·

(
b(0)

b(1)

)
=

⎛
⎜⎜⎜⎜⎝

�bq1(X
′)

�bq2(X
′)

...
�bqs2

(X ′)

⎞
⎟⎟⎟⎟⎠

(11)

(
0k

0k

)
≤

(
b(0)

b(1)

)
≤

(
1k

1k

)

Similarly, for every p ∈ L1 and Y ⊆ Y ′, define

Bp(Y ′) =

⎛
⎝

[
M (0,0)T ∗ P

]
Y ′

[
M (1,0)T ∗ P

]
Y ′[

M (0,1)T ∗ P
]
Y ′

[
M (1,1)T ∗ P

]
Y ′

M (0,∗)T ∗ P M (1,∗)T ∗ P

⎞
⎠ , �ap =

⎛
⎝

[
M (1,0)T

]
Y ′ p[

M (1,1)T
]
Y ′ p

M (1,∗)Tp

⎞
⎠

606 V. Daza and N. Makriyannis

where P = 1k ·pT and the notation [·]Y ′ indicates that only the rows indexed
by Y ′ ⊆ Y appear. Write L1 = {p1, . . . ,ps1} and consider the following linear
system for unknown (a(0)T ,a(1)T).

⎛
⎜⎜⎜⎝

Bp1(Y
′)

Bp2(Y
′)

...
Bps1

(Y ′)

⎞
⎟⎟⎟⎠ ·

(
a(0)

a(1)

)
=

⎛
⎜⎜⎜⎝

�ap1(Y
′)

�ap2(Y
′)

...
�aps1

(Y ′)

⎞
⎟⎟⎟⎠ (12)

(
0�

0�

)
≤

(
a(0)

a(1)

)
≤

(
1�

1�

)

As noted earlier, the idea is to delete inputs from the parties in a sequence
of iterations. Namely, we begin by running a linear program that minimizes
−1T

k b
(0) +1T

k b
(1) under the constraints of Eq. (11), with X ′ = X. At this point,

we delete any input y ∈ Y for which b(1)(y) − b(0)(y) < 1. Write Y − ⊆ Y for
the remaining inputs. We proceed by running a linear program that minimizes
−1T

� a
(0) + 1T

� a
(1) under the constraints of Eq. (12), with Y ′ = Y −. Again, we

delete any input x ∈ X for which a(1)(x)−a(0)(x) < 1. We repeat the procedure
until either one of the parties runs out of inputs or no further deletions can be
made, for either party. See Fig. 4 for a full description of the algorithm. Before
we discuss the general ramifications of the terminating step, we illustrate the
usefulness of our algorithm with an example.

Example. Consider the deterministic asymmetric Boolean function from [3]
described by the following matrices.

M (1,∗) =

⎛
⎜⎜⎝

0 1 1 0
1 0 1 1
1 0 0 0
0 1 0 1

⎞
⎟⎟⎠ , M (∗,1) =

⎛
⎜⎜⎝

1 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0

⎞
⎟⎟⎠ .

For this function, each party has a unique locking strategy. Namely, pT =
(1, 1, 1, 1) and qT = (1, 1, 0, 1) respectively. Let us walk through each itera-
tion of the algorithm. The first optimization returns b(0)T = (0, 0, 1, 0) and
b(1)T = (1, 1, 0, 1). Notice that Y + = {y1, y2, y4}. The algorithm assigns
Y − = Y + and moves on to the next step. The second optimization returns
a(0)T = (1/2, 0, 1, 1/2) and a(1)T = (1/2, 0, 1, 1/2). Notice that X+ = ∅, and the
algorithm terminates. Now, we will use these vectors to define backup outputs
for the parties. Consider the following two-round protocol described by means of
the backup outputs {(ai, bi)}i=0...2. Assuming the parties use x ∈ X and y ∈ Y
for the computation,

Designing Fully Secure Protocols for Secure Two-Party Computation 607

Fig. 4. An algorithm for designing fully-secure protocols.

a0 = f1(x, ỹ) where ỹ ∈U Y b0 = f2(x̃, y) where x̃ ∈U X

a1 =

⎧
⎪⎨
⎪⎩

a ∈U {0, 1} if x ∈ {x1, x4}
1 if x = x2

0 if x = x3

b1 =

{
b ∈U {0, 1} if y = y3

f2(x, y) if y
= y3
.

a2 = f1(x, y) b2 = f2(x, y)

Observe that a1 and b1 are constructed in accordance with a(0), a(1) and b(0),
b(1), respectively. It is not hard to see that the resulting protocol is passively
secure and secure against sampling attacks. In light of Theorem 4.1, function f
is computable with full security. Next, we discuss the general case.

608 V. Daza and N. Makriyannis

General Case. Assume that the algorithm terminates because one of the parties
ran out of inputs. Without loss of generality, say that Y + = ∅ and write

(
b(0)
0

b(1)
0

)
· · ·

(
b(0)

t

b(1)
t

)
,

(
a(0)1

a(1)1

)
· · ·

(
a(0)t

a(1)t

)

for the vectors computed in the execution of the algorithm – starting from the
bottom-up – i.e. b(0)

0 ,b(1)
0 denote the last vectors computed for P2 and b(0)

t ,b(1)
t

denote the first vectors computed for P2. Similarly, a(0)1 ,a(1)1 denote the last
vectors computed for P1 and a(0)t ,a(1)t denote the first vectors computed for
P1. Now, assume5 that for every i ∈ {1, . . . , t}, and every j ∈ {1, . . . , �}, either
a(1)i (j) − a(0)i (j) = 1 or a(1)i (j) = a(0)i (j). Similarly, for every i ∈ {0, . . . , t}, and
every j ∈ {1, . . . , k}, either b(1)

i (j) − b(0)
i (j) = 1 or b(1)

i (j) = b(0)
i (j). Write Tf

for the transcript of the algorithm and consider the protocol from Fig. 5.

Theorem 5.7. Using the notation above, Protocol SecSamp(Tf) is passively
secure and secure against sampling attacks.

Fig. 5. Protocol SecSamp(Tf) for computing f .

5 In light of Proposition 5.6, we can construct vectors admitting the required expres-
sion.

Designing Fully Secure Protocols for Secure Two-Party Computation 609

Proof (Sketch). The fact that the protocol is passively secure is trivial. Regarding
security against sampling attacks, notice that, at any given round, the adver-
sary either knows the output or knows nothing about it (other than what the
corrupted party’s input suggests). The adversary will not be able to mount a
successful sampling attack in neither case. If the output has not been revealed
to her, then her view is independent of the honest party’s output resulting from
some locking strategy (regardless of whether she quits at that round or at the
end). If the output has been revealed to the adversary, then sampling attacks
are foiled by design thanks to the algorithm. �

When the algorithm fails. We turn our attention to functions for which the
algorithm returns Y +
= ∅ and X+
= ∅. Semi-balanced functions fall under
this category. By Cleve [7], protocols that satisfy both correctness and security
against sampling attacks do not exist in the plain model. However, there are
functions other than semi-balanced for which the algorithm fails. Unfortunately,
we do not fully understand why that is the case and there appears to be a trade
off between fairness and privacy. To illustrate, we show that a certain function
that lies in the gap can be computed with fairness but not privacy.

We emphasize that the function in question may still be computable with
full security. However, our previous analysis together with the theorem below
strongly indicate that the trade-off may be inherent.

Theorem 5.8. The function described by the matrices below admits a protocol
that is fair-but-not-private.

M (1,∗) =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 0 1 1
1 1 1 1 1
0 0 1 0 1
1 0 0 0 1

⎞
⎟⎟⎟⎟⎠

, M (∗,1) =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 0 0 1
1 0 0 1 0
0 0 1 1 1
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

.

Proof. Consider the following 2-round protocol defined by means of the backup
outputs {ai, bi}i=1...2.

a0 = f1(x, ỹ) where ỹ ∈U Y b0 = b ∈U {0, 1}

If y ∈ {y1, y3, y5} a1 =

⎧⎪⎨
⎪⎩

a ∈U {0, 1} if x = x1

0 if x = x5

1 otherwise

b1 = f(x, y).

If y ∈ {y2, y4} a1 =

{
0 if x ∈ {x4, x5}
1 otherwise

a2 = f(x, y) b2 = f(x, y)

A straightforward computation shows that the protocol is secure against sam-
pling attacks. However, the protocol is obviously not passively secure. Notice
that the backup output a1 leaks information about P2’s input. Nevertheless, by
plugging the protocol into our compiler, the resulting protocol satisfies fairness.

610 V. Daza and N. Makriyannis

Formally, by having the trusted party leak the honest party’s input to the simu-
lator in the ideal model, one can show that the resulting protocol is secure with
respect to the new model. �

6 Conclusions and Open Problems

In this paper, we introduced a notion of security referred to as security against
sampling attacks. The notion of security is useful because it is necessary for
fairness and it appears easier to achieve compared to fairness. What is more,
we showed how certain protocols satisfying security against sampling attacks
can be transformed into fully-secure protocols. We emphasize that the route
towards full-security we propose is not arbitrary; every known protocol based
on GHKL can be viewed as a special case of our approach. Finally, for asym-
metric functions, we showed how to design suitable protocols by means of an
algorithm. Given an asymmetric (possibly randomized) Boolean function, our
algorithm either returns an appropriate protocol or it returns that it failed to
do so. Unfortunately, our algorithm fails for functions other than semi-balanced,
and the status of these functions is still unknown. We provide a few conjectures
as to why that may be the case.

First, we believe that a failure on the part of the algorithm is essentially a
proof of impossibility. In other words, we believe that if our algorithm fails to
come up with an suitable protocol for some function, then any realization of the
function is susceptible to some attack. At the same time, we believe that the
attack in question cannot rely solely on sampling attacks, but on some combina-
tion of passive and sampling attacks. The motivation behind this belief is that
we suspect certain functions to be computable with fairness-but-privacy6 but
not with full security. A candidate for such a function is given at the end of the
last section.

The Multi-party Case. We note that, like [3], our analysis extends to the
multi-party case where the total number of parties is constant and exactly half
of the parties are corrupted. Specifically, if f = (f1, . . . , ft) : Z1 × . . . × Zt →
[m]t denotes a (possibly randomized) t-party function, there are

(
t

t/2

)
two-party

functions that result from partitioning the set into two equal-sized subsets. These
functions can be viewed as non-Boolean asymmetric functions in X × Y →
[mt/2]2. Using the techniques from [3,5], functionality f is fair if and only if all
of the underlying two-party functions are fair as well. Thus, our framework is
also useful in this regard.

Finally, our work says little about the multi-party case with absolute dishon-
est majorities as well as two-party and multi-party functionalities that depend
on the security parameter F = {fn}n∈N. Of course, locking strategies and sam-
pling attacks are still meaningful in these settings, and it would be interesting
to see how they can be put to use.

6 Of course, this notion needs to be formalized.

Designing Fully Secure Protocols for Secure Two-Party Computation 611

References

1. Agrawal, S., Prabhakaran, M.: On fair exchange, fair coins and fair sampling. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 259–276.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 15

2. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 13

3. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199–228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 10

4. Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply
fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 243–262. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 14

5. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with a dishonest
majority. J. Cryptol. 28, 551–600 (2015)

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

7. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: STOC, pp. 364–369 (1986)

8. Daza, V., Makriyannis, N.: Designing Fully Secure Protocols for Secure Two-Party
Computation of Constant-Domain Functions. Cryptology ePrint Archive, Report
2017/098 (2017)

9. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. II. Cam-
bridge University Press, Cambridge (2004)

10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

11. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM 58, 24:1–24:37 (2011)

12. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 2

13. Makriyannis, N.: On the classification of finite boolean functions up to fairness.
In: Proceeding of the Security and Cryptography for Networks Conference, pp.
135–154 (2014)

14. Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-642-40041-4_15
https://doi.org/10.1007/978-3-642-54242-8_13
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.1007/978-3-642-00457-5_2

On Secure Two-Party Computation
in Three Rounds

Prabhanjan Ananth1(B) and Abhishek Jain2

1 University of California Los Angeles, Los Angeles, USA
prabhanjan@cs.ucla.edu

2 Johns Hopkins University, Baltimore, USA
abhishek@cs.jhu.edu

Abstract. We revisit the exact round complexity of secure two-party
computation. While four rounds are known to be sufficient for securely
computing general functions that provide output to one party [Katz-
Ostrovsky, CRYPTO’04], Goldreich-Krawczyk [SIAM J. Computing’96]
proved that three rounds are insufficient for this task w.r.t. black-box
simulation.

In this work, we study the feasibility of secure computation in three
rounds using non-black-box simulation. Our main result is a three-round
two-party computation protocol for general functions against adversaries
with auxiliary inputs of a priori bounded size. This result relies on a
new two round input-extraction protocol based on succinct randomized
encodings.

We also provide a partial answer to the question of achieving security
against non-uniform adversaries. Assuming sub-exponentially secure iO
and one-way functions, we rule out three-round protocols that achieve
polynomial simulation-based security against the output party and expo-
nential indistinguishability-based security against the other party.

1 Introduction

The notion of secure computation [24,39] is fundamental in cryptography. Infor-
mally speaking, secure two-party computation allows two mutually distrusting
parties to jointly compute a function over their private inputs in a manner such
that no one learns anything beyond the function output.

An important measure of efficiency of secure computation protocols is round
complexity. Clearly, the smaller the number of rounds, the lesser the impact of
network latency on the communication between the parties. Indeed, ever since
the introduction of secure computation, its round complexity has been the sub-
ject of intensive study, both in the two-party and multiparty setting.

In this work, we study the exact round complexity of secure two-party com-
putation against malicious adversaries in the plain model (i.e., without any

P. Ananth—Supported in part by grant 360584 from the Simons Foundation.
A. Jain—Supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213
and a sub-award from NSF CNS-1414023.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 612–644, 2017.
https://doi.org/10.1007/978-3-319-70500-2_21

On Secure Two-Party Computation in Three Rounds 613

trusted setup assumptions). We focus on the classical unidirectional message
model where a round of communication consists of a single message sent by one
party to the other.

In this setting, constant round protocols can be readily obtained by compiling
a two-round semi-honest protocol (e.g., using garbled circuits [39] and oblivious
transfer [15,37]) with constant-round zero-knowledge proofs [16,21,26] following
the GMW paradigm [24]. Katz and Ostrovsky [30] established an upper bound
on the exact round complexity of secure two-party computation by showing that
four rounds are sufficient for computing general functions that provide output
to one party. On the negative side, Goldreich and Krawczyk [22] proved that
two-party computation with black-box simulation cannot be realized in three
rounds.

Ever since the introduction of non-black-box techniques in cryptography
nearly two decades ago [3], the following important question has remained open:

Can secure two-party computation be realized in three rounds using non-
black-box simulation?

In this work, we address this question and provide both positive and negative
results.

1.1 Our Results

We investigate the feasibility of three-round secure two-party computation
against malicious adversaries in the plain model. We consider functions where
only one party (a.k.a receiver) learns the output. The other party is referred to
as the sender.

I. Positive Result. Our main result is a three-round two-party computation
protocol for general functions that achieves security against adversarial senders
with auxiliary inputs of arbitrary polynomial size and adversarial receivers with
auxiliary inputs of a priori bounded size.

In order to obtain our result, we devise a new non-black-box technique
for extracting adversary’s input in only two rounds based on succinct ran-
domized encodings [9,12,32] and two-round oblivious transfer (OT) with
indistinguishability-based security [36]. To prove security of our three-round
protocol, we additionally require two-message witness indistinguishable proofs
(a.k.a. Zaps) [14] and Learning with Errors (LWE) assumption.

Theorem 1. Assuming the existence of succinct randomized encodings, two-
round OT, Zaps and LWE, there exists a three-round two-party computation
protocol (P1, P2) for computing general functions that achieves security against
adversarial P1 with auxiliary inputs of arbitrary polynomial size and adversarial
P2 with auxiliary inputs of bounded size.

On Succinct Randomized Encodings. A succinct randomized encoding (SRE)
scheme allows one to encode the computation of a Turing machine M on an

614 P. Ananth and A. Jain

input x such that the encoding time is independent of the time it takes to
compute M(x). The security of SRE is defined in a similar manner as standard
(non-succinct) randomized encodings [28]. Presently, all known constructions of
SRE are based on indistinguishability obfuscation (iO) [4,17]. We note, however,
that SRE is not known to imply iO and may likely be a weaker assumption.1

On Bounded Auxiliary Inputs. Our positive result is motivated by the recent
beautiful works of [7,8] on three-round zero-knowledge proofs that achieve secu-
rity against adversaries with auxiliary inputs of a priori bounded size. Specifi-
cally, [8] considers malicious verifiers with bounded-size auxiliary inputs while
[7] consider malicious provers with bounded-size auxiliary inputs.

Our positive result can be viewed as a generalization of [8] to general-purpose
secure computation.

Outputs for Both Parties. Theorem 1 only considers functions that provide out-
put to one party. As observed in [30], a protocol for this setting can be easily
transformed into one where both parties receive the output by computing a
modified functionality that outputs signed values. Now the output recipient can
forward the output to the other party who accepts it only if the signature verifies.

II. Negative Result. We also explore the possibility of achieving security in
the case where each adversarial party may receive auxiliary inputs of arbitrary
polynomial size.

We provide a partial answer to this question. We show that three-round
secure two-party computation for general functions is impossible if we require
simulation-based security against PPT adversarial receivers and exponential
indistinguishability security against adversarial senders. Our result relies on the
existence of sub-exponentially secure iO and one-way functions.

Theorem 2. Suppose that sub-exponentially secure iO and one-way functions
exist. Then there exists a two-party functionality f such that no three-round
protocol Π for computing f can achieve the following two properties:

– Simulation-based security against PPT adversarial receivers.
– 2O(L)-indistinguishability security against adversarial senders, where L

denotes the length of the first message in Π.

Here, 2k-indistinguishability security means that for any pair of inputs (y, y′)
for the receiver, an adversarial sender can distinguish which input was used in
a protocol execution with probability at most 1

2k .
We stress that Theorem 2 even rules out non-black-box simulation techniques.

Discussion. Our negative result can be viewed as a first step towards disproving
the existence of three-round two-party computation against non-uniform adver-
saries. We remark that ruling out non-black-box techniques in three-rounds is
1 If SRE satisfies an additional “output compactness” property where the size of an

encoding of (M, x) is also independent of the size of the machine’s output, i.e.,
|M(x)|, then sub-exponentially secure SRE is known to imply iO [2]. We do not
require such output compactness property for our result.

On Secure Two-Party Computation in Three Rounds 615

highly non-trivial even when we require exponential (indistinguishability) secu-
rity for one party. Indeed, a somewhat analogous question regarding the existence
of three-round zero-knowledge proofs was recently addressed by Kalai et al. in
[29]. Specifically, [29] prove the impossibility of three-round (public-coin) zero-
knowledge proofs with non-black-box simulators assuming sub-exponentially
secure iO and one-way functions and exponentially secure input-hiding obfusca-
tion for multi-bit point functions.2

A proof system achieves statistical security against adversarial provers. In a
similar vein, Theorem 2 requires exponential indistinguishability-security against
adversarial senders. As such, Theorem 2 can be viewed as providing a comple-
mentary result to [29].

Needless to say, it remains an intriguing open question to extend our lower
bound to rule out protocols that achieve polynomial-security against adversarial
senders.

1.2 Our Techniques

In this section, we describe the main ideas used in our positive and negative
results.

I. Positive Result. We start by describing the main ideas in our positive
result. We first describe the setting: we consider two parties P1 and P2 holding
private inputs x1 and x2, respectively, for computing a function f . At the end
of the protocol, P2 gets f(x1, x2) while P1 gets no output. We want to achieve
security against adversarial P1 who may receive auxiliary inputs of unbounded
(polynomial) size and adversarial P2 who may receive auxiliary inputs of an a
priori bounded size.

Recently, Bitansky et al. [8] constructed a three-round zero-knowledge argu-
ment of knowledge (ZKAOK) that achieves standard soundness guarantee and
zero-knowledge guarantee against adversarial verifiers with bounded auxiliary
inputs. Given their protocol, a natural starting idea to achieve our goal is to
“compile” a two-round semi-honest two-party computation protocol into a mali-
ciously secure one (a la [24]) with their ZKAOK system. Note, however, that
while we have enough rounds in the protocol to enforce semi-honest behavior
on P1 using ZKAOK, we cannot use the same approach for P2. Nevertheless,
as a first step, let us fix a three-round protocol that guarantees security against
adversarial P1. For concreteness, we instantiate the semi-honest two-party com-
putation using garbled circuits and two-round oblivious transfer. We also use a
delayed-input ZKAOK [33] where the instance is only used in the last round.
This property is satisfied by argument system of [8].

– In the first round, P1 sends the first message of a delayed-input ZKAOK.
– In the second round, P2 sends the second message of ZKAOK together with

the receiver message of a two-round oblivious transfer (OT) computed using
its input for f .

2 Their result, in fact, extends to constant-round protocols.

616 P. Ananth and A. Jain

– In the third round, P1 sends garbled circuit for f with its input hardwired,
together with the OT sender message (computed using the inputs labels for
the garbled circuit) and the third message of ZKAOK to prove that the
garbled circuit and the OT sender message are computed “honestly”.

Main Challenge #1. Note that in the above protocol, it is already guaranteed
that P2’s input is independent of P1’s input. Nevertheless, this is not enough
and in order to achieve security against malicious P2, we need to construct a
polynomial-time simulator that can extract P2’s input by the end of the second
round, and then simulate the third round of the protocol to “force” the cor-
rect output on P2. In light of our lower bound, we need to devise a two-round
input extraction procedure that works against adversaries with bounded auxil-
iary inputs. At first, it is not at all clear how such an input-extraction protocol
can be constructed. In particular, black-box techniques do not suffice for this
purpose [22]. Instead, we must use non-black-box techniques.

The problem of extraction in two-rounds or less was recently considered by
Bitansky et al. [8]. They study extractable one-way functions and then use them
to construct three-round ZKAOK against verifiers with bounded non-uniformity.
We note, however, that their notion of extractable one-way functions is unsuit-
able for our goal of extracting adversary’s input. In particular, in their notion,
the extracted value can be from a completely different distribution than the
actual value x used to compute the one-way function. In contrast, we want to
extract a “committed” input of the adversary.

Main Challenge #2. To make matters worse, we cannot hope to extract the input
of a malicious adversary in two rounds with guarantee of correct extraction.
Indeed, two-round zero-knowledge proofs (with polynomial-time simulation) are
known to be impossible against non-uniform verifiers even w.r.t. non-black-box
simulation [25].3

In light of the above, we settle on a “weak extraction” guarantee, namely,
where correctness of extraction is only guaranteed if the adversary behaves hon-
estly. Note that this means that our simulator may fail to extract the input
of P2 if it behaves maliciously. In this case, it may not be able to produce an
indistinguishable third message of the protocol.

For now, we ignore this important issue and proceed to describe a two-round
protocol that enables weak input-extraction. Later, we describe how we construct
our scheme using only this weak extraction property.

(Weak) Input-Extraction in Two Rounds. We want to construct a two-round
protocol that allows a simulator (that has access to the Turing machine descrip-
tion and bounded auxiliary input of adversarial P2) to extract P2’s input for f

3 Bitansky et al. [8] construct a two-round zero-knowledge argument against verifiers
with bounded non-uniformity. Using their system, however, would necessarily require
even P1 (who will play the role of the verifier) to have bounded non-uniformity. Our
goal instead is to limit the bounded non-uniformity assumption to P2 and allow P1

to be fully non-uniform.

On Secure Two-Party Computation in Three Rounds 617

as long as P2 behaves semi-honestly in this protocol. However, an adversarial
P1 should not be able to learn any information about an honest P2’s input. For
simplicity of exposition, below, we restrict ourselves to the case where P2 is a
uniform Turing machine. It is easy to verify that our protocol also works when
P2 has an auxiliary input of bounded length.

We first note that the problem of constructing an input-extraction protocol
can be reduced to the problem of constructing a “trapdoor” extraction protocol
where the trapdoor is a random string. This is because the trapdoor can be
set to the randomness r used by P2 for computing its OT receiver message in
our three-round protocol described earlier. If we use an OT protocol where the
receiver’s message is perfectly binding (e.g., [36]), then once the simulator has
extracted P2’s randomness in OT, it can also recover its input.

In order to construct a trapdoor extraction protocol, we build on ideas from
Barak’s non-black-box technique [3]. Consider the following two-party function-
ality g: it takes as input a string TM from P1 and a tuple (β, trap,m) from P2.
It treats TM as a valid Turing machine and computes β′ = TM(m). If β′ = β, it
outputs trap, else it outputs ⊥.4 Let Π be a two-round two-party computation
protocol for computing g.

Now, consider the following candidate two-round protocol for extracting a
trapdoor from P2: P1 sends the first message of Π computed using input TM = 0.
Let msg1 denote this message. Upon receiving msg1, P2 first prepares an input
tuple (β, trap,m) for g as follows: it samples a random string β of length � s.t.
� � |msg1| and sets trap to be a random string and m = msg1. Finally, P2 sends
the second message of Π computed using (β, trap,m) together with β.

A non-black-box simulator that knows the Turing machine description TM2

of adversarial P2 can set its input TM = TM2 in the above protocol. If P2 behaves
semi-honestly, then at the end of the protocol, the simulator should obtain trap.
Security against a malicious P1 can be argued using the fact that β � |msg1| in
the same manner as the proof of soundness in Barak’s protocol.

A reader familiar with [3] may notice a major problem with the above extrac-
tion protocol. Note that since Π is a secure computation protocol, its running
time must be strictly greater than the size of the circuit representation of g.
Now, since the functionality g internally computes the next-step function of P2,
the running time of Π is strictly greater than the running time of P2!

Our key idea to solve this problem is to delegate the “expensive” computation
inside g to P1 (or more accurately, the simulator when P2 is corrupted).5 Let M
be an “input-less” Turing machine that has hardwired in its description a tuple
(TM, β, trap,m). Upon execution, it performs the same computation as g. Now,
instead of using the two-party computation protocol to compute the function g,
we use it to compute a “secure encoding” of M . We want the encoding scheme

4 Note that g internally transforms TM into a circuit and uses it to perform the rest
of the computation.

5 Indeed, an honest P1 is never required the functionality g. However, when P2 is
corrupted, then the simulator acting on behalf of P1 does compute g to learn the
trapdoor.

618 P. Ananth and A. Jain

to be such that the time to encode M is independent of the running time of M .
Note that in this case, the running time of the protocol is also independent of
the running time of M . The honest P1 ignores the encoding it obtains at the
end of the two-party computation protocol. However, the simulator can simply
“decode” the secure encoding to learn its output.

An encoding scheme with the above efficiency property is referred to as a
succinct randomized encoding (SRE) [9,12,32]. By using an SRE scheme, we are
able to resolve the running-time problem.

Using Weak Extraction Guarantee. Finally, we explain how we obtain our con-
struction by only relying on the weak extraction property of our input extraction
protocol. Note that if an adversarial P2 cheats in the input extraction protocol,
then due to the weak extraction guarantee, the simulator may extract an incor-
rect input (or no input at all). In this case, the simulated garbled circuit com-
puted by the simulator would be easily distinguishable from the garbled circuit
in the real execution. Therefore, we need a mechanism that “hides” P1’s third
round message from P2 if P2 cheated in the input-extraction protocol. On the
other hand, if P2 did behave honestly, then the mechanism should “reveal” the
third round message to P2.

We solve this problem by using conditional disclosure of secrets [1,19]. Recall
that a CDS scheme consists of two players: a sender S and a receiver R. The
parties share a common instance x of an NP language. Using this instance, the
sender S can “encrypt” a secret message m s.t. a receiver R can only “decrypt”
it using a witness w for x.

Using a CDS scheme for NP, we modify our protocol as follows. Now, P1 will
send a CDS encryption of the garbled circuit for f and its OT sender message.
The instance for this encryption is simply the transcript of the input extraction
protocol. In order to decrypt, P2 must use a witness that establishes honest
behavior during the input extraction protocol. The input and randomness of P2

in the input-extraction protocol constitutes such a witness. In other words, if P2

cheated in the input-extraction protocol, then it cannot recover the third round
message of P1.

A subtle point here is that a CDS scheme only promises security against
adversarial receivers when the instance used for encryption is false. Therefore, in
order to use the security of CDS, we must ensure that there does not exist a valid
witness if P2 cheats in the input extraction protocol. We achieve this property
by ensuring that the input-extraction protocol is perfectly binding for P2.

We implement a CDS scheme using a two-round two-party computation pro-
tocol that achieves indistinguishability security against malicious receivers and
semi-honest senders. Such a scheme can be implemented using garbled circuits
and two-round oblivious transfer of [36]. Finally, to prevent an adversarial P1

from created “malformed” CDS encryptions, we require P1 to prove its well-
formedness using delayed-input ZKAOK.

II. Negative Result. We now provide an overview of our lower bound. Due to
space constraints, we describe the lower bound in the full version.

On Secure Two-Party Computation in Three Rounds 619

Recall that simulation-based security for any two-party computation protocol
is argued by constructing a polynomial-time simulator who can simulate the view
of the adversary in an indistinguishable manner without any knowledge of the
honest party input. One of the main tasks of such a simulator is to extract
the input of the adversary. We establish our negative result by ruling out the
possibility of extracting the input of adversarial receiver in a three-round secure
computation protocol.

More concretely, we consider three round protocols (P1, P2) where P2 receives
the output. We describe a two-party functionality f and an adversary P2 such
that no polynomial-time simulator can extract P2’s input from any three-round
protocol Π for computing f , if Π achieves 2O(L)-indistinguishability security
against P1. Here, L is the length of the first message of Π.

Note that in a three-round protocol, P2 only sends a single message. Clearly,
black-box techniques are insufficient for extracting P2’s input in this setting. The
main challenge here is to rule out extraction via non-black-box techniques.

In order to “hide” the input of an adversarial P2 from a non-black-box sim-
ulator who has access to P2’s code, we make use of program obfuscation [4].
Namely, we construct a “dummy” adversary P2, who receives as auxiliary input,
an obfuscated program that has an input hardwired in its description and uses it
to compute the adversary’s message in the two-party computation protocol. Dur-
ing the protocol execution, the adversary simply uses the obfuscated program to
compute its protocol message. Our goal is to then argue that having access to
the code of this dummy adversary as well as his obfuscated auxiliary input gives
no advantage to a polynomial-time simulator. We note that a similar strategy
was recently used by Bitansky et al. [8] in order to prove the impossibility of
extractable one-way functions.

Below, we first describe our proof strategy using the strong notion of virtual
black-box obfuscation [4]. Most of the main challenges that we address already
arise in this case. Later, we explain how we can derive our negative result using
the weaker notion of indistinguishability obfuscation.

Function f . Recall that the main reason why the simulator needs to extract the
adversary’s input is to learn the function output from the ideal functionality. In
order to ensure that the simulator cannot “bypass” input extraction, we choose
a function with unpredictable outputs. Furthermore, we also want that the input
of the honest party cannot be trivially determined from the function.

We choose f to be a pseudorandom function PRF that takes as input a PRF
key x1 from P1 and an input x2 from P2 and outputs the evaluation of the PRF
on x2 using key x1. It is easy to see that f satisfies the above desired properties.

Adversary P2 and Auxiliary Input Z. Towards a contradiction, let Π be any
three-round two-party protocol for securely computing f with the security prop-
erties stated in Theorem 2.

The auxiliary input Z consists of an obfuscated program that has an input
x2 and a key K hardwired in its description:

620 P. Ananth and A. Jain

1. Upon receiving a message msg1 from P1 as input, the program honestly com-
putes the protocol message msg2 of P2 (as per protocol Π) using input x2

and randomness r = F (K,msg), where F is another PRF.
2. Upon receiving a protocol transcript (msg1,msg2,msg3), it re-computes the

randomness r used to compute msg2. Using the transcript, randomness r and
input x2, it computes the output honestly.

The adversary P2 does not perform any computation on its own. Upon receiv-
ing a message msg1 from P1, it runs the obfuscated program on msg1 to obtain
msg2 and then forwards it to P1. Finally, upon receiving msg3 from P1, it submits
the protocol transcript (msg1,msg2,msg3) to the obfuscated program to obtain
an output y.

Proof Strategy: Attempt #1. For any simulator S for Π, let Q denote the possible
set of queries made by S to the ideal function. The core argument in our proof is
that the query set Q cannot contain P2’s input x2. At a high-level, our strategy
for proving this is as follows: first, we want to switch the auxiliary input Z to
a different auxiliary input Z ′ that has some other input x′

2 hardwired inside it.
We want to rely upon the security of Π against adversarial P1 in order to make
this switch. Once we have made this switch, then we can easily argue that the
Q cannot contain x2 since the view of S is independent of x2.

Problem: Rewinding Attacks. The above proof strategy runs into the following
issue: since the adversary P2 includes the protocol output in its view, a simulator
S may fix the first two messages of the protocol and then try to observe the
output of P2 on many different third messages. Indeed, a simulator may be
able to learn non-trivial information by simply observing whether the adversary
accepts or aborts on different trials.

A naive approach to try to address this problem is to simply remove the out-
put from adversary’s view. That is, we simply delete the second instruction in
the obfuscated program Z. Now, P2 never processes the messages received from
P1. This approach, however, immediately fails because now a simulator can sim-
ply simulate a “rejecting” transcript. Since there is no way for the distinguisher
to check the validity of the transcript (since P2’s output is not part of its view),
the simulator can easily fool the distinguisher.

Non-uniform Distinguishers. We address this problem by using non-uniform dis-
tinguishers, in a manner similar to [25]. Specifically, we modify P2 to be such
that it simply outputs the protocol transcript at the end of the protocol. The
PRF key K hardwired inside Z (and used to compute P2’s protocol message) is
given as non-uniform advice to the distinguisher. Note that this information is
not available to the simulator.

Now, given K and the protocol transcript, the distinguisher can easily com-
pute P2’s output. Therefore, a simulator can no longer fool the distinguisher via
a rejecting transcript. Furthermore, now, the protocol output is not part of P2’s
view, and therefore, rewinding attacks are also ruled out.

Revised Proof Strategy. Let us now return to our proof strategy. Recall that we
want to switch the auxiliary input Z to a different auxiliary input Z ′ that has

On Secure Two-Party Computation in Three Rounds 621

some other input x′
2 hardwired inside it. Once we have made this switch, then we

can easily argue that the Q cannot contain x2 since the view of S is independent
of x2.

We make the switch from auxiliary input Z to Z ′ via a sequence of hybrids.
In particular, we go through 2L number of hybrids, one for every possible first
message msg1 of P1. In the ith hybrid, we use an auxiliary input Zi that has
both x2 and x′

2 hardwired inside it. On input first messages msg1 < i, it uses
x2 to compute the second message, and otherwise, it uses x′

2. In order to argue
indistinguishability of hybrids i and i + 1, we use the security of protocol Π
against malicious P1. Indeed, this is why we require 2O(L)-indistinguishability
security against adversarial P1.

In order to perform the above proof strategy using indistinguishability obfus-
cation (as opposed to virtual black-box obfuscation), we make use of puncturable
PRFs and use the “punctured programming” techniques [38] that have been used
in a large body of works over the last few years. We refer the reader to the tech-
nical sections for further details.

1.3 Related Works

Katz and Ostrovsky [30] constructed a four-round two-party computation proto-
col for general functions where one of the parties receives the output. Recently,
Garg et al. [18] extended their work to the simultaneous-message model.

Three round zero-knowledge proofs were first constructed in [6,27] using
“knowledge assumptions.” More recently, [7,8] construct three-round zero-
knowledge proofs adversaries that receive auxiliary inputs of a priori bounded
size. Our positive result is directly inspired by these works.

A recent work of Döttling et al. [13] constructs a two-round two-party compu-
tation protocol for oblivious computation of cryptographic functionalities. They
consider semi-honest senders and malicious receivers, and prove game-based
security against the latter. In contrast, in this work, we consider polynomial-
time simulation-based security.

2 Preliminaries

We denote the security parameter by λ. We assume familiarity with standard
cryptographic primitives.

General Notation. If A is a probabilistic polynomial time algorithm, then we
write y ← A(x) to denote that one execution of A on x yields y. Furthermore,
we denote y ← A(x; r) to denote that A on input x and randomness r, outputs

y. If D is a distribution, we mean x
$←− D to mean that x is sampled from D.

Two distributions D1 and D2, defined on the same sample space, are said
to be computationally distinguishable, denoted by D1

∼=c,ε D2 if the following

622 P. Ananth and A. Jain

holds: for any PPT adversary A and sufficiently large security parameter λ ∈ N

it holds that,

|Pr[1 ← A(1λ, s1) : s1
$←− D1(1λ)] − Pr[1 ← A(1λ, s2) : s2

$←− D2(1λ)]| ≤ ε,

If ε is some negligible function then we denote this by D1
∼=c D2.

Languages and Relations. A language L is a subset of {0, 1}∗. A relation R is a
subset of {0, 1}∗ × {0, 1}∗. We use the following notation:

– Suppose R is a relation. We define R to be efficiently decidable if there exists
an algorithm A and fixed polynomial p such that (x,w) ∈ R if and only if
A(x,w) = 1 and the running time of A is upper bounded by p(|x|, |w|).

– Suppose R is an efficiently decidable relation. We say that R is a NP relation
if L(R) is a NP language, where L(R) is defined as follows: x ∈ L(R) if and
only if there exists w such that (x,w) ∈ R and |w| ≤ p(|x|) for some fixed
polynomial p.

Modeling Real World Adversaries: Uniform versus Non Uniform. One way to
model real world adversaries A is by representing them as a class of non uni-
form circuits C, one circuit per input length. This is the standard definition of
adversaries considered in the literature. We call such adversaries non uniform
adversaries.

Yet another type of adversaries are μ-bounded uniform adversaries: in this
case, the real world A is represented by a probabilistic Turing machine M and
can additionally receive as input auxiliary information of length at most μ(λ).
The description size of A is the sum total of the description size of M and
μ(λ). We say that A is uniform if it does not receive any additional auxiliary
information. In this case, the description size of A is nothing but the description
size of the Turing machine representing A.

Notation for Protocols. Consider a two party protocol Π between parties P1

and P2. We define the notation P1.MsgGen[Π] (resp., P2.MsgGen[Π]) to denote
the algorithm that generates the next message of P1 (resp., P2). The notation
β ← P1.MsgGen[Π](α, st; r) indicates that the output of next message algorithm
of party P1 on input α, current state st and randomness r is the string β. Initially,
st is set to ⊥. For convenience of notation, we assume that the MsgGen[·] is a
stateful algorithm and hence, we avoid describing the parameter st explicitly.

We denote the view of a party in a secure protocol to consist of its input,
randomness and the transcript of messages exchanged by the party. For a party
P with input y (that includes randomness), we denote its view by ViewP,y.

2.1 Secure Two-Party Computation

A secure two-party computation protocol is carried out between two parties
P1 and P2 (modeled as interactive Turing machines) and is associated with a
deterministic functionality f . Party P1 has input x1 and P2 has input x2. At the
end of the protocol, P2 gets the output.

On Secure Two-Party Computation in Three Rounds 623

Simulation-based Security. We follow the real/ideal world paradigm to formalize
the security of a two party computation protocol Π2PC secure against malicious
adversaries.6 We follow the description presented in Lindell-Pinkas [34]. First,
we begin with the ideal process.

Ideal Process: The ideal world is associated with a trusted party and parties
P1, P2. At most one of P1, P2 is controlled by an adversary7. The process proceeds
in the following steps:

1. Input Distribution: The environment distributes the inputs x1 and x2 to
parties P1 and P2 respectively.

2. Inputs to Trusted Party: The parties now send their inputs to the trusted
party. The honest party sends the same input it received from the environment
to the trusted party. The adversary, however, can send a different input to
the trusted party.

3. Aborting Adversaries: An adversarial party can then send a message to
the trusted party to abort the execution. Upon receiving this, the trusted
party terminates the ideal world execution. Otherwise, the following steps
are executed.

4. Trusted party answers party P2: Suppose the trusted party receives inputs
x′
1 and x′

2 from P1 and P2 respectively. It sends the output out = f(x′
1, x

′
2)

to P2.
5. Output: If the party P2 is honest, then it outputs out. The adversarial party

(P1 or P2) outputs its entire view.

We denote the adversary participating in the above protocol to be B and the
auxiliary input to B is denoted by z. We define IdealΠ2PC

f,B (x1, x2, z) to be the joint
distribution over the outputs of the adversary and the honest party8.

Real Process: In the real process, both the parties execute the protocol Π2PC.
At most one of P1, P2 is controlled by an adversary. We denote the adversarial
party to be A. As in the ideal process, they receive inputs from the environment.
We define RealΠ2PC

f,
−→
P

(x1, x2, z) to be the joint distribution over the outputs of the
adversary and the honest party, where z denotes the auxiliary information.

We define the security of two party computation as follows:

Definition 1 (Security). Consider a two party functionality f as defined
above. Let Π2PC be a two party protocol implementing f . We say that Π2PC

6 Malicious adversaries can arbitrarily deviate from the protocol. The other type of
adversaries commonly considered are semi-honest adversaries, where the adversaries
follow the protocol but try to gain information by observing the conversation with
the honest party. Both type of adversaries are allowed to substitute the inputs they
receive from the external environment with inputs of their choice.

7 This means that at most one of the parties could deviate from the rules prescribed
by the ideal process.

8 If P1 is honest, it does not have any output.

624 P. Ananth and A. Jain

securely computes f if for every PPT malicious adversary A in the real world,
there exists a PPT adversary B in the ideal world such that: for every auxiliary
information z ∈ {0, 1}poly(λ),

IdealΠ2PC

f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

In this work, we are interested in the setting when the adversary corrupting
P2 (who receives the output) in the above protocol is μ-uniform. We allow for
adversarial P1 to be non-uniform. We formally define this below.

Definition 2 (Security Against μ-Bounded Uniform P2). Consider a two
party functionality f as defined above. Let Π2PC be a two party protocol computing
f . We say that Π2PC securely computes f if the following holds:

– For every μ-bounded uniform malicious adversary A in the real world corrupt-
ing party P2, there exists a PPT adversary B in the ideal world such that: for
every auxiliary information z ∈ {0, 1}μ(λ),

IdealΠ2PC

f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

– For every PPT non-uniform malicious adversary A in the real world corrupt-
ing P1, there exists a PPT adversary B in the ideal world such that: for every
auxiliary information z ∈ {0, 1}poly(λ),

IdealΠ2PC

f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

3 Building Blocks

We describe the building blocks used in our results.

3.1 Garbling Schemes

We recall the definition of garbling schemes [5,39].

Definition 3 (Garbling Schemes). A garbling scheme GC = (Gen,GrbC,
GrbI,EvalGC) defined for a class of circuits C consists of the following polynomial
time algorithms:

– Setup, Gen(1λ): On input security parameter λ, it generates the secret para-
meters gcsk.

– Garbled Circuit Generation, GrbC(gcsk, C): On input secret parameters
gcsk and circuit C ∈ C, it generates the garbled circuit ̂C.

– Generation of Garbling Keys, GrbI(gcsk): On input secret parameters
gcsk, it generates the wire keys 〈k〉 = (k1, . . . ,k�), where ki = (k0

i , k1
i).

– Evaluation, EvalGC(̂C, (kx1
1 , . . . , kx�

�)): On input garbled circuit ̂C, wire keys
(kx1

1 , . . . , kx�

�), it generates the output out.

It satisfies the following properties:

On Secure Two-Party Computation in Three Rounds 625

– Correctness: For every circuit C ∈ C of input length �, x ∈ {0, 1}�, for every
security parameter λ ∈ N, it should hold that:

Pr

⎡
⎣C(x) ← EvalGC(Ĉ, (kx1

1 , . . . , kx�
�)) :

gcsk ← Gen(1λ),

Ĉ ← GrbC(gcsk, C),
((k0

1 , k
1
1), . . . , (k

0
� , k1

�)) ← GrbI(gcsk)

⎤
⎦ = 1

– Security: There exists a PPT simulator Sim such that the following holds for
every circuit C ∈ C of input length �, x ∈ {0, 1}�,

{(

̂C, kx1
1 , . . . , kx�

�

)} ∼=c

{

Sim(1λ, φ(C), C(x))
}

,

where:
• gcsk ← Gen(1λ)
• ̂C ← GrbC(gcsk, C)
• ((k0

1, k
1
1), . . . , (k

0
� , k1

�)) ← GrbI(gcsk)
• φ(C) is the topology of C.

Theorem 3 ([39]). Assuming one-way functions, there exists a secure garbling
scheme.

Deterministic Garbling. For our results, we need a garbling scheme where the
circuit garbling algorithms and the garbling key generation algorithms are deter-
ministic. Any garbling scheme can be transformed into one satisfying these prop-
erties by generating a PRF key as part of the setup algorithm. The randomness
in the circuit garbling and the garbling key generation algorithms can be derived
from the PRF key.

3.2 Oblivious Transfer

We recall the notion of oblivious transfer [15,37] below. We adopt the indistin-
guishability security notion. Against malicious senders, indistinguishability secu-
rity says that a malicious sender should not be able to distinguish the receiver’s
input. Defining security against malicious receivers is more tricky, we require
that if c is the choice bit committed to by the receiver then the receiver should
get no information about the bit bc in the pair (b0, b1), where (b0, b1) is the
pair of bits used by the honest sender. This is formalized by using unbounded
extraction.

Definition 4 (Oblivious Transfer). A 1-out-2 oblivious transfer (OT) pro-
tocol OT is a two party protocol between a sender and a receiver. A sender
has two input bits (b0, b1) and the receiver has a choice bit c. At the end of
the protocol, the receiver receives an output bit b′. We denote this process by
b′ ← 〈Sen(b0, b1), Rec(c)〉.

We require that an OT protocol satisfies the following properties:

– Correctness: For every b0, b1, c ∈ {0, 1}, we have:

Pr[bc ← 〈Sen(b0, b1), Rec(c)〉] = 1

626 P. Ananth and A. Jain

– Indistinguishability security against malicious senders: For all PPT
senders Sen∗, for all auxiliary information z ∈ {0, 1}∗ we have,

|Pr[1 ← 〈Sen∗(z), Rec(0)〉] − Pr[1 ← 〈Sen∗(z), Rec(1)〉]| ≤ 1
2

+ negl(λ).

– Indistinguishability Security against malicious receivers: For all PPT
receivers Rec∗, we require that the following holds. There exists an extractor
Ext (not necessarily efficient) that extracts a bit from the view of Rec∗ such
that the following holds: For any auxiliary information z ∈ {0, 1}∗,

|Pr[1 ← 〈Sen({bc, bc}c∈{0,1}), Rec∗(z)〉 | c ← Ext(ViewRec∗,z)]

− Pr[1 ← 〈Sen({bc, bc}c∈{0,1}, Rec∗(z)〉 | c ← Ext(ViewRec∗,z)]| ≤ 1

2
+ negl(λ).

We define �-parallel 1-out-2 OT to be a protocol that is composed of � parallel
executions of 1-ou-2 OT protocol.

For our main result, we require an oblivious transfer protocol that satisfies the
following additional property.

Definition 5 (Uniqueness of Transcript). Consider an 1-out-2 oblivious
transfer protocol OT between two parties P1 (sender) and P2 (receiver). We say
that OT satisfies uniqueness of transcript property if the following holds:
Consider an execution of P1(b0, b1; r1) and P2(c; r2) and let the transcript of
the execution be denoted by Transcript = (OT1, . . . , OTk). Suppose there exists
c′ ∈ {0, 1} and string r′

2 such that the execution of P1(b0, b1; r1) and P2(c′; r′
2)

leads to the same transcript Transcript then it should hold that c′ = c and r2 = r′
2.

Also it follows that, given r2, we can recover c in polynomial time.

Remark 1. The above property can also be defined for the n-parallel 1-out-2
oblivious transfer protocol. If a n-parallel 1-out-2 oblivious transfer protocol,
denoted by OTn, is composed of n parallel copies of OT and if OT satisfies
uniqueness of transcript property then so does OTn. In particular, given the
randomness of the receiver of OTn, it is possible to recover the n bit length
string of the receiver efficiently.

Instantiation: Naor-Pinkas Protocol [35]. Naor-Pinkas proposed a two message
oblivious transfer protocol whose security is based on the Decisional Diffie-
Hellman (DDH) assumption.

We claim that their protocol satisfies uniqueness of transcript property. In
order to do that, we recall the first message (sent by receiver to sender) in their
protocol: Let bit be the input of receiver. Consider a group G where DDH is
hard. Let g be a generator of G. The receiver generates ga, gb and cbit = ab. It
generates c1−bit at random such that cbit
= c1−bit. It sends v1 = ga, v2 = gb, v3 =
gc0 , v4 = gc1 to the sender.

The elements v1 and v2 uniquely determine a and b. Furthermore, exactly one
of v3 or v4 corresponds to gab and this uniquely determines the bit. Furthermore,
note that this also uniquely determines the randomness used.

While we only deal with 1-out-2 OT protocol above, we can generalize the
above proof to also work for n-parallel 1-out-2 OT protocol.

On Secure Two-Party Computation in Three Rounds 627

Theorem 4 ([35]). Assuming DDH, there exists an oblivious transfer protocol
satisfying Definition 5 as well as the uniqueness of transcript property.

3.3 Two Message Secure Function Evaluation

As a building block in our construction, we consider a two message secure func-
tion evaluation protocol. Since we are restricted to just two messages, we can
only expect one of the parties to get the output.

We designate P1 to be the party receiving the output and the other party to
be P2. That is, the protocol proceeds by P1 sending the first message to P2 and
the second message is the response by P2.

Indistinguishability Security. We require malicious (indistinguishability) security
against P1 and malicious (indistinguishability) security against P2. We define
both of them below.

First, we define an indistinguishability security notion against malicious P1.
To do that, we employ an extraction mechanism to extract P1’s input x∗

1. We
then argue that P1 should not be able to distinguish whether P2 uses x0

2 or x1
2 in

the protocol as long as f(x∗
1, x

0
2) = f(x∗

1, x
1
2). We don’t place any requirements

on the computational complexity of the extraction mechanism.

Definition 6 (Indistinguishability Security: Malicious P1). Consider a
two message secure function evaluation protocol for a functionality f between
parties P1 and P2 such that P1 is getting the output. We say that the two party
secure computation protocol satisfies indistinguishability security against
malicious P1 if for every adversarial P ∗

1 , there is an extractor Ext (not neces-
sarily efficient) such the following holds. Consider the following experiment:
Expt(1λ, b):

– P ∗
1 outputs the first message msg1.

– Extractor Ext on input msg1 outputs x∗
1.

– Let x0
2, x

1
2 be two inputs such that f(x∗

1, x
0
2) = f(x∗

1, x
1
2). Party P2 on input

msg1 and xb
2, outputs the second message msg2.

– P ∗
1 upon receiving the second message outputs a bit out.

– Output out.

We require that,
∣

∣Pr[1 ← Expt(1λ, 0)] − Pr[1 ← Expt(1λ, 1)]
∣

∣ ≤ negl(λ),

for some negligible function negl.

We now define security against malicious P2. We insist that P2 should not be
able to distinguish which input P1 used to compute its messages.

Definition 7 (Indistinguishability Security: Malicious P2). Consider a
two message secure function evaluation protocol for a functionality f between
parties P1 and P2 where P1 gets the output. We say that the two party secure

628 P. Ananth and A. Jain

computation protocol satisfies indistinguishability security against mali-
cious P2 if for every adversarial P ∗

2 , the following holds: Consider two strings
x0
1 and x1

2. Denote by Db the distribution of the first message (sent to P2) gen-
erated using xb

1 as P1’s input. The distributions D0 and D1 are computationally
indistinguishable.

Instantiation. We can instantiate such a two message secure evaluation proto-
col using garbled circuits and �1-parallel 1-out-2 two message oblivious transfer
protocol OT by Naor-Pinkas [35]. Recall that this protocol satisfies uniqueness
of transcript property (Definition 5). We denote the garbling schemes by GC.

We describe this protocol below. The input of P1 is x1 and the input of P2

is x2. Recall that P1 is designated to receive the output.

– P1 → P2: P1 computes the first message of OT as a function of its input x1

of input length �1. Denote this message by OT1. It sends OT1 to P2.
– P2 → P1: P2 computes the following:

• It generates Gen(1λ) to get gcsk.
• It then computes GrbC(gcsk, C) to obtain ̂C. C is a circuit with x2 hard-

wired in it; it takes as input x1 and computes f(x1, x2).
• It computes GrbI(gcsk) to obtain the wire keys (k1, . . . ,k�1), where every
ki is composed of two keys (k0

i , k1
i).

• It computes the second message of OT, denoted by OT2, as a function of
(k1, . . . ,k�1).

It sends (̂C,OT2) to P1.
– P1: Upon receiving (̂C,OT2), it recovers the wire keys (k1, . . . , k�1). It then

executes EvalGC(̂C, (k1, . . . , k�1)) to obtain out. It outputs out.

The correctness of the above protocol immediately follows from the correctness
of garbling schemes and oblivious transfer protocol. We now focus on security.

Theorem 5. Assuming the security of GC and OT and assuming that OT satis-
fies uniqueness of transcript property (Definition 5), the above protocol is secure
against malicious P1 (Definition 6).

Proof. We first describe the inefficient extractor Ext that extracts P1’s input from
its first message. From the uniqueness of transcript property of OT, it follows
that given P1’s first message OT1, there exists a unique input x∗

1 and randomness
r that was used to compute the message of P1. Thus, Ext can find this input x∗

1

by performing a brute force search on all possible inputs and randomness.
We prove the theorem with respect to the extractor described above. In the

first hybrid described below, challenge bit b is used to determine which of the
two inputs of P2 needs to be picked. In the final hybrid, P2 always picks the first
of the two inputs.

Hyb1.b for b
$←− {0, 1}: Let x∗

1 be the input extracted by the extractor. Let x0
2 and

x1
2 be two inputs such that f(x∗

1, x
0
2) = f(x∗

1, x
1
2). Party P2 uses xb

2 to compute
the second message.

On Secure Two-Party Computation in Three Rounds 629

Hyb2.b for b
$←− {0, 1}: Let x∗

1 be the input extracted by the extractor. We
denote the ith bit of x∗

1 to be x∗
1,i. As part of the second message, the wire

keys (k1, . . . ,k�1), where every ki is composed of two keys (k0
i , k1

i). Instead of
generating OT2 as a function of (k1, . . . ,k�1), it generates OT2 as a function of

(k′
1, . . . ,k

′
�1

). k′
i contains

(

0, k
x∗
1,i

i

)

if x∗
1,i = 1, otherwise it contains

(

k
x∗
1,i

i , 0
)

.
Hybrids Hyb1.b and Hyb2.b are computationally distinguishable from the

indistinguishability security against malicious receivers property of the oblivi-
ous transfer protocol.

Hyb3.0: Let x∗
1 be the input extracted by the extractor. Let x0

2 and x1
2 be two

inputs such that f(x∗
1, x

0
2) = f(x∗

1, x
1
2). P2 computes the second message as in the

previous hybrid. Instead of using xb
2 in the computation of the garbled circuit,

it instead uses the input x0
2.

Hybrids Hyb2.b and Hyb3.0 are computationally indistinguishable from the
security of the garbling schemes9.

The final hybrid does not contain any information about the challenge bit.
This completes the proof.

Theorem 6. Assuming the security of OT, the above protocol is secure against
malicious P2 (Definition 7).

Proof. The proof of this theorem directly follows from the security against mali-
cious senders property of the oblivious transfer protocol.

3.4 Conditional Disclosure of Secrets (CDS) Protocols

We require another key primitive, conditional disclosure of secrets (CDS) [1,19]
protocol. A CDS protocol consists of two parties P1 and P2. Both these parties
share a common instance X belonging to a NP language. Further, P2 has a secret
s and P1 additionally has a private input w. If w is a valid witness for X then we
require that P1 should be able to recover the secret s at the end of the protocol.
However, if X does not belong to the language then we require that P1 does not
get any information about the secret.

We give the formal definition below.

Definition 8 (CDS Protocols). Conditional Disclosure of Secret protocol,
associated with a NP relation R, is an interactive protocol between two parties
P1 (receiver) and P2 (sender). Both P1 and P2 hold the same instance X. Party
P2 holds the secret s ∈ {0, 1}λ and P1 holds a string w ∈ {0, 1}∗. At the end of
the protocol P1 outputs s′. We denote this by s′ ← 〈P1(X, w), P2(X, s)〉.

We require that the CDS protocol satisfies the following properties:

– Correctness: If (X, w) ∈ R then it holds with probability 1 that s ←
〈P1(X, w), P2(X, s)〉.

9 Formally this is argued by first simulating the garbled circuit and then switching
the input.

630 P. Ananth and A. Jain

– Soundness: If X /∈ L(R) then, for any boolean distinguisher P ∗
1 , for any

s0, s1 ∈ {0, 1}λ and for any auxiliary information z ∈ {0, 1}∗, it holds that,

|Pr[1 ← 〈P ∗
1 (X, s0, s1, z), P2(X, s0)〉] − Pr[1 ← 〈P ∗

1 (X, s0, s1, z), P ∗
2 (X, s1)〉] |

≤ negl(λ)

for some negligible function negl.

Construction of Two Message CDS Protocol. Since a CDS protocol is a special
case of two party secure computation, we show how a two message secure function
evaluation protocol (Sect. 3.3) implies a two message CDS protocol.

Theorem 7. Consider a NP relation R. Consider the following two party func-
tionality f that takes as input ((X′, w); (X, s)) and outputs s if and only if
((X, w) ∈ R) ∧ X = X′, otherwise it outputs 0. A two message secure func-
tion evaluation protocol for f is a CDS protocol associated with the relation R.

Proof. The correctness of the CDS protocol immediately follows from the cor-
rectness of the two message secure function evaluation protocol. We now argue
soundness.

Consider an instance X /∈ L(R). We now invoke the security of two message
SFE (specifically, Definition 6). There exists an extractor Ext that extracts x∗

1

from P ∗
1 ’s first message. We claim that for every x2 of the form (X, s′), it holds

that f(x∗
1, x2) outputs 0. This follows from the fact that X /∈ L(R). Using this

fact, it follows that P ∗
1 cannot distinguish whether P2 used the input (X, s0) or

(X, s1) to compute its message. The theorem thus follows.

3.5 Zero Knowledge Proof Systems

We now recall the notion of zero knowledge [23]. In the definition below, we
consider computationally bounded provers.

Definition 9 (Zero Knowledge Argument of Knowledge). A Zero
Knowledge Argument of Knowledge (ZKAoK) system (Prover,Verifier) for a rela-
tion R, associated with a NP language L(R), is an interactive protocol between
Prover and Verifier. Prover takes as input (y,w) and verifier Verifier takes as
input y. At the end of the protocol, verifier outputs accept/reject. This process
is denoted by 〈Prover(y,w), Verifier(y)〉. It consists of the following properties:

– Completeness: For every (y,w) ∈ R, we have:

Pr [accept ← 〈Prover(y,w), Verifier(y)〉] = 1

– Extractability: For every PPT Prover∗, there exists an extractor Ext (that
could use the code of Prover∗ in a non black box manner) such that the fol-
lowing holds: for every auxiliary information z ∈ {0, 1}∗,
∣∣∣Pr[accept ← 〈Prover∗(y, z), Verifier(y)〉] − Pr[w∗ ← Ext(1λ, z) : (y,w∗) ∈ R]

∣∣∣
≤ negl(λ)

On Secure Two-Party Computation in Three Rounds 631

– Zero Knowledge: For every (y,w) ∈ R, for every PPT Verifier∗, there
exists a PPT simulator Sim (that could use the code of Verifier∗ in a non
black box manner) such that the following holds:

{〈Prover(y,w), Verifier∗(y)〉} ≈c

{

Sim(1λ,y)
}

We define a ZKAoK system to be k-message if the number of messages between
Prover and Verifier is k.

We require zero knowledge systems satisfying additional properties. We con-
sider them one by one.

Bounded Uniform Zero Knowledge. In the zero knowledge property considered
in the definition above, we require that the malicious verifier is uniform.

Definition 10 (μ-Bounded Uniform Zero Knowledge). A proof system
(Prover,Verifier) for a relation R is said to be μ-bounded uniform ZKAoK
if the following holds:

– It satisfies correctness and extractability properties as in Definition 9.
– μ-Bounded Uniform Zero Knowledge: For every (y,w) ∈ R, for every

PPT Verifier∗ (represented as a Turing machine), there exists a PPT simula-
tor Sim (that could use the code of Verifier∗ in a non black box manner) such
that the following holds: for any auxiliary information z ∈ {0, 1}μ(|y|).

{〈Prover(y,w), Verifier∗(y, z)〉} ≈c

{

Sim(1λ,y, z)
}

Remark 2. The special case of 0-bounded uniform zero knowledge (interpreted
as a constant function that always outputs 0) reduces to having the malicious
verifiers as uniform algorithms (in particular, they receive no external advice).

Delayed Statement-Witness. Another useful property we require is to be able to
choose the statement and the witness in the last message of the protocol. We
call this, delayed statement-witness property.

Definition 11 (Delayed Statement-Witness). A Zero Knowledge (proof or
argument) system is said to satisfy delayed statement-witness property if both the
statement and the witness are fixed only in the last message of the protocol. In
particular, all the messages except the last message depend only on the length of
the instance and the witness.

Instantiation. In this work, we require a ZKAoK system that is both bounded
uniform zero knowledge and satisfies delayed statement-witness property. The
protocol of Bitansky et al. [8] satisfies both these properties. Their protocol
can be instantiated from Zaps [14], DDH and the Learning with Errors (LWE)
assumption.

Theorem 8 ([8]). Assuming Zaps, DDH and LWE, there exists a ZKAoK sys-
tem that satisfies both μ-bounded uniform zero knowledge for some function μ,
and delayed statement-witness property.

632 P. Ananth and A. Jain

3.6 Succinct Randomized Encodings

We recall the notion of succinct randomized encodings [9,12,32] next.

Definition 12. A succinct randomized encodings scheme SRE = (E,D) for a
class of Turing machines M consists of the following probabilistic polynomial
time algorithms:

– Encoding, E(1λ,M, x): On input security parameter λ, Turing machine M ∈
M and input x, it outputs the randomized encoding 〈M,x〉.

– Decoding, D(〈M,x〉): On input randomized encoding of M and x, it outputs
out.

We require that the above algorithms satisfies the following properties:

– Correctness: We require that the following holds for every M ∈ M, x ∈
{0, 1}∗,

Pr
[

D(〈M,x〉) = M(x) : 〈M,x〉 ← E(1λ,M, x)
]

= 1

– Security: For every PPT adversary A, there exists a PPT simulator Sim
such that the following holds:

{〈M,x〉} ≈c

{

Sim(1λ, 1|M |, 1|x|,M(x))
}

,

where:
• 〈M,x〉 ← E(1λ,M, x)

Input-less Turing machines. In this work, we consider input-less Turing
machines. These are Turing machines which on input ⊥, executes some com-
putation and outputs out. We denote the randomized encoding of an input-less
TM to be 〈M〉 ← E(1λ,M,⊥).

3.7 Indistinguishability Obfuscation for Circuits

We define the notion of indistinguishability obfuscation (iO) for circuits [4,17]
below.

Definition 13 (Indistinguishability Obfuscator (iO) for Circuits). A
uniform PPT algorithm iO is called an ε-secure indistinguishability obfuscator
for a circuit family {Cλ}λ∈N, where Cλ consists of circuits C of the form C :
{0, 1}� → {0, 1}, if the following holds:

– Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}�,
where � = �(λ) is the input length of C, we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

On Secure Two-Party Computation in Three Rounds 633

– ε-Indistinguishability: For any PPT distinguisher D, there exists a neg-
ligible function negl(·) such that the following holds: for all sufficiently large
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all
inputs x ∈ {0, 1}�, where � = �(λ) is the input length of C0, C1, we have:

∣

∣

∣Pr [D(λ, iO(λ,C0)) = 1] − Pr[D(λ, iO(λ,C1)) = 1]
∣

∣

∣ ≤ ε

If ε is negligible in λ then we refer to iO as a secure indistinguishability obfus-
cator.

Remark 3. In our work, we require indistinguishability obfuscators where
the indistinguishability property holds against adversaries running in sub-
exponential time (rather than polynomial time). We refer to such indistinguisha-
bility obfuscators as sub-exponentially secure indistinguishability obfuscators.
Currently, the existence of several cryptographic primitives are based only on
the assumption of sub-exponential iO.

3.8 Puncturable Pseudorandom Functions

We define the notion of puncturable pseudorandom functions below.

Definition 14. A pseudorandom function of the form PRFpunc(K, ·) is said to
be a μ-secure puncturable PRF if there exists a PPT algorithm Puncture that
satisfies the following properties:

– Functionality preserved under puncturing. Puncture takes as input a
PRF key K and an input x and outputs K\{x} such that for all x′
= x,
PRFpunc(K\{x}, x′) = PRFpunc(K,x′).

– Pseudorandom at punctured points. For every PPT adversary (A1,A2)

such that A1(1λ) outputs an input x, consider an experiment where K
$←−

{0, 1}λ and K\{x} ← Puncture(K,x). Then for all sufficiently large λ ∈ N,
∣

∣Pr[A2(K\{x}, x,PRFpunc(K,x)) = 1] − Pr[A2(K\{x}, x, Uχ(λ)) = 1]
∣

∣ ≤ μ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

If μ is negligible, we refer to PRFpunc as a secure puncturable PRF.

As observed by [10,11,31], the GGM construction [20] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 9 ([10,11,20,31]). If μ
poly -secure one-way functions exist, for some

fixed polynomial poly, then there exists μ-secure puncturable pseudorandom func-
tions.

634 P. Ananth and A. Jain

4 Generation Protocols

A crucial ingredient in our two party secure computation protocol is a protocol
that enables extraction of the input of P2 during the simulation phase. To achieve
this, we introduce the notion of generation protocols10 below.

This is a two party protocol between a sender and a receiver. The sender
has a trapdoor and in the end of the protocol, the receiver outputs a string. It
consists of two properties: (i) soundness: any adversarial receiver having black-
box access to the code of the sender will not be able to recover the trapdoor of
the sender, (ii) extractability: an extractor can successfully recover the trapdoor
of the sender. In the extractability property, we only consider the case when
the sender is semi-honest (i.e., it behaves according to the description of the
protocol).

To make sure that both soundness and extractability don’t contradict each
other, we make sure that the extractor has more capabilities than an adversarial
receiver – for instance, an extractor could rewind the receiver or it could have
non black box access to the code of the receiver.

The formal definition of generation protocols is provided below.

Definition 15 (Generation Protocols). A generation protocol is an inter-
active protocol between two parties P1(also termed receiver) and P2 (also termed
sender). The input to both parties is auxiliary information z. Party P2, in addi-
tion, gets as input trapdoor K ∈ {0, 1}poly(λ). At the end of the protocol, P1

outputs K ′. We denote this process by K ′ = 〈P1(z), P2(z,K)〉.
The following properties are associated with a generation protocol:

– Soundness: For any PPT non-uniform boolean distinguisher P ∗
1 , for any

large enough security parameter λ ∈ N: for every two strings K0,K1 ∈
{0, 1}poly(λ) and auxiliary information z ∈ {0, 1}poly′(λ),

|Pr [1 ← 〈P ∗
1 (z,K0,K1), P2(z,K0)〉] − Pr [1 ← 〈P ∗

1 (z,K0,K1), P2(z,K1)〉]|
≤ 1

2
+ negl(λ)

for some negligible function negl. That is, any distinguisher P ∗
1 having black

box access to P2 cannot distinguish whether which of K0 and K1 was used in
the protocol.

– Extractability: For every semi-honest PPT P ∗
2 , there exists a PPT extractor

ExtGP (that could possibly use code of P ∗
2 in a non black box manner) such

that the following holds: for any auxiliary information z ∈ {0, 1}poly′(λ),
• The view of P ∗

2 (z,K) when it is interacting with P1(z,K) is computa-
tionally indistinguishable from the view of P ∗

2 (z,K) when it is interacting
with ExtGP(1λ, z).

• Pr
[

K ′ ← 〈ExtGP(1λ, z), P ∗
2 (z,K)〉 and K ′ = K

] ≥ 1 − negl(λ)

10 The name “generation protocol” is taken from the work of [3]. The definition in their
work is slightly different, however they too use the notion of generation protocols to
achieve trapdoor extraction.

On Secure Two-Party Computation in Three Rounds 635

Extractability Against μ-Bounded Uniform Senders. We consider generation pro-
tocols where the extractability property needs to hold against senders modeled
as μ-bounded uniform algorithms. We formally define this below.

Definition 16. A protocol GenProt between sender P1 and receiver P2 is said
to be μ-bounded uniform generation protocol if the following holds:

– It satisfies the soundness property in Definition 16.
– Extractability against μ-bounded uniform senders: For every semi-

honest PPT P2 (modeled as a Turing machine), there exists a PPT extractor
ExtGP (that could possibly use code of P2 in a non black box manner) such
that the following holds: for any bounded auxiliary information z ∈ {0, 1}μ(λ),

Pr
[

K ′ ← 〈ExtGP(1λ, z), P2(z,K)〉 and K ′ = K
] ≥ 1 − negl(λ)

Remark 4. If μ in the above definition is a constant function that always outputs
0 then this boils down to the case when the sender is a uniform algorithm (hence,
no external advice). In this case, we refer to the above generation protocol as
uniform generation protocol.

4.1 Two-Message GP from Succinct RE

We present a two-message generation protocol starting from a succinct random-
ized encoding scheme and a two party secure function evaluation protocol. The
security of this scheme will be against μ-bounded uniform senders.

Tools. The first tool we use is succinct randomized encodings for Turing
machines, denoted by SRE = (E,D). Another tool we use is a two message
secure function evaluation protocol Π2PC. In particular, we use the two message
secure function evaluation protocol defined in Sect. 3.3. We denote P1 and P2 to
be the parties involved in this protocol. Only P1 outputs in the protocol. Recall
that this protocol satisfies indistinguishability security (Definitions 6 and 7).

Functionality of Π2PC: The functionality f associated with Π2PC is the fol-
lowing: f on input x2 = (β,K,m,R2,md, θ) from P2 and x1 = (M,R1) (here,
|M | ≤ O(μ(λ) + λ)) from P1, it computes the following:

– If md = 1 then compute the succinct randomized encoding 〈N〉 ← E(1λ, N [β,
K,m,M],⊥;R) (i.e., R is the randomness used in E), where R is set to R1 ⊕
R2. The Turing machine N is an input-less Turing machine (refer Sect. 3.6)
that does the following: hardwired inside it are the values (β,K,m,M).
1. It first computes M(m) to get as output out.
2. It interprets the first |β| number of bits of out to be the string β′.
3. It checks if β′ = β. If so, it outputs K. Otherwise, it outputs ⊥.

It outputs 〈N〉.
– If md = 2 then:

1. It outputs θ.

636 P. Ananth and A. Jain

Construction. We describe the protocol below. Denote the receiver to be P1 and
the sender to be P2. Call this protocol GenProt.

– Upon input z, P1 (receiver) prepares an input x1 for Π2PC as a μ(λ)-length
string of all zeroes. It takes the role of the party P1 in the protocol Π2PC.
It computes the first message msg1 of Π2PC using the input x1. That is,
msg1 ← P1.MsgGen[Π2PC](1λ, x1). It sends msg1 to P2 (sender).

– Upon input z and trapdoor K, P2 (sender) first picks a string β of length �β =
poly(λ) such that �β � |msg1|. In particular, we require that 2−(�β−μ(λ)−λ)

to be negligible. It sets m = msg1. It samples a string R uniformly at random.
It takes the role of P2 in the protocol Π2PC. It then sets its input to Π2PC to
be x2 = (β,K,msg1, R,md, θ), where md = 1 and θ = 0. Using x2 and msg1,
it computes the second message msg2 of Π2PC using the input x2. That is,
msg2 ← P2.MsgGen[Π2PC](1λ, x2,msg1). It sends (β,msg2) to P1.

Finally, P1 computes the output of Π2PC and recovers the randomized encoding
〈N〉. It then evaluates the decoding algorithm D(〈N〉) to get the output K ′. It
outputs K ′.

This concludes the construction. We argue that the above protocol satisfies
the properties of the generation protocol.

Theorem 10. Assuming the security of Π2PC (Definition 7) and SRE, GenProt
satisfies soundness.

Proof. Suppose P ∗
1 receives as input two trapdoors K0 and K1. In this case we

need to argue that a malicious P ∗
1 having just black box access to (honest) P2

will be unable to distinguish whether P2 is using K0 or K1. In fact, we argue
a stronger property: we argue that the behavior of P ∗

1 can be simulated by a
PPT simulator even without the knowledge of K. That is, for every adversarial
receiver P ∗

1 , there exists a PPT simulator Sim, for every K ∈ {0, 1}poly(λ) and
auxiliary information z ∈ {0, 1}poly′(λ),

|Pr[1 ← 〈P ∗
1 (z), P2(z,K)〉] − Pr[1 ← 〈P ∗

1 (z), Sim(z)〉]| ≤ 1
2

+ negl(λ)

Note that the above property implies soundness property.

Description of Sim(z). It receives as input msg1 from P1. It generates msg2 as
follows:

– Let SimSRE be the simulator of the succinct randomized encodings scheme. It
then executes SimSRE(1λ, 1�1 , 1�2 , v), where �1 is the size of M , �2 is the size
of m as defined in the description of functionality for Π2PC and v is set to be
⊥. The output of SimSRE(1λ, 1�1 , 1�2 , v) is denoted by 〈N〉.

– It sets x2 = (0, 0, 0, 0, 2, 〈N〉). It then computes msg2 as a function of x2

and msg1. The generation of msg2 is performed by running the algorithm of
(honest) P2 in Π2PC. That is, msg2 ← P2.MsgGen[Π2PC](1λ, x2,msg1).

– Finally, it samples a string β of length �β .

On Secure Two-Party Computation in Three Rounds 637

Sim then sends (β,msg2) to P2. This ends the description of Sim.

We focus on proving the above stronger property. In the following hybrids, we
use extractor Ext associated with Π2PC (see Definition 6). Recall that Ext need
not necessarily be efficient.

Hyb1: This corresponds to the real experiment where P ∗
1 (z) is interacting with

P2(z,K). The output of this hybrid is the output of P ∗
1 .

Hyb2: In this hybrid, party P2 deviates from the description of the protocol. It
uses the extractor Ext to extract x∗

1 = (M,R1). It then sets x′
2 = (0, 0, 0, 0, 2, θ)

and uses this input to generate the second message of the protocol Π2PC. That is,
msg2 ← P2.MsgGen[Π2PC](1λ, x′

2,msg1), where msg1 is the message sent by P ∗
1 .

Here, θ is set to be the output f(x∗
1, (β,K,msg1, R2, 1, 0)), where R2 is sampled

uniformly at random. P2 sends (β,msg2) to P ∗
1 , where β is a string of length �β

sampled uniformly at random. The output of this hybrid is the output of P ∗
1 .

Since Ext need not be efficient, P2 is not necessarily efficient.

Claim. Assuming the security of Π2PC, hybrids Hyb1 and Hyb2 are computation-
ally indistinguishable.

Proof. Suppose x∗
1 = (M,R1), interpreted as the description of a Turing machine

M (with the bounded auxiliary information part of this) along with randomness
R1, is the input extracted by the extractor Ext from the first message of the
generation protocol. Let x′

2 be the input used by P2 in Hyb1 and let x′′
2 be the

input used by P2 in Hyb2. We have that f(x1, x
′
2) = f(x1, x

′′
2). And thus, from

the security of Π2PC (Definition 6), we have that P ∗
1 cannot distinguish whether

P2 used x′
2 or x′′

2 . The claim thus follows.

Hyb3: In this hybrid, P2 essentially executes the simulator Sim described above.

Claim. Assuming the security of SRE, hybrids Hyb2 and Hyb3 are computation-
ally indistinguishable.

Proof. Suppose x∗
1 = (M,R1), interpreted as a Turing machine M (with the

auxiliary information hardcoded in it) along with randomness R1, is the input
extracted by the extractor Ext from the first message msg1 of Π2PC. Sample string
β of length �β uniformly at random. We first make the following observation.
The probability that for any γ, M(γ) outputs the random string β is at most
2−O(�β−μ(λ)−λ), which is negligible. Thus with overwhelming probability we have
that N [β,K,msg1,M] outputs ⊥.

The only difference between Hyb2 and Hyb3 is that in Hyb2, θ is set to 〈N〉
whereas in Hyb3, θ is set to be the simulated randomized encoding correspond-
ing to the output ⊥. As observed above, N outputs ⊥ except with negligible
probability. Thus, we can invoke the security of randomized encodings to argue
that Hyb2 and Hyb3 are computationally indistinguishable.

638 P. Ananth and A. Jain

From the indistinguishability of Hyb1 and Hyb3, we have that P ∗
1 cannot

distinguish whether it is interacting with P2 versus interacting with Sim. This
completes the proof.

Theorem 11. Assuming the correctness, security properties of Π2PC

(Definition 6) and SRE, GenProt satisfies extractability against μ-uniform
senders.

Proof. We design an extractor ExtGP that extracts the trapdoor from the semi-
honest sender P ∗

2 . The extractor has the knowledge of the code used by P ∗
2 . Call

the Turing machine executed by P ∗
2 to be M (which has auxiliary information

hardcoded in it). Since we are assuming that P ∗
2 is μ-bounded uniform, we have

|M | ≤ O(μ(λ)+λ): this is to account for the auxiliary information whose length
is at most μ(λ) and representing the Turing machine requires size at most λ.

Now, the extractor proceeds as follows: it sets the input to Π2PC to be M .
It then computes the first message msg1 of Π2PC and sends it to P ∗

2 . Then, P ∗
2

computes (β,msg2) and sends it to the extractor.

– From the security of Π2PC (Definition 6), the view of P ∗
2 when interacting with

P1 is computationally indistinguishable from the view of P2 when interacting
with ExtGP. Recall that P1 uses the input 0 in the first message and ExtGP
uses the input M in the first message.

– Since P ∗
2 is semi-honest, it computes the second message of Π2PC honestly.

From the correctness of Π2PC, it follows that the extractor can recover the
randomized encoding 〈N〉 from Π2PC. From the correctness of SRE, it further
follows that the decoding of 〈N〉 yields K if and only if the first �β bits of
M(msg1) yields β. Since M was chosen to be the code of P ∗

2 , it follows that
the decoding of 〈N〉 does yield K.

From the above two bullets, we have that GenProt satisfies extractability property.

5 Three-Round Secure Computation

Consider any boolean functionality f : {0, 1}�1 × {0, 1}�2 → {0, 1}, where the
output is delivered to the second party. We construct a three-round secure two-
party computation protocol Π2PC that securely computes f against bounded
non-uniform adversaries. We denote the two parties involved in the protocol as
P1 and P2.

Building Blocks. We describe the building blocks used in our protocol.

1. Garbling scheme for circuits (Definition 3), denoted by GC = (Gen,
GrbC,GrbI,EvalGC). Without loss of generality we can assume that GrbC and
GrbI are deterministic algorithms.

2. Two message �2-parallel 1-out-2 oblivious transfer protocol
(Definition 4), denoted by OT. We require security against malicious receivers.

On Secure Two-Party Computation in Three Rounds 639

We additionally require that the OT protocol satisfies uniqueness of transcript
property (Definition 5).

3. Three message Zero Knowledge Argument of Knowledge
(ZKAoK) System (Definition 9) for NP. We require that the 3-message ZKAoK
system ZK = (Prover,Verifier) satisfies the delayed statement-witness property
(Definition 11).

We denote the relation associated with the above system to be Rzk. And let
L(Rzk) be the associated language. The relation Rzk is described in Fig. 2.

4. Two Message Generation Protocol (Definition 16) denoted by GenProt.
In particular, we are interested in generation protocols satisfying special extrac-
tion property. We consider a two message generation protocol. The role of the
sender of GenProt is played by P2 and the role of the receiver of GenProt is played
by P1.

5. Two Message Conditional Disclose of Secret (CDS) Protocol
(Definition 8), denoted by CDSProt. The associated relation Rcds is described in
Fig. 1.

6. Other tools. We additionally use pseudorandom functions, denoted by
PRF, in this construction.

Fig. 1. Relation Rcds associated with CDS

640 P. Ananth and A. Jain

Fig. 2. Relation Rzk associated with ZKAoK

Fig. 3. Computation of output

Protocol Π2PC. We now proceed to describe protocol Π2PC.

1. P1 → P2: On input x1 of length �1, party P1 does the following:
– Compute the prover’s message of ZK, denoted by ZK1.
– It computes the first message of the generation protocol using randomness

Rrec
gp . That is, GP1 ← Rec.MsgGen[GenProt](Rrec

gp).
It sends (ZK1, GP1) to P2.

2. P2 → P1: Party P2 computes the third message as follows:
– Compute the verifier’s message of ZK. Denote this by ZK2.
– It computes Rrec

ot = PRF(K, 1), randomness used in OT.
– It computes the first message of OT, denoted by OT1, as a func-

tion of its input x2 and randomness Rrec
ot . That is, OT1 ←

Rec.MsgGen[OT](x2;Rrec
ot), where Rec is the receiver algorithm of OT.

On Secure Two-Party Computation in Three Rounds 641

Here, x2 is interpreted as a vector with the ith entry being the ith bit
of x2.

– Generate the second message of GenProt, i.e., GP2, as a function
of GP1, and freshly sampled randomness Rsen

gp . That is, GP2 ←
Sen.MsgGen[GenProt](K,GP1;Rsen

gp).
– Compute s = PRF(K, 2) ⊕ x2.
– Generate the first message of CDS protocol, denoted by CDS1, as a func-

tion of instance y = (OT1, s,GP1, GP2), witness w = (x2, Rot) and ran-
domness Rrec

cds. That is, CDS1 ← Rec.MsgGen(y, w;Rrec
cds).

It sends (ZK2, OT1, GP2, CDS1, s) to P1.
3. P1 → P2: P1 computes the final message as follows:

– Execute gcsk ← GC.Gen(1λ;Rgc), where Rgc is the randomness used in
the algorithm. Execute 〈k〉 = (k1, . . . ,k�2) ← GC.GrbI(gcsk), where �2 is
the input length of party P2. For every i ∈ [�2], we have ki = (k0

i , k1
i).

– It computes the garbled circuit ̂C ← GrbC(gcsk, C), where C is a boolean
circuit defined as C(y) = f(x1, y), where y is of length �2.

– It computes the second message of OT as a function of first message and
randomness Rsen

ot . That is, OT2 ← Sen.MsgGen[OT](〈k〉, OT1;Rsen
ot).

– It computes the second message of CDSProt as a function of first message
CDS1, instance y (its computed the same way as P2 does), secret s = ̂C
and randomness Rsen

cds . That is, CDS2 ← Sen.MsgGen[CDSProt](CDS1,y,
s;Rsen

cds).
– It computes the final message of ZK, namely ZK3. This is com-

puted as a function of instance (CDS1, CDS2, OT1, OT2) and witness
(Rgc, R

sen
ot , Rsen

cds , ̂C).

Finally, P2 recovers out from its view using the algorithm in Fig. 3.

Theorem 12. Assuming the security of the following primitives: garbling
scheme GC, oblivious transfer protocol OT, ZKAoK system ZK, generation pro-
tocol GenProt, conditional disclosure of secrets protocol CDSProt and pseudoran-
dom functions PRF, we have that Π2PC is secure against malicious adversaries
(Definition 1).

The proof of the above theorem can be found in the full version.

Instantiating the building blocks (see Sect. 3), we obtain the following corollary.

Corollary 1. Assuming DDH, LWE, Zaps and succinct randomized encodings,
protocol Π2PC is a secure μ-bounded uniform two party computation protocol
satisfying Definition 2.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 8

http://dx.doi.org/10.1007/3-540-44987-6_8

642 P. Ananth and A. Jain

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

3. Barak, B.: How to go beyond the black-box simulation barrier. In: Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 106–115.
IEEE (2001)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

5. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS 2012, New York, NY, USA, pp. 784–796. ACM (2012)

6. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 17

7. Bitansky, N., Brakerski, Z., Kalai, Y., Paneth, O., Vaikuntanathan, V.: 3-message
zero knowledge against human ignorance. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9985, pp. 57–83. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53641-4 3

8. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. SIAM J. Comput. 45(5), 1910–1952 (2016)

9. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC (2015)

10. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

11. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

12. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. In: STOC (2015)

13. Döttling, N., Fleischhacker, N., Krupp, J., Schröder, D.: Two-message, oblivi-
ous evaluation of cryptographic functionalities. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9816, pp. 619–648. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53015-3 22

14. Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12–14 November 2000, Redondo
Beach, California, USA, pp. 283–293 (2000)

15. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 205–210.
Springer, Boston (1982). doi:10.1007/978-1-4757-0602-4 19

16. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 13–17
May 1990, Baltimore, Maryland, USA, pp. 416–426 (1990)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29
October 2013, Berkeley, CA, USA, pp. 40–49. IEEE Computer Society (2013)

http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-662-53641-4_3
http://dx.doi.org/10.1007/978-3-662-53641-4_3
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-53015-3_22
http://dx.doi.org/10.1007/978-3-662-53015-3_22
http://dx.doi.org/10.1007/978-1-4757-0602-4_19

On Secure Two-Party Computation in Three Rounds 643

18. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 16

19. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

20. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

21. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167–190 (1996)

22. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

23. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In: 27th Annual Symposium
on Foundations of Computer Science, pp. 174–187. IEEE (1986)

24. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

25. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994)

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC, pp. 291–304 (1985)

27. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). doi:10.1007/BFb0055744

28. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, pp. 294–304. IEEE
(2000)

29. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 224–251. Springer, Cham (2017). doi:10.1007/978-3-319-63715-0 8

30. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 21

31. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 669–684. ACM
(2013)

32. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

33. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 26

34. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 4

35. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 245–
254. ACM (1999)

http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/BFb0055744
http://dx.doi.org/10.1007/978-3-319-63715-0_8
http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4

644 P. Ananth and A. Jain

36. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, 7–9 January 2001, Washing-
ton, D.C., USA., pp. 448–457 (2001)

37. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187 (2005)

38. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, New York, NY, USA, 31 May–03 June 2014, pp. 475–484. ACM (2014)

39. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

Four Round Secure Computation Without Setup

Zvika Brakerski1, Shai Halevi2, and Antigoni Polychroniadou3(B)

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il
2 IBM, Yorktown Heights, USA

shaih@alum.mit.edu
3 Cornell Tech, New York, USA

antigoni@cornell.edu

Abstract. We construct a 4-round multi-party computation protocol in
the plain model for any functionality, secure against a malicious adver-
sary. Our protocol relies on the sub-exponential hardness of the Learning
with Errors (LWE) problem with slightly super-polynomial noise ratio,
and on the existence of adaptively secure commitments based on stan-
dard assumptions. Our round complexity matches a lower bound of Garg
et al. (EUROCRYPT ’16), and outperforms the state of the art of 6
rounds based on similar assumptions to ours, and 5 rounds relying on
indistinguishability obfuscation and other strong assumptions.

To do this, we construct an LWE based multi-key FHE scheme with a
very simple one-round distributed setup procedure (vs. the trusted setup
required in previous LWE based constructions). This lets us construct the
first 3-round semi-malicious MPC protocol without setup from standard
LWE using the approach of Mukherjee and Wichs (EUROCRYPT ’16).
Finally, subexponential hardness and adaptive commitments are used to
“compile” the protocol into the fully malicious setting.

1 Introduction

Secure Multi-party Computation (MPC) allows mutually suspicious parties to
evaluate a function on their joint private inputs without revealing these inputs
to each other. One fruitful line of investigation is concerned with the round

Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14) and
Binational Science Foundation (Grants No. 2016726, 2014276) and ERC Project
756482 REACT.
S. Halevi—Supported by the Defense Advanced Research Projects Agency (DARPA)
and Army Research Office (ARO) under Contract No. W911NF-15-C-0236.
A. Polychroniadou—Supported by the National Science Foundation under Grant No.
1617676, IBM under Agreement 4915013672, the Packard Foundation under Grant
2015-63124, and the Danish National Research Foundation and the National Science
Foundation of China (under the grant 61361136003) for the Sino-Danish Center for
the Theory of Interactive Computation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the sponsors.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 645–677, 2017.
https://doi.org/10.1007/978-3-319-70500-2_22

646 Z. Brakerski et al.

complexity of these protocols. More specifically, we consider a model where at
each round, each party is allowed to broadcast a message to everyone else. We
allow the adversary to be malicious and corrupt any fraction of the parties.

If a Common Random String (CRS) is allowed, then two rounds are neces-
sary and sufficient for secure multi-party protocols under plausible cryptographic
assumptions [GGHR14,MW16].

Without relying on trusted setup, it was still known that constant round
protocols are possible [BMR90], but the exact round complexity remained open.
A lower bound in the simultaneous message model was established in the recent
work of Garg et al. [GMPP16], who proved that four rounds are necessary. They
also showed how to perform multi-party coin flipping in four rounds, which can
then be used to generate a CRS and execute the aforementioned protocols in
the CRS model. That technique implied a five-round protocol based on 3-round
3-robust non-malleable commitments1 and indistinguishability obfuscation, and
a 6-round protocol based on 3-round 3-robust non-malleable commitments and
LWE.

For the important special case of only two parties, it is known that two
message protocols with sequential rounds, i.e. each party talks in turn, are nec-
essary and sufficient in the CRS model [JS07,HK07] and five message protocols
are necessary and sufficient without setup [KO04,ORS15].

Our Results. Our work addresses the following fundamental question:

Can we obtain round-optimal multi-party computation protocols without
setup?

We answer this question in the affirmative, obtaining a round-optimal multi-
party computation protocol in the plain model for general functionalities in the
presence of a malicious adversary. Informally, we prove the following:

Theorem 1 (Informal). Assuming the existence of adaptive commitments, as
well as the sub-exponential hardness of Learning-with-Errors, there exists a four-
round protocol that securely realizes any multi-party functionality against a mali-
cious adversary in the plain model without setup.

In particular, we use a two-round adaptively secure commitment scheme (e.g.,
as constructed by Pandey et al. [PPV08], using Naor’s protocol [Nao91] with
adaptive PRGs - a non-standard assumption). However, the recent two-round
non-malleable commitment scheme [LPS17] from “Time-Lock Puzzles” can be
made adaptively secure.

To establish our result, we depart from the coin flipping approach of
[GMPP16] and instead rely on a new generalized notion of multi-key fully homo-
morphic encryption [LTV12] which we show how to construct based on the hard-
ness of LWE. In a nutshell, whereas prior LWE based constructions required
trusted setup (essentially a CRS) [CM15,MW16,BP16,PS16], we show that the

1 Such commitments can be instantiated from one-way permutations secure w.r.t.
sub-exponential time adversaries [COSV16].

Four Round Secure Computation Without Setup 647

setup procedure can be distributed. Each party only needs to broadcast a ran-
dom string2, and generate its public key based on the collection of strings by all
other parties. We show that the resulting scheme is secure even when some of
the broadcast strings are adversarial (and even when the adversary is rushing).
Similarly to Mukherjee and Wichs [MW16], we can transform our multi-key FHE
into an MPC protocol in the semi-malicious model (where the adversary is only
allowed to corrupt parties in a way that is consistent with some random tape).
Our protocol requires 3 rounds without setup (vs. 2 rounds in the CRS model),
and only requires polynomial hardness of LWE with slightly super polynomial
noise ratio. Informally, we establish the following theorem:

Theorem 2 (Informal). Assuming hardness of Learning-with-Errors with
super-polynomial noise ratio, there exists a three-round protocol that securely
realizes any multi-party functionality against a rushing semi-malicious adver-
sary in the plain model without setup.

Concurrent work. In a concurrent and independent work, Ananth, Choudhuri,
and Jain construct a maliciously-secure 4-round MPC protocol based on one-way
permutations and sub-exponential hardness of DDH [ACJ17]. Their approach is
very different from ours, they construct and use a “robust semi-honest” MPC
protocol from DDH, while our main building block is an LWE-based 3-round
protocol secure against semi-malicious adversaries.

Related work on LWE-based MPC protocols. Asharov et al. [AJL+12]
first show a three-round multi-party computation protocol in the CRS model
and a two-round multi-party computation protocol in the reusable public-
key infrastructure setup model based on LWE. The work of Mukherjee and
Wichs [MW16], and its extensions [BP16,PS16], based on multi-key FHE
[LTV12,CM15], shows how to obtain optimal two-round constructions based
on LWE and NIZKs in the CRS model. See Chap. 3 of [Pol16] for related work
of MPC protocols based on different assumptions both in the CRS and plain
model.

2 Overview of Our Protocol

Our starting point is the multi-key FHE approach to MPC, first introduced by
[LTV12]. As explained above, it was shown in [MW16] that the Clear-McGoldrick
scheme [CM15] implies a two-round protocol in the semi-malicious setting in the
CRS model under LWE. Furthermore, using NIZK it is possible to also achieve
fully malicious security. Constructing a multi-key FHE without setup and with
the necessary properties for compiling it into an MPC protocol is still an open
problem, but we show that the trusted setup can be replaced by a distributed
process which only adds a single round to the MPC protocol. While our final
solution is quite simple, it relies on a number of insights as to the construction
and use of multi-key FHE.
2 Essentially its public matrix for a dual-Regev encryption scheme [Reg09,GPV08].

648 Z. Brakerski et al.

1. While the schemes in [GSW13,CM15,MW16] rely on primal Regev-style
LWE-based encryption as a basis for their FHE scheme, it is also possible
to instantiate them based on the dual -Regev scheme [GPV08] (with asymp-
totically similar performance). However, the same form of CRS is required
for this instantiation as well, so at first glance it does not seem to offer any
advantages.

2. The multi-key FHE schemes of [CM15,MW16] are presented as requiring
trusted setup, but a deeper look reveals that this trusted setup is only needed
to ensure a single property, related to the functionality: In LWE based encryp-
tion (Regev or dual-Regev) the public key contains a matrix A and a vector
t · A (possibly with some additional noise, depending on the flavour of the
scheme) where t is the secret key. In order to allow multi-key homomorphism
between parties that each have their own Ai, ti, it is only required that the
values bi,j = tiAj for all i, j, are known to all participating parties (up to
small noise). The use of CRS in previous works comes in setting all Ai to be
the same matrix A, which is taken from the CRS, and thus the public key
bi ≈ tiAi = tiA is the only required information.

3. Lastly, we notice that dual-Regev with the appropriate parameters is leakage
resilient [DGK+10]. This means that so long as a party honestly generates its
ti and Ai, it can expose arbitrary (length-bounded) information on ti without
compromising the security of its own ciphertexts. Combining this with the
above, we can afford to expose all bi,j = tiAj without creating a security
concern (for appropriate setting of the parameters).

Putting the above observations together, we present a multi-key FHE scheme
with a distributed setup, in which each party generates a piece of the common
setup, namely the matrix Ai. After this step, each party can generate a public
key pki containing all vectors bi,j , the respective secret key is the vector ti. Given
all pki and the matrices Ai, it is possible to perform multi-key homomorphism in
a very similar manner to [CM15,MW16]. The 3-round semi-malicious protocol
is therefore as follows.

Round 1: Distributed Setup. Every player Pi broadcasts a random matrix
Ai of the appropriate dimension.

Round 2: Encryption. Each party generates a public/secret key-pair for the
multi-key FHE, encrypts its input under these keys, and broadcasts the public
key and ciphertext.

Round 3: Partial Decryption. Each party separately evaluates the function
on the encrypted inputs, then use its secret key to compute a decryption share
of the resulting evaluated ciphertext and broadcasts that share to everyone.

Epilogue: Output. Once all the decryption shares are received, each party can
combine them to get the function value, which is the output of the protocol.

This skeleton protocol can be shown to be secure in the semi-malicious adver-
sary model, but it is clearly insecure in the presence of a malicious adversary.
Although the protocol can tolerate adversarial choice of the first-round matri-
ces Ai, the adversary can still violate privacy by sending invalid ciphertexts in

Four Round Secure Computation Without Setup 649

Round 2 and observing the partial decryption that the honest players send in
the next round. It can also violate correctness by sending the wrong decryption
shares in the last round.

These two attacks can be countered by having the parties prove that they
behaved correctly, namely that the public keys and ciphertexts in Round 2 were
generated honestly, and that the decryption shares in Round 3 were obtained by
faithful decryption. To be effective we need the proof of correct encryption to
complete before the parties send their decryption shares (and of course the proof
of correct decryption must be completed before the output can be produced).
Hence, if we have a k-round input-delayed proof of correct encryption (and a (k+
1)-round input-delayed proof of correct decryption) then we get a (k + 1)-round
protocol overall. Much of the technical difficulties to achieve malicious security
in the current work are related to using 3-round proofs of correct encryptions,
resulting in a 4-round protocol.

2.1 The Maliciously-Secure Protocol

Our maliciously-secure protocol builds on the above 3-round semi-malicious
protocol, and in addition it uses a two-round adaptive commitment protocol
aCom = (acom1, acom2), a three-round delayed-input proof of correct encryption
ΠWIPOK = (p1, p2, p3), and a four-round delayed-input proof of correct decryp-
tion ΠFS = (fs1, fs2, fs3, fs4). (The names ΠWIPOK and ΠFS are meant to hint on
the implementation of these proofs, see more discussion in the next subsection.)

Round 1: Distributed Setup, commitment & proof. Every party i broad-
casts its setup matrix Ai. It also broadcasts the first message acom1 of the
adaptive commitment for its randomness and input, the first message p1 of
the proof of correct encryption, and the first message fs1 of the proof of correct
decryption (both proofs with respect to the committed values).

Round 2: Continued commitment & proofs. Each party broadcasts
acom2, p2, fs2.

Round 3: Encryption & proofs. The parties collect all the first round matri-
ces Ai and run the key-generation and encryption procedures of the multi-key
FHE. Then, each party broadcasts its public key and encrypted input. In the
same round, each party also broadcasts messages p3, fs3.

Round 4: Verification & decryption. Each party runs the verifier algorithm
for the ΠWIPOK proof of correct encryption, verifying all the instances. If all
of them passed then it evaluates the function on the encrypted inputs, then
uses its secret key to compute a decryption share of the resulting evaluated
ciphertext, and broadcasts that share to everyone. It also broadcasts the
message fs4 of the proof of correct decryption.

Epilogue: Verification & output. Once all the decryption shares and proofs
are received, each party runs the verifier algorithm for the ΠFS proof of correct
decryption, again verifying all the instances. If all of them passed then it
combines all the decryption shares to get the function value, which is the
output of the protocol.

650 Z. Brakerski et al.

If any of the messages is missing or mal-formed, or if any of the verification
algorithms fail, then the parties are instructed to immediately abort with no
output.

As explained in the next section, subtle technicalities arise in the security
proof that lead to an extended version of the above protocol description.

2.2 A Tale of Malleability and Extraction

To prove security of our protocol, we must exhibit a simulator that can somehow
extract the inputs of the adversary, so that it can send these inputs to the trusted
party in order to get the function output. To that end we make the three-round
proof of correct encryption a Proof of Knowledge (POK), and let the simulator
use the knowledge extractor to get these adversarial inputs.

At the same time, we must ensure that this proof of knowledge is non-
malleable, so that the extracted adversarial inputs do not change between the
real protocol (in which the honest parties prove knowledge of their true input)
and the simulated protocol (in which the simulator generates proofs for the hon-
est players without knowing their true inputs). A few subtle technicalities are
discussed below.

Two-round commitment with straight-line extraction. The main tech-
nical tool that we use in our proofs is two-round adaptive commitments, that
the parties use to commit to their inputs and randomness. Commitments in
this scheme are marked by tags, and the scheme has the remarkable property
of adaptive security : Namely, commitments with one tag are secure even in the
presence of an oracle that breaks commitments for all other tags.

Some hybrid games in our proof of security are therefore staged in a mental-
experiment game where such a breaking oracle exists, providing us with straight-
line (rewinding-free) extraction of the values that the adversary commits to,
while keeping the honest-party commitments secret. Looking ahead, straight-line
extraction is used in some of our hybrids to fake the (WIPOK) zero knowledge
proofs.

However, we also need our other primitives (MFHE, POK, etc.) to remain
secure in the presence of a breaking oracle, and we use complexity leveraging
for that purpose: We assume that these primitives are sub-exponentially secure,
and set their parameters much larger that those of the commitment scheme.
This way, all these primitives remain secure even against sub-exponential time
adversaries that can break the commitment by brute force. When arguing the
indistinguishability of two hybrids, we reduce to the sub-exponential security of
these primitives and use brute force to implement the breaking oracle in those
hybrids.3

Delayed-input proofs. In the three-round proofs for correct encryption and in
the four-round proofs for correct decryption, the statement to be proved is not
defined until just before the last round of the protocols. We therefore need to

3 Technically we “only” need to assume standard security in a world with such a
breaking oracle, which is a weaker assumption than full sub-exponential security.

Four Round Secure Computation Without Setup 651

use delayed-input proofs that can handle this case and squeeze rounds in order
to achieve a four round protocol.

Fake proofs via Feige-Shamir. The simulator needs to fake the four-round
proof of correct decryption on behalf of the correct parties, as it derives their
decryption shares from the function output that it gets from the trusted party.
For this purpose we use a Feige-Shamir-type four-round proof [FS90], which has
a trapdoor that we extract and can be used to fake these proofs.

WI-POK with a trapdoor. Some steps in our proof have hybrid games in
which the commitment contains the honest parties’ true inputs while the encryp-
tion contains zeros. In such hybrids, the statement that the values committed to
are consistent with the encryption is not true, so we need to fake that three-round
proof as well.

For that purpose we use another Feige-Shamir-type trapdoor as follows: Each
party chooses a random string R, encloses R̂ = OWF (R) with its first-flow
message, encloses R inside the commitment aCom (together with its input and
randomness) and adds the statement R̂ = OWF (R) to the list of things that it
proves in the 3-round POK protocol.

In addition, the parties execute a second commitment protocol bCom (which
is normally used to commit to zero in the real protocol), and we modify the
POK statement to say that EITHER the original statement is true, OR the
value committed in that second commitment bCom is a pre-image of the R̂ value
sent by the verifier in the first round. Letting the POK protocol be witness-
indistinguishable (WI-POK), we then extract the R value from the adversary (in
some hybrids), let the challenger commit to that value in the second commitment
bCom, and use it as a trapdoor to fake the proof in the POK protocol.

We note that the second commitment bCom need not be non-malleable or
adaptive, but it does need to remain secure in the presence of a breaking oracle for
the first commitment. Since we already assume a 2-round adaptive commitment
aCom, then we use the same scheme also for this second commitment, and appeal
to its adaptive security to argue that the second commitment remains secure in
the presence of a breaking oracle for the first commitment.

Public-coin proofs. In the multi-party setting, the adversary may choose to
fail the proofs with some honest parties and succeed with others. We thus need
to specify what honest parties do in case one of the proofs fail. The easiest
solution is to use public-coin proofs with perfect completeness, and have the
parties broadcast their proofs and verify them all (not only the ones where they
chose the challenge). This way we ensure that if one honest party fails the proof,
then all of them do.

2.3 Roadmap

In Part I we provide our 3-round semi-malicious protocol based on multi-key
FHE. In Part II we “compile” our 3-round semi-malicious protocol to a 4-round
fully maliciously-secure protocol. We conclude in Sect. 7 with open problems.

652 Z. Brakerski et al.

3 Part I: 3-Round Semi-malicious Protocols

3.1 LWE-Based Multi-key FHE with Distributed Setup

Notations. Throughout the text we denote the security parameter by κ. A
function μ : N → N is negligible if for every positive polynomial p(·) and all
sufficiently large κ’s it holds that μ(κ) < 1

p(κ) . We often use [n] to denote the
set {1, ..., n}.

Let d ← D denote the process of sampling d from the distribution D or, if
D is a set, a uniform choice from it. For two distributions D1 and D2, we use
D1 ≈s D2 to denote that they are statistically close (up to negligible distance),
D1 ≈c D2 denotes computational indistinguishability, and D1 ≡ D2 denotes
identical distributions.

3.2 Definitions

An encryption scheme is multi-key homomorphic if it can evaluate circuits
on ciphertexts that are encrypted under different keys. Decrypting an eval-
uated ciphertext requires the secret keys of all the ciphertexts that were
included in the computation. In more detail, a multi-key homomorphic encryp-
tion scheme (with trusted setup) consists of five procedures, MFHE =
(MFHE.Setup,MFHE.Keygen,MFHE.Encrypt,MFHE.Decrypt,MFHE.Eval):

– Setup params ← MFHE.Setup(1κ): On input the security parameter κ the
setup algorithm outputs the system parameters params.

– Key Generation (pk, sk) ← MFHE.Keygen(params): On input params the
key generation algorithm outputs a public/secret key pair (pk, sk).

– Encryption c ← MFHE.Encrypt(pk, x): On input pk and a plaintext message
x ∈ {0, 1}∗ output a “fresh ciphertext” c. (We assume for convenience that
the ciphertext includes also the respective public key.)

– Evaluation ĉ := MFHE.Eval(params; C; (c1, . . . , c�)): On input a (description
of a) Boolean circuit C and a sequence of � fresh ciphertexts (c1, . . . , c�), out-
put an “evaluated ciphertext” ĉ. (Here we assume that the evaluated cipher-
text includes also all the public keys from the ci’s.)

– Decryption x := MFHE.Decrypt((sk1, . . . , skN), ĉ): On input an evaluated
ciphertext c (with N public keys) and the corresponding N secret keys
(sk1, . . . , skN), output the message x ∈ {0, 1}∗.

The scheme is correct if for every circuit C on N inputs and any input
sequence x1, . . . , xN for C, we set params ← MFHE.Setup(1κ) and then gen-
erate N key-pairs and N ciphertexts (pki, ski) ← MFHE.Keygen(params) and
ci ← MFHE.Encrypt(pki, xi), then we get

MFHE.Decrypt
(
(sk1, . . . , skN),MFHE.Eval(params; C; (c1, . . . , cN))

)
= C(x1, . . . , xN)]

except with negligible probability (in κ) taken over the randomness of all these
algorithms.4

4 We often consider a slightly weaker notion of homomorphism, where the Setup
algorithm gets also a depth-bound d and correctness is then defined only relative to
circuits of depth upto d.

Four Round Secure Computation Without Setup 653

Local decryption and simulated shares. A special property that we
need of the multi-key FHE schemes from [CM15,MW16], is that the decryp-
tion procedure consists of a “local” partial-decryption procedure evi ←
MFHE.PartDec(ĉ, ski) that only takes one of the secret keys and outputs a partial
decryption share, and a public combination procedure that takes these partial
shares and outputs the plaintext, x ← MFHE.FinDec(ev1, . . . , evN , ĉ).

Another property of these schemes that we need is the ability to simulate the
decryption shares. Specifically, there exists a PPT simulator ST , that gets for
input:
– the evaluated ciphertext ĉ,
– the output plaintext x := MFHE.Decrypt((sk1, . . . , skN), ĉ),
– a subset I ⊂ [N], and all secret keys except the one for I, {skj}j∈[N]\I .

The simulator produces as output simulated partial evaluation decryption
shares: {ẽvi}i∈I ← ST (x, ĉ, I, {skj}j∈[N]\I). We want the simulated shares to be
statistically close to the shares produced by the local partial decryption proce-
dures using the keys {ski}i∈I , even conditioned on all the inputs of ST .

We say that a scheme is simulatable if it has local decryption and a simulator
as described here. As in [MW16], in our case too we only achieve simulatability
of the basic scheme when all parties but one are corrupted (i.e., when the set I
is a singleton).

Distributed Setup

The variant that we need for our protocol does not require the setup procedure
to be run by a trusted entity, but rather it is run in a distributed manner by all
parties in the protocol. In our definition we allow the setup to depend on the
maximum number of users N . This restriction does not pose a problem for our
application.

– Distributed Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): On input the
security parameter κ and number of users N , outputs the system parameters
for the i-th player paramsi.

The remaining functions have the same functionality as above, where
params = {paramsi}i∈[N], the key generation takes i as an additional parameter
in order to specify which entry in params it refers to.

Semantic Security and Simulatability

Semantic security for multi-key FHE is defined as the usual notion of semantic
security. For the distributed setup variant, we require that semantic security for
the i-th party holds even when all {paramsj}j∈[N]\{i} are generated adversarially
and possibly depending on paramsi.

Namely, we consider a rushing adversary that chooses N and i ∈ [N], then
it sees paramsi and produces paramsj for all j ∈ [N] \ {i}. After this setup, the

654 Z. Brakerski et al.

adversary is engaged in the usual semantic-security game, where it is given the
public key, chooses two messages and is given the encryption of one of them, and
it needs to guess which one was encrypted.

Simulatability of the decryption shares is defined as before, but now the
evaluated ciphertext is produced by the honest party interacting with the same
rushing adversary (and statistical closeness holds even conditioned on everything
that the adversary sees).

3.3 A “Dual” LWE-Based Multi-key FHE with Distributed Setup

For our protocol we use an adaptation of the “dual” of the multi-key FHE scheme
from [CM15,MW16]. Just like the “primal” version, our scheme uses the GSW
FHE scheme [GSW13], and its security is based on the hardness of LWE.

Recall that the LWE problem is parametrized by integers n,m, q (with m >
n log q) and a distribution χ over Z that produces whp integers much smaller
than q. The LWE assumption says that given a random matrix A ∈ Z

n×m
q , the

distribution sA + e with random s ∈ Z
n
q and e ← χm is indistinguishable from

uniform in Z
m
q .

For the “dual” GSW scheme below, we use parameters n < m < w < q with
m > n log q and w > m log q, and two error distributions χ, χ′ with χ′ producing
much larger errors than χ (but still much smaller than q). Specifically, consider
the distribution

χ′′ = {a ← {0, 1}m, b ← χm, c ← χ′, output c − 〈a, b〉}. (1)

We need the condition that the statistical distance between χ′ and χ′′ is negligible
(in the security parameter n). This condition holds, for example, if χ, χ′ are
discrete Gaussian distributions around zero with parameters p, p′, respectively,
such that p′/p is super-polynomial (in n).

– Distributed Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): Set the parame-
ters q = poly(N)nω(1) (as needed for FHE correctness), m > (Nn+1) log q +
2κ, and w = m log q.5 Sample and output a random matrix Ai ∈ Z

(m−1)×n
q .

– Key Generation (pki, ski) ← MFHE.Keygen(params, i): Recall that
params = {paramsi}i∈[N] = {Ai}i∈[N]. The public key of party i is a sequence
of vectors pki = {bi,j}j∈[N] to be formally defined below. The corresponding
secret key is a low-norm vector ti ∈ Z

m
q .

We will define bi,j , ti such that for Bi,j =
(

Aj

−bi,j

)

it holds that tiBi,j =

bi,i − bi,j (mod q) for all j.
In more detail, sample a random binary vector si ← {0, 1}m−1, we set
bi,j = siAj mod q. Denoting ti = (si, 1), we indeed have tiBi,j = bi,i − bi,j

(mod q).

5 Parmeters q, n, w are global and fixed once at the onset of the protocol.

Four Round Secure Computation Without Setup 655

– Encryption C ← MFHE.Encrypt(pki, μ): To encrypt a bit μ under the public
key pki, choose a random matrix R ∈ Z

n×w
q and a low-norm error matrix

E ∈ Z
m×w
q , and set

C := Bi,iR + E + μG mod q, (2)

where G is a fixed m-by-w “gadget matrix” (whose structure is not important
for us here, cf. [MP12]). Furthermore, as in [CM15,MW16], encrypt all bits
of R in a similar manner. For our protocol, we use more error for the last
row of the error matrix E than for the top m − 1 rows. Namely, we choose

Ê ← χ(m−1)×w and e′ ← χ′w and set E =
(

Ê
e′

)

.

– Decryption μ := MFHE.Decrypt((sk1, . . . , skN), C): The invariant satisfied
by ciphertexts in this scheme, similarly to GSW, is that an encryption of a
bit μ relative to secret key t is a matrix C that satisfies

tC = μ · tG + e (mod q) (3)

for a low-norm error vector e, where G is the same “gadget matrix”. The
vector t is the concatenation of all ski = ti for all parties i participating in
the evaluation.
This invariant holds for freshly encrypted ciphertexts since tiBi,i = 0
(mod q), and so ti(Bi,iR + E + μG) = μ · tiG + tiE (mod q), where e = tiE
has low norm (as both ti and E have low norm).
To decrypt, the secret-key holders compute u = t · C mod q, outputting 1 if
the result is closer to tG or 0 if the result is closer to 0.

– Evaluation C := MFHE.Eval(params; C; (c1, . . . , c�)): Since ciphertexts sat-
isfy the same invariant as in the original GSW scheme, then the homomorphic
operations in GSW work just as well for this “dual” variant. Similarly the
ciphertext-extension technique from [CM15,MW16] works also for this vari-
ant exactly as it does for the “primal” scheme (see below). Hence we get a
multi-key FHE scheme.

Security

Security with distributed setup follows from LWE so long as (m − 1) > (Nn +
1) log q + 2κ. The basis for security is the following lemma, which is essentially
the same argument from [DGK+10] showing that dual Regev is leakage resilient
for bounded leakage.

Lemma 1. Let Ai ∈ Z
(m−1)×n
q be uniform, and let Aj for all j
= i be chosen

by a rushing adversary after seeing Ai. Let si ← {0, 1}m−1 and bi,j = siAj. Let
r ∈ Z

n
q be uniform, e ← χm−1, e′ ← χ′. Then, under the LWE assumption, the

vector c = Air + e and number c′ = bi,ir + e′ are (jointly) pseudorandom, even
given the bi,j’s for all j ∈ [N] and the view of the adversary that generated the
Aj’s.

656 Z. Brakerski et al.

Proof: Consider the distribution of c, c′ as in the lemma statement. We notice
that c′ = bi,ir+e′ = siAir+e′ = sic−sie+e′. The proof proceeds by a sequence
of hybrids. Our first hybrid changes the distribution of c′ to c′ = sic+e′. Noting
that c′ −sic is drawn from χ′′ before the change and from χ′ after the change (cf.
Eq. (1)), we get that the statistical distance between the hybrids is negligible.

In the next hybrid, we use LWE to replace c with a uniform vector. Since c
could have been sampled before si or any of the Aj with j
= i, LWE implies
indistinguishability with the previous hybrid.

Finally, we apply the leftover hash lemma, noting that all the bi,j ’s only leak
at most Nn log q bits of information on si and therefore the average min-entropy
of si is at least (m − 1) − Nn log q > log q + 2κ. Using the leftover hash lemma
with c as seed and si as source, we have that (c, sic) are jointly statistically
indistinguishable from uniform. This implies that (c, c′) are jointly statistically
indistinguishable from uniform, even given all Aj , bi,j for all j ∈ [N]. The lemma
follows. ��

Applying this lemma repeatedly for every column via a hybrid argument
shows that the ciphertext components c = AiR + Ê and c′ = bi,iR + e′ are
also jointly pseudorandom, even given the view of the adversary, and semantic
security of the scheme follows.

Multi-key Homomorphism and Simulatability

The other components of the multi-key FHE scheme from [CM15,MW16] work
for our variant as well, simply because the encryption and decryption for-
mulas are identical (except with slightly different parameter setting), namely
Eqs. (2) and (3). Below we briefly sketch these components for the sake of self-
containment.

The ciphertext-expansion procedure. The “gadget matrix” G used for
these schemes has the property that there exists a low-norm vector u such that
Gu = (0, 0, . . . , 0, 1). Therefore, for every secret key t = (s|1) we have tGu = 1
(mod q). It follows that if C is an encryption of μ wrt secret key t = (s|1), then
the vector v = Cu satisfies

〈t, v〉 = tCu = (μtG + e)u = μtGu + 〈e, u〉 = μ + ε (mod q)

where ε is a small integer. In other words, given an encryption of μ wrt t we
can construct a vector v such that 〈t, v〉 ≈ μ (mod q). Let A1, A2 be public
parameters for two users with secret keys t1 = (s1|1), t2 = (s2|1), and recall

that we denote bi,j = siAj and Bi,i =
(

Ai

−siAi

)

=
(

Ai

−bi,i

)

.

Let C = B1,1R+E+μG be fresh encryption of μ w.r.t B1,1, and suppose that
we also have an encryption under t1 of the matrix R. We note that given any
vector δ, we can apply homomorphic operations to the encryption of R to get an
encryption of the entries of the vector ρ = ρ(δ) = δR. Then, using the technique
above, we can compute for every entry ρi a vector xi such that 〈t1, xi〉 ≈ ρi

Four Round Secure Computation Without Setup 657

(mod q). Concatenating all these vectors we get a matrix X = X(δ) such that
t1X ≈ ρ = δR (mod q).

We consider the matrix C ′ =
(

C X
0 C

)

, where X = X(δ) for a δ to be

determined later. We claim that for an appropriate δ this is an encryption of
the same plaintext μ under the concatenated secret key t′ = (t1|t2). To see this,
notice that

t2C = (s2|1)
((

A1

−s1A1

)

R + E + μG

)

≈ (b2,1 − b1,1)R + μt2G (mod q),

and therefore setting δ = b1,1 − b2,1, which is a value that can be computed from
pk1, pk2 we get

t′C ′ = (t1C | t1X + t2C) ≈ (μt1G | (b1,1 − b2,1)R + (b2,1 − b1,1)R + μt2G)

= μ(t1G | t2G) = μ(t1|t2)
(

G
G

)

,

as needed. As in the schemes from [CM15,MW16], this technique can be gen-
eralized to extend the ciphertext C into an encryption of the same plaintext μ
under the concatenation of any number of keys.

Partial decryption and Simulatability. This aspect works exactly as in
[MW16, Theorem 5.6]. Let v be a fixed low-norm vector satisfying Gv =
(0, 0, . . . , 0, q/2�) (mod q) (such a vector exists). Let C be an encryption of
a bit μ relative to the concatenated secret key t = (t1|t2| . . . |tN) (whose last
entry is 1). Then on one hand C satisfies Eq. (3) so we have

tCv = μ tGv
︸︷︷︸

=�q/2�
+ 〈e,v〉

︸ ︷︷ ︸

=ε,|ε|�q

≈ μ · q/2� (mod q).

On the other hand, breaking C into N bands of m rows each (i.e., C =
(CT

1 |CT
2 | . . . |CT

N)T with each Ci ∈ Z
m×mN
q), we have tCv =

∑N
i=1 tiCiv.

Hence in principle we could set the partial decryption procedure as evi =
MFHE.PartDec(C, ti) := tiCiv mod q, and the combination procedure will just
add all these evi’s and output 0 if it is smaller than q/4 in magnitude and 1
otherwise.

To be able to simulate (when there are N − 1 corruptions), we need the
partial decryption to add its own noise, large enough to “drown” the noise in
tCv (but small enough so decryption still works). Given the ciphertext C, N −1
keys tj for all j ∈ [N] \ {i}, and the plaintext bit μ, the simulator will sample
its own noise e and output the share evi = μ · q/2� + e − ∑

j tjCjv mod q.

4 A Semi-malicious Protocol Without Setup

The semi-malicious adversary model [AJL+12] is a useful mid-point between
the semi-honest and fully-malicious models. Somewhat similarly to a semi-honest

658 Z. Brakerski et al.

adversary, a semi-malicious adversary is restricted to run the prescribed protocol,
but differently than the semi-honest model it can choose the randomness that
this protocol expects arbitrarily and adaptively (as opposed to just choosing it
at random). Namely, at any point in the protocol, there must exists a choice
of inputs and randomness that completely explain the messages sent by the
adversary, but these inputs and randomness can be arbitrarily chosen by the
adversary itself. A somewhat subtle point is that the adversary must always
know the inputs and randomness that explain its actions (i.e., the model requires
the adversary to explicitly output these before any messages that it sends).

We still assume a rushing adversary that can choose its messages after seeing
the messages of the honest parties (subject to the constraint above). Similarly to
the malicious model, an adversarial party can abort the computation at any point.
Security is defined in the usual way, by requiring that a real-model execution is sim-
ulatable by an adversary/simulator in the ideal model, cf. Definition 7 in Sect. 5.4.

4.1 A Semi-malicious Protocol from Multi-key FHE With
Distributed Setup

Our construction of 3-round semi-malicious protocol without setup is nearly
identical to the Mukherjee-Wichs construction with a common reference string
[MW16, Sect. 6], except that we use multi-Key FHE with distributed setup,
instead of their multi-Key FHE with trusted setup. We briefly describe this
construction here for the sake of self-containment.

– To compute an N -party function F : ({0, 1}∗)N → {0, 1}∗ on input vector
w, the parties first run the setup round and broadcast their local parame-
ters paramsi.

– Setting params = (params1, . . . , paramsN), each party runs the key generation
to get (pki, ski) ← MFHE.Keygen(params, i) and then the encryption algo-
rithm ci ← MFHE.Encrypt(pki, wi), and broadcasts (pki, ci).

– Once the parties have all the public keys and ciphertexts, they each evalu-
ate homomorphically the function F and all get the same evaluated cipher-
text ĉ. Each party applies its partial decryption procedure to get evi ←
MFHE.PartDec(ĉ, ski) and broadcasts its decryption share evi to everyone.

– Finally, given all the shares evi, every party runs the combination procedure
and outputs μ ← MFHE.FinDec(ev1, . . . , evN , ĉ).

Security. Security is argued exactly as in [MW16, Theorem 6.1]: First we use the
simulatability property to replace the partial decryption by the honest parties
by a simulated partial decryption (cf. [MW16, Lemma 6.2]), and once the keys of
the honest parties are no longer needed we can appeal to the semantic security
of the FHE scheme (cf. [MW16, Lemma 6.3]).

Exactly as in the Mukherjee-Wichs construction, here too the underlying
multi-key scheme only satisfies simulatability when all but one of the parties are
corrupted, and as a result also the protocol above is only secure against adver-
saries that corrupt all but one of the parties. Mukherjee and Wichs described
in [MW16, Sect. 6.2] a transformation from a protocol secure against exactly

Four Round Secure Computation Without Setup 659

N − 1 corruptions to one which is secure against any number of corruptions.
Their transformation is generic and can be applied also in our context, resulting
in a semi-malicious-secure protocol.

5 Part II: 4-Round Malicious Protocols

5.1 Tools and Definitions

We use tools of commitment and proofs to “compile” our semi-malicious protocol
to a protocol secure in the malicious model. Below we define these tools and
review the properties that we rely on.

5.2 Commitment Schemes

Commitment schemes allow a committer C to commit itself to a value while
keeping it (temporarily) secret from the receiver R. Later the commitment can
be “opened”, allowing the receiver to see the committed value and check that
it is consistent with the earlier commitment. In this work, we consider commit-
ment schemes that are statistically binding. This means that even an unbounded
cheating committer cannot create a commitment that can be opened in two dif-
ferent ways. We also use tag-based commitment, which means that in addition
to the secret committed value there is also a public tag associated with the com-
mitment. The notion of hiding that we use is adaptive-security (due to Pandey
et al. [PPV08]): it roughly means that the committed value relative to some tag
is hidden, even in a world that the receiver has access to an oracle that breaks
the commitment relative to any other tag.

Definition 1 (Adaptively-secure Commitment [PPV08]). A tag-based
commitment scheme (C,R) is statistically binding and adaptively hiding if it
satisfies the following properties:

Statistical binding: For any (computationally unbounded) cheating committer
C∗ and auxiliary input z, it holds that the probability, after the commitment
stage, that there exist two executions of the opening stage in which the receiver
outputs two different values (other than ⊥), is negligible.

Adaptive hiding: For every cheating PPT receiver R∗ and every tag value tag,
it holds that the following ensembles computationally indistinguishable.
– {viewR∗(tag),Btag

aCom (m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

– {viewR∗(tag),Btag

aCom (m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where view
R∗(tag),Btag

aCom (m, z) denotes the random variable describing the output
of R∗(tag) after receiving a commitment to m relative to tag using aCom,
while interacting with a commitment-breaking oracle Btag.

The oracle Btag gets as input an alleged view v′ and tag tag′. If tag′
= tag
and v′ is a valid transcript of a commitment to some value m′ relative to tag′,
then Btag returns that value m′. (If there is no such value, or if tag = tag′,
then B′

tag returns ⊥. If there is more than one possible value m′ then Btag′

returns an arbitrary one.)

660 Z. Brakerski et al.

To set up some notations, for a two-message commitment we let aCom1 =
aComtag(r) and aCom2 = aComtag(m; aCom1; r′) denote the two messages of
the protocol, the first depending only on the randomness of the receiver and the
second depending on the message to be committed, the first-round message from
the receiver, and the randomness of the sender.

5.3 Proof Systems

Given a pair of interactive Turing machines, P and V , we denote by 〈P (w), V 〉(x)
the random variable representing the (local) output of V , on common input x,
when interacting with machine P with private input w, when the random input
to each machine is uniformly and independently chosen.

Definition 2 (Interactive Proof System). A pair of interactive machines
〈P, V 〉 is called an interactive proof system for a language L if there is a negligible
function μ(·) such that the following two conditions hold:

– Completeness: For every x ∈ L, and every w ∈ RL(x), Pr[〈P (w), V 〉(x) =
1] = 1.

– Soundness: For every x /∈ L, and every P ∗, Pr[〈P ∗, V 〉(x) = 1] ≤ μ(κ)

In case the soundness condition is required to hold only with respect to a com-
putationally bounded prover, the pair 〈P, V 〉 is called an interactive argument
system.

Definition 3 (ZK). Let L be a language in NP, RL a witness relation for L,
(P, V) an interactive proof (argument) system for L. We say that (P, V) is sta-
tistical/computational ZK, if for every probabilistic polynomial-time interactive
machine V there exists a probabilistic algorithm S whose expected running-time
is polynomial in the length of its first input, such that the following ensembles
are statistically close/computationally indistinguishable over L.

– {〈P (y), V (z)〉(x)}κ∈N x∈{0,1}κ∩L,y∈RL(x),z∈{0,1}∗

– {S(x, z)}κ∈N x∈{0,1}κ∩L,y∈RL(x),z∈{0,1}∗

where 〈P (y), V (z)〉(x) denotes the view of V in interaction with P on common
input x and private inputs y and z, respectively.

Definition 4 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive
proof (or argument) system for a language L ∈ NP. We say that 〈P, V 〉
is witness-indistinguishable for RL, if for every probabilistic polynomial-
time interactive machine V ∗ and for every two sequences {w1

κ,x}κ∈N,x∈L and
{w2

κ,x}κ∈N,x∈L, such that w1
κ,x, w2

κ,x ∈ RL(x) for every x ∈ L ∩ {0, 1}κ, the fol-
lowing probability ensembles are computationally indistinguishable over κ ∈ N.

– {〈P (w1
κ,x), V ∗(z)〉(x)}κ∈N x∈{0,1}κ∩L,z∈{0,1}∗

– {〈P (w2
κ,x), V ∗(z)〉(x)}κ∈N x∈{0,1}κ∩L,z∈{0,1}∗

Four Round Secure Computation Without Setup 661

Definition 5 (Proof of knowledge). Let (P, V) be an interactive proof system
for the language L. We say that (P, V) is a proof of knowledge for the witness
relation RL for the language L it there exists an probabilistic expected polynomial-
time machine E, called the extractor, and a negligible function μ(·) such that for
every machine P ∗, every statement x ∈ {0, 1}κ, every random tape x ∈ {0, 1}∗,
and every auxiliary input z ∈ {0, 1}∗,

Pr[〈P ∗
r (z), V 〉(x) = 1] ≤ Pr[EP ∗

r (x,z)(x) ∈ RL(x)] + μ(κ)

An interactive argument system 〈P, V 〉 is an argument of knowledge if the
above condition holds w.r.t. probabilistic polynomial-time provers.

Delayed-Input Witness Indistinguishability. The notion of delayed-input
Witness Indistinguishability formalizes security of the prover with respect to
an adversarial verifier that adaptively chooses the input statement to the proof
system in the last round. Once we consider such adaptive instance selection, we
also need to specify where the witnesses come from; to make the definition as
general as possible, we consider an arbitrary (potentially unbounded) witness
selecting machine that receives as input the views of all parties and outputs a
witness w for any statement x requested by the adversary. In particular, this
machine is a (randomized) Turing machine that runs in exponential time, and
on input a statement x and the current view of all parties, picks a witness
w ∈ RL(x) as the private input of the prover.

Let 〈P, V 〉 be a 3-round Witness Indistinguishable proof system for a lan-
guage L ∈ NP with witness relation RL. Denote the messages exchanged by
(p1, p2, p3) where pi denotes the message in the i-th round. For a delayed-input
3-round Witness Indistinguishable proof system, we consider the game ExpAWI
between a challenger C and an adversary A in which the instance x is chosen
by A after seeing the first message of the protocol played by the challenger.
Then, the challenger receives as local input two witnesses w0 and w1 for x cho-
sen adaptively by a witness-selecting machine. The challenger then continues
the game by randomly selecting one of the two witnesses and by computing the
third message by running the prover’s algorithm on input the instance x, the
selected witness wb and the challenge received from the adversary in the second
round. The adversary wins the game if he can guess which of the two witnesses
was used by the challenger.

Definition 6 (Delayed-Input Witness Indistinguishability). Let
ExpAWIA〈P,V 〉 be a delayed-input WI experiment parametrized by a PPT adversary
A and an delayed-input 3-round Witness Indistinguishable proof system 〈P, V 〉 for
a language L ∈ NP with witness relation RL. The experiment has as input the
security parameter κ and auxiliary information aux for A. The experiment ExpAWI
proceeds as follows:

662 Z. Brakerski et al.

ExpAWIA〈P,V 〉(κ, aux):
Round-1: The challenger C randomly selects coin tosses r and runs P on

input (1κ; r) to obtain the first message p1;
Round-2: A on input p1 and aux chooses an instance x and a challenge p2.

The witness-selecting machine on inputs the statement x and the current
view of all parties outputs witnesses w0 and w1 such that (x,w0), (x,w1) ∈
RL. A outputs x,w0, w1, p2 and internal state state;

Round-3: C randomly selects b ← {0, 1} and runs P on input (x,wb, p2) to
obtain p3;
b′ ← A((p1, p2, p3), aux, state);
If b = b′ then output 1 else output 0.

A 3-round Witness Indistinguishable proof system for a language L ∈ NP with
witness relation RL is delayed-input if for any PPT adversary A there exists a
negligible function μ(·) such that for any aux ∈ {0, 1}∗ it holds that

|Pr[ExpAWIA〈P,V 〉(κ, aux) = 1] − 1/2| ≤ μ(κ)

The most recent 3 round delayed input delayed input WI proof system
appeared in [COSV16].

Feige-Shamir ZK Proof Systems. For our construction we use the 3-round,
public-coin, input-delayed witness-indistinguishable proof-of-knowledge ΠWIPOK

based on the work of Feige et al. [FLS99], and the 4-round zero-knowledge
argument-of-knowledge protocol of Feige and Shamir ΠFS [FS90].

Recall that the Feige-Shamir protocol consists of two executions of a WIPOK
protocol in reverse directions. The first execution has the verifier prove something
about a secret that it chooses, and the second execution has the prover proving
that either the input statement is true or the prover knows the verifier’s secret.
The zero-knowledge simulator then uses the knowledge extraction to extract the
secret of the verifier, making it possible to complete the proof.

5.4 Secure Computation

The security of a protocol is analyzed by comparing what an adversary can do
in the protocol to what it can do in an “ideal model”. A protocol is secure if any
adversary interacting in the real protocol can do no more harm than if it was
involved in this “ideal” computation.

Execution in the ideal model. In the “ideal model” we have an incorruptible
trusted party to whom the parties send their inputs. The trusted party computes
the functionality on the inputs and returns to each party its respective output.
Even this model is not completely “ideal”, however, since some malicious behav-
ior that cannot be prevented (such as early aborting) is permitted here too. An
ideal execution proceeds as follows:

Inputs: Each party obtains an input, denoted by w.

Four Round Secure Computation Without Setup 663

Send inputs to trusted party: An honest party always sends w to the trusted
party. A malicious party may, depending on w, either abort or send some
w′ ∈ {0, 1}|w| to the trusted party.

Trusted party answers malicious parties: The trusted party realizing the
functionality F = (FM ,FH) is informed of the set of malicious parties M ,
and let us denote the complementing set of honest parties by H.
Once it received all the inputs, the trusted party first replies to the malicious
parties with FM (w).

Trusted party answers second party: The malicious parties reply to the
trusted party by either “proceed” or “abort”. If they all reply “proceed” then
the trusted party sends FH(w) to the honest parties. If any of them reply
“abort” then the trusted party sends ⊥ to the honest parties.

Outputs: An honest party always outputs the message it received from the
trusted party. A malicious party may output an arbitrary (probabilistic
polynomial-time computable) function of its initial input and the message
received from the trusted party.
The random variable containing the joint outputs of the honest and malicious
parties in this execution (including an identification of the set M of malicious
parties) is denoted by IDEALF,S(κ,w), where κ is the security parameter,
S is representing parties in the ideal model and w are the inputs.

Execution in the real model. In the real model, where there is no trusted
party, a malicious party may follow an arbitrary feasible strategy; that is,
any strategy implementable by (non-uniform) probabilistic polynomial-time
machines. In particular, the malicious party may abort the execution at any
point in time (and when this happens prematurely, the other party is left with
no output). The (static) adversary chooses the set M of malicious parties before
it receives any inputs to the protocol, and it can be rushing, in that in every
communication round it first sees the messages from the honest parties and only
then chooses the messages on behalf of the malicious parties.

Let F : ({0, 1}∗)N → ({0, 1}∗)N be an N -party function, let Π be an N -
party protocol for computing F , and let A be an adversary. The joint execution
of Π with adversary A in the real model, denoted REALΠ,A(κ,w) (with κ the
security parameter and w the inputs), is defined as the output of the honest
and malicious parties (and an identification of the set M of malicious parties),
resulting from the protocol interaction.

Definition 7 (secure MPC). Let F and Π be as above. Protocol Π is said to
securely compute F (in the malicious model) if for every (non-uniform) prob-
abilistic polynomial-time adversary A for the real model, there exists a (non-
uniform) probabilistic expected polynomial-time adversary S for the ideal model,
such that:

{IDEALF,S(κ,w)}κ∈N,w∈({0,1}∗)N

c≈ {REALΠ,A(κ,w)}κ∈N,w∈({0,1}∗)N .

Notations. For a sub-protocol π between two parties Pi and Pj , denote by
(p1i,j , . . . , pt

i,j) the view of the messages in all t rounds where the subscripts

664 Z. Brakerski et al.

(i, j) denote that the first message of the sub-protocol is sent by Pi to Pj .
Likewise, subscripts (j, i) denote that the first message of the sub-protocol is
sent by Pj to Pi.

6 A Malicious Protocol Without Setup

Our 4-round protocol for the malicious case is obtained by “compiling” the
3-round semi-malicious protocol from Sect. 4, adding round-efficient proofs of
correct behavior. The components of this protocol are:

– The 3-round semi-malicious protocol from Sect. 4, based on the “dual”-
GSW-based multi-key FHE scheme with distributed setup. We denote
this multi-key FHE scheme by MFHE = (MFHE.DistSetup,MFHE.Keygen,
MFHE.Encrypt,MFHE.Eval,MFHE.PartDec,MFHE.FinDec).

– Two instances of a two-round adaptively secure commitment scheme, sup-
porting tags/identities of length κ. We denote the first instance by aCom =
(acom1, acom2) and the second by bCom = (bcom1, bcom2).

– A one-way function OWF .
– A three-round public coin witness-indistinguishable proof of knowledge with

delayed input, ΠWIPOK = (p1, p2, p3), for the NP-Language LWIPOK
P from

Fig. 2. We often refer to this protocol as “proof of correct encryption”, but
what it really proves is that EITHER the encryption is consistent with the
values committed in aCom, OR the value committed in bCom is a pre-image
under OWF of values sent by the other parties.

– A four-round zero-knowledge argument of knowledge with delayed input,
ΠFS = (fs1, fs2, fs3, fs4), for the NP-Language LFS

P from Fig. 2. We often refer
to this protocol as “proof of correct decryption”.

The parameters for the MFHE scheme, the OWF , and the two proof systems,
are chosen polynomially larger than those for the commitment schemes. Hence
(assuming sub-exponential security), all these constructions remain secure even
against an adversary that can break aCom, bCom by exhaustive search.

The protocol. Let F : ({0, 1}∗)N → {0, 1}∗ be a deterministic N -party func-
tion to be computed. Each party Pi holds input xi ∈ {0, 1}κ and identity idi.6

The protocol consists of four broadcast rounds, where messages (m1
t , . . . ,m

N
t)

are exchanged simultaneously in the t-th round for t ∈ [4]. The message flow
is detailed in Fig. 1, and Fig. 3 depicts the exchanged messages between two
parties Pi and Pj . Blue messages are sub-protocols where party Pi is the
prover/committer and party Pj is the verifier/receiver, red messages denote the
opposite.

6 Known transformations yield also protocols for randomized functionalities without
increasing the rounds, see [Gol04, Sect. 7.3].

Four Round Secure Computation Without Setup 665

Fig. 1. Protocol ΠMPC with respect to party Pi.

6.1 Proof of Security

Theorem 3. Assuming sub-exponential hardness of LWE, and the existence
of an adaptively-secure commitment scheme, there exists a four-broadcast-round
protocol for securely realizing any functionality against a malicious adversary in
the plain model with no setup.

666 Z. Brakerski et al.

Fig. 2. NP-Language Li,j,1, Li,j,2, Li,j,3 for ΠFS and ΠWIPOK proof systems.

To prove Theorem 3, we note that the two assumptions listed suffice for
instantiating all the components of our protocol ΠMPC: the commitment is used
directly for aCom and bCom, and sub-exponential LWE suffices for everything
else. We also note that while we think of the protocol from Fig. 1 as a “compila-
tion” of the 3-round protocol from Sect. 4 using zero-knowledge proofs, it is not
a generic compiler, as it relies on the specifics of our semi-malicious protocol.
See more discussion in Sect. 7 below.

In the following, we prove security of ΠMPC by describing a simulator and
proving that the simulated view is indistinguishable from the real one.

Description of the Simulator

Let P = {P1, . . . , PN} be the set of parties, let A be a malicious, static adver-
sary in the plain model, and let P∗ ⊆ P be the set of parties corrupted by A.
We construct a simulator S (the ideal world adversary) with access to the ideal
functionality F , such that the ideal world experiment with S and F is indistin-
guishable from a real execution of ΠMPC with A. The simulator S only generates
messages on behalf of parties P\P∗, as follows:

Four Round Secure Computation Without Setup 667

Fig. 3. Messages exchanged between party Pi and Pj in ΠMPC. (acom1, acom2)
and (bcom1, bcom2) are commitments, (p1, p2, p3) belong to the 3-round ΠWIPOK,
(fs1, fs2, fs3, fs4) belong to the 4-round ΠFS, and (params, pk, c, ev) denote the MFHE
messages. Blue messages are sub-protocols where party Pi is the prover/committer and
party Pj is the verifier/receiver, red messages donete the opposite. (Color figure online)

Round 1 Messages S → A: In the first round, S generates messages on behalf
of each honest party Ph /∈ P∗, as follows:

1. Choose randomness rh = (rgen
h , renc

h) for the MFHE scheme and an unrelated
κ-bit randomness value Rh, and set R̂h = OWF (Rh).

2. For every j engage in a two-round commitment protocol with Pj . To this
end, prepare the first message acomh,j

1 corresponding to the execution of
aComidj (xj , r

gen
j , renc

j , Rj ;ωj) on behalf of Ph, acting as the receiver of the
commitment. Since the commitment aCom is a two-round protocol, the mes-
sage of the committer Pj is only sent in the second round.

3. Prepare the first message ph,j
1 of ΠWIPOK (with Ph as Prover) for the NP-

Language LWIPOK
Ph

, and the first message fsh,j
1 of ΠFS (with Ph as Verifier)

for LFS
Pj

.
4. Run paramsh ← MFHE.DistSetup(1κ, 1N , h).
5. Send the message mh,j

1 =
(

acomh,j
1 , ph,j

1 , fsh,j
1 , R̂h, paramsh

)

to A.

668 Z. Brakerski et al.

Round 1 Messages A → S: Also in the first round the adversary A generates
the messages mj,h

1 =
(

acomj,h
1 , pj,h

1 , fsj,h1 , R̂j , paramsj

)

on behalf of corrupted

parties j ∈ P∗ to honest parties h /∈ P∗. Messages {acomj,h
1 } correspond to an

execution of aComidh
(0;ωh).

Round 2 Messages S → A: In the second round S generates messages on
behalf of each honest party Ph ∈ P∗ as follows:

1. Complete the commitment to the zero string generating the second messages
acomj,h

2 corresponding to all executions of aComidh
(0;ωh).

2. Honestly prepare the second message pj,h
2 (fsj,h2) of ΠWIPOK(ΠFS) initiated by

Pj acting as the prover (verifier) in the first round.
3. Generate the second commitment messages bcomh,j

1 for bComidj
(0; ζj) where

party Ph acts as the Receiver.
4. Send the message mh,j

2 = (acomj,h
2 , pj,h

2 , fsj,h2 , bcomh,j
1) to A.

Round 2 Messages A → S: In the second round the adversary A generates
the messages mj,h

2 := (acomh,j
2 , ph,j

2 , fsh,j
2 , bcomj,h

1) on behalf of corrupted parties
j ∈ P∗ to honest parties h /∈ P∗. Messages {acomh,j

2 } correspond to an execu-
tion of aComidj (xj , r

gen
j , renc

j , Rj ;ωj) and messages {bcomj,h
1 } correspond to an

execution of bComidh
(0; ζh)

Round 3 Messages S → A: In the third round S generates messages on behalf
of each honest party Ph /∈ P∗ as follows:

1. Generate the second messages bcomj,h
2 corresponding to all bComidh

(0; ζh).
2. Set params = (params1, . . . , paramsN) for the MFHE scheme and generate the

keys (pkh, skh) = MFHE.Keygen(params, h; rgen
h). Generate an encryption of

zero using randomness renc
h , ch = MFHE.Encrypt(pkh,0; renc

h).
3. Honestly prepare the final message ph,j

3 (fsh,j
3) of ΠWIPOK(ΠFS) initiated by

Ph acting as the prover (verifier) in the first round.
4. Send the message mh,j

3 = (pkh, ch, ph,j
3 , fsh,j

3 , bcomj,h
2) to A.

Round 3 Messages A → S: S receives mj,h
3 = (pkj , cj , p

j,h
3 , fsj,h3 , bcomh,j

2)
from A, where messages {bcomh,j

2 } correspond to an execution of bComidj (0; ζj).
Then, S proceeds to extract the witness corresponding to each proof-of-

knowledge (pj,h
1 , pj,h

2 , pj,h
3) completed in the first three rounds, using rewinding.

To this end, S applies the knowledge extractor of ΠWIPOK to obtain the
“witnesses” which consist of the inputs and secret keys of the corrupted parties
(xj , rj)7. S also uses the zero-knowledge simulator of ΠFS to obtain the “trap-
doors” associated with that protocol. (Note that here we rely on the specific
structure of Feige-Shamir proofs, where the zero-knowledge simulator extracts a
“verifier secret” after the 3rd round, that makes it possible to simulate the last
round.)

7 For simplicity of exposition, we omit the rest of the witness values.

Four Round Secure Computation Without Setup 669

Next S sends {xj}j∈[N]\{h} to the ideal functionality F which responds by
sending back y such that y = F ({xj}j∈[N]).

Round 4 Messages S → A: In the fourth round S generates messages on
behalf of each honest party Ph /∈ P∗ as follows:

1. Generate the evaluated ciphertext ĉ := MFHE.Eval(params;F ; (c1, . . . , cN)).
2. S reconstructs all the secret keys {skj}j∈P∗ from the witnesses

{rgen
j }j∈P∗ , and computes the simulated decryption shares {evh}h/∈P∗ ←

ST (y, ĉ, h, {skj}j∈P∗). (The simulator ST is the one provided by [MW16,
Sect. 6.2].8)

3. Simulate the final message fsj,h4 of ΠFS protocol using the extracted trapdoor.
S sends the message mh,j

4 = (evh, fsj,h4) on behalf of Ph.

Round 4 Messages A → S: In the last round the adversary A generates
the messages on behalf of corrupted parties in P∗. For each party j ∈ P∗ our
simulator receives messages mj,h

4 = (evj , fs
h,j
4) from A.

This completes the description of the simulator.

Proof of Indistinguishability

Overview. We need to prove that for any malicious (static) adversary A, the
view generated by the simulator S above is indistinguishable from the real view,
namely:

{IDEALF,S(κ, ·)}κ

c≈ {REALΠ,A(κ, ·)}κ

To prove indistinguishability, we consider a sequence of hybrid experiments. Let
H0 be the hybrid describing the real-world execution of the protocol, and we
modify it in steps:

H1 Use the zero-knowledge simulator to generate the proof in the 4-round ΠFS,
indistinguishability follows by the ZK property of ΠFS.

H2 Starting in this hybrid, the challenger is given access to a breaking oracle
Btag (with tag = (idh, �) where h is one of the honest parties). Here the
challenger uses the breaking oracle to extract the values committed to by
the adversary in acomh,A

2 (in the second round), then commits to these
same values in bcomA,h

2 on behalf of the honest party (in the third round).
Indistinguishability follows by the adaptive-hiding of bCom.

H3 Change the proof in ΠWIPOK to use the “OR branch”. Indistinguishability
follows by the WI property of ΠWIPOK (which must hold even in the presence
of the breaking-oracle Btag).

8 To use ST from [MW16, Sect. 6.2] we need to evaluate the protocol on a different
function F ′ rather than F , we ignore this detail in the rest of the presentation here.

670 Z. Brakerski et al.

H4 Here the challenger also has access to the ideal-world functionality that gives
it the output of the function. Having extracted the secret keys using Btag,
the challenger simulates the decryption shares of the honest parties rather
than using the decryption procedure. Indistinguishability follows since the
FHE scheme is simulatable.

H5 Encrypt 0’s rather than the true inputs. Indistinguishability follows due to
the semantic security of the encryption scheme.

H6 Commit to 0’s in acomA,h
2 , rather than to the real inputs. Indistinguishable

due to the adaptive-hiding of aCom.
H7 Revert the change in H3, make the proof in ΠWIPOK use the normal branch

rather than the “OR branch”. Indistinguishability follows by the WI prop-
erty of ΠWIPOK.

H8 Revert the change in H2 and thus commit to zero in bcomA,h
2 (instead

of committing to the extracted values). Indistinguishability follows by the
adaptive-hiding of bCom.

H9 Here the challenger no longer has access to a breaking oracle, and instead
it uses the POK extractor to get the randomness and inputs (witnesses)
from ΠWIPOK. Indistinguishability follows from the extraction property of
ΠWIPOK, combined with the one-wayness of OWF .

As H9 no longer uses the inputs of the honest parties, the view of this hybrid can
be simulated. (We also note that the simulator does not use a breaking oracle,
rather it is a traditional rewinding simulator.)

Security in the presence of a breaking oracle: Note that some of our indis-
tinguishability arguments must holds in worlds with a breaking oracle Btag. In
particular, we require that aCom is still hiding, that LWE still holds, and that
ΠWIPOK is still witness-indistinguishable in the presence of the oracle. The hid-
ing property of aCom follows directly from its adaptive-hiding property. As for
LWE and ΠWIPOK, security in the presence of Btag follows from sub-exponential
hardness and complexity leveraging. Namely, in the relevant reductions we can
implement Btag ourselves in subexponential time, while still relying on the hard-
ness of LWE or ΠWIPOK.

Another point to note is that using the zero-knowledge simulator (in hybrids
H2–H9) requires rewinding, which may be problematic when doing other reduc-
tions. As we explain below, we are able to handle rewinding by introducing many
sub-hybrids, essentially cutting the distinguishing advantage by a factor equal
to the number of rewinding operations. We now proceed to give more details.

H0: This hybrid is the real execution. In particular, H0 starts the execution
of A providing it fresh randomness and input {xj}Pj∈P∗ , and interacts with it
honestly by performing all actions of the honest parties with uniform randomness
and input. The output consists of A’s view.

H1: In this hybrid the challenger uses the zero-knowledge simulator of ΠFS to
generate the proofs on behalf of each honest party Ph, rather than the honest
prover strategy as is done in H0. We note that the challenger in this hybrid needs

Four Round Secure Computation Without Setup 671

to rewind the adversary A (up to the second round) as needed for the Feige-
Shamir ZK simulator. Since in these two hybrids the protocol ΠFS is used to
prove the same true statement, then the simulated proofs are indistinguishable
from the real ones, so we get:

Lemma 61. H0 ≈s H1.

H2: In this “mental-experiment hybrid” the challenger is given access to a break-
ing oracle Bidh

, with the tag being the identity of an arbitrary honest parties
(h /∈ P∗). The challenger begins as in the real execution for the first two rounds,
but then it uses Btag to extract the values (xj , rj , Rj) of all the adversarial players
j ∈ P∗ from acomh,j

2 .
Then the challenger changes the commitments bcomj,h

2 on behalf of the hon-
est party Ph, committing to the values Rj that were extracted from acomh,j

2

(and thus making the language Lh,j,2 –the “OR branch”– in ΠWIPOK a true
statement).9

Lemma 62. H1 ≈c H2.

Proof: Since the only differences between these hybrids are the values com-
mitted to in bcomj,h, then indistinguishability should follow from the adaptive-
hiding of the commitment scheme bCom (as the challenger never queries its
breaking oracle with any tag containing the identity idh of the honest party).

One subtle point here, is that in both H1 and H2 we use the rewinding
Feige-Shamir ZK simulator, so we need to explain how the single value bcomj,h

2

provided by the committer in the reduction (which is a commitment to either 0 or
Rj) is used in all these transcripts. To that end let M be some polynomial upper
bound on the number of rewinding operations needed by the zero-knowledge
simulator. The reduction to the security of bCom will choose at random t ∈ [1,M]
and will only use the bCom committer that it interacts with to commit to a value
in the t’th rewinding, committing to 0 in all the rewindings i < t and to the
value Rj (that it has from the breaking oracle) in all the rewindings i > t.

By a standard argument, if we can distinguish between H1 ≈c H2 with prob-
ability ε then the reduction algorithm can distinguish commitments to 0 and Rj

with probability ε/M . ��
H3: In this hybrid, we change the witness used in ΠWIPOK on behalf of each honest
party Ph. In particular, all ΠWIPOK executions use the “OR branch” Lh,j,2.

Lemma 63. H2 ≈c H3.

Proof: We make sub-hybrids that change one honest party at a time, and show
that a distinguisher D that distinguishes two such sub-hybrids can be used by

9 The commitment bCom starts in the second round, but this is a two-round commit-
ment so the committed value only affects the second message in the commitment,
which happens in the third round of the larger protocol.

672 Z. Brakerski et al.

another distinguisher D′ to distinguish between the two witnesses of ΠWIPOK

(as per Definition 6).
Description of D′: D′ plays the role of both the challenger and the adversary

in the two hybrids, except that the prover messages of ΠWIPOK (on behalf of Ph)
are obtained from the external prover that the WI-distinguisher D′ has access to.

At the third round of the protocol, D′ has the statement that Ph needs
to prove, and it gets the two witnesses for that statement from the witness-
selecting machine in Definition 6. Sending the statement and witnesses to its
external prover, D′ obtains the relevant ΠWIPOK message (for one of them). D′

also uses these witnesses to complete the other flows of the protocol (e.g., the
commitments bcomj,h

2 that include some of these witnesses). Once the protocol
run is finished, it gives the transcript to D and outputs whatever D outputs.

As above, we still need to support rewinding by the Feige-Shamir ZK simu-
lator, while having access to only a single interaction with the external prover,
and we do it by sub-sub-hybrids where we embed this interaction in a random
rewinding t, producing all the other proofs by the H2 challenger (for i < t) or the
H3 challenger (for i > t). It is clear that the advantage of D′ is a 1/M fraction
of the advantage of D. ��

We note that D′ above still uses the breaking oracle Btag (to extract the ΠFS

secrets), so we need to assume that delayed-input-WI holds even in a world with
the breaking oracle. As explained above, we rely on complexity leveraging for
that purpose. That is, we let D′ run in subexponential time (so it can implement
Btag itself), and set the parameters of ΠWIPOK large enough so we can assume
witness-indistinguishability even for such a strong D′. (We can implement subex-
ponential WI protocol from subexponential LWE.)

H4: The difference from H3 is that in H4 we simulate the decryption shares of
the honest parties. More specifically, the challenger in H4 has access also to the
ideal functionality, and it proceeds as follows:

1. It completes the first three broadcast rounds exactly as in H3.
2. Having extracted the input of all the corrupted parties, the challenger sends

all these inputs to the ideal functionality F and receives back the output
y = F ({xj}j∈[N]).

3. Having extracted also all the secret keys of the corrupted parties, the chal-
lenger has everything that it needs to compute the simulated decryption
shares of the honest parties, {evh}h/∈P∗ ← ST (y, ĉ, h, {skj}j∈P∗).

4. The challenger computes also the last message of ΠFS (using the simulator
as before), and sends it together with decryption shares {evh}h in the last
round.

Lemma 64. H3 ≈s H4.

Proof: The only change between these two experiments is that the partial
decryption shares of the honest parties are not generated by partial decryp-
tion. Instead they are generated via the threshold simulator ST of the MFHE
scheme. By the simulatability of threshold decryption, the partial decryptions
shares are statistically indistinguishable. ��

Four Round Secure Computation Without Setup 673

H5: We change H4 by making S broadcast encryptions of 0 on behalf of the
honest parties in the third round, instead of encrypting the real inputs.

Lemma 65. H4 ≈c H5.

Proof: The proof follows directly from semantic security, which in our case
follows from LWE. As in the previous hybrid, here too we need this assumption
to hold even in the presence of a breaking oracle, and we lose a factor of M in
the distinguishing probability due to rewinding. ��
H6: In this hybrid, we get rid of the honest parties’ inputs {(xh, rh)}h (that are
present in the values of acomj,h

2). Formally, H6 is identical to H5 except that in
the first round it sets xh = 0 for all h /∈ P∗.

Lemma 66. H5 ≈c H6.

Proof: This proof is very similar to the proof of H1 ≈c H2, and indistinguisha-
bility follows from adaptive-hiding of aCom. Since the challenger never asks its
breaking oracle Btag to break commitments relative to the honest party’s tags
(and since these committed values are no longer used by the challenger for any-
thing else), then having the honest parties commit to xh is indistinguishable
from having it commit to 0. ��
H7: In this hybrid we essentially reverse the change that was made in going
from H2 to H3. Namely, since now both the encryption and the commitment
at each honest party are for the value 0 then there is no need to use the “OR
branch” in ΠWIPOK. Hence we return in using the honest prover strategy there,
relative to the input xh = 0. As in Lemma 63 indistinguishability follows by the
WI property of ΠWIPOK.

H8: Revert the change that was made in going from H1 to H2 and thus commit to
a random value sh in bcomj,h

2 . Indistinguishability follows by the computational
hiding of bCom, just like in Lemma62.

H9: In this hybrid the challenger no longer has access to the breaking oracle Btag.
Instead, it uses the knowledge extractor of ΠWIPOK to get the input and secret
keys of the corrupted parties, and the “standard” zero-knowledge simulator to
get the proof in ΠFS.

Lemma 67. H8 ≈s H9.

Proof: The only difference between these hybrids is the method used by the
challenger to extract the adversary secrets. Two technical points needs to be
addressed here:

– This hybrid requires rewinding by both the FS ZK simulator and the FLS
knowledge extractor, so we need to argue that after polynomially many tri-
als they will both succeed on the same transcript. This is a rather standard
argument (which essentially boils down to looking at the knowledge-extractor
inside ΠFS and the one used explicitly in ΠWIPOK as extracting knowledge for
and AND language.)

674 Z. Brakerski et al.

– We also need to argue that the value extracted from the adversary by the
ΠWIPOK extractor in H9 is a witness for Li,j,1 and not for Li,j,2. This is done
by appealing to the one-wayness of OWF , if there is a noticeable probability
to extract an Li,j,2 witness in H9 then we get an inverter for this one-way
function.

We conclude that in both H8 and H9 we succeed in extraction with about the
same probability, and moreover extract the very same thing, and (statistical)
indistinguishability follows. ��

Observing that the hybrid H9 is identical to the ideal-world game with the
simulator completes the proof of security. ��

7 Discussion and Open Problems

Compiling semi-malicious to malicious protocols. Our protocol and its
proof can be viewed as starting from a 3-round semi-malicious protocol and
“compiling” it into a 4-round malicious protocol using commitments and zero-
knowledge proofs. However our construction is not a generic compiler of semi-
malicious to malicious protocols, rather it relies on the specifics of our 3-round
semi-malicious protocol from Sect. 4. At the very least, our construction needs
the following two properties of the underlying semi-malicious protocol:

Public-coin 1st round. In our protocol we must send the second-round mes-
sages of the underlying protocol no later than the 3rd round of the compiled
protocol. We thus have at most two rounds to prove that the first-round
messages are valid, before we must send the second-round messages, severely
limiting the type of proofs that we can use.

This is not a problem in our case, since the first round of the semi-malicious
protocol is public coin, i.e., the parties just send to each other random bits.
Hence, there is nothing to prove about them and the semi-malicious protocol
can withstand any messages sent by the adversary.

Committing 2nd round. We also use the fact that the second round of the
semi-malicious protocol is fully committing to the input, since our simulator
extracts the inputs after these rounds.

We remark that in some sense every 3-round semi-malicious protocol with a
public-coin first round and fully-committing second round can be thought of as
a multi-key homomorphic encryption with distributed setup, by viewing the ran-
dom coins send in the first round as the params, and the second-round messages
as encryptions of the inputs.

Adaptive commitments. Although the intuitive property that we need from
the commitment component of our protocol is non malleability, our actual proof
relies heavily on the stronger notion of adaptive security, that lets us use straight-
line extraction from the adversary’s commitment. Oversimplifying here, the use
of adaptive commitments with straight-line extraction together with the WI
proofs let us construct a 3-round non-malleable zero-knowledge proof of knowledge
system.

Four Round Secure Computation Without Setup 675

While it is plausible that our 3-round semi-malicious protocol can be “com-
piled” using only non-malleable commitments and avoid complexity leveraging,
we were not able to do it, this question remains open.10

A The Need for Dual GSW

For the interested reader, we explain below why we need to use the “dual”
rather than “primal” GSW scheme for our multi-key FHE. The main difference
is that in the scheme from [CM15,MW16], the common matrix A has dimension
(n − 1)-by-m (with m > n), while in our scheme the dimensions are flipped and
the matrix A = (A1| . . . |An) is of dimension (m−1)-by-Nn with m > Nn. While
it is possible that a secure one-round distributed setup procedure exists also for
the “primal” scheme, we were not able to find one that we can prove secure
under any standard assumption. Below we detail some specific failed attempts.

Failed attempt #1, parties choose different columns. Consider a protocol
in which each party Pi is choosing a random n × m′ matrix Ai (n < m′), and
then using the column-concatenation of all the Ai’s, A = (A1|A2| . . . |AN).

Since n < m′, an adversary (who controls PN without loss of generality), can
just set its matrix as AN = G where G is the GSW “gadget matrix”. That gadget
matrix has the property that given any vector v ≈ sG it is easy to find s, making
it possible for the adversary to recover the secret keys of the honest parties. (This
is exactly where the “dual” scheme helps: the adversary still sees some “leakage”
v ≈ sAN , but it cannot recover s since s still has a lot of min-entropy even given
that leakage.)

Failed attempt #2, parties choose different rows. One way to avoid
attacks as above is to let each party choose a random n′ × m matrix Ai and
set A ∈ Z

Nn′×m
q as the row-concatenation of the Ai’s, AT = (AT

1 | . . . |AT
N). It is

now easy to prove that sA + e is pseudorandom (under LWE), no matter what
the adversary does. But this arrangement opens another avenue of attack: The
adversary (still controlling PN) set AN = A1, so the bottom few rows in A are
equal to the top few rows. Hence, also the bottom few rows in AR are equal
to the top few rows, which lets the adversary distinguish AR from a uniform
random U .

At this point one may hope that if we let the parties choose different diagonals
then neither of the attacks above would apply, but this is not the case. For
example, an adversary controlling all but one party can force the matrix A to
have many identical rows, which would mean that so does the matrix AR. More
generally, it seems that any arrangement where each party chooses a subset of
the entries in A will let the adversary force A to be low rank, and hence also AR
will be of low rank. (Here too the “dual” scheme works better, since the attacker
sees AR + E rather than AR itself.)
10 The concurrent work of [ACJ17] achieves a “compilation” of their robust semi-honest

protocol to the malicious setting based on non-malleable commitments but still
requires complexity leveraging.

676 Z. Brakerski et al.

References

ACJ17. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-
optimal secure multiparty computation. Cryptology ePrint Archive, Report
2017/402 (2017). http://eprint.iacr.org/2017/402

AJL+12. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29011-4 29

BMR90. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

BP16. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 8

CM15. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 31

COSV16. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-
malleable commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53015-3 10

DGK+10. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan,
V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D.
(ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-11799-2 22

FLS99. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

FS90. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding proto-
cols. In: 22nd ACM STOC, pp. 416–426. ACM Press, May 1990

GGHR14. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54242-8 4

GMPP16. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49896-5 16

Gol04. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

GPV08. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

GSW13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

http://eprint.iacr.org/2017/402
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-662-53018-4_8
http://dx.doi.org/10.1007/978-3-662-53018-4_8
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/978-3-662-53015-3_10
http://dx.doi.org/10.1007/978-3-642-11799-2_22
http://dx.doi.org/10.1007/978-3-642-54242-8_4
http://dx.doi.org/10.1007/978-3-642-54242-8_4
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-642-40041-4_5

Four Round Secure Computation Without Setup 677

HK07. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 7

JS07. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on com-
mitted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
97–114. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 6

KO04. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 21

LPS17. Lin, H., Pass, R., Soni, P.: Two-round concurrent non-malleable commit-
ment from time-lock puzzles. IACR Cryptology ePrint Archive, 2017:273
(2017)

LTV12. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In:
Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM
Press, May 2012

MP12. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 41

MW16. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 26

Nao91. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2),
151–158 (1991)

ORS15. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-
party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 17

Pol16. Polychroniadou, A.: On the Communication and Round Complexity of
Secure Computation. Ph.D. thesis, Aarhus University, December 2016

PPV08. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and
applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
57–74. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 4

PS16. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53644-5 9

Reg09. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 1–40 (2009)

http://dx.doi.org/10.1007/978-3-540-74143-5_7
http://dx.doi.org/10.1007/978-3-540-72540-4_6
http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-48000-7_17
http://dx.doi.org/10.1007/978-3-662-48000-7_17
http://dx.doi.org/10.1007/978-3-540-85174-5_4
http://dx.doi.org/10.1007/978-3-662-53644-5_9

Round-Optimal Secure Two-Party Computation
from Trapdoor Permutations

Michele Ciampi1(B), Rafail Ostrovsky2, Luisa Siniscalchi1, and Ivan Visconti1

1 DIEM, University of Salerno, Fisciano, Italy
{mciampi,lsiniscalchi,visconti}@unisa.it

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

Abstract. In this work we continue the study on the round complexity
of secure two-party computation with black-box simulation.

Katz and Ostrovsky in CRYPTO 2004 showed a 5 (optimal) round
construction assuming trapdoor permutations for the general case where
both players receive the output. They also proved that their result
is round optimal. This lower bound has been recently revisited by
Garg et al. in Eurocrypt 2016 where a 4 (optimal) round protocol is
showed assuming a simultaneous message exchange channel. Unfortu-
nately there is no instantiation of the protocol of Garg et al. under stan-
dard polynomial-time hardness assumptions.

In this work we close the above gap by showing a 4 (optimal) round
construction for secure two-party computation in the simultaneous mes-
sage channel model with black-box simulation, assuming trapdoor per-
mutations against polynomial-time adversaries.

Our construction for secure two-party computation relies on a spe-
cial 4-round protocol for oblivious transfer that nicely composes with
other protocols in parallel. We define and construct such special oblivi-
ous transfer protocol from trapdoor permutations. This building block is
clearly interesting on its own. Our construction also makes use of a recent
advance on non-malleability: a delayed-input 4-round non-malleable zero
knowledge argument.

1 Introduction

Obtaining round-optimal secure computation [14,19] has been a long standing
open problem. For the two-party case the work of Katz and Ostrovsky [15]
demonstrated that 5 rounds are both necessary and sufficient, with black-box
simulation, when both parties need to obtain the output. Their construction
relies on the use of trapdoor permutations1. A more recent work of Ostrovsky
et al. [16] showed that a black-box use of trapdoor permutations is sufficient for
obtaining the above round-optimal construction.

1 The actual assumption is enhanced trapdoor permutations, but for simplicity in this
paper we will omit the word enhanced assuming it implicitly.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 678–710, 2017.
https://doi.org/10.1007/978-3-319-70500-2_23

Round-Optimal Secure Two-Party Computation from TDPs 679

A very recent work of Garg et al. [12] revisited the lower bound of [15] when
the communication channel allows both players to send messages in the same
round, a setting that has been widely used when studying the round complex-
ity of multi-party computation. Focusing on the simultaneous message exchange
model, Garg et al. showed that 4 rounds are necessary to build a secure two-party
computation (2PC) protocol for every functionality with black-box simulation.
In the same work they also designed a 4-round secure 2PC protocol for every
functionality. However their construction compared to the one of [15] relies on
much stronger complexity assumptions. Indeed the security of their protocol cru-
cially relies on the existence of a 3-round 3-robust [11,18] parallel non-malleable
commitment scheme. According to [11,18] such commitment scheme can be con-
structed either through non-falsifiable assumptions (i.e., using the construction
of [17]) or through sub-exponentially-strong assumptions (i.e., using the con-
struction of [3]). A recent work of Ananth et al. [1] studies the multi-party case
in the simultaneous message exchange channel. More precisely the authors of
[1] provide a 5-round protocol to securely compute every functionality for the
multi-party case under the Decisional Diffie-Hellman (DDH) assumption and a
4-round protocol assuming one-way permutations and sub-exponentially secure
DDH. The above gap in the state of affairs leaves open the following interesting
open question:

Open Question: is there a 4-round construction for secure 2PC for any func-
tionality in the simultaneous message exchange model assuming (standard) trap-
door permutations?

1.1 Our Contribution

In this work we solve the above open question. Moreover our construction only
requires black-box simulation and is therefore round optimal. We now describe
our approach.

As discussed before, the construction of [12] needs a 3-round 3-robust par-
allel non-malleable commitment, and constructing this primitive from standard
polynomial-time assumptions is still an open problem. We circumvent the use
of this primitive through a different approach. As done in [12], we start consid-
ering the 4-round 2PC protocol of [15] (KO protocol) that works only for those
functionalities where only one player receives the output (we recall that the
KO protocols do not assume the existence of a simultaneous message exchange
channel). Then as in [12] we consider two simultaneous executions of the KO
protocol in order to make both parties able to obtain the output assuming the
existence of a simultaneous message exchange channel. We describe now the KO
protocol and then we explain how we manage to avoid 3-round 3-robust parallel
non-malleable commitments.

The 4-round KO protocol. Following Fig. 1, at a very high level the KO pro-
tocol between the players P1 and P2, where only P1 gets the output, works as
follows. Let f be the function that P1 and P2 want to compute. In the second
round P2 generates, using his input, a Yao’s garbled circuit C for the function

680 M. Ciampi et al.

f with the associated labels L. Then P2 commits to C using a commitment
scheme that is binding if P2 runs the honest committer procedure. This commit-
ment scheme however admits also an indistinguishable equivocal commitment
procedure that allows later to open the equivocal commitment as any message.
Let com0 be such commitment. In addition P2 commits to L using a statistically
binding commitment scheme. Let com1 be such commitment. In the last round
P2 sends the opening of the equivocal commitment to the message C. Further-
more, using L as input, P2 in the 2nd and in the 4th round runs as a sender
of a specific 4-round oblivious transfer protocol KOOT that is secure against a
malicious receiver and secure against a semi-honest sender. Finally, in parallel
with KOOT, P2 computes a specific delayed-input zero-knowledge argument of
knowledge (ZKAoK) to prove that the labels L committed in com1 correspond
to the ones used in KOOT, and that com0 is binding since it has been computed
running the honest committer on input some randomness and some message. P1

plays as a receiver of KOOT in order to obtain the labels associated to his input
and computes the output of the two-party computation by running C on input
the received labels. Moreover P1 acts as a verifier for the ZKAoK where P2 acts
as a prover.

The 4-round protocol of Garg et al. In order to allow both parties to get
the output in 4 rounds using a simultaneous message exchange channel, [12] first
considers two simultaneous execution of the KO protocol (Fig. 2). Such natural
approach yields to the following two problems (as stated in [12]): (1) nothing
prevents an adversary from using two different inputs in the two executions of
the KO protocol; (2) an adversary could adapt his input based on the input of
the other party, for instance the adversary could simply forward the messages
that he receives from the honest party. To address the first problem the authors
of [12] add another statement to the ZKAoK where the player Pj (with j = 1, 2)
proves that both executions of the KO protocol use the same input. The second
problem is solved in [12] by using a 3-round 3-robust non-malleable commit-
ment to construct KOOT and the ZKAoK in such a way that the input used
by the honest party in KOOT cannot be mauled by the malicious party. The
3-robustness is required to avoid rewinding issues in the security proof. Indeed,
in parallel with the 3-round 3-robust non-malleable commitment a WIPoK is
executed in KOOT. At some point the security proof of [12] needs to rely on the
witness-indistinguishability property of the WIPoK while the simulator of the
ZKAoK is run. The simulator for the ZKAoK rewinds the adversary from the
third to the second round, therefore rewinding also the challenger of the WIPoK
of the reduction. To solve this problem [12,18] rely on the stronger security of
a 3-round 3-robust parallel non-malleable commitment scheme. Unfortunately,
constructing this tool with standard polynomial-time assumptions is still an open
question.

Our 4-round protocol. In our approach (that is summarized in Fig. 3), in order
to solve problems 1 and 2 listed above using standard polynomial-time assump-
tion (trapdoor permutations), we replace the ZKAoK and KOOT (that uses the
3-round 3-robust parallel commitment scheme) with the following four tools.

Round-Optimal Secure Two-Party Computation from TDPs 681

(1) A 4-round delayed-input non-malleable zero-knowledge (NMZK) argument
of knowledge (AoK) NMZK from one-way functions (OWFs) recently constructed
in [4] (the theorem proved by NMZK is roughly the same as the theorem proved
ZKAoK of [12]). (2) A new special OT protocol Πγ

−−→OT
that is one-sided simu-

latable [16]. In this security notion for OT it is not required the existence of a
simulator against a malicious sender, but only that a malicious sender cannot
distinguish whether the honest receiver uses his real input or a fixed input (e.g.,
a string of 0s). Moreover some security against a malicious sender still holds even
if the adversary can perform a mild form of “rewinds” against the receiver, and
the security against a malicious receiver holds even when an interactive primitive
(like a WIPoK) is run in parallel (more details about the security provided by
Πγ

−−→OT
will be provided later). (3) An interactive commitment scheme PBCOM

that allows each party to commit to his input. In more details, in our 2PC pro-
tocol each party commits two times to his input and then proves using NMZK
that (a) the two values committed are equal and (b) this committed value corre-
sponds to the input used in the 2 simultaneous executions of our (modified KO)
protocol2. (4) A combination of two instantiations of Special Honest Verifier
Zero-Knowledge (Special HVZK) PoK thus obtaining a WIPoK ΠOR. The idea
behind the use of a combination of Special HVZK PoKs was introduced recently
in [4]. The aim of this technique is to replace a WIPoK by non-interactive prim-
itives (like Special HVZK) in such a way that rewinding issues, due to the other
subprotocols, can be avoided. We use ΠOR in our protocol to force each party
to prove knowledge of one of the values committed using PBCOM. In the secu-
rity proof we will use the PoK property of ΠOR to extract the input from the
malicious party.

Our security proof. In our security proof we exploit immediately the major
differences with [12]. Indeed we start the security proof with an hybrid exper-
iment where the simulator of NMZK is used, and we are guaranteed that the
malicious party is behaving honestly by the non-malleability/extractability of
NMZK. Another major difference with the KO security proof is that in our 2PC
protocol the simulator extracts the input from the malicious party through ΠOR

whereas in the KO protocol’s security proof the extraction is made from KOOT
(that is used in a non-black box way).

We remark that, in all the steps of our security proof the simulator-extractor
of NMZK is used to check every time that the adversary is using the same
input in both the executions of the KO protocol even though the adversary is
receiving a simulated NMZK of a false statement. More precisely, every time
that we change something obtaining a new hybrid experiment, we prove that:
(1) the output distributions of the experiments are indistinguishable; (2) the
malicious party is behaving honestly (the statement proved by the NMZK given

2 Only one execution of NMZK is run by each party, in order to allow a party to
prove that the committed values using PBCOM are the same. We just “expand” the
statement proved by NMZK.

682 M. Ciampi et al.

by the adversary is true). We will show that if one of these two invariants does
not hold then we can make a reduction that breaks a cryptographic primitive.

The need of a special 4-round OT protocol. Interestingly, the security
proof has to address a major issue. After we switch to the simulator of the
NMZK, we have that in some hybrid experiment Hi, we change the input of
the receiver of Πγ

−−→OT
(following the approach used in the security proof of the

KO protocol). To demonstrate the indistinguishability between Hi and Hi−1

we want to rely on the security of Πγ
−−→OT

against a malicious sender. Therefore
we construct an adversarial sender AOT of Πγ

−−→OT
. AOT acts as a proxy for the

messages of Πγ
−−→OT

and internally computes the other messages of our protocol. In
particular, the 1st and the 3rd rounds of Πγ

−−→OT
are given by the challenger (that

acts as a receiver of Πγ
−−→OT

), and the 2nd and the 4th messages of Πγ
−−→OT

are given
by the malicious party. Furthermore, in order to compute the other messages
of our 2PC protocol AOT needs to run the simulator-extractor of NMZK, and
this requires to rewind from the 3rd to 2nd round. This means that AOT needs
to complete a 3rd round of Πγ

−−→OT
, for every different 2nd round that he receives

(this is due to the rewinds made by the simulator of NMZK that are emulated
by AOT). We observe that since the challenger cannot be rewound, AOT needs
a strategy to answer to these multiple queries w.r.t. Πγ

−−→OT
without knowing the

randomness and the input used by the challenger so far. For these reasons we need
Πγ

−−→OT
to enjoy an additional property: the replayability of the 3rd round. More

precisely, given the messages computed by an honest receiver, the third round
can be indistinguishability used to answer to any second round of Πγ

−−→OT
sent by

a malicious sender. Another issue is that the idea of the security proof explained
so far relies on the simulator-extractor of NMZK and this simulator rewinds also
from the 4th to the 3rd round. The rewinds made by the simulator-extractor
allow a malicious receiver to ask for different 3rd rounds of Πγ

−−→OT
. Therefore we

need our Πγ
−−→OT

to be also secure against a more powerful malicious receiver that
can send multiple (up to a polynomial γ) third rounds to the honest sender. As
far as we know the literature does not provide an OT with the properties that
we require, so in this work we also provide an OT protocol with these additional
features. This clearly is of independent interest.

Input extraction. One drawback of Πγ
−−→OT

is that the simulator against a mali-
cious receiver R�

OT is not able to extract the input of R�
OT . This feature is crucial

in the security proof of KO, therefore we need another way to allow the extrac-
tion of the input from the malicious party. In order to do that, as described
before, each party commits two times using PBCOM; let c0, c1 be the commit-
ments computed by P2. P2 proves, using ΠOR, knowledge of either the message
committed in c0 or the message committed in c1. Additionally, using NMZK, P2

proves that c0 and c1 are commitments of the same value and that this value
corresponds to the input used in the two executions of the modified KO protocol.
This combination of commitments, ΠOR and NMZK allow the correct extraction
through the PoK-extractor of ΠOR.

Round-Optimal Secure Two-Party Computation from TDPs 683

Fig. 1. The 4-round KO protocol from trapdoor permutations for functionalities where
only one player receives the output.

Fig. 2. The 4-round protocol of [12] for any functionality assuming 3-round 3-robust
parallel non-malleable commitments in the simultaneous message exchange model.

1.2 Special One-Sided Simulatable OT

One of the main building blocks of our 2PC protocol is an OT protocol Πγ
OT =

(SOT , ROT) one-sided simulatable3. Our Πγ
OT has four rounds where the first

(ot1) and the third (ot3) rounds are played by the receiver, and the remaining
rounds (ot2 and ot4) are played by the sender. In addition Πγ

OT enjoys the
following two additional properties.

1. Replayable third round. Let (ot1, ot2, ot3, ot4) be the messages exchanged by
an honest receiver and a malicious sender during an execution of Πγ

OT . For
any honestly computed ot′2, we have that (ot1, ot2, ot3) and (ot1, ot′2, ot3) are
identically distributed. Roughly, we are requiring that the third round can be
reused in order to answer to any second round ot′2 sent by a malicious sender.

2. Repeatability. We require Πγ
OT to be secure against a malicious receiver R�

even when the last two rounds of Πγ
OT can be repeated multiple times. More

precisely a 4-round OT protocol that is secure in this setting can be seen as
an OT protocol of 2+2γ rounds, with γ ∈ {1, . . . , poly(λ)} where λ represents
the security parameter. In this protocol R�, upon receiving the 4th round,

Fig. 3. Our 4-round protocol for any functionality assuming trapdoor permutations in
the simultaneous message exchange model. c0 and c1 (c̃0 and c̃1) are commitments of
P2’s (P1’s) input.

3 In the 2PC protocol we will actually use Πγ
−−→OT

that roughly corresponds to parallel

executions of Πγ
OT . More details will be provided later.

684 M. Ciampi et al.

can continue the execution with SOT by sending a freshly generated third
round of Πγ

OT up to total of γ 3rd rounds.
Roughly, we require that the output of such R� that runs Πγ

OT against an
honest sender can be simulated by an efficient simulator Sim that has only
access to the ideal world functionality FOT and oracle access to R�.

The security of Πγ
OT is based on the existence of trapdoor permutations4.

Our techniques. In order to construct Πγ
OT we use as a starting point the follow-

ing basic 3-round semi-honest OT Πsh based on trapdoor permutations (TDPs)
of [9,15]. Let l0, l1 ∈ {0, 1}λ be the input of the sender S and b be the input bit
of the receiver R.

1. The sender S chooses a trapdoor permutation (f, f−1) ← Gen(1λ) and sends
f to the receiver R.

2. R chooses x ← {0, 1}λ and z1−b ← {0, 1}λ, computes zb = f(x) and sends
(z0, z1).

3. For c = 0, 1 S computes and sends wc = lc ⊕ hc(f−1(zc))

where hc(·) is a hardcore bit of f . If the parties follow the protocol (i.e. in
the semi-honest setting) then S cannot learn the receiver’s input (the bit b) as
both z0 and z1 are random strings. Also, due to the security of the TDP f , R
cannot distinguish w1−b from random as long as z1−b is randomly chosen. If we
consider a fully malicious receiver R� then this protocol is not secure anymore.
Indeed R� could just compute z1−b = f(y) picking a random y ← {0, 1}λ.
In this way R� can retrieve both the inputs of the sender l0 and l1. In [15]
the authors solve this problem by having the parties engaging a coin-flipping
protocol such that the receiver is forced to set at least one between z0 and
z1 to a random string. This is done by forcing the receiver to commit to two
strings (r0, r1) in the first round (for the coin-flipping) and providing a witness-
indistinguishable proof of knowledge (WIPoK) that either z0 = r0 ⊕ r′

0 or z1 =
r1⊕r′

1 where r′
0 and r′

1 are random strings sent by the sender in the second round.
The resulting protocol, as observed in [16], leaks no information to S about R’s
input. Moreover the soundness of the WIPoK forces a malicious R� to behave
honestly, and the PoK allows to extract the input from the adversary in the
simulation. Therefore the protocol constructed in [15] is one-sided simulatable.
Unfortunately this approach is not sufficient to have an OT protocol that has a
replayable third round. This is due to the to the added WIPoK. More precisely,
the receiver has to execute a WIPoK (acting as a prover) in the first three rounds.

4 As suggested by Ivan Damg̊ard and Claudio Orlandi in a personal communication,
following the approach of [13], Πγ

OT can be also constructed by relying on public key
encryption schemes with special properties. More precisely the public key encryption
scheme has to be such that either the ciphertexts can be sampled without knowing
the plaintext, or the public key can be sampled without knowing the corresponding
secret key. In this paper we give a formal construction and proof only for trapdoor
permutations.

Round-Optimal Secure Two-Party Computation from TDPs 685

Clearly, there is no 3-round WIPoK such that given an accepting transcript
(a, c, z) one can efficiently compute multiple accepting transcripts w.r.t. different
second rounds without knowing the randomness used to compute a. This is the
reason why we need to use a different approach in order to construct an OT
protocol simulation-based secure against a malicious receiver that also has a
replayable 3rd round.

Our construction: Πγ
OT . We start by considering a trick proposed in [16]. In

[16] the authors construct a 4-round black-box OT starting from Πsh. In order
to force the receiver to compute a random zb−1, in the first round R sends two
commitments c0 and c1 such that cb = Eqcom(·), c1−b = Eqcom(r1−b). Eqcom is
a commitment scheme that is binding if the committer runs the honest commit-
ter procedure; however this commitment scheme admits also an indistinguishable
equivocal commitment procedure that allows later to open the equivocal commit-
ment as any message. R then proves using a special WIPoK that either c0 or c1 is
computed using the honest procedure (i.e., at least one of these commitments is
binding). Then S in the second round computes r′

0 ← {0, 1}λ, r′
1 ← {0, 1}λ and

two TDPs f0, f1 with the respective trapdoor and sends (r′
0, r

′
1, f0, f1) to R. R,

upon receiving (r′
0, r

′
1, f0, f1), picks x ← {0, 1}λ, computes rb = fb(x) ⊕ r′

b and
sends the opening of c1−b to the message r1−b and the opening of cb to the mes-
sage rb. At this point the sender computes and sends w0 = l0 ⊕hc(f−1

0 (r0 ⊕r′
0)),

w1 = l1 ⊕ hc(f−1
1 (r1 ⊕ r′

1)). Since at least one between c0 and c1 is binding
(due to the WIPoK), a malicious receiver can retrieve only one of the sender’s
input lb. We observe that this OT protocol is still not sufficient for our propose
due to the WIPoK used by the receiver (i.e., the 3rd round is not replayable).
Moreover we cannot remove the WIPoK otherwise a malicious receiver could
compute both c0 and c1 using the equivocal procedure thus obtaining l0 and l1.
Our solution is to replace the WIPoK with some primitives that make replayable
the 3rd round, still allowing the receiver to prove that at least one of the commit-
ments sent in the first round is binding. Our key-idea is two use a combination of
instance-dependent trapdoor commitment (IDTCom) and non-interactive com-
mitment schemes. An IDTCom is defined over an instance x that could belong
to the NP-language L or not. If x /∈ L then the IDTCom is perfectly binding,
otherwise it is equivocal and the trapdoor information is represented by the wit-
ness w for x. Our protocol is described as follows. R sends an IDTCom tcom0
of r0 and an IDTCom tcom1 of r1. In both cases the instance used is com, a
perfectly binding commitment of the bit b. The NP-language used to compute
tcom0 consists of all valid perfectly binding commitments of the message 0, while
the NP-language used to compute tcom1 consists of all valid perfectly binding
commitments of the message 1.

This means that tcomb can be opened to any value5 and tcom1−b is perfectly
binding (we recall that b is the input of the receiver). It is important to observe
that due to the binding property of com it could be that both tcom0 and tcom1

5 The decommitment information of com represents the trapdoor of the IDTCom
tcomb.

686 M. Ciampi et al.

are binding, but it can never happen that they are both equivocal. Now we can
replace the two commitments and the WIPoK used in [16] with tcom0, tcom1 and
com(b) that are sent in the first round. The rest of the protocol stay the same as
in [16] with the difference that in the third round the openings to the messages
r0 and r1 are w.r.t. tcom0 and tcom1. What remains to observe is that when
a receiver provides a valid third round of this protocol then the same message
can be used to answer all second rounds. Indeed, a well formed third round is
accepting if and only if the opening w.r.t. tcom0 and tcom1 are well computed.
Therefore whether the third round is accepting or not does not depend on the
second round sent by the sender.

Intuitively this protocol is also already secure when we consider a malicious
receiver that can send multiple third rounds up to a total of γ 3rd rounds,
thus obtaining an OT protocol of 2+2γ rounds (repeatability). This is because,
even though a malicious receiver obtains multiple fourth rounds in response to
multiple third rounds sent by R�, no information about the input of the sender
is leaked. Indeed, in our Πγ

OT , the input of the receiver is fixed in the first round
(only one between tcom0 and tcom1 can be equivocal). Therefore the security of
the TDP ensures that only lb can be obtained by R� independently of what he
does in the third round. In the formal part of the paper we will show that the
security of the TDP is enough to deal with such scenario.

We finally point out that the OT protocol that we need has to allow par-
ties to use strings instead of bits as input. More precisely the sender’s input
is represented by (l10, l

1
1, . . . , l

m
0 , lm1) where each lib is an λ-bit length string (for

i = 1, . . . , m and b = 0, 1), while the input of the receiver is λ-bit length string.
This is achieved in two steps. First we construct an OT protocol where the

sender’s input is represented by just two m-bit strings l0 and l1 and the receiver’s
input is still a bit. We obtain this protocol by just using in Πγ

OT a vector of m
hard-core bits instead of just a single hard core bit following the approach of
[12,15]. Then we consider m parallel execution of this modified Πγ

OT (where the
sender uses a pair of strings as input) thus obtaining Πγ

−−→OT
.

2 Definitions and Tools

2.1 Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a|b we denote the concatenation of a and
b). For a finite set Q, x ← Q sampling of x from Q with uniform distribution.
We use the abbreviation ppt that stays for probabilistic polynomial time. We
use poly(·) to indicate a generic polynomial function.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation

Round-Optimal Secure Two-Party Computation from TDPs 687

(that is, RelL is such that L = LRelL). We denote by L̂ the language that includes
both L and all well formed instances that do not have a witness. Moreover we
require that membership in L̂ can be tested in polynomial time. We implicitly
assume that a PPT algorithm that is supposed to receive an instance in L̂ will
abort immediately if the instance does not belong to L̂.

Let A and B be two interactive probabilistic algorithms. We denote by
〈A(α), B(β)〉(γ) the distribution of B’s output after running on private input
β with A using private input α, both running on common input γ. Typically,
one of the two algorithms receives 1λ as input. A transcript of 〈A(α), B(β)〉(γ)
consists of the messages exchanged during an execution where A receives a pri-
vate input α, B receives a private input β and both A and B receive a common
input γ. Moreover, we will refer to the view of A (resp. B) as the messages it
received during the execution of 〈A(α), B(β)〉(γ), along with its randomness and
its input. We say that a protocol (A,B) is public coin if B sends to A random bits
only. When it is necessary to refer to the randomness r used by and algorithm
A we use the following notation: A(·; r).

2.2 Standard Definitions

Definition 1 (Trapdoor permutation). Let F be a triple of ppt algorithms
(Gen,Eval, Invert) such that if Gen(1λ) outputs a pair (f, td), then Eval(f, ·) is
a permutation over {0, 1}λ and Invert (f, td, ·) is its inverse. F is a trapdoor
permutation such that for all ppt adversaries A:

Prob
[

(f, td) ← Gen(1λ); y ← {0, 1}λ, x ← A(f, y) : Eval(f, x) = y
] ≤ ν(λ).

For convenience, we drop (f, td) from the notation, and write f(·), f−1(·)
to denote algorithms Eval(f, ·), Invert(f, td, ·) respectively, when f , td are
clear from the context. Following [12,15] we assume that F satisfies (a weak
variant of) “certifiability”: namely, given some f it is possible to decide
in polynomial time whether Eval(f, ·) is a permutation over {0, 1}λ. Let hc
be the hardcore bit function for λ bits for the family F . λ hardcore bits
are obtained from a single-bit hardcore function h and f ∈ F as follows:
hc(z) = h(z)||h(f(z))|| . . . ||h(fλ−1(z)). Informally, hc(z) looks pseudorandom
given fλ(z)6.

In this paper we also use the notions of Σ-protocol, zero-knowledge (ZK)
argument of knowledge (AoK), non-malleable zero-knowledge, commitment,
instance-dependent commitment and garbled circuit. Because of the space con-
straint we give only an informal descriptions of those notions when is needed in
the paper. We refer the reader to the full version [5] for the formal definitions.
We also use the adaptive-input version of WI and AoK. The only difference is
that in the adaptive version of ZK and AoK, the adversary can chose the state-
ment to be proved (and the corresponding witness in the case of ZK) before that
the last round of the protocol is played. For a more thorough treatment of these
concepts, see [6,7].
6 fλ(z) means the λ-th iteration of applying f on z.

688 M. Ciampi et al.

2.3 OR Composition of Σ-Protocols

In our paper we use the trick for composing two Σ-protocols to compute the
OR of two statements [8,10]. In more details, let Π = (P,V) be a Σ-protocol
for the relation RelL with SHVZK simulator Sim. Then it is possible to use Π
to construct ΠOR = (POR,VOR) for relation RelLOR

= {((x0, x1), w) : ((x0, w) ∈
RelL) OR ((x1, w) ∈ RelL)} that works as follows.

Protocol ΠOR = (POR,VOR): POR and VOR on common input x0, x1 and
private input w of POR s.t. ((x0, x1), w) ∈ RelLOR

compute the following steps.

– POR computes a0 ← P(1λ, x0, w). Furthermore he picks c1 ← {0, 1}λ and
computes (a1, z1) ← Sim(1λ, x1, c1). POR sends a0, a1 to VOR.

– VOR picks c ← {0, 1}λ and sends c to POR.
– POR computes c0 = c1 ⊕ c and computes z0 ← P(c0). POR sends c0, c1, z0 z1

to VOR.
– VOR checks that c = c0⊕c1 and if V(x0, a0, c0, z0) = 1 and V(x1, a1, c1, z1) = 1.

If all checks succeed then he outputs 1, otherwise he outputs 0.

Theorem 1 ([8,10]). ΠOR = (POR,VOR) is a Σ-protocol for RelLOR
, moreover

ΠOR is WI for the relation RelL̂OR
= {((x0, x1), w) : ((x0, w) ∈ RelL AND x1 ∈

L) OR ((x1, w) ∈ RelL AND x0 ∈ L)}.
In our work we use as Π = (P,V) Blum’s protocol [2] for the NP-complete
language Hamiltonicity (that also is a Σ-Protocol). We will use the PoK of ΠOR

in a black-box way, but we will rely on the Special HVZK of the underlying Π
following the approach proposed in [4]. Note that since Hamiltonicity is an NP-
complete language, the above construction of ΠOR works for any NP-language
through NP reductions. For simplicity in the rest of the paper we will omit the
NP-reduction therefore assuming that the above scheme works directly on a
given NP-language L.

2.4 Oblivious Transfer

Here we follow [16]. Oblivious Transfer (OT) is a two-party functionality FOT , in
which a sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and
wants to obtain the string lb. The security requirement for the FOT functionality
is that any malicious receiver does not learn anything about the string l1−b and
any malicious sender does not learn which string has been transferred. This
security requirement is formalized via the ideal/real world paradigm. In the
ideal world, the functionality is implemented by a trusted party that takes the
inputs from S and R and provides the output to R and is therefore secure by
definition. A real world protocol Π securely realizes the ideal FOT functionalities,
if the following two conditions hold. (a) Security against a malicious receiver: the
output of any malicious receiver R� running one execution of Π with an honest
sender S can be simulated by a ppt simulator Sim that has only access to
the ideal world functionality FOT and oracle access to R�. (b) Security against
a malicious sender. The joint view of the output of any malicious sender S�

Round-Optimal Secure Two-Party Computation from TDPs 689

running one execution of Π with R and the output of R can be simulated by a
ppt simulator Sim that has only access to the ideal world functionality FOT and
oracle access to S�. In this paper we consider a weaker definition of FOT that is
called one-sided simulatable FOT , in which we do not demand the existence of a
simulator against a malicious sender, but we only require that a malicious sender
cannot distinguish whether the honest receiver is playing with bit 0 or 1. A bit
more formally, we require that for any ppt malicious sender S� the view of S�

executing Π with the R playing with bit 0 is computationally indistinguishable
from the view of S� where R is playing with bit 1. Finally, we consider the Fm

OT
functionality where the sender S and the receiver R run m executions of OT
in parallel. The formal definitions of one-sided secure FOT and one-sided secure
Fm

OT follow.

Fig. 4. The Oblivious Transfer Functionality FOT .

Definition 2 ([16]). Let FOT be the Oblivious Transfer functionality as shown
in Fig. 4. We say that a protocol Π securely computes FOT with one-sided sim-
ulation if the following holds:

1. For every non-uniform ppt adversary R� controlling the receiver in the real
model, there exists a non-uniform ppt adversary Sim for the ideal model
such that {REALΠ,R�(z)(1λ)}z∈{0,1}λ ≈ IDEALf,Sim(z)(1λ)}z∈{0,1}λ , where
REALΠ,R�(z)(1λ) denotes the distribution of the output of the adversary R�

(controlling the receiver) after a real execution of protocol Π, where the sender
S has inputs l0, l1 and the receiver has input b. IDEALf,Sim(z)(1λ) denotes the
analogous distribution in an ideal execution with a trusted party that computes
FOT for the parties and hands the output to the receiver.

2. For every non-uniform ppt adversary S� controlling the sender it holds
that: {ViewR

Π,S�(z)(l0, l1, 0)}z∈{0,1}� ≈ {ViewR
Π,S�(z)(l0, l1, 1)}z∈{0,1}� , where

ViewR
Π,S�(z) denotes the view of adversary S� after a real execution of proto-

col Π with the honest receiver R.

690 M. Ciampi et al.

Definition 3 (Parallel oblivious transfer functionality Fm
OT [16]). The

parallel Oblivious Transfer Functionality Fm
OT is identical to the functional-

ity FOT , with the difference that takes in input m pairs of string from S
(l10, l

1
1, . . . , l

m
0 , lm1) (whereas FOT takes just one pair of strings from S) and m

bits from R, b1, . . . , bm (whereas FOT takes one bit from R) and outputs to the
receiver values (l1b1 , . . . , l

m
bm

) while the sender receives nothing.

Definition 4 ([16]). Let Fm
OT be the Oblivious Transfer functionality as

described in Definition 3. We say that a protocol Π securely computes Fm
OT

with one-sided simulation if the following holds7:

1. For every non-uniform ppt adversary R� controlling the receiver in the
real model, there exists a non-uniform ppt adversary Sim for the ideal
model such that for every x1 ∈ {0, 1}, . . . , xm ∈ {0, 1} it holds that
{REALΠ,R�(z)(1λ, (l10, l

1
1, . . . , l

m
0 , lm1), (x1, . . . , xm))}z∈{0,1}λ ≈

IDEALf,Sim(z)(1λ), (l10, l
1
1, . . . , l

m
0 , lm1), (x1, . . . , xm))}z∈{0,1}λ

where REALΠ,R�(z)(1λ) denotes the distribution of the output of the adversary
R� (controlling the receiver) after a real execution of protocol Π, where the
sender S has inputs (l10, l

1
1, . . . , l

m
0 , lm1) and the receiver has input (x1, . . . , xm).

IDEALf,Sim(z)(1λ) denotes the analogous distribution in an ideal execution with
a trusted party that computes Fm

OT for the parties and hands the output to the
receiver.

2. For every non-uniform ppt adversary S� controlling the sender it holds that
for every x1 ∈ {0, 1}, . . . , xm ∈ {0, 1} and for every y1 ∈ {0, 1}, . . . , ym ∈
{0, 1}: {ViewR

Π,S�(z)((l
1
0, l

1
1, . . . , l

m
0 , lm1), (x1, . . . , xm))}z∈{0,1}� ≈ {ViewR

Π,S�(z)

((l10, l
1
1, . . . , l

m
0 , lm1), (y1, . . . , ym))}z∈{0,1}� , where ViewR

Π,S�(z) denotes the view
of adversary S� after a real execution of protocol Π with the honest receiver R.

3 Our OT Protocol Πγ
OT = (SOT , ROT)

We use the following tools.

1. A non-interactive perfectly binding, computationally hiding commitment
scheme PBCOM = (Com,Dec).

2. A trapdoor permutation F = (Gen,Eval, Invert)8 with the hardcore bit func-
tion for λ bits hc(·) (see Definition 1).

3. A non-interactive IDTC scheme TC0 = (Sen0,Rec0,TFake0)9 for the NP-
language L0 = {com : ∃ dec s.t. Dec(com, dec, 0) = 1}.

7 We remark that in this notions of OT we do not suppose the existence of a simulta-
neous message exchange channel.

8 We recall that for convenience, we drop (f, td) from the notation, and write f(·),
f−1(·) to denote algorithms Eval(f, ·), Invert(f, td, ·) respectively, when f , td are
clear from the context. Also we omit the generalization to a family of TDPs.

9 For the IDTCom we use following notation. (1) Commitment phase: (com, dec) ←
Sen(m, 1λ, x) denotes that com is the commitment of the message m and dec rep-
resents the corresponding decommitment information. (2) Decommitment phase:
1 ← Rec(m, x, com, dec). (3) Trapdoor algorithms: (com, aux) ← TFake(1λ, x),
dec ← TFake(tk, x, com, aux, m) with (x, tk) ∈ RelL.

Round-Optimal Secure Two-Party Computation from TDPs 691

4. A non-interactive IDTC scheme TC1 = (Sen1,Rec1,TFake1) for the NP-
language L1 = {com : ∃ dec s.t. Dec(com, dec, 1) = 1}.

Let b ∈ {0, 1} be the input of ROT and l0, l1 ∈ {0, 1}λ be the input of SOT ,
we now give the description of our protocol following Fig. 5.

In the first round ROT runs Com on input the message to be committed b
in order to obtain the pair (com, dec). On input the instance com and a random
string r1b−1, ROT runs Sen1−b in order to compute the pair (tcom1−b, tdec1−b).
We observe that the Instance-Dependent Binding property of the IDTCs, the
escription of the NP-language L1−b and the fact that in com the bit b has been
committed, ensure that tcom1−b can be opened only to the value r1b−1.

10 ROT
runs the trapdoor procedure of the IDTC scheme TCb. More precisely ROT
runs TFakeb on input the instance com to compute the pair (tcomb, aux). In this
case tcomb can be equivocated to any message using the trapdoor (the opening
information of com), due to the trapdoorness of the IDTC, the description of the
NP-language Lb and the message committed in com (that is represented by the
bit b). ROT sends tcom0, tcom1 and com to SOT .

In the second round SOT picks two random strings R0, R1 and two trapdoor
permutations (f0,1, f1,1) along with their trapdoors (f−1

0,1 , f−1
1,1). Then SOT sends

R0, R1, f0,1 and f1,1 to ROT .
In the third round ROT checks whether or not f0,1 and f1,1 are valid trap-

door permutations. In the negative case ROT aborts, otherwise ROT continues
with the following steps. ROT picks a random string z′

1 and computes z1 = f(z′
1).

ROT now computes r1b = z1 ⊕ Rb and runs TFakeb on input dec, com, tcomb,
aux and r1b in order to obtain the equivocal opening tdecb of the commitment
tcomb to the message r1b . ROT renames rb to r1b and tdecb to tdec1b and sends
to SOT (tdec10, r

1
0) and (tdec11, r

1
1).

In the fourth round SOT checks whether or not (tdec10, r
1
0) and (tdec11, r

1
1)

are valid openings w.r.t. tcom0 and tcom1. In the negative case SOT aborts,
otherwise SOT computes W 1

0 = l0⊕hc(f−λ
0,1 (r10⊕R0)) and W 1

1 = l1⊕hc(f−λ
1,1 (r11⊕

R1)). Informally SOT encrypts his inputs l0 and l1 through a one-time pad using
as a secret key the pre-image of r10 ⊕ R0 for l0 and the pre-image of r11 ⊕ R1 for
l1. SOT also computes two trapdoor permutations (f0,2, f1,2) along with their
trapdoors (f−1

0,2 , f−1
1,2) and sends (W 1

0 ,W 1
1 , f0,2, f1,2) to ROT . At this point the

third and the fourth rounds are repeated up to γ−1 times using fresh randomness
as showed in Fig. 5. In the last round no trapdoor permutation is needed/sent.

In the output phase, ROT computes and outputs lb = W 1
b ⊕ hc(z′

1). That
is, ROT just uses the information gained in the first four rounds to compute
the output. It is important to observe that ROT can correctly and efficiently
compute the output because z′ = r1b ⊕ Rb. Moreover ROT cannot compute l1−b

because he has no way to change the value committed in tcom1−b and invert the
TDP is suppose to be hard without having the trapdoor.

In order to construct our protocol for two-party computation in the simulta-
neous message exchange model we need to consider an extended version of Πγ

OT ,

10 com does not belong to the NP-language Lb−1, therefore tcom1−b is perfectly binding.

692 M. Ciampi et al.

Fig. 5. Description of Πγ
OT .

that we denote by Πγ
−−→OT

= (S−−→OT , R−−→OT). In Πγ
−−→OT

the S−−→OT ’s input is represented
by m pairs (l10, l

1
1, . . . , l

m
0 , lm1) and the R−−→OT ’s input is represented by the sequence

b1, . . . , bm with bi ∈ {0, 1} for all i = 1, . . . , m. In this case the output of R−−→OT is
(lb1 , . . . , lbm

). We construct Πγ
−−→OT

= (S−−→OT , R−−→OT) by simply considering m par-
allel iterations of Πγ

OT and then we prove that it securely computes Fm
OT with

one-sided simulation (see Definition 4).

Round-Optimal Secure Two-Party Computation from TDPs 693

Proof sketch. The security proof of Πγ
OT is divided in two parts. In the former

we prove the security against a malicious sender and in the latter we prove
the security of Πγ

OT against a malicious receiver. In order to prove the security
against malicious sender we recall that for the definition of one-sided simulation
it is just needed the no information about R’s input is leaked to S�. We consider
the experiment H0 where R’s input is 0 and the experiment H1 where R’s input
is 1 and we prove that S� cannot distinguish between H0 and H1. More precisely
we consider the experiment Ha where tcom0 and the corresponding opening is
computed without using the trapdoor (the randomness of com) and relying on
the trapdoorness of the IDTCom TC0 we prove that H0 ≈ Ha. Then we consider
the experiment Hb where the value committed in com goes from 0 to 1 and prove
that Ha ≈ Hb due to the hiding of com. We observe that this reduction can be
made because to compute both Ha and Hb the opening informations of com are
not required anymore. The proof ends with the observation the Hb ≈ H1 due to
the trapdoorness of the IDTCom TC1. To prove the security against a malicious
receiver R� we need to show a simulator Sim. Sim rewinds R� from the third to
the second round by sending every time freshly generated R0 and R1. Sim then
checks whether the values r10 and r11 change during the rewinds. We recall that
com is a perfectly binging commitment, therefore only one between tcom0 and
tcom1 can be opened to multiple values using the trapdoor procedure (com can
belong only to one of the NP-languages L0 and L1). Moreover, intuitively, the
only way that R� can compute the output is by equivocating one between tcom0
and tcom1 based on the values R0, R1 received in the second round. This means
that if during the rewinds the value opened w.r.t. tcomb changes, then the input
that R� is using is b. Therefore the simulator can call the ideal functionality
thus obtaining lb. At this point Sim uses lb to compute W 1

b according to the
description of Πγ

OT and sets W 1
1−b to a random string. Moreover Sim will use

the same strategy used to compute W 1
b and W 1

1−b to compute, respectively W i
b

and W i
1−b for i = 2, . . . , γ. In case during the rewinds the value r10, r

1
1 stay the

same, then Sim sets both W 1
0 and W 1

1 to random strings. We observe that R�

could detect that now W 1
0 and W 1

1 are computed in a different way, but this
would violate the security of the TDPs.

Theorem 2. Assuming TDPs, for any γ > 0 Πγ
OT securely computes FOT with

one-sided simulation. Moreover the third round is replayable.

Proof. We first observe that in third round of Πγ
OT only the opening information

for the IDTCs tcom0 and tcom1 are sent. Therefore once that a valid third round
is received, it is possible to replay it in order to answer to many second rounds
sent by a malicious sender. Roughly, whether the third round of Πγ

OT is accepting
or not is independent of what a malicious sender sends in the second round.
Therefore we have proved that Πγ

OT has a replayable third round. In order to
prove that Πγ

OT is one-sided simulatable secure for FOT (see Definition 2) we
divide the security proof in two parts; the former proves the security against a
malicious sender, and the latter proves the security against a malicious receiver.
More precisely we prove that Πγ

OT is secure against a malicious receiver for an

694 M. Ciampi et al.

arbitrary chosen γ = poly(λ), and is secure against malicious sender for γ = 1
(i.e. when just the first four rounds of the protocol are executed).

Security against a malicious sender. In this case we just need to prove that the
output of S�

OT of the execution of Πγ
OT when ROT interacts with S�

OT using
b = 0 as input is computationally indistinguishable from when ROT uses b = 1
as input. The differences between these two hybrid experiments consist of the
message committed in com and the way in which the IDTCs are computed. More
precisely, in the first experiment, when b = 0 is used as input, tcom0 and the
corresponding opening (tdec10, r

1
0) are computed using the trapdoor procedure

(in this case the message committed in com is 0), while tcom1 and (tdec11, r
1
1) are

computed using the honest procedure. In the second experiment, tcom0 and the
respective opening (tdec10, r

1
0) are computed using the honest procedure, while

tcom1 and (tdec11, r
1
1) are computed using the trapdoor procedure of the IDTC

scheme. In order to prove the indistinguishability between these two experiments
we proceed via hybrid arguments. The first hybrid experiment H1 is equal to
when ROT interacts with against S�

OT according Πγ
OT when b = 0 is used as

input. In H2 the honest procedure of IDTC is used instead of the trapdoor one
in order to compute tcom0 and the opening (tdec10, r

1
0). We observe that in H2

both the IDTCs are computed using the honest procedure, therefore no trap-
door information (i.e. the randomness used to compute com) is required. The
computational-indistinguishability between H1 and H2 comes from the trap-
doorness of the IDTC TC0. In H3 the value committed in com goes from 0 to 1.
H2 and H3 are indistinguishable due to the hiding of PBCOM. It is important
to observe that a reduction to the hiding of PBCOM is possible because the
randomness used to compute com is no longer used in the protocol execution to
run one of the IDTCs. In the last hybrid experiment H4 the trapdoor procedure
is used in order to compute tcom1 and the opening (tdec11, r

1
1). We observe that

it is possible to run the trapdoor procedure for TC1 because the message com-
mitted in com is 1. The indistinguishability between H3 and H4 comes from the
trapdoorness of the IDTC. The observation that H4 corresponds to the exper-
iment where the honest receiver executes Πγ

OT using b = 1 as input concludes
the security proof.

Security against a malicious receiver. In order to prove that Πγ
OT is simulation-

based secure against malicious receiver R�
OT we need to show a ppt simulator

Sim that, having only access to the ideal world functionality FOT , can simulate
the output of any malicious R�

OT running one execution of Πγ
OT with an honest

sender SOT . The simulator Sim works as follows. Having oracle access to R�
OT ,

Sim runs as a sender in Πγ
OT by sending two random strings R0 and R1 and the

pair of TDPs f0,1 and f1,1 in the second round. Let (tdec10, r
1
0), (tdec

1
1, r

1
1) be

the messages sent in the third round by R�
OT . Now Sim rewinds R�

OT by sending
two fresh random strings R0 and R1 such that R0
= R0 and R1
= R1.

Round-Optimal Secure Two-Party Computation from TDPs 695

Let (tdec10, r
1
0), (tdec

1
1, r

1
1) be the messages sent in the third round by R�

OT
after this rewind, then there are only two things that can happen11:

1. r1b�
= r1b� and r11−b� = r11−b� for some b� ∈ {0, 1} or
2. r10 = r10 and r11 = r11.

More precisely, due to the perfect binding of PBCOM at most one between
tcom0 and tcom1 can be opened to a different message. Therefore R�

OT can either
open both tcom0 and tcom1 to the same messages r10 and r11, or change in the
opening at most one of them. This yields to the following important observation.
If one among r10 and r11 changes during the rewind, let us say rb� for b� ∈ {0, 1}
(case 1), then the input bit used by R�

OT has to be b�. Indeed we recall that
the only efficient way (i.e. without inverting the TDP) for a receiver to get the
output is to equivocate one of the IDTCs in order to compute the inverse of
one between R0 ⊕ r10 and R1 ⊕ r11. Therefore the simulator invokes the ideal
world functionality FOT using b� as input, and upon receiving lb� computes
W 1

b� = lb� ⊕ hc(f−λ
b�,1(r

1
b� ⊕ Rb�)) and sets W 1

1−b� to a random string. Then
sends W 1

0 and W 1
1 with two freshly generated TDPs f0,2, f1,2 (according to the

description of Πγ
OT given in Fig. 5) to R�

OT . Let us now consider the case where
the opening of tcom0 and tcom1 stay the same after the rewinding procedure
(case two). In this case, Sim comes back to the main thread and sets both W 1

0

and W 1
1 to a random string. Intuitively if R�

OT does not change neither r10 nor
r11 after the rewind, then his behavior is not adaptive on the second round sent
by Sim. Therefore, he will be able to compute the inverse of neither R0 ⊕ r10
nor R1 ⊕ r11. That is, both R0 ⊕ r10 and R1 ⊕ r11 would be the results of the
execution of two coin-flipping protocols, therefore both of them are difficult to
invert without knowing the trapdoors of the TDPs. This implies that R�

OT has
no efficient way to tells apart whether W 1

0 and W 1
1 are random strings or not.

Completed the fourth round, for i = 2, . . . , γ, Sim continues the interaction
with R�

OT by always setting both W i
0 and W i

1 to a random string when r10 = ri
0

and r11 = ri
1, and using the following strategy when r1b�
= ri

b� and r11−b� = ri
1−b�

for some b� ∈ {0, 1}. Sim invokes the ideal world functionality FOT using b� as
input, and upon receiving lb� computes W i

b� = lb� ⊕ hc(f−λ
b�,i(r

i
b� ⊕ Rb�)), sets

W i
1−b� to a random string and sends with them two freshly generated TDPs

f0,i+1, f1,i+1 to R�
OT . When the interaction against R�

OT is over, Sim stops and
outputs what R�

OT outputs. We observe that the simulator needs to invoke the
ideal world functionality just once. Indeed, we recall that only one of the IDTCs
can be equivocated, therefore once that the bit b� is decided (using the strategy
described before) it cannot change during the simulation. The last thing that
remains to observe is that it could happen that Sim never needs to invoke the
ideal world functionality in the case that: (1) during the rewind the values (r10, r

1
1)

stay the same; (2) ri
b = rj

b for all i, j ∈ {1, . . . , γ} and b = {0, 1}. In this
case Sim never outputs the bit b� that corresponds to the R�

OT ’s input. That
11 R�

OT could also abort after the rewind. In this case we use the following standard
argument. If p is the probability of R�

OT of giving an accepting third round, λ/p
rewinds are made until R�

OT gives another answer.

696 M. Ciampi et al.

is, even though Sim is sufficient to prove that Πγ
OT is simulation-based secure

against malicious receiver, it is insufficient to extract the input from R�
OT . We

formally prove that the output of Sim is computationally indistinguishable from
the output of R�

OT in the real world execution for every γ = poly(λ). The
proof goes trough hybrid arguments starting from the real world execution. We
gradually modify the real world execution until the input of the honest party
is not needed anymore such that the final hybrid would represent the simulator
for the ideal world. We denote by OUTHi,R�

OT (z)(1λ) the output distribution of
R�

OT in the hybrid experiment Hi.

-H0 is identical to the real execution. More precisely H0 runs R�
OT using fresh

randomness and interacts with him as the honest sender would do on input
(l0, l1).

-Hrew
0 proceeds according to H0 with the difference that R�

OT is rewound up to
the second round by receiving two fresh random strings R0 and R1. This process
is repeated until R�

OT completes the third round again (every time using different
randomness). More precisely, if R�

OT aborts after the rewind then a fresh second
round is sent up to λ/p times, where p is the probability of R�

OT of completing
the third round in H0. If p = poly(λ) then the expected running time of Hrew is
poly(λ) and its output is statistically close to the output of H0. When the third
round is completed the hybrid experiment comes back to the main thread and
continues according to H0

-H1 proceeds according to Hrew
0 with the difference that after the rewinds exe-

cutes the following steps. Let r10 and r11 be the messages opened by R�
OT in the

third round of the main thread and r10 and r11 be the messages opened during
the rewind. We distinguish two cases that could happen:

1. r10 = r10 and r11 = r11 or
2. r1b�
= r1b� and r11−b� = r11−b� for some b� ∈ {0, 1}.

In this hybrid we assume that the first case happen with non-negligible probabil-
ity. After the rewind H1 goes back to the main thread, and in order to compute
the fourth round, picks W 1

0 ← {0, 1}λ computes W 1
1 = l1 ⊕ hc(f−λ

1,1 (r11 ⊕ R1)),
(f0,2, f

−1
0,2) ← Gen(1λ), (f1,2, f

−1
1,2) ← Gen(1λ) and sends (W 1

0 ,W 1
1 , f0,2, f1,2) to

R�
OT . Then the experiment continues according to H0. Roughly, the difference

between H0 and H1 is that in the latter hybrid experiment W 1
0 is a random string

whereas in H1 W 1
0 = l0⊕hc(f−λ

0,1 (r10⊕R0)). We now prove that the indistinguisha-
bility between H0 and H1 comes from the security of the hardcore bit function
for λ bits hc for the TDP F . More precisely, assuming by contradiction that the
outputs of H0 and H1 are distinguishable we construct and adversary AF that
distinguishes between the output of hc(x) and a random string of λ bits having
as input fλ(x). Consider an execution where R�

OT has non-negligible advantage
in distinguishing H0 from H1 and consider the randomness ρ used by R�

OT and
the first round computed by R�

OT in this execution, let us say com, tcom0, tcom1.
AF , on input the randomness ρ, the messages r10 and r11 executes the following
steps.

Round-Optimal Secure Two-Party Computation from TDPs 697

1. Start R�
OT with randomness ρ.

2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round
(com, tcom0, tcom1) by R�

OT , compute R0 = r10 ⊕ fλ(x), pick a random string
R1, compute (f1,1, f

−1
1,1) ← Gen(1λ), set f0,1 = f and sends R0, R1, f0,1, f1,1

to R�
OT .

3. Upon receiving (tdec10, r
1
0), (tdec

1
1, r

1
1) compute W 1

0 = l0 ⊕ H, W 1
1 = l1 ⊕

hc(f−λ
1,1 (r11 ⊕ R1)), (f0,2, f

−1
0,2) ← Gen(1λ), (f1,2, f

−1
1,2) ← Gen(1λ) and send

(W 1
0 ,W 1

1 , f0,2, f1,2).12

4. Continue the interaction with R�
OT according to H1 (and H0) and output

what R�
OT outputs.

This part of the security proof ends with the observation that if H = hc(x)
then R�

OT acts as in H0, otherwise R�
OT acts as in H1.

- H2 proceeds according to H1 with the difference that both W0 and W1 are set
to random strings. Also in this case the indistinguishability between H1 and H2

comes from the security of the hardcore bit function for λ bits hc for the family
F (the same arguments of the previous security proof can be used to prove the
indistinguishability between H2 and H1).

- H3 In this hybrid experiment we consider the case where after the rewind, with
non-negligible probability, r1b�
= r1b� and r11−b� = r11−b� for some b� ∈ {0, 1}.

In this case, in the main thread the hybrid experiment computes W 1
b� =

lb� ⊕ hc(f−λ
b�,1(r

1
b� ⊕Rb�)), picks W 1

1−b� ← {0, 1}� sends W 1
0 ,W 1

1 with two freshly
generated TDPs f0,2, f1,2. H3 now continues the interaction with R�

OT according
to H2. The indistinguishability between H2 and H3 comes from the security of
the hardcore bit function for λ bits hc for the TDP F . More precisely, assuming
by contradiction that H2 and H3 are distinguishable, we construct and adversary
AF that distinguishes between the output of hc(x) and a random string of λ bits
having as input fλ(x). Consider an execution where R�

OT has non-negligible
advantage in distinguish H2 from H3 and consider the randomness ρ used by
R�

OT and the first round computed in this execution, let us say com, tcom0, tcom1.
AF , on input the randomness ρ, the message b� committed in com and the
message r11−b� committed tcom1−b� , AF executes the following steps.

1. Start R�
OT with randomness ρ.

2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round
(com, tcom0, tcom1) by R�

OT , compute R1−b� = r11−b� ⊕ fλ(x), pick a ran-
dom string Rb� , computes (fb�,1, f

−1
b�,1) ← Gen(1λ), sets f1−b�,1 = f and send

(R0, R1, f0,1, f1,1) to R�
OT .

12 Observe that R�
OT could send values different from r10 and r11 in the third round. In

this case AF just recomputes the second round using fresh randomness and asking

another challenge f, H, f
λ
(x) to the challenger until in the third round the messages

r10 and r11 are received again. This allows AF to break the security of f because we
are assuming that in this experiment R�

OT opens, with non-negligible probability,
tcom0 to r10 and tcom1 to r11.

698 M. Ciampi et al.

3. Upon receiving (tdec10, r
1
0), (tdec

1
1, r

1
1) compute W 1

1−b� = l1−b� ⊕ H, W 1
b� =

lb� ⊕ hc(f−λ
b�,1(r

1
b� ⊕ Rb�)), (f0,2, f

−1
0,2) ← Gen(1λ), (f1,2, f

−1
1,2) ← Gen(1λ) and

send (W 1
0 ,W 1

1 , f0,2, f1,2).
4. Continue the interaction with R�

OT according to H2 (and H3) and output
what R�

OT outputs.

This part of the security proof ends with the observation that if H = hc(x) then
R�

OT acts as in H2, otherwise he acts as in H3.

- Hj
3 proceeds according to H3 with the differences that for i = 2, . . . , j

1. if ri
b�
= r1b� for some b� ∈ {0, 1} then Hj

3 picks W i
1−b� ← {0, 1}λ, computes

W i
b� = lb� ⊕hc(f−λ

b�,i(r
i
b� ⊕Rb�)) and sends W i

0,W
1
i with two freshly generated

TDPs f0,i+1, f1,i+1 to R�
OT otherwise

2. Hj
3 picks W i

0 ← {0, 1}λ and W i
1 ← {0, 1}λ and sends W 1

0 ,W 1
1 with two freshly

generated TDPs f0,i+1, f1,i+1 to R�
OT .

Roughly speaking, if R�
OT changes the opened message w.r.t. tcomb� , then

W i
b� is correctly computed and W i

1−b� is sets to a random string. Other-
wise, if the opening of tcom0 and tcom1 stay the same as in the third round,
then both W i

0 and W i
1 are random strings (for i = 2, . . . , j). We show that

OUTHj−1
3 ,R�

OT (z)(1
λ) ≈ OUTHj

3,R�
OT (z)(1

λ) in two steps. In the first step we show
that the indistinguishability between these two hybrid experiments holds for the
first case (when ri

b�
= r1b� for some bit b�), and in the second step we show that
the same holds when ri

0 = r10 and ri
1 = r11. We first recall that if ri

b�
= r1b� , then
tcom1−b� is perfectly binding, therefore we have that ri

1−b� = r11−b� . Assum-
ing by contradiction that Hj−1

3 and Hj
3 are distinguishable then we construct

and adversary AF that distinguishes between the output of hc(x) and a ran-
dom string of λ bits having as input fλ(x). Consider an execution where R�

OT
has non-negligible advantage in distinguishing Hj−1

3 from Hj
3 and consider the

randomness ρ used by R�
OT and the first round computed by R�

OT in this execu-
tion, let us say com, tcom0, tcom1. AF , on input the randomness ρ, the message
b� committed in com and the message r11−b� committed tcom1−b� , executes the
following steps.

1. Start R�
OT with randomness ρ.

2. Let f,H, fλ(x) be the challenge. Upon receiving the first round
(com, tcom0, tcom1) by R�

OT , AF compute R1−b� = r11−b� ⊕fλ(x), pick a ran-
dom string Rb� , compute (f0,1, f

−1
0,1) ← Gen(1λ) and (f1,1, f

−1
1,1) ← Gen(1λ)

send R0, R1, f0,1, f1,1 to R�
OT .

3. Continue the interaction with R�
OT according to Hj−1

3 using f1−b�,j = f
instead of using the generation function Gen(·) when it is required.

4. Upon receiving (tdecj
0, r

j
0), (tdec

1
j , r

j
1) compute W j

1−b� = l1−b� ⊕H,13 W j
b� =

lb� ⊕ hc(f−λ
b�,j(r

j
b� ⊕ Rb�)), (f0,j+1, f

−1
0,j+1) ← Gen(1λ), (f1,j+1, f

−1
1,j+1) ←

Gen(1λ) and sends (W j+1
0 ,W j+1

1 , f0,j+1, f1,j+1).
13 It is important to observe that r1b� = rj

b� .

Round-Optimal Secure Two-Party Computation from TDPs 699

5. Continue the interaction with R�
OT according to Hj−1

3 (and Hj
3) and output

what R�
OT outputs.

This step of the security proof ends with the observation that if H = hc(x)
then R�

OT acts as in Hj−1
3 , otherwise he acts as in Hj

3.
The second step of the security proof is almost identical to the proof used to

prove the indistinguishability between H0 and H2.
The entire security proof is almost over, indeed the output of Hγ

3 cor-
responds to the output of the simulator Sim and OUTH3,R�

OT (z)(1λ) =
OUTH1

3,R�
OT (z)(1λ) ≈ OUTH2

3,R�
OT (z)(1λ) ≈ · · · ≈ OUTHγ

3 ,R�
OT (z)(1λ). Therefore

we can claim that the output of H0 is indistinguishable from the output of Sim
when at most one between l0 and l1 is used.

Theorem 3. Assuming TDPs, for any γ > 0 Πγ
−−→OT

securely computes Fm
OT with

one-sided simulation. Moreover the third round is replayable.

Proof. The third round of Πγ
−−→OT

is replayable due to the same arguments used in
the security proof of Theorem 2. We now prove that Πγ

−−→OT
securely computes Fm

OT
with one-sided simulation according to Definition 4. More precisely to prove the
security against the malicious sender S�−−→OT

we start by consider the execution
H0 that correspond to the real execution where the input b1, . . . , bm is used
by the receiver and then we consider the experiment Hi where the input used
by the receiver is 1 − b1, . . . , 1 − bi, bi+1, . . . , bm. Suppose now by contradiction
that the output distributions of Hi and Hi+1 (for some i ∈ {1,m − 1}) are
distinguishable, then we can construct a malicious sender S�

OT that breaks the
security of Πγ

OT against malicious sender. This allow us to claim that the output
distribution of H0 is indistinguishable from the output distribution of Hm. A
similar proof can be made when the malicious party is the receiver, but this time
we need to consider how the the security proof for Πγ

OT works. More precisely,
we start by consider the execution H0 that correspond to the real execution
where the input ((l10, l

1
1) . . . , (lm0 , lm1)) is used by the sender and then we consider

the experiment Hi where the simulator instead of the honest sender procedure
is used in the first i parallel executions of Πγ

OT . Supposing by contradiction
that the output distributions of Hi and Hi+1 (for some i ∈ {1,m − 1}) are
distinguishable, then we can construct a malicious receiver R�

OT that breaks the
security of Πγ

OT against malicious sender. We observe that in Hi in the first i
parallel executions of Πγ

OT the simulator Sim is used and this could disturb the
reduction to the security of Πγ

OT when proving that the output distribution of
Hi is indistinguishable from the output distribution of Hi+1. In order to conclude
the security proof we need just to show that Sim’s behaviour does not disturb
the reduction. As described in the security proof of Πγ

OT , the simulation made
by Sim roughly works by rewinding from the third to the second round while
from the fourth round onwards Sim works straight line. An important feature
enjoyed by Sim is that he maintains the main thread. Let COT be the challenger
of Πγ

OT against malicious receiver, our adversary R�
OT works as following.

700 M. Ciampi et al.

1. Upon receiving the first round of Πγ
−−→OT

from R�−−→OT
, forward the (i + 1)-th

component ot1 to COT 14.
2. Upon receiving ot2 from COT interacts against R�−−→OT

by computing the second
round of Πγ

−−→OT
according to Hi (Hi+1) with the difference that in the (i+1)-th

position the value ot2 is used.
3. Upon receiving the third round of Πγ

−−→OT
from R�−−→OT

, forward the (i + 1)-th
component ot3 to COT .

4. Upon receiving ot4 from COT interacts against R�−−→OT
by computing the fourth

round of Πγ
−−→OT

according to Hi (Hi+1) with the difference that in the (i+1)-th
position the value ot4 is used.

5. for i = 2, . . . , γ follow the strategy described in step 3 and 4 and output what
R�−−→OT

outputs.

We recall that in Hi (as well as in Hi+1) in the first i execution of Πγ
OT

the simulator is used, therefore a rewind is made from the third to the second
round. During the rewinds R�

OT can forward to R�−−→OT
the same second round ot2.

Moreover, due to the main thread property enjoyed by Sim, after the rewind R�
OT

can continue the interaction against R�−−→OT
without rewind C�. Indeed if Sim does

not maintains the main thread then, even though the same ot2 is used during the
rewind, R�−−→OT

could send a different ot3 making impossible to efficiently continue
the reduction.

4 Secure 2PC in the Simultaneous Message Exchange
Model

In this section we give an high-level overview of our 4-round 2PC protocol
Π2PC = (P1, P2) for every functionality F = (F1, F2) in the simultaneous mes-
sage exchange model. Π2PC consists of two simultaneous symmetric executions
of the same subprotocol in which only one party learns the output. In the rest
of the paper we indicate as left execution the execution of the protocol where
P1 learns the output and as right execution the execution of the protocol where
P2 learns the output. In Fig. 6 we provide the high level description of the left
execution of Π2PC . We denoted by (m1,m2,m3,m4) the messages played in
the left execution where (m1,m3) are sent by P1 and (m2,m4) are sent by P2.
Likewise, in the right execution of the protocol the messages are denoted by
(m̃1, m̃2, m̃3, m̃4) where (m̃1, m̃3) are sent by P2 and (m̃2, m̃4) are sent by P1.
Therefore, messages (mj , m̃j) are exchanged simultaneously in the j-th round,
for j ∈ {1, . . . , 4}. Our construction uses the following tools.

14 We recall that Πγ
−−→OT

is constructed by executing in parallel m instantiations of Πγ
OT ,

therefore in this reduction we are just replacing the (i + 1)-th component of every
rounds sent to R�−−→OT with the value received by COT . Vice versa, we forward to C�

the (i + 1)-th component of the rounds received from R�−−→OT .

Round-Optimal Secure Two-Party Computation from TDPs 701

– A non-interactive perfectly binding computationally hiding commitment
scheme PBCOM = (Com,Dec).

– A Yao’s garbled circuit scheme (GenGC,EvalGC) with simulator SimGC.
– A protocol Πγ

−−→OT
= (S−−→OT , R−−→OT) that securely computes Fm

OT with one-sided
simulation.

– A Σ-protocol BLL = (PL,VL) for the NP-language
L = {com : ∃ (dec,m) s.t. Dec(com, dec,m) = 1} with Special HVZK
simulator SimL. We uses two instantiations of BLL in order to construct
the protocol for the OR of two statements ΠOR as described in Sect.
2.3. ΠOR is a proof system for the NP-language LOR = {(com0, com1) :
∃ (dec,m) s.t. Dec(com0, dec,m) = 1 OR Dec(com1, dec,m) = 1}15.

– A 4-round delayed-input NMZK AoK NMZK = (PNMZK,VNMZK) for the NP-
language LNMZK that will be specified later (see Sect. 4.1 for the formal defi-
nition of LNMZK).

In Fig. 6 we propose the high-level description of the left execution of Π2PC
where P1 runs on input x ∈ {0, 1}λ and P2 on input y ∈ {0, 1}λ.

4.1 Formal Description of Our Π2PC = (P1, P2)

We first start by defining the following NP-language

LNMZK =
{(

comGC, comL, com0, com1,GC, (ot1, ot2, ot3, ot4)
)

:
∃(decGC, decL, dec0, dec1, input, α, β, ω) s.t.

(
(Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GC) ← GenGC(1λ, F1, input;ω)

)
AND

(
Dec(com0, dec0, input) = 1

)
AND

(
Dec(com1, dec1, input) = 1

)
AND

(
Dec(comL, decL, Z1,0||Z1,1||, . . . , ||Zλ,0||Zλ,1) = 1

)
AND

(
ot1 and ot3are obtained by running R−−→OT on input 1λ, input, α

)
AND

(
õt

2 and õt
4 are obtained by running S−−→OT on input

(1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, β)
)}

.

The NMZK AoK NMZK used in our protocol is for the NP-language LNMZK

described above. Now we are ready to describe our protocol Π2PC = (P1, P2) in
a formal way.

Protocol Π2PC = (P1, P2).
Common input: security parameter λ and instance length �NMZK of the state-

ment of the NMZK.
P1’s input: x ∈ {0, 1}λ, P2’s input: y ∈ {0, 1}λ.

Round 1. In this round P1 sends the message m1 and P2 the message m̃1. The
steps computed by P1 to construct m1 are the following.

15 We use ΠOR in a non-black box way, but for ease of exposition sometimes we will
refer to the entire protocol ΠOR in order to invoke its proof of knowledge property.

702 M. Ciampi et al.

Fig. 6. High-level description of the left execution of Π2PC .

Round-Optimal Secure Two-Party Computation from TDPs 703

1. Run VNMZK on input the security parameter 1λ and �NMZK thus obtaining the
first round nmzk1 of NMZK.

2. Run R−−→OT on input 1λ, x and the randomness α thus obtaining the first round
ot1 of Πγ

−−→OT
.

3. Compute (com0, dec0) ← Com(x) and (com1, dec1) ← Com(x).
4. Compute a0 ← PL(1λ, com0, (dec0, x)).
5. Pick c1 ← {0, 1}λ and compute (a1, z1) ← SimL(1λ, com1, c1).
6. Set m1 =

(
nmzk1, ot1, com0, com1, a0, a1

)
and send m1 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃1 =
(˜nmzk

1
, õt

1
, ˜com0, ˜com1, ã0, ã1

)
.

Round 2. In this round P2 sends the message m2 and P1 the message m̃2. The
steps computed by P2 to construct m2 are the following.

1. Compute (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy) ← GenGC(1λ, F2, y;ω).
2. Compute (comGCy , decGCy) ← Com(GCy) and (comL, decL) ← Com(Z1,0||

Z1,1||, . . . , ||Zλ,0||Zλ,1).
3. Run PNMZK on input 1λ and nmzk1 thus obtaining the second round nmzk2

of NMZK.
4. Run S−−→OT on input 1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, ot1 and the randomness β

thus obtaining the second round ot2 of Πγ
−−→OT

.
5. Pick c ← {0, 1}λ.
6. Set m2 =

(
ot2, comL, comGCy , nmzk2, c

)
and send m2 to P1.

Likewise, P2 performs the same actions of P1 constructing message m̃2 =
(
õt

2
, ˜comL, ˜comG̃Cx

, ˜nmzk
2
, c̃

)
.

Round 3. In this round P1 sends the message m3 and P2 the message m̃3. The
steps computed by P1 to construct m3 are the following.

1. Run VNMZK on input nmzk2 thus obtaining the third round nmzk3 of NMZK.
2. Run R−−→OT on input ot2 thus obtaining the third round ot3 of Πγ

−−→OT
.

3. Compute c0 = c ⊕ c1 and z0 ← PL(c0).
4. Set m3 =

(
nmzk3, ot3, c0, c1, z0, z1

)
and send m3 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃3 =
(˜nmzk

3
, õt

3
, c̃0, c̃1, z̃0, z̃1

)
.

Round 4. In this round P2 sends the message m4 and P1 the message m̃4. The
steps computed by P2 to construct m4 are the following.

1. Check if: c = c0 ⊕ c1, the transcript a0, c0, z0 is accepting w.r.t. the instance
com0 and the transcript a1, c1, z1 is accepting w.r.t. the instance com1. If one
of the checks fails then output ⊥, otherwise continue with the following steps.

2. Run S−−→OT on input ot3, thus obtaining the fourth round ot4 of Πγ
−−→OT

.

704 M. Ciampi et al.

3. Set stm = (comGCy , comL, ˜com0, ˜com1,GCy, õt1, ot2, õt3, ot4)16 and wstm =
(decGCy , decL, ˜dec0, ˜dec1, y, ˜α, β, ω).

4. Run PNMZK on input nmzk3, stm and wstm thus obtaining the fourth round
nmzk4 of NMZK.

5. Set m4 =
(
nmzk4, ot4,GCy

)
and send m4 to P1.

Likewise, P1 performs the same actions of P2 constructing message m̃4 =
(˜nmzk

4
, õt

4
, G̃Cx

)
.

Output computation. P1’s output: P1 checks if the transcript (nmzk1, nmzk2,
nmzk3, nmzk4) is accepting w.r.t. stm. In the negative case P1 outputs ⊥, oth-
erwise P1 runs R−−→OT on input ot4 thus obtaining Z1,x1 , . . . , Zλ,xλ

and com-
putes the output v1 = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ

).

P2’s output: P2 checks if the transcript ˜nmzk
1
, ˜nmzk

2
, ˜nmzk

3
, ˜nmzk

4
is accept-

ing w.r.t. ~stm. In the negative case P2 outputs ⊥, otherwise P2 runs R−−→OT
on input õt

4 thus obtaining Z̃1,y1 , . . . , Z̃λ,yλ
and computes the output v2 =

EvalGC(G̃Cx, Z̃1,y1 , . . . , Z̃λ,yλ
).

High-level overview of the security proof. Due to the symmetrical nature
of the protocol, it is sufficient to prove the security against one party (let this
party be P2). We start with the description of the simulator Sim. Sim uses the
PoK extractor EOR for ΠOR to extract the input y� from the malicious party.
Sim sends y� to the ideal functionality F and receives back v2 = F2(x, y�). Then,
Sim computes (G̃C�, (Z̃1, . . . , Z̃λ)) ← SimGC(1λ, F2, y

�, v2) and sends G̃C� in the
last round. Moreover instead of committing to the labels of Yao’s garbled circuit
and P1’s inputs in com0 and com1, Sim commits to 0. Sim runs the simulator
SimNMZK of NMZK and the simulator SimOT of Πγ

−−→OT
where P1 acts as S−−→OT using

(Z̃1, . . . , Z̃λ) as input. For the messages of ΠOT where P1 acts as the receiver,
Sim runs R−−→OT on input 0λ instead of using x. In our security proof we proceed
through a sequence of hybrid experiments, where the first one corresponds to the
real-world execution and the final represents the execution of Sim in the ideal
world. The core idea of our approach is to run the simulator of NMZK, while
extracting the input from P �

2 . By running the simulator of NMZK we are able
to guarantee that the value extracted from ΠOR is correct, even though P �

2 is
receiving proofs for a false statement (e.g. the value committed in com0 differs
form com1). Indeed in each intermediate hybrid experiment that we will consider,
also the extractor of NMZK is run in order to extract the witness for the theorem
proved by P �

2 . In this way we can prove that the value extracted from ΠOR is
consistent with the input that P2 is using. For what we have discussed, the

16 Informally, NMZK is used to prove that P2 in both executions of OT (one in which
he acts as a receiver, and one in which he acts as a sender) behaves correctly and
he uses the same input committed in ˜com0 and com1. Furthermore NMZK is used
to prove that Yao’s gabled circuit GCy sent in the last round is consistent with the
message committed in comGCy .

Round-Optimal Secure Two-Party Computation from TDPs 705

simulator of NMZK rewinds first from the third to the second round (to extract
the trapdoor), and then from the fourth to the third round (to extract the
witness for the statement proved by P �

2). We need to show that these rewinding
procedures do not disturb the security proof when we rely on the security of
Πγ

−−→OT
and ΠOR. This is roughly the reason why we require the third round of

Πγ
−−→OT

to be reusable and rely on the security of Special HVZK of the underlying
BLL instead of relying directly on the WI of ΠOR.

Theorem 4. Assuming TDPs, Π2PC securely computes every two-party func-
tionality F = (F1, F2) with black-box simulation.

Proof. In order to prove that Π2PC securely computes F = (F1, F2), we first
observe that, due to the symmetrical nature of the protocol, it is sufficient
to prove the security against one party (let this party be P2). We now show
that for every adversary P �

2 , there exists an ideal-world adversary (simulator)
Sim such that for all inputs x, y of equal length and security parameter λ:
{REALΠ2PC,P �

2 (z)(1λ, x, y)} ≈ {IDEALF,Sim(z)(1λ, x, y)}. Our simulator Sim is the
one showed in Sect. 4.1. In our security proof we proceed through a series of
hybrid experiments, where the first one corresponds to the execution of Π2PC
between P1 and P �

2 (real-world execution). Then, we gradually modify this
hybrid experiment until the input of the honest party is not needed anymore,
such that the final hybrid would represent the simulator (simulated execution).
We now give the descriptions of the hybrid experiments and of the corresponding
security reductions. We denote the output of P �

2 and the output of the procedure
that interacts against P �

2 on the behalf of P1 in the hybrid experiment Hi with
{OUTHi,P �

2 (z)(1λ, x, y)}x∈{0,1}λ,y∈{0,1}λ .

-H0 corresponds to the real executions. More in details, H0 runs P �
2 with a fresh

randomness, and interacts with it as the honest player P1 does using x as input.
The output of the experiment is P �

2 ’s view and the output of P1. Note that we are
guarantee from the soundness of NMZK that stm ∈ LNMZK, that is: (1) P �

2 uses
the same input y� in both the OT executions; (2) the garbled circuit committed
in comGCy and the corresponding labels committed in comL, are computed using
the input y�; (3) y� is committed in both ˜com0 and ˜com1 and that the garbled
circuit sent in the last round is actually the one committed in comGCy .

-H1 proceeds in the same way of H0 except that the input y� of the mali-
cious party P �

2 is extracted. In order to obtain y�, H1 runs the extractor EOR

of ΠOR (that exists from the property of PoK) of ΠOR. If the extractor fail,
then H1 aborts. The PoK property of ΠOR ensures that with all but negligi-
ble probability the value y� is extracted, therefore {OUTH0,P �

2 (z)(1λ, x, y)} and
{OUTH1,P �

2 (z)(1λ, x, y)} are statistically close17.

-H2 proceeds in the same way of H1 except that the simulator SimNMZK of NMZK
is used in order to compute the messages of NMZK played by P1. Note that
17 To simplify the notation here, and in the rest of the proof, we will omit that the

indistinguishability between two distributions must hold for every x ∈ {0, 1}λ, y ∈
{0, 1}λ.

706 M. Ciampi et al.

SimNMZK rewinds P �
2 from the 3rd to the 2nd round in oder to extract the trap-

door. The same is done by EOR. Following [1,12] we let EOR and the extraction
procedure of SimNMZK work in parallel. Indeed they just rewind from the third
to the second round by sending a freshly generated second round. The indistin-
guishability between the output distribution of these two hybrids experiments
holds from the property 1 of NMZK (see the full version of this paper). In this,
and also in the next hybrids, we prove that Prob [stm /∈ LNMZK] ≤ ν(λ). That
is, we prove that P �

2 behaves honestly across the hybrid experiments even though
he is receiving a simulated proof w.r.t. NMZK and ˜stm does not belong to LNMZK.
In this hybrid experiment we can prove that if by contradiction this probability
is non-negligible, then we can construct a reduction that breaks the property
2 of NMZK (see the full version of this paper for a formal definition). Indeed,
in this hybrid experiment, the theorem that P �

2 receives belongs to LNMZK and
the simulator of SimNMZK is used in order to compute and accepting transcript
w.r.t. NMZK. Therefore, relying on property 2 of the definition of NMZK, we
know that there exists a simulator that extracts the witness for the statement
stm proved by P �

2 with all but negligible probability.

-H3 proceeds exactly as H2 except for the message committed in com1. More
precisely in this hybrid experiment com1 is a commitment of 0 instead of x. The
indistinguishability between the output of the experiments H2 and H3 follows
from the hiding property of PBCOM. Indeed we observe that the rewind made
by SimNMZK does not involve com1 that is sent in the first round, moreover the
decommitment information of com1 is not used neither in ΠOR nor in NMZK.
To argue that Prob [stm /∈ LNMZK] ≤ ν(λ) also in this hybrid experiment we
still use the simulator-extractor SimNMZK in order to check whether the theorem
proved by P �

2 is still true. If it is not the case then we can construct a reduction
to the hiding of PBCOM. Note that SimNMZK rewinds from the 4th to the 3rd
round in order to extract the witness wstm for the statement stm proved by P �

2 ,
and the rewinds do not effect the reduction.

-H4 proceeds exactly as H3 except that the honest prover procedure (PL),
instead of the special HVZK simulator (SimL), is used to compute the mes-
sages a1, z1 of the transcript τ1 = (a1, c1, z1) w.r.t. the instance com1. Suppose
now by contradiction that the output distributions of the hybrid experiments
are distinguishable, then we can show a malicious verifier V� that distinguishes
between the transcript τ1 = (a1, c1, z1) computed using SimL from a transcript
computed using the honest prover procedure. In more details, let CSHVZK be
the challenger of the Special HVZK. V� picks c1 ← {0, 1}λ and sends c1 to
CSHVZK. Upon receiving a1, z1 from CSHVZK V� plays all the messages of Π2PC as
in H3 (H4) except for the messages of τ1. For these messages V� acts as a proxy
between CSHVZK and R�−−→OT

. At the end of the execution V� runs the distinguisher
D that distinguishes {OUTH3,P �

2 (z)(1λ, x, y)} from {OUTH4,P �
2 (z)(1λ, x, y)} and

outputs what D outputs. We observe that if CSHVZK sends a simulated transcript
then P �

2 acts as in H3 otherwise he acts as in H4. There is a subtlety in the
reduction. V� runs SimNMZK that rewinds from the third to the second round.
This means that V� has to be able to complete every time the third round even

Round-Optimal Secure Two-Party Computation from TDPs 707

though he is receiving different challenges c1, . . . , cpoly(λ) w.r.t to ΠOR. Since we
are splitting the challenge c, V� can just keep fixed the value c1 reusing the
same z1 (sent by CSHVZK) and can compute an answer to a different c′

0 = ci ⊕ c1
using the knowledge of the decommitment information of com0. To argue that
Prob [stm /∈ LNMZK] ≤ ν(λ), also in this hybrid experiment we can use the
simulator-extractor SimNMZK to check whether the theorem proved by P �

2 is still
true. If it is not the case we can construct a reduction to the special HVZK
property of BLL. Note that the rewinds of SimNMZK from the fourth to the third
round do not affect the reduction.

-H5 proceeds exactly as H4 except that the special HVZK simulator (SimL),
instead of honest prover procedure, is used to compute the prover’s messages
a0, z0 for the transcript τ0 = (a0, c0, z0) w.r.t. the instance com0. The indistin-
guishability between the outputs of H4 and H5 comes from the same arguments
used to prove that {OUTH3,P �

2 (z)(1λ, x, y)} ≈ {OUTH4,P �
2 (z)(1λ, x, y)}. Moreover

the same arguments of before can be used to prove that Prob [stm /∈ LNMZK] ≤
ν(λ).

-H6 proceeds exactly as H5 except for the message committed in com0. More pre-
cisely in this hybrid experiment com0 is a commitment of 0 instead of x. The indis-
tinguishability between the outputs of H5 and H6 comes from the same argu-
ments used to prove that {OUTH2,P �

2 (z)(1λ, x, y)} ≈ {OUTH3,P �
2 (z)(1λ, x, y)}.

Moreover the same arguments as before can be used to prove that
Prob [stm /∈ LNMZK] ≤ ν(λ).

-H7 proceeds in the same way of H6 except that the simulator of Πγ
−−→OT

, SimOT ,
is used instead of the sender algorithm S−−→OT . From the simulatable security
against malicious receiver of Πγ

−−→OT
for every γ = poly(λ) follows that the output

distributions of H7 and H6 are indistinguishable. Suppose by contradiction this
claim does not hold, then we can show a malicious receiver R�−−→OT

that breaks the
simulatable security of Πγ

−−→OT
against a malicious receiver. In more details, let COT

be the challenger of Πγ
−−→OT

. R�−−→OT
plays all the messages of Π2PC as in H6 (H7)

except for the messages of Πγ
−−→OT

. For these messages R�−−→OT
acts as a proxy between

COT and P �
2 . In the end of the execution R�−−→OT

runs the distinguisher D that
distinguishes {OUTH6,P �

2 (z)(1λ, x, y)} from {OUTH7,P �
2 (z)(1λ, x, y)} and outputs

what D outputs. We observe that if COT acts as the simulator then P �
2 acts

as in H7 otherwise he acts as in H6. To prove that Prob [stm /∈ LNMZK] is still
negligible we use the same arguments as before with this additional important
observation. The simulator-extractor SimNMZK rewinds also from the 4th to the
3rd round. These rewinds could cause P �

2 to ask multiple third rounds of OT
õt

3
i (i = 1, . . . , poly(λ)). In this case R�−−→OT

can simply forward õt
3
i to COT and

obtains from COT an additional õt4i . This behavior of R�−−→OT
is allowed because

Πγ
−−→OT

is simulatable secure against a malicious receiver even when the last two
rounds of Πγ

−−→OT
are executed γ times (as stated in Theorem 2). Therefore the

reduction still works if we set γ equals to the expected number of rewinds that

708 M. Ciampi et al.

SimNMZK could do. We observe that since we have proved that stm ∈ LNMZK,
then the value extracted y� is compatible with the query that SimOT could do.
That is, SimOT will ask only the value (Z̃1,y1 , . . . , Z̃λ,yλ

).

-H8 differs from H7 in the way the rounds of Πγ
−−→OT

, where P �
2 acts as sender,

are computed. More precisely instead of using x as input, 0λ is used. Note that
from this hybrid onward it is not possible anymore to compute the output by
running EvalGC as in the previous hybrid experiments. This is because we are
not able to recover the correct labels to evaluate the garbled circuit. Therefore
H8 computes the output by directly evaluating v1 = F1(x, y�), where y� is the
input of P �

2 obtained by using EOR. The indistinguishability between the output
distributions of H7 and H8 comes from the security of Πγ

−−→OT
against malicious

sender. Indeed, suppose by contradiction that it is not the case, then we can
show a malicious sender S�−−→OT

that breaks the indistinguishability security of
Πγ

−−→OT
against a malicious sender. In more details, let COT be the challenger.

S�−−→OT
plays all the messages of Π2PC as in H7 (H8) except for the messages of

OT where he acts as a receiver. For these messages S�−−→OT
plays as a proxy between

COT and P �
2 . At the end of the execution S�−−→OT

runs the distinguisher D that
distinguishes the output of H7 from H8 and outputs what D outputs. We observe
that if COT computes the messages of Πγ

−−→OT
using the input 0λ then P �

2 acts as
in H8 otherwise he acts as in H7. In this security proof there is another subtlety.
During the reduction S�−−→OT

runs SimNMZK that rewinds from the third to the
second round. This means that P �

2 could send multiple different second round
ot2i of OT (with i = 1, . . . , poly(λ)). S�−−→OT

cannot forward these other messages
to COT (he cannot rewind the challenger). This is not a problem because the
third round of Πγ

−−→OT
is replayable (as proved in Theorem 2). That is the round

ot3 received from the challenger can be used to answer to any ot2. To prove that
Prob [stm /∈ LNMZK] ≤ ν(λ) we use the same arguments as before by observing
the rewinds made by the simulator-extractor from the fourth round to the third
one do not affect the reduction.

-H9 proceeds in the same way of H8 except for the message committed in ˜comlab.
More precisely, instead of computing a commitment of the labels
(Z̃1,0, Z̃1,1, . . . , Z̃λ,0, Z̃λ,1), a commitment of 0λ|| . . . ||0λ is computed. The indis-
tinguishability between the output distributions of H8 and H9 follows from the
hiding of PBCOM. Moreover, Prob [stm /∈ LNMZK] ≤ ν(λ) in this hybrid exper-
iment due to the same arguments used previously.

-H10 proceeds in the same way of H9 except for the message committed in ˜comGCy :
instead of computing a commitment of the Yao’s garbled circuit G̃Cx, a commit-
ment of 0 is computed. The indistinguishability between the output distributions
of H9 and H10 follow from the hiding of PBCOM. Prob [stm /∈ LNMZK] ≤ ν(λ)
in this hybrid experiment due to the same arguments used previously.

-H11 proceeds in the same way of H10 except that the simulator SimGC it is run
(instead of GenGC) in order to obtain the Yao’s garbled circuit and the corre-

Round-Optimal Secure Two-Party Computation from TDPs 709

sponding labels. In more details, once y� is obtained by EOR (in the third round),
the ideal functionality F is invoked on input y�. Upon receiving v2 = F2(x, y�)
the hybrid experiment compute (G̃C�, Z̃1, . . . , Z̃λ) ← SimGC(1λ, F2, y

�, v2) and
replies to the query made by SimOT with (Z̃1, . . . , Z̃λ). Furthermore, in the 4th
round the simulated Yao’s garbled circuit G̃C� is sent, instead of the one gener-
ated using GenGC. The indistinguishability between the output distributions of
H10 and H11 follows from the security of the Yao’s garbled circuit. To prove that
Prob [stm /∈ LNMZK] ≤ ν(λ) we use the same arguments as before by observing
the rewinds made by the simulator-extractor from the fourth round to the third
one do not affect the reduction. The proof ends with the observation that H11

corresponds to the simulated execution with the simulator Sim.

Acknowledgments. We thank Ivan Damg̊ard and Claudio Orlandi for remarkable
discussions on two-party computations and the suggestion of using public key encryp-
tion schemes with special properties instead of trapdoor permutations to construct
our oblivious transfer protocol. Research supported in part by “GNCS - INdAM”, EU
COST Action IC1306, NSF grant 1619348, DARPA, US-Israel BSF grant 2012366,
OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty
Research Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. The views expressed are those of the
authors and do not reflect position of the Department of Defense or the U.S. Govern-
ment.

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal
secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 16

2. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444–1454 (1986)

3. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10

4. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 711–742. Springer,
Cham (2017). Full version. https://eprint.iacr.org/2017/931

5. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure
two-party computation from trapdoor permutations. Cryptology ePrint Archive,
Report 2017/920 (2017). http://eprint.iacr.org/2017/920

6. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved or-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 5

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://eprint.iacr.org/2017/931
http://eprint.iacr.org/2017/920
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49099-0_5

710 M. Ciampi et al.

7. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/Offline or
composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 3

8. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

9. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Advances in Cryptology: Proceedings of CRYPTO 06982, 1982. pp. 205–210.
Plenum Press, New York (1982)

10. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptol. 19(2), 169–209 (2006)

11. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: Personal communication,
August 2016

12. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The Exact Round Com-
plexity of Secure Computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

13. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, pp. 325–335 (2000)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of the
19th Annual ACMSymposium on Theory of Computing (1987)

15. Katz, J., Ostrovsky, R.: Round-Optimal Secure Two-Party Computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

16. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-Optimal Black-Box Two-Party
Computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 17

17. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive One-Way Functions and
Applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

18. Polychroniadou, A.: On the Communication and Round Complexity of Secure
Computation. Ph.D. thesis, Aarhus University (2016)

19. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, 1982. pp. 160–164. IEEE Com-
puter Society (1982)

https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-540-85174-5_4

Delayed-Input Non-Malleable Zero Knowledge
and Multi-Party Coin Tossing in Four Rounds

Michele Ciampi1, Rafail Ostrovsky2, Luisa Siniscalchi1(B), and Ivan Visconti1

1 DIEM, University of Salerno, Fisciano, Italy
{mciampi,lsiniscalchi,visconti}@unisa.it

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

Abstract. In this work we start from the following two results in the
state-of-the art:

1. 4-round non-malleable zero knowledge (NMZK): Goyal et al. in
FOCS 2014 showed the first 4-round one-one NMZK argument from
one-way functions (OWFs). Their construction requires the prover
to know the instance and the witness already at the 2nd round.

2. 4-round multi-party coin tossing (MPCT): Garg et al. in Euro-
crypt 2016 showed the first 4-round protocol for MPCT. Their result
crucially relies on 3-round 3-robust parallel non-malleable commit-
ments. So far there is no candidate construction for such a commit-
ment scheme under standard polynomial-time hardness assumptions.

We improve the state-of-the art on NMZK and MPCT by presenting the
following two results:

1. a delayed-input 4-round one-many NMZK argument ΠNMZK from
OWFs; moreover ΠNMZK is also a delayed-input many-many synchro-
nous NMZK argument.

2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs; ΠMPCT

uses ΠNMZK as subprotocol and exploits the special properties (e.g.,
delayed input, many-many synchronous) of ΠNMZK.

Both ΠNMZK and ΠMPCT make use of a special proof of knowledge that
offers additional security guarantees when played in parallel with other
protocols. The new technique behind such a proof of knowledge is an
additional contribution of this work and is of independent interest.

1 Introduction

Non-malleable zero-knowledge (NMZK) and secure multi-party computation
(MPC) are fundamental primitives in Cryptography. In this work we will study
these two primitives and for the case of MPC we will focus on the coin-tossing
functionality that is among the most studied functionalities.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 711–742, 2017.
https://doi.org/10.1007/978-3-319-70500-2_24

712 M. Ciampi et al.

NMZK. The first construction of NMZK was given by Dolev et al. in [15]. Later
on, Barak in [2] showed the first constant-round construction. An improved con-
struction was then given by Pass and Rosen in [35,36]. The work of Goyal et al. [23]
obtained the first round-optimal construction requiring only 4 rounds and one-way
functions (OWFs). Their construction requires the instance and the witness to be
known already when the prover plays his first round. Their definition is the stan-
dard one-one definition where the adversary opens two sessions, one with a prover
and one with a verifier.

The fact that the instance and the witness need to be known already at the
second round is an important limitation when NMZK is used as subprotocol
to prove statements about another subprotocol played in parallel. Moreover the
one-one security is an important limitation when NMZK is used in a multi-party
scenario where several of such argument systems are played in parallel.

The above two limitations clearly raise the following natural and interesting
open questions:

Open Question 1: is there a 4-round delayed-input NMZK argument system?
Open Question 2: is there a 4-round many-many synchronous NMZK argu-
ment system?

Multi-party coin-flipping (MPCT). In [24], Katz et al. obtained a constant-
round secure MPC protocol using sub-exponential hardness assumptions. This
results was then improved by Pass in [34] that showed how to get bounded-
concurrent secure MPC for any functionality with standard assumptions. Further
results of Goyal [19] and Goyal et al. [21] relied on better assumptions but with
a round complexity still far from optimal.

A very recent work of Garg et al. [18] makes a long jump ahead towards
fully understanding the round complexity of secure MPCT. They show that
the existence of a 3-round 3-robust parallel non-malleable commitment scheme
implies a 4-round protocol for secure MPCT for polynomially many coins with
black-box simulation. Some candidate instantiations of such special commitment
scheme [17,38] are the one of Pass et al. [33] based on non-falsifiable assumptions,
or the one of Ciampi et al. [6] based on sub-exponentially strong one-to-one one-
way functions. The achieved round complexity (i.e., 4 rounds) is proven optimal
in [18] when simulation is black box and the number of bits in the output of the
functionality is superlogarithmic.

A very recent result of Ananth et al. [1] constructs a 4-round MPC protocol
for any functionality assuming DDH w.r.t. superpolynomial-time adversaries.
The above state-of-the art leaves open the following question.

Open Question 3: is there a 4-round secure MPCT protocol under standard
assumptions?

1.1 Our Contribution

In this paper we solve the above 3 open problems. More precisely we present the
following results:

NMZK and MPCT in 4-Round 713

1. a delayed-input 4-round one-many NMZK argument ΠNMZK from OWFs,
therefore solving Open Question 1; moreover ΠNMZK is also a delayed-input
many-many synchronous NMZK argument, therefore solving Open Ques-
tion 2;

2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs, therefore solving
Open Question 31.

The two constructions are not uncorrelated. Indeed ΠMPCT uses ΠNMZK as
subprotocol and exploits the special properties (e.g., delayed input, many-many
synchronous) of ΠNMZK. Moreover both ΠNMZK and ΠMPCT make use of a special
proof of knowledge that offers additional security guarantees when played in par-
allel with other protocols. Designing such a proof of knowledge is an additional
contribution of this work and is of independent interest.

Interestingly, several years after the 4-round zero knowledge argument system
from OWFs of [3], the same optimal round complexity and optimal complexity
assumptions have been shown sufficient in this work for delayed-input NMZK
and in [5] for resettably sound zero knowledge.

More details on our two new constructions follow below.

MPCT from NMZK. A first main idea that allows us to bypass the strong
requirements of the construction of [18] is that we avoid robust/non-malleable
commitments and instead focus on non-malleable zero knowledge. Since we want
a 4-round MPCT protocol, we need to rely on 4-round NMZK. The only known
construction is the one of [23]. Unfortunately their NMZK argument system
seems to be problematic to use in our design of a 4-round MPCT protocol.
There are two main reasons. The first reason is that the construction of [23]
uses the technique of secure computation in the head and therefore requires the
instance already in the second round. This is often a problem when the NMZK
argument is played in parallel with other subprotocols as in our construction.
Indeed these additional subprotocols end in the 3rd or 4th round and typically2

need to be strengthened by a zero-knowledge proof of correctness. The second
reason is that in the setting of 4-round MPCT the adversary can play as a many-
many synchronous man-in-the-middle (MiM), while the construction of [23] is
proved one-one non-malleable only.

We therefore improve the state-of-the-art on NMZK constructing a delayed-
input NMZK argument system. Our construction only needs one-way functions
and is secure even when (a) there are polynomially many verifiers (i.e., it is
a one-many NMZK argument), and (b) there are polynomially many provers
and they are in parallel. We will crucially use both the delayed-input property
and security with parallelized many provers and verifiers in our secure MPCT
construction. Moreover our NMZK is also crucially used in [8].

1 An unpublished prior work of Goyal et al. [20] achieves the same result on MPCT
using completely different techniques.

2 Indeed, even the construction of [18] that makes use of a special non-malleable
commitments requires also a delayed-input zero-knowledge argument.

714 M. Ciampi et al.

1.2 Technical Overview on Our NMZK

Issues in natural constructions of NMZK. A natural construction of a
NMZK argument from OWFs consists of having: (1) a 3-round sub-protocol
useful to extract a trapdoor from the verifier of NMZK; (2) a 4-round non-
malleable commitment of the witness for the statement to be proved; (3) a 4-
round witness-indistinguishable proof of knowledge (WIPoK) to prove that either
the committed message is a witness or the trapdoor is known. By combining
instantiations from OWFs of the above 3 tools in parallel we could obtain 4-
round NMZK from OWFs. The simulator-extractor for such a scheme would
(1) extract the trapdoor from the verifier; (2) commit to 0 in the non-malleable
commitment; (3) use the trapdoor as witness in the WIPoK; (4) extract the
witness from the arguments given by the MiM by extracting from the WIPoK
or from the non-malleable commitment.

Unfortunately it is not clear how to prove the security of this scheme when
all sub-protocols are squeezed into 4 rounds. The problem arises from the inter-
active nature of the involved primitives. Indeed notice that the 4-round non-
malleable commitment is executed in parallel with the 4-round WIPoK. When
in a hybrid of the security proof the trapdoor is used as witness in the 4-round
WIPoK played on the left, the MiM could do the same and also commits to the
message 0 in the non-malleable commitment. To detect this behavior, in order
to break the WI, the reduction should extract the message committed in the
non-malleable commitment by rewinding the MiM. This implies that also the
4-round WIPoK involved in the reduction must be rewound (we recall that these
two sub-protocols are executed in parallel). It is important to observe that if in
some hybrid we allow the MiM to commit to the message 0 when the witness
of the WIPoK given on the left is switched to the trapdoor, then the simulator-
extractor (that corresponds to the final hybrid) will have no way to extract a
witness from the MiM (and this is required by the definition of NMZK). Indeed
from a successful MiM that commits to 0 the extraction from the WIPoK can
only give in output the trapdoor. Therefore the simulator-extractor would fail.

A special delayed-input WIPoK ΠOR. In order to overcome the above prob-
lem we follow a recent idea proposed in [7] where non-interactive primitives
instead of 3-rounds WIPoKs are used in order to construct a concurrent non-
malleable commitment in four rounds. In this way, in every security reduction to
such primitives, it will be always possible to extract the message committed in
the non-malleable commitment without interfering with the challenger involved
in the reduction.

In [7] the authors propose an ad-hoc technique that avoids such a rewind-
ing issue by using a combination of instance-dependent trapdoor commitments
(IDTCom) and special honest-verifier zero knowledge (Special HVZK) proofs of
knowledge. In this paper we propose a generic approach to construct a special
delayed-input WIPoK ΠOR that can be nicely composed with other protocols in
parallel. We construct ΠOR in two steps.

NMZK and MPCT in 4-Round 715

In 1st step we consider the construction of 3-round WIPoK for NP of
Lapidot and Shamir (LS) [25]3 that enjoys adaptive-input Special HVZK4 and
observe that LS does not enjoy adaptive-input special soundness. That is, given
and accepting transcript (a, 0, z0) for the statement x0 and an accepting tran-
script (a, 1, z1) for the statement x1, then only the witness x1 can be efficiently
extracted. More precisely, only the witness for the statement where the challenge-
bit was equal to 15 (see Definition 5 for a formal definition of adaptive-input
special soundness) can be extracted. Therefore we propose a compiler that using
LS = (P,V) in a black-box way outputs a 3-round protocol LS′ = (P ′,V ′) that
maintains the adaptive-input Special HVZK and moreover enjoys adaptive-input
special soundness.

In the second step we show how to combine the OR composition of statements
proposed in [12] with LS′ in oder to obtain a WIPoK ΠOR such that: (a) a
reduction can be successfully completed even when there are rewinds due to
another protocol played in parallel; (b) the statement (and the corresponding
witness) are required to be known only in the last round. Both properties are
extremely helpful when a WIPoK is played with other protocols in parallel.

We now give more details about the two steps mentioned above.
– First step: LS′ = (P ′,V ′). Our construction of LS′ works as follows. The

prover P ′ runs two times P using different randomnesses thus obtaining two first
rounds of LS a0 and a1. Upon receiving the challenge-bit b from the verifier V,
the statement x to be proved and the corresponding witness w, P ′ runs P in
order to compute the answer z0 with respect to the challenge b for a0 and the
answer z1 with respect to the challenge 1−b for a1. V ′ accepts if both (a0, b, z0, x)
and (a1, 1 − b, z1, x) are accepting for V. We now observe that every accepting
transcript for LS′ contains a sub-transcript that is accepting for V where the bit
1 has been used as a challenge. From what we have discussed above, it is easy
to see that LS′ enjoys adaptive-input special soundness.

– Second step: adaptive-input PoK for the OR of compound statements. We
combine together two executions of LS′ by using the trick for composing two Σ-
protocols Σ0, Σ1 to construct a Σ-protocol for the NP-language L0 OR L1 [12].
Let the compound statement to be proved be (x0, x1), with x0 ∈ L0 and x1 ∈ L1,
and let wb be the witness for xb. The protocol ΠOR proposed in [12] considers
two Σ-protocols Σ0 and Σ1 (respectively for L0 and L1) executed in parallel, but
after receiving the challenge c form the verifier, the prover can use as challenges
for Σ0 and Σ1 every pair (c0, c1) s.t. c0 ⊕ c1 = c. Therefore the prover could
choose in advance one of the challenge to be used, (e.g., c1−b), and compute
the other one by setting cb = c ⊕ c1−b. In this way the transcript for Σ1−b can
be computed using the Special HVZK simulator while the transcript for Σb is
computed using the witness wb. Thus the prover has the “freedom” of picking

3 See Appendix B.1 for a detailed description of [25].
4 By adaptive-input we mean that the security of the cryptographic primitive holds

even when the statement to be proved is adversarially chosen in the last round.
5 For ease of exposition be consider LS with one-bit challenge, but our result hold for

an arbitrarily chosen challenge length.

716 M. Ciampi et al.

one out of two of the challenge before seeing c, but still being able to complete
the execution of both Σ0 and Σ1 for every c. We will show that this “freedom” is
sufficient to switch between using w0 and w1 (in order to prove WI) even when it
is required to answer to additional (and different) challenges c1, . . . , cpoly(λ) (i.e.,
when some rewinds occur). Indeed it is possible to change the witness used (from
w0 to w1) in two steps relying first on the Special HVZK of Σ1, and then on the
Special HVZK of Σ0. More precisely we consider the hybrid experiment Hw0

as the experiment where in ΠOR the witness w0 is used (analogously we define
Hw1). We now consider Hw0,w1 that differs from Hw0 because both the witnesses
w0 and w1 are used. We prove that Hw0 and Hw0,w1 are indistinguishable due to
the Special HVZK of Σ1 even tough ΠOR is rewound polynomially many times.
The reduction works as follows. A challenge c1 is chosen before the protocol ΠOR

starts and the Special HVZK challenger is invoked thus obtaining (a1, z1). The
transcript for Σ0 is computed by the reduction using the witness w0 in order
to answer to the challenge ci

0 = ci ⊕ c1 for i = 1, . . . , poly(λ). We recall the we
are in a setting where ΠOR could be rewound, and therefore the reduction needs
to answer to multiple challenges. We observe that the reduction to the Special
HVZK is not disturbed by these rewinds because c1 can be kept fixed. The same
arguments can be used to prove that Hw0,w1 is computationally indistinguishable
from Hw1 .

We then show that as ΠOR preserves the special-soundness of the input
Σ-protocols, as well as preserves the adaptive-input special soundness when
two instantiations of LS′ are used. Moreover the above reductions to Special
HVZK can be done relying on adaptive-input Special HVZK. Finally ΠOR can
be upgrade from adaptive-input special soundness to adaptive-input PoK using
a theorem of [11].

Our NMZK argument system NMZK. We run ΠOR in parallel with a 4-round
public-coin one-one honest-extractable synchronous non-malleable commitment
scheme Πnm

6. A construction for such a scheme in 4 rounds was given by [22].
The prover of the NMZK argument runs ΠOR in order to prove either the valid-
ity of some NP-statement, or that the non-malleable commitment computed
using Πnm contains a trapdoor. The simulator for NMZK works by extracting
the trapdoor, committing to it using the non-malleable commitment, and using
knowledge of both the trapdoor and the opening information used to compute
the non-malleable commitment as a witness for ΠOR. The 3-round subprotocol
from OWFs for the trapdoor extraction follows the one of [7]. More precisely the
trapdoor is represented by the knowledge of two signatures under a verification
key sent by the verifier in the 1st round. In order to allow the extraction of the
trapdoor, the verifier of NMZK sends a signature of a message randomly chosen
in the 3rd round by the prover.

6 All such properties are pretty standard except honest extractability. Informally, this
property means that there is a successful extractor that gives in output the commit-
ted message having black-box access to an honest sender.

NMZK and MPCT in 4-Round 717

The security proof of one-many NMZK. The simulator of NMZK extracts
the trapdoor7, and commits to it using Πnm. Following the proof approach pro-
vided in [6], we need to prove that the MiM adversary does not do the same.
More precisely we want to guarantee that there is no right session where the
MiM commits to two signatures of two different messages. The reduction to
the non-malleability of the underlying commitment scheme isolates one right
session guessing that the MiM has committed there to the trapdoor. The distin-
guisher for the non-malleable commitment takes as input the committed mes-
sage an checks if it corresponds to two signatures of two different messages for
a given signature key. The above proof approach works only with synchronous
sessions (i.e., for synchronous one-many NMZK). Indeed Πnm is secure only in
the synchronous case. In order to deal with the asynchronous case we rely on
the honest-extractability of Πnm.

We recall that ΠOR is run in parallel with Πnm in order to ensure that
either the witness for an NP-statement x is known or the trapdoor has been
correctly committed using Πnm. For our propose we only need to ensure that the
MiM never commits to the trapdoor. If this is not the case than there exists a
right session where the MiM is committing correctly to the trapdoor using Πnm

with non-negligible probability. This means that we can extract the message
committed by the MiM by just relying on the honest-extractability of Πnm.
Therefore we can make a reduction to the hiding of Πnm

8.
In order to prove that also in the reductions to adaptive-input Special HVZK

the MiM still does not commit to the trapdoor we can uses the same approach
explained above. Note that in these reductions it is crucial that the rewinds
needed to extract the committed message in Πnm do not disturb the challengers
involved in the reductions.

From one-many NMZK to synchronous many-many NMZK. Our one-
many NMZK is also synchronous many-many NMZK. Indeed, the simulator
can extract (simultaneously) the trapdoor from the right sessions, playing as
described above. The only substantial difference is that we need to use a many-
one non-malleable commitment with all the properties listed above. Following
the approach proposed in the security proof of Proposition 1 provided in [28], it
is possible to claim that a synchronous (one-one) non-malleable commitment is
also synchronous many-one non-malleable.

1.3 4-Round Secure Multi-Party Coin Tossing

Our MPCT protocol will critically make use of our delayed-input synchronous
many-many NMZK from OWFs, and of an instantiation of ΠOR. However, sim-
ilarly to [18] our protocol consists of each party committing to a random string

7 The trapdoor for our protocol is represented by two signatures for a verification key
chosen by the verifier.

8 A rewind made in an asynchronous session does not interfere with (i.e., does not
rewind) the challenger of the hiding of Πnm.

718 M. Ciampi et al.

r, that is then sent in the clear in the last round. Moreover there will be a sim-
ulatable proof of correctness of the above commitment w.r.t. r, that is given to
all parties independently. The output consists of the

⊕
of all opened strings.

We now discuss in more details the messages exchanged by a pair of parties P1

and P2 in our multi-party coin tossing protocol ΠMPCT. The generalization to n
players is straight-forward and discussed in Sect. 4.1.

Informal description of the protocol. P1, using a perfectly binding compu-
tationally hiding commitment scheme, commits in the first round to a random
string r1 two times thus obtaining com0, com1. Moreover P1 runs ΠOR in order to
prove knowledge of either the message committed in com0 or the message com-
mitted in com1. In the last (fourth) round P1 sends r1. In parallel, an execution
of a NMZK ensures that both com0 and com1 contain the same message r1 (that
is sent in the fourth round)9. When P1 receives the last round that contains
r2, P1 computes and outputs r1 ⊕ r2. P2 symmetrically executes the same steps
using as input r2.

The simulator for ΠMPCT runs the simulator of NMZK and extracts the input
r� from the malicious party using the PoK extractor of ΠOR. At this point the
simulator invokes the functionality thus obtaining r and plays in the last round
rs = r ⊕ r�. Note that the values that the simulator commits in com0 and
com1 are unrelated to rs and this is possible because the NMZK is simulated.
The extraction of the input from the adversary made by the simulator needs
more attention. Indeed the security of NMZK will ensure that, even though
the simulator cheats (he commits to a random string in both com0 and com1)
the adversary can not do the same. Therefore the only way he can complete an
execution of ΠMPCT consists of committing two times to r� in the first round, and
send the same value in the fourth round. This means that the value extracted
(in the third round) from the PoK extractor of ΠOR is the input of the malicious
party.

Our security proof consists of showing the indistinguishability of the following
hybrid experiments. The first hybrid experiment differs from the real game by
using the simulator of NMZK. The simulator, in order to extract the trapdoor
from the adversary, rewinds from the third to the second round, thus rewinding
also ΠOR. Indeed the adversary, for every different second round of the NMZK
could sent a different second round for ΠOR. This becomes a problem when we
consider the hybrid experiment Hi where the witness for ΠOR changes. Due to
the rewinds made by the simulator of the NMZK it is not clear how to rely on the
security of the WI property of ΠOR (the challenger of WI would be rewound).
This is the reason why, also in this case, we need to consider an intermediate
hybrid experiment Hw0,w1 where both witnesses of ΠOR can be used. Then we
can prove the indistinguishability between Hw0,w1 and Hi still relying on the
Special HVZK of the sub-protocol used in ΠOR (Blum’s protocol suffices in this
case).

9 Notice here how crucial is to delayed-input have synchronous many-many NMZK.

NMZK and MPCT in 4-Round 719

2 Definitions and Tools

Preliminaries. We denote the security parameter by λ and use “||” as con-
catenation operator (i.e., if a and b are two strings then by a||b we denote the
concatenation of a and b). For a finite set Q, x ← Q sampling of x from Q with
uniform distribution. We use the abbreviation ppt that stays for probabilis-
tic polynomial time. We use poly(·) to indicate a generic polynomial function.
A polynomial-time relation Rel (or polynomial relation, in short) is a subset of
{0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in time
polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃ w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation
(that is, RelL is such that L = LRelL). We also use L̂ to denotes the language that
includes L and all well formed instances that are not in L. Let A and B be two
interactive probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the distrib-
ution of B’s output after running on private input β with A using private input
α, both running on common input γ. A transcript of 〈A(α), B(β)〉(γ) consists of
the messages exchanged during an execution where A receives a private input α,
B receives a private input β and both A and B receive a common input γ. More-
over, we will refer to the view of A (resp. B) as the messages it received during
the execution of 〈A(α), B(β)〉(γ), along with its randomness and its input. We
denote by Ar an algorithm A that receives as randomness r. In AppendixA we
recall some useful definitions. We assume familiarity with the well-known formal
definitions for secure multi-party computation.

3 4-Round Delayed-Input NMZK from OWFs

Delayed-Input non-malleable zero knowledge. Following [26] we use a
definition that gives to the adversary the power of adaptive-input selection.
More precisely, in [26] the adversary selects the instance and then a Turing
machine outputs the witness in exponential time. Here we slightly deviate (sim-
ilarly to [14]) by (1) requiring the adversary to output also the witness and (2)
allowing the adversary to make this choice at the last round. This choice is due
to our application where delayed-input non-malleable zero knowledge is used.
Indeed we will show that this definition is enough for our propose. More pre-
cisely our definition (similarly to [7]) we will allow the adversary to explicitly
select the statement, and as such the adversary will provide also the witness for
the prover. The simulated game however will filter out the witness so that the
simulator will receive only the instance. This approach strictly follows the one
of [14] where adaptive-input selection is explicitly allowed and managed in a sim-
ilar way. As final remark, our definition will require the existence of a black-box
simulator since a non-black-box simulator could retrieve from the code of the
adversary the witness for the adaptively generated statement. The non-black-
box simulator could then run the honest prover procedure, therefore canceling
completely the security flavor of the simulation paradigm.

720 M. Ciampi et al.

Let Π = (P,V) be a delayed-input interactive argument system for a NP-
language L with witness relation RelL. Consider a ppt MiM adversary A that
is simultaneously participating in one left session and poly(λ) right sessions.
Before the execution starts, P,V and A receive as a common input the security
parameter in unary 1λ. Additionally A receives as auxiliary input z ∈ {0, 1}�. In
the left session A verifies the validity of a statement x (chosen adaptively in the
last round of Π) by interacting with P using identity id of A’s choice. In the
right sessions A proves the validity of the statements x̃1 . . . , x̃poly(λ)

10 (chosen
adaptively in the last round of Π) to the honest verifiers V1, . . . ,Vpoly(λ), using
identities ĩd1, . . . , ĩdpoly(λ) of A’s choice.

More precisely in the left session A, before the last round of Π is executed,
adaptively selects the statement x to be proved and the witness w, s.t. (x,w) ∈
RelL, and sends them to P11.

Let ViewA(1λ, z) denote a random variable that describes the view of A in
the above experiment.

Definition 1 (Delayed-input NMZK). A delayed-input argument system
Π = (P,V) for an NP-language L with witness relation RelL is delayed-input
non-malleable zero knowledge (NMZK) if for any MiM adversary A that partic-
ipates in one left session and poly(λ) right sessions, there exists a expected ppt
machine S(1λ, z) such that:

1. The probability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}� and {ViewA(1λ,

z)}λ∈N,z∈{0,1}� are computationally indistinguishable over λ, where S1(1λ, z)
denotes the first output of S(1λ, z).

2. Let (View, w1, . . . , wpoly(λ)) denote the output of S(1λ, z), for some z ∈ {0, 1}�.
Let x̃1, . . . , x̃poly(λ) be the right-session statements appearing in View and let
id and ĩd1, . . . , ĩdpoly(λ) be respectively the identities used in the left and right
sessions appearing in View. Then for every i ∈ {1, . . . , poly(λ)}, if the i-th
right session is accepting and id �= ĩdi, then w̃i is s.t. (x̃i, w̃i) ∈ RelL.

The above definition of NMZK allows the adversary to select statements adap-
tively in the last round both in left and in the right sessions. Therefore any
argument system that is NMZK according to the above definition enjoys also
adaptive-input argument of knowledge. Following [27] we say that a MiM is syn-
chronous if it “aligns” the left and the right sessions; that is, whenever it receives
message i on the left, it directly sends message i on the right, and vice versa.
In our paper we also consider the notion of delayed-input many-many synchro-
nous NMZK, that is equal to the notion of delayed-input NMZK except that
polynomially many left and right sessions are played in synchronously.

In the rest of the paper, following [23], we assume that identities are known
before the protocol begins, though strictly speaking this is not necessary, as
the identities do not appear in the protocol until after the first prover message.

10 We denote (here and in the rest of the paper) by δ̃ a value associated with the right
session where δ is the corresponding value in the left session.

11 The witness w sent by A will be just ignored by the simulator.

NMZK and MPCT in 4-Round 721

The MiM can choose his identity adversarially as long as it differs from the
identities used by honest senders. As already observed in previous works, when
the identity is selected by the sender the id-based definitions guarantee non-
malleability as long as the MiM does not behave like a proxy (an unavoidable
attack). Indeed the sender can pick as id the public key of a signature scheme
signing the transcript. The MiM will have to use a different id or to break the
signature scheme.

3.1 Our Protocol: NMZK

For our construction of a 4-round delayed-input non-malleable zero knowledge
NMZK = (PNMZK,VNMZK) for the NP-language L we use the following tools.

1. A signature scheme Σ = (Gen,Sign,Ver).
2. A 4-round public-coin synchronous honest-extractable non-malleable commit-

ment scheme NM = (S,R) (See AppendixA.3 for a formal definition).
3. Two instantiations of the adaptive-input special sound LS protocol described

in AppendixB in order to construct a 4-round delayed-input public-coin proof
system for the OR of compound statement ΠOR = (POR,VOR) as described in
AppendixB.2. More in details we use the following proof systems.
3.1 A 4-round delayed-input public coin LSL = (PL,VL) for the NP-language

L with adaptive-input Special HVZK simulator SL. LSL = (PL,VL) is
adaptive-input special sound for the corresponding relation RelL with
instance length �L.

3.2 A 4-round delayed-input public coin LSnm = (Pnm,Vnm) with adaptive-
input Special HVZK simulator Snm. LSnm = (Pnm,Vnm) is adaptive-input
special sound for the NP-relation RelLnm where

Lnm = {(vk, τ = (id, nm1, nm2, nm3, nm4), s1 : ∃(decnm, s0, σ1, msg1, σ2, msg2)

s.t. Ver(vk, msg1, σ1) = 1 AND Ver(vk, msg2, σ2) = 1 AND msg1 �= msg2 AND

R accepts (id, s1, decnm) as a valid decommitment of τ AND s0 ⊕ s1 = σ1||σ2}.

We denote with �nm the dimension of the instances belonging to Lnm.
Informally by running LSnm one can prove that the message committed
using a non-malleable commitment XORed with the value s1 represents
two signatures for two different messages w.r.t. the verification key vk.

Moreover ΠOR is also adaptive-input PoK for the relation RelLOR
=

{((xL, xnm), w) : ((xL, w) ∈ RelL) OR ((xnm, w) ∈ RelLnm)} (see Theorem 10
in AppendixB.2 for more details).

Overview of our protocol. We now give an high-level description of our
delayed-input NMZK of Fig. 1. For a formal description see Fig. 2.

In the first round VNMZK computes a pair of signature-verification keys
(sk, vk) sending vk to PNMZK. Also VNMZK computes the (public coin) first rounds
nm1 of NM, ls1L ← VL(1λ, �L) and ls1nm ← VL(1λ, �nm). VNMZK completes the first
round by sending (vk, ls1L, ls1nm, nm1) to PNMZK.

722 M. Ciampi et al.

In the second round PNMZK computes ls2L ← PL(1λ, ls1L, �L) and sends ls2L.
Furthermore picks ls3nm ← {0, 1}λ and runs ls2nm ← Snm(1λ, ls1nm, ls3nm, �nm) in
order to send ls2nm. PNMZK now commits to a random message s0 using the non-
malleable commitment NM by running S on input 1λ, s0, nm1 and the identity
id thus obtaining and sending nm2. Also PNMZK sends a random message msg.

In the third round of the protocol, upon receiving msg, VNMZK computes and
sends a signature σ of msg by running Sign(sk, msg). VNMZK picks and sends c ←
{0, 1}λ. Also he computes and sends the (public coin) third rounds nm3 of NM.

In the fourth round PNMZK checks whether or not σ is a valid signature
for msg w.r.t. the verification key vk. In the negative case PNMZK aborts, oth-
erwise he continues with the following steps. PNMZK computes ls3L = ls3nm ⊕ c.
Upon receiving the instance x to be proved and the witness w s.t. (x,w) ∈ RelL,
PNMZK completes the transcript for LSL running ls4L ← PL(x,w, ls3L). At this
point PNMZK completes the commitment of s0 by running S on input nm3

thus obtaining (nm4, decnm). PNMZK picks a random string s1, sets xnm =
(vk, id, nm1, nm2, nm3, nm4, s1) and runs ls4nm ← Snm(xnm). PNMZK completes the
fourth round by sending (ls3L, ls4L, nm4, s1, ls

3
nm, ls4nm, x, xnm).

The verifier VNMZK accepts x iff the following conditions are satis-
fied: (1) c is equal to ls3L ⊕ ls3nm; (2) VL(x, ls1L, ls2L, ls3L, ls4L) = 1; (3)
Vnm(xnm, ls1nm, ls2nm, ls3nm, ls4nm) = 1.

Fig. 1. Our 4-round delayed-input NMZK

NMZK and MPCT in 4-Round 723

Fig. 2. Formal construction of our delayed-input NMZK.

The simulator extractor. Informally, the simulator SimNMZK of our proto-
col interacts with the adversary ANMZK emulating both the prover in the left
session and polynomially many verifiers in the right sessions. In the right ses-
sions SimNMZK interacts with ANMZK as the honest verifiers do. While, in the
left session for an instance x ∈ L chosen adaptively by ANMZK, SimNMZK proves,
using ΠOR, that the message committed in NM contains two signatures of two
different messages w.r.t. the verification key vk. In more details SimNMZK runs

724 M. Ciampi et al.

the adaptive-input Special HVZK simulator of LSL to complete the transcript
for LSL w.r.t. the instance x. In order to use the honest prover procedure to
compute the transcript of LSnm, SimNMZK extracts two signatures for two differ-
ent messages by rewinding ANMZK from the third to the second round and by
committing to them using NM12. More precisely the simulator commits to a ran-
dom string s0, but computes s1 s.t. s1 = (σ1||σ2)⊕s0

13. Therefore the execution
of ΠOR can be completed by using the knowledge of the two signatures commit-
ted using NM. We use the xor trick originally provided in [6] in order to avoid any
additional requirement w.r.t. the underlying non-malleable commitment scheme
NM. Indeed if the sender of NM could decide the message to commit in the
last round, then SimNMZK can simply compute the first round of NM, extract
the signature, and compute the last round of NM by committing to σ1||σ2. It is
important to observe that even though the non-malleable commitment scheme
of [22] fixes the message to be committed in the third round, there is in general
no guarantee that such a scheme is secure against an adversary that adaptively
chooses the challenge messages in the last round of the non-malleability secu-
rity game. Therefore, even though the completeness of our scheme would work
without using the trick of [6], it would be unclear, in general, how to prove the
security of our final scheme. A formal description of SimNMZK can be found in
the proof of Theorem1.

The formal construction of our delayed-input NMZK NMZK =
(PNMZK,VNMZK) for the NP-language L can be found in Fig. 2.

Theorem 1. If OWFs exist, then NMZK is a 4-round delayed-input NMZK
AoK for NP.

Proof. We divide the security proof in two parts, proving that NMZK enjoys
delayed-input completeness and NMZK. The proof of NMZK is divided also in
two lemmas, one for each of the two properties of Definition 1. Before that, we
recall that LSnm and LSL can be constructed from OWFs (see Appendix A) as
well as Σ (using [39]) and the 4-round public-coin synchronous honest-extractable
non-malleable commitment scheme NM (see Appendix A.3).

(Delayed-Input) Completeness. The completeness follows directly from the
delayed-input completeness of LSnm and LSL, the correctness of NM and the
validity of Σ. We observe that, due to the delayed-input property of LSL, the
statement x (and the respective witness w) are used by PNMZK only to compute
the last round. Therefore also NMZK enjoys delayed-input completeness.

(Delayed-Input) NMZK. Following Definition 1 we start by describing how
the simulator SimNMZK for NMZK works. In the left session SimNMZK interacts
with the MiM adversary ANMZK in the following way. Upon receiving the first
round, vk, ls1L, ls1nm, nm1, from ANMZK, SimNMZK on input ls1nm computes ls2nm by
running Pnm. SimNMZK picks ls3L ← {0, 1}λ and runs SL on input 1λ, �L, ls1L,
12 W.l.o.g. we assume that the signatures σ1, σ2 include the signed messages.
13 For ease of exposition we will simply say that ANMZK commits to two signatures

using NM.

NMZK and MPCT in 4-Round 725

ls3L thus obtaining ls2L. SimNMZK, in order to commit to a random message s0
runs S on input nm1, the identity id and s0 thus obtaining nm2. SimNMZK sends
ls2L, ls2nm, nm2 and a random message msg1 to ANMZK. Upon receiving the third
round, c, nm3, σ1, and instance x to be proved from ANMZK, the simulator checks
whether or not σ1 is a valid signature for msg1 w.r.t. the verification key vk. In
the negative case SimNMZK aborts, otherwise SimNMZK rewinds ANMZK from the
third to the second round in order to obtain a second signature σ2 for a different
message msg2. After the extraction of the signatures SimNMZK returns to the
main thread and computes the fourth round as follows14.

SimNMZK completes the commitment of s0 by running S on input nm3

thus obtaining (nm4, decnm) and sending nm4. Furthermore SimNMZK sets
s1 s.t. s1 = (σ1||σ2) ⊕ s0, xnm = (vk, id, nm1, nm2, nm3, nm4, s1), wnm =
(decnm, s0, σ1, msg1, σ2, msg2) and completes the transcript for LSnm obtaining
ls4nm by running the prover procedure Pnm on input xnm, wnm and ls3L ⊕ c. At this
point SimNMZK runs the adaptive-input Special HVZK simulator SL on input x
thus obtaining ls4L. Then the values (ls3L, ls4L, nm4, s1, ls

3
nm, ls4nm, x, xnm) are sent

to ANMZK. At the end of the execution SimNMZK outputs ANMZK’s view in the
main thread. Furthermore, he uses the extractor of LSL to extract and output,
from the poly(λ) right sessions, the witnesses w̃1, . . . , w̃poly(λ) used by ANMZK

to compute the transcript of ΠOR (the witnesses correspond to statements x̃i

proved by ANMZK in the i-th right session, for i = 1, . . . , poly(λ)).

Lemma 1. {SimNMZK
1(1λ, z)}λ∈N,z∈{0,1}∗ ≈ {ViewANMZK(1λ, z)}λ∈N,z∈{0,1}∗ ,

where SimNMZK
1(1λ, z) denotes the 1st output of SimNMZK.

In order to prove the above lemma we consider the series of
hybrid experiments described below. In the proof we denote with
{ViewANMZK

Hi
(1λ, z)}λ∈N,z∈{0,1}∗ the random variable that describes the view of

ANMZK in the hybrid Hi(1λ, z). Let p the probability that in the real execution
ANMZK completes the left session.

– We start considering the hybrid experiment H0(1λ, z) in which in the
left session PNMZK interacts with ANMZK and in the i-th right ses-
sion VNMZKi interacts with ANMZK, for i = 1, . . . , poly(λ). Note that
{ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ = {ViewA

NMZK(1λ, z)}λ∈N,z∈{0,1}∗ .
The hybrid experiment H1(1λ, z) differs from H0(1λ, z) only in the fact that
in the left session of H1(1λ, z) ANMZK is rewound from the third to the sec-
ond round, in order to extract two signatures σ1, σ2 for two distinct messages
(msg1, msg2) w.r.t. a verification key vk. Note that after p rewinds the prob-
ability of not obtaining a valid new signature is less than 1/2. Therefore the
probability that ANMZK does not give a second valid signature for a randomly
chosen message after λ/p rewinds is negligible in λ. For the above reason

14 Note that it is possible to complete the main thread, due to the delayed-input com-
pleteness of LSnm, and to the fact that we do not need to change the second round of
NM (that is, we do not need to change the committed message s0) in order to have
xnm ∈ Lnm.

726 M. Ciampi et al.

the procedure of extraction of signatures for different messages in H1(1λ, z)
succeeds except with negligible probability. Observe that the above deviation
increases the abort probability of the experiment only by a negligible amount,
therefore {ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ ≡s {ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ .

– The hybrid experiment H2(1λ, z) differs from H1(1λ, z) only in the mes-
sage committed using NM. Indeed PNMZK commits using NM to two sig-
natures σ1, σ2 of two distinct messages (msg1, msg2) instead of a random
message. In more details, PNMZK commits to a random string s0 using
NM and in 4th round sets and sends s1 = (σ1||σ2) ⊕ s0, instead of send-
ing s1 as a random string. Observe that the procedure of extraction of
the signatures succeeds in H2(1λ, z) with non-negligible probability, because
the first three rounds are played exactly as in H1(1λ, z). Now we can
claim that {ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗

are computationally indistinguishable by using the computationally-hiding
property of NM. Suppose by contradiction that there exist an adver-
sary ANMZK and a distinguisher DNMZK such that DNMZK distinguishes
{ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ from {ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ . Then we

can construct an adversary AHiding that breaks the computationally hiding of
NM in the following way. AHiding sends to the challenger of the hiding game
CHiding two random messages (m0,m1). Then, in the left session AHiding acts as
PNMZK except for messages of NM for which he acts as proxy between CHiding

and ANMZK. When AHiding computes the last round of the left session AHiding

sets and sends s1 = σ1||σ2 ⊕ m0. In the right sessions AHiding interacts with
AZK acting as VNMZK does. At the end of the execution AHiding runs DNMZK

and outputs what DNMZK outputs. It is easy to see that if CHiding commits to
m1 then, AZK acts as in H1(1λ, z), otherwise he acts as in H2(1λ, z). Note that
the reduction to the hiding property of NM is possible because the rewinds
to extract a second signature do not affect the execution with the challenger
of NM that remains straight-line.

– The hybrid experiment H3(1λ, z) differs from H2(1λ, z) in the way the
transcript of LSnm is computed. More precisely, the prover Pnm of LSnm is
used to compute the messages ls2nm and ls4nm instead of using the adaptive-
input Special HVZK simulator. Note that due to the delayed-input property
of LSnm the statement xnm = (vk, nm1, nm2, nm3, nm4, s1) and the witness
wnm = (decnm, s0, σ1, msg1, σ2, msg2) are required by Pnm only to compute ls4nm

and are not needed to compute ls2nm. Observe that the procedure of extraction
of the signatures succeeds in H3(1λ, z) with non-negligible probability due to
the adaptive-input Special HVZK of LSnm. From the adaptive-input Special
HVZK of LSnm it follows that
{ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H3
(1λ, z)}λ∈N,z∈{0,1}∗ are compu-

tationally indistinguishable.
– The hybrid H4(1λ, z) differs from H3(1λ, z) in the way the transcript of LSL

is computed. More precisely, the adaptive-input Special HVZK simulator of
LSL is used to compute the messages ls2L and ls4L using as input ls1L received by
ANMZK, the statement x and a random string ls3L chosen by the hybrid exper-
iment. We observe that in order to complete the execution of ΠOR the honest

NMZK and MPCT in 4-Round 727

prover procedure Pnm can be used on input xnm, wnm and ls3nm = ls3L⊕c. More-
over adaptive-input Special HVZK of LSL ensures that the extraction pro-
cedure of the signatures succeeds in H4(1λ, z) with non-negligible probabil-
ity and that {ViewANMZK

H4
(1λ, z)}λ∈N,z∈{0,1}∗ ≈ {ViewANMZK

H3
(1λ, z)}λ∈N,z∈{0,1}∗ .

Note that H4(1λ, z) corresponds to the simulated experiment, that is the
experiment where SimNMZK interacts with the adversary ANMZK emulat-
ing both a prover in the left session and polynomially many verifiers
in the right sessions. This implies that {ViewANMZK

H4
(1λ, z)}λ∈N,z∈{0,1}∗ =

{S1(1λ, z)}λ∈N,z∈{0,1}� .

The proof ends with the observation that for all λ ∈ N, z ∈ {0, 1}∗

it holds that: {ViewA
NMZK(1λ, z)}λ,z = {ViewANMZK

H0
(1λ, z)}λ,z ≈ · · · ≈

{ViewANMZK

H4
(1λ, z)}λ,z = {S1(1λ, z)}λ,z

Lemma 2. Let x̃1, . . . , x̃poly(λ) be the right-session statements appearing in
View = SimNMZK

1(1λ, z) and let id be the identity of the left session and
ĩd1, . . . , ĩdpoly(λ) be the identities of right sessions appearing in View. If the i-
th right session is accepting and id �= ĩdi for i = 1, . . . , poly(λ), then except
with negligible probability, the second output of SimNMZK(1λ, z) is w̃i such that
(x̃i, w̃i) ∈ RelL for i = 1, . . . , poly(λ).

We now reconsider the hybrid experiments Hk for k = 0, . . . , 4 described in the
security proof of Lemma 1, and prove that they all enjoys an additional property.
That is, in the right sessions ANMZK never commits, using NM, to a message
s̃0 and sends a value s̃1 s.t. s̃0 ⊕ s̃1 = σ̃1||σ̃2 where σ̃1, σ̃2 are two signatures
for to different messages. Since ANMZK does not commit to the signatures then
the transcript computed using LSnm correspond to a false instance, therefore
for the adaptive-input PoK property of ΠOR, ANMZK in the i-th right session
chooses a statement x̃i and essentially completes the corresponding transcript
of LSL using the witness w̃i s.t. (x̃i, w̃i) ∈ RelL for i ∈ {1, . . . , poly(λ)}. For the
above chain of implications we are ensured that in all hybrids ANMZK uses the
witnesses to complete the transcripts of ΠOR in the right sessions. Therefore also
in the simulated experiment, that corresponds to the last hybrid experiment, the
ANMZK behavior allows SimNMZK to extract the witness used by ANMZK (that is
internally executed by SimNMZK) using the extractor of ΠOR (that exists from
the adaptive-PoK property enjoyed by ΠOR).

In order to prove that in H0, . . . ,H4 ANMZK does not commit to two signa-
tures in any of the right sessions we rely on the “mild” non-malleability and
the honest-extraction property enjoyed by NM. More precisely, in each hybrid
experiment, we use the honest-extraction15 property to extract the signatures
from the right sessions (that by contradiction are committed using NM). During
the proof we need to show that the rewinds made by the honest-extractor do not
interfere with the various reductions. Roughly speaking our security proof works
15 Observe that in our case is sufficient that the extraction holds against honest sender,

because for our security proof we only need to be sure that the commitment com-
puted using NM is not a commitment of signatures.

728 M. Ciampi et al.

because only non-interactive primitives are used, therefore the rewinds made by
the extractor of NM do not rewind the challenger involved in the reduction. In
particular, consider the hybrid H3 where we switch from the adaptive-input Spe-
cial HVZK simulator of LSnm to the honest prover procedure and H4 where we
start to use adaptive-input Special HVZK simulator of LSL. In this two hybrid
experiments in order to prove that ANMZK does not commit to the signatures
we rely on the adaptive-input Special HVZK and the rewinds do not affect the
reduction. Indeed when we rely on adaptive-input Special HVZK of LSL (LSnm)
the honest prover procedure of LSnm (LSL) can be used in order to complete the
execution of ΠOR. In this way the third round ls3L (ls3nm) can be kept fixed thus
computing ls3nm = ci ⊕ ls3L (ls3L = ci ⊕ ls3nm) for every ci that could be sent by
ANMZK during the rewinds. It is not clear how to do such a security proof by
directly relying on the WI property of ΠOR. The formal proof for this lemma
can be found in the full version (see [9]).

Theorem 2. If OWFs exists, then NMZK is a delayed-input synchronous many-
many NMZK AoK for NP.

Proof. The proof proceeds very similarly to the one showed for Theorem 1. The
main difference between these two proofs is that we now have to consider also
polynomially many synchronous left sessions played in parallel. Therefore the
only difference between this proof and the one of Theorem1 is that in the reduc-
tions we need to rely on the security of a many-one non-malleable commitment
scheme and on the adaptive-input SHVZK (that is closed under parallel com-
position). Therefore, when we make a reduction on the adaptive-input SHVZK,
we can simply use the parallel version of the primitives. Regarding a many-
one non-malleable commitment, we notice that using the same arguments of
the security proof of Proposition 1 provided in [28], it is possible to claim that
a synchronous (one-one) non-malleable commitment is also synchronous many-
one non-malleable. Therefore no additional assumptions are required in order to
prove that NMZK is also delayed-input synchronous many-many NMZK. Note
also that, the simulator needs to extract the trapdoor (the signatures of two
different messages) in all the left (synchronous) sessions completed in the main
thread. We can show that the extraction succeeds except with negligible proba-
bility using the same arguments used in the security proof of Theorem1.

4 Multi-Party Coin-Tossing Protocol

4.1 4-Round Secure Multi-Party Coin Tossing: ΠMPCT

The high-level idea of our protocol ΠMPCT significantly differs from the one of [18]
(e.g., we use our 4-round delayed-input synchronous many-many NMZK instead
of 3-round 3-robust parallel non-malleable commitment scheme). However, sim-
ilarly to [18] our protocol simply consists of each party committing to a random
string r, which is opened in the last round along with a simulatable proof of
correct opening given to all parties independently. The output consists of the

NMZK and MPCT in 4-Round 729

⊕ of all opened strings. Let’s see in more details how our ΠMPCT works. For our
construction we use the following tools.

1. A non-interactive perfectly binding computationally hiding commitment
scheme PBCOM = (Com,Dec).

2. A Σ-protocol BLL = (PL,VL) for the NP-language L = {com :
∃ (dec,m) s.t. Dec(com, dec,m) = 1} with Special HVZK simulator SimL.
We uses two instantiations of BLL in order to construct the protocol for
the OR of two statements ΠOR as described earlier (Appendix B.2 for more
details). ΠOR is a proof system for the NP-language Lcom = {(com0, com1) :
∃ (dec,m)s.t. Dec(com0, dec,m) = 1 OR Dec(com1, dec,m) = 1}16. Infor-
mally, by running ΠOR, one can prove the knowledge of the message commit-
ted in com0 or in com1.

4. A 4-round delayed-input synchronous many-many NMZK NMZK =
(PNMZK,VNMZK) for the following NP-language

LNMZK = {((com0, com1), m) : ∀i ∈ {0, 1} ∃ deci s.t. Dec(comi, deci, m) = 1}.

Informally, by running NMZK, one can prove that 2 commitments contain
the same message m.

4.2 ΠMPCT: Informal Description and Security Intuition

The high level description of our protocol between just two parties (A1, A2) is
given in Fig. 3. For a formal description of ΠMPCT we refer the reader to Sect. 4.3.
In Fig. 3 we consider an execution of ΠMPCT that goes from A1 to A2 (the
execution from A2 to A1 is symmetric). We recall that the protocol is executed
simultaneously by both A1 and A2. The main idea is the following. Each party
commits to his input using two instantiations of a non-interactive commitment.
More precisely we have that A1 computes two non-interactive commitments com0
and com1 (along with their decommitment information dec0 and dec1) of the
message r1. Each party also runs ΠOR for the NP-language Lcom, from the first
to the third round, in order to prove knowledge of the message committed in
com0 or in com1. In the last round each party sends his own input (i.e. r1 for
A1 and r2 for A2) and proves, using a delayed-input synchronous many-many
non-malleable ZK for the NP-language LNMZK, that messages committed using
PBCOM were actually equal to that input (i.e. r1 for A1 and r2 for A2). That
is, A1 sends r1 and proves that com0 and com1 are valid commitments of the
message r1.

Intuition about the security of ΠMPCT. Let A∗
1 be the corrupted party.

Informally the simulator Sim works as follows. Sim starts an interaction against
A∗

1 using as input a random string y until the third round of ΠMPCT is received
by A∗

1. More precisely, in the first round he computes two commitments com0

16 We use ΠOR in a non-black box way, but for ease of exposition sometimes we will refer
to entire protocol ΠOR in order to invoke the proof of knowledge property enjoyed
by ΠOR.

730 M. Ciampi et al.

Fig. 3. ΠMPCT: Informal description of the execution from A1 to A2. The execution
from A2 to A1 is symmetric.

and com1 (along with their decommitment information dec0 and dec1) of y, and
runs POR using as a witness (dec1, y). After the 3rd round Sim extracts the
input r∗

1 of the corrupted party A∗
1 using the extractor EOR of ΠOR (that exists

from the PoK property of ΠOR) and sends r∗
1 to the ideal world functionality.

At this point Sim receives r from the ideal-world functionality, and completes
the execution of the 4th round by sending r2 = r ⊕ r∗

1 . We observe that Sim, in
order to send a string r2 that differs from y in the 4th round, has to cheat in
NMZK. This is done by simply running the simulator of NMZK. To prove the
security of our scheme we will go through a sequence of hybrid experiments in
order to show that the output view of the adversary in the real world can be
simulated in the ideal world by Sim. The security proof strongly relies on the
non-malleable zero knowledge property of NMZK. Indeed the aim of NMZK is to
ensure that the adversary does not maul the messages received from Sim. That
is, the behavior of A∗

1 allows to extract, in every hybrid experiments that we will
consider, the correct input of A∗

1. This holds even in case the commitments sent
by Sim to A∗

1 are commitments of a random string y, and the value sent in the
4th round is inconsistent with the value committed in the first round.

4.3 Formal Description

Let P = {P1, . . . , Pn} be the set of parties. Furthermore, denote by
(id1, . . . , idn)17 the unique identities of parties {P1, . . . , Pn}, respectively. Let us
17 As discuss in the Definition 1 the use of the identifiers can be avoid, we use them,

to uniformity of notation.

NMZK and MPCT in 4-Round 731

denote by FMPCT : (1λ)n → {0, 1}λ the function FMPCT(r1, . . . , rn) = r1⊕· · ·⊕rn.
The protocol starts with each party Pi choosing a random string ri for i =
1, . . . , n. It consists of four rounds, i.e., all parties send messages in each round
and the messages of all executions are seen by every party. Following [18] we
describe the protocol between two parties (A1, A2) observing that the real pro-
tocol actually consists of n simultaneous executions of a two-party coin-tossing
protocol ΠMPCT = (A1, A2) between parties (Pi, Pj) where Pi acts as A1 with
input ri and Pj acts as A2 with input rj (both are symmetric). Let the input
of A1 be r1, and the input of A2 be r2. The set of messages enabling A1 to
learn the output are denoted by (m1,m2,m3,m4) where (m1,m3) are sent by
A1 and (m2,m4) are sent by A2. Likewise, the set of messages enabling A2 to
learn the output are denoted by (m̃1, m̃2, m̃3, m̃4) where (m̃1, m̃3) are sent by A2

and (m̃2, m̃4) are sent by A1. Therefore, messages (ml, m̃l) are simultaneously
exchanged in the l-th round for l = 1, . . . , 4.

Protocol ΠMPCT. Common input: security parameter λ, instances length:
�NMZK, �com.

Round 1. We first describe how A1 constructs m1.
1. Compute (com0, dec0) ← Com(r1) and (com1, dec1) ← Com(r1).
2. Compute a0 ← PL(1λ, com0, (dec0, r1)).
3. Pick c1 ← {0, 1}λ and compute (a1, z1) ← SimL(1λ, com1, c1).
4. Run VNMZK on input 1λ and �NMZK thus obtaining the 1st round nmzk1 of

NMZK.
5. Message m1 is defined to be (com0, com1, a0, a1, nmzk1).

Likewise, A2 performs the same action as A1 in order to construct m̃1 =
(˜com0, ˜com1, ã0, ã1, ˜nmzk1).
Round 2. In this round A2 sends message m2 and A1 sends m̃2. We first describe
how A2 constructs m2.
1. Run PNMZK on input 1λ, id2, �NMZK and nmzk1 thus obtaining the 2nd round

nmzk2 of NMZK.
2. Pick c ← {0, 1}λ.
3. Define message m2 = (c, nmzk2).

Likewise, A1 performs the same actions as A2 in the previous step to construct
the message m̃2 = (c̃, ˜nmzk2).
Round 3. In this round A1 sends message m3 and A2 sends m̃3. A1 prepares
m3 as follows.
1. Compute c0 = c ⊕ c1 and z0 ← PL(c0).
2. Run VNMZK on input nmzk2 thus obtaining the 3rd round nmzk3 of NMZK.
3. Define m3 = (nmzk3, c0, c1, z0, z1

)
.

Likewise, A2 performs the same actions as A1 in the previous step to construct
the message m̃3 = (˜nmzk3, c̃0, c̃1, z̃0, z̃1).
Round 4. In this round A2 sends message m4 and A1 sends m̃4. A2 prepares
m4 as follows.
1. Check that the following conditions are satisfied: (a) c = c0 ⊕ c1; (b) the

transcript a0, c0, z0 is accepting w.r.t. the instance com0; (c) the transcript
a1, c1, z1 is accepting w.r.t. the instance com1. If one of the check fails then
output ⊥, otherwise continue with the following steps.

732 M. Ciampi et al.

2. Set xNMZK = (˜com0, ˜com1, r2) and wNMZK = (˜dec0, ˜dec1).
3. Run PNMZK on input nmzk3, the statement to be proved xNMZK and the

witness wNMZK s.t. (xNMZK, wNMZK) ∈ RelLNMZK
, thus obtaining the 4th round

nmzk4 of NMZK.
4. Define m4 = (r2, xNMZK, nmzk4).

Likewise, A1 performs the same actions as A2 in the previous step to construct
the message m̃4 = (r1, x̃NMZK, ˜nmzk4).

Output computation of ΠMPCT. Check, for each party, if (nmzki
1, nmzki

2,
nmzki

3, nmzki
4) is accepting for VNMZK with respect to the instance xi

NMZK

(i = 1, . . . , n) and that all pairs of parties used the same inputs (r1, . . . , rn).
If so, output r = r1 ⊕ · · · ⊕ rn.

Theorem 3. If one-to-one OWFs exist, then the multi-party protocol ΠMPCT

securely computes the multi-party coin-tossing functionality with black-box sim-
ulation.

The formal security proof can be found in the full version (see [9]).

Acknowledgments. We thank Giuseppe Persiano and Alessandra Scafuro for several
discussions on delayed-input protocols. Research supported in part by “GNCS - INdAM”,
EU COST Action IC1306, NSF grant 1619348, DARPA, US-Israel BSF grant 2012366,
OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty
Research Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. The views expressed are those of the
authors and do not reflect position of the Department of Defense or the U.S. Govern-
ment. The work of 1st, 3rd and 4th authors has been done in part while visiting UCLA.

A Standard Definitions

Definition 2 (Proof/argument system). A pair of ppt interactive algo-
rithms Π = (P,V) constitute a proof system (resp., an argument system) for
an NP-language L, if the following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:
Prob [〈P(w),V〉(x) = 1] = 1.
Soundness: For every interactive (resp., ppt interactive) algorithm P�,
there exists a negligible function ν such that for every x /∈ L and every z:
Prob [〈P�(z),V〉(x) = 1] < ν(|x|).
A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-

input completeness if P needs x and w only to compute the last round and V
needs x only to compute the output. Before that, P and V run having as input
only the size of x. The notion of delayed-input completeness was defined in [10].
An interactive protocol Π = (P,V) is public coin if, at every round, V simply
tosses a predetermined number of coins (i.e. a random challenge) and sends the
outcome to the prover. Moreover we say that the transcript τ of an execution
b = 〈P(z),V〉(x) is accepting if b = 1.

NMZK and MPCT in 4-Round 733

Definition 3 (Proof of Knowledge [27]). A protocol Π = (P,V) that enjoys
completeness is a proof of knowledge (PoK) for the relation RelL if there exists
a probabilistic expected polynomial-time machine E, called the extractor, such
that for every algorithm P�, there exists a negligible function ν, every statement
x ∈ {0, 1}λ, every randomness r ∈ {0, 1}� and every auxiliary input z ∈ {0, 1}�,

Prob [〈P�
r (z),V〉(x) = 1] ≤ Prob

[
w ← EP�

r (z)(x) : (x,w) ∈ RelL
]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK)
if the above condition holds w.r.t. any ppt P�.

In our security proofs we make use of the following observation. An interac-
tive protocol Π that enjoys the property of completeness and PoK (AoK) is a
proof (an argument) system. Indeed suppose by contradiction that is not. By the
definition of PoK (AoK) it is possible to extract the witness for every theorem
x ∈ {0, 1}λ proved by P�

r with probability greater than Prob [〈P�
r (z),V〉(x) = 1];

contradiction. In this paper we also consider the adaptive-input PoK/AoK prop-
erty for all the protocols that enjoy delayed-input completeness. Adaptive-input
PoK/AoK ensures that the PoK/AoK property still holds when a malicious
prover can choose the statement adaptively at the last round.

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol
played between a prover P and a verifier V on common input x and private input
w of P s.t. (x,w) ∈ RelL. In a 3-round protocol the first message a and the third
message z are sent by P and the second messages c is played by V. At the end
of the protocol V decides to accept or reject based on the data that he has seen,
i.e. x, a, c, z. We usually denote the message c sent by V as a challenge, and as
challenge length the number of bit of c.

Definition 4 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for a
relation RelL is a Σ-Protocol if the following properties hold:

– Completeness: if (P,V) follow the protocol on input x and private input w to
P s.t. (x,w) ∈ RelL, V always accepts.

– Special soundness: if there exists a polynomial time algorithm such that, for
any pair of accepting transcripts on input x, (a, c1, z1), (a, c2, z2) where c1 �=
c2, outputs witness w such that (x,w) ∈ RelL.

– Special Honest Verifier Zero-knowledge (Special HVZK): there exists a ppt
simulator algorithm Sim that for any x ∈ L, security parameter λ and any
challenge c works as follow: (a, z) ← Sim(1λ, x, c). Furthermore, the distribu-
tion of the output of Sim is computationally indistinguishable from the distri-
bution of a transcript obtained when V sends c as challenge and P runs on
common input x and any w such that (x,w) ∈ RelL

18.

Definition 5. A delayed-input 3-round protocol Π = (P,V) for relation RelL
enjoys adaptive-input special soundness if there exists a polynomial time algo-
rithm such that, for any pair of accepting transcripts (a, c1, z1) for input x1 and
18 Note that we require that the two transcripts are computationally indistinguish-

able as in [16], instead of following [12] that requires the perfect indistinguishability
between the two transcripts.

734 M. Ciampi et al.

(a, c2, z2) for input x2 with c1 �= c2, outputs witnesses w1 and w2 such that
(x1, w1) ∈ RelL and (x2, w2) ∈ RelL.

Definition 6. A delayed-input 3-round protocol Π = (P,V) for relation RelL
enjoys adaptive-input Special Honest Verifier Zero-knowledge (adaptive-input
Special HVZK) if there exists a two phases ppt simulator algorithm Sim that
works as follow:

1. a ← Sim(1λ, c, κ; ρ), where 1λ is the security parameter, c is the challenge κ
is the size of the instance to be proved and the randomness ρ;

2. z ← Sim(x, ρ)19, where x is the instance to be proved.

Π is adaptive-input Special HVZK if any x ∈ L and for any c ∈ {0, 1}λ, the dis-
tribution of the transcripts (a, c, z), computed by Sim, is computationally indis-
tinguishable from the distribution of a transcript obtained when V sends c as
challenge and P runs on common input x and any w (available only in the third
round) such that (x,w) ∈ RelL.

A.1 Commitment Schemes

Definition 7 (Commitment Scheme). Given a security parameter 1λ, a
commitment scheme CS = (Sen,Rec) is a two-phase protocol between two ppt
interactive algorithms, a sender Sen and a receiver Rec. In the commitment
phase Sen on input a message m interacts with Rec to produce a commitment
com, and the private output d of Sen.

In the decommitment phase, Sen sends to Rec a decommitment information
(m, d) such that Rec accepts m as the decommitment of com.

We consider the classic notions of correctness, perfect and statistical binding,
computation and statistical hiding.

A.2 3-Round Honest-Extractable Commitment Schemes

Informally, a 3-round commitment scheme is honest-extractable if there exists an
efficient extractor that having black-box access to any efficient honest sender that
successfully performs the commitment phase, outputs the only committed string
that can be successfully decommitted. We give now a definition that follows the
one of [37].

Definition 8 (Honest-Extractable Commitment Scheme). A perfectly
(resp. statistically) binding commitment scheme ExCS = (ExSen,ExRec) is an
honest-extractable commitment scheme if there exists an expected ppt extrac-
tor ExtCom that given oracle access to any honest sender ExSen, outputs a pair
(τ,m) such that the following two properties hold:

19 To not overburden the notation we omit the randomness when we use the adaptive-
input Special HVZK simulator.

NMZK and MPCT in 4-Round 735

– Simulatability: τ is identically distributed to the view of ExSen (when inter-
acting with an honest ExRec) in the commitment phase.

– Extractability: The probability that there exists a decommitment of τ to a
message m′, where m′ �= m is 0 (resp. negligible).

A.3 Non-malleable Commitments

In order to define a non-malleable commitment we follow [28,29]. Let Π =
(Sen,Rec) be a statistically binding commitment scheme. And let λ be the secu-
rity parameter. Consider a MiM adversary A that, on auxiliary input z par-
ticipates in a left and a right session. In the left sessions the MiM adversary
A interacts with Sen receiving commitment to value m using an identity id of
its choice. In the right session A interacts with Rec attempting to commit to a
related value m̃ again using identity of its choice ĩd. If the right commitment is
invalid, or undefined, its value is set to ⊥. Furthermore, if ĩd = id then m̃ is also
set to ⊥ (i.e., a commitment where the adversary uses the same identity of the
honest senders is considered invalid). Let mimA,m

Π (z) denote a random variable
that describes the values m̃ and the view of A in the above experiment.

Definition 9. (Non-malleable commitment scheme [28,29]). A commit-
ment scheme is non-malleable with respect to commitment if, for every ppt
MiM adversary A, for every m0 ∈ {0, 1}poly(λ) and m1 ∈ {0, 1}poly(λ) the follow-
ing holds

{mimA,m0
Π (z)}z∈{0,1}� ≈ {mimA,m1

Π (z)}z∈{0,1}� .

We say that a commitment is valid or well formed if it admits a decommit-
ment to a message m �= ⊥.

For our propose we use a 4-round synchronous honest-extractable non-
malleable commitment. That is, a commitment scheme that enjoys (1) non-
malleability only against synchronous adversaries, (2) is extractable w.r.t. honest
sender (honest-extractable) and (3) is public-coin. The non-malleable commit-
ment Π provided in Fig. 2 of [22] enjoys non-malleability against synchronous
adversary (as proved in Theorem 1 of [22]), is public coin and can be instantiated
in 4 rounds relying on OWFs (the protocol can be squeezed to 3 rounds using
one-to-one OWFs).

Also, as stated in Sect. 5 of [22], given a commitment computed by the sender
of Π one can rewind the sender in order to obtain a new accepting transcript
with the same first round (resp., first two rounds if we consider the instantiation
that relies on OWFs) in order to extract a message m. Moreover, if the sender is
honest, then it is possible to claim that m is the actual message committed by
the sender. We remark that we do not require any form of extractability against
malicious senders.

B Special WIPoK

B.1 Improving the Soundness of LS

In this section we consider the 3-round WIPoK for the NP-complete language of
graph Hamiltonicity (HC), provided in [25], and we will refer to this construction

736 M. Ciampi et al.

as the LS protocol. An interesting property of this WIPoK is that only the size
of the statement need to be known before the last round by both the prover and
the verifier. We show that the LS protocol does not enjoys special soundness
when the statement to be proved is adaptively chosen by the prover in the
last round. That is, if two accepting transcripts (that share the first round)
are provided w.r.t. to two different instances x0 and x1, then only the witness
w for xb is extracted (with b ∈ {0, 1}). More precisely, given the accepting
transcript (ls1, ls20, ls

3
0) for the statement x0 and (ls1, ls21, ls

3
1) for the statement x1

(with ls20 �= ls21) then it could be that only wb can be extracted. We provide a
construction that overcomes this issue, allowing the extraction of the witnesses
for both x0 and x1 thus obtaining a Σ-protocol where the special soundness holds
even when the two accepting transcripts refer to different theorems adaptively
chosen in the last round. Following [11] we refer to this property as adaptive-
input special soundness (see Definition 5).

Before showing why LS is not already adaptive-input special sound and how
our construction works, we briefly describe the LS protocol with one-bit challenge
following [32]. Let P be prover and V the verifier. The common input of P and
V is κ, that represents the number of vertexes of the instance G to be proved.
The graph G is represented by a κ×κ adjacency matrix MG where MG[i][j] = 1
if there exists an edge between vertexes i and j in G. A non-edge position i, j is
a pair of vertexes that are not connected in G and for which MG[i][j] = 0.

– P picks a random κ-vertex cycle graph C and commits bit-by-bit to the corre-
sponding adjacency matrix using a statistically binding commitment scheme.

– V responds with a randomly chosen bit b.
– P on input the graph G and the Hamiltonian cycle w executes the following

steps. If b = 0, P opens all the commitments, showing that the matrix com-
mitted in the first round is actually an κ-vertex cycle. If b = 1, P sends a
permutation π mapping the vertex of C in G. Then it opens the commitment
of the adjacency matrix of C corresponding to the non-edges of G.

– V accepts (outputs 1) if what he receives in the third round is consistent with
the bit b that he was sent in the second round.

Getting the answer for both b = 0 and b = 1 (w.r.t. to the same graph G)
allows the extraction of the cycle for G. The reason is the following. For b = 0
one gets the random cycle C. Then for b = 1 one gets the permutation mapping
the random cycle in the actual cycle that is given to P before the last message
of the protocol.

We now observe that a malicious prover P� could gives the answer for b = 0
w.r.t. to the graph G0 and the answer for b = 1 w.r.t. the graph G1 (due to
the delayed-input nature of LS). This means that even knowing two accepting
transcripts that share the first round, the permutation that maps the vertexes
of C in G0 it is not known. Therefore an efficient algorithm can only compute
the cycle w1 of G1 and gets no information about the Hamiltonian cycle of G0.
Summing up, given the accepting transcripts (ls1, 0, ls30) for the graph G0 and
(ls1, 1, ls31) for the graph G1, only the Hamiltonian cycle for G1 can be computed.
That is, only the cycle for the graph proved by P� to be Hamiltonian using
as a second round the challenge 1 can be efficiently computed. Starting from

NMZK and MPCT in 4-Round 737

this observation, in order to allow an efficient algorithm to compute cycles for
both G0 and G1, we construct an improved version of LS that we denoted with
LSimp = (P imp,V imp). LSimp uses LS in a black-box way. For ease of exposition we
use the following notation. ls1 ← P(1λ, κ; ρ) denotes that P is executed on input
the security parameter (in unary) 1λ, κ and the randomness ρ and gives in output
the first round of LS ls1. ls3 ← P(G,w, ls2, ρ) denotes that P has computed the
third round of LS by running on input the graph G, the cycle w for the graph
G, the bit ls2 and the randomness used to compute ls1. V(ls1, ls2, ls3, G) denotes
the output of V on input ls1, ls2, ls3 and the graph G. Let κ be the number of
vertexes of the graph G to be proved, our LSimp = (P imp,V imp) works as follows.

1. P imp on input the security parameter λ, κ and the randomness ρ0||ρ1 com-
putes and sends ls10 ← P(1λ, κ; ρ0), ls11 ← P(1λ, κ; ρ1).

2. V imp picks and sends a random bit b.
3. P imp, upon receiving b, on input the graph G and the Hamiltonian cycle w

for G computes and sends ls30 ← P(G,w, b, ρ0), ls31 ← P(G,w, 1 − b, ρ1).
4. V imp accepts iff V(G, ls10, b, ls

3
0) = 1 and V(G, ls11, 1 − b, ls31) = 1.

Theorem 4. Assuming one-to-one OWFs, LSimp is a Σ-protocol with adaptive-
input Special HVZK and adaptive-input special soundness. Moreover LSimp is
Zero Knowledge.

Proof. (Delayed-input) Completeness. The (delayed-input) completeness of
LSimp comes from the (delayed-input) completeness of LS.

Adaptive-input special soundness. Let us consider two accepting transcripts
that share the first round for LSimp:

(
(ls0, ls1), 0, (ls30, ls

3
1)

)
for the statement G and

(
(ls0, ls1), 1, (ls31

′
, ls31

′
)
)

for the statement G′. We can isolate the sub-transcripts
(ls0, 0, ls30) and (ls0, 1, ls30

′
) and observe that V(G, ls10, 0, ls30) = 1 = V(G′ls10, 1, ls30

′
).

From what we discuss before about LS we know that in this case the witness
w for G′ can be extracted. Also let us now consider the two sub-transcripts
(ls1, 1, ls31) and (ls1, 0, ls31

′
). Also in this case, by observing that V(G, ls1, 1, ls31) =

1 = V(G′, ls1, 0, ls31
′
), the cycle for G can be efficiently computed.

Adaptive-input Special HVZK. Following [30], we consider an adaptive-
input Special HVZK simulator S associated to the LS’s protocol. This is equal
to a Special HVZK simulator with the additional property that the first round
can be simulated without knowing the instance to be proved (see Definition 6).
In more details S works in two phases. In the first phase just 1λ, the challenge
ls2, the number of vertexes κ is used to output the first round ls1. We denote
this phase using: ls1 ← S(1λ, ls2, κ). In the second phase S takes as input the
instance and output the third round ls3. We denote this phase using ls3 ← S(G).
The adaptive-input Special HVZK simulator S imp for LSimp just internally runs
S two times, once using b and once using 1 − b as a challenge. In more details
the two phase of S imp are the following.

1. S imp, on input 1λ, the challenge b, κ and the randomness ρb||ρ1−b, computes
ls1b ← S(1λ, b, κ; ρb), ls11−b ← S(1λ, 1 − b, κ; ρ1−b) and outputs (ls1b , ls

1
1−b).

738 M. Ciampi et al.

2. S imp, on input the graph G, ρ0 and ρ1 computes ls3b ← S(G, ρb), ls31−b ←
S(G, ρ1−b) and outputs (ls3b , ls

3
1−b).

The transcript
(
(ls1b , ls

1
1−b), b, (ls

3
b , ls

3
1−b)

)
output by S imp is computationally

indistinguishable from a transcript computed by P imp (that uses as input an
Hamiltonian cycle w of G) due to the security of the underlying adaptive-input
Special HVZK simulator S.

Zero-Knowledge. The ZK simulator of LSimp just needs to guess the bit b
chosen by the adversarial verifier and runs the adaptive-input Special HVZK
simulator.

It is easy to see that (as for LS) if we consider λ parallel executions of LSimp

then we obtain a protocol LSλ that still enjoys adaptive-input completeness,
adaptive-input special soundness, adaptive-input Special HVZK. Moreover LSλ

is WI. Formally, we can claim the following theorems.

Theorem 5. Assuming one-to-one OWFs, LSλ is a Σ-protocol with adaptive-
input Special HVZK, and adaptive-input special soundness. Moreover LSλ is wit-
ness indistinguishable (WI).

Proof. Completeness, adaptive-input special soundness and adaptive-input Spe-
cial HVZK come immediately from the adaptive-input special soundness and
adaptive-input Special HVZK of LSimp. The WI comes from the observation
that LSimp is WI (due to the zero knowledge property), and that WI is preserved
under parallel (and concurrent) composition.

Theorem 6. Assuming OWFs, LSλ is a 4-round public-coin proof system with
adaptive-input Special HVZK, adaptive-input special soundness and WI.

Proof. The proof of this theorem just relies on the observation that in order to
instantiate a statistically binding commitment scheme using OWFs an additional
round is required to compute the first round of Naor’s commitment scheme [31].

Observe that since Hamiltonicity is an NP-complete language, the above
constructions work for any NP language through NP reductions. For simplicity
in the rest of the paper we will omit the NP reduction therefore assuming that
the above scheme works directly on a given NP-language L.

B.2 Combining (Adaptive-Input) Special HVZK PoK Through [12]

In our paper we use the well known technique for composing two Σ-protocols
to compute the OR for compound statement [12,16]. In more details, let Π0 =
(P0,V0) and Π1 = (P1,V1) be Σ-protocols for the respective NP-relation RelL0

(with Special HVZK simulator Sim0) and RelL1 (with Special HVZK simulator
Sim1). Then it is possible to use Π0 and Π1 to construct ΠOR = (POR,VOR)
for relation Rel

OR
= {((x0, x1), w) : ((x0, w) ∈ RelL0) OR ((x1, w) ∈ RelL1)} that

works as follows.

NMZK and MPCT in 4-Round 739

Protocol ΠOR = (POR,VOR): Let wb with b ∈ {0, 1} be s.t. (xb, wb) ∈ RelLb
. POR

and VOR on common input (x0, x1) and private input wb compute the following
steps.

– POR computes ab ← Pb(1λ, xb, wb). Furthermore he picks c1−b ← {0, 1}λ and
computes (a1−b, z1−b) ← Sim1−b(1λ, x1−b, c1−b). POR sends a0, a1 to VOR.

– VOR, upon receiving a0, a1 picks c ← {0, 1}λ and sends c to POR.
– POR, upon receiving c computes cb = c1−b ⊕ c and computes zb ← Pb(cb).

POR sends c0, c1, z0 z1 to VOR.
– VOR checks that the following conditions holds: c = c0⊕c1, V0(x0, a0, c0, z0) =

1 and V1(x1, a1, c1, z1) = 1. If all the checks succeed then outputs 1, otherwise
outputs 0.

Theorem 7 ([12]). Let Σ0 and Σ1 be two Σ-protocols, then ΠOR = (POR,VOR)
is a Σ-protocol for RelLOR

.

Theorem 8 ([13]). Let Π = (P,V) be a Σ-protocol for relation RelL with neg-
ligible soundness error20, then Π is a proof of knowledge for RelL.

In our work we instantiate ΠOR using as Π0 and Π1 the Blum’s protocol [4] for
the NP-complete language for graph Hamiltonicity (that also is a Σ-Protocol).
Therefore Theorem 7 (and Theorem 8) can be applied.

We also consider an instantiation of ΠOR using as Π = (P,V) our LSλ. If we
instantiate ΠOR using LSλ and the corresponding adaptive-input Special HVZK
simulator LSλ, then ΠOR is adaptive-input special soundness. More formally we
can claim the following theorem.

Theorem 9. If ΠOR is instantiated using LSλ (and the corresponding adaptive-
input Special HVZK simulator Sλ), then ΠOR enjoys the delayed-input complete-
ness and adaptive-input special soundness for the NP-relation RelLOR

.

Proof. The delayed-input completeness follows from the delayed-input complete-
ness of LSλ.

Adaptive-input special soundness. Let us consider two accepting transcripts
that share the first round for ΠOR:

(
(π0, π1), π2, (π2

0 , π
3
0 , π

2
1 , π

3
1)

)
for the state-

ment (x0, x1) and
(
(π0, π1), π2′

, (π2
0

′
, π3

0
′
, π2

1
′
π3
1

′)
)

for the statement (x′
0, x

′
1),

where π2 �= π2′. We observe that since π2 �= π2′, π2 = π2
0⊕π2

1 and π2′ = π2
0

′⊕π2
1

′

it holds that either π2
0 �= π2

0
′ or π2

1 �= π2
1

′. Suppose w.l.o.g. that π2
0 �= π2

0
′. Then we

are guaranteed from the adaptive-input special soundness of LSλ that using the
transcripts (π0, π

2
0 , π

3
0) and (π0, π

2
0

′
, π3

0
′) the values (wa, wb) s.t. (x0, wa) ∈ RelL0

and (x′
0, wb) ∈ RelL0 can be extracted in polynomial-time. The same arguments

can be used when π2
1 �= π2

1
′.

Using a result of [11] we can claim the following theorem.

Theorem 10. ΠOR instantiated using LSλ is an adaptive-input PoK for the
NP-relation RelLOR

.
20 The soundness error represents the probability of a malicious prover to convince the

verifier of a false statement.

740 M. Ciampi et al.

It would be easy to prove that ΠOR is also WI, however in this paper we
are not going to rely directly on the WI property of ΠOR, in order to deal with
the rewinding issue that we have described earlier. More precisely, in the two
main contributions of this paper we will use ΠOR (the one instantiated from
Blum’s protocol and the one instantiated using LSλ) in a non-black box way in
order to prove the security of our protocols. It will be crucial for our reduction
to rely on the (adaptive-input) Special HVZK of Π0 and Π1 instead of using
directly the WI property of ΠOR. The intuitively reason is that it is often easier
in a reduction to rely on the security of a non-interactive primitive (like Special
HVZK is) instead of an interactive primitive (like WI). This is the reason why
we use the OR composition of [12,16] combined with the Blum’s protocol (or the
LS protocol) instead of relying on the (adaptive-input) WI provided by a Blum’s
protocol (LS protocol). In the rest of the paper, in order to rely on OWFs only,
we sometimes use a four round version of Blum’s and LS protocols. In this case
there is an additional initial round that goes from the verifier to the prover and
corresponds to the first round of Naor’s commitment scheme [31].

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 16

2. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: Proceedings of the 43rd Symposium on Founda-
tions of Computer Science (FOCS 2002), Vancouver, BC, Canada, pp. 345–355,
16–19 November 2002

3. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-69053-0 20

4. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444–1454 (1986)

5. Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-
round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 192–216. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54242-8 9

6. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10. Full version https://eprint.iacr.org/2016/566

7. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round con-
current non-malleable commitments from one-way functions. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 127–157.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 5. Full version
https://eprint.iacr.org/2016/621

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/978-3-642-54242-8_9
https://doi.org/10.1007/978-3-642-54242-8_9
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://eprint.iacr.org/2016/566
https://doi.org/10.1007/978-3-319-63715-0_5
https://eprint.iacr.org/2016/621

NMZK and MPCT in 4-Round 741

8. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-
party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017). Full version
https://eprint.iacr.org/2017/920

9. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. Cryptology
ePrint Archive, Report 2017/931 (2017). https://eprint.iacr.org/2017/931

10. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 5. Full version http://eprint.iacr.org/2015/810

11. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.:
Online/offline OR composition of sigma protocols. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 63–92. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49896-5 3. Full version
https://eprint.iacr.org/2016/175

12. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

13. Damg̊ard, I.: On Σ-protocol (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf
14. Santis, A., Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-

interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

15. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
New Orleans, Louisiana, USA, pp. 542–552, 5–8 May 1991

16. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Crypt. 19(2), 169–209 (2006)

17. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: Personal communication,
August 2016

18. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

19. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, pp. 695–704, 6–8 June 2011

20. Goyal, V., Kumar, A., Park, S., Richelson, S., Srinivasan, A.: New constructions of
non-malleable commitments and applications. In: Private Communication (2017)

21. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commit-
ments: a black-box approach. In: 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, pp. 51–60 (2012)

22. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2016, Cambridge, MA, USA, pp. 1128–1141, 18–21 June 2016. Full
version: Cryptology ePrint Archive, Report 2015/1178

23. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2014, Philadelphia, PA, USA, pp. 41–50, 18–21 October 2014. An
updated full version http://eprint.iacr.org/2014/586

https://eprint.iacr.org/2017/920
https://eprint.iacr.org/2017/931
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49099-0_5
http://eprint.iacr.org/2015/810
https://doi.org/10.1007/978-3-662-49896-5_3
https://eprint.iacr.org/2016/175
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
http://eprint.iacr.org/2014/586

742 M. Ciampi et al.

24. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computa-
tion with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 36

25. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

26. Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adaptive inputs.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 17

27. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, pp. 705–714. ACM, 6–8 June 2011

28. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78524-8 31

29. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, pp. 179–188, 31 May–2 June 2009

30. Mittelbach, A., Venturi, D.: Fiat–Shamir for highly sound protocols is instan-
tiable. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 198–215.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 11

31. Naor, M.: Bit commitment using pseudorandomness. J. Crypt. 4(2), 151–158
(1991)

32. Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance.
In: Electronic Colloquium on Computational Complexity (ECCC), vol. 19, p. 164
(2012)

33. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

34. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, pp. 232–241. ACM, 13–16 June 2004

35. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, pp. 533–542, 22–24 May 2005

36. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38(2), 702–752 (2008)

37. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 24

38. Polychroniadou, A.: On the communication and round complexity of secure com-
putation. Ph.D. thesis, Aarhus University, December 2016

39. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, Maryland, USA, pp. 387–394, 13–17 May 1990

https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-642-19571-6_17
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-319-44618-9_11
https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/978-3-642-00457-5_24

Round Optimal Concurrent MPC
via Strong Simulation

Saikrishna Badrinarayanan1, Vipul Goyal2, Abhishek Jain3,
Dakshita Khurana1(B), and Amit Sahai1

1 UCLA, Los Angeles, USA
{saikrishna,dakshita,sahai}@cs.ucla.edu

2 Carnegie Mellon University, Pittsburgh, USA
goyal@cs.cmu.edu

3 Johns Hopkins University, Baltimore, USA
abhishek@cs.jhu.edu

Abstract. In this paper, we study the round complexity of concurrently
secure multi-party computation (MPC) with super-polynomial simula-
tion (SPS) in the plain model. In the plain model, there are known
explicit attacks that show that concurrently secure MPC with polyno-
mial simulation is impossible to achieve; SPS security is the most widely
studied model for concurrently secure MPC in the plain model. We obtain
the following results:

– Three-round concurrent MPC with SPS security against Byzantine
adversaries, assuming sub-exponentially secure DDH and LWE.

– Two-round concurrent MPC with SPS security against Byzantine
adversaries for input-less randomized functionalities, assuming sub-
exponentially secure indistinguishability obfuscation and DDH. In
particular, this class includes sampling functionalities that allow par-
ties to jointly sample a secure common reference string for crypto-
graphic applications.

Prior to our work, to the best of our knowledge, concurrent MPC with
SPS security required roughly 20 rounds, although we are not aware of
any work that even gave an approximation of the constant round com-
plexity sufficient for the multi-party setting. We also improve over the
previous best round complexity for the two-party setting, where 5 rounds

S. Badrinarayanan, D. Khurana and A. Sahai—Research supported in part from
a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a Xerox Faculty
Research Award, a Google Faculty Research Award, an equipment grant from Intel,
and an Okawa Foundation Research Grant. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through the ARL under
Contract W911NF-15-C-0205. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.
A. Jain—Research supported in part by a DARPA/ARL Safeware Grant W911NF-
15-C-0213 and a sub-award from NSF CNS-1414023.
D. Khurana—Research supported in part by the UCLA Dissertation Year Fellow-
ship.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 743–775, 2017.
https://doi.org/10.1007/978-3-319-70500-2_25

744 S. Badrinarayanan et al.

were needed (Garg, Kiyoshima, and Pandey, Eurocrypt 2017).
To obtain our results, we compile protocols that already achieve secu-

rity against “semi-malicious” adversaries, to protocols secure against
fully malicious adversaries, additionally assuming sub-exponential DDH.
Our protocols develop new techniques to use two-round zero-knowledge
with super-polynomial strong simulation, defined by Pass (Eurocrypt
2003) and very recently realized by Khurana and Sahai (FOCS 2017).
These remain zero-knowledge against adversaries running in time larger
than the running time of the simulator.

1 Introduction

The round complexity of secure multi-party computation (MPC) [19,39,40] has
been a problem of fundamental interest in cryptography. The last few years have
seen major advances in improving the round complexity of secure computation
with dishonest majority [1,6,7,9,10,16,20,22,24,27,32,34,38], culminating even-
tually in four round protocols for secure multi-party computation from general
assumptions such as DDH and LWE [1,7,16].

Intriguingly, however, when we only require security against (semi-malicious)
adversaries that follow protocol specifications, recent research has also con-
structed MPC protocols that require even less that four rounds of simultaneous
message exchange in the plain model. For instance, [11] give a two-round proto-
col based on indistinguishability obfuscation, while [7] very recently gave a three
round protocol from the hardness of the learning with errors assumption.

However, these protocols do not offer any privacy guarantees at all against
Byzantine adversaries that may deviate from protocol specifications. Can we
achieve meaningful security against Byzantine adversaries in two or three
rounds? This question is even more interesting in the setting where parties
participate in multiple executions of the MPC protocol concurrently. Indeed,
as our world becomes increasingly interconnected, it is hard to imagine that
future cryptographic protocols will be carried out in a standalone setting, where
participants interact in only a single instance of the protocol. Thus, we ask:

“Can we achieve concurrently secure MPC in two or three rounds?”

Super-polynomial security. Indeed, even defining security against concurrent
adversaries in the plain model requires care. Barak, Prabhakaran and Sahai [4]
give an explicit “chosen protocol attack” that rules out concurrently secure MPC
with polynomial simulation in any number of rounds in the plain model. In fact,
even in the stand-alone setting, three round secure computation with polynomial
simulation and black-box reductions turns out to be impossible to achieve [16].

However, it has been known for a long time that for MPC, a powerful secu-
rity notion in the plain model is security with super-polynomial time simula-
tion (SPS) [3,5,8,13,15,25,30,33,36]. SPS security circumvents the impossibil-
ity results above including the chosen protocol attack in the concurrent setting,
and is the most widely studied security model for concurrent MPC in the plain
model.

Round Optimal Concurrent MPC via Strong Simulation 745

To understand the intuition behind SPS security, it is instructive to view SPS
security through the lens of the security loss inherent in all security reductions.
In ordinary polynomial-time simulation, the security reduction has a polyno-
mial security loss with respect to the ideal world. That is, an adversary in the
real world has as much power as another adversary that runs in polynomially
more time in the ideal world. In SPS security, the security reduction has a fixed
super-polynomial security loss, for example 2nε

, where n is the security parame-
ter, with respect to the ideal world. Just as in other applications in cryptography
using super-polynomial assumptions, this situation still guarantees security as
long as the ideal model is itself super-polynomially secure. For instance, if the
ideal model hides honest party inputs information-theoretically, then security is
maintained even with SPS. For example, this is true for applications like online
auctions, where no information is leaked in the ideal world about honest party
inputs beyond what can be easily computed from the output. But SPS also
guarantees security for ideal worlds with cryptographic outputs, like blind sig-
natures, as long as the security of the cryptographic output is guaranteed against
super-polynomial adversaries. Indeed, SPS security was explicitly considered for
blind signatures in [14,17] with practically relevant security parameters com-
puted in [14]. Additional discussion on the meaningfulness of SPS security can
be found in the original works of [33,36] that introduced SPS security in the
protocol context.

Prior to our work, the best round complexity even for concurrent two-
party computation with SPS security was 5 rounds [15] from standard sub-
exponential assumptions. For concurrent MPC with SPS security from standard
sub-exponential assumptions, the previous best round complexity was perhaps
approximately 20 rounds in the simultaneous message exchange model [13,26],
although to the best of our knowledge, no previous work even gave an approx-
imation of the constant round complexity that is sufficient for the multi-party
setting.

1.1 Our Results

We obtain several results on concurrently secure MPC in 2 or 3 rounds:

1. We obtain the following results for multi-party secure computation with SPS
in three rounds in the simultaneous message model, against rushing adver-
saries.

– A compiler that converts a large class of three round protocols secure
against semi-malicious adversaries, into protocols secure against malicious
adversaries, additionally assuming the sub-exponential hardness of DDH
or QR or N th residuosity.

– A compiler that converts a large class of three round protocols secure
against semi-malicious adversaries, into protocols secure against mali-
cious concurrent adversaries, additionally assuming the sub-exponential
hardness of DDH or QR or N th residuosity.

746 S. Badrinarayanan et al.

On instantiating these compilers with the three-round semi-malicious protocol
in the recent work of Brakerski et al. [7], we obtain the following main result.

Informal Theorem 1. Assuming sub-exponentially secure LWE and DDH,
there exists a three-round protocol in the simultaneous message exchange model
with rushing adversaries, that achieves sub-exponential concurrent SPS security
for secure multi-party computation for any efficiently computable function, in
which all parties can receive output.

The same result holds if the sub-exponential DDH assumption above is
replaced with the sub-exponential QR or N th residuosity assumptions.

2. We also obtain the following results for multi-party secure computation with
SPS in two rounds in the simultaneous message model, against rushing adver-
saries.

– A compiler that converts a large class of two round protocols secure
against semi-malicious adversaries, into protocols secure against mali-
cious adversaries computing input-less randomized functionalities, assum-
ing assuming sub-exponential hardness of DDH and indistinguishability
obfuscation.

– A compiler that converts a large class of two round protocols secure
against semi-malicious adversaries, into protocols secure against concur-
rent malicious adversaries computing input-less randomized functionali-
ties, assuming assuming sub-exponential hardness of DDH and indistin-
guishability obfuscation.

On instantiating these compilers with the two-round semi-malicious protocol
in [11], we obtain the following main result.

Informal Theorem 2. Assuming sub-exponentially secure indistinguishability
obfuscation and DDH, there exists a two-round protocol in the simultaneous mes-
sage exchange model with rushing adversaries, that achieves sub-exponential con-
current SPS security for secure multi-party computation for any efficiently com-
putable randomized input-less function, in which all parties can receive output.

In particular, our protocols can be used to generate samples from any effi-
ciently sampleable distribution. For example, they can be used to concurrently
securely sample common reference strings from arbitrary distributions for cryp-
tographic applications, such that the randomness used for sampling remains hid-
den as long as at least one of the participants is honest. Applications include gen-
erating a common reference string sufficient for building universal samplers [23].
Before our work, only the special case of multi-party coin-flipping with SPS was
known to be achievable in two rounds [25].

2 Technical Overview

We will now give an overview of the techniques used in our work.

Round Optimal Concurrent MPC via Strong Simulation 747

2.1 Three Round MPC Without Setup

A well established approach to constructing secure computation protocols
against malicious adversaries in the standalone setting is to use the GMW
compiler [19]: “compile” a semi-honest protocol with zero-knowledge arguments
to enforce correct behavior. Normally, such compilers involve an initial ‘coin-
tossing’ phase, which determines the randomness that will be used by all parties
in the rest of the protocol. Unfortunately, in two or three rounds, there is no
scope at all to carry out an initial coin-tossing.

However, as observed by [2,7,31], certain two and three round protocols
satisfy semi-malicious security: that is, the protocol remains secure even when
the adversary is allowed to chose malicious randomness, as long as the adversary
behaves according to protocol specifications. When compiling semi-malicious
protocols, the coin-tossing phase is no longer necessary: at a very high level, it
seems like it should suffice to have all parties give proofs of correct behavior.
Several difficulties arise when trying to implement such compilers in extremely
few rounds. Specifically, in many parts of our protocols, we will have only two
rounds to complete the proof of correct behavior. However, attempts to use two-
round zero-knowledge with super-polynomial simulation [33] run into a few key
difficulties, that we now discuss.

A key concern in MPC is that malicious parties may be arbitrarily mauling
the messages sent by other parties. In order to prevent this, we will use two-round
non-malleable commitments, that were recently constructed in [21,25,28]. In
particular, we will rely on a construction of two-round concurrent non-malleable
commitments with simultaneous messages, that were constructed by [25] assum-
ing sub-exponential DDH.

The very first difficulty arises as soon as we try to compose non-malleable
commitments with SPS-ZK.

Difficulty of using two-round SPS-ZK in few rounds with Simultaneous
Messages. Standard constructions of two-round SPS zero-knowledge can be
described as follows: the verifier generates a challenge that is hard to invert by
adversaries running in time T , then the prover proves (via WI) that either the
statement being proven is in the language, or that he knows the inverse of the
challenge used by the verifier. This WI argument is such that the witness used
by the prover can be extracted (via brute-force) in time T ′ � T . Naturally, this
restricts the argument to be zero-knowledge against verifiers that run in time
Tzk � T ′ � T .

Thus, if a prover generates an accepting proof for a false statement, the
WI argument can be broken in time T ′ to invert the challenge, leading to a
contradiction. On the other hand, there exists a simulator that runs in time
TSim � T to invert the receiver’s challenge and simulate the proof (alternatively,
such a simulator can non-uniformly obtain the inverse of the receiver’s challenge).
Thus, we have TSim � Tzk.

Let us now consider an SPS-ZK protocol, run simultaneously with a non-
malleable commitment, as illustrated in Fig. 1. The two-round concurrent non-
malleable commitment scheme from [25] requires the committer and receiver to

748 S. Badrinarayanan et al.

Fig. 1. Composing SPS-ZK with Non-malleable commitments

send simultaneous messages in the first round of the execution, followed by a
single message from the committer in the second round.

Let us also imagine that multiple parties running such a protocol are send-
ing non-malleable commitments to their inputs, together with messages of the
underlying semi-malicious protocol, and SPS-ZK proofs of correct behavior.

In order to begin a reduction between the real and ideal worlds, we would
have to begin by simulating the proofs sent by honest parties, and then argue that
adversarial parties cannot maul honest parties’ inputs. However, while arguing
non-malleability, we cannot simulate proofs non-uniformly, since that would end
up also non-uniformly fixing the messages of the non-malleable commitments.
Thus, we would want non-malleability of NMCom to hold even while we are
sending simulated proofs in time TSim.

On the other hand, when we switch a real SPS ZK proof to being simulated,
we must argue that the values within the non-malleable commitments provided
by the adversary did not suddenly change. To achieve this, it must be true that
the quality of the SPS ZK simulation is sufficiently high to guarantee that the
messages inside the non-malleable commitments did not change. Specifically, we
must be able to break the non-malleable commitments and extract from them
in time that is less than Tzk. Putting together all these constraints, we have that
non-malleable commitments should be breakable in time that is less than the
time against which they remain non-malleable: this is a direct contradiction.

In order to solve this problem, we must rely on ZK argument systems where
the quality of the SPS ZK simulation exceeds the running time of the SPS sim-
ulator, namely where TSim � Tzk. Zero-knowledge with strong simulation ([33]),
is roughly a primitive that satisfies exactly this constraint. We call such a ZK
protocol an SPSS-ZK argument. Such a primitive was recently realized by [25],
by constructing a new form of two-round extractable commitments. Note that
if one uses SPSS-ZK instead of SPS-ZK, the contradiction described above no
longer holds. This is a key insight that allows us to have significantly simpler
arguments of SPS security, especially in the concurrent security setting.

However, as we already mentioned, in arguing security against malicious
adversaries, we must be particularly wary of malleability attacks. In particu-
lar, we would like to ensure that while the simulator provides simulated proofs,
the adversary continues to behave honestly – thereby allowing such a simu-
lator to correctly extract the adversary’s input and force the right output.
This is the notion of simulation soundness [37]. However, it is unknown how
to build a two-round concurrently simulation-sound SPSS ZK argument. We
address this by providing a mechanism to emulates two-round and three-round

Round Optimal Concurrent MPC via Strong Simulation 749

simulation-soundness via strong simulation, in a simultaneous message setting.
This mechanism allows us to compile a semi-malicious protocol with a type of
non-malleable proofs of honest behavior.

Roughly speaking, the idea behind our strategy for enforcing simulation
soundness is to have each party commit not only to its input, but also all
the randomness that it will use in the underlying semi-malicious secure pro-
tocol. Then, the high quality of the SPSS ZK simulation will ensure that even
the joint distribution of the input, the randomness, and the protocol transcript
cannot change when we move to SPS simulation. Since honest behavior can be
checked by computing the correct messages using the input and randomness, the
quality of the SPSS ZK simulation guarantees that adversarial behavior must
remain correct. Counter-intuitively, we enforce a situation where we cannot rule
out that the adversary isn’t “cheating” on his ZK arguments, but nevertheless
the adversary’s behavior in the underlying semi-malicious MPC protocol cannot
have deviated from honest behavior.

We note that our simulation strategy is uniform and straight-line. The only
non-trivial use of rewinding in our protocol is in arguing non-malleability, and
this is abstracted away into the underlying non-malleable commitment scheme
that we invoke. This leads to a significantly simpler proof of concurrent security.

Several additional subtleties arise in the proofs of security. Please refer to
Sect. 4 for additional details on our protocol and complete proofs.

Barriers to Two Round Secure Computation of General Function-
alities. We also note that barriers exist to constructing two-round two-party
SPS-secure computation of general functionalities with super-polynomial simu-
lation, where both parties receive the output. Let us focus on protocols for the
secure computation of a specific functionality F(x, y) = (x+y), which computes
the sum of the inputs of both parties, when interpreted as natural numbers.
However, our arguments also extend to all functionalities that are sensitive to
the private inputs of individual parties. We will also restrict ourselves to two-
round protocols where both parties send an encoding of their message in the
first round while the next round is used to compute the output. It is not dif-
ficult to see that any protocol for two-round two-party secure computation of
general functionalities, must satisfy this property, as long as security must hold
against non-uniform adversaries. If the first message wasn’t committing, then a
non-uniform adversary could obtain a first message that is consistent with two
inputs, and then by aborting in the second round, it could obtain two outputs
of the function with two different inputs, violating security.

Let Π denote a two-round secure computation protocol between two parties A
and B, where both parties receive the output. We will also consider a “mauling”
rushing adversary that corrupts B, let us denote this corrupted party by ˜B. At
the beginning of the protocol A sends an honest encoding of its input X. After
obtaining the first round message from party A, suppose that ˜B “mauls” the
encoding sent by A and generates another encoding of the same input X. Because
the encodings must necessarily hide the inputs of parties, the honest PPT party
A cannot detect if such a mauling occurred, and sends the second message of

750 S. Badrinarayanan et al.

the protocol. At this point, ˜B generates its second round message on its own,
but does not send this message. Instead, ˜B computes the output of the protocol
(which is guaranteed by correctness). The adversary ˜B learns 2X, and blatantly
breaks security of the SPS-secure protocol. Similarly, a rushing adversary could
choose to corrupt party A and launch the same attack. Getting over this barrier
would clearly require constructing non-interactive non-malleable commitments.

2.2 Two Round MPC Without Setup for Input-Less Randomized
Functionalities

We begin by noting that the discussion above on the hardness of two-round MPC
with super-polynomial simulation does not rule out functionalities that are not
sensitive to the private inputs of parties. In particular, let us consider input-less
randomized functionalities. Even though the functionality is input-less, still each
party must contribute to selecting the secret randomness on which the function
is to be evaluated. At first glance, it may appear that we still have the same
problem: in only two rounds, perhaps this “implied input” can be compromised.
However, note that for input-less functionalities, if the adversary aborts, then
even if the adversary learns the “implied inputs” of the honest parties, this does
not violate security because the honest parties will not accept the output of the
protocol. Thus, the honest parties’ contributions to the randomness is discarded
since the protocol execution is aborted. As such, we only need to guarantee
security of the honest party inputs if the protocol terminates correctly – that
is, if the adversary is able to send second-round messages that do not cause the
protocol to abort.

More technically, the only actual requirement is that a super-polynomial
simulator must be able to correctly and indistinguishably, force the output of
the computation to an externally generated value. The security of each honest
party’s contribution to the randomness is implied by this forcing.

We show that this is indeed possible using only two rounds of interaction in
the simultaneous message model, under suitable cryptographic assumptions. We
describe a compiler that compiles a large class of two-round secure computation
protocols for input-less randomized functionalities from semi-malicious to full
malicious (and even concurrent) security. We consider functionalities where each
party contributes some randomness, and the joint randomness of all parties is
used to sample an output from some efficiently sampleable distribution.

Our protocol follows a similar template to the protocol described for the 3-
round case: parties first commit to all the input and randomness that they will
use throughout the execution via a non-malleable commitment. Simultaneously,
parties run an underlying two-round semi-malicious protocol and by the end
of the second round, provide SPSS-ZK proofs that they correctly computed all
messages. We stress again that it is only if the adversary successfully completes
both rounds of the protocol without causing an abort, that we actually need to
care about hiding the shares of randomness contributed by honest parties – in
order to argue overall security.

Round Optimal Concurrent MPC via Strong Simulation 751

At the same time, in order to enforce correctness, the simulator would still
need to extract the randomness used by the adversary at the end of the first
round of the computation. Unlike our three round protocol, here, the simulator
will try to extract randomness at the end of the first round anyway. This is
because the simulator can afford to be optimistic: Either its extraction is correct,
and it can make use of this in forcing the output. Or its extraction is incorrect,
but in this case we will guarantee that the adversary will cause the protocol to
abort in the second round because of the SPSS ZK argument that the adversary
must give proving that it behaved honestly in the first round.

We need to take additional care when defining the simulation strategy when
the simulator extracts incorrect randomness: this causes other subtleties in our
proof of security. The complete constructions and proofs of standalone as well
as concurrent security, can be found in Sect. 5.

3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper. We
will typically use n to denote the security parameter. We will say that T1(n) �
T2(n) if T1(n) > T2(n) · nc for all constants c.

We define a T -time machine as a non-uniform Turing Machine that runs in
time at most T . All honest parties in definitions below are by default uniform
interactive Turing Machines, unless otherwise specified.

3.1 ZK with Superpolynomial Simulation

We will use two message ZK arguments with strong superpolynomial simulation
(SPS) and with super-polynomial strong simulation (SPSS) [34].

Definition 1 (Two Message (TSim, Tzk, δzk)-ZK Arguments With Super-
polynomial Simulation). [34] We say that an interactive proof (or argument)
〈P, V 〉 for the language L ∈ NP, with the witness relation RL, is (TSim, Tzk, δzk)-
simulatable if for every Tzk-time machine V ∗ exists a probabilistic simulator
S with running time bounded by TSim such that the following two ensembles
are Tzk, δzk)-computationally indistinguishable (when the distinguishing gap is a
function in n = |x|):
– {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗, x∈L for arbitrary y ∈ RL(x)
– {S(x, z)}z∈{0,1}∗, x∈L

That is, for every probabilistic algorithm D running in time polynomial in the
length of its first input, every polynomial p, all sufficiently long x ∈ L, all y ∈
RL(x) and all auxiliary inputs z ∈ {0, 1}∗ it holds that

Pr[D(x, z, (〈P (y), V ∗(z)〉(x)) = 1] − Pr[D(x, z, S(x, z)) = 1] < δzk(λ)

752 S. Badrinarayanan et al.

Definition 2. We say that a two-message (TSim, Tzk, δzk)-SPS ZK argument sat-
isfies non-uniform simulation (for delayed statements) if we can write the sim-
ulator S = (S1,S2) where S1(V ∗(z)), which outputs σ, runs in TSim-time, but
where S2(x, z, σ), which outputs the simulated view of the verifier V ∗, runs in
only polynomial time.

3.2 ZK with Super-Polynomial Strong Simulation

We now define zero-knowledge with strong simulation. We use the definition
in [25].

Definition 3 ((TΠ , TSim, Tzk, TL, δzk)-SPSS Zero Knowledge Arguments).
We call an interactive protocol between a PPT prover P with input (x,w) ∈ RL

for some language L, and PPT verifier V with input x, denoted by 〈P, V 〉(x,w),
a super-polynomial strong simulation (SPSS) zero-knowledge argument if it sat-
isfies the following properties and TΠ � TSim � Tzk � TL:

– Completeness. For every (x,w) ∈ RL, Pr[V outputs 1|〈P, V 〉(x,w)] ≥ 1 −
negl(λ), where the probability is over the random coins of P and V .

– TΠ-Adaptive-Soundness. For any language L that can be decided in time
at most TL, every x, every z ∈ {0, 1}∗, and every poly-non-uniform prover P ∗

running in time at most TΠ that chooses x adaptively after observing verifier
message, Pr[〈P ∗(z), V 〉(x) = 1 ∧ x 	∈ L] ≤ negl(λ), where the probability is
over the random coins of V.

– TSim, Tzk, δzk-ZeroKnowledge.There exists a (uniform) simulator S that runs
in time TSim, such that for everyx, every non-uniformTzk-verifier V ∗ with advice
z, and every Tzk-distinguisher D: |Pr[D(x, z, viewV ∗ [〈P, V ∗(z)〉(x,w)]) = 1]
−Pr[D(x, z,SV ∗

(x, z)) = 1]
∣

∣ ≤ δzk(λ)

3.3 Non-Malleability w.r.t. Commitment

Throughout this paper, we will use λ to denote the security parameter, and
negl(λ) to denote any function that is asymptotically smaller than 1

poly(λ) for any
polynomial poly(·). We will use PPT to describe a probabilistic polynomial time
machine. We will also use the words “rounds” and “messages” interchangeably.

We follow the definition of non-malleable commitments introduced by Pass
and Rosen [35] and further refined by Lin et al. [29] and Goyal [20] (which in turn
build on the original definition of [12]). In the real interaction, there is a man-in-
the-middle adversary MIM interacting with a committer C (where C commits to
value v) in the left session, and interacting with receiver R in the right session.
Prior to the interaction, the value v is given to C as local input. MIM receives
an auxiliary input z, which might contain a-priori information about v. Then
the commit phase is executed. Let MIM〈C,R〉(val, z) denote a random variable
that describes the value ˜val committed by the MIM in the right session, jointly
with the view of the MIM in the full experiment. In the simulated experiment,
a PPT simulator S directly interacts with the MIM. Let Sim〈C,R〉(1λ, z) denote

Round Optimal Concurrent MPC via Strong Simulation 753

the random variable describing the value ˜val committed to by S and the output
view of S. If the tags in the left and right interaction are equal, the value ˜val
committed in the right interaction, is defined to be ⊥ in both experiments.

Concurrent non-malleable commitment schemes consider a setting where the
MIM interacts with committers in polynomially many (a-priori unbounded) left
sessions, and interacts with receiver(s) in upto �(n) right sessions. If any of
the tags (in any right session) are equal to any of the tags in any left ses-
sion, we set the value committed by the MIM to ⊥ for that session. The we let
MIM〈C,R〉(val, z)many denote the joint distribution of all the values committed
by the MIM in all right sessions, together with the view of the MIM in the full
experiment, and Sim〈C,R〉(1λ, z)many denotes the joint distribution of all the val-
ues committed by the simulator S (with access to the MIM) in all right sessions
together with the view.

Definition 4 (Non-malleable Commitments w.r.t. Commitment). A
commitment scheme 〈C,R〉 is said to be non-malleable if for every PPT MIM,
there exists a PPT simulator S such that the following ensembles are computa-
tionally indistinguishable:

{MIM〈C,R〉(val, z)}n∈N,v∈{0,1}λ,z∈{0,1}∗ and {Sim〈C,R〉(1λ, z)}n∈N,v∈{0,1}λ,z∈{0,1}∗

Definition 5 (�(n)-Concurrent Non-malleable Commitments w.r.t.
Commitment). A commitment scheme 〈C,R〉 is said to be �(n)-concurrent
non-malleable if for every PPT MIM, there exists a PPT simulator S such that
the following ensembles are computationally indistinguishable:

{MIM〈C,R〉(val, z)many}n∈N,v∈{0,1}λ,z∈{0,1}∗ and {Sim〈C,R〉(1λ, z)many}n∈N,v∈{0,1}λ,z∈{0,1}∗

We say that a commitment scheme is fully concurrent, with respect to com-
mitment, if it is concurrent for any a-priori unbounded polynomial �(n).

3.4 Secure Multiparty Computation

As in [18], we follow the real-ideal paradigm for defining secure multi-party com-
putation. The only difference is that our simulator can run in super-polynomial
time. A formal definition can be found in the full version.

Semi-malicious adversary: An adversary is said to be semi-malicious if it follows
the protocol correctly, but with potentially maliciously chosen randomness. We
refer the reader to the full version for more details.

Concurrent security: The definition of concurrent secure multi-party computa-
tion considers an extension of the real-ideal model where the adversary partici-
pates simultaneously in many executions, corrupting subsets of parties in each
execution. We refer the reader to [8,13] for a detailed definition of concurrent
security.

754 S. Badrinarayanan et al.

4 Three Round Malicious Secure MPC

Let f be any functionality. Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn

respectively who wish to compute f on their joint inputs by running a secure
multiparty computation (MPC) protocol. Let πSM be any 3 round protocol that
runs without any setup for the above task and is secure against adversaries that
can be completely malicious in the first round, semi-malicious in the next two
rounds and can corrupt upto (n − 1) parties. In this section, we show how to
generically transform πSM into a 3 round protocol π without setup with super-
polynomial simulation and secure against malicious adversaries that can corrupt
upto (n − 1) parties. Formally, we prove the following theorem:

Theorem 1. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– 3 round MPC protocol for any functionality f that is secure against malicious

adversaries in the first round and semi-malicious adversaries in the next two
rounds,

the protocol presented in Fig. 2 is a 3 round MPC protocol for any functionality
f , in the plain model with super-polynomial simulation.

We can instantiate the underlying MPC protocol with the construction of
Brakerski et al. [7], which satisfies our requirements. That is:

Imported Lemma 1 ([7]): There exists a 3 round MPC protocol for any func-
tionality f based on the LWE assumption that is secure against malicious adver-
saries in the first round and semi-malicious adversaries in the next 2 rounds.

Additionally, Dodis et al. [11] give a 2 round construction based on indis-
tinguishability obfuscation that is secure against semi-malicious adversaries. Of
course, this can be interpreted as a 3 round construction where the first round
has no message and is trivially secure against malicious adversaries in the first
round.

Formally, we obtain the following corollary on instantiating the MPC protocol
with the sub-exponentially secure variants of the above:

Corollary 1. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– B, where B ∈ {LWE, Indistinguishability Obfuscation}
the protocol presented in Fig. 2 is a 3 round MPC protocol for any functionality
f , in the plain model with super-polynomial simulation.

Note that though the two underlying MPC protocols can be based on the
security of polynomially hard LWE and polynomially hard iO respectively, we
require sub-exponentially secure variants of the MPC protocol and hence we use
sub-exponentially secure LWE and iO in our constructions.

Round Optimal Concurrent MPC via Strong Simulation 755

Remark 1 (On the Semi-Malicious security of [11]). We note that the protocol
in [11] works in two rounds: In the first round, each party provides a suitably
“spooky” homomorphic encryption of its input, under public keys chosen by each
party independently. After the first round, each party carries out a deterministic
homomorphic evaluation procedure that results in an encryption of f(x), where
x is a vector that combines inputs of all parties. In the second round, each party
computes a partial decryption of this ciphertext. The result is guaranteed to be
the sum of these partial decryptions in a suitable cyclic group.

Furthermore, their protocol satisfies the invariant that given the (possibly
maliciously chosen) randomness of the corrupted parties for the first round, and
given the vector of ciphertexts that are fixed after the first round, it is possible
to efficiently compute, at the end of the first round, the decryption shares for
all corrupted parties. Thus, if there is one honest party and the other parties
are corrupted, given the final output value f(x), the first round ciphertexts
and the randomness of the corrupted semi-malicious parties, it is possible to
compute the unique decryption share of the honest party that would force the
desired output value. This property shows that their protocol satisfies semi-
malicious security, since the first round message of the simulated honest party
can simply be the honest first round message corresponding to the input 0, and
the second round message can be computed from f(x), the first round ciphertexts
and the randomness of the corrupted semi-malicious parties. The work of [31]
further showed how to transform such a 2-round semi-malicious MPC protocol
that handles exactly all-but-one corruptions into a 2-round semi-malicious MPC
protocol that handles any number of corruptions.

4.1 High-Level Overview

Before describing our protocol formally, to help the exposition, we first give a
brief overview of the construction in this subsection.

Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn respectively who wish
to run a secure MPC to compute a function f on their joint inputs. Initially,
each party Pi picks some randomness ri that it will use to run the semi-malicious
protocol πSM.

In the first round, each party Pi sends the first round message of the protocol
πSM. Then, with every other party Pj , Pi initiates two executions of the SPSS.ZK
argument system playing the verifier’s role. Additionally, Pi and Pj also initiate
two executions of a non-malleable commitment scheme - each acting as the
committer in one of them. Pi commits to the pair (xi, ri) - that is, the input and
randomness used in the protocol πSM. Recall that the first round messages of
πSM are already secure against malicious adversaries, so intuitively, the protocol
doesn’t require any proofs in the first round.

In the second round, each party Pi sends the second round message of the
protocol πSM using input xi and randomness ri. Then, Pi finishes executing
the non-malleable commitments (playing the committer’s role) with every other
party Pj , committing to (xi, ri). Finally, with every other party Pj , Pi completes
the execution of the SPSS.ZK argument by sending its second message - Pi proves

756 S. Badrinarayanan et al.

that the two messages sent so far using the protocol πSM were correctly generated
using the pair (xi, ri) committed to using the non-malleable commitment.

In the third round, each party Pi first verifies all the proofs it received in
the last round and sends a global abort (asking all the parties to abort) if any
proof does not verify. Then, Pi sends the third round message of the protocol
πSM using input xi and randomness ri. Finally, as before, with every other party
Pj , Pi completes the execution of the SPSS.ZK argument by sending its second
message - Pi proves that the two messages sent so far using the protocol πSM were
correctly generated using the pair (xi, ri) committed to using the non-malleable
commitment.

Each party Pi now computes its final output as follows. Pi first verifies all
the proofs it received in the previous round and sends a global abort (asking
all the parties to abort) if any proof does not verify. Then, Pi computes the
output using the output computation algorithm of the semi-malicious protocol
πSM. This completes the protocol description.

Security Proof: We now briefly describe how the security proof works. Let’s
consider an adversary A who corrupts a set of parties. Recall that the goal is to
move from the real world to the ideal world such that the outputs of the honest
parties along with the view of the adversary is indistinguishable. We do this via
a sequence of computationally indistinguishable hybrids.

The first hybrid Hyb1, refers to the real world. In Hyb2, the simulator extracts
the adversary’s input and randomness (used in protocol πSM) by a brute force
break of the non-malleable commitment. The simulator aborts if the extracted
values don’t reconstruct the protocol messages for the underlying semi-malicious
protocol correctly. These two hybrids are indistinguishable because from the
soundness of the proof system, except with negligible probability, the values
extracted by the simulator correctly reconstruct to protocol messages.

Then, in Hyb3, we switch the SPSS.ZK arguments used by all honest par-
ties in rounds 2 and 3 to simulated ones. This hybrid is computationally indis-
tinguishable from the previous hybrid by the security of the SPSS.ZK system.
Notice that when we switch from real to simulated arguments, we can no longer
rely on the adversary’s zero knowledge arguments to argue the correctness of the
values extracted by breaking the non-malleable commitment. That is, the adver-
sary’s arguments may not be simulation sound. However, recall that to check the
validity of the extracted values, we only rely on the correct reconstruction of the
semi-malicious protocol messages, and hence this is not a problem. Also, the run-
ning time of the simulator in these two hybrids is the time taken to break the
non-malleable commitment TBrk

Com - which must be lesser than the time against
which the zero knowledge property holds - TZK.

In Hyb4, we switch all the non-malleable commitments sent by honest par-
ties to be commitments of 0 instead of the actual input and randomness. Recall
that since the arguments of the honest parties are simulated, this doesn’t vio-
late correctness. Also, this hybrid is computationally indistinguishable from
the previous hybrid by the security of the non-malleable commitment scheme.
One issue that arises here is whether the simulator continues to extract the

Round Optimal Concurrent MPC via Strong Simulation 757

adversary’s inputs correctly. Recall that to extract, the simulator has to break
the non-malleable commitment for which it has to run in time TBrk

Com. However,
then the reduction to the security of the non-malleable commitment only makes
sense if the simulator runs in time lesser than that needed to break the non-
malleable commitment. We overcome this issue by a sequence of sub-hybrids
where we first switch the simulator to not extract the adversary’s inputs, then
switch the non-malleable commitments and then finally go back to the simulator
extracting the adversary’s inputs. We elaborate on this in the formal proof.

Then, in Hyb5 we run the simulator of πSM using the extracted values to gen-
erate the protocol messages. This hybrid is indistinguishable from the previous
one by the security of πSM. Once again, in order to ensure correctness of the
extracted values, we require the running time of the simulator - which is TBrk

Com to
be lesser than the time against which the semi-malicious protocol πSM is secure.
This is because, then, the simulator can continue to extract the adversary’s mes-
sage and randomness used for the protocol πSM by breaking the semi-malicious
protocol. This hybrid (Hyb5) now corresponds to the ideal world. Notice that
our simulation is in fact straight-line. There are other minor technicalities that
arise and we elaborate on this in the formal proof.

4.2 Construction

We first list some notation and the primitives used before describing the con-
struction.

Notation:

– λ denotes the security parameter.
– SPSS.ZK = (ZK1,ZK2,ZK3) is a two message zero knowledge argument with

super polynomial strong simulation (SPSS-ZK). The zero knowledge prop-
erty holds against all adversaries running in time TZK. Let SimZK denote the
simulator that produces simulated ZK proofs and let TSim

ZK denote its running
time. [25] give a construction of an SPSS.ZK scheme satisfying these proper-
ties that can be based on one of the following sub-exponential assumptions:
(1) DDH; (2) Quadratic Residuosity; (3) N th Residuosity.

– NMCom = (NMComR
1 ,NMComS

1 ,NMComS
2) is a two message concurrent non-

malleable commitment scheme with respect to commitment in the simultane-
ous message model. Here, NMComR

1 ,NMComS
1 denote the first message of the

receiver and sender respectively while NMComS
2 denotes the second message

of the sender. It is secure against all adversaries running in time TSec
Com, but

can be broken by adversaries running in time TBrk
Com. Let Ext.Com denote a

brute force algorithm running in time TBrk
Com that can break the commitment

scheme. [25] give a construction of an NMCom scheme satisfying these prop-
erties that can be based on one of the following sub-exponential assumptions:
(1) DDH; (2) Quadratic Residuosity; (3) N th Residuosity.
The NMCom we use is tagged. In the authenticated channels setting, the tag
of each user performing a non-malleable commitment can just be its iden-
tity. In the general setting, in the first round, each party can choose a strong

758 S. Badrinarayanan et al.

digital signature verification key VK and signing key, and then sign all its
messages using this signature scheme for every message sent in the protocol.
This VK is then used as the tag for all non-malleable commitments. This
ensures that every adversarial party must choose a tag that is different than
any tags chosen by honest parties, otherwise the adversary will not be able
to sign any of its messages by the existential unforgeability property of the
signature scheme. This is precisely the property that is assumed when apply-
ing NMCom. For ease of notation, we suppress writing the tags explicitly in
our protocols below.

– πSM is a sub-exponentially secure 3 round MPC protocol that is secure against
malicious adversaries in the first round and semi-malicious adversaries in the
next two rounds. This protocol is secure against all adversaries running in
time TSM. Let (MSG1,MSG2,MSG3) denote the algorithms used by any party
to compute the messages in each of the three rounds and OUT denotes the
algorithm to compute the final output. Further, let’s assume that this protocol
πSM runs over a broadcast channel. Let S = (S1,S2,S3) denote the straight
line simulator for this protocol - that is, Si is the simulator’s algorithm to
compute the ith round messages. Also, we make the following assumptions
about the protocol structure, that is satisfied by the instantiations:
1. S1 and S2 run without any input other than the protocol transcript so

far - in particular, they don’t need the input, randomness and output
of the malicious parties. For S1, this must necessarily be true since the
first round of πSM is secure against malicious adversaries. We make the
assumption only on S2.1

2. The algorithm MSG3 doesn’t require any new input or randomness that
was not already used in the algorithms MSG1,MSG2. Looking ahead, this
is used in our security proof when we want to invoke the simulator of
this protocol πSM, we need to be sure that we have fed the correct input
and randomness to the simulator. This is true for all instantiantions we
consider, where the semi-malicious simulator requires only the secret keys
of corrupted parties (that are fixed in the second round) apart from the
protocol transcript.

In order to realize our protocol, we require that poly(λ) < TSim
ZK < TSec

Com < TBrk
Com <

TZK,TSM.
The construction of the protocol is described in Fig. 2. We assume broadcast

channels. In our construction, we use proofs for a some NP languages that we
elaborate on below.

NP language L is characterized by the following relation R.
Statement : st = (c1, ĉ1, c2,msg1,msg2, τ)
Witness : w = (inp, r, rc)
R(st,w) = 1 if and only if :

– ĉ1 = NMComS
1(inp, r; rc) AND

1 This assumption can be removed by running the commitment extractor on the first
round messages itself. This idea is used in Sect. 5.

Round Optimal Concurrent MPC via Strong Simulation 759

– c2 = NMComS
2 (inp, r, c1; rc) AND

– msg1 = MSG1(inp; r) AND
– msg2 = MSG2(inp, τ ; r)

That is, the messages (c1, ĉ1, c2) form a non-malleable commitment of (inp, r)
such that msg2 is the second round message using input inp, randomness r by
running the protocol πSM, where the protocol transcript so far is τ .

NP language L1 is characterized by the following relation R1.
Statement : st = (c1, ĉ1, c2,msg3, τ)
Witness : w = (inp, r, rc)
R(st,w) = 1 if and only if :

– ĉ1 = NMComS
1(inp, r; rc) AND

– c2 = NMComS
2 (inp, r, c1; rc) AND

– msg3 = MSG3(inp, τ ; r)

That is, the messages (c1, ĉ1, c2) form a non-malleable commitment of (inp, r)
such that msg3 is the third round message using input inp, randomness r by
running the protocol πSM, where the protocol transcript so far is τ .

In the protocol, let’s assume that every party has an associated identity id.
For any session sid, each parties generates its non-malleable commitment using
the tag (id||sid).

The correctness of the protocol follows from the correctness of the protocol
πSM, the non-malleable commitment scheme NMCom and the zero knowledge
proof system SPSS.ZK.

4.3 Security Proof

In this section, we formally prove Theorem 1.
Consider an adversary A who corrupts t parties where t < n. For each party

Pi, let’s say that the size of input and randomness used in the protocol πSM

is p(λ) for some polynomial p. That is, |(xi, ri)| = p(λ). The strategy of the
simulator Sim against a malicious adversary A is described in Fig. 3.

Here, in the simulation, we crucially use the two assumptions about the
protocol structure. The first one is easy to notice since the simulator Sim has to
run the semi-malicious to produce the first and second messages before it has
extracted the adversary’s input and randomness. For the second assumption,
observe that in order to run the simulator algorithm S3, Sim has to feed it the
entire input and randomness of the adversary and so these have to be bound to
by the end of the second round.

We now show that the simulation strategy described in Fig. 3 is successful
against all malicious PPT adversaries. That is, the view of the adversary along
with the output of the honest parties is computationally indistinguishable in
the real and ideal worlds. We will show this via a series of computationally
indistinguishable hybrids where the first hybrid Hyb1 corresponds to the real
world and the last hybrid Hyb6 corresponds to the ideal world.

760 S. Badrinarayanan et al.

Fig. 2. 3 round MPC Protocol π for functionality f .

1. Hyb1: In this hybrid, consider a simulator SimHyb that plays the role of the
honest parties. SimHyb runs in polynomial time.

2. Hyb2: In this hybrid, the simulator SimHyb also runs the “Input Extraction”
phase and the “Special Abort” phase in step3 and 5 in Fig. 3. SimHyb runs in
time TBrk

Com.

Round Optimal Concurrent MPC via Strong Simulation 761

Fig. 3. Simulation strategy in the 3 round protocol

3. Hyb3: This hybrid is identical to the previous hybrid except that in Rounds
2 and 3, SimHyb now computes simulated SPSSZK proofs as done in Round
2 in Fig. 3. Once again, SimHyb runs in time TBrk

Com.
4. Hyb4: This hybrid is identical to the previous hybrid except that SimHyb now

computes all the (ĉj
1,i, c

j
2,i) as non-malleable commitments of 0p(λ) as done in

Round 2 in Fig. 3. Once again, SimHyb runs in time TBrk
Com.

762 S. Badrinarayanan et al.

5. Hyb5: This hybrid is identical to the previous hybrid except that in Round 3,
SimHyb now computes the messages of the protocol πSM using the simulator
algorithms S = (S1,S2,S3) as done by Sim in the ideal world. SimHyb also
instructs the ideal functionality to deliver outputs to the honest parties as
done by Sim. This hybrid is now same as the ideal world. Once again, SimHyb

runs in time TBrk
Com.

We now show that every pair of successive hybrids is computationally indis-
tinguishable.

Lemma 1. Assuming soundness of the SPSS.ZK argument system, binding of
the non-malleable commitment scheme and correctness of the protocol πSM, Hyb1
is computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb2, SimHyb may
output “Special Abort” which doesn’t happen in Hyb1. More specifically, in Hyb2,
“Special Abort” occurs if event E described below is true.

Event E: Is true if : For any malicious party Pj

– All the SPSS.ZK proofs sent by Pj in round 2 and 3 verify correctly.
(AND)

– Either of the following occur:
• The set of values {(xi

j , r
i
j)} that are committed to using the non-malleable

commitment is not same for every i where Pi is honest. (OR)
• msg1,j 	= MSG1(xj , rj) (OR)
• msg2,j 	= MSG2(xj , rj , τ1) where τ1 is the protocol transcript after round

1. (OR)
• msg3,j 	= MSG3(xj , rj , τ2) where τ2 is the protocol transcript after round 2.

That is, in simpler terms, the event E occurs if for any malicious party, it
gives valid ZK proofs in round 2 and 3 but its protocol transcript is not consistent
with the values it committed to.

Therefore, in order to prove the indistinguishability of the two hybrids, it is
enough to prove the lemma below.

Sub-Lemma 1. Pr[Event E is true in Hyb2] = negl(λ).

Proof. We now prove the sub-lemma. Suppose the event E does occur. From the
binding property of the commitment scheme and the correctness of the protocol
πSM, observe that if any of the above conditions are true, it means there exists
i, j such that the statement sti2,j = (cj

1,i, c
i
2,j ,msg1,j ,msg2,j , τ1) /∈ L, where Pi is

honest and Pj is malicious. However, the proof for the statement verified correctly
which means that the adversary has produced a valid proof for a false statement.
This violates the soundness property of the SPSSZK argument system which is
a contradiction.

Lemma 2. Assuming the zero knowledge property of the SPSS.ZK argument
system, Hyb2 is computationally indistinguishable from Hyb3.

Round Optimal Concurrent MPC via Strong Simulation 763

Proof. The only difference between the two hybrids is that in Hyb2, SimHyb com-
putes the proofs in Rounds 2 and 3 honestly, by running the algorithm ZK2 of
the SPSS.ZK argument system, whereas in Hyb3, a simulated proof is used. If the
adversary A can distinguish between the two hybrids, we can use A to design an
algorithm AZK that breaks the zero knowledge property of the argument system.

Suppose the adversary can distinguish between the two hybrids with non-
negligible probability p. Then, by a simple hybrid argument, there exists hybrids
Hyb2,k and Hyb2,k +1 that the adversary can distinguish with non-negligible
probability p′ < p such that: the only difference between the two hybrids is
in the proof sent by an honest party Pi to a (malicious) party Pj in one of the
rounds. Let’s say it is the proof in round 2.

AZK performs the role of SimHyb in its interaction with A and performs all
the steps exactly as in Hyb2,k except the proof in Round 2 sent by Pi to Pj . It
interacts with a challenger C of the SPSS.ZK argument system and sends the
first round message veri1,j it received from the adversary. AZK receives from C
a proof that is either honestly computed or simulated. AZK sets this received
proof as its message provej

i,2 in Round 2 of its interaction with A. In the first
case, this exactly corresponds to Hyb2,k while the latter exactly corresponds to
Hyb2,k +1. Therefore, if A can distinguish between the two hybrids, AZK can use
the same distinguishing guess to distinguish the proofs: i.e., decide whether the
proofs received from C were honest or simulated. Now, notice that AZK runs only
in time TBrk

Com (during the input extraction phase), while the SPSS.ZK system is
secure against adversaries running in time TZK. Since TBrk

Com < TZK, this is a
contradiction and hence proves the lemma.

In particular, this also means the following: Pr[Event E is true in Hyb3] = negl(λ).

Lemma 3. Assuming the non-malleability property of the non-malleable com-
mitment scheme NMCom, Hyb3 is computationally indistinguishable from Hyb4.

Proof. We will prove this using a series of computationally indistinguishable
intermediate hybrids as follows.

– Hyb3,1: This is same as Hyb3 except that the simulator SimHyb does not run the
input extraction phase apart from verifying the SPSS.ZK proofs. Also, SimHyb

does not run the special abort phase. In particular, the Ext.Com algorithm is
not run and there is no “Special Abort”. In this hybrid, SimHyb runs in time
TSim
ZK which is lesser than TBrk

Com.
– Hyb3,2: This hybrid is identical to the previous hybrid except that in Round

2, SimHyb now computes all the messages (ĉj
1,i, c

j
2,i) as non-malleable commit-

ments of 0p(λ) as done by Sim in the ideal world. In this hybrid too, SimHyb

runs in time TSim
ZK .

– Hyb3,3: This is same as Hyb3 except that the simulator does run the input
extraction phase and the special abort phase. It is easy to see that Hyb3,3 is
the same as Hyb4. In this hybrid, SimHyb runs in time TBrk

Com which is greater
than TSim

ZK .

764 S. Badrinarayanan et al.

We now prove the indistinguishability of these intermediate hybrids and this
completes the proof of the lemma.

Sub-Lemma 2. Hyb3 is statistically indistinguishable from Hyb3,1.

Proof. The only difference between the two hybrids is that in Hyb3, the simulator
might output “Special Abort” which doesn’t happen in Hyb3,1. As shown in the
proof of Lemma 2, the probability that Event E occurs in Hyb3 is negligible. This
means that the probability that the simulator outputs “Special Abort” in Hyb3
is negligible and this completes the proof.

Sub-Lemma 3. Assuming the non-malleability property of the non-malleable
commitment scheme NMCom, Hyb3,1 is computationally indistinguishable from
Hyb3,2.

Proof. The only difference between the two hybrids is that in Hyb3,1, for every
honest party Pi, SimHyb computes the commitment messages (ĉj

1,i, c
j
2,i) as a com-

mitment of (xi, ri), whereas in Hyb3,2, they are computed as a commitment of
(0p(λ)). If the adversary A can distinguish between the two hybrids, we can use
A to design an algorithm ANMC that breaks the security of the non-malleable
commitment scheme NMCom. We defer the details about the reduction to the
full version.

Sub-Lemma 4. Hyb3,2 is statistically indistinguishable from Hyb3,3.

Proof. The only difference between the two hybrids is that in Hyb3,3, the simu-
lator might output “Special Abort” which doesn’t happen in Hyb3,2. As shown
in the proof of Sub-Lemma3, the probability that Event E occurs in Hyb3,2 is
negligible. This means that the probability that the simulator outputs “Special
Abort” in Hyb3,3 is negligible and this completes the proof.

Lemma 4. Assuming the security of the protocol πSM, Hyb4 is computationally
indistinguishable from Hyb5.

Proof. The only difference between the two hybrids is that in Hyb4, SimHyb com-
putes the messages of protocol πSM correctly using the honest parties’ inputs,
whereas in Hyb5, they are computed by running the simulator S for protocol
πSM. If the adversary A can distinguish between the two hybrids, we can use A
to design an algorithm ASM that breaks the security of protocol πSM. We defer
the details about the reduction to the full version.

5 Two Round Malicious Secure MPC for Input-Less
Functionalities

Let f be any input-less functionality randomized functionalities. Consider n
parties P1, . . . ,Pn who wish to compute f by running a secure multiparty com-
putation(MPC) protocol. Let πSM be any 2 round MPC protocol for f in the

Round Optimal Concurrent MPC via Strong Simulation 765

plain model, that is secure against semi-malicious adversaries corrupting upto
(n−1) parties (such a protocol for general functionalities was described in [7]). In
this section, we show how to generically transform πSM into a 2 round protocol
π1 without setup with super-polynomial simulation and secure against malicious
adversaries that can corrupt upto (n−1) parties. Formally, we prove the following
theorem:

Theorem 2. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– 2 round MPC protocol for any functionality f that is secure against semi-

malicious adversaries,

the protocol presented in Fig. 4 is a 2 round MPC protocol for any input-less
randomized functionality f , in the plain model with super-polynomial simulation.

We can instantiate the underlying MPC protocol with the 2 round construc-
tion of [11] to get the following corollary:

Corollary 2. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– Indistinguishability Obfuscation,

the protocol presented in Fig. 4 is a 2 round MPC protocol for any input-less
randomized functionality f in the plain model with super-polynomial simulation.

5.1 High-Level Overview

Before describing our protocol formally, to help the exposition, we first give a
brief overview of the construction in this subsection.

Consider n parties P1, . . . ,Pn with no inputs who wish to run a secure MPC
to compute an input-less randomized function f . Initially, each party Pi picks
some randomness ri that it will use to run the semi-malicious protocol πSM for
the same functionality f .

In the first round, each party Pi sends the first round message of the protocol
πSM. Then, with every other party Pj , Pi initiates an execution of the SPSS.ZK
argument system playing the verifier’s role. Additionally, Pi and Pj also initiate
two executions of a non-malleable commitment scheme - each acting as the
committer in one of them. Pi commits to the randomness ri used in the protocol
πSM.

In the second round, each party Pi sends the second round message of the
protocol πSM using randomness ri. Then, Pi finishes executing the non-malleable
commitments (playing the committer’s role) with every other party Pj , commit-
ting to rri. Finally, with every other party Pj , Pi completes the execution of
the SPSS.ZK argument by sending its second message - Pi proves that the two
messages sent so far using the protocol πSM were correctly generated using the
randomness ri committed to using the non-malleable commitment.

766 S. Badrinarayanan et al.

Each party Pi now computes its final output as follows. Pi first verifies all
the proofs it received in the last round and sends a global abort (asking all the
parties to abort) if any proof does not verify. Then, Pi computes the output
using the output computation algorithm of the semi-malicious protocol πSM.
This completes the protocol description.

Security Proof: We now briefly describe how the security proof works. Let’s
consider an adversary A who corrupts a set of parties. Recall that the goal is to
move from the real world to the ideal world such that the outputs of the honest
parties along with the view of the adversary is indistinguishable. We do this via
a sequence of computationally indistinguishable hybrids.

In the first hybrid Hyb1, we start with the real world.
Then, in Hyb2, we switch the SPSS.ZK proofs used by all honest parties in

round 2 to simulated proofs. This hybrid is computationally indistinguishable
from the previous hybrid by the security of the SPSS.ZK system.

In Hyb3, we switch all the non-malleable commitments sent by honest par-
ties to be commitments of 0 rather than the randomness. Recall that since the
proofs were simulated, this doesn’t violate correctness. Also, this hybrid is com-
putationally indistinguishable from the previous hybrid by the security of the
non-malleable commitment scheme.

Then, in Hyb4, the simulator extracts the adversary’s randomness (used in
protocol πSM) by a brute force break of the non-malleable commitment. The
simulator aborts if the extracted values don’t reconstruct the protocol messages
correctly. These two hybrids are indistinguishable because from the soundness
of the proof system, the extraction works correctly except with negligible prob-
ability. One technicality here is that since we are giving simulated proofs at
this point, we cannot rely on soundness anymore. To get around this, from the
very first hybrid, we maintain the invariant that in every hybrid, the value com-
mitted by the adversary using the non-malleable commitments can be used to
reconstruct the messages used in the semi-malicious protocol. Therefore, at this
point, as in Sect. 4, we need the time taken to break the non-malleable commit-
ment scheme TBrk

Com to be lesser than the time against which the zero knowledge
property holds - TZK. We elaborate on this in the formal proof.

Then, in Hyb5 we run the simulator of πSM using the extracted values to gen-
erate the protocol messages. This hybrid is indistinguishable from the previous
one by the security of πSM. Once again, in order to ensure correctness of the
extracted values, we require the running time of the simulator - which is TBrk

Com to
be lesser than the time against which the semi-malicious protocol πSM is secure.
This is because, then, the simulator can continue to extract the adversary’s mes-
sage and randomness used for the protocol πSM by breaking the semi-malicious
protocol.

Finally, Hyb5 corresponds to the ideal world. Notice that our simulation is in
fact straight-line. There are some slight technicalities that arise and we elaborate
on this in the formal proof. We now refer the reader to the formal protocol
construction.

Round Optimal Concurrent MPC via Strong Simulation 767

5.2 Construction

As in Sect. 4, we first list some notation and the primitives used before describing
the construction.

Notation:

– λ denotes the security parameter.
– SPSS.ZK = (ZK1,ZK2,ZK3) is a two message zero knowledge argument with

super polynomial strong simulation (SPSS-ZK). The zero knowledge prop-
erty holds against all adversaries running in time TZK. Let SimZK denote the
simulator that produces simulated ZK proofs and let TSim

ZK denote its running
time. [25] give a construction of an SPSS.ZK scheme satisfying these proper-
ties that can be based on one of the following sub-exponential assumptions:
(1) DDH; (2) Quadratic Residuosity; (3) N th Residuosity.

– NMCom = (NMComR
1 ,NMComS

1 ,NMComS
2) is a two message concurrent non-

malleable commitment scheme with respect to commitment in the simultane-
ous message model. Here, NMComR

1 ,NMComS
1 denote the first message of the

receiver and sender respectively while NMComS
2 denotes the second message

of the sender. It is secure against all adversaries running in time TSec
Com, but

can be broken by adversaries running in time TBrk
Com. Let Ext.Com denote a

brute force algorithm running in time TBrk
Com that can break the commitment

scheme just using the first round messages. [25] give a construction of an
NMCom scheme satisfying these properties that can be based on one of the
following sub-exponential assumptions: (1) DDH; (2) Quadratic Residuosity;
(3) N th Residuosity.

– πSM is a sub-exponentially secure 2 round MPC protocol that is secure against
semi-malicious adversaries. This protocol is secure against all adversaries run-
ning in time TSM. Let (MSG1,MSG2) denote the algorithms used by any party
to compute the messages in each of the two rounds and OUT denotes the algo-
rithm to compute the final output. Further, let’s assume that this protocol
πSM runs over a broadcast channel. Let S = (S1,S2) denote the simulator for
the protocol πSM - that is, Si is the simulator’s algorithm to compute the ith

round messages. Also, we make the following assumptions about the protocol
structure that is satisfied by the instantiations:
1. Since the protocol is for input-less functionalities, we assume that S1 is

identical to the algorithm MSG1 used by honest parties to generate their
first message.

2. The algorithm MSG2 doesn’t use any new randomness that was not
already used in the algorithm MSG1. This is similar to the assumption
used in Sect. 4.

In order to realize our protocol, we require that poly(λ) < TSim
ZK < TSec

Com < TBrk
Com <

TZK,TSM.
The construction of the protocol is described in Fig. 4. We assume broadcast

channels. In our construction, we use proofs for a some NP languages that we
elaborate on below.

768 S. Badrinarayanan et al.

NP language L is characterized by the following relation R.
Statement : st = (c1, ĉ1, c2,msg1,msg2, τ)
Witness : w = (r, rc)
R(st,w) = 1 if and only if :

– ĉ1 = NMComS
1(r; rc) AND

– c2 = NMComS
2 (r, c1; rc) AND

– msg1 = MSG1(⊥; r) AND
– msg2 = MSG2(⊥, τ ; r)

That is, the messages (c1, ĉ1, c2) form a non-malleable commitment of (inp, r)
such that msg2 is the second round message using input inp, randomness r by
running the protocol πSM, where the protocol transcript so far is τ .

In the protocol, let’s assume that every party has an associated identity id.
For any session sid, each parties generates its non-malleable commitment using
the tag (id||sid).

The correctness of the protocol follows from the correctness of the protocol
πSM, the non-malleable commitment scheme NMCom and the zero knowledge
proof system SPSS.ZK.

5.3 Security Proof

In this section, we formally prove Theorem2.

Consider an adversary A who corrupts t parties where t < n. For each party Pi,
let’s say that the size of randomness used in the protocol πSM is p(λ) for some
polynomial p. That is, |ri| = p(λ). The strategy of the simulator Sim against a
malicious adversary A is described in Fig. 5.

Here, notice that since there is no input, the simulator gets the output from
the ideal functionality - y right at the beginning. It still has to instruct the
functionality to deliver output to the honest party.

We now show that the simulation strategy described in Fig. 5 is successful
against all malicious PPT adversaries. That is, the view of the adversary along
with the output of the honest parties is computationally indistinguishable in
the real and ideal worlds. We will show this via a series of computationally
indistinguishable hybrids where the first hybrid Hyb1 corresponds to the real
world and the last hybrid Hyb6 corresponds to the ideal world.

We prove indistinguishability of these hybrids via similar reductions as those
in Sect. 4. Please refer to the full version for these reductions.

1. Hyb1: In this hybrid, consider a simulator SimHyb that plays the role of the
honest parties. SimHyb runs in polynomial time.

2. Hyb2: This hybrid is identical to the previous hybrid except that in Round 2,
SimHyb now computes simulated SPSSZK proofs as done in Round 2 in Fig. 5.
Here, SimHyb runs in time TSim

ZK .
3. Hyb3: This hybrid is identical to the previous hybrid except that SimHyb now

computes all the (ĉj
1,i, c

j
2,i) as non-malleable commitments of 0p(λ) as done in

Round 2 in Fig. 5. Once again, SimHyb runs in time TSim
ZK .

Round Optimal Concurrent MPC via Strong Simulation 769

Fig. 4. 2 Round MPC protocol π1 for input-less randomized functionality f .

4. Hyb4: In this hybrid, the simulator SimHyb also runs the “Randomness Extrac-
tion” phase and the “Special Abort” phase in steps 2 and 4 in Fig. 5. Now,
SimHyb runs in time TBrk

Com.
5. Hyb5: In this hybrid, if the value of the variable correct = 1, SimHyb now

computes the second round message of the protocol πSM using the simulator
algorithms S2 as done by Sim in the ideal world. SimHyb also instructs the
ideal functionality to deliver outputs to the honest parties as done by Sim.
This hybrid is now same as the ideal world. Once again, SimHyb runs in time
TBrk
Com.

6 Three Round Concurrently Secure MPC

Let f be any functionality. Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn

respectively who wish to compute f on their joint inputs by running a concur-
rently secure multiparty computation(MPC) protocol. Let πSM be any 3 round

770 S. Badrinarayanan et al.

Fig. 5. Simulation strategy in the 2 round protocol

protocol that runs without any setup for the above task and is secure against
adversaries that can be completely malicious in the first round, semi-malicious
in the next two rounds and can corrupt upto (n − 1) parties. In this section,
we show how to generically transform πSM into a 3 round concurrently secure
protocol πConc without setup with super-polynomial simulation that is secure
against malicious adversaries which can corrupt upto (n − 1) parties. Formally,
we prove the following theorem:

Theorem 3. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– 3 round MPC protocol for any functionality f that is stand-alone secure

against malicious adversaries in the first round and semi-malicious adver-
saries in the next two rounds,

Round Optimal Concurrent MPC via Strong Simulation 771

the protocol presented in Fig. 2 is a 3 round concurrently secure MPC proto-
col without any setup with super-polynomial simulation for any functionality f ,
secure against malicious adversaries.

We can instantiate the underlying MPC protocol with the constructions of
[7,11] to get the following corollary:

Corollary 3. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– B, where B ∈ {LWE, Indistinguishability Obfuscation}
the protocol presented in Fig. 2 is a 3 round concurrently secure MPC proto-
col without any setup with super-polynomial simulation for any functionality f ,
secure against malicious adversaries.

We essentially prove that the same protocol from Sect. 4 is also concur-
rently secure. The proof is fairly simple and not too different from the proof
of stand-alone security, because the simulation strategy as well as all reductions
are straight-line. The only use of rewinding occurs (implicitly) within the proof
of non-malleability, which we carefully combine with identities to ensure that
the protocol remains concurrently secure. For the sake of completeness, we write
out the protocol and the proof in their entirety in the full version.

7 Two Round Concurrently Secure MPC for Input-Less
Functionalities

Let f be any input-less functionality randomized functionalities. Consider n
parties P1, . . . ,Pn who wish to compute f by running a concurrently secure
multiparty computation(MPC) protocol. Let πSM be any 2 round protocol that
runs without any setup for the above task and is secure against semi-malicious
adversaries that can corrupt upto (n − 1) parties. In this section, we show how
to generically transform πSM into a 2 round concurrently secure protocol πConc

1

without setup with super-polynomial simulation and secure against malicious
adversaries that can corrupt upto (n−1) parties. Formally, we prove the following
theorem:

Theorem 4. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– 2 round MPC protocol for any functionality f that is stand-alone secure

against semi-malicious adversaries,

the protocol presented in Fig. 4 is a 2 round concurrently secure MPC protocol
without any setup with super-polynomial simulation for any input-less random-
ized functionality f , secure against malicious adversaries.

We can instantiate the underlying MPC protocol with the 2 round construc-
tion of [11] to get the following corollary:

772 S. Badrinarayanan et al.

Corollary 4. Assuming sub-exponentially secure:

– A, where A ∈ {DDH, Quadratic Residuosity, N th Residuosity} AND
– Indistinguishability Obfuscation,

the protocol presented in Fig. 4 is a 2 round concurrently secure MPC protocol
without any setup with super-polynomial simulation for any input-less random-
ized functionality f .

We essentially prove that the same protocol from Sect. 5 is also concur-
rently secure. The proof is fairly simple and not too different from the proof
of stand-alone security, because the simulation strategy as well as all reductions
are straight-line. The only use of rewinding occurs (implicitly) within the proof
of non-malleability, which we carefully combine with identities to ensure that
the protocol remains concurrently secure. For the sake of completeness, we write
out the protocol and the proof in their entirety in the full version.

Acknowledgements. We thank Ron Rothblum for useful discussions.

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). doi:10.1007/978-3-319-63688-7 16

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs,
D.: Multiparty computation with low communication, computation and interac-
tion via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 29

3. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. IACR Cryptology ePrint Archive 2017, 433 (2017). http://eprint.iacr.org/
2017/433

4. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), Berkeley, California, USA, Proceedings, pp. 345–354, 21–24 October 2006.
https://doi.org/10.1109/FOCS.2006.21

5. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, Pro-
ceedings, pp. 543–552, 23–25 October 2005. https://doi.org/10.1109/SFCS.2005.
43

6. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, Baltimore, Maryland, USA, pp. 503–513, 13–17 May 1990.
http://doi.acm.org/10.1145/100216.100287

7. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. IACR Cryptology ePrint Archive 2017, 386 (2017). http://eprint.iacr.
org/2017/386

http://dx.doi.org/10.1007/978-3-319-63688-7_16
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://eprint.iacr.org/2017/433
http://eprint.iacr.org/2017/433
https://doi.org/10.1109/FOCS.2006.21
https://doi.org/10.1109/SFCS.2005.43
https://doi.org/10.1109/SFCS.2005.43
http://doi.acm.org/10.1145/100216.100287
http://eprint.iacr.org/2017/386
http://eprint.iacr.org/2017/386

Round Optimal Concurrent MPC via Strong Simulation 773

8. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, Las Vegas, Nevada, USA, pp. 541–
550, 23–26 October 2010. https://doi.org/10.1109/FOCS.2010.86

9. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). doi:10.1007/11535218 23

10. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006). doi:10.
1007/11818175 30

11. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp.
93–122. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3 4

12. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
New Orleans, Louisiana, USA, pp. 542–552, 5–8 May 1991. http://doi.acm.org/10.
1145/103418.103474

13. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation
in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 8

14. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5 27

15. Garg, S., Kiyoshima, S., Pandey, O.: On the exact round complexity of self-
composable two-party computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 194–224. Springer, Cham (2017). doi:10.1007/
978-3-319-56614-6 7

16. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 16

17. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 36

18. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of the
19th Annual ACM Symposium on Theory of Computing 1987, New York, NY,
USA, pp. 218–229 (1987). http://doi.acm.org/10.1145/28395.28420

20. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, pp. 695–704, 6–8 June 2011. http://doi.acm.org/10.1145/
1993636.1993729

21. Goyal, V., Khurana, D., Sahai, A.: Breaking the three round barrier for non-
malleable commitments. In: FOCS (2016)

22. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commit-
ments: a black-box approach. In: 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, pp. 51–60, 20–23
October 2012 . https://doi.org/10.1109/FOCS.2012.47

https://doi.org/10.1109/FOCS.2010.86
http://dx.doi.org/10.1007/11535218_23
http://dx.doi.org/10.1007/11818175_30
http://dx.doi.org/10.1007/11818175_30
http://dx.doi.org/10.1007/978-3-662-53015-3_4
http://doi.acm.org/10.1145/103418.103474
http://doi.acm.org/10.1145/103418.103474
http://dx.doi.org/10.1007/978-3-642-29011-4_8
http://dx.doi.org/10.1007/978-3-642-29011-4_8
http://dx.doi.org/10.1007/978-3-642-55220-5_27
http://dx.doi.org/10.1007/978-3-319-56614-6_7
http://dx.doi.org/10.1007/978-3-319-56614-6_7
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-642-22792-9_36
http://doi.acm.org/10.1145/28395.28420
http://doi.acm.org/10.1145/1993636.1993729
http://doi.acm.org/10.1145/1993636.1993729
https://doi.org/10.1109/FOCS.2012.47

774 S. Badrinarayanan et al.

23. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53890-6 24

24. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation
with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 578–595. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 36

25. Khurana, D., Sahai, A.: Two-message non-malleable commitments from standard
sub-exponential assumptions. IACR Cryptology ePrint Archive 2017, 291 (2017).
http://eprint.iacr.org/2017/291

26. Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construc-
tion of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54242-8 15

27. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, pp. 705–714, 6–8 June 2011. http://doi.acm.org/
10.1145/1993636.1993730

28. Lin, H., Pass, R., Soni, P.: Two-round concurrent non-malleable commitment from
time-lock puzzles. IACR Cryptology ePrint Archive 2017, 273 (2017). http://
eprint.iacr.org/2017/273

29. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8 31

30. Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from
number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 343–359. Springer, Heidelberg (2006). doi:10.1007/11681878 18

31. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, Proceedings, Part II, pp. 735–763, 8–12 May 2016. https://doi.org/10.
1007/978-3-662-49896-5 26

32. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Advances in Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, Proceedings, pp. 57–74, 17–21
August 2008. http://dx.doi.org/10.1007/978-3-540-85174-5 4

33. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 10

34. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, pp. 232–241, 13–16 June 2004. http://doi.acm.org/10.
1145/1007352.1007393

35. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh,
PA, USA, Proceedings, pp. 563–572, 23–25 October 2005. https://doi.org/10.1109/
SFCS.2005.27

36. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, pp. 242–251, 13–16 June 2004. http://
doi.acm.org/10.1145/1007352.1007394

http://dx.doi.org/10.1007/978-3-662-53890-6_24
http://dx.doi.org/10.1007/3-540-39200-9_36
http://eprint.iacr.org/2017/291
http://dx.doi.org/10.1007/978-3-642-54242-8_15
http://dx.doi.org/10.1007/978-3-642-54242-8_15
http://doi.acm.org/10.1145/1993636.1993730
http://doi.acm.org/10.1145/1993636.1993730
http://eprint.iacr.org/2017/273
http://eprint.iacr.org/2017/273
http://dx.doi.org/10.1007/978-3-540-78524-8_31
http://dx.doi.org/10.1007/11681878_18
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-540-85174-5_4
http://dx.doi.org/10.1007/3-540-39200-9_10
http://doi.acm.org/10.1145/1007352.1007393
http://doi.acm.org/10.1145/1007352.1007393
https://doi.org/10.1109/SFCS.2005.27
https://doi.org/10.1109/SFCS.2005.27
http://doi.acm.org/10.1145/1007352.1007394
http://doi.acm.org/10.1145/1007352.1007394

Round Optimal Concurrent MPC via Strong Simulation 775

37. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 1999, New York, NY, USA, pp. 543–553, 17–18 October 1999. https://
doi.org/10.1109/SFFCS.1999.814628

38. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: FOCS 2010, pp. 531–540 (2010). https://doi.org/10.1109/FOCS.2010.
87

39. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)
40. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS

(1986)

https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/FOCS.2010.87
https://doi.org/10.1109/FOCS.2010.87

A Unified Approach to Constructing Black-Box
UC Protocols in Trusted Setup Models

Susumu Kiyoshima1(B), Huijia Lin2,
and Muthuramakrishnan Venkitasubramaniam3

1 NTT Secure Platform Laboratories, Tokyo, Japan
kiyoshima.susumu@lab.ntt.co.jp

2 University of California, Santa Barbara, CA, USA
rachel.lin@cs.ucsb.edu

3 University of Rochester, Rochester, NY, USA
muthuv@cs.rochester.edu

Abstract. We present a unified framework for obtaining black-box con-
structions of Universal Composable (UC) protocol in trusted setup mod-
els. Our result is analogous to the unified framework of Lin, Pass, and
Venkitasubramaniam [STOC’09, Asiacrypt’12] that, however, only yields
non-black-box constructions of UC protocols. Our unified framework
shows that to obtain black-box constructions of UC protocols, it suf-
fices to implement a special purpose commitment scheme that is, in par-
ticular, concurrently extractable using a given trusted setup. Using our
framework, we improve black-box constructions in the common refer-
ence string and tamper-proof hardware token models by weakening the
underlying computational and setup assumptions.

1 Introduction

Secure multi-party computation (MPC) protocols enable a set of m mutually
distrustful parties with private inputs x1, · · · , xm to jointly compute a function
f , learn the output f(x1, · · · , xm) and nothing else. In the classical stand-alone
setting, security of MPC protocols is analyzed where a single instance of a proto-
col runs in isolation. However, such analysis falls short of guaranteeing security
in more realistic, concurrent, settings, where multiple instances of different pro-
tocols co-exist and are subject to coordinated attacks. To address this, Canetti
formulated the Universally Composable (UC) framework [1] for reasoning about
the security of protocols in arbitrary execution environments that dynamically
interact with the analyzed protocol. The UC framework formulates, so far, the
most stringent and realistic model of protocol execution, and provides a strong
composability property —known as the universal composition theorem— that
protocols shown secure in the UC framework remain secure when executed con-
currently within arbitrary larger complex system.

Unfortunately, these strong properties come at a price: Many natural func-
tionalities cannot be realized with UC security in the plain model, where the

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 776–809, 2017.
https://doi.org/10.1007/978-3-319-70500-2_26

A Unified Approach to BB UC Protocols in Trusted Setup Models 777

only setup provided is authenticated communication channels; some additional
trusted setup is necessary [2,3]. Following Canetti and Fischlin [2], Canetti et al.
[4] demonstrated the feasibility of UC-secure protocols realizing general function-
alities, in the Common Reference String (CRS) Model, where a trusted entity
samples a single CRS from a prescribed distribution that can be referenced to by
all executions of the designed protocol. Since its conception, a long line of work
have focused on designing UC secure protocols under various trusted setups, from
CRS, to public key infrastructure, to tamper-proof hardware tokens, and many
others (see for example [5–11]), and led to a comprehensive understanding on
what are the minimal trusted setups and computational assumptions needed for
achieving UC security.

Black-box vs Non-black-box Construction: A basic distinction between
cryptographic constructions is whether they make only black-box use of the
underlying primitives or not. Black-box constructions only call the designated
input/output interface of the underlying primitives, whereas non-black-box con-
structions depend on specifics of the code implementing the primitives. Typically,
non-black-box constructions are more versatile for demonstrating feasibility of
cryptographic tasks and minimizing underlying primitives. However, black-box
constructions are more modular and tend to be more efficient. A natural theoreti-
cal direction seeks to narrow the gap between what is achieved via non-black-box
and black-box constructions for important cryptographic tasks, under minimal
assumptions (as done in, for example [12–22]), which leads to new constructions,
techniques, and understanding.

For the task of achieving UC security with trusted setups, there still remain
significant gaps between what is achievable via non-black-box and black-box
constructions. First, generic approaches for achieving UC-security have been
developed using non-black-box techniques. Lin et al. [11,23] presented a unified
framework for developing UC-secure protocols in general trusted setup models.
In particular, they identified a (simple) “minimal primitive” called UC-puzzles
that give non-black-box constructions of UC-secure protocols for general func-
tionalities. At a high-level this primitive facilitates concurrent simulation, which
is a necessary condition to achieve UC-security. Moreover, an important conse-
quence of the unified framework was the weakening of trusted infrastructure and
other assumptions in many models. It also significantly reduced the complexity
of designing UC-secure protocols, as UC puzzles are often easy (if not trivial) to
attain using trusted setups. Thus a natural question we ask in this work is,

Can we have a unified framework for developing
black-box constructions of UC-secure protocols, under general setup?

Thus far, no generic approach using black-box techniques exist, and, in fact, to
the best of our knowledge, there are only a few black-box constructions [21,22,24]
of UC-secure protocols for specific trusted-setup, namely the CRS and tamper-
proof hardware tokens models, which fall short in the following ways:

In the CRS model, the state-of-the-art non-black-box constructions assume
only the existence of semi-honest secure Oblivious Transfer (OT) protocols,

778 S. Kiyoshima et al.

whereas black-box constructions are based on either the existence of enhanced
trapdoor permutations [4], or specific assumptions, such as, Strong RSA,
DDH, DLIN [25–27]. All these assumption imply CCA encryption and semi-
honest OT. This raises the question:

Can we have black-box constructions of UC-secure protocols in the
CRS model, from weaker assumptions?

Hazay and Venkitasubramaniam [21] gave partial answer to this question in
the stronger “local CRS model”. They gave black-box construction of UC-
protocols from public-key encryption and semi-honest OT; however, every
execution of their protocols needs to rely on an independently sampled local
CRS. In contrast, the CRS model as defined originally [4] considers a single
CRS that is shared by all concurrent executions. Clearly, having a trusted
entity sampling a single CRS once and for all is a much more realistic setup
than sampling a CRS for every protocol execution.

In the tamper-proof hardware token model,1 unconditionally UC-secure
protocols exist using stateful tokens [28,29]. When relying on much weaker
(and more realistic) stateless tokens, computational assumptions are neces-
sary [28]. Following a body of works [28,30–34], Hazay et al. [22] showed
that the minimal assumption of one-way functions suffices. However, all UC-
protocols using stateless tokens require each instance of protocol execution
to create a token that has specific information of the instance (namely, the
session id) hardwired inside. This means parties must have the capability to
create customized tokens. In this work, we consider a even weaker model of
tokens, namely stateless and instance-independent tokens, which runs codes
sampled from a universal distribution, independent of protocol instances. We
believe that this model is more realistic as tokens with instance-independent
codes may be obtained and distributed ahead of protocol execution, and can
potentially be reused across different execution instances. We ask,

Can we have UC-secure protocols using stateless and
instance-independent tokens?

1.1 Our Result

In this work, we present a unified framework for obtaining black-box construction
of UC-secure protocols under general trusted setup, assuming semi-honest OT.
At a high-level, our framework reduces the task of achieving UC-security to
that of constructing a UC-special-purpose commitment scheme CECom with the
following properties.

1 In the tamper-proof hardware model, parties are assumed to have tamper-proof
hardware tokens that only provide input/output (i.e. black-box) access to the token
holder.

A Unified Approach to BB UC Protocols in Trusted Setup Models 779

– CECom is straight-line concurrently extractable w.r.t. opening, that is, there
is a straight-line extraction strategy E that can extract values from any con-
current committer C∗ with the guarantee that C∗ cannot successfully open
to any values different from what E extracts.

– CECom is hiding against resetting receivers.

We observe that comparing with UC commitments, UC-special-purpose commit-
ments are weaker in the sense that it does not guarantee simulation-extractability
nor equivocation, but stronger in the sense that they are resettably hiding.

Given such a commitment scheme CECom under trusted setup T , our unified
framework shows how to construct general UC-secure protocols that make use
of 4 independent instances of T and black-box use of CECom. We model the 4
independent instances of T as a single trusted-setup:

– The quadruple-T trusted setup 4T simply runs 4 independent instances of T
internally, and make them available to all parties.

In fact, for many specific trusted setups, 4 independent instances can be emulated
using just a single instance. For example, in the CRS model, 4 reference strings
can be concatenated into one. In the tamper proof token model, operations
related to tokens are captured by an ideal functionality that allows parties to
create an arbitrary number of tokens, transfer them, and execute them. One
single such ideal functionality provides the same functionality as 4 of them. In
these cases, our unified framework shows that to obtain black-box UC-secure
protocols, it suffices to focus on constructing UC-special-purpose commitment
schemes.

Theorem 1 (Main Theorem, Informal). Let T be any trusted-setup.
Assume the existence of a UC-special-purpose commitment scheme CECom
under T , and a constant-round semi-honest oblivious transfer protocol. Then,
for every well-formed functionality F , there is a black-box construction of a pro-
tocol π that UC-realizes F in the 4T -trusted setup model. Moreover, if CECom
has rcec rounds, then π has O(rcec) rounds.

We remark that we rely on our setup in an “instance independent” way. In partic-
ular, in the CRS model, four references strings are sampled at the beginning and
all instances rely on the same reference strings. Whereas in the token model, our
result implies that we require tokens with “instance-independent” code. Techni-
cally, we follow the Joint Universal Composition (JUC) paradigm [1] and show
that our protocol π when executed concurrently implement directly the multi-
session extension F̂ of the functionality F , using a single instance of 4T .

Comparison with the LPV framework. The unified framework (dubbed as
the LPV framework) of [11,23] formulated the notion of UC puzzles and showed
how to use them to obtain non-black-box constructions of UC-protocols. Roughly
speaking, UC puzzle is a protocol between a sender and a receiver with two
properties: (i) soundness guarantees that the puzzle is hard to solve for an honest
receiver, yet (ii) concurrent simulation guarantees that the view of a concurrent

780 S. Kiyoshima et al.

sender can be simulated while obtaining all puzzle solutions. From there, the
LPV framework shows how to use the UC puzzles to construct protocols that
can be concurrently simulated by following the Feige-Shamir paradigm with the
puzzle solutions as trapdoors.

In comparison, our unified framework requires constructing UC-special pur-
pose commitment, which captures the capability of concurrent extraction. While
it is known that using non-black-box techniques concurrent extraction can be
achieved through concurrent simulation, as done implicitly in the LPV frame-
work, these techniques often require the use of zero-knowledge or witness indis-
tinguishable proofs, and are not suitable for black-box constructions. This is
why in our framework, we directly require a concurrently extractable commit-
ment scheme to start with.

Next, using the generic framework, we improve black-box construction of UC
secure protocols in the CRS and tamper-proof hardware token model.

Comparison with the GUC Framework. In this work, we follow the JUC
framework [1] for modeling concurrent security of protocols. In particular, we
show that for every functionality F , the concurrent execution of our protocol
πF that implements F securely computes the multi-session extension of F . This
means that all instances of execution of πF refer to the same trusted setup,
for example, the same CRS. This model should be compared with the Global
UC (GUC) framework of [7], where a trusted setup is not only available to all
protocol instances, but also to the environment. This means the trusted setup
can be shared between arbitrary, even potentially unknown, protocols. Therefore,
protocols secure in the GUC framework provide stronger composition guarantees.
However, this comes at a price, in particular, it is known that general GUC
protocols in the CRS model is infeasible. In the tamper-proof hardware model,
the protocols by [22] are secure in the GUC framework, but their tokens are
instance-dependent.

Black-box UC Protocols in the CRS Model. In the CRS model, UC-
special purpose commitment scheme is trivial to construct, simply use any pub-
lic key encryption scheme. (In fact, even public key encryption with an interac-
tive encryption phase suffices.) Thus, plugging into our unified framework, we
immediately obtain black-box UC-protocols in the CRS model, from public key
encryption and semi-honest OT.

Theorem 2. Assuming the existence of a public-key encryption scheme and a
semi-honest oblivious-transfer protocol, there exists a fully black-box construction
of UC-secure protocols for general functionalities in the CRS model. Moreover,
if both underlying primitives have constant rounds, then the UC-secure protocols
also have constant rounds.

Previous black-box constructions in the CRS model either relies on the existence
of a trapdoor permutation [4], or specific algebraic or number theoretic assump-
tions, such as, DDH [27], Strong RSA [26], and DLin [26]. Note that all these
assumptions imply CCA encryption, which is used in all previous constructions.

A Unified Approach to BB UC Protocols in Trusted Setup Models 781

In comparison, our construction only relies on a public key encryption scheme
and a semi-honest OT protocol, which are not known to imply CCA encryp-
tion. Instead, in our construction, we use the public key encryption scheme to
implement an interactive CCA encryption scheme, where the encryption phase
is interactive (while the key generation and decryption procedures remain the
same). Our notion of interactive CCA encryption should be compared with that
of Dodis and Fiore [35]. Our notion is stronger in the sense that the receiver in
the interactive encryption phase does not need to know the secret key, whereas
in the notion by [35], only receivers knowing the secret key can “receive” the
encryption. In particular, their notion is insufficient for constructing UC-secure
protocols in the CRS model.

On the other hand, comparing with non-black-box constructions, the best
non-black-box construction assumes only the existence of semi-honest OT [11].
We thus narrow the gap in assumptions between non-black-box and black-box
constructions, and leaving open the question whether public key encryption can
be eliminated for black-box constructions.

Since the common reference string used in our protocols is simply the public
keys of the encryption scheme, we obtain as a corollary UC secure protocols in the
Uniform Reference String (URS) model assuming public key encryptions with
pseudorandom public key (also referred to as dense public-key cryptosystems
[36]), which also implies semi-honest OT [37].

Corollary 1. Assuming the existence of an public-key encryption scheme with
pseudorandom public keys, there exists a fully black-box construction of UC-
secure protocols for general functionalities in the URS model. Moreover, if both
underlying primitives have constant rounds, then the UC-secure protocols also
have constant rounds.

Using the same techniques, we believe we can also obtain black-box UC-secure
protocols in the public key infrastructure model.

Black-box UC Protocols in the Tamper Proof Hardware Token Model.
Extending the work of [22], we show how to construct a UC-special purpose
commitment scheme using tamper-proof hardware tokens, with black-box use of
a one-way function. The tokens used in our protocols are stateless and instance
independent, in the sense, every token implements a stateless function that is
sampled from a predefined distribution. Thus, plugging this commitment scheme
into our unified framework, we immediately obtain black-box UC-protocols in
the token model from semi-honest OT.

Theorem 3. Assuming the existence of semi-honest oblivious-transfer. Then,
there is black-box construction of UC-secure protocols for general functional-
ities in the tamper-proof hardware token model, using stateless and instance-
independent hardware tokens.

In contrast, previous works [22,28,34] either rely on stateful or instance-
dependent tokens.

782 S. Kiyoshima et al.

We believe that our framework will yield analogous improvements in other
setups such as, PUF [38], global random oracle models [39], etc., and we leave
it as future work to explore these instantiations.

1.2 Our Techniques

We now give an overview of our techniques. Recall that our main theorem states
that for a given trusted setup T , we can obtain black-box UC protocols in the
4T model from semi-honest OT and UC-special-purpose commitment schemes in
the T model, where UC-special-purpose commitment schemes are concurrently
extractable commitment schemes that are also resettably hiding. We prove this
theorem in two steps. For simplicity of this overview, our discussion below will
only use the concurrently extractability property of the commitments, and not
the resettable hiding property. For the use of resettable hiding property, see
Remark 2 at the bottom of this overview.

From CCA Commitment to Black-box UC Protocols in Trusted Setup
Models. We first show that a black-box construction of UC-secure protocols in
4T -model can be obtained from semi-honest OT and CCA-secure commitment
schemes [40] in 4T -model. We recall here that CCA-secure commitment schemes
are a stronger variant of non-malleable commitment schemes that additionally
require the hiding property to hold even against adversaries that have access to
the committed-value oracle, which can break arbitrary commitments sent by the
adversary using brute force.

CCA-secure commitments were originally proposed for the purpose of con-
structing concurrent secure protocol in the plain model (without any trusted
setups) that satisfy a weaker security notion called angel-based security [41]
or UC with super-polynomial time helpers [40]. In these models, to circum-
vent the aforementioned impossibility results of UC security [2,3], the security
definition is modified by allowing the adversary/simulator to have access to a
super-polynomial time helper H or angel. Since the helper can be implemented
in super-polynomial time, these models imply super-polynomial-time simula-
tion security [42]. The security in these models can be realized in the plain
model [19,20,40,41,43,44], and in particular black-box constructions of pro-
tocols satisfying UC-security with super-polynomial time helpers in the plain
model can be obtained from CCA-secure commitment schemes and semi-honest
OT protocol [19,20].

Our starting point is the work of [19] which builds upon techniques in [13,
14,45], and show how to obtain UC-secure protocols with a super-polynomial
time helper starting from semi-honest OT and CCA-secure commitments in a
black-box way. We show that a direct extension of this yields an analogous result
where we rely on CCA-secure commitments in 4T -model as opposed to CCA-
commitments in the plain model. Moreover, the helper H is a super-polynomial
machine that breaks CCACom commitments in 4T -model.

In our next step, we eliminate access to super-polynomial helpers to guar-
antee standard UC-security. Suppose that the CCACom is also straight-line con-
currently extractable, i.e., there exists a (polynomial-time) extractor E that by

A Unified Approach to BB UC Protocols in Trusted Setup Models 783

simulating the 4T -setup for the concurrent committer can extract the committed
values in a straight-line way, then we can simply remove the super-polynomial
time helper H by simulating the trusted setup (in polynomial time), achieving
UC-security. Then, we will be able to emulate H with standard UC-simulation
in 4T -model.

From Concurrently Extractable Commitments to CCA-secure Com-
mitments in Trusted Setup Models. We next show that a black-box
CCA-secure commitment scheme (with straight-line concurrent extractability
as required in the above step) in 4T -model can be obtained from a straight-line
concurrent extractable commitment scheme in T -model.

Our high-level approach is to use the well-known Naor-Yung paradigm [46]
that has been used to construct many CCA-secure encryption schemes. Recall
that in the Naor-Yung technique, the sender encrypts a single message twice and
proves “consistency” (i.e., the plaintext encrypted in both ciphertexts are equal)
using a simulation-sound (non-interactive) zero-knowledge proof. Similarly, we
consider a commitment scheme where, at a very high-level, the committer com-
mits to a single message twice using a concurrently extractable commitment
scheme and proves consistency. However, since our goal is to obtain black-box
constructions, the committer of our protocol cannot use generic zero-knowledge
proofs for proving consistency. We address this problem using the elegant tech-
nique of Choi et al. [45], developed in the context of constructing black-box
non-malleable encryption from just public key encryption, and later extended to
the context of constructing black-box non-malleable commitments by Wee [17].
Their techniques combine the cut-and-choose technique with Shamir’s secret
sharing scheme.

In more detail, we consider the following scheme as the starting point.
Let CECom be a straight-line concurrently extractable commitment scheme in
T -model, and ECom be a straight-line (stand-alone) extractable commitment
scheme in T -model (ECom can be obtained from CECom trivially). Let v be the
message to be committed, and T0, T1, T2 be three independent instances of T .

Stage 1. The receiver R commits to a random subset Γ ⊂ [10λ] of size λ using
ECom and trusted setup T0.

Stage 2. The committer C computes a (λ+1)-out-of-10λ Shamir’s secret shar-
ing s = (s1, . . . , s10λ) of value v. Next, for each j ∈ [10λ], C commits to sj in
parallel, using CECom and the setup T1. We will refer to commitments made
in this stage as “commitments in the first row”.

Stage 3. For each j ∈ [10λ], C commits to sj in parallel, using CECom and the
setups T2. We will refer to commitments made in this stage as “commitments
in the second row”.

Stage 4 (Cut and Choose). R decommits the Stage 1 commitment to Γ . For
each j ∈ Γ , C decommits both the jth commitment in the first row and the
jth one in the second row, and R checks whether the two commitments are
correctly decommitted to the same value sj .

Decommitment. To decommit, simply decommit all commitments in the first
row. If the shares s = (s1, . . . , s10λ) committed in the first row is 0.9-close

784 S. Kiyoshima et al.

to a valid codeword of v, then the committed value is v, otherwise, it is set
to ⊥.

Note that this scheme works in 3T -model since it uses three instances of T . We
remark that, similar to the scheme by Naor and Yung, this scheme satisfies the
following two properties.

1. The committer is required to commit to the same value in the two rows
of the commitments. Specifically, it is guaranteed by the values revealed in
the cut-and-choose stage (i.e., Stage 4) and the hiding of ECom, that the
shares that are committed in the two rows are very “close” (that is, agree
in most coordinates). This “closeness” ensures that there is a way of recon-
structing the committed value from the shares committed in the second row.
(We remark that this reconstruction works differently from that in the actual
decommitment.)

2. The commitments made in the two rows are “independent” since they are
generated using two independent instances of T . When considering man-in-
the-middle adversaries playing the roles of receiver and sender in the different
executions, this independence will allow us to extract commitments made
by the adversary from one row “correctly” while maintaining the “hiding”
property of the commitments received by the adversary made in the other
row.

Now, we rely on the following hybrid experiments to prove the CCA security.

H0 The real experiment, where an adversary tries to break the hiding prop-
erty of the above scheme in the “left” interaction while interacting with the
committed-value oracle in the “right” interaction.

H1 Follows the experiment as in H0 with the following exceptions:
1. In the left interaction, the committed subset Γ is extracted from the

adversary in Stage 1 using the extractability of ECom, and then 0|sj | is
committed in the jth commitment of the second row for every j �∈ Γ

2. In the right interaction, the committed-value oracle is emulated in polyno-
mial time as follows. All shares committed to in the first row are extracted
relying on the extractability of the underlying CECom scheme and then
the committed value is reconstructed from those extracted shares.

Notice that in this experiment, the setups T0 and T1 are simulated for extrac-
tion.

H2 Follows experiment H1 with the following exceptions:
1. In the left interaction, 0|sj | is committed in the jth commitment of the

first row for every j �∈ Γ .
2. In the right interaction, the committed-value oracle is emulated in poly-

nomial time by extracting shares from the second row and reconstructing
the committed value.

In this experiment, the setups T0 and T2 are simulated for extraction. We
notice that in this experiment, only |Γ | = λ shares are set and revealed in the
left execution for both rows. Hence from the perfect privacy of the underlying
Shamir secret sharing scheme, the committed value in the left interaction is
hidden.

A Unified Approach to BB UC Protocols in Trusted Setup Models 785

Intuitively, H0 and H1 are indistinguishable because (i) in H1 the committed
value oracle is emulated correctly using the shares extracted from the first rows,
which defines the committed values, and thus (ii) the only difference in the
adversary’s view are the values committed to in the second row on the left
(which are committed using the setup T2), and the setup T2 is not simulated in
these hybrids. Additionally, at first sight, H1 and H2 also seem indistinguishable
because (i) in H2 the committed-value oracle seems to be emulated correctly
using values extracted from the second row thanks of the closeness, and thus (ii)
the only difference in the adversary’s view is the values committed in the first
row on the left (which are committed using the setup T1) and the setup T1 is
not simulated in H2.

Unfortunately, we cannot show the indistinguishability between the above
hybrids since the above scheme does not guarantee simulation soundness. The
problem is that if we simulate T0 on the left (as in H1,H2), we can no longer rely
on the hiding property of ECom on the right, so we cannot show the closeness
of the two rows on the right directly. This is problematic because when showing
the indistinguishability between H1 and H2, we need to use the closeness of the
two rows to argue that the committed-value oracle can be emulated correctly
even from the second row.

To address this problem, we add a non-malleable commitment scheme into
the above scheme. Specifically, we modify the scheme so that the second row
is generated by using a commitment scheme that is both non-malleable and
straight-line concurrently extractable, and additionally require the committer to
commit to the decommitment of the first rows when generating the second row
(i.e., we require the committer to commit to (sj , dj) in the second row, where
dj is the decommitment of the jth commitment in the first row). With these
modifications, we can prove the closeness of the two rows in H1 as follows.

1. First, we observe that, since the decommitments of the first row are commit-
ted in the second row, the closeness of the two rows can be verified by seeing
only the committed values of the second row. In particular, the closeness
holds between the two rows if the second row is “consistent”, meaning that
a correct decommitment of the first row is committed in most coordinates.

2. Based on this observation, we show the closeness in H1 as follows. First, we
show the consistency of the second row in H0 using the hiding property of
ECom. (Recall that we do not break ECom in H0 and can use its hiding prop-
erty in H0.) Next, when we move to H1 from H0, we use the non-malleability
of the second row to argue that the committed values of the second row on
the right does not change non-negligibly, which implies that the second row
on the right remains consistent in H1. (Here we use the ability to efficiently
verify the consistency condition given the committed values of the second
row). Now, since the consistency condition implies the closeness, we conclude
that the closeness holds in H1 as desired.

Given the closeness in H1, we can show the indistinguishability between H1 and
H2 as follows. Consider an intermediate hybrid where the left interaction is gen-
erated as in H1 but the committed-value oracle is emulated using the second row

786 S. Kiyoshima et al.

as in H2. Then, we first use the closeness in H1 to argue that this intermediate
hybrid is indistinguishable from H1. Next, observing that the setup T1 is not
simulated in this intermediate hybrid and H2, we show that this intermediate
hybrid is also indistinguishable from H2 by using the hiding property of the
second row on the left.

Finally, to complete the proof, we argue that the non-malleable commitment
scheme that we use above (i.e., a commitment scheme that is both non-malleable
and straight-line concurrently extractable) can be obtained without any addi-
tional assumptions. We know that constant-round black-box non-malleable com-
mitments in the plain model can be obtained from one-way functions in a
black-box way [18], which in turn can be obtained from semi-honest OT (which
we assume to exist in the main theorem). Then, our idea is to combine this
non-malleable commitments and CECom in T -model in a similar manner as in
the protocol above (i.e., by using secret sharing and cut-and-choose technique).
Now, non-malleability follows analogous to the plain-model non-malleability of
the underlying scheme and straight-line concurrent extractability follows from
the properties of the latter. The resulting non-malleable commitment is proven
secure in the 2T -model; thus, if this scheme is plugged into our first protocol
(as the commitment used in the second row), the final protocol will be in the
4T -model.

Remark 1. We remark that several issues arise when making the preceding high-
level argument formal. For example, one subtlety that we ignore is the case that
the concurrently extractable commitment scheme that we use is only compu-
tationally binding (which is the case in our instantiation for the token model.)
This subtlety makes the above argument complicated because the closeness of
the two rows is hard to define if the shares that are committed in the rows are not
uniquely determined. In our formal proof, we address this subtlety by defining
the closeness property only w.r.t. the shares that are extracted from the rows.

Remark 2. As noted at the beginning of this overview, we actually assume the
existence of concurrently extractable commitment scheme that is also reset-
tably hiding. We use this requirement when constructing straight-line concur-
rently extractable non-malleable commitment schemes. Moreover, we obtain such
schemes by combining a non-malleable commitment in the plain model and
concurrently extractable commitment in T -model. In the actual argument, we
additionally use plain-model extractable commitments, and rely on its plain-
model (i.e. rewinding based) extractability in the analysis. However relying on
a rewinding analysis in the presence of trusted setups is subtle. Specifically,
since the adversary might have an arbitrary unbounded-round interaction with
the setups, the interaction with the setups can be rewound when the extractor
rewinds the adversary. To circumvent this, we simply assume that the schemes
in the setup models remain secure even when they are rewound (i.e., reset). In
the two concrete setup models we consider, CRS and tamper-proof hardware
model, we show that achieving resettable hiding is not hard.

A Unified Approach to BB UC Protocols in Trusted Setup Models 787

2 Definitions of Commitments in Trusted-Setup Models

In this work, we consider commitment protocols that use trusted setups, mean-
ing that the honest committer and receiver communicate with the setup T for
committing and decommitting, and the security of the commitment scheme relies
on that T is never controlled by the adversary — we say such a protocol is in
the trusted setup T -model, or simply in T -model.

For clarity, we indicate the parts related to trusted-setup models in red in
the definitions we give below; removing them gives the definitions in the plain
model.

2.1 Trusted Setups

We model a trusted-setup T as an ideal functionality in the UC model, which
is simply given by an Interactive Turning Machine (ITM) M. Different from
UC, which models the execution of arbitrary protocol in arbitrary environment,
for commitments, we only need to consider the execution of security games that
define different properties, such as, hiding, binding, and CCA security. Therefore,
below we describe a much simpler model of execution.

In a security game with setup T , a set of m (honest or corrupted) parties
{Pi}i∈[m], and an adversary A, the setup T can concurrently communicate with
all entities following the rules described below:

– Whenever a party Pi, or a subroutine invoked by Pi, sends a message m to
T , T receives input (ID,m), where ID is the identifier of Pi or its subroutine.
The identifiers of all parties and their subroutines are adaptively chosen by
the adversary A at the beginning of their invocation.

– The adversary can communicate with T either directly according to the code
of T , or indirectly by acting as a party with identifier ID.

– All identifiers (of all parties and their subroutines and of parties acted by A)
must be distinct.

2.2 Commitments in T -Model

First we define the structure of a commitment scheme.

Definition 1 (Commitment Schemes). A commitment scheme in T -model
is a pair of PPT ITMs 〈C,R〉 with the following properties:

1. The commitment scheme has two stages, a commit stage and a reveal stage,
where C and R receive as common input a security parameter 1n and C
receives a private input v ∈ {0, 1}n that is the string to be committed.

2. The commit stage results in a joint output c, called the commitment, a pri-
vate output for C, d, called the decommitment string. In the commit stage,
both C and R can access T using their respective identities IDC �= IDR.

788 S. Kiyoshima et al.

3. In the reveal stage, upon receiving pair (v, d), the receiver R decides to accept
or reject deterministically, depending only on (c, v, d).
We let open denote the function that verifies the validity of (v, d); the receiver
accepts (v, d) if open(c, v, d) = 1, and rejects otherwise,

If C and R do not deviate from the protocol, then R should accept with probability
1 during the reveal stage.

We define the binding and hiding property of a commitment scheme in trusted
setup models naturally as in the plain model.2 (We provide their formal defi-
nition in the full version.) We say that a commitment c is accepting if R does
not abort at the end of commit stage, and is valid if there exists an accepting
decommitment.

Next we define the resettably hiding property of a commitment scheme.
Roughly speaking, a commitment scheme in T -setup model is resettably hiding
if its hiding property holds even against any cheating receiver that can “reset” an
honest committer and T and restart the interaction with them from an arbitrary
point of the interaction.

Definition 2 (Resettably Hiding). A commitment scheme 〈C,R〉
in T -model is computationally (resp. statistically) resettably hiding if for every
non-uniform PPT machine (resp. for every machine) R∗, the view of R∗ in the
following two games, Game 0 and Game 1, are computationally indistinguishable
over λ ∈ N (resp. statistically indistinguishable over λ ∈ N).

– Game b (b ∈ {0, 1}): Let C(b) be a committer that upon receiving (v0, v1) gives
a commitment to vb by using 〈C,R〉. Let F denote the forest of execution
threads, initialized as empty. Then, in Game b, R∗ can interact with C(b)
and T in an arbitrary number of interactions as below: R∗ specifies a prefix ρ
of execution in F , and starts interacting with C(b) and T from ρ, where R∗,
C and and T use fresh randomness after ρ.

In the rest of the paper, by default we refer to commitment schemes as ones
that are statistically binding and computationally hiding, and will specify explic-
itly when considering commitment schemes that are computationally binding.
In addition, we consider tag-based commitment schemes.

Definition 3 (Tag-based Commitment Schemes). A commitment scheme
〈C,R〉 is tag-based w.r.t. l(λ)-bit identities if, in addition to the secu-
rity parameter 1λ, the committer and the receiver also receive a “tag” —
a.k.a. identity— id of length l(λ) as common input. In T -model, the tag
2 As described in Sect. 2.1, in the binding game with T , R, and C∗, R can interact

with the trusted setup T using an identity IDR chosen by C∗, and C∗ can interact
with T directly according to T ’s code, or indirectly as any parties with identities
different from IDR. Similarly, in the hiding game with T , C, and R∗, C can interact
with the trusted setup T using an identity IDC chosen by R∗, and R∗ can interact
with T directly according to T ’s code, or indirectly as any parties with identities
different from IDC .

A Unified Approach to BB UC Protocols in Trusted Setup Models 789

is set to the identity of the committer input. In T -model, the tag is set to
the identity of the committer id = IDC .

2.3 Concurrent Non-malleable Commitments in T -Model

Next we define the concurrent non-malleability of a commitment scheme.
Roughly speaking, a commitment scheme is non-malleable if a man-in-the-middle
adversary, who receives a commitment in the left interaction, cannot commit to
a value that is related to the values committed in the left interaction. A commit-
ment scheme is concurrent non-malleable if it is non-malleable even when the
man-in-the-middle adversary can give multiple commitments concurrently.

Formally, the concurrent non-malleability of a commitment scheme is defined
as follows. Let 〈C,R〉 be a tag-based commitment scheme; recall that in T -
model, the tag of a commitment is set to the identity of the committer id = IDC .
Let M∗ be a man-in-the-middle adversary and consider the following experi-
ment. On input security parameter λ ∈ N and auxiliary input z ∈ {0, 1}∗, M∗

participates in one left and m right interactions simultaneously. In the left inter-
action, M∗ interacts with the committer of 〈C,R〉 and receives a commitment to
value v using identity id ∈ {0, 1}λ of its choice, where both have access to T . In
the right interaction, M∗ interacts with the receiver of 〈C,R〉 and gives commit-
ments using identity ˜id0, . . . , ˜idm of its choice, where the commitments can be
scheduled arbitrarily by M∗, and both M∗ and the receiver have access to T .
Let ṽ1, . . . , ṽm be the values that M∗ commits to on the right. If any of the
right commitments is invalid or undefined, its committed value is defined to be
⊥. For any i, if id = ˜idi, set ṽi = ⊥. Let c-mim(〈C,R〉,M∗, v, z) denote a random
variable that describes ṽ1, . . . , ṽm and the view of M∗ in the above experiment.

Definition 4. A commitment scheme 〈C,R〉 in T -model is concurrent non-
malleable if for any PPT man-in-the-middle adversary M∗, the following are
computationally indistinguishable.

– {c-mim(〈C,R〉,M∗, v0, z)}λ∈N,v0∈{0,1}λ,v1∈{0,1}λ,z∈{0,1}∗

– {c-mim(〈C,R〉,M∗, v1, z)}λ∈N,v0∈{0,1}λ,v1∈{0,1}λ,z∈{0,1}∗

We remark that the above definition captures “one-many” setting, where the
adversary participates in one left and m right interactions simultaneously. We
can easily generalize the definition so that it captures “many-many” setting,
where the adversary participates in m left and m right interactions simulta-
neously. It is known that the “one-many” version of the definition implies the
“many-many” one [47].

2.4 CCA Commitments in Trusted-Setup Models

The notion of CCA security for statistically-binding and computationally hid-
ing tag-based commitment schemes was introduced in [40]. We here adapt the
definition of CCA security in the plain model of [19] to trusted setup models.

790 S. Kiyoshima et al.

Roughly speaking, a (statistically binding) commitment scheme is CCA
secure if the commitment scheme retains its hiding property even if the receiver
has access to a committed-value oracle. Let CCACom be a tag-based commitment
scheme with l(λ)-bit identities; recall that in T -model, the tag of a commitment
is set to the identity of the committer id = IDC . A committed-value oracle
OCCACom of CCACom acts as follows in interaction with an adversary A, both with
access to T : It participates with A in many sessions of the commit phase of
CCACom as an honest receiver, using identities chosen adaptively by A. At the
end of each session, if the session is accepting and valid, it returns to A the unique
committed value in that session (by the statistical binding property of the com-
mitment scheme, there exists such a unique value when the commitment is valid
except with negligible probability; if not output ⊥); otherwise, it sends ⊥.

More precisely, let INDb(CCACom, A, λ, z), where b ∈ {0, 1}, denote the out-
put of the following probabilistic experiment: on common input 1λ and auxiliary
input z, AOCCACom (adaptively) chooses a pair of challenge values (v0, v1) ∈ {0, 1}λ

—the values to be committed to— and an identity id, and receives a commitment
to vb using identity id, where C and AOCCACom all have access to T . Finally, the
experiment outputs the output y of AOCCACom ; the output y is replaced by ⊥ if
the identity of the commitment that A receives is the same as the identity of any
of the commitments that A sends to OCCACom (that is, any execution where the
adversary queries the decommitment oracle on a commitment using the same
identity as the commitment it receives, is considered invalid).

Definition 5 (CCA-security). Let CCACom be a tag-based statistically bind-
ing commitment scheme in T -model. We say that CCACom is CCA-secure, if for
every PPT ITM A, the following ensembles are computationally indistinguish-
able:

– {IND0(CCACom, A, λ, z)}λ∈N,z∈{0,1}∗

– {IND1(CCACom, A, λ, z)}λ∈N,z∈{0,1}∗

k-Robustness. Roughly speaking, k-robustness states the committed-value ora-
cle can be simulated efficiently for an attacker, without “disturbing” any k-round
interaction that the attacker participates in.

Consider a man-in-the-middle adversary A that participates in an arbitrary
left interaction with B of a limited number of rounds, while having access to
a committed-value oracle OCCACom; AOCCACom has access to T , but importantly B
does not. CCACom is k-robust if the (joint) output of every k-round interaction,
with an adversary having access to the oracle OCCACom, can be simulated without
the oracle. In other words, having access to the oracle does not help the adversary
in participating in any k-round protocols that does not access T .

Definition 6 (k-Robustness). Let CCACom be a statistically binding commit-
ment scheme in T -model. We say that CCACom is k-robust, if for every PPT
adversary A, there exists a PPT simulator S, such that, the following holds.

Simulation: For every PPT k-round ITM B that interacts only with A, the
following two ensembles are computationally indistinguishable.

A Unified Approach to BB UC Protocols in Trusted Setup Models 791

−
{

outputB,A[〈B(1λ, x), AOCCACom,T (1λ, z)〉]
}

λ∈N,x,z∈{0,1}poly(λ)

−
{

outputB,S [〈B(1λ, x), S(1λ, z)〉]
}

λ∈N,x,z∈{0,1}poly(λ)

where outputX,Y [〈X(x), Y (y)〉] denote the joint output of an interaction
between ITMs X and Y on private input x and y respectively, and with uni-
formly and independently chosen random inputs to each machine.

We say that CCACom is poly-robust if it is k-robust against arbitrary poly-
nomial k(λ).

2.5 Concurrent Extractability w.r.t. Commitment in T -Model

We now define concurrent extractability w.r.t. commitment. Extraction w.r.t.
commitment is defined only for statistically binding commitments and guaran-
tees to extract from (malicious) committers the statistically defined committed
values.

Definition 7 (Concurrent Extractability w.r.t. Commitment). Let
CCACom be a statistically binding commitment scheme in T -model. We say that
CCACom is straight-line concurrently extractable w.r.t. commitment, if there exists
a universal PPT simulator S, such that,

Simulation of Committed-value Oracle: for every PPT adversary A, the
following two ensembles are computationally indistinguishable.

−
{

〈(OCCACom, T), A(1λ, z)〉
}

λ∈N,z∈{0,1}poly(λ)

−
{

〈S(1λ), A(1λ, z)〉
}

λ∈N,z∈{0,1}poly(λ)

We say that CCACom is straight-line extractable w.r.t. commitment if the
above condition holds for attackers that sends only a single commitment to
OCCACom.

Claim 1. If a statistically binding commitment scheme CCACom in T -model is
straight-line concurrently extractable w.r.t. commitment, then it is also k-robust
for any polynomial k(λ).

Due to space restrictions, we defer the proof of claim to the full version.
At a very high level, straight-line concurrent extractability w.r.t. commitment
implies poly-robustness as it essentially guarantees that OCCACom can be simulated
in a straight-line, and straight-line simulation does not “disturb” the concurrent
interaction with B, no matter how many rounds the interaction has.

2.6 Concurrent Extractability w.r.t. Opening in T -Model

We now introduce the new notion of straight-line concurrent extractability w.r.t.
opening. This notion is defined for any computationally binding and computation-
ally hiding commitment scheme. Roughly speaking, it requires the commitment
scheme to have an efficient extractor E satisfying the following two properties:

792 S. Kiyoshima et al.

(1) when interacting with any efficient attacker A acting as a concurrent commit-
ter, the value v that E extracts for each commitment that A sends is guaranteed
to be consistent with the value v′ that A opens to (i.e., v′ = ⊥ or v = v′), even
if A receives the extracted values v’s. (2) The messages that E send statistically
emulate that of honest receivers, for even computationally unbounded attackers.

Definition 8. Let CECom be any computationally hiding and computationally
binding commitment scheme in a trusted-setup T -model. We say that CECom
is straight-line concurrently extractable w.r.t. opening if there exists a universal
PPT extractor E with the following properties:

Syntax and Statistical Emulation: For any (potentially unbounded) adver-
sary A, it holds that the view of A in the following real and simulated games
are statistically close.

− In the real game, A (acting as a concurrent committer) interacts with
honest receivers R in multiple sessions of CECom. At the end of each
session, if A sends a decommitment, R replies with the decision of whether
the decommitment is accepted. All parties have access to T .
− In the simulated game, E emulates the honest receivers and trusted-
setup for A in a straight-line.

At the end of the commit stage of each session j, E outputs a value vj on its
special output tape.

Concurrent Extractability w.r.t. Opening: For any PPT adversary A, con-
sider another simulated game where A interacts with E as described above,
and at the end of the commit stage of each session j, it receives the value vj

that E outputs on its special output tape. The probability that in any session
j, A successfully decommits to a value v′

j �= ⊥ that is different from the value
vj that E outputs is negligible, that is, if open(cj , v

′
j , dj) = 1 then vj = v′

j

with overwhelming probability.

3 Robust CCACom from CECom w.r.t Opening

In this section, given a commitment scheme CECom that is straight-line concur-
rently extractable w.r.t. opening in T -model, we construct a robust CCA-secure
commitment scheme CCACom that uses a related trusted-setup 4T , called the
quadruple-T trusted-setup, which runs four independent copies of T internally.

The xT Trusted Setup: xT , parameterized by an integer x, is an ITM that
upon invocation invokes internally x instances of T —denoted as T0, T1, · · · , Tx−1.
In an experiment with xT , all parties and adversaries can interact with any
instance, by pre-pending to every message to/from copy Ti with the index i ∈
{0, · · · , x − 1}. That is, upon receiving input i||v from party P , xT activates
internally the copy Ti with input v from party P , and upon receiving output
o from Ti, returns i||o to P . Additionally, each copy Ti can interact with the
adversary as its code specifies, with all messages exchanged of form i||mesg.

A Unified Approach to BB UC Protocols in Trusted Setup Models 793

Theorem 4. Let T be any trusted setup, and 4T the corresponding quadruple-
T trusted setup. There is a fully black-box construction of a poly-robust CCA-
secure commitment scheme CCACom in the 4T -trusted setup model from any
one-way function and any commitment scheme CECom in the T -trusted setup
model that is straight-line concurrently extractable w.r.t. opening and resettably
hiding. Moreover, if CECom has rcec rounds, then CCACom has O(rcec) rounds.

Proof. In our protocol CCACom, we use the following building blocks:

– A standard constant-round statistically-binding commitment scheme com in
the plain model, which is known from one-way functions [48].

– A rcec-round commitment scheme CECom that is (straight-line) concurrently
extractable w.r.t. opening in the T -trusted setup model.

– A commitment scheme ECom that is straight-line extractable w.r.t. opening
in the T -model, which is implied by CECom in T -model.

– A O(rcec)-round concurrent non-malleable commitment scheme NMCom in
the double-T , 2T , trusted-setup model that is also straight-line concurrently
extractable w.r.t. commitment.
Such a commitment scheme can be constructed from any concurrent non-
malleable commitment scheme in the plain model, and any commitment
scheme in T -model that is straight-line concurrently extractable w.r.t. open-
ing and resettably hiding. (Note that the CCACom protocol itself does not
directly rely on the resettable hiding property of CECom.) Due to space lim-
itations, we provide our construction in the full version.

Next, we present our protocol CCACom formally.

Commit Phase of CCACom. On common inputs 1λ and identities IDC , IDR,
and private input v ∈ {0, 1}λ to C, the committer C and receiver R interact
with each other as follows:

Stage 1. R commits to a random subset Γ ⊂ [10λ] of size λ using ECom and
trusted setup T0. We will refer to T0 as the ECom-setup.

Stage 2 (The Com Row). C computes a (λ + 1)-out-of-10λ Shamir’s secret
sharing s = (s1, . . . , s10λ) of value v. Next, for each j ∈ [10λ], C commit to
sj in parallel, using com. We will refer to commitments made in this stage as
“commitments in the com row”.
Let φj and dj be the commitment and decommitment for share sj .

Stage 3 (The CECom Row). For each j ∈ [10λ], C commits to (sj , dj) in
parallel, using the protocol CECom and the setup T1. We will refer to com-
mitments made in this stage as “commitments in the CECom row”, and T1

as the CECom-setup.
Let ψj and ej be the commitment and decommitment for (sj , dj).

Stage 4 (The NMCom Row). For each j ∈ [10λ], C commits to (sj , dj , ej)
in parallel, using the protocol NMCom and the setups T2 and T3 to emulate
the double-T setup 2T . We will refer to commitments made in this stage as
“commitments in the NMCom row”, and T2, T3 as the NMCom-setup.

794 S. Kiyoshima et al.

Stage 5 (Cut and Choose). R decommits the Stage 1 commitment to Γ .
For each j ∈ Γ , C decommits the jth commitment in the NMCom row
to (sj , dj , ej). R accepts if for every j ∈ Γ , the decommitment to the jth

NMCom commitment is accepting, and (sj , dj) is a valid decommitment to
commitment φj in the Stage 2, and ((sj , dj), ej) is a valid decommitment to
ψj in Stage 3.

Decommit Phase. C sends v and the decommitments (s1, d1), · · · , (s10λ, d10λ)
to all com commitments φ1, · · · , φ10λ. R checks all decommitments and does the
following. If for any i ∈ [10λ], the decommitment (si, di) is invalid w.r.t. φi,
set si to ⊥. R accepts the decommitments if and only if Value(s) = v, where
Value(s) for s = {s1, · · · , s10λ} is defined as follows:

Value(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v

s is 0.9-close to a valid codeword w = (w1, . . . , w10λ),

for each j ∈ Γ , wj equals the value revealed in Stage 5, and

w decodes to v

⊥ otherwise

(1)

Clearly, The round complexity of the above protocol is O(rcec). The statisti-
cal binding property of CCACom follows directly from that of com in Stage 2.
Thus, it remains to show that CCACom is CCA secure and poly-robust; for
the latter property, we show the stronger property of straight-line concurrently
extractability w.r.t. commitment, which implies poly-robustness by Claim1.

Proposition 1. CCACom in the 4T -trusted setup model is CCA secure and
straight-line concurrently extractable w.r.t. commitment.

Due to space restrictions, we prove only CCA security below, and defer the proof
of straight-line concurrently extractable w.r.t. commitment in the full version.

Proof of CCA Security. For any PPT adversary A, we need to show that the
outputs of the games IND0 and IND1 are indistinguishable (cf. Definition 5).

– {IND0(CCACom, A, λ, z)}λ∈N,z∈{0,1}∗

– {IND1(CCACom, A, λ, z)}λ∈N,z∈{0,1}∗

Towards showing the indistinguishability, for each b ∈ {0, 1}, we consider the
following hybrid experiments Hb

0 · · · Hb
7 ; we use Hb

k(λ, z) to denote the random
variable representing the view of A in the execution of Hb

k(λ, z). Throughout
the hybrids, we will keep the invariant that certain bad events do not happen
except with negligible probabilities. Roughly speaking, we would like to maintain
that in all hybrids, in every right session, the shares that A commits to in the
com, CECom, and/or NMCom rows are “consistent”, so that, we can efficiently
emulate the OCCACom oracle by extracting from either the CECom rows or from
the NMCom rows. Below, we first define these bad events.

Inconsistency condition: We say that a vector of shares s̃ is inconsistent
w.r.t. a transcript Trans of protocol CCACom, if

A Unified Approach to BB UC Protocols in Trusted Setup Models 795

– Either, more than 0.1 fraction of s̃ are ⊥, that is, |Λ1 = {j|s̃j = ⊥}| > λ.
– or, s̃ is 0.8-close to a valid codeword w, yet 0.1-far from it, that is, |Λ2 =

{j|s̃j �= wj}| > λ, and additionally w agrees with the shares {sj}j∈Γ opened
to in Stage 5 in transcript Trans.

Event BadCEC is defined for hybrids below where the extractor SCECom of
CECom is used to extract values from the CECom rows (i.e., Hb

1 ,H
b
2 ,H

b
3). Let

{(s̃k
j , dk

j)}j∈[10λ] denote the values extracted by SCECom from the CECom commit-
ment in right session k. Set

s̃k
j = Ẽxtract(s̃k

j , dk
j) :=

{

s̃k
j if (s̃k

j , dk
j) is a valid decommitment for φk

j

⊥ otherwise
(2)

Event BadCEC occurs if there is an accepting right session k in which the shares
{s̃k

j }10λ extracted from the CECom row is inconsistent w.r.t. the transcript of
this session.

Event BadNM is defined for all hybrids below and concerns the values com-
mitted to in the NMCom commitments on the right. Let {((ŝk

j , dk
j), ek

j)}j∈[10λ]

denote the values committed to in the NMCom row in right session k. (Since
NMCom is statistically binding, the committed values are well-defined.) Set

ŝk
j = Êxtract((ŝk

j , dk
j), ek

j)

:=

⎧

⎪

⎨

⎪

⎩

ŝk
j

if ((ŝk
j , dk

j), ek
j) is a valid decommitment for ψk

j ,
and (ŝk

j , dk
j) is a valid decommitment for φk

j

⊥ otherwise
(3)

where ψk
j and φk

j are respectively the jth commitment in the CECom row and in
the com row in the kth right session. Event BadNM occurs if there is an accepting
right session k, in which the shares {ŝk

j }10λ extracted from the values committed
in the NMCom row are inconsistent w.r.t. the transcript of this session.

Hybrid Hb
0(λ, z) is the same as experiment INDb(CCACom, A, λ, z).

Hybrid Hb
1(λ, z) is the same as Hb

0(λ, z) except that on the right the OCCACom

oracle is emulated efficiently using the extractor SCECom of CECom as follows:
1. Generate the receiver messages of CCACom honestly, except for messages

in the CECom-rows.
2. Use SCECom to emulate (i) the CECom receivers in the CECom-rows and

in Stage 5 when A open some of the CECom commitments, and (ii) the
CECom-setup T1. By definition, at the end of each CECom-row, say in
the right session k, SCECom outputs a vector of values {(s̃k

j , dk
j)}j∈[10λ] on its

special output tape. Set s̃k
j = Ẽxtract(s̃k

j , dk
j), where Ẽxtract is described

in Eq. (2).

796 S. Kiyoshima et al.

3. At the end of each right session k, emulate the committed value that
OCCACom returns, by returning the value ṽk = Ṽalue(s̃k) reconstructed
from the shares s̃k = {s̃k

j }j∈[10λ] where Ṽalue is defined as

Ṽalue(s̃) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṽ

s̃ is 0.8 -close to a valid codeword w = (w1, . . . , w10λ),

∀ j ∈ Γ , wj equals the value revealed in Stage 5,

and w decodes to ṽ

⊥ otherwise

(4)

We first show that bad events BadNM and BadCEC occur in Hb
1 with negligible

probability.

Lemma 1. For every b ∈ {0, 1}, it holds that, the probabilities that event BadNM

and BadCEC occur are negligible in Hb
1.

Proof. We first bound the probability of BadCEC occurring. Suppose for con-
tradiction that there is an accepting right session k in which the shares
{s̃k

j = Ẽxtract(s̃k
j , dk

j)}10λ extracted from the CECom row is inconsistent. The
inconsistency condition states that

– Either, s̃k contains more than λ ⊥, i.e., |Λ1 = {j | s̃k
j = ⊥}| ≥ λ.

– Or, s̃k is 0.8-close to wk, yet 0.1-far from it, i.e., |Λ2 = {j | s̃k
j �= wk

j }| > λ,
and wk agree with the shares opened in Stage 5 of right session k.

In case 1, for this session to be accepting, it must happen that none of the
locations in Λ1 was opened in Stage 5, that is, Λ1 ∩ Γ k = ∅, where Γ k is the
subset opened in Stage 5 of right session k; otherwise, the attacker must manage
to open to a non-⊥ share for some j ∈ Λ1, which contradicts with the concurrent
extractability w.r.t. opening property of CECom. Similarly, in case 2, it must be
that Λ2 ∩ Γ k = ∅, as otherwise, the attacker must manage to open to a share
s̃k

j = wk
j for some j ∈ Λ2. In both cases, A manage to form a set, Λ1 or Λ2, of

size λ that does not intersect with Γ k also of size λ, which violates hiding of the
ECom commitment to Γ k. (See the full version for a formal argument).

We next bound the probability of BadNM occurring in Hb
1 by using the fol-

lowing hybrid Gb
1, G

b
2.

Hybrids Gb
1, G

b
2 are identical to Hb

1 except that on the right the values commit-
ted to in the NMCom commitments are extracted using the committed-value
oracle ONMCom in Gb

1 and using the extractor SNMCom in Gb
2. That is,

− On the right, Gb
1 (resp. Gb

2) forwards all NMCom commitments to
ONMCom (resp. SNMCom). By definition, ONMCom (resp. SNMCom) returns after
every NMCom row the values committed to in this row. Gb

1 (resp. Gb
2)

ignores these values.

Since Gb
2 is completely efficient, it follows from the same argument as above that

event BadNM does not occur w.r.t. the values extracted by SNMCom except for
negligible probability. Then, by the concurrent extractability w.r.t. commitment

A Unified Approach to BB UC Protocols in Trusted Setup Models 797

of NMCom, Gb
1 and Gb

2 are indistinguishable and hence BadNM does not occur
w.r.t. the values returned by ONMCom, except for negligible probability in Gb

1.
Finally, since ONMCom emulates the receivers of NMCom perfectly for A, the views
of A in Hb

1 and Gb
1 are identical. Thus, event BadNM (w.r.t. the values committed

to in the NMCom commitments) occurs with only negligible probability in Hb
1 . �

Now, we are ready to show the indistinguishability between Hb
0 and Hb

1 .

Lemma 2. For every b ∈ {0, 1}, it holds that,
{

Hb
0(λ, z)

}

λ∈N,z∈{0,1}poly(λ) ≈
{

Hb
1(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Proof. We show that both Hb
0 and Hb

1 are indistinguishable from the following
simulated hybrid Gb.

Hybrid Gb is the same as Hb
1(λ, z) except for the following:

− On the right, it emulates the right receiver messages as Hb
1 does (i.e., the

CECom receivers of commitments in CECom-rows and the CECom-setup
are simulated using SCECom, and other receiver messages are generated
honestly). However, at the end of each right session k, committed value
that OCCACom returns is emulated differently: It extracts the shares s =
(s1, . . . , s10λ) committed to in the com row by brute force, and reply
Value(s), where Value is defined in Eq. (1). (That is, Gb returns to A the
actual committed value in each right session.)

Claim 2. For every b ∈ {0, 1}, it holds that,
{

Hb
1(λ, z)

}

λ∈N,z∈{0,1}poly(λ) ≈
{

Gb(λ, z)
}

λ∈N,z∈{0,1}poly(λ)

Proof. The only difference between these two hybrids lies in how the committed
values of the right sessions are extracted: in Hb

1 , they are reconstructed from the
shares extracted from the CECom-rows, whereas in Gb, the actually committed
value is extracted by brute-force. Thus it suffices to show that in Hb

1 the values
{ṽk} reconstructed from the shares extracted from the CECom-rows are the
actual committed values {vk} with overwhelming probability. Since Lemma1
gives that event BadCEC occurs with negligible probability in Hb

1 , it suffices
to argue that when BadCEC does not occur, ṽk = vk for every right session k.
Recall that if BadCEC does not occur, in any accepting right session k the shares
{s̃k

j = Ẽxtract(s̃k
j , dk

j)}10λ extracted from the CECom row is consistent, so they
satisfy the following condition.

1. |Λ1| ≤ λ, where Λ1 := {j|s̃k
j = ⊥}, and

2. if s̃k is 0.8-close to a valid codeword w = (w1, . . . , w10λ) such that wj equals
the value revealed in Stage 5 for each j ∈ Γ k, then |Λ2| ≤ λ, where Λ2 :=
{j|s̃k

j �= wj}.

Let sk = sk
j 10λ

be the share that are committed to in the com row in the right
session k. We consider two cases.

798 S. Kiyoshima et al.

Case 1. sk is 0.9-close to a valid codeword w = (w1, . . . , w10λ).
Since |Λ1| ≤ λ, sk and s̃k are 0.9-close (this follows from Eq. (2)), so s̃k is
0.8-close to w. Hence, Value(sk) = Ṽalue(s̃k) = Decode(w) if wj equals to
the value revealed in Stage 5 for every j ∈ Γ , and Value(sk) = Ṽalue(s̃k) = ⊥
otherwise.

Case 2. sk is 0.1-far from any valid codeword.
We have Value(sk) = Ṽalue(s̃k) = ⊥ if s̃k is 0.2-far from any valid codeword,
or is 0.8-close to a valid codeword w = (w1, . . . , w10λ) but wj does not equal
the value revealed in Stage 5 for some j ∈ Γ k. Now, we argue that s̃k cannot
be 0.8-close to a valid codeword w = (w1, . . . , w10λ) such that wj equals the
value that is revealed in Stage 5 for every j ∈ Γ k. Assume for contradiction
that s̃k is 0.8-close to such w = (w1, . . . , w10λ). Then, since |Λ2| ≤ λ, it
follows that s̃k is actually 0.9-close to w. However, since we have s̃k

j = sk
j

for every j ∈ {j|s̃k
j �= ⊥} (this follows from Eq. (2)), and we have s̃k

j �= ⊥ for
every j ∈ {j|s̃k

j = wj} (this is because w is a valid codeword), 0.9-closeness
between s̃k and w implies that sk is also 0.9-close to w. This is contradiction
because we assume that sk is 0.1-far from any valid codeword.

Hence, we have Value(sk) = Ṽalue(s̃k), i.e., vk = ṽk, in both cases. �

Claim 3. For every b ∈ {0, 1}, it holds that,
{

Hb
0(λ, z)

}

λ∈N,z∈{0,1}poly(λ) ≈
{

Gb(λ, z)
}

λ∈N,z∈{0,1}poly(λ)

Proof. Note that the only difference between Gb and Hb
0 is that in the former

the CECom receivers and the CECom-setup are simulated by SCECom, whereas
in the latter, they are emulated honestly. It follows directly from the statistical
emulation property of SCECom that these two hybrids are statistically close. (Note
that the statistical emulation property of SCECom applies to even computation-
ally unbound committers, which is the case here as hybrid Hb

0 and Gb are not
efficient.) �

It follows from the above claims and a standard hybrid argument that hybrids
Hb

0 and Hb
1 are indistinguishable. This concludes the proof of Lemma2. �

Hybrid Hb
2(λ, z) is the same as Hb

1(λ, z) except that on the left it uses the
extractor SECom of ECom to extract a subset Γ ′ from Stage 1 of the left session.
More precisely,

− Use the extractor SECom of ECom to emulate (i) the receiver of ECom
in Stage 1 of the left session and in Stage 5 when A opens this ECom
commitment, as well as (ii) the ECom-setup.
By definition, at the end of Stage 1 in the left session, SECom outputs a
value Γ ′, interpreted as a subset, on its special output tape.
− Furthermore, in Stage 5, if A opens successfully to a set Γ and Γ �= Γ ′,
abort and output ERR.

A Unified Approach to BB UC Protocols in Trusted Setup Models 799

Lemma 3. For every b ∈ {0, 1}, it holds that,

{

Hb
1(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

s≈
{

Hb
2(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Proof. The only difference between these two hybrids lies in that in Hb
2 , the

receiver of ECom in the left session and the ECom-setup are emulated, and
the hybrid aborts if the extracted subset Γ ′ disagree with the subset that A
opens to. Since Hb

2 is completely efficient, it follows from the extractability w.r.t.
opening property of SECom that the subset Γ that A opens to must agree with
the extracted subset Γ ′ except for negligible probability. Moreover, conditioned
on not aborting, since the extracted subset Γ ′ is never used otherwise, it follows
from the statistical emulation property of SECom that SECom statistically emulates
the receiver of ECom and the ECom-setup. Therefore, Hb

1 and Hb
2 are statistically

close. �

Then, since the two hybrids Hb
1 and Hb

2 are statistically close, and by
Lemma 1, bad events BadNM,BadCEC do not happen in Hb

1 , they do not happen
in Hb

2 either.

Lemma 4. For every b ∈ {0, 1}, it holds that, the probabilities that event BadNM

and BadCEC occur are negligible in Hb
2.

Hybrid Hb
3(λ, z) is the same as Hb

2(λ, z) except that in the NMCom-row on the
left, the left committer commits to 0 instead of ((sj , dj), ej) for every j �∈ Γ .
Note that both Hb

2 and Hb
3 are completely efficient. Thus, it follows directly

from the hiding property of the left NMCom commitments that Hb
2 and Hb

3

are indistinguishable.

Lemma 5. For every b ∈ {0, 1}, it holds that,
{

Hb
2(λ, z)

}

λ∈N,z∈{0,1}poly(λ) ≈
{

Hb
3(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Moreover, we argue that the bad events BadNM and BadCEC do not occur in Hb
3

either.

Lemma 6. For every b ∈ {0, 1}, it holds that, the probabilities that event BadNM

and BadCEC occur are negligible in Hb
3.

It follows from the hiding property of the left NMCom commitments that if event
BadCEC does not occur in Hb

2 , then it does not occur in Hb
3 either. Furthermore,

it follows from the concurrent non-malleability property of NMCom that the
values committed to in the NMCom commitments are indistinguishable in Hb

2

and Hb
3 . Therefore, it follows from Lemma 4 that BadNM almost never occurs in

Hb
3 .

Hybrid Hb
4(λ, z) is the same as Hb

3(λ, z) except that on the right A interacts
with the OCCACom oracle.

800 S. Kiyoshima et al.

The only difference between Hb
4 and Hb

3 lies in that in the former A interacts
with OCCACom on the right, whereas in the latter OCCACom is emulated using
the extractor SCECom of CECom. This difference is the same as that between
Hb

0 and Hb
1 . Furthermore, as in Hb

1 , event BadCEC does not occur in hybrid
Hb

3 by Lemma 6. Thus, it follows from the same proof that Hb
3 and Hb

4 are
statistically close.

Lemma 7. For every b ∈ {0, 1}, it holds that,

{

Hb
3(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

s≈
{

Hb
4(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Given that Hb
3 and Hb

4 are statistically close, it follows from Lemma 6 that event
BadNM occurs with only negligible probability in Hb

4 .

Lemma 8. For every b ∈ {0, 1}, it holds that, the probability that event BadNM

occur is negligible in Hb
4.

Hybrid Hb
5(λ, z) is the same as Hb

4(λ, z) except that on the right, it uses the
committed-value oracle ONMCom of NMCom to emulate OCCACom as follows:
1. Emulate the receivers of CCACom honestly for A, except that all NMCom

commitments are forwarded to ONMCom, which emulates the receivers of
NMCom perfectly. By definition of ONMCom, at the end of each NMCom-
row, say in the right session k, ONMCom returns the vector of committed val-
ues, parsed as {(ŝk

j , dk
j), ek

j }j∈[10λ]. Set ŝk
j = Êxtract(ŝk

j , dk
j), where Êxtract

is described in Eq. (3).
2. At the end of each right session k, emulate the committed value that

OCCACom returns, by returning the value v̂k = Ṽalue(ŝk), where Ṽalue is
defined in Eq. (4).

Lemma 9. For every b ∈ {0, 1}, it holds that,

{

Hb
4(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

s≈
{

Hb
5(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Proof. Note that in Hb
5 , the receivers of CCACom are emulated perfectly for A.

Therefore, the only difference between Hb
5 and Hb

4 lies in how the committed
values of the right sessions are extracted: in Hb

5 they are reconstructed from the
values committed to in the NMCom-rows, whereas in Hb

4 , the actually committed
values are extracted by brute-force by OCCACom. Thus it suffices to show that in
Hb

5 the values {v̂k} reconstructed from the values committed to in the NMCom-
rows are the actual committed values {vk} with overwhelming probability. By
Lemma 8, event BadNM does not occur in Hb

4 , except for negligible probability.
Then, it follows from the same argument as in the proof of Claim 2 that when
BadNM does not occur, v̂k = vk for every right session k. �

Given that Hb
5 and Hb

4 are statistically close, it follows from Lemma 8 that
event BadNM occurs with negligible probability in Hb

5 .

A Unified Approach to BB UC Protocols in Trusted Setup Models 801

Lemma 10. For every b ∈ {0, 1}, it holds that, the probability that event BadNM

occur is negligible in Hb
5.

Hybrid Hb
6(λ, z) is the same as Hb

5(λ, z) except that on the right, it uses the
universal simulator SNMCom of NMCom to emulate ONMCom.
It follows directly from the concurrent extractability w.r.t. commitment prop-
erty of NMCom that Hb

6 and Hb
5 are indistinguishable.

Lemma 11. For every b ∈ {0, 1}, it holds that,
{

Hb
5(λ, z)

}

λ∈N,z∈{0,1}poly(λ) ≈
{

Hb
6(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Hybrid Hb
7(λ, z) is the same as Hb

6(λ, z) except that on the left, the left com-
mitter (i) commits to 0 instead of sj for every j �∈ Γ in the com-row, and (ii)
commits to 0 instead of (sj , dj) for every j �∈ Γ in the CECom-row.
Note that both Hb

6 and Hb
7 are completely efficient. Thus, it follows directly

from the hiding property of the left com commitments and CECom commit-
ments that Hb

7 and Hb
6 are indistinguishable.

Lemma 12. For every b ∈ {0, 1}, it holds that,
{

Hb
6(λ, z)

}

λ∈N,z∈{0,1}poly(λ) ≈
{

Hb
7(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Finally, notice that in hybrid Hb
7 , in the left session, the committer commits

to 0 in all of the com, CECom, and NMCom rows. This means A receives no
information about whether v0 or v1 is committed in Hb

7(λ, z). Thus, the views
of A in H0

7(λ, z) and H1
7(λ, z) are identically distributed.

Lemma 13. It holds that,
{

H0
7(λ, z)

}

λ∈N,z∈{0,1}poly(λ) =
{

H1
7(λ, z)

}

λ∈N,z∈{0,1}poly(λ)

Given the lemmas, it follows from a hybrid argument that for every b,
{Hb

0(λ, z)} ≈ {Hb
7(λ, z)}. Furthermore, given that H0

7(λ, z) and H1
7(λ, z) are

identically distributed, we conclude that {H0
0(λ, z)} ≈ {H1

0(λ, z)} and thus the
CCACom protocol is CCA-secure.

4 From CCA Commitments to UC Secure Protocols

We assume familiarity with the models of UC, Externalized UC (EUC), and
Angel-based security/UC with super-polynomial helpers. See the full version for
more details on these models.

802 S. Kiyoshima et al.

4.1 The General Transformation

In this session, we show that given any commitment scheme CECom in T -model
that is straight-line concurrently extractable w.r.t. opening, we can UC-realize
every functionality in the 4T -trusted-setup model. Formally,

Theorem 5 (UC-secure Protocols in 4T -trusted-setup model from
CECom in T -model). Let T be any trusted-setup, and 4T the corresponding
quadruple-T setup. Then, for every well-formed functionality F , there is a fully
black-box construction of a protocol π that UC-realizes F in the 4T -trusted setup
model, from the following primitives:

– a O(1)-round semi-honest secure oblivious transfer protocol, and
– a commitment scheme CECom in T -model that is straight-line concurrently

extractable w.r.t. opening and resettably hiding.

Moreover, if CECom has rcec rounds, π has O(rcec) rounds.

We achieve the theorem in three steps.

Step 1: Starting from a rcec-round commitment scheme CECom that is straight-
line concurrently extractable w.r.t. opening and resettably hiding in the T -
model, by Theorem 4, there is fully black-box construction of a CCA-secure
commitment scheme CCACom in 4T -model that is also straight-line concur-
rently extractable w.r.t. commitment, and the scheme has rcca = O(rcec)
rounds. Recall that by Claim 1, such a scheme is also poly-robust.

Step 2: Given a poly-robust CCA-secure commitment scheme CCACom, it fol-
lows from the work of Lin and Pass [19] that every well-formed functionality
F can be EUC-realized w.r.t. the shared functionality H̄CCACom defined by
CCACom. Roughly speaking, H̄CCACom runs the committed-value oracle of

Fig. 1. The ideal shared functionality H̄CCACom

A Unified Approach to BB UC Protocols in Trusted Setup Models 803

CCACom for every party with the restriction that when invoked by a party
with identity ID = (Pi, sid) (consisting of party ID Pi and session ID sid), it
only breaks CCACom commitments with exactly the same identity ID. Since
we here consider robust CCA-secure CCACom in 4T -model, all parties also
have access to 4T . Thus, we let H̄CCACom run also the setup 4T . A formal
description of the functionality is in Fig. 1.
Therefore, honest parties interact with H̄CCACom to access 4T , while corrupted
parties, adversaries A/S, and environment Z can interact with H̄CCACom to
access both 4T and the committed-value oracles OCCACom. We note that since
the work of [19] considers CCA secure commitment schemes in the plain
model, their helper functionalities only run the committed-value oracle, and
the honest parties never access the helper functionality. Their construction
and security proof extends directly to our case where the honest parties access
the helper functionality for 4T only, but not OCCACom.

Theorem 6 ([19]). Assume the existence of a rcca-round poly-robust CCA-
secure commitment scheme CCACom in the 4T -trusted-setup model, and a
constant-round semi-honest secure oblivious transfer protocol. Then, for every
well-formed functionality F , there is a fully black-box construction of a O(rcec)-
round protocol π that H̄CCACom-EUC-realizes F .

Step 3: Finally, we move from EUC-security w.r.t. shared functionality
H̄CCACom back to UC-security w.r.t. 4T -trusted-setup, by crucially relying
on the fact that CCACom is straight-line concurrently extractable w.r.t. com-
mitment.

Theorem 7. Let CCACom be any commitment scheme that is CCA-secure and
straight-line concurrently extractable w.r.t. commitment in the 4T -trusted-setup
model. For every well-formed functionality F , if protocol π H̄CCACom-EUC-
realizes F , then π UC-realizes F in the 4T -trusted-setup model.

To show that π UC-realizes F in the 4T -trusted-setup model, we need to show
that its multi-session extension π̂ UC-realizes the multi-session extension F̂ of F
in the 4T -hybrid model. This follows from the following two simple observations.

First, combining the universal composition theorem of EUC with Theorem6
gives that π̂ H̄CCACom-EUC-realizes F̂ . That is, for any PPT adversary A, there
exists a PPT simulator S, such that, for every PPT environment Z, it holds that

execH̄
π̂,A,Z ≈ execH̄

IF̂ ,S,Z ,

where H̄ is a short hand for H̄CCACom.
By definition of EUC, the above indistinguishability holds for arbitrary A

and Z that may or may not access the shared functionality H̄. Consider the
special case where A never accesses OCCACom in H̄ (but may access 4T in H̄), and
Z never accesses H̄ at all. In this case, in the real execution, honest parties of π̂
and A may access 4T in H̄, and no party accesses OCCACom in H̄. Note that this
is simply an execution execπ̂,A,Z(λ, z) of π̂ with adversary A and environment

804 S. Kiyoshima et al.

Z in the 4T -hybrid-model. On the other hand, in the ideal execution, only the
simulator S interacts with H̄ and no other party interacts with H̄ at all.

Next, to show that π UC-realizes F in 4T trusted-setup model, we need to
show that π̂ UC-emulates the ideal protocol IF̂ of F̂ in the 4T -hybrid model.
That is, for any PPT adversary A, there exists a PPT simulator S′, such that,
for any PPT environment Z, it holds that

execπ̂,A,Z ≈ execIF̂ ,S′,Z .

As discussed above, for any A, Z, λ and z, the experiments execπ̂,A,Z(λ, z) and
execH̄

π̂,A,Z(λ, z) are identically distributed. We now use the simulator S for A in
the EUC model to construct the a simulator S′ for A in the UC model satisfying
that

execIF̂ ,S′,Z ≈ execH̄
IF̂ ,S,Z

The only difference between these two ideal executions is that in the former Z
interacts with S′ and in the latter Z interacts with S who interacts with H̄
(no other party accesses H̄). Construct S′ as follows: It internally runs S and
emulates (the committed-value oracle of CCACom and the setup 4T in) H̄ for S,
using the simulator SCCACom of CCACom. It follows directly from the concurrent
extractability w.r.t. commitment property of CCACom that the simulation is
indistinguishable and so are the above two experiments. It then follows from a
hybrid argument that S′ is a valid simulator for A in the UC model. Therefore,
we conclude that π UC-realizes F in the 4T -trusted setup model.

Combining the above three steps gives a protocol π that UC-realizes an
arbitrary functionality F in the 4T -trusted setup model. In addition, it is easy to
see that the protocol has O(rcca) = O(rcec) rounds. This concludes Theorem 5.

4.2 Instantiation of CECom in the CRS Model

In this section we present our CECom in the FCRS-hybrid model.
Protocol CEComCRS We will require a perfectly-correct semantically-secure
public-key encryption scheme (Gen,Enc,Dec) for this construction.

Common Reference String. The common reference string is set to pk where
(pk, sk) is sampled according to Gen(1κ).

Input. C and R have as common input 1λ and identities sid, and C has private
input v ∈ {0, 1}λ.

Commit Phase of CEComCRS. Sen queries FCRS to obtain the CRS = pk. Then
it samples randomness r and sends c = Encpk(v; r) to the receiver.

Decommitment Phase. The sender simply reveals v, r.

From semantic security and correctness of the underlying encryption scheme,
CEComCRS is statistically binding, computationally hiding, straight-line concur-
rently extractable w.r.t. commitment, and resettably-hiding in the FCRS-model.
Therefore we have the following lemma:

A Unified Approach to BB UC Protocols in Trusted Setup Models 805

Lemma 14. Assume the existence of public-key encryption scheme. Then, there
exists a computationally-hiding statistically-binding commitment scheme that is
(1) Straight-line concurrently extractable w.r.t commitment, and (2) Resettably-
hiding in the Common Reference String Model.

Instantiation of CECom in the Uniform Reference String Model. An
immediate corollary to our instantiation in the CRS model is an instantiation
in the uniform reference string (URS) model. Recall that in the URS model,
the reference string is sampled as uniformly random. We can rely on the same
construction as in the CRS model if the we rely on a dense public-key encryp-
tion scheme where additionally the distribution of the sampled public-keys are
pseudorandom. More precisely we have the following corollary.

Corollary 1. Assume the existence of a dense public-key encryption scheme.
Then, there exists a computationally-hiding statistically-binding commitment
scheme that is (1) Straight-line concurrently extractable w.r.t commitment, and
(2) Resettably-hiding in the Uniform Reference String Model.

4.3 Instantiation of CECom in the Tamper Proof Hardware Model

We assume familiarity of the global tamper proof model of [22], where operations
related to tokens are captured by the ideal functionality Fgwrap.

A simple extractable commitment based on tokens can be achieved as follows:
The receiver chooses a function F from a pseudorandom function family that
maps {0, 1}m to {0, 1}n bits where m n, and incorporates it into a token that
it sends to the sender. Next, the sender commits to its input b by first sampling
a random string u ∈ {0, 1}m and querying the PRF token on u to receive the
value v. It sends as its commitment the string comb = (Ext(u; r) ⊕ b, r, v) where
Ext(·, ·) is a strong randomness extractor. Hiding follows from the fact that the
PRF is highly compressing, while binding follows from the pseudorandomness of
the underlying PRF. Extraction on the other hand can be achieved by allowing
the simulator to observe the queries made by the sender to the token and waiting
for a query to give the answer v. First, we remark that this commitment only
achieves commitment w.r.t opening as the extraction procedure does not know
when the commitment is correct. This is however not an issue as our general
framework can rely on CECom that has straight-line extractability w.r.t opening.
A larger issue however is to handle resettability of tokens. A resetting receiver
can leak information by creating a stateful token and rewinding the committer.
We tackle this problem by observing that resettable hiding of our protocol can
be solved by using a commitment scheme with “reusable” tokens. Such a scheme
was presented in [22] and we here rely on a milder variant of this protocol.

Protocol CEComTK

Input. C and R receive as common inputs 1λ and identity (sid, ssid), and individ-
ual inputs pidC and pidR respectively. C also receives as private input v ∈ {0, 1}λ.

Commit Phase of CEComTK

806 S. Kiyoshima et al.

Round 1. The Receiver creates the following tokens and sends it to the sender.
− For every l ∈ [2κ], Receiver chooses a random PRF keys γb,l (l ∈
[κ], b ∈ {0, 1}) from a PRF family F from 5κ bits to κ. Then, for
every (b, l), the Receiver creates the tokens TKPRF,l by sending the
message {create, sid, ssid,Rec,Sen, tidb,l,Mb,l}, that on input x, outputs
PRFγb,l

(x), where Mb,l is the functionality.
Round 2. Sen → Rec: Sen picks κ random bits h1, . . . , hk. For every i ∈ [κ],

run TKi,hi
on input u and check if all token output the same value v. It

they don’t output the receiver halts. Otherwise, it commits by transmitting
(Ext(u) ⊕ m, v) to the sender, where Ext : {0, 1}5κ × {0, 1}d → {0, 1} is a
(2κ + 1, 2−κ) randomness extractor and the seed has length d (for simpler
exposition we drop the seed in the expression above).

Decommitment Phase. The sender simply reveals u and m.

The following properties follow directly from the pseudorandomness of the
underlying PRF and the fact that the function is highly compressing. We provide
formal proofs in the full version.

Proposition 1. CEComTK = 〈C,R〉 presented above is a computationally bind-
ing commitment scheme in the Fgwrap-model.

Proposition 2. CEComTK is statistically hiding commitment scheme in the
Fgwrap-model.

We can further show a stronger hiding property.

Proposition 3. CEComTK is straight-line concurrently extractable w.r.t. open-
ing in Fgwrap-model.

Proposition 4. CEComTK is resettably-hiding in Fgwrap-model.

Acknowledgments. We sincerely thank the anonymous reviewers for their incredibly
helpful and insightful comments and suggestions.

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1514526, CNS-
1652849 (CAREER), a Hellman Fellowship, the Defense Advanced Research Projects
Agency (DARPA) and Army Research Office (ARO) under a subcontract No. 2017-002
through Galois. Muthuramakrishnan Venkitasubramaniam is supported by a Google
Faculty Research Grant and NSF Awards CNS-1526377 and CNS-1618884. The views
expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, the National Science Foundation, the U.S. Government or
Google.

References

1. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

2. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2

A Unified Approach to BB UC Protocols in Trusted Setup Models 807

3. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).
doi:10.1007/3-540-39200-9 5

4. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

5. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-74143-5 18

6. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. IACR Cryptology ePrint Archive 2006/432 (2006)

8. Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of secure pro-
tocols in the timing model. J. Cryptol. 20(4), 431–492 (2007)

9. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 7

10. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an
imperfect reference string. In: FOCS, pp. 249–259 (2007)

11. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: STOC, pp.
179–188 (2009)

12. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 2008

13. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC, pp. 99–108 (2006)

14. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78524-8 23

15. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 32

16. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 24

17. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010

18. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: FOCS, pp. 51–60 (2012)

19. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-
up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
461–478. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 27

20. Kiyoshima, S.: Round-efficient black-box construction of composable multi-party
computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617,
pp. 351–368. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 20

21. Hazay, C., Venkitasubramaniam, M.: On black-box complexity of universally com-
posable security in the CRS model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 183–209. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 8

http://dx.doi.org/10.1007/3-540-39200-9_5
http://dx.doi.org/10.1007/978-3-540-74143-5_18
http://dx.doi.org/10.1007/978-3-540-72540-4_7
http://dx.doi.org/10.1007/978-3-540-78524-8_23
http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://dx.doi.org/10.1007/978-3-642-00457-5_24
http://dx.doi.org/10.1007/978-3-642-32009-5_27
http://dx.doi.org/10.1007/978-3-662-44381-1_20
http://dx.doi.org/10.1007/978-3-662-48800-3_8
http://dx.doi.org/10.1007/978-3-662-48800-3_8

808 S. Kiyoshima et al.

22. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53641-4 15

23. Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from
only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
699–717. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 42

24. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 27

25. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: STOC, pp. 426–437 (2003)

26. Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and com-
posable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36362-7 6

27. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 25

28. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 19

29. Moran, T., Segev, G.: David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 30

30. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 545–562. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 31

31. Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable
security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.)
TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19571-6 11

32. Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable UC-
functionalities with untrusted tamper-proof hardware-tokens. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 642–661. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 36

33. Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statisti-
cally secure computation with bounded-resettable hardware tokens. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 319–344. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46494-6 14

34. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient)
Universally composable oblivious transfer using a minimal number of stateless
tokens. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54242-8 27

35. Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513.
Springer, Cham (2014). doi:10.1007/978-3-319-10879-7 28

36. De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion (extended abstract). In: 33rd FOCS, pp. 427–436. IEEE Computer Society
Press, October 1992

http://dx.doi.org/10.1007/978-3-662-53641-4_15
http://dx.doi.org/10.1007/978-3-642-34961-4_42
http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/978-3-642-36362-7_6
http://dx.doi.org/10.1007/978-3-642-36362-7_6
http://dx.doi.org/10.1007/978-3-642-20465-4_25
http://dx.doi.org/10.1007/978-3-642-11799-2_19
http://dx.doi.org/10.1007/978-3-540-78967-3_30
http://dx.doi.org/10.1007/978-3-540-78967-3_30
http://dx.doi.org/10.1007/978-3-540-78967-3_31
http://dx.doi.org/10.1007/978-3-642-19571-6_11
http://dx.doi.org/10.1007/978-3-642-19571-6_11
http://dx.doi.org/10.1007/978-3-642-36594-2_36
http://dx.doi.org/10.1007/978-3-642-36594-2_36
http://dx.doi.org/10.1007/978-3-662-46494-6_14
http://dx.doi.org/10.1007/978-3-642-54242-8_27
http://dx.doi.org/10.1007/978-3-319-10879-7_28

A Unified Approach to BB UC Protocols in Trusted Setup Models 809

37. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS, pp.
325–335. IEEE Computer Society Press, November 2000

38. van Dijk, M., Rührmair, U.: Physical unclonable functions in cryptographic pro-
tocols: security proofs and impossibility results. IACR Cryptology ePrint Archive
2012/228 (2012)

39. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: CCS, pp. 597–608 (2014)

40. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)

41. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC, pp. 242–251 (2004)

42. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 10

43. Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from
number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 343–359. Springer, Heidelberg (2006). doi:10.1007/11681878 18

44. Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concur-
rently composable secure computation via a robust extraction lemma. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 260–289. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46494-6 12

45. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78524-8 24

46. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

47. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8 31

48. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4, 151–158 (1991)

http://dx.doi.org/10.1007/3-540-39200-9_10
http://dx.doi.org/10.1007/11681878_18
http://dx.doi.org/10.1007/978-3-662-46494-6_12
http://dx.doi.org/10.1007/978-3-540-78524-8_24
http://dx.doi.org/10.1007/978-3-540-78524-8_31

Author Index

Aggarwal, Divesh II-319
Agrawal, Shweta I-173
Alwen, Joël I-493
Ananth, Prabhanjan I-612

Badrinarayanan, Saikrishna I-743
Beimel, Amos II-394
Ben-Sasson, Eli II-172
Bitansky, Nir II-567
Blocki, Jeremiah I-445
Boneh, Dan I-237
Boyle, Elette II-662
Brakerski, Zvika I-264, I-645
Brody, Joshua I-56

Canetti, Ran II-694
Cascudo, Ignacio II-461
Chen, Long II-597
Cheng, Kuan II-424
Chiesa, Alessandro II-172
Chongchitmate, Wutichai II-111
Ciampi, Michele I-678, I-711

Damgård, Ivan II-461
Daza, Vanesa I-581
Devadas, Srinivas I-466, II-729
Döttling, Nico I-372
Dziembowski, Stefan I-56

Farràs, Oriol II-394, II-461
Faust, Sebastian I-56
Fersch, Manuel II-519
Forbes, Michael A. II-172

Gabizon, Ariel II-172
Garg, Sanjam I-82, I-372
Genkin, Daniel II-209
Goldwasser, Shafi I-305
Goyal, Rishab I-529, II-537
Goyal, Vipul I-529, I-743

Halevi, Shai I-645
Hazay, Carmit II-3

Hofheinz, Dennis I-341
Hohenberger, Susan II-537
Holmgren, Justin II-694
Hövelmanns, Kathrin I-341
Hubert Chan, T.-H. II-72

Ishai, Yuval II-3, II-209, II-424, II-662

Jafargholi, Zahra II-40
Jager, Tibor I-409
Jain, Abhishek I-612, I-743

Kanukurthi, Bhavana II-344
Kazana, Tomasz II-319
Khurana, Dakshita I-743, II-139
Kiltz, Eike I-341, II-519
Kim, Sam I-237
Kiyoshima, Susumu I-776
Klein, Saleet I-305
Komargodski, Ilan II-379
Koppula, Venkata II-537

Li, Xin II-424
Lin, Huijia I-776
Lindell, Yehuda I-565
Liu, Qipeng I-138
Lombardi, Alex I-119
Lovett, Shachar I-31

Mahloujifar, Saeed II-245
Mahmoody, Mohammad I-82, II-245
Makriyannis, Nikolaos I-581
Mintz, Yuval II-394
Mironov, Ilya II-631
Mohammed, Ameer I-82

Obbattu, Sai Lakshmi Bhavana II-344
Obremski, Maciej II-319
Ostrovsky, Rafail I-678, I-711, II-111

Paneth, Omer II-283
Paskin-Cherniavsky, Anat II-379
Pass, Rafael II-662

Peter, Naty II-394
Pietrzak, Krzysztof I-56
Poettering, Bertram II-519
Polychroniadou, Antigoni I-645

Rabin, Tal I-565
Ranellucci, Samuel II-461
Ren, Ling I-466, II-729
Riabzev, Michael II-172
Richelson, Silas II-694
Rosen, Alon I-173, II-747
Rothblum, Guy N. II-283

Sahai, Amit I-743
Scafuro, Alessandra II-40
Segev, Gil II-631, II-747
Sekar, Sruthi II-344
Shahaf, Ido II-631, II-747
Shi, Elaine II-72
Siniscalchi, Luisa I-678, I-711
Spooner, Nicholas II-172
Stam, Martijn I-409
Stanley-Oakes, Ryan I-409

Tackmann, Björn I-493
Tang, Bo I-3
Tsabary, Rotem I-264, II-489

Vaikuntanathan, Vinod I-119, I-264
Venkitasubramaniam, Muthuramakrishnan

I-776, II-3
Visconti, Ivan I-678, I-711, II-111

Wang, Xueqing II-597
Warinschi, Bogdan I-409
Waters, Brent II-537
Wee, Hoeteck I-206, I-264
Weiss, Mor II-209
Wichs, Daniel I-305, II-40
Wootters, Mary II-662
Wu, David J. I-237

Xiao, Hanshen II-729

Zhandry, Mark I-138
Zhang, Jiapeng I-3, I-31
Zhang, Zhenfeng II-597
Zhou, Samson I-445

812 Author Index

	Preface
	TCC 2017 Theory of Cryptography Conference
	Contents – Part I
	Contents – Part II
	Impossibilities and Barriers
	Barriers to Black-Box Constructions of Traitor Tracing Systems
	1 Introduction
	1.1 Our Results
	1.2 Our Approach
	1.3 Related Work
	1.4 Organization

	2 Traitor Tracing Systems
	3 Differentially Private Sanitizers in Random Oracle Model
	4 Lower Bounds on Traitor Tracing Systems
	4.1 Efficiency Analysis
	4.2 Utility Analysis
	4.3 Privacy Analysis

	5 Improved Lower Bound
	6 Large Deviation Bound for Decision Forests
	A Missing Proofs
	B Oracle Separation
	References

	On the Impossibility of Entropy Reversal, and Its Application to Zero-Knowledge Proofs
	1 Introduction
	1.1 Black-Box Reductions
	1.2 Our Results
	1.3 Related Works
	1.4 Proof Overview

	2 Preliminaries
	3 Proof of Main Theorem: Theorem 5
	3.1 A Useful Reduction
	3.2 Preparations
	3.3 Block Compatible Inputs
	3.4 Main Technical Lemma
	3.5 Deducing Theorem 5

	4 Proof of Main Technical Lemma: Lemma 3
	4.1 Analyzing the Case that E1 Doesn't Hold
	4.2 Bounding the Probability that both E1,E2 Don't Hold

	5 Conclusions and Open Problems
	References

	Position-Based Cryptography and Multiparty Communication Complexity
	1 Introduction
	1.1 Multiparty Communication Complexity
	1.2 Our Contribution

	2 Preliminaries
	2.1 Guessing Bits from ``compressed'' Information
	2.2 Multiparty Communication Complexity
	2.3 Secure Positioning and the Position-Based Key Agreement
	2.4 Prover's Efficiency

	3 The Reductions
	3.1 Secure Positioning in the BRM Implies Lower Bounds for SM Complexity
	3.2 Lower Bounds for SM Complexity Imply Results for PBC

	4 Concrete Constructions
	4.1 Protocols in the Random Oracle Model
	4.2 Protocols in the Plain Model
	4.3 Practical Considerations for the GIP-based Protocol

	References

	When Does Functional Encryption Imply Obfuscation?
	1 Introduction
	1.1 Our Results
	1.2 Comparison with Known Lower Bounds on IO
	1.3 Technical Overview

	2 Preliminaries
	2.1 Obfuscation
	2.2 Functional Encryption
	2.3 Background on Black-Box Constructions
	2.4 Tools for Lower Bounds of IO

	3 Monolithic Separation of IO from Short-Output FE
	3.1 The Ideal Model
	3.2 Monolithic Functional Encryption Exists Relative to
	3.3 Compiling Out from IO

	References

	Obfuscation
	Limits on the Locality of Pseudorandom Generators and Applications to Indistinguishability Obfuscation
	1 Introduction
	1.1 Outline of Our Attack

	2 Preliminaries
	2.1 Pseudorandom Generators
	2.2 Goldreich's Candidate (Blockwise) Local PRG

	3 Alphabet Reduction
	3.1 Limits of Alphabet Reduction

	4 From Small Alphabet Refutation to Large Alphabet Distinguishing
	4.1 Proof of Theorem5
	4.2 Generalization of Theorem5 to Multiple Predicates

	References

	Decomposable Obfuscation: A Framework for Building Applications of Obfuscation from Polynomial Hardness
	1 Introduction
	1.1 The Sub-exponential Barrier in Obfuscation
	1.2 Breaking the Sub-exponential Barrier
	1.3 A New Abstraction: Decomposable Obfuscation
	1.4 Our Results
	1.5 Discussion

	2 Decomposing Equivalence and dO Definitions
	2.1 Partial Evaluation on Circuits
	2.2 Circuit Assignments

	3 Applications
	3.1 Notations
	3.2 Short Signatures
	3.3 Universal Samplers

	4 Constructions of dO
	4.1 New Notions of Equivalence for Circuits
	4.2 Locally, Path, One Shot Decomposing Equivalence
	4.3 Locally, One Shot dO
	4.4 Locally dO Implies One Shot dO
	4.5 Compact FE Implies dO

	5 Discussion
	5.1 Deciding Decomposing Equivalence
	5.2 One Shot DE Is Equivalent to Path DE
	5.3 One Shot DE Is Strictly Stronger Than Functional Equivalence

	References

	Functional Encryption
	Functional Encryption for Bounded Collusions, Revisited
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Techniques

	2 Preliminaries
	2.1 Functional Encryption
	2.2 Simulation Based Security for Single Key FE
	2.3 Lattice Preliminaries
	2.4 Hardness Assumptions

	3 Warm-Up: Bounded Query Functional Encryption for Quadratic Polynomials
	3.1 Correctness
	3.2 Security

	4 Public Key and Ciphertext Evaluation Algorithms
	4.1 Ciphertext and Public Key Structure

	5 Succinct Functional Encryption for NC1
	6 Bounded Collusion FE for All Circuits
	A Previous Constructions for Bounded Collusion FE
	B Parameters
	References

	Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion

	2 Detailed Technical Overview
	2.1 Inner Product Functional Encryption
	2.2 Inner Product Predicate Encryption

	3 Preliminaries
	3.1 Cryptographic Assumptions
	3.2 Partially Hiding Predicate Encryption

	4 FABP IP and Encodings
	4.1 The Class FABP IP
	4.2 Encodings rEf for FABP IP

	5 Our PHPE Construction
	5.1 Warm-Up I: Inner Product Predicate, i.e. n'=0
	5.2 Warm-Up II: A Private-Key Scheme
	5.3 Our PHPE Scheme
	5.4 Analysis
	5.5 Simulator
	5.6 Security Proof

	A Instantiating rEf for FABP IP
	A.1 Partial Garbling for FABP IP

	B Our Inner Product Functional Encryption Scheme
	B.1 Our Scheme
	B.2 Analysis
	B.3 Simulator
	B.4 Security Proof

	References

	Constrained PRFs
	Constrained Keys for Invertible Pseudorandom Functions
	1 Introduction
	1.1 Building Constrained IPFs
	1.2 Related Work

	2 Preliminaries
	2.1 CCA-Secure Public-Key Encryption

	3 Invertible PRFs
	3.1 Constrained PRFs and IPFs
	3.2 Private Constrained PRFs
	3.3 Special Cases: PRPs and Constrained PRPs

	4 Constructing Constrained IPFs
	4.1 Warm-Up: Puncturable IPF from Private Puncturable PRFs
	4.2 Circuit-Constrained IPF from Private Circuit-Constrained PRFs

	5 Concrete Instantiations of Constrained IPFs
	6 An Extension: Supporting Delegation
	7 Multi-key Constrained IPF from Obfuscation
	References

	Private Constrained PRFs (and More) from LWE
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 The GVW15a Scheme
	2.2 Dual-Use of Secret and Randomness
	2.3 Modulus Switching and Trapdoor Extension in Hermite Normal Form
	2.4 From PE to Constraint Hiding CPRF

	3 Preliminaries
	3.1 Constrained Pseudo-Random Functions
	3.2 Weakly Attribute Hiding Predicate Encryption
	3.3 Learning with Errors
	3.4 Trapdoors and Discrete Gaussians
	3.5 Lattice Evaluation
	3.6 Fully Homomorphic Encryption (FHE)
	3.7 The Banerjee-Peikert Pseudorandom Function

	4 Our First Construction: The Dual-Use Technique
	4.1 Lattice Evaluation of Matrix-Valued Functions
	4.2 Weakly Attribute-Hiding Predicate Encryption
	4.3 Constraint Hiding Constrained PRF

	5 Our Second Technique: Modulus Switching in HNF
	5.1 Weakly Attribute Hiding Predicate Encryption
	5.2 Constraint Hiding Constrained PRF

	References

	Encryption
	The Edited Truth
	1 Introduction
	1.1 Invisible Edits
	1.2 Deniable Edits
	1.3 Comparison: Deniable Edits, Invisible Edits and Functional Encryption
	1.4 Our Techniques
	1.5 Related Work

	2 Preliminaries
	2.1 Single-Key Functional-Encryption

	3 Invisible-Edits
	3.1 Public-Key Invisible-Edits
	3.2 Symmetric-Key Invisible-Edits
	3.3 Efficiency

	4 Deniable-Edits
	4.1 Public-Key Deniable-Edits
	4.2 Symmetric-Key Deniable-Edits
	4.3 Efficiency
	4.4 Extensions

	A Standard Cryptographic Definitions
	A.1 Encryption Scheme Definitions
	A.2 Garbled Circuits

	B Constructions of Single-Key Functional-Encryption Schemes
	B.1 Single-Key Public-Key Functional-Encryption Construction
	B.2 Single-Key Symmetric-Key Functional-Encryption Construction

	References

	A Modular Analysis of the Fujisaki-Okamoto Transformation
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Public-Key Encryption
	2.2 Key Encapsulation

	3 Modular FO Transformations
	3.1 Transformation T: From OW-CPA/IND-CPA to OW-PCVA
	3.2 Transformations U, Um, U, Um
	3.3 The Resulting KEMs
	3.4 S: From OW-CPA to IND-CPA Security, Tightly

	4 Modular FO Transformation in the QROM
	4.1 Quantum Computation
	4.2 Transformation T: From OW-CPA to OW-PCA in the QROM
	4.3 Transformations QUm, QUm
	4.4 The Resulting KEMs

	References

	From Selective IBE to Full IBE and Selective HIBE
	1 Introduction
	1.1 Our Results
	1.2 Technical Outline

	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Identity-Based Encryption
	2.3 Hierarchical Identity-Based Encryption (HIBE)
	2.4 Chameleon Encryption
	2.5 Garbled Circuits
	2.6 Delegatable Pseudorandom Functions

	3 One-Time Signatures with Encryption
	4 One-Time Signatures with Encryption from Chameleon Encryption
	5 One-Time Signatures with Encryption from Selectively Secure IBE
	6 Achieving Fully Secure IBE
	6.1 Correctness
	6.2 Proof of Security

	7 Achieving Selectively Secure HIBE
	7.1 Correctness
	7.2 Proof of Security

	References

	Multi-key Authenticated Encryption with Corruptions: Reductions Are Lossy
	1 Introduction
	2 Preliminaries
	2.1 Authenticated Encryption
	2.2 Black-Box Reductions

	3 Multi-key Security Notions
	4 Multi-key to Single-Key Reductions Are Lossy
	5 Conclusion
	References

	Moderately Hard Functions
	On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i
	1 Introduction
	1.1 iMHFs, Graph Pebbling and Depth-Robustness
	1.2 Argon2i
	1.3 Results

	2 Related Work
	3 Preliminaries
	3.1 Edge Distribution of Argon2i-B
	3.2 Metagraphs

	4 Depth-Reducibility of Argon2iB
	5 Depth-Robustness for Argon2iB
	6 Cumulative Pebbling Cost of Argon2iB
	7 Fractional Depth-Robustness
	A Missing Proofs
	References

	Bandwidth Hard Functions for ASIC Resistance
	1 Introduction
	1.1 Bandwidth Hard Functions
	1.2 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 A Hardware Perspective on ASIC Resistance
	3.2 The Graph Labeling and Pebbling Framework

	4 The Limit of Energy Fairness
	4.1 Experiments to Estimate Energy Cost Coefficients
	4.2 Better Energy Fairness with AES-NI

	5 Bandwidth Hardness of Candidate Constructions
	5.1 Scrypt
	5.2 Bit-Reversal Graphs
	5.3 Stacked Expanders
	5.4 Stacked Butterfly Graphs Are Not Bandwidth Hard

	6 Discussion
	6.1 The Role of Memory
	6.2 Capacity Hardness and Energy?
	6.3 Implications of Parallel Attacks

	7 Conclusion
	References

	Moderately Hard Functions: Definition, Instantiations, and Applications
	1 Introduction
	2 Preliminaries
	2.1 Reactive Discrete Systems
	2.2 Indifferentiability
	2.3 Oracle Functions and Oracle Algorithms
	2.4 Computation and Computational Cost
	2.5 A Model for Resource-Bounded Computation

	3 Moderately Hard Functions
	4 Memory-Hard Functions
	4.1 The Parallel ROM
	4.2 Graph Functions
	4.3 A Parallel Memory-Hard MoHF

	5 Other Types of MoHFs
	5.1 Weak Memory-Hard Functions
	5.2 Memory-Bound Functions
	5.3 One-Time Computable and Uncomputable Functions

	6 Interactive Proofs of Effort
	6.1 Definition
	6.2 Protocols

	7 Non-interactive Proofs of Effort
	7.1 Definition
	7.2 Protocol

	8 Combining the Results
	9 Open Questions
	References

	Blockchains
	Overcoming Cryptographic Impossibility Results Using Blockchains
	1 Introduction
	1.1 Technical Overview

	2 Background on Blockchain Protocols
	2.1 Blockchain Protocols

	3 Preliminaries
	3.1 Public Key Integrated Encryption-Signature Scheme
	3.2 Non-interactive Argument Systems
	3.3 One-Time Programs and Compilers

	4 Proof-of-Stake Protocols: Abstraction and Definitions
	4.1 Chain Consistency
	4.2 Defining Stake Fraction
	4.3 Stake Contribution Properties
	4.4 Bounded Forking Properties

	5 Instantiating Our Framework
	5.1 Chain Quality and Bounded Length Forking

	6 NIZKs over Blockchain
	6.1 Construction
	6.2 Security Proof

	7 One-Time Programs over Blockchain
	7.1 NP Relation on Blockchain Protocols
	7.2 One-Time Compilers

	References

	Multiparty Computation
	Secure Two-Party Computation with Fairness - A Necessary Design Principle
	1 Introduction
	2 Defining Secure Two-Party Computation with a Committal Round
	3 Proof of Impossibility of Fairness
	References

	Designing Fully Secure Protocols for Secure Two-Party Computation of Constant-Domain Functions
	1 Introduction
	1.1 Previous Works
	1.2 Our Contributions

	2 Preliminaries
	2.1 Secure Two-Party Computation

	3 Locking Strategies and Sampling Attacks
	3.1 Warm-Up
	3.2 Locking Strategies
	3.3 Sampling Attacks

	4 Towards Full Security
	4.1 Protocol SecSamp2Fair()
	4.2 Security Analysis
	4.3 Real vs Ideal

	5 The Asymmetric Case
	5.1 Irreducible Locking Strategies
	5.2 The Dealer Game
	5.3 The Algorithm

	6 Conclusions and Open Problems
	References

	On Secure Two-Party Computation in Three Rounds
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Works

	2 Preliminaries
	2.1 Secure Two-Party Computation

	3 Building Blocks
	3.1 Garbling Schemes
	3.2 Oblivious Transfer
	3.3 Two Message Secure Function Evaluation
	3.4 Conditional Disclosure of Secrets (CDS) Protocols
	3.5 Zero Knowledge Proof Systems
	3.6 Succinct Randomized Encodings
	3.7 Indistinguishability Obfuscation for Circuits
	3.8 Puncturable Pseudorandom Functions

	4 Generation Protocols
	4.1 Two-Message GP from Succinct RE

	5 Three-Round Secure Computation
	References

	Four Round Secure Computation Without Setup
	1 Introduction
	2 Overview of Our Protocol
	2.1 The Maliciously-Secure Protocol
	2.2 A Tale of Malleability and Extraction
	2.3 Roadmap

	3 Part I: 3-Round Semi-malicious Protocols
	3.1 LWE-Based Multi-key FHE with Distributed Setup
	3.2 Definitions
	3.3 A ``Dual'' LWE-Based Multi-key FHE with Distributed Setup

	4 A Semi-malicious Protocol Without Setup
	4.1 A Semi-malicious Protocol from Multi-key FHE With Distributed Setup

	5 Part II: 4-Round Malicious Protocols
	5.1 Tools and Definitions
	5.2 Commitment Schemes
	5.3 Proof Systems
	5.4 Secure Computation

	6 A Malicious Protocol Without Setup
	6.1 Proof of Security

	7 Discussion and Open Problems
	A The Need for Dual GSW
	References

	Round-Optimal Secure Two-Party Computation from Trapdoor Permutations
	1 Introduction
	1.1 Our Contribution
	1.2 Special One-Sided Simulatable OT

	2 Definitions and Tools
	2.1 Preliminaries
	2.2 Standard Definitions
	2.3 OR Composition of -Protocols
	2.4 Oblivious Transfer

	3 Our OT Protocol OT=(SOT, ROT)
	4 Secure 2PC in the Simultaneous Message Exchange Model
	4.1 Formal Description of Our 2PC=(P1, P2)

	References

	Delayed-Input Non-Malleable Zero Knowledge and Multi-Party Coin Tossing in Four Rounds
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview on Our NMZK
	1.3 4-Round Secure Multi-Party Coin Tossing

	2 Definitions and Tools
	3 4-Round Delayed-Input NMZK from OWFs
	3.1 Our Protocol: NMZK

	4 Multi-Party Coin-Tossing Protocol
	4.1 4-Round Secure Multi-Party Coin Tossing: MPCT
	4.2 MPCT: Informal Description and Security Intuition
	4.3 Formal Description

	A Standard Definitions
	A.1 Commitment Schemes
	A.2 3-Round Honest-Extractable Commitment Schemes
	A.3 Non-malleable Commitments

	B Special WIPoK
	B.1 Improving the Soundness of LS
	B.2 Combining (Adaptive-Input) Special HVZK PoK Through [12]

	References

	Round Optimal Concurrent MPC via Strong Simulation
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Three Round MPC Without Setup
	2.2 Two Round MPC Without Setup for Input-Less Randomized Functionalities

	3 Preliminaries
	3.1 ZK with Superpolynomial Simulation
	3.2 ZK with Super-Polynomial Strong Simulation
	3.3 Non-Malleability w.r.t. Commitment
	3.4 Secure Multiparty Computation

	4 Three Round Malicious Secure MPC
	4.1 High-Level Overview
	4.2 Construction
	4.3 Security Proof

	5 Two Round Malicious Secure MPC for Input-Less Functionalities
	5.1 High-Level Overview
	5.2 Construction
	5.3 Security Proof

	6 Three Round Concurrently Secure MPC
	7 Two Round Concurrently Secure MPC for Input-Less Functionalities
	References

	A Unified Approach to Constructing Black-Box UC Protocols in Trusted Setup Models
	1 Introduction
	1.1 Our Result
	1.2 Our Techniques

	2 Definitions of Commitments in Trusted-Setup Models
	2.1 Trusted Setups
	2.2 Commitments in T-Model
	2.3 Concurrent Non-malleable Commitments in T-Model
	2.4 CCA Commitments in Trusted-Setup Models
	2.5 Concurrent Extractability w.r.t. Commitment in T-Model
	2.6 Concurrent Extractability w.r.t. Opening in T-Model

	3 Robust CCACom from CECom w.r.t Opening
	4 From CCA Commitments to UC Secure Protocols
	4.1 The General Transformation
	4.2 Instantiation of CECom in the CRS Model
	4.3 Instantiation of CECom in the Tamper Proof Hardware Model

	References

	Author Index

