
205© Springer International Publishing AG 2018 
B.P. Guiard, G. Di Giovanni (eds.), 5-HT2A Receptors in the Central Nervous 
System, The Receptors 32, https://doi.org/10.1007/978-3-319-70474-6_9

Role of Serotonin-2A Receptors 
in Pathophysiology and Treatment 
of Depression

Lucia Moravčíková, Kristína Csatlósová, Barbora Ďurišová, 
Katarína Ondáčová, Michaela Pavlovičová, Ľubica Lacinová, 
and Eliyahu Dremencov

Abstract  This chapter aims to summarize the up-to-day evidence-based biomedical 
knowledge on serotonin-2A (5-HT2A) receptors and their role in pathophysiology 
and treatment of central nervous system (CNS) disorders, with a primary focus on 
depression. The first paragraph provides a brief introduction to serotonin (5-HT) 
system and 5-HT receptors, focusing on serotonin-2 (5-HT2) family and 5-HT2A 
receptor specifically. The second paragraph is focused on molecular genetics of 
5-HT2A receptors, polymorphism of 5-HT2A receptor (5HT2AR) gene, 5HT2AR 
gene epigenetic mechanisms, such as DNA methylation, and post-translational 
modifications of 5HT2AR messenger ribonucleic acid (mRNA), such as alternative 
splicing. The molecular and cellular pharmacology and physiology of 5-HT2A 
receptors in normal and pathological conditions are discussed in the third para-
graph. The 5-HT2A receptors-acting ligands are addresses. The fourth paragraph 
describes the role of 5-HT receptors in the interaction between 5-HT and other 
neurotransmitter systems in health and in CNS disorders. The fifth and the final 
paragraph specifically deals with the role of 5-HT2A receptor in pathophysiology 
and treatment of depression, focusing on the 5-HT2A receptor expressed in the 
hippocampus.
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• G-protein coupled receptors (GPCR) • GαQ/Z-11 protein • Phospholipase C (PLC) 
• Inositol trisphosphate (IP3) • Calcium signaling • Antidepressant drugs  
• Antipsychotic drugs • Hippocampus

�Serotonin-2A Receptor: An Introduction

The 5-HT2A receptors belong to the 5-HT2 family consists of two more subtypes: 
5-HT2B and 5-HT2C receptors. These subtypes have similar molecular structure, 
amino acid sequence, and signaling properties. The 5-HT2B receptors have a 
restricted expression in CNS; they play an important role during the embryonic 
development [1]. The 5-HT2A and 5-HT2C receptors are widely distributed across the 
CNS and have multiple functions. All members of the 5-HT2 receptor family pri-
marily couple to PLC on activation. Like other G-protein coupled receptors 
(GPCRs), 5-HT2 functional regulation also involves sensitization and desensitiza-
tion-regulatory processes that help prevent overstimulation and allow recuperation 
of signaling competence, respectively [2].

Serotonin-2 receptor subtypes have been cloned from various species and tis-
sues. The 5-HT2A receptor from hamster, human, monkey, mouse, pig, rat, and sheep 
all have the same length of 471 amino acid. The 5-HT2B receptor from human, 
mouse and rat have a length of 481, 504, and 479 amino acids and the 5-HT2C recep-
tor from human, mouse and rat have a length of 458, 459, and 460 amino acids, 
respectively [3]. The 5-HT2A and 5-HT2C receptors are glycosylated on multiple 
sites. The genes for the 5-HT2A and 5-HT2B receptor have 3 introns; the 5-HT2C 
receptor gene has two introns. In humans, the genes are located on chromosome 
13q14-q21 for the 5-HT2A receptor, chromosome position 2q36.3–2q37.1 for the 
5-HT2B receptor, and chromosome X q24 for the 5-HT2C receptor [1].

It has been shown that some GPCRs, including the 5-HT2A receptor, exhibit criti-
cal differences in some aspects of functional regulation from those seen in conven-
tionally studied model GPCRs such as the β2-adrenergic receptor. This receptor 
couples to a number of intracellular signaling cascades, making it an important 
receptor to study. Therefore, the 5-HT2A receptor could well serve as an important 
alternate paradigm in the study of GPCR function [2].

Though the receptor has been studied largely in relation to its multiple functions in 
the CNS, high levels of receptor expression in other areas such as the intestine, plate-
lets, and endothelial cells suggest that it could play crucial roles in other aspects of 
physiology, as well. They mediate contractile responses in many vascular smooth 
muscle preparations (e.g. bronchial, uterine and urinary smooth muscle), and part of 
the contractile effects of 5-HT in the guinea pig ileum. In addition, platelet aggrega-
tion and increased capillary permeability following exposure to 5-HT have been 
attributed to 5-HT2A receptor-mediated process. Moreover, 5-HT2 receptor agonists, in 
addition to precursors of 5-HT and 5-HT releasing agents, mediate certain behavioral 
syndromes in vivo (e.g. head twitching in mice, and wet-dog shakes and back muscle 
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contractions in rats) [4]. Centrally, these receptors are principally located in the 
cortex, claustrum and basal ganglia. 5-HT2A receptor activation stimulates hormone 
secretion (e.g. ACTH, corticosterone, oxytocin, renin and prolactin) [5]. Considering 
the broad expression of 5-HT2A receptors across the brain and their involvement in 
multiple CNS functions, it is expected that these receptors will play a role pathophysi-
ology of brain disorders. Indeed, the CNS disorders in which the 5-HT2A receptor 
seems to be involved range from schizophrenia, depression, obsessive compulsive 
disorder (OCD), and attention deficit–hyperactivity disorder (ADHD), to eating disor-
ders such as anorexia nervosa, to autism spectrum disorders [2]. Implication of 5-HT2A 
receptors in mental disorders with complex etiologies is still not clearly understood. 
There are a large number of drugs targeted to this receptor.

�Molecular Genetics and Epigenetics of Serotonin-2A Receptor

�Serotonin-2A Gene Polymorphism

The 5-HT2A receptor, encoded by HTR2AR gene, is a widely-distributed post-syn-
aptic target for 5-HT in the human brain. Serotonin-2A receptor heterogenity is 
affected by alternative polymorphisms and alternative splicing. The 5-HT2A receptor 
is a target for atypical antipsychotics and antidepressants. The role of genetic vari-
ants of HTR2AR in signaling modulation remains unclear, despite positive clinical 
associations [6]. Methods for detecting genetic polymorphisms are advancing rap-
idly and now allow simultaneous genotyping of several nucleotide polymorphisms. 
The Genetic Association Database [7] reports 346 unique association studies 
between single nucleotide polymorphisms (SNPs) in HTR2AR gene and human 
phenotypes and more than half of these studies find positive genotype-phenotype 
associations. Most are related to cognition or risk for neuropsychiatric disorders, 
supporting the presence of functional genetic variants in HTR2AR gene. Some of 
SNPs (e.g., T102C, C516T, A1438G) are silent mutations and do not cause a change 
in the protein. Other SNPs (e.g., W25S, I197V, S421F, A447V, H452Y) result in a 
change in an amino acid. Although the A1438G mutation is silent and does not 
result in alteration of the amino acid sequence of 5-HT2A receptor, it is located 
within promoter region of the gene. Thus was proposed that this mutation alters 
promoter activity and even so expression of 5-HT2A receptors [8]. Lower 5-HT2A 
receptor densities in some brain areas may cause another silent mutation, T102C [9]. 
On the other hand, mutation H452Y which caused change in protein has no effect 
on receptor expression, but reduces intracellular signaling capacity [10].

Numbers of studies have been conducted on the association between HTR2AR 
gene T102C polymorphism and major depressive disorder (MDD) [11–13]. To clar-
ify the effects of HTR2AR gene T102C polymorphism on the risk of depression, 
Lin et al. [11] performed a meta-analysis in the Chinese population. Results have 
shown that HTR2AR gene T102C polymorphism is not associated with susceptibil-
ity to MDD in these population. Another study [14] demonstrated an association 
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between T102C polymorphism of HTR2AR gene, lifespan, and the risk of age-related 
CNS disorders. Their results suggest that T102C is associated with mean life span, 
and thus this gene becomes a possible candidate for the group of adaptive genes to 
meat consumption proposed in the literature.

The 5HT2A receptor gene polymorphisms rs7997012 and rs6311 has been sug-
gested to be involved in major depressive disorder. Htr2a knock-out mice (Htr2a−/−) 
displayed an increase in depressive-like behavior, compared to wild type, thus sug-
gesting, that lowered 5-HT2A receptor transmission may favor the susceptibility and 
severity of major depressive episodes [15].

It is seems that genetic variants in the HTR2A gene affect the therapeutic effects 
of andtidepressant drugs but mechanism underlying the regulation of such response 
remains poorly described. According to study of Qesseveur et al. [16] the HTR2A 
gene may represent a relevant marker to predict the efficacy of antidepressant drugs. 
The effect of three HTR2A single nucleotide polymorphisms (SNPs- rs6313, rs6314 
and rs7333412) was investigated. These three SNPs have potential functional con-
sequences on 5-HT2A receptor, on response and remission rates after 3 months of 
antidepressant treatments. Their clinical data indicated that GG patients for the 
rs7333412 SNP were less prone to respond to antidepressant drugs than AA/AG 
patients.

T102C and A1438G polymorphisms were associated with risk for schizophrenia 
[17–19]. The T102C polymorphism is also related to tobacco use [20] and the 
A1438G polymorphism of HTR2AR gene is involved in the development of alcohol 
dependence [21]. Polymorphisms of the HTR2AR gene are associated with halluci-
natory symptoms and delusions in demented and non-demented cohorts. The study 
of Craig et al. [22] examined the role of the HTR2AR gene T102C polymorphism 
in influencing psychotic symptoms in a large Northern Ireland Alzheimer’s disease 
(AD) population. No significant association was found either in frequency of geno-
type or allelic variation for either set of symptoms. On the other hand, Lam et al. 
[23] demonstrated significant association between neuropsychiatric symptoms in 
AD and HTR2AR gene polymorphisms.

�Methylation

Differential DNA methylation has been suggested to contribute to differential activ-
ity of alleles C and T and thereby to genetic associations between the C/T(102) 
polymorphism in the HTR2AR gene and psychiatric disorders [24]. This study 
demonstrated methylation in two CpG sites, which are specific to allele C.  The 
majority of allele C-specific CpG sites were methylated in human temporal cortex 
and peripheral leukocytes. Findings that methylation of allele C-specific CpG sites 
in the first exon correlated significantly with the expression of DNA methylase 1 but 
not S-adenosylhomocysteine hydrolase, support the hypothesis that allele-specific 
DNA methylation is involved in regulation of HTR2AR gene expression, influenc-
ing expression differences between alleles C and T.
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De Luca et al. [25] developed an improved quantitative assay for the measurement 
of allele-specific methylation of the HTR2AR gene and genetic association between 
the HTR2AR gene T102C silent polymorphism and suicidality in patients with 
mood disorders and schizophrenia.

Falkenberg et al. [26] used functional and structural equation modeling (SEM) 
approaches to assess the contributions of the polymorphism (R6311S) to DNA 
methylation and HTR2AR gene expression in chronic fatigue syndrome (CFS) sub-
jects from a population-based study. Their study suggests that the promoter poly-
morphism (rs6311) can affect both transcription factor binding and promoter 
methylation, and this along with an individual’s stress response can impact the rate 
of HTR2A transcription in a genotype and methylation-dependent manner.

�Alternative Splicing

The first alternatively spliced isoform of 5-HT2A receptor was identified by Huang 
et  al. [27] in the parasitic nematode species, Ascaris Suum. The 5-HT2A-s1 and 
5-HT2A-s2 exhibited identical pharmacological profiles when stably expressed in 
human embryonic kidney (HEK) 293 cells. Both 5-HT2As isoforms had higher affin-
ity for 5-HT than their closely related Caenorhabditis Elegans homolog (5-HT2C-e).

Guest et al. [28] identified an alternatively spliced HTR2AR gene transcript by 
PCR of human brain cDNA using degenerate oligonucleotide primers to transmem-
brane domains. PCR analysis showed that truncated (5HT2ARtr) and native 
HTR2AR genes were co-expressed in most brain tissues, with the highest levels 
being found in hippocampus, corpus callosum, amygdala, and caudate nucleus. 
Western blot analysis of HEK-293 cells transfected transiently with a 5HT2ARtr 
construct showed that a 30-kDa protein was expressed in cell membranes. 
Co-transfection studies showed no effect of the 5HT2ARtr variant on 3H-ketanserin 
binding to the native HTR2AR or on functional coupling of the HTR2AR to 
5-HT-stimulated calcium influx.

�Molecular Pharmacology of and Serotonin-2A Receptors

�Signal Transduction Pathways of Serotonin-2A Receptor

The activation of 5-HT2A receptor leads to the dissociation of GαQ/Z protein into α 
and βγ subunits. The α subunit of GαQ/Z protein activates the phospholipase C (PLC), 
which in turn catalyzes the dissociation of inositol 1,4,5-trisphosphate (IP3)-di-
acylglycerol (DAG) complex into the IP3 and DAG.  The DAG activates protein 
kinase C (PKC), and IP3 stimulates calcium (Ca2+) release from endoplasmic reticu-
lum (ER) into the cytoplasm, a characteristic activation signature of many GPCRs 
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[29, 30]. This cascade has been the most extensively studied and is perhaps the most 
important signal transduction pathway regulated by this receptor (Fig. 1).

Stimulation of the 5-HT2A receptor leads to the activation of at least three distinct 
signal transduction pathways: IP3/DAG-, arachidonic acid (AA)-, and 2-arachidonyl-
glycerol (2-AG)-mediated. In addition to PLC, 5-HT2A receptors were also reported 
to activate phospholipase A2 (PLA2), so-called phospholipase B (PLB) [31].

Besides phospholipases-mediated calcium signaling, 5-HT2A receptor activation 
also induces extracellular signal-regulated kinase (ERK) phosphorylation via 
diverse intracellular signaling mechanisms [32]. Src and calmodulin (CaM) pro-
mote 5-HT2A receptor-mediated phosphorylation of ERK. In the PC12 cells, ERK 
phosphorylation by 5-HT2A receptor may not depend on PLC/PKC signaling, and 
instead requires an increase in intracellular calcium, and the activation of CaM and 
Src [33]. The ERK target p90 ribosomal S6 kinase 2 (RSK2) directly acts on the 
third intracellular (i3) loop of 5-HT2A receptor protein [34], leading to direct phos-
phorylation of the i3 loop at the conserved residue Ser-314 and to suppression of 
5-HT2A receptor signaling.

Fig. 1  Detailed signal transduction pathways of serotonin-2A receptors. Serotonin-2A (5-HT2A) 
receptor activates protein kinase Cβ (PLCβ). Protein kinase Cβ hydrolysis phosphatidylinositol 4,5 
bisphosphate (PIP2) to diacylglycerol (DAG) which activates protein kinesis A (PKA) and inositol 
trisphosphate (IP3) which acts through inositol trisphosphate receptors (IP3R) localize on endoplas-
mic reticulum. Activation of this signaling pathway leads to increase in intracellular calcium con-
centration which affects ion channels, enzyme activity, and neurotransmission or gene expression. 
Intracellular calcium can also lead to activation of calmodulin which activates extracellular signal-
regulated kinases (ERK) and activation of calcineurin leading to inhibition of voltage-dependent 
calcium channels. Activation of ERK signaling pathway suppresses 5-HT2A receptor signaling 
through RSK2 kinase. Extracellular signal-regulated kinases can be activated by TGFβ receptor 
signaling pathway involving Ras GTP-ases interacting with Raf kinases and mitogen-activated 
protein kinase kinases (MEK) which phosphorylates mitogen-activated protein kinase (MAPK)
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In addition, RSK2 is required for tyrosine kinases, such as the epidermal growth 
factor receptor and the platelet-derived growth factor receptor, both of which have 
been demonstrated to attenuate 5-HT2A receptor functioning in primary cortical 
neurons [35, 36].

The 5-HT2A receptors, like other members of 5-HT2 family, couple preferentially 
via GαQ/Z-11 to the IP3/PKC/Ca2+ pathway, although inhibition of cyclic adenosine 
monophosphate (cAMP) production has been reported [37].

The 5-HT2A receptor also regulates the tyrosine kinase pathway activity [33]. 
Activation of neuronal 5-HT2A receptor activates transglutaminase which leads to 
transamidation of Rac1, a small G protein, resulting in constitutive activation of 
Rac1 [38]. Chronic treatment with olanzapine, an atypical antipsychotic drug, causes 
the desensitization of 5-HT2A receptor signaling. In rat frontal cortex, stimulation of 
the JAK-STAT pathway desensitizes the 5-HT2A receptor-mediated PLC activation 
induced by olanzapine [39]. Furthermore, constitutive activation of 5-HT2A receptor 
induces GαQ/Z-11 phosphorylation and desensitization (uncoupling) [40].

�Functional Selectivity and Internalization of Serotonin-2A 
Receptors

Interestingly, different agonists of 5-HT2A receptors vary in the efficacy with which 
they stimulate individual signal transduction pathways [2, 41]. This phenomena is 
called functional selectivity and the 5-HT2A receptor was one of the first receptors 
for which this was described [29, 42]. This discovery was based of the observation 
that hallucinogenic effects of drugs such as LSD do not correlate with their activa-
tion of the IP3/DAG pathway [2].

It has been suggested that hallucinogen, but not nonhallucinogen, 5-HT2A 
receptor agonist induce phosphorylation of the 5-HT2A receptor at S280 located in 
the third intracellular loop. Importantly, these authors also demonstrated that 
pretreating cells with pertussis toxin (PTX) decreased PLC activation induced by 
the hallucinogens 2,5-Dimethoxy-4-iodoamphetamine (DOI) and LSD, whereas 
PTX treatment did not affect lisuride and ergotamine responses [43]. Jones et al. 
[44] discovered, that application of the 5-HT2A receptor agonist DOI to cultured 
cortical neurons induced phosphorylation of p21-activated kinase (PAK) via Rac 
guanine nucleotide exchange factor (RacGEF) kalirin-7 [44]. Taken together, these 
observations suggest that hallucinogens selectively activate GαI/O-dependent signal-
ing, whereas non-hallucinogen 5-HT2A receptor agonists do not [45].

Both in vitro and studies in vivo have shown receptor redistribution in response 
to exposure to antagonists. The 5-HT2A receptor is internalized in response to both 
agonists and antagonists, adding a very interesting twist to its signaling properties 
[46, 47]. This feature of the 5-HT2A receptor may play important roles in its signal-
ing and in the actions of antipsychotic medications. The antagonist-mediated inter-
nalization of the rat 5-HT2A receptor, unlike 5-HT-mediated internalization, is 
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independent of protein kinase C (PKC) activation [47]. Bhatnagar and colleagues 
[46] examined the internalization process of this receptor in detail, demonstrating 
that both agonist- and antagonist-induced internalization of the 5-HT2A receptor 
were dynamin-dependent and via clathrin-mediated endocytosis. Activation of the 
5-HT2A receptor by agonists, but not antagonists, induced greater translocation of 
arrestin-3 than arrestin-2 to the plasma membrane, and resulted in differential sort-
ing of arrestin-2, arrestin-3, and 5-HT2A receptors into distinct plasma membrane 
and intracellular compartments. It is likely that these differences in distribution of 
the various signaling components induced by agonists and antagonists may be 
important in the “ligand-directed” of second messenger signals by the 5-HT2A 
receptor, depending upon which ligand is used to stimulate the receptor. Authors 
discovered, that in vitro knockdown of Caveolin-1 (Cav-1, a scaffolding protein) 
nearly abolished 5-HT2A receptor-mediated signal transduction as measured by cal-
cium flux assays. Cav-1 appeared to modulate 5-HT2A receptor signaling by facili-
tating the interaction of 5-HT2A receptors with Gαq.

�Serotonin-2A-Acting Drugs

Several drugs that have been developed for treatment of psychiatric disorders selec-
tively bind to the 5-HT2A receptor and modulate its signaling pathways (Table 1). 
The antipsychotic drugs spiperone and methiothepin with antipsychotic properties 
are nonselective antagonists of 5-HT1 and 5-HT2 receptors. Both prevent the 
5-HT-dependent PLC activation at 10 μM concentration. However, cyproheptadine 

Table 1  5-HT2A ligands and their selectivity towards the 5-HT receptor family

Name of ligand Effects of binging Receptor affinity

Brexipiprazole Antagonist 5-HT1A, 5-HT2A

Cyproheptadine Antagonist/inverse agonist 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C,5-HT3, 
5-HT6, 5-HT7

DOI Agonist/partial agonist 5-HT2A, 5-HT2B, 5-HT2C

MDL100907 Highly selective antagonist 5-HT2A

Olanzapine Agonist/inverse agonist 5-HT1A, 5-HT3, 5-HT6, 5-HT7,5-HT2A, 5-HT2B, 
5-HT2C

Risperidone Antagonist/inverse agonist/
irreversible antagonist

5-HT1A, 5-HT1B, 5-HT1D, 5-HT5A, 5-HT65-
HT2A, 5-HT2B, 5-HT2C5-HT7

Ritanserin Antagonist 5-HT2A, 5-HT2C

Seroquel Antagonist 5-HT1A, 5-HT2A, 5-HT2C, 5-HT7

Spiperone Antagonist 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 
5-HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT6, 
5-HT7

TCB-2 Agonist 5-HT2A, 5-HT2C

YM 992 Antagonist 5-HT2A
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(10 μM), another antagonist of 5-HT1 and 5-HT2 receptors, had no effect on PLC 
activity [48].

Brexpriprazole is an antagonist of 5-HT2A, 5-HT1A and D2 receptors, is approved 
for the clinical use as a main pharmacotherapy in schizophrenia and as an adjunct in 
antidepressant-resistant depression. This drug demonstrated robust antipsychotic, 
antidepressant-like and anxiolytic activities, and limited extrapyramidal symptom 
liability with pro-cognitive efficacy in animal models [49]. Accumulating evidence 
suggests that antipsychotic drugs act by promoting neurite outgrowth. In the study 
of Ishima and colleagues [50] authors examined whether brexpiprazole can affect 
neurite outgrowth in cell culture. They found that brexpiprazole significantly poten-
tiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a 
concentration dependent manner. Moreover, inhibitors of inositol IP3 receptors, xes-
tospongin C and 2-aminoethoxydiphenyl borate (2-APB), significantly blocked the 
effects of brexpiprazole. These findings suggest that brexpiprazole-induced neurite 
outgrowth is mediated through 5-HT1A and 5-HT2A receptors, and subsequent Ca2+ 
signaling via IP3 receptors [50].

�Role Serotonin-2A Receptors in the Regulation of CNS 
Circuits

�Role of Serotonin-2A Receptors in the Interactions 
Between Serotonin and Glutamate and GABA Systems

DOI (1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane]) is a hallucinogen acting as 
agonist of 5-HT2A receptors, similarly to lysergic acid diethylamide (LSD). It was 
reported that DOI causes a dose-related inhibition of 5-HT neuronal activity, with the 
highest dose reducing firing rates by >80%. Pretreatment with the 5-HT2 receptor 
antagonist ritanserin completely blocked the action of DOI [51]. Study of Quesseveur 
et al. [52] confirms this inhibitory effect of DOI on dorsal raphe (DR) nucleus 5-HT 
neuronal activity. DOI’s response is dependent on 5-HT2A receptors because it dimin-
ished in 5-HT2A receptors lacking mice. Possible way of DOI inhibitory effect on DR 
5-HT neuronal activity is via increasing of GABA release in DR. Other study shows 
that activation of 5-HT2A receptors in the PFC by DOI increased the firing activity of 
DR 5-HT neurons. DOI administration also affected the firing rate of pyramidal neu-
rons while most of them were excited, 11% were inhibited and rest was unaffected 
[53] In this case, excitatory and inhibitory actions of DOI on pyramidal cell firing are 
likely mediated by receptors located on pyramidal neurons and GABA interneurons, 
respectively. DOI also stimulates 5-HT release in the PFC, probably via a mecha-
nism involving interaction between 5-HT2A and AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid) receptors [54] (Fig. 2).

The PFC seems to play crucial role in depression. PFC is involved in higher brain 
functions and carries a control of brain functions through the processing and inte-
gration of signals from other brain areas, such as neocortex, several thalamic nuclei, 
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Fig. 2  Interactions between 5-HT2A receptors and the other system. (a) Excitatory pyramidal neu-
rons in the medial prefrontal cortex (mPFC) control activity of 5-HT neurons in dorsal raphe (DR) 
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and the brain stem. The apical and basal dendrites of pyramidal neurons of the PFC 
are highly enriched with 5-HT2A receptors. These receptors are present also on large 
and medium-sized GABAergic interneurons that control the activity of local micro-
circuits [55]. The mPFC in rodents innervates via long glutamatergic axons various 
brain areas involved in depression, such as nucleus accumbens (NAcc), amygdala, 
and PFC [56]. As well, activity of dopaminergic neurons in ventral tegmental area 
(VTA) is under the excitatory control of 5-HT2A receptors in mPFC. Neurons in 
mPFC excited through 5-HT2A receptors increase the firing rate and burst firing of 
dopaminergic neuron and dopamine release in VTA [57].

The 5-HT2A receptor activation located on thalamocortical afferents could 
increase glutamate release and increase spontaneous excitatory postsynaptic cur-
rents (EPSCs) through the activation of pyramidal AMPA receptors, however, this 
suggestion is based by the recent anatomical data indicating that the terminal 5-HT2A 
receptors are not located on glutamate axons [58].

�Role of Serotonin-2A Receptors in the Interactions 
Between Serotonin and Dopamine Systems

The 5-HT2A receptor stimulation results in enhanced dopamine (DA) release in rat 
PFC, presumably via facilitation of 5-HT1A receptor stimulation. Ability of clozap-
ine to increase DA release may be boosted by antagonism of 5-HT2A receptors [59].

The local infusion of DOI into the PFC dampened potassium (K+)-mediated DA 
release in a dose-dependent manner. Regular intracortical administration of MDL 
100907 caused an increase in cortical DA efflux, suggesting that cortical 5-HT2A 
receptors potentiate the phasic release of DA [60]. The stimulatory effect of 5-HT 
on efflux of dopamine in the striatum is effective only when nigro-striatal DA trans-
mission is elevated above basal levels [61]. Antagonism of 5-HT2A receptors may 
modulate the activity of dopamine neurons in different areas. For the nigro-striatal 
dopaminergic pathway was suggested a model in which blockade of these receptors 
led to increased output of dopaminergic neurons into the striatum [62].

Brexpiprazole has higher affinity to D2 than to the 5-HT2A receptors. While other 
antipsychotic drugs act as D2 antagonists, brexpiprazole is a partial agonist of the D2 

Fig. 2  (continued) through 3 different mechanisms: N-methyl-d-aspartate (NMDA) and 2-amino-
3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA) receptors- mediated excitation; GABAA 
receptors- mediated inhibition; and 5-HT1A autoreceptors- mediated inhibition. (b) Regulation of 
the dopaminergic system through 5-HT2A receptors. In the ventral tegmental area (VTA) or in 
medial prefrontal cortex (mPFC), 5-HT2A receptors have also been identified in GABAergic inter-
neurons. Their activation leads to the inhibition of dopaminergic activity. 5-HT2A receptors might 
also be expressed in dopaminergic neurons in VTA region and their activation would stimulate 
dopaminergic activity. (c) Locus coeruleus (LC) receives dense 5-HT projections coming from 
dorsal raphe (DR), which have an inhibitory effect on noradrenergic neurons. Increased 5-HT 
levels act also on excitatory 5-HT2A receptors on GABAergic neurons which lead to an inhibition 
of norepinephrine release
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receptors [63, 64]. The D2 receptor agonistic features could alter DA neurotransmis-
sion by stimulating D2 receptors when the levels of DA are lowered, while decreas-
ing their activation when DA levels are increased [65].

Increase in 5-HT levels inhibits dopaminergic neurons as the lesion of 5-HT 
neurons results in an increase of dopaminergic neuronal activity in the VTA [66]. 
Thus, an increase in the availability of 5-HT cause by SSRIs might result in attenu-
ation of the firing of dopaminergic neurons. Neuronal activity of dopaminergic neu-
rons has a critical role in the VTA in motivation, hedonia and reward, so the 
inhibition of this firing might contribute to SSRI resistance in some patients [67].

�Role of Serotonin 2A Receptors in the Interactions 
Between Serotonin and Norepinephrine Systems

The 5-HT2A receptor is likely to play an important role in the interaction between 
norepinephrine (NE) and serotonin (5-HT) systems [68]. Increased 5-HT levels act 
on excitatory 5-HT2A receptors on GABA neurons, thus leading to an inhibition of 
NE release [69].

Acute brexpiprazole administration reduced inhibition of two important interac-
tion nodes between the 5-HT and NE systems. The blockade of 5-HT2A receptors 
revokes the tonic inhibition of NE neuronal firing activity, and the blocking of α2-
adrenergic receptors on the nerve terminals of NE neurons stimulates NE release [70].

YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochlo-
ride] is a selective serotonin reuptake inhibitor (SSRI) and a potent 5-HT2A receptor 
antagonist. Acute injection of YM992 significantly decreased NE neuron firing 
activity and blocked the inhibitory effect of a subsequent injection of the 5-HT2 
receptor agonist DOI. After 2-day treatment the firing activity was elevated even 
more significantly, however after 7-day and 21-day treatment a partial recovery was 
observed. This NE activity may be a result of 5-HT reuptake inhibition plus 5-HT2A 
receptor antagonism [69].

The activation of 5-HT2A and 5-HT1A receptors suppresses the firing of 5-HT and 
noradrenergic neurons of the locus coeruleus (LC). Serotoninergic neurons recover their 
firing rate with prolonged treatment, because of the desensitization of 5-HT1A autorecep-
tors, but the firing rate of noradrenergic neurons does not recover over time [68].

�Role of Serotonin-HT2A in the Response to Antidepressant 
and Mood Stabilizing Drugs

Selective serotonin reuptake inhibitors (SSRIs) induce inhibition of NE neuron firing 
[71]. It was reported in several open-label and blind studies that antagonists of 5-HT2A 
receptors, such as atypical antipsychotic drugs, potentiate the therapeutic effect of 
SSRIs in patients with depression [72]. It is also reported that antidepressants induce 
down-regulation of 5-HT2A receptors after repeated treatment [55].
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Risperidone is 5-HT2A and dopamine D2 receptor antagonist which is the only 
antagonist known to saturate the 5-HT2A receptors even at low doses (0.5–1 mg/day) 
[73]. It was reported that risperidone reverses SSRI-induced inhibition of NE neu-
rons due to its 5-HT2A receptor antagonistic property [71]. Co-administration of 
risperidone with venlafaxine or fluoxetine may enhance their antidepressant effects. 
Addition of yohimibine to the combination of risperidone with venlafaxine or fluox-
etine augmented the antidepressant-like action proposing an interaction of α2-
adrenergic and 5-HT2A receptor in mediating their action [74]. Palperidone is the 
main metabolite of risperidone. Although they share the same receptor binding pro-
file, it seems that they have different effects on 5-HT and NE firing in  vivo. 
Co-administration of paliperidone did not interfere with the effect of SSRIs, but still 
managed to inhibit the NE firing inhibition induced by the SSRIs which leads to 
assumption that it may be an effective enhancement of the treatment [75].

Amibegron (SR58611A)—selective β3 adrenergic agonist [76] interacts with 
serotonergic system in the brain resulting in an antidepressant effect [77]. It 
increases the synthesis of 5-HT and tryptophan levels in several brain areas, such as 
hippocampus, cortex, hypothalamus and striatum. Amibegron did not modify nor-
adrenaline synthesis and metabolism, but it did increase its release [78]. A 5-HT2A 
receptor antagonist ketanserin significantly reversed the effect of amibegron which 
leads to conclusion that these antidepressant-like effects are partially caused by the 
5-HT2A receptor activation, more precisely by interaction with 5-HT1A, 5-HT2A/2C 
and 5-HT3 serotonin receptors [79, 80].

Function of cortical 5-HT2A receptors has a specific role in the modulation of 
conflict anxiety. Weisstaub et al. [81] demonstrated that global disruption of 5-HT2A 
receptor signaling in mice reduced inhibition in conflict anxiety paradigms without 
affecting fear-conditioned and depression-related behaviors. Selective restoration of 
5HT2A receptor signaling to the cortex normalized conflict anxiety behaviors.

The serotonergic system appears to play a role in episodic memory which is 
affected in pathologies such as schizophrenia, Alzheimer and depression. The 
5-HT2A receptors as one of the principal post-synaptic receptors for 5-HT in the 
brain are involved in neuropsychiatric and neurological disorders associated with 
memory deficits. Results of Morici et  al. [82] showed that the 5-HT2A and also 
5-HT1A receptors can be a novel target for drug development to improve episodic 
memory retrieval in psychiatric and neurological disorders.

�Serotonin-2A Receptors in Pathophysiology and Treatment 
of Depression

�Expression and Function of Serotonin-2A Receptors 
in the Hippocampus

Hippocampus is a brain structure which plays role in a spatial learning and declara-
tive memory. It receives robust serotonergic innervation from medial and dorsal 
raphe nuclei. There is some evidence indicating role of 5-HT and its receptors in 
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various aspects of cognitive functions including learning and memory. Nowadays, 
exact role of 5-HT in hippocampus is not fully understood. Results of functional 
studies are contradictory. One of possible explanation for these contradictory results 
is that 5-HT acts through different types of 5-HT receptors. The 5-HT2A receptor 
subtype is related to memory disorders [83] and several neurological diseases like 
Alzheimer disease [84, 85] and schizophrenia [86–88].

The presence of 5-HT2A receptors in hippocampus was demonstrated in different 
studies by multiple methods including immunohistochemistry, in situ hybridization, 
autoradiography and quantitative reverse transcription-polymerase chain reaction 
(RT-PCR). Results from these studies are quite different and depending on method-
ology which was used. Minimal levels of 5-HT2A receptors were detected in human 
hippocampus by RT-PCR and autoradiography. They were barely detected in pyra-
midal cells in Cornu ammonis (CA) regions, and were not detected in dentate gyrus 
(DG) [89]. In rat hippocampus mRNA for 5-HT2A receptors was detected in both 
CA regions and in DG [90]. In CA area of rat hippocampus low levels of 5-HT2A 
receptors were detected by in situ hybridization and autoradiography methods. In 
ventral DG moderate levels of specific 5-HT2A receptors binding were detected [91]. 
Immunohistochemistry studies showed that 5-HT2A receptors expressed both excit-
atory glutamatergic and inhibitory GABAergic neurons [92–95]. Virtually all main 
hippocampal excitatory neurons (granular and pyramidal cells) expressed 5-HT2A 
receptors. Strong expression is localized in apical dendrites of pyramidal cells, 
where 5-HT receptors can increase excitatory postsynaptic currents (EPSP) [92, 
94]. Electrophysiological studies demonstrated that outward current induced by 
5-HT and α-methyl-serotonin (5-HT2A receptors agonist) in pyramidal cells of rat 
CA1 hippocampal area is blocked by ketanserin and spiperon (5-HT2A receptors 
antagonist) in dose dependent manner [96]. The 5-HT2A receptors are also expressed 
in mossy fiber in rat hippocampus [92]. Receptors localized on presynaptic side of 
mossy fibers could regulate excitatory neurotransmission and as result affect release 
of glutamate in hippocampus [97, 98]. On the other hand, colocalization analyses 
show that 5-HT2A receptors are expressed in GABAergic neurons located in differ-
ent rat hippocampal regions. This colocalization is similar in different hippocampal 
areas: in DG, CA1, CA2 and CA3 field. In hippocampal CA areas are 5-HT2A recep-
tors widespread in number of GABAergic interneurons distributed in pyramidal cell 
layer, in strata oriens, radiatum and lacunosum-moleculare.

The 5-HT2A receptors are expressed on 90% of GABAergic neurons in  
hippocampus [92]. Electrophysiology studies showed that activation of 5-HT2A 
receptors activate GABAergic neurons in rat DG [99] and in CA1 field [100]. High 
density of 5-HT2A receptor in deeper layers of granular cell layer corresponds with 
study demonstrating that 5-HT receptors can regulate neurogenesis in subgranular 
zone of DG [101]. Because GABA regulates progenitor turnover and integration of 
newly synthetized neurons in DG [102], it can be assumed that GABA neurons 
distributed in subgranular zone can be involved in hippocampal progenitor prolif-
eration mediated by 5-HT2A receptors [103].
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�Function of 5-HT2A Receptors in Hippocampus in Health

Recent studies suggested that 5-HT2A receptors are included in several hippocampal 
functions although underlying mechanisms are still unclear. Activity of hippocam-
pal pyramidal neurons can be modulated by 5-HT2A receptors in different ways: 
directly, by activation of 5-HT2A receptors in pyramidal cells, or indirectly, by acti-
vation of 5-HT2A receptors in GABA interneurons [96]. Serotonin 5-HT2A receptors 
can participate in information processing in hippocampus by participating in neuro-
transmission in different neuronal populations. Strong and widespread expression 
of 5-HT2A receptors in hippocampus is prerequisite for critical involvement of 5-HT 
receptors in number of brain functions including learning and memory [92]. It was 
shown that an application of M100907 (highly selective 5-HT2A receptors antago-
nist) to brain slices facilitates induction of long term potentiation (LTP) in CA1 field 
of rat hippocampus [104].

As a critical factor modulating brain plasticity is considered brain-derived neu-
rotrophic factor (BDNF). Hippocampal BDNF mRNA expression was induced by 
physical activity which positively regulated neurogenesis and induced LTP [105]. 
This factor can acutely influence synaptic efficiency of neurons. Some electrophysi-
ological studies demonstrate that application of BDNF on hippocampal slices 
results in increase of synaptic strength [106–110]. In hippocampus 5-HT2A recep-
tors participate in regulation of BDNF levels as their agonist DOI decreased the 
expression of BDNF mRNA in granular cell layer in DG, but not in CA regions. 
Effect of agonist was blocked by pretreatment with selective antagonist of 5-HT2A 
receptors. Same decrease of BDNF expression in hippocampus is observed during 
stress and it is possible that this effect is mediated by 5-HT2A receptors. This hypoth-
esis is supported by an observation that pretreatment with ketaserin significantly 
blocked stress induced decrease in BDNF expression [111].

Involvement of 5-HT2A receptors in process of learning and memory is supported 
by study where systematic activation of 5-HT2A receptors with agonist (TCB-2) 
enhanced the consolidation of both fear memory and object memory [112]. The 
memory strengthening effect of TCB-2 was blocked by pretreatment with 5-HT2A 
receptors antagonist (MDL11,939). Local microinfusion of TCB-2 into CA1 field 
of dorsal hippocampus had similar effect on memory consolidation observed after 
systemic treatment [113]. Postsynaptic 5-HT2A receptors can modulate memory 
storage associated with object also by influencing on N-Methyl-d-Aspartate 
(NMDA) receptors. It is supported by fact that hippocampal 5-HT2A receptors are 
predominantly expressed in dendritic part of pyramidal neurons [93, 114] and den-
drites which expressed 5-HT2A receptors expressed also NMDAR subunit NR1 and 
GluR2 [114]. Activation of 5-HT2A receptors causes an increase of intracellular Ca2+ 
concentration which in combination with NMDA receptor-mediated calcium influx 
can strengthen the synaptic plasticity. These observations suggest that an activation 
of 5-HT2A receptors induces facilitation of object memory storage and can result 
from potentiating of glutamate release in hippocampus, temporal dynamics of pyra-
midal neurons and critical post-training period. These receptors may serve as a drug 
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target for pharmacological intervention in the treatment of memory disorders [115]. 
It is known that new neurons are generated in mammal DG. These new neurons are 
later during life integrated into hippocampal circuit. Serotonin belongs to important 
factors influencing neurogenesis. Among others 5-HT receptor subtypes (5-HT1A, 
5-HT1B and 5-HT2C), activation of 5-HT2A receptors is involved in the positive regu-
lation of adult neurogenesis in DG caused by regulation of cell proliferation in this 
region [103]. It was reported that some animal models of depression produce 
decrease in hippocampal cell proliferation and neurogenesis. Unlike the depression, 
chronic treatment with antidepressants, such as SSRIs, seem to have the positive 
effect on neurogenesis which is sufficient to reduce anxiety and depression-related 
behavior [116].

�Role of Hippocampal Serotonin-2A Receptors 
in Pathophysiology and Treatment of Depression

The main effect of antidepressants is increasing of synaptic 5-HT levels. There is 
some evidence suggesting that hippocampus can be influenced by depression. It is 
known that hypercorticosolemia, an animal model of depression, results in the death 
of hippocampal neurons [117]. Change of serotonergic function in hippocampus is 
likely to be involved in defects of mood regulation associated with the major depres-
sive disorder (MDD). Serotonin 5-HT2A receptors play role in these changes. 
Postmortem studies in depressed suicide completers documented changes in 5-HT2A 
receptors binding in hippocampus [118, 119]. Magnetic resonance imaging (MRI) 
studies showed changes in 5-HT2A receptors binding potential in hippocampus in 
patients with MDD [120, 121]. Magnetic resonance imaging studies also demon-
strated decrease of hippocampal volume in patients with MDD which correlated 
with duration of depression [120, 121]. However, decrease in 5-HT2A receptors 
binding potential is higher than volume loss and indicates that both conditions can 
coexist. Not only depression itself, but also the total number of days with depression 
inversely correlates with hippocampal volume [121, 122]. Serotonin 5-HT2A recep-
tor binding is not influenced by depression phase. However, patients not previously 
treated for depression have lower 5-HT2A receptor binding than patients with 
previous medication treatment. It is possible that medication treatment provides 
compensatory upregulation of 5-HT2A receptors [123]. It is well established that 
decreased 5-HT2A receptor transmission is associated with depression [124]. It is 
also possible that decreased 5-HT2A receptor-mediated neurotransmission has spe-
cial importance. Indeed, decreased 5-HT2A receptors binding was reported in 
patients with depression [123]. In addition, antidepressants treatment may cause 
changes in expression and binding of 5-HT2A receptors and these changes can per-
sist for a long time after treatment [1, 125–129].

Nowadays, the role of astrocytes in depression has been intensively studied 
[130]. 5-HT2A receptors are expressed not only in hippocampal neurons, but also in 
astrocytes. This suggests the possibility that also 5-HT2A receptors express in astrocyte 
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have functional implications in psychiatric disorders [95]. Beside their housekeeping 
functions, astrocytes are dynamic regulators of synaptogenesis, synaptic strength 
and control neurogenesis in the adult DG [131]. Astrocytes synthesize and release 
many neurotrophic factors vital for neuronal health such as BDNF, glial-derived 
neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophins 3 and 
4/5 [132, 133]. Brain-derivated neurotrophic factor blocks neurogenesis in depres-
sion which is opposite to healthy condition. Its function has been implicated in the 
neurogenesis hypothesis of depression in which the antidepressants enhance neuro-
genesis, and BDNF is a key regulator of this mechanism. Antidepressants (including 
SSRIs) induce the CREB phosphorylation, CREB binds to the BDNF 13 promoter 
and induces BDNF transcription. Moreover, stress can reduce the expression of 
BDNF in the hippocampus and this reduction can be prevented by long-term chronic 
antidepressant treatment [134, 135]. In vitro studies reported that SSRIs stimulate 
the expression of BDNF, GDNF and vascular endothelial growth factor (VEGF) in 
primary culture of astrocytes [136–138]. In vivo data showed that the specific over-
expression of BDNF in hippocampal astrocytes produced antidepressant-like effect 
accompanied by an increase in cell proliferation, maturation and survival of new 
neurons by generated cells in the DG of the hippocampus [139]. It is possible that 
astrocytes contribute to the enhancement in neurotrophic support and associated 
augmentation in synaptic plasticity that may form the basis for antidepressant effi-
cacy. Several reports suggested that fluoxetine and other drugs can modulate the 
structural plasticity of astrocytes. Following chronic administration of lithium and 
some antipsychotic drugs, increased numbers of glia have been reported in the hip-
pocampi of rats and nonhuman primates [140, 141]. In another study fluoxetine 
prevented the stress-induced decrease on a number of hippocampal astrocytes, but 
had no effect in nonstressed animals [142]. It demonstrates that fluoxetine, a promi-
nent member of the SSRI family, can significantly modify the structural plasticity of 
astrocytes, and it is very likely that these morphological alterations either reflect or 
induce functional changes within the glial–neuronal interaction [142]. In particular, 
it is well accepted that SSRIs activate 5-HT2A receptors and stimulate signaling 
intracellular cascades leading to the phosphorylation/activation of extracellular sig-
nal regulated kinases (ERK1/2). Hence, antidepressants may exert their therapeutic 
activity by stimulating this pathway. In the hippocampus ERK1/2 have been impli-
cated in mood regulation [143] as suggested by their blunted activation and/or 
expression in both depressed patient [144] and animal models of depression [145].

�Conclusion

The 5-HT2A receptors belong to the 5-HT2 receptor family, the only known group of 
5-HT receptors which are coupled to GαQ/Z proteins. The primary signal transduction 
mechanism of 5-HT2A receptors involves activation of PLC and calcium signaling. 
However, 5-HT2A receptor-mediated alteration of cAMP levels has also been 
reported. The 5-HT2A receptor is a product of 5HT2AR gene. Genetic polymorphism 
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of 5HT2AR gene, its epigenetic regulation, and post-translational modifications of 
5HT2AR mRNA have been reported. Furthermore, pre- and post-translational 
5HT2AR alterations correlate with certain CNS disorders, such as depression, 
schizophrenia, dementia, and alcohol and nicotine dependence. On the functional 
level, 5-HT2A receptors play a central role in the interaction between 5-HT and nor-
epinephrine systems and they are also involved in 5-HT-glutamate, 5-HT-GABA, 
and 5-HT-dopamine interactions. In addition, 5-HT2A receptors are fundamental in 
the modulation of hippocampal neuronal circuits. These lines of evidence, taken 
together, indicate that 5-HT2A receptors are one of the primary targets for antidepres-
sant and mood stabilizing drugs and other CNS medications. And indeed, atypical 
antidepressant drugs act as antagonist of 5-HT2A receptors.
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