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Preface

It was a great honour and pleasure for us to prepare this book entitled 5-HT2A 
Receptors in the Central Nervous System. The serotonin 5-HT2A receptor, cloned in 
1994, is principally coupled to Gq/11 protein and it is expressed in different brain 
regions involved in cognition, perception, sensorimotor gating and mood. A major 
flaw in the study of the 5-HT2A receptor has relied on the lack of selective tools for 
mapping its distribution in the brain and examining its specific contribution to phys-
iological and pathological processes. Nevertheless, by combining pharmacological 
approaches with 5-HT2 receptor ligands or antibodies with genetic tools (e.g., con-
stitutive or tissue-specific 5-HT2A receptor knockout mice), it has been possible to 
unveil a complex and fascinating organization of this receptor at both cellular and 
subcellular levels. Interestingly, in the last few years, our knowledge on the 5-HT2A 
receptor has undergone a revolution owing to the discovery of many peculiar phar-
macological properties. For example, the 5-HT2A receptors have been shown to 
interact with various G protein coupled receptors to form stable homo- or hetero-
meric complexes, such as D2, mGlu2 and CB1 receptors likely responsible for 
changes in binding and coupling properties. There is another mechanism by which 
5-HT2A receptor can regulate its signalling. Although it is well documented that 
agonist stimulation leads to internalization of the 5-HT2A receptors through a 
βarrestins2-dependent mechanism, recent evidence suggests that βarrestins can also 
facilitate G protein-independent signalling by functioning as adaptor proteins, nota-
bly with the 5-HT2A receptors. The first chapters of this book are therefore aimed at 
reviewing the recent discovery of the pharmacological properties of the 5-HT2A 
receptors since their better understanding may open avenues for the design of new 
therapeutic compounds and thereby to improve the treatment of a number of psychi-
atric and neurological disorders. The next section of chapters reviews our under-
standing of the role(s) of the 5-HT2A receptors in several brain functions including 
sleep, memory, emotion and food intake. This compelling evidence reviewed here 
raises the possibility that the 5-HT2A receptor might be a relevant and promising 
target for the treatment of pathologies such as schizophrenia, mood and eating dis-
orders, pain, epilepsy or Parkinson’s disease. The final section of chapters further 
supports this evidence by illustrating how the 5-HT2A receptor directly or indirectly 
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controls neuronal excitability and brain plasticity through its interactions with 
monoaminergic, GABAergic and glutamatergic neurons but also with neurotrophic 
factors. The scope of the book is vast, going from the 5-HT2A receptor genome to its 
therapeutic applications based on clinical and preclinical observations. We have 
embarked on this unique editorial enterprise with the aim of providing the most 
recent achievements, a result of the efforts of an international group of scholars. We 
have also prepared this book for a wide audience (students, researchers, practitio-
ners and caregivers) offering them a valuable and integrated insight into the mecha-
nisms of action of the 5-HT2A receptors. We hope that the contents of this book will 
further inspire and stimulate discussions and new interdisciplinary research on the 
5-HT2A receptor.

We would like to thank all the authors for their contribution and outstanding 
review manuscripts in their area of expertise. A particular acknowledgement should 
be given to Springer editors, Ms. Portia Wong, the Developmental Editor, who 
helped us to manage this project and Ms. Simina Calin, the Neuroscience Editor, for 
coordinating the entire project.

Msida, Malta Bruno Guiard
Toulouse, France  Giuseppe Di Giovanni
September, 2017

Preface
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Pharmacological Analysis in Favour 
of a Physiological Role for the Constitutive 
Activity of 5-HT2A Receptors in Learning             

Philippe De Deurwaerdère, Guillaume Drutel, and Giuseppe Di Giovanni

Abstract The Serotonin2A (5-hydroxytryptamin, 5-HT2A)  receptor is one of the 
numerous seven transmembrane G protein coupled receptors for serotonin (5-HT) 
originally described as displaying a low affinity for its endogenous ligand. It is 
densely expressed in the cortex and the hippocampus of rodents, primates and 
humans brain. A role of 5-HT2A receptors in learning and memory has been pro-
posed for years. In some behavioural tasks in rodents, 5-HT2A receptors would dis-
play a constitutive activity, a spontaneous activity of the receptor occurring without 
the presence of the endogenous ligand and silenced by inverse agonists. Nonetheless, 
the demonstration of the existence of such a subtle activity in living organisms relies 
on specific criteria and on clear-cut pharmacological evaluation. While it has been 
claimed that 5-HT2A receptor constitutive activity participates in the conditioned 
eyeblink response in rabbits, such an activity would not be systematically observed 
in other models of learning and conditioning such as the conditioned avoidance 
response in rats. Here, we propose a thorough pharmacological analysis of the avail-
able data arguing in favour of the involvement of constitutive activity of 5-HT2A 
receptors, mostly in learning tasks and discuss the functional significance of such an 
activity.

Keywords Pharmacology of 5-HT2 receptors • MDL11,939 • Selectivity • 
Pavlovian conditioning • Conditioned avoidance response • Autoshaping learning 
task • Inverse agonism • Intracellular signaling pathways • Serotonin
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Abbreviations

5,7-DHT 5,7-dihydroxytryptamin
5-HT Serotonin
5-HT2A receptor 5-hydroxytryptamine2A receptor
5-HT2C receptor 5-hydroxytryptamine2C receptor
BOL d-bromolysergic acid diethylamide
CAR Conditioned avoidance response
CHO Chinese hamster ovary
DA dopamine
DOI  (±)-1(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride
DOM d,l-2,5-dimethoxy-4-methylamphetamine
GPCR G-Protein coupled receptor
HEK-293 Human embryonic kidney 293
IP Inositol phosphate
LSD d-lysergic acid diethylamide
MDA d,l-methylenedioxyamphetamine
MDMA d,l-methylenedioxymethamphetamine
PLA2 Phospholipase A2
PLC Phospholipase C
PLD Phospholipase D
SERT Serotonin transporter

 Introduction

The occurrence of a constitutive activity has been proposed for several seven- 
transmembrane receptors in vivo [1–3]. In a neurobiological point of view, this 
notion is puzzling regarding the way we usually teach and conceive neurotransmis-
sion. Indeed, it conceptually limits the role of the neurotransmitter released in the 
synaptic cleft and stimulation of its receptor. The constitutive activity would imply 
that the activity of the cell bearing the receptor triggers the ability of the receptor to 
be stimulated on its own and more so if a neurotransmitter is present. The demon-
stration of the existence of an endogenous constitutive activity for a receptor is a 
complex pharmacological tale in vivo, often leading to strong presumptions rather 
than absolute certainty.

Serotonin2A (5-HT2A) receptors participate in numerous biological functions 
peripherally and centrally. They were originally characterized as a 5-HT receptor 
displaying a low affinity for its endogenous ligand serotonin (5-HT) (5-HT2 receptor 
subtype) [4–6]. Typically, such a receptor could intervene to mediate a phasic 
enhancement of 5-HT tone associated with an enhancement of 5-HT extracellular 
levels [7]. In heterologous expression systems, its high expression is associated with 
a low constitutive activity, a spontaneous activity occurring without the presence of 

P. De Deurwaerdère et al.
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an agonist [8, 9]. This agonist-independent activity of the receptor obtained under 
certain conditions allowed pharmacologists to show that many drugs that were 
thought to act as neutral antagonists were actually inverse agonists that silenced the 
enhanced constitutive activity of 5-HT2A receptors [10]. This activity in heterolo-
gous expression systems remains lower compared to that displayed by other recep-
tors, such as the 5-HT2C receptor, questioning the physiological relevance of such an 
activity in living organisms. Nonetheless, some data support the existence of such 
an activity in vivo in learning [11], and other data indirectly give some credit to this 
possibility.

In this chapter, after briefly presenting the interest in 5-HT2A receptor pharmacol-
ogy, we will review the pharmacological criteria before presenting the data in favour 
of the existence of a constitutive activity of 5-HT2A receptors in vitro. Thereafter, we 
will discuss the evidence that suggests that 5-HT2A receptors can adopt a constitu-
tive activity mostly in learning tasks in rodents.

 Physiology and Pathophysiology of 5-HT2A Receptors

The 5-HT2A receptor subtype was discovered several years ago and was named “D” 
followed by 5-HT2 receptor subtype. Its peculiarity, with respect to the so-called 
5-HT1 receptors, was related to its low affinity for 5-HT, ranging in several hundred 
nM range to μM. After the discovery of at least 14 receptor subtypes for 5-HT, 
5-HT2A receptors remain the 5-HT receptor subtype with the lowest affinity for 
5-HT [4, 5].

Using numerous radioligands, including 3H-ketanserin and 3H-MDL100907, it 
was consistently reported that 5-HT2A receptors were mainly and densely expressed 
in cortical regions as well as in the hippocampus and amygdala [12–16]. The label-
ling is modest in the basal ganglia, particularly faint in the caudate nucleus and 
putamen of human and subhuman primates except in the striosomes [12, 14–16]. 
The distribution has been confirmed using in situ hybridization [16, 17]. The ana-
tomical description of 5-HT2A receptors in the brain has been confirmed in living 
human brains in PET studies, using various radiolabelled compounds [18, 19]. 
5-HT2A receptors are also expressed in peripheral tissues, including platelets, stom-
ach, and gut, on smooth muscle cells [20].

The use of antibodies directed against 5-HT2A receptors or in situ hybridization 
permitted to identify the presence of the receptor on pyramidal cells and on inter-
neurons in layer V of the cortex [21]. They primarily mediate excitation in both 
neuronal types [22, 23]. In the basal ganglia, they would be expressed by striatoni-
gral GABAergic neurons, some cholinergic interneurons, and some DA neurons in 
the ventral tegmental area and substantia nigra pars compacta [24, 25]. The demon-
stration that 5-HT2A receptors are present presynaptically on striatal DA terminals is 
a matter of debate. In the hippocampus, 5-HT2A receptors are expressed and concen-
trated in the apical dendrites of the pyramidal cells [26]. Moreover strong evidence 
suggests that presynaptic 5-HT2A receptors at thalamocortical synapses play an 
essential role in associative learning [27].

Pharmacological Analysis in Favour of a Physiological Role for the Constitutive Activity…
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5-HT2A receptors have been implicated in the actions of hallucinogenic drugs [20, 
28, 29] and in cognitive function [21, 30–32]. Historically, this involvement gave 
support to a role of 5-HT and 5-HT receptors in psychosis and schizophrenia [33], 
and this hypothesis has become tangible over the years [34–36]. Meltzer et al. [37] 
proposed that the therapeutic benefit of atypical antipsychotic drugs compared to 
typical antipsychotics for treating positive and negative symptoms of schizophrenia 
was due to a higher ratio affinity to 5-HT2A receptors as opposed to dopamine (DA) 
D2 receptors [37]. To date, the pharmacology of 5-HT2A receptors could result in 
treatments of various neuropsychiatric diseases, including schizophrenia [38], drug 
abuse [39], depression [40], anxiety [41] and psychosis in Parkinson’s disease [42].

 Constitutive Activity of 5-HT2A Receptors: Pharmacology 
and In Vitro Consideration

 Constitutive Activity and the Inverse Agonists

The constitutive activity of seven-transmembrane receptors is well characterized in 
heterologous recombinant systems in vitro [8, 9, 43–47]. It corresponds to the ability of 
a given receptor to spontaneously activate and regulate cellular signaling systems in the 
absence of occupancy by a ligand. This property has been considered as an artificial 
property, as it depends on the density of the receptor expressed at the cell surface and 
the total absence of the endogenous ligand, two conditions that can be easily controlled 
in vitro [9, 48]. A large number of seven-transmembrane receptors exhibit constitutive 
activity in vitro, and there is often a strong and sometimes linear relationship between 
the magnitude of the constitutive activity of a given receptor and its expression in vari-
ous heterologous recombinant systems in vitro [3]. The constitutive activity is also 
dependent on the quantities of G-proteins or other interacting proteins expressed in 
these cells, and this is another parameter that can be managed in vitro.

The constitutive activity of a receptor is intimately linked to the notion of “inverse 
agonism”. While agonists were still able to trigger intracellular systems transduc-
tion pathways in a situation where a given receptor presumably displayed a consti-
tutive activity, other drugs that were considered antagonists were able to silence the 
constitutive activity of a receptor in vitro (Fig. 1). Logically, these drugs were called 
“inverse agonist”. These drugs are the solely, direct pharmacological tool that can 
determine the existence of a constitutive activity in a given receptor. For several 
receptors, including the 5-HT2A receptors [10, 49], most drugs labeled “antago-
nists”, such as ritanserin, behaved as inverse agonists in various heterologous 
recombinant systems in vitro (Fig. 1). As a classical pharmacological response, the 
effect of an inverse agonist should be diminished in case of receptor occupancy by 
an antagonist. An antagonist or neutral antagonist is defined as a drug that has no 
negative or positive intrinsic activity capable of occluding the binding of both the 
agonist and the inverse agonist, thereby preventing their intracellular effects (Fig. 1).

P. De Deurwaerdère et al.
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In searching for the physiological or pathophysiological existence of a constitutive 
activity of a given receptor, the neutral antagonist that is selective for this receptor 
is probably the most precious of the pharmacological tools. Indeed, it determines 
whether a pharmacological response attributed to an agonist or an inverse agonist is 
dependent on the receptor itself. Most of the time, neutral antagonists are rare [46]. 
In addition to the functional attribution of full agonists, partial agonists, neutral 
antagonists, partial inverse agonists and full inverse agonists toward one intracellu-
lar signaling system, it is now accepted that several G-Protein Coupled Receptors 
(GPCR) may couple various intracellular signaling pathways via the interaction 
with different G proteins or other G protein-independent pathways [45]. Some ago-
nists are more capable of stimulating one signaling pathway than others. This “bias 
agonism” corresponds to “agonist-directed trafficking of receptor stimulus” or 
“functional agonist selectivity” [44]. This property, which is always directly 
addressed in vitro, would illustrate the ability of the receptor to adopt different con-
formations. It implies that the active form of a receptor, classically termed R*, has 
several active forms due to isomerization, each of these active forms being related 
to one specific signaling pathway.

The property of several receptors to trigger different intracellular systems relo-
cates in most cases the neutral antagonist to a “protean” ligand, a drug that behaves 

Fig. 1 Constitutive activity of 5-HT2A receptors. Representative concentration response experi-
ments for the human 5-HT2A receptor. The y-axis is the percentage of response on phosphatidyl 
inositol production defined as Full Agonist Response (5-HT) or Full Inverse Agonist Response 
(ritanserin); the x-axis is the negative logarithm of drug concentration. The curve with the dashed 
line reports the putative effect of a neutral antagonist such as we could expect from d- bromolysergic 
acid diethylamide (BOL). EC50 values (mean and standard deviation) are 29 ± 12 nM for 5-HT 
and 0.67 ± 0.3 nM for ritanserin. Adapted from [10]

Pharmacological Analysis in Favour of a Physiological Role for the Constitutive Activity…
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differently toward diverse signaling pathways [46]. Several drugs defined as antago-
nists displayed either weak agonist activity, no activity, or inverse agonist activity, 
depending on the signaling system considered. This has been nicely illustrated in 
terms of the selective ligands for the 5-HT2C receptor or the H3 receptor [1, 50, 51]. 
The pharmacological properties of the H3 ligands are tissue-dependent and species- 
dependent [50]. Thus, a drug behaving as a neutral antagonist in one system might 
behave as weak agonist or inverse agonist in another one. This is a major challenge 
when producing selective pharmacological compounds in translational research.

To summarize, the pharmacological properties of drugs have to be determined 
and their selectivity established in heterologous recombinant systems in vitro. This 
would be indicative of their behavior with respect to one or several signaling path-
ways; however, it would not necessarily correspond to definite proof of their phar-
macological properties in living organisms.

 Constitutive Activity of 5-HT2A Receptors In Vitro

The 5-HT2A receptor is coupled to G-protein and stimulates phosphoinositide- 
specific phospholipase C (PLC) with a consequent increase in inositol triphosphate 
(IP) [5, 52, 53] (Fig. 2). Most data obtained in heterologous recombinant systems in 
vitro regarding 5-HT2A receptors were conducted by measuring IP hydrolysis. The 
ability of 5-HT2A receptor to spontaneously activate PLC is extremely low in vitro 

Fig. 2 Some cellular 
partnerships of 5-HT2A 
receptors. It shows the 
main intracellular signaling 
pathways associated with 
5-HT2A receptor 
transduction, the 
phospholipase C pathway 
being presumably the most 
important. It can trigger 
heterogeneous responses in 
different intracellular 
pathways. IP inositol 
triphosphate, AA 
arachidonic acid, PLC 
phospholipase C, PLA2 
phospholipase A2

P. De Deurwaerdère et al.
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[54, 55]. It is about 10 times lower compared to the 5-HT2C receptor [55, 56]. 
Constitutive activity of 5-HT2A receptors can be obtained either by mutation [29, 54, 
56, 57] or by overexpressing G proteins [10]. Constitutive 5-HT2A receptor activity 
can be amplified using specific receptor selection and amplification technology 
(R-SAT) assays [10, 29].

This low agonist-independent activity of native 5-HT2A receptors in vitro has two 
consequences. First, the pharmacological profile of various tools is not well defined 
because in some cases, the spontaneous activity of the native 5-HT2A receptors is 
very low [54]. In case of basal activity obtained by mutated 5-HT2A receptors and/
or specific assays as mentioned above, drugs such as ritanserin, ketanserin, M100907 
and many atypical antipsychotic drugs, behaved as inverse agonists [10, 54]. 
Ritanserin is a full 5-HT2A receptor inverse agonist and was considered as the 
 reference compound for this pharmacological class [10] (Fig. 1). The second conse-
quence is that it is difficult to imagine that 5-HT2A receptors, with this low propensity 
to spontaneously activate the PLC signaling pathway in vitro, may display a consti-
tutive activity in vivo.

It is noteworthy that the 5-HT2A receptor has been shown to activate phospholi-
pase D (PLD) and phospholipase A2 (PLA2) by interacting with additional 
G-proteins (Fig. 2). The 5-HT2A receptor activation closes potassium channels, pro-
ducing neuronal depolarization [22, 58]. It also interacts with β-arrestin in vivo, but 
this interaction seems different in HEK-293 cells [59]. This is an important consid-
eration because it could regulate the density of 5-HT2A receptors at the cell surface 
and could directly affect the desensitization process induced by agonists [59, 60]. 
The interaction of GPCR with PSD-95/Disc Large/Zona Occludens-1 (PDZ) 
domain containing proteins are involved in cell specific functions such as signaling 
and trafficking [61]. It has been demonstrated that the PDZ protein, synapse- 
associated protein 97 (SAP97), interacts with both 5-HT2A and 5-HT2C receptors 
[62]. This interaction antagonizes the endocytosis of 5-HT2A receptors [63]. Another 
PDZ protein PDZK1, alternatively called Na(+)/H(+) exchange regulatory cofactor 
3 (NHERF3), interacts with 5HT2A receptor and induces suppression of 5-HT2A 
receptor internalization. Second generation of antipsychotics downregulate 5-HT2A 
receptor-mediated signaling. Thus, the impairment of the interaction of PDZ domain 
containing proteins with 5-HT2A receptors may result in a down-regulation of 
5-HT2A receptors surface expression associated with decreased 5-HT2A receptor sig-
naling. The cellular background in which the 5-HT2A receptor is expressed appears 
to determine the regulation properties of the receptor. Depending on the cell system, 
this can lead to opposite consequences of 5-HT2A receptor expression after agonist 
exposure [64]. Moreover, 5-HT2A receptors form heterodimers and can be associ-
ated with glutamate mGluR2 receptors, D2 receptors, CB1 cannabinoid receptors or 
5-HT2C receptors with possible pathophysiological consequences in cognition [65–68]. 
Thus, the location of the receptor in neurons, the presence of specific proteins inter-
acting with the receptor intracellularly and on the plasmamembrane, and the locally 
available materials (G proteins/β-arrestin) are important factors that differ from 
 heterologous expression systems.

The pharmacology of 5-HT2A receptor in native tissues in vitro has always been 
different from the other 5-HT receptors [6]. There is a higher potency of agonists 
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that displace 3H-agonist (usually DOI) binding compared to 3H-antagonists (usually 
ketanserin). Conversely, some compounds like d-lysergic acid diethylamide (LSD), 
which can display weak partial agonist activity, and several antagonists are equipo-
tent in displacing 5-HT2A receptor binding of 3H-agonists or 3H-antagonists [6]. This 
highlights drastic differences in the binding affinity between the inactive state, 
maintained by antagonists (inverse agonists), and the active states of the 5-HT2A 
receptor. Meanwhile, the binding of an agonist in vivo would be conditioned by the 
state of activity of 5-HT2A receptor (active versus inactive form). Combined together, 
all these data show how complex the interaction of several ligands with 5-HT2A 
receptors could be. For instance, LSD activates PLA2 instead of activating PLC or 
enhances dopamine D2 receptor protomer recognition and the signaling of D2–5- 
HT2A receptor complexes [69].

Based on these considerations, the difficulties in establishing the pharmacological 
behavior of 5-HT2A receptor ligands in heterologous cell systems are a major obsta-
cle when studying the existence of a constitutive activity of 5-HT2A receptor in vivo.

 Constitutive Activity of 5-HT2A Receptors In Vivo

The living organism implies a functional 5-HT system that maintains basal extracel-
lular levels in virtually all organs and responds to phasic stimulation. The lower 
affinity to 5-HT of 5-HT2A receptors compared to other 5-HT receptors, notably the 
5-HT2C receptors, favors the hypothesis that the 5-HT2A receptor typically mediates 
phasic responses associated with an enhancement of 5-HT extracellular levels [7]. 
In various biological functions, acute pharmacological blockade of 5-HT2A recep-
tors does not alter basal activity, implying that the receptor does not exert tonic 
controls upon neurobiological networks and organs acutely [70–72].

The doubts of the existence of constitutive activity in vivo come from studies 
with antagonists. Indeed, when various antagonists display different degrees of 
responses irrespective of changes in extracellular levels of the endogenous ligand, 
this could suggest the existence of a constitutive activity. This pattern was encoun-
tered in the conditioned eyeblink response in rabbits regarding 5-HT2A receptor 
antagonists [11].

 The Conditioned Eye Blink Response and the 5-HT2A Receptors

The conditioned eyeblink response in rabbits is classically used as a Pavlovian 
model of learning. Precisely, the rabbit’s nictitating membrane response can be con-
ditioned to the presentation of a tone stimulus. The efficacy of the conditioned 
response is compared to the effect of an unconditioned stimulus, such as an air puff 
or shock, while the rate of acquisition of the conditioned responses progressively 
increases over a week of conditioning [11, 31, 73]. The rate of acquisition of the 

P. De Deurwaerdère et al.
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conditioned eye blink responses was shown to be enhanced by some hallucinogenic 
drugs. This model is of interest when studying the effect of hallucinogenic drugs 
because their dose range to effectively produces hallucinations in humans is approx-
imately similar in the conditioned eyeblink response in rabbits [11, 74]. Various 
direct agonists at 5-HT2A receptors, including LSD (Fig. 3a), (±)-1(2,5-dimethoxy-
4-iodophenyl)-2-aminopropane hydrochloride (DOI), and d,l- 2,5-dimethoxy-4-
methylamphetamine (DOM) enhance associative learning in rabbits [11, 74]. 
Similarly, the weak agonists and 5-HT releasers, d,l-methylenedioxymethamphet-
amine (MDMA) and d,l- methylenedioxyamphetamine (MDA) also increased the 
rate of acquisition of the conditioned response [11, 76, 77]. Conversely, the non-
hallucinogenic drug lisuride, which has a strong affinity for 5-HT2A receptors but 
induces cortical effects that are not produced by LSD (Table 1) [92], did not modify 
the conditioned response [74]. Nevertheless, the effects of hallucinogenic drugs are 
possibly related to the activation of 5-HT2A receptors because ritanserin blocked the 
facilitatory effects of LSD [74] (Fig. 3a).

While some 5-HT2A receptor blocking agents did not individually alter the acqui-
sition of the conditioned eyeblink response (BOL, ketanserin, LY53,857), others, 
like ritanserin, retarded the acquisition of the response by themselves [73, 75, 93] 
(Fig.  3b). This was a surprising result, and the authors further characterized the 
negative efficacy of these drugs. Of note, both ketanserin and ritanserin behaved as 
inverse agonists in R-SAT assays in vitro [10, 54], while in the conditioned eye 
blink response, ritanserin behaved as an inverse agonist and ketanserin as a neutral 
antagonist. Since the eye blink response is an integrative and complex response, it 
is modulated by numerous neurotransmitter systems and receptors [94, 95]. The 
selectivity of the 5-HT2 receptor compounds that were used has to be addressed. 
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Fig. 3 (a) Antagonism by ritanserin (1 μmol/kg) of the enhancement of CR acquisition produced 
by LSD (0.030 μmol/kg). Ritanserin was injected subcutaneously 60  min prior, and LSD was 
injected intravenously 20 min prior to each acquisition session. Acquisition of the nictitating mem-
brane response was measured during the pairing of a tone conditioned stimulus and air puff uncon-
ditioned stimulus. Data are taken from Welsh et al. [74]. (b) Antagonism by BOL (5.8 μmol/kg) of 
the retardant effects of mianserin (10 μmol/kg) on acquisition of the nictitating membrane response. 
Mianserin was injected 1 h and BOL 20 min prior to each conditioning session by use of the pair-
ing of a tone CS and air puff US. All injections were subcutaneous. Data are taken from [75]
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Table 1 reports the affinity of the drugs that have been tested so far in the conditioned 
eyeblink response acquisition as well as in other models of learning that are dis-
cussed below. None of these drugs, except MDL11,939, M100907 and to some 
extent, SB200,646, are selective for 5-HT2A and/or 5-HT2C receptors (see also [96]). 
In particular, the agonists have poor selectivity with the possible exception of DOI, 
which preferentially binds 5-HT2 receptors [6, 78, 97].

 Role of Endogenous 5-HT in the Conditioned Eye Blink 
Response

One important criterion to establish when determining the existence of a constitu-
tive activity of 5-HT2A receptors in the conditioned eye blink response is to under-
stand the putative role of endogenous 5-HT in this response. Based on the effects of 
the direct and indirect agonists, it seems that endogenous 5-HT does not play a role 
in this learning task. LSD and DOI are compounds known to inhibit 5-HT neuron 
firing rate and 5-HT release in various rat brain areas [98, 99]. On the contrary, 
MDMA and MDA enhance extracellular levels of 5-HT by reversing the function of 
the 5-HT transporter (SERT) [100], raising questions about a putative role of endog-
enous 5-HT in this response. Lisuride is also known to reduce 5-HT nerve activity 
[101], and the fact that this compound did not modify the conditioned eyeblink 
response suggests that the decrease in 5-HT extracellular levels is not a prerequisite 
in the action of LSD or DOI. Similarly, the 5-HT1A agonist, 8-OHDPAT, which is 
known to reduce 5-HT neuron discharge and 5-HT extracellular levels [101], did not 
alter the rate of acquisition of the conditioned response [74]. Finally, destruction of 
5-HT neurons by 5,7-dihydroxytryptamin (5,7-DHT) reduced 5-HT tissue content 
by more than 85% in the hippocampus and the cortex without affecting 5-HT2A 
receptor density, the conditioned eye blink response per se, or the facilitatory effect 
of LSD on learning [94]. It appears that the endogenous 5-HT tone does not impact 
this learning response.

These data suggest that the efficacy of the ligands on the behavioral response is 
related to their peculiar interaction at 5-HT2A receptors and/or other targets (Table 1). 
Consequently, the efficacy of some 5-HT2A receptor blocking agents could be 
related to their specific interaction at the 5-HT2A receptor rather than the blockade 
of the 5-HT endogenous tone on 5-HT2A receptors during learning.

 Direct Pharmacological Evidence for the Constitutive Activity 
of 5-HT2A Receptor in the Conditioned Eyeblink Response

The retardation of the acquisition of the conditioned response has been observed 
with ritanserin, mianserin, MDL11,939, and pizotifen [11]. In line with the possibil-
ity that these effects are related to their direct interaction at 5-HT2A receptors, the 
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magnitude of the effects differs between these 5-HT2A receptor ligands, ritanserin 
proving to be the most effective compound. In most cases, the effects of these agents 
are unique to the conditioned responses, as they do not alter basal response or mod-
ify the conditioned stimulus. The conditioned response differed with respect to the 
intensity of the conditioned stimulus, with a maximal response obtained at 80 db. 
Interestingly, the effects of 5-HT2A receptor blocking agents varied according to the 
intensity. Ritanserin reduced the conditioned responses at several intensities, rang-
ing from 70 db to 90 db, and MDL11,939 and LY53,857, the latter being normally 
ineffective, attenuated the conditioned response for 70 db and 80 db intensities [73]. 
On the one hand, these findings bring awareness of the complexity of the effects 
elicited by 5-HT2A receptor blocking agents in the conditioned eye blink response. 
Indeed, the results obtained with LY53,857 could be interpreted as the very weak 
5-HT2A receptor inverse agonist property of this compound or attributed to the 
involvement of other 5-HT receptors (Table 1) at specific intensities of the condi-
tioned stimulus. On the other hand, these findings are essentials as they showed that 
the conditioned eye blink response is phasic in nature. They correspond to the 
enhanced and attenuated effects on the rate of acquisition of the conditioned 
response by agonists and inverse agonists respectively as a function of the intensity 
of the stimulus [73].

The last arguments come from the demonstration that d-bromolysergic acid 
diethylamide (BOL), ineffective by itself, reduced the retardation of the acquisition 
induced by mianserin [75, 93] (Fig. 3b). The obstruction of 5-HT2A receptors by 
BOL prevented the binding of the inverse agonist mianserin to 5-HT2A receptors, 
thereby preventing its attenuating effect on learning. In addition, the lesion of 5-HT 
neurons by 5,7-DHT did not alter the retardation of acquisition of the conditioned 
response induced by MDL11,939 [94].

The authors have further demonstrated that the chronic administration of the 
5-HT2A receptor blocking agent, MDL11,939, enhanced the binding of 5-HT2A 
receptors in the cortex and the hippocampus. Such an effect is expected from an 
inverse agonist [102]. The enhancement of 5-HT2A receptor expression was also 
associated with a higher responsiveness of DOI in eliciting head bobs and an 
enhancement of learning [103, 104]. Conversely, the administration of agonists 
reduced the binding of 5-HT2A receptors [103, 104].

 The Pharmacological Limits: An Open Discussion

This impressive set of experiments in rabbits justifies the proposal that 5-HT2A 
receptors adopt a constitutive activity in the conditioned eye blink responses. 
Nonetheless, the proposal is extremely fragile, as several interpretations do not 
resist to a deeper pharmacological analysis. The fact that 5-HT2A receptor blocking 
agents differ in their ability to alter learning could be related to their non-selective 
pharmacological profile (Table  1). Among the drugs that inhibited the learning 
tasks, all, except MDL11,939, displayed a substantial affinity toward 5-HT2C 
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receptors at least (Table 1). The contribution of 5-HT2C receptors in this task has not 
been directly addressed, and their interference with the task is unknown. In fact, 
ketanserin has been described as an inverse agonist in vitro and could behave like 
this in other models in vivo (see below). Moreover, the reversal of the effects of 
mianserin by BOL is inconclusive because both drugs are really non-selective, BOL 
having been used as a neutral 5-HT2C receptor antagonist to suggest the existence of 
the constitutive activity of native 5-HT2C receptors in choroid plexus [105]. Because 
of its non-selective profile, BOL could shut down 5-HT2A receptor-dependent mech-
anisms via indirect actions on various receptors. Indeed, BOL displays a similar 
binding profile on DA receptors comparable to LSD. Furthermore, BOL decreased 
the binding of 5-HT2A receptors upon its chronic administration in rabbits, behaving 
like the other agonists [104], and would display an inverse agonist profile on cortical 
H2 receptors [91]. BOL is really difficult to manage and should not be considered 
to determine whether a pharmacological response of a ligand depends on 5-HT2A 
receptor stimulation. As far as we know in these studies in rabbits, key experiments 
to propose the influence of the constitutive activity of 5-HT2A receptors in learning 
are lacking. Notably, some experiments should have addressed the ability of ketan-
serin (considered here as a neutral antagonist) to reverse the attenuating learning 
effects of MDL11,939 and ritanserin or the enhancing learning effects of DOI.

 MDL11,939 Under the Spotlight

Overall, the stronger arguments that support the existence of the constitutive activ-
ity of 5-HT2A receptors in the conditioned eye blink response are (1) the retardation 
of learning induced by MDL11,939 and (2) the persistence of MDL11,939’s effect 
in 5-HT neuron-lesioned rabbits. MDL11,939 has been less used compared to the 
selective 5-HT2A receptor antagonist, M100907, and one may wonder if this drug 
has been shown to impair learning in other paradigms. In a paradigm of light- 
induced locomotor activity, a model to study sensory-motor activation, ritanserin 
reduced locomotor activity whereas MDL11,939 or the 5-HT2C receptor antagonist 
SER082 were inactive [106]. Interestingly, in a conditioned defeat paradigm, cor-
responding to a learned, social defeat model in Syrian hamsters, MDL11,939 dose- 
dependently impaired the acquisition of the conditioned defeat but not its expression 
[107]. Furthermore, focal injection of MDL11,939 into the basolateral nucleus of 
the amygdala dose-dependently impaired acquisition of the conditioned defeat 
response. In contrast, the 5-HT2A receptor agonist, TCB-2, had an opposite effect 
[108]. In a paradigm of trace fear conditioning memory in C57BL/6 J mice, sys-
temic administration of one dose of MDL11,939 (0.5 mg/kg, i.p.) delayed the acqui-
sition of extinction of fear memory [109]. In the context of memory retrieval in a 
paradigm of the object recognition task in rats, Bekinschtein et al. [110] reported 
that focal administration of one dose of MDL11,939 into the medial prefrontal 
 cortex affected retrieval of an object in a spontaneous novelty preference task of 
context memory, while sparing single-item recognition memory [110].
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While none of these studies addressed the possibility that MDL11,939’s effects were 
due to the silencing of constitutive activity of 5-HT2A receptors, all these studies report 
attenuating role of 5-HT2A receptor blockade in the learning process. As mentioned 
above, chronic administration of MDL11,939 enhanced 5-HT2A receptor binding in rab-
bits, but this effect has not been reported in mice [111]. Thus, the inverse agonist prop-
erty of MDL11,939 would be more specific to rabbits than to other rodent species.

 Constitutive Activity of 5-HT2A Receptors in Other Models 
of Learning

 The Conditioned Avoidance Response

Conditioned avoidance response (CAR) is also a classical Pavlovian response 
mostly studied in rats. In addition to its importance in learning, this paradigm is also 
used to evaluate the potential antipsychotic activity of a drug [112]. In one of his 
reviews, Harvey [11] reported the parallel between the results obtained in the CAR 
and the eyeblink response in rabbits [11]. The CAR was enhanced by non-selective 
agonists that stimulated 5-HT2A receptors, unaltered by the non-selective blocking 
agents, spiperone, ketanserin, cinanserin and mianserin, and impaired by the non- 
selective blocking agents, ritanserin or cyproheptadine. Nonetheless, it has also 
been reported that the CAR was unaltered by mianserin, ritanserin and the selective 
5-HT2A receptor blocking agent, M100907 [113–116]. Mianserin, ritanserin, and 
M100907 potentiated the disrupting effects of the DA antagonist, raclopride, in this 
paradigm [114–116]. M100907 also potentiated the disrupting effect of the DA 
antagonist, haloperidol [113]. The 5-HT2A antagonists in these studies potentiated 
the effects of subthreshold doses of the DA antagonists in the CAR.

It appears that the results obtained in the CAR diverge from the responses stud-
ied in rabbits on the 5-HT system. In fact, 8-OHDPAT impaired the acquisition of 
the response [117], suggesting the participation of the endogenous 5-HT tone in this 
response. In addition, there is no clear evidence that 5-HT2 receptor inverse agonists 
disrupt the responses on their own in this model. Finally, this learning task is also 
sensitive to 5-HT2C receptors since the selective 5-HT2C agonists, WAY 163909 or 
CP809,101, disrupted the acquisition of the conditioned response [96, 118, 119].

 The Autoshaping Learning Task

The autoshaping learning task is an operant system that produces a conditioned 
response in rodents. It combines the procedures of pavlovian conditioning consist-
ing of the pairing of a light lever with the delivery of food. It also combines instru-
mental conditioning, which corresponds to the delivery of food upon pressing a 
lever [88, 120]. The results of this task are very interesting although extremely 
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Fig. 4 (a) Effects of post-training acute injection (ip) of ketanserin or DOI on conditioned response 
of autoshaping task in fasted animals. Data are plotted according to percentage of conditioned 
responses. All rats received the injection immediately after the first training session. Values represent 
the mean ± S.E.M. of eight different animals. *p < 0.05 versus vehicle-injected controls Dunnett’s 
test. This has been adapted from the study of [121]. (b) The effect of acute posttraining administration 
(i.p.) of SB200,646 (2 mg/kg) or MDL100907 (1 mg/kg) on the responses induced by DOI (0.1 mg/
kg) and Ketanserin (0.1 mg/kg) in an autoshaping learning task in fasted animals. Data are plotted as 
percentage of conditioned responses. All rats received an injection immediately after the first training 
session, and data correspond to a session carried out 24 h later. Top bar values represent the mean, 
and vertical lines denote the S.E.M. of mean of eight different animals. *p < 0:05 versus vehicle-
treated rats + p < 0.05 versus initial drug treatments. Data are adapted from the study of [88]
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confusing regarding the role of the 5-HT system. The non-selective 5-HT1B/2A/2B/2C 
agonists, mCPP and TFMPP, as well as the non-selective 5-HT2C/2A/D2 receptor 
antagonists, mesulergine (0.4  mg/kg) and 1-naphtyl piperazine (1-NP), impaired 
memory consolidation in a dose-dependent manner. Conversely, DOI (0.01, 0.1 mg/
kg) dose-dependently improved memory consolidation (Fig.  4a). Strikingly, low 
doses of ketanserin (1, 10 and 100 μg/kg) also enhanced memory consolidation with 
the maximal effect almost obtained with the lower dose (Fig. 4a). Ritanserin (0.1, 0.2 
and 0.4 mg/kg) induced an inverted U-shape curve with a significant enhancement of 
learning observed at 0.2 mg/kg only [121, 122]. Interestingly, three drugs, the most 
selective in the panel, did not modify memory consolidation: the selective 5-HT2A 
receptor antagonist, M100907, and the preferential 5-HT2B/2C receptor antagonists, 
SB200,646 and LY215,840. It is also important to note that monoamine depletion 
induced by two daily injections of parachloamphetamine over 10 days or 5-HT deple-
tion induced by parachlorophenylalanine did not alter task performance [88, 123].

This complex pharmacological picture could hide the involvement of 5-HT2C and 
5-HT2A receptors in the consolidation of memory along with the involvement of 
5-HT1B/1D autoreceptors, which were shown to participate in the effect of TFMPP 
[121]. First of all, SB200,646 and LY215,840 blocked the disrupting effects of both 
mCPP and mesulergine and attenuated those induced by TFMPP [88]. These find-
ings strongly suggest that 5-HT2C receptors were involved in the memory impair-
ment induced by both the agonists and the antagonist. Mesulergine has been shown 
to behave as an inverse agonist in vitro and in vivo [2, 45, 124] and its effects could 
be related to the blockade of a constitutive activity of 5-HT2C receptors. Recently, it 
has been reported in a similar task that drugs displaying high inverse agonist prop-
erty at 5-HT2C receptors including SB 206553 and mianserin were more potent to 
inhibit memory consolidation compared to other ligands [125]. Furthermore, a pos-
sible constitutive activity of endogenous 5-HT2C receptors has been identified in 
vivo in the control of subcortical DA release as well as in the control of orofacial 
activity and muscle spasms consequent to spinal cord injury in rats [2, 51, 126–128]. 
Ritanserin can also behave as a 5-HT2C receptor inverse agonist, and this property 
could participate in its curious dose-dependent effect with respect to that observed 
with ketanserin. The pharmacological concern in the memory experiments is the 
dosage of mCPP (10 mg/kg), TFMPP (10 mg/kg), and mesulergine (0.4 mg/kg) to 
impair memory. At these doses, the piperazines mCPP and TFMPP might also act 
as 5-HT releasers [129], in addition to numerous other potential targets, including 
5-HT2A receptors, while mesulergine could already block D2 receptors at this dose 
[124] and 5-HT2A receptors, consequently (Table 1, see below). As a matter of fact, 
M100907 (1 mg/kg) did reduce the attenuation of TFMPP, mCPP, and mesulergine 
on memory consolidation. M100907 even unmasked an excitatory effect of mCPP 
on learning [121]. This could suggest that M100907 loses its 5-HT2A receptor selec-
tivity toward 5-HT2B/2C receptors at this dose. Nonetheless, these results can suggest 
that the inhibitory responses of TFMPP, mCPP, and mesulergine are related to their 
direct action at 5-HT2A receptors or their combined action at both 5-HT2A and 
5-HT2C receptors.
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In line with the latter possibility, the author reported that M100,907 blocked the 
excitatory effect induced by DOI and ketanserin on memory consolidation. 
Conversely, SB200,646 and LY215,840 were unable to alter the learning effects of 
DOI and ketanserin (Fig. 4b) [88]. These results indicated that 5-HT2A receptors, but 
not 5-HT2B/2C receptors were involved in the responses induced by DOI and ketan-
serin (Fig. 4b). Furthermore, it strongly suggested that the ability of SB200,646 and 
LY215,840 to reverse the inhibitory effects of mCPP, TFMPP and mesulergine was 
preferentially due to their 5-HT2B/2C antagonistic properties.

These data are compatible with the role of 5-HT2A receptors in an autoshaping 
task, involving a constitutive activity of 5-HT2A receptors. Ketanserin and ritanserin 
would act as inverse agonists at 5-HT2A receptors and should prevent the enhancing 
effects of DOI.  The effects of DOI were blocked by ritanserin (0.1  mg/kg) and 
mesulergine (0.2 mg/kg). Nonetheless, ketanserin (1 μg/kg) did not block the effect 
of DOI (0.01  mg/kg). Rather, the enhancing effects of both compounds were 
 additive [122]. It is regrettable that the lowest dose of ketanserin was used in this 
interaction. This low dose of ketanserin, as did higher doses of ritanserin or mesul-
ergine, was sufficient to impair the effects of the weak partial 5-HT2A receptor ago-
nists, such as mCPP, but was probably insufficient to fully occlude 5-HT2A receptors 
to alter the effect of DOI.

Apart the pharmacological weaknesses underlined above, this set of experiments 
and studies support the existence of a constitutive activity of 5-HT2A receptors in the 
autoshaping learning task as well. It also reveals an interaction between several 
5-HT receptors and 5-HT2A-5-HT2C receptors, which participate in the effects of 
non-selective compounds.

The finding that the agonist, DOI, and the inverse agonist, ketanserin, similarly 
concur to enhance memory consolidation could be puzzling, as they act as inverses 
in the function of 5-HT2A receptors. Regardless, it is possibly related to the exis-
tence of at least two populations of 5-HT2A receptors that exert opposite effects on 
learning, one displaying a constitutive activity. In fact, this is likely the situation of 
5-HT2C receptors. The injection of 5-HT2C agonists and inverse agonists promotes 
purposeless oral movements in rats, the effects of both pharmacological classes 
being suppressed by a 5-HT2C receptor antagonist [128]. The origin of the effects 
elicited by 5-HT2C receptor agonists and inverse agonists is unlikely related to the 
same site because only the effects of the agonists are sensitive to a lesion of DA 
neurons [128]. Even when the effects triggered by 5-HT2C receptor agonists and 
inverse agonists are opposite in vivo, as those reported in the control of subcortical 
DA release [51], it refers to distinct populations of 5-HT2C receptors [2, 96, 130]. 
Regarding 5-HT2A receptors, they are expressed by pyramidal cells as well as by 
interneurons in the cortex and in the hippocampus. The autoshaping learning task 
also involves procedural learning, containing corticostriatal mechanisms [120]. 
Thus, it is possible that multiple 5-HT2A receptor-dependent regulations participate 
in memory consolidation.

P. De Deurwaerdère et al.



21

 The Physiological Meaning of the Constitutive Activity 
of 5-HT2A Receptors

Despite some pharmacological weaknesses, the experiments in rabbits and rats pre-
sented above bring up arguments to suggest that the constitutive activity of 5-HT2A 
receptors participates in some learning abilities. Physiologically, it is likely that 
such an activity precedes and convoys an increase in 5-HT tone in order to facilitate 
learning. This activity would represent one aspect of the phasic influence of a 
5-HT2A receptor upon neurobiological networks, i.e., the transient presentation of 
the high affinity state of 5-HT2A receptors imposed by a change in activity of the cell 
expressing the receptor. In subcortical areas, 5-HT2A receptors have been shown to 
participate in a state-dependent facilitatory control of striatal DA release [131]. A 
state-dependent control means that some factors, which are not clearly identified, 
trigger the facilitatory control exerted by 5-HT2A receptors; this idea has been 
clearly demonstrated in the mechanism of action of MDMA.  At that time, the 
authors thought that the increase in 5-HT induced by MDMA played a major role in 
this effect [7, 72, 132–134]. Although it is true, it has been reported that amphet-
amine, which poorly impacts 5-HT release, and haloperidol, which tends to decrease 
5-HT release, triggered a similar 5-HT2A receptor state-dependent facilitatory on 
subcortical DA release [135, 136]. It is likely that this control still depends on 
endogenous 5-HT because the DA effects of amphetamine and haloperidol were 
reduced by 5-HT1A agonists in a manner that is comparable to 5-HT2A antagonists 
[136–138]. Nevertheless, it suggests that the phasic influence of 5-HT2A receptors is 
related to a specific receptor state rather than the endogenous tone of 5-HT. In this 
context, the constitutive activity would represent a phasic and strong activation of 
the 5-HT2A receptor, impacting the cell itself even before the phasic and expected 
enhancement of 5-HT release. In paradigms where 5-HT release does not play a 
major role, the constitutive activity of 5-HT2A receptors could be detected by inverse 
agonists and not antagonists.

We do not have clear evidence that such a mechanism could occur in some neu-
ropsychiatric diseases. Although some antipsychotics are 5-HT2A receptor inverse 
agonists at 5-HT2A receptors, it does not imply that their action is related to silenc-
ing the constitutive activity of 5-HT2A receptors. It is interesting to note that 5-HT2A 
receptors could play a role in psychosis induced by L-DOPA treatments in 
Parkinson’s disease. Primavanserin (ACP-103) is a 5-HT2A receptor inverse agonist 
that attenuated L-DOPA-induced psychosis in patients in phase III trials [42, 139, 
140]. L-DOPA tends to acutely and chronically decrease 5-HT extracellular levels 
in various rat brain regions, including the cortex and the hippocampus [141, 142], 
suggesting that the activation of 5-HT2A receptors is not associated with an increase 
in 5-HT release. It is postulated that L-DOPA exerts various effects, including 
effects on DA in these regions, triggering a high affinity state of 5-HT2A receptors in 
frontocortical and/or hippocampal regions. Additional data are warranted to deter-
mine the extent to which the constitutive activity of 5-HT2A receptors is a risk in the 
development of L-DOPA-induced psychosis.
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 Conclusion

We have offered a thorough pharmacological examination of the data underscoring 
the existence of the constitutive activity of 5-HT2A receptors in vivo, mostly in learn-
ing tasks. While the data are few, they give convincing evidence that the phenome-
non exists. The link between in vitro data, to determine the pharmacological profile 
of 5-HT2A agents, and in vivo data is particularly difficult in the case of 5-HT2A 
receptors due to the weak constitutive activity of native 5-HT2A receptors in vitro. 
The data in vivo indicate that the phasic influence of 5-HT2A receptors does not 
necessarily depend on an increase in endogenous 5-HT release. The constitutive 
activity of 5-HT2A receptors could correspond to a possible lag time between the 
activation of the 5-HT2A receptor and the binding of 5-HT in vivo. In any case, the 
canonical definition of the constitutive activity of GPCR is based on intracellular 
signaling pathways in vitro and implies that intracellular signaling pathways are 
oppositely modulated by agonists and inverse agonists at a given GPCR.  This 
canonical definition is not clearly met in vivo due to the existence of several popula-
tions of receptors possibly interfering with the parameter. Additional data are war-
ranted to determine whether the constitutive activity of 5-HT2A receptor may 
participate in the development of neuropsychiatric disorders.
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βArrestins: Ligand-Directed Regulators 
of 5-HT2A Receptor Trafficking and Signaling 
Events

Cullen L. Schmid and Laura M. Bohn

Abstract βArrestins are scaffolding and regulatory proteins that both modify and 
mediate G protein coupled receptor responsiveness by desensitizing G protein sig-
naling pathways and facilitating receptor internalization and alternate downstream 
signaling cascades. This chapter details the studies that demonstrate a role for 
βarrestin2  in regulating 5-HT2A receptor responsiveness in vitro and in vivo. The 
studies presented herein demonstrate that while the 5-HT2A receptor is capable of 
being regulated through interactions with GRKs and βarrestins, interactions with 
other proteins can facilitate receptor desensitization and internalization through 
non-βarrestin-mediated mechanisms. Moreover, the pathways utilized for each of 
these events are determined by both the complement of intracellular proteins 
expressed in residence with the 5-HT2A receptor and the agonist acting at the 
receptor.

Keywords βarrestins • G protein receptor kinases • Functional selectivity • 
Internalization • G protein coupling • MAP kinase

 Classical Regulation of GPCRs by βarrestins

Both the agonist activated signaling cascades and the regulatory mechanisms that 
interact with the receptor to control the extent and duration of the response deter-
mines 5-HT2A receptor responsiveness. The canonical model of GPCR regulation 
posits that the agonist-bound receptor is regulated through its interactions with the 
serine/threonine GPCR kinases (GRKs) and the intracellular regulatory proteins, 
βarrestins (Fig. 1). Upon agonist activation, GPCRs are phosphorylated by GRKs, 
which initiate the desensitization of G protein-mediated signaling by promoting  
the recruitment of βarrestins. Once recruited, βarrestins can further inhibit G 
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protein-coupling, initiate the internalization of receptors and scaffold additional sig-
naling molecules to GPCRs, thus facilitating G protein-independent signaling cas-
cades [1].

GRKs can be divided into three main families: the visual GRKs (GRK1 and 7), 
the GRK2 subfamily of GRKs (GRK2 and 3) and the GRK4 subfamily (GRK4, 5 
and 6). The visual GRKs are mainly expressed in the retina and regulate visual 
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Fig. 1 Canonical model of GPCR regulation. (a) Agonist binding to a GPCR catalyzes the dis-
sociation of the Gα subunit from the Gβγ heterodimer, initiating downstream signaling events. (b) 
Rapidly following agonist binding to a GPCR, the receptor is phosphorylated by GRKs, followed 
by βarrestin binding. βArrestin binding to a receptor desensitizes the GPCR by preventing further 
coupling to G proteins. (c) βarrestins also facilitate GPCR internalization by acting as adaptor 
proteins between the receptor and clathrin and AP2, proteins involved in endocytosis. (d) βArrestins 
also initiate signaling cascades by scaffolding components of non-G protein-mediated cascades to 
GPCRs
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GPCRs. The GRK2 subfamily is ubiquitously expressed, while, of the GRK4 
subfamily, only GRKs 5 and 6 are ubiquitously expressed. GRK4 is highly expressed 
in the testes, with some expression in the kidneys, uterus and brain, where expres-
sion is limited to the purkinje cells of the cerebellum [2–4]. While data on the cell-
type specific expression of GRKs is limited, most mammalian cells express multiple 
isoforms of GRKs.

The phosphorylation of the agonist-bound GPCR by GRKs causes βarrestins to 
translocate to the receptor. βArrestin recruitment to, and interaction with, GPCRs 
has been visualized by confocal microscopy with fluorescently tagged βarrestins [5] 
and quantified by co-immunoprecipitation, bioluminescence/fluorescence reso-
nance energy transfer, gene reporter and enzyme fragment complementation assays 
[6–10]. There are four arrestin isoforms: the visual arrestins (arrestin1 and arres-
tin4) and the βarrestins (βarrestin1/arrestin2 and βarrestin2/arrestin3). The two 
βarrestins are expressed in almost every mammalian cell and bind to hundreds of 
different GPCRs as well as non-GPCR signaling molecules, including trafficking 
proteins, Src family kinases, MAP kinases and E3 ubiquitin ligases [11]. βarrestin1 
and βarrestin2 are very similar in terms of sequence and seem to compensate for one 
another, as evidenced by the fact that βarrestin1 and βarrestin2- knockout (KO) 
mice display no gross abnormalities [12–14]. However, there are differences 
between the two isoforms. For one, βarrestin2 has a nuclear export sequence while 
βarrestin1 does not, which results in overexpressed βarrestin1 accumulating in the 
nucleus and the cytoplasm, while βarrestin2 is localized to the cytoplasm [15]. 
Moreover, some GPCRs appear to be preferentially regulated by one or the other 
[16, 17] and there are some differences in the binding of each isoform to non-GPCR 
partners as well [18]. The differential interactions between βarrestins and their bind-
ing partners and the resulting differential functions seems to be strongly dictated by 
the cellular environment, such as the expression of a particular GRK [19].

βArrestin interactions with GPCRs serve to desensitize further signaling by steri-
cally blocking further interactions between receptors and their cognate G proteins 
(Fig. 1b) [20]. In vitro, the role of βarrestins in the desensitization of many GPCRs 
has been shown by over-expressing βarrestins, thus enhancing receptor desensitiza-
tion, or by disrupting GPCR interactions with βarrestins, thereby diminishing the 
desensitization of the signaling pathways [21–23]. For example, the over-expres-
sion of either βarrestin1 or βarrestin2 increases the desensitization of β2-adrenergic 
receptor coupling to Gαs [24]. In contrast, agonist-induced β2-adrenergic receptor 
signaling is enhanced in human embryonic kidney (HEK-293) cells in which both 
βarrestins have been silenced by small interfering RNAs (siRNA), or in mouse 
embryonic fibroblasts (MEF) generated from genetically modified mice lacking 
both βarrestins (βarr1/2-KO) [16, 25]. This negative regulatory role for βarrestins 
has also been demonstrated in  vivo through the use of mice lacking βarrestin2 
(βarr2-KO), where responses are enhanced in the absence of βarrestin2 [14].

βArrestin interactions with GPCRs also facilitate the internalization of receptors 
into intracellular vesicles (Fig. 1c). βArrestins promote GPCR internalization by 
acting as adaptors that link agonist-bound receptors to elements of clathrin-coated 
pits. Both βarrestin1 and βarrestin2 have been shown to directly interact with clath-
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rin and the β2-adaptin subunit of the adaptor protein 2 (AP2) complex [26–29]. The 
βarrestin-mediated recruitment of these proteins then targets receptors for endocy-
tosis. Interfering with GPCR/βarrestin interactions has been shown to impair ago-
nist-mediated trafficking for a number of GPCRs and in a number of different cells 
types [30]. The internalization of a GPCR then aids in the determination of recep-
tor fate, as it can direct receptors to endosomes for recycling or to lysosomes for 
degradation [31], thus implicating βarrestins in receptor resensitization and 
down-regulation.

Different GPCRs interact with βarrestins to varying degrees: some exhibit weak 
interactions which lead to their transient internalization and recycling to the plasma 
membrane (Class A GPCRs), while others display stronger interactions with 
βarrestins, due to highly conserved serine/threonine phosphorylation site clusters in 
the C-terminal tail of the receptor, and more sustained internalization into endo-
somes (Class B GPCRs) [17, 32]. Those Class B receptors which have stronger 
interactions with βarrestins promote sustained G protein signaling due to the forma-
tion of GPCR/G protein/βarrestin super-complexes [33], suggesting that in some 
instances, βarrestins can actually promote, rather than desensitize, G protein signal-
ing. For instance, a constitutively active form of βarrestin1 enhances the sustained 
G protein signaling of the Class B parathyroid hormone type 1 and vasopressin type 
2 receptors. In contrast, the constitutively active βarrestin1 enhanced the desensiti-
zation of Gαs signaling for the Class A β2-adrenergic receptor [34].

βArrestins can also mediate GPCR signaling by scaffolding elements of signal 
transduction cascades to receptors (Fig. 1d). This was first demonstrated for the 
β2-adrenergic receptor, wherein agonist stimulation was shown to recruit Src to the 
receptor, but only when βarrestin1 was also expressed [35]. Since then, βarrestins 
have been shown to be integral members of in vitro receptor signaling scaffolds for 
a number of kinases, including ERK1/2, JNK, p38 and Akt [36–38]. Moreover, by 
binding multiple components of a signaling cascade simultaneously, βarrestins can 
increase the efficiency of the signaling between successive kinases. For example, 
when expressed in COS-7 cells, βarrestin2 forms a complex with the MAP kinase 
kinase kinase Ask1, the MAP kinase kinase MKK4 and JNK3 and over-expression 
of βarrestin2 increases Ask1-dependent phosphorylation of JNK3 [39, 40]. 
Moreover, while both βarrestins and G proteins can mediate signaling through the 
same downstream effectors, the two pathways have different time-courses of acti-
vation. For example, the AT1A receptor activates ERK1/2 via both pathways: a 
rapid G protein-mediated pathway and a slower and more persistent βarrestin2-
dependent pathway [41]. βArrestin2 has also been co-immunoprecipitated out of 
mouse brain with ERK1/2, Akt, Src and JNK3 kinases [39, 42–44], demonstrating 
the formation of these complexes in  vivo. The physiological consequences of 
GPCR signaling through βarrestins has been correlated to decreased drug respon-
siveness in the βarr2-KO mice for a number of different receptors [14]. βarrestin-
mediated signaling can be modulated by other proteins that interact with a GPCR: 
in the case of the 5-HT2C receptor, calmodulin binding to the C-terminus of the 
receptor promotes recruitment of βarrestin2 and the inhibition of calmodulin 

C.L. Schmid and L.M. Bohn



35

(whether by dominant negatives, mutation of the binding site or RNA interference) 
prevents βarrestin2-mediated signaling to ERK1/2 [45].

 Functional Selectivity and βarrestin Bias

Traditionally, the conventional understanding of receptor pharmacology has been 
that an agonist fully activates all signal transduction pathways to which a GPCR is 
coupled, while partial agonists induce sub-maximal activation of these same path-
ways. Antagonists do not shift any of the responses away from basal levels, yet 
block further signaling, and inverse agonists reduce the basal activities of these 
pathways. However, these concepts of receptor pharmacology are too simple to con-
ceptualize the full range of pharmacological profiles that are experimentally 
observed. For example, agonists at a particular GPCR can display full efficacy in 
certain signaling assays, while only partially activating or having no activity at oth-
ers [46–48]. Current receptor pharmacology is based on the understanding that 
receptors can exist in multiple, ligand-specific conformational states which allow 
GPCRs to preferentially and differentially engage a subset of the multiple signaling 
pathways to which they are coupled [49, 50]. This concept that ligands differentially 

Ligand BLigand A

Effector 2 Effector 2Effector 3Effector 1

Fig. 2 Ligand directed signaling at GPCRs. Different agonists (ligand A and ligand B) acting at 
the same GPCR selectively recruit a subset of the signaling proteins (depicted by different colored 
shapes) expressed in close proximity to the receptor complex, which leads to the activation of 
downstream signaling cascades (effector 1 and effector 3). Some proteins are recruited in a con-
served manner to activate the same signaling cascades (effector 2), though the degree of activation 
of these pathways may differ between agonists (depicted by arrows of different thickness)
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activate downstream signaling pathways has been referred to as “biased agonism” 
or “functional selectivity” (Fig. 2) [51–54]. The cellular environment can also influ-
ence the signaling that occurs downstream of GPCR activation by determining the 
complement of intracellular proteins available to couple to a receptor. In this way, 
the same ligand can induce differential signaling cascades at a particular receptor 
expressed in different cell types [55]. In addition to determining the downstream 
signaling cascades that are activated, ligands can also dictate the extent and nature 
of βarrestin interactions with GPCRs. For example, the AT1A receptor agonist Sar1, 
Ile4, Ile8-AngII selectively stimulates βarrestin2-mediated signaling pathways with-
out inducing any detectable coupling to G proteins [48], thus being characterized as 
a ligand that is biased towards βarrestin2.

 βarrestin2-Mediated Regulation of the 5-HT2A Receptor

 βArrestin2 Interactions with the 5-HT2A Receptor

The Class A 5-HT2A receptor is co-expressed and capable of interacting with 
βarrestins. Biochemical studies have demonstrated that this interaction can take 
place: purified βarrestin1 and βarrestin2 interact with a fusion protein that encodes 
the third intracellular loop of the receptor [56]. Moreover, the receptor and βarrestins 
are co-expressed endogenously, as demonstrated by dual label fluorescence confo-
cal microscopy of pyramidal neurons from the rat frontal cortex [56]. These studies 
indicate that the regulatory protein may play a major role in regulating 5-HT2A 
receptor responsiveness to ligands; however, the aforementioned study identified 
some neurons in which the 5-HT2A receptor was expressed in the absence of 
βarrestins, suggesting that regulation of the 5-HT2A receptor may not always follow 
the canonical model.

The 5-HT2A receptor is among those GPCRs that can interact with both βarrestins. 
This interaction has been confirmed by co-immunopreciptation and confocal 
microscopy in HEK-293 cells following serotonin treatment [57–60] and quantified 
by the DiscoveRx PathHunter enzyme complementation assay in U2OS cells [60]. 
These qualitative and quantitative studies have confirmed that serotonin induces 
robust translocation of βarrestin2 to the 5-HT2A receptor in vitro. In contrast, confo-
cal studies suggest that serotonin only induces marginal translocation of βarrestin1 
to the plasma membrane of HEK-293 cells expressing the 5-HT2A receptor [57]. 
This could indicate that the 5-HT2A receptor has a higher affinity for βarrestin2 than 
βarrestin1, although the assay is neither ratiometric nor quantitative and may simply 
reflect properties of the transfected βarrestin constructs. In addition to serotonin, 
other 5-HT2A receptor agonists, such as quipazine [57] and the psychedelic trypt-
amines, also induce βarrestin2 translocation to the 5-HT2A receptor [61]. Pretreatment 
with 5-HT2A receptor antagonists such as clozapine will also block serotonin-medi-
ated translocation of βarrestin2 [60].
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5-HT2A receptor interactions with βarrestins have been observed in  vivo. 
Both βarrestins and the 5-HT2A receptor are highly expressed in the rodent frontal 
cortex, [24, 56, 62–65], and as stated above, are co-expressed in many, but not all 
pyramidal neurons in the rat frontal cortex [56]. In addition, βarrestin2 co-immu-
noprecipitates with the 5-HT2A receptor when it is isolated from the frontal cortex 
of mice treated with 100 mg/kg of 5-hydroxytryptamine, the metabolic precursor 
to serotonin [66]. Collectively, these studies indicate that 5-HT2A receptors inter-
act with βarrestins and suggest a role for the protein in regulating receptor 
responsiveness.

 Desensitization of the 5-HT2A Receptor

The mechanism by which the 5-HT2A receptor is desensitized following ligand 
binding, let alone the role that βarrestins play in the process, is not well understood. 
Cell culture studies have demonstrated that exposure to agonist results in the desen-
sitization of 5-HT2A receptor-mediated phosphatidyl inositol (PI) hydrolysis [67, 
68]. The Roth laboratory systematically mutated all of the serine and threonine resi-
dues in the cytoplasmic domains of the 5-HT2A receptor and assessed the agonist-
mediated desensitization of the IP3 pathway. They show that the mutation of two 
serine residues, serine 421 in the C-terminal tail and serine 188 in the second intra-
cellular loop, results in significant inhibition of quipazine-induced desensitization 
[69]. Serine 280 in the third intracellular loop also plays a role in the desensitization 
of the 5-HT2A receptor, in an agonist dependent manner. The hallucinogenic com-
pounds DOI (1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane) and LSD induce 
phosphorylation of serine 280 while the non-hallucinogenic compounds lisuride 
and ergotamine do not. Moreover, these agonists induce differing degrees of 5-HT2A 
receptor desensitization: pretreatment of HEK-293 cells or cortical neurons with 
lisuride or ergotamine reduces serotonin-stimulated PI hydrolysis and ERK1/2 
phosphorylation, while pretreatment with LSD and DOI does not [70]. These find-
ings suggest that the phosphorylation of the 5-HT2A receptor can impact agonist-
induced desensitization.

The mechanism by which the 5-HT2A receptor is desensitized varies for different 
cell types. In rat C6 glioma cells, which endogenously express the 5-HT2A receptor, 
quipazine and serotonin-induced desensitization of PI-hydrolysis is attenuated by a 
dominant negative βarrestin1 (βarr1319-418), that encodes only the C-terminal tail of 
the protein and not the GPCR binding domain [71–73]. In contrast, the βarr1319-418 
dominant negative has no effect on quipazine-induced desensitization in HEK-293 
cells transiently transfected with the 5-HT2A receptor [71]. The expression of a dom-
inant negative GRK2 (GRK2K22R), which lacks kinase activity [74], also blocks 
serotonin-mediated desensitization in C6 glioma cells [72], but not in CHO cells 
stably expressing the 5-HT2A receptor [75]. These differences could reflect differ-
ences in cell lines or incomplete inhibition by the dominant negatives. An in vivo 
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study in cocaine-withdrawn rats correlates the increased PLCβ activity of prefrontal 
cortical 5-HT2A receptors to reduced phosphorylation of the receptors and reduced 
GRK 5 levels [76]. Although inconclusive, these studies suggest that the 5-HT2A 
receptor can be classically desensitized via interactions with GRKs and βarrestins.

While βarrestins may play a role in the desensitization of the 5-HT2A receptor, 
other second messenger-dependent kinases, such as PKC can also dampen receptor 
signaling. The 5-HT2A receptor contains five putative PKC phosphorylation sites in 
its intracellular domains [77]. Berg et al. [75] demonstrated that the PKC inhibitors 
staurosporine and bisindolylmaleimide significantly inhibit serotonin-induced 
desensitization of PI hydrolysis in CHO cells stably transfected with the 5-HT2A 
receptor. However, PKC-mediated desensitization is also cell-type specific, as inhi-
bition of PKC fails to alter serotonin-mediated desensitization of the IP3 pathway in 
Chinese hamster lung fibroblasts stably expressing the 5-HT2A receptor [77].

Another serine/threonine kinase, p90 kDa ribosomal S6 family of serine/threo-
nine kinases (RSK), has also been implicated in the agonist-mediated desensitiza-
tion of the 5-HT2A receptor. Studies from the Roth laboratory have shown that RSK2 
co-immunoprecipitates with the 5-HT2A receptor in HEK-293 cells, C6 glioma cells 
and rat cortical homogenates and is co-expressed with the 5-HT2A receptor in neu-
rons in the rat frontal cortex [78, 79]. Moreover, purified and activated RSK2 
directly phosphorylates serine 314 of the third intracellular loop of the 5-HT2A 
receptor in vitro [79]. The activation of intracellular Ca2+ release, PI hydrolysis and 
ERK1/2 phosphorylation are all potentiated following treatment with a panel of 
5-HT2A receptor agonists in RSK2-KO MEFs or in WT MEFs expressing a RSK2-
insensitive 5-HT2A receptor mutant (5-HT2A receptorS314A) [78–80]. The enhanced 
responses observed in the absence of 5-HT2A receptor interactions with RSK2 sug-
gest that RSK2 may act to dampen 5-HT2A receptor signaling in  vitro. Taken 
together, these data demonstrate that there are multiple pathways by which the 
5-HT2A receptor can be desensitized and that both the cell-type and the agonist may 
determine which pathway is utilized.

 Internalization of the 5-HT2A Receptor

Agonist stimulation leads to the internalization of the 5-HT2A receptor through a 
clathrin-mediated pathway in vitro. Treatment of NIH-3  T3 cells with quipazine 
induces trafficking of the 5-HT2A receptor from the cell surface to intracellular ves-
icles that co-express clathrin [81, 82]. Moreover, pretreatment with concanavalin A 
or phenylarsine oxide, two chemical inhibitors of endocytosis, inhibits the quipa-
zine-induced internalization of the 5-HT2A receptor in HEK-293 cells [71]. Finally, 
a dominant negative to dynamin (dynaminK44A) also completely attenuates sero-
tonin-mediated 5-HT2A receptor internalization in HEK-293 cells [57].

Although βarrestins facilitate the clathrin-mediated endocytosis of GPCRs, their 
involvement in the trafficking of the 5-HT2A receptor seems to be complex. For 
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instance, expression of βarr1319-418 or a similar dominant negative for βarrestin2 
(βarr2284-409) [83], has no effect on quipazine-induced internalization of the 5-HT2A 
receptor as assessed by confocal microscopy [57]. The βarr1319-418 mutant also does 
not affect serotonin-mediated internalization of the receptor, as quantified by a cell-
surface biotinylation assay [57], suggesting that βarrestins are not involved in the 
internalization process in HEK-293 cells. However, another study from the Roth 
laboratory has demonstrated that the transfection of a constitutively active βarrestin1 
mutant (βarr1R169E), which binds to GPCRs regardless of the phosphorylation state 
of the receptor [84–86], results in the constitutive internalization of the 5-HT2A 
receptor in HEK-293 cells, as determined by confocal microscopy. The 5-HT2A 
receptor also co-immunoprecipitates with the βarr1R169E mutant in the absence of 
agonist [87], suggesting that the internalization of the 5-HT2A receptor is sensitive 
to the expression of βarrestins in vitro. Although the dominant negative βarrestin 
mutants are thought to compete in receptor/clathrin-coated pit assembly, they may 
not fully inhibit the function of the endogenous βarrestins, which could explain 
these differential findings. Confocal and biotinylation studies with mouse embry-
onic fibroblasts with and without both βarrestin1 and βarrestin2 (βarr1/2-KO) indi-
cate that serotonin-induced internalization of the 5-HT2A receptor is dependent on 
βarrestins [88]. In contrast, these same studies demonstrate that the 5-HT2 receptor 
agonist DOI is able to induce internalization in a βarrestin-independent manner.

5-HT2A receptor internalization via a βarrestin2-mediated mechanism has also 
been observed in  vivo. Several immunohistochemical studies have demonstrated 
that the 5-HT2A receptor is found to be internalized in cortical neurons from untreated 
rats [62, 89], suggesting that the receptor is constitutively internalized. Moreover, 
βarrestins have been shown to co-localize with the 5-HT2A receptor within intracel-
lular vesicles of rat cortical neurons [56]. In primary cortical neurons cultured from 
postnatal day 1 mice, confocal microscopy shows that the endogenously expressed 
5-HT2A receptor is again found within the intracellular region of untreated neurons. 
Live-cell staining of an HA-tagged 5-HT2A receptor that was transfected into pri-
mary cortical neurons reveals that the 5-HT2A receptor is constitutively trafficked, as 
the fluorescently labeled receptor was internalized following antibody labeling [88]. 
However, in primary neurons cultured from βarr2-KO mice, the 5-HT2A receptor is 
more prominently on the cellular membrane. Transfection of βarrestin2-YFP into 
the βarr2-KO neurons rescues the internalization of the receptor into endocytic ves-
icles. Moreover, the 5-HT2A receptor colocalizes with βarrestin2-YFP in those endo-
cytic vesicles [88].

The findings that the 5-HT2A receptor can still internalize in the presence of dom-
inant negative βarrestins or in βarr1/2-KO MEFs suggests that 5-HT2A receptors can 
also be internalized through βarrestin-independent mechanisms. One such mecha-
nism may involve interactions with caveolin-1, another multifunctional scaffolding 
protein involved in the targeting and internalization of GPCRs [90, 91]. The 5-HT2A 
receptor co-immunoprecipitates with caveolin-1 in HEK-293 cells, C6 glioma cells 
and synaptic membranes prepared from rat frontal cortex [92]. Caveolin-1 also co-
localizes with the 5-HT2A receptor at the plasma membrane of HEK-293 cells [92]. 
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Caveolins can facilitate clathrin-independent, but dynamin-dependent endocytosis 
of receptors [91], and caveolin-1 may promote 5-HT2A receptor internalization, as 
serotonin induces the co-localization of the two proteins in intracellular vesicles of 
HEK-293 cells [92]. In addition to internalization, caveolins have been shown to 
target GPCRs to lipid microdomains of the plasma membrane, and both the 5-HT2A 
receptor and PLC can localize to these caveolin-containing regions [93, 94], sug-
gesting that caveolin-1 may facilitate downstream signaling events. Likewise, the 
over-expression of caveolin-1 increases 5-HT2A receptor interactions with Gαq and 
siRNA knockdown of caveolin-1 attenuates serotonin-mediated increases in intra-
cellular Ca2+ [92]. Therefore, caveolin-1 interactions with the 5-HT2A receptor may 
also serve to scaffold the receptor with Gαq and/or PLC in lipid rafts, thereby facili-
tating agonist-mediated signaling.

It is possible that the 5-HT2A receptor is internalized by both clathrin-mediated, 
βarrestin-facilitated endocytosis pathways, and caveolin-1-dependent mechanisms. 
The cholecystokinin receptor is a GPCR that also can be internalized through mul-
tiple endocytic pathways. While the majority of cholecystokinin receptors are nor-
mally internalized via βarrestin-mediated/clathrin-coated pits, nearly all of the 
receptors are still internalized in CHO cells through a caveolin-dependent mecha-
nism when the clathrin-mediated pathway is inhibited [95]. Similar to the cholecys-
tokinin receptor, the βarrestin-mediated pathway may be the preferred mechanism 
of 5-HT2A receptor internalization. However, some agonists at the 5-HT2A receptor 
may preferentially utilize the caveolin pathway, or may engage this alternate endo-
cytic route only under conditions in which the main pathway is inhibited.

Another protein that impacts 5-HT2A receptor trafficking is PSD-95. The 5-HT2A 
receptor contains a PDZ-binding domain within its C-terminus, which directly 
interacts with the PDZ-domain of PSD-95. The two proteins also co-localize on the 
cell surface of HEK-293 cells and primary cortical neurons, as determined by con-
focal microscopy and co-immunoprecipitation studies [96, 97]. The interaction 
between the two proteins appears to localize the receptor to the plasma membrane, 
as over-expression of PSD-95 attenuates serotonin-mediated 5-HT2A receptor inter-
nalization in HEK-293 cells, an effect that can be blocked by mutation of the recep-
tor PDZ-binding domain [96]. Further, inhibition of 5-HT2A receptor/PSD-95 
interactions through mutation of the receptor PDZ-binding domain or the use of 
PSD-95-KO mice abrogates normal dendritic targeting of the receptor and seques-
ters receptors in the soma of primary cortical neurons [97, 98]. There appears to be 
an interplay between PSD-95 and βarrestin2 regulation of the 5-HT2A receptor as 
well. In vehicle treated mice, PSD-95 is pre-associated with cortical 5-HT2A recep-
tors, as determined by co-immunoprecipitation studies. Following treatment with 
serotonin’s metabolic precursor (5-HTP), PSD-95 disassociates from the 5-HT2A 
receptor. In βarrestin2-KO mice, however, PSD-95 does not disassociate from the 
5-HT2A receptor [66]. Interestingly, overexpression of PSD-95 was shown to sup-
press βarrestin2 recruitment to the corticotrophin-releasing factor receptor [99], fur-
ther suggesting a relationship between the two regulatory proteins. Interactions with 
PSD-95 also impact 5-HT2A receptor signal transduction, as the over-expression of 
PSD-95 augments serotonin-induced IP accumulation in HEK-293 cells, while 
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inhibiting the interaction by mutation of the receptor PDZ-binding domain reduces 
serotonin-mediated PI hydrolysis [96]. Moreover, DOI-induced ERK1/2 phosphor-
ylation is attenuated in the cortex of PSD-95-KO mice [98]. Collectively, these stud-
ies suggest that PSD-95 is involved in properly targeting the receptor to the apical 
dendrites of cortical neurons, which appears to be integral for the activation of some 
5-HT2A receptor-mediated signaling cascades.

Like many GPCRs, the 5-HT2A receptor can be down-regulated following expo-
sure to agonists, both in vitro and in vivo. For instance, daily administration of LSD 
or DOI for 7 days significantly decreases [3H]-ketanserin binding in the rat cortex 
[100, 101]. However, in vitro studies have shown that down-regulation can differ 
depending upon cell-type or agonist, as exposure to serotonin for 8  h decreases 
[125I]-LSD binding in P11 rat pituitary tumor cells [67], while exposure to DOI for 
up to 24 h had no effect on [3H]-ketanserin binding in NIH-3 T3 cells [68]. Chronic 
treatment with 5-HT2A receptor antagonists, such as clozapine, can also down-regu-
late the receptor in the rat frontal cortex [102, 103]. Though receptor endocytosis 
can play a role in the down-regulation of some GPCRs by directing them towards 
degradation pathways [104], the mechanism of 5-HT2A receptor down-regulation by 
both agonists and antagonists and the involvement of receptor trafficking is not 
defined.

Internalization of GPCRs can also lead to the de-phosphorylation and recycling 
of receptors for trafficking back to the plasma membrane, a process termed resensi-
tization. The 5-HT2A receptor is resensitized following agonist treatment in vitro 
[75]. The βarr1319-418 and dynaminK44A dominant negatives significantly inhibit the 
resensitization of 5-HT2A receptor-mediated PI hydrolysis after quipazine-induced 
desensitization in C6 glioma cells [71]. In contrast, both dominant negatives actu-
ally potentiate the resensitization of the 5-HT2A receptor in HEK-293 cells [71, 87]. 
These studies demonstrate that requirement of receptor internalization and the 
involvement of βarrestins in the resensitization process again appears to be cell-type 
specific. Furthermore, the potentiation of 5-HT2A receptor resensitization in HEK-
293 cells under conditions in which internalization is blocked, suggests the exis-
tence of a mechanism in which the 5-HT2A receptor can be resensitized on the 
cell-surface, a phenomenon that has also been shown to occur previously for the 
β2-adrenergic receptor [105].

 βArrestins as Facilitators of 5-HT2A Receptor Signaling

As stated above, βarrestins can facilitate G protein-independent signaling by func-
tioning as adaptor proteins, to promote the stable association of signaling proteins 
with GPCRs. This has also proven to be the case for the 5-HT2A receptor. In MEF 
cells expressing the 5-HT2A receptor, serotonin induces ERK1/2 phosphorylation 
through Gαq/PLC-mediated and βarrestin-dependent pathways [88]. This is evident, 
as knocking out both βarrestins or pretreating the cells with the PLC inhibitor 
U73122 only partially decreases serotonin-induced ERK1/2 activation. However 
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pretreating the βarr1/2-KO MEFs with the PLC inhibitor completely abrogates 
ERK1/2 activation. βarrestin2-facilitated signaling to ERK1/2 is also observed in 
the frontal cortex of mice treated with 5-HTP, but is reduced in βarr2-KO mice [88]. 
The stimulation of this βarrestin2-mediated signaling pathway is agonist dependent, 
as DOI does not induce βarrestin-mediated ERK1/2 phosphorylation in either the 
MEFs or in mouse brain, while the Gαq/PLC-mediated signaling is preserved.

In neuronal cultures, the 5-HT2A receptor agonist α-methylserotonin also induces 
ERK1/2 activation through a βarrestin-dependent mechanism, as siRNA mediated 
knockdown of either βarrestin blocked the phosphorylation of ERK1/2 [106]. 
Interestingly, the authors demonstrate that treatment with a cell-permeable dynamin 
inhibitory peptide blocks the α-methylserotonin-mediated activation of ERK1/2 
[106]. This would suggest that there may be a correlation between an agonist’s 
dependence upon βarrestins for receptor trafficking and their utilization of βarrestins 
in the phosphorylation of ERK1/2. In the MEF studies by Schmid et al. [88], this 
correlation is also apparent, wherein, serotonin mediates receptor internalization 
and ERK1/2 phosphorylation through βarrestin-mediated pathways, while DOI 
does not require βarrestins for the internalization of the 5-HT2A receptor or the acti-
vation of ERK1/2. Internalization has been shown to be a prerequisite for the 
βarrestin-mediated activation of downstream signaling for other GPCRs, wherein 
the blockade of endocytosis inhibits βarrestin-mediated signaling [37, 107, 108]. 
Although additional studies are necessary to demonstrate causation, these data sup-
port the hypothesis that βarrestin-mediated endocytosis of the 5-HT2A receptor and 
βarrestin-mediated signaling may be interrelated events.

βarrestin2 has also been shown to mediate 5-HT2A receptor activation of the 
kinase Akt in primary neurons and in mouse brain, again in an agonist dependent 
manner [66]. In primary cortical cultures and in the mouse frontal cortex, serotonin 
(or its metabolic precursor 5-HTP), but neither of the N-methyl tryptamines, 
N-methyl serotonin and 5-methoxy-dimethyltryptamine (5-MeO-DMT), activates 
Akt. Serotonin is unable to stimulate Akt phosphorylation in βarr2-KO neurons and 
transfection of βarr2 into the knockout neurons rescues the signaling response. 
Co-immunoprecipitation studies from the frontal cortex of mice treated with 5-HTP 
reveal that βarrestin2 is serving to scaffold a signaling complex that involves Src 
and Akt to 5-HT2A receptors. This complex does not form following treatment with 
5-MeO-DMT. Furthermore, pretreatment with either the Src inhibitor, PP2 or the 
PI3 kinase inhibitor, LY294002, also blocks serotonin-induced Akt phosphorylation 
in mouse cortical neurons. Therefore, βarrestin2 serves to scaffold members of the 
kinase cascade to the receptor, thereby facilitating serotonin-induced activation of 
Akt.
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 βarrestin2 and the Head Twitch Response

5-HT2A receptor activation in rodents is manifested as a rapid, discrete shaking of 
the head, termed the head twitch response. The head twitch response was first 
described as a method for assessing the central actions of serotonin in vivo [109]. 
Systemic injection of 5-HTP induces the head twitch response in rodents [66, 88, 
109]. This response is presumably due to the resulting increase in brain serotonin 
levels rather than the direct actions of 5-HTP per se, as it can be significantly attenu-
ated by pretreatment with decarboxylase inhibitors, which prevent serotonin syn-
thesis, or potentiated by pretreatment with MAO-A inhibitors, which block the main 
degradation pathway [109]. Moreover, the time-course of the response closely cor-
relates to the rise and fall of serotonin levels in the brain [109].

Extensive pharmacological studies have demonstrated that the 5-HT2A receptor is 
the target for the head twitch response in rodents: agonists with strong affinity for 
the 5-HT2A receptor all induce the head twitch response [110–113]; blockade of the 
5-HT2A receptor by selective antagonists is sufficient to prevent the agonist-induced 
head twitch responses [88, 114–117]; 5-HT2A receptor knockout mice do not dis-
play head twitches following treatment with a range of hallucinogenic drugs, includ-
ing LSD, DMT or DOI [112, 118, 119]. Moreover, several experiments have also 
demonstrated that the head twitch response is due to the activation of 5-HT2A recep-
tors expressed specifically in the rodent frontal cortex. Centrally expressed recep-
tors were implicated by the fact that the systemic injection of serotonin, which is not 
brain penetrant, does not induce the head twitch response [109, 110], yet head 
twitches are induced by the direct injection of serotonin into the intracerebroven-
tricular (i.c.v.) space [66, 120, 121]. The direct bilateral administration of the 5-HT2A 
receptor agonists m-chloro-phenylpiperazine (m-CPP) and DOI into the rat medial 
prefrontal cortex activates the head twitch response [117]. Moreover, the Gingrich 
laboratory selectively restored 5-HT2A receptor expression to cortical glutamatergic 
(primarily pyramidal) neurons of 5-HT2A receptor-KO mice by crossing them with 
a second line of mice expressing cre-recombinase under the control of the Emx1 
promoter. The resulting cortical 5-HT2A receptor expression was sufficient to rescue 
the LSD- and DOI-mediated head twitch responses in mice [112]. Collectively, 
these studies implicate the head twitch response as an in vivo model of selective 
5-HT2A receptor activation in the mouse frontal cortex.

The serotonin induced head twitch response, whether due to systemic injection 
of 5-HTP or intracerebroventricular injection of serotonin, is decreased in the 
βarr2-KO mice [66, 88]. Decreased behavioral responses to agonist in the βarr2-KO 
mice have been correlated to βarrestin2 serving a pro-signaling role in the pathways 
underlying the physiological response [122]. The decreased head twitch response to 
serotonin has similarly been correlated to the βarrestin2-mediated signaling to Akt 
that occurs through a PI3 kinase and Src dependent pathway in the mouse frontal 
cortex, as intracerebroventricular injection with either the Src inhibitor PP2, the PI3 
kinase inhibitor LY294002 or Akt inhibitor VIII blocks serotonin-induced head 
twitches in  vivo [66]. In parallel to the signaling profiles that showed that the 
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N-methyltryptamines do not activate the βarrestin2-mediated signaling cascade in 
the mouse cortex, the head twitch response that is induced by the N-methyltryptamines 
is not reduced in the βarr2-KO mice, nor is it sensitive to pretreatment with the Src, 
PI3 kinase or Akt inhibitors [66].

In stark contrast to serotonin, DOI and the N-methyltryptamines induce a similar 
or a more pronounced head twitch response in the WT and βarr2-KO mice, respec-
tively [66, 88]. These findings are consistent with the in vivo and in vitro studies 
demonstrating that these agonists do not activate βarrestin-mediated signaling 
downstream of the 5-HT2A receptor. While the mechanisms by which they activate 
the head twitch response remains to be determined, they presumably are composed 
of G protein-dependent/βarrestin-independent signaling pathways. This is sup-
ported by a study demonstrating that Gαq-KO mice exhibit decreased DOI-induced 
head twitches compared to their WT littermates [123]. Furthermore, the enhanced 
responses to the N-methyltryptamines suggest that βarrestin2 may be negatively 
regulating the signaling that underlies the response, as other cases in which enhanced 
physiological responses observed in the βarr2-KO have been correlated to βarrestins 
playing desensitizing roles [12, 14, 124–127]. However, the direct involvement of 
βarrestin2 in the desensitization of 5-HT2A receptor-mediated signaling that under-
lies the head twitch response remains to be determined.

The head twitch response profiles to serotonin and the N-methyltryptamines sug-
gest that βarrestin2 both facilitates and dampens 5-HT2A receptor signaling in the 
frontal cortex, depending upon the agonist bound to the receptor. These data indi-
cate that the agonist not only dictates whether or not βarrestin2 is recruited to a 
receptor, but also determines the functional consequence of the interaction: sero-
tonin recruits βarrestin2 to facilitate signaling, while N-methyltryptamine-induced 
recruitment of βarrestin2 may act to desensitize the 5-HT2A receptor. The chemo-
kine receptor CCR7 agonists, CCL19 and CCL21, provide in vitro precedence for 
the agonist-directed divergence in βarrestin2 function at a single receptor. Both ago-
nists recruit βarrestins and stimulate ERK1/2 phosphorylation through a βarrestin2-
dependent pathway, yet only CCL19 induces βarrestin-dependent receptor 
desensitization and internalization [128–131]. Previously, βarrestins have been 
implicated in both facilitating and desensitizing the same GPCR in vivo; however 
the regulatory role has appeared to be tissue or region specific. While βarrestin2 acts 
to desensitize the μ opioid receptor expressed in brain regions associated with anti-
nociception [12, 132], data suggest that it may facilitate signaling in neurons in the 
gastrointestinal tract which are involved in the development of opioid-induced con-
stipation [133]. The head twitch data indicate that βarrestins are both negatively and 
positively regulating a particular receptor expressed within the same neuronal popu-
lation. Furthermore, serotonin and the N-methyltryptamines serve as in vivo exam-
ples of ligands, which specifically target distinct actions of βarrestins to either 
stimulate or dampen specific signaling cascades. GRKs may serve as cofactors 
which regulate the functional consequences of βarrestin interactions with GPCRs, 
as interactions with GRK2 and 3 have been shown to promote βarrestin-mediated 
desensitization of receptors while interactions with GRK5 and 6 facilitate βarrestin-
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mediated signaling cascades [131, 134, 135]. From these studies, we might infer 
that serotonin and the N-methyltryptamines may recruit specific GRKs to the 
5-HT2A receptor, which may impact the selective engagement of βarrestin2 to either 
facilitate or desensitize signal transduction. Therefore, GRK interactions with the 
5-HT2A receptor may represent another target through which 5-HT2A receptor sig-
naling could be modulated in vivo.

 βarrestin2 and Atypical Antipsychotics

Clozapine and other antipsychotic drugs induce their antipsychotic effects largely 
due to their activity at 5-HT2A receptors expressed in mesocortical pathways [136]. 
Clozapine is classically considered a potent inverse agonist at the 5-HT2A receptor 
with respect to Gαq signaling [137]. This classification is complicated by the fact 
that chronic administration of the drug causes downregulation of the 5-HT2A recep-
tor in brain [138, 139] and the finding that it causes internalization in  vitro and 
in vivo [57, 82, 140, 141]. The Roth laboratory has shown that 5-HT2A receptor 
internalization induced by the 5-HT2A receptor antagonist clozapine is unaffected by 
the βarr1319-418 dominant negative in HEK-293 cells [57]. Moreover, clozapine main-
tains its ability to induce 5-HT2A receptor internalization in βarr1/2-KO MEFs [60]. 
Interestingly, similar to serotonin, clozapine has also been shown to promote Akt 
phosphorylation in cultured neurons and in the rodent prefrontal cortex [60, 142–
144]. However, unlike serotonin, clozapine induces the phosphorylation of Akt 
independent of βarrestin2 [60]. These results demonstrate that serotonin and clozap-
ine use differential mechanisms to internalize the 5-HT2A receptor and induce 
5-HT2A receptor-mediated Akt phosphorylation.

βArrestin2 also has no effect on clozapine’s actions in vivo. In mice, the antipsy-
chotic activity of drugs is modeled by their ability to inhibit dizocilpine (MK-801) 
or phencyclidine (PCP) hyperlocomotion [145], an effect that is due to their actions 
at 5-HT2A receptors [146, 147]. Moreover, highly selective 5-HT2A receptor antago-
nists induce hypolocomotion in mice, similar to that observed with clozapine [148]. 
Clozapine’s ability to suppress MK-801 or PCP-induced hyperlocomotion is unaf-
fected in βarr2-KO mice [60]. Interestingly, the inhibition of Akt by Akti-1/2 blocks 
clozapine-induced suppression of MK-801 induced hyperlocomotion, suggesting 
that the βarr2-independent activation of Akt may be important for the antipsychotic 
effect of the drug [60].

 Conclusions

The cellular and animal studies presented in this chapter demonstrate that the inter-
action between the 5-HT2A receptor and βarrestin2 is a critical point of divergence 
in agonist-directed 5-HT2A receptor signaling. Moreover, the mechanisms 
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underlying 5-HT2A receptor regulation and signaling are cell-type dependent, which 
emphasizes the necessity to study the receptor in its endogenous environment. In 
addition to being dictated by the cellular environment, the regulation of the 5-HT2A 
receptor is a function of the agonist bound to the receptor, with the agonist dictating 
the functional implications of βarrestin2 recruitment: whether it be to assist in the 
activation of additional signal transduction pathways by scaffolding them to the 
receptor or to inhibit further coupling to G proteins.
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5-HT2A Receptor Heterodimerization                           

Sylwia Łukasiewicz, Ewa Błasiak, and Marta Dziedzicka-Wasylewska

Abstract Interaction of serotonin 5-HT2A receptor with other G protein-coupled 
receptors (GPCRs) have been shown at the behavioral and/or electrophysiological 
level. In the present chapter evidence for direct physical interactions of this receptor 
with various GPCRs have been described. The most interesting in the context of 
antipsychotic drug action mechanism is the interaction of the serotonin 5-HT2A 
receptor with dopamine D2 receptor, which has been shown both in vitro as well as 
in the native brain tissue. On the other hand, new understanding of hallucinogenic 
drugs has been proposed by providing data which demonstrate the formation of 
heterocomplexes by the 5-HT2A receptor with the metabotropic glutamatergic recep-
tor mGluR2. Methodology used in GPCRs heterodimerization studies has evolved, 
from radioligand binding, receptor crosslinking, receptor complementation, or co- 
immunoprecipitation approach to biophysical techniques based on resonance energy 
transfer—each having their pros and cons, however their use still provides new 
exciting data concerning the complexity of GPCRs physical interactions, which 
broaden basal knowledge as well as offer new targets for pharmacological 
intervention.
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 Pharmacological Aspects of 5-HT2A Receptor 
Heteromerization

Serotonin 5-HT2A receptors have been shown to interact with various G protein 
coupled receptors (GPCRs) at the behavioral and/or electrophysiological level. 
Moreover, direct physical interactions of this receptor with other GPCRs have been 
also shown. This is in line with the widely accepted concept of GPCRs homo- and 
hetero-dimerization. Although many studies have provided data confirming 
receptor- receptor interactions, there is no consensus as to the exact oligomer size. 
Recently, Herrick-Davis and co-workers have addressed this issue and, using fluo-
rescence correlation spectroscopy, have shown that GPCRs, including serotonin 
5-HT2A (but also adrenergic alpha1b and beta2, muscarinic M1 and M2, and dopamine 
D1 receptors) naturally exist as homodimers, and this configuration remains stable 
over a tenfold range of receptor expression level and is not altered by agonist addi-
tion [1]. Unfortunately, the researchers have not studied any heterodimers of these 
GPCRs, but it may be supposed that the potential to dimerize might concern not 
only an identical partner but also another member of the GPCR family.

The most important operational criterion demonstrating the existence of receptor 
heteromers is proof of physical association for a given pair of receptors in the native 
tissue or primary cells within the same cell [2]. However, even the co-expression of 
a given pair of receptors, for example serotonin 5-HT2A and 5-HT1A receptors in the 
same neuronal cell does not necessarily mean that these two receptors physically 
interact with each other, although complex interactions of these two serotonin 
receptors have been described at the behavioral and/or electrophysiological level 
[3–5]. In detailed neuroanatomical studies the predominant localization of serotonin 
5-HT2A receptors has been ascribed to apical dendrites proximal to the soma of pre-
frontal glutamatergic pyramidal neuron (where they mediate 5-HT depolarization), 
and of 5-HT1A receptors—to the axon hillock (which positions them to mediate 
5-HT hyperpolarization of the same neuron).

Another example of serotonin 5-HT2A interaction has been described by Marek [6] 
who has provided behavioral evidence indicating that activation of mu opioid recep-
tors (MORs) may suppress head twitches induced by hallucinogenic drugs, e.g. 
DOI (2,5-dimethoxy-4-iodoamphetamine). Earlier, the physiological interaction 
between the 5-HT2A receptors and MOR has been also shown in electrophysiologi-
cal studies. Since the layer Va of the neocortex possesses high density of both the 
5-HT2A receptors and MORs [7, 8] physical interaction between these two receptors 
may be predicted, however this issue has not been explored any further.

Similarly, interaction between the serotonin 5-HT2A receptor and the dopamine 
D1 receptor has been shown at the behavioral level [9] by demonstrating that the 
5-HT2A receptor antagonists antagonized d-amphetamine-induced hyperlocomotion 
and reversed d-amphetamine effect on latent inhibition [10]. However, no further 
studies have been conducted to look for physical interaction of these two receptors, 
although it has been shown that the 5-HT2A receptors are present on dopaminergic 
neurons in the ventral segmental area [11, 12], making such an interaction possible.
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On the other hand, direct interaction in the native tissue has been shown for the 
serotonin 5-HT2A receptors with the dopamine D2 receptor and the metabotropic 
glutamate receptor mGlu2.

The serotonin 5-HT2A—dopamine D2 receptor interaction is especially interest-
ing in the context of antipsychotic drug action mechanism. Recently in a proximity 
ligation assay Borroto-Escuela have reported 5-HT2A-D2 heterocomplexes in the 
ventral and dorsal striatum [13]. In subsequent studies they have shown allosteric 
facilitating receptor-receptor interaction in the 5-HT2A-D2 receptor heterocomplex, 
enhancing the D2 receptor signaling via Gi/o protein [14]. This finding broadens our 
understanding of atypical antipsychotic drugs which may counteract the D2 receptor 
signaling at low doses in the 5-HT2A-D2 heterodimers via their combined blockade 
of both receptors [15]. On the other hand, these data provide a new mechanism of 
psychotic action of hallucinogenic drugs which may involve enhancement of D2 
receptor signaling. The authors interpret their data by pointing out that hallucino-
genics, LSD and DOI, 5-HT2A receptor agonists, induce pathological enhancement 
of dopamine D2 receptor signaling, while this receptor forms heterocomplex with 
5-HT2A in the nucleus accumbens (core) and the dorsal striatum. Additionally, the 
significance of 5-HT2A-D2 receptor heterocomplexes has been recently explored in 
the context of cannabinoid action mechanisms. Franklin and Carrasco [16] have 
shown a non-selective cannabinoid receptor agonist, CP55,940, administered for 
7 days, enhanced the co-immunoprecipitation of the 5-HT2A-D2 hetero-complexes 
in rat prefrontal cortex which indicates further importance of these complexes also 
in elucidating the cannabinoid action mechanisms.

Different understanding of hallucinogenic drugs was proposed in recent years by 
providing data which demonstrate the formation of heterocomplexes by the 5-HT2A 
receptor with the metabotropic glutamatergic receptor mGlu2 [17]. The co- 
immunoprecipitation of these two receptors has been shown in the lysates from 
human and mouse brain with no such effect observed in KO mice, both mGlu2−/− 
and 5-HT2A−/− [18, 19]. Hallucinogenics, 5-HT2A receptor agonists, LSD and DOI 
induce specific behavior and head twitches which has been shown to be dependent 
on 5-HT2A receptor expression in cortical neurons [20], and absent in mGlu2 knock- 
out mice [21]. In further elegant and well-controlled studies Moreno and co- workers 
have shown that the head-twitches induced by DOI were brought back in mGlu2 KO 
mice overexpressing the mGlu2 receptor in the prefrontal cortex [17].

The concept of these two receptors acting as heterodimers has been seriously 
challenged by Delille et al. [22, 23], who have pointed not only shortcomings in the 
methodology used and lack of direct translation into second messenger systems but 
also—which is worth considering—lack of unequivocal demonstration of 5-HT2A 
and mGlu2 receptor co-expression in neurons. Nevertheless, there are strong indica-
tions that these receptors physically interact, and even the amino acid residues 
responsible for this interaction have been identified [17, 19].

The concept that 5-HT2A and mGlu2 receptor heterocomplexes are responsible 
for a different action of hallucinogenic vs non-hallucinogenic drugs is very 
 interesting, however there are also data pointing to the inherent nature of these 
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5-HT2A receptor agonists which allows them to activate different signaling  pathways 
upon binding solely to the 5-HT2A receptor [20]. This inherent nature of 5-HT2A 
agonists has been recently confirmed by molecular dynamics simulations [24].

 Structural Aspects of 5-HT2A Receptor Heteromerization

Generally, receptor oligomer has been defined as a macromolecular complex con-
sisting of at least two functional receptor units with biochemical properties differing 
from those of its individual components [25].

Understanding the heteromers’ structure, describing the dimer interface and 
establishing the mechanisms involved in the receptors association is of fundamen-
tal importance. Currently, several models have been proposed. Within the whole 
GPCRs family, data point to covalent bond formation between the extracellular 
domains of the receptors [26], interactions between the intracellular domain (i.e. a 
coiled-coil interaction within the C-tail of the receptor) [27], hydrophobic interac-
tions between the transmembrane domains [28–30] and electrostatic interactions 
which may occur between characteristic epitopes [31, 32]. However, probably a 
combination of the mechanisms mentioned above plays a key role in GPCRs oligo-
merization. Unfortunately, there is still insufficient data on the intermolecular inter-
actions and the precise role of specific regions of receptor molecules involved in the 
formation of heteromers between 5-HT2A and other receptors. It has been demon-
strated that transmembrane (TM) segments (TM4 and TM5) of mGlu2 are necessary 
for this receptor to be assembled as a heterocomplex with the 5-HT2A receptor [33]. 
Recent data provide evidence for direct involvement of three residues—for Ala-677, 
Ala-681, and Ala-685 from the intracellular end of TM4 of the mGlu2 receptors in 
interaction with the 5-HT2A receptor [17].

Receptor heteromerization via TM 5 and TM 6 has been also described for the 
5-HT2A and CB1 receptors [34].

Based on a bioinformatic approach, Borroto-Escuela and co-workers have sug-
gested the engagement of TM1 and TM3 in the D2-5-HT2A dimer interface forma-
tion [35]. On the other hand, data obtained using site-directed mutagenesis point to 
the contribution of electrostatic interactions in the formation of D2-5-HT2A hete-
rocomplexes [32]. These electrostatic interactions occur between characteristic 
 epitopes: one epitope containing mainly two or more adjacent arginine residues is 
located within the third intracellular loop (ic3) of the D2 receptor and the second 
epitope consisting of acidic (two or more adjacent aspartate or glutamate) residues 
or/and a phosphorylated residue is within the C-terminus of the 5-HT2A receptor. 
Similar interactions have been also shown for other GPCRs (e.g. D1-D2, D1-NMDA, 
D2-CB1) [31, 36, 37].
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 Methodology Used in GPCRs Heterodimerization

Several different approaches have been developed and dedicated to the investigation 
of GPCR oligomerization. Early evidence for oligomer formation comes from 
radioligand binding, receptor crosslinking, receptor complementation or radiation 
inactivation experiments. However, a concept concerning oligomeric formation has 
been ultimately accepted only following direct evidence resulting from biochemical 
and biophysical experiments.

Availability of cDNA of GPCRs and the development of antibody recognizing 
receptors or different tags’ epitopes led to an identification of many different  
homo- and heterodimers using immunoprecipitation and co-immunoprecipitation 
techniques. Although this method has been used to demonstrate the existence of 
homooligomeric forms of D3 dopamine receptors in monkey and rat brains [38] or 
adenosine A1 receptors in the pig brain cortex [39] and heterooligomeric complexes 
of AT1 and B2 receptors in rat smooth muscle cells [40], human platelets and omental 
vessels [41], adenosine A1 and P2Y1 in rat brains [42], mGluR5 and calcium- sensing 
receptor in the bovine brain [43] and others, due to low expression levels, weak 
GPCR antibody selectivity or, in many cases, lack of receptor specific antibodies, it 
is used mostly in the cells heterologously expressing tag-labeled receptors.

The experiments using the co-immunoprecipitation approach are conducted in 
three stages. First, the cells are lysed and membranes are solubilized. Next, GPCRs 
are precipitated with receptor or epitope-specific antibodies. Immunoprecipitates 
are then analyzed by SDS gel electrophoresis and Western blotting. The first stage 
involves the use of detergents to solubilize membrane proteins, which is the biggest 
drawback of this method. When membrane solubilization is incomplete, small 
membrane patches containing uninteracting GPCRs may remain in the supernatant. 
On the other hand, a because of highly hydrophobic nature of GPCRs, artifactual 
aggregation may occur or by contrast, excessive concentration of detergents may 
disrupt the existing interactions. Another problem is connected with the level of 
expression: high overexpression levels, often obtained in heterologous expression 
systems, can enforce artifactual interactions between GPCRs. The selling point of 
immunoprecipitation methods is the possibility to detect receptor dimers in ex vivo 
tissue samples. However, this implementation is limited by availability and specific-
ity of antibodies.

Although immunoprecipitation methods are commonly used to examine protein- 
protein interactions, it is important to note that they can never demonstrate that two 
proteins are in physical contact rather than being a part of a larger protein complex. 
A major breakthrough in GPCRs dimerization field has been made following the 
development of biophysical techniques based on a resonance energy transfer (RET) 
[44–46]—a non-radiative transfer of energy between electromagnetic dipoles of an 
energy donor and a suitable acceptor. The RET phenomenon depends on the dis-
tance between the donor and acceptor molecules and thus the RET techniques are 
used to measure interactions of molecules at a distance of less than than 100 Å, 
which is ideal for monitoring GPCR interactions.
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In case of the fluorescence resonance energy transfer (FRET), both the donor and 
the acceptor of energy are fluorescent molecules. In turn, in the bioluminescence 
energy transfer (BRET), the energy is transferred to the acceptor from a luciferase 
enzyme upon oxidation of its substrate. Both techniques allow to study physical 
interaction between receptor proteins in living cells in real time. They can be mea-
sured on cell populations by a microplate reader or scanning microscopy which 
provides additional benefits of spatial resolution. This is especially advantageous in 
the case of GPCRs dimerization studies, as it allows investigation in regions limited 
to plasma membrane and separation from oligomerization which occurs during bio-
synthesis or internalization in ER, Golgi and endosomes.

In experiments using the FRET, the fluorescent donor and acceptor molecules 
are fluorescent proteins genetically linked with the receptor protein of interest, or 
fluorescent dyes combined with the receptor or epitope-specific antibodies. The lat-
ter approach allows to study endogenous receptor proteins, but it depends on the 
accessibility of receptor-specific antibodies. The main problems in data interpreta-
tion result from the donor emission leakage to the acceptor’s emission channel, 
excitation of the acceptor by light used to activate the donor molecule, expression 
levels of the donor and acceptor molecules, photobleaching and autofluorescence. 
Despite these problems, many GPCRs have been reported to form homo- or het-
erodimeric complexes [47]. Most FRET techniques cannot distinguish between 
dimers and higher-order oligomers. Accessibility of various fluorescent proteins led 
to the development of a three-chromphore FRET, which has been used to show that 
for α1beta-adrenergic receptors, higher order complexes are formed rather than 
dimeric complexes [48].

Another modification utilizes fluorescence fading caused by the destruction of the 
molecule after exposure to the excitation light. This method is called photobleaching 
FRET (pbFRET) and has beeen successfully used to demonstrate homodimerization 
of SSTR5 receptors [49] and heterodimerization of D2 and SSTR5 receptors [50]. In 
order to reduce the background fluorescence and increase the signal/noise ratio time-
resolved FRET (TR-FRET) may be used [51, 52]. Employment of fluorophores with 
long-lived fluorescence (lanthanide donors such as europium or terbium cryptate 
complexes with suitable acceptors), allows to perform measurements after short-
lived cell autofluorescence has decayed. In this technique, fluorophore labeled anti-
bodies are used which guarantees that only receptors present in the plasma membrane 
are detected. On the other hand, as described above, the techniques using antibodies 
are limited by their availability and specificity. The refinement of TR-FRET tech-
niques has led to the introduction of homogenous assays without washing steps, 
suited for high-throughput screening experiments [53].

Another advantage of the FRET-based techniques is that they can be combined 
with confocal microscopy imaging. In FRET-FLIM, the energy transfer is calcu-
lated from the change in the donor fluorescence lifetime in the presence and in the 
absence of the acceptor measured in each pixel of the image. Since the fluorescence 
lifetime is an intrinsic property of a fluorophore and it is sensitive to environmental 
changes but not to fluorophore concentration, this technique overcomes many 
 problems encountered by the intensity-based methods and benefits from the spatial 
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resolution provided by microscopy. It has been used to show that the 5-HT2C 
 receptors form homooligomers during receptor maturation and processing as energy 
transfer efficiencies in the plasma membrane were the same as in ER and Golgi [54].

BRET, the technique mentioned earlier, uses bioluminescence resulting from the 
catalytic degradation of coelenterazine, a substrate for the luciferase enzyme. The 
energy from this process is then transferred to the green fluorescent proteins [55]. 
This method allows to avoid problems arising from autofluorescence, photobleaching 
and excitation causing cell damage, but dim luminescence makes it less sensitive. 
Despite this fact, this technique has been successfully used in various studies on 
GPCR dimerization [47, 56].

There are also other, biophysical means to document the GPCRs oligomeriza-
tion: exploiting ligands conjugated with fluorophores, bimolecular fluorescence of 
luminescence complmentation (BiFC/BiLC) [57, 58].

Despite continuously developing technologies, a growing number of fluorescent 
proteins and markers displaying different properties and increasing equipment sen-
sitivity, the understanding of GPCR interactions is hampered by difficulties in 
detection and manipulation in their native environment. The development of better 
antibodies will allow to perform studies in tissues/organism models. The in situ 
proximity ligation assay (PLA) can be used to study endogenous GPCR heteromers 
in the native tissues. This method, in combination with confocal scanning micros-
copy, is highly selective and sensitive. The most popular format of this technique 
uses a pair of receptor-specific antibodies from different species, which are recog-
nized by secondary antibodies with attached oligonucleotides. When the probes rec-
ognize the target, the attached oligonucleotides are then localized at a sufficiently 
close distance (less than 40 nm), so proximity dependent ligation forms a circular 
DNA template, which is thereafter amplified as a result of rolling circle amplification. 
The product is visualized with a fluorescently labeled probe [13]. This powerful 
method has been recently used to identify the A2A-D2 in the mouse striatum [59], or 
the 5-HT1A-FGFR1 heterocomplexes in the rat hippocampus and the dorsal and 
median raphe in the midbrain [60].

All the presented examples of the methods used in the GPCRs oligomerization 
studies illustrate their complexity, each having their pros and cons; no wonder that 
controversies and ambiguities concerning the obtained results are often encountered 
in the literature. Nevertheless, the issue of GPCRs forming heterocomplexes is very 
interesting and still promising, both as far as basal knowledge and novel pharmaco-
logical interventions are concerned.
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Cristiano Bombardi

Abstract The 5-HT2A receptor type (5-HT2AR) is a G-protein-coupled receptor 
widely distributed in the central nervous system, indicating its participation in 
numerous neurological effects serotonin-mediated. The 5-HT2AR has attracted 
interest as a potential drug target for the treatment of several important neurologic 
and psychiatric disorders, such as epilepsy and depression. The distribution of the 
5-HT2AR has been investigated by immunohistochemical stainings, in situ hybrid-
ization experiments, and physiologic/pharmacologic procedures. This review sum-
marizes the cellular localization of the 5-HT2AR in the brains, providing the neuronal 
pathways modulated by serotonin through this specific receptor type.

Keywords 5-HT2A receptor • Serotonin • Thelencephalon • Diencephalon • Brainstem

 Introduction

The 5-HT2A receptor type (5-HT2AR) belong to the 5-HT2 (5-HT2R) receptor family 
of metabotropic receptors. The activation of the 5-HT2AR causes phospholipase 
C-mediated synaptic facilitation by reducing outward potassium current [1–4]. 
Recently accumulated knowledge demonstrates that the 5-HT2AR has a widespread 
distribution in the central nervous system, indicating its participation in numerous 
neurological effects serotonin-mediated [5–18]. Interestingly, the level of expres-
sion of the 5-HT2AR varies during early postnatal development [19]. This data sug-
gest that the 5-HT2Ar may also modulate neuronal development [19].

The distribution of the 5-HT2 or 5-HT2A receptors has been investigated by in situ 
hybridization experiments [20, 21], autoradiography studies [22], [23], physiologic/
pharmacologic procedures [10, 24–36] and immunohistochemical experiments 
[5, 6, 9–11, 18, 37–39]. In particular, using standard immunohistochemical proce-
dures somatodendritic and axonal immunoreactivity for the 5-HT2AR has been 
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located in numerous brain regions [9–11, 18, 37, 38]. It is important to underline 
that because selective immunohistochemical methods able to differentiate between 
members of the 5-HT2R family (5-HT2A, 5-HT2B and 5-HT2C receptors) have not 
been available until very recently, many of the early immunohistochemical studies 
did not specifically identify the 5-HT2AR distribution in the brain, but has provided 
data concerning the immunohistochemical localization of the 5-HT2R family [37, 38].

 Thelencephalon

 Neocortex

The rat cerebral cortex presents high levels of 5-HT2AR transcripts, especially in 
frontal lobe [20]. The hybridization is distributed in layers II, IV, V and VI [20]. In 
rodents, frontal, parietal, temporal and occipital cortices show a similar distribution 
of 5-HT2Ar immunoreactivity. It has been found that 5HT2Ar-immunoreactive neu-
rons are present throughout the cortex in layers I–VI [18]. Layer V exhibits the 
highest densities of somatodendritic profiles positive for the 5-HT2Ar. Also layers 
II–III contain many 5-HT2AR-immunoreactive neurons. In contrast, layer VI 
includes low or moderate numbers of somatodendritic profiles. Finally, layers I and 
IV contain only immunopositive dendrites. The strongest 5-HT2AR immunoreactiv-
ity is located in the large pyramidal neurons located in the layer V of the frontal and 
parietal cortex [9, 40]. Strongly labeled somatodendritic profiles are also present in 
layer V of the cingular cortex [9].

Fig. 1 Distribution of 
5-HT2A receptor (5-HT2AR) 
immunoreactivity in the rat 
primary motor cortex. Note 
numerous 5-HT2AR- 
immunoreactive pyramidal 
neurons in layer V. The 
apical dendrites of 
pyramidal cells are clearly 
visible. Scale bar = 100 μm
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In the neocortex excitatory as well as inhibitory neurons express the 5-HT2AR  
[9, 18, 40–47]. By immunocytochemical techniques it has been demonstrated that 
5-HT2Ar is present in pyramidal neurons of the rat (Fig. 1) [40] and  monkey (Macaca 
mulatta) cortex (frontal, temporal and parietal lobes) [42, 43]. Accordingly, by means 
of in situ hybridization histochemistry procedure, it has been shown that 5-HT2AR 
mRNA is present in pyramidal cells in the rat prefrontal cortex. In addition, using 
double in situ hybridization it has been shown that many glutamatergic cells of the 
monkey and human prefrontal cortex express the 5-HT2AR.  The cells are located 
especially in layers II–V [48]. In the cerebral cortex serotonin can increase the excit-
ability of pyramidal neurons expressing 5-HT2Ar through a focal action in their apical 
dendritic field [49] where the concentrations of serotonin fibers [50] and 5-HT2Ar are 
both high [42]. Accordingly, the physiological activation of 5-HT2AR excites pyrami-
dal neurons in rat medial prefrontal cortex [51, 52].

In primate prefrontal cortex, the 5-HT2AR is located in non-pyramidal neurons 
expressing calbindin [42]. Employing immunocytochemical techniques on the fron-
tal, temporal, and parietal lobes of monkeys (Macaca mulatta), it has been demon-
strated that 5-HT2AR is present in cortical GABA(γ-aminobutyric acid)ergic 
interneurons [43]. Non-pyramidal neurons are distributed throughout layers II–VI, 
express calbindin or parvalbumin and correspond to GABAergic interneurons spe-
cialize in the perisomatic inhibition of pyramidal cells [43]. In addition, 5-HT2A and 
5-HT3 receptors are expressed by different subpopulations of inhibitory interneu-
rons. In fact, large interneurons and small interneurons express 5-HT2A and 5-HT3 
receptors, respectively [43]. Furthermore, 5-HT2A and 5-HT2C receptors may be co- 
expressed on pyramidal cells and GABAergic neurons of the rat medial prefrontal 
cortex [53]. Other immunocytochemical studies have provided evidence that 
5-HT2AR is present in parvalbumin-containing interneurons [40] and calbindin- 
D28k- containing interneurons [42] in the cerebral cortex of rat [40] and monkey 
(Macaca mulatta) [42]. In monkey (Macaca fascicularis) and human prefrontal cor-
tex, in situ hybridization studies have also demonstrated that parvalbumin and 
calbidin- D28k GABAergic interneurons express the 5-HT2AR [48]. It is interesting 
to note that in the cortex, the 5-HT2AR is preferentially associated with GABA- 
immunoreactive interneurons (large and medium-size basket cells and chandelier 
cells), which mediate the perisomatic inhibition of pyramidal cells [43]. By means 
of an in situ hybridization histochemistry procedure it has been shown that 5-HT2Ar 
mRNA is present in GABAergic cells in rat prefrontal cortex [54]. Consequently, 
serotonin, can suppress pyramidal neuronal firing by activating the inhibitory inter-
neurons (basket and chandelier cells) which allow a perisomatic inhibition of pyra-
midal neurons [43]. This aspect is in agreement with previous studies showing that 
in the rat cortex the activation of 5-HT2Ar present in GABAergic interneurons acti-
vates the same GABAergic interneurons [55] and inhibits pyramidal neurons [56, 57].

Interestingly, astrocytes of the neocortex are immunoreactive for the 5-HT2AR 
[18, 41].
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 Olfactory System

Different autoradiographic, in situ hybridizationand and immunohistochemical 
studies have demonstrated the presence of the 5-HT2Ar in the olfactory system. Very 
high levels of 5-HT2AR mRNA are present in the olfactory bulb (especially in the 
mitral cell layer and external plexiform layer) and in the anterior olfactory nucleus 
[20]. A lover levels of 5-HT2Ar transcript are located in the olfactory tubercle and 
endopiriform nucleus [20]. In the main olfactory bulb the 5-HT2Ar-immunoreactivity 
is especially located in somata of mitral cell layer and in dendritic profiles of the 
external plexiform, mitral cell and internal plexiform layers (Fig. 2a) [9, 41, 44]. In 
the main olfactory bulb a low number of 5-HT2AR positive cells are located in glo-
merular layer, external plexiform layer, internal plexiform layer and internal granu-
lar layer [9, 44]. Very few 5-HT2AR-immunoreactive processes were found within 
the glomerular layer of the olfactory bulb [44]. In the accessory olfactory bulb the 
5-HT2AR-immunoreactivity is more evident in dendrites than in somata. Many 
somatodendritic profiles are also located in anterior olfactory nucleus, olfactory 
tubercle, islands of Calleja, piriform cortex (mainly in layers II and III; Fig. 2b), 
medial and ventral-anterior olfactory nuclei, lateral olfactory tract and endopiriform 
nucleus [9, 18, 41, 44].

 Septum

Ligand binding studies demonstrates the presence of the 5-HT2AR in the medial 
septal nucleus and in the nuclei of the diagonal band of Broca. However, 5-HT2AR 
mRNA is present only in the nucleus of the horizontal limb of the diagonal  
band of Broca [20]. Also immunohistochemical observations demonstrated 

Fig. 2 Distribution of 5-HT2A receptor immunoreactivity in the rat olfactory system. (a) In olfac-
tory bulb, mitral cell layer exhibits an evident somatodendritic immunoreactivity. (b) Note the 
strong neuronal immunoreactivity located in layer II of the piriform cortex. Scale bar = 50 μm in 
b (applies to a, b)
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5-HT2Ar-immunoreactive somata in the in the lateral (dorsal, intermediate, and 
 ventral) and medial septal nuclei and in the nuclei of the diagonal band of Broca [9, 18]. 
Lateral and triangular septal nuclei exhibit low to moderate densities of 5-HT2AR- 
immunoreactivity. With the exception of the triangular septal nucleus, a moderate 
density of dendritic profile immunoreactive for the 5-HT2Ar are located in the differ-
ent area of the septum [9].

 Hippocampal Region

The hippocampal region includes the hippocampal formation and the parahippo-
campal region. The hippocampal formation comprises the dentate gyrus, the hip-
pocampus proper (which is divided into three distinct fields: CA3, CA2 and CA1) 
and the subiculum. The parahippocampal region includes the presubiculum, the 
parasubiculum, the entorhinal cortex, the perirhinal cortex and the postrhinal cortex 
[58–60].

 Hippocampal Formation

The presence of the 5-HT2R or the 5-HT2AR in the hippocampal formation has been 
demonstrated by in situ hybridization studies, radioligand-binding experiments and 
recent immunohistochemical studies. Wright et al. [21] demonstrated low, interme-
diate, and high levels of 5-HT2R mRNA in the hippocampus proper, subiculum, and 
dentate gyrus, respectively. 5-HT2AR transcripts have also been observed in the rat 
hippocampal formation, particularly in the pyramidal cell layer of the CA3 field 
[20]. In contrast, autoradiographic studies have demonstrated intermediate 5-HT2R 
levels of specific binding only in the ventral dentate gyrus [22].

Immunohistochemical experiments have demonstrated that the 5-HT2AR is 
expressed in the majority of the principal excitatory neurons (granule and pyramidal 
cells) of the rat hippocampal formation (Fig. 3a, b). In particular, a strong 5-HT2AR 
immunoreactivity is localized in the apical dendrite of the pyramidal cells where 
this serotonin receptor may increase excitatory postsynaptic currents [6, 45]. The 
presence of the 5-HT2AR in pyramidal cells has been demonstrated also electro-
physiologically. In fact, in the pyramidal somata of the rat CA1 (ventral field), the 
outward current induced by serotonin and alpha-methyl-serotonin (a 5-HT2R ago-
nist) is blocked by ketanserin (a 5-HT2R antagonist) and spiperone (a 5-HT1A and 
5-HT2 receptors antagonist) in a concentration-dependent manner [61]. Interestingly, 
the 5-HT2AR is also expressed in the rat mossy fibers [6]. It is known that the mossy 
fibers arise from the granule cells and leave the dentate gyrus to innervate the pyra-
midal cells of the CA3 hippocampal field [62]. The 5-HT2AR located at presynaptic 
level could modulate excitatory neurotransmission in the mossy fibers and conse-
quently act on the hippocampal release of glutamate. This correlates with studies 

Brain Distribution



72

indicating that different subtypes of serotonin receptors can affect presynaptic 
 neurotransmission [63, 64].

Single and double-immunohistochemical experiments have demonstrated that 
the 5-HT2AR is also expressed in a high percentage of GABAergic neurons of the 
hippocampal formation [6, 8]. Accordingly, stimulation of the 5-HT2A/2C receptors 
activate GABAergic neurons in the rat dentate gyrus [65] and the rat CA1field of the 
hippocampus proper [66]. The high density of 5-HT2AR–immunoreactive neurons in 
the deeper portion of the granule cell layer indicate that this serotonin receptor can 
regulate neurogenesis in the subgranular zone [6, 67]. Since GABA regulates both 
the progenitor turnover and the integration of newly generated neurons in the den-
tate gyrus [68], it is reasonable to assume that the GABAergic neurons distributed 
in the subgranular zone may be involved in 5-HT2AR-mediated hippocampal pro-
genitor proliferation [69]. In the dentate gyrus and hippocampus proper, several 
classifications of GABAergic interneurons have been proposed, based on their mor-
phology, axonal location, neurochemical code and electrophysiological characteris-
tics [60, 62, 70, 71]. In the rat, combining histochemical [45] with morphological/
topographical data [6] the 5-HT2AR–immunoreactive inhibitory interneurons of the 
dentate gyrus and hippocampus proper may be classified as following reported. In 
the dentate gyrus, the interneurons expressing the 5-HT2AR may correspond to par-
valbumin–immunoreactive pyramidal basket, parvalbumin-immunopositive chan-
delier (axoaxonic) cells and somatostatin–immunoreactive interneurons with hilar 
dendrites and ascending axons (HIPP cells). In the hippocampus proper, the 
GABAergic interneurons containing the 5-HT2AR may correspond to parvalbumin–
immunopositive pyramidal basket cells, parvalbumin–immunoreactive chandelier 
cells, calbindin-D28 k–immunopositive neurons (located in strata oriens, radiatum 

Fig. 3 Distribution of 5-HT2A receptor (5-HT2AR) immunoreactivity in the rat dentate gyrus and 
CA1 field of the hippocampus proper. (a) Note the high density of immunopositive neurons in 
granule cell layer (GCL) and polymorphic cell layer (PCL) of the dentate gyrus. (b) In CA1 field 
of the hippocampus proper, pyramidal cells (located in the pyramidal cell layers, PICL) and some 
interneurons located in strata oriens (SO) and radiatum (SR) are immunoreactive for the 
5-HT2AR. Scale bar = 50 μm in b (applies to a, b)
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and lacunosum-moleculare), somatostatin/neuropeptide Y–immunoreactive cells 
terminating in conjunction with entorhinal afferent (O-LM cells), and VIP (vasoactive 
intestinal peptide)–immunoreactive IS3 interneurons [6, 45].

There are also astrocytes immunolabeled with 5-HT2AR in the hippocampal 
 formation [18].

 Parahippocampal Region

The distribution of the 5-HT2 or 5-HT2A receptors in the parahippocampal region 
has been less studied than in the hippocampal formation. An high density of 5-HT2R 
ligand binding sites is present in the rat entorhinal cortex [22]. Accordingly, high 
levels of 5-HT2AR mRNA are located in the rat entorhinal cortex, particularly in 
layers V and VI [20]. These data coincide with immunohistochemical experiments 
showing that a variety of morphological cell types is distributed in the rat entorhinal 
cortex and elsewhere in the rat parahippocampal region (Fig. 4) [6, 9]. Pyramidal or 
modified pyramidal cells are the main cell type of the rat parahippocampal region 
expressing 5-HT2AR [6]. This receptor is strongly expressed on the apical dendrite 
of pyramidal neurons where it could modulate excitatory glutamate input, as has 
been demonstrated in the cerebral cortex [52]. In the rat parahippocampal region, 
5-HT2AR are also localized in non-pyramidal neurons [6]. In particular, double- 
immunofluorescence has revealed that a majority of the GABAergic cells in the 
entorhinal cortex contained 5-HT2AR. These non-pyramidal neurons are present in 
every layer, but are abundant in layers II, III, V, and VI [6]. Interestingly, there is no 
significant difference in the colocalization pattern of GABA and 5-HT2AR in the 
different six fields of the entorhinal cortex [6].

Fig. 4 Distribution of 
5-HT2A receptor 
immunoreactivity in the rat 
dorsal intermediate 
entorhinal field (DIE). 
Immunopositive neurons 
are distributed in every 
layer (I–VI). Scale 
bar = 50 μm
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 Amygdaloid Complex

The amygdaloid complex, or amygdala, is comprised of pallial and subpallial com-
ponents. The pallial amygdala is composed of deep and cortical pallial nuclei. The 
deep pallial nuclei are the basolateral amygdala, the anterior amygdaloid area (dor-
sal region) and the amygdalohippocampal area. The basolateral amygdala includes 
the lateral, the basolateral (magnocellular, intermediate, and parvicellular subdivi-
sions), and basomedial nuclei. The cortical pallial nuclei consist of the nucleus of 
the lateral olfactory tract, the bed nucleus of the accessory olfactory tract, the ante-
rior cortical nucleus, the posterolateral cortical nucleus and the posteromedial corti-
cal nucleus. The subpallial amygdala, also called extended amygdala, includes the 
medial nucleus, the central nucleus, the anterior amygdaloid area (ventral region), 
the bed nucleus of the stria terminalis, and the intercalated nuclei [72].

 Deep Pallial Components

The 5-HT2/2A receptors are strongly expressed in the deep nuclei. An in situ hybrid-
ization study revealed the presence of the 5-HT2R mRNA in the lateral, basolateral, 
and basomedial nuclei [21]. However, in contrast with the results of Wright et al. 
[21], Pompeiano et al. [20] have not reported the 5-HT2AR mRNA in the basolateral 
amygdala. Autoradiographic research has demonstrated specific binding sites of the 
5-HT2 receptor in the basolateral amygdala, especially in the lateral nucleus [22]. 
Immunohistochemical experiments have demonstrated that both pyramidal and 
non-pyramidal neurons of the basolateral amygdala express the 5-HT2AR [5, 9–11, 
18, 37].

Immunohistochemical studies have demonstrated that the pyramidal neurons in 
the basolateral amygdala represent most cells that are 5-HT2AR-immunoreactive 
(Fig. 5a) [5, 7, 8, 11]. This receptor appear to be prevalently located in the dendritic 
processes, especially apical dendrites [5, 11]. Activation of 5-HT2A/5-HT2C  receptors, 
obtained by the local injection of 1-(2,5-dimethoxy-4-iodophenyl)-2- aminopropane 
(DOI), increases discharge rate [31] and facilitates synaptic plasticity via an NMDA-
mediated mechanism [73] in presumptive pyramidal neurons of the rat basolateral 
amygdala.

In the rat basolateral amygdala the 5-HT2AR is also expressed in a lower percent-
age of GABAergic non-pyramidal interneurons [5, 7, 8, 11, 37]. In the lateral and 
basolateral nuclei of the rat amygdala, GABAergic neurons immunopositive for the 
5-HT2AR also express parvalbumin and somatostatin [11]. Electrophysiological 
studies have shown that the 5-HT2AR activates GABAergic non-pyramidal neurons 
of the basolateral amygdala. In particular, α-methyl-5-hydroxytryptamine (a 5-HT2R 
agonist) induces a dose-dependent membrane depolarization in the GABAergic 
interneurons of the rat basal nucleus [30]. Likewise, activation of the 5-HT2AR 
enhances frequency and amplitude of spontaneous inhibitory postsynaptic currents 
(sIPSCs) recorded from pyramidal neurons located in the juvenile rat basolateral 
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amygdala [10]. Accordingly, the inhibition of pyramidal cell firing in the lateral 
nucleus of the rat amygdala obtained after local application of serotonin is blocked 
by a simultaneous application of GABA antagonist [32]. Finally, the activation 
GABAergic non-pyramidal neurons of the rat basolateral amygdala is also induced 
by DOI [31, 36]. Double-immunofluorescence studies have demonstrated that 5-HT2A 
and 5-HT3 receptors virtually do not coexist in the lateral and basolateral nuclei of 
the rat amygdaloid complex [11, 74]. The possible role of the functional segregation 
of 5-HT2A and 5-HT3 receptors in the amygdaloid complex has to be clarified. In the 
rat basolateral nucleus and along the external and internuclear borders of the rat 
basolateral amygdala, the 5-HT2AR is also expressed by large GABAergic non- 
pyramidal neurons that project to the mediodorsal thalamus [11]. Many 5-HT2AR- 
immunoreactive cells with angular- and ovoid-shaped somata are located in the rat 
anterior amygdaloid area [5]. Finally, pyramidal and non-pyramidal neurons of the 
rat amygdalohippocampal area express the 5-HT2AR [5].

5-HT2AR-immunoreactive astrocytes has been observed in the basolateral 
 amygdala [18].

 Cortical Pallial Components

In situ hybridization investigations have demonstrated a moderate density of 5-HT2R 
mRNA [21] and 5-HT2AR mRNA [20] in the rat cortical nuclei, with the exception 
of the bed nucleus of the accessory olfactory tract, which has presented high levels 
of 5-HT2AR mRNA [20]. Several immunohistochemical studies have reported 
5-HT2AR-immunoreactive neurons in the rat cortical nuclei [5, 7–9, 37]. In particu-
lar, a high density of 5-HT2AR-immunoreactive neurons are located in the nucleus 
of the lateral olfactory tract and in the bed nucleus of the accessory olfactory tract 
[5, 9]. In contrast to the pattern of 5-HT2AR immunoreactivity, autoradiographic 
observations of the binding sites of the 5-HT2R have demonstrated low receptor 

Fig. 5 Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex. (a) Note 
the high density of immunopositive pyramidal neurons in the basal nucleus (magnocellular divi-
sion). (b) In central nucleus (lateral subdivision), ovoid somata show a strong immunoreactivity 
(b). Scale bar = 20 μm in b (applies to a, b)
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levels in the rat cortical amygdaloid nuclei, although the anterior cortical nucleus 
has shown a high density of binding sites [22].

In the rat cortical nuclei the 5-HT2AR-immunoreactive neurons are heteroge-
neous in shape and size [5]. Pyramidal neurons are located mainly in the nucleus of 
the lateral olfactory tract (layer II), the anterior cortical nucleus (layers II and III), 
the posterolateral cortical nucleus (layers II and III), and the posteromedial cortical 
nucleus (layers II and III) [5]. In these cells, the 5-HT2AR is abundant in apical 
 dendrites, where it may induce excitatory synaptic currents. Small to large non- 
pyramidal neurons in many cortical nuclei (nucleus of the lateral olfactory tract, 
anterior cortical nucleus, posterolateral cortical nucleus and posteromedial cortical 
nucleus) express 5-HT2ARs [5]. These interneurons are located in all three layers, 
but are particularly abundant in layers II and III [5].

 Subpallial Components

Immunohistochemical experiments have demonstrated that the rat central nucleus 
displays ovoid-shaped somata stained for the 5-HT2AR (Fig. 5b) [5, 7–9]. Accordingly, 
in situ hybridization studies have reported moderate levels of 5-HT2R mRNA in the 
rat central nucleus [21].The rat medial nucleus especially contains 5-HT2AR-
immunoreactive neurons with ovoid somata [5]. The bed nucleus of the stria termi-
nalis contains a moderate density 5-HT2AR-immunoreactive neurons [5, 9]. These 
cells are quite similar to those located in the central and medial nuclei [5]. Small and 
large neurons in the rat intercalated nuclei express the 5-HT2AR [5, 7, 8, 18]. This 
result is in disagreement with an in situ hybridization studies showing that interca-
lated nuclei do not present 5-HT2AR mRNA [20].

 Basal Ganglia

Radioligand binding [22, 75], in situ ibridization [20, 21], functional [76] and 
immunohistochemical studies [9, 18, 41, 44] indicate a widespread distribution of 
the 5-HT2AR in the basal ganglia. 5-HT2AR mRNA levels were intermediate in the 
caudate- putamen, nucleus accumbens and in substantia nigra (pars compacta and 
pars lateralis) [20]. Globus pallidus do not show any hybridization [20].With the 
exception of the compact part of the substantia nigra, a relatively abundant number 
of 5-HT2AR-immunoreactive somata has been observed in the basal ganglia [9, 41]. 
These immunoreactive neurons are especially numerous in the lateral and dorsal 
caudate-putamen (Fig.  6) [44]. Somatodendritic profiles immunoreactive for the 
5-HT2AR are locate in the ventral pallidum [18]. In addition, a widespread distribu-
tion of 5-HT2AR-immunopositive dendritic profile are also located in all component 
of the basal ganglia, including in the globus pallidus [44]. In the striatum, in situ 
ibridization studies indicates that the 5-HT2AR is located striatopallidal and striato-
nigral neurons containing encephalin and dynorphin, respectively [77, 78].
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 Diencephalon

 Epithalamus

No hybridization are located in the habenular complex [20]. Few somata containing 
the 5-HT2AR are located only in the lateral habenular nucleus. Accordingly in the 
whole habenular complex, the density of immunopositive dendrites is low [9].

 Thalamus

Using in situ hybridization procedures, the 5-HT2AR seems to be localized only in 
the reticular nucleus and lateral geniculate nucleus [20]. On the contrary immuno-
histochemical procedures have found a relatively abundant somatodendritic distri-
bution of the 5-HT2AR in most of thalamic nuclei, with high densities staining in the 
ventrolateral, gelatinosus, ventral posterolateral (Fig. 7), ventral posteromedial and 
medial geniculate nuclei. Only midline nuclei show a low number of 5-HT2AR posi-
tive neurons [9]. The finding that the 5-HT2AR is expressed by thalamic relay nuclei 
correlates with an electrophysiological study demonstrating that local administra-
tion of DOI (a 5-HT2A/2C receptor agonist) in the ventral posteromedial thalamic 
nucleus decreases the neocortical high-voltage spindle activity in the rat [79]. 
Likewise, the systemic administration of ketanserin (a 5-HT2A/2C receptors antago-
nist) potentiates the inhibitory effects of serotonin in the lateral and medial genicu-
late nuclei [80].

Fig. 6 Distribution of 
5-HT2A receptor 
immunoreactivity in the rat 
basal ganglia. Note the 
high number of 
immunopositive neurons in 
the caudate-putamen. Scale 
bar = 50 μm
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 Hypothalamus

Autoradiographic, in situ ibridization and immunohistochemical studies have dem-
onstrated that the density of the 5-HT2AR is relatively low in the whole hypothala-
mus. In this area, 5-HT2AR mRNA are distribute mainly in the medial mammillary 
nucleus and to some extent in the region of the tuber cinereum [20]. Immunoreactive 
somata are relatively abundant only in the medial mammillary, supramammillaris 
(Fig. 8) and magnocellular preoptic nuclei [9, 41]. Dendrites expressing the 5-HT2AR 
are distributed throughout the hypothalamus. These processes are strongly stained 
and abundant in the parastrial nucleus [9].

Fig. 7 Distribution of 
5-HT2A receptor 
immunoreactivity in the rat 
ventral posterolateral 
nucleus of the thalamus. 
The neurons appear 
strongly immunostained. 
Scale bar = 20 μm

Fig. 8 Distribution of 
5-HT2A receptor 
immunoreactivity in the rat 
hypothalamus. Note many 
immunolabeled neurons in 
supramammillaris nucleus 
(SMN). Scale 
bar = 100 μm
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 Brainstem

 Mesencephalon

High level of 5-HT2AR mRNA are present in the oculomotor nucleus, trochlear 
nucleus, nucleus of Darkschewitsch, interstitial nucleus of Cajal, red nucleus, and 
peripeduncular nucleus [20]. In the mesencephalon many somatodendritic profiles 
immunoreative for the 5-HT2AR are numerous especially in the following areas: 
oculomotor nucleus (Fig. 9), nucleus of Darkschewitsch, anterior pretectal nucleus, 
mesencephalic trigeminal nucleus and red nucleus (Fig. 9) [9, 41]. A relatively high 
density of somatodendritic profiles expressing the 5-HT2AR are located in the supe-
rior colliculus (deep gray), inferior colliculus, trochlear nucleus, interstitial nucleus 
of the medial longitudinal fasciculus, magnocellular nucleus of posterior commis-
sure, anterior pretectal nucleus and deep mesencephalic nucleus [9]. Superficial and 
intermediate gray of the superior colliculus, dorsal and median raphe nuclei, and 
ventral tegmental area contain a low densities of 5-HT2AR immunoreactivity [9]. 
Interestingly, double-immunofluorescence experiments have demonstrated that 
5-HT2AR colocalize with dopaminergic neurons throughout the A10 cell group [81].

 Pons

Pontine nuclei and reticulotegmental nucleus of the pons present high levels of 
5-HT2AR mRNA [20]. Intermediate levels of hybridization are located in the dorsal 
tegmental nucleus, parabrachial nucleus and subcoeruleus nucleus [20]. With the 
exception of the locus coeruleus, many areas located in the pons contains 5-HT2AR- 
immunoreactive somata. The highest density of immunoreactive cell bodies are 
located in motor trigeminal nucleus and abducent nucleus [9, 41]. On the contrary, 

Fig. 9 Distribution of 
5-HT2A receptor (5-HT2AR) 
immunoreactivity in the rat 
mesencephalon. The 
motoneurons located in the 
oculomotor (ON) and red 
(RN) nuclei are strongly 
immunoreactive for the 
5-HT2AR. Scale 
bar = 200 μm
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principal sensory trigeminal nucleus and pontine nuclei show rare immunostaining 
of 5-HT2AR-immunoreactive somata [9]. Throughout the pons there are many den-
drites containing the 5-HT2AR. These processes are particularly abundant in dorsal 
tegmental nucleus, laterodorsal tegmental nucleus, motor trigeminal nucleus and 
abducens nucleus [9].

 Medulla Oblongata

In the medulla oblongata the level of the 5-HT2AR mRNA is low than in the mid-
brain. In fact, intermediate levels of 5-HT2AR mRNA are located in the vestibular 
nuclei, prepositus hypoglossal nucleus, inferior olive, cuneate nuclei, gigantocellu-
lar reticular nucleus and lateral reticular nucleus [20]. In the medulla oblongata the 
highest density of 5-HT2AR-immunoreactive somatodendritic profiles are located in 
some cranial nerves nuclei especially facial, ambiguus and hypoglossal nuclei [9, 41]. 
Also the vestibular nuclei contained a relatively high density of somatodendritic 
immunostained profiles [9]. A similar distribution can be observed in some cranial 
nerve nuclei (spinal trigeminal nucleus, parasympathetic nucleus of the vagus), lat-
eral superior olive, reticular formation (gigantocellular reticular field, intermediate 
reticular field, parvocellular reticular field and lateral reticular nucleus), gracilis 
nucleus and cuneate nucleus [9]. A few immunostained cells are located in the 
 ventral and dorsal cochlear nuclei, inferior olive, nucleus of the solitary tract and 
prepositus hypoglossal nucleus [9].

 Cerebellum

Cerebellar nuclei present intermediate levels of 5-HT2AR mRNA [20]. All deep 
 cerebellar nuclei exhibit many somatodendritic profiles expressing the 5-HT2Ar [9]. 
In the cerebellar cortex a relatively high density of somata and dendrites are 
5-HT2AR- immunoreactive in the Purkinje cell layer [9]. In the granule cell layer few 
somatodendritic profiles contain the 5-HT2AR, whereas in the molecular layer this 
receptor is located only in dendrites [9].
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PET Imaging of the 5-HT2A Receptor System: 
A Tool to Study the Receptor’s In Vivo Brain 
Function
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Abstract The serotonergic 5-HT2A receptor system plays a key modulatory role for 
many brain functions such as regulation of mood, temperature, sex, appetite and 
emotions. The receptor is also involved in a number of brain disorders, for example, 
depression, Alzheimer’s disease or schizophrenia. This makes it an obvious target 
for many drugs.

This chapter describes how the in  vivo imaging technique positron emission 
tomography (PET) can be used to investigate 5-HT2A receptors in humans in terms 
of neurobiology and brain disorders. It also highlights how PET can be used in drug 
development and in humans in terms of neurobiology and brain disorders. It also 
highlights how PET can be used in drug development and explains the basic meth-
odology of PET. The chapter discusses currently used 5-HT2A receptor selective 
PET tracers. This chapter explains with the help of 5-HT2A receptor tracers how 
PET can be used in vivo to determine a drug’s receptor occupancy. Finally, the pos-
sibility of 5-HT2A receptor selective PET tracers imaging endogenous serotonin 
 levels in the living brain is discussed.
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Abbreviation

5-HT2AR  Serotonin 2A receptor, 5-hydroxytryptamine 2A receptor
5-HT2BR  Serotonin 2B receptor, 5-hydroxytryptamine 2B receptor
5-HT2CR  Serotonin 2C receptor, 5-hydroxytryptamine 2C receptor
AD   Alzheimer’s disease
As   Specific activity
Bavail   Concentration of receptors available for binding
BBB   Blood brain barrier
Bmax   Maximal concentration of receptors
BP   Binding potential
CNS   Central nervous system
D2   Dopamine receptor D2

DAG   Diacylglycerol
DOI   1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane
fND   The free fraction in the non-displaceable tissue compartment
HPLC  High-performance liquid chromatography
IP3   Inositol triphosphate
KD   Radioligand equilibrium dissociation constant
Ki   Inhibition constant
LSD   Lysergic acid diethylamide
MCI   Mild cognitive impairment
MDMA  3,4-methylenedioxymethamphetamine, “ecstasy”
NIGA  Non-invasive graphical analysis
PET   Positron emission tomography
PLC   Phospholipase C
PKC   Protein kinase
P-pg   P-glycoprotein
SPECT  Single photon emission computed tomography
SRTM  Simplified reference tissue model
SUV   Standard uptake value
TAC   Time-activity curve
TCM  Tissue compartment modeling
tBRtarget/off-target Theoretical, observed binding ratio of the target to another off-target

 Involvement of the 5-HT2A Receptor in the Neuronal Signal 
Cascade and Its Role in Pathological Conditions

The G-protein coupled serotonin 2A receptor (5-hydroxytryptamine 2A, or 5-HT2A) 
subtype is the most important excitatory receptor in the serotonergic system and its 
distribution has been extensively characterized in the central nervous system (CNS) 
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by autoradiography, in situ hybridization, immunocytochemical techniques and 
with in vivo imaging [1–5]. The 5-HT2A receptor system transduces neuronal sig-
nals primarily via the Gαq signal cascade. Upon agonistic receptor stimulation, Gαq 
and βγ subunits of the G-protein dissociate and initiate downstream effector path-
ways. For example, the activity of the phospholipase C (PLC) is stimulated, which 
subsequently promotes a release of diacylglycerol (DAG) and inositol triphosphate 
(IP3). Among other things this leads to a stimulation of the protein kinase C (PKC) 
that ultimately affects the function of other proteins through phosphorylation [6]. 
A proper balance of 5-HT2A receptor activity at inhibitory and excitatory neurons 
appears to be required for normal neuronal functioning [7, 8]. The 5-HT2A receptor 
has been implicated in various physiological and pathological functions (aging, 
appetite, sexual behavior, pain) and neuropsychiatric disorders, including the 
Alzheimer’s disease (AD), schizophrenia, major depression, anxiety, Asperger’s, 
alcohol addiction, and sleep disorders [5, 8–21]. Evidence for the role of 5-HT2A 
receptors in these brain disorders and pathological conditions comes both from 
post-mortem and brain imaging studies [22, 23]. For example, genetically modified 
mice, which lack 5-HT2A receptors, have changed sleep patterns [19]. Further, short 
term and long term memory is negatively affected by the 5-HT2A agonist 1-[2,5-dime-
thoxy-4-iodophenyl]-2-aminopropane (DOI), whereas 5-HT2A antagonists are with-
out any impact on memory [24].

From a pharmacological perspective, 5-HT2A receptors are of interest for many 
reasons. They are the primary target of psychedelic compounds and contribute to 
the efficacy of many antipsychotic medications, and are used as treatment for vari-
ous other psychiatric disorders [25–27]. For example, Nordström et al. showed that 
relatively low doses (125–200 mg/day) of the atypical antipsychotic drug clozapine 
lead to 5-HT2A receptor occupancies ranging between 80 and 90% while it only 
occupied 20–30% of D2-like dopamine receptors [28]. They suggest that clozap-
ine’s “atypical” clinical profile may be explained by its relatively low occupancy of 
D2-like dopamine receptors combined with its high affinity for 5-HT2 receptors [29, 
30]. Furthermore, the 5-HT2A receptor is the key receptor involved in hallucino-
genic/psychotic effects [31] and many recreational hallucinogens such as lysergic 
acid diethylamide (LSD), MDMA (3,4-methylenedioxymethamphetamine, 
“Ecstasy”) or DOI elicit their hallucinogenic effects by stimulating the 5-HT2A 
receptor [32–35].

 Positron Emission Tomography (PET)

 PET

PET is a non-invasive and quantitative whole body in vivo molecular imaging tech-
nique that produces a three-dimensional image of functional processes in the living 
body. It presents an alternative to studies that otherwise would require the sacrifice 
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of larger number of research animals. Not only do in vivo studies allow for less 
number of animals needed, research animals can also be used repeatedly for inves-
tigations and thus serve as their own controls. Furthermore, PET also permits stud-
ies of patients with, e.g. Alzheimer’s or Parkinson’s disease and may thereby 
disclose pathophysiological changes, be of diagnostic value or suggest and monitor 
treatment opportunities. PET data can generate information about pharmacokinetics 
and pharmacodynamics, metabolism and dose linearity. It can also quantify biologi-
cal processes at the cellular and subcellular levels within an intact living organism  
[36, 37]. In addition, PET can be used to monitor pathological processes and envi-
ronmental factors influencing brain diseases [38]. Moreover, drug effects on recep-
tor up- and down-regulation can be measured [5, 39]. Finally, PET can also be used 
to determine the occupancy of therapeutic drugs, which can help to estimate the 
optimal doses in Phase II studies. For example, it has been demonstrated that 
between 60 and 80% occupancy of D2 receptors is required for antipsychotic medi-
cation efficacy and that beyond this level, side effects are likely to occur [40, 41]. 
Thus, in theory PET can be used to find the right dose for each individual patient 
(personalized medicine) by comparing baseline (before treatment) and after inter-
vention conditions (after treatment).

Compared to other in  vivo imaging methods, PET has the advantage of high 
sensitivity (the level of detection approaches 10−12 M of tracer) and isotropism (i.e., 
ability to detect organ accumulation accurately regardless of tissue depth) [42, 43]. 
In addition, it results in a higher spatial and temporal resolution, sensitivity and bet-
ter quantification compared to single photon emission computed tomography 
(SPECT) [5, 42, 43]. For an in-depth review about PET and its applications, see e.g. 
Herzog et al. or Saha [44, 45].

In short, in vivo quantitative PET studies of 5-HT2A receptor binding may signifi-
cantly advance the understanding in the living human brain and thus provide a valu-
able technique for the investigation of 5-HT2A receptors in different subject and 
patient populations.

 Theoretical Background

 Basic Physical Principle

PET is based on the unique decay characteristics of positron emitting radionuclides. 
Thereby, a neutron-deficient isotope converts a proton into a neutron and a positron 
(β+-particle). The positron is emitted from the nucleus and travels up to a few mil-
limeters until it encounters an electron. Afterwards, the positron and the electron 
merge into a positronium. This exotic particle annihilates almost immediately into 
two γ-photons moving in opposite directions. The coincident detection of numerous 
of these photon-pairs forms the basis of PET imaging, since computational recon-
struction along straight lines between detector pairs allows the determination of the 
photon’s source of origin in a three dimensional space (Fig. 1).
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 Methodology and PET Quantifications

Methodology

PET scanning is a rather extensive and costly operation. Usually, such an experi-
ment starts with the production of a radionuclide in a cyclotron, which is afterwards 
incorporated into a biological relevant molecule. The radiotracer is then analyzed 
(quality control) and released if the tracer meets the quality criteria such as suffi-
cient high specific activity, radiochemical and chemical purity. Before the tracer can 
be injected into a living subject (usually into the blood stream), the PET camera has 
to be calibrated and the subject prepared for injection. During the scan, detectors of 
the PET camera record the tissue concentration of the radiotracer. For quantification 
of the specific radiotracer binding in the brain, some models require determination 
of the concentration of intact radiotracer in arterial blood. After the scan, the data 
will be reconstructed and then finally analyzed. Usually, 3–8 experimenters are 
involved in a single PET scan.

Tracer Dose Concept

PET radiotracers aiming to quantify receptor binding have to be applied in trace 
quantities meaning that the applied concentration of labeled ligand is too low to 
influence any physiological process. The injected dose of the radioligand is usually 
~1.000 fold lower than a pharmacological dose, i.e. the dose needed to evoke a 
pharmacological response, via the activation of a receptor or inhibition of an 
enzyme. Usually < 5 μg of tracer (labeled plus unlabeled) are used for human imag-
ing studies. Since PET is sufficiently sensitive to detect trace amounts of a labeled 
compound, investigations can be done without disturbing the native biological envi-
ronment. This concept is often referred to as “the tracer principle”.

Fig. 1 Basic physical principle of Positron Emission Tomography (PET). After annihilation, coin-
cident detection of numerous photon pairs in a PET scanner provide the necessary data to recon-
sturct the origin of the photon’s source [46]

PET Imaging of the 5-HT2A Receptor System: A Tool to Study…



90

All brain PET studies seek to measure a target receptor in terms of specific 
radioligand binding. Specific binding is defined as that associated with the target 
and distinct from radioligand which is free in solution or nonspecifically associated 
with other macromolecular components. As mentioned above, the radioligand is 
administered at tracer doses and thus occupies only a negligible (often defined as 
<5% to 10%) percentage of target sites. As a consequence, this specific binding will 
reflect the entire population of target sites, without significantly perturbing the total 
number of available receptors [47].

PET Kinetic Analysis and the Binding Potential

In order to interpret PET data and thus be able to quantify ligand-neuroreceptor 
interactions, one has to understand some basic principles behind PET.  The data 
acquired by a PET camera is composed of various signals. In order to isolate the 
signal component of interest, the data has to be mathematical analyzed by the use of 
a model. The applied PET kinetics analysis models are based on pharmacokinetics. 
Assumptions are often made in order to simplify the complex in vivo situation. For 
some models, one regards the tracer distribution as being assigned to conceptually 
separate entities, referred to as compartments. It is assumed that once the tracer 
passes from one to another compartment, the tracer is instantaneously mixed within 
the compartment. The number of required compartments is determined by the time- 
activity data from the individual tissue types or brain regions. The most comprehen-
sive compartmental model is the three tissue compartmental model (Fig. 2). The 
arterial blood constitutes the source from where the tracers pass the blood-brain 
barrier (BBB) into the first compartment (the free compartment). The second com-
partment consists of specifically bound radiotracer and the third is a non- displaceable 
binding compartment that exchanges with the free compartment. It is assumed that 
the transport and binding rates of the tracer are linearly related to the concentration 
within the compartments. In this case, the tracer concentration within the free-, the 
specific binding and non-displaceable binding compartment can be described by the 
following equations,

Arterial Blood
Cp (t)

Free
Cf (t)

Binding
Cb (t)

Non-displaceable
binding Cn (t)

K1

k2

k3

k4

k6 k5

Fig. 2 Three tissue compartmental model consists of four compartments (the plasma, the free 
ligand in tissue, specific binding and non-displaceable binding compartment) and six transport and 
binding rates
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Change in concentration within the free compartment
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Change in concentration over time within the specific binding compartment
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Change in concentration within the non-displaceable binding compartment
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where Cp(t) [plasma concentration], Cf(t), Cb(t) and Cn(t) are radioactivity concen-
trations at time (t) for each compartment. The sum of the aforementioned compart-
ments is describing the signal that a PET camera detects, once the blood volume 
component has been subtracted. The three tissue compartment model consists of six 
unknown parameters, which are difficult to assess experimentally. Therefore, the 
three tissue compartment model is often reduced to a two tissue compartment model 
by assuming that the free and non-displaceable compartments are in instantaneous 
equilibrium. Rate constants are estimated. This, as well as more simplified two- 
tissue or one-tissue compartment models enable the estimation of transport and 
binding rates of the tracer by fitting the measured PET data to the relevant model. In 
order to avoid arterial cannulation, that is necessary to determine Cp(t), models 
using a non-displaceable binding region in the brain rather than arterial input func-
tions are often preferred. These include e.g. the simplified reference tissue model 
(SRTM) or the Logan non-invasive analysis. We here kindly refer the reader to more 
extensive reviews about PET kinetics analysis and compartment modelling, e.g. 
Wernick et al. [48, 49].

The most frequently used outcome measure of PET receptor neuroimaging are 
variants of the binding potential (BP) that is proportional to the receptor concentra-
tion. The BP is determined as the ratio of Bavail (concentration of receptors available 
for binding) to KD (radioligand equilibrium dissociation constant) and can be 
derived from the Michaelis-Menten equilibrium Eq. (1) [48].

 
BP

B

KD

= max

 
(1)

In the following, we will refer to the outcome measure BPND, which is the BP 
times the fraction of free radioligand in the reference region. BPND is proportional to 
the ratio at equilibrium of specifically bound radioligand to that of non-displaceable 
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radioligand in tissue and is the outcome measure from reference tissue methods, as 
it compares the concentration of radioligand in receptor-rich to receptor-free regions 
[47]. The specific radioligand binding can be determined at equilibrium relative to 
either a reference region void of receptors (BPND), to plasma radioligand (BPP) or 
relative to the free (non-protein bound) plasma radioligand concentration (BPF). 
PET modeling and the corresponding binding potentials (BPND, BPP, BPF) are 
reviewed in more detail elsewhere [47, 50].

Tracer Kinetics

In general, the kinetics of a radiotracer falls into three classes: reversible, essentially 
irreversible and/or in between (Fig. 3). With reversible and completely irreversible 
radioligands it is easier to identify the model parameters than radioligands with in-
between kinetics [51].

Fig. 3 PET kinetics. In general, kinetics can be divided in three different classes (1) reversible 
kinetics (2) kinetics in between and (3) irreversible kinetics [51]. Figure 3 displays typical time 
activity curve (TAC) examples that fall into those three classes [8, 52–55] (To identify which group 
a given tracer belongs to, one needs to consider both the tissue time-activity curve (TAC) and the 
arterial input function (AIF))
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In Vivo Selectivity and Occupancy Measurements

In order to address the in vivo selectivity of a radioligand, blocking and/or competi-
tion experiments can be carried out. The radioligand is then administered either 
after or simultaneously with a known selective antagonist (blocking study) or chal-
lenged during the PET scan (competition study). If the tracer binds selectively to the 
same receptor pool as the “cold” drug then a reduction in the binding will be 
observed. This verifies the specificity of the radioligand binding. By determining 
the fraction of reduction in binding, one can calculate the occupancy of the target 
Eq. (2). In this way, the specificity of the radioligand binding but also the drug dose-
occupancy relationship can be determined.

 
Occupancy

BP BP

BP
baseline challenge

baseline

=
-

 
(2)

The occupancy of the target can thus be used to determine a “cold” drug’s recep-
tor occupancy at a certain target, which in turns is helpful to determine the maxi-
mum and optimal dose of the drug in, e.g., a clinical trial. Only well-established and 
very selective PET tracers are considered useful for such experiments.

 Success Criteria for a 5-HT2A Receptor Ligand

 Receptor Availability for 5-HT2A PET Imaging

One of the most relevant criteria for a PET radiotracer to be considered successful 
is its selectivity for its target receptor or enzyme. Thus, the radioligand must possess 
high affinity towards the target and low affinity for other receptors and proteins to 
maximize the target to background ratio. A successful PET tracer has often target 
affinity in the nanomolar or subnanomolar range. However, as can be seen from Eq. 
(3) the tissue binding of a radioligand not only depends on the target affinity and 
selectivity, but also on the number of target receptors available for binding (Bavail) 
compared to off-targets. For example, if Bavail for the desired target is much higher 
than Bavail for non-targets, then the observed binding may still reflect the target in 
question even if the radioligand displays higher affinity towards off-targets. 
Conversely, if a non-target binding site is abundant compared to the target itself, the 
binding signal is more likely to reflect the off-target, even if the off-target displays 
lower affinity than the wanted target [41]. For example, for the 5-HT2A receptor a ~ 
35-fold Kd difference over the 5-HT1A receptor is necessary in order to avoid more 
than 10% PET signal interference from the 5-HT1A receptors in hippocampus 
regions, whereas in the cortex only a tenfold selectivity is needed. This is due to the 
Bavail value of the 5-HT1A receptor compared to the 5-HT2A target [56]. For most 
targets, a 10–100 times higher binding of the target compared to other targets is 
considered acceptable.
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In the following, we will describe how in vitro data can be used to estimate a 
compounds ability to image a certain target. Equation (3) describes the detected 
PET or autoradiography signal, which is dependent on the selectivity and receptor 
density (neglecting unspecific binding components). For a good tracer, the first term 
representing the ability to image the target is much bigger than those of off/targets.
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A calculated measure (determined from in vitro affinity and Bavail data), which 
estimates the theoretical, observed binding ratio of the target to another off-target 
(tBRtarget/off-target) is defined by the product of the selectivity (S) and the target to off- 
target ratio (D).
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It allows a selectivity estimation of the theoretical signal of two receptors while 
correlating their affinity and abundance. The measure neglects any other signal, 
which does not stem from either the target or the regarding off-target. So to speak, 
in Eq. (3) only the target and one off-target are taken into account and their corre-
sponding values weighted.

Example: Calculation of the tBRtarget/off-target for altanserin in the caudate-putamen 
region for the target (5-HT2A) and for the off-target (5-HT1A): The affinity of altan-
serin for the 5-HT2A receptor is 0.13 nM and for the 5-HT1A receptor, it is 1570 nM 
(Table 1). Bavail/Bmax in caudate putamen is ca. 23 fmol/mg original wet tissue for the 
5-HT2A receptor (4) and 4 fmol/mg original wet tissue for the 5-HT1A receptor [56].
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Thus, the theoretical, observed binding (tBR5-HT2A/5-HT1A) of altanserin in the 
caudate- putamen represents ca. 70.000 more the 5-HT2A than the 5-HT1A receptor. 
Of course, one should critically review the calculated tBRtarget/off-target, since in vitro 
binding characteristics may not always predict in vivo binding characteristics. That 
is, because radioligands which are suitable for in vitro quantification may not neces-
sarily be ideal for in vivo PET imaging. PET tracers have to enter the brain through 
the BBB. The tracer can be a substrate of efflux pumps. Metabolism or pharmaco-
kinetics could further limit its use [41]. However, when taken these pre- considerations 
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into account, the tBRtarget/off-target is a good estimate of the in vivo binding of a given 
compound and to evaluate its presumable in vivo binding.

Another important issue in PET imaging is that in order to generate robust bind-
ing parameters, the density of the target protein/receptor in relevant brain regions 
needs to be sufficiently high [51, 57]. If the density of the target protein/receptor is 
very low, it is difficult to obtain a specific image of the target due to low signal-to- 
noise ratios, for example caused by non-displaceable or unspecific binding compo-
nents of the tracer itself or its metabolites. Non-displaceable binding refers to the 
compound’s propensity to bind to membranes, proteins, lipids or other cell compo-
nents without a specific and selective target, whereas unspecific binding refers to 
interactions with other well defined targets (e.g. receptors or enzymes). Furthermore, 
PET scanner detection limits as sensitivity and resolution can exclude any reason-
able interpretation when analyzing regions with very low target protein/receptors.

It is difficult to determine what the lowest possible Bavail number has to be in 
order to perform PET imaging. This is not surprising since this limit is strongly 
dependent on the tracer characteristics itself, in particular it depends on its affinity 

Table 1 Neuroreceptor densities (Bmax) of off-targets in relevant brain regions [4, 56, 65, 68, 
75–86]

Frontal 
cortex

Caudate- 
putamen Hippocampus Thalamus Cerebellum

5-HT2A López-Giménez 
(rat brain)a

116b 72

Kristiansen (rat 
brain)c

525 8

Hall (human brain)a 80 19–26d 25 v.d.e

Varnäs (human 
brain)a

56f 5–13 24g 6–11

5-HT2C Marazziti (human 
brain)h

5 15 v.d.e v.d.e

5-HT1A Varnäs (human 
brain)a

54f 1–2 85g 1–2

Hall (human brain)a 73 4 82g 4 6
D2 Boyson (rat brain)h 0–67 784 95 38 53
α1 Paermentier 

(human brain)i

33 185 77

Used ligands: [3H]MDL 100907, [3H]mesulergine, [3H]WAY 100635, [3H]spiroperidol and [3H]
prazosin for 5-HT2A, 5-HT2C, 5-HT1A, D2 and α1, respectively
aBmax was obtained from saturation experiments from cryosections, fmol/mg original wet tissue
bAverage from frontoparietal motor cortex lamina layers I–V
cSaturation binding characteristics from homogenates, fmol/mg protein
dOnly Bmax values for the nucleus caudatus, putamen showed binding in the range of non-specific 
binding
eVirtually devoid
fExternal layers
gCA-12, molecular layer
hBmax from human brain membranes, fmol/mg protein
iBmax was obtained from saturation experiments from cryosections, fmol/mg protein
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to the target as well as the degree of non-displaceable binding. However, PET 
studies of the serotonin transporter or extrastriatal dopamine D2/D3 receptors sug-
gest that a target density (Bmax) of 30–100 fmol/mg original wet tissue in human 
brain suffices for detection by PET [58–60].

 The In Vitro 5-HT2A Receptor Distribution

The 5-HT2A receptor distribution has been determined by autoradiography and 
5-HT2A receptor mRNA distribution by in situ hybridization studies. In rats, the two 
methods generate similar outcomes in the neocortex (strong labeling in lamina V), 
the caudate-putamen (stronger signal in caudal parts of the nucleus), the olfactory 
tubercle, and in several brainstem nuclei (pontine nuclei, motor trigeminal nucleus, 
facial nucleus) [61]. The highest 5-HT2A receptor density was found in the frontal 
cortex, medium in the caudate-putamen, less in the olfactory system, hippocampus, 
thalamus and the mesencephalon and lowest in the cerebellum [2, 62–66] (Fig. 4).

Fig. 4 Autoradiographic images of the total binding and non-specific binding, respectively, of 
(1/1) [18F]altanserin, (2/2/) [18F]MH.MZ and (3/3/) [3H]MDL 100907 at 14 μm rat brain sections. 
Images of [3H]MDL 100907 (b) and [18F]MH.MZ (c) were in complete agreement. The binding of 
[18F]altanserin (a) could not be blocked in striatum with the 5-HT2A antagonist ketanserin, demon-
strating the inferior binding characteristics of [18F]altanserin in vitro [62]
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In the human brain, 5-HT2A receptors distribute slightly differently with the 
highest binding in the frontal cortex (56–80 fmol/mg original wet tissue), medium 
binding in the caudate, the hypothalamus and the hippocampal formation  
(10–30 fmol/mg original wet tissue) and very low binding in cerebellum [4, 56]. 
Interestingly, Danish Landrace pigs showed a distinctly different distribution 
pattern in that cerebellar 5-HT2A receptor binding constituted up to 50% of that of 
neocortex [4, 67]. In comparison, it constituted below 2% compared to that in 
frontal cortex in rats [68].

In the absence of a suitable brain region void of 5-HT2A receptors, reference tis-
sue modeling could be viable with rat PET data while for pigs, correct quantifica-
tion necessitates some kind of arterial input function to be measured [67]. For use in 
humans, results are not quite consistent in that PET studies with [18F]altanserin have 
validated the cerebellum as a suitable reference region [69]. In contrast, the 5-HT2A 
receptor antagonist [11C]MDL 100907 have in some [70–72], but not in all PET 
studies [73] displayed signs of specific binding in cerebellum. In rats, the cerebel-
lum has been verified as a suitable reference region. Nevertheless, Maeshima et al. 
suggest omitting the outermost parts of the cerebellum when defining the reference 
region because of specific 5-HT2A receptor binding at the outermost Purkinje cell 
and molecular layer of the rat cerebellum [74].

In Table 1, we summarize published 5-HT2A receptor densities in human and rat 
brain tissue [4, 62, 65, 68, 75] as measured with either autoradiography or tissue 
homogenate. In addition, Bmax values of off-target receptors in the same brain area 
are displayed. It is important to keep in mind that because of laboratories’ different 
experimental set-ups and conditions (e.g. different radioligands, temperatures or 
buffer systems), the Bmax values in Table 1 may be difficult to compare directly. 
Furthermore, in contrast to tissue homogenate studies, autoradiographic experi-
ments determine the receptor density from one slice of the target region from where 
a region is drawn. Thus, depending on exactly where the slice is taken from, Bmax 
values may not accurately reflect the receptor distribution in the entire targeted brain 
volume, as tissue homogenate binding measures do [65]. In addition, the Bmax values 
determined in fmol/mg protein and in fmol/mg wet tissue cannot be directly com-
pared or converted. The Bmax value in fmol/mg protein is equivalent to ~ 5–10 times 
of the value determined in fmol/mg wet tissue. The conversion factor is depended 
on the protein content of the tissue, but the exact conversion factor is usually 
unknown.

In summary, Bmax and KD values can come out very differently and the absolute 
values should be taken with a grain of salt. However, these values may still reason-
ably well reflect target to off-target ratios (D). Table 1 is not an exhaustive summary 
of available studies but display the neuroreceptor densities that are comparable 
because of the radioligand used. The relevant neuroreceptor densities will be dis-
cussed further.

PET Imaging of the 5-HT2A Receptor System: A Tool to Study…



98

 Lipophilicity and Non-Displaceable Binding

Among various physical properties, the lipophilicity plays an important role for the 
success of a radiotracer. Lipophilicity can for example be determined experimen-
tally as the ratio between octanol/water and measured by the shake-flask [87] or by 
the HPLC method [88]. According to Lipinski’s “rule of five,” a logD7.4 value >5 is 
optimal for drug absorption and permeation into the CNS. If lipophilicity gets too 
high, the risk of prohibitively high non-displaceable tissue binding may result. Low 
lipophilicity prevents cell membrane permeability [51].

Rowley et al. suggested the ideal interval for small molecules to penetrate the 
BBB to be 2–3 [89]. However, published lipophilicity values often differ (see e.g. 
Table 2). Thus, a direct comparison of published values should be taken with a grain 
of salt if they are not tested within the same laboratory. Moreover, it is impossible 
from logD7.4 values to predict in vivo non-displaceable binding and there are also 
successful PET tracers described with lower or higher logD7.4 values [90, 91]. 
Consequently, lipophilicity determinations just allow a course assessment whether 
a compound possesses reasonably good BBB passage and low non-displaceable 
binding [41]. Rigid adherence to the “lipophilicity rule” may result in a self- fulfilling 
prophesy in the sense that the inclination to attempt developing radiotracers outside 
the “safe” range of lipophilicities.

In conclusion, estimated or measured lipophilicity data can give a rough estimate 
of BBB permeability and non-displaceable binding, and the data may be particu-
larly useful to optimize a good tracer candidate, when alternative analogue candi-
dates are available [92]. Table 2 displays logD7.4 for some 5-HT2A receptor PET 
tracers that will be discussed in this review.

Recently, immobilized artificial membrane (IAM) chromatography was pro-
posed to be a good measure to determine BBB penetration. Preliminary results 
showed a good correlation between the penetration and the determined permeability 
by IAM [96, 97]. Future studies are needed to verify this observation.

 Metabolism and Clearance Rate

Radiotracer metabolism and clearance rates are both crucial factors for the fate of a 
PET tracer. Rapid clearance results in difficulties with accurate determination of the 
input curve and reduces the accuracy of the subsequent mathematical modeling with 

Table 2 Published LogD7.4 data of 5-HT2A receptor tracers

Altanserin MDL 100907 (R)-MH.MZ Cimbi-36

LogD7.4 2.1–3.1 [68, 93, 94] 1.9–3.8 [68, 70, 93, 94] 2.8 [93] 3.43 [95]a, 3.2b

aData measured in our lab
bclogD7.4 with Pallas
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an arterial input function [41]. Radiometabolites can interfere with the PET signal 
of the intact radiotracer. Either they can increase the non-specific signal or even 
worse, bind to the same target as the parent compound and falsify the specific 
binding reading. Polar metabolites are less likely to cross the BBB and are there-
fore generally preferable [41, 51, 91, 98, 99]. Metabolites that cross the BBB 
should not have affinity for any target within the brain, but if they do, a correction 
for non- specific binding interference caused by lipophilic radiometabolites can be 
done. Use of, for example, a bolus–infusion design can be helpful. In this experi-
mental setup, the radioligand is injected as a bolus followed by constant infusion 
to attain steady-state in plasma and brain. Alternatively, the parent compound 
and its radiometabolites can be entered in a dual-input function analysis [41, 69]. 
Inactive hydrophilic metabolites must also be measured to correct the plasma 
input function. Typically, a successful radiotracer has a limited number of polar 
metabolites that do not constitute to the majority of the brain radioactivity in the 
early frames of the scan and show 50–90% metabolism towards the end of the 
imaging process [51].

Furthermore, it is important to remember that PET radiometabolites should be 
determined at tracer levels. Reaction and enzyme kinetics are concentration depen-
dent. Finally, it should be kept in mind that radioligand metabolism often shows 
some interspecies differences and therefore do not readily translate from one spe-
cies to another.

Finally, PET tracers that are substrates for efflux transporters such as the perme-
ability glycoprotein (P-gp) could potentially confound the usefulness of the radioli-
gand, particularly if efflux transporters are expressed differently within various 
brain regions.

 Current 5-HT2A Receptor PET Tracers

Today, several PET radioligands for the 5-HT2A receptor system have been evalu-
ated [4, 41, 61, 62, 64–66, 68, 75, 93, 100–102], e.g. [11C]ketanserin [103], [18F]
fluoroethylketanserin [104], [11C]NMSP [105] [11C]MBL [106], [18F]setoperone 
[107], [18F]fananserin [108], [18F]MH.MZ [64, 109, 110], (R)-[18F]MH.MZ [64], 
[18F]altanserin [111], [18F]deuteroaltanserin [112], [11C]MDL 100907 [73], and 
[11C]Cimbi-36 [95]. Especially, the last five structures appear to be very promising 
due to their selectivity profile, functional imaging possibilities and metabolism 
(Table 3). This chapter will focus on these structures in respect to their in vitro pro-
file, their in vivo tracer behaviour as well as their application in 5-HT2AR PET imag-
ing. A more thorough review about synthesis and labeling strategies of these ligands 
was recently published [113].
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 Antagonistic PET Tracers

 [18F]Altanserin and [18F]deuteroaltanserin

In Vitro Profile

Altanserin (Ki  =  0.13  nM) is a fluorobenzoylpiperidine derivative structurally 
related to ketanserin and historically, it is by far the most applied 5-HT2A PET tracer 
[41]. However, previous studies have questioned the selectivity of altanserin in PET 
studies [62, 115], since a moderate affinity of altanserin for both the α1-adrenergic 
receptor (Ki = 4.55 nM) and the 5-HT2C receptor (Ki = 6.0 nM) have been found 
(Table 2). In addition, the relatively high abundance of D2 receptors combined with 
altanserin’s affinity for this receptor (Ki = 62 nM) rise concerns in striatal regions 
(nucleus caudatus and putamen).

However, a closer look at the tBRtarget/off-target for altanserin debilitates these specu-
lations to some extent. Even in a worst case scenario, a tBR5-HT2A/5-HT2C of >10 is 
calculated in frontal cortex and thalamus regions. In contrast, the tBR5-HT2A/α1 is cal-
culated to be <10  in all other regions. Because of this concern, Kristiansen et al. 
carried out an in vitro study in rat brain homogenate (frontal cortex and cerebellum) 
to examine to which extent non-specific binding influences the signal of altanserin. 
The binding pattern of [18F]altanserin was not altered by a 5-HT2B/2C selective antag-
onist (SB 206553) or by prazosin, a α1 selective ligand [68, 116]. However, in an 

5-HT2A 5-HT2C 5-HT1A D2 α1

MDL 100907 0.36 nM 107 nM > 10.000 nM 2250 nM 128 nM
(R)-MH.MZ 0.72 nM 53 nM > 10.000 nM 2686 nM 335 nM

altanserin 0.13 nM 6 nM 1570 nM 62 nM 4.55 nM
Cimbi-36 1.01 nM 1.7 nM 1255 nM > 10.000 nM 1256 nM
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Table 3 Chemical structures and selectivity profile of MDL 100907, (R)-MH.MZ, altanserin, and 
Cimbi-36

More selectivity data are reported in following references [4, 64, 75, 93, 95, 114, 115]
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autoradiography study with [18F]altanserin strong binding of the tracer was seen in 
rat striatum. The 5-HT2A selective antagonist ketanserin could not displace the bind-
ing, but prazosin and raclopride (a selective D2 antagonist) to some extent (Fig. 4) 
[62]. As mentioned above, autoradiography studies may not always be representative 
of the images obtained at tracer doses and consistently, [18F]altanserin PET images 
seems to largely represent 5-HT2A receptor binding [69].

 Metabolism

In humans, four radiolabeled metabolites of [18F]altanserin have been described [69, 115, 
117], whereas in pigs only three were detected [67]. Unfortunately, all radiometabolites 
are able to cross the BBB in pigs, non-human primates and humans [69, 118]. However, 
only two have been demonstrated to significantly contribute to the total amount of mea-
sured radioactivity within the brain [69, 118–120]). They were identified as [18F]altan-
serinol and [18F]4-(4-fluorobenzoyl)piperidine ([18F]FBP) [115] (Scheme 1).

Scheme 1 Major metabolic pathways of [18F]altanserin
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Both radiometabolites have negligible specific binding to 5-HT2A receptors 
in vitro [115], but they cross the BBB and bind non-specifically and fairly uniformly 
across brain regions in humans [119]. Especially in regions with low levels of 
5-HT2A receptors like the cerebellum [2, 121], the presence of radiometabolites can 
complicate modeling [122]. In addition, these lipophilic metabolites contribute to 
the non-specific binding and thus lead to a lower non-displaceable binding poten-
tial. Another drawback of altanserin is that its metabolism is highly variable between 
individuals (Fig. 5a) [67], and thus, population based input functions do not work. 
This is of particular interest for tracers where reference-tissue models do not apply. 
However, in contrast to pigs, cerebellum seems to be a fairly valid reference region 
in the rodent, monkey and human brain [62, 67].

Finally, it should be mentioned that [18F]altanserin shows huge interspecies dif-
ferences in radioligand metabolism. Compared to humans, [18F]altanserin is slowly 
metabolized in rodents and the lipophilic metabolite altanserinol or other lipophilic 
species are negligible. In rodents; only polar metabolites were detected over 3 h 
both in plasma and brain [123–125].

In 1999, a first attempt was carried out to reduce the metabolic rate of [18F]altan-
serin by introducing a carbon-deuterium (C-D) bond trying to suppress 
N-dealkylation. This isotopic effect relies on the greater C-D bond strength. As a 
result, [18F]deuteroaltanserin showed 29% higher plasma parent-to-metabolite ratios 
than [18F]altanserin [115].
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In Vivo Profile

As mentioned earlier, [18F]altanserin has so far been the most frequently applied 
5-HT2A receptor PET radiotracer [5, 41, 99]. In the rat brain, it showed in vivo selec-
tivity by blocking and challenge experiments with the 5-HT2A receptor antagonists 
ritanserin, setoperone and ketanserin [111, 116, 126, 127]. Furthermore, both Riss 
and Kroll et al. showed that [18F]altanserin is suitable for quantification of 5-HT2A 
receptors in Lister hooded rats as well as in Sprague-Dawley rats and that no 

Fig. 5 (a) Metabolism profile of [18F]altanserin in pigs: A high inter-individual variation is 
observed [67]. The metabolism profile in other species is comparable (b) Representative metabo-
lism profile of MDL 100907 derivatives; displayed is the metabolism of (R)-[18F]MH.MZ [67]
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radioactive metabolites were observed within the rat brain. SRTM was possible 
[124, 126]. However, the detected cerebral uptake of [18F]altanserin was very low 
(Standard Uptake Value (SUV) ~ 0.7, compared to that observed in humans 
(SUV = 1.26) [128]). This is probably due to species differences in P-glycoprotein 
(P-gp) activity. Syvänen et al. demonstrated that the SUV of [18F]altanserin increased 
by a factor of 2.6 in cerebellum in rats and 1.8 in mini-pigs after P-gp inhibition 
[129]. These results could be repeated by Kroll et al. in 2014 [130]. However, the 
observed low uptake in rats might cause restrictions in experimental usage and 
reduce test-retest reliability. In general, the observed strong P-gp depency of 
[18F]altanserin in rats questions its use in this particular animal model. Nevertheless, 
a BPND of 1.9–2.0 was reported for rat frontal cortex [124, 126]. In 2013, Martín 
et al. reported the first biological evaluation study of [18F]altanserin after focal cere-
bral ischemia in rats [131]. A dramatic decrease in [18F]altanserin binding in isch-
emic cortex and striatum was observed. These changes are in accordance with 
neurological and behavioral recovery over time.

In 1994, the first human [18F]altanserin study was conducted by Biver et al. [122]. 
Further studies established– without taking the radiolabeled metabolites into 
account—that the BPND was 2.3–2.9 in human cortex [20, 132, 133]. The binding of 
[18F]altanserin was successfully blocked by ketanserin [69, 128]. As discussed 
before, [18F]altanserin produces radiometabolites, which cross the BBB in humans 
and contribute to the non-specific binding. Thus, complex kinetic modeling is 
required for quantification. For example, a dual-input function approach was used by 
Price et al. in baboons and humans [119, 120]. However, the statistical quality of PET 
and HPLC data complicates the extraction of binding parameters making dual input 
functions difficult by increasing the experimental complexity (scan times >90 min, 
many arterial blood samples for HPLC analysis) and patient discomfort due to the 
scan duration. Thus, new and simpler methods to quantify the binding of [18F]altan-
serin were needed. As a result, a bolus–infusion protocol was developed accounting 
for radiometabolite binding within the brain. This is possible because within the 
resulting steady-state situation the non-specific binding of radiolabeled altanserin 
and its metabolite(s) can directly be subtracted from each other [112, 134]. 
Furthermore, Pinborg et al. improved this steady-state approach by reducing the infu-
sion time to just 2 h. This resulted in a higher feasibility to conduct [18F]altanserin 
human PET studies [69]. In general, the bolus–infusion paradigm was shown to have 
excellent test–retest reliability in large brain regions with high binding [134]. Figure 6 
displays a typical distribution profile of [18F]altanserin in humans.

[18F]deuteroaltanserin was developed to prevent or substantially decrease the 
production of a lipophilic metabolite. The resulted product also led to higher brain 
uptake in baboon and humans, as compared with [18F]altanserin. In this way, the 
cortical- to- cerebellar ratio in humans was increased by 26%, suggesting it might be 
a superior PET radioligand [112]. Test-retest reliability and 5-HT2A receptor speci-
ficity was essentially equivalent to that of [18F]altanserin in baboons [135, 136]. 
Since then, only two further studies have been published using [18F]deuteroaltanse-
rin in humans [137, 138]. It remains to be seen whether this ligand will become as 
successful as its predecessor [41].
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 [11C]MDL 100907 and [18F](R)-MH.MZ

[11C]MDL 100907

In Vitro Profiles

MDL 100907 (Kd = 0.14–0.19 nM) belongs as altanserin to the 4-piperidine deriva-
tive class. It is a reversible, highly selective 5-HT2A ligand with subnanomolar affin-
ity. But compared to altanserin, MDL 100907 shows a superior tBRtarget/off-target in all 
relevant brain regions. Radioligand binding and autoradiography studies confirmed 
its in vitro selectivity and high specific binding in rat, pig, nonhuman primate, and 
human brain, making it the first truly selective 5-HT2A receptor ligand [4, 41, 61, 65, 
67, 68, 75]. Thus, MDL 100907 should allow direct PET visualization and charac-
terization of 5-HT2A receptors without the need of blocking additional sites.

Remark: The difference in MDL 100907’s selectivity profile compared to altan-
serin’s could be caused by a different binding mode of both tracers. Whereas altan-
serin binds to the 5-HT2A receptor with the p-fluorobenzoyl moiety into the 
hydrophobic binding pocket of the receptor [139], it appears that MDL 100907 
related 4-piperidinemethanol derivatives binds with the p-fluorophenylethyl residue 
in this hydrophobic binding pocket, so to speak vice versa [110].

Metabolism

Scott et al. studied the metabolism of MDL 100907 in rats and dogs extensively. 
These pharmacokinetic studies revealed that the drug is crossing the BBB and binds 
in the brain. It undergoes extensive first-pass metabolism to an active metabolite 

Fig. 6 Specific 5-HT2A receptor binding by [18F]altanserin. Highest densities of this receptor are 
detected in cortical areas, very low ones in hippocampus and the cerebellum. The color table indi-
cates receptor binding potential
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(MDL 105725) (Fig. 7), but the permeability of MDL 100907 is more than four 
times higher than that of MDL 105725. Furthermore, no significant metabolism to 
MDL 100907 could be detected in the brain. Thus, their data suggest that MDL 
100907 is the predominant active species present within the brain, even at high 
doses of MDL 100907 [140]. In humans, [11C]MDL 100907 displays a rapid metab-
olism and has thus a similar metabolism profile [70, 72, 141]. Figure 5 compares the 
metabolism of a [11C]MDL 100907 (Fig. 5b), with that of [18F]altanserin (Fig. 5b).

In Vivo Profile

[11C]MDL 100907 showed selective 5-HT2A binding in various species, e.g. in rat, 
non-human primate and human brain tissue [4, 27, 61, 75]. Cortex-to-cerebellum ratio 
of 3.5–4.5 in both rats and non-human primates were reported. The binding could be 
blocked with stable MDL 100907 and ketanserin [73, 142]. The first human [11C]MDL 
100907 study was conducted in 1998 by Ito et al. and analyzed with SRTM [70]. 
Further studies have validated the methodology for modeling [11C]MDL 100907 bind-
ing in PET studies, and identified that two-tissue compartment modeling (2-TCM) 
using arterial input is superior to reference tissue models [8, 9, 41, 72, 143–147]. 
Recently, Meyer et al. demonstrated the feasibility of a non- invasive graphical analy-
sis (NIGA) of the bindings kinetics of [11C]MDL 100907 [8]. In general, 2-TCM or 
NIGA resulted in a detected BPND of 2.2–3.0 in cortex regions for [11C]MDL 100907 
[8, 9, 71, 72, 144, 146–149] and test–retest variability for the BPND in cortex was very 
good [146]. However, [11C]MDL 100907 showed slow kinetics and thus quantifica-
tion may become problematic. This is maybe the reason why so far only a limited 
number of clinical [11C]MDL 100907 have been reported compared to those of 
[18F]altanserin. However, in recent years the number of human PET scan with 
[11C]MDL 100907 increased (PubMed search). Figure 8 displays a typical [11C]MDL 
100907 baseline and block human PET scan. So far, no dependency of [11C]MDL 
100907 on P-gp has been reported. However, it is very likely that [11C]MDL 100907 
displays the same behavior as (R)-[18F]MH.MZ (see next section).

(R)-[18F]MH.MZ

In Vitro Profile

(R)-MH.MZ is structurally related to MDL 100907 and was developed to combine 
the superior selectivity of MDL 100907 with the superior isotopic characters of 
fluorine-18 for clinical studies.

Fig. 7 Metabolic pathway of MDL 100907 derivatives
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Regarding the tBRtarget/off-target, (R)-MH.MZ shows very high values in all relevant 
human brain regions. Thus, the tBRtarget/off-target of (R)-[18F]-MH.MZ is comparable to 
that of MDL 100907 in humans.

Metabolism

(R)-[18F]MH.MZ displays a similar metabolism profile compared to [11C]MDL 
100907 in mice, rats and pigs [62, 64, 67, 109]. Only one polar radioactive metabo-
lite was detected, which was not able to cross the BBB, at least in rats and pigs 
[64, 67]. Furthermore, (R)-[18F]MH.MZ displays, in contrast to [18F]altanserin, an 
inter- species and inter-individual stable and reproducible metabolism possibly 
allowing for population based metabolite correction of the input function [67]. At 
the moment, it is unknown if humans metabolize (R)-[18F]MH.MZ in the same way. 
Finally, [18F]MDL 100907 has recently been synthesized and evaluated [150–152].  
[18F]MDL 100907 is most likely metabolized to its 3-OH-analogue [18F]MDL 
105725 (see Fig. 7), which potentially enters the brain and interferes with the inter-
pretation of [18F]MDL 100907 uptake. Thus, [18F]MDL 100907 does not seem to be 
a useful alternative to [11C]MDL 100907 or (R)-[18F]MH.MZ.

In Vivo Profile

(R)-[18F]MH.MZ reveals comparable in vivo binding characteristics compared to 
[11C]MDL 100907. μPET studies in rats and mice showed a BPND of 2.6 in frontal 
cortical regions for (R)-[18F]MH.MZ using SRTM [64, 109]. In pigs, the racemic 
version of (R)-[18F]MH.MZ revealed a BPND of 3.3  in cortex using one-tissue 

Fig. 8 Parametric binding potential maps generated by voxel-wise non-invasive graphical analy-
ses. Upper row, baseline study; lower row, blocked study after pretreatment with 30 mg mirtazap-
ine. Identical color scaling was used for both images [8].
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compartment modeling (1-TCM) [67]. In addition, the non-specific binding was 
low. Unfortunately, the time–activity curves showed a very slow washout from rat 
and pig brain complicating modeling [64, 67, 109]. As it is the case for [18F]altanse-
rin, (R)-[18F]MH.MZ is also a P-gp substrate and in P-gp knockout mice, brain 
concentrations of (R)-MH.MZ were about fivefold higher than in wild-type animals 
[153]. Recently, the first human PET study with (R)-[18F]MH.MZ was published by 
Kramer et al. (Fig. 9) [154]. Preliminary results indicate that (R)-[18F]MH.MZ is 
indeed able to image the 5-HT2A receptor system accurately. It remains open whether 
(R)-[18F]MH.MZ has better characteristics than [18F]altanserin in human PET 
experiments.

 Comparison of Labeled MDL 100907 Derivatives and [18F]altanserin 
for PET Imaging

MDL 100907 vs. (R)-[18F]MH.MZ: Carbon-11 vs. Flourine-18

The selectivity and in vivo binding profile of (R)-[18F]MH.MZ and [11C]MDL 100907 
is very comparable. The advantage of [11C]MDL100907 over (R)-[18F]MH.MZ is 
that it allows for conduction of test-retest experiments in the same subject on the 
same day. This is possible because of the 20.4 min half-live of carbon-11. Test-retest 
experiments, often performed on the same day and with an intervention in between, 
is an elegant way to minimize examination time for the patient (1 day instead of 2) 
and can also be used to evaluate the robustness of quantification methods. Caution, 
however, needs to be taken to avoid spill-over effects, e.g., if non-tracer doses accu-
mulate from scan 1 to 2. The potential confound of circadian rhythm should also be 
considered. Test-retest reliability thus constitutes an elementary part of every tracer 
evaluation. For [11C]MDL 100907, test-retest variability was tested in nine healthy 
volunteers on the same day, with a 60 min interval between the two scans. Test–
retest variability was very good (7–11%) in most neocortical regions.

Fig. 9 The PET/MRI fusion image (averaged 90–105 min. p.i.) shows (R)-[18F]MH.MZ binding 
to cortical 5-HT2A receptors in the human brain. Yellow and orange areas represent regions with 
high tracer retention and receptor density (predominantly cortex) whereas colder areas like cere-
bellum show very low uptake. From left to right are displayed transversal, sagittal and coronal 
views (Courtesy of Dr. Vasko Kramer)
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The advantage of (R)-[18F]MH.MZ over [11C]MDL100907 is that the longer half 
life of flourine-18 (t½ = 110 min) allows the user to transport the tracer to other 
PET-scanner facilities within a range of several hundred kilometers. Furthermore, 
more individuals can be scanned since more activity can be produced with a sin-
gle production and finally, higher specific activities (As) compared to carbon-11 
(t½ = 20.4 min) can be reached [62, 64, 93, 109]. In principle, fluorine-18 also allows 
for a better resolution due to its lower β+−energy of the emitted positron [44]. It also 
allows performing longer PET scans, which is particularly helpful for tracers like 
(R)-[18F]MH.MZ, with slow, but reversible kinetics. Longer scan times should in 
principle lead to better statistics, which allow more precise modeling. Obviously, 
the half-life of fluorine-18 also restricts the possibility of test-retest studies at the 
same day. However, 18F–tracers allow performing intervention studies within one 
scan, thereby reducing time, radiosynthesis efforts and possibly radiation exposure. 
Unfortunately, tracers with slow kinetics i.e. tracers that have a slow dissociation 
constant (in Fig. 2, k4) and thus bind relatively long to the receptor, are often not 
very susceptible to such a study design. This is for example the case for [18F]MH.MZ 
[155]. Test- retest studies at different days are inconvenient for patients (especially 
for patients with neurodegenerative or mental disorders). Even test-retest experi-
ments in animals at different days are tedious. For example, the facility needs a 
suitable  infrastructure to house research animals. Furthermore, care should be taken 
to avoid stressing the animals, which may bias the second scan.

[18F]altanserin vs. (R)-[18F]MH.MZ

Recently, we conducted a direct comparison of [18F]MH.MZ and [18F]altanserin 
in pigs to validate their tracer characteristics [67]. As expected, slow kinetics of 
[18F]MH.MZ complicated the PET modeling. But its higher affinity allows for quan-
tification of brain areas with low 5-HT2A receptor density whereas [18F]altanserin is 
better suited for high-binding regions. The relatively high non-specific binding 
component (caused by lipophilic radiometabolites and altanserin’s lipophilicity) 
and the less selective 5-HT2A receptor profile interfere with 5-HT2A receptor quanti-
fication and modeling in low binding regions [67]. However, in high binding regions 
[18F]altanserin’s fast and reversible kinetics simplifies kinetic modeling and the non- 
specific binding signal can be neglected compared to the selective 5-HT2A binding 
[51, 67]. Figure 10 compares the time-activity curves (TACs) of [18F]MH.MZ and 
[18F]altanserin in Danish landrace pigs.

 [11C]MDL 100907, (R)-[18F]MH.MZ and [18F]altanserin in μPET Studies

Quantification of receptor binding in small animals is of special interest as it can be 
directly related to the animals’ behavior. Several well established behavioral rat 
models exist, e.g. for addiction [156] and thus PET imaging in such models allows 
a direct in vivo insight into the molecular differences.
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Fig. 10 TACs and metabolism-corrected input curves for [18F]MH.MZ (a) and [18F]altanserin (b). 
Data are presented as SUV. [18F]MH.MZ: Baseline (n = 1), challenge (n = 2), pre-treatment (n = 1). 
[18F]Altanserin: Baseline (n = 1), pre-treatment (n = 1) [67]

[11C]MDL 100907, (R)-[18F]MH.MZ and [18F]altanserin can be provided in 
reasonable specific activities allowing small animal experiments. They were suc-
cessfully applied to rodents using SRTM [64, 126, 157]. However, test-retest exper-
iments in the same small animal are usually not practical. Thus, a 18F–tracer appears 
to be more practical since one single production provides enough activity for several 
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μPET experiments throughout the day. In a direct comparison of [18F]altanserin and 
(R)-[18F]MH.MZ, the latter appears to be superior for small animal PET molecular 
imaging, mainly due to its higher in  vivo selectivity profile in frontal cortex 
(BPND = 2.6 ((R)-[18F]MH.MZ) against BPND = 1.9 ([18F]altanserin)) and its higher 
cerebral uptake (max SUV = 1.8 ((R)-[18F]MH.MZ) against SUV 0.69 ([18F]altan-
serin)) [64, 126, 127]. A higher BPND enables one to detect smaller changes or 
manipulations of the receptor status. Higher uptake gives better count statistics. In 
addition, [18F]altanserin also appears to be more sensitive to P-gp in rodents favor-
ing (R)-[18F]MH.MZ as the PET tracer of choice in this animal model. However, 
(R)-[18F]MH.MZ is also a P-gp substrate. A highly selective PgP-insensitive 5-HT2A 
receptor PET 18F–tracer is still not available for rodent PET studies. However, we 
believe that (R)-[18F]MH.MZ shows a reasonable tracer profile to be used in rodents.

 Agonist PET Tracers

Today, the vast majority of PET tracers available are antagonists. This is not too 
surprising given that it is easier to identify selective antagonists than agonists/
inverse agonists and accordingly the number of antagonists by far outnumbers avail-
able agonists/inverse agonists discovered in pharmaceutical drug screening pro-
grams [41]. However, agonistic radiotracers could have some advantages in respect 
to functional imaging. According to the extended ternary model (Fig. 11), agonists 
only bind to the receptors` high-affinity state, whereas antagonists label the whole 
population of receptors. Thus, antagonists provide a good indication of the total 
available receptor number. In contrast, radiolabeled agonists reflect the number of 
receptors, which are able to induce neuroreceptor signaling [41, 158–160]. However, 
it is questionable if PET agonists can directly quantify the number of these active 
states since agonists should also be more sensitive to the endogenous neurotransmit-
ter. This is because agonists and the endogenous neurotransmitter compete accord-
ing to the extended ternary model towards the same binding side. Obviously, these 

R

AR

R*

AR*

Fig. 11 The extended ternary complex model explains the existence of different affinity states 
of the same receptor. The model postulates that a partially activated receptor conformation (R*) 
exists in equilibrium with a ground state (R) and an activated G protein-coupled (AR*) confor-
mation. Agonists bind with higher affinity to the partially activated (G protein coupled) R* state, 
also known as the high affinity state (RHIGH) and with lower affinity to the uncoupled ground state 
(R), also known as the low-affinity state (RLOW). Antagonists bind with equal affinity to all states. 
This explains why agonists label a smaller fraction of the same receptor compared to antagonists 
[159, 166]
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considerations only play a role if a relatively small proportion of the total available 
receptor states are in the receptors` high-affinity state. For the 5-HT2A receptor, 
some in vitro data suggest that 40–60% of the receptors are in the high affinity state 
[161, 162] and thus, 5-HT2A agonists should indeed be more susceptible to competi-
tion with endogenous serotonin [41, 159, 163, 164]. The theory has been verified for 
the D2 receptor system, which is assumed to be comparable to the 5-HT2A receptor 
system (50% of D2 receptors are in the high affinity state and 50% are in the low 
affinity state). For example, Narendran et al. and Cumming et al. reported that D2 
receptor agonist radiotracers are superior to antagonist radiotracers in measuring 
dopamine release in vivo in monkeys and mice [164, 165].

 [11C]Cimbi-36

In Vitro Profile

Cimbi-36 is a 5-HT2A phenethylamine agonist structurally related to 1-(2,5- dimeth
oxy- 4-iodophenyl)-2-aminopropane (DOI) with an affinity of 1.01 nM. The intrin-
sic activity showed nearly full agonistic activity, with 87% activation of the 5-HT2A 
receptor compared to 5-HT itself. The EC50 was determined to be 0.51 nM [95]. The 
selectivity profile of Cimbi-36 showed highest affinities for the 5-HT2A, 5-HT2B and 
5-HT2C receptor. Against targets other than 5-HT2 receptors, Cimbi-36 showed at 
least a 30-fold lower affinity (Table 1) [95]. tBRtarget/off-target revealed selectivity of 
Cimbi-36 against most relevant neuroreceptors other than the 5-HT2B and 5-HT2C 
receptor. Especially in the striatum, but also in the hippocampus the measured PET 
signal may reflect more 5-HT2C binding than 5-HT2A binding. However, in cortical 
regions where the highest abundance of 5-HT2A is localized, Cimbi-36’s tBRtarget/off- 

target should allow selective quantitative PET 5-HT2A imaging. As mentioned above, 
Cimbi-36 also shows a high affinity towards 5-HT2B receptors (Ki = 0.5 nM) [95]. 
Since the brain 5-HT2B receptor density is very low [167–170], binding to this 
receptor should not interfere. Consequently, the cortical Cimbi-36 binding signal 
stems most likely from 5-HT2A receptor binding, whereas binding in some other 
brain regions may stem from a combination of receptors.

Metabolism

[11C]Cimbi-36 is primarily metabolized via 5′-demethylation, followed by conjuga-
tion to glucuronic acid (Fig. 12). Both metabolic steps (demethylation and gluc-
uronidation) are very fast, with only minute levels of intermediate phenol M1 
present at any time point. The glucuronide M2 is eliminated much slower from 
plasma [171]. This radiolabeled metabolite reached a maximum in plasma at around 
20–40 min after injection and then dropped off slightly (Fig. 12). HPLC analysis of 
homogenized pig brain tissue taken 20  min after [11C]Cimbi-36 injection only 
showed negligible amounts of this metabolite in frontal cortex tissue compared to 
plasma [95, 171].
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In Vivo Profile

Several attempts to develop a 5-HT2A selective agonist tracer have been done in the 
past [95, 172]. [11C]Cimbi-36 is the most promising tracer today. It was evaluated 
first in pigs and showed an accumulation pattern in accordance with the known 
5-HT2A receptor distribution. Highest uptake was observed in cortical areas, lowest 
in cerebellum. The cortical binding could be blocked by pretreatment with ketanse-
rin and observed kinetics appeared to be reversible. Further, the cortical BPND was 
determined to be 0.82 using SRTM.  One lipophilic metabolite was formed. 
Unfortunately, brain tissue analysis 60 min after i.v. injection of [11C]Cimbi-36 con-
tained insufficient radioactivity to determine whether this metabolite could enter the 
brain to any appreciable amount [95]. Future studies have to be carried out to deter-
mine the influence of this metabolite on PET quantification. In 2013, a preclinical 
safety assessment of [11C]Cimbi-36 was reported [173]. Administration of the tracer 
seemed to be associated with an average radiation burden and no adverse effects 
were seen in the animals. The same year, the first study with [11C]Cimbi-36 in non- 
human primates was reported [174]. Strong binding in cortex as well as in the cho-
roid plexus was observed. Since the choroid plexus is known to be an area with a 
high 5-HT2C receptor concentration and Cimbi-36 displays low nanomolar affinity 
towards these receptors, the observed binding pattern suggests that in regions with 
high 5-HT2C receptor density, this receptor may be imaged with [11C]Cimbi-36 [77]. 
Subsequently, the selectivity profile of [11C]Cimbi-36 was further investigated in the 

Fig. 12 Metabolic profile of [11C]Cimbi-36. HPLC analysis of plasma (left), metabolism rate in 
pig plasma (right) [95, 171]
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non-human primate brain. No in  vivo 5-HT2C binding was detected in cortex. 
However, the radiotracer accumulation in the choroid plexus was not displaceable 
by the 5-HT2A selective antagonist, MDL 100907, but by the 5-HT2C receptor selec-
tive antagonist, SB 242084. This suggests that [11C]Cimbi-36 offers the possibility 
to image selectively two receptors in distinct brain areas, namely the 5-HT2A recep-
tor in the cortex and the 5-HT2C in the choroid plexus. In other brain regions (e.g. in 
the hippocampus or in the striatum), the BPND was partly altered by SB 242084 as 
expected from the calculated tBRtarget/off-target and selective 5-HT2A imaging may be 
restricted [174]. Recently, we published the first human PET study of [11C]Cimbi- 36 
showing high cortical brain binding, displaceable with ketanserin (Fig. 13). Refe-
rence tissue modeling resulted in a small predictable bias in PET outcome measures 
compared to two-tissue compartment modeling using arterial input [175].

 18F–Labeled Derivatives of Cimbi-36

As mentioned earlier, fluorine-18 displays several advantages from a clinical 
 perspective. Therefore, several groups have tried to develop a 18F–version of  
[11C]Cimbi-36 [176, 177]. Unfortunately, none of the presented derivatives showed 
suitable tracer characteristics for in vivo PET neuroimaging [177]. Low brain uptake 
and extensive bone uptake limited the use of these compounds. Very recently, 
Prabhakaran et al. reported an extended in vitro evaluation of one of these com-
pounds [178].

Fig. 13 Summed PET images of [11C]Cimbi-36 (20–80  min. p.i.). Strong binding to cortical 
5-HT2A receptors in the human brain is observed. From left to right are displayed sagittal and 
transversal views
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 PET Studies of the 5-HT2A Receptor System

 Imaging in Brain Disorders

In Europe 23% of healthy years are lost due to brain diseases, while the amount is 
50% for “years lost with disability”, meaning that approximately one-third of the 
burden of illness is caused by brain ailments [179]. Although important achieve-
ments have been made, brain disorders constitute an area where new and effective 
treatments are most needed. As the average age of the population in industrial coun-
tries continues to rise, an increasing number of neurodegenerative and psychiatric 
illnesses will place a significant burden on society due the associated health care 
costs [179].

The 5-HT2A receptor displays a potential target for researchers and pharmaceuti-
cal companies, because of its involvement in many disorders, including depression, 
schizophrenia, obesity and AD.  We will here summarize the results gained by 
in vivo PET studies that have been carried out to study this involvement.

 Depression

Today depression affects an estimated 121 million people worldwide. Many studies 
have shown that the 5-HT2A receptor system is implicated in this disease. Postmortem 
studies suggest that there is increased 5-HT2A receptors in prefrontal cortex in 
patients with depression and in suicide victims [149, 180–183]. In contrast to the 
postmortem work, in vivo imaging studies of depressed patients have been more 
conflicting, decreased [133, 183–185], or increased [149, 186] 5-HT2A receptor 
binding in the cerebral cortex has been observed. However, this discrepancy could 
be explained either due to methodological problems related to inappropriate radio-
ligands used or to psychotropic medications prior to scanning [115, 136, 149, 183]. 
In this regard, Meyer et al. carried out in 2003 a study with depressed patients who 
were drug free for more than 3 months. In their work, increased 5-HT2A receptor 
binding in the frontal cortex could be detected with PET for the first time [186]. 
Bhagwagar et al. reported the same observation 3 years later [149].

 Schizophrenia

The 5-HT2A receptor has been shown to be involved in symptoms of schizophrenia. 
In particular, it is thought to critically contributing to the pharmacological action of 
atypical antipsychotics such as olanzapine, risperidone or clozapine [25, 187–189]. 
Furthermore, hallucinogenic drugs, including mescaline, psilocybin and LSD, exert 
their effect by stimulating the 5-HT2A receptor. Intake of hallucinogens results in 
symptoms that partly are overlapping with those of a schizophrenic psychosis 
[190–194]. In murine models, 5-HT2A receptor-regulated pathways on cortical 
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pyramidal neurons mediate the signaling pattern and behavioral responses to 
hallucinogenic drugs [195, 196]. Post mortem studies to determine the 5-HT2A 
receptor protein content or mRNA expression in the frontal cortex of schizophrenic 
subjects [196–201] have reported conflicting results. Whereas some studies suggest 
an up- regulation of 5-HT2A receptor binding sites, others point toward the absence 
of an alteration or even towards 5-HT2A receptor down-regulation [196]. The dis-
crepancies were attempted to be explained by factors such as too small sample sizes, 
treatment effects or neglecting age effects [25, 195, 199, 202]. Recently, Muguruza 
et al. suggested that functional selectivity could be the reason for the discrepancies 
gained with different radiolabeled compounds such as ketanserin (antagonist) or 
LSD (partial agonist) [196].

Since 1998, several in vivo PET studies with [11C]NMSP and [18F]setoperone 
were published [203–206]. In three studies, no difference between schizophrenic 
patients and healthy controls were found in cerebral 5-HT2A receptor binding [203–
205] whereas one study reported decreased binding in the left lateral frontal cortex 
in six patients [206]. However, the studies include relatively small sample sizes and 
they used PET tracers that were not 5-HT2A receptor selective.

The first in vivo PET study with a 5-HT2A receptor selective tracer ([18F]altanse-
rin) was published in 2005 [207]. Decreased prefrontal 5-HT2A receptor binding in 
drug-naïve patients with schizophrenia could be observed. Five years later, 
Rasmussen et al. verified these results in an extended study, also using [18F]altanse-
rin. Instead of 13 subjects, 30 first-episode, antipsychotic-naïve schizophrenic 
patients, and 30 matched healthy controls were included. Samples sizes of this order 
of magnitude are essential to obtain sufficient power to detect differences in the 
order of 10% [134]. Significant lower 5-HT2A receptor binding in the frontal cortex 
of schizophrenic patients was also observed in this study [208].

 Body Weight Changes and Obesity

Previous data have shown that the 5-HT2A receptor is involved in weight gain and 
obesity. For example, stimulation of the 5-HT2A receptor induces satiety in rodents 
[209]. Furthermore, obese mice showed increased 5-HT2A receptor density concen-
tration in comparison to obese-resistant mice [210, 211]. A positive association 
between body-mass index and neocortical 5-HT2A receptor binding has been 
reported [212] and replicated twice in subsequent studies [213, 214]. Second- 
generation antipsychotics, blocking the 5-HT2A receptor are also known to be more 
liable to induce weight gain than first-generation antipsychotics [215]. Therefore, 
Rasmussen et  al. investigated the 5-HT2A receptor with [18F]altanserin PET and 
related the findings to weight gain compared before and after six months of antipsy-
chotic monotherapy [216] in 15 antipsychotic-naive first-episode schizophrenia 
patients. A significant positive correlation both between neocortical 5-HT2A recep-
tor binding prior to treatment and subsequent weight gain was found. Conversely, 
the predictive value of neocortical 5-HT2A receptor binding was also seen in a cohort 
of obese individuals undergoing by-pass surgery; higher presurgical neocortical 
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5-HT2A receptor binding predicted greater weight loss after by-pass surgery and the 
change in 5-HT2A receptor binding correlated with weight loss after surgery [214].

 Alzheimer’s Disease (AD)

AD is the most common neurodegenerative disease and is ranked as the third most 
costly disorder. The prevalence of AD in Western societies appears to double every 
10 years after the age of 65, with estimates indicating that 16–29% over the age of 
85 are sufferers [217]. For AD, there is currently no curative treatment. However, 
there is strong evidence from postmortem studies that the 5-HT2A receptor is pro-
foundly reduced in AD patients. For example, Lai et al. reported that the loss of 
5-HT2A receptors in temporal cortex correlated with the rate of cognitive decline 
[218]. These finding have now consistently been supported by in vivo functional 
imaging studies, showing large reductions in 5-HT2A receptor binding in mild to 
moderately demented AD patients [22, 138, 219–222]. Importantly, the studies 
found profound and widespread reductions of 5-HT2A binding in neocortical 
regions in both patients with mild cognitive impairment (MCI) and AD (MCI: 
22–29% and AD: 28–39%) [223]. Furthermore, the reduction in binding could 
already be observed early in the time course of the disease [22]. Interestingly, this 
postsynaptic 5-HT2A receptor reduction is not accompanied by a similar reduction 
of the presynaptic serotonin transporter [224], suggesting that the reduction cannot 
be explained by the loss of serotonergic neurons projecting to neocortical regions. 
Further studies are needed to reveal why the neocortical 5-HT2A receptor is so 
prominently affected already early on in AD. One plausible explanation could be a 
beta-amyloid/5-HT2A receptor association [222, 223, 225–228] since the observed 
5-HT2A reduction inversely mirrors the small increase in beta-amyloid accumula-
tion in most early AD studies and follows a similar spatial distribution [225, 226]. 
Tau accumulation, on the other hand, follows a different pattern [223, 225]. 
Unfortunately, no correlation was seen between the clinical severity of MCI/AD 
and the reduction in 5-HT2A receptor binding [22, 220], but this may simply reflect 
lack of relevance and accuracy of the employed cognitive tests. However, these 
studies included rather small sample sizes, and also, the limited range of cognitive 
dysfunction may have made it difficult to determine correlations between seroto-
nergic and cognitive dysfunction [223].

It is long recognized that alterations in the serotonergic system can affect behav-
ioral symptoms that occur in AD, particularly depressive and psychotic symptoms 
[229]. Since the 5-HT2A receptor is strongly involved in both behavioral effects, 
several groups tried to correlate the reduced receptor binding to these symptoms. No 
correlation has been found in five small sample size PET studies with [18F]altanserin 
[22, 138, 220, 222, 224]. There was not found any difference between AD patients 
with and without depressive or psychotic symptoms, but this observation warrants 
further investigation in larger patient samples.
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 5-HT2A PET Imaging in Drug Development and Discovery

PET is increasingly used in drug development programs and discovery process of 
novel drug candidates since PET is, for example, able to examine the drug’s biologi-
cal characteristics (BBB passage, target engagement, non-specific binding or 
metabolism) or able to determine the optimal drug dosage. In general, there are two 
ways to utilize PET molecular imaging in the drug discovery and development pro-
cess. Either the drug candidate can be directly labeled and used to determine its 
pharmacokinetic profile (such as BBB passage, metabolism, biodistribution and 
reversibility of target binding) or a well-described and specific PET tracer can be 
used to find a suitable drug dose for subsequent clinical trials.

As an example for both approaches, which have been applied for drugs targeting 
the 5-HT2A receptor, the drug pimavanserin will be discussed. Pimavanserin is 
known as a 5-HT2A selective inverse agonist [230]. It has been developed to treat 
Parkinson’s disease psychosis and to improve the treatment of schizophrenia [231]. 
To study the in vivo behavior of this compound, the relationship between oral dose, 
plasma levels, and uptake of pimavanserin was studied in humans with the PET 
tracer [11C]NMSP at baseline and after drug administration [232]. [11C]NMSP is a 
dual D2/5-HT2 receptor ligand and thus it is imaging both receptors at the same time. 
However, the tBR5-HT2A/D2 in cortical regions and the tBRD2/5-HT2A in the striatum are 
high enough to distinguish between both subtypes. Cortical [11C]NMSP binding 
was blocked in a dose-dependent manner. For example, an oral dose of 10 mg of 
pimavanserin resulted in an almost complete displacement.

In 2015, Andersen et  al. published the synthesis and in  vivo evaluation of  
[11C]pimavanserin [233]. In Danish Landrace pigs the radioligand readily entered 
the brain and displayed binding in the cortex in accordance with the distribution of 
5-HT2A receptors. This binding could not be blocked by either ketanserin or 
 pimavanserin itself, indicating high non-specific binding or irreversible binding. 
Surprisingly and in addition to the cortical binding, high accumulation of  
[11C]pimavanserin was observed in thalamus. This binding suggests additional and 
unknown binding sites of [11C]pimavanserin within the pig brain.

As mentioned earlier, it is important to be able to determine target occupancy 
levels of the drug molecules at different doses and correlate these data with in vivo 
potency. Incorrect dosage is one of the major reasons why potential drug molecules 
fail in clinical trials [46]. The ideal dose of a drug is high enough to result in the 
desired effect, but not so high to cause side-effects. [18F]altanserin was used to 
investigate the relationship between 5-HT2A receptor occupancy and treatment 
effect after treatment with quetiapine, a specific atypical antipsychotic [234]. The 
expected nonlinear relationship was found between 5-HT2A receptor occupancy 
and quetiapine dose and a receptor occupancy level between 60 and 70% appeared 
to be the optimal. No further treatment effect was obtained above a receptor occu-
pancy of 70%.
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 Measurement of Endogenous Serotonin Levels

Being able to determine the in vivo 5-HT neurotransmitter release or to measure 
5-HT fluctuations in a non-invasive way would be extremely useful to improve 
our understanding of brain functions potentially leading to new treatment options. 
PET has been shown to be able to measure dynamic fluctuation in the context of 
dopamine release [235–237] and led to a novel understanding of dopaminergic 
mechanism of action, for example, in schizophrenia [238] and the Parkinson’s 
disease [239].

The basic principle to measure the endogenous neurotransmitter concentration in 
the synaptic cleft with PET relies on the differential occupation of target receptors 
by a neurotransmitter, after concentration fluctuation after a challenge (Fig.  14) 
[159, 166]. Altered neurotransmitter concentrations will change the receptor avail-
ability, which can be detected with an exogenous radiotracer by comparing the 
changes in BP under baseline and challenge conditions. A thorough review on the 
topic was published by Paterson et al. [159, 166] and Tyacke et al. [240].

 Susceptibility of [18F]altanserin/[18F]deuteroaltanserin 
Towards Endogenous Serotonin

The influence of synaptic serotonin levels on [18F]altanserin binding to 5-HT2A 
receptors in man is controversial. In 2003, Larisch et  al. reported that clomip-
ramine challenge decreased the BPND in cortex. Clomipramine is a 5-HT re-uptake 
inhibitor and thus, increases synaptic serotonin levels, which could possibly com-
pete with altanserin and lead to a lower BPND [241]. However, clomipramine also 
displays nanomolar 5-HT2A receptor affinity and could thus compete directly with 
[18F]altanserin [242–244]. One year later, Pinborg et  al. reported that cortical 
[18F]altanserin binding was insensitive to the selective serotonin reuptake inhibi-
tor, citalopram [245]. Rodent studies suggest that citalopram causes only a two- to 
three-fold increase of cortical 5-HT levels [246], which might be insufficient for a 

Fig. 14 The occupancy 
model describes BP 
changes in response to a 
challenge: A competition 
for receptor occupancy 
between the 
neurotransmitter and the 
radioligand results in either 
reduced BP after 
neurotransmitter release or 
increased BP after 
neurotransmitter depletion 
[159, 166]
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displacement of [18F]altanserin [247]. This is in line with the data of Kristiansen 
et al. who showed that [18F]altanserin can only be displaced at relatively high 5-HT 
levels [68]. In 2007, Matusch et al. reported the insensitivity of [18F]altanserin to 
acute neurotransmitter fluctuations under ketamine after a radioligand bolus-infu-
sion paradigm [248] and in 2001, Staley et al. reported that cortical [18F]deuteroal-
tanserin binding was likewise unaltered in baboons when the more potent 5-HT 
releaser dexfenfluramine (10- to 25-fold higher serotonin concentrations 
[249–251] was administered after a bolus–infusion application [136]. By contrast, 
a similar study of Quednow et  al. showed, that dexfenfluramine-induced 5-HT 
release, decreased cortical [18F]altanserin receptor binding in humans after a single 
bolus injection [247]. The authors speculate that the different pharmacological 
challenge approach (bolus-infusion vs. single bolus injection) explained the differ-
ent outcomes. They believe that their challenge approach resulted in a higher and 
thus sufficient endogenous 5-HT level dose to displace [18F]altanserin [136, 247]. 
This is indeed a likely explanation since it has also been shown that the 5-HT 
releaser fenfluramine much more potently increases 5-HT levels in the pig brain 
with a single bolus injection  [252].

 Susceptibility of [11C]MDL 100907 and (R)-[18F]MH.MZ 
Towards Endogenous Serotonin

The susceptibility of [11C]MDL 100907 to changes in endogenous serotonin was 
determined in two studies. The 5-HT releaser, fenfluramin, did not reveal any effect 
on the BPND of [11C]MDL 100907 in rat cortical regions [142]. Furthermore, acute 
reduction of endogenous 5-HT by rapid tryptophan depletion did also not alter the 
specific binding of [11C]MDL 100907 in humans [146]. These experiments suggest 
that [11C]MDL 100907 is not susceptible to competition with at least small changes 
in endogenous 5-HT. The susceptibility of (R)-[18F]MH.MZ towards endogenous 
serotonin was so far not tested. Most likely, it will behave as [11C]MDL 100907 and 
not be sensitive to serotonin.

 [11C]Cimbi-36´s Susceptibility Towards Endogenous Serotonin

As mentioned earlier, agonist 5-HT2A PET tracers should be more sensitive to 
endogenous neurotransmitter fluctuation than antagonists. Finnema et al. [174] pub-
lished a study in non-human primates and found that fenfluramin induced 5-HT 
release was associated with a decrease in the BPND of [11C]Cimbi-36. In a recent 
study by Jorgensen et al. [252], it was shown that in pigs, [11C]Cimbi-36 signifi-
cantly decreases in response to various pharmacological challenges that increase 
5-HT. Thus, it appears that [11C]Cimi-36 binding is sensitive towards endogenously 
released serotonin, particularly if the increase is substantial.
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 Summary

To date, several promising 5-HT2A receptor PET radiopharmaceutical have been 
developed and successfully applied in vivo. Especially the antagonists [11C]MDL 
100907 and [18F]altanserin have been used to study the cerebral 5-HT2A receptor 
in humans. However, both tracers are disadvantaged in some aspects and thus, 
attempts have been made to develop tracers, which can circumvent these short-
comings. For example, (R)-[18F]MH.MZ and [11C]Cimbi-36 were developed as a 
next generation of 5-HT2A tracers. Both tracers are currently evaluated in greater 
detail and further experiments are still needed to validate their beneficial tracer 
characteristics. Table  4 summarizes some important properties of tracers dis-
cussed in here.

 Outlook

The search for an ideal antagonist or agonist 5-HT2A receptor PET tracer continues. 
The selective antagonists, [11C]MDL 100907 and (R)-[18F]MH.MZ, are disadvan-
taged by their slow kinetics. [18F]altanserin displays low specific-to-unspecific 
uptake and generates BBB permeating radiolabeled metabolites, which complicate 
receptor quantification. The ideal combination of an antagonistic PET radiopharma-
ceutical with high selectivity, non-BBB penetrating radiometabolites, high specific- 
to- non-specific binding and fast kinetics remains to be identified.

[11C]Cimbi-36 is the most promising agonistic 5-HT2A receptor tracer so far. 
However, the selectivity profile is still not perfect and this may limit its use in high 
5-HT2C receptor binding regions. In addition, having a 18F–labeled version would 
be a good addition. Finally, no data on an inverse agonist 5-HT2A receptor PET 
tracer has been reported. This tracer could help to quantify the number of receptors 
in the high affinity state by applying first a PET scan with an antagonistic tracer 
followed up by a second scan with an inverse agonist. The subtraction of the sec-
ond from the first scan should, in principle, allow a quantification of receptors in 
their high affinity state. Of course, several problems coming along with such a 
study. For example,  the free fraction in the non-displaceable tissue compartment 
(fND), the non-specific binding and the in vivo affinity of both ligands have to be 
determined. Otherwise, a direct comparison of the tracers binding profiles is not 
possible.
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Table 4 Overview of 5-HT2A PET tracer characteristics

[18F]altanserin

[18F]
deutero- 
altanserin

[11C]MDL 
100907

(R)-[18F]
MH.MZ [11C]Cimbi-36

Reference 
cmpd

+ + + − − − + + + + −
Commercially 
available

Stable isotope 
synthesis

Commercially 
available

Single-step 
synthesis

Multi-step 
Synthesis

Precursor + + + − − − + + + + + + −
Commercially 
available

Stable isotope 
synthesis

Commercially 
available

Commercially 
available

Multi-step 
Synthesis

Radiolabeling − − + + + + +
Demanding 
radiosynthesis

Demanding 
radiosynthesis

Single step 
radiosynthesis

Two-step 
radiosynthesis

Two-step 
radiosynthesis

Selectivity + + + + + + + + +
Affinity 
towards α1, D2

Affinity 
towards α1, D2

Selective Selective Affinity 
towards 
5-HT2C

Metabolism − − − + + + + + + + +
4 BBB 
crossing 
metabolites

Reduced 
metabolism

No metabolite 
in the brain

No metabolite 
in the brain

Negligible 
amounts in the 
brain

Non-specific 
binding (NB)

− − − − + + + + + + + +
Metabolites 
cause high NB

Further 
studies to be 
conducted

Low NB Low NB Low NB, but 
higher than 
MDL 100907

Cortical 
binding 
potentiala

2.3–2.9 
(human)

~ 0.6 (human) 2.2–3.0 so far n.r. 1.8 (rhesus 
monkey) 0.82 
(pig)0.7 (pig) − − (human) ~ 4 

(rhesus 
monkey) n.r.b

so far n.r.
1.9–2.0 (rat) 2.5 (rat)  −

Kinetics + + + + + + − − + + +
Fast, 
reversible

Fast, 
reversible

Slow, 
reversible

Slow, 
reversible

Fast, 
reversible

Max SUV 1.26 (human) n.r.b 5.6 (rhesus 
monkey)

so far n.r. 3.2 (rhesus 
monkey)2 (pig) − so far n.r.

0.7 (rat) n.r.b - n.r.b 1.8 (rat) 2.2 (pig)
 −

Functionality Antagonist Antagonist Antagonist Antagonist Agonist
Susceptibility 
towards 5-HT

Different 
outcomes

Different 
outcomes

None Probably none Probably yes

aDifferent kinetic modeling was applied in some cases
bn.r. not reported
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Abstract The serotonin receptor 5-HT2A is widely expressed throughout the  central 
nervous system. While abundant evidence exits implicating 5-HT2A receptors in 
regulating central nervous system, in particular stress responses and that their 
expression levels or signaling can contribute to stress-related disorders such as anxi-
ety, depression and aggression; the 5-HT2A receptors is also gaining importance in 
regulating the activity of the autonomic nervous system. Elucidating the functional 
specificity and significance of the 5HT2A receptor in autonomic function is a chal-
lenge given the existence and often co-localization of other 5HT2 receptor subtypes, 
the central and peripheral expression pattern of the 5HT2A receptor, and the relative 
poor selectivity of the pharmacological agents used to identify their function. Data 
has long been accumulated indicating that the 5-HT2A receptor-induced regulation 
of the autonomic nervous system function appears to be mediated, at least in part, 
through the regulation of the serotoninergic afferents and efferents to the nucleus 
tractus solitarius. In this article, we review the role of 5-HT2A receptor function in 
the modulation of cardiac sympathovagal balance with special emphasis on the 
 networks by which 5-HT2A receptors modulate the function of the nucleus tractus 
solitarius in regulating the baroreflex and autonomic function.
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 Introduction

Ample evidence shows that serotonin (5-hydroxytryptamine; 5-HT) is a unique 
 hormone and neurotransmitter that can act as an, auto- and/or paracrine factor, or 
intracellular signaling molecule to provoke a plethora of functions throughout the 
body [1]. 5-HT exerts its functions through its interaction with a minimum of 15 
receptors that are further divided into 7 groups (5-HT1 to 5-HT7). Among these recep-
tor subtypes the 5HT2 receptors are further subdivided into A, B and C classes, which 
are differentially localized and orchestrate the complex signaling effects of 5-HT. In 
the periphery, the 5-HT2A receptor is expressed in platelets [2, 3], where it has been 
largely defined in facilitating platelet aggregation [4, 5]. Peripheral 5-HT2A receptors 
are also found in blood vessels [6], monocytes [7], in the heart [8], and, along the 
vagus nerve [9]. While the 5-HT2A receptors are best characterized for their roles in 
the central nervous system, where their function in a wide spectrum of behaviors 
implicating a number of mental illnesses with complex etiologies [10], there is grow-
ing evidence for an important role in the regulation of the cardiovascular and auto-
nomic systems. These effects include bradycardia or tachycardia, hypotension or 
hypertension, and vasodilation or vasoconstriction. Here we review the involvement 
of 5-HT2A in the brain-to-heart axis with particular attention to the reported findings 
of its role in control of the baroreflex and cardiac sympathovagal balance.

 Central 5-HT2A Signal Integration in Baroreflex 
and Autonomic Control

Multiple visceral afferents terminate in the brainstem and in particular in the nucleus 
tractus solitarius (NTS). While glutamate is the principal neurotransmitter at the 
afferent-NTS junction, other neuromodulators can affect NTS function. For exam-
ple, 5-HT is as a neuromodulator in the NTS and adjacent dorsal motor nucleus of 
the vagus (DMNV) that alters presynaptic glutamate release or postsynaptic activity 
[11–14]. 5-HT positive terminals and fibers are found in significant numbers 
throughout the NTS [15–17], with the rodent, specifically the rat, displaying marked 
concentrations of 5-HT-positive terminals in the medial NTS [18, 19]. Retrograde 
tracing has demonstrated 5-HT neuronal networks between the NTS and raphe 
nuclei [20]. The neuronal connections were further shown to project from the raphe 
magnus and dorsal raphe to the NTS [21]. Additional works showed that vagal affer-
ents and the nodose ganglia converged to form the peripheral 5-HT inputs into the 
NTS [22, 23], and transmit 5–HT containing afferent projections to the nucleus 
ambiguus, which was shown as the main site of vagal parasympathetic pregangli-
onic cholinergic neurons for the heart [24].

Moreover, differential application of specific agonists and antagonists to 
 serotoninergic receptors induces a wide range of effects that included either the 
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excitation or inhibition, or both [25]. Early studies demonstrated that 5-HT2A 
 receptor activation increased synaptic transmission through postsynaptic mechanisms 
[26]. However, in other systems the activation of the 5-HT2A receptor led to synaptic 
transmission and downstream neuronal activity inhibition [27, 28]. Nonetheless, in 
both cases the 5-HT2A receptors are shown to modulate synaptic transmission in the 
NTS and these modifications can regulate the cardiorespiratory reflexes under physi-
ological and pathophysiological circumstances as described below.

 5-HT2A in Baroreflex Modulation and Autonomic Function

The baroreceptor reflex represents the major mechanism for the rapid adjustment of 
heart activity to blood pressure changes. A simplified schematic of the baroreflex is 
represented in Fig.  1; and a comprehensive, historical perspective on our under-
standing of baroreceptor physiology and its therapeutic relevance in resistant hyper-
tension is recently described [29]. Variations encountered in carotid and aortic areas 
are accompanied by an activation of arterial baroreceptors. Baroreceptors are 
stretch-activated receptors located in the aortic arch and carotid sinus. They monitor 

Fig. 1 Simplified schematic of baroreflex loop showing afferent nerves from arterial barorecep-
tors making their primary synapse in the NTS and the efferent connections from the NTS to the 
efferent vagal fibers
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blood pressure in order to modulate sympathetic and parasympathetic outputs and 
maintain physiological blood pressure ranges for correct tissue perfusion.

Baroreceptor afferences transmit messages to the central nervous system enabling 
the maintenance of arterial pressure in a narrow physiological range [30]. The affer-
ents from the baroreceptors of the carotid sinus and aortic arch terminate in the 
NTS, nucleus ambiguus and dorsal vagal nucleus. The baroreflex strongly corre-
lates with the functioning of the regulation of both branches of the autonomic ner-
vous system, even if there is a bias toward the sympathetic branch. As such, this 
regulation of both sympathetic and parasympathetic afferents and efferents has 
proven difficult to dissociate one from the other. For example, neuronal pathways 
connect the afferents to parasympathetic efferents in the DMNV and the nucleus 
ambiguus and sympathetic efferents, in the rostral ventrolateral medulla (RVLM), 
so that stimulation of the carotid or aortic stretch receptors by a blood pressure 
increase is followed by a rise in vagal tone and a decrease in sympathetic tone, and 
vice versa [31–35]. Many neurotransmitters play a key role in this mechanism, nota-
bly 5-HT which is present within nerve terminals in NTS [17]. Moreover, in a single 
neuron there may be several kinds of serotoninergic receptors, which potentially 
mediate opposite cellular responses further cofounding the study of the 5HT recep-
tors in this system.

 Baroreflex Control

It is well known that 5-HT administered by the central route provokes an elevation 
in arterial pressure due to a release of vasopressin and a reflex bradycardia [36]. In 
anesthetized rats, the microinjection of 5-HT in NTS induces hypotension and bra-
dycardia. These effects are blocked by ketanserin and ritanserin (the preferential 
5-HT2A receptor antagonist) [37]. Further studies using the rat a a model showed 
that during shock-evoked passive behavior the 5-HT2A receptors in the NTS pro-
voked the cardiosympathovagal component of the baroreflex [38]. The specificity 
for the activation and function of the 5-HT2A receptor in inhibiting the baroreflex 
and dissociating this effect from sympathetic activity in rats was shown by Comet 
and colleagues [39]. Herein, using intra-NTS microinjections of the 5-HT2A recep-
tor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) the authors 
showed that in vivo, the activation of 5-HT2A receptors in the NTS produced hypo-
tension and bradycardia [39]. More precisely, the investigators found that direct 
activation of 5-HT2B and 5-HT2C receptors in the NTS did not result in changes in 
heart rate or mean blood pressure. Instead, only local administration of the prefer-
ential 5HT2A receptor antagonist MDL-100907 prevented the cardiovascular 
responses to DOI. Together, these data were the first to show an explicit role for 
5-HT2A receptors in mediating baroreflex and not the sympathetic responses in anes-
thetized rats. Shen et al. [40] demonstrated that central 5-HT2A receptors mediated 
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the baroreflex enhancing effects of ketanserin; an antihypertensive drug best 
 characterized for its sympathoinhibitory action. What’s more is the authors demon-
strated that ketanserin treatment led to the persistence of the hypertensive effect 
even with the destruction of the central 5-HT neurons. These results strongly sug-
gest that the ketanserin induced sympathoinhibition is either 5-HT2A independent or 
regulated by way of peripheral 5-HT2A receptors.

 Autonomic Function

The 5-HT2A receptors are well established to cause sympathoexcitation [41]. 
Ultrastructural analyses have confirmed the localization of 5-HT2A receptors in sep-
arate populations of axons, axon terminals and glia DMNV [9]. Centrally, 5-HT2A 
receptor activation causes sympathoexcitation and vasopressin release [42]. The 
activation of 5-HT2A receptor produces a sympathoexcitation leading to an increase 
of arterial pressure and a tachycardia following the sympathetic discharge. These 
hypertensive effects are attenuated after intra-cerebroventricular injections of spi-
perone (preferential 5-HT2A receptor antagonist). The major site for this action is the 
RVLM [36]. The authors further note colocalization of 5-HT2A receptors on cate-
cholaminergic neurons, suggesting that 5-HT2A receptor mediated control of auto-
nomic functions involves catecholaminergic neurons [43]. In particular, the 5-HT2A 
receptor is expressed on GABAergic interneurons in the locus coeruleus and the 
ventral tegmental area [44]. 5-HT2A activation leads to a decrease in noradrenergic 
and dopaminergic neuron activities. More recent reports show that infusion of 
volinanserin (5-HT2A receptor antagonist) led to a decrease in blood pressure [45]. 
To elucidate the function of the 5-HT2A receptors mediated by the neurons in the 
NTS, the receptor agonist DOI was applied to neurons receiving vagal input and this 
produced mixed excitation and inhibition [46]. A later study showed that via extra-
cellular recordings of NTS neurons, 5-HT2A receptors could facilitate the excitatory 
response [47]. While most data suggests that 5-HT2A receptors action is excitatory 
in the NTS, more investigation is needed to determine the effects of 5-HT2A recep-
tors on autonomic function. Indeed recent studies have begun to elucidate the func-
tion of other 5-HT receptors in the regulation of the sympathetic nervous system. 
For example, by use of adeno-associated viral vector encoding a small hairpin RNA 
(shRNA) to selectively reduce 5-HT1A-receptor message in neurons of the NTS, 
Vantrease et al. [48] showed that 5-HT1A receptor in the caudal NTS contributed to 
sympathoexcitation following hemorrhage. While such studies have helped deci-
pher how 5-HT and 5-HT receptors can regulate the autonomic nervous system, 
more studies are required to identify the explicit role of the 5HT2A receptor in 
 autonomic functioning.
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 Cardiac 5-HT2A

Even though a large portion of information regarding 5-HT2A activity in the barore-
flex or autonomic function concerns its expression in the NTS, one cannot exclude 
its function in the heart. It has long been recognized that 5-HT plays an important 
role in cardiac development and function. The 5-HT2A receptor shows widespread 
expression in the human cardiovascular system. It is present on arterial smooth 
muscle [49], endothelial cells and on cardiomyocytes [50]; and best characterized 
for mediating vasoconstriction [51]. Functional analyses of 5-HT2A in the heart are 
limited. Using sheep aortic valve interstitial cells, it was demonstrated that the 
5-HT2A is responsible for 5-HT-mediated increased the transforming growth factor 
beta-1 activity that may contribute to progression of 5-HT-related heart valve dis-
ease [52]; even though 5-HT2B receptors have been widely implicated in heart valve 
diseases [53]. What’s interesting is that 5-HT2A receptor mRNA is significantly 
expressed in rat arteries, and to a lesser extent, in veins [6], yet their distinctive func-
tion herein remains unknown. In the rodent, accumulating evidence points toward 
5-HT2 receptors as potential candidates in cardiac diseases. For instance, in a rat 
model for congestive heart failure, two independent reports demonstrated an 
increased expression of the 5-HT2A receptor mRNA.  More recently, in a mouse 
model for cardiac hypertrophy, as induced by transverse aortic constriction, 5-HT2A 
receptor expression was transiently increased [54]. Herein the authors showed that 
selective blockade of 5-HT2A receptors prevented the development of cardiac hyper-
trophy through inhibition of the CamKII/HDAC4 pathway [54]. Together, these 
studies show an important cardiac-autonomic role of the 5-HT2A receptor, yet it is 
not known if changes in 5-HT2A receptor expression and/or function are causal or 
compensatory in cardiac disease. Further studies are therefore required to decipher 
and dissociate the role of 5-HT2A in the heart, in the vagus, and in the NTS in main-
taining proper cardiac sympathovagal balance.

 Synopsis

The many implications of 5-HT2A receptor demonstrate its importance in several 
physiological functions and in particularly in cardiovascular homeostasis. The cur-
rent knowledge of 5-HT2A receptor-specific actions within the autonomic nervous 
system is in its infancy but, several findings suggest that it is extremely important in 
modulating cardiovascular function in health and disease. Evidence to date suggests 
that 5-HT2A receptor subtypes have complex interactions with the baroreflex and 
autonomic nervous system at the pre- and post-junctional level. While most studies 
have focused on the role of central 5-HT2A receptor, the peripheral role for this 
receptor is also gaining importance. Several important questions remain unan-
swered. For example, one unresolved issue is to dissect the role of 5-HT2A receptor 
in the vessel and or along the nerve in order to fully appreciate the neuronal or 
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vascular component in modulating the baroreflex and autonomic function. Another 
important question surrounds the use of the preferred but not selective agonists and 
antagonists used to evaluate 5-HT2A function as opposed to other 5-HT2A-receptor 
subtypes. Importantly, elucidating the yet unknown functional consequences of the 
5-HT2A receptor hetero- (5-HT2A/2C) and homo-dimerization (5-HT2A/2A) should help 
clarify many physiological and pathophysiological responses. Further studies are 
needed in order to determine the neural mechanisms involved in the cardiovascular 
response induced by 5-HT2A receptor. In reviewing the literature, we could find no 
evaluation of the baroreflex or autonomic function in animal studies that focused on 
selective ablation of 5-HT2A receptors such as knockout models or optogenetic 
approaches. Future works on decoding the role of 5-HT2A receptors will need to 
encompass studies on cardiovascular variables and hemodynamic aspects; as such 
these studies will provide compelling evidence for 5-HT2A receptors as potential 
therapeutic targets in cardiovascular and baroreceptor-related diseases.
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Abstract Schizophrenia is a psychiatric disorder that affects 1% of the population 
worldwide. The serotonin and glutamate receptor systems have been implicated in 
schizophrenia and its treatment. Serotonin 5-HT2A receptor is target of hallucino-
gens such as lysergic acid diethylamide (LSD) and psilocin, as well as involved in 
the mechanism of action of atypical antipsychotic drugs such as clozapine and ris-
peridone. The metabotropic glutamate 2 (mGlu2) receptor modulates the physiolog-
ical responses induced by the 5-HT2A receptor, and preclinical and clinical work 
suggests that this glutamate receptor may represent a new approach to treat schizo-
phrenia. Here we review recent advances in our understanding of the crosstalk 
between these two receptors, as well as their implication in schizophrenia and anti-
psychotic drug action.

Keywords G protein-coupled receptor (GPCR) • Serotonin • 5-HT2A receptor • 
Glutamate • Metabotropic glutamate 2 receptor • mGlu2 • Schizophrenia • Psychosis 
• Antipsychotic • Clozapine • Lysergic acid diethylamide (LSD) • GPCR dimer • 
GPCR heterocomplex

 Introduction

Schizophrenia is a devastating mental illness that affects 1% of the population in all 
cultures [1–5]. Its impairment of mental and social functioning often leads to the 
development of comorbid diseases. These changes disrupt the lives of patients as 
well as their families and friends. Although serendipitously discovered in the first 
half of the twentieth century [6–8], the two main families of antipsychotic medica-
tions, which include typical or first generation antipsychotics such as chlorproma-
zine and haloperidol, and atypical or second generation antipsychotics such as 
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clozapine, olanzapine and risperidone, remain the standard treatment for schizo-
phrenia [9–12]. Nevertheless, recent clinical studies sponsored by the NIH high-
lighted that three-fourths of schizophrenia patients stop using antipsychotic 
medications within 18 months of starting therapy [13]. The reasons given for dis-
continuing prescribed drugs included reduced efficacy, poor tolerability, and severe 
side effects. This serious issue for a major mental illness requires understanding the 
cause of non-compliance as well as developing more effective therapeutic treat-
ments for schizophrenia.

The principal brain target that all antipsychotic drugs bind to is the dopamine 
receptor system. Additionally, atypical antipsychotic drugs all have in common a 
high affinity for the serotonin receptor system, as well as a modest affinity for the 
dopamine receptor system. In recent years, novel compounds that regulate signaling 
by glutamate (the major excitatory neurotransmitter in the brain) are emerging as a 
promising new approach for the treatment of this disorder. In this book chapter we 
focus on two neurotransmitter receptors that have been implicated in the patho-
physiology of schizophrenia and other psychotic disorders, as well as in the molecu-
lar mechanism of action of antipsychotic drugs: serotonin 5-HT2A and metabotropic 
glutamate 2 (mGlu2) receptors.

 Serotonin Receptors

Serotonin (5-hydroxytryptamine, 5-HT) appeared very early in evolution [14]. The 
indoleamines serotonin and the closely related melatonin are present in some proto-
zoans and in almost all metazoans, where they play important roles in development 
and plasticity. The isolation of serotonin was achieved after decades of investigation 
to characterize the chemical properties of a substance that was suspected to be con-
tained in the platelets [15–17]. In 1937, Vittorio Erspamer working at the University 
of Pavia in Italy extracted a chemical compound from enterochromaffin cells in the 
gastrointestinal tract that was capable for inducing smooth muscle contraction [18]. 
This compound was named enteramine. In the decade of the 1940s, Maurice Rapport 
reported a similar effect of a substance responsible for the vasoconstrictor activity 
of serum, and named the substance serotonin after the Latin word serum and the 
Greek work tonic [19–22]. A few years later, in 1952, it was demonstrated that 
enteramine and serotonin corresponded to the same compound [23]. Experiments 
using serotonin (enteramine) and newly discovered indolealkylamine derivatives 
showed their effects on contraction of a variety of smooth muscle-containing tis-
sues, such as carotid artery, jejunum, uterus, and nictitating membranes in animal 
models that included sheep, ox, rabbits, cats and dogs [24].

However, it was not until 1943 when the serendipitous discovery of the psyche-
delic properties of lysergic acid diethylamide (LSD) by the Swiss chemist Albert 
Hoffman (1906–2008) [25, 26] and the fascinating structural similarities between 
LSD and the monoamine serotonin captivated the interest of basic neuroscientists 
(Fig. 1). Thus in 1968, George Aghajanian at Yale University showed that LSD 
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affects the activity of midbrain neurons containing serotonin [27]. Later in 1976, 
Solomon Snyder at Johns Hopkins University suggested the presence of 5-HT bind-
ing sites in rat cortical membrane preparations [28]. Using the radioligands 
[3H]5-HT, [3H]spiperone and [3H]LSD, the same research group demonstrated in 
1979 the presence of two distinct 5-HT binding sites [29, 30]. The use of classical 
pharmacological studies in the 1980s and 1990s, along with cloning approaches 
(the first serotonin receptor, 5-HT1A, was cloned and characterized in 1988 [31]), led 
to the discovery of 13 distinct genes encoding for serotonin receptors of the G pro-
tein-coupled receptor (GPCR) family [32–35]. In addition, there is one ligand-gated 
ion channel, the 5-HT3 receptor.

Currently the G protein-coupled 5-HT receptors are divided into 6 subfamilies 
based on their pharmacological properties, amino acid sequences, gene organization 
and second messenger coupling pathways: 5-HT1 family (5-HT1A, 5-HT1B and 
5-HT1D receptors, which are principally Gi/o protein-coupled), 5-HT2 family (5-HT2A, 
5-HT2B and 5-HT2C receptors, which are principally Gq/11 protein-coupled), 5-HT4 
family (5-HT4 receptor, which is principally Gs protein-coupled), 5-HT5 family 
(5-HT5 receptor, which is principally Gi/o protein-coupled), 5-HT6 family (5-HT6 
receptor, which is principally Gs protein-coupled), and the 5-HT7 family (5-HT7 
receptor, which is principally Gs protein-coupled).

The 5-HT2C receptor was originally classified as a “5-HT1C” receptor in 1985 by 
Angel Pazos, Daniel Hoyer and Jose Palacios at Sandoz Ltd. in Basle, Switzerland 
[36]. This study used radioligand binding approaches with [3H]5-HT, [3H]8-OH-
DPAT, [3H]LSD, [3H]ketanserin and [3H]mesulergine in plasma membrane prepara-
tions of porcine choroid plexus. However, after the demonstration by Jeffrey Conn 
and Elaine Sanders-Bush that the “5-HT1C” site in choroid plexus affects the phos-
phatidylinositol pathway [37, 38], and based on the comparison of its primary 
sequence with those of 5-HT2A and 5-HT2B receptors, the “5-HT1C” site was conse-
quently named 5-HT2C receptor. Additionally, this serotonin receptor is thus far the 
only GPCR that undergoes post-transcriptional pre-mRNA editing, which repre-
sents a post-transcriptional regulatory mechanism by which RNA transcripts are 
covalently modified on specific nucleosides in a way that the encoded product may 
be subject to possible functional alterations [39]. RNA editing of the 5-HT2C recep-
tor has been shown to affect the pattern of 5-HT2C receptor-dependent G protein 
coupling and signaling [40–42].

Fig. 1 Chemical structure 
of the neurotransmitter 
serotonin 
(5-hydroxytryptamine, 
5-HT) and the psychedelic 
5-HT2A receptor agonist 
LSD (lysergic acid 
diethylamide)
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The 5-HT5 receptor family has two known members: 5-HT5A and 5-HT5B. The 
5-HT5A and 5-HT5B receptors were first cloned in mouse and rat [43]. The human 
5-HT5A receptor homolog was subsequently cloned [44], whereas the human 5-HT5B 
receptor gene results in an expression of a short and not functional protein due to the 
presence of stop codons in the coding sequence.

Alternative splicing, a process by which exons can be either excluded or included in 
or from a pre-mRNA resulting in multiple mRNA isoforms, affects 60–70% of human 
genes and is a key factor underlying protein diversity. Functional splice variants have 
been reported for 5-HT receptors including 5-HT2A, 5-HT4 and 5-HT7 receptors [45].

The 5-HT2A receptor, which was cloned in 1994 [46], is principally coupled to 
Gq/11 proteins and is expressed in brain regions involved in cognition, perception, 
sensorimotor gating and mood, such as prefrontal cortex, striatum and thalamus 
[47–50]. It is the main target of psychoactive drugs such as the psychedelics LSD, 
mescaline and psilocin [51, 52]. Additionally, drugs used to treat psychiatric disor-
ders, such as schizophrenia (clozapine, olanzapine and risperidone) [9], Parkinson’s 
disease psychosis (pimavanserin) [53], and depression (mirtazapine and mianserin) 
[54], and neurological disorders, such as migraine (ergotamine) [55] and Parkinson’s 
(lisuride) [56], also bind with high affinity to the 5-HT2A receptor. It has also been 
involved in some of the psychoactive effects of efavirenz, a drug used to treat human 
immunodeficiency virus (HIV) [57]. Findings in the last decade have identified a 
functional crosstalk between the 5-HT2A receptor and the mGlu2 receptor that might 
open new avenues for the design of therapeutic compounds to improve the treatment 
of a number of psychiatric and neurological disorders.

 Functional Interaction Between 5-HT2A and mGlu2 Receptors

Glutamate is the main excitatory neurotransmitter in the CNS, and it binds to two 
main structural groups of neurotransmitter receptors: ion channels and G protein-
coupled receptors (GPCRs). Ionotropic glutamate receptors include N-methyl-
D-aspartate (NMDA) receptors [58–60], α-amino-3-hydroxy-5-methyl-4- 
isoxazolepropionic acid (AMPA) receptors [61, 62], and kainic acid (KA) receptors 
[63, 64]. Until the mid-1980s, the actions of glutamate in the mammalian brain were 
thought to be mediated exclusively via glutamate-gated cation channels. It was in 
1985 when Sladeczek et al. provided the first evidence that glutamate stimulated 
inositol phosphate formation in striatal neuronal cultures [65], suggesting that glu-
tamate might activate metabotropic receptors along with the classical ligand-gated 
ion channel receptors. Similar findings were observed by Ferdinando Nicoletti and 
his team in brain slices from young rats [66]. In 1991, two groups independently 
reported the primary sequence of the mGlu1 gene [67, 68]. At present, eight differ-
ent mGlu subtypes (mGlu1-8) and a number of splice variants have been reported 
from rodents and human. Classification of mGlu receptors is further divided into 
three groups according to sequence similarity, pharmacology and preferred G pro-
tein signaling mechanism [69–72]. Group I mGlu receptors (mGlu1 and mGlu5) are 
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preferentially coupled to Gq/11 proteins and hence positively affect the function of 
phospholipase C, whereas group II (mGlu2 and mGlu3) and group III (mGlu4, 
mGlu6, mGlu7 and mGlu8) receptors are typically coupled to Gi/o proteins, which 
leads to inhibition of adenylate cyclase activity.

Using an ex-vivo model to record electrophysiological responses in rat brain 
slices, it was reported that bath application of serotonin (5-HT) produced an increase 
in the frequency and amplitude of spontaneous excitatory post-synaptic potential/
currents (EPSPs/EPSCs) in layer V pyramidal cells of neocortical neurons, includ-
ing frontal, cingulate and frontoparietal cortex [73, 74]. This 5-HT-mediated elec-
trophysiological response was blocked by the 5-HT2A receptor antagonists 
MDL100,907 and SR463B, suggesting for the first time that activation of the 5-HT2A 
receptor induced excitatory postsynaptic potentials in dendrites of cortical pyrami-
dal neurons. Follow-up work by the same research team provided evidence that the 
selective group II mGlu (mGlu2 and mGlu3) receptor agonist LY354740 suppressed 
the 5-HT2A receptor-dependent induction of postsynaptic EPSPs/EPSCs in layer V 
cortical pyramidal neurons [75]. Additionally, autoradiography assays with the 
mGlu2/3 receptor ligand [3H]LY354740 and the 5-HT2A receptor ligand [125I]DOI 
showed an evident overlap of the laminar distribution of mGlu2/3 and 5-HT2A recep-
tors in frontal cortex that was not observed in other cortical regions [75]. These 
findings, along with the implication of the 5-HT2A receptor in the physiological 
effects of psychedelics and antipsychotic drugs (see above), suggested that the sig-
naling crosstalk between mGlu2/3 and 5-HT2A receptors might be relevant for the 
treatment of schizophrenia and other psychotic disorders, opening a new line of 
basic and translational research focused on signaling and neural circuit mechanisms 
involved in this crosstalk.

Although rodent models of psychiatric alterations have limitations [76–81], 
head-twitch behavior, which is a rapid side-to-side movement of the head, is a 
behavior model observed in rats and mice after administration of serotonergic psy-
chedelics [82–84]. Thus, this behavior is observed in rodents injected with drugs 
such as LSD, psilocin, mescaline, DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-amino-
propane), DOM (1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane), and DOB 
(1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane), and is absent in 5-HT2A 
knockout mice [85, 86]. Based on previous findings using transgenic Cre mice in 
which 5-HT2A was expressed only in forebrain pyramidal neurons [85, 87], it was 
suggested that cortical pyramidal 5-HT2A was necessary and sufficient to induce 
head-twitch behavior by psychedelics in mice [85] (Fig. 2). This hypothesis was 
further supported by the use of independent experimental approaches such as elec-
trophysiological recordings in mouse cortical slices [88] and electrolytic lesions in 
the thalamic nuclei [89, 90]. Although these data support that the 5-HT2A receptor 
expressed in cortical pyramidal neurons is necessary for at least some of the pheno-
types induced by psychedelics, they do not exclude the involvement of the 5-HT2A 
receptor in sub-cortical regions in other processes [91, 92]—the role of presynaptic 
5-HT2A receptors in the modulation of thalamocortical plasticity and associative 
learning has been supported by recent studies based on virally mediated-overex-
pression approaches [93].
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Nevertheless, using head-twitch behavior as a model of psychedelic-like behav-
ioral responses induced by the 5-HT2A receptor agonist DOI, it was demonstrated 
that administration of the mGlu2/3 agonist LY354740 prevented DOI-induced 
head-twitch behavior in rats [94]. One possible explanation for the effects of 
mGlu2/3 receptor agonists on head-twitch behavior and electrophysiological 
responses induced by DOI is related to the act on a presynaptic site to decrease 
glutamate release induced by activation of the 5-HT2A receptor. Thus, changes in the 
frequency of synaptic currents are generally attributed to a presynaptic site, whereas 

Fig. 2 Psychedelics induce head-twitch behavior via activation of the 5-HT2A receptor in cortical 
pyramidal neurons. (a) Cortical restoration of 5-HT2A receptor expression in 5-HT2A receptor 
knockout mice. By insertion of a “stop” flanked by lox-p sites (black triangles), it was interrupted 
the transcription and translation of the Htr2a gene. Emx1-Cre excises the stop cassette and restores 
expression of Htr2a to areas where their promoter activities overlap. Density of 5-HT2A receptor 
was tested by [125I]DOI autoradiography (see [85, 87]). (b) Effects of LSD on voltage ramp-acti-
vated ionic currents in 5-HT2A knockout mice (htr2a-/-) and in mice that express the 5-HT2A recep-
tor only in cortical pyramidal neurons (htr2a-/-:Emx1-Cre) (see [85]). (c) Control mice (htr2a+/-), 
5-HT2A knockout mice (htr2a-/-), and cortical rescue mice (htr2a-/-:Emx1-Cre) were injected 
with DOI, LSD, R-lisuride (R-Lis) or vehicle, and the head-twitch behavioral response was scored 
(see [85])
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changes in the amplitude of synaptic currents can be attributed to either a presynap-
tic or a postsynaptic locus [95]. Considering that activation of either mGlu2 or 
mGlu3 receptors negatively regulates glutamate release at cortical synapses [96], 
the effect of mGlu2/3 receptor agonist suppressing 5-HT2A receptor-dependent glu-
tamate release has been proposed to be mediated via presynaptic mGlu2/3 receptors 
[75]. An alternative, although not mutually exclusive, pathway by which activation 
of mGlu2/3 receptors modulates physiological and behavioral phenotypes induced 
by activation of the 5-HT2A receptor has been proposed recently, suggesting that a 
close molecular interaction between 5-HT2A and mGlu2 receptors in cortical pyra-
midal neurons also affect their basic mechanism of functional crosstalk.

 Heteromerization Between 5-HT2A and mGlu2 Receptors

Although most of the plasma membrane receptor proteins, including ion channels 
and enzyme-linked receptors, behave and function as dimeric or oligomeric com-
plexes, it was assumed for decades that GPCRs were physiologically active as 
monomers. This concept of monomeric GPCRs was challenged in the 2000s by two 
key observations:

Using chimeric receptor constructs of the muscarinic M3 receptor and the α2C 
adrenergic receptor, it was reported that the chimeric receptors α2C/M3 and M3/α2C, 
in which the portion containing transmembrane domains VI and VII along with the 
C-terminal were exchanged between the muscarinic M3 and the α2C adrenergic 
receptors, did not show detectable binding activity when expressed alone in COS-7 
cells [97]. However, binding activity of the muscarinic ligand [3]methyl-scopol-
amine or the adrenergic ligand [3H]rauwolscine was rescued in cells co-transfected 
with α2C/M3 and M3/α2C [97]. These results led to the first speculation that the forma-
tion of GPCR dimers may underlie a mechanism of inter-molecular crosstalk.

A second fundamental finding supporting close molecular proximity between 
GPCRs was that related to expression and function of the GABAB receptor. Thus the 
GABAB receptor (now named as GABAB-R1) was cloned in 1997 [98], but recom-
binant expression of the GABAB-R1 in cell lines such as COS, HEK293 and BHK 
showed intracellular retention of the construct [99]. This was followed by four pub-
lications in 1998 showing that GABAB-R1 is able to form a heterodimeric receptor 
with GABAB-R2 [100–103]. Neither of these two constructs is functionally active 
when expressed individually, but GABAB receptor function is rescued in cells co-
transfected with the GABAB-R1 and GABAB-R2 constructs. Further work elegantly 
demonstrated that GABAB-R1 is retained intracellularly at the endoplasmic reticu-
lum, and that GABAB-R2 is able to traffic GABAB-R1 toward the cell surface via a 
coiled-coil molecular interaction at the C-terminus [104–106].

These two findings were followed by numerous publications supporting the exis-
tence of GPCR homo- and hetero-dimerization as well as higher order oligomeriza-
tion [107–111]. Indeed, experiments in living cells suggested that the minimal 
signaling unit required for dopamine D2 function is composed of two receptor mol-
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ecules and one G protein [112–115], and that homomerization of the α1B-adrenergic 
receptor is required receptor maturation, surface delivery and receptor function 
[116, 117]. Today it is widely accepted that family C GPCRs, particularly the mGlu 
receptors, behave and function as strict homodimers [118–120]. Thus, monomeric 
mGlu receptors are unable to couple to and activate G proteins [119]. However, the 
functional significance of family A homo-dimerization/homo-oligomerization 
remains controversial. For example, Roger Sunahara and his team demonstrated 
that purification and reconstitution of a monomeric family A GPCR, including rho-
dopsin [121], β2-adrenergic [122] and μ-opioid [123] receptors, into a phospholipid 
bilayer in the form of high-density lipoprotein particles results in functional G pro-
tein coupling. These findings suggested that oligomerization of family A GPCRs is 
not required for agonist and antagonist binding, and that a monomeric family A 
GPCR is the minimal functional unit in regard to G protein activation. This hypoth-
esis has been supported by the relatively recent crystal structure of the active ternary 
complex composed of agonist-occupied monomeric β2-adrenergic receptor and the 
Gs protein heterotrimer [124]. Thus it seems clear that further work will be neces-
sary to establish the molecular basis responsible for the functional differences 
observed between family A GPCRs expressed in unnatural soluble nanoscale phos-
pholipid bilayers (nanodisc) and in heterologous expression systems such as living 
cells.

A different, although related, question is that focused on the potential molecular 
interaction between individual GPCR molecules that belong to distinct GPCR sub-
types. The first example was reported by Lakshmi Devi in 1999 with the demonstra-
tion that two fully functional opioid receptors, κ and δ, are able to form heteromeric 
complexes, and that heteromerization modulated opioid receptor function [125]. 
Since then, several other groups have shown that GPCRs form heteromeric receptor 
complexes that affect pharmacology and function. One of these examples is the 
heteromer between 5-HT2A and mGlu2 receptors.

In 2008, it was shown that immunoprecipitation using anti-c-Myc antibodies in 
cells transfected to co-express c-Myc-tagged 5-HT2A and HA-tagged mGlu2 con-
structs resulted in co-immunoprecipitation of anti-HA immunoreactivity [126]. 
Co-immunoprecipitation of anti-HA immunoreactivity was not observed when 
either c-Myc-5HT2A or HA-mGlu2 were expressed individually, or when plasma 
membrane preparations from cells transfected with either the c-Myc- or the 
HA-tagged forms of the receptors were combined before immunoprecipitation 
[126] (Fig. 3). Additionally, the specificity of this protein complex formation was 
supported by the findings showing absence of co-immunoprecipitation signal in 
cells co-expressing either c-Myc-5-HT2A and HA-mGlu3 or 5-HT2C-c-Myc and 
HA-mGlu2 [126]. These findings, which have been validated recently in a different 
experimental system (see below), suggest that 5-HT2A and mGlu2, but not 5-HT2C 
and mGlu2 or 5-HT2A and mGlu3, form part of the same protein complex in tissue 
cultures.

The close molecular proximity between 5-HT2A and mGlu2 receptors at the 
plasma membrane of living HEK293 cells was supported independently 
by  biophysical approaches that included co-immunoprecipiation [127, 128], biolu-
mininescence resonance energy transfer (BRET) [126], fluorescence  resonance 
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energy transfer (FRET) [126], flow cytometric analysis of FRET signal (FCM-
based FRET) [127], antibody-based time-resolved FRET (TR-FRET) [128], and 
combination of TR-FRET and SNAP-tag approach [129]. These data convincingly 
support at least a fraction of the population of 5-HT2A and mGlu2 receptors are 
expressed in close molecular proximity in heterologous expression systems such as 
living HEK293 cells.

One of the limitations of heterologous systems, however, is that related to the 
translational significance of the results observed, and, particularly, whether the com-
ponents of the heteromeric receptor complex are co-expressed in the same cells in 
native tissue. Independent findings have demonstrated that the 5-HT2A receptor is 
expressed at high density in layer II/III and layer V cortical pyramidal neurons, as 
well as in certain groups of cortical GABAergic interneurons and in sub-cortical 
regions such as striatum and thalamus [47–50, 85]. These findings were based on 
neuroanatomical approaches that included autoradiography assays with 5-HT2A 
receptor ligands, in situ hybridization and immunohistological tools. Using autora-
diographic assays with the mGlu2/3 receptor ligand [3H]LY349415, it was reported 

Fig. 3 Co-immuno-
precipiation (IP) 
experiments of c-Myc-5-
HT2A, HA-mGlu2 or 
HA-mGlu3 in 
co-transfected HEK293 
cells. The mGlu2, but not 
the mGlu3, 
co-immunoprecipitates 
with the 5-HT2A receptor. 
For a control, cells 
separately expressing the 
c-Myc- or HA-tagged 
forms were mixed. WB 
Western blot (see [126, 127])
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that mGlu2/3 receptors show a similar laminar distribution as that observed for the 
5-HT2A receptor in the frontal cortex of rats [75]. The use of mGlu2 knockout and 
mGlu3 knockout mice suggested that it is the mGlu2 receptor, and not the mGlu3 
receptor, the one that overlaps in terms of laminar distribution with the 5-HT2A recep-
tor in rodent frontal cortex [130]. Although interesting, however, these data do not 
provide evidence as to whether 5-HT2A and mGlu2 are co-expressed in the same cells.

This was first suggested with the use of a multiple oligonucleotide based-fluores-
cent in situ hybridization (FISH) neuroanatomical approach [131, 132]. Thus, it was 
demonstrated that 5-HT2A mRNA and mGlu2 mRNA co-localized in layer V cortical 
pyramidal neurons [126]. Expression of mGlu3 mRNA was undetected in mouse 
frontal cortex, whereas mGlu3 mRNA signal was observed in sub-cortical regions 
such as thalamus [126]. One of the limitations of neuroanatomical studies with 
GPCRs is the specificity and selectivity of anti-GPCR antibodies. Using anti-5-HT2A 
and anti-mGlu2 antibodies whose specificity and selectivity had been validated in 
frontal cortex tissue samples of 5-HT2A knockout and mGlu2 knockout mice, immu-
nohistochemical assays showed co-localization of 5-HT2A immunoreactivity and 
mGlu2 immunoreactivity in mouse cortical neurons [133]. These data suggest that 
5-HT2A and mGlu2 are co-expressed in the same population of cortical pyramidal 
neurons in mouse. They do not, however, provide evidence as to whether these two 
particular receptor subtypes interact at the sub-cellular level. This was approached 
with the use of electron microscopy to explore the ultrastructural localization of 
5-HT2A and mGlu2 receptors in the frontal cortex [127]. Labeling for 5-HT2A recep-
tor was observed most commonly in dendrites, near synapsis and extrasynaptically 
[127]. Labeling for mGlu2 receptor was observed in presynaptic terminals and in 
dendrites at or near postsynaptic sites [127]. Interestingly, these electron microscopy 
assays showed that labeling for both 5-HT2A and mGlu2 receptors was observed in 
close sub-cellular proximity, particularly at or near synaptic junctions [127]. Using 
a sub-cellular fractionation approach to purify fractions enriched in presynaptic 
active zone (PAZ) and postsynaptic density (PSD) proteins, it has recently been 
confirmed that the 5-HT2A receptor is detected only in the PSD, whereas the mGlu2 
receptor is detected in both the PSD and the PAZ fractions [134]. In addition, 5-HT2A 
and mGlu2 receptors can be co-immunoprecipitated from mouse and human frontal 
cortex plasma membrane preparations [133] (Fig. 4). Controls to validate the speci-
ficity of the co-immunoprecipitation approach in mouse frontal cortex tissue sam-
ples included 5-HT2A knockout and mGlu2 knockout mice, as well as frontal cortex 
tissue samples from 5-HT2A knockout and mGlu2 knockout mice which were 
homogenized together (mixed) and processed identically for immunoprecipitation 
and immunoblot [133]. Together, these data suggest that 5-HT2A and mGlu2 may 
form part of a protein complex at the PSD in mouse frontal cortex.

 Structure of the 5-HT2A-mGlu2 Receptor Complex

It is well accepted that hetero-dimerization of GABAB-R1 and GABAB-R2, which 
are assembled to form a functionally active GABAB receptor, is mediated via a par-
allel coiled-coil interaction at their C-termini [110]. It has also been shown that the 
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mGlu receptors form strict homodimers whose protomers are covalently bound via 
a disulfide bridge located at the extracellular Venus flytrap domains [110]. The resi-
dues and domains that are involved in homomeric formation of family A GPCRs 
remains however a topic of much controversy, and the conclusions seem to 
depend on the experimental approach used for the study of the structure of GPCR 
homo dimers and oligomers. These approaches included electron microscopy [135], 
co-immunoprecipitation and site-directed mutagenesis [117, 136], disulfide cross-
linking [112–115], fusion of a peptide derived from the HIV trans-activator of 
 transcription (TAT) to transmembrane amino acid sequences [137], and X-ray crys-
tallography [138–140] (for review, see [110]).

With regards to the transmembrane domains (TM) and residues located at the 
heteromeric interface between 5-HT2A and mGlu2 receptors, the differences in the 
capacity of mGlu2 and mGlu3 receptors to interact with the 5-HT2A receptor, as well 
as the capacity of 5-HT2A and 5-HT2C receptors to interact with the mGlu2 receptor, 

Fig. 4 Mouse frontal cortex membrane preparations were immunoprecipiated (IP) with anti-5-HT2A 
antibody. Immunoprecipitates were analyzed by Western blot (WB) with anti-mGlu2 antibody (lower 
blot). Mouse frontal cortex membrane preparation were also directly analyzed by WB with anti-
5HT2A antibody (upper blot) or with the anti-mGlu2 antibody (middle blot). 5-HT2A knockout and 
mGlu2 knockout mouse frontal cortex tissue samples were processed identically and used as negative 
controls. Frontal cortex tissue samples from 5-HT2A knockout and mGlu2 mice were also homoge-
nized together (mixed) and processed identically for immunoprecipitation and WB (see [133])
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were used as an strategy to identify the structural components of the 5-HT2A-mGlu2 
receptor heteromer. Using a series of molecular chimeras, it has been demonstrated 
that the TM4 of mGlu2 is necessary and sufficient to form a 5-HT2A-mGlu2 receptor 
heteromer [126, 127]. Thus, the mGlu2 receptor chimera containing the sequence 
corresponding to TM4 of the mGlu3 receptor (mGlu2ΔTM4) is not able to form a 
GPCR heteromer with the 5-HT2A receptor [127]. On the contrary, it was demon-
strated that the mGlu3 receptor chimera containing the sequence corresponding to 
TM4 of the mGlu2 receptor (mGlu3ΔTM4) is located in close molecular proximity 
with the 5-HT2A receptor [127]. Together, these data suggest that TM4 of the mGlu2 
receptor is necessary to form a GPCR heteromeric complex with the 5-HT2A 
receptor.

Additional approaches based on the combination of single point mutations at the 
TM4 of the mGlu2 receptor showed a critical role of the residues located near the 
intracellular end of TM4. Thus, substitution of restudies Ala-6774.40, Ala-6814.44, and 
Ala-6854.48 in mGlu2 for Ser-6864.40, Phe-6904.44 and Gly-6944.48 in mGlu3 
(mGlu2ΔTM4N) significantly reduced co-immunoprecipitation and FCM-based 
FRET signal with the 5-HT2A receptor [127]. Additionally, substitution of Ser-
6884.51, Gly-6894.52, Leu-6914.54, Leu-6924.55, Ile-6934.56, Val-6954.58, Ala-6964.59 and 
Val-6994.62 in mGlu2 for Leu-6974.51, Val-6984.52, Ile-7004.54, Val-7014.55, Met-7024.56, 
Ser-7044.58, Val-7054.59 and Ile-7084.62 in mGlu3 (mGlu2ΔTM4C) did not affect het-
eromerization with the 5-HT2A receptor [127]. These data suggested that Ala-6774.40, 
Ala-6814.44, and Ala-6854.48 of the mGlu2 receptor are responsible for GPCR hetero-
meric formation with the 5-HT2A receptor.

When exploring the contribution of individual residues at the cytoplasmic end of 
TM4 of the mGlu2 receptor in GPCR heteromeric formation with the with the 
5-HT2A receptor, it was reported that the single point mutations A6774.40S, A6814.44F 
or A6854.48G showed FRET signal when they were co-expressed with 5-HT2A [127]. 
These FCM-based FRET data suggested that two or more of these residues are nec-
essary at the heteromeric interface between 5-HT2A and mGlu2 receptors. 
Remarkably, when each of the double mutations were introduced into the mGlu2-
eYFP construct (A6774.40S and A6814.44F, A6814.44F and A6854.48G, or A6774.40S and 
A6854.48G), it was observed that any two of the three residues located at the intracel-
lular end of TM4 are responsible for the difference in GPCR heteromeric formation 
between the 5-HT2A and mGlu2 or mGlu3 receptor in living mammalian cells [127] 
(Fig. 5). Using an equivalent experimental approach with 5-HT2A and 5-HT2C chi-
meric constructs, more recent data suggest that TM4 of 5-HT2A is also necessary to 
form the 5-HT2A-mGlu2 heteromeric complex in HEK293 cells [134]. Together, 
these data suggest that a TM4-TM4 interface is at least in part responsible for stabi-
lizing the quaternary structure of the 5-HT2A-mGlu2 heteromeric complex.

As discussed above, previous findings suggested that family A GPCRs form 
higher order oligomers in live cells. Additionally, mGlu receptors are expressed as 
strict homodimers. Using a sequential three-color FRET imaging approach 

J.L. Moreno and J. González-Maeso



159

(3-FRET) [116], it has been demonstrated that at least a portion of 5-HT2A and 
mGlu2 receptors are within an oligomeric complex in which the components were 
at distances that enable FRET [134]. Although further work will be necessary to 
elucidate the exact location of the promoters of the 5-HT2A-mGlu2 heteromer, these 
results are consistent with mounting evidence that in living cells 5-HT2A and mGlu2 
receptors are able to form a higher-order oligomeric complex.

Fig. 5 Ala-6774.40, Ala-6814.44, and Ala-6854.48 are critical for the mGlu2 receptor to form a GPCR 
heteromer with the 5-HT2A receptor. (a) Ribbon backbone representation of the transmembrene 
helices of the 5-HT2A-mGlu2 heteromer model. Residues Ala-6774.40, Ala-6814.44, and Ala-6854.48 
are shown as spheres. (b) Ribbon backbone representation of the transmembrane helices of the 
5-HT2A-mGlu2ΔTM4N model. Residues Ser-6774.40, Phe-6814.44 and Gly-6854.48 are shown as 
spheres (see [127])
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 Psychedelics and Antipsychotic Drugs

From a translational point of view, the 5-HT2A receptor has been involved in psychiat-
ric disorders that include schizophrenia [141], depression [54], anxiety [87] and sui-
cidal behavior [142]. More recent studies have also suggested that the 5-HT2A receptor 
plays a fundamental role in cognition and memory [93, 143–145]. With regards to 
schizophrenia and its treatment, all atypical antipsychotic drugs present a high affinity 
for the 5-HT2A receptor as well as a modest affinity for the dopamine D2 receptor and 
other monoaminergic receptors [10]. Modeling in rodents the psychotic symptoms 
observed in schizophrenia patients remains controversial. Dissociative drugs such as 
phencyclidine (PCP), ketamine and MK801, which induce their effects via non-com-
petitive antagonism on the NMDA receptor [146, 147], induce in control subjects 
psychosis and cognitive deficits similar to those observed in schizophrenic patients 
[148–155]. Although there are noted dissimilarities between the hallucinogenic and 
cognitive effects of dissociative drugs and psychedelics (such as LSD, psilocin and 
mescaline), studies in healthy volunteers also suggest that psychedelics induced cer-
tain behavioral deficits that model schizophrenia symptoms [152, 156–163].

Using dissociative drugs and psychedelics in rodent models of schizophrenia, the 
use of 5-HT2A receptor ligands and antipsychotic drugs suggested that at least part 
of the antipsychotic-like behavioral phenotypes induced by atypical antipsychotic 
drugs is mediated via 5-HT2A receptor signaling [164, 165]. This hypothesis has 
been further suggested with the use of 5-HT2A knockout mice [133]. Thus, it was 
first established the lowest dose of clozapine that prevented MK801-induced hyper-
locomotor activity [133]. Notably, this antipsychotic-like behavior observed in 
wild-type mice was absent in 5-HT2A knockout mice [133].

 Psychedelics

Activation of the 5-HT2A receptor has also been involved in the unique effects of 
psychedelics on perception, cognition and sensorimotor gating. Thus, the effects of 
psychedelics such as LSD, mescaline, psilocin and TCB-2 are both diminished in 
5-HT2A knockout mice [85, 86, 166] and prevented by 5-HT2A receptor antagonists 
[166–172]. Similar findings implicating the 5-HT2A receptor in the behavioral 
effects or psychedelics have been observed in healthy volunteers [156]. Regarding 
rodent models, it has been demonstrated that head-twitch behavior represents mouse 
behavioral proxy of human psychedelic potential. Thus, only psychedelic 5-HT2A 
agonists induce head-twitch behavior, whereas this behavior is not induced by 
closely related non-psychedelic 5-HT2A agonists such as lisuride and ergotamine 
[85]. Similarly, the 5-HT2A receptor has been involved in the effects of psychedelics 
affecting paradigms of sensorimotor gating such as prepulse inhibition of startle 
(PPI) [173, 174]. These data, however, do not exclude the possibility that other 
monoaminergic receptors, such as 5-HT2C and dopamine D2, are also involved in 
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some of the behavioral effects of psychedelics. Thus, the psychedelic 5-HT2A ago-
nist DOI, which also binding with high affinity to the 5-HT2C receptor, has been 
shown to induce an inverted U-shaped dose-response effect on locomotor behavior 
[166]. These data indicated that high doses of DOI (10 mg/kg) decrease locomotor 
activity via 5-HT2C, whereas low doses of DOI (0.625–5.0 mg/kg) increase locomo-
tor activity via 5-HT2A [166]. Similarly, using an animal behavior model in which 
rats were trained to discriminate LSD from saline at two different pre-injection 
times (30-min and 90-min) using a two-lever, food-reinforced operant conditioning 
task, it was demonstrated that the discriminative stimulus of LSD occurs in two 
phases, and that the second temporal phase involves principally dopamine D2 
receptor-dependent pathways [175, 176].

The close molecular interaction between mGlu2 and 5-HT2A has also been sup-
ported by findings in rodent models of signaling mechanism and behavior. Using 
microarray studies followed by high-throughput quantitative real-time PCR (qRT-
PCR) showed that specific 5-HT2A receptor-dependent signaling pathways lead to a 
unique pattern of gene expression (transcriptome) in the somatosensory cortex that 
predicted psychedelic potential [86]. Thus, psychedelics, such as LSD, psilocin, 
mescaline, DOI, DOM and DOB induced expression of c-fos, egr-1 and egr-2 in 
mouse somatosensory cortex [85, 86]. This effect was not observed in the somato-
sensory cortex of 5-HT2A knockout mice [85, 86]. Similar findings were observed 
with LSD in rat frontal cortex [177, 178]. Additionally, non-psychedelic ligands, 
such as ergotamine and two isomers of lisuride (R-lisuride and S-lisuride) induced 
a 5-HT2A receptor dependent expression of c-fos, but not egr-1 or egr-2 [85, 86]. 
This pattern of gene expression is currently used as a tool to test for psychedelic-like 
cellular events in rodent models [179–183]. Induction of expression of egr-1 and 
egr-2 also served as an experimental tool to show that psychedelic 5-HT2A receptor 
agonists induced activation of both Gq/11- and Gi/o-dependent signaling pathways, 
whereas 5-HT2A receptor agonists that lack psychedelic properties induced activa-
tion of Gq/11-dependent, but not and Gi/o-dependent, signaling pathways [85]. These 
findings have recently been supported using a phosphoproteomics analysis in tissue 
cultures [184]. Additionally, experiments using Gq knockout mice showed that mice 
in which Gq-dependent signaling was eliminated show a partial decrease in DOI-
induced head-twitches [185]. It has also been suggested that the effects of the sero-
tonin precursor L-5-hydroxytryptophan (5-HTP), but not those of the psychedelic 
5-HT2A receptor agonist DOI, on head-twitch behavior require expression of 
β-arrestin in mouse [186].

Administration of the mGlu2/3 receptor agonist LY379268 prevented the induc-
tion of egr-1 or egr-2 by DOI, whereas the induction of c-fos by DOI was unaffected 
in mouse somatosensory cortex [126]. Similar findings showing absence of effect of 
LY379268 on DOI-dependent c-fos expression have been reported in mouse somato-
sensory and frontoparietal cortex [187], whereas LY379268 prevented the effect of 
DOI on the transcriptional activity of the c-fos gene in other regions such as the 
frontal cortex [187]. Additionally, DOI-dependent induction of expression of egr-1 
and egr-2 was absent in the frontal cortex of mGlu2 knockout mice [183]. This 
effect was not observed when induction of expression of c-fos by DOI was tested 
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[183]. Thus, intraperitoneal injection of DOI induced expression of c-fos, but not 
egr-1 and egr-2 in the frontal cortex of mGlu2 knockout mice [183].

As discussed above, activation of mGlu2/3 receptors by the mGlu2/3 agonist 
LY354740 prevented the effect of DOI on head-twitch behavior in rats [94]. Similar 
findings have been observed with the mGlu2/3 agonist LY379268 in mouse [126, 
183] and with a selective positive allosteric modulator of the mGlu2 receptor 
(BINA) in rats [188]. Remarkably, the 5-HT2A receptor-dependent effect of DOI and 
LSD on head-twitch behavior was significantly reduced in mGlu2 knockout mice as 
compared to wild-type littermates [183] (Fig. 6a). These data suggest that activation 
of mGlu2 receptor by either orthosteric agonists or positive allosteric modulators 
prevent head-twitch behavior induced by psychedelics in rodents. They also demon-
strate the intriguing finding that head-twitch behavior induced by psychedelics 
requires mGlu2 receptor function. Additionally, using a virally mediated over-
expression approach with herpes simplex virus (HSV), it was demonstrated that 
HSV-mediated over-expression of mGlu2 in the frontal cortex of mGlu2 knockout 
mice rescued the head-twitch behavior induced by DOI. This did not occur after 
HSV-mediated over-expression of mGlu2ΔTM4N (a chimeric construct that does 
form the 5-HT2A-mGlu2 heteromeric receptor complex) [127] (Fig6b–d).

 Antipsychotics

This molecular and behavioral crosstalk between 5-HT2A and mGlu2 receptors has 
been shown in models of antipsychotic drug action. Thus, using Xenopus oocytes as 
a heterologous expression system, it was suggested that changes in Gq/11 and Gi/o 
activity predict psychoactive behavioral effects [133]. Antipsychotic drugs such as 
clozapine, risperidone or LY379268 increased Gi/o activity and decreased Gq/11 
activity, whereas psychedelic drugs such as DOI and LY341495 increased Gq/11 
activity and decreased Gi/o activity [133]. This did not occur with ritanserin, methy-
sergide and the mGlu2/3 receptor agonist eGlu, which do not behave as antipsy-
chotic drugs in rodent models [133]. This work provided a metric (BI) that allows 
quantification and prediction of antipsychotic and pro-psychotic effects of serotonin 
or glutamate drugs acting through the 5-HT2A-mGlu2 heteromer (Fig. 7).

This crosstalk was challenged by a follow up work in a recombinant HEK293 
cell line stably expressing mGlu2 and 5-HT2A receptors [129] (for a review article, 
see [189]). Thus, although the authors validated that mGlu2 and 5-HT2A receptors 
are expressed in close molecular proximity in HEK293 cells [129], they showed that 
co-expression of 5-HT2A does not affect the pharmacological properties of mGlu2/3 
receptor agonists inhibiting cAMP activity [129], and that co-expression of mGlu2 
does not affect the pharmacological properties of 5-HT2A receptor agonists activat-
ing Ca2+ release [129]. Nevertheless, the potential effects of co-expression of 5-HT2A 
and mGlu2 receptors on signaling outcomes tested by Delille et al. [129] were dif-
ferent when compared to those tested by Fribourg et al. [133].
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Fribourg et al. tested the effects of activation of the Gi/o-coupled mGlu2 receptor 
on Gq/11 signaling in Xenopus oocytes expressing mGlu2 alone or mGlu2 and 5-HT2A 
and together, and those of activation of the Gq/11-coupled 5-HT2A receptor on Gi/o 
signaling in Xenopus oocytes expressing 5-HT2A alone or 5-HT2A and mGlu2 
together [133]. Delille et al., on the contrary, tested the effects of activation of the 

Fig. 6 (a) Wild-type and mGlu2 knockout mice were injected with DOI, LSD or vehicle, and the 
head-twitch response was scored 15 min after injection for 30 min (see [183]). (b,c) Expression of 
mGlu2 as a receptor heterocomplex with 5-HT2A is necessary for head-twitch behavior induced by 
psychedelics. Representative HSV-mediated transgene expression in frontal cortex (b). HSV-GFP, 
HSV-mGlu2 and HSV-mGlu2ΔTM4N were injected into the frontal cortex of mGlu2 knockout 
mice, and anti-mGlu2 expression was measured by Western blot (c). HSV-mediated over-expres-
sion of mGlu2, but not mGlu2ΔTM4N, in the frontal cortex of mGlu2 knockout mice rescues the 
head-twitch behavior induced by the psychedelic 5-HT2A receptor agonist DOI (d) (see [127])
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Gi/o-coupled mGlu2 receptor on Gi/o signaling in HEK293 cells expressing mGlu2 
alone of mGlu2 and 5-HT2A together, and those of activation of the Gq/11-coupled 
5-HT2A receptor on Gq/11 signaling in HEK293 cells expressing 5-HT2A alone and 
5-HT2A and mGlu2 together [129]. Nevertheless, in a recent study Baki, Fribourg 
et al. stably co-expressed in HEK293 cells 5-HT2A and mGlu2 receptors, and found 
that crosstalk-positive phenotype in these clones correlated with biochemical and 
pharmacological factors such as co-localization of the two receptors at the cell sur-
face and absolute and relative levels of expression [190]. These findings [190], 
along with previous publications by the same group [126, 133, 134], support the 
hypothesis that the presence or absence crosstalk in cells co-expressing 5-HT2A and 
mGlu2 receptors depends profoundly on the absolute and relative levels of expres-
sion of these two constructs in both HEK293 cells and Xenopus oocytes. Although 
further investigation will be needed to better understand the underlying mechanisms 
by which absolute and relative expression of 5-HT2A and mGlu2 receptors defines 
the existence of their heteromeric crosstalk, these data (see [126, 127, 133, 134, 
190]) provide an explanation of why the Delille et  al. study produced clones in 
which crosstalk between 5-HT2A and mGlu2 receptors was absent. This is further 
supported by more recent findings providing a mechanistic explanation of the het-
eromeric crosstalk between 5-HT2A and mGlu2 receptors in HEK293 cells.

Stimulation of Gq/11 is known to elicit a transient increase of intracellular calcium 
([Ca2+]i) via an IP3-mediated Ca2+ release from the endoplasmic reticulum that can 
be recorded using fluorescent calcium-sensitive dyes, such as Fura-2 [191]. 

Fig. 7 Use of BI to classify the anti-/pro-psychotic activity of drugs targeting the 5-HT2A-mGlu2 
heteromeric complex. Correlation maps between the BI and percentage of Gi-Gq balance loss of 
recovery for different grants. BIs were calculated for 10 μM concentrations of the drug together 
with 1 μM glutamate or 1 μM serotonin. Effects of the different between Gi and Gq signaling are 
shown for drugs with known antipsychotic effects, such as clozapine, risperidone and LY379268, 
for ritanserin, an antidepressant, for the neutral antagonists methysergide and eGlu, for the psyche-
delic DOI and for the pro-psychotic LY341495 (see [133])
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Importantly, recent studies using Fura-2 to test the effect of the mGlu2/3 receptor 
agonist LY379268 on Ca2+ release in HEK293 cells co-expressing mGlu2 and 
5-HT2A suggest that the addition of LY379268 resulted in elevation of intracellular 
Ca2+ [134]. It was also explored a possible functional complementation between two 
non-functional mGlu2 protomers and the 5-HT2A receptor. It was combined the use 
of mGlu2 constructs carrying mutations in lobe II of the Venus flytrap domain 
(Y216A, D295A; YADA) [118], which abolishes ligand binding and receptor func-
tion without disrupting plasma membrane expression, or in intracellular loop 3 
(F756S) [192], which abolishes G protein activation. Notably, the effect of 
LY379268 on Ca2+ release was rescued in cells co-expressing YADA-mGlu2 and 
mGlu2-F756S together with 5-HT2A [134]. These findings suggest that a fully func-
tional mGlu2 homodimeric receptor complex and its intrinsic G protein coupling 
properties are fundamental for this component of the 5-HT2A-mGlu2 heteromeric 
receptor complex to crosstalk with the 5-HT2A component.

These results, together with the previous demonstration that the intracellular end 
of TM4 of mGlu2 is necessary to form a protein complex with the 5-HT2A receptor 
[127], provided the rationale to explore the relative location of the mGlu2 protomer 
within the mGlu2 receptor homodimer that needs to contact the Gi/o heterotrimer in 
order to cross-talk with 5-HT2A receptor and consequently initiate Gq/11-dependent 
signaling. This question was addressed by combining mGlu2/mGlu3 chimeric con-
structs that disrupt 5-HT2A-mGlu2 heteromeric formation [127] with mutations in 
either the Venus flytrap or the intracellular loop 3 of mGlu2 that specifically affect 
ligand binding or G protein coupling [134], respectively (Fig. 8). Thus, if the mGlu2 
protomer within the two components of the mGlu2 homodimer that contacts directly 
with the 5-HT2A receptor is fundamental for interacting with Gi/o proteins, then the 
effect of the mGlu2/3 agonist LY379268 on Ca2+ release through the 5-HT2A-mGlu2 
heteromeric receptor complex would be disrupted in cells co-expressing YADA-
mGlu2ΔTM4N (mGlu2 mutant that does not bind orthosteric agonists and that does 
not form the 5-HT2A-mGlu2 heteromeric receptor complex) and mGlu2-F756S 
(mGlu2 mutant that does not activate Gi/o proteins) together with 5-HT2A-mCherry 
[134]. Alternatively, if the mGlu2 protomer within the mGlu2 receptor homodimer 
located distantly from the 5-HT2A receptor is necessary for Gi/o protein coupling, then 
the effect of the mGlu2/3 agonist LY379268 on Ca2+ release through the 5-HT2A-
mGlu2 heteromeric receptor complex would be disrupted in cells co-expressing 
YADA-mGlu2 (mGlu2 mutant that does not bind orthosteric agonists) and 
mGlu2ΔTM4N-F756S (mGlu2 mutant that does not activate Gi/o proteins and that 
does not form the 5-HT2A-mGlu2 heteromeric receptor complex) together with 
5-HT2A-mCherry [134]. The results for the mutant constructs showed that LY379268 
induces Ca2+ release in cells co-expressing YADA-mGlu2ΔTM4N and mGlu2-F756S 
together with 5-HT2A, but not in cells co-expressing YADA-mGlu2 and mGlu2ΔTM4N-
F756S together with 5-HT2A. These data suggest that the mGlu2 promoter that binds 
LY379268 needs to have an intact TM4 to communicate with the 5-HT2A component 
[134]. They also suggest that Gi/o protein coupling to the mGlu2 protomer located 
distantly from the 5-HT2A receptor within the 5-HT2A-mGlu2 protomer receptor com-
plex is necessary to induce Ca2+ release via Gq/11 proteins [134].
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 Genetic Crosstalk

Single nucleotide polymorphism (SNP) is a single nucleotide variation that occurs 
when a single nucleotide, for example adenine (A), replaces one of the other three 
nucleotides: thymine (T), cytosine (C), and guanine (G) [193]. This is an important 

Fig. 8 (a,b) Cartoon representation of relative location of the components of the 5-HT2A-mGlu2 
heteromeric receptor complex that are necessary to induce Ca2+ release in the presence of the 
mGlu2/3 agonist LY379268 based upon the mGlu2/mGlu3 chimeric and single point mutations 
constructs co-transfected in HEK293 cells. In order to manipulate orthosteric ligand binding, G 
protein activation and/or heteromeric formation with the 5-HT2A receptor of each protomer within 
the mGlu2 homodimeric unit, the following panel of mGlu2 mutants were constructed: substitu-
tion of residues Ala-6774.40, Ala-6814.44 and Ala-6854.48 in mGlu2 for Ser-6864.40, Phe-6904.44 and 
Gly-6944.48 in mGlu3 (mGlu2ΔTM4N), which significantly reduces the formation of a complex 
with the 5-HT2A receptor; the YADA-mGlu2 construct, which carries mutations in lobe II of the 
Venus flytrap domain that abolish orthosteric ligand binding (Y216A, D295A); and a single point 
mutation into the intracellular loop 3 of mGlu3 (F756S), which abolishes G protein activation. 
These constructs allowed the control of the relative location of the mGlu2 protomer within the two 
components of the mGlu2 homodimer that needs to couple to and activate Gi/o proteins in order to 
trans-activate the 5-HT2A component of the 5-HT2A-mGlu2 heteromeric receptor complex, leading 
to Gq/11 coupling and consequently Ca2+ release from the endoplasmic reticulum. (c) Ca2+ release 
after stimulation with LY379268 and subsequently with 5-HT in cells mock-transfected or co-
transfected with mCi-N172- or mCi-C67- and mCherry-tagged constructs (d), LY379268-
stimulated [35S]GTPγS binding in plasma membrane preparations of cells co-transfected with 
mCi-N172- and mCi-C67-tagged receptors (see [134])
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variation for the diversity among individuals, as well as for genetic variations that 
lead to phenotypes, traits and diseases. Most SNPs (93%) reported by genome-wide 
association (GWA) studies discovered appear to contribute to human disease risk, 
and they are not located in protein-coding regions [194]. This suggests that SNP 
regulates gene transcription levels indirectly through promoter-distal regulatory ele-
ments and the regulation of spatial genome architectures.

A recent pharmacogenetic study examined the influence of genetic variants on the 
response to the mGlu2/3 agonist LY2140023 (pro-drug of LY404039) in schizophre-
nia patients [195]. Interestingly, results from this study suggested an association 
between the 5-HT2A receptor SNP rs7330461 and response to LY2140023. Thus T/T 
homozygous patients showed a significantly greater improvement in positive and 
negative symptoms in response to treatment with LY2140023 as compared to A/A 
homozygous patients [195]. Additionally, T/T homozygous patients under LY2140023 
showed greater improvement in positive and negative symptoms as compared to pla-
cebo [195]. These findings, which have been validated recently in a different pharma-
cogenetic study [196], suggest a genetic association between SNPs at the 5-HT2A gene 
and the therapeutic response to LY2140023 treatment in schizophrenia treatment. 
Additional experimentation will be needed to unravel the basic mechanism underly-
ing how this SNP at the 5-HT2A gene affects the dynamic regulation of chromosomal 
conformations critical for mGlu2-dependnent antipsychotic-related phenotypes.

 Epigenetic Crosstalk

As discussed above, LY2140023 showed significant improvement in the Positive 
and Negative Syndrome Scale (PANSS) total score in schizophrenia patients [197]. 
This promising outcome encouraged the introduction of a new class of potential 
antipsychotic drugs acting as agonists of mGlu2/3 receptors. Unfortunately, follow-
up studies with LY2140023 produced either inconclusive results [198], or clinical 
outcomes that were not different from placebo [199, 200], whereas improvement in 
PANSS total score was significantly greater in the standard of care (SOC: olanzap-
ine, risperidone or aripiprazole) group [199, 200]. Interestingly, results in mouse 
models and postmortem human brain samples suggested that chronic antipsychotic 
treatment with atypical antipsychotic drugs might prevent the therapeutic efficacy of 
LY2140023 [201]. Thus, chronic treatment with atypical antipsychotic drugs, such 
as clozapine and risperidone, but not with the typical antipsychotic drug haloperidol, 
down-regulated expression of mGlu2 mRNA in mouse frontal cortex [201]. This 
effect was associated with repressive histone modifications at the mGlu2 promoter 
in mouse and human frontal cortex. Thus, acetylation of histone H3 (marker of tran-
scriptional activation) was decreased in the frontal cortex of mice treated chronically 
with clozapine [201]. This epigenetic change did not occur in the frontal cortex of 
5-HT2A knockout mice [201]. Considering that this repressive histone modification 
at the mGlu2 promoter was observed in the frontal cortex of schizophrenia patients 
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previously treated with atypical antipsychotic drugs, but not in untreated 
 schizophrenia patients [201], these results suggest that down-regulation of mGlu2 
expression represents a consequence of atypical antipsychotic drug medication, and 
not a biochemical marker of schizophrenia in postmortem human brain samples.

Remarkably, this hypothesis raised by preclinical and postmortem human brain 
studies has been validated by clinical results from a recent post-hoc analysis where 
the antipsychotic effects of LY2140023 were comparable to those induced by risperi-
done in schizophrenia patients previously treated with typical antipsychotics (i.e., 
haloperidol), whereas previous exposure to atypical antipsychotics (e.g., clozapine 
and olanzapine) led to an effect of LY2140023 that did not separate from placebo 
[202]. Previous data also suggest that 5-HT2A receptor-dependent up-regulation of 
HDAC2 and increased binding of HDAC2 to the mGlu2 promoter might be involved 
in the signaling mechanism responsible for epigenetic repression of the mGlu2 gene 
after chronic atypical antipsychotic drug treatment [201]. This study may lead to the 
identification of epigenetic drugs that prevent the effect of chronic atypical antipsy-
chotic treatment on mGlu2 expression, hence improving the currently limited anti-
psychotic efficacy of mGlu2/3 receptor agonists in certain cohorts of schizophrenia 
patients previously treated with atypical antipsychotic medication.

 Postmortem Schizophrenia Brain

Although it is possible and useful to model some aspects of schizophrenia and other 
psychiatric disorders in animals (see above), most of the psychiatric disorders are 
uniquely human and therefore it is difficult to judge the similitude of findings 
obtained in rodent models that attempt to recapitulate molecular and/or neurochem-
ical alterations without validation in human studies. In vivo imaging studies, such as 
positron emission tomography (PET), allow the visualization of the brain in living 
subjects. Although interesting, these studies do not permit either the level of resolu-
tion or the variety of studies afforded by postmortem examination of the human 
brain. Consequently, investigation of psychiatric and neurological illnesses using 
postmortem human brain tissue remains the gold standard for identifying molecular, 
neurochemical, genetic and epigenetic alterations that are not addressable by in vivo 
studies [203, 204].

Density of 5-HT2A receptor in the frontal cortex of schizophrenic subjects has 
been studied by a number of laboratories. Most of these studies have been carried 
out based on the use of radioligands that included [3H]ketanserin [126, 205–217] 
and [3H]LSD [218–221], as well as in untreated first-episode schizophrenic patients 
by positron emission tomography (PET) with [18F]altanserin [222, 223]. Remarkably, 
there are striking differences in the results obtained: some studies suggested up-
regulation of 5-HT2A receptor binding sites, whereas others pointed toward absence 
of alterations or down-regulation in the number of binding sites (Table 1). Recent 
findings suggest that these differences are governed in part by experimental factors 
such as antemortem treatment with antipsychotic drugs, age of the subject at the 
time of death, and cause of death.
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In this regard, previous studies using the 5-HT2A receptor [3H]ketanserin 
 suggested that density of the 5-HT2A receptor is increased in frontal cortex of 
 subjects that were tested negative for antipsychotic treatment at the time of death 
(antipsychotic-free) [126, 217]. Density of the 5-HT2A receptor was comparable to 
control subjects in frontal cortex samples of schizophrenic subjects treated with 
antipsychotic drugs at the time of death [126, 217]. The hypothesis of a selective 
up-regulation of [3H]ketanserin binding in frontal cortex of antipsychotic-free 
schizophrenic subjects is further supported by some [205, 207–214, 216] but not all 
[206, 207] of the studies suggesting that [3H]ketanserin binding is decreased in the 
frontal cortex of treated schizophrenic subjects. Overall, these findings suggest that 
up-regulation of [3H]ketanserin binding may predispose to psychosis, an hypothesis 
that has also been supported by findings in postmortem temporal cortex of parkin-
sonian subjects with visual hallucinations treated with medications that were not 
antipsychotics [226].

Similar findings have been observed with other 5-HT2A receptor ligands, such as 
the psychedelic 5-HT2A agonist [3H]LSD. Thus, [3H]LSD was up-regulated in in 
postmortem frontal cortex of untreated, but not treated, schizophrenic subjects 
[219–221]. Interestingly, PET imaging studies with the 5-HT2A receptor ligand [18F]
altanserin convincingly demonstrate that [18F]altanserin binding is decreased in 
frontal cortex of drug-naïve first-episode schizophrenic patients [223]. A potential 
explanation for these apparently discrepant findings is the different functional out-
comes of LSD-like drugs and altanserin, as well as their affinity for all the structural 
conformations of the 5-HT2A receptor. Thus, pharmacological and signaling find-
ings in postmortem frontal cortex suggest that, opposite the 5-HT2A receptor agonist 
LSD, the ligand altanserin behaves as 5-HT2A receptor inverse agonist. Thus, LSD 
presents a higher affinity for the active G protein-coupled conformation of the 
5-HT2A receptor, whereas altanserin presents a higher affinity for the inactive G 
protein-uncoupled conformation of the 5-HT2A receptor. In postmortem frontal cor-
tex of schizophrenia patients, it has also been suggested that functional uncoupling 
of heterotrimeric G proteins led to increased fraction of high-affinity sites of altan-
serin displacing [3H]ketanserin binding to the 5-HT2A receptor in schizophrenic sub-
jects, but not in controls. Together, these results suggest that up-regulation in the 
fraction of active G protein-coupled 5-HT2A receptor will lead to both increased 
binding of LSD, and, possibly, decreased binding of altanserin in schizophrenic 
subjects. Further work studying 5-HT2A receptor-G protein coupling is definitely 
needed to validate this hypothesis. Similarly, further work will be needed with the 
newly developed 5-HT2A receptor agonist [227, 228].

Previous studies suggest a potential role of the serotonergic system in suicidal 
behavior. Therefore suicide as a cause of death might be involved in the alterations 
in frontal cortex 5-HT2A receptor density is schizophrenic subjects that committed 
suicide [229]. Although this hypothesis cannot be excluded, previous studies sug-
gested that there were no differences in [3H]ketanserin binding to the 5-HT2A recep-
tor in a group suicide victims with psychiatric disorders such as dysthymic disorder, 
alcoholism, and anorexia nervosa, among others. Similarly, previous work has 
shown that [3H]ketanserin binding is unaffected in postmortem frontal cortex of 
suicide victims with major depression [230–237]. Few studies using [3H]ketanserin 
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Table 1 Radioligand binding studies of 5-HT2A receptor in human cortex obtained from 
schizophrenic and control subjects

Authors Ref. Radioligand
Tissue 

preparation
Cohort 
(Sz/C) Treat. BA Results

Bennet 
et al. 
(1979)

[218] [3H]LSD vs 
LSD

Membrane 12/12 Yes Various Downregulated

Whittaker 
et al. 
(1981)

[219] [3H]LSD vs 
LSD

Membrane 5/8 No 4,10,11 Upregulated

Whittaker 
et al. 
(1981)

[219] [3H]LSD vs 
LSD

Membrane 8/8 Yes 4,10,11 Decreased KD

Reynolds 
et al. 
(1983)

[205] [3H]
Ketanserin 

vs LSD

Membrane 11/10 Yes 10 No change

Mita et al. 
(1986)

[206] [3H]LSD vs 
pipamperone

Membrane 11/16 Yes 9 Downregulated

Arora and 
Metlzer 
(1991)

[224] [3H]
spiperone vs 
cinanserin

Membrane 11/11 Yes 8,9 Downregulated

Joyce et al. 
(1993)

[220] [125I]LSD vs 
ketanserin

Tissue 
section

10/8 Yes Various Upregulated

Laruelle 
et al. 
(1993)

[207] [3H]LSD vs 
pipamperone

Membrane 6/13 Yes 10,17,18 Downregulated

Dan et al. 
(1996)

[209] [3H]LSD vs 
spiperone

Membrane 20/20 Yes 9 No change

Burnet 
et al. 
(1996)

[208] [3H]
Ketanserin 

vs 
methysergide

Tissue 
section

13/15 Yes 46 Downregulated

Dean and 
Hayes 
(1996)

[209] [3H] 
Ketanserin 

vs spiperone

Tissue 
section

20/20 Yes 8,9,10 Downregulated

Gurevich 
and Joyce 
et al. 
(1997)

[221] [125I]LSD vs 
ketanserin

Tissue 
section

5/12 No Various Downregulated

Gurevich 
and Joyce 
et al. 
(1997)

[221] [125I]LSD vs 
ketanserin

Tissue 
section

5/12 Yes Various Downregulated

Dean et al. 
(1998)

[210] [3H]
Ketanserin 

vs spiperone

Tissue 
section

55/55 Yes 9 Downregulated

Dean et al. 
(1999)

[211] [3H]
Ketanserin 

vs spiperone

Tissue 
section

19/19 Yes 9 Downregulated

(continued)
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Table 1 (continued)

Authors Ref. Radioligand
Tissue 

preparation
Cohort 
(Sz/C) Treat. BA Results

Pralong 
et al. 
(2000)

[225] [3H]
Ketanserin 

vs spiperone

Membrane 10/10 Yes 22 Downregulated

Pralong 
et al. 
(2000)

[225] [3H]
Ketanserin 

vs spiperone

Tissue 
section

20/20 Yes 22 Downregulated

Marazziti 
et al. 
(2003)

[216] [3H]
Ketanserin 
saturation

Membrane 15/15 Yes Frontal 
cortex

Upregulated

Matsumoto 
et al. 
(2005)

[212] [3H]
Ketanserin

Tissue 
section

6/6 Yes 9 Downregulated

González-
Maeso 
et al. 
(2008)

[126] [3H]
Ketanserin 
saturation

Membrane 13/13 No 9 Upregulated

González-
Maeso 
et al. 
(2008)

[126] [3H]
Ketanserin 
saturation

Membrane 12/12 Yes 9 No change

Dean et al. 
(2008)

[213] [3H]
Ketanserin 
saturation

Tissue 
section

14/14 Yes 9 Downregulated

Dean et al. 
(2008)

[213] [3H]
Ketanserin 
saturation

Membrane 14/14 Yes 9 Downregulated

Erritzoe 
et al. 
(2008)

[222] [18F]
Altanserin

PET scan 15/15 No N/A No change

Kang et al. 
(2009)

[214] [3H]
Ketanserin

Tissue 
section

8/8 Yes 22 Downregulated

Rasmussen 
et al. 
(2010)

[223] [18F]
Altanserin

PET scan 30/30 No N/A Downregulated

Muguruza 
et al. 
(2012)

[217] [3H]
Ketanserin 
saturation

Membrane 29/29 No 9 Upregulated

Muguruza 
et al. 
(2012)

[217] [3H]
Ketanserin 

vs DOI

Membrane 29/29 No 9 Increased 
affinity

Muguruza 
et al. 
(2012)

[217] [3H]
Ketanserin 

vs altanserin

Membrane 29/29 No 9 Increased 
affinity

(continued)
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reported that the 5-HT2A receptor is increased in suicide victims with depressive 
disorders [238], and in suicide victims without psychiatric diagnosis [239, 240]. 
[3H]Ketanserin binding has also been shown to correlate with lifetime aggression in 
suicide [142]. Although further investigation will be needed to determine the impact, 
if any, of suicidal behavior on 5-HT2A receptor binding, these data suggest that sui-
cide does not affect density of 5-HT2A receptor binding in postmortem human fron-
tal cortex tissue samples.

Possible alterations of 5-HT2A and mGlu2 as a GPCR heteromeric complex have 
also been reported in postmortem frontal cortex of schizophrenic subjects. 
Competition binding assays provide a sensitive measure of functional interactions 
within a receptor heterocomplex [241]. In classical pharmacology, displacement 
curves of [3H]antagonist binding in the presence of increasing concentrations of an 
agonist show pattern, with high-affinity (Ki-high) and low-affinity (Ki-low) values [242, 
243]. Importantly, experiments in tissue culture (HEK293 cells) and in mouse fron-
tal cortex membrane preparations show that the biphasic displacement curve of the 
mGlu2/3 receptor antagonist [3H]LY341495 by the mGlu2/3 receptor agonist 
LY379268 becomes monophasic in the presence of the 5-HT2A receptor agonist DOI 
[126]. Experiments with mGlu2/mGlu3 chimeric constructs that form or do not 
form the 5-HT2A-mGlu2 heteromer suggest that this allosteric crosstalk between 
5-HT2A and mGlu2 receptor needs their close molecular proximity at the plasma 
membrane [126, 127, 190]. Importantly, it has been reported that the difference 
between the high-affinities of LY379268 displacing [3H]LY341495 binding in the 

Table 1 (continued)

Authors Ref. Radioligand
Tissue 

preparation
Cohort 
(Sz/C) Treat. BA Results

Muguruza 
et al. 
(2012)

[217] [3H]
Ketanserin 
saturation

Membrane 16/16 Yes 9 No change

Muguruza 
et al. 
(2012)

[217] [3H]
Ketanserin 

vs DOI

Membrane 16/16 Yes 9 No change

Muguruza 
et al. 
(2012)

[217] [3H]
Ketanserin 

vs altanserin

Membrane 16/16 Yes 9 Increased 
affinity

Moreno 
et al. 
(2012)

[127] [3H]
LY341495 vs 
LY379268/

DOI

Membrane 27/27 Yes 9 Increased 
crosstalk

Moreno 
et al. 
(2015)

[134] [35S]GTPγS 
binding

Membrane 27/27 Yes 9 Dysregulated

Membrane (Membrane plasma preparation)
Treat. (treatment)
BA (Brodmann area)
Sz (schizophrenia)
C (control)
PET (positron emission tomography)
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presence and in the absence of DOI was significantly increased in frontal cortex of 
schizophrenic subjects [127]. Together with the results obtained with chimeric con-
structs in tissue culture, these findings suggest that the allosteric crosstalk between 
the components of the 5-HT2A-mGlu2 receptor heterocomplex is dysregulated in 
frontal cortex of schizophrenic subjects.

This schizophrenia-related alteration in the crosstalk between mGlu2 and 5-HT2A 
receptor has been supported by functional assays testing receptor-G protein cou-
pling. In agreement with the studies in heterologous expression systems, such as 
HEK293 cells [134, 190] and Xenopus oocytes [133], the mGlu2/3 receptor agonist 
was able to activate both Gi/o and Gq/11 proteins in mouse frontal cortex [134]. It was 
also found that the effect of LY379268 on activation of Gi1,2,3 and Gαq/11 was absent 
in frontal cortex of mGlu2 knockout mice [134]. Importantly, LY379268 was able 
to activate Gi1,2,3, but not Gq/11, in the frontal cortex of 5-HT2A knockout mice [134]. 
These data demonstrate that Gi1,2,3 coupling as the canonical signal transduction 
mediated by activation of the mGlu2 receptor remains uninfluenced in the absence 
of 5-HT2A receptor-dependent signaling, whereas mGlu2-dependent activation of 
Gq/11 proteins requires expression of the 5-HT2A receptor in mouse frontal cortex. 
Similar effects have been observed in postmortem human frontal cortex, with acti-
vation of both Gi1,2,3 and Gq/11 by LY379268 [134]. Importantly, the impact of 
LY379268 on activation of Gq/11 was significantly reduced in schizophrenic subjects 
as compared to controls, whereas LY379268-dependent coupling of mGlu2 to 
Gαi1,2,3 was unaffected [134]. These data may be potentially useful for a better 
understanding of the biochemical alterations responsible for schizophrenia and 
other psychotic disorders.

 Prenatal Insults and Schizophrenia

Genetics plays an important role in the etiology of schizophrenia. GWA studies 
conducted in the mid-2000s showed genetic alterations associated with schizophre-
nia risk that included large recurrent microdeletions [244], variations in copy num-
ber [245], and rare duplications and microdeletions [246], and structural variants of 
genes involved in neurodevelopmental pathways [247]. It was also suggested that 
schizophrenia risk is associated with polygenic pathways that involve a great num-
ber of common alleles each of which with a very small effect [248]. More recent 
genomic studies have narrowed down the number of genetic loci potentially associ-
ated with schizophrenia. These genes include dopamine D2 (DRD2) and serotonin 
5-HT2A (Htr2a) receptors, as well as genes involved in glutamatergic neurotrans-
mission [249], voltage-gated ion channel, the signaling complex formed by activity-
regulated cytoskeleton-associated scaffold protein (ARC) at the postsynaptic 
density [250], and complement component 4 [251].

These findings provide convincing evidence that genetics plays a fundamental role 
in the basic molecular mechanisms responsible for schizophrenia. These genetic fac-
tors, however, are not the only cause responsible for this psychiatric disorder. As an 
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example, monozygotic twins, whose genetic material is ~100% identical, have a 
 concordance for schizophrenia of nearly 50% [252–254]. These results support an 
important contribution of genetics to the development of schizophrenia. At the same 
time, however, they also indicate that environmental factor may play a fundamental 
role in schizophrenia risk. Related to this topic, epidemiological studies have indicated 
that maternal infection during pregnancy with virus, such as influenza [255–257] and 
rubella [258], bacteria, such as bronchopneumonia [259], and protozoa, such as 
Toxoplasma gondii [260], affect profoundly the risk of developing schizophrenia in the 
adult offspring. Another factor associated to schizophrenia risk is related to maternal 
severe stress during pregnancy. Thus, severe adverse life events during pregnancy, 
such as war [261, 262], famine [263] and death or illness in a first-degree relative [264] 
have been shown to increase schizophrenia risk in the adult offspring.

Interestingly, using a mouse-adapted influenza virus, it was shown that maternal 
infection during pregnancy induced schizophrenia-related phenotypes in the adult 
offspring [265]. Among these phenotypes, it was reported that maternal influenza A/
WSN/33 (H1N1) viral infection during pregnancy was able to up-regulate 5-HT2A 
receptor and down-regulate mGlu2 receptor in the frontal cortex of the adult off-
spring [265]. Of note, a similar pattern of dysregulation was observed in postmor-
tem frontal cortex of untreated schizophrenic subjects [126, 217], suggesting that a 
mouse model of prenatal viral infection may facilitate targeting therapies for treat-
ment of this psychiatric disorder. Importantly, this study has been followed by other 
reports showing a similar pattern of dysregulation in expression and function of 
5-HT2A and mGlu2 receptors in rodent models of environmental insults. These 
included maternal stress during pregnancy [266–268], maternal administration of 
poly-(I:C) during pregnancy as a model of viral infection [182, 268], maternal 
administration of lipopolysaccharide (LPS) during pregnancy as a model of Gram-
negative bacterial infection [181], administration of kynurenic acid during preg-
nancy as a model of negative modulation of alpha 7 nicotinic acetylcholine receptors 
[269], chronic restraint stress in adult mice [270], sleep deprivation as a model of 
stress in adult mice [271], comparison between Roman Low- (RLA) and High- 
(RHA) avoidance rat strains [272], transgenic mice with a knock-in of a tryptophan 
hydroxylase 2 (Tph2) R439H [273], repeated administration of methamphetamine 
[274], chronic exposure to valproate in young rats [275], and perinatal exposure to 
bisphenol A (an estrogen that mimics endocrine disruption) [276]. These findings, 
together with results in postmortem human brain samples (see above), suggest that 
dysregulation of 5-HT2A and mGlu2 expression and their function in the frontal 
cortex might be responsible for some of the schizophrenia-related phenotypes 
observed in rodent models of prenatal and postnatal insults. Although there are a 
great many more unexplored genes affected by environmental insults, these experi-
mental tools in animal models might help understand the role, if any, of the crosstalk 
between 5-HT2A and mGlu2 receptor in frontal cortex as principal component of a 
signaling pathway that is responsible for schizophrenia-related phenotypes. These 
findings may ultimately lead to the identification of new therapeutic approaches not 
only for treatment but also prevention of cognitive deficits in schizophrenia and 
other psychiatric conditions.
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Abstract The observations that hallucinogenic drugs are in fact serotonin 5-HT2A 
receptor agonists and atypical antipsychotic drugs antagonize 5-HT2A receptors in 
addition to dopamine D2-like receptors, led to envisage a close relationship between 
schizophrenia and serotonin transmission. Post mortem studies have shown dimin-
ished 5-HT2A receptor binding in brain tissue from people with schizophrenia. If 
these changes also occur in schizophrenia, the decreased 5-HT2A binding might be 
a compensatory effect resulting from increased cortical serotonergic transmission. 
Therefore, schizophrenic personality was associated to an excess of brain serotonin. 
Overall, such data suggests that 5-HT systems may play a role in the etiology and 
therapy of some aspects of schizophrenia. Nevertheless, there is no simple hypoth-
esis of schizophrenia involving a single transmitter dysfunction in the brain. Thus, 
although initial views suggest increased serotonergic and dopaminergic transmis-
sion over 5-HT2A and D2 receptors in schizophrenia, current hypotheses for both 
etiology and treatment of the disease also implicate 5-HT1A and D2 receptor partial 
agonism in the development of novel antipsychotics with a better therapeutic profile 
and fewer adverse effects. In this chapter we review the role that serotonin and 
5-HT2A receptors play in schizophrenia as well as the most relevant schizophrenia-
related behavioral effects induced by hallucinogen drugs in rodents, focusing on 
those that involve a 5-HT2A receptor mechanism.
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 The Serotonin Hypothesis of Schizophrenia

The initial serotonin (5-HT) hypothesis of schizophrenia emanates from early studies 
showing that the psychedelic compound lysergic acid diethylamide (LSD), a drug 
with structural similarities to serotonin and high affinity for 5-HT2A receptors, showed 
hallucinogenic properties that resembled, at least in part, some of the symptoms of 
schizophrenia. However, although LSD was first postulated to model psychoses, the 
effects of hallucinogens are qualitatively different from the mental condition seen in 
schizophrenia [1]. Initially, LSD antagonized the effects of 5-HT in smooth muscle 
preparations. Hence, the initial hypothesis related schizophrenia to a brain 5-HT defi-
ciency. Later work, however, suggested that indoleamine and phenethylamine classes 
of psychedelic hallucinogens might share a common mechanism of action, i.e. potent 
5-HT2A receptor agonism. Consequently, it was concluded for the first time that the 
schizophrenic personality resulted from an excess of brain 5-HT [2]. Moreover, few 
studies have shown that a number of direct and indirect 5-HT agonists can sometimes 
exacerbate the symptoms of schizophrenia [3, 4], see also [5] for review.

In 1963, Carlsson and Lindqvist [6] proposed that an overactive dopaminergic 
system was responsible for the positive symptoms of schizophrenia (hallucinations, 
delusions). This hypothesis was further supported by the correlation found between 
clinical effective doses of antipsychotic drugs and their potency to block dopamine 
D2 receptors [7, 8]. Thus, by mid-seventies, the 5-HT hypothesis was completely 
eclipsed by the so-called dopamine hypothesis of schizophrenia. In later years, how-
ever, the 5-HT hypothesis regained momentum. One reason for this renewed inter-
est in the role of 5-HT was the introduction of the first atypical antipsychotic drug, 
clozapine, and the realization that the most interesting advantage of this drug was its 
better therapeutic profile for positive and negative symptoms in comparison with 
chlorpromazine [9]. Clozapine is a weaker D2-like blocker and more potent 5-HT2A 
receptor blocker. Therefore, a highly active serotonergic transmission was again 
implicated in schizophrenia [10]. Overall, such data suggested that 5-HT systems 
may play a role in the etiology and therapy of some aspects of schizophrenia. 
Nevertheless, there is no simple hypothesis of schizophrenia involving a single 
transmitter dysfunction in the brain. Rather, it is now considered that this illness 
affects different transmitter pathways in different brain regions, which results in an 
impaired circuit function that is responsible for the multiple set of symptoms 
observed. Thus, a challenge will be to find treatments to target dysfunctional brain 
circuits without disrupting those that are functioning normally.

 Role of 5-HT2A Receptors in Schizophrenia

As mentioned above, the first hint that 5-HT2A receptors have a role in schizophrenia 
comes from the observations that hallucinogenic drugs are in fact 5-HT2A receptor 
agonists and atypical antipsychotic drugs have been designed to antagonize 5-HT2A 
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receptors in addition to dopamine D2-like receptors. However, 5-HT2A receptor ago-
nists usually evoke visual hallucinations, whereas those associated with schizophre-
nia are commonly auditory [11].

5-HT2A receptors are particularly abundant in the pyramidal neurons from corti-
cal layer V [12, 13], both in rats and rhesus monkeys (Fig. 1).

However, pyramidal cells are not the only cortical cell type enriched in 5-HT2A 
receptors. In fact, 5-HT2A receptor mRNA is also expressed in γ-aminobutyric acid 
(GABA) interneurons [14] (Fig. 2).

Post mortem studies have shown compelling, diminished 5-HT2A receptor bind-
ing in brain tissue from people with schizophrenia [15–17] whereas more controver-
sial results have been gathered from studies in living human brains. Intriguingly, the 
only two studies so far reporting significant 15–16% decreases in cortical 5-HT2A 
receptors in schizophrenia [18, 19] were conducted in the youngest cohorts, which 
seems to suggest that decreases in 5-HT2A receptors may be a potential prodromal 
marker [20]. A question that remains unanswered is, what causes this reduced 
5-HT2A binding? Although a hyperactive serotonergic transmission in the prefrontal 
cortex (PFC) has been implicated in schizophrenia [10], the precise role of cortical 
serotonin on this effect is not fully understood. It has been shown in an animal 
model of the illness that antagonists of the NMDA glutamate receptor increased 
serotonin release in PFC [21–23], an effect prevented by atypical but not typical 
antipsychotic drugs [23, 24]. If these changes also occur in schizophrenia, the 
decreased 5-HT2A binding might be a compensatory effect resulting from increased 
cortical serotonergic transmission. Interestingly, although negative symptoms are 
usually thought to be associated with impaired serotonergic transmission in schizo-
phrenia [25], the study by Rasmussen and colleagues [19] found a significant nega-
tive correlation between 5-HT2A binding in the frontal cortex and positive symptoms 
in the group of male patients. However, similar correlations were not found between 
5-HT2A receptor levels and measures of working memory, problem-solving, or 
attention. Studies with larger populations are thus warranted to draw unequivocal 
conclusions on that matter. Also, an important point not to be missed is that PET 
measures were performed, for obvious reasons, in the resting state. Differences in 
serotonergic changes may thus exist, depending on the pathological phase of the 
illness.

From a pharmacological point of view, it is worth noting that blockade of 5-HT2A 
receptors alone does not confer antipsychotic activity. Thus, clinical evaluation of 
the selective 5-HT2A receptor antagonist, M100907, failed to demonstrate therapeu-
tic efficacy [26], despite the high level of 5-HT2A receptor occupancy achieved in 
frontal cortex [27]. Therefore, 5-HT2A receptor antagonism might be a condition 
necessary, but not sufficient to achieve a clinical antipsychotic effect. However, it 
has been suggested that the improved clinical profile of atypical antipsychotic drugs 
is related to an increased 5-HT receptor antagonism [28]. In addition, recent years 
have witnessed a resurgence of interest in hallucinogenic drugs as models of schizo-
phrenia, particularly its acute form [29]. Moreover, it has been reported that psilo-
cybin, an indole chemically akin to serotonin produces schizophrenic-like symptoms 
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that are reversed by the serotonin antagonist ketanserin, but not by haloperidol, a 
dopamine antagonist [30]. Based on such observations, it has been suggested that 
serotonin receptors may be overactive in schizophrenia, an idea that is consonant 
with the serotonin hypothesis proposed by Woolley in 1962 [2].

Fig. 1 Distribution of 5-HT2A receptors in prefrontal cortex of rhesus monkeys (Macaca 
mulatta). The receptor immunoreactivity in area 46 of the prefrontal cortex is showed in (a). 
5-HT2A labeling is found in most (if not all) pyramidal neurons throughout cortical layers II and III 
and layers V and VI, including their dendritic branches in layer I. Receptor labeling is weak in 
layer IV because only moderately labeled interneurons and some en passant apical dendrites of 
layer V pyramids are present in this layer. The boxed area in layer III (enlarged in b and c) demon-
strates receptor-labeled pyramidal cells (p), unlabeled (asterisks) and labeled nonpyramidal (np) 
cells, and receptor-positive fine processes. Scale bars: 0.5 mm in (a), 50 μm in (b), and 20 μm in 
(c). Taken with permission from RL Jakab and PS Goldman-Rakic’ 5-Hydroxytryptamine2A sero-
tonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsy-
chotic drugs in pyramidal cell apical dendrites, published in Proceedings of the National Academy 
of Sciences USA, 95(2): 735–740 (1998). Copyright © 1998, National Academy of Sciences, USA
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 Animal Models of Schizophrenia Impacting on 5-HT2A Receptors

Animal models of schizophrenia are very useful in basic, preclinical neuroscience 
research and in antipsychotic drug development. However, they have obvious limi-
tations due to the unknown etiology of the disease, the high inter-individual vari-
ability of symptoms and the inability to reproduce subjective symptoms of the 
illness. Therefore, they are intended to assess specific endophenotypes (behavioral 
traits) instead of modeling the disease as a whole [31–33]. Moreover they are aimed 
at providing tools with high predictive validity.

Fig. 2 Expression of 5-HT2A receptors in pyramidal and GABAergic cells of the rat cortex. 
Upper row (a–c): low and high level magnification photomicrographs showing the presence of 
5-HT2A receptor mRNA (33P–labeled oligonucleotides) in pyramidal cells, identified by the presence 
of vGluT1 mRNA (Dig-labeled oligonucleotides). a and b show, respectively, the presence of abun-
dant cells expressing both transcripts in the prelimbic area and tenia tecta. Red arrowheads mark 
some cells positive for vGluT1 mRNA, black arrowheads mark cells positive for 5-HT2A receptor 
mRNA. Double labeled cells are marked by both arrowheads. A large number of glutamatergic cells 
expressed the 5-HT2A receptor mRNA, as denoted by the double labeling. Note also the presence of 
non-glutamatergic cells expressing the 5-HT2A receptor mRNA (black arrowhead). c1 and c2 show 
individual cells expressing both transcripts in the piriform cortex (c1) and prelimbic area (c2). Lower 
row (d–f): as opposed to pyramidal neurons, only a small percentage of GAD-containing cells 
(∼20% on average) expressed the 5-HT2A receptor transcript. Blue arrowheads mark cells positive 
for GAD mRNA and black arrowheads mark cells positive for 5-HT2A receptor mRNA. Some dou-
ble labeled cells are marked by both arrowheads. D shows a field in the prelimbic area containing a 
GABAergic neuron expressing the 5-HT2A receptor mRNA. e and f show two different fields, in the 
piriform cortex and prelimbic area, respectively, showing abundant non-GABAergic neurons 
expressing the 5-HT2A receptors. Occasional GABAergic cells expressing the 5-HT2A receptor were 
observed (double arrowhead). Scale bars: 20 μm (a, b, d); 50 μm (e, f); 10 μm (c). Taken with per-
mission from N Santana, A Bortolozzi, J Serrats, G Mengod and F Artigas’ Expression of Serotonin1A 
and Serotonin2A Receptors in Pyramidal and GABAergic Neurons of the Rat Prefrontal Cortex, 
published in Cerebral Cortex, 14:1100–1109 (2004). Copyright © 2004, Oxford University Press
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Serotonergic hallucinogens such as mescaline, psilocybin, lysergic acid diethyl-
amide (LSD) and N,N-dimethyltryptamine (DMT) were one of the primary pharma-
cological agents proposed to produce effects bearing resemblance to some symptoms 
of schizophrenia. These compounds can produce important sensory distortions and 
visual hallucinations, but less frequently evoke severe delusions or auditory halluci-
nations, which are core features of the illness. From a pharmacological point of 
view, serotonergic hallucinogens, albeit having different chemical structures 
(Fig. 3), they all interact with 5-HT2A receptors. There is strong evidence that ago-
nist or partial agonist activity at 5-HT2A receptors is necessary for the psychedelic 
effects, however it may be not sufficient to explain the differences in the behavioral 
effects of these drugs. For instance, the endogenous transmitter, serotonin, and other 
synthetic, exogenous compounds such as LSD might produce distinct ligand-recep-
tor complexes when binding to 5-HT2A receptors. These different conformations 
may lead to activation of different subsets of intracellular signaling pathways, which 
is known as ligand bias or functional selectivity. In this regard, Schmid et al. (2008) 
[34] demonstrated, in an elegant series of experiments, that the in vivo responses of 
serotonin and 2,5-dimethoxy-4-iodoamphetamine (DOI) at 5-HT2A receptors are 
differentially altered by the presence of β-arrestin-2 scaffold [35] (Fig. 4). In addi-
tion, psychedelic drugs exhibit affinities for other targets such as serotonin 5-HT1A 
and glutamate mGlu2 receptors, which further complicates the extent of their phar-
macological effects (see [36] for review).

In this section we describe the most relevant schizophrenia-related behavioral 
effects induced by hallucinogenic drugs in rodents, focusing on those that involve a 
5-HT2A receptor mechanism:

Fig. 3 Chemical structure of serotonergic hallucinogens
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 (a) Startle habituation. Loud acoustic stimuli and tactile stimuli evoke a brief 
motor response (startle response) in both humans and animals, which decreases 
after repetitive stimuli exposure (habituation). Schizophrenia patients exhibit 
startle reflex habituation deficits [37–41], which suggests an inability to gate 
incoming stimuli. In rodents, serotonergic hallucinogens such as indoleamines 
(LSD; DMT; and psilocin, a psilocybin metabolite) and phenylalkylamines 
(mescaline; 2,5-dimethoxy-4-methylamphetamine, DOM; 2,5-dimethoxy-
4-ethylamphetamine, DOET) increase startle response magnitudes and 
decreases startle habituation (mescaline, acute LSD). Moreover, mescaline-
induced habituation effects are blocked by 5-HT2A/2C antagonists [42].

 (b) Prepulse inhibition (PPI). The fundament of this procedure is that the presenta-
tion of a weak pre-stimulus prior to a startle-inducing stimulus attenuates the 
startle response [43, 44]. Prepulse inhibition (PPI) is a measure of sensorimotor 

Fig. 4 Functional selectivity at the 5-HT2A receptor is mediated by β-arrestin. The absence of 
β-arrestin-2 abrogrates many serotonin-induced downstream events at 5-HT2A receptors, including 
internalization, head twitch, and p-ERK, but has little to no effect on those same signaling path-
ways when DOI is the ligand in question. Taken with permission from A Abbas and BL Roth’ 
Arresting serotonin, published in Proceedings of the National Academy of Sciences USA, 
105(3):831–832 (2008). Copyright © 2008, National Academy of Sciences, USA
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gating across species and is disrupted in schizophrenia patients [38, 40, 45–49]. 
The hallucinogenic drugs LSD, DOI, 2,5-dimethoxy-4-bromoamphetamine 
(DOB) and mescaline also reduce PPI in rats [50–52]. The effects of DOI and 
LSD on PPI are prevented by selective 5-HT2A antagonists M100907 and MDL 
11939 but not by 5-HT1A or 5-HT2C antagonists. Moreover, the effects of DOI 
over PPI are blocked by atypical antipsychotics drugs [53–55].

 (c) Head twitch response (HTR). HTR is a rapid lateral, side-to-side, head move-
ment induced by a variety of psychedelic 5-HT2A receptor agonists such as DOI, 
DOB, LSD and psilocin. LSD was the first drug used to study this behavioral 
response [56]. Currently, DOI is the prototype compound to investigate HTR in 
experimental animals (see [57] for review). The first study describing dose-
dependent HTR of DOI in rats was published in 1989 by Arnt and Hyttel [58]. 
In 1990 Darmani and coworkers [59] demonstrated HTR of DOI in mice. Other 
species that show HTR after DOI are rabbit [60] and least shrew [61]. Activation 
of 5-HT2A receptors is necessary for HTR of DOI in rodents since the response 
is blocked by fairly selective 5-HT2A antagonists and 5-HT2A KO mice do not 
show the response. Other serotonin receptors such as 5-HT2B, 5-HT2C, 5-HT1A 
may have a modulatory role on HTR-induced by DOI [57].

 (d) Temporal processing. Impaired timing and temporal processing is also a core 
feature in schizophrenia (see [55] for review). Similar deficits have been 
described after mescaline and LSD consumption in humans [62, 63]. Time per-
ceptual disturbances are also reproduced in rodents after DOI administration. 
Thus, rats showed altered performance in the free-operant timing task [64–66] 
and the discrete-trials task [67]. The effects of DOI on interval timing are 
dependent on 5-HT2A receptors since they are blocked by the selective 5-HT2A 
receptor antagonist M100907 and ketanserin [65, 66].

 (e) Modulation of locomotor activity. Locomotor activation has been used as a cor-
relate of psychotic symptoms in experimental animals. Psychedelic drugs like 
DOI and mescaline have been shown to affect locomotor activity in mice and 
rats [68]. Low doses of DOI produce motor activation while high doses have 
and opposite effect. Genetic studies in 5-HT2A KO mice and pharmacological 
studies involved 5-HT2A receptors and 5-HT2C in hyper- and hypo-locomotor 
effects induced by DOI, respectively [68, 69]. Non-psychedelic drugs did not 
produce motor activation. Therefore, psychedelic-induced motor activation has 
been proposed as an animal model of hallucinogenic potential in humans (see 
[70] for review).

 (f) Cognitive impairment. Dysfunction of serotonergic PFC circuits may contrib-
ute to the cognitive deficits observed in schizophrenia, especially regarding 
flexible and impulsive behaviors [71]. DOI increases impulsive behavior in 
rodents which is prevented by ketanserin administration [72]. However, other 
cognitive domains also affected in schizophrenia such as working memory and 
attention have been less studied or they have been shown to be unaffected by 
5-HT2A ligands [73, 74].

 (g) Negative symptomatology. Schizophrenia is also accompanied by negative 
symptoms such as depressed mood and social isolation among others. 
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Compelling evidence has demonstrated the role of the serotonergic system on 
the regulation of mood (for review see [75]). However, to date few studies have 
investigated the effects of 5-HT2A ligands and the possible role of 5-HT2A recep-
tors on mood regulation in schizophrenia [76].

 5-HT2A Receptor Antagonism and Second Generation 
Antipsychotic Drugs

The discovery of atypical antipsychotics (a.k.a. second generation antipsychotics) 
was one of the most robust indications for the role of serotonin in schizophrenia. To 
date, several atypical antipsychotic are commercially available: clozapine, risperi-
done, olanzapine, quetiapine, ziprasidone, aripiprazole, zotepine, paliperidone, ase-
napine, lurasidone, iloperidone, amisulpride and sertindole. Atypical antipsychotics 
inhibit the actions of dopamine at D2 receptors to a much lower extent than classical 
antipsychotics and additionally they interact with several serotonin receptors, pre-
dominantly through the blockade of 5-HT2A and 5-HT2C. With the exception of que-
tiapine and amisulpride, all currently approved atypical antipsychotic drugs display 
high affinity for 5-HT2A receptors [77–80]. Some compounds are also agonists at 
5-HT1A receptors. Due to their pharmacodynamics, atypical antipsychotics display 
a more favorable hormonal and extrapyramidal side (EPS)-effects profile than first 
generation compounds [81]. Clozapine, which was discovered in 1958, was the first 
drug that showed antipsychotic action without EPS effects and high effectiveness in 
treatment-resistant schizophrenia [9]. Perhaps the most interesting aspect of atypi-
cal antipsychotics is that they possess multiple drug properties (agonist, partial ago-
nist, antagonist, inverse agonist) at different receptors [82–85]. Indeed, the better 
therapeutic profile of clozapine (and possibly of other atypical drugs) could be 
accounted for by its affinity for a large number of receptors, thus being able to regu-
late different neurotransmitter systems and functions [78, 86–88] (Fig. 5).

However, atypical antipsychotics are not exempt from other adverse conse-
quences such as agranulocytosis (clozapine), metabolic alterations, tardive dyskine-
sia or increased risk of stroke. Moreover, atypical antipsychotics do not provide 
clear advantages on relieving negative and cognitive symptomatology in schizo-
phrenia [89]. Because, atypical antipsychotics have potent 5-HT2A antagonist prop-
erties, agents directly targeting 5-HT2A receptors such as ritanserin, M100907 and 
SR46349 (eplivanserin) have been tested as potential antipsychotics. Ritanserin 
induced a moderate reduction in core symptoms of schizophrenia [90]. The highly 
selective 5-HT2A receptor antagonist M100907 showed superior efficacy over pla-
cebo but below haloperidol, which precipitated the discontinuation of phase III 
clinical trial in USA.

Similar intermediate efficacy between placebo and haloperidol was described for 
SR46349 [91]. Together, these clinical findings demonstrate that 5-HT2A blockade 
alone results in some antipsychotic activity, yet optimal efficacy requests some 
degree of dopaminergic D2 blockade.
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 Conclusions

• Hallucinogenic drugs are able to induce schizophrenia-related behavioral effects 
in experimental animals.

• The effects of hallucinogenic drugs in experimental animals are mainly mediated 
by 5-HT2A receptors.

• 5-HT2A receptors contribute to the pharmacological profile of atypical 
antypsychotics.
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Abstract This chapter aims to summarize the up-to-day evidence-based biomedical 
knowledge on serotonin-2A (5-HT2A) receptors and their role in pathophysiology 
and treatment of central nervous system (CNS) disorders, with a primary focus on 
depression. The first paragraph provides a brief introduction to serotonin (5-HT) 
system and 5-HT receptors, focusing on serotonin-2 (5-HT2) family and 5-HT2A 
receptor specifically. The second paragraph is focused on molecular genetics of 
5-HT2A receptors, polymorphism of 5-HT2A receptor (5HT2AR) gene, 5HT2AR 
gene epigenetic mechanisms, such as DNA methylation, and post-translational 
modifications of 5HT2AR messenger ribonucleic acid (mRNA), such as alternative 
splicing. The molecular and cellular pharmacology and physiology of 5-HT2A 
receptors in normal and pathological conditions are discussed in the third para-
graph. The 5-HT2A receptors-acting ligands are addresses. The fourth paragraph 
describes the role of 5-HT receptors in the interaction between 5-HT and other 
neurotransmitter systems in health and in CNS disorders. The fifth and the final 
paragraph specifically deals with the role of 5-HT2A receptor in pathophysiology 
and treatment of depression, focusing on the 5-HT2A receptor expressed in the 
hippocampus.
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• G-protein coupled receptors (GPCR) • GαQ/Z-11 protein • Phospholipase C (PLC) 
• Inositol trisphosphate (IP3) • Calcium signaling • Antidepressant drugs  
• Antipsychotic drugs • Hippocampus

 Serotonin-2A Receptor: An Introduction

The 5-HT2A receptors belong to the 5-HT2 family consists of two more subtypes: 
5-HT2B and 5-HT2C receptors. These subtypes have similar molecular structure, 
amino acid sequence, and signaling properties. The 5-HT2B receptors have a 
restricted expression in CNS; they play an important role during the embryonic 
development [1]. The 5-HT2A and 5-HT2C receptors are widely distributed across the 
CNS and have multiple functions. All members of the 5-HT2 receptor family pri-
marily couple to PLC on activation. Like other G-protein coupled receptors 
(GPCRs), 5-HT2 functional regulation also involves sensitization and desensitiza-
tion-regulatory processes that help prevent overstimulation and allow recuperation 
of signaling competence, respectively [2].

Serotonin-2 receptor subtypes have been cloned from various species and tis-
sues. The 5-HT2A receptor from hamster, human, monkey, mouse, pig, rat, and sheep 
all have the same length of 471 amino acid. The 5-HT2B receptor from human, 
mouse and rat have a length of 481, 504, and 479 amino acids and the 5-HT2C recep-
tor from human, mouse and rat have a length of 458, 459, and 460 amino acids, 
respectively [3]. The 5-HT2A and 5-HT2C receptors are glycosylated on multiple 
sites. The genes for the 5-HT2A and 5-HT2B receptor have 3 introns; the 5-HT2C 
receptor gene has two introns. In humans, the genes are located on chromosome 
13q14-q21 for the 5-HT2A receptor, chromosome position 2q36.3–2q37.1 for the 
5-HT2B receptor, and chromosome X q24 for the 5-HT2C receptor [1].

It has been shown that some GPCRs, including the 5-HT2A receptor, exhibit criti-
cal differences in some aspects of functional regulation from those seen in conven-
tionally studied model GPCRs such as the β2-adrenergic receptor. This receptor 
couples to a number of intracellular signaling cascades, making it an important 
receptor to study. Therefore, the 5-HT2A receptor could well serve as an important 
alternate paradigm in the study of GPCR function [2].

Though the receptor has been studied largely in relation to its multiple functions in 
the CNS, high levels of receptor expression in other areas such as the intestine, plate-
lets, and endothelial cells suggest that it could play crucial roles in other aspects of 
physiology, as well. They mediate contractile responses in many vascular smooth 
muscle preparations (e.g. bronchial, uterine and urinary smooth muscle), and part of 
the contractile effects of 5-HT in the guinea pig ileum. In addition, platelet aggrega-
tion and increased capillary permeability following exposure to 5-HT have been 
attributed to 5-HT2A receptor-mediated process. Moreover, 5-HT2 receptor agonists, in 
addition to precursors of 5-HT and 5-HT releasing agents, mediate certain behavioral 
syndromes in vivo (e.g. head twitching in mice, and wet-dog shakes and back muscle 
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contractions in rats) [4]. Centrally, these receptors are principally located in the 
cortex, claustrum and basal ganglia. 5-HT2A receptor activation stimulates hormone 
secretion (e.g. ACTH, corticosterone, oxytocin, renin and prolactin) [5]. Considering 
the broad expression of 5-HT2A receptors across the brain and their involvement in 
multiple CNS functions, it is expected that these receptors will play a role pathophysi-
ology of brain disorders. Indeed, the CNS disorders in which the 5-HT2A receptor 
seems to be involved range from schizophrenia, depression, obsessive compulsive 
disorder (OCD), and attention deficit–hyperactivity disorder (ADHD), to eating disor-
ders such as anorexia nervosa, to autism spectrum disorders [2]. Implication of 5-HT2A 
receptors in mental disorders with complex etiologies is still not clearly understood. 
There are a large number of drugs targeted to this receptor.

 Molecular Genetics and Epigenetics of Serotonin-2A Receptor

 Serotonin-2A Gene Polymorphism

The 5-HT2A receptor, encoded by HTR2AR gene, is a widely-distributed post-syn-
aptic target for 5-HT in the human brain. Serotonin-2A receptor heterogenity is 
affected by alternative polymorphisms and alternative splicing. The 5-HT2A receptor 
is a target for atypical antipsychotics and antidepressants. The role of genetic vari-
ants of HTR2AR in signaling modulation remains unclear, despite positive clinical 
associations [6]. Methods for detecting genetic polymorphisms are advancing rap-
idly and now allow simultaneous genotyping of several nucleotide polymorphisms. 
The Genetic Association Database [7] reports 346 unique association studies 
between single nucleotide polymorphisms (SNPs) in HTR2AR gene and human 
phenotypes and more than half of these studies find positive genotype-phenotype 
associations. Most are related to cognition or risk for neuropsychiatric disorders, 
supporting the presence of functional genetic variants in HTR2AR gene. Some of 
SNPs (e.g., T102C, C516T, A1438G) are silent mutations and do not cause a change 
in the protein. Other SNPs (e.g., W25S, I197V, S421F, A447V, H452Y) result in a 
change in an amino acid. Although the A1438G mutation is silent and does not 
result in alteration of the amino acid sequence of 5-HT2A receptor, it is located 
within promoter region of the gene. Thus was proposed that this mutation alters 
promoter activity and even so expression of 5-HT2A receptors [8]. Lower 5-HT2A 
receptor densities in some brain areas may cause another silent mutation, T102C [9]. 
On the other hand, mutation H452Y which caused change in protein has no effect 
on receptor expression, but reduces intracellular signaling capacity [10].

Numbers of studies have been conducted on the association between HTR2AR 
gene T102C polymorphism and major depressive disorder (MDD) [11–13]. To clar-
ify the effects of HTR2AR gene T102C polymorphism on the risk of depression, 
Lin et al. [11] performed a meta-analysis in the Chinese population. Results have 
shown that HTR2AR gene T102C polymorphism is not associated with susceptibil-
ity to MDD in these population. Another study [14] demonstrated an association 
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between T102C polymorphism of HTR2AR gene, lifespan, and the risk of age-related 
CNS disorders. Their results suggest that T102C is associated with mean life span, 
and thus this gene becomes a possible candidate for the group of adaptive genes to 
meat consumption proposed in the literature.

The 5HT2A receptor gene polymorphisms rs7997012 and rs6311 has been sug-
gested to be involved in major depressive disorder. Htr2a knock-out mice (Htr2a−/−) 
displayed an increase in depressive-like behavior, compared to wild type, thus sug-
gesting, that lowered 5-HT2A receptor transmission may favor the susceptibility and 
severity of major depressive episodes [15].

It is seems that genetic variants in the HTR2A gene affect the therapeutic effects 
of andtidepressant drugs but mechanism underlying the regulation of such response 
remains poorly described. According to study of Qesseveur et al. [16] the HTR2A 
gene may represent a relevant marker to predict the efficacy of antidepressant drugs. 
The effect of three HTR2A single nucleotide polymorphisms (SNPs- rs6313, rs6314 
and rs7333412) was investigated. These three SNPs have potential functional con-
sequences on 5-HT2A receptor, on response and remission rates after 3 months of 
antidepressant treatments. Their clinical data indicated that GG patients for the 
rs7333412 SNP were less prone to respond to antidepressant drugs than AA/AG 
patients.

T102C and A1438G polymorphisms were associated with risk for schizophrenia 
[17–19]. The T102C polymorphism is also related to tobacco use [20] and the 
A1438G polymorphism of HTR2AR gene is involved in the development of alcohol 
dependence [21]. Polymorphisms of the HTR2AR gene are associated with halluci-
natory symptoms and delusions in demented and non-demented cohorts. The study 
of Craig et al. [22] examined the role of the HTR2AR gene T102C polymorphism 
in influencing psychotic symptoms in a large Northern Ireland Alzheimer’s disease 
(AD) population. No significant association was found either in frequency of geno-
type or allelic variation for either set of symptoms. On the other hand, Lam et al. 
[23] demonstrated significant association between neuropsychiatric symptoms in 
AD and HTR2AR gene polymorphisms.

 Methylation

Differential DNA methylation has been suggested to contribute to differential activ-
ity of alleles C and T and thereby to genetic associations between the C/T(102) 
polymorphism in the HTR2AR gene and psychiatric disorders [24]. This study 
demonstrated methylation in two CpG sites, which are specific to allele C.  The 
majority of allele C-specific CpG sites were methylated in human temporal cortex 
and peripheral leukocytes. Findings that methylation of allele C-specific CpG sites 
in the first exon correlated significantly with the expression of DNA methylase 1 but 
not S-adenosylhomocysteine hydrolase, support the hypothesis that allele-specific 
DNA methylation is involved in regulation of HTR2AR gene expression, influenc-
ing expression differences between alleles C and T.
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De Luca et al. [25] developed an improved quantitative assay for the measurement 
of allele-specific methylation of the HTR2AR gene and genetic association between 
the HTR2AR gene T102C silent polymorphism and suicidality in patients with 
mood disorders and schizophrenia.

Falkenberg et al. [26] used functional and structural equation modeling (SEM) 
approaches to assess the contributions of the polymorphism (R6311S) to DNA 
methylation and HTR2AR gene expression in chronic fatigue syndrome (CFS) sub-
jects from a population-based study. Their study suggests that the promoter poly-
morphism (rs6311) can affect both transcription factor binding and promoter 
methylation, and this along with an individual’s stress response can impact the rate 
of HTR2A transcription in a genotype and methylation-dependent manner.

 Alternative Splicing

The first alternatively spliced isoform of 5-HT2A receptor was identified by Huang 
et  al. [27] in the parasitic nematode species, Ascaris Suum. The 5-HT2A-s1 and 
5-HT2A-s2 exhibited identical pharmacological profiles when stably expressed in 
human embryonic kidney (HEK) 293 cells. Both 5-HT2As isoforms had higher affin-
ity for 5-HT than their closely related Caenorhabditis Elegans homolog (5-HT2C-e).

Guest et al. [28] identified an alternatively spliced HTR2AR gene transcript by 
PCR of human brain cDNA using degenerate oligonucleotide primers to transmem-
brane domains. PCR analysis showed that truncated (5HT2ARtr) and native 
HTR2AR genes were co-expressed in most brain tissues, with the highest levels 
being found in hippocampus, corpus callosum, amygdala, and caudate nucleus. 
Western blot analysis of HEK-293 cells transfected transiently with a 5HT2ARtr 
construct showed that a 30-kDa protein was expressed in cell membranes. 
Co-transfection studies showed no effect of the 5HT2ARtr variant on 3H-ketanserin 
binding to the native HTR2AR or on functional coupling of the HTR2AR to 
5-HT-stimulated calcium influx.

 Molecular Pharmacology of and Serotonin-2A Receptors

 Signal Transduction Pathways of Serotonin-2A Receptor

The activation of 5-HT2A receptor leads to the dissociation of GαQ/Z protein into α 
and βγ subunits. The α subunit of GαQ/Z protein activates the phospholipase C (PLC), 
which in turn catalyzes the dissociation of inositol 1,4,5-trisphosphate (IP3)-di-
acylglycerol (DAG) complex into the IP3 and DAG.  The DAG activates protein 
kinase C (PKC), and IP3 stimulates calcium (Ca2+) release from endoplasmic reticu-
lum (ER) into the cytoplasm, a characteristic activation signature of many GPCRs 
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[29, 30]. This cascade has been the most extensively studied and is perhaps the most 
important signal transduction pathway regulated by this receptor (Fig. 1).

Stimulation of the 5-HT2A receptor leads to the activation of at least three distinct 
signal transduction pathways: IP3/DAG-, arachidonic acid (AA)-, and 2-arachidonyl-
glycerol (2-AG)-mediated. In addition to PLC, 5-HT2A receptors were also reported 
to activate phospholipase A2 (PLA2), so-called phospholipase B (PLB) [31].

Besides phospholipases-mediated calcium signaling, 5-HT2A receptor activation 
also induces extracellular signal-regulated kinase (ERK) phosphorylation via 
diverse intracellular signaling mechanisms [32]. Src and calmodulin (CaM) pro-
mote 5-HT2A receptor-mediated phosphorylation of ERK. In the PC12 cells, ERK 
phosphorylation by 5-HT2A receptor may not depend on PLC/PKC signaling, and 
instead requires an increase in intracellular calcium, and the activation of CaM and 
Src [33]. The ERK target p90 ribosomal S6 kinase 2 (RSK2) directly acts on the 
third intracellular (i3) loop of 5-HT2A receptor protein [34], leading to direct phos-
phorylation of the i3 loop at the conserved residue Ser-314 and to suppression of 
5-HT2A receptor signaling.

Fig. 1 Detailed signal transduction pathways of serotonin-2A receptors. Serotonin-2A (5-HT2A) 
receptor activates protein kinase Cβ (PLCβ). Protein kinase Cβ hydrolysis phosphatidylinositol 4,5 
bisphosphate (PIP2) to diacylglycerol (DAG) which activates protein kinesis A (PKA) and inositol 
trisphosphate (IP3) which acts through inositol trisphosphate receptors (IP3R) localize on endoplas-
mic reticulum. Activation of this signaling pathway leads to increase in intracellular calcium con-
centration which affects ion channels, enzyme activity, and neurotransmission or gene expression. 
Intracellular calcium can also lead to activation of calmodulin which activates extracellular signal-
regulated kinases (ERK) and activation of calcineurin leading to inhibition of voltage-dependent 
calcium channels. Activation of ERK signaling pathway suppresses 5-HT2A receptor signaling 
through RSK2 kinase. Extracellular signal-regulated kinases can be activated by TGFβ receptor 
signaling pathway involving Ras GTP-ases interacting with Raf kinases and mitogen-activated 
protein kinase kinases (MEK) which phosphorylates mitogen-activated protein kinase (MAPK)
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In addition, RSK2 is required for tyrosine kinases, such as the epidermal growth 
factor receptor and the platelet-derived growth factor receptor, both of which have 
been demonstrated to attenuate 5-HT2A receptor functioning in primary cortical 
neurons [35, 36].

The 5-HT2A receptors, like other members of 5-HT2 family, couple preferentially 
via GαQ/Z-11 to the IP3/PKC/Ca2+ pathway, although inhibition of cyclic adenosine 
monophosphate (cAMP) production has been reported [37].

The 5-HT2A receptor also regulates the tyrosine kinase pathway activity [33]. 
Activation of neuronal 5-HT2A receptor activates transglutaminase which leads to 
transamidation of Rac1, a small G protein, resulting in constitutive activation of 
Rac1 [38]. Chronic treatment with olanzapine, an atypical antipsychotic drug, causes 
the desensitization of 5-HT2A receptor signaling. In rat frontal cortex, stimulation of 
the JAK-STAT pathway desensitizes the 5-HT2A receptor-mediated PLC activation 
induced by olanzapine [39]. Furthermore, constitutive activation of 5-HT2A receptor 
induces GαQ/Z-11 phosphorylation and desensitization (uncoupling) [40].

 Functional Selectivity and Internalization of Serotonin-2A 
Receptors

Interestingly, different agonists of 5-HT2A receptors vary in the efficacy with which 
they stimulate individual signal transduction pathways [2, 41]. This phenomena is 
called functional selectivity and the 5-HT2A receptor was one of the first receptors 
for which this was described [29, 42]. This discovery was based of the observation 
that hallucinogenic effects of drugs such as LSD do not correlate with their activa-
tion of the IP3/DAG pathway [2].

It has been suggested that hallucinogen, but not nonhallucinogen, 5-HT2A 
receptor agonist induce phosphorylation of the 5-HT2A receptor at S280 located in 
the third intracellular loop. Importantly, these authors also demonstrated that 
 pretreating cells with pertussis toxin (PTX) decreased PLC activation induced by 
the hallucinogens 2,5-Dimethoxy-4-iodoamphetamine (DOI) and LSD, whereas 
PTX treatment did not affect lisuride and ergotamine responses [43]. Jones et al. 
[44] discovered, that application of the 5-HT2A receptor agonist DOI to cultured 
cortical neurons induced phosphorylation of p21-activated kinase (PAK) via Rac 
guanine nucleotide exchange factor (RacGEF) kalirin-7 [44]. Taken together, these 
observations suggest that hallucinogens selectively activate GαI/O-dependent signal-
ing, whereas non-hallucinogen 5-HT2A receptor agonists do not [45].

Both in vitro and studies in vivo have shown receptor redistribution in response 
to exposure to antagonists. The 5-HT2A receptor is internalized in response to both 
agonists and antagonists, adding a very interesting twist to its signaling properties 
[46, 47]. This feature of the 5-HT2A receptor may play important roles in its signal-
ing and in the actions of antipsychotic medications. The antagonist-mediated inter-
nalization of the rat 5-HT2A receptor, unlike 5-HT-mediated internalization, is 
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independent of protein kinase C (PKC) activation [47]. Bhatnagar and colleagues 
[46] examined the internalization process of this receptor in detail, demonstrating 
that both agonist- and antagonist-induced internalization of the 5-HT2A receptor 
were dynamin-dependent and via clathrin-mediated endocytosis. Activation of the 
5-HT2A receptor by agonists, but not antagonists, induced greater translocation of 
arrestin-3 than arrestin-2 to the plasma membrane, and resulted in differential sort-
ing of arrestin-2, arrestin-3, and 5-HT2A receptors into distinct plasma membrane 
and intracellular compartments. It is likely that these differences in distribution of 
the various signaling components induced by agonists and antagonists may be 
important in the “ligand-directed” of second messenger signals by the 5-HT2A 
receptor, depending upon which ligand is used to stimulate the receptor. Authors 
discovered, that in vitro knockdown of Caveolin-1 (Cav-1, a scaffolding protein) 
nearly abolished 5-HT2A receptor-mediated signal transduction as measured by cal-
cium flux assays. Cav-1 appeared to modulate 5-HT2A receptor signaling by facili-
tating the interaction of 5-HT2A receptors with Gαq.

 Serotonin-2A-Acting Drugs

Several drugs that have been developed for treatment of psychiatric disorders selec-
tively bind to the 5-HT2A receptor and modulate its signaling pathways (Table 1). 
The antipsychotic drugs spiperone and methiothepin with antipsychotic properties 
are nonselective antagonists of 5-HT1 and 5-HT2 receptors. Both prevent the 
5-HT-dependent PLC activation at 10 μM concentration. However, cyproheptadine 

Table 1 5-HT2A ligands and their selectivity towards the 5-HT receptor family

Name of ligand Effects of binging Receptor affinity

Brexipiprazole Antagonist 5-HT1A, 5-HT2A

Cyproheptadine Antagonist/inverse agonist 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C,5-HT3, 
5-HT6, 5-HT7

DOI Agonist/partial agonist 5-HT2A, 5-HT2B, 5-HT2C

MDL100907 Highly selective antagonist 5-HT2A

Olanzapine Agonist/inverse agonist 5-HT1A, 5-HT3, 5-HT6, 5-HT7,5-HT2A, 5-HT2B, 
5-HT2C

Risperidone Antagonist/inverse agonist/
irreversible antagonist

5-HT1A, 5-HT1B, 5-HT1D, 5-HT5A, 5-HT65-
HT2A, 5-HT2B, 5-HT2C5-HT7

Ritanserin Antagonist 5-HT2A, 5-HT2C

Seroquel Antagonist 5-HT1A, 5-HT2A, 5-HT2C, 5-HT7

Spiperone Antagonist 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 
5-HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT6, 
5-HT7

TCB-2 Agonist 5-HT2A, 5-HT2C

YM 992 Antagonist 5-HT2A
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(10 μM), another antagonist of 5-HT1 and 5-HT2 receptors, had no effect on PLC 
activity [48].

Brexpriprazole is an antagonist of 5-HT2A, 5-HT1A and D2 receptors, is approved 
for the clinical use as a main pharmacotherapy in schizophrenia and as an adjunct in 
antidepressant-resistant depression. This drug demonstrated robust antipsychotic, 
antidepressant-like and anxiolytic activities, and limited extrapyramidal symptom 
liability with pro-cognitive efficacy in animal models [49]. Accumulating evidence 
suggests that antipsychotic drugs act by promoting neurite outgrowth. In the study 
of Ishima and colleagues [50] authors examined whether brexpiprazole can affect 
neurite outgrowth in cell culture. They found that brexpiprazole significantly poten-
tiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a 
concentration dependent manner. Moreover, inhibitors of inositol IP3 receptors, xes-
tospongin C and 2-aminoethoxydiphenyl borate (2-APB), significantly blocked the 
effects of brexpiprazole. These findings suggest that brexpiprazole-induced neurite 
outgrowth is mediated through 5-HT1A and 5-HT2A receptors, and subsequent Ca2+ 
signaling via IP3 receptors [50].

 Role Serotonin-2A Receptors in the Regulation of CNS 
Circuits

 Role of Serotonin-2A Receptors in the Interactions 
Between Serotonin and Glutamate and GABA Systems

DOI (1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane]) is a hallucinogen acting as 
agonist of 5-HT2A receptors, similarly to lysergic acid diethylamide (LSD). It was 
reported that DOI causes a dose-related inhibition of 5-HT neuronal activity, with the 
highest dose reducing firing rates by >80%. Pretreatment with the 5-HT2 receptor 
antagonist ritanserin completely blocked the action of DOI [51]. Study of Quesseveur 
et al. [52] confirms this inhibitory effect of DOI on dorsal raphe (DR) nucleus 5-HT 
neuronal activity. DOI’s response is dependent on 5-HT2A receptors because it dimin-
ished in 5-HT2A receptors lacking mice. Possible way of DOI inhibitory effect on DR 
5-HT neuronal activity is via increasing of GABA release in DR. Other study shows 
that activation of 5-HT2A receptors in the PFC by DOI increased the firing activity of 
DR 5-HT neurons. DOI administration also affected the firing rate of pyramidal neu-
rons while most of them were excited, 11% were inhibited and rest was unaffected 
[53] In this case, excitatory and inhibitory actions of DOI on pyramidal cell firing are 
likely mediated by receptors located on pyramidal neurons and GABA interneurons, 
respectively. DOI also stimulates 5-HT release in the PFC, probably via a mecha-
nism involving interaction between 5-HT2A and AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid) receptors [54] (Fig. 2).

The PFC seems to play crucial role in depression. PFC is involved in higher brain 
functions and carries a control of brain functions through the processing and inte-
gration of signals from other brain areas, such as neocortex, several thalamic nuclei, 
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Fig. 2 Interactions between 5-HT2A receptors and the other system. (a) Excitatory pyramidal neu-
rons in the medial prefrontal cortex (mPFC) control activity of 5-HT neurons in dorsal raphe (DR) 
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and the brain stem. The apical and basal dendrites of pyramidal neurons of the PFC 
are highly enriched with 5-HT2A receptors. These receptors are present also on large 
and medium-sized GABAergic interneurons that control the activity of local micro-
circuits [55]. The mPFC in rodents innervates via long glutamatergic axons various 
brain areas involved in depression, such as nucleus accumbens (NAcc), amygdala, 
and PFC [56]. As well, activity of dopaminergic neurons in ventral tegmental area 
(VTA) is under the excitatory control of 5-HT2A receptors in mPFC. Neurons in 
mPFC excited through 5-HT2A receptors increase the firing rate and burst firing of 
dopaminergic neuron and dopamine release in VTA [57].

The 5-HT2A receptor activation located on thalamocortical afferents could 
increase glutamate release and increase spontaneous excitatory postsynaptic cur-
rents (EPSCs) through the activation of pyramidal AMPA receptors, however, this 
suggestion is based by the recent anatomical data indicating that the terminal 5-HT2A 
receptors are not located on glutamate axons [58].

 Role of Serotonin-2A Receptors in the Interactions 
Between Serotonin and Dopamine Systems

The 5-HT2A receptor stimulation results in enhanced dopamine (DA) release in rat 
PFC, presumably via facilitation of 5-HT1A receptor stimulation. Ability of clozap-
ine to increase DA release may be boosted by antagonism of 5-HT2A receptors [59].

The local infusion of DOI into the PFC dampened potassium (K+)-mediated DA 
release in a dose-dependent manner. Regular intracortical administration of MDL 
100907 caused an increase in cortical DA efflux, suggesting that cortical 5-HT2A 
receptors potentiate the phasic release of DA [60]. The stimulatory effect of 5-HT 
on efflux of dopamine in the striatum is effective only when nigro-striatal DA trans-
mission is elevated above basal levels [61]. Antagonism of 5-HT2A receptors may 
modulate the activity of dopamine neurons in different areas. For the nigro-striatal 
dopaminergic pathway was suggested a model in which blockade of these receptors 
led to increased output of dopaminergic neurons into the striatum [62].

Brexpiprazole has higher affinity to D2 than to the 5-HT2A receptors. While other 
antipsychotic drugs act as D2 antagonists, brexpiprazole is a partial agonist of the D2 

Fig. 2 (continued) through 3 different mechanisms: N-methyl-d-aspartate (NMDA) and 2-amino-
3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA) receptors- mediated excitation; GABAA 
receptors- mediated inhibition; and 5-HT1A autoreceptors- mediated inhibition. (b) Regulation of 
the dopaminergic system through 5-HT2A receptors. In the ventral tegmental area (VTA) or in 
medial prefrontal cortex (mPFC), 5-HT2A receptors have also been identified in GABAergic inter-
neurons. Their activation leads to the inhibition of dopaminergic activity. 5-HT2A receptors might 
also be expressed in dopaminergic neurons in VTA region and their activation would stimulate 
dopaminergic activity. (c) Locus coeruleus (LC) receives dense 5-HT projections coming from 
dorsal raphe (DR), which have an inhibitory effect on noradrenergic neurons. Increased 5-HT 
levels act also on excitatory 5-HT2A receptors on GABAergic neurons which lead to an inhibition 
of norepinephrine release
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receptors [63, 64]. The D2 receptor agonistic features could alter DA neurotransmis-
sion by stimulating D2 receptors when the levels of DA are lowered, while decreas-
ing their activation when DA levels are increased [65].

Increase in 5-HT levels inhibits dopaminergic neurons as the lesion of 5-HT 
neurons results in an increase of dopaminergic neuronal activity in the VTA [66]. 
Thus, an increase in the availability of 5-HT cause by SSRIs might result in attenu-
ation of the firing of dopaminergic neurons. Neuronal activity of dopaminergic neu-
rons has a critical role in the VTA in motivation, hedonia and reward, so the 
inhibition of this firing might contribute to SSRI resistance in some patients [67].

 Role of Serotonin 2A Receptors in the Interactions 
Between Serotonin and Norepinephrine Systems

The 5-HT2A receptor is likely to play an important role in the interaction between 
norepinephrine (NE) and serotonin (5-HT) systems [68]. Increased 5-HT levels act 
on excitatory 5-HT2A receptors on GABA neurons, thus leading to an inhibition of 
NE release [69].

Acute brexpiprazole administration reduced inhibition of two important interac-
tion nodes between the 5-HT and NE systems. The blockade of 5-HT2A receptors 
revokes the tonic inhibition of NE neuronal firing activity, and the blocking of α2-
adrenergic receptors on the nerve terminals of NE neurons stimulates NE release [70].

YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochlo-
ride] is a selective serotonin reuptake inhibitor (SSRI) and a potent 5-HT2A receptor 
antagonist. Acute injection of YM992 significantly decreased NE neuron firing 
activity and blocked the inhibitory effect of a subsequent injection of the 5-HT2 
receptor agonist DOI. After 2-day treatment the firing activity was elevated even 
more significantly, however after 7-day and 21-day treatment a partial recovery was 
observed. This NE activity may be a result of 5-HT reuptake inhibition plus 5-HT2A 
receptor antagonism [69].

The activation of 5-HT2A and 5-HT1A receptors suppresses the firing of 5-HT and 
noradrenergic neurons of the locus coeruleus (LC). Serotoninergic neurons recover their 
firing rate with prolonged treatment, because of the desensitization of 5-HT1A autorecep-
tors, but the firing rate of noradrenergic neurons does not recover over time [68].

 Role of Serotonin-HT2A in the Response to Antidepressant 
and Mood Stabilizing Drugs

Selective serotonin reuptake inhibitors (SSRIs) induce inhibition of NE neuron firing 
[71]. It was reported in several open-label and blind studies that antagonists of 5-HT2A 
receptors, such as atypical antipsychotic drugs, potentiate the therapeutic effect of 
SSRIs in patients with depression [72]. It is also reported that antidepressants induce 
down-regulation of 5-HT2A receptors after repeated treatment [55].
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Risperidone is 5-HT2A and dopamine D2 receptor antagonist which is the only 
antagonist known to saturate the 5-HT2A receptors even at low doses (0.5–1 mg/day) 
[73]. It was reported that risperidone reverses SSRI-induced inhibition of NE neu-
rons due to its 5-HT2A receptor antagonistic property [71]. Co-administration of 
risperidone with venlafaxine or fluoxetine may enhance their antidepressant effects. 
Addition of yohimibine to the combination of risperidone with venlafaxine or fluox-
etine augmented the antidepressant-like action proposing an interaction of α2-
adrenergic and 5-HT2A receptor in mediating their action [74]. Palperidone is the 
main metabolite of risperidone. Although they share the same receptor binding pro-
file, it seems that they have different effects on 5-HT and NE firing in  vivo. 
Co-administration of paliperidone did not interfere with the effect of SSRIs, but still 
managed to inhibit the NE firing inhibition induced by the SSRIs which leads to 
assumption that it may be an effective enhancement of the treatment [75].

Amibegron (SR58611A)—selective β3 adrenergic agonist [76] interacts with 
serotonergic system in the brain resulting in an antidepressant effect [77]. It 
increases the synthesis of 5-HT and tryptophan levels in several brain areas, such as 
hippocampus, cortex, hypothalamus and striatum. Amibegron did not modify nor-
adrenaline synthesis and metabolism, but it did increase its release [78]. A 5-HT2A 
receptor antagonist ketanserin significantly reversed the effect of amibegron which 
leads to conclusion that these antidepressant-like effects are partially caused by the 
5-HT2A receptor activation, more precisely by interaction with 5-HT1A, 5-HT2A/2C 
and 5-HT3 serotonin receptors [79, 80].

Function of cortical 5-HT2A receptors has a specific role in the modulation of 
conflict anxiety. Weisstaub et al. [81] demonstrated that global disruption of 5-HT2A 
receptor signaling in mice reduced inhibition in conflict anxiety paradigms without 
affecting fear-conditioned and depression-related behaviors. Selective restoration of 
5HT2A receptor signaling to the cortex normalized conflict anxiety behaviors.

The serotonergic system appears to play a role in episodic memory which is 
affected in pathologies such as schizophrenia, Alzheimer and depression. The 
5-HT2A receptors as one of the principal post-synaptic receptors for 5-HT in the 
brain are involved in neuropsychiatric and neurological disorders associated with 
memory deficits. Results of Morici et  al. [82] showed that the 5-HT2A and also 
5-HT1A receptors can be a novel target for drug development to improve episodic 
memory retrieval in psychiatric and neurological disorders.

 Serotonin-2A Receptors in Pathophysiology and Treatment 
of Depression

 Expression and Function of Serotonin-2A Receptors 
in the Hippocampus

Hippocampus is a brain structure which plays role in a spatial learning and declara-
tive memory. It receives robust serotonergic innervation from medial and dorsal 
raphe nuclei. There is some evidence indicating role of 5-HT and its receptors in 
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various aspects of cognitive functions including learning and memory. Nowadays, 
exact role of 5-HT in hippocampus is not fully understood. Results of functional 
studies are contradictory. One of possible explanation for these contradictory results 
is that 5-HT acts through different types of 5-HT receptors. The 5-HT2A receptor 
subtype is related to memory disorders [83] and several neurological diseases like 
Alzheimer disease [84, 85] and schizophrenia [86–88].

The presence of 5-HT2A receptors in hippocampus was demonstrated in different 
studies by multiple methods including immunohistochemistry, in situ hybridization, 
autoradiography and quantitative reverse transcription-polymerase chain reaction 
(RT-PCR). Results from these studies are quite different and depending on method-
ology which was used. Minimal levels of 5-HT2A receptors were detected in human 
hippocampus by RT-PCR and autoradiography. They were barely detected in pyra-
midal cells in Cornu ammonis (CA) regions, and were not detected in dentate gyrus 
(DG) [89]. In rat hippocampus mRNA for 5-HT2A receptors was detected in both 
CA regions and in DG [90]. In CA area of rat hippocampus low levels of 5-HT2A 
receptors were detected by in situ hybridization and autoradiography methods. In 
ventral DG moderate levels of specific 5-HT2A receptors binding were detected [91]. 
Immunohistochemistry studies showed that 5-HT2A receptors expressed both excit-
atory glutamatergic and inhibitory GABAergic neurons [92–95]. Virtually all main 
hippocampal excitatory neurons (granular and pyramidal cells) expressed 5-HT2A 
receptors. Strong expression is localized in apical dendrites of pyramidal cells, 
where 5-HT receptors can increase excitatory postsynaptic currents (EPSP) [92, 
94]. Electrophysiological studies demonstrated that outward current induced by 
5-HT and α-methyl-serotonin (5-HT2A receptors agonist) in pyramidal cells of rat 
CA1 hippocampal area is blocked by ketanserin and spiperon (5-HT2A receptors 
antagonist) in dose dependent manner [96]. The 5-HT2A receptors are also expressed 
in mossy fiber in rat hippocampus [92]. Receptors localized on presynaptic side of 
mossy fibers could regulate excitatory neurotransmission and as result affect release 
of glutamate in hippocampus [97, 98]. On the other hand, colocalization analyses 
show that 5-HT2A receptors are expressed in GABAergic neurons located in differ-
ent rat hippocampal regions. This colocalization is similar in different hippocampal 
areas: in DG, CA1, CA2 and CA3 field. In hippocampal CA areas are 5-HT2A recep-
tors widespread in number of GABAergic interneurons distributed in pyramidal cell 
layer, in strata oriens, radiatum and lacunosum-moleculare.

The 5-HT2A receptors are expressed on 90% of GABAergic neurons in  
hippocampus [92]. Electrophysiology studies showed that activation of 5-HT2A 
receptors activate GABAergic neurons in rat DG [99] and in CA1 field [100]. High 
density of 5-HT2A receptor in deeper layers of granular cell layer corresponds with 
study demonstrating that 5-HT receptors can regulate neurogenesis in subgranular 
zone of DG [101]. Because GABA regulates progenitor turnover and integration of 
newly synthetized neurons in DG [102], it can be assumed that GABA neurons 
distributed in subgranular zone can be involved in hippocampal progenitor prolif-
eration mediated by 5-HT2A receptors [103].
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 Function of 5-HT2A Receptors in Hippocampus in Health

Recent studies suggested that 5-HT2A receptors are included in several hippocampal 
functions although underlying mechanisms are still unclear. Activity of hippocam-
pal pyramidal neurons can be modulated by 5-HT2A receptors in different ways: 
directly, by activation of 5-HT2A receptors in pyramidal cells, or indirectly, by acti-
vation of 5-HT2A receptors in GABA interneurons [96]. Serotonin 5-HT2A receptors 
can participate in information processing in hippocampus by participating in neuro-
transmission in different neuronal populations. Strong and widespread expression 
of 5-HT2A receptors in hippocampus is prerequisite for critical involvement of 5-HT 
receptors in number of brain functions including learning and memory [92]. It was 
shown that an application of M100907 (highly selective 5-HT2A receptors antago-
nist) to brain slices facilitates induction of long term potentiation (LTP) in CA1 field 
of rat hippocampus [104].

As a critical factor modulating brain plasticity is considered brain-derived neu-
rotrophic factor (BDNF). Hippocampal BDNF mRNA expression was induced by 
physical activity which positively regulated neurogenesis and induced LTP [105]. 
This factor can acutely influence synaptic efficiency of neurons. Some electrophysi-
ological studies demonstrate that application of BDNF on hippocampal slices 
results in increase of synaptic strength [106–110]. In hippocampus 5-HT2A recep-
tors participate in regulation of BDNF levels as their agonist DOI decreased the 
expression of BDNF mRNA in granular cell layer in DG, but not in CA regions. 
Effect of agonist was blocked by pretreatment with selective antagonist of 5-HT2A 
receptors. Same decrease of BDNF expression in hippocampus is observed during 
stress and it is possible that this effect is mediated by 5-HT2A receptors. This hypoth-
esis is supported by an observation that pretreatment with ketaserin significantly 
blocked stress induced decrease in BDNF expression [111].

Involvement of 5-HT2A receptors in process of learning and memory is supported 
by study where systematic activation of 5-HT2A receptors with agonist (TCB-2) 
enhanced the consolidation of both fear memory and object memory [112]. The 
memory strengthening effect of TCB-2 was blocked by pretreatment with 5-HT2A 
receptors antagonist (MDL11,939). Local microinfusion of TCB-2 into CA1 field 
of dorsal hippocampus had similar effect on memory consolidation observed after 
systemic treatment [113]. Postsynaptic 5-HT2A receptors can modulate memory 
storage associated with object also by influencing on N-Methyl-d-Aspartate 
(NMDA) receptors. It is supported by fact that hippocampal 5-HT2A receptors are 
predominantly expressed in dendritic part of pyramidal neurons [93, 114] and den-
drites which expressed 5-HT2A receptors expressed also NMDAR subunit NR1 and 
GluR2 [114]. Activation of 5-HT2A receptors causes an increase of intracellular Ca2+ 
concentration which in combination with NMDA receptor-mediated calcium influx 
can strengthen the synaptic plasticity. These observations suggest that an activation 
of 5-HT2A receptors induces facilitation of object memory storage and can result 
from potentiating of glutamate release in hippocampus, temporal dynamics of pyra-
midal neurons and critical post-training period. These receptors may serve as a drug 
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target for pharmacological intervention in the treatment of memory disorders [115]. 
It is known that new neurons are generated in mammal DG. These new neurons are 
later during life integrated into hippocampal circuit. Serotonin belongs to important 
factors influencing neurogenesis. Among others 5-HT receptor subtypes (5-HT1A, 
5-HT1B and 5-HT2C), activation of 5-HT2A receptors is involved in the positive regu-
lation of adult neurogenesis in DG caused by regulation of cell proliferation in this 
region [103]. It was reported that some animal models of depression produce 
decrease in hippocampal cell proliferation and neurogenesis. Unlike the depression, 
chronic treatment with antidepressants, such as SSRIs, seem to have the positive 
effect on neurogenesis which is sufficient to reduce anxiety and depression-related 
behavior [116].

 Role of Hippocampal Serotonin-2A Receptors 
in Pathophysiology and Treatment of Depression

The main effect of antidepressants is increasing of synaptic 5-HT levels. There is 
some evidence suggesting that hippocampus can be influenced by depression. It is 
known that hypercorticosolemia, an animal model of depression, results in the death 
of hippocampal neurons [117]. Change of serotonergic function in hippocampus is 
likely to be involved in defects of mood regulation associated with the major depres-
sive disorder (MDD). Serotonin 5-HT2A receptors play role in these changes. 
Postmortem studies in depressed suicide completers documented changes in 5-HT2A 
receptors binding in hippocampus [118, 119]. Magnetic resonance imaging (MRI) 
studies showed changes in 5-HT2A receptors binding potential in hippocampus in 
patients with MDD [120, 121]. Magnetic resonance imaging studies also demon-
strated decrease of hippocampal volume in patients with MDD which correlated 
with duration of depression [120, 121]. However, decrease in 5-HT2A receptors 
binding potential is higher than volume loss and indicates that both conditions can 
coexist. Not only depression itself, but also the total number of days with depression 
inversely correlates with hippocampal volume [121, 122]. Serotonin 5-HT2A recep-
tor binding is not influenced by depression phase. However, patients not previously 
treated for depression have lower 5-HT2A receptor binding than patients with 
previous medication treatment. It is possible that medication treatment provides 
compensatory upregulation of 5-HT2A receptors [123]. It is well established that 
decreased 5-HT2A receptor transmission is associated with depression [124]. It is 
also possible that decreased 5-HT2A receptor-mediated neurotransmission has spe-
cial importance. Indeed, decreased 5-HT2A receptors binding was reported in 
patients with depression [123]. In addition, antidepressants treatment may cause 
changes in expression and binding of 5-HT2A receptors and these changes can per-
sist for a long time after treatment [1, 125–129].

Nowadays, the role of astrocytes in depression has been intensively studied 
[130]. 5-HT2A receptors are expressed not only in hippocampal neurons, but also in 
astrocytes. This suggests the possibility that also 5-HT2A receptors express in astrocyte 

L. Moravčíková et al.



221

have functional implications in psychiatric disorders [95]. Beside their housekeeping 
functions, astrocytes are dynamic regulators of synaptogenesis, synaptic strength 
and control neurogenesis in the adult DG [131]. Astrocytes synthesize and release 
many neurotrophic factors vital for neuronal health such as BDNF, glial-derived 
neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophins 3 and 
4/5 [132, 133]. Brain-derivated neurotrophic factor blocks neurogenesis in depres-
sion which is opposite to healthy condition. Its function has been implicated in the 
neurogenesis hypothesis of depression in which the antidepressants enhance neuro-
genesis, and BDNF is a key regulator of this mechanism. Antidepressants (including 
SSRIs) induce the CREB phosphorylation, CREB binds to the BDNF 13 promoter 
and induces BDNF transcription. Moreover, stress can reduce the expression of 
BDNF in the hippocampus and this reduction can be prevented by long-term chronic 
antidepressant treatment [134, 135]. In vitro studies reported that SSRIs stimulate 
the expression of BDNF, GDNF and vascular endothelial growth factor (VEGF) in 
primary culture of astrocytes [136–138]. In vivo data showed that the specific over-
expression of BDNF in hippocampal astrocytes produced antidepressant-like effect 
accompanied by an increase in cell proliferation, maturation and survival of new 
neurons by generated cells in the DG of the hippocampus [139]. It is possible that 
astrocytes contribute to the enhancement in neurotrophic support and associated 
augmentation in synaptic plasticity that may form the basis for antidepressant effi-
cacy. Several reports suggested that fluoxetine and other drugs can modulate the 
structural plasticity of astrocytes. Following chronic administration of lithium and 
some antipsychotic drugs, increased numbers of glia have been reported in the hip-
pocampi of rats and nonhuman primates [140, 141]. In another study fluoxetine 
prevented the stress-induced decrease on a number of hippocampal astrocytes, but 
had no effect in nonstressed animals [142]. It demonstrates that fluoxetine, a promi-
nent member of the SSRI family, can significantly modify the structural plasticity of 
astrocytes, and it is very likely that these morphological alterations either reflect or 
induce functional changes within the glial–neuronal interaction [142]. In particular, 
it is well accepted that SSRIs activate 5-HT2A receptors and stimulate signaling 
intracellular cascades leading to the phosphorylation/activation of extracellular sig-
nal regulated kinases (ERK1/2). Hence, antidepressants may exert their therapeutic 
activity by stimulating this pathway. In the hippocampus ERK1/2 have been impli-
cated in mood regulation [143] as suggested by their blunted activation and/or 
expression in both depressed patient [144] and animal models of depression [145].

 Conclusion

The 5-HT2A receptors belong to the 5-HT2 receptor family, the only known group of 
5-HT receptors which are coupled to GαQ/Z proteins. The primary signal transduction 
mechanism of 5-HT2A receptors involves activation of PLC and calcium signaling. 
However, 5-HT2A receptor-mediated alteration of cAMP levels has also been 
reported. The 5-HT2A receptor is a product of 5HT2AR gene. Genetic polymorphism 
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of 5HT2AR gene, its epigenetic regulation, and post-translational modifications of 
5HT2AR mRNA have been reported. Furthermore, pre- and post-translational 
5HT2AR alterations correlate with certain CNS disorders, such as depression, 
schizophrenia, dementia, and alcohol and nicotine dependence. On the functional 
level, 5-HT2A receptors play a central role in the interaction between 5-HT and nor-
epinephrine systems and they are also involved in 5-HT-glutamate, 5-HT-GABA, 
and 5-HT-dopamine interactions. In addition, 5-HT2A receptors are fundamental in 
the modulation of hippocampal neuronal circuits. These lines of evidence, taken 
together, indicate that 5-HT2A receptors are one of the primary targets for antidepres-
sant and mood stabilizing drugs and other CNS medications. And indeed, atypical 
antidepressant drugs act as antagonist of 5-HT2A receptors.
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Abstract Anxiety disorders including generalized anxiety disorder (GAD), panic 
disorder (PD), social anxiety disorder (SAD) or phobias are the most prevalent men-
tal pathologies across the world with a median lifetime prevalence of approximately 
15%. Anxiety imposes substantial economic costs which are among the highest of 
all mental disorders studied. Evidence is now accumulating that the serotonergic 
nervous system is involved in the pathology of anxiety and can provide benefits in 
the treatment of related disorders through its diverse functions, notably the modula-
tion of stress, fear and memory. Among serotonin receptor subtypes, the 5-HT2A 
receptor arouses great interest. This receptor displays original pharmacological 
properties i.e., cooperation with β-arrestins and homo−/hetero-dimerization regu-
lating its intracellular signaling and its ability to control the serotonergic system. 
The present chapter provides insight into the mechanisms by which the 5-HT2A 
receptor may alter the activity of 5-HT neurons but also of the brain regions receiv-
ing a dense serotonergic innervation (i.e, the amygdala, the hippocampus and the 
prefrontal cortex). An overview of the literature is proposed to recapitulate the phar-
macological and genetic studies in patients or relevant animal models supporting a 
role of the 5-HT2A receptor on various forms of anxiety. Moreover, we envision the 
future directions that we might follow to develop new anxiolytic strategies based on 
the manipulation of 5-HT2A-mediated signaling. Doing so, we also point some 
inconsistencies illustrating the difficulty to target this receptor as a valid alternative 
to benzodiazepines.
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Abbreviations

5-HT Serotonin
5-HT2A 5-Hydroxytryptamine 2A
AMY Amygdala
BDNF Brain-derived neurotrophic factor
BLA Basolateral complex of amygdala
CeA Central nucleus of amygdala
CRF Corticotropin releasing factor
CRFR Corticotropin releasing factor receptor
DA Dopamine
DAG Diacylglycerol
DCX Doublecortin
DG Dentate gyrus
DR Dorsal raphe
EPM Elevated plus maze
ERK Extracellular signal-regulated kinase
ETM Elevated T-maze
FPT Four plate test
GAD Generalized anxiety disorders
GC Granule cell
GDNF Glial cell line-derived neurotrophic factor
HP Hippocampus
IP3 Inositol Triphosphate
IPSCs Inhibitory post-synaptic currents
LC Locus coeruleus
LSD Lysergic acid diethylamide
MeA Medial amygdala
mPFCx Medial prefrontal cortex
MR Median raphe
NE Norepinephrine
NSF Novelty suppressed feeding
OF Open field
OIC Object in Context Recognition Task
PAG Periaqueducal grey
PD Panic disorders
PKC Protein kinase C
PLC Phospholipase C
PV Parvalbumin
SAD Social anxiety disorder
SGZ Subgranular zone
SNOR Spontaneous Novel Object Recognition task
SNP Single nucleotide polymorphism
SOM Somatostatin
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SSRIs Serotonin selective reuptake inhibitors
TI Tonic immobility
TMOR Temporal Order Recognition Task
Tph Tryptophan hydroxylase
VEGF Vascular endothelial growth factor
VTA Ventral tegmental area

 Introduction

The G-protein coupled serotonin 2A receptor (5-hydroxytryptamine 2A, or 5-HT2A) 
subtype is the most important excitatory receptor of the serotonergic system. Its 
distribution in the brain has been extensively characterized using autoradiography, 
in situ hybridization, immunocytochemical techniques and in vivo imaging 
approaches [1–3]. In particular, the 5-HT2A receptor has been detected in brain 
regions involved in cognition, perception, sensorimotor gating and mood such as the 
prefrontal cortex, the hippocampus, the amygdala but also the striatum and the thal-
amus. Moreover, this receptor has been identified in monoaminergic nuclei and 
functional studies demonstrated that it plays an important role in the regulation of 
serotonin (5-HT), norepinephrine (NE) and dopamine (DA) neuronal activities [4]. 
Also, it is now well accepted that the 5-HT2A receptor is expressed both in neurons 
and glia although its role in the latter cell type remains poorly investigated. The 
5-HT2A receptor transduces signals primarily via the Gαq signal cascade. Upon ago-
nistic receptor stimulation, Gαq and βγ subunits of the G-protein dissociate and 
initiate downstream effector pathways. For example, the activity of phospholipase 
C (PLC) is stimulated, which subsequently promotes the release of diacylglycerol 
(DAG) and inositol triphosphate (IP3). The stimulation of the 5-HT2A receptor also 
contributes to the activation of protein kinase C (PKC) that ultimately affects the 
function of other proteins through their phosphorylation [5]. Findings in the last 
decade have identified some peculiarities of this receptor and notably its close inter-
actions with β-arrestin proteins. As observed with other GPCRs, β-arrestin2 is 
involved in the downregulation/internalization of the 5-HT2A receptor thereby lead-
ing to an attenuation of signaling pathways. This is the “arresting phase”. However, 
depending on the nature of the agonist (endogenous vs. exogenous), the 5-HT2A 
receptor may promote intracellular events as part of the so-called “signaling phases” 
[6, 7]. In support of this, it has been shown in β-arrestin-2 KO mice (β-Arr2−/−), in 
which 5-HT2A receptor were predominantly localized to the cell surface, that 5-HT 
was no longer capable of inducing behavioral responses such as head-twitch. 
However, the authors found that the preferential 5-HT2A receptor agonist DOI still 
produces the head-twitch in β-Arr2−/− mice thereby suggesting that this protein is 
not required for DOI-mediated response [6, 8]. These data emphasize the impor-
tance of the nature of the ligand in determining the receptor signaling pathway and, 
ultimately, the physiological responses induced by the compound. 5-HT2A receptor 
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binding to the intracellular scaffolding proteins β-arrestins can either dampen or 
facilitate GPCRs signaling, and therefore, represent a key point at which receptor 
signaling may diverge in response to particular ligands [9]. There is another mecha-
nism by which the 5-HT2A receptor can regulate signaling. Recent evidence demon-
strates that this protein can form stable homo- [10] and heteromeric complexes with 
other types of GPCRs including the glutamatergic and dopaminergic mGluR2 and 
D2 receptors, respectively [11–13]. The in vivo functional consequences of such 
oligomerization of the 5-HT2A receptor have yet to be determined but this process is 
likely responsible for changes in binding and coupling properties. Accordingly, it 
has been reported that head-twitch induced by the preferential 5-HT2A receptor ago-
nists lysergic acid diethylamide (LSD) and DOI is completely abolished in mGlu2 
knock-out (mGlu2−/− KO) mice [13, 14]. Both examples illustrate the fact that the 
functional activity of the 5-HT2A receptor is finely regulated. A better knowledge of 
the physiological relevance of such regulations may help identify new strategies 
aimed at modulating 5-HT2A receptor-mediated signaling and related functions.

The present chapter synthesizes the current knowledge about the role of the 
5-HT2A receptor in the modulation of the 5-HT system itself and neuronal excitabil-
ity of brain regions receiving serotonergic innervation. In this prospect, an emphasis 
will be given to the amygdala (AMY) and the hippocampus (HP). Moreover, 
because the 5-HT2A receptor has long been associated with fear and anxiety [15], we 
will recapitulate the main preclinical and clinical data supporting a role of this 
receptor in the modulation of anxious behaviors but also in fear memory. So far, 
studies aimed at exploring 5-HT2A receptor expression using positron emission 
tomography or post-mortem mRNA analysis in anxious patients remain somewhat 
equivocal. Indeed, some investigators reported decreased or increased expression of 
the 5-HT2A receptor in patients with anxiety [16–19], others found no difference 
compared to controls [20]. Consequently, it is at this point uncertain whether a 
lower or a higher neurotransmission at the 5-HT2A receptor has an impact on anxi-
ety. Finally, we will envision the future directions based on 5-HT2A receptor target-
ing to develop new anxiolytic strategies.

 Regulation of the Presynaptic Serotonergic System by the 
5-HT2A Receptor

The main source of serotonergic neurons in the brain is located in the raphe nuclei 
notably the dorsal and median raphe nuclei (DR/MR) sending projections in areas 
such as the AMY, the HP and the median prefrontal cortex (mPFCx). In vitro record-
ings in the DR showed that local application of 5-HT produced hyperpolarization of 
tryptophan hydroxylase (Tph) positive neurons [21]. Similarly, in rat brain slices, 
the preferential 5-HT2A receptor agonist DOI induced a concentration-dependent 
increase in the frequency of inhibitory postsynaptic currents (IPSCs). These studies 
suggested that endogenous 5-HT would act on 5-HT2A receptor located on GABA 
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neurons to suppress the firing of DR 5-HT neurons. Although the levels of 5-HT2A 
receptor mRNA in the DR are low [22, 23], the latter findings are in agreement with 
the observation that systemic administration of DOI increased c-Fos immunoreac-
tivity in the DR specifically in GABAergic interneurons [24]. Further pharmaco-
logical in  vivo studies performed in rodents confirmed these data since it was 
reported that systemic or local administration of DOI in the DR reduced the dis-
charge of 5-HT neurons [25–30] whereas these effects were reversed by ritanserin 
or MDL100907, 2 antagonists with a high affinity for the 5-HT2A receptor [25]. 
Interestingly, microdialysis experiments repeatedly found that the systemic admin-
istration of DOI in rats reduced the extracellular 5-HT concentrations at the nerve 
terminals such as the medial prefrontal cortex (mPFCx), an effect antagonized by 
MDL100907 [28]. Beyond the hypothesis that 5-HT2A receptor negatively regulates 
the activity of the serotonergic system through a local action in the DR (Fig. 1), 
evidence also indicates the recruitment of indirect mechanisms. In particular, the 
role of noradrenergic and dopaminergic neurons is highly suspected. The locus coe-
ruleus (LC) which sends noradrenergic projections to the DR [31, 32], expresses 
5-HT2A receptor. It is now well accepted that the enhancement of 5-HT transmission 
in the LC suppresses the firing activity of NE neurons through activation of excit-
atory 5-HT2A receptors also located on GABAergic interneurons [33, 34]. Given the 

Fig. 1 Direct and indirect regulation of dorsal raphe (DR) serotonergic neurons by the 5-HT2A 
receptor. In the dorsal raphe (DR), local GABAergic interneurons express the 5-HT2A receptor 
(2A). Its activation increases GABA transmission leading to an inhibition of the firing rate of sero-
tonin (5-HT) neurons. In the locus coeruleus (LC) and the ventral tegmental area (VTA), the 
5-HT2A receptor is also expressed on GABAergic interneurons whose activation decreases the fir-
ing rate of norepinephrine (NE) and dopamine (DA) neurons. Both populations send projections to 
the DR in which serotonergic neurons express the excitatory alpha-1 (α1) and D2 receptors (for 
review, see [31]). Consequently, the increase in GABA levels resulting from the activation of the 
5-HT2A in the LC and the VTA decreases these excitatory inputs thereby contributing to attenuate 
the firing rate of DR 5-HT neurons and likely the release of 5-HT at the nerve terminals
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excitatory influence of noradrenergic terminals on 5-HT neurons, notably via the 
alpha-1 heteroreceptor located on serotonergic neurons in the DR [32], activation of 
5-HT2A receptor in the LC could indirectly favor the inhibition of DR 5-HT neurons. 
Similar mechanisms could occur with DA neurons located in the ventral tegmental 
area (VTA). Indeed, the activation of 5-HT2A located on GABAergic interneurons in 
the VTA inhibits the firing rate of DA neurons thereby reducing the excitatory influ-
ence exerted by these neuronal population on DR 5-HT neurons via the D2 receptor 
[32, 35, 36]. Indeed, although D2 receptor is a Gi coupled protein receptor, its abil-
ity to form heterodimers with D1 receptors may convert its signaling into excitatory 
responses [37]. Together, these findings strongly support the possibility that 5-HT2A 
receptor also exerts indirect negative effects on the 5-HT system (Fig. 1).

However, the matter is more complex than it seems at first glance and the role 
of cortical 5-HT2A receptor in the regulation of the 5-HT system should be care-
fully considered. Several studies from Dr. Artigas’ group demonstrated that local 
application of DOI in the mPFCx increased the firing rate of DR 5-HT neurons 
[26, 28]. This might result from activation of excitatory cortical glutamatergic 
pyramidal neurons projecting to the DR. However, cortical glutamatergic neurons 
project to the DR mainly on GABAergic interneurons. Hence, the stimulation of 
the 5-HT2A receptor in the cortex should reduce DR 5-HT neuronal activity. 
Beside these electrophysiological data, in microdialysis studies, local application 
of DOI in the mPFCx through reverse dialysis dose-dependently increased 5-HT 
local outflow and this effect was blocked by the application of MDL100907  
[26, 28]. This elevation in cortical 5-HT tone could result from the activation of 
DR 5-HT neuronal activity but subsequent studies demonstrated that the neuro-
chemical effects of DOI involved the local activation of 5-HT2A receptor located 
on glutamatergic neurons whose post-synaptic receptors are directly expressed on 
5-HT nerve endings [28, 38, 39]. In addition, it was also demonstrated that the 
5-HT2A receptor located in the mPFCx modulated the neuronal activity of VTA 
DA neurons [40]. Electro physiological studies showed that local injection of DOI 
in the mPFCx increased VTA DA firing rate [41], an effect favorable to the 
enhancement of DR 5-HT neuron activity given the excitatory impact of DA in the 
DR as mentioned earlier [32, 35, 36].

Collectively, these results emphasize the fact that 5-HT2A receptor activation 
elicits inhibitory or excitatory influences on DR 5-HT neuronal activity depending 
on the brain region where this receptor type is activated. Basically, the net effect of 
5-HT2A receptor activation after systemic administration of selective agonists is a 
decrease in 5-HT tone whereas the recruitment of 5-HT2A receptors specifically in 
the cortex produces opposite responses. The hypothesis has been raised that changes 
in the expression/activity of the 5-HT2A receptor switch the balance of activation/
inhibition of the DR and then affect the release of endogenous 5-HT in projection 
areas [42].
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 Regulation of the Postsynaptic Serotonergic Areas  
by the 5-HT2A Receptor

 5-HT2A and the Amygdala

The amygdala represents one of the most important brain region involved in the 
regulation of anxiety. It is endowed with a high density of 5-HT nerve terminals [43] 
and it is believed that part of 5-HT effects are mediated by the 5-HT2A receptor. The 
following section pays a specific attention to the role 5-HT2A-mediated neurotrans-
mission in the modulation of neuronal activity in different nuclei of the amygdala. 
First of all, it is now well known that anxiogenic stressors or fearful stimuli increase 
monoamine levels (including 5-HT) in the amygdala [44–46]. Conversely, the selec-
tive pharmacological or optogenetic manipulations of 5-HT in the amygdala have 
striking effects on fear and anxiety responses in experimental animals [47, 48]. For 
example, pharmacological depletion of serotonin in the basolateral amygdala (BLA) 
complex reduces anxiety and disrupts fear conditioning [49] whereas enhancement 
of serotonergic transmission, notably with serotonin selective reuptake inhibitors 
(SSRIs), induces opposite effects [50]. Overall, these studies emphasized the fact 
that 5-HT exerts an anxiogenic effect in this specific subdivision of the amygdala. 
One of the important mediators of serotonergic activity in response to anxiogenic 
stimuli is CRF. Indeed, it has been repeatedly shown that central infusion of CRF 
increases 5-HT levels in the amygdala [45, 51]. The DR receives CRF innervation, 
notably from the central nucleus of the amygdala (CeA), and expresses both CRF 
type 1 and 2 (CRF1 and CRF2) receptors [52, 53]. Direct infusion of CRF or CRF2 
receptor agonists into the DR stimulates 5-HT release in both the BLA and the CeA 
[54–56] (Fig. 2). Interestingly, increased expression of CRF2 receptors occurs in the 
DR as a result of stress or in rat models of high anxiety [57] whereas CRF2 receptor 
antagonists infused directly into the DR reduce heightened anxiety-like behavior in 
rat models of early life stress [58].

In an attempt to determine the receptor type involved in the effect of 5-HT in the 
amygdala, different studies were conducted trying to dissociate the different subre-
gions. Most of the studies focused their attention on the BLA and the medial amyg-
dala (MeA) since both sites are endowed with 5-HT2A receptors [59] on pyramidal 
excitatory glutamatergic neurons and on GABAergic interneurons [e.g. Parvalbumin 
(PV) and somatostatin (SOM) positive cells] [60, 61]. Immunohistochemistry 
experiments reported increased c-Fos expression in PV-positive interneurons in 
response to the administration of anxiogenic drugs [60] or by subjecting rats to a 
novel open-field arena [62]. Strikingly, the numbers of c-Fos-immunoreactive 
(c-Fos-ir)/PV-ir GABAergic interneurons in the BLA were positively correlated 
with the numbers of c-Fos-ir 5-HT neurons in the DR and with a measure of anxiety- 
related behavior suggesting that the PV/5-HT2A receptor expressing GABAergic 
interneurons in the BLA are part of a DR-BLA neuronal circuit modulating anxiety- 
related behavior [60, 63, 64]. Evidence suggests that 5-HT depolarizes 
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PV-interneurons in the BLA, mainly via the 5-HT2A receptor, leading to enhanced 
GABA release onto glutamatergic neurons [65–67] (Fig. 2). Accordingly, a recent 
study pointed that the stimulation of 5-HT axons in the BLA by the light activation 
of channelrhodopsin (ChR2), which was expressed selectively in DR 5-HT neurons, 
produced changes in the activity of microcircuits. Specifically, almost 50% of 
GABAergic neurons displayed a slow EPSC blocked by the 5-HT2A receptor antag-
onist MDL 100907 [68] that, in turn, led to increased sIPSC frequency in glutama-
tergic neurons. The MeA also contains 5-HT2A receptor immunoreactivity [69]. 
Although elusive, some studies showed that the pharmacological manipulation of 
this receptor subtype in this subregion of the AMY also influences anxious behav-
iors but in an opposite manner to that observed in the BLA (see chapter III-A). 
Collectively, these results indicate that anxiety is regulated in a subregion- dependent 
manner by the 5-HT2A receptor in the amygdala. The possible explanation for the 
distinct consequences of the 5-HT2A receptor activation in BLA and MeA could be 
the different cellular anatomy of these nuclei and the different neuronal population 
expressing this receptor.

 5-HT2A and the Hippocampus

The HP is another brain region that receives a 5-HT innervation and participates in 
the regulation of anxiety through its anatomical and functional interaction with the 
amygdala [70] but also through mechanisms that are specific to this area.

Fig. 2 Hypothetical role of the 5-HT2A receptor in the amygdala (AMY). Stressful conditions and/
or fear (1) activate CRF neurons in the central nucleus of the amygdala (CeA) (2). The subsequent 
release of CRF in the DR (3) is believed to activate CRFR2 receptors located on DR 5-HT neurons. 
Such activation favors the release of 5-HT at the nerve terminals and more particularly in the CeA 
and the basolateral nucleus of the amygdala (BLA) (4). The elevation of 5-HT in the BLA would 
activate 5-HT2A receptor-expressing subpopulation of local parvalbumin and somatostatin inhibi-
tory neurons which in turn release GABA in the synaptic cleft (5). This would reduce excitatory 
output (6), mediating anxiety-related behaviors (7)
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 Adult Neurogenesis

Preclinical studies emphasized the role of granular cells (GCs) in the dentate gyrus 
(DG) of the HP in the pathophysiology of anxiety [71]. Indeed, using optogenetic 
techniques, it was demonstrated that elevating the activity of GCs in the ventral DG 
powerfully suppresses innate anxiety [72]. Therefore, adult hippocampal neurogen-
esis giving rise to new-born GCs might be an important process to control this kind 
of behavior. Interestingly, 5-HT is a potent regulator of adult hippocampal neuro-
genesis [73] and an increase in 5-HT tone resulting, for example, from the chronic 
administration of SSRIs favors this process [74]. In contrast, a decrease in 5-HT is 
believed to inhibit neurogenesis as suggested by the observation that 5-HT deple-
tion in rats significantly reduced the number of newborn GCs in the subgranular 
zone (SGZ) of the HP [75]. It is now, well accepted that the beneficial effects of 
5-HT on adult hippocampal neurogenesis rely, at least in part, from their ability to 
enhance the expression of brain-derived neurotrophic factor (BDNF) [76, 77] 
whereas evidence demonstrated that stress exerts opposite effects in the GCs layer 
of the HP [78]. Despite the extensive literature concerning the impact of 5-HT on 
adult neurogenesis, the precise effect of this complex cellular process on anxiety is 
not fully understood and various post-synaptic 5-HT receptors might have diverse, 
possibly opposing effects on different stages of neuronal development in the adult 
DG of the HP. A dense staining of the 5-HT2A receptor in the hilus of the DG has 
been observed [79] and more precisely the receptor was proposed to be expressed at 
relatively high levels in GABAergic interneurons [22] suggesting a role in the mod-
ulation of adult hippocampal neurogenesis. Studies in rats pointed out that acute 
treatment with DOI had no effect on cell proliferation in the SGZ of the dorsal hip-
pocampus [80, 81] whereas it led to a significantly decrease in brain-derived neuro-
trophic factor (BDNF) mRNA levels within the DG of the hippocampus [82]. It is 
possible the activation of the 5-HT2A receptors  located on inhibitory GABAergic 
interneurons in the DG could increase spontaneous GABA release [83, 84] and lead 
to a decrease in the production of BDNF by GCs themselves or neighboring cells. 
However, the 5-HT2A receptor has been detected on GCs [85] prompting future 
research to determine to what extent the pharmacological manipulation of the 
5-HT2A receptor impacts adult hippocampal neurogenesis and dendritogenesis since 
it is at this point impossible to provide definitive conclusions. It is thus necessary to 
explore further the influence of 5-HT2A receptor agonists/antagonists after their 
long-term administration since anatomical and morphological changes in the HP 
take several weeks to occur. In this regard, it was observed that the sustained admin-
istration of the non-selective 5-HT2 receptor antagonist ketanserin resulted in a 
robust increase in progenitor proliferation [80] without commensurate change in 
doublecortin (DCX)-positive immature neurons and dendritic maturation of DCX- 
positive newborn neurons [81]. 
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 Gliogenesis

The role of astrocytes in anxiety disorders is gaining growing interest [86, 87]. For 
example, it has been reported that the density of astrocytes was dramatically reduced 
in the brain of depressed patients [88] and in animal models of depression [89] for 
which anxious symptoms are strongly embedded. The 5-HT2A receptor was identi-
fied in primary cultures of glial cells and its activation enhanced the metabolic activ-
ity of astrocytes [90–92]. In particular, the pharmacological increase in 5-HT and 
the concomitant activation of the 5-HT2A receptor stimulates intracellular signaling 
cascades leading to the phosphorylation/activation of extracellular signal regulated 
kinases (ERK1/2) [93–95]. Indeed, by constituting a microenvironment permissive 
for neurogenesis and possibly for dendritogenesis [96], glia might dampen anxiety. 
Recent evidence also suggests that astrocytes could promote the synthesis and 
release of growth and neurotrophic factors [97, 98], a mechanism required for the 
neurogenesis-dependent activity of SSRIs. Accordingly, in  vitro studies reported 
that SSRIs stimulate the expression of BDNF, Glial-derived neurotrophic factor 
(GDNF) and vascular endothelial growth factor (VEGF) in primary cultures of 
astrocytes and C6 glioma cells [98, 99]. In line with these data, we recently demon-
strated that the specific over-expression of BDNF in hippocampal astrocytes 
 produced anxiolytic-like effect in relation with an increase in cell proliferation, 
maturation and survival of new generated cells in the DG of the hippocampus [100]. 
Together, these data open a new avenue for a role of astroglial 5-HT2A receptors to 
promote the synthesis and release of factors that in turn, might positively reverber-
ate on anxiety (Fig. 3).

Fig. 3 Hypothetical role of the 5-HT2A receptor in the dentate gyrus (DG) of the hippocampus 
(HP). Pharmacological or optogenetic manipulation of the dorsal raphe (DR) serotonergic system 
(1) aimed at increasing extracellular 5-HT levels in the HP (2) favor the activation of the 5-HT2A 
receptors located on both astrocytes (3) and neurons (4). 5-HT2A-mediated transmission is believed 
to enhance the synthesis and release of BDNF from astrocytes whereas opposite effects could 
occur in response to activation of 5-HT2A receptor located on GABAergic interneurons in the 
DG. A corollary of such mixed effects (5) is a lack of effect of acute stimulation of 5-HT2A recep-
tors on adult hippocampal neurogenesis in the dentate gyrus (DG). However, the presence of the 
5-HT2A on granule cells (6) might be a crucial mechanism to promote hippocampal plasticity such 
as dendritogenesis of granule cells themselves thereby facilitating their integration to the existing 
functional network. Evidence suggests that the enhancement of the latter process would favor 
anxiolysis (7)
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 Synaptic Plasticity

5-HT2A receptors are present in a vast majority of the pyramidal and granule cells in 
the hippocampus and DG, notably in the dendrites and dendritic spines of DG and 
CA1 neurons, where glutamate NMDAR and AMPAR are assumed to be distributed 
[85, 101]. Of particular interest, the 5-HT2A receptor has been found to directly 
interact with PSD-95 which regulates receptor trafficking and signal transduction 
[102]. It is possible that 5-HT2A receptor activation, leading to a direct elevation of 
intracellular Ca2+, combined with the recent or coincident elevation in intracellular 
Ca2+ due to NMDA receptor activation, would facilitate the induction of behav-
iourally triggered synaptic plasticity [103]. 5-HT2A agonists could therefore act as 
memory enhancers. However, as in many other brain regions, the matter is compli-
cated by the fact that 5-HT2A receptors are also expressed in inhibitory interneurons 
and can therefore indirectly inhibit the activity of principal cells [70]. As a result, in 
certain situations, receptor antagonists could improve synaptic plasticity and mem-
ory. Accordingly, MDL100907, a highly selective 5-HT2A receptor antagonist, has 
been shown to facilitate synaptic plasticity in area CA1 of the rat hippocampus 
[104]. Moreover, the 5-HT2A receptor inverse agonist pimavanserin reversed object 
memory impairments induced by NMDA receptor antagonism [105], suggesting a 
complex modulatory influence of 5-HT2A receptor on NMDA receptor-dependent 
memory mechanisms.

 The Role of the 5-HT2A Receptor in Anxiety

Serotonin regulates a variety of brain functions and is strongly implicated in the 
etiology and drug treatment of mood and anxiety disorders [106]. These behavioral 
effects arise from the 5-HT modulation of multiple neuronal circuits, but 5-HT 
transmission in the amygdala, the hippocampus and the prefrontal cortex is likely to 
play a critical role. In this chapter, we will recapitulate the genetic and pharmaco-
logical studies implemented to shed some lights on the role of the 5-HT2A receptor 
in the regulation of anxiety.

 Pharmacological Studies

 In Rodents

The role of the 5-HT2A receptor in the regulation of anxious behavior arose great 
interest in preclinical pharmacology studies. Initial investigations reported that the 
5-HT2A receptor antagonist MDL100907 (Volinanserin) alone lacked consistent 
activity in selected rodent models of anxiety [107, 108] while other studies found, 
on the contrary, that the systemic administration of 5-HT2A receptor antagonists 
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such as SR46949B elicited anxiety in the elevated plus maze (EPM) [109]. As 
regards the activation of the 5-HT2A receptor, the systemic administration of the 
preferential 5-HT2A receptor agonist DOI in mouse produced anxiolytic-like activity 
in the EPM whereas this effect was attenuated by mianserin, ketanserin or the 
5-HT2A receptor antagonist SR46949B [110]. The observation that the 5-HT2C or 
5-HT2B/2C receptor antagonists RS10-2221 and SB206553, respectively, failed to 
block DOI-induced anxiolysis highlighted the specific contribution of the 5-HT2A 
receptor in such anxiolytic-like property [111, 112]. Interestingly, the lesion of the 
5-HT neurons did not affect the anxiolytic-like effect of DOI evaluated in the four 
plate test (FPT) [113] thereby suggesting a post-synaptic action. In order to deter-
mine the brain region involved in this behavior, various experiments evaluated the 
pharmacological effects of local administration of DOI or other agonists.

In the amygdala, despite the anxiolytic effect of the systemic administration of 
DOI, it seems that the activation of the 5-HT2A receptor would favour anxiety. 
Indeed, it was shown, for example, that the local injection of agonists displaying 
affinity for the 5-HT2A receptor such TCB-2 or mCPP increased anxiety behavior in 
the open-field [114] or the EPM [115]. Nevertheless, it is important to remind that 
the amydgala is organized in distinct nuclei with specific anatomical and functional 
features. In the BLA, the activation of excitatory 5HT2 receptors is usually associ-
ated with increased anxiety-like behaviors (Table 1). Moreover, in agreement with 
this negative effect, it was reported that three consecutive days of immobilization 
with tail-shocks elicited anxiety and promoted the concomitant down-regulation of 
the 5-HT2A receptor in the BLA [66] as a possible consequence of an over- stimulation 
of this receptor. Surprisingly, the microinjection of α-methyl-5-HT into the BLA 
reduces tonic immobility (TI) duration in guinea pigs [116] i.e., an innate fear 
behavior associated with intensely dangerous situations and considered a last resort 
aimed at the survival of the animal [117]. Although these findings defy the theory of 

Table 1 Effect of acute administration of preferential 5-HT2A receptor agonists on anxiety

5-HT2A receptor  
agonist

Route of  
administration Test Specie Anxiety References

DOI Systemic EPM Mouse ↓ [110]
DOI Systemic FPT Mouse ↓ [113]
DOI Systemic EPM/FPT Mouse ↓ [111, 112]
DOI Intra-PAG EPM Mouse ↓ [120]
DOI Intra-HP (CA2) FPT Mouse ↓ [119]
mCPP Intra-AMY EPM Mouse ↑ [115]
α-methyl-5-HT Intra-AMY (BLA) TI Guinea pig ↓ [116]
TCB-2 Intra-AMY (BLA) OF Hamster ↑ [114]
α-methyl-5-HT Intra-AMY (MeA) TI Guinea pig ↑ [118]

PAG periaqueducal grey; HP hippocampus; AMY amygdala; BLA basolateral nucleus of amygdala; 
MeA medial amygdala; EPM elevated plus maze; FPT four plate test; OF open-field; TI tonic 
immobility; ↑ and ↓ increased and decreased anxiety; respectively. 
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an anxiogenic effect of the 5-HT2A receptor in the BLA, they have to be interpreted 
with caution given the poor selectivity of α-methyl-5-HT towards the 5-HT2A recep-
tor. In the MeA, the activation of 5-HT2A receptors was recently shown to promote 
an increase in TI duration [118], most likely due to an anxiogenic-like effect, while 
the blocking of this 5-HT receptor by the microinjection of ketanserin reduced 
TI. Future work should determine whether 5-HT and more particularly the 5-HT2A 
exerts anxiolytic- or anxiogenic-like effect in the MeA.

Finally, it is important to note that a limited number of studies explored the role 
of the 5-HT2A in relation with anxiety in other brain regions. Evidence demonstrated 
that the activation of 5-HT2A receptors in response to the microinjection of DOI in 
the CA2 of the hippocampus (HP) [119] or the periaqueducal grey (PAG) [120] 
elicited anxiolysis. Unexpectedly, the role of cortical 5-HT2A receptors in the regula-
tion of anxiety has been poorly explored using pharmacological approaches although 
recent data showed that anxiety induced by the SSRI fluoxetine, as well as specific 
gene expression changes in the prefrontal cortex, were prevented by 5-HT2A/C 
receptor blockade [121].

 In Human

There is now accumulating support for the therapeutic interest to target the 5-HT2A 
receptor for the relief of anxious symptoms. Indeed, the 5-HT2A/2C receptor antago-
nists ritanserin and mianserin exert anxiolytic effects in patients and effectively 
block the anxiogenic effects of m-chlorophenylpiperazine [122, 123]. Moreover, the 
antidepressant nefazodone possesses antagonistic activity at the 5-HT2A receptor 
(along with 5-HT and norepinephrine reuptake inhibition properties) and is more 
effective than imipramine in the treatment of anxiety disorders [124]. Mirtazapine 
is an antidepressant with anxiolytic activity and its ability to block the 5-HT2A 
receptor [125] is possibly important for promoting therapeutic activity. Obviously, 
atypical antipsychotics with prominent 5-HT2A receptor antagonistic profile are 
being studied for their efficacy in anxiety disorders [126]. The first highly selective 
5-HT2A receptor antagonist to be developed was glemanserin (MDL11939), and it 
was initially studied for GAD without success [127]. Since this initial study, novel 
atypical antipsychotics such as asenapine that possesses high affinity for the 5-HT2A 
receptor, have been shown to provide additional benefit in Veterans with PTSD who 
had not responded to an adequate course of treatment with an SSRI, venlafaxine, or 
mirtazapine [128]. Other drugs with a 5-HT2A receptor antagonistic activity are in 
Phase III studies for the treatment of PTSD such as brexpiprazole [129, 130]. 
Moreover, since anxiety is frequently observed in schizophrenia [131], notably 
social phobia [132] and PTSD [133], the effects of atypical antipsychotics in these 
populations of patients have been explored. A recent review identified clinical trials 
in schizophrenia in which anxiety was a primary or secondary outcome measure 
[134]. It reports that amisulpiride, lurasidone, and asenapine show anxiolytic effects 
in patients with schizophrenia. It is worth noting that, in contrast to results obtained 

Brain Circuits Regulated by the 5-HT2A Receptor: Behavioural…



244

from preclinical investigations, human studies strongly suggest the necessity to 
block rather than to stimulate the 5-HT2A receptor to obtain therapeutic effects. 
These discrepancies are of particular concern for the development of drugs with 
therapeutic potential in preclinical research and therefore for the identification of 
innovative strategies. Several reasons might explain these conflicting effects such as 
different anatomical distribution of the 5-HT2A receptors between species. Technical 
consideration should also be taken into account. Indeed, in animal studies the poten-
tial of 5-HT2A agonists/antagonists has mainly been tested after their acute adminis-
tration and in behavioral paradigms (EPM, OF, FPT) that do not model chronic 
human disorders.

 Genetic Studies

 In Rodents

In constitutive 5-HT2A receptor knock-out mice (5-HT2A
−/− KO), no modification of 

anxiety was observed using the novelty suppressed feeding paradigm or the elevated 
plus maze [135, 136]. Contrasting results had however been reported a few years 
before since it was shown that 5-HT2A

−/− KO mice display a low-anxiety behavioral 
phenotype in the open field (OF) and the light-dark test [137]. Although the discrep-
ancies between these studies remain somewhat unexplained, it is possible that the 
choice of the behavioral paradigm is crucial to unveil the involvement of the 5-HT2A 
receptor in anxiety. Hence, the development of treatment strategies for the various 
anxiety disorders should take into consideration the degree of anxiety-like and fear- 
like symptomology. Interestingly, the reduced level of anxiety detected in 5-HT2A

−/− 
KO mice was completely reversed in response to the selective re-introduction of the 
receptor in the cortex [137]. Despite these promising results underlying an anxio-
genic effect of cortical 5-HT2A receptors, genetic studies have yet to be conducted to 
determine whether other brain regions such as the AMY and the HP are involved in 
this specific behavior.

Importantly, 5-HT is a core neurotransmitter in the physiopathology of anxiety 
disorders and SSRIs are the first-line treatment [138]. We recently reported the 
effects of antidepressant drugs in 5-HT2A

−/− KO mice. Our results indicated that the 
ability of chronic administration of the SSRI fluoxetine to produce anxiolytic-like 
effects in the novelty suppressed feeding (NSF) was completely dampened in 
mutants [136]. Several hypotheses can be proposed to explain how the disruption of 
this receptor gene impaired behavioral responses to SSRIs. We raised the possibility 
that the constitutive loss of the 5-HT2A receptor lead to developmental and compen-
satory effects such as hypersensitization/upregulation of the 5-HT1A receptor [136], 
processes known to mitigate the therapeutic activity of SSRI in clinical [139] and 
preclinical [140] studies.
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 In Human

Given the dysfunction of the serotonergic system in psychiatric disorders [15], 
genetic studies focused on the association between genetic variants at the gene 
encoding for the 5-HT2A receptor (HTR2A) and anxiety. The HTR2A gene is located 
on chromosome 13q14-q21 and consists of three exons and two introns, spanning 
over 63  kb. The single nucleotides polymorphism (SNP) databases contain 230 
SNPs within this gene region. The HTR2A 102 T/C polymorphism, one of the most 
studied, is a mutation that is defined by a T to C transition at position 102 that does 
not alter the amino acid composition of the receptor protein [141]. A polymorphism 
in the promoter region of the HTR2A gene, 1438A/G, is in linkage disequilibrium 
with the 102 T/C polymorphism [142] and it has been suggested that it alters pro-
moter activity and expression of the 5-HT2A receptor. Interestingly, evidence sug-
gests that the 102 T/C polymorphism might be associated with anxiety disorders 
including social anxiety disorder (SAD), panic disorders (PD) or generalized 
 anxiety disorders (GAD) [143, 144]. SAD is a common, disabling condition, char-
acterized by a significant amount of fear in one or more social situations causing 
considerable distress and impaired ability to function. Public speaking, or eating/
drinking in front of others represent different forms of SAD [145]. The hypothesis 
of a genetic vulnerability for SAD is supported by recent findings showing that 
individuals carrying at least one T allele of the 5-HT2A T102C polymorphism are 
less dependent on external stimuli for pleasure or reward or have a greater tendency 
to form pessimistic (rather than optimistic) attributions and expectations of socially- 
related events compared to those homozygous for the C-allele [146]. Hence, given 
that 5-HT2A T102C polymorphism would result in increased expression of 5-HT2A 
[147, 148], the latter study suggested that 5-HT2A-mediated transmission would 
favor anxious traits.

The HTR2A has also been implicated in PD, another form of anxiety character-
ized by an acute, intense attack of anxiety accompanied by feelings of impending 
doom [149]. In a recent work, the differences in genotype and allele frequencies 
between PD patients and controls, but also the association of the polymorphisms 
with symptom severity among PD patients in the Korean population were investi-
gated. Although no genotype or allele distribution differences between PD patients 
and controls were unveiled, it was proposed that the C allele of HTR2A 102T/C and 
G allele of HTR2A 1438A/G are associated with the severity of symptoms of PD 
[150]. Interestingly, this significant association was also shown in a Japanese sam-
ple [151] but other studies failed to replicate such positive results [152, 153] rein-
forcing the idea that this question warrants further investigation. Because there is a 
striking comorbidity between anxiety disorders and major depressive disorders (i.e., 
anxiety represents a general risk factor for emotional disorders) [154], the question 
of common genetic markers has been raised. In particular, the influence of the 
5HTR2A 102T/C and 1438A/G SNPs was carefully investigated. Inconsistent results 
for the C allele of 102T/C SNP [association: [155–157], no association [158–160] 
or the A allele of 1438A/G SNP [association: 143, 161, 162, no association: 158,  
159, 163] were observed. Although interesting, it is difficult to provide definitive 
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conclusions and valuable insights into the role of the 5-HT2A receptor in anxiety as 
long as the influence of a specific genotype on the receptor expression or function is 
not firmly established.

Particularly interesting in the context of this review, variations in the gene encod-
ing for the 5-HT2A receptor have been associated with clinical outcome after antide-
pressant treatment. For example, a recent meta-analysis pointed out an association 
between the C allele of the 102T/C SNP and antidepressant drugs response [164]. 
Naturalistic studies, in which all classes of antidepressant drugs were administered 
using “real-world” treatment options in patients with anxious symptoms revealed 
significant genotypic associations with remission for different SNPs of HTR2A 
[165–171]. Unfortunately, the latter studies did not emphasize whether these SNPs 
specifically impact individual anxious symptoms.

 The Role of the 5-HT2A Receptor in Learning and Memory

As mentioned earlier, the 5-HT2A receptor is present in brain regions involved in 
learning and memory processes [70]. Reduced binding capacity of 5-HT2A receptor 
has been observed in aging subjects [172] but also in patients suffering from 
Alzheimer’s disease [173, 174] thereby strengthening the hypothesis that this recep-
tor subtype might play a role in learning and memory. Accordingly, Weisstaub and 
collaborators explored recognition memory in 5-HT2A

−/− KO mice. Results indi-
cated that the constitutive loss of the 5-HT2A receptor produced deficits in the Object 
in Context Recognition Task (OIC) and the Temporal Order Recognition Task 
(TMOR) task while the performance of mutants were normal in the Spontaneous 
Novel Object Recognition task (SNOR) [175]. From these observations, the authors 
suggested that the 5-HT2A receptor might be necessary to control the expression of 
the relevant memory traces when complex representations must be used for success-
ful retrieval. Results from two working memory tasks also suggested that 5-HT2A 
receptor signalling is helpful to perform correctly only when the interference load is 
high. Specific role of 5-HT2A receptor in the different memory phases was previ-
ously described using a pharmacological approach. Indeed, systemic administration 
of the 5-HT2A receptor agonist TCB-2 improved memory consolidation in the SNOR 
task [176]. On the contrary, the pharmacological blockade of 5-HT2A receptors with 
MDL11939 in the mPFCx of rats during the test phase impaired memory retrieval 
only in OIC and SNOR, two tasks that cannot be solved by a single item strategy 
[177]. Thus, the 5-HT2A receptors seem implicated both in memory consolidation 
and memory retrieval in some non-aversive memories.

Even more interesting in the context of the present review, a recent study also 
emphasized a role of the 5-HT2A receptor in fear memory. It has been shown in mice 
that the systemic administration of the 5-HT2A receptor agonist TCB-2 right after 
conditioning enhanced the freezing to both cue and context during subsequent test 
sessions in a trace conditioning paradigm which depends on the hippocampus [176]. 
Conversely, the memory enhancing effect was absent in a hippocampus- independent 
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delay fear conditioning paradigm. These data suggest that the activation of the 
5-HT2A receptor facilitates not all the fear memory consolidation but only the con-
solidation of episodic-like fear memory. Moreover, the authors demonstrated that 
TCB-2 was also able to significantly enhance the acquisition of extinction of cued 
trace fear memory and extinction of cued delay fear memory [176] whereas block-
ade of the 5-HT2A receptors with MDL11939 exerted opposite effects in both proce-
dures. In light of the plastic changes in neural circuitry that occur during the 
acquisition of fear extinction, it is possible that TCB-2 influences either the infra-
limbic cortical neurons or the “extinction neurons” of the BLA to facilitate fear 
extinction.

Further studies are now needed to clarify the neurophysiological influences of 
5-HT, and the 5-HT2A receptor on the neural circuitry supporting fear memory 
encoding, consolidation, retrieval, reconsolidation and, extinction. A number of 
neuropsychological disorders display fear memory symptoms, and may involve 
maladaptive processes in brain areas expressing the 5-HT2A receptor, such as the 
AMY, the HP and the mPFCx. Thus, the observation of a facilitating influence of the 
5-HT2A receptor on the extinction of fear memory may have significant impact on 
the development of therapeutic approaches for subjects with fear memory-related 
disorders, such as phobias and PTSD [178]. Another possibility to block fear mem-
ory in these two disorders is to act during memory reconsolidation i.e. when mem-
ory is recalled and when this memory again becomes labile and sensitive to 
disruption. Serotonin receptors, especially the 5-HT5A, 5-HT6 and 5-HT7, participate 
in fear memory reconsolidation measured in the contextual fear conditioning task 
[179]. Whether or not the 5-HT2A receptor is involved in this process has yet to be 
demonstrated.

To conclude, activation of this receptor in association with exposure therapy may 
thus either facilitate extinction or block reconsolidation of pathological fear- 
memory in these patients by accelerating the building of new circuits and/or the 
reorganization of existing pathways to alleviate fear memory.

 Concluding Remarks

The present review of the literature highlights the role of the 5-HT2A receptor in the 
regulation of anxiety. The neurobiological mechanisms underlying such property is 
more complex than it appears at first sight. Indeed, depending on the brain region 
studied, the activation of this receptor subtype may elicit anxiolytic or anxiogenic- 
like effects as demonstrated in preclinical studies. Considering that an excess of 
5-HT could be responsible for the development of anxiety, as repeatedly shown 
after short-term administration of SSRIs, the ability of the 5-HT2A receptor to 
dampen the activity of the serotonergic system by inhibiting DR 5-HT neuronal 
activity should favour anxiolysis. However, in the AMY and more particularly in the 
BLA, the activation of this receptor produces opposite effects. Collectively, these 
results emphasize and justify the necessity to block specifically the post-synaptic 
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5-HT2A receptor in order to relieve symptoms of anxiety. On this background, one 
might expect beneficial effects of atypical antipsychotics with 5-HT2A antagonistic 
profile (even if these pharmacological agents are susceptible to enhance 5-HT neu-
ronal activity). We can also question the interest to use antipsychotics as an add-on 
strategy with benzodiazepines to improve the therapeutic activity of the latter drugs. 
However, beneficial effects of such combination are poorly documented. In an old 
survey, it was reported that patients treated with atypical antipsychotics and benzo-
diazepines required a lower dose of antipsychotics to manage the negative symp-
toms of schizophrenia [180], a mental disorders characterized with a high level of 
anxiety. A more appropriate use of scales evaluating anxiety symptoms might have 
yielded more definitive data. Nevertheless, the beneficial effects of adjunctive ben-
zodiazepines is suspected to be helpful in managing this type of disorder during the 
acute phase of treatment, until the antipsychotics has had time to be therapeutically 
effective [134]. It is also conceivable that the development of biased agonists would 
be of particular interest. Indeed, taking into consideration the fact that the activation 
of the 5-HT2A produces distinct effects in the AMY or the HP, targeting a subpopula-
tion of 5-HT2A receptors with a specific coupling property might represent an alter-
native pharmacological strategy to optimize treatments outcomes. The relevance of 
such approach has been recently demonstrated with 5-HT1A receptor agonist that 
exhibits biased agonism for postsynaptic receptors (preferentially coupled to Gαi3 
protein subunits in the cortex), and with potential for selectively reducing aggres-
sion [181], depression or cognitive deficits in schizophrenia [182]. Clearly, there is 
a strong potential for all these avenues in the field of mental disorders and they 
should gain high attention in the near future.
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Abstract The 5-HT2 receptors subdivision into the 5-HT2A/2B/2C subtypes along 
with the advent of the selective antagonists has allowed a more detailed investi-
gation on the role and therapeutic significance of these subtypes in cognitive 
 functions. It is suggested that, 5-HT2B/2C receptors might be involved on memory 
formation probably mediating a suppressive or constraining action. Whether the 
drug-induced learning impairments in this study are explained by simple agonism, 
antagonism or inverse agonism at 5-HT2 receptors remains unclear at this time. 
Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse 
poor memory consolidation conditions associated with decreased cholinergic, 
 glutamatergic, and/or serotonergic neurotransmission.

Keywords Autoshaping • 5-HT2A/2B/2C • Receptors • Memory consolidation • 
Serotonin • Rats

 Introduction

Evidence from aplysia to human studies indicates that serotonin (5- hydroxytryptamine; 
5-HT) systems mediate learning and memory processes [1]. Even though the  precise 
receptors and mechanisms have not been elucidated yet. 5-HT receptors character-
ized so far in mammals, include 5-HT1 through 5-HT7 subfamilies [2–6], showing a 
regional distribution in brain areas implicated in learning and memory, such as hip-
pocampus, amygdala and cortex (see [5, 6], for reviews). 5-HT receptors participate 
in different learning and memory tasks, using different schedules for drug adminis-
tration, doses [5]. Serotonergic inverse agonists [6–9] have been documented, rais-
ing the possibility that, inverse agonism may actually have physiological implications 
and even, a possible impact in drug development [10]. Certainly, whether or not 

A. Meneses (*) 
Department of Pharmacobiology, CINVESTAV, México City, Mexico
e-mail: ameneses@msn.com 

R. Nieto-Vera • R.M. Anaya-Jiménez 
Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, México City, Mexico

mailto:ameneses@msn.com


260

different stages of the learning process have a link with changes in constitutive 
activity of 5-HT receptors remains open for investigation and speculative in the light 
of the available evidence, mainly 5-HT2A/2B/2C receptors. Interestingly, the 5-HT2 
receptor subdivision into the 5-HT2A/2B/2C categories [3, 11], along with the advent of 
the selective antagonists MDL100907 (5-HT2A) and SB-200646 (5-HT2B/2C) (see 
Table 1 for some affinities) or agonist (−)-MBP (5-HT2C; [12]) has allowed or will 
allow a more detailed investigation on the role and (potential) therapeutic signifi-
cance of these subtypes in cognitive functions. The amino acid sequences of 5-HT2 
receptors [2, 3, 13] have a high degree of homology within the seven transmem-
brane domains, being structurally distinct from other 5-HT receptors, sharing a 
characteristic of all genes in having either two introns (5-HT2A and 5-HT2B recep-
tors) or three (5-HT2C) in the coding sequence. All three are coupled positively, via 
Gq, to phospholipase C and increased accumulation of inositol phosphates and 
mobilize intracellular Ca2+; though, 5-HT2B receptor in the gut is not associated with 
Gq and the phospholipase C pathway. As above- mentioned, whether 5-HT2A/2B/2C an 
agonistic, antagonistic and/or inverse agonistic action modulates learning and mem-
ory is unclear.

 5-HT2A/2B/2C Receptors

The 5-HT2A receptor has also been shown to be particularly involved in the action of 
hallucinogens such as lysergic acid diethylamide (LSD) in the cortex as well  
as in the therapeutic efficacy of antipsychotic medications (see [14]). Also, 
m- chlorophenylpiperazine (displays affinity for 5-HT2 receptors) induces migraine 
attacks [15]. Orban et al. [16] reported that 5-HT2C receptor is involved in the devel-
opment of epilepsy and 5HT2C receptor inverse agonism in antipsychotic effects 
[17]. The present analysis of 5-HT2 receptor regarding memory tasks, aims illustrat-
ing the subject. For instance, 5-HT2 receptors role on memory consolidation have, 
e.g., revealed that the SB-200646 (a selective 5-HT2B/2C receptor antagonist) and 

Table 1 Affinities (pKi) of several 5HT receptor compounds for various 5-HT receptor (sub)types

5HT1A 5HT1B 5HT1D 5HT2A 5HT2B 5-HT 5-HT3 5HT7

mCPP 6.5 6.6 5.1 6.7 7.6 6.9 7.0 6.6
1-NP 7.2 6.6 8.1 7.2 8.3 8.2 – 7.7
Mesulergine 6.2 4.9 5.2 8.4 7.4 8.7 – 7.7
TFMPP 6.3 6.4 6.2 6.6 7.1 6.5 5.7 6.6
DOI 5.3 5.9 5.9 7.8 7.6 7.7 – –
Ketanserin <5.0 <5.0 5.7 8.9 5.4 7.1 <5.0 6.6
SB200646 <5.0 – <5.0 5.2 7.5 6.9 <5.0 –
LY215840 7.4 6.0 6.2 7.7 8.7 8.4 – 7.8
MDL100907 6.0 5.2 – 9.4 – 6.9 – –

References in Meneses 2002 [8]
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LY215840 (a nonselective 5-HT2/7 receptor antagonist) post-training administration 
had no effect on an autoshaped (Fig. 6) memory consolidation; however, both drugs 
significantly and differentially antagonized the memory impairments induced by 
serotonergic drugs as 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl- piperazine 
(1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). In con-
trast, SB-200646 failed to modify the facilitatory procognitive effect produced by 
(+/−)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensi-
tive to MDL100907 (selective 5-HT2A receptor antagonist) and to a LY215840 high 
dose. Finally, SB-200646 reversed the memory deficit induced by dizocilpine (glu-
tamatergic antagonist), but not that by scopolamine (cholinergic antagonist): while 
SB-200646 and MDL100907 coadministration reversed memory deficits induced 
by both drugs (Figs. 1, 2, 3, 4 and 5). Hence, 5-HT2B/2C receptors might be involved 
on memory formation probably mediating a suppressive or constraining action; cer-
tainly, whether the drug-induced memory impairments in the above study are 
explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors, 
remains unclear [9]. Similar situation occurs regarding 5-HT1A, 5-HT6 and 5-HT7 

Fig. 1 The effect of acute 
posttraining administration 
(i.p) of (a) SB-200646 and 
(b) LY215840 in an 
autoshaping learning task 
in fasted animals. Data are 
plotted as percentage of 
conditioned responses. All 
rats received an injection 
immediately after the first 
training session and data 
correspond to session 
carried out 24 h later. Top 
bar values represent the 
mean, and vertical lines 
denote the s.e. mean of 
eight different animals. 
Neither compounds 
significantly altered 
performance. (Reproduced 
with permission from [45])
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receptors [5, 9]. Until now, 5-HT2 receptor subtypes blockade may provide some 
benefit to reverse poor memory consolidation associated with decreased choliner-
gic, glutamatergic, and/or serotonergic neurotransmission [7].

Vanover et al. [18] reported that AC-90179 (a selective 5-HT2A receptor inverse 
agonist) had no effect on acquisition of a (Pavlovian/instrumental autoshaping; 
(Fig.  6) nose-poke response until the highest dose (30  mg/kg s.c.). Haloperidol 
 significantly reduced the number of reinforcers earned and clozapine dose-dependently 

Fig. 2 The effect of acute posttraining administration (i.p) of (a) SB-200646 (2 mg/kg) and (b) 
LY215840 (0.56 mg/kg) on the responses induced by mCPP (10 mg/kg), 1-NP (1 mg/kg), mesul-
ergine (0.4 mg/kg) and TFMPP (10 mg/kg) in an autoshaping learning task in fasted animals. Data 
are plotted as percentage of conditioned responses. All rats received an injection immediately after 
the first training session and data correspond to session carried out 24 h later. Top bar values rep-
resent the mean, and vertical lines denote the s.e. mean of eight different animals. *P < 0.05 vs. 
vehicletreated rats. +P < 0.05 vs. initial drug treatments. (Reproduced with permission from [45])
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decreased the number of reinforcers earned, but the effect failed to reach statistical 
significance due to individual variability [18]. Regarding individual variability in 
autoshaping tasks (see [19, 20]). Notably, some of these data are comparable to 
those observed in other memory tasks [20].

Very importantly, the status of inverse agonism at serotonin2A (5-HT2A) and 
5-HT2C receptors was recently revised (see [21]). Indeed, contemporary receptor 
theory was developed to account for the existence of constitutive activity, as defined 
by the presence of receptor signaling in the absence of any ligand; thus, ligands 
 acting at a constitutively active receptor, can act as agonists, antagonists, and inverse 

Fig. 3 The effect of acute posttraining administration (i.p) of (a) SB-200646 (2  mg/kg) or 
MDL100907 (1 mg/kg); and (b) LY215849 (0.56 and 5 mg/kg) on the responses induced by DOI 
(0.1 mg/kg) and Ketanserin (0.1 mg/kg) in an autoshaping learning task in fasted animals. Data are 
plotted as percentage of conditioned responses. All rats received an injection immediately after the 
first training session and data correspond to session carried out 24 h later. Top bar values represent 
the mean, and vertical lines denote the s.e. mean of eight different animals. *P < 0.05 vs. vehicle-
treated rats. +P < 0.05 vs. initial drug treatments. (Reproduced with permission from [45])
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Fig. 4 The effect of acute posttraining administration (i.p) of SB-200646 (2 mg/kg), MDL100907 
(1  mg/kg), and SB-200646 (2  mg/kg) combined with MDL100907 (1  mg/kg) or LY215840 
(0.56 mg/kg) in an autoshaping task in fasted animals. Data are plotted as percentage of condi-
tioned responses. All rats received an injection immediately after the first training session and data 
correspond to session carried out 24 h later. Top bar values represent the mean, and vertical lines 
denote the s.e. mean of eight different animals. *P < 0.05 vs. vehicle treated rats. (Reproduced with 
permission from [45])

Fig. 5 The effect of acute posttraining administration (i.p) of SB-200646 (2 mg/kg) and the com-
bination of SB-200646 (2 mg/kg) plus MDL100907 (1 mg/kg) on the impairing responses induced 
by scopolamine (0.17 mg/kg) and dizocilpine (0.1 mg/kg) in an autoshaping task in fasted animals. 
Data are plotted as percentage of conditioned responses. All rats received an injection immediately 
after the first training session and data correspond to session carried out 24 h later. Top bar values 
represent the mean, and vertical lines denote the s.e. mean of eight different animals. *P < 0.05 vs. 
vehicletreated rats. +P  <  0.05 vs. values obtained with scopolamine and dizocilpine alone. 
(Reproduced with permission from [45])
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agonists [21]. In-vitro and ex-vivo studies have also revealed the complexity of 
ligand/receptor interactions including agonist-directed stimulus trafficking, a find-
ing that has led to multi-active state models of receptor function (e.g., [5, 21]). 
Studies with a variety of cell types have established that the serotonin 5-HT2A and 
5-HT2C receptors also demonstrate constitutive activity and inverse agonism [21]; 
however, until recently, there has been no evidence to suggest that these receptors 
also demonstrate constitutive activity and hence reveal inverse agonist properties of 
ligands in vivo. Aloyo et  al. [21] describe the current knowledge of constitutive 
activity in-vitro and then examine the evidence for constitutive activity in-vivo. 
According with Aloyo et al. [21], both 5-HT2A and 5-HT2C receptors are involved in 
a number of physiological and behavioral functions and are the targets for treatment 
of schizophrenia, anxiety, weight control, Parkinsonism, and other disorders; the 
existence of constitutive activity at these receptors in-vivo, along with the possibil-
ity of inverse agonism, provides new avenues for drug development. In the context 
of memory, 5-HT2A receptor inverse agonists seem to be important. Notably, regar-
ding, 5-HT2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B 
inverse agonist with preclinical efficacy for psychoses are interesting [11].

It should be noted, the inverse agonism and its therapeutic significance postulate 
that a large number of G-protein-coupled receptors (GPCRs) show varying degrees 
of basal or constitutive activity. This constitutive activity is usually minimal in 
 natural receptors but is markedly observed in wild type and mutated (naturally or 
induced) receptors [22]. Conventional two-state drug receptor interaction model, 
binding of a ligand may initiate activity (agonist with varying degrees of positive 
intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic 

Fig. 6 Illustration of behavioral memory tasks, specifically autoshaping memory task for rats
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activity) [21]. Inverse agonists bind with the constitutively active receptors,  stabilize 
them, and thus reduce the activity (negative intrinsic activity). According with 
Khilnani and Khilanani [21] receptors of many classes (α-and β-adrenergic, hista-
minergic, GABAergic, serotonergic, opiate, and angiotensin receptors) have shown 
basal activity in suitable in-vitro models. For instance, drugs that have been conven-
tionally classified as antagonists (e.g., β-blockers, antihistaminics) have shown 
inverse agonist effects on corresponding constitutively active receptors and some 
drugs have significant inverse agonistic activity that contributes partly or wholly to 
their therapeutic value [21]. Inverse agonism may also help explain the underlying 
mechanism of beneficial effects of e.g., clozapine in psychosis (see below). Notably, 
understanding inverse agonisms has paved a way for newer drug development [21], 
which have only desired therapeutic value and are devoid of unwanted (or reduced) 
adverse effect (e.g., anxiety, antinociceptive, obesity, chronic asthma). According 
with Khilnani and Khilanani [21] pimavanserin (ACP-103), a highly selective 
5-HT2A inverse agonist, attenuates psychosis in patients with Parkinson’s disease 
with psychosis and is devoid of extrapyramidal side effects; therefore, inverse ago-
nism is an important aspect of drug-receptor interaction and has immense untapped 
therapeutic potential [21].

Navailles et al. [23] updating the growing number of studies showing (by means 
of pharmacological tools) the participation of the constitutive activity of 5-HT2C 
receptors in the control of various biochemical and behavioral functions in-vivo; 
and emphasizing the functional organization of this constitutive control together 
with the phasic and tonic (involving the spontaneous release of 5-HT) modalities of 
the 5-HT2C receptor in the brain [23]. Moreover, functional anatomy of 5-HT2A 
receptors in the amygdala and hippocampal complex revealed relevance to memory 
functions [24]. And investigation about 5-HT2A receptor role in memory had showed 
(e.g., [14]) that memory fields of putative pyramidal cells were attenuated by ionto-
phoresis of 5-HT2A antagonists, which primarily produced a reduction in delay 
activity for preferred target localizations. Conversely, 5-HT2A stimulation by alpha- 
methyl- 5-HT or 5-HT itself, accentuated the spatial tuning of these neurons by pro-
ducing a modest increase in activity for preferred target locations and/or a reduction 
in activity for nonpreferred locations. The agonist effects could be reversed by the 
selective antagonist MDL100907 and were dose-dependent, such that high levels 
attenuated spatial tuning by profoundly reducing delay activity. A role for feed- 
forward inhibitory circuitry in these effects was supported by the finding that 5-HT2A 
blockade also attenuated the memory fields of putative interneurons. Williams et al. 
[14] conclude that prefrontal 5-HT2A receptors have a hitherto unrecognized role in 
the cognitive function of working memory, which involves actions at both  excitatory 
and inhibitory elements within local circuitry (see also [25]). Notably, Dougherty 
and Oristaglio [26] hypothesize that long-term drug treatments resulting in 5-HT2A 
receptor up-regulation may be useful in enhancing recall of learned behaviors and 
thus may have potential for treating cognitive impairment associated with neurode-
generative disorders. Likewise, Dougherty and Oristaglio [26] point out that their 
observations suggest a widespread modulatory role of 5-HT2A and 5-HT2C receptors 
in learning and memory, with the net effect being dependent on task requirements 
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and the specific mnemonic systems recruited. It should be noted that the methodology 
employed by Dougherty and Oristaglio [26] is a first step in better characterizing 
drug effects on goal-directed behavior and identifying quantifiable factors that can 
underlie changes in response latency; they suggest using more elaborate methodolo-
gies, such as video tracking, could add resolution to this analysis and provide a 
more complete profile of motor variability under baseline and drug-influenced con-
ditions. In addition, such analyses could be an important consideration for evaluat-
ing the behavioral performance of different strains of mice, particularly in aged or 
neurodegenerative models where latencies in choice behavior and motor variability 
might be considerably higher [26]. For instance, increases in both reaction time and 
reaction time variability on cognitive tasks are associated with aging and cognitive 
decline in humans [26].

Moreover, 5-HT2B2C receptors and memory investigation (e.g., [27]) had showed 
that systemic administration of 5-HT2C and 5-HT2A receptor antagonists signifi-
cantly enhanced and impaired spatial reversal learning, respectively (e.g., [28]). 
Indeed, the role of these receptors in the mediation of these opposing effects was 
further investigated regarding neuroanatomical specificity within some of the brain 
regions implicated in cognitive flexibility [27], namely the orbitofrontal cortex 
(OFC), medial prefrontal cortex (mPFC), and nucleus accumbens (NAc), by means 
of targeted infusions of selective 5-HT2C and 5-HT2A receptor antagonists (SB- 
242084 and M100907, respectively). Intra-OFC 5-HT2C receptor antagonism 
 produced dose-dependent effects similar to those of systemic administration, i.e., 
improved spatial reversal learning by reducing the number of trials (doses: 0.1, 0.3, 
and 1.0 μg) and perseverative errors to criterion (0.3 and 1.0 μg) compared with 
controls [27]. However, the highest dose (1.0 μg) showed a nonselective effect, as it 
also affected retention preceding the reversal phase and decreased learning errors. 
Intracerebral infusions of SB-242084 into the mPFC or NAc produced no signifi-
cant effects on any behavioral measures. Similarly, no significant differences were 
observed with intra-OFC, −mPFC, or -NAc infusions of M100907. According with 
Boulougouris and Robbins [27], these data suggest that the improved performance 
in reversal learning observed after 5-HT2C receptor antagonism is mediated within 
the OFC. Also, the data also bear on the issue of whether 5-HT2C receptor antago-
nism within the OFC might help elucidate the biological substrate of obsessive- 
compulsive disorder, offering the potential for therapeutic application. Moreover, 
novel 5-HT2A/5-HT2C receptor agonists with pro-cognitive effects have been reported 
[28]. For further evidence see also Meneses [7] and Puig and Gulledge [29].

According with Hanks and Gonzalez-Maeso [30], psychedelic 5-HT2A receptor 
agonists LSD and DOI, but not lisuride, enhance trace conditioning of the nictita-
ting membrane response in rabbits (a simple associative learning of a motor 
response; an effect reversed by 5-HT2A/2C receptor antagonists. Fear memory in a 
trace conditioning paradigm was also affected by activation of the 5-HT2A receptor 
in rats, and post-training administration of the 5-HT2A receptor agonist (4-bromo-
3,6- dimethoxybenzocyclobuten- 1-yl)methylamine hydrobromide (TCB-2)115 
enhanced subsequent freezing in a trace fear conditioning test [30].
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Although the role of 5-HT2A/2B/2C receptors in memory is unclear the above and 
other studies suggest new insights. For instance, evidence reported by Blasi et al. 
[31] suggest that HTR2A affects 5-HT2A receptor expression and functionally con-
tributes to genetic modulation of known endophenotypes of schizophrenia-like 
higher-level cognitive behaviors and related prefrontal activity, as well as response to 
treatment with olanzapine. Moreover, true but not false memories seem to be associ-
ated with the HTR2A gene [32].

 Genetic Delation and 5-HT2 Receptors

Interestingly, new horizons are emerging. For instance, acute pharmacological 
blockade and constitutive loss of 5-HT2C receptor activity provide insights into the 
serotonergic regulation of executive control processes (part of cognition; e.g., [33]) 
and suggest that impaired 5-HT2C receptor signaling during development may pre-
dispose to executive function disorders [34]. The 5-HT2C receptor gene mutation 
revealed abnormal performance in a spatial learning task and altered exploratory 
behavior, associated with perturbed long-term potentiation (supposedly physiologi-
cal model of memory) restricted to the dentate gyrus perforant path synapse [35]. 
Certainly, 5-HT2C receptor activation inhibits appetitive and consummatory compo-
nents of feeding and increases brain c-fos immunoreactivity in mice [36]. Del’guidice 
et al. [37] reported that stimulation of 5-HT2C receptor improves cognitive deficits 
induced by human tryptophan hydroxylase 2 loss of function mutation. Dissociable 
effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and 
learned non-reward in an egocentric spatial reversal task revealed that 5-HT2C 
 receptor reducing activity facilitates reversal learning in the mouse by reducing the 
influence of previously non-rewarded associations [38]. Finally, 5-HT2C receptor 
inactivation potentiates consequences of serotonin reuptake blockade [39].

 5-HT2 Receptors and Addiction

Volkow et al. [40] have noted that during addiction, the enhanced value of the drug 
in the reward, motivation, and memory circuits overcomes the inhibitory control 
exerted by the prefrontal cortex, thereby favoring a positive-feedback loop initiated 
by the consumption of the drug and perpetuated by the enhanced activation of the 
motivation/drive and memory circuits. Moreover, Cunningham and colleagues [41] 
reported synergism between 5-HT2A receptor antagonism and 5-HT2C receptor ago-
nism pharmacotherapeutics for cocaine addiction. Importantly, selective 5-HT2C 
receptor agonism and 5-HT2A receptor antagonism may be potential targets for 
therapies to treat some aspects of nicotine dependence [42]. Chronic fluvoxamine 
(an antidepressant) treatment changes 5-HT2A/2C receptor-mediated behavior in 
olfactory bulbectomized mice (a model of depression) [43]. In addition, 5-HT2A 
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receptor in the orbitofrontal cortex facilitates reversal learning and contributes to the 
beneficial cognitive effects of chronic citalopram (antidepressant) treatment [44]. In 
conclusion, all together the above data allow illustrating the therapeutic diversity 
and utility of 5-HT2A/2B/2C receptors.

Acknowledgments The author also wants to thank Sofia Meneses for the language review and 
the technical assistance of Roberto Gonzalez.
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5-HT2A Receptors in the Basal Ganglia             

Cristina Miguelez, Teresa Morera-Herreras, and Philippe De Deurwaerdère

Abstract The serotonin2A (5-HT2A) receptor is present in the basal ganglia (BG), a 
group of subcortical structures involved in the control of motor behaviours. It is one 
of the numerous serotonin (5-HT) G-protein coupled receptors responding to the 
release of 5-HT from neurons of the dorsal raphe nucleus. The interest brought to 
the function of 5-HT2A receptors in the BG is related to the possible implication of 
5-HT2 receptors in the regulation of mesencephalic dopaminergic neurons and the 
deleterious side effects of long-term treatment with antipsychotic medication.

The 5-HT2A receptors are mostly expressed in the cortex and to a lesser extent 
in the BG, where other 5-HT receptor subtypes show stronger expression. 
Nonetheless, numerous cells including dopaminergic, GABAergic, glutamatergic 
or cholinergic neurons express 5-HT2A receptors brain-wide. Correspondingly, 
5-HT2A receptors modulate the metabolic and electrophysiological activity of 
some neuronal populations including dopaminergic and GABAergic neurons. 
This control involves 5-HT2A receptors in the BG and is specific and state- 
dependent, in particular with regard to the level of dopaminergic transmission. 
Behavioural data have also shown that 5-HT2A receptor  agents modulate the 
effects of a variety of psychotropic agents including drugs of abuse and antipsy-
chotic drugs. Moreover, the 5-HT2A receptor- mediated modulation is altered in 
animal models of Parkinson’s disease, tardive dyskinesia, L-DOPA-induced dys-
kinesia and drug addiction.

This chapter summarizes data exploring the role of 5-HT2A receptors in the BG, 
which remains an important topic for research aimed at ameliorating current treat-
ments of schizophrenia, Parkinson’s disease and addiction.
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Abbreviations

5-HT Serotonin
5-HT2A receptor Serotonin 2A receptor subtype
6-OHDA 6-Hydroxydopamine
BG Basal Ganglia
DA Dopamine
DOI 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane
DRN Dorsal raphe nucleus
EP Entopeduncular nucleus
EPS Extrapyramidal side effects
GPe External globus pallidus
GPi Internal globus pallidus
IHC Immunohistochemical studies
LSD Lysergic acid diethylamide
m-CPP Metachlorophenylpiperazine
MDL 100,907  (R-(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)

ethyl]-4-piperidinemethanol)
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRN Medial raphe nucleus
mRNA ISH mRNA in situ hybridization
NAc Nucleus Accumbens
OCD Obsessive Compulsive Disorders
PCP Phencyclidine
pCPA para-chlorophenylalanine
PD Parkinson’s disease
PET Positron emission tomography
PPE Preproenkephalin
PPT Preprotachykinin
Ro 60–0175 S-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine
RT-PCR Reverse transcription polymerase chain reaction
RU-29469 5-Methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H–indole
SB 228357  1–5[−fluoro-3-(3-pyridyl)phenyl-carbamoyl] -5- methoxy-6-trifluo- 

romethylindoline
SNc Substantia nigra pars compacta
SNr Substantia nigra pars reticulata
SPNs Spiny projecting neurons
STN Subthalamic nucleus
TFMPP Trifluoromethylphenylpiperazine
TH Tyrosine hydroxylase
VTA Ventral tegmental area
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 Introduction

The research on serotonin2A (5-HT2A) receptor subtypes within the basal ganglia 
(BG) started during the 70s. The BG encompass a group of subcortical and inter-
mingled regions involved in the control of motor behaviours [1]. They house mes-
encephalic dopamine (DA) neurons, which play a critical role in the function of 
these brain regions, as suggested by their involvement in numerous diseases includ-
ing Parkinson’s disease (PD), schizophrenia and drug abuse [2–6]. Soon, it was 
suggested that 5-HT2 receptors subtypes were able to control DA release, and nota-
bly to exert an inhibitory control on DA neuron activity [7–9]. The interest was 
growing when the therapeutic benefit of atypical antipsychotic drugs, marked by the 
lower incidence of extrapyramidal and vegetative side effects compared to typical 
antipsychotics, was proposed to rely on their higher affinity for 5-HT2 compared to 
DA D2 receptors [10–12]. At that moment, the lack of selective 5-HT2A, 5-HT2B and 
5-HT2C receptor compounds delayed the understanding of the role of each of these 
subtypes [13, 14]. However, during the 90s, the synthesis of selective ligands per-
mitted to elucidate the action exerted by each receptor subtype in the BG, demon-
strating distinct and even opposite effects on DA activity [13].

Beyond the complex regulation of DA neurons, anatomical, electrophysiological 
and neurochemical data provide evidence for the influence of 5-HT2A receptors on 
various neuronal populations in the BG. Their role is further stressed when looking 
at the behavioural data related to BG function. Yet, the role of 5-HT2A receptors 
specifically expressed in the BG is often unclear. Thus, the aim of this chapter is to 
summarize data indicating that 5-HT2A receptors expressed in the BG play a role in 
modulating neuronal function and control of motor behaviours.

 Basal Ganglia Contains Serotonergic Fibers and 5-HT2A 
Receptors

 Functional Organization of the Basal Ganglia

The BG are a highly-organized network formed by different subcortical nuclei that 
connects the cortex with the thalamus, creating the cortico-BG-thalamo-cortical 
loop. Based on topographical organization, this network is divided in sensorimotor, 
associative and limbic circuits and is therefore involved in motor and cognitive 
functions [1, 15, 16]. The BG comprise the striatum, the external and internal seg-
ments of the globus pallidus (GPe and GPi or entopenduncular nucleus, EP, in 
rodents), the substantia nigra (pars compacta, SNc, and pars reticulata, SNr) and the 
subthalamic nucleus (STN) [17]. Other limbic structures, such as the nucleus 
accumbens (NAc) situated in the ventral striatum, or the ventral pallidum are 
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important to take into account because they integrate information from the BG and 
limbic systems [18]. The STN and the striatum are considered the input stations of 
the BG, and receive direct afferences from the cortex, limbic structures and the 
thalamus, while the SNr and the GPi are the output nuclei that send the information 
back to premotor and motor cortical areas by means of the thalamus. Based on the 
cortico- nigral projections, three parallel pathways have been described: the hyper-
direct pathway, which arises from cortical structures and projects to the output 
nuclei via the STN; the direct pathway that conveys cortical inputs to the SNr 
through specific striatal projecting neurons; and the indirect pathway, which con-
nects the cortex with the SNr passing first through the striatum, GPe and STN [19].

Although GABAergic and glutamatergic connections govern the flow of infor-
mation in the BG, the proper activity of these nuclei depends on the functional 
integrity of the DA neurons. DA cell bodies are located in the SNc and the ventral 
tegmental area (VTA), and innervate all BG nuclei at different levels. Degeneration 
of DA neurons and subsequent loss of DA control produces an imbalance in the BG 
pathways that leads to dramatic molecular, cellular, and behavioural modifications 
[2, 20, 21].

 Serotonergic Innervation of the Basal Ganglia

The topographical organization of serotonergic projections in the brain is similar 
across different species [22–25], with the midbrain raphe nuclei being the origin of 
the ascending innervation. Both the medial (MRN) and the dorsal raphe nucleus 
(DRN) send projections to common areas implicated in motor control, such as the 
thalamus and the BG. Although the MRN innervates areas as the SN or the NAc, the 
nature of these projections is non-serotonergic and therefore, the DRN is the main 
responsible nucleus for the serotonergic control of the BG (reviewed in [26, 27]). 
Serotonergic fibres primarily within the medial forebrain bundle ascend to innervate 
all areas of the BG, including the striatum, GP, SNc, SNr and STN [28–32]. In gen-
eral, the SN is the most densely innervated nucleus followed by the striatum, STN, 
GPi and GPe. The DRN also provides most of the 5-HT innervation in the VTA, 
NAc, ventral pallidum and prefrontal cortex [31, 33, 34].

 Distribution of 5-HT2A Receptors in the Basal Ganglia

 General Overview

Serotonin (5-HT) physiologically modulates BG nuclei activity by acting on 5-HT 
receptors (reviewed in [26, 35]). Among this large family of receptors, the 5-HT2A 
receptor (originally termed 5-HT2 [36]) is coupled to the activation of protein kinase 
C via G proteins of the Gq/G11 subtype. The distribution of these receptors is sum-
marized in Table 1.
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Autoradiographic binding studies using 5-HT2A receptor radioligands, as 
[3H]-ketanserin, [3H]-mesulergine, [3H]-LSD, [3H]-spiperone, or [3H]-MDL 100907, 
have found high levels of 5-HT2A receptor binding sites in neocortical areas, caudate- 
putamen and NAc and lower levels (sometimes barely detectable) in the SN, GP or 
STN in rodents [37, 38], monkeys [39–42] and humans [43–45]. In human brain 
tissue, the use of more specific ligands confirmed the presence of the receptor in 
striosomes in the caudate-putamen [44]. The striosomes represent the part of the 
striatum with low levels of acetylcholinesterase, rich in mu opioid receptors, and 
containing the cell bodies of the GABAergic neurons projecting to the SNc [46, 47]. 
In the rat, in contrast, there is reportedly an inverse distribution of 5-HT2A receptor 
mRNA with predominant expression in the matrix compared to the striosomes [48].

Numerous studies using in situ hybridization have demonstrated widespread and 
similar mapping of 5-HT2A receptor mRNA among species [41, 49–52]. In the rodent, 
monkey and human, the highest expression has been reported in the cortex, which 
has been extensively characterized. In the rat brain, strong hybridization  signal has 
been observed in the deeper laminae of the prefrontal cingulate and the retrosplenial 
cortex while in the human brain, intense expression was found in the neocortex, 
where pyramidal neurons and interneurons were labelled [49, 53]. The olfactory bulb 
also expresses high levels of mRNA, while other nuclei as the raphe nuclei or hip-
pocampus (except the CA3) show barely detectable or very low expression of 5-HT2A 
receptor mRNA [49, 51, 54]. In the rodent BG, some studies, but not all [49], have 
found intermediate levels of expression in the SNc or the caudate- putamen, and 
higher expression in the ventral striatum, including the NAc or the olfactory tubercle 
[51, 52, 55]. In the human and non-human primate brain, however, no expression was 

Table 1 Distribution of 5-HT2A receptors in the basal ganglia.

Caudate/
Putamen NAc

GPe/
GPi

EP/
SNr

SN/
VTA STN References

Rodents

Autoradiography ++ ++ + 0/+ + + [37, 38]
mRNA ISH + ++ 0/+ 0/+ + 0 [48, 51, 52, 55, 

237]
IHC ++ ++ + + + + [61–65, 68–71]
Non-human primates

Autoradiography ++ ++ + + + + [39, 40, 42]
mRNA ISH 0 0 0 0 0 / [41, 53, 233]
IHC + / / / / /
Humans

Autoradiography ++ ++ + / + + [40, 43, 45]
mRNA ISH 0 / / / / / [41, 53, 233]
IHC / / / / + / [66]

Information in the table reflects data from autoradiographical, mRNA in situ hybridization (mRNA 
ISH) and immunohistochemical (IHC) studies performed in tissue from rodents, non-human pri-
mates and humans. The intensity of the expression is graded as low (+), moderate (++) or absent 
(0), debated (0/+) or unstudied (/). For abbreviations, see list.
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reported in the BG components [41, 53]. In general, receptor autoradiography studies 
agree with the results from in situ hybridization. However, some areas lacking 5-HT2A 
receptor mRNA were confirmed to express low but detectable receptor binding [41]. 
These differences between the density of receptors and the presence of the corre-
spondent mRNA may rely on different issues. On the one hand, the detection limits 
of in situ hybridization techniques may not be adequate for detecting low expression 
of mRNA or simply, 5-HT2A receptors may be heteroceptors in some areas where 
they would be located in non-5HT afferent axons. On the other hand, the disparity of 
radioligand specificities used among the autoradiography studies may also contribute 
to the overestimation of 5-HT2A receptor expression in areas where correspondent 
mRNA was not detected.

Results from positron emission tomography (PET) with specific antagonist 
radioligands as [11C]-MDL100907 or [18F]-altanserin are in good accordance with 
the distribution of 5-HT2A receptors in the brain defined by autoradiography studies. 
Both in rats and humans, high radioactive signal was observed in the neocortex 
(occipital, temporal and frontal cortex), with lower expression in the cerebellum, 
thalamus, caudate-putamen, pons and very weak expression in the cerebellum [56–60]. 
Supporting the 5-HT2A receptor mapping described by the previous techniques, 
immunohistochemical assays largely confirmed the location of 5-HT2A receptors in 
the  olfactory system, hippocampus, amygdala, and cerebral cortex [61, 62]. 
Regarding the pattern of 5-HT2A receptor distribution in the rat BG nuclei, detect-
able levels have been shown in the caudate-putamen, NAc and ventral pallidum in 
most studies [61–65]. In addition, others have found modest receptor expression 
also in the GP, EP, SNr, SNc, VTA and STN in rats [61] and in the SNc and VTA in 
humans [66].

 Cell Types Expressing the 5-HT2A Receptors

The use of single or double in situ hybridization, reverse transcription coupled to 
polymerase chain reaction (RT-PCR) and immunohistochemistry has helped to iden-
tify some of the cell types that express 5-HT2A receptors. Brain areas with high expres-
sion have been extensively characterized, including the prefrontal cortex where it is 
known that pyramidal cells expressing 5-HT2A receptors send direct projections to the 
NAc (for review see [67]). In the BG, however, the phenotypical description of 5-HT2A 
receptor-containing cells has been poor and mainly focused on the striatum, which 
shows relatively moderate (ventral striatum) or low (dorsal striatum) levels of expres-
sion. In the caudate-putamen and shell of the NAc, the 5-HT2A receptor has been 
found in the cell-bodies, dendrites, dendritic spines, axons and axon terminals [65] 
and, as in the other BG nuclei, the location seems to be cytoplasmic [61, 65].

In the NAc, 5-HT2A receptors are mostly located in spiny projecting neurons 
(SPNs) [61], although one study has also found labelled glial cells in the core and 
shell regions [62]. Further phenotypic cellular characterization using double- labelling 
in situ hybridization demonstrated that in the ventral striatum, 5-HT2A receptor 
mRNA is present in both enkephalin- and dynorphin- containing SPNs [48, 55], 
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although not all cells were found to express the 5-HT receptor. In the caudate- 
putamen, 5-HT2A receptors are expressed by various neuronal populations including 
parvalbumin-positive interneurons and SPNs [61–63, 68]. In agreement with the pat-
tern observed in the ventral area, neurons containing 5-HT2A receptors in the poste-
rior part of the striatum seem to be positive for dynorphin, enkephalin or substance  
P [48], which suggests that neither striatopallidal nor striatonigral pathways are spe-
cifically influenced by 5-HT2A receptor control (see below). Additionally, one study 
has reported that some cells in the caudate-putamen and the NAc co- express 5-HT2A 
and glutamatergic NMDA receptors [65].

In the midbrain, DA neurons in the VTA and SNc express both tyrosine hydroxy-
lase (TH) and 5-HT2A receptors [66, 69, 70] and interestingly, the existence of 5-HT2A/
D2 heterodimers has been recently suggested in the SNr by some authors [71].

 Conclusions

5-HT2A receptors are unevenly expressed in the BG. Although low expression has 
been observed in most BG nuclei, the NAc, ventral pallidum and medial striatum 
have higher expression. In those regions, mainly SPNs contain the receptor, but the 
pattern of expression is not restricted to a specific pathway classification. Taking 
into account that the NAc is the structure of the BG with higher expression, one can 
speculate that the functional control of 5-HT2A receptors may mainly influence 
 limbic or associative rather than sensorimotor circuits.

 5-HT2A Receptor-Mediated Electrophysiological Control 
of the Basal Ganglia

 5-HT2A Receptor Mediated Modulation of Neuron Activity 
in the Striatum

Reports about the serotonergic modulation of striatal function are inconsistent. The 
local injection of 5-HT into the striatum or the electrical stimulation of the DRN 
induce inhibition of the vast majority of SPNs [72–74]. However, other studies 
based on intracellular recordings have shown, first, that DRN stimulation evokes 
striatal excitatory postsynaptic potentials and second, that 5-HT administration 
excites SPNs by reducing voltage-dependent potassium currents [75–78].

The 5-HT1 receptor family controls striatal activity by regulating the release of 
different neurotransmitters. Stimulation of 5-HT1A or 5-HT1B receptors leads to an 
inhibition of 5-HT release [79, 80]. Moreover, 5-HT1A receptor agonists decrease 
glutamate release from corticostriatal projections [81–83], while the 5-HT1A recep-
tor antagonist, WAY100135, increases it [84]. On the other hand, striatal DA tone is 
increased after 5-HT1B receptor stimulation through a mechanism that implicates a 
decrease of GABA release from the SNr [79].

5-HT2A Receptors in the Basal Ganglia



280

Regarding 5-HT2 receptor family, both 5-HT2A and 5-HT2C receptor agonists 
evoke inhibitory responses in the caudate nucleus [85, 86]. This inhibition may, 
however, depend on the striatal area analyzed [78]. Indeed, other studies stress that 
5-HT2 receptor stimulation (mainly 5-HT2C), also induces an activation of choliner-
gic and fast-spiking interneurons, leading to an increased release of acetylcholine 
and subsequent GABAergic postsynaptic inhibition, which inhibits SPNs [87, 88].

In the NAc, although the vast majority of the studies have determined the seroto-
nergic modulation by microdialysis, intracellular recordings in rat brain slices have 
shown that 5-HT depolarizes the neurons by closing inwardly rectifying potassium 
channels. This effect is antagonized by the preferential 5-HT2A antagonist ketanse-
rin, suggesting that it is mediated by this receptor subtype [89]. On the other hand, 
presynaptic 5-HT1B receptor stimulation reduces frequency of synaptic glutamate 
input in this nucleus [90].

 5-HT2A Receptor Modulation of Neuron Activity 
in the Substantia Nigra

Considering the variety of 5-HT receptors within the BG nuclei, it is not surprising 
that endogenous 5-HT exerts mixed effects on the electrical activity of SNr neurons. 
In vivo studies suggest that 5-HT can induce inhibitory or excitatory responses in 
the SNr, with 5-HT2C receptors responsible for the excitatory component [91–94]. 
Furthermore, 5-HT depletion produces an inhibitory effect on SNr neurons, whose 
firing pattern becomes more bursty [95]. In vitro studies performed in brain slices 
also report complex effects. On the one hand, 5-HT excites SNr neurons via direct 
stimulation of 5-HT2C receptors or indirect activation of 5-HT1B receptors on stria-
tonigral GABAergic terminals [96–99]. On the other hand, 5-HT1B receptor activa-
tion in the STN leads to an indirect inhibition of SNr cells [100]. So far, the few 
studies that have investigated the role of 5-HT2A receptors on the activity of SNr 
neurons have not reported an effect of 5-HT2A receptor agonists [97] or participation 
of this receptor in the inhibitory effect produced by 5-HT [96].

In the SNc, the role of 5-HT is still unclear. Generalized 5-HT depletion seems 
to decrease, or not to have any effect, on SNc neuron excitability [101, 102]. DRN 
electrical stimulation evokes mainly inhibitory responses, but in some occasions 
excitation, probably due to the release of neurotransmitters other than 5-HT [101, 
103]. In vivo or in vitro local administration of 5-HT does not modify SNc neuron 
activity [91, 104]. Regarding 5-HT2 receptors, non-selective antagonists like ritan-
serin can produce diverse effects on SNc neurons, including stimulation [105] or no 
effect [106]. In general, in vivo or in vitro acute administration of 5-HT2A antago-
nists (SR 46349 or MDL 100907) does not alter the firing rate of VTA and SNc DA 
neurons [104, 106–109] but can influence the number of active cells or firing pattern 
[110]. As we describe later, 5-HT2A receptors regulate the firing activity of DA neu-
rons in case of drastic changes of activity. Thus, it is known that drugs able to block 
5-HT2A receptors counteract the ability of the psychostimulant drug amphetamine to 
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inhibit the activity of DA neurons in the SNc and the VTA [109]. This effect seems 
specific of amphetamine. Indeed, 5-HT2A receptor antagonists are unable to modify 
the inhibition produced by D2 receptor agonists on DA neurons [108]. Similarly, 
unpublished results of Dr Ennio Esposito indicated that low doses of the preferential 
5-HT2A receptor antagonist SR 46349 reduced the increase in firing rate triggered by 
cumulative doses of haloperidol. On the other hand, SR 46349 was not able to coun-
teract the increase in DA neuron firing frequency induced by cumulative doses of 
morphine [107]. This pattern of response is complex and could be related to the 
ability of amphetamine, haloperidol, but not morphine, to stimulate intraneuronal 
DA synthesis [26].

 5-HT2A Receptor Modulation of Neuron Activity in the Globus 
Pallidus

The presence of different 5-HT receptors predicts the role of 5-HT in controlling 
neuron activity both in the GPe and GPi/EP.

In the GPe, several studies have confirmed the tonic excitatory tone exerted by 
5-HT. Acute 5-HT depletion decreases basal firing rate and the number of regular 
neurons in the GPe [111]. Moreover, local application of 5-HT both in vivo and  
in vitro, triggers excitatory responses in the GP, and occasionally some inhibitory 
responses [112–116]. The stimulatory effect may depend on pre- and postsynaptic 
mechanisms involving various 5-HT receptors (5-HT1B, 5-HT1A, 5-HT4 or 5-HT7 
receptor subtypes) but not 5-HT2A receptors [112–114, 117].

In the ventral part of the pallidum, 5-HT also controls neuron activity. Bath 
application of 5-HT excites GABAergic neurons and inhibits cholinergic cells by 
mechanisms that rule out the participation of 5-HT2A receptors [118] but probably 
require 5-HT1A receptor activation [119].

 5-HT2A Receptor Modulation of STN Neuron Activity

5-HT exerts a complex effect on STN neuron activity, which is considered an impor-
tant centre of BG motor circuits and receives serotonergic innervation mainly from 
the DRN (see above). In vivo electrophysiological studies have shown that STN 
firing rate and burst activity are increased after DRN pharmacological lesion or 
5-HT depletion induced by pretreatment with para-chlorophenylalanine (pCPA, a 
5-HT synthesis inhibitor) [120, 121]. Both in vitro and in vivo studies have reported 
how the excitability of STN neurons is controlled by various 5-HT receptors includ-
ing 5-HT1A, 5-HT1B, 5-HT2C or 5-HT4 receptors [122, 123]. Although studies using 
selective compounds are still lacking, 5-HT2A receptors seem not to participate in 
STN excitability [124].
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 Regulation of Neuroanatomical Markers by 5-HT2A Receptors 
in the Basal Ganglia

Although nowadays few agonists with a selective profile for 5-HT2A receptors are 
available, less specific drugs have been traditionally used for analysing the impact 
of 5-HT2A receptor stimulation on the cellular activity in the BG. Among them, the 
lead compound to study 5-HT2A receptor function is DOI, which also displays 
strong affinity toward 5-HT2B and 5-HT2C receptor subtypes [14, 125]. Regarding 
the protooncogene c-Fos or other markers, most data arise from studies performed 
in the striatum while the impact of 5-HT2A receptors in other brain regions is scarce.

Some immunohistochemical studies have reported that systemic administration 
of DOI enhances the expression of c-Fos in the striatum [126–129], mainly in the 
medial striatum and the NAc [126, 130]. This c-Fos expression is suppressed by the 
unspecific 5-HT2 antagonist ritanserin or reduced by the 5-HT2A/D2 antagonist spi-
perone [126], suggesting a participation of 5-HT2A receptors in this effect. Other 
drugs like m-chlorophenylpiperazine (m-CPP), 1-(3-trifluoromethylphenyl) pipera-
zine (TFMPP), RU-29469 or Ro 60–0175 also enhance the expression of c-Fos in 
the striatum [131–134]. However, their effect is not necessarily related to 5-HT2A or 
even 5-HT2C receptors and the pattern of expression is often different from that pro-
duced by DOI. Indeed, moderate to high doses of mCPP, RU-29469 and TFMPP 
substantially enhance striatal c-Fos expression in all striatal areas, presumably by 
stimulating 5-HT1B receptors [135]. The preferential 5-HT2C receptor agonist Ro 
60–0175 and lower doses of mCPP (1 mg/kg) induces lower expression of c-Fos 
compared to the above situation and a pattern of effect similar to that reported for 
DOI [132, 133, 136]. Since 5-HT2C receptors are unlikely to be involved in the effect 
of these compounds [136], the affinity toward 5-HT2A receptors might contribute to 
c-Fos expression. It is noteworthy that the control exerted by 5-HT2A receptors is 
probably very peculiar. In fact, as happens with DOI [137], the non-selective 5-HT 
agonist and hallucinogenic compound lysergic acid diethylamide (LSD) enhances 
c-Fos expression in the cortex through the stimulation of 5-HT2A receptors without 
affecting the expression in the striatum or the NAc [138]. The overall picture indi-
cates that the overexpression of immediate early genes by 5-HT2A receptor stimula-
tion has a low magnitude in the striatum compared to the cortex, paralleling the 
lower density of 5-HT2A receptor expression. In contrast to 5-HT2C receptors [139], 
selective or mixed 5-HT2 receptor antagonists do not induce c-Fos expression in the 
striatum [138, 140–142].

5-HT2A receptors have also been proposed to regulate, at least in part, the c-Fos 
expression induced by various psychotropic drugs. Thus, cocaine administration 
induces the expression of c-Fos and zif248 by a 5-HT-dependent mechanism, as this 
effect is reduced after 5-HT depletion by p-chloroamphetamine [143]. Specifically, 
cocaine-induced c-Fos expression is reduced by the co-administration of a low dose 
of MDL 100,907 (0.125 mg/kg) plus an agonist of 5-HT2C receptors [144], while 
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cocaine-induced zif248 expression is reduced by MDL 100,907 (0.5  mg/kg) 
 administration [145]. The non-selective NMDA channel blocker phencyclidine 
(PCP) enhances c-Fos expression in the NAc, an effect that is suppressed in rats 
pretreated by MDL 100,907 [141]. Amphetamine also enhances c-Fos expression 
but its effect is not reduced by ritanserin [146]. The 5-HT releasers 
fenfluramine/d-fenfluramine enhance c-Fos in the striatum [128, 147–149], how-
ever, the contribution of 5-HT2 receptors to this effect is rather poor or inexistent 
[128, 147–149].

Several researches have analysed the profile of c-Fos expression induced by typi-
cal and atypical antipsychotic drugs, the latter often displaying a higher affinity for 
5-HT2A compared to D2 receptors [10, 150]. All studies have reported that the profile 
of c-Fos expression induced by haloperidol (typical) was different compared to that 
induced by clozapine (atypical). Haloperidol induces strong c-Fos expression in the 
striatum and the NAc with a higher response in the dorsolateral quadrant, whereas 
clozapine preferentially enhances c-Fos in the shell of the NAc and the cortex [129, 
142, 151]. The distinction occurs for numerous antipsychotics [129, 142, 151–153], 
although not as straightforward as initially thought [153]. Interestingly, the admin-
istration of the agonist DOI reduces the effect of haloperidol, particularly in the 
ventrolateral striatum [129, 154]. Conversely, blockade of 5-HT2A receptors with 
MDL 100,907 potentiates c-Fos expression stimulated by haloperidol in the NAc, 
but not in the striatum [155].

As described above, few data are available regarding the possible influence of 
5-HT2A receptors on the activity of cell populations in other parts of the BG. The 
increase in c-Fos produced by preferential 5-HT2C receptor agonists such as mCPP 
and Ro 60–0175 has been reported in the STN while a faint labelling is sometimes 
reported in the SNr or the EP and no labelling is observed in the GP [131–134, 
136]. Again, the role of 5-HT2C receptors does not appear to be exclusive in these 
effects [136], likely suggesting the participation of additional receptors including 
5-HT2A ones.

 Effect of 5-HT2A Receptors on Neurotransmitter Levels 
in the Basal Ganglia

Some evidence supports that 5-HT2A receptors are able to regulate the neurochemi-
cal activity of numerous transmitter systems in the BG. Again, the great majority of 
the data concern the striatum and the NAc, while very little information is available 
about other brain regions. Moreover, measurement of transmitter levels in the brain 
is a complicated task. Most data refer to tissue and extracellular levels of DA using 
electrochemical detection or, to a lesser extent, GABA or glutamate using fluoro-
metric or electrochemical detection. Levels of neuropeptides are indirectly evalu-
ated by in situ hybridization.
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 Regulation of Extracellular DA Levels

The control exerted by 5-HT2A receptors on subcortical DA release evokes different 
situations, indicating that these receptors exert a state-dependent facilitating influ-
ence on DA release. Indeed, this regulation is complex, first because it does not 
strictly follow the electrical activity of DA neurons of the SNc and VTA and, sec-
ond, because it depends on various conditions. It has been further complicated by 
some data reporting in vitro that exogenously applied 5-HT inhibits H+-stimulated 
[3H]-DA release in rat striatal slices [156]. These results should be carefully inter-
preted due to the concomitant amphetamine-like effect triggered by exogenous 
5-HT [157].

Thus, in contrast to the prefrontal cortex [158–161], 5-HT2A receptor stimulation 
by DOI does not increase basal DA release in the striatum or the NAc [162–164]. 
Similarly, blockade of 5-HT2 receptors with non-selective antagonists or with pref-
erential 5-HT2A antagonists does not alter extracellular DA levels in those regions 
[106, 107, 109, 162, 165–171]. Of note, SR46349 has been shown to enhance stria-
tal DA release when administered at high dose (10 mg/kg) [172]. At this regimen, 
SR46349 behaves as a 5-HT2C receptor antagonist/inverse agonist [165], known to 
disinhibit DA neuron activity [13]. It is generally accepted that basal and subcortical 
DA release is not under  the tonic or phasic regulation exerted by central 5-HT2A 
receptors.

Conversely, 5-HT2A receptors regulate DA release through mechanisms involv-
ing control of either DA synthesis or DA neuron firing rate [162, 170, 173, 174] 
(Table 2). Waldmeier and Delini-Stula [175] pioneered the first studies in the field 
by analysing the effect of non-selective 5-HT2 antagonists on the increase in DA 
metabolism induced by haloperidol in post-mortem tissue [175]. Years after, the real 
concept of state-dependent regulation of DA neuron function came from microdi-
alysis studies aimed at studying the influence of 5-HT2A receptors on the mechanism 
of action [176] and excitotoxicity of MDMA [169, 177, 178]. Briefly, preferential 
or selective 5-HT2A antagonists reduced the ability of MDMA to enhance DA 
release in the NAc and the striatum [162, 170, 171, 176]. The excitatory control 
exerted by 5-HT2A receptors unmasked with selective antagonists has also been 
reported in the mechanism of action of amphetamine [107, 179–182], haloperidol 
[167, 168], d-fenfluramine [183], the non-selective NMDA channel blocker dizocil-
pine (or MK-801) [174]) or DRN electrical stimulation [166] (Table 2). Moreover, 
amphetamine and MDMA-stimulated DA efflux is further enhanced by systemic 
administration of DOI in the NAc and striatum [162, 163]. The excitatory influence 
of 5-HT2A receptors on DA release is not observed in all situations and the involve-
ment of these receptors appears to be restricted to specific conditions.

The involvement of 5-HT2A receptors on DA release is complex and slightly dif-
ferent between the striatum and the NAc (Table 2). Thus, morphine enhances striatal 
and accumbal DA release, but this effect is not modified by 5-HT2A receptor block-
ade [107]. Cocaine-induced raise of extracellular levels of DA in the NAc is not 
further modified by the 5-HT2A agonist DOI [164]. In rhesus macaques, the increase 
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in DA overflow induced by the intravenously administration of cocaine was reduced 
by the 5-HT2A antagonist MDL 100,907 in the striatum, but not in the NAc [184]. A 
closer look at the available data shows that 5-HT2A antagonists counteract the 
increase in DA release induced by 2.5 but not 1 mg/kg amphetamine [107, 185] or 
0.01–0.1 but not 1 mg/kg haloperidol in the striatum [168].

Table 2 Involvement of 5-HT2A receptors in the control of DA release in the nucleus accumbens 
and the striatum.

DA released 5-HT 
tone

5-HT2A 
agents NAc ST

Selected 
referencesaExocyt Synth. Firing

Basal conditions

DOI Na Na 0 −/0 ↔ ↔ [162, 164]
SR46349 Na Na 0 0 ↔ ↔/↑ [166]
MDL 100,907 Na Na 0 0 ↔ ↔ [303]
Ritanserin Na Na 0 0 ↔ ↔ [106]
Ketanserin Na Na 0 0 Nd ↔ [176]
Activated conditions

Amphetamine No + − 0 Agonist ↑ ↑ [163]
Antagonist ↓ ↓ [107]

MDMA No/yes + − + Agonist ↑ ↑ [162]
Antagonist ↓ ↓ [170]

Cocaine Yes − − + Agonist ↔ Nd [164]
Antagonist ↔ ↓ [184]

Haloperidol Yes + + − Agonist Nd ↑ [191]
Antagonist ↓ ↓/↔ [167, 168]
Inverse ag. ↓ Nd [186]

Morphine Yes + + 0 Agonist ↓ Nd [164]
Antagonist ↔ ↔ [107]

d-fenfluramine Yes + − + Antagonist Nd ↓ [183]
Mk-801 Yes 0 + + Antagonist ↓ Na [174]
DRN stim 
(20 Hz)

Yes + − + Antagonist ↓ Na [166]

Local applications

Exogenous 5-HT No/yes 0 Na + Antagonist ↓ ↔ [157]
MDMA No/yes 0 + + Antagonist Nd ↔ [193]
d-fenfluramine No/yes 0 + + Antagonist Nd ↔ [194]

This table illustrates the state-dependent nature of the regulation exerted by 5-HT2A receptors on 
DA release in basal or activated conditions triggered by pharmacological drugs. Those drugs 
enhance DA release in an exocytotic (Exocyt.) (vesicular), non-exocytotic manner or both (indi-
cated by no/yes) and their effect is associated with changes (+, − or 0 for no change) in DA syn-
thesis (Synth.), DA neuron firing rate (Firing) and/or 5-HT tone. Depending on the drug, 5-HT2A 
receptor agonists (usually DOI) or antagonists (often MDL100907 and also non-selective com-
pounds) modulate DA release in the nucleus accumbens (NAc) and/or the striatum (STR). Local 
applications of exogenous 5-HT, MDMA or d-fenfluramine are associated with strong enhance-
ment of DA release (activated conditions). The arrows indicate a potentiation (↑), a reduction (↓) 
or no effect (↔) of DA release.
aAdditional references are indicated in the text. Na not applicable; Nd not determined.
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At least four factors have been proposed to account for the involvement of 
5-HT2A receptors in the regulation of subcortical DA release (Table 2). First, it has 
been suggested that the effect mediated by 5-HT2A receptors is conditioned by the 
presence of enhanced DA transmission, i.e. an increased DA tone at post-synaptic 
cells. This hypothesis is unclear and could reveal region-dependent effects. Indeed, 
5-HT2A receptors lose their ability to modulate enhanced DA release at high doses 
of haloperidol in the striatum but not in the NAc [167, 168, 186]. Second, together 
with the change in DA transmission, it has been suggested that the involvement of 
5-HT2A receptors depends on additional 5-HT release. Nonetheless, although this 
hypothesis is compatible with the mechanism of action of MDMA, cocaine or 
d-fenfluramine, it is less evident with amphetamine and haloperidol, which do not 
increase extracellular levels of 5-HT [168, 187, 188] or do it poorly [189]. A third 
hypothesis concerns the nature of DA release especially if this release is sustained 
by DA synthesis. This hypothesis was proposed for the mechanism of action of 
MDMA. In this case, the increase in DA synthesis is required for the permissive role 
of 5-HT2A receptors on maintaining the outflow of DA [169, 177, 178, 190]. This is 
in line with the involvement of 5-HT2A receptors in the effect of amphetamine and 
haloperidol, or their non-involvement in the effect of cocaine (NAc only) or mor-
phine, which do not increase DA synthesis. This hypothesis is not exclusive (see 
cocaine and the situation in the striatum) since some drugs, as MK-801, are also 
able to regulate DA release in the NAc regardless the increase in DA synthesis 
[174]. The last criterion of the state-dependent control exerted by 5-HT2A receptors 
on DA release is probably the less understood and could be the most important. It 
concerns an anatomic-functional mechanism distinct from the striatum and capable 
of triggering the excitatory influence on DA release. Indeed, the increase in striatal 
DA release induced by MDMA, haloperidol or d-fenfluramine in vivo is reduced by 
the striatal application of non-selective and/or selective 5-HT2A antagonists [171, 
183, 188, 191]. This indicates that part of this excitatory control is located within 
the striatum. Schmidt et al. [171] pursued the idea that 5-HT2A receptor activation 
induced DA synthesis, thereby sustaining the increase in DA release induced by 
MDMA.  Surprisingly, the increase in DA release induced by the application of 
MDMA on striatal slices was not altered by the 5-HT2A receptor antagonist MDL 
100,907 despite the alteration of DA synthesis [171]. Yet, this result is consistent 
with all the available data in vitro and in vivo (Table 2). Thus, the systemic injection 
of ketanserin does not modify the increase in striatal DA release induced by the 
intrastriatal application of MDMA [192]. The effect of MDMA on striatal DA 
release is reduced by 5-HT depletion upon its systemic, but not upon its intrastriatal 
application [193]. The intrastriatal application of the non-selective antagonist 
methiotepin reduces the DA effect triggered by the systemic but not the intrastriatal 
application of d-fenfluramine [183, 194].

The whole picture is consistent with the excitatory effect of exogenous 5-HT on 
striatal DA release [157]. Indeed, the enhancement of striatal DA release induced by 
exogenous 5-HT itself in vitro and in vivo is not modified by a variety of 5-HT2 
receptor antagonists [193, 195–200]. The data obtained with the sole application of 
DOI on DA terminals led to discrepant results. DOI (10–300  μM) increases 
 accumbal DA release and this effect is blocked by the co-application of high 
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 concentration (50 μM) of the non-selective 5-HT2 antagonists LY-53,857 or ketanse-
rin [201]. Bowers and collaborators have reported that the increase in DA release 
induced by DOI (25–250 μM) occurs in the posterior area of the NAc [202]. The data 
in the striatum are more controversial because the local infusion of DOI has been 
shown to inhibit [203], produce no effect [196] or enhance [191] DA release. The 
application of DOI in slices does not alter [3H]-DA release in the NAc and the stria-
tum [200]. Moreover, 5-HT2A receptors are unlikely to be involved in the excitatory 
effect of DOI on basal DA release in vivo because the co-application of the 5-HT2A 
receptor antagonist SR 46349 failed to affect the effect induced by DOI [191].

In conclusion, the involvement of 5-HT2A receptors in the regulation of striatal 
DA function requires extra-striatal factors and changes in DA neuron activity. One 
may wonder whether the differences observed in the 5-HT2A receptor-dependent 
control of DA release in the striatum and the NAc represent interconnected neuro-
biological loops hypothesized by Haber, Fudge and McFacland [204]. Indeed, the 
full blockade of DA transmission by haloperidol impaired the ability of 5-HT2A 
antagonists (and more generally 5-HT drugs) to control striatal DA release, but not 
accumbal DA release. Conversely, cocaine would trigger this control in the striatum 
and not in the NAc. It does not discard the idea that specific conditions are required 
for 5-HT2A receptors to modulate DA release and would explain also how 5-HT2A 
receptors can modulate behaviours independently from changes in DA release [26].

 Regulation of Extracellular GABA Levels

The data regarding the control exerted by 5-HT2A receptors on GABA release are 
scarce. In line with the data above, MDMA has been shown to reduce extracellular 
GABA levels in the SNr. This inhibition was mediated by 5-HT2 receptors [188] and 
other authors later reported that, GABA release in the SNr specifically depends on 
5-HT2C receptors rather than 5-HT2A receptors [94]. A similar study has also been 
published at the level of the NAc with similar results [205]. In this case, the effect 
was blocked by application of the 5-HT2B/2C antagonist SB206553 into the VTA. The 
role of 5-HT2A receptors is still not well known, but may be not very relevant. It is 
noteworthy that DOI (7 mg/kg for 9 consecutive days) did not modify the level of 
expression of GAD65 and GAD67 mRNA in the NAc, striatum or GP [206].

 Regulation of Extracellular Glutamate Levels

Recent studies suggest that 5-HT2A receptors may control extracellular levels of 
glutamate, mainly in the striatum. Indeed, 5-HT2A receptors are expressed by pyra-
midal cells projecting to the VTA and the NAc [207] and local application of DOI 
into the prefrontal cortex enhances glutamate release in both the VTA and NAc 
[207–209]. The control exerted by cortical 5-HT2A receptors via glutamatergic fibres 
occurs also at the level of the DRN (see below). In the striatum, several studies 
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failed to report an increase in basal glutamate release after the lesion of the 
 nig rostriatal DA system in rats [210–212], although an increase in d-aspartate con-
centrations has been reported after extended, but not partial, lesion [210]. In one 
recent study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion in mice 
enhanced striatal glutamate extracellular levels three weeks after the neurotoxin 
administration and the intrastriatal application of MDL 100,907 reduced these 
higher extracellular levels [213]. However, the increase in glutamate was observed 
only after the acute administration of MPTP [214].

 Regulation of Extracellular 5-HT Levels

The regulation of 5-HT release by 5-HT2A receptors is probable in the BG.  It is 
likely because it is well known that DOI inhibits the electrical activity of 5-HT-like 
neurons in the DRN [215–217]. The authors argued that this effect, which depends 
on a cortical decrease of 5-HT release, was associated with an alteration of the auto-
regulatory control that 5-HT1A receptors produce in the DRN [216, 217]. This has 
been confirmed and extended later [218]. Indeed, systemic administration of DOI 
inhibits cortical 5-HT release probably via its inhibitory effect on 5-HT-like neurons 
in the DRN and this effect is suppressed by the selective 5-HT2A receptor antagonist 
MDL 100,907. Conversely, local cortical administration of DOI does not inhibit 
cortical 5-HT release and even increases it through a 5-HT2A receptor-dependent 
mechanism. The excitation of pyramidal cells by cortical 5-HT2A receptors likely 
alters the activity of cortical-raphe fibres [219].

Overall, one may predict some decrease in 5-HT release after DOI administra-
tion in the BG, but this effect might not be related to 5-HT2A receptors expressed 
within the BG.

 Regulation of Neuropeptides in the Striatum

Several pieces of evidence demonstrate that 5-HT2A receptors regulate the level of 
expression of peptide mRNA in the striatum. Thus, DOI (infused by minipump for 9 
consecutive days) has been shown to enhance preprotachykinin (PPT) mRNA evalu-
ated by northern blot and SP immunomaterial by western blot [220]. A single injection 
of DOI (1, 2 or 7 mg/kg depending on the studies) increases PPT and/or preproen-
kephalin (PPE) mRNA in the dorsolateral and posterior striatum, but not within the 
anterior ventromedial striatum [221–223]. The regulation exerted by 5-HT2A receptors 
appears to be more prominent on PPT mRNA levels compared to PPE ones [221]. 
Interestingly, a 9-days treatment with DOI (7  mg/kg) inhibited preprodynorphin 
mRNA expression, another marker of the direct striatofugal pathway [206].

The effect of DOI on PPT mRNA expression is likely related to 5-HT2A recep-
tors, since it can be reversed by ritanserin and the preferential 5-HT2A antagonist 
ketanserin [221]. The authors report also that the decrease in PPT mRNA produced 
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by a lesion of DA neurons is reversed by systemic administration of DOI via 5-HT2A 
receptors [221]. Similarly, the acute administration of the 5-HT/DA releaser p- 
chloroamphetamine enhanced PPT mRNA levels in the striatum, which was blocked 
by a pretreatment with the mixed 5-HT2 receptor antagonist ritanserin [224]. All 
these data underscore a link between 5-HT2A receptors and the regulation of D1 
receptor-dependent pathways, mostly the direct pathway of the BG.

 Regulation of 5-HT2A Receptor Expression and Transmission in BG

The expression of 5-HT2A receptors in the BG can be modulated by various neu-
rotransmitter systems, drugs and physiological conditions. This is important as the 
changes in 5-HT2A receptor expression condition the magnitude of the 5-HT2A 
receptor-dependent responses. Here, we discuss how changes in DA transmission 
can alter the expression of 5-HT2A receptors and describe some data in humans 
obtained with PET ligands. We also discuss possible changes of 5-HT2A receptor 
transmission related to heterodimerization.

The tight and complex connection between 5-HT2A receptors and DA neuron 
activity delineated above is mirrored in the fact that changes in DA transmission are 
also associated with drastic changes in 5-HT2A receptor expression. It has been 
reported that lesion of DA neurons in adult rats enhances the striatal binding of 
[125I]-DOI on 5-HT2A receptors [225]. Consistently, a lesion of SNc DA neurons 
induces an upregulation of the mRNA encoding 5-HT2A receptors in the striatum 
[52, 226, 227]. This effect is paralleled by an increase in [125I]-DOI binding [226]. 
Qualitatively, from a medial distribution, the labelling for both mRNA and protein 
reaches lateral parts of the striatum after the lesion. The expression of the mRNA is 
observed in both PPE and non-PPE neurons, being enhanced specifically in non- 
PPE neurons [226]. These findings are consistent with the ability of DOI to enhance 
PPT mRNA and restore its levels after DA lesion by stimulating 5-HT2A receptors 
[221]. An upregulation of 5-HT2A receptors assessed by western blot and caused by 
MPTP treatment has been reported in mice [213]. In the nigrostriatal DA-deficient 
Pitx3 mutant mice, 5-HT hyperinnervation and increase in 5-HT2A receptor mRNA, 
have been observed in the dorsal striatum [228]. The increase in 5-HT2A receptor 
expression would not be due to the 5-HT hyperinnervation that takes place in some 
parkinsonian models [229]. Indeed, in tryptophan hydroxylase 2 deficient mice 
(with very low levels of endogenous 5-HT) the binding of [3H]-MDL 100,907 is 
enhanced both in the striatum and the SN [230]. In monkeys, however, MPTP treat-
ment did not alter the labelling of [3H]-ketanserin in the caudate-putamen or GP [42, 
231]. Although a species-related issue could be hypothesized, it has been reported, 
also in rodents, that [3H]-ketanserin was slightly or drastically decreased three 
weeks after the injection of 6-hydroxydopamine (6-OHDA) [203, 232]. Rather than 
a species issue, one may question the pharmacological agents used for the labelling. 
Among the differences, DOI is an agonist which could label distinct conformations 
of the receptor compared to ketanserin which is an antagonist/inverse agonist [233]. 
Yet, it is difficult to imagine that an increase in 5-HT2A receptor mRNA observed in 
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three studies, and the increase in DOI binding, can be associated with a decrease in 
ketanserin binding. In fact, ketanserin has been shown for many years to bind the 
vesicular transporter (a tetrabenazine site), a site associated with monoamine vesi-
cles. It has a high affinity ranging from 4 nM to 45 nM depending on the tempera-
ture [234–236]. This additional binding site of ketanserin is responsible for a strong 
non-specific binding in the striatum that is reduced in case of DA lesion [40, 235, 
237]. The above studies reporting a decrease in [3H]-ketanserin after DA neuron 
lesion did not take into account this property, though the studies performed in mon-
keys discussed the point that at the temperature used for their binding experiments, 
ketanserin should be dissociated from the “tetrabenazine” site [231]. Yet, it cannot 
be excluded that a small contribution of this site to the whole labelling, presumably 
altered after MPTP treatment, could have diminished an expected increase in 
[3H]-ketanserin binding. To the best of our knowledge, [3H]-MDL 100,907, which 
present a much higher favourable binding profile compared to ketanserin in this 
respect [37, 40, 44], has not been used to label 5-HT2A receptors after DA lesion. In 
humans, a recent neuroimaging study using single-photon emission computed 
tomography (SPECT) reported a decrease in the premotor cortex and the anterior 
striatum in de novo patients with PD [238].

DA treatments also modulate the expression of 5-HT2A receptors. In animal mod-
els of PD, the injection of the non-selective DA agonist apomorphine or the prefer-
ential DA D1 agonist SKF-38393 reverses the increase in striatal 5-HT2A receptor 
expression [226]. On the other hand, L-DOPA enhances the binding of [3H]-ketanserin 
in MPTP-treated monkeys [42, 231]. These data might not be controversial as 
L-DOPA is supposed to create a low DA tone in the striatum of DA neurons- deficient 
animals compared to the physiological situation [211, 239]. Nonetheless, additional 
studies are warranted in this field of research.

Studies with antipsychotic drugs have also found modifications of 5-HT2A 
 receptor expression. One of the most recent publications indicated that chronic and 
continuous administration of haloperidol with osmotic minipumps increases and 
decreases 5-HT2A receptor density assessed by [3H]-ketanserin in the striatum and 
NAc shell, respectively [240]. On the other hand, numerous studies have failed to 
report any changes regarding 5-HT2A receptor mRNA/binding density after sys-
temic injections of haloperidol [155, 237, 241], while clozapine reduced it in some 
cortical areas and in the striatum in some [241] but not all [237] studies. A transient 
decrease in 5-HT2A receptor expression has also been noticed after olanzapine injec-
tion in the striatum [242].

In humans, the findings concerning subcortical expression of 5-HT2A receptors in 
psychiatric diseases are unclear. Obsessive-compulsive disorder (OCD) is regularly 
considered as a cortico-subcortical loop disturbance involving DA and 5-HT sys-
tems. Patients may receive either atypical antipsychotic and/or antidepressant drugs 
[243]. In drug-naïve OCD patients [18F]-altanserin increases binding in the caudate 
nuclei in comparison with control individuals [244]. The binding of [18F]-altanserin 
in the caudate is not correlated with the severity of symptoms in patients. In other 
studies in drug-naïve OCD patients, decreased cortical binding of [11C]-MDL100907 
was correlated to the severity of symptoms or the age onset, and no differences of 
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binding were reported in the caudate nuclei [245, 246]. Similarly, the difference of 
5-HT2A receptor expression in schizophrenic patients would converge toward a 
decrease in prefrontal cortex expression whereas no clear effects are reported in the 
BG [247].

The last point we would like to evoke concerns possible changes of 5-HT2A 
receptor transmission through molecular interactions with other receptors. It has 
been well established that 5-HT receptors, including 5-HT2A receptors, function as 
oligo- and heterodimers in vitro [248, 249] and that the process of oligomerization 
might alter the receptor function [249, 250]. Regarding 5-HT2A receptors, it has 
been reported by two separate groups that 5-HT2A receptors physically interact with 
D2 receptors [71, 251]. Colocalization of these receptors has been reported, at least, 
in the medial prefrontal cortex, the striatum and the SN [71]. In the ventral striatum, 
the binding of [3H]-raclopride is sensitive to the heterodimerization of 5-HT2A and 
D2 receptors and the heterodimerization with D2 receptors in HEK293 cells is sensi-
tive to the nature of 5-HT2A ligands [252]. The functionality of these molecular 
interactions is not fully understood, but it definitely constitutes an important field of 
research in the treatment of schizophrenia and PD [253]. In the striatum, these 
 specific interactions might explain the different reactivity of 5-HT2A receptor exp-
ression in the direct (mostly D1 receptor) versus the indirect pathway (mostly D2 
receptors) [254, 255], occurring after a lesion of DA neurons [226]. Also, heterodi-
mers formed by 5-HT2C and 5-HT2A receptors have been noticed in heterologous 
cell expression systems [248] and additional data are needed to explore the perti-
nence of these heterodimers in vivo.

 5-HT2A Receptors and Behaviour Related to Basal Ganglia 
Functions

Numerous studies have pointed to a role of 5-HT2A receptors in the regulation of learn-
ing, automatisms, executive and cognitive functions [256, 257]. In most cases, these 
functions are likely located in the cortex or, as recently exemplified, along the cortico-
thalamic pathway [258]. The involvement of 5-HT2A receptors in the BG has been 
reported in the control of motor behaviours mostly associated with changes in DA 
transmission. Here, we will go through the studies reporting interaction of 5-HT2A 
receptor ligands with drugs of abuse, antiparkinsonian and antipsychotic drugs.

 5-HT2A Receptors and the Regulation of Locomotor Behaviour

The implication of 5-HT2A receptors in the control of motor behaviours has been 
well documented. Earlier studies have reported that injection of 5-HT induces con-
tralateral turning through the activation of 5-HT2 receptors, suggesting a permissive 
role of 5-HT2 receptors in motor behaviour [259]. More recently, the 5-HT2A 
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receptor antagonist MDL 100,907 has been shown to reduce the hyperlocomotion 
induced by amphetamine, cocaine or MDMA [260–263]. Conversely, the 5-HT2A 
receptor agonist, DOI, is able to increase it [264]. These findings suggest that com-
pounds that increase locomotor activity by enhancing striatal/accumbal DA tone 
trigger a permissive role of 5-HT2A receptors on locomotor activity. The relationship 
with the control of DA release is not established [26]. The reduction of hyperloco-
motive effect of cocaine by 5-HT2A receptor blockade would be related to 5-HT2A 
receptors located in the VTA, not the NAc [262], and would occur independently 
from measurable changes of extracellular levels of DA (see Table 2). In any case, 
5-HT2A receptor antagonism emerges as a new therapeutic tool to treat drug abuse, 
particularly cocaine abuse [265].

 5-HT2A Receptor Role in Parkinson’s Disease and L-DOPA- 
Induced Dyskinesia Treatment

PD is a neurodegenerative disease characterized by a progressive loss of DA neu-
rons in the SNc. The drop in DA concentration in the striatum drastically alters 
functionality of the BG circuitry and impacts also 5-HT receptor expression (see 
above regarding 5-HT2A receptors and, for review, see [35]). It has been reported 
that the 5-HT2A receptor agonist DOI or antagonist MDL 100,907 enhances and 
decreases, D1 receptor-induced locomotor activity in DA-depleted rats, respectively 
[266–268]. These results suggest that, in DA depletion conditions, 5-HT2A receptors 
more likely influence striatal D1 receptor function and the direct pathway output 
[266]. Although 5-HT2A agonists have been proposed to facilitate D1 receptor- 
dependent responses, their hallucinogenic properties prevent such a strategy.

Conversely, 5-HT2A antagonist could be interesting to limit excessive D1 receptor 
tone. Indeed, DA replacement therapy with the DA precursor, L-DOPA, is the most 
effective and common pharmacological treatment in PD. However, its efficacy after 
long-term treatment is impaired by motor complications, such as L-DOPA-induced 
dyskinesia and L-DOPA-induced psychosis [269]. The development of L-DOPA- 
induced dyskinesia is still poorly understood, although numerous studies have 
implicated abnormal D1 receptor signalling in the striatum [269–271]. In line with 
this, 5-HT2A antagonists could be effective in alleviating L-DOPA-induced dyskine-
sia. Thus, the atypical antipsychotics clozapine or quetiapine, which are non- 
selective 5-HT2A receptor antagonists, reduce L-DOPA-induced dyskinesia in 
animal models of PD [272] and PD patients [273, 274]. However, these drugs com-
promise L-DOPA antiparkinsonian effects [275, 276]. Pimavanserin (ACP-103), a 
selective 5-HT2A receptor inverse agonist tested to treat L-DOPA induced psychosis 
[277], alleviates L-DOPA-induced dyskinesia in MPTP-lesioned monkeys [278] 
and in PD patients without worsening L-DOPA antiparkinsonian effect [279]. 
However, additional data are required because in rats MDL 100,907 was not effica-
cious against L-DOPA-induced dyskinesia [280].

C. Miguelez et al.



293

 5-HT2A Receptor in Antipsychotic-Induced Extrapyramidal Side 
Effects

The chronic use of antipsychotics in the treatment of schizophrenia is associated with 
the induction of extrapyramidal side effects (EPS) characterized by PD-like syndrome 
and acute or tardive dyskinesia [281]. Whereas all antipsychotics exert their clinical 
benefit by blocking D2 receptors likely along the mesoaccumbal DA pathway [282, 
283], the chronic or excessive blockade of D2 transmission in the nigrostriatal DA 
pathway is responsible for the development of EPS [8, 284]. The superiority of atypi-
cal antipsychotic drugs over the typical ones in terms of lower induction of EPS has 
been related to their 5-HT properties and notably their ability to block 5-HT2A recep-
tors [11, 12, 285]. The rodent models that are classically used to address the incidence 
of EPS by antipsychotics are the catalepsy, a model of parkinsonian syndrome, and 
oral dyskinesia induced by long-term injection of typical antipsychotics.

The first behavioural studies in rats showed that increasing or inhibiting central 
5-HT transmission worsened or ameliorated haloperidol-induced catalepsy, respec-
tively [175, 286–288]. The 5-HT2A/2C receptors could be implicated in these effects. 
Indeed, administration of the non-selective 5-HT2 receptor antagonist ritanserin is 
able to attenuate EPS in schizophrenic patients treated with classical antipsychotics 
[289, 290] and haloperidol-induced catalepsy in rats [286, 291]. In line with this, 
atypical antipsychotics such as clozapine, displaying strong 5-HT2A receptor antag-
onists and 5-HT2C receptor inverse agonist properties, are not capable of inducing 
catalepsy [292–296]. Yet, the relative contribution of 5-HT2Avs 5-HT2C receptor 
antagonism is not completely clear. Haloperidol- and risperidone-induced catalepsy 
has been shown to be reduced by the 5-HT2A inverse agonist ACP 103 or by the 
5-HT2B/2C antagonist SB 228357 [297, 298]. Nevertheless, MDL 100,907 and the 
5-HT2B antagonist SB 215505 have no effect on this motor behaviour [297, 298]. It 
could reflect the preferential involvement of 5-HT2C receptors over 5-HT2A receptors 
[133, 299–302]. Similarly, the oral dyskinesia arising from chronic administration 
of neuroleptics is modulated by the 5-HT system and 5-HT2 receptor subtypes, but 
it seems that the responses are more related to 5-HT2C receptors [13, 133]. Thus, the 
therapeutic benefit associated with 5-HT2A receptor blockade in terms of lower inci-
dence of EPS is still not a reality.

 Concluding Remarks

Numerous data indicate that the 5-HT2A receptor plays an important role in the BG 
and their action appears to be intimately linked to DA transmission. Under some 
circumstances, 5-HT2A receptor can exert a state-dependent excitatory regulation of 
striatal and NAc DA release. Despite the progress made over the years, their influ-
ence in the BG is still largely misunderstood, in part due to the confounding and 
powerful controls they exert in the cortex. The main body of data suggests that 
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5-HT2A receptors exert a subtle regulation of corticostriatal afferences and loops. 
Additional data are needed to elucidate more precisely their role in the BG, notably 
in relation to the therapeutic potential of 5-HT2A receptor blockade in the treatment 
of addiction to drugs of abuse and schizophrenia.
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and the Potential Therapeutic Use of Selective 
5-HT2A Receptor Antagonists and Inverse 
Agonists for the Treatment of an Insomnia 
Disorder

Jaime M. Monti, Seithikurippu R. Pandi Perumal, D. Warren Spence, 
and Pablo Torterolo

Abstract Several agents have been shown to improve sleep induction and/or 
 maintenance in patients with primary or comorbid insomnia. These include benzo-
diazepine and non-benzodiazepine receptor allosteric modulators, melatonin and 
the melatonin receptor agonist ramelteon, low dose doxepin, and suvorexant. 
However, benzodiazepines induce a further reduction of N3 sleep [slow wave sleep 
(SWS) or delta sleep] and rapid-eye-movement sleep (REMS), whereas values 
 corresponding to these variables remain decreased during non-benzodiazepine, 
melatonin, ramelteon or low-dose doxepin administration. By contrast, suvorexant 
increases REMS. There is evidence indicating that non-selective (ritanserin, ketan-
serin, sertindole, ICI-170809, ICI-169369, RP-62203, SR-46349B) and selective 
(volinanserin, pruvanserin, eplivanserin) 5-HT2A receptor antagonists, as well as 
5-HT2A receptor inverse agonists (nelotanserin, pimavanserin) increase SWS in 
laboratory animals and N3 sleep in subjects with normal sleep and/or patients with 
an insomnia disorder. Thus, the association of a selective 5-HT2A receptor antago-
nist or a 5-HT2A receptor inverse agonist with a hypnotic drug could be a valid 
alternative to normalize N3 sleep in patients with an insomnia complaint.
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Abbreviations

5-HT 5-Hydroxytryptamine
BFB  Basal forebrain
BZD  Benzodiazepine
CNS  Central nervous system
DRN  Dorsal raphe nucleus
EEG  Electroencephalogram
EMG Electromyogram
EOG  Electro-oculogram
GABA γ-Aminobutyric acid
GAD Generalized anxiety disorder
LC  Locus coeruleus
LDT  Laterodorsal tegmental nucleus
LS  Light sleep
MRN Median raphe nucleus
NREM Non-rapid-eye movement
PPT  Pedunculopontine tegmental nucleus
REM Rapid-eye-movement
SE  Sleep efficiency
SNc  Substantia nigra pars compacta
SOL  Sleep onset latency
SWS  Slow wave sleep
TST  Total sleep time
vPAG Ventral periaqueductal gray matter
VTA  Ventral tegmental area
W  Wakefulness
WASO Wake time after sleep onset

 Introduction

Sleep has an impact on every facet of daily life. In this respect, disturbed sleep 
affects not only our health and well-being but also our quality of life. Since the 
1950s much progress has been made in scientific efforts to understand the basic 
need for sleep. The sleep-wakefulness cycle in man can now be characterized by the 
polysomnographic recording of three basic parameters: the electroencephalogram 
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(EEG), electro-oculogram (EOG), and electromyogram (EMG). Dement and 
Kleitman [1] and Rechtschaffen and Kales [2] provided a classification system of 
sleep stages that comprise a waking state, non-rapid-eye-movement sleep (NREMS) 
and rapid-eye-movement sleep (REMS). Active wakefulness (W) with eyes open is 
characterized by a low voltage mixed-frequency EEG profile, high tonic EMG 
activity and voluntary eye movements. In contrast, quiet W with eyes closed is char-
acterized by an EEG with sinusoidal waves (alpha activity), slow or rapid EOG 
activity and a relatively high tonic EMG (Fig.  1). Concerning NREMS, the 
Rechtschaffen and Kales [2] scoring manual considers four NREMS stages 
(NREMS stages 1 to 4), while the more recent American Academy of Sleep 
Medicine scoring manual [3] distinguishes three stages (N1, N2, N3) mainly on the 
basis of EEG criteria (Fig. 1). Stage N1 is characterized by the presence of relatively 
low-voltage waves with a prominence of activity in the theta range, slow and 
 predominantly horizontal eye movements and a decrease of EMG activity; stage N2 
is defined by the presence of sleep spindles and K-complexes; and stage N3 is 

Fig. 1 Patterns of electroencephalogram (EEG) activity during wakefulness, stage N1, N2 and N3 
sleep and REM sleep in the young adult. A1-Fp1, frontal cortex; A1-C3, central cortex; A1-O1, 
occipital cortex; A1-E1, right electro-oculogram; A1-E2, left electro-oculogram; EMG, chin elec-
tromyogram. Time in seconds
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characterized by the occurrence of slow high-amplitude or delta waves. During 
REMS the subject is flacid and even more unresponsive than during stage N3. 
Periodically, his eyes move rapidly under closed lids. If the subject is awakened, he 
might actually say that he was dreaming. The polysomnogram is characterized by 
the presence of low voltage mixed frequency EEG activity that closely resembles 
that of stage N1. In this context, theta activity is often observed in conjunction with 
bursts of REMs. Despite this activity, the muscles are completely relaxed and only 
periodically interrupted by muscle twitches (Fig. 1).

During stage N3 a restorative process has been proposed to occur in the central 
nervous system (CNS). In this respect, it has been shown that protein concentration 
is augmented in neurons and glial tissue, particularly astrocytes, as a result of both 
an increase of protein synthesis and a reduction in degradation [3]. It has been addi-
tionally proposed, that the increase in synaptic strength occurring during W results 
in higher energy consumption and, as a consequence, the ability to process or learn 
new information is temporarily restricted, but is restored following the occurrence 
of sleep [4–6]. Sleep has been associated, in addition, with a 60% increase in the 
interstitial space, resulting in a striking increase in the convective exchange between 
cerebrospinal fluid and interstitial fluid [7]. A consideration of this process led the 
study authors to postulate that the enhanced removal of potentially neurotoxic waste 
products that accumulate in the brain during W is an important component of the 
restorative function of sleep. According to Achermann and Borbely [8], a normal 
homeostatic regulation of sleep strongly depends on the amount of slow wave sleep 
[(SWS)—N3 sleep] relative to the time awake before. This led the authors to pro-
pose that the reduction of N3 sleep that occurs in elderly subjects and in patients 
with a diagnosis of primary insomnia, might be an important contributor to the 
cognitive decline and memory deficits that are seen in these patient groups, and 
hence to the deterioration in their performance of daily tasks. The authors further 
hypothesized that measures directed to enhance N3 sleep could tentatively normal-
ize these functions in affected patients. Follow-on research has supported proposals 
for non-pharmacological and pharmacological approaches to enhance N3 sleep. 
The former includes, among others, acoustic stimulation [5], while the latter 
involves the administration of compounds that either induce the selective blockade 
of serotonin 5-HT2A receptor or attenuate its basal constitutive signaling activity.

Electrographic activity of the rat (Fig. 2) and mouse, two species currently used 
in preclinical studies, has been classified, based on the associated wave-form, into 
several categories: (1) W that is defined by the presence of low voltage fast waves in 
frontal cortex, a mixed theta rhythm in occipital cortex and relatively high EMG 
activity; (2) light sleep (LS) that is characterized by the occurrence of high voltage 
slow cortical waves interrupted by low voltage fast EEG activity; (3) SWS that is 
identified by the occurrence of continuous high amplitude slow frontal and occipital 
waves combined with a reduced EMG; and (4) REMS that is distinguished by the 
presence of low voltage fast frontal waves, a regular theta rhythm in the occipital 
cortex and a silent EMG except for occasional myoclonic twitching [9].
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 Insomnia: Diagnostic Criteria

Insomnia is characterized by one or more of the following: difficulty falling asleep 
(initial insomnia), insufficient sleep, numerous nocturnal awakenings (intermediate 
or middle insomnia), early morning awakenings with inability to resume sleep (ter-
minal insomnia), or nonrestorative sleep. Common daytime complaints of insomnia 
sufferers include somnolence, fatigue, irritability, and difficulty concentrating and 
performing every day tasks. The duration of insomnia is considered to be an impor-
tant guide to its evaluation and treatment. In this respect individuals can complain 
of transient, short-term or chronic insomnia. Chronic insomnia in adult patients has 
been classified as primary or comorbid [10].

 Treatment Options of Chronic Primary Insomnia

Several classes of medications have been prescribed as hypnotics over the years. 
These have included the benzodiazepine (BZD) receptor allosteric modulators 
[either BZD or non-BZD (zolpidem, eszopiclone, zaleplon) agents]; melatonin and 
the melatonin receptor agonist ramelteon, low-dose doxepin (a tricyclic antidepres-
sant), and the dual orexin receptor antagonist suvorexant.

The sleep induced by BZD hypnotics including temazepam, flunitrazepam, 
quazepam and flurazepam in patients with chronic primary insomnia is  characterized 

Fig. 2 Patterns of electroencephalogram (EEG) activity during wakefulness, light sleep, slow 
wave sleep and REM sleep in the rat. Occ Cx, occipital cortex; Fr Cx, frontal cortex; EMG, dorsal 
neck muscles electromyogram. Time in seconds
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by a shortened sleep onset latency (SOL), decreased number of nocturnal awaken-
ings, reduced time spent awake, increases in N2 sleep, consistent reductions in N3 
sleep, dose-dependent decrease of REMS, and improvement in the subjective qual-
ity of sleep when compared with no treatment (Table 1) [11, 12]. The commonly 
reported adverse effects of BZD hypnotics are drowsiness, tiredness and antero-
grade amnesia [12]. In addition, daytime functioning can be negatively affected by 
long-acting BDZ derivatives [12]. Rebound insomnia has been reported more often 
with BZDs that have short half-lives, such as triazolam and midazolam. The elderly 
are more susceptible to the adverse effects of the BZDs, due to age- related altera-
tions in pharmacokinetics as a result of changes in hepatic metabolism and renal 
excretion [13].

Concerning the non-BZD agents, zolpidem immediate-release is capable of 
reducing SOL and wake time after sleep onset (WASO) in patients with chronic 
primary insomnia. The predominant reduction of WASO during the first part of the 
night, and the absence of an effect on the number of nocturnal awakenings and total 
sleep time (TST) could be related to zolpidem’s short elimination half-life. With 
respect to sleep architecture, zolpidem immediate-release tends to increase N2 
sleep, whereas N3 sleep, REMS latency and REMS in min or as percentage of TST 
are not significantly modified [14]. On the other hand, zolpidem extended-release is 
effective for the treatment of insomnia characterized by difficulties with sleep onset 
and/or sleep maintenance (Table 1) [15, 16]. Adverse events observed during the 
administration of zolpidem immediate-release and extended-release include drows-
iness, headache, dizziness, nausea, diarrhea, myalgia and bizarre behaviors such as 
sleep eating, sleep walking, sleep conversation, sleep driving and sleep shopping, 
frequently with amnesia for the event [14, 16, 17]. Rebound insomnia was not evi-
dent after discontinuation of the hypnotic agent [14]. In addition, 12  months of 
nightly zolpidem immediate-release administration did not lead to dose escalation 
in non-elderly primary insomniacs [18].

The effects of eszopiclone have been assessed also in patients with chronic pri-
mary insomnia. Eszopiclone administration significantly reduced SOL and WASO 
whereas TST and sleep efficiency (SE) showed significant increments. N2 sleep was 
significantly augmented at the expense of non-significant reductions of N1 and N3 
sleep, and REM sleep (Table 1). The most commonly reported complaints or side- 
effects in patients who received eszopiclone were unpleasant or bitter taste, head-
ache, dyspepsia, pain, diarrhea, dry mouth and dizziness [19]. Rebound insomnia 
did not occur after eszopiclone withdrawal, nor dit it show addictive potential in 
individuals without a known history of drug abuse [19].

Polysomnographic data and subjective measures showed that, relative to pla-
cebo, zaleplon significantly decreased SOL in adults with chronic primary insom-
nia. No statistically significant effects on WASO, TST or number of awakenings 
were seen with the hypnotic drug. Furthermore, zaleplon administration induced 
inconsistent changes of sleep architecture, including N2 sleep, N3 sleep and REMS 
(Table 1). Evening administration of zaleplon to patients with an insomnia disorder 
was associated with minimal next-day residual sedation and impairment [20, 21]. 
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Moreover, rebound insomnia effects were either weak or absent following discon-
tinuation of the medication [21].

The effects of ramelteon have been evaluated also in adult subjects with chronic 
primary insomnia. Compared with the placebo group, the melatonin receptor ago-
nist reduced polysomnographically recorded SOL.  Total sleep time was also 
increased, but the effect was restricted to the first week of treatment. The number of 
awakenings, WASO and sleep architecture were not significantly modified (Table 1) 
[22]. Ramelteon was well tolerated and without significant cognitive, memory or 
psychomotor effects. Additionally, the drug did not produce rebound insomnia nor 
dependency in study subjects [22].

In adults with chronic primary insomnia low-dose doxepin significantly improved 
WASO, TST and SE. There was a significant increase in min of N2 sleep whereas 
REMS percentage was reduced. Values corresponding to N3 sleep remained 
unchanged [23]. Overall, the data showed that low-dose doxepin improved sleep, 
including SE in patients with chronic primary insomnia. Additionally, it exhibited a 
side-effect profile comparable to placebo as shown by the absence of next-day seda-
tion, memory impairment, anticholinergic effects or rebound insomnia [23].

Presently available evidence tends to indicate that suvorexant induces the reduc-
tion of SOL and WASO, while TST and SE are increased in middle-aged and elderly 
patients with primary insomnia. The increase of TST is related to greater time spent 
in REMS and, to a lesser extent, N2 sleep (Table 1). Rebound insomnia and with-
drawal effects were not detected when the compound was discontinued after long- 
term administration. Commonly reported adverse effects have included somnolence, 
headache, dizziness, fatigue, diarrhea and abnormal dreams. Somnolence has usu-
ally been shown to resolve with continued use [24].

In conclusion, current therapeutic approaches for the treatment of insomnia 
focus on improving SOL (zolpidem immediate-release, zaleplon, ramelteon) and/or 
sleep maintenance (temazepam, quazepam, flurazepam, zolpidem extended-release, 
eszopiclone, low-dose doxepin, suvorexant) in patients with chronic primary insom-
nia. However, during the administration of these agents (with the exception of 
suvorexant) N3 and REMS do not regain normal levels or can be even further 
reduced.

 Brain Regions and Neurotransmitter Systems Involved 
in the Regulation of Sleep and Wakefulness

The CNS structures involved in the promotion of W include neurons containing 
serotonin [5-HT: dorsal raphe nucleus (DRN), median raphe nucleus (MRN)]; nor-
epinephrine [locus coeruleus (LC)]); dopamine [ventral tegmental area (VTA), sub-
stantia nigra pars compacta (SNpc), ventral periaqueductal gray matter (vPAG)]; 
acetylcholine [W-on: laterodorsal and pedunculopontine tegmental nuclei (LDT/
PPT)]; histamine (tuberomammillary nucleus); and orexin (posterior lateral 
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hypothalamus around the fornix). The serotonergic, noradrenergic, histaminergic 
and cholinergic (W-on) neurons that participate in the regulation of W give rise to 
mainly ascending projections to the thalamus and the basal forebrain (BFB) which 
in turn project to the cerebral cortex and the hippocampus. The dopamine- containing 
cells of the VTA and SNpc project to the basal ganglia and the prefrontal cortex, 
while those corresponding to the vPAG project predominantly to the BFB and mid-
line thalamus. Furthermore, orexin-containing neurons carry projections to the 
entire forebrain and brainstem arousal systems. Under normal conditions, the neu-
roanatomical structures that promote W inhibit neurons that promote and/or induce 
NREMS and REMS [25–28].

Neurons of the preoptic area and adjacent BFB constitute the sleep-inducing 
system. Sleep active neurons of the preoptic area are mainly located in the ventro-
lateral preoptic area. A majority of these neurons contain γ-aminobutyric acid 
(GABA) and galanin, and inhibit brainstem and hypothalamic cells involved in the 
promotion of W [29]. Cholinergic REM-on neurons of the LDT/PPT have been 
identified as promoting REMS [26]. Moreover, the subcoeruleus nucleus has been 
proposed as the critical area for REMS generation in the cat [30]. Its equivalent in 
the rat and mouse is called the sublaterodorsal tegmental nucleus. The REMS gen-
eration region includes predominantly glutamatergic and GABAergic neurons [30]. 
More recently, melanin-concentrating hormone neurons located in the lateral hypo-
thalmus and zona incerta have been proposed also to participate in the regulation of 
REMS [31].

 Role of Serotonin 5-HT2A Receptor in the Regulation 
of the Behavioral State

Serotonin shares with other neurotransmitters the ability to promote W and to sup-
press REMS. A number of 5-HT receptors have been characterized in central sites 
that can be classified into at least seven classes. The 5-HT2 class consists of three 
(5-HT2A-B-C) subtypes and is structurally related to the superfamily of G-protein- 
coupled receptors. The 5-HT2A receptor is primarily coupled to Gq and its action is 
mediated by the activation of phospholipase C, with a resulting depolarization of the 
host cell. It is located within postsynaptic structures, predominantly on proximal 
and distal dendritic shafts [32]. 5-HT2A receptors are distributed in brain regions 
involved in the promotion of: (1) the waking state [BFB (nucleus of the diagonal 
band of Broca, bed nucleus of the stria terminalis), VTA/SNpc, DRN/MRN, LC, 
tuberomammillary nuclei]; (2) the NREMS state [medial and lateral preoptic area, 
anterior and lateral hypothalamic areas, thalamus (nonspecific nuclei)]; (3) the 
REMS state (LDT/PPT, medial pontine reticular formation). Additionally, 5-HT2A 
receptors have been characterized in the cerebral cortex, limbic system and basal 
ganglia [33].
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Strategies aimed at determining the role  of 5-HT2A receptor in the regulation of 
the behavioral state have included: (1) mutant mice that do not express 5-HT2A 
receptors; (2) local brain delivery of 5-HT2A receptor ligands; (3) systemic adminis-
tration of nonselective 5-HT2A receptor agonists and antagonists; (4) systemic 
administration of selective 5-HT2A receptor antagonists and inverse agonists.

 Sleep Patterns in Mutant Mice That Do Not Express 5-HT2A 
Receptors

Popa et  al. [34] characterized the sleep-wake cycle in 5-HT2A receptor knockout 
mice of the 129Sv/Ev Tac background. Mice lacking 5-HT2A receptor showed a 
significant increase of W and a reduction of SWS throughout the entire light/dark 
cycle compared to the wild-type animals. Additionally, the duration of W bouts was 
augmented during the dark period. Values corresponding the REMS were similar in 
the mutants and the wild-type rodents. Sleep deprivation during a 6 h period starting 
at the beginning of the light phase, resulted in a significant increase of the EEG 
power density in the delta frequency of the wild-type mice only. Since the 5-HT2A 
receptor is positively coupled to phospholipase C via Gq proteins and mobilizes 
intracellular Ca2+, a reduction in W and an increase in SWS should have been 
expected in the mice lacking 5-HT2A receptor. In other words, opposite effects of 
gene deletion versus acute pharmacological activation of the same protein with a 
5-HT2 receptor agonist (to be dealt with in the next section) should have been 
expected on W and SWS. In support of this contention, systemic administration of 
the selective 5-HT2A receptor antagonist volinanserin (2.0–5.0 mg/kg, i.p.) signifi-
cantly augmented SWS and decreased W and REMS in the wild-type mice only 
[34]. The unexpected increase of W and reduction of SWS in the mutants led Popa 
et al. [34] and Adrien [35] to propose that the genetic deletion of 5-HT2A receptor 
would give rise to hyposensitivity of 5-HT2B receptor and hypersensitivity of 5-HT2C 
receptor. Accordingly, systemic injection of the selective 5-HT2B receptor antago-
nist SB 215505 (0.5–2.5 mg/kg, i.p.) produced a decrease of SWS and REMS, and 
an enhancement of W in the wild-type animals only [34]. Moreover, selective block-
ade of 5-HT2C receptor by compound SB 242084 (0.5–2.5  mg/kg, i.p.) induced the 
reduction of REMS in the wild-type mice, while SWS and W remained unchanged. 
Although SB 242084 failed to modify REMS values in the mutants, the dose 
response-curve of REMS was shifted to the left, which tends to indicate an increased 
influence of 5-HT2C receptor-mediated regulation of REMS in the 5-HT2A receptor 
knockout mice.

The increase of W and reduction of SWS in animals lacking 5-HT2A receptor 
could also be related, either wholly or at least in part, to the increased release of 
norepinephrine and dopamine at central sites [36, 37]. In this respect, Quesseveur 
et al. [38] showed that the DOI-induced decrease of DRN 5-HT neurons firing rate 
in wild-type mice did not occur in animals lacking 5-HT2A receptor. Moreover, the 
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DOI-induced inhibitory effect on 5-HT neurons activity was attenuated by the loss 
of noradrenergic neurons provoked by the neurotoxin DSP4. It should be mentioned 
that 5-HT2A receptors that participate in the control of dopamine and norepinephrine 
release are expressed by inhibitory GABAergic interneurons [39]. Consequently, 
the reduction of GABA release at critical sites in the CNS of 5-HT2A receptor knock- 
out mice would be indirectly responsible for the increased availability of norepi-
nephrine and dopamine at neuronal networks involved in regulating behavioral 
states.

In conclusion, genetic deletion of 5-HT2A receptor has been shown to produce a 
phenotype similar to the effect of acute pharmacological activation. In addition, 
compensatory mechanisms, including hyposensitivity of 5-HT2B receptor and 
hypersensitivity of 5-HT2C receptor occurred in the mutants. The increased release 
of norepinephrine and dopamine at central sites could also play a role in the changes 
of the sleep-wake cycle described in the knockout mice.

 Sleep Patterns in Laboratory Animals Administered Non- 
Selective 5-HT2A Receptor Agonists

To date no studies have been published on the effect of selective 5-HT2A receptor 
agonists on sleep variables in laboratory animals due to the absence of highly selec-
tive 5-HT2A receptor derivatives. Presently available evidence was obtained from 
studies involving the administration of nonselective 5-HT2A/2C receptor agonists, 
including the phenylalkylamine derivatives DOM and DOI (Table  2) [40, 41]. 
Systemic injection of DOM (0.16–2.5 mg/kg, i.p.) at the onset of the light phase 
produced a significant reduction of SWS and REMS, and an increase of W during 
the first 4-h period in the rat (Table 3). The reduction of SWS and REMS was due 
to a decrease in the number of bouts and of their mean duration. In contrast, the 
increase of W was related to an enhancement in the duration of bouts [42]. Of note, 
pretreatment with the nonselective 5-HT2A/2C receptor antagonist ritanserin (0.16–
2.5 mg/kg, i.p.) dose-dependently prevented the DOM (0.63 mg/kg)-induced SWS 
deficit and W enhancement. In contrast, REMS remained substantially reduced [42].

Systemic administration of DOI (0.25 mg/kg, i.p.) at the onset of the light period 
also reduced SWS and REMS and augmented W in the rat [9] (Table 3). Furthermore, 
systemic (1.0–2.0  mg/kg, s.c.) or intrathalamic (10–50  μg) injection of DOI 
decreased the neocortical high-voltage spindle activity that occurs during relaxed W 
in the rat [43]. Ritanserin (0.25  mg/kg, i.p.) antagonized the increase of W and 
reduction of SWS produced by DOI (0.25 mg/kg). However, DOI-related suppres-
sion of REMS was not prevented by the 5-HT2A/2C receptor antagonist [9].

Thus, systemic administration of non-selective 5-HT2A/2C receptor agonists to 
laboratory animals induced a consistent increase of W and a reduction of SWS and 
REMS.
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Table 3 The effect of non-selective 5-HT2A receptor agonists and antagonists and selective 5-HT2A 
receptor antagonists and inverse agonists on sleep variables in laboratory animals

Compound Function W SWS REMS Reference

DOM Non-selective agonist + − − Dugovic et al. [42]
DOI Non-selective agonist + − − Monti et al. [9]
Ketanserin Non-selective 

antagonist
− + − [55])

Ritanserin Non-selective 
antagonist

− + − Monti et al. [9]

Ici 170809 Non-selective 
antagonist

− + − Tortella et al. [59]

RP-62203 Non-selective 
antagonist

− + n.s. Stutzmann et al. [60]

Sertindole Non-selective 
antagonist

− + − Coenen et al. [61]

Volinanserin Selective antagonist − + − Popa et al. [34]
Pruvanserin Selective antagonist n.s. + − Monti and jantos [79]
Eplivanserin Selective antagonist Significant increase of  

mean number and duration  
of SWS bouts

Griebel et al. [82]

Nelotanserin Inverse agonist − + − Al-shamma et al. [83]

W wakefulness; SWS slow wave sleep; REMS rapid-eye-movement sleep; + significant increase; 
− significant decrease; n.s. non significant

Table 2 Affinities to 5-HT2 receptor subtypes of non-selective 5-HT2A receptor agonists and 
antagonists and selective 5-HT2A receptor antagonists and inverse agonists

Compound Function 5-HT2A 5-HT2B 5-HT2C

DOM1 Non-selective agonist 8.44a n.a. 7.44a

DOI2 Non-selective agonist 7.30a 7.40a 7.80a

Ketanserin1 Non-selective antagonist 8.90a 5.40a 7.00a

Ritanserin1 Non-selective antagonist 8.80a 8.80a 8.90a

ICI 1708091 Non-selective antagonist 9.10a n.a. 8.30a

RP-622032 Non-selective antagonist 9.60a n.a. 7.60a

Sertindole3 Non-selective antagonist 9.41a n.a 8.72a

Volinanserin4 Selective antagonist 0.85b n.a. 88.00b

Pruvanserin5 Selective antagonist 0.35c n.a. 1334.00c

Eplivanserin6 Selective antagonist 1.30c n.a. 120.00c

Nelotanserin7 Inverse agonist 0.35b 2000.00b 100.00b

Pimavanserin8 Inverse agonist 9.70b n.a. 8.00b

From: 1Barnes and Sharp [88]; 2Leysen [89]; 3Leysen et al. [90]; 4Kehne et al. [75]; 5Bartoszyk 
et al. [76]; 6Rinaldi-Carmona et al. [81]; 7Al-Shamma et al. [83]; 8Vanover et al. [85]
apKi
bKi values are in nanomolar
cpIC50; n.a., not available

J.M. Monti et al.



323

 Sleep Patterns in Laboratory Animals Following Local 
Microinjection into the DRN or LDT of a Non-Selective 
5-HT2A Receptor Agonist

The existence of 5-HT2A receptors in the DRN tends to suggest that they are involved 
in the regulation of REMS in the rat (for review see [27]). In order to test the hypoth-
esis, DOI (1.4, 2.8, or 5.6 mmol) was infused into the DRN of rats implanted for 
chronic sleep recordings. Following the microinjection of the 2.8 and 5.6-mmol 
doses of the 5-HT2A/2C receptor ligand into the DRN, REMS was significantly 
reduced during the first 4-h of recording. The number of REM periods was decreased 
also after the 5.6 mmol dose of the 5-HT2 receptor ligand. Pretreatment with the 
selective 5-HT2A or 5-HT2C receptor antagonists EMD 281014 (5.6  mmol) or 
SB-243213 (2.8–5.6 mmol), respectively, effectively prevented the DOI (5.6 mmol)-
induced suppression of REMS. These findings indicate that the effect was mediated 
by the participation of both, 5-HT2A and 5-HT2C receptors located in the DRN [44].

It has been shown that systemic, intra-raphe or microiontophoretic administra-
tion of DOI inhibits the firing of serotonergic neurons in the DRN and reduces the 
extracellular concentration of 5-HT [45, 46]. The inhibition of 5-HT neurons in the 
DRN of the rat after systemic injection of DOI was reverted by the selective 5-HT2A 
antagonist volinanserin and by the GABA-A receptor antagonist bicuculline, 
whereas the 5-HT2C receptor antagonist SB 242084 was less effective in this respect 
[47]. Thus, within the DRN, DOI inhibits 5-HT neurons firing by activating 
GABAergic interneurons via 5-HT2A and 5-HT2C receptors [48]. Notwithstanding 
this, microinjection of DOI into the DRN resulted in the suppression of REMS. In 
this respect, it should be considered that many GABAergic neurons in the DRN 
contribute to long projections that reach, among other nuclei, the LDT/PPT [49]. 
Thus, it can be proposed that DOI activation of projection GABAergic cells inhibits 
the activity of cholinergic REM-on neurons in the LDT/PPT and suppresses REMS 
sleep. The recent finding by Vasudeva and Waterhouse [50] that non-serotonergic 
neurons corresponding to the DRN lateral wings in the rat are immediately rostral 
to and in line with the cholinergic LDT, tends to support our proposal.

Amici et  al. [51] microinjected DOI (1 nmol, 1 μmol, 1 mmol) or ketanserin 
(1–5  nmol) into the LDT in rats to determine whether 5-HT2A/2C receptors were 
involved in the regulation of sleep variables. Local administration of DOI into the 
LDT significantly decreased the number of sequential REMS episodes during the 
first h of recording, whereas ketanserin induced the opposite effect during the sec-
ond and third h of recording. The duration of REMS episodes was not modified by 
the compounds. The reduction in the number of REMS periods after local adminis-
tration of DOI into the LDT could be also associated with a non-serotonergic mech-
anism involving GABA. Accordingly, within the LDT/PPT there is a demonstrable 
role for GABA in regulating REMS. In this respect, GABAergic inhibition arises 
from both local inhibitory GABAergic interneurons and GABAergic cells located in 
the brainstem nuclei and hypothalamus that project to the LDT/PPT [52–54]. It is 
tentatively proposed that DOI activation of 5-HT2A/2C receptors expressed by 
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GABAergic interneurons decreases the activation of cholinergic REM-on cells in 
the LDT and reduces REMS. On the other hand, their blockade by ketanserin would 
induce the opposite effect.

In conclusion, local microinjection of DOI into the DRN or LDT has been found 
to decrease REMS in the rat. These findings tend to indicate that a 5-HT2-receptor 
mechanism participates in DRN and LDT regulation of REMS.

 Sleep Patterns in Laboratory Animals Administered Non- 
Selective 5-HT2A Receptor Antagonists

The effects of the non-selective 5-HT2A/2C receptor antagonists ketanserin, ritanse-
rin, ICI-170809, RP-62203 and sertindole (Table 2) on the sleep-wake cycle have 
been characterized in the rat. Accordingly, Kirov and Moyanova [55] examined the 
effect of ketanserin (1.0–6.0 mg/kg, i.p.) administered at the beginning of the light 
phase on sleep variables in young, middle-aged and old rats. The 5-HT2A/2C receptor 
antagonist reduced W in the young and middle-aged animals only. On the other 
hand, SWS was enhanced and REMS was reduced in the three age groups (Table 3). 
However, the SWS increase was smaller, shorter-lasting, and dose-independent 
in the old rats, which could be indicative of a loss of 5-HT2 receptors with aging. In 
addition, ketanserin increased the amplitude of neocortical high voltage spindles in 
young and middle-aged rats, and prevented their reduction in animals infused with 
DOI (10–50 μg) at the level of the thalamus [43, 56].

Systemic injection of ritanserin (0.25–0.63 mg/kg, i.p.) at light onset was found 
to induce a significant increase of SWS and a decrease of REMS during the first four 
recording hours in the rat. Concurrently, a decrease of W was observed after admin-
istration of the greatest dose (Table 3) [9, 42, 57]. Furthermore, injection of ritanse-
rin (0.3 mg/kg, i.p.) at light onset caused an increase in the EEG power density in 
the low frequency range (mainly delta activity) and a reduction in the high fre-
quency range that paralleled the changes of sleep and W [58].

Tortella et al. [59] measured the effects of the phenyl-quinoline derivative ICI- 
170809 on sleep variables in the rat. Oral administration of ICI-170809 (10–20 mg/
kg) 5 h after the beginning of the light phase suppressed REMS for 6 h postinjec-
tion. The effect was due to a decrease in the total number of REMS periods. At the 
greatest dose tested the compound significantly increased SWS during the dark 
phase of the 24 h sleep-wake cycle (Table 3).

Administration of RP-62203, a naphtosulfam derivative at doses ranging from 
0.5 to 4.0 mg/kg p.o. induced a significant and dose-dependent increase in SWS and 
a reduction of W in the rat. At the 4 mg/kg dose, these effects persisted for a period 
of 4 h. REMS values were not significantly altered following the range of doses 
tested (Table  3). Coadministration of RP-62203 (0.5  mg/kg, p.o.) with DOI 
(0.63 mg/kg, i.p) prevented the decrease of SWS induced by the 5-HT2A/2C receptor 
agonist [60].
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Coenen et al. [61] assessed the effects of sertindole (0.08–0.32-1.28 mg/kg, i.p.) 
on sleep-wake states during the first 4 h of the dark phase, on two successive days 
in rats. Sertindole 0.32 mg/kg significantly augmented SWS, whereas REMS was 
diminished after the whole range of doses during the first recording period of 4 h. 
The amount of W was decreased only after injection of the 1.28 mg/kg dose during 
the second recording period of 4 h (Table 3). Moreover, the reduction of REMS was 
still present on the second day. The 5-HT2A/2C receptor ligand had no significant 
effects on the frequency spectrum of the background EEG.

In conclusion, systemic and oral administration of non-selective 5-HT2A/2C recep-
tor antagonists has been found to increase of SWS in the rat. Waking and REMS 
were found to be reduced in most studies.

 Sleep Patterns in Normal Subjects and Patients 
with an Insomnia Disorder Administered Non-Selective 
2-HT2A Receptor Antagonists

Idzikowski et al. [62] were the first to document the effects of acute administration 
of ritanserin 10.0 mg in the morning or the evening on nocturnal sleep in healthy 
subjects (mean age 33.3 years). Administration of the 5-HT2A/2C receptor ligand in 
the morning (8.00 a.m.) significantly augmented N3 sleep and reduced N2 sleep. 
REMS was decreased also when the compound was given in the evening (10:30 p.m.) 
(Table 4). The authors characterized, in addition, the effects on sleep of repeated 
morning administrations of ritanserin 10.0  in sleep of healthy male volunteers 
(mean age 28.4 years). After 2 weeks treatment ritanserin-induced changes in sleep 
variables remained constant. Thus, tolerance did not develop to the increase in N3 
sleep. Subjective ratings including sleep quality, morning vigilance and evening 
alertness were not affected by the compound [63]. The effects of 1.0, 3.0, 10.0 and 
30.0 mg ritanserin administered in the morning (0.800 h), were investigated also in 
healthy subjects (mean age 32.6  years). A clear dose-response relationship was 
observed for the compound, with greater doses inducing increased duration of N3 
sleep. REMS as a percentage of TST was decreased after the 10.0 mg dose. The 
30.0 mg dose induced, in addition, a mild hypnogenic effect and an improvement in 
subjective sleep quality [64]. As shown by Kamali et al. [65], ritanserin 10.0 mg 
discontinuation following daily administration for 8 weeks in healthy volunteers 
aged 18–39  years (median 20  years), was not associated with withdrawal 
symptoms.

The effects of ritanserin 5.0  mg on sleep variables have been compared with 
those of ketanserin 20.0 mg and 40.0 mg in subjects with normal sleep (mean age 
30 years). Both, ritanserin 5.0 mg and ketanserin 40 mg significantly increased N3 
sleep and reduced N2 sleep. REMS was reduced following administration of either 
compound (Table 4) [66].
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The effects of the 5-HT2A/2C receptor antagonists ICI-169369 (phenyl-quinoline 
derivative) and SR-46349B (fluorophenyl-propen derivative) have been studied also 
on the sleep EEG of subjects with normal sleep. Administration of 100.0 mg ICI- 
169369 to young subjects (mean age 26.8 years) 90 min before retiring, signifi-
cantly increased N3 sleep. No other significant differences were observed for the 
drug on any sleep parameter [67].

In a study by Landolt et al. [68], 1 mg SR-46349B was given to male volunteers 
3 h before bedtime. The drug enhanced N3 sleep and reduced N2 sleep. There was 
no significant difference in the duration of REMS.

Analysis of the EEG power spectra showed an increase of delta activity and a 
reduction of spindle frequency activity. There was no significant difference between 
placebo and treatment with respect to the subjective quality of sleep. Of concern, 
central temperature showed a significant decline in the first 6  h of sleep after 
SR-46349B administration.

Ritanserin was given also to poor sleepers, patients with chronic primary insom-
nia and psychiatric patients with a generalized anxiety disorder (GAD), dysthymia 
disorder or major depression.

Ritanserin 5.0 mg taken for 20 days by middle-aged (mean age 58 years) poor 
sleepers, caused a significant increase of N3 sleep during the early and the late drug 

Table 4 The effect of non-selective and selective 5-HT2A receptor antagonists and inverse agonists 
on sleep in healthy subjects and patients with primary or comorbid insomnia

Compound Function W N1 N2 N3 REMS Reference

Ketanserin Non-selective antagonist
  – Healthy subjects n.a. n.a. − + − Sharpley et al. [66]

Ritanserin Non-selective antagonist
  – Healthy subjects n.a. n.a. − + − Idzikowski et al. [62]
  –  Generalized 

anxiety disorder
n.s. − n.s + + da Roza Davis et al. [72]

  – Chronic primary 
insomnia

n.s. n.s. n.s. + n.s. Ruiz-primo et al. [70]

  –  Major depressive 
disorder

n.s. n.s. n.s. + n.s. Staner et al. [74]

Eplivanserin Selective antagonist
  – Healthy subjects n.s. n.s. − + n.s. Landolt et al. [68]

Nelotanserin Inverse agonist
  –  Healthy subjects 

(postnap insomnia)
n.s. − n.s. + n.s. Al-shamma et al. [83]

  –  Chronic primary 
insomnia

n.s. − − + n.s. Rosenberg et al. [86]

Pimavanserin Inverse agonist
  – Healthy subjects n.s. n.s. − + n.s. Ancoli-Israel et al. [87]

W wakefulness; N1, N2, N3 non-rapid-eye-movement sleep stages; REMS rapid-eye-movement 
sleep; + significant increase; − significant decrease; n.s. non-significant; n.a. not available
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period compared with baseline placebo nights. Concomitantly with the increase in 
N3 sleep there was a reduction of N2 sleep and of the frequency of awakenings. 
REMS values were not affected by the drug. During the period of ritanserin intake 
there was a sustained increase in the quality of sleep [69].

The administration of ritanserin 10.0 mg for 5 days in the mornings to a group of 
chronic primary insomnia patients (mean age 31.6  years) was followed by an 
increase of N3 sleep, while values corresponding to N2 sleep and REMS remained 
unchanged. Ritanserin did not induce significant changes in subjective sleep quality, 
as compared to placebo (Table 4) [70].

The effects of ritanserin on sleep variables have been characterized also in absti-
nent alcoholic patients (mean age 42.1  years) with comorbid insomnia. The 
5-HT2A/2C receptor antagonist was given at a daily dose of 10.0 mg for 28 days. 
Ritanserin reduced WASO and increased TST. The latter was related to the occur-
rence of greater amounts of NREMS. N3 sleep and REMS were not significantly 
modified. The subjective ratings of the perceived ease of getting to sleep and the 
duration of sleep showed no consistent changes from baseline. Of note, ritanserin 
did not impair the patients’ psychomotor performance on the morning after admin-
istration [71].

da Roza Davis et al. [72] studied the acute effects of ritanserin 5.0 mg on sleep 
variables in patients (mean age 40.6 years) with GAD and matched healthy controls. 
Ritanserin produced a significant increase of N3 sleep together with a reduction of 
N1 sleep and WASO.  Unexpectedly, the 5-HT2A/2C receptor ligand augmented 
REMS (Table 3). The derivative also significantly increased sleep efficiency and 
subjective sleep quality.

Polysomnographic recordings of patients with a dysthymia disorder according to 
DSM-III (mean age 36.2 years) who received morning administration of ritanserin 
10.0 mg for 4 weeks, showed significant increases in N3 sleep and sleep efficiency. 
No other variables were modified by the drug [73]. Similarly, acute administration 
of ritanserin 5.0 mg in major depression patients (melancholic type, DSM-III-R) 
(mean age 39 years), induced a significant increase in N3 without changing N2 or 
REMS duration (Table 4) [74].

In conclusion, the 5-HT2A/2C antagonists ketanserin, ritanserin, ICI-169369 and 
SR-46349B consistently increased N3 sleep in subjects with normal sleep. 
Additionally, ritanserin was shown to augment N3 in poor sleepers and in patients 
with chronic primary insomnia, GAD or a mood disorder.

 Sleep Patterns in Laboratory Animals Administered Selective 
5-HT2A Receptor Antagonists or Inverse Agonists

There are two types of drugs that can inhibit the activity of 5-HT2A receptor, namely 
the silent 5-HT2A receptor antagonists and the inverse agonists. The former block 
agonist-induced responses, while the latter attenuate the basal constitutive signaling 
activity of 5-HT2A receptors.
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Currently, there are at least five compounds that behave either as selective 5-HT2A 
antagonists or inverse agonists.

Kehne et al. [75] evaluated the intrinsic in vitro activity of the selective 5-HT2A 
receptor antagonist volinanserin (M100907), a chiral phenethyl piperidine. 
Volinaserin showed a high degree of selectivity for the 5-HT2A receptor (average 
Ki = 0.85), with a more than 100-fold separation from a great number of receptors 
including the serotonin 5-HT2C, dopamine D2, α1-adrenergic and histamine H1 recep-
tors (Table 2). Moreover, the compound was devoid of inverse agonist intrinsic activ-
ity. Volinanserin in vitro (IC50 = 0.6 nM) antagonized the 5-HT-stimulated inositol 
triphosphate accumulation in cells transfected with the rat 5-HT2A receptor. In vivo, 
volinanserin reduced 5-methoxy-N,N-dimethyltryptamine (ED50 = 0.03 mg/kg, i.p.) 
or DOI (ED50 = 0.01 mg/kg, s.c.)-induced head twitches in mice, and 5-hydroxytryp-
tophan (ED50 = 0.07 mg/kg, i.p.)-induced head twitches in rats [75, 76].

Injection of volinanserin (2.0–5.0 mg/kg, i.p.) to male mice 2–3 months of age 
3 h after the beginning of the light phase, produced a significant dose-dependent 
increase of SWS during the first 3 h after administration. The compound also caused 
a reduction of W and REMS time during the same period (Table 3) [34].

Administration of volinanserin (0.1–3.0 mg/kg, i.p.) to rats 6 h after the begin-
ning of the dark phase, significantly reduced the latency to sleep onset and W values 
relative to vehicle. The compound also induced a significant increase of SWS and 
EEG delta power. REMS time was not affected by the treatment [77].

Although the mechanisms involved in the volinanserin-induced increase of SWS 
and reduction of W have not been elucidated, there are preclinical data suggesting 
that they could be partly related to a decrease in the functional activity of the dopa-
minergic and serotonergic systems. Accordingly, orally administered volinanserin 
(ED50 = 0.62 mg/kg) antagonized d-amphetamine-stimulated locomotion in mice, 
which is indicative of a reduction of mesolimbic dopaminergic activity [75]. 
Moreover, following the administration of volinanserin (10.0 mg/kg, i.p.) in the rat, 
using the α-[14C]methyl-l-tryptophan autoradiographic method significant reduc-
tions in 5-HT synthesis rates were described in the frontal cortex, sensory-motor 
cortex, cingulate cortex, caudate-putamen, dorsal thalamus, SNpc, and the medulla 
raphe nuclei (raphe magnus nucleus and raphe pallidum nucleus). On the other 
hand, there was no effect in the midbrain raphe nuclei (median raphe nucleus and 
dorsal raphe nucleus) as a whole [78].

Pruvanserin (EMD 281014), a phenethyl piperazine structurally related to 
volinanserin, has been found to bind with high affinity to human (IC50 = 0.35 nM) 
and rat (IC50 = 1.0 nM) 5-HT2A receptors. Moreover, IC50 values of ≥ 1000 nM 
were described for serotonin 5-HT1A, 5-HT2B, 5-HT2C or 5-HT7, α1 or α2 adrenergic 
and dopamine D1 receptors, while those corresponding to serotonin 5-HT1B, 5-HT3 
or 5-HT6, dopamine D2 and histamine H1 receptors amounted to ≥  10.000  nM 
(Table 2) [76]. Furthermore, pruvanserin prevented 5-HT-stimulated [35S]guano-
sine 5′-O-3-thiotriphosphate accumulation in hamster ovary cells transfected with 
the human 5-HT2A receptor (IC50 = 9.3 nM), and antagonized an N-ethoxycarbonyl- 

J.M. Monti et al.



329

2-ethoxy-1,2-dihydroquinoline-induced decrease of [3H]ketanserin binding in rat 
frontal cortex (ID50 = 0.4 mg/kg p.o), as well as DOI-induced head-twitch behavior 
in mice (ID50 = 0.01 mg/kg, s.c.) [76].

The effects of pruvanserin on sleep and W have been determined in the rat during 
both phases of the light-dark cycle. Injection of pruvanserin (2.5–10.0 mg/kg, i.p.) 
2 h after the beginning of the light phase, significantly increased SWS during the 
second 2 h of recording and reduced REMS during the first 2 h period (Table 3) 
[79]. REMS time was decreased also after the 10 mg/kg dose during the second 2 h 
period. REMS latency was augmented after the whole range of doses, while the 
number of REMS periods was diminished during the first and second 2 h following 
dosing. Administration of pruvanserin 2 h after the beginning of the dark period 
gave rise to a significant increase in SWS during the second 2  h of recording. 
Compared with the control vehicle, the 5-HT2A receptor antagonist did not signifi-
cantly modify the time spent by the rats in W, LS or REMS [79].

Eplivanserin (SR 46349B) is a propenone ether derivative with potent 5-HT2A 
receptor blocking properties and a relatively long duration of action. It has high 
affinity (pIC50 = 1.30) for 5-HT2A receptor, moderate affinity for 5-HT2C receptor 
and low affinity for 5-HT2B receptor (Table 2). Additionally, eplivanserin has low 
affinity for the serotonin 5-HT1A, 5-HT1B or 5-HT1D, dopamine D1 or D2, α1 or α2 
adrenergic, and histamine H1 receptors [80]. In vivo (3H)- eplivanserin was found 
to bind predominantly in mouse brain regions containing 5-HT2A receptors, and this 
binding was displaced by the non-selective 5-HT2A receptor antagonists ritanserin 
and ketanserin [81].

The effect of eplivanserin (3.0 and 10.0 mg/kg, i.p.) administered 3 h after the 
beginning of the light phase on the sleep-wake cycle, was studied in male rats pre-
pared for chronic sleep recordings [82]. The compound did not induce significant 
changes of values corresponding to W or SWS over the 6 h recording period, nor did 
it alter the latency to sleep onset. In contrast, both doses of eplivanserin increased 
the mean duration of SWS episodes, while the mean number of SWS episodes was 
augmented after injection of the 3.0 mg/kg dose only (Table 3). Since EMG record-
ings were omitted in the study by Griebel et al. [82], it was considered difficult to 
extract REMS from the data. However, in a previous study Rinaldi-Carmona et al. 
reported a significant reduction of REMS in rats treated with eplivanserin (1.0 and 
10.0 mg/kg, i.p.).

Nelotanserin (APD125), a phenylpyrazole urea, is a potent inverse agonist of 
the 5-HT2A receptor. Radioligand binding assays using HEK293 cells (American 
Type Culture Collection, Rockville, MD) stably expressing human 5-HT2A, 5-HT2B 
and 5-HT2C receptors, have shown that nelotanserin displays high affinity 
(Ki = 0.35 nM) for the 5-HT2A receptor, while its affinity to 5-HT2C and 5-HT2B 
receptor is moderate (Ki = 100 nM) and low (Ki = 2000 nM), respectively (Table 1). 
The Ki of nelotanserin for rat HEK293 cells stably expressing 5-HT2A receptor is 
6-fold greater as compared to human HEK293 cells expressing 5-HT2A receptor. In 
contrast, its Ki for 5-HT2C and 5-HT2B receptor is similar [83]. Furthermore, 
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 nelotanserin blocked 5-HT-induced inositol phosphate accumulation with a potency 
of 4.7 ± 0.4 nM and 170 ± 39 nM for rat 5-HT2A and 5-HT2C receptor, respectively. 
In in vivo experiments nelotanserin (1.0–10.0 mg/kg, p.o.) dose-dependently pre-
vented a DOI-induced (1.0 mg/kg, p.o.) decrease of rearing in rats [83]. The acute 
effects of nelotanserin on sleep variables have been tested in rats where the com-
pound was orally administered at doses of 1.0, 3.0 and 10.0 mg/kg, 2 h before the 
beginning of the light phase. Nelotanserin induced a significant increase of SWS 
and EEG delta power, while W and REMS were reduced (Table 3). Sleep onset 
latency remained unchanged. In addition, nelotanserin increased SWS consolida-
tion, as judged by the reductions in bout number and increases in bout duration for 
the 3.0 and 10.0 mg/kg groups. Subchronic administration of nelotanserin (10.0 mg/
kg, p.o.) 2 h before lights on for 5 days, also induced an increase in SWS consolida-
tion and of EEG delta power. Neither tolerance with repeated dosing nor rebound 
after dosing cessation was detected in any of the parameters quantified [83, 84].

Pimavanserin (ACP-103) is a 5-HT2A inverse agonist that utilizes a urea core to 
bridge hydrophobic and quaternary amine moieties. Receptor selection and ampli-
fication technology allowed to determine that pimavanserin is a potent inverse ago-
nist at human 5-HT2A receptors located in NIH-3  T3 cells (pIC50  =  8.73). The 
inverse agonist potency of the compound is significantly less for the 5-HT2C recep-
tor (pIC50 = 7.04), and absent for the 5-HT2B receptor. Radioligand binding studies 
in whole human cells have shown that pimavanserin displays high affinity for the 
5-HT2A (pKi = 9.7) and 5-HT2C (pKi = 8.0) receptor. On the other hand, no affinity 
for the human dopamine D2 receptor could be detected (Table 2) [85]. The in vivo 
activity of pimavanserin has been evaluated, in a number of animal models. The 
inverse agonist (3  mg/kg, p.o.) attenuated DOI (2.5  mg/kg, i.p.)-induced head 
twitches in rats. In addition, pimavanserin (1.0–10.0  mg/kg, s.c.) restored DOI 
(0.5 mg/kg, s.c.)-disrupted prepulse inhibition of the acoustic startle response in 
rats [85].

Pimavanserin was reported to increase SWS in rats, although no data on dose, 
route of administration, time of injection nor number and mean duration of SWS 
bouts were provided by the authors (unpublished observations).

It can be concluded that with the exception of eplivanserin all other compounds 
reviewed here significantly increased SWS in laboratory animals. Additionally, W 
was reduced following the administration of volinanserin and nelotanserin, whereas 
REMS showed a significant decrease after injection of volinanserin, pruvanserin, 
nelotanserin and eplivanserin. With respect to pimavanserin, values corresponding 
to W and REMS were not available. Differences in strains of rats, route of drug 
administration or concentration, and the use of different approaches to analyze data 
could possibly account for the different effects provoked by the compounds on 
SWS, W and REMS.
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 Sleep Patterns in Normal Subjects and Patients 
with an Insomnia Disorder Following Administration 
of Selective 5-HT2A Receptor Antagonists or Inverse Agonists

To date four research articles have been published on the effects of selective 5-HT2A 
receptor antagonists and inverse agonists on sleep variables in healthy volunteers 
and/or patients with an insomnia disorder. They refer exclusively to eplivanserin, 
nelotanserin and pimavanserin.

Landolt et al. [68] investigated the effect of eplivanserin (1.0 mg, p.o.) on sleep 
EEG and power spectra in 10 healthy men with a mean age of 22 ± 0.3 years. The 
study protocol consisted of 2 sessions of 2 consecutive nights. On each session, an 
adaptation night was followed by an experimental night. Eplivanserin or placebo 
was administered 3 h prior to the beginning of the recording session, according to a 
randomized, double-blind, cross-over design. Fifteen minutes after the end of the 
recording session, subjective sleep quality (estimated sleep latency, perceived num-
ber of awakenings, estimated wake duration after sleep onset, sound vs. fragmented 
sleep, and superficial vs. deep sleep), and self-rated state (recuperated vs. tired, bad 
mood vs. good mood, lack of energy vs. full of energy, tense vs. relaxed, and unable 
to concentrate vs. able to concentrate) were assessed by a questionnaire. Eplivanserin 
induced a significant increase of N3 sleep while N2 sleep was reduced. No signifi-
cant differences between placebo and the 5-HT2A receptor antagonist were observed 
for SOL, REMS latency, TST, SE and REMS in min (Table  4). However, when 
REMS was expressed as a percentage of TST, there was a significant decrease. 
NREMS power within 0.75–4.5 Hz was augmented, while that corresponding to 
spindle frequency activity (12.5–15 Hz) was reduced.

Subjective sleep quality was not affected by the compound.
Al-Shamma et  al. [83] assessed the effects of nelotanserin (10.0, 20.0 and 

40.0 mg, p.o.) in a postnap insomnia model in healthy subjects aged 18–45 years. 
The compound was administered at 10.30 p.m. and polysomnographic recording 
were carried out for 8 h. A significant increase of N3 sleep and reduction of N1 sleep 
was observed 2–4 h after administration of the 40.0 mg dose (Table 4). Sleep onset 
latency and TST were not affected by the treatment. Of note, the three doses of the 
drug significantly reduced the number of awakenings and of bouts of sleep, whereas 
the duration of bouts of sleep was augmented. Next morning effects on psychomo-
tor skills and memory were minimal and had no functional consequences.

The effects of nelotanserin have been evaluated also in patients with a diagnosis 
of chronic primary insomnia according to DSM-IV-TR [86]. The double-blind, 
placebo- controlled, 3-way crossover study included 147 patients with a mean age of 
45.1 ± 11.8 years who received nelotanserin (10.0 and 40.0 mg, p.o.) for 7 days with 
at least 7 days of washout period between treatments. Polysomnographic recordings 
were performed at the initial 2 screening nights and at nights 1/2 and 6/7 of each 
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treatment period. Both doses of nelotanserin induced a statistically significant 
increase of N3 sleep at nights 6/7, whereas values corresponding to N1 and N2 sleep 
were diminished (Table 4). In addition, TST and SE were significantly increased 
following administration of nelotanserin 40 mg at nights 1/2. No decrease in SOL 
could be observed at either nelotanserin dose. On the other hand, the number of 
arousals, number of awakenings and WASO were reduced by both doses of the 
inverse agonist at both time points. Reduction in WASO values occurred between 
hours 3 and 6. The subjective improvements in sleep were generally consistent with 
those from polysomnographic parameters. Adverse events during nelotanserin 
administration were mild and predominantly included somnolence and fatigue. 
According to Rosenberg et  al. [86], nelotanserin administration to patients with 
chronic primary insomnia resulted in a significant improvement in sleep mainte-
nance and sleep consolidation. Moreover, it was not associated with next-morning 
cognitive nor psychomotor impairment.

A study has been published by Ancoli-Israel et al. [87] in which the effects of 
pimavanserin on sleep were characterized in healthy adult volunteers. This was a 
randomized, placebo-controlled, double-blind study that included 45 subjects with 
a mean age of 51.8 ± 6.9 years. Pimavanserin (1, 2.5, 5.0 or 20.0 mg) or placebo was 
administered once daily in the morning, for 13 consecutive days. The morning 
administration of the compound was supported by its long Tmax (6 h) and t½ (55 h). 
Each of the 5 treatment arms included 9 subjects, and polysomnographic recordings 
were carried out on nights 1 and 13. The 2.5, 5.0 and 20.0 mg doses significantly 
increased N3 sleep and reduced N2 sleep during day 1 (Table 4). A similar effect 
was observed for the 5.0 and 20.0 mg doses on day 13. Thus, the effect was not 
decreased with repeated administration. The number of awakenings was signifi-
cantly decreased by the whole range of doses on day 1. In contrast, SOL, REMS 
latency and duration, WASO, TST, number of stage shifts and early morning wake 
were not affected by pimavanserin. Concerning spectral power density parameters, 
pimavanserin significantly increased slow delta (0.5–1 Hz), fast delta (1.5–3-5 Hz) 
and theta (4–7.5 Hz) activities, and reduced spindle (11.5–15 Hz) frequency during 
NREMS.  In addition, beta1 (13–21.5  Hz) activity was diminished during 
REMS. Daytime functioning, as judged from results obtained with a Continuous 
Performance Test, was not impaired. The most frequent adverse events included 
headache and gastrointestinal disorders that were mild to moderate in nature. On the 
basis of their findings, the authors concluded that additional studies evaluating the 
effect of pimavanserin on sleep variables in patients with an insomnia disorder 
are warranted.

In can be concluded that irrespective of their mechanism of action, eplivanserin, 
nelotanserin and pimavanserin significantly increase N3 sleep in subjects with nor-
mal sleep. A similar effect was decribed when nelotanserin was given to patients 
with chronic primary insomnia.
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 Concluding Remarks

Compared to healthy subjects, a considerable number of patients with an insomnia 
disorder show a significant reduction in N3 sleep and REMS. Compounds approved 
for the treatment of an insomnia disorder are effective in treating the sleep initiation 
difficulties and/or in supporting sleep maintenance. However, following their 
administration N3 sleep does not revert to normal levels and indeed can be even 
further suppressed in a considerable number of patients. This is an important issue, 
because N3 sleep reduction, particularly in patients with a chronic insomnia disor-
der or in elderly patients, could contribute to the deterioration of their day-to-day 
waking performance due to cognitive and memory deficits. During the search for 
compounds that can increase N3 sleep, our attention was directed to the 5-HT2A 
receptor selective antagonists and inverse agonists. There are polysomnographic 
data showing that isolated administration of either eplivanserin, pimavanserin or 
nelotanserin to subjects with normal sleep significantly increases the duration of N3 
sleep. A similar outcome was described when patients with a chronic insomnia dis-
order were treated with nelotanserin. Of note, there is preclinical evidence indicat-
ing that the coadministration of small doses of eplivanserin and zopidem significantly 
increases SWS in the rat, in addition to other effects [82]. Thus, this finding sup-
ports the conclusion that the association of a compound that inhibits the activity of 
5-HT2A receptor and a hypnotic drug could be a valid alternative for normalizing N3 
sleep values in patients with an insomnia disorder.
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5-HT2A Receptors and Pain             

Christine Courteix, Amandine Dupuis, Pierre-Yves Martin, and Benoit Sion

Abstract Serotonin (5-hydroxytryptamine, 5-HT) is a key modulator of spinal 
nociceptive transmission. Among 5-HT receptors, the 5-HT2A subtype plays a criti-
cal role in the modulation of nociceptive information. Both pro- and antinociceptive 
effects of 5-HT2A receptor activation have been reported but converging evidence 
indicates an excitatory role for peripheral 5-HT2A receptors on pain transmission in 
acute, sub-chronic and chronic pain conditions. The central effects of 5-HT2A ago-
nists which produce either anti-hyperalgesic or anti-allodynic effect seem to depend 
on the pathophysiology of pain. Neverthless, some data indicate that 5-HT acting 
drugs such as selective serotonin reuptake inhibitor (SSRI) antidepressants involve 
the 5-HT2A receptor to produce analgesia and that restoring 5-HT2A receptor func-
tionality may contribute to enhance the analgesic efficacy of SSRI in metabolic and 
traumatic neuropathic pain.

Keywords Serotonin • 5-HT2A receptor • Chronic pain • Acute pain • PDZ- 
proteins • Antidepressants

 Introduction

Pain is defined as “an unpleasant sensory and emotional experience associated with 
actual or potential tissue damage, or described in terms of such damage” [1]. It is 
usual to distinguish acute pain, a normal sensation that alerts to possible body injury, 
from chronic (or persistent) pain. Chronic pain is pain that persists or recurs for 
several months despite adequate medication or treatment, and its pathophysiology 
is much more complex than that of acute pain. Chronic pain involves pathological 
alterations that occur in the peripheral and central nervous systems. It is character-
ized by an increase in the excitatory synaptic transmission from primary afferents to 

C. Courteix (*) • A. Dupuis • P.-Y. Martin • B. Sion 
INSERM U1107, NEURO-DOL, Clermont-Ferrand, France 

Laboratoire de Physiologie, UFR Pharmacie, Université Clermont Auvergne,  
Clermont-Ferrand, France
e-mail: christine.courteix@uca.fr

mailto:christine.courteix@uca.fr


340

dorsal horn neurons. This increase is mediated by glutamate, AMPA and NMDA 
receptors and results in persistent plasticity in the dorsal nociceptive network, i.e. 
central sensitization. In addition, synaptic inhibition of transmission mediated by 
inhibitory GABAergic and glycinergic interneurons, which is excited both by pri-
mary afferent inputs and by inputs from descending neurons (including serotoniner-
gic neurons), is reduced. A series of changes occurring in microglia involving 
BDNF/TrkB and ATP/P2X4 receptors also plays a role in persistent pain caused by 
peripheral nerve injury.

Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter/ 
neuromodulator involved in numerous physiological functions (appetite regulation, 
sleep, thermoregulation, mood, learning) and brain diseases (depression, anxiety, 
obsessive compulsive disorders, schizophrenia, addiction, autism, Alzheimer). It is 
also a key neuromodulator of pain transmission acting at both peripheral and central 
levels and is involved in the pathophysiology of pain disorders [2]. Its predominant 
inhibitory role in persistent pain has been established using mice lacking the Lmx1b 
gene, which is critical for differentiation of 5-HT neurons [3]. Lmx1b conditional 
knock- out mice (Lmx1bf/f/p), which lack central 5-HT neurons, exhibit enhanced 
persistent inflammatory pain response to formalin or capsaicin injection, which is 
attenuated by intrathecal (i.t.) injection of 5-HT [4]. In the central nervous system 
(CNS) serotonin- containing neurons are distributed in the brainstem to nuclei 
labeled caudally to rostrally B1–B9, giving rise to a dense and large innervation of 
nearly all divisions of the CNS, including the spinal cord. The dorsal horn spinal 
cord receives serotonergic fibers that originate mainly from the raphe magnus 
nucleus. These descending serotonergic pathways are specifically implicated in the 
inhibition of pain transmission, which provides a rationale for the use of antidepres-
sants (either tricyclic antidepressants [TCA] or serotonin-noradrenalin reuptake 
inhibitors [SNRIs]) in the relief of chronic pain. The analgesic effects of the selec-
tive serotonin reuptake inhibitor (SSRI) fluoxetine, which blocks the 5-HT trans-
porter and increases the synaptic levels of 5-HT, are abolished in Lmx1bf/f/p mice, 
indicating that pain relief by SSRI antidepressants is completely dependent on the 
central 5-HT system [4]. The effect of 5-HT acting drugs on spinal nociceptive 
transmission involves at least six subtypes of receptors. The 5-HT2A receptor has 
been identified as one of the key 5-HT receptors contributing to 5-HT-induced mod-
ulation of pain transmission in certain pain conditions.

In this chapter, particular attention will be given to spinal 5-HT2A receptors and 
the serotonergic pathways that modulate nociceptive information at the spinal level 
in conditions of acute and chronic pain.

 Serotonergic Innervation and 5-HT2A Receptors

The caudal group of serotonergic neurons, which is part of the rostroventral medulla, 
i.e. the raphe pallidus nucleus (B1), the raphe obscurus nucleus (B2), the raphe 
magnus nucleus and neurons in the lateral medullary reticular formation (B3), 
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provides the majority of 5-HT neurons sending projections into the spinal cord [5]. 
5-HT axon terminals project onto all laminae of the gray matter of the spinal cord 
but particularly onto the superficial laminae (I, II, the substantia gelatinosa) of the 
dorsal horn. There, 5-HT axon terminals establish contact on neuronal cell bodies 
(axo-somatic synapses) and dendrites (axo-dendritic synapses) to facilitate or inhibit 
nociceptive transmission depending on (1) 5-HT receptor subtypes (5-HT1, 5-HT2, 
5-HT3, 5-HT4, 5-HT6 and 5-HT7 receptors) [6–9], (2) their location on terminals of 
primary afferent fibers (PAF), on local circuit neurons (excitatory or inhibitory 
interneurons), on nociceptive-thalamic projection neurons (PN), or on descending 
serotonergic projections (Fig.  1), (3) their signaling pathways and (4) their 
functionality.

5-HT2A receptors belong to the superfamily of G-protein-coupled receptors. 
They have a depolarizing effect on neuronal membranes by increasing intracellular 
Ca2+ (thereby increasing spontaneous excitatory postsynaptic currents) and inositol 
phosphate concentrations secondary to their coupling to Gq/11 and activation of 
PLC, PLA2 and the ERK pathway [10]. The 5-HT2-family receptors have canonical 

PN

ININ
GABA

to brain 

PAF

glutamate
serotonin

-

5-HT3

5-HT2A

5-HT3

5-HT4

5-HT7

5-HT1B/1D

5-HT1B/1D

5-HT1A

5-HT3

5-HT2A

5-HT1

RVM

metabotropic receptor
ionotropic receptor 

-

Fig. 1 Opposite effects of serotonin acting on multiple 5-HT receptor subtypes in dorsal horn 
spinal cord. For example, the activation of peripheral primary afferent fiber (PAF) and inhibitory 
interneuron (ININ) 5-HT2A receptors may lead to pronociceptive and antinociceptive effects, 
respectively, whereas the activation of peripheral PAF and ININ 5-HT1A receptors may lead to 
antinociceptive and pronociceptive effects, respectively. RVM rostral ventromedial medulla, PN, 
projecting neurons
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Type I PDZ-binding motifs (PDZ for postsynaptic density protein [PSD95]), 
Drosophila disc large tumor suppressor (DlgA), and Zonula occludens-1 protein 
(zo- 1) at their extreme C-terminus, and interact with multiprotein complexes orga-
nized in part around specific PDZ proteins [11–13]. Interaction of 5-HT2 receptors 
with accessory proteins affects their signal transduction by influencing their desen-
sitization and coupling to G proteins, and their subcellular compartmentation by 
influencing localization at the plasma membranes [10]. In vivo studies performed in 
experimental models of chronic neuropathic and inflammatory pain have shown the 
crucial role of these interactions in pain modulation and pain treatment [14, 15].

Using immunohistochemistry, autoradiography and hybridization techniques, it 
is possible to reveal distribution patterns of 5-HT2A receptors in the spinal cord, 
dorsal root ganglia (DRG) and brain [16–18]. Studies have shown that in the dorsal 
horn spinal cord, 5-HT2A receptor immunoreactivity is greater in the inner part of 
lamina II (lamina IIi) than in lamina I and in the outer part of lamina II (lamina IIo) 
[19, 20]. Others observed 5-HT2A-LI neurons in laminae I–III and IV–VI [21]. A 
large population of 5-HT2A receptors was found in rat lumbar DRG, in small to 
intermediate-sized neuronal cell bodies (20–35 μm in diameter) [20] and a few in 
larger cell bodies. This distribution differs from that previously reported by 
Maeshima [19], who reported intense immunolabeling in large and intermediate- 
sized neuronal cell bodies. Among nociceptive fibers, those binding isolectin B4 
specific for non-peptidergic C-fibers expressed 5-HT2A receptors more frequently 
than substance P-containing fibers, suggesting that 5-HT2A receptors are also 
expressed in the non-peptidergic neurons. Interestingly, double immunofluorescent 
staining of 5-HT2A receptors and GABAergic neurons specifically labeled with glu-
tamate decarboxylase (GAD67) green fluorescent protein (GFP) showed that 6.5–
16.5% of GFP positive neurons co-express 5-HT2A receptors in the dorsal horn of 
mice spinal cord (the highest proportion of double-labeled cells on the whole GFP- 
positive neurons was found in lamina I) [21], suggesting an effect of 5-HT2A recep-
tors on spinal GABAergic regulation in pain modulation. This role was confirmed 
later in experimental models of chronic pain (inflammatory and neuropathic) using 
pharmacological techniques [14, 15].

 Pronociceptive and Antinociceptive Roles for 5-HT2A 
Receptors

Most studies exploring the role of 5-HT2A receptors in pain have looked at the pro-
nociceptive or analgesic effects of 5-HT2A ligands, agonists or antagonists, either 
peripherally (locally, intraperitoneal (i.p.), per os (p.o.)) or centrally (intracister-
nally, i.t.) administered to awake or anesthetized rodents (Table 1). Several studies 
have tested the effects of these agents on central neuronal activity, others on acute 
pain reaction or chronic pain behavior. This section will review key experiments on 
the involvement of 5-HT2A receptors in acute and chronic pain processing.
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 Acute Pain

Activation of peripheral nociceptors (A-delta or C-fibers) by peripheral stimuli will 
elicit activity of low-threshold, high-threshold, wide dynamic range (WDR) neu-
rons in the spinal dorsal horn. One study using electrophysiological recording of 
WDR neurons showed that, under basal conditions, topical application of 5-HT to 
the spinal cord dose-dependently inhibited the C-fiber responses, which is consis-
tent with the inhibitory effect of 5-HT on spinal nociceptive transmission. Topical 
administration of a selective 5-HT2A receptor agonist, α-methyl-5-hydroxytryptamine 
maleate (α-methyl-5-HT), also inhibited C-fiber responses of WDR neurons [22], 
and the 5-HT2A receptor antagonist ketanserin reversed the inhibitory effect of 5-HT 
[22]. These observations, which clearly show that spinal 5-HT2A receptors mediate 
an inhibitory effect of 5-HT on spinal nociceptive transmission, are consistent with 
previous results obtained in healthy rats subjected to the formalin test, which 
 consists in subcutaneous (s.c.) injection of formalin into the plantar surface of the 
hindpaw and the quantification of pain-related behavior (i.e. spontaneous flinching 
movements). In these experiments, the i.t. injection of 5-HT2A receptor agonists 
(α-methyl-5-HT or 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI)) dose- 
dependently suppressed the number of flinches in both acute and tonic phases 1 
(minutes 1–6) and 2 (minutes 10–60) [23, 24]. Orofacial nociception is also sensi-
tive to descending serotonergic systems via 5-HT2A receptor activation. The bipha-
sic response of deep-nociceptive unit discharges to formalin injection into the 
masseter muscle is reduced after topical administration of DOI onto the caudal por-
tion of the trigeminal subnucleus caudalis and upper cervical (C1-C2) spinal cord 
region [25]. Consistent with the lack of tonic activity of the 5-HT system [22], the 
sensitivity to thermal (radiant heat applied on the plantar surface of the hindpaw, tail 
immersion and hot-plate) and mechanical (von Frey hair application, tail clip and 
tail pressure) stimuli remains intact in mutant mice that do not express 5-HT2A 
receptors compared to wild type mice [26]. In contrast, the nociceptive response to 
formalin injection (time spent licking or biting the injected paw) is reduced in phase 
2 compared to wild-type mice [26]. This result was confirmed by pharmacological 
experiments with intraperitoneal (i.p.) administration of the selective 5-HT2A recep-
tor antagonist, M100907 in wild-type mice, which suggests a pronociceptive role of 
5-HT2A receptors expressed by PAF [26]. This peripheral pronociceptive effect is 
not surprising considering the membrane depolarizing effect and the intracellular 
calcium increase induced by 5-HT2A receptor activation, which underlie pain trans-
mission from nociceptors to spinal cord neurons. Hence, the selective peripheral 
5-HT2A receptor antagonist, sarpogrelate (which is used in Japan as an antiplatelet 
agent to treat patients with arteriosclerosis) either i.p.-administered or locally 
injected into the hindpaw of rats, attenuated primary thermal hyperalgesia induced 
by mild thermal injury to the hindpaw and mechanical allodynia in sites adjacent to 
the primary area (secondary allodynia) [27]. More surprising are the facilitatory 
effects of spinal 5-HT2A receptors on substance P release in animals with and 
 without carrageenan-induced inflammation [28], the pronociceptive effect of i.t. 
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injection of the 5-HT2A receptor agonist DOI, which enhances painful reactions to 
formalin injection in rats [29], and the inhibitory effect of spinal ketanserin on 
evoked responses of WDR dorsal horn neurons to stimulation of the peripheral 
receptive field [30].

 Chronic Pain

Animal models of chronic inflammatory pain and neuropathic pain share a variety 
of common neuroplastic changes occurring in the peripheral and central nervous 
system [31]. These changes occur with different time delays depending on the 
nature of the injury (nerve lesion or tissue inflammation) and even on the type of 
injury. While trying to shed light on alterations in pain modulation in these animal 
models seems commonplace, the published data have highlighted the difficulty to 
assign a clear role to 5-HT2A receptors. In models of neuropathic pain induced by 
spinal L5 nerve ligation (SNL model) in rats, besides the fact that the content of 
5-HT and its metabolite 5-hydroxy-indol acetic acid (5-HIAA) in the dorsal horn 
of the lumbar spinal cord is decreased and the turnover rate of 5-HT (5-HIAA/5-HT) 
increased, only the 5-HT2A receptor antagonist blocks 5-HT-induced inhibition to 
C-fiber responses of dorsal horn WDR neurons, suggesting that 5-HT2A receptors 
play a major role in mediating the inhibitory effects of 5-HT on the C-responses 
after SNL [32]. These observations are consistent with previous findings showing 
that i.t.-administered 5-HT2A receptor agonists α-methyl-5-HT or DOI produce a 
dose-dependent antiallodynic action in rats with L5 and L6 nerve ligation [33]. 
Similarly, in the chronic constriction injury (CCI) model, which consists in loose 
sciatic nerve ligation, i.t.-administered α-methyl-5-HT attenuates thermal hyp-
eralgesia (paw withdrawal response to radiant heat) [24]. In both studies the antial-
lodynic and antihyperalgesic effects of 5-HT2A receptor agonists result from 
activation of the 5-HT2A receptors as they are abolished by ketanserin [24, 33]. 
Furthermore, the pain-relieving effect of spinal cord stimulation on tactile and cold 
hypersensitivity (assessed by von Frey filament and cold spray, respectively) in rats 
with partial sciatic nerve ligation is enhanced by α-methyl-5-HT and suppressed by 
ketanserin [34].

In contrast, we found that α-methyl-5-HT (i.t.) did not exert any antihyperalgesic 
action against mechanical (paw-pressure test) and thermal (plate preference) nox-
ious stimulations in diabetic hyperalgesic rats. Saturation experiments performed 
on lumbar spinal cord membranes from healthy and diabetic hyperalgesic rats 
showed that neither affinity nor receptor density were altered suggesting that the 
alteration of 5-HT2A receptor-mediated analgesia in the animals did not result from 
receptor down-regulation but rather from a decrease in receptor responsiveness 
[14]. The disruption of interactions between the spinal 5-HT2A receptor and associ-
ated PDZ proteins by i.t. injection of a cell-penetrating peptidyl mimetic (TAT- 
2ASCV) of receptor C-terminus significantly inhibited mechanical hyperalgesia 
(Fig. 2a) and suppressed the spontaneous temperature preference behavior induced 
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by diabetic neuropathy; disconnection of 5-HT2A receptors from their PDZ partners 
also strongly enhanced the antihyperalgesic action of fluoxetine in diabetic neuro-
pathic rats (Fig. 2b) [14]. Consistently, thanks to the synthesis of potent non-peptide 
inhibitors of PSD95-PDZ1 or PDZ2 domains/5-HT2A receptor interaction [35, 36], 
we confirmed the potential analgesic effect of such agents in traumatic neuropathic 
pain models (CCI [35, 36] and SNL rats [personal results]).

Using the TAT-2ASCV peptidyl mimetic strategy, we were able to restore 5-HT2A 
receptor functionality and to reduce mechanical hyperalgesia to paw-pressure in 
rats with carrageenan induced sub-chronic inflammation and showed that this effect 
was mediated by activation of the 5-HT2A receptors located on GABAergic inter-
neurons of the spinal cord [15], which is further evidence of the role of GABA 
neurotransmission in pain modulation.

Conversely, pronociceptive effects resulting from spinal 5-HT2A receptor activa-
tion have been described in experimental models of toxic but also traumatic neuro-
pathic pain. In rats treated with 2′,3′-dideoxycytidine (ddC), a nucleoside analogue 
with reverse transcriptase inhibitory properties used for the treatment of patients 
infected by HIV, 5-HT2A receptor immunoreactivity is up-regulated in the dorsal 
lumbar dorsal horn and peripheral nociceptive cells [37]. Since the 5-HT2A receptor 
antagonist M11,939 spinally injected decreases mechanical hypersensitivity, these 
receptors play a pronociceptive role in ddC-induced neuropathic pain. Knock-out 
mice devoid of 5-HT2A receptor gene (5-HT2A

−/− mice) failed to develop mechanical 
hypersensitivity to ddC injection. Similarly, in rats treated with vincristine, an 

Fig. 2 Disruption of 5-HT2A receptor/PDZ protein interactions with TAT-2ASCV produces anti-
hyperalgesic effects and enhances fluoxetine-induced antihyperalgesia in streptozocin (STZ)-
induced diabetic neuropathic rats. (a) Intrathecal injection of TAT-2ASCV increased vocalization 
thresholds (VT) in diabetic hyperalgesic rats, whereas the intrathecal injection of the TAT-2ASCA 
control peptide did not induce any antihyperalgesic action. (b) Administration of fluoxetine (Fluo) 
combined with an administration of TAT-2ASCV (30 ng/rat, single intrathecal injection) 6 h after 
the last fluoxetine injection produced a marked antihyperalgesic effect, which was higher and more 
prolonged than those induced by fluoxetine or the peptide alone. §:P<0.05; §§:P<0.01; §§§:P<0.001 
compared with values measured before the treatment [14]
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 antineoplastic drug, the epidural injection of a 5-HT2A receptor antagonist also 
decreased mechanical hypersensitivity [38]. Furthermore, as in the ddC model, 
vincristine- injected 5-HT2A

−/− mice failed to develop mechanical hypersensitivity 
[38]. The authors correlated the over-expression of functional 5-HT2A receptors 
with hypersensitivity [38] whereas in diabetic rats neither the number nor affinity of 
5-HT2A receptors was affected [14].

In the SNL model, spinal hyperexcitation characterized by an increase in C-fiber- 
evoked potentials after spinal superfusion with a selective 5-HT2A receptor agonist 
has been reported [39]. Interestingly, in SNL rats, the same authors described the 
pivotal role of 5-HT2A receptors coupled to NMDA receptor-mediated neurotrans-
mission. They observed that the time course of the 5-HT2A receptor contribution to 
thermal and mechanical allodynia coincides with that of serotonergic descending 
facilitatory influences on spinal nociception [40]. In chronic pain, as in acute pain 
conditions, the proalgesic role of peripheral 5-HT2A receptors is well established. 
The 5-HT2A receptor contributes to mechanical hyperalgesia consecutive to CCI and 
the i.p. injection of sarpogrelate and ketanserin reduced pain-related behavior [41]. 
In a rat model of lumbar disc herniation (LDH), sarpogrelate (p.o.) also attenuated 
pain-related behavior and suppressed LDH-induced 5-HT2A receptor over- expression 
in the DRG [42]. Similarly, ketanserin, administered in inflamed paws, inhibited 
thermal hyperalgesia induced by intraplantar injection of CFA in rats [43].

 Conclusion

We report several key findings that emphasize the role of 5-HT2A receptors in acute 
and chronic pain conditions with specific focus on the spinal cord and peripheral 
nervous system.

Documented reports suggest an excitatory role for peripheral 5-HT2A receptors 
on pain transmission in acute, sub-chronic or chronic pain conditions consistent 
with the molecular mechanisms of second messengers generated that promote PAF 
depolarization.

The central effects of 5-HT2A agonists producing anti-hyperalgesia or anti- 
allodynia in animal models of traumatic (CCI, SNL and PSNL) and metabolic 
(STZ-induced diabetes) neuropathic pain [14, 24, 33, 34] probably mediated by 
inhibitory interneurons, are not compatible with the analgesic action of M100907 or 
M11,939 in experimental models of toxic neuropathic pain [37, 38]. It seems diffi-
cult to reconcile these differences except if the pathophysiology of ddC- and VCT- 
induced neuropathic pain involves specific events different from those involved in 
the other models.

Further studies are needed to understand why 5-HT2A receptors at the level of the 
spinal cord play controversial roles. The proalgesic and antihyperalgesic effects of 
5-HT2A receptor activation resemble the variable effects of 5-HT2A receptors on cog-
nitive processing, with some studies showing no effects, or inhibitory or stimulatory 
effects on attention and impulsivity [44]. In contrast, evidence indicates that 5-HT 
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acting drugs such as SSRI antidepressants involve different subtypes of receptors 
including 5-HT2A subtype to produce analgesia [33, 45, 46]. This may potentially 
open up the field for new drugs that can be beneficial for the treatment of chronic 
pain in patients.
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Abstract Eating disorders consist in anorexia nervosa (lack of energy intake and/
or excess of caloric consumption) bulimia nervosa (episodes of binge eating associ-
ated with compensatory behaviors, such as self-induced vomiting, misuse of laxa-
tive, diuretics, fasting or excessive exercise) and binge eating disorder (recurrent 
episodes of binge eating without compensatory behavior). The biological mecha-
nisms of these eating disorders have been extensively studied, both in human and 
animal models, mainly focusing on neuropeptides regulating appetite and on neu-
rotransmitters that may also be involved in mood, appetite and weight, but also 
impulsivity and rewarding aspects of behavior. Although early preclinical data 
described a clear role of 5-HT2A receptors in food regulation, the use of specific 
5-HT2 ligands did not confirm these first data. Most of the ligands initially used 
acted actually through 5-HT2C receptors, and, at least at preclinical level, it is now 
clearly established that these 5-HT2C receptors are those which regulated food 
intake. The gene coding for 5-HT2A receptor was the very first gene associated with 
eating disorders, mainly in anorexia nervosa, raising the scientific interest in the 
serotonin pathway to explain their genetic vulnerability. The A allele of −1438G/A 
HTR2A polymorphism was reported as being associated to AN and BN, but with 
many discrepancies, the association being insufficiently strong to survive the per-
formed meta-analyses. This does not mean that the 5-HT2A receptor is having no 
role in any eating disorder, but that its contribution, if any, might be too small to be 
detectable when many types of patients are being gathered.
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 Eating Disorders and Their Biological Mechanisms

 Clinical Definition and Epidemiology

Three broad categories of eating disorders are usually delineated. The diagnostic 
and statistical manual of mental disorders fifth edition (DSM-5) mainly distin-
guishes anorexia nervosa and bulimia nervosa, and describes binge eating disorder 
under the same umbrella of the latter category (307.51 criteria), even though it is 
considered as a separate entity, both for the ICD (F50.8) and for many clinicians for 
easiness of diagnoses. Indeed, patients with anorexia nervosa are underweight 
(because of lack of energy intake and/or excess of caloric consumption), patients 
with bulimia nervosa usually have a normal weight (as episodes of binge eating are 
associated with compensatory behaviors, such as self-induced vomiting, misuse of 
laxative, diuretics, fasting or excessive exercise) and the diagnosis of binge eating 
disorder is based on recurrent episodes of binge eating but without compensatory 
behaviour, therefore associated with overweight.

Those three disorders are characterized by aberrant patterns of feeding behavior 
and weight regulation, and disturbances in attitudes toward weight and shape and 
the perception of body shape. In AN, there is an irrational fear of weight gain and 
obsession with fatness even when patients are extremely thin. In fact this simple 
statement has been recently challenged [1] as it could indirectly reflect what is 
really being involved, i.e. a rewarding effect of thinness.

The lifetime prevalence of eating disorders in adults is about 0.6% for anorexia 
nervosa, 1% for bulimia nervosa, and 3% for binge eating disorder. Women are 2–3 
times more frequently affected than are men for all these eating disorders, and are 
more common in young ones, especially between 10 and 25 years old [2].

 Risk Factors and Biological Mechanisms

Because eating disorders are complex diseases, including psychological, metabo-
lism and developmental aspects, many risk factors were tested, and a large set of 
mechanisms were considered as important in the onset of eating disorders. Because 
it gives sense to many characteristics of eating disorders [3] serotonin is one of the 
most frequently studied monoamine in these disorders. Many scientific evidences 
explain the focus on serotonin while studying the biological mechanisms of eating 
disorders such as the (1) role of stress as a triggering event, the (2) observed excess 
of depressive comorbidity [4], the (3) importance of serotonin in appetite/satiety 
regulation, (4) the use as a treatment strategy of serotonin reuptake inhibitors (SRI) 
in patients with all eating disorders, and (5) the role of this neurotransmitter in asso-
ciated traits such as high level of ‘harm avoidance’ or ‘behavioral inhibition’ [5], 
obsessionality [6], anxiety and fear [7].
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Facilitated by the use of consensual criteria, many research strategies were used 
to decipher the biological mechanisms explaining why some subjects are more at 
risk than others. A large familial study demonstrated that the relative risk of anorexia 
nervosa was 11 in female relatives of anorexic probands, and 12 in female relatives 
of bulimic probands [8]. The heritability of the three eating disorders, using aggre-
gation studies but also twin studies, was in fact estimated to range between 50% and 
83% [2, 9], stressing the potential benefit of using genetics in order to further under-
stand eating disorders. Genetics also provides an interesting opportunity to analyze 
the role of genes coding for specific receptors, such as the serotonin receptors and 
transporters, without being confused by the impact of malnourishment and/or 
obesity.

 The Potential Role of Serotonin in Eating Disorders

Serotonin (5-HT) is synthesized from its precursor tryptophan, an essential amino 
acid that must be obtained through food (please see other chapters for more details). 
Treatments that increase synaptic 5-HT, or activate 5-HT receptors, reduce food 
consumption, whereas interventions that dampen 5-HT neurotransmission or block 
5-HT receptors increase food consumption and promote weight gain [10, 11].

When underweight, individuals with AN have a significant reduction in basal 
concentrations of the 5-HT metabolite (5-HIAA) in the cerebral spinal fluid (CSF) 
compared to healthy controls [12]. Using a dynamic test, a blunted plasma prolactin 
response to drugs with 5-HT activity is observed, with reduced 3H-imipramine 
binding [13–16]. In long-term recovered AN with normal weight, individual CSF 
concentrations of 5-HIAA are elevated [17]. Serotonin abnormalities are therefore 
observed in anorexia nervosa according to several lines of evidence, even though it 
is difficult to prove that it actively participates in the development of the disorder, 
and does not only represent a long standing associated marker.

In BN, a blunted prolactin response is also observed to 5-HT receptor agonists such 
as m-chlorophenylpiperazine (mCPP), 5-hydroxytrytophan, and DL-fenfluramine, 
[14–16, 18]. Dietary depletion of tryptophan has also been associated to increased 
food intake in individuals with BN compared to healthy controls [19]. Like in AN, 
women with long-term recovery from BN have been shown to have elevated concen-
trations of 5-HIAA in the CSF, [12, 15, 17, 20–22] and reduced platelet [3H-] parox-
etine binding, which is thought to be a marker of 5-HTT activity [23]. Furthermore, in 
4 studies out of 5 testing the efficacy of SSRI in bulimia nervosa, a reduction of binge/
purging frequency was more frequently observed in the group treated by SSRIs com-
pared to the group treated by placebo [24].

Serotonin (5HT) might also have a crucial role in binge eating behavior [25]. In 
both animals and humans, manipulations that decrease 5HT activity precipitate 
compulsive or binge eating [26]. More precisely, obese women with binge-eating 
disorder have lowered 5-HT transporter binding in the midbrain, and thereby a 
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reduction in the 5-HT re-uptake sites, which may contribute to concurrent or 
sequential periods of binge eating [27]. Even more convincing, the 5-HT transporter 
binding of the symptomatically recovered patients increased significantly (24%) 
after treatment [28]. Patients with BED have a high lifetime prevalence of major 
depression diagnosis and often present depressive symptoms coincident with ED [29].

RCTs against placebo have thus been tested in BED patients with citalopram 
[30], escitalopram [31], fluoxetine [32], fluvoxamine [33] and sertraline [34]. A 
significant reduction in binge-eating frequencies (except escitalopram) and BMI 
were observed, with an overall clinical improvement. A review of eight randomized, 
placebo-controlled trials [35] concluded on the positive action of SSRI in binge eat-
ing disorder.

Serotonin might therefore be affected, at least in part, in all types of eating disor-
der, but its role in the regulation of appetite relies on a vast number of scientific 
publications.

 Biological Analyses of the 5-HT2A Receptors in Feeding 
Behaviors

Brain monoamine function in eating disorders has been studied in the acute state 
(which can be confounded by illness effects) and after recovery with specific ligands 
and positron emission tomography. These findings for anorexia nervosa have been 
synthesized into an explanatory model, where 5-HT2A receptors are reduced and 
5-HT1A receptors are increased in both the acute and recovered state, and dopamine 
receptors (DA2) within the striatum are increased after recover [36, 37]. 5HT2A 
could therefore be a trait-related disturbance, when dopamine abnormalities could 
be state-dependent. The 5-HT2A receptor was indeed one of the most studied recep-
tor in eating disorders.

 Roles of 5-HT in Feeding Behavior

Serotonin (5-HT) is an old phylogenetically neurotransmitter which recovers vari-
ous functions from invertebrates to vertebrates. Both peripheral and central 5-HT 
systems contribute to energy homeostasis, and serotonin is certainly the neurotrans-
mitter the most studied in the field of feeding. Its involvement in the control of food 
intake is well recognized in many species [38] and most of the molecules used in the 
pharmacological treatment of eating disorders and weight status are known to have 
a serotonergic component. As soon as in 1977, Blundell reviewed the experimental 
evidences showing the involvement of serotonin in feeding behavior [39]. He pro-
posed that increasing the availability of 5-HT in the synaptic cleft or activating the 
5-HT receptors result in a reduction of food consumption whereas a reduced 
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availability of the neurotransmitter or a blockade of its receptors could induce 
feeding. This was further demonstrated using pharmacological agents that increased 
5-HT neurotransmission either by selectively inhibiting its reuptake, such as selec-
tive serotonin reuptake inhibitors (SSRIs) like fluoxetine [40], or by enhancing 
5-HT release and inhibiting its reuptake, such as d-fenfluramine [41]. Interestingly, 
the majority of compounds reviewed in the guidelines for the pharmacological treat-
ment of eating disorders are acting, at least partially, through the blockade of the 
serotonin transporter; either as tricyclics (clomipramine, imipramine, amitryptiline, 
desipramine), SSRI (citalopram, fluoxetine, fluvoxamine, sertraline,) or SNRI (ven-
lafaxine) with few exceptions (mirtazapine, moclobemide, reboxetine, bupropion, 
mianserin) [42]. All these compounds reduced food intake in both humans and 
experimental animals [43, 44] clearly evidencing that 5-HT was playing a key role 
in the brain mediation of satiety and feeding.

The serotoninergic neurons are located in the midbrain and brainstem raphe 
nuclei [45]. Their projections are diffused and concerned about all the brain areas 
including the hippocampus, the hypothalamus, the cerebral cortex (prefrontal, pari-
etal, occipital and cingulated), the basal ganglia and more caudally, the cerebellum 
and the spinal cord. Among these projections, those originated from the anterior 
raphe nuclei and projecting to the hypothalamus give rise to interactions between 
the amine and neuroendocrine systems linked to food regulation. Some of these 
interactions implicate neuropeptide Y (NPY) neurones located in the hypothalamic 
arcuate nucleus. Indeed, NPY neurons are ones of the first target of feeding periph-
eral signals, thereby NPY is considered as the most potent brain stimulator of food 
intake through a complex hypothalamic network projections [46, 47]. This orexi-
genic neuronal population may indirectly contribute to central anorectic effects of 
serotonin since mRNA expression of NPY is decreased following a chronic sys-
temic administration of dl-fenfluramine in rats and application of 5-HT1B agonists 
hyperpolarize these neurons through activation of Gi protein [48, 49].

Finally, some data underlined a positive correlation between body mass index 
and 5-HT2A receptor binding in the cerebral cortex [50]. However, peripheral 5-HT 
might have opposite functions to central 5-HT in the regulation of energy homeosta-
sis and weight regulation. Indeed, it has been proposed that central 5-HT could act 
as an anorexigenic neurotransmitter by activating the 5-HT2C receptors in the brain, 
while in periphery, 5-HT could inhibit thermogenesis through 5-HT3 receptors in 
brown adipose tissue (BAT) and increased lipogenesis through 5-HT2A receptors in 
white adipose tissue (WAT) [51].

 Eating Disorders and 5-HT

The development of antagonists and agonists of the 5-HT receptors has helped to 
better understand the dysregulated mechanisms of food intake control in the case of 
obesity or eating disorders like anorexia nervosa (AN) as proposed 30 years ago 
[26]. As recently reviewed by Kumar and Mann [52], the multiplicity of 5-HT 
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receptors and subtypes in the brain supported the diversity of functions in which 
5-HT is involved. Among the 15 receptors engaged in 5-HT signaling, several of 
them, namely the 5-HT1B, 5-HT2A, 5-HT2C, 5-HT4 and 5-HT6 subtypes, are impli-
cated in the pathophysiology of eating disorders. The very first ones to be supposed 
to play a key role in feeding regulation were the 5-HT1 and 5-HT2A/2C receptors, 
which were described to modulate the interactions between 5-HT and the hypotha-
lamic neuroendocrine system [53]. The involvement of 5-HT in the control of feed-
ing have been showed to occur through the modulation of neurons located in the 
arcuate nucleus where 5-HT1B and 5-HT2C receptors are mainly expressed (see 
review of [54]). The 5-HT role in the reward control of food intake has also been 
described to involve 5-HT4 and 5HT2A receptors located in the nucleus accumbens, 
ventral pallidum, left hippocampal region and orbitofrontal cortex [55, 56].

In anorexia nervosa, the 5-HT system is altered. In fact, 5-HT contents as well 
as plasma tryptophan levels are lower than in controls [57, 58] and brain imaging 
studies described changes in the 5-HT1A and 5-HT2A receptor binding in cortical 
and limbic areas such as amygdala or hypothalamus in ill patients [59–61]. Indeed, 
the activity of 5HT1A receptors appears to increase, while 5HT2A activity decreases, 
more particularly in the prefrontal cortex, in both ill anorexic patients and recov-
ered patients. These altered serotoninergic pathways might be linked to alteration 
in the reward process of food intake and in the level of anxiety, behavioral inhibi-
tion or body image distortion, other behavioral modifications usually observed in 
patients beside the refusal to eat, hyperactivity or excessive exercise, or impaired 
impulse control. As mentioned by Kaye [62], numerous evidences exist illustrating 
the interaction between 5-HT1A and 5-HT2A receptors in the brain. As an example, 
Krebs-Thomson and Geyer [63] described how the interaction between 5-HT1A and 
5-HT2A receptors regulates the inhibition of exploration of novel environments pro-
duced by either 5-HT1A or 5-HT2A receptor agonists in rats. Such a behavioral inhi-
bition is also described in ill anorexia nervosa patients as harm avoidance, a 
multifaceted temperament trait that contains elements of anxiety, inhibition, and 
inflexibility [64].

Interestingly, a special focus on 5-HT2A receptors originated from genetic data 
obtained from AN patients where 5-HT2A receptor and 5-HT transporter gene poly-
morphisms were described to increase the risk of AN [65, 66]. However, the role of 
this receptor in appetite control remains unclear. The hypophagic effect of agonists 
acting at 5-HT2A receptors such as mCPP (1-(3-chlorophenyl)piperazine di hydro-
chloride) or DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) has been 
abundantly reported in the literature at the end of the twentieth century. mCPP had 
been shown to increase latency to feed, reduced the size of the first meal and feeding 
rate during that meal, effects intake that were as profound on water as those on food 
intake [67, 68]. DOI also produced dose-related decreases in 1-h food intake in the 
food-deprived paradigm [69]. However, the use of selective 5-HT2 receptor antago-
nist compounds evidenced afterwards that most of those effects could be attributed 
to the 5-HT2C -and not 5-HT2A- properties of these drugs.
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In their review, Kumar and Mann reported the role of the 5HT2A receptor in 
psychiatric disorders like schizophrenia, post-traumatic stress disorder or major 
depression that has rendered this receptor a main target for different generations of 
antipsychotic drugs [52]. 5-HT2A receptors have been implicated in the genesis of, 
as well as the treatment of, psychosis, negative symptoms, mood disturbance, and 
extrapyramidal symptoms. The antipsychotic effect of several antipsychotics such 
as clozapine has been attributed, at least in part, to its ability to block excessive 
5-HT2A receptor stimulation without excessive blockade of D2 receptors [70]. 
Interestingly, several atypical antipsychotics which antagonize 5-HT receptor sub-
type are known to affect feeding behavior. In particular, it has been reported that a 
single injection of risperidone or aripiprazole, which have binding affinities to 
5-HT1A, 2A, 2B and 2C receptors, decreased food intake in mice [71]. In this study, it 
was hypothesized that the effect of 5-HT was indirect, through the inhibition of 
histamine release via 5-HT2 receptors and that antipsychotics enhanced hypotha-
lamic histamine release by blockade of 5-HT2 receptors resulting in a H1 recep-
tor–related anorexia. However, most of the studies reported an increase in food 
consumption under antipsychotics, which could lead to obesity. It is the case after 
both typical antipsychotics such as chlorpromazine and haloperidol, and atypical 
antipsychotics such as clozapine, olanzapine, risperidone or sulpiride which all 
induced hyperphagia. The general consensus is that clozapine and olanzapine are 
associated with the greatest effects on weight gain and decreased insulin sensitiv-
ity, followed by risperidone and quetiapine [70]. The mechanism of these effects is 
not completely understood but it is believed to result from a complex interaction 
between several pharmacologic actions of these drugs. Recent evidence suggests a 
role of the α1 adrenoceptor and 5-HT2A receptor in the metabolic effects of atypical 
antipsychotics. This is particularly true for clozapine which hyperphagia-like 
effect was blocked by quipazine, a 5-HT receptor antagonist that bind to 5-HT2A 
receptors [72].

 Rodent Models for Exploring Feeding Behaviour and Eating 
Disorders

The use of appropriate animal models is necessary to better understand the precise 
role of 5-HT receptors, and in particular the 5-HT2A subtype, both in food control or/
and in the reward process in conjunction with the dopaminergic system. Several 
models of eating disorders have been extensively described in recent reviews [73, 
74], but in the case of anorexia nervosa, the development of appropriate animal 
models is rendered difficult due to the complex etiology of the disease. In rodents, 
genetic and environmental models were developed with varying degrees of 
success.
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 Environmental Models

In environmental models of eating disorders and particularly of anorexia nervosa, 
various models were described (see recent reviews of [73, 74]). In the dietary 
restriction models, different protocols can be achieved by manipulation of the sever-
ity of food restriction, of the diet composition (low- or free-fat, low carbohydrate, or 
amino-acids deficiency diets), of the schedule of feeding with either a fixed percent-
age of the food that animals normally consume during 24-h or a fixed amount of 
time to eat food delivered ad libitum. The latter model was called the Separation 
Based Anorexia model (SBA) [75, 76]. The stress-induced appetite loss models 
apply acute or chronic stressors to induce reduction of food intake. Amongst the 
procedures classically used, acute stressors are for example tail pinch, cold expo-
sure, social stress, whereas chronic stressors include chronic mild stress procedure 
[77], or separation stress (also used in the SBA model). Beside the food restriction 
and stress, another feature usually observed in anorexia nervosa patients is the phys-
ical activity. The “activity based anorexia” model (ABA) and its variants include 
this last parameter and is currently one of the best characterized model of “anorexia 
nervosa”. It combined a limited access to food (1–2 h according the species) with 
free access to a wheel. This rodent model showed rapidly a decrease in food intake, 
self-starvation in parallel with an increase of physical activity, and increase of activ-
ity just before food delivering, called food-anticipatory behavior, also observed in 
AN patients [78], and considered an equivalent to the search of food. In a variation 
of this model, mice receive a fixed percentage of the amount of food (50%) eaten by 
mice fed ad libitum and have unlimited access to running wheels [79]. Despite the 
disappearance of self-starvation, this protocol allows the follow-up of all the meta-
bolic (like osteopenia or osteoporosis) and brain alterations on the long-term (up to 
10 weeks of protocol). In this environmental model ABA, the decreased food intake 
is associated in particular with increased 5-HT levels in hypothalamus [80]. 
Moreover, the levels of 5-HT in the nucleus accumbens remained low along the day 
compared to fed rats and the initiation of food anticipatory behavior failed to 
increase accumbal 5-HT release [81]. D-fenfluramine, a 5-HT2C receptor agonist 
leading to suppression of appetite by its action on the hypothalamic arcuate pro-
opiomelanocortin neurons, has no effect in this model on food intake and activity 
except hypodypsia [82]. Since rats often combine food and water intake, the reduc-
tion of water intake in ABA rats observed in this study may be exaggerated as com-
pared with ad libitum fed rats which eat more. Once again, the literature poorly 
documented the precise role of 5-HT2A receptor in environmental models of eating 
disorders. However, it should be noted that chronic hyperphagia increased hypotha-
lamic 5-HT2A, 5-HT2C and 5-HT1B gene expression, whereas inactivation of 5-HT2A 
receptors inhibited overfeeding and obesity in A(y) mice expressing the ectopic 
agouti protein [83, 84].
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 Genetic Models

Among genetic models, two categories are commonly used: genetically engineered 
models, which consist in the constitutive or inducible deletion or overexpression of 
candidate genes and spontaneous mutations like the mutant anx/anx mice.

There are currently very few genetically modified animal models focused on 
5HT receptors in relation to feeding behavior. Some models manipulating the 
genetic expression of one of these 5-HT receptors gave evidence about their involve-
ment in the control of food intake and particularly on the motivation to eat. Mice 
knock-out for 5-HT4 receptors displayed a decreased “anorexia-like” behavior in 
response to restrained stress as well as an attenuation of novelty-induced explor-
atory activity [85]. More specifically, stimulation of 5-HT4 receptor in the nucleus 
accumbens, striatal structure involved in the reward pathway, increased satiety in 
fed mice and reduced the physiological drive to eat after food deprivation [86]. 
Similarly, the use of specific antagonist or the inactivation of 5-HT4 accumbal 
receptors by si5-HT4R increased the food intake in fed mice but not in motivated 
mice (food-deprived). These data clearly demonstrate the involvement of these 
receptors in the physiological drive to eat. Moreover, mice lacking 5-HT1A receptor 
or wild type mice chronically treated subcutaneously with a 5-HT1A/5-HT7 receptor 
agonist decreased their food intake [87]. Likewise, food restricted (20%, 3 days) 
mice lacking 5-HT1B receptor self-imposed food restriction compared to wild type 
mice when standard food ration is given after the restriction period and showed 
locomotor hyperactivity [88]. Regarding 5-HT2A receptors, the consequence of their 
deletion in relation to food has not been deeply studied because 5-HT2A knock-out 
mice did not develop any modification in food intake or body weight [89]. However, 
in the case of the 5-HT2C subtype, mice with deletion of this receptor display an 
overweight phenotype due to appetite disruptions, thereby establishing a clear role 
for this receptor in the serotonergic control of appetite [90]. Its function in feeding 
regulation was further confirmed by the study of mice displaying the full edited 
form of 5-HT2C receptor, which were characterized by a massive 5-HT2C membrane 
expression, and increased energy expenditure and decreased body fat/cholesterol 
levels [91] .

Data obtained in these experimental conditions open new issues to better under-
stand the role of these receptors to predispose to anorexia-like symptoms, but are 
often difficult to interpret due to the large number of receptors distributed through-
out the brain and the various effects they have depending on their location at synap-
tic level (pre- or post-synaptic). Taking into account these comments, the best way 
to elucidate the role of these receptors, in particular the 5-HT2A, in the feeding 
behavior and the drive to eat might be to use conditioned deletion or the cre-lox 
technology to avoid large effects that might be more the result of compensatory 
mechanisms than a real action of the neurotransmitter.

In the mutant anx/anx mice, which present a spontaneous mutation on the chro-
mosome 2, and are characterized by an emaciated appearance, a spontaneous reduc-
tion of food intake from the 5th postnatal day and a death by starvation around 
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3–5 weeks after birth [92], several studies reported a 5-HT hyper-innervation in 
various parts of the brain including frontal cortex, hippocampus or cerebellum that 
might contribute to the phenotype observed (for review see [93]). However, to our 
knowledge, no data described the evolution of the 5-HT receptors in this interesting 
model.

 Conclusions for Animal Models in Eating Disorders

Although early preclinical data described a clear role of 5-HT2A receptors in food 
regulation, the use of specific 5-HT2 ligands did not confirm these first data. Most of 
the ligands initially used acted actually through 5-HT2C receptors, and, at least at 
preclinical level, it is now clearly established that these 5-HT2C receptors are those 
which regulated food intake. However, given the various studies showing a clear 
link between changes in 5-HT2A receptors binding or polymorphisms in both 
anorexia and overweight individuals, it is legitimate to further perform experimental 
investigations to address the regulation of this receptor in different situations of 
feeding (overeating or scheduled food restriction) to better understand both its pre-
cise role in the homeostatic and non-homeostatic control of food intake.

 Genetic of Eating Disorders and 5-HT2A Gene

Among the neurobiological pathways involving monoamines that could be involved 
in the eating disorders, the serotonin pathway could be altered, especially in anorexia 
nervosa (AN). One of the candidate in this pathway is the serotonin receptor 2A 
(5-HT2A) that is encoded by the HTR2A gene located on the 13q14-q21 chromo-
somal band. A linkage was found between the “drive for thinness” phenotype and 
this chromosomal region [94]. The HTR2A gene encompass less than 70 kilobases 
(kb) and more than 2200 polymorphisms have been identified to date. The genomic 
structure of the gene is composed of two haplotype blocks, one is covering the 
majority of the gene and its promoter region and the other is encompassing 15 kb of 
the last intron and the last exon. The most investigated variant is the single nucleo-
tide polymorphism (SNP) rs6311, usually named −1438G/A, a promoter variant 
located 1438 nucleotides before the transcription start of the gene where the com-
mon G allele is changed to an A allele.

 Case Control Study

A first association between HTR2A gene and anorexia nervosa was found with the 
promoter polymorphism −1438G/A in a population of 81 AN patients from UK 
compared to 226 normal white controls including 88 females [95]. The frequency of 
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the A allele (or the AA genotype) was significantly higher in patients compared to 
all controls or only female controls (respectively 0.51 & 0.31 in AN versus 0.41 & 
0.15 in controls, and 0.42 & 0.125 in female controls only). Association study was 
also reported in an Italian sample of 77 AN patients, including 43 RAN subtype and 
34 ANBP subtype, compared to 107 female controls [96]. A significantly higher 
frequency of the A allele and AA genotype was reported in patients (0.57 and 0.299) 
compared to controls (0.36 and 0.09). Interestingly, the association was driven by 
the subset of RAN patients where the frequencies of the A allele and AA genotype 
were the highest, respectively 0.66 and 0.42. Another work also observed an asso-
ciation between AN and the 5HT2A promoter variant in two independent cohorts, 
respectively of 68 AN patients versus 69 controls from USA, and 20 AN patients 
from Italy [97].

In contrast, no evidence for association was observed in a population of 100 AN 
patients from Germany [98]. In fact, a similar distribution of the frequency of the A 
allele was reported in the AN German patients (0.40) compared to 101 underweight 
non-AN subjects (0.43), 254 obese patients (0.42) or the UK female controls from 
Collier et al. [95]. A lack of association between AN and rs6311 was also observed 
in an independent UK cohort of 152 AN patients compared to 150 female controls 
[99]. In AN patients, the frequencies of the A allele (0.48) and the AA genotype 
(0.25) were not significantly different from those of controls, respectively 0.42 and 
0.20. A work on an independent cohort of 78 AN patients compared to 170 controls 
was also not able to detect any association between any allele or genotype of rs6311 
and AN [100]. This study included a meta-analysis of the six performed association 
studies, and failed to show an association either for a genotype nor for an allele 
[100]. Then, 99 bulimia nervosa (BN) patients were also compared to 170 controls 
and, no evidence for association was observed [100]. Absence of association 
between AN and −1438G/A 5HT2A promoter polymorphism was also reported in a 
Japanese population by comparing 62 patients to 374 controls [101]. However, a 
significant association was observed for eating disorders when 62 AN and 110 BN 
patients were combined and compared to 374 controls. Furthermore, no evidence 
for association was observed for rs6311 and AN, nor in 75 AN Japanese patients, 
including 37 RAN and 38 BPAN cases, when compared to 127 controls [102]. This 
work did not find an association with the “restrictor” phenotype in the 44 AN 
patients [102]. No association was reported in a French sample of 145 AN patients 
compared to 98 controls [103]. However, the authors reported a significant excess of 
the A allele in AN patients with an older age at onset, suggesting that the A allele of 
rs6311 could be a “modifying factor”, potentially explaining variations of frequency 
the A allele across the different published cohorts [103].

Sorbi’s group increased its Italian sample and confirmed an association while 
comparing 148 AN patients to 115 controls [104]. The AA genotype and the A allele 
were significantly more frequent in AN patients (25.7% and 52%) than in controls 
(10.4% and 36%). The association was driven by the RAN subset of 74 patients 
where AA genotype and A allele were the highest, respectively 35.1% and 60.1%. 
Association was also reported with an excess of the A allele for 86 BN binge/purg-
ing patients and 54 binge eating disorder (BED) patients compared to 115 controls, 

5-HT2A Receptors in Eating Disorders



364

but no difference was observed when comparing patients with 132 obese subjects 
[104]. However, other groups still failed to find an association between −1438G/A 
5HT2A promoter polymorphism with AN, RAN subset or BN, in samples from dif-
ferent origins [105–107]. As AN have unstable subtypes throughout lifetime (the 
majority of patients switch from one form to the other), the definition of subtypes 
might also have an important impact, especially as some studies used a minimal 
length to conclude for a stable subtype, while others relied only on the present form 
during the inclusion process of the protocol.

In conclusion, although an increased frequency was found for the A allele of the 
5-HT2A gene (−1438G/A polymorphism, in the promoter region), in many studies, 
and in different types of eating disorders, there are even more or larger negative 
studies, and the meta-analyses are usually concluding in favor of an absence of 
significant role for this allele.

 Family-Based Study

To address the controversy results of the case control studies of −1438G/A 5HT2A 
promoter polymorphism in AN and to reduce both the risk of false positives and the 
impact of a lack of statistical power due to small samples or population stratifica-
tion, a large cohort of 316 AN families from six European centers was analyzed, 
using transmission disequilibrium test (TDT) for each cohort and for the entire 
group of families [108]. No excess of transmission of the A allele was observed with 
such TDT approach. No evidence for association was observed using the alternative 
haplotype relative risk method. Finally, no heterogeneity of the A allele frequency 
between the six samples was found, either according to minimal lifetime BMI, or 
according to age at onset [108].

Other variants among the HTR2A gene were investigated, including amino acid 
substitutions Thr25Asn and His452Tyr (rs1805055 and rs6314), and case control 
studies have showed no evidence for association with AN [98, 109].

 Genome-Wide Association Study

Recently, international consortiums have emerged to contribute to the creation of 
large cohorts of patients and controls to perform high throughput genetic study at 
the pan-genomic level, the genome-wide association study (GWAS). Thus, 5151 
SNPs of 182 candidate genes, including 55 in the HTR2A gene, were screened in 
1085 AN patients (including 421 RAN) compared to 677 controls [110]. None of 
the HTR2A SNPs were in the top 25 associated SNPs, with a minimum trend P-value 
of 1.9 × 10−4. In a first GWAS investigating more than 598,000 SNPs in 1033 AN 
patients (including 394 RAN) compared to 3733 pediatric controls, no evidence for 
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association was found for HTR2A SNPs [111]. Recently, another GWAS was per-
formed, including patients from all around the world, for which 1,185,559 SNPs 
were genotyped in 2907 AN patients (1606 RAN and 1445 BPAN cases) and 14,860 
controls. 287 SNPs showed evidence for association in the discovery stage (i.e., 
with a p-value below <10−4), but none were located among the HTR2A gene [112] 
(Table 1).

The A allele of −1438G/A HTR2A polymorphism was thus reported as being 
associated to AN and BN with discrepancies. This variant may play a role as a modi-
fying factor potentially explaining variations of frequency across cohorts [103]. 
This A allele of rs6311 was also associated with a reduction of energy and fat intake, 
according to a work performed in 370 children and adolescent of the Stanislas fam-
ily study [113]. The AA homozygote subjects, either males or females, had a 
reduced food intake of energy, with less fat, especially monounsaturated and satu-
rated fat. Thus, additional studies investigating more specific phenotypes of food 
intake, and perhaps also energetic balance and metabolism of the analyzed subjects, 
are needed to conclude on the role of HTR2A in the pathophysiology of eating 
disorders.

 Conclusions

Serotonin has a major role in appetite and energy regulation, the impact of stress 
and might be a core neurotransmitter in many biological aspects of the three main 
eating disorders (anorexia nervosa, bulimia nervosa and binge eating). Different 
serotonin receptors have been studied, with a major excitement for one of the poly-
morphism of the gene coding for the 5-HT2A receptor in anorexia nervosa. But even 
if more than four positive association studies were published [108], the initial 
excitement vanished away because of a large set of non-replications [108], nega-
tive meta-analyses [9], the absence of an excess of transmitted alleles from hetero-
zygous parents to affected probands [108] and no signals from the largest GWAS 
performed up to now on anorexia nervosa [112]. This does not mean that the 
5-HT2A receptor is having no role in any eating disorder, but that its contribution, if 
any, might be too small to be detectable when many types of patients are being 
gathered. One example of such a limited role could be a modifying rather than a 
vulnerability role. We showed for example [103] that anorexia nervosa patients 
with the A allele of the 5-HT2A gene had a significantly later age at onset of the 
disease (p = 0.032) and was also transmitted with an older age at onset (p = 0.023) 
using a quantitative-trait TDT approach. The A allele may thus act as a modifying 
factor (delaying onset), potentially explaining variations of allele frequency across 
samples, in which differences in average age at onset are not only possible, but also 
expected.
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Abstract 5-Hydroxytryptamine 2A receptors (5-HT2ARs), have been implicated in 
various psychiatric and neurological disorders, including epilepsy. Interestingly, 
epileptic patients commonly present comorbid psychiatric symptoms, and a bidirec-
tional link between depression and epilepsy has been suggested. Therefore, the 
alteration of 5-HT2A signalling might represent a common anatomical and neurobio-
logical substrate of both pathologies.

After a brief presentation of the role of 5-HT in epilepsy, this chapter illustrates 
how 5-HT2A receptors may directly or indirectly control neuronal excitability in 
networks involved in different types of epilepsy. It also synthetizes the preclinical 
and clinical evidence, demonstrating the role of these receptors in antiepileptic 
responses.
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DG Dentate gyrus
DOI 2,5-Dimethoxy-4-iodoamphetamine
DRN Dorsal raphe nucleus
eGABA Extrasynaptic GABAA

GAERS Genetic absence epilepsy in rats from Strasbourg
GPCRs G protein coupled receptors
LC Locus coeruleus
MDA Maximal dentate activation
mPFC Medial prefrontal cortex
MRN Medial raphe nucleus
NE Norepinephrine
NRT Nucleus reticulari thalami
PAG Periaqueductal grey
SERT Serotonin transporter
SSRI Selective serotonin reuptake inhibitor
SUDEP Sudden unexpected death in epilepsy
SWDs Spike and wave discharges
VB Ventrobasal thalamus
VTA Ventral tegmental area

 Introduction

Serotonin (5-HT) is an important neurotransmitter in the brain, as it is involved in 
many psychiatric and neurological diseases, including epilepsy. By activating its 
fourteen receptor subtypes, 5-HT may directly or indirectly depolarize or hyperpo-
larize neurons by modulating various g-protein coupled channels, controlling the 
release of other neurotransmitters and the activation of intracellular pathways [1, 2]. 
Therefore, it is not surprising that 5-HT is involved in the sequence of events that 
can turn a normal neuronal network into a hyperexcitable network [3–5]. Apart 
from epileptogenesis, 5-HT likely plays a role in the initiation, propagation and 
sustainment of seizure activity. Here, we will focus on the evidence of a 5-HT2AR 
control of epilepsy. 5-HT2ARs are G protein-coupled receptors (GPCRs), which are 
members of the metabotropic 7 transmembrane-spanning receptors superfamily. In 
particular, 5-HT2ARs, along with 5-HT2B and 5-HT2C, belong to the 5-HT2 receptor 
subfamily that consists of three Gq/G11-coupled receptors. 5-HT2ARs in general 
mediate excitatory effects of 5-HT on CNS neurons [6, 7].

Conventionally, epilepsy syndromes are classified into two distinct categories, 
focal and generalized, according to seizure onset (arising from a specific brain area 
or from both hemispheres), electroencephalographic and behavioural  characteristics 
and the brain circuitry that sustain the paroxysms [8]. Focal and generalized epi-
lepsy may also differ in terms of the pathological, neurochemical imbalance 
observed in the brain areas between glutamate and γ-aminobutyric acid (GABA) 
function. This leads to a different therapeutic approach; for instance, drugs that 
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increase extracellular GABA levels and/or GABA transmission are first choice in 
focal/generalized convulsive epilepsy, whereas they exacerbate generalized non- 
convulsive seizures. Indeed, gabapentin, a structural GABA analogue, which 
increases GABA synthesis, can exacerbate absence seizures and is not indicated in 
non-convulsive epilepsies [9]. Consistently, we have shown that an increase of tonic 
GABAA inhibition is a conditio sine qua non for the generation of absence seizure 
in rodents [10–12].

The majority of the focal and generalized seizures are convulsive (60–70%), and 
temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy with 
this type of seizures. TLE is traditionally associated to many disorders localized in 
the cortex (neocortex and entorhinal cortex), the hippocampal formation, or both. 
Moreover, histological reports of TLE patients and animal models of epilepsy have 
consistently demonstrated that pathology is not limited to these areas but is also 
found in the thalamus; therefore, the epileptogenic network in TLE is broad [13].

The remaining seizures are generalized non-convulsive (e.g., absence seizures) that 
because are mostly not associated with obvious cell death or other tissue pathology are 
classified are idiopathic and typically associated with genetic abnormalities [14].

Typical absence seizures of idiopathic generalized epilepsies consist of sudden, 
brief periods of loss of consciousness that are accompanied by synchronous, gener-
alized spike and wave discharges (SWDs) in the EEG [14]. SWDs originate from 
abnormal firing in thalamic and cortical networks, and GABAA inhibition is integral 
to their appearance [10, 14].

The involvement of the serotonergic system in epilepsy was suggested in the late 
1950s [15]. All the brain regions involved in epilepsy receive 5-HT innervation and 
express different 5-HTRs. Using in situ hybridization, western blot, and immuno-
histochemical analyses in rodents, 5-HT2AR mRNA or protein have been identified 
in various brain regions involved in focal epilepsy, such as the amygdala, the hip-
pocampus [16, 17], entorhinal and temporal cortex, the frontal and somatosensory 
cortices, and the brain circuitry of absence epilepsy, such as various nuclei of the 
thalamus, i.e. ventrobasal (VB) thalamus and nucleus reticulari thalami (NRT) [18]. 
5-HT2ARs have also been detected in the majority of monoaminergic nuclei; i.e., the 
median and dorsal raphe nucleus, the locus coeruleus, and the ventral tegmental 
area (VTA) [19–21], which strongly suggests their indirect role in regulating cell 
normo- and hyperexcitability via monoaminergic systems. Moreover, 5-HT2ARs 
located somatodendritically or on nerve terminals of glutamatergic and GABAergic 
neurons might indirectly control network excitability [22].

 5-HT2A Receptor Modulation of Focal (Limbic) 
and Generalized (Convulsive) Seizures

In general, drugs that elevate extracellular 5-HT levels, such as 5- hydroxytryptophan 
and 5-HT reuptake blockers, inhibit seizures and increase seizure threshold [23, 24]. 
Conversely, depletion of brain 5-HT lowers the threshold for audiogenically-, 
chemically-, and electrically-evoked convulsions [25]. More recently, an increased 
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threshold to kainic acid-induced seizures was observed in mice with genetically 
5-HT hyperinnervation [26]. These findings were corroborated by data showing that 
mice lacking the 5-HT1A [27, 28], 5-HT2C [29], 5-HT4 [30], and 5-HT7Rs [31] were 
more prone to develop chemical and electrical-induced seizures. On the other hand, 
rats which had 5-HT2AR knock-down by antisense oligonucleotide treatment [32] 
had significantly reduced convulsions and body tremors induced by tryptamine. 
Nevertheless, since only 5-HT2CR KO mice are prone to develop spontaneous con-
vulsive seizures [33], and seizures have not been reported with pharmacological 
blockade of different 5-HTRs, adaptive changes involving different mechanisms 
may play a role in the low seizure thresholds observed in different 5-HTR KO mice. 
Therefore, it seems that serotonergic neurotransmission by activating different 
5-HTRs suppresses neuronal network hyperexcitability and seizure activity [3] 
although opposite effects have also been reported, especially for 5-HT3/4/6/7Rs [34].

The role of pharmacological activation of 5-HT2ARs in epilepsy modulation is far 
from being well established (Table 1). However, it might be an important and poten-
tial target in light of recent evidence suggesting that their activation might not only 
be anticonvulsant but also capable of reducing seizure-related mortality due to sud-
den, unexpected death in epilepsy (SUDEP) [35], which is the leading cause of 
death in patients with refractory epilepsy [46]. In addition, we recently showed that 
mCPP and lorcaserin, two 5-HT2A/2CR agonists with different pharmacological 
 profiles [47, 48], stop the elongation of maximal dentate activation (MDA) after- 
discharge (AD) induced by repetitive perforant path electrical stimulation recorded 
in granular cell layer of the hippocampal dentate gyrus (DG) of urethane- anesthetized 
rats. The elongation of the MDA has been considered an electroencephalographic 
representation of epileptogenic phenomena that occurs after the first electrical insult 
[49], [50]. mCPP and lorcaserin effects on MDA were not blocked by SB 242084 
[38], a selective 5-HT2CR antagonist [51, 52], suggesting the involvement of other 
5-HTRs. Interestingly, preliminary results from our laboratory seem to indicate that 
mCPP and lorcaserin effects on MDA elongation might be due to the activation of 
5-HT2ARs rather than 5-HT2CRs since TCB-2, a potent 5-HT2A agonist [53], mim-
icked mCPP and lorcaserin effects (unpublished observations). Conversely,  evidence 
from other groups showed that the mixed 5-HT2A/2C agonist 2,5-Dimethoxy- 4-
iodoamphetamine (DOI) strongly facilitated kindling development and reduced the 
number of stimulations needed to produce generalized seizures in the amygdala 
kindled rats [42], while it was ineffective in all the parameters of hippocampal par-
tial seizures generated by low-frequency electrical stimulation of the hippocampus 
in rats [54]. Similarly, Wada and colleagues showed that in feline  hippocampal- kindled 
seizures, DOI had no effect, displaying only a tendency to be anti-epileptic [39]. In 
the same model, the selective 5-HT2AR antagonist, M100907 [55], had no effect on 
seizure thresholds and duration and latency of secondary ADs [37]. However, the 
1 mg/kg dose of MDL 100907 significantly increased the primary AD duration, sug-
gesting that at this dose, MDL 100907 increased seizure severity in this model 
although the high AD control levels might have invalidated the 5-HT2AR antagonist 
effect [37]. The 5-HT2A/2CR antagonist, ritanserin, and the preferential 5-HT2AR 
antagonist, ketanserin, decreased the threshold in the maximal electroshock  seizures 
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threshold (MEST) test in mice [36]. In other experimental models, 5-HT2AR antagonists 
failed to be effective in seizure control. Ritanserin was ineffective on kainic acid-
induced seizures [40], and ketanserin did not affect the seizure threshold for picro-
toxin [43] or ethanol withdrawal seizures in mice [44]; instead, it antagonized 
cocaine-induced convulsions in a dose-dependent manner [41]. Moreover, the 
5-HT2A/2CR and calcium antagonist, dotarizine [56], inhibited electroconvulsive 
shock-induced seizures but had no effect on pentylenetetrazol (PTZ)-induced con-
vulsions in rats [45].

 5-HT2A Receptor Modulation of Generalized (Non-convulsive) 
Seizures

As far as the 5-HT control of idiopathic generalized absence seizures is concerned, 
most of the limited available evidence has been obtained in a well-established poly-
genic rat model of absence seizures, the WAG/Rij rats [57], with 5-HT1A, 5-HT2C, 
and 5-HT7Rs appearing as the most critical for the expression of this form of epi-
lepsy [58, 59]. Briefly, activation or inhibition of 5-HT1A and 5-HT7Rs, respectively 
increases or decreases SWDs. While 5-HT2CR agonists inhibit epileptiform activity, 
5-HT2CR antagonism does not produce any effects on absence seizures [59, 60]. 
SSRIs such as fluoxetine and citalopram caused a moderate (non-significant) 
decrease in SWDs, which was inhibited or potentiated by pre-treatment with the 
5-HT2CR antagonist SB 242084 and the 5-HT1AR antagonist, WAY-100635, respec-
tively [59]. This suggests that 5-HT binding both 5-HT1A and 5-HT2CRs does not 
have an important role in absence epilepsy due to the counterbalancing activation of 
the pro-conversant 5-HT1AR and anti-convulsant 5-HT2CR. On the other hand, the 
role of 5-HT2ARs has not been investigated in WAG/Rij rats yet. In another genetic 
animal model of absence epilepsy, the Groggy (GRY) rats [61], increasing 5-HT 
levels by treatment with the 5-HT reuptake inhibitors, fluoxetine and clomipramine, 
inhibited SWD generation, an effect mimicked by DOI and blocked by ritanserin 
pre-treatment [62].

There are two types of absence epilepsy observed both clinically in children and 
experimentally in rodents: typical and atypical [63]. Atypical absence seizures 
involve thalamo-hippocampal circuitry, while the epileptiform activity of the typical 
absence seizures is confined to thalamocortical neuronal pathways, sparing limbic 
circuitry [64]. The pharmacological profiles of the two absence types are the same 
because anti-absence drugs act upon thalamic circuitry which is common to both 
typical and atypical absence seizures. Indeed, anticonvulsant drugs that act through 
GABAergic mechanisms exacerbate typical and atypical absence seizures both clin-
ically and experimentally [65]. In the atypical absence seizures induced by AY-9944, 
DOI reduced the total duration and number of SWDs, where ketanserin exacerbated 
the number of SWDs. On the other hand, in contrast to the evidence obtained in 
WAG/Rij rats, 5-HT2CR activation by mCPP had no effect on total duration or num-
ber of SWD in a model of atypical absence epilepsy [66].
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In contrast to these findings, earlier evidence had shown that serotonergic 
 neurotransmission and 5-HT2ARs did not appear to be involved in the pathogenesis 
or control of absence seizures in another well-established genetic rat model, the 
Genetic Absence Epilepsy in Rats from Strasbourg (GAERS) [67, 68]. Although 
this discrepancy could be simply due to differences between the two experimental 
models, it is more likely explained by the lack of selectivity of the serotoninergic 
drugs that were used in the earlier study in GAERS. The role of 5-HT and especially 
the different areas in which the modulation of absence seizures might occur have 
not been examined thoroughly and are currently the subjects of investigation in our 
laboratories. We recently re-evaluated the effects of pharmacological manipulation 
of 5-HT2Rs in the expression of absence seizures in GAERS, using selective 5-HT2A 
drugs [69].

The potent 5-HT2A agonist TCB-2 produced a drastic decrease in the time spent 
in seizures and reduced the occurrence and length of SWDs in GAERS, which, at 
the higher dose, persisted through the 2-hour observation window. The block of 
absence seizures was accompanied by typical 5-HT2A-R mediated behaviours in 
rodents (e.g., wet dog shakes, head twitches) [70, 71]. Of importance, the effect of 
TCB-2 on both absence seizures and animal behavior was blocked by pretreatment 
with the 5-HT2A antagonist, MDL11,939, confirming that the effects were indeed 
driven by the activation of 5-HT2A receptors. Importantly, the 5-HT2A antagonists, 
MDL11,939 and M100,907, induced a small, albeit significant increase in the time 
spent in seizure, driven by an increase in seizure length. The possibility that either 
suppression or aggravation of seizures through 5-HT2AR activation or inhibition, 
respectively, supports the idea that these receptors tonically and phasically affect the 
occurrence of seizures in GAERS.

It is difficult to pinpoint the brain target(s) of 5-HT2AR agonists that form the 
basis of the modulation of absence seizures. However, since these receptors are dif-
fusely expressed in the thalamus and the cortex, direct changes in excitability in 
these areas could be hypothesized to be pivotal for the development and sustainment 
of absence seizures [14].

Although a recent study showed no immunohistochemical staining for the 
5-HT2ARs in thalamocortical (TC) neurons in the mouse dorsal lateral geniculate 
nucleus (dLGN) [72], 5-HT2AR mRNA was detected in GABAergic interneurons of 
the dLGN and the receptors were shown to control phasic GABAAR inhibition [73]. 
These authors also showed that the intracellular pathways that couple the 5-HT2Rs 
to the Ca2+-influx mechanism seemed to depend on the phospholipase C (PLC) sys-
tem without involving Ca2+ release or voltage-gated Ca2+ channels in the plasma 
membrane, and the effects of 5-HT2AR activation were critically dependent on the 
transient receptor potential (TRP) protein, TRPC4 [73]. We also showed that 
α-methyl-5-hydroxytryptamine (a 5-HT2A/2C receptor agonist) increased extrasynap-
tic GABAAR (eGABAAR) tonic and phasic inhibition in dLGN neurons in rats, an 
effect that seems to be mediated by 5-HT2ARs since it was blocked by pretreatment 
with ketanserin and not by SB 242084 [74]. The increased synaptic GABAergic 
modulation by 5-HT2ARs seems to be limited to the dLGN because it is present in 
somatosensory VB thalamus, where TCB-2 was incapable of modifying phasic 
inhibition but was capable of increasing tonic inhibition [75], probably because 
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interneurons are almost absent in rodent VB thalamus [76]. Again, this control is 
phasic because MDL11,939 did not have any effects on its own but blocked TCB-2 
effect. Nevertheless, MDL11,939 decreased the aberrant GABAA tonic current in 
GAERS [75], normalizing the gain-of-function of this current that is considered a 
necessary condition for the development of absence seizures [10].

Interestingly, it appears that different monoaminergic neurotransmitters, includ-
ing dopamine [77], can modulate GABAAR function in normal and pathological 
conditions of the CNS (see for a recent review [78]), likely acting on the phosphory-
lation state of GABAARs [79, 80].

The strong converging corticothalamic input, during SWDs in NRT neurons, 
produces bursts of excitatory postsynaptic potentials that trigger T-type Ca2+-
channel-mediated low-threshold spikes (LTS) and bursts of action potentials [81], 
leading to enhanced phasic inhibition and a tonic hyperpolarization in TC neurons 
[82]. Activation of the 5-HT2ARs in the NRT would cause depolarization and a shift 
in voltage dependency of the hyperpolarization activated cation current, Ih, associ-
ated a shift from bursts to single-spike activity [83]. During ictal activity, TC 
 neurons are generally silent [82, 84], as a result of much stronger corticothalamic 
excitatory inputs into NRT neurons compared to TC neurons. It would be thus be 
expected that during SWDs, the reduced NRT GABAergic input into TC neurons by 
5-HT2AR activation would produce a corresponding reduction in GABA release in 
the VB and thus in GABAA tonic current. However, we found that 5-HT2AR activa-
tion increased tonic current in the VB [75], an effect that should aggravate absence 
seizures. In contrast, the in vivo effect of systemic 5-HT2AR activation is a clear 
anti-absence effect. The effects of 5-HT2AR activation on CNS neurons is complex 
and they may mediate depolarizing effects of both principal excitatory and inhi-
bitory interneurons. It is thus impossible at this stage to pinpoint the precise site of 
action within the thalamocortical network that mediate the predominant anti- 
absence effect of systemically injected 5-HT2AR agonist. Moreover, 5-HT2ARs are 
highly expressed in different areas of the CNS that are known to indirectly affect the 
expression of absence seizures. For instance, 5-HT2ARs are found in the substantia 
nigra pars reticulata (SNr), basal ganglia, and ventral striatum, all areas which are 
known to regulate the expression and maintenance of absence seizures although 
they are not involved in their generation [85]. Moreover, 5-HT2ARs can modulate 
dopamine, 5-HT, and noradrenaline neuronal activity, changing the arousal state 
and thus reverting thalamic and cortical pathological oscillations [22, 86, 87].

Another common action of monoamine neurotransmitters in the thalamus is a 
depolarization of the membrane potential of TC neurons, causing rhythmic bursts to 
cease and tonic activity to commence [88]. The membrane depolarization caused by 
5-HT is to a large extent mediated by the inhibition of a leak of K+ conductance 
(IKL) [89] and by modulation of the hyperpolarization-activated nonselective cation 
current, Ih [90, 91]. 5-HT and α-methyl-5-hydroxytryptamine produced comparable 
membrane depolarization depending on Gq-coupled intracellular signalling cascades 
[72]. In support of this evidence, the local application of 5-HT in the NRT inhibited 
the burst firing of NRT neurons (associated with slow-wave sleep, inattentiveness, 
drowsiness), resulting in the occurrence of the single-spike activity that is a charac-
teristic feature of aroused and attentive states [83, 92]. The administration of the 
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5-HT2AR antagonist, ketanserin, blocked the switch from bursts to tonic NRT  
activity. Together, these findings suggest a serotonergic involvement in sleep- waking 
behaviour via modulation of pacemaking GABAergic neurons of the NRT [83, 92]. 
In fact, 5-HT shares with other neurotransmitters the ability to promote waking and 
to suppress rapid-eye-movement (REM) sleep. 5-HT2AR KO mice showed a signifi-
cant increase of waking and a reduction of non-rapid eye movement sleep (NREMS). 
Paradoxically, systemic administration of the selective 5-HT2A antagonists induced a 
decrease of waking and an increase in NREMS during the first 3 h after injection in 
mice [93]. The similar pattern of effects induced by the non-selective 5-HT2 antago-
nist S32212, opposite to those induced by selective 5-HT2C antagonists, was attrib-
uted to its 5-HT2A antagonist component [94]. A summary of the evidence of 5-HT2AR 
modulation of absence epilepsy is shown in Table 2.

 Antiepileptic Drugs and 5-HT2ARs

Lamotrigine is the only antiepileptic drug (AED) that also has a clear benefit for 
bipolar disorder and is approved by the FDA for maintenance treatment [95]. 
Interestingly, chronic lamotrigine treatment in Long-Evans rats with spontaneous 
SWDs suppressed seizures and ameliorated comorbid anxiety and depression, indi-
cating that patients with absence epilepsy can benefit from this treatment [96]. 
There is evidence that indicates that 5-HT2AR activation potentiates the inhibitory 
effect of lamotrigine, a widely used antiepileptic agent for both absence [97] and 
focal epilepsy [98] that targets voltage-gated sodium channels [99]. Therefore, the 
polytherapy of a non-hallucinogenic 5-HT2AR agonists in combination with 
lamotregine may be a rational strategy in the treatment of many patients with refrac-
tory epilepy. An experimental validation of this co-administration in GAERS or 
WAG/rij rats might produce interesting results.

Furthermore, some ligand-binding studies in animals have shown that valproate, the 
first line treatment for both generalized tonic-clonic seizures and absence seizures [100], 
produces an increase in 5-HT2AR expression [101, 102] although an in vivo imaging 
study did not confirm this in acute mania [103]. However, this study cannot exclude the 
 possibility that valproate improves mood symptoms by altering second messenger sig-
nalling cascades linked to 5-HT2A-Rs. Indeed, brain 5-HT2ARs are coupled to the phos-
phoinositol pathway via G-proteins, and there is a growing body of evidence that 
suggests that valproate and lithium have multiple effects on this pathway [104].

 Role of 5-HT2ARs in the Comorbidity of Epilepsy 
and Depression

It is estimated that between 15 and 30% of people with epilepsy develop several 
psychiatric disorders, such as anxiety, depression, and different levels of cognitive 
impairments [105–107]. The patients with partial complex epilepsy, such as TLE, or 
who have poorly-controlled epilepsy have the highest frequency rate of comorbid 
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affective disorders [108]. In addition, depression-like behaviour has also been found 
in generalized epilepsy, such as childhood absence epilepsy [109]. This clear link 
between epilepsy, comorbid psychiatric disorders, and monoaminergic (specifically 
serotoninergic) dysfunction has also been observed in humans [110] and in different 
animal models of epilepsy [111, 112]. Moreover, animal and human evidence has 
revealed that the relationship between depression and epilepsy is, in reality, bidirec-
tional. Indeed patients with depression, especially suicide attempters, have an 
increased seizure risk compared to the normal population [113]. Thus, the fact  
that epilepsy and depression may share common pathogenic mechanism(s) and 
dysfunction(s) of the serotonergic system is an obvious explanation for this bidirec-
tional comorbidity, considering defects in the serotonergic system are linked to both 
conditions [111, 114]. In addition, we have shown evidence of the involvement of 
both serotonergic and dopaminergic systems in the pathogenesis of epilepsy [38, 49, 
69, 75, 77–80] and in depression and its pharmacological treatments [87, 115]. 
Compelling data on the involvement of 5-HT1A and 5-HT7Rs in epilepsy and depres-
sion has been described. Therefore, it is possible to infer that agonists at these 
receptors might have both antiepileptic and antidepressant activity which may ame-
liorate cognitive deficits [49]. On the other hand, the role of the 5-HT2ARs has been 
less investigated, and this field is still in its infancy and has many issues that still 
need to be addressed. Regarding the 5-HT2AR as a drug target for treating depres-
sion and epilepsy, it was recently shown in WAG/Rij rats that sub-chronic treatment 
with aripiprazole, a new antipsychotic with antagonism at 5-HT2A/5- HT6Rs and also 
partial agonism at D2 DA and 5-HT1A and 5-HT7Rs, has an anti- absence seizure 
effect and positive, modulatory actions on depression, anxiety, and memory, which 
might also be beneficial in other epileptic syndromes [116]. Nevertheless, this study 
did not identify which receptor subtype was underlying these promising aripipra-
zole therapeutic properties. Of note, clozapine, the first atypical antipsychotic to be 
developed with some 5-HT2AR antagonist effects, increases seizure risk even at 
therapeutic serum levels [117], and it is the only psychotropic drug to have received 
an FDA “black box” warning regarding seizures.

Improved seizure control was also observed in epileptic patients treated for psy-
chiatric disorders with antidepressants which elevated extracellular 5-HT levels in 
the epileptic foci, leading to an anticonvulsant effect [118]. However, which 5-HTR 
subtype(s) contribute to this effect has not yet been revealed.

As far as cognitive impairments are concerned, preclinical studies have shown 
that the 5-HT2AR inhibition also has some therapeutic benefits. For instance, ketan-
serin inhibited the impairment of short-term memory, which is observed after sei-
zures in spontaneous alternation behaviour during the Y-maze task [119]. In addition, 
ketanserin inhibited electroconvulsive shock-induced retrograde amnesia in the 
step-down passive avoidance task, suggesting that 5-HT2ARs impede consolidation 
and/or retrieval of memory after seizures [120]. A summary of the evidence of 
5-HT2AR comorbidity between epilepsy and depression is shown in Table 3.
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 Conclusion

The findings reviewed in this chapter highlight an important role for 5-HT2ARs in 
both pathologic neuronal excitability in epilepsy and comorbid affective disorders. 
The available literature suggests that antagonism at 5-HT2ARs might have beneficial 
effects on psychiatric disorders of TLE patients, while their activation seems to be 
anti-epileptic. Nevertheless, 5-HT2AR role in this type of epilepsy is far from being 
fully clarified. Indeed, both 5-HT2AR agonists and antagonists appear to be useful in 
focal/convulsive epilepsy treatment. On the other hand, 5-HT2AR activation shows a 
clear anti-absence effect. These paradoxical anticonvulsant efficacy of 5-HT2A 
antagonists and agonists can be reconciled taking into consideration that (a) the two 
types of epilepsy have a different network substrate, (b) both agonism and antago-
nism induce 5-HT2AR desensitization or downregulation [121]. And/or (c) different 
populations of 5-HT2ARs with different signal transduction mechanisms. Moreover, 
the anti- versus pro-epileptic effects of the 5-HT2AR activation might depend on the 
dose of the ligands used, with the pro-convulsive effects when the receptors are 
excessively activated.

The main hindrance for the development for example of 5-HT2AR agonists as 
AEDs would be their potential hallucinogenic effects [122]. As a result, new 5-HT2AR 
compounds with higher selectivity that lack these aversive side effects are needed.

Table 3 5-HT2A receptors in comorbidity between epilepsy and depression

5-HT2A receptors in comorbidity between epilepsy and depression
Model Effect References

Lamotrigine Chronic pain 
states in rats

+ m-CPP (5-HT2A/2B/2C) increased the 
reflex inhibitory action of lamotrigine

[99]

Chronic pain 
states in rats

Decreased the reflex inhibitory action 
of + Ketanserin (5-HT2A)lamotrigine

Humans Bipolar disorders [95]
WAG/Rij rats Suppression of AS and amelioration 

of comorbid anxiety and depression
[96]

Aripiprazole 
(5-HT2A/5-HT6 
antagonist)

WAG/Rij rats Suppression of AS amelioration of 
comorbid anxiety depression and 
memory impairment

[116]

Valproate Humans Increases 5-HT2A-R expression [101, 102]
ECS Inhibited impairment of spontaneous

Alternation behavior
[119]

SSRIs (5-HT-R?) Different 
models

Anticonvulsant [118]

Ketanserin 
(5-HT2A 
antagonist)

ECS Inhibited the impairment of 
short-term memory

[119]

ECS Inhibited electroconvulsive shock- 
induced retrograde amnesia

[120]

WAG/Rij Wistar Albino Glaxo rats from Rijswijk, ECS electroconvulsive shock
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More research is needed to clarify the role of 5-HT2ARs in seizures. Thus, 
increasing our understanding of the role of 5-HT2ARs and their modulation of other 
neurotransmitter systems, such as GABA and glutamate, might reveal novel 
mechanism(s) of potential translational significance.
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 Introduction

Serotonin2A (5-HT2A) receptors and brain derived neurotrophic factor (BDNF) have 
both been implicated in the pathophysiology and treatment of depression, anxiety 
[1–5] and schizophrenia [6, 7]. 5-HT2A receptors and BDNF exert powerful effects 
at the molecular and cellular level, regulating synaptic plasticity [8–11], neuronal 
survival and progenitor turnover [12–16], as well as playing a key role at the organ-
ismal level by influencing cognitive [17–19], anxiety, depressive [4, 5, 20] and 
psychosis- related behaviors [21–25]. A reciprocal relationship between 5-HT2A 
receptors and BDNF has been highlighted across several studies, primarily in rodent 
models [26–33]. The goal of this chapter is to comprehensively review the 5-HT2A 
receptor-BDNF interactions and to highlight the importance of this reciprocity in 
the context of psychopathology.

 Serotonin2A (5-HT2A) Receptors

Serotonin (5-Hydroxytryptamine or 5-HT) is amongst the most phylogenetically 
ancient neurotransmitters, and is also synthesized in several organisms that lack 
nervous systems, wherein it is thought to exhibit a trophic factor-like function regu-
lating growth, cellular proliferation, maturation and movement [34]. During evolu-
tion, serotonin was likely co-opted to take on a neurotransmitter function where it 
exerts pleiotropic effects on diverse brain functions, including but not restricted to 
regulation of emotion, cognition, feeding, body temperature and sleep [35]. These 
diverse functions of serotonin are mediated via 14 distinct serotonin receptors 
belonging to seven 5-HT receptor subfamilies of which 5-HT1, 5-HT2, 5-HT4–7 are 
G-protein coupled receptors (GPCRs) and the 5-HT3 receptor is a ligand-gated ion 
channel [36]. Amongst these different serotonergic receptors that exhibit distinct 
expression profiles, 5-HT1A and 5-HT2A/2C receptors have been strongly implicated 
in the regulation of emotionality.

Serotonin2A (5-HT2A) receptors are metabotropic seven-transmembrane domain 
receptors that belong to the 5-HT2 receptor subfamily [36]. The 5-HT2A receptors 
can signal via multiple intracellular signaling cascades, through the recruitment of 
Gq/G11-dependent mechanisms [37, 38] or through β-arrestin dependent signaling 
[39, 40] (Fig. 1a). Further, the ability of 5-HT2A receptors to form heteromeric com-
plexes with glutamatergic mGluR2 [41] and dopaminergic D2R [42] receptors 
could also play an important role in influencing the ligand-dependent, differential 
recruitment of signaling pathways by diverse 5-HT2A receptor ligands [43, 44] 
(Fig. 1b). Different 5-HT2A receptor ligands, including the endogenous ligand sero-
tonin, hallucinogenic agonists such as 4-iodo-2,5-dimethoxyphenylisopropylamine 
(DOI) and atypical antipsychotics such as clozapine are reported to bias the nature 
of downstream signaling pathways recruited by the 5-HT2A receptor-mGluR2 [44, 
45] and 5-HT2A receptor-D2R heterocomplexes [42, 46], shifting the balance of 
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Gq-Gi mediated downstream signaling (Fig. 1b). In addition, the 5-HT2A receptor 
ligands serotonin, DOI, the antagonist ketanserin and the atypical antipsychotic clo-
zapine also exhibit characteristic dynamics for 5-HT2A receptor internalization and 
recycling as well as distinct endocytosed 5-HT2A receptor-mediated signaling [47, 
48] (Fig. 1c, d). The 5-HT2A receptors serve as the major excitatory receptor subtype 
amongst the metabotropic 5-HT receptors, and regulate excitability through the 
reduction of an outward potassium current [49–51], and enhanced phosphoinositide 
hydrolysis and calcium signaling [52, 53] (Fig. 1a). Several distinct classes of drugs 
including therapeutic agents such as atypical antipsychotics, antidepressants and 
anxiolytics, and drugs of abuse such as the hallucinogens, lysergic acid diethylam-
ide (LSD) and mescaline target the 5-HT2A receptor [23, 54–56] (Fig.  1c). Both 
preclinical and clinical studies have linked 5-HT2A receptors to the modulation of 
anxiety and depressive behavior [3–5, 55, 57], mechanism of action of hallucino-
genic and antipsychotic drugs [24, 41, 44], and in the regulation of learning and 
memory [17, 23, 58–60].

Ligand binding analysis, in situ hybridization, and immunohistochemical local-
ization studies indicate that the 5-HT2A receptor is widely distributed within the 
central nervous system in all species studied [36, 61] (Fig. 1e). 5-HT2A receptors are 
enriched across multiple cortical regions, including the neocortex, entorhinal and 
piriform cortex, and the claustrum [62, 63]. Brain regions such as the hippocampus, 
caudate, nucleus accumbens, amygdala, thalamus, olfactory tubercle, periaqueduc-
tal grey, dorsal raphe nucleus and locus coeruleus of several of the species (mouse, 
rat, sheep, monkey, human) studied also express 5-HT2A receptors ([36, 64–67]) 
(Fig. 1e). In the rat neocortex, in particular the frontal cortex, 5-HT2A receptors that 
are densely expressed within the apical dendrites of Layer V pyramidal neurons 
evoke excitatory postsynaptic potentials (EPSPs) [49, 68]. In contrast, within rat 
paleocortical brain regions such as the piriform cortex and hippocampus, 5-HT2A 
receptors primarily induce inhibitory postsynaptic potentials (IPSPs) [69–73]. This 
is mediated through the facilitation of GABAergic neurotransmission via the activa-
tion of 5-HT2A receptor expressing GABAergic interneurons within the hippocam-
pal [73] and piriform cortex microcircuits [74]. Within these distinct cortical 
circuits, the differential pattern of expression of 5-HT2A receptors on excitatory 
pyramidal neurons, as well as GABAergic interneurons, plays an important role in 
driving the eventual functional impact on the local microcircuit [72–74] (Fig. 1e). 
In addition to neuronal expression of the 5-HT2A receptors, rat astrocytes [75, 76] as 
well as microglia [77] exhibit expression of the 5-HT2A receptor. 5-HT2A receptors 
have been implicated in the regulation of calcium signaling in astrocytes [78, 79] 
and exosome secretion in microglia [80]. The pattern of expression of 5-HT2A recep-
tors is also differentially regulated during development [81–83] and exhibits a sex-
ual dimorphism in specific neurocircuits of rats, such as the ventromedial 
hypothalamus, where females exhibited lower levels of expression [84].

Several studies indicate a role for serotonergic signaling in the regulation of the 
neurotrophin, BDNF [85], and the 5-HT2A receptor in particular has been strongly 
implicated in the regulation of Bdnf expression within the neocortex and hippocam-
pus [32, 33, 86]. Given the role of BDNF in regulating synaptic plasticity, anxiety 
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Fig. 1 Schematics representing 5-HT2A receptor signaling (a), 5-HT2A receptor- heterocomplexes 
(b), 5-HT2A receptor pharmacology (c), Ligand-dependent 5-HT2A receptor dynamics (d), and 
5-HT2A receptor protein expression (e). (a) Shown is a schematic highlighting transmembrane 
domains (blue), ligand (yellow) and serine phosphorylation sites (green) on the 471 amino acid 
long 5-HT2A receptor (red). Illustrations depict 5-HT2A receptor signaling through either G protein 
regulated cascades (Gq/G11) leading to recruitment of phospholipase C beta (PLCβ), PIP2 hydro-
lysis, IP3, DAG, calcium signaling, protein kinase C (PKC), extracellular signal regulated kinase 
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Fig. 1 (continued) (Erk1/2) and cAMP response element binding protein (CREB) or β-arrestin-
mediated activation of Erk1/2. (b) 5-HT2A receptors (red) form heterocomplexes with mGluR2 
(purple) or D2R (orange) receptors with ligand-dependent alterations in Gq-Gi signaling and dis-
tinct expression patterns. (c) Listed are classes of 5-HT2A receptor agonists and antagonists. (d) 
Distinct 5-HT2A receptor ligands including the endogenous agonist serotonin, the hallucinogenic 
agonist DOI, the antagonist ketanserin and the atypical antipsychotic clozapine exhibit differential 
timelines for receptor recycling. (E) Shown is the 5-HT2A receptor protein expression within a 
schematic of a saggital section of the rodent brain, highlighting expression within the olfactory 
bulb (ob), cortex (ctx) especially in layers II/III and V/VI, hippocampus (hpc), amygdala (a), thala-
mus (th), midbrain (mb), dorsal raphe nucleus (dr), and locus coeruleus (lc). In the neocortex, 
5-HT2A receptors are reported to be present both pre- and post-synaptically (boxed). Further, high-
lighted is the presence of 5-HT2A receptors in glutamatergic and GABAergic neuronal cell types 
within specific brain regions

and depressive behavior, as well as learning and memory, it has been hypothesized 
that BDNF may contribute to specific cellular and behavioral effects of 5-HT2A 
receptor signaling.

 Brain Derived Neurotrophic Factor (BDNF)

Brain Derived Neurotrophic Factor (BDNF), the most widely expressed member of 
the neurotrophic factor family [87–90], is known to regulate neurogenesis [91–93], 
neuronal survival [94] and differentiation [95], neurite outgrowth [96], as well as 
structural and functional modulation of synaptic plasticity [97, 98]. Mature BDNF 
is generated through the proteolytic cleavage of the precursor form proBDNF [99, 
100] (Fig. 2a), which is secreted by neurons [101] and astrocytes [102] in both a 
constitutive and regulated fashion. BDNF, which is a 14  kDa protein, regulates 
intracellular signaling through binding to its tyrosine kinase coupled receptor, 
Tropomyosin receptor kinase type B (TrkB), thus leading to the activation of signal-
ing cascades, in particular the MAP Kinase (MAPK – mitogen activated protein 
kinase), PI3 kinase and PLCγ signaling pathways [103] (Fig. 2a). In addition, both 
the precursor form proBDNF and mature BDNF also bind to the low-affinity p75 
neurotrophin receptor (p75NTR) [103, 104], thus regulating intracellular signaling 
via the NF-κB and JNK pathways and influencing cell death [105, 106] (Fig. 2a). 
Differential processing of BDNF and the recruitment of distinct intracellular signal-
ing cascades can evoke diverse biological outcomes spanning from the recruitment 
of apoptotic pathways to promoting cell survival [94, 101, 107, 108]. BDNF is traf-
ficked and released in both an anterograde and retrograde fashion [109], and the 
BDNF receptors, TrkB and p75NTR are expressed both pre- [110] and post-synap-
tically [111]. Further, the expression of truncated forms of the TrkB receptor (TrkB.
T1 and TrkB.T2) lacking the intracellular catalytic domain, provides another level 
for the regulation of BDNF signaling [112, 113] (Fig. 2a).

Bdnf is expressed at high levels in the brain, with highest expression observed 
within the neocortex, hippocampus and hypothalamus [114, 115] (Fig.  2b). 
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Fig. 2 Schematics representing BDNF signaling (a), BDNF protein expression (b), Bdnf gene 
structure (c), BDNF subcellular localization (d), and Bdnf exon-specific transcript distribution in 
the mouse (e) and rat (f) brain. (a) Represented is the BDNF signaling cascade in which proBDNF 
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Fig. 2 (continued) (purple-yellow) is proteolytically cleaved to generate the 14 kDa mature BDNF 
(yellow) protein. Mature BDNF can signal through the trKB receptors recruiting phospholipase C 
gamma (PLCγ), IP3, DAG, calcium signaling, protein kinase C (PKC), phosphoinositide 3-kinase 
(PI3K), protein kinase B (Akt), extracellular signal regulated kinase (Erk1/2) and cAMP response 
element binding protein (CREB). Mature BDNF promotes growth, differentiation and survival. 
Truncated TrkB.T1/T2 receptors can also sequester mature BDNF. Mature and ProBDNF can also 
signal through the p75NTR-sortilin complex, a pathway that recruits Jun amino-terminal kinases 
(JNK) and apoptosis. (b) Shown is BDNF protein expression within a schematic of a saggital sec-
tion of the rodent brain, highlighting expression within the cortex (ctx), hippocampus (hpc), amyg-
dala (a), hypothalamus (hyp), and dorsal raphe nucleus (dr). (c) Represented is the Bdnf gene 
structure consisting of Bdnf exons I to IX (blue), exon-specific promoters and splice junctions 
connected to the common coding exon IX (yellow). The 3’UTR in exon IX consists of two polyA 
(pA) transcription termination sites, generating a short and long form of Bdnf exon-specific tran-
scripts. (d) Shown is BDNF protein subcellular localization with highest levels in the soma of 
neuronal cells. The subcellular distribution of the short and long form of Bdnf exon-specific tran-
scripts and of Bdnf exon- specific transcript variants is also shown (d). Shown is the region specific 
expression pattern of Bdnf exon-specific transcript variants (I to IX) in the mouse (d) and Rat (e) 
brain. ‘+’ indicates extent of expression, ‘−’ indicates undetectable level of Bdnf transcript variant 
expression

Expression of Bdnf is developmentally regulated [116, 117], activity-dependent 
[118], and reaches a peak during postnatal development [119, 120]. The Bdnf gene 
locus is complex, with the generation of at least 18 distinct Bdnf transcript variants 
driven through distinct Bdnf exon-specific promoters [119, 121] (Fig. 2c). In the rat, 
the Bdnf gene consists of nine exons, with the generation of multiple transcript vari-
ants through the alternate splicing of eight non-coding 5′ exons each with its own 
unique promoter to the common 3′ coding exon that contains the sequence informa-
tion for the generation of mature BDNF (Fig. 2c). Further, these Bdnf transcript 
variants can also exist in either a short or long 3′-UTR form through the use of two 
distinct polyadenylation sites, which is reported to result in distinct subcellular 
localization [119, 122, 123] (Fig.  2c, d). Exon-specific Bdnf transcript variants 
exhibit a distinct localization pattern in the mouse and rat brain, suggesting a dif-
ferential recruitment of individual exon-specific Bdnf promoters in a brain region 
dependent fashion [119] (Fig. 2e, f). While a single BDNF protein is generated by 
all of these Bdnf transcript variants, it is likely that such a diversity of transcript 
variants, with unique 5′-UTRs and either a short or long 3′-UTR, contributes to dif-
ferential localization, variant-specific regulation in response to diverse cues, traf-
ficking and mRNA stability [119, 124–128] (Fig. 2c–f).

Bdnf expression is regulated by diverse environmental cues including stress [129, 
130], enriched environment [131, 132] and learning [133, 134], as well as by phar-
macological agents such as antidepressants [135], anxiolytics [136, 137], antipsy-
chotics [138, 139], and drugs of abuse [140, 141] including hallucinogens [142, 
143]. Regulation of BDNF can occur at multiple levels, including alteration of tran-
scription of distinct Bdnf mRNA variants [124, 127], BDNF protein synthesis [144, 
145], BDNF proteolytic processing [100, 146], trafficking [147, 148] and release 
[149, 150], regulation of BDNF receptors [151], including the truncated TrkB 
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 variants [152–154], and the modulation of distinct intracellular BDNF signaling 
cascades [104, 105]. However, most studies examining the effects of serotonergic 
pathways, including the 5-HT2A receptors, on the regulation of BDNF have primar-
ily focused at the level of Bdnf transcription [32, 86, 135, 138, 143, 155, 156]. Our 
chapter will review the present understanding of the regulation of BDNF by 5-HT2A 
receptors, and also highlight the open questions that remain unexplored in under-
standing the effects of 5-HT2A receptors on Bdnf transcription, BDNF protein syn-
thesis, trafficking, release and signaling.

 5-HT2A Receptor Mediated Regulation of BDNF

Serotonergic signaling has been shown to alter Bdnf mRNA expression within key 
limbic brain regions such as the frontal cortex and hippocampus, with distinct 
effects evoked in response to acute or chronic elevation of 5-HT levels [27, 157–
159]. An acute increase in 5-HT levels in general evokes an induction of neocortical 
Bdnf mRNA whilst inducing a decline in hippocampal Bdnf expression [155, 158–
160]. In contrast, a sustained elevation of 5-HT through the administration of selec-
tive serotonin reuptake inhibitors (SSRIs), is associated with increased Bdnf 
expression in both the neocortex and hippocampus [135, 161, 162]. Specific effects 
of 5-HT on Bdnf mRNA expression are mediated via 5-HT2A receptors, and this has 
been explored particularly with respect to the effects of acute 5-HT elevation on 
Bdnf expression [32, 163]. We will review the effects of 5-HT2A receptors on Bdnf 
expression, BDNF protein levels and signaling, as well as discuss possible molecu-
lar mechanisms that contribute to the effects of 5-HT2A receptors on BDNF, and the 
implications of this regulation to psychopathology.

 5-HT2A Receptor Mediated Regulation of Bdnf mRNA 
Expression

In vivo studies in rat models indicate that acute treatment with the 5-HT2A receptor 
agonist DOI evokes a dose- and time-dependent upregulation of Bdnf mRNA levels 
within the neocortex, including the frontal and parietal cortex, and a decline of Bdnf 
expression in the dentate gyrus (DG) subfield of the hippocampus [32]. Within the 
neocortex, the 5-HT2A receptor-mediated upregulation of Bdnf expression exhibits a 
layer-specific pattern, noted within layers II/III and V/VI. This differential regula-
tion of Bdnf expression by DOI is mediated via the 5-HT2A receptor and can be 
completely prevented by pretreatment with the 5-HT2A receptor antagonist 
MDL100,907. Interestingly, acute treatment with the 5-HT2A/C receptor antagonist, 
ketanserin or the 5-HT2A receptor antagonist MDL100,907 does not alter baseline 
expression of Bdnf mRNA within the neocortex or hippocampus [32]. This suggests 
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that while 5-HT2A receptor stimulation does influence Bdnf expression, basal Bdnf 
mRNA levels may not be under the control of 5-HT2A receptors. The regulation of 
Bdnf expression in the neocortex and hippocampus is not observed following 
chronic treatment with DOI for 7 days, suggesting a downregulation of 5-HT2A 
receptors and signaling pathways upstream of Bdnf transcript regulation [32]. 
Further, while sub-chronic (7 day) treatment with the 5-HT2A/C receptor antagonist 
ketanserin does not alter hippocampal Bdnf expression [164], longer duration treat-
ments for 19 days with the 5-HT2A/C receptor antagonist ritanserin upregulated Bdnf 
expression in the CA1 hippocampal subfield [139] and for 21 days with mianserin 
enhanced total hippocampal Bdnf expression [135].

Studies wherein 5-HT levels were elevated through the combined administration 
of tranylcypromine and L-tryptophan, or through acute treatment with the 5-HT 
releasing agent parachloroamphetamine or the SSRI paroxetine, evoke an upregula-
tion of neocortical Bdnf mRNA and a decline in hippocampal Bdnf expression, 
mimicking the nature of Bdnf regulation induced by a 5-HT2A receptor agonist [32, 
160]. Recent studies indicate that the effects of an acute elevation in 5-HT levels on 
hippocampal downregulation of Bdnf expression involve a role for both 5-HT4 and 
5-HT2 receptors, as pretreatment with 5-HT4 or 5-HT2 receptor antagonists can pre-
vent the effects of acute 5-HT elevation on the hippocampal and DG regulation of 
Bdnf expression respectively [163]. In vitro studies in C6 glioma cell lines indicate 
a two-fold induction in Bdnf mRNA levels following exposure to 5-HT (100 μM), 
which is mediated through the 5-HT2A receptor, and involves a role for calcium and 
protein-kinase dependent signaling [86]. The current understanding of the 5-HT2A 
receptor-dependent regulation of distinct Bdnf transcript variants is limited. A single 
report using in vitro studies and luciferase reporter assays in cortical neurons indi-
cates that DOI enhances transcription through Bdnf exon I and exon II, but not exon 
IV, promoters, and is associated with an enhancement in cAMP response element 
(CRE) driven transcriptional activation [165]. Bdnf exon I and II transcript variants 
are thought to show a similar pattern of regulation in response to diverse cues, and 
exhibit a protein-synthesis dependent transcriptional regulation unlike other spe-
cific Bdnf exon mRNAs (for eg, IV and XI) which are regulated in an immediate- 
early gene like fashion [166]. It is interesting that acute and chronic immobilization 
stress biphasically regulate Bdnf exon I and II containing transcripts in the rat brain, 
with a decline observed following acute stress and an increase following chronic 
stress [167]. Physical activity and antidepressants also upregulate the expression of 
Bdnf exon I and II containing transcripts [168, 169]. Diverse stressors, antidepres-
sants and neuronal activity also influence the expression of the Bdnf exon IV con-
taining transcripts, which exhibit an activity-dependent pattern of regulation [170, 
171]. The transcription factors recruited downstream of 5-HT2A receptor signaling 
remain unclear, with a possible role for CREB suggested based on in vitro findings 
[165].

The 5-HT2A receptor-mediated regulation of Bdnf transcript expression has been 
shown in specific cases to be modulated by the hormonal milieu of the organism. 
In ovariectomized rats, estradiol pretreatment attenuates the cortical upregulation 
of Bdnf expression following acute DOI treatment but does not influence the 
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 hippocampal regulation of Bdnf [172]. These effects suggest that estradiol and 
5-HT2A receptors may regulate Bdnf transcript levels through discrete and poten-
tially divergent pathways. In contrast, adrenalectomy, goitrogen administration that 
lowers circulating thyroid hormone levels or exogenous thyroid hormone adminis-
tration does not influence the hippocampal regulation of Bdnf expression evoked by 
5-HT2A receptor stimulation [32, 173]. Studies in C6 glioma cells indicate that the 
upregulation of Bdnf expression evoked by 5-HT is enhanced by progesterone treat-
ment [174], although the role of 5-HT2A receptors in these effects of 5-HT is unex-
plored. Studies suggest an interaction between estradiol and 5-HT2A receptors in the 
regulation of Bdnf expression [172], however, the interaction of other hormonal 
pathways with 5-HT2A receptors in the regulation of Bdnf expression is still poorly 
understood. Future studies are required to gain a mechanistic insight into the role of 
intracellular signaling pathways and transcription factors that control the regulation 
of Bdnf in these contexts.

 Potential Mechanisms for the 5-HT2A Receptor-Mediated 
Regulation of Bdnf Expression

The molecular and cellular mechanisms that mediate the regulation of neocortical 
and hippocampal Bdnf expression in response to 5-HT2A receptor stimulation are 
currently poorly elucidated. At the cellular level, it has been hypothesized that 
5-HT2A receptor-mediated upregulation of neocortical Bdnf expression may arise 
through activity-dependent mechanisms involving either (1) a 5-HT2A receptor- 
mediated induction of EPSPs within pyramidal excitatory neurons or (2) increased 
glutamate release through presynaptic 5-HT2A heteroreceptors on thalamocortical 
afferents (Fig. 3a, b) [32, 49, 51, 175]. Within hippocampal subfields, 5-HT2A recep-
tors evoke IPSPs in the granule cell layer via an increase in GABAergic neurotrans-
mission through enhanced firing of 5-HT2A receptor-expressing GABAergic neurons 
within the hilus, and an associated decline in Bdnf expression in the DG hippocam-
pal subfield (Fig. 3a, c) [32, 73, 176, 177]. These hypotheses for the 5-HT2A receptor- 
mediated regulation of Bdnf expression remain to be experimentally validated.

The recruitment of specific intracellular signaling cascades downstream of the 
5-HT2A receptor and the transcription factors recruited to regulate Bdnf expression 
are poorly delineated. Further, it is unclear how individual Bdnf transcript variants 
and exon-specific Bdnf promoters are targeted by 5-HT2A receptor signaling. The 
Bdnf locus has several AP-1 binding sites [178] which may play a critical role in 
case of activity-dependent mechanisms being recruited downstream of 5-HT2A 
receptor signaling. In addition, CREB-mediated transcription is reported to be 
enhanced in cortical cultures following 5-HT2A receptor stimulation, and CREB 
plays a key role in Bdnf expression driven from Bdnf exon I promoter, which is 
targeted by DOI treatment [165, 179]. One can speculate a role for CREB-mediated 
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transcriptional regulation of Bdnf expression in response to 5-HT2A receptor 
agonist treatment [165] (Fig.  4a). Our unpublished results indicate that CREB 
plays a critical role in mediating the cortical upregulation of Bdnf in response to 
5-HT2A receptor stimulation. However, extensive experimental studies are required 
to provide mechanistic understanding of the nature of 5-HT2A receptor-mediated 
regulation of Bdnf mRNA levels, in particular the role of transcription factors such 
as CREB and AP-1.

Fig. 3 Cellular model for the 5-HT2A receptor-mediated regulation of Bdnf expression in the neo-
cortex and hippocampus. (a) Coronal section of the rodent brain highlighting the neocortex (red 
box) and hippocampus (green box). (b) In the neocortex, DOI, 5-HT and stress enhance Bdnf 
expression. This is likely to be mediated through 5-HT2A receptor activation evoked increases in 
EPSPs in layer V cortical pyramidal neurons and an activity-dependent increase in Bdnf expres-
sion. Two possible mechanisms for the 5-HT2A receptor mediated increase in cortical pyramidal 
neuron EPSPs could be through (1) the activation of postsynaptic 5-HT2A receptors on cortical 
pyramidal neurons thus enhancing EPSPs and Bdnf expression or (2) the activation of presynaptic 
5-HT2A receptors present on thalamocortical afferents increasing glutamate release and thus 
enhancing activity-dependent Bdnf expression in cortical pyramidal neurons. mGlu2/3 receptor 
agonists serve to presynaptically inhibit glutamate release and thus can attenuate the effects of 
stress and DOI on cortical Bdnf expression. (c). In the hippocampus, DOI, 5-HT and stress evoke 
a decline in Bdnf expression. This is likely to be mediated through 5-HT2A receptor-mediated acti-
vation of hilar GABAergic interneurons thus leading to enhanced inhibition of dentate gyrus (DG) 
granule cells, and hence a reduction in Bdnf expression in the DG
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Fig. 4. Potential levels for 5-HT2A receptor and BDNF crosstalk, highlighting the multiple levels 
for the 5-HT2A receptor-mediated regulation of BDNF (a) and the BDNF-mediated regulation of 
5-HT2A receptor (b). Shown is a schematic of a multipolar neuron. (a) 5-HT2A receptor-mediated 
regulation of BDNF can occur at multiple possible levels spanning from transcriptional regulation 
of Bdnf exon-specific transcript variants, Bdnf transcript variant localization, BDNF translation, 
protein processing, trafficking and release. 5-HT2A receptors may also influence TrkB receptor 
levels and transactivation. (b) BDNF-mediated regulation of 5-HT2A receptors can occur at multi-
ple possible levels from transcriptional and translational regulation, 5-HT2A receptor heterocom-
plex formation, signaling and trafficking, and 5-HT2A receptor function, inclusive of 
electrophysiological and behavioral responses (head twitch behavior). The specific levels of regu-
lation for which there is experimental evidence are indicated in black and grey refers to those levels 
at which the evidence is limited or lacking
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 5-HT2A Receptor-Mediated Regulation of BDNF Protein 
and BDNF Signaling

Regulation of BDNF by 5-HT2A receptors, in addition to modulation at the level of 
Bdnf transcription [32, 86, 135, 139, 155, 164], can also involve effects at the level 
of BDNF synthesis [145], proteolytic processing of proBDNF into the mature 
BDNF form [146], regulation of BDNF secretion [150] and trafficking [148], influ-
ences on the BDNF receptors, p75NTR [180] and the truncated and full-length 
TrkB isoforms [153] (Fig. 4a). Further, 5-HT2A receptor-mediated modulation of 
signaling pathways could also impact BDNF signaling [181–183]. Relatively few 
studies have addressed the influence of 5-HT2A receptors on these aspects of BDNF 
regulation. The influence of treatment with the 5-HT2A receptor agonist DOI on 
BDNF protein levels in either in vitro or in vivo studies has not been explored, 
despite several reports of robust effects on cortical and hippocampal Bdnf transcript 
levels [32, 163, 175]. Subchronic (7  day) treatment with the 5-HT2A/C receptor 
antagonist ketanserin does not alter hippocampal BDNF protein levels, either when 
administered alone or in conjunction with fluoxetine [164]. There is a paucity of 
studies focused on examining the influence of 5-HT2A receptors on pathways that 
impinge on BDNF proteolytic processing [146], trafficking [148] and secretion 
[150]. Given the roles for intracellular chaperones like sortilin [149] in trafficking, 
and the involvement of the plasmin-tissue plasminogen activator (tPA) system [184] 
and matrix metalloproteinases (MMPs) [146] in BDNF proteolytic processing it 
would be interesting to address whether these processes are targeted by 5-HT2A 
receptors. Indeed, within cardiac fibroblasts as well as in uterine smooth muscle 
cells [185], the 5-HT-mediated induction of MMPs is regulated via 5-HT2A recep-
tors [186]. It will be important to identify the effects of 5-HT2A receptors on the 
conversion of proBDNF to mature BDNF, as the nature of the BDNF ligand can 
evoke functionally distinct biological outcomes [106].

5-HT2A receptors could also influence BDNF signaling through modulation of 
the transcription [32], alternate splicing [121, 125] and translation of the TrkB [135] 
and p75NTRs [180], and by influencing their intracellular signaling cascades [182, 
183]. Few studies have addressed the influence of 5-HT2A receptors on BDNF recep-
tor regulation, with evidence so far indicating no change in cortical and hippocam-
pal TrkB expression following chronic treatment with the 5-HT2A receptor antagonist 
mianserin [135]. TrkB receptors are expressed either as the full-length catalytic 
variant or as the truncated forms which lack the intracellular catalytic domain and 
can exhibit dominant negative action [113, 152, 153]. Truncated TrkB variants can 
also recruit inositol-1,4,5-trisphosphate-dependent calcium release and interact 
with the p75NTR, thus suggesting that a modulation of the nature of BDNF recep-
tors present could result in the recruitment of distinct signaling cascades and evoke 
diverse physiological outcomes [106, 187–190]. 5-HT2A receptors may also influ-
ence signaling pathways downstream of the BDNF receptors. Interestingly, 5-HT 
and N-acetylserotonin have both been shown to result in transactivation of the TrkB 
receptor [191, 192]. 5-HT mediated transactivation occurs via a reactive oxygen 
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species mediated pathway, however the role of 5-HT2A receptors in such TrkB 
 transactivation remains unknown [192] (Fig. 4a). Such interplay between G-protein 
coupled receptors and receptor tyrosine kinases has been shown to involve (1) a role 
for metalloproteinase activation which can modulate ligand processing [193] or (2) 
the recruitment of ligand-independent signaling via intermediate steps involving 
non-receptor tyrosine kinases or reactive oxygen species [192, 194, 195]. Other 
sites of action for an influence of 5-HT2A receptors on BDNF signaling include 
effects on the MAP kinase cascade, which is downstream of both 5-HT2A receptor 
and BDNF-evoked signaling, with a rapid induction in MAP kinase activity evoked 
in response to either a 5-HT2A receptor agonist [196, 197] or to BDNF-mediated 
TrkB activation [198, 199] (Fig. 4a). 5-HT2A receptors could also influence BDNF 
signaling by modulation of the Rac guanine nucleotide exchange factor (RacGEF) 
kalirin-7, which is known to regulate the phosphorylation of p21-activated kinase 
(PAK) which also lies downstream of BDNF signaling [200, 201], thus serving as a 
potential target for the effects of both 5-HT2A receptors and BDNF on dendrite mor-
phology and actin cytoskeletal dynamics. However, the direct influences of 5-HT2A 
receptors on BDNF protein synthesis, proteolytic processing, trafficking, secretion 
and BDNF receptor mediated signaling remain largely unaddressed and require fur-
ther investigation (Fig. 4a).

 5-HT2A Receptor Mediated Regulation of Bdnf Expression: 
Relevance to the Actions of Stress, Antidepressants, 
Antipsychotics and Hallucinogens

5-HT2A receptors may contribute to the regulation of Bdnf expression by stress [33], 
antidepressant [164, 202] and antipsychotic treatments ([203]; L. [204]), and hal-
lucinogenic drugs [205, 206]. Adult-onset acute and chronic stress, using a range of 
diverse stressors, have predominantly been shown to evoke a reduction in hippo-
campal Bdnf expression [2, 6, 129]. The acute immobilization stress evoked reduc-
tion in Bdnf mRNA levels is attenuated following pretreatment with either the 
5-HT2A/C receptor antagonist ketanserin [32] or the selective 5-HT2A receptor antag-
onist, MDL100,907 [33]. In contrast within the frontal cortex, acute stressors have 
been reported to evoke an induction in Bdnf mRNA levels [207, 208], mimicking 
the effects of 5-HT2A receptor agonist administration [32]. These studies are intrigu-
ing as they indicate that immobilization stress, DOI and acute elevation of 5-HT 
levels similarly upregulate prefrontal Bdnf mRNA expression and downregulate 
hippocampal Bdnf mRNA levels. This raises the possibility that the effects of stress 
are mediated via 5-HT2A receptors, and indeed this has been demonstrated with 
respect to the stress-mediated decline in hippocampal Bdnf expression [33]. 
Interestingly, within the prefrontal cortex the mGlu2/3 receptor agonist LY354740 
prevents the stress-evoked induction of prefrontal Bdnf expression [208]. mGlu2/3 
receptor agonists prevent 5-HT2A receptor-induced EPSPs in the prefrontal cortex 
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through effects via autoreceptors at glutamatergic terminals resulting in reduced 
glutamate release [209–211]. This suggests the possibility that the effects of stress 
on cortical Bdnf expression involve a role for 5-HT2A and mGlu2/3 receptors and an 
activity-dependent transcriptional regulation of Bdnf [212, 213]. Indeed, the 
mGlu2/3 receptor agonist LY354740 can also prevent the DOI-induced upregula-
tion of prefrontal Bdnf expression, and the mGlu2/3 antagonist LY341495 can 
potentiate the DOI-evoked increase in prefrontal Bdnf mRNA levels [175]. This 
suggests that both the stress and DOI-evoked increases in prefrontal Bdnf expres-
sion can be attenuated by mGlu2/3 agonists, likely via an attenuation of the increased 
neuronal activity evoked by both stress and DOI through 5-HT2A receptors. It 
remains possible that this effect could involve 5-HT2A receptors directly present on 
excitatory pyramidal neurons where they modulate EPSPs, or could be via the 
5-HT2A receptor-mediated regulation of glutamate release from thalamocortical 
afferents that also express mGlu2/3 autoreceptors [68] (Fig. 3). It is intriguing to 
note that early stress and maternal immune activation (MIA) models also enhance 
cortical 5-HT2A receptor function, as well as perturbing BDNF levels although the 
relationship between these specific changes remains as yet unexplored [214–219].

Chronic treatment for 21 days with pharmacological antidepressants belonging 
to distinct classes, including SSRIs, is associated with an upregulation of both corti-
cal and hippocampal Bdnf expression [135]. Strikingly, sub-chronic (7 days) com-
bined treatment with the 5-HT2A/C receptor antagonist, ketanserin and the SSRI, 
fluoxetine, resulted in an induction of Bdnf mRNA within the hippocampal DG and 
CA3 subfields, accelerating the neurotrophic effects of fluoxetine administration 
[164]. It is also interesting to note that chronic treatment with the antidepressants 
mianserin and mirtazapine, which exhibit 5-HT2A receptor antagonism, also show a 
robust increase in cortical and hippocampal Bdnf expression [57, 135, 220]. In addi-
tion to pharmacological antidepressants, studies with physical exercise in rodent 
models have suggested that ketanserin pretreatment prevents the exercise-evoked 
induction in Bdnf mRNA levels within the CA4 hippocampal subfields [156]. This 
finding differs from other reports wherein 5-HT2A receptor antagonism, either stand-
alone or in combination with pharmacological antidepressants predominantly 
enhances Bdnf expression within the hippocampus [135, 164, 220]. However, it is 
important to note that in the study with physical exercise the ability of ketanserin to 
attenuate exercise-evoked Bdnf upregulation is restricted to only the CA4 region 
[156]. While studies do indicate a role for 5-HT2A receptor antagonism in potentiat-
ing the antidepressant effects of SSRIs [221] and in preventing the SSRI-evoked 
decline in dorsal raphe neuronal firing [222], thus far no studies have directly 
addressed whether 5-HT2A receptors are required to mediate the effects of antide-
pressants on Bdnf regulation.

Clinical studies implicate 5-HT2A receptors and BDNF in both the pathogenesis 
and treatment of schizophrenia ([6, 223–227]b; [204]). Preclinical studies on Bdnf 
regulation by atypical antipsychotic drugs, which exhibit 5-HT2A receptor antago-
nism, remain controversial with reports of either an increase, no change or a decline 
in cortical and hippocampal Bdnf expression [138, 139, 203, 228, 229]. 
Hallucinogenic agents such as LSD have also been suggested to enhance cortical 
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Bdnf expression, in particular within the prefrontal cortex [143]. While distinct 
“transcriptome fingerprints” within the neocortex are associated with hallucino-
genic and non-hallucinogenic 5-HT2A receptor agonists [230], it is at present unclear 
whether these two classes of 5-HT2A receptor ligands evoke differential effects on 
Bdnf expression. Future studies are required to elucidate the contribution of 5-HT2A 
receptors to the effects of antipsychotics and hallucinogens on BDNF.

Taken together, these studies highlight a role for 5-HT2A receptor-mediated regu-
lation of BDNF in both the pathophysiological and treatment of depression and 
schizophrenia, and motivate future studies to gain a deeper mechanistic understand-
ing of the interplay between 5-HT2A receptors and BDNF.

 BDNF Regulation of 5-HT2A Receptors

BDNF regulates the development, survival, differentiation, growth and function of 
serotonergic neurons [231–235]. BDNF autocrine signaling via the recruitment of 
TrkB receptors expressed by serotonergic raphe neurons can influence the expres-
sion of serotonergic markers such as tryptophan hydroxylase [236, 237]. Further, 
BDNF enhances 5-HT uptake and increases the firing rate of raphe 5-HT neurons 
[238, 239]. Several reviews have focused on the relationship between 5-HT and 
BDNF [27, 29, 30] and we will restrict our discussion to specific interactions 
between BDNF and 5-HT2A receptors. BDNF may exert an influence on 5-HT2A 
receptors at multiple levels including modulation of 5-HT2A receptor transcription, 
synthesis, trafficking, heterocomplex formation, signaling and function [3, 27].

 BDNF Regulation of 5-HT2A Receptor Expression

Intracerebroventricular BDNF infusion evokes an upregulation of 5-HT2A receptor 
mRNA expression in the hippocampus, and a decline or no change in the frontal 
cortex, with no regulation observed in midbrain regions, in a mouse-strain depen-
dent fashion [240, 241]. While antidepressant sensitive cataleptic (ASC) mice 
exhibit chronic (17–19 days) BDNF-evoked increase in hippocampal, and decline 
in frontal, 5-HT2A receptor expression, this was absent in the parental CBA mouse 
strain [240, 241]. In vitro studies in both primary hippocampal cultures and in hip-
pocampal organotypic slices indicate that chronic (7 day), but not acute (1 day) or 
subchronic (3 or 5 days), exposure to BDNF evokes a dose-dependent decline in 
5-HT2A receptor protein expression [31]. At present, a clear cut understanding of the 
region-specific, dose-, time- and age-dependent effects of BDNF on 5-HT2A recep-
tor expression is lacking, making it difficult to resolve the discrepancies present in 
the literature. Extensive studies that clearly elucidate the nature of influence of 
BDNF on 5-HT2A receptor expression, with attention paid to the influence of 
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specific BDNF doses, treatment duration, time-points of analysis, region-specificity 
and nature of model system are critically required.

Studies performed in BDNF mutant mice indicate region-specific effects on 
5-HT2A receptor mRNA and protein expression. Constitutive BDNF heterozygote 
mice (BDNF+/−) that exhibit a 50% reduction in BDNF expression, also show an 
upregulation of 5-HT2A receptor mRNA in the frontal cortex and hypothalamus, 
with no change observed in hippocampal 5-HT2A receptor mRNA expression [242]. 
However, western blotting analysis indicates a two-fold upregulation of 5-HT2A 
receptor protein levels within the hippocampus of adult BDNF+/− mice [31]. It is 
important to note that these BDNF heterozygote mice exhibit a decline in BDNF 
expression through embryonic development and also exhibit a decline in 5-HT1A 
autoreceptors and an age-dependent reduction in serotonergic innervation and neu-
rotransmission [243, 244]. Studies with conditional BDNF mutant mice 
(BDNF2L/2LCk-Cre), which exhibit a central depletion of BDNF levels commencing 
postnatally, show a decline in 5-HT2A receptor protein expression in the frontal cor-
tex and dorsal raphe nucleus when examined in adulthood [245]. Autoradiographic 
binding studies reveal a reduction in 5-HT2A receptor binding in the frontal cortex 
and an increase in hippocampal 5-HT2A receptor binding in BDNF2L/2LCk-Cre mice 
[28]. Further, 5-HT2A receptor mRNA levels exhibit a significant reduction within 
the frontal cortex in keeping with the decline noted in protein expression and recep-
tor binding, with no change observed in hippocampal 5-HT2A receptor expression 
[28, 245]. BDNF2L/2LCk-Cre mice also exhibit a trend towards a decline in 5-HT2A 
receptor mRNA levels within the basolateral amygdala, accompanied by a signifi-
cant reduction in 5-HT2C receptor mRNA expression [26]. 5-HT2A receptor expres-
sion is differentially regulated within these two BDNF mutant mouse lines, with 
enhanced frontal cortex 5-HT2A receptor mRNA levels noted in the BDNF+/− mouse 
line [242] and a decline in frontal cortex 5-HT2A receptor mRNA, protein and bind-
ing in the BDNF2L/2LCk-Cre mouse line [28, 245]. A single study has compared the 
effects of prenatal versus postnatal loss of BDNF on 5-HT2A receptor expression 
using the BDNF2L/1LNes-cre and the BDNF2L/2LCk-Cre which deplete BDNF from prena-
tal and postnatal time-points respectively [246]. While prenatal and postnatal onset 
of BDNF loss both evoke a decline in frontal cortex 5-HT2A receptor protein levels, 
the decline in dorsal raphe 5-HT2A receptor protein levels is only observed with the 
BDNF2L/2LCk-Cre mouse model [246]. Mutant mice (BDNF-KIV) that lack BDNF 
expression driven through the activity-responsive BDNF exon IV exhibit a signifi-
cant decrease in frontal cortex 5-HT2A receptor mRNA expression, with no change 
observed in the hippocampus [247]. However, a recent study using mutant mouse 
lines with Bdnf promoter-specific deletion of transcripts (exon I, II, IV and VI) show 
enhanced prefrontal cortex 5-HT2A receptor gene expression only in the Bdnf exon I 
deletion model [248]. In addition, Bdnf exon I deletion leads to an enhanced expres-
sion of Bdnf exon 2c and exon 4 with no change in BDNF protein levels in prefron-
tal cortex [248]. It is important to note here that removal of only exon-specific Bdnf 
transcripts may not necessarily influence total BDNF levels due to compensation 
through other Bdnf exon promoters. The consistent pattern of 5-HT2A receptor regu-
lation, across several brain regions, that emerges from studies with three distinct 
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BDNF mouse mutant models, namely the BDNF2L/1LNes-cre [246], the BDNF2L/2LCk-Cre 
[28, 245], and the BDNF-KIV [247] mouse mutant lines which differentially 
 influence BDNF protein levels, is a significant decline in frontal cortex 5-HT2A 
receptor expression (Table 1). The exception to this is the 5-HT2A receptor upregula-
tion noted in the frontal cortex of BDNF heterozygote (BDNF+/−) mutant mice [242] 

Table 1 Summary showing alterations in 5-HT2A receptor expression and function across distinct 
BDNF mutant mouse lines

BDNF mutant mouse line
5-HT2A mRNA 
expression

5-HT2A protein 
expression

5-HT2A 
function References

BDNF (+/−) Constitutive 50% 
reduction

▲ LFC
▬ Hpc
▲ Hyp

▲ Hpc ND [31, 242]

BDNF2L/2LCk-Cre

P1-P14 onset ~90% reduction 
~70% reduction in hpc

▼ FC
▬ Hpc
▼ Amy

▼ FC
▲ Hpc
▼DRN

▼ EPSPs in 
mPFC
▼ sPSCs in 
DRN
▼ IPSCs in 
BLA
▲ EPSCs in 
subset of 
BLA neurons
┤DOI evoked 
ESR but not 
HTR

[26, 28, 
245, 249]

BDNF2L/1LNes-cre

E9.5-E15.5 onset ~90% 
reduction throughout the brain

ND ▼ mPFC
▬ DRN

ND [246]

BDNF-KIV
Constitutive absence of BDNF 
promoter IV driven transcripts

▼ FC
▬ Hpc

ND ND [247, 250]

Bdnf-e1 −/−
~50% reduction in hyp but not 
in pfc and hpc

▲ PFC ND ND [248]

Bdnf-e2 −/−
No change in BDNF protein 
levels in pfc, hyp and hpc

▬ PFC ND ND [248]

Bdnf-e4 −/−
~50% reduction in hyp, and 
~25% reduction in pfc and hpc

▬ PFC ND ND [248]

Bdnf-e6 −/−
No change in BDNF protein 
levels in pfc, hyp and hpc

▬ PFC ND ND [248]

Amy amygdala, BLA basolateral amygdala, DRN dorsal raphe nuclei, Hyp hypothalamus, FC fron-
tal cortex, LFC lateral frontal cortex, Hpc hippocampus, ESR ear scratch response, HTR head 
twitch response, EPSCs excitatory postsynaptic currents, EPSPs excitatory postsynaptic poten-
tials, IPSCs inhibitory postsynaptic currents, sPSCs spontaneous postsynaptic currents, ND not 
determined
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and Bdnf-e1−/− mutant mice (Table 1). The differences noted across the distinct 
BDNF mutant mouse lines could arise due to variation in the extent and onset of 
BDNF depletion, as well as potentially confounding effects on serotonergic 
 neurotransmission and innervation which could further influence 5-HT2A receptor 
expression (Table 1).

While the mechanisms that mediate the influence of BDNF on 5-HT2A receptor 
expression are currently not understood, recent reports suggest a potential link 
through the recruitment of the transcription factor, early growth response gene 3 
(egr3). BDNF induced enhancement of Egr3 transcriptionally regulates NMDA 
receptor levels and GABAA receptor alpha 4 subunits levels in cortical and hippo-
campal neurons respectively ([251, 252]). Strikingly, Egr3 knockout mice (Egr3−/−) 
showed a ~70% reduction in ketanserin binding sites in the prefrontal cortex and 
lowered DOI-induced head twitch responses [253]. This suggests the speculative 
possibility that BDNF via TrkB signaling may recruit nuclear factor of activated 
T-cells (NFAT) to transcriptionally upregulate Egr3 expression, and thus eventually 
influence 5-HT2A receptor expression through an Egr3-mediated mechanism 
(Fig. 4b). The 5-HT2A receptor promoter has two putative Egr3 binding sites [254], 
although direct mechanistic evidence that links Egr3 to the BDNF regulation of 
5-HT2A receptors is currently lacking. Studies of the influence of altered BDNF 
signaling on 5-HT2A receptors have also assessed effects in individuals bearing the 
BDNF Val66met polymorphism [255]. This polymorphism is associated with alter-
ations in activity-dependent, but not constitutive, BDNF secretion [255]. Previous 
studies link the BDNF Val66met polymorphism with altered serotonin transporter 
binding [256]. However, studies revealed no influence of the BDNF Val66met poly-
morphism on neocortical 5-HT2A receptor binding [257]. Collectively the findings 
suggest that BDNF is capable of regulating 5-HT2A receptors, at the level of mRNA 
and protein expression, within diverse neuronal circuits including the frontal cortex, 
hippocampus and amygdala.

 BDNF Regulation of 5-HT2A Receptor Function

BDNF infusion into the lateral ventricle potentiates DOI-evoked head twitch 
responses in a mouse strain-dependent manner, with effects noted in depressive 
ASC mice but not observed in the parental CBA mice [240, 241] (Fig. 4b). This 
suggests that BDNF can enhance 5-HT2A receptor-mediated functional responses. 
This idea is further supported by studies in BDNF mutant mice, which show region- 
specific changes in both 5-HT2A receptor expression, as well as exhibiting altera-
tions in 5-HT2A receptor-mediated electrophysiological and behavioral responses 
[28, 242, 245–247]. Studies in conditional BDNF mutants, namely postnatal-onset 
loss of function BDNF2L/2LCk-Cre mice, indicate that the DOI-evoked ear scratch 
response (ESR), but not the head twitch response (HTR), is lost in the BDNF2L/2LCk- 

Cre mice [28]. It is surprising that effects on DOI-evoked behaviors are restricted to 
a decline in ESR, with no change in HTR responses, in conditional BDNF mutant 
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mice, given that both behaviors are thought to be mediated through cortical 5-HT2A 
receptors [41, 258]. It has been suggested these differences in DOI-evoked behav-
iors in the conditional BDNF mutant mice may be a consequence of differential 
sensitivity of the ESR and HTR behaviors to reductions in 5-HT2A receptor expres-
sion which is lowered by about 20% within the frontal cortex of BDNF conditional 
mutant mice [28]. Taken together, these studies show that while BDNF infusion 
potentiates 5-HT2A receptor-mediated behavioral responses [240, 241], conditional 
loss of BDNF results in a loss of specific 5-HT2A receptor-mediated behaviors [28].

BDNF2L/2LCk-Cre mice exhibit a steep decline in cortical 5-HT2A receptor mRNA 
and protein expression [28, 245]. This downregulation in frontal cortex 5-HT2A 
receptor expression is accompanied by a failure of 5-HT to elicit spontaneous 
EPSCs (sEPSCs) in the prefrontal cortex of conditional BDNF mutant mice. These 
5-HT-elicited sEPSCs are mediated via the 5-HT2A receptor and can be blocked by 
MDL100,907 and are observed in wildtype but not in BDNF2L/2LCk-Cre mice [245]. 
5-HT2A receptor-mediated electrophysiological responses are severely reduced 
within the prefrontal cortex of BDNF2L/2LCk-Cre mice. It is important to note however 
that cortical layer V pyramidal neurons within these mice exhibited normal baseline 
electrophysiological properties, including no perturbation in glutamate release or 
glutamatergic receptor responses. This suggests a specific deficit in 5-HT2A receptor- 
evoked electrophysiological responses in the prefrontal cortex of conditional BDNF 
mutant mice [245]. Further, the 5-HT2A receptor-mediated increases in both gluta-
matergic and GABAergic spontaneous postsynaptic currents (sPSCs) within the 
dorsal raphe nucleus are significantly attenuated in conditional BDNF mutant mice 
[245]. Attenuated 5-HT2A receptor-mediated activation of both glutamatergic and 
GABAergic neurotransmission within the prefrontal cortex and dorsal raphe nucleus 
of conditional BDNF mutant mice may mechanistically contribute to the decline in 
specific 5-HT2A receptor-mediated behaviors observed in BDNF conditional mutant 
mice.

In addition to reports of perturbed 5-HT2A receptor-mediated synaptic transmis-
sion in the prefrontal cortex and dorsal raphe nucleus of conditional BDNF mutant 
mice [28, 245], a report also indicates that 5-HT2A receptor-mediated modulation of 
GABAergic and glutamatergic neurotransmission within the basolateral amygdala 
(BLA) is disrupted in BDNF2L/2LCk-Cre mice [26]. The frequency of serotonin-evoked 
IPSCs is decreased in pyramidal neurons of the BLA pyramidal neurons in 
BDNF2L/2LCk-Cre mice, which may arise as a consequence of reduced 5-HT2A receptor 
density on GABAergic neurons in the BLA thus resulting in a reduced inhibitory 
tone on BLA pyramidal neurons. Further, the frequency of 5-HT-elicited EPSCs in 
a subset of BLA pyramidal neurons is enhanced in the BDNF2L/2LCk-Cre mice, likely 
through a 5-HT2A receptor-mediated modulation of glutamate release onto BLA 
pyramidal neurons [26]. This suggests that 5-HT2A receptors contribute to the main-
tenance of an excitatory-inhibitory balance within the BLA, and such a balance may 
be tipped by perturbations of BDNF within the BLA circuitry. Indeed it is intriguing 
that conditional BDNF mutant mice exhibit elevated anxiety associated with 
enhanced 5-HT-evoked excitation within the BLA, likely through a 5-HT2A receptor- 
mediated mechanism [26]. While most studies assessing 5-HT2A receptor-mediated 
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functional responses in conditional BDNF mutant mice have focused on the 
BDNF2L/2LCk-Cre mouse line, further investigation of the distinct BDNF mutant mouse 
models, including the adult-onset BDNF loss of function and BDNF overexpression 
mouse models, would greatly aid in gaining a deeper mechanistic understanding of 
the effects of BDNF on 5-HT2A receptor function. Similarly studies in normal mice 
to directly assess the effects of BDNF on 5-HT2A receptor-mediated electrophysio-
logical responses in distinct neurocircuits are required, as studies in BDNF mutant 
mice come with the caveat of possible confounding variables, including develop-
mental consequences, compensatory adaptations, and effects on 5-HT neurotrans-
mission, as well as other 5HT receptors.

To the best of our knowledge no studies till date have directly assessed an influ-
ence of BDNF on 5-HT2A receptor-mediated signaling pathways. However, it is 
interesting to note that BDNF can stimulate intracellular calcium increase and 
enhance calcium oscillations through the recruitment of IP3-gated calcium stores 
[259, 260], activate the MAP kinase, PLC and PI3/Akt signaling cascades [106], 
thus influencing signaling events that also lie downstream of the 5-HT2A receptors. 
Further investigation is required to systematically address the influence of BDNF on 
5-HT2A receptor function, including studies to assess effects of BDNF on 5-HT2A 
receptor heterocomplex formation, trafficking, electrophysiological responses to 
both hallucinogenic and non-hallucinogenic ligands, as well as 5-HT2A receptor 
driven behaviors (Fig. 4b).

 Implication of 5-HT2A Receptor and BDNF Cross-talk 
in Psychopathology

Several reviews have focused on the interaction between 5-HT and BDNF, in the 
context of their role in neuronal plasticity and psychopathology [20, 27, 30]. For the 
purpose of this chapter we will restrict ourselves to discussing the interaction 
between 5-HT2A receptors and BDNF, and the relevance of such a relationship to the 
effects of stress, antidepressants, antipsychotics and hallucinogenic drug action.

 Stress, 5-HT2A Receptors and BDNF

Both 5-HT2A receptors [3–5, 55, 261] as well as BDNF [6, 262, 263] have been 
implicated in the pathophysiology of depression and anxiety. Several studies sug-
gest that the specific physiological sequelae of stress exposure, both early [205, 214, 
264] and adult-onset [33, 265], are regulated by 5-HT2A receptors, and that stress 
experience may enhance 5-HT2A receptor function. The general theme emerging 
across studies suggests that 5-HT2A receptor blockade attenuates diverse down-
stream consequences of stress, such as conditioned defeat in social defeat models 
[266], anxiety behavior in both early [267] and predator stress models [268], 
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hyperthermic responses in psychosocial [269] and restraint stress models [270], 
mesocortical dopamine release in handling stress [271] and ACTH responses evoked 
by restraint or ether stress [261]. While this is not an exhaustive list of the role of 
5-HT2A receptors in the effects of stress, it supports the notion that stress recruits 
5-HT2A receptors to mediate specific stress-evoked physiological consequences. 
Further, a large body of literature that has been extensively reviewed also implicates 
stress-evoked alterations in BDNF signaling in regulating specific outcomes of 
stressor experience [2, 272–275]. However, few studies have directly examined the 
importance of a relationship between 5-HT2A receptors and BDNF in contributing 
to the effects of stress [33, 205].

Studies using exposure to acute and chronic stress have demonstrated a robust 
decline in hippocampal Bdnf expression [2, 33, 129, 272, 276, 277], as well as a 
reduction in adult hippocampal neurogenesis [278–281]. The stress-induced Bdnf 
downregulation is mediated, at least in part, through the 5-HT2A receptor [33]. This 
raises the possibility that a 5-HT2A receptor-mediated decline in BDNF expression 
may contribute to the effects of chronic stress on long-term potentiation [282, 283], 
dendritic atrophy [284–287] and neurogenic decline within the hippocampus [12, 
279, 288]. Interestingly, studies in BDNF mutant mice suggest that reduced BDNF 
levels may further evoke enhanced 5-HT2A receptor expression [28, 31], and could 
act to worsen the effects of stress on Bdnf expression, raising the possibility of a 
positive feedback loop. The crosstalk between 5-HT2A receptors and BDNF in the 
context of stress is also highly relevant within the amygdala [289]. In the BLA of 
stressed animals, 5-HT2A receptor-mediated facilitation of GABAergic inhibition is 
significantly reduced along with a reduction in 5-HT2A receptor expression [289]. 
One can envisage that this consequence of stress exposure could result in hyperex-
citability and a lowered inhibitory tone within the BLA, which may mechanistically 
contribute to the anxiety associated with stress experience [26, 289]. Within the 
prefrontal cortex, 5-HT2A receptor activation, as well as acute stress, both enhance 
glutamate release [49, 51, 286, 290, 291] and Bdnf expression [32, 292]. Treatment 
with a mGluR2/3 agonist can attenuate both the DOI and stress-evoked increase in 
prefrontal Bdnf expression and also dampen the glutamate release within the PFC 
evoked by 5-HT2A receptor stimulation [175, 208, 211]. Further, enhanced Arc 
mRNA levels observed following either 5-HT2A receptor stimulation with DOI or 
immobilization stress are substantially diminished in BDNF knockout mice with an 
adult-onset, forebrain specific BDNF loss [205]. These studies suggests the possi-
bility that stress recruits 5-HT2A receptors to regulate prefrontal immediate early 
gene expression, as well as contributing to the enhanced glutamate release and 
altered prefrontal excitability in response to stress, effects that may involve an 
important role for BDNF. Further studies are required to directly address whether 
stress-evoked apical dendritic atrophy and perturbations of prefrontal cortical excit-
ability involve a key role for reciprocal interactions between 5-HT2A receptors and 
BDNF.
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 Antidepressants, 5-HT2A Receptors and BDNF

5-HT2A receptor antagonism, or knockdown, has been shown to produce 
antidepressant- like behavioral effects in preclinical studies [164, 293–295]. In clini-
cal studies, single nucleotide polymorphisms (SNP) in the 5-HT2A receptor gene 
have been linked to major depression [4, 296, 297], as well as to treatment respon-
sivity to SSRIs [298–301]. Further, drugs like mirtazapine and mianserin that 
exhibit 5-HT2A receptor antagonism are clinically used as antidepressants [302–
304]. Enhanced 5-HT2A receptor binding has been observed in both the frontal cor-
tex and in platelets derived from depressed patients or in postmortem samples 
[305–308]. However, a deeper understanding of the precise functional role of 
5-HT2A receptors in the pathogenesis and treatment of depression still remains elu-
sive. Preclinical studies have also implicated BDNF in mediating specific effects of 
antidepressant treatments on hippocampal neurogenesis [15, 309], neuronal plastic-
ity [310, 311], as well as regulating antidepressant-evoked behavioral outcomes 
[312–319]. This has lead to the neurotrophic hypothesis of depression which posits 
that antidepressant enhance BDNF levels, and such an increase contributes mecha-
nistically to the effects of antidepressants on neuronal plasticity, dendritic morphol-
ogy, hippocampal neurogenesis and behavioral outcomes [20, 320–323]. Further, 
the BDNFVal66Met SNP that functionally impacts BDNF mRNA trafficking and 
secretion [255, 324] has been shown to contribute to the genetic risk for major 
depression [325–327], and in preclinical studies modifies responses to stress and 
antidepressant treatments [328–331]. The role of BDNF as a target of antidepres-
sants as well as contributing to the pathogenesis of depression has been extensively 
reviewed [310, 320, 332]. However, other than correlative studies there is a limited 
understanding of the relevance of a direct relationship between 5-HT2A receptors 
and BDNF in mechanistically contributing to antidepressant action.

Co-administration of a selective 5-HT2A receptor antagonist has been suggested 
to accelerate the antidepressant effects of SSRIs [164, 221, 293]. In this regard, it is 
noteworthy that simultaneous administration of a 5-HT2A receptor antagonist and 
SSRIs in a subchronic paradigm is sufficient to evoke an upregulation of Bdnf 
expression within the hippocampus [164]. Further, short duration (7 day) treatment 
with a 5-HT2A receptor antagonist is also sufficient to enhance hippocampal neuro-
genesis [13, 164]. It possible that enhanced neurotrophic signaling contributes to 
the hippocampal neurogenic changes evoked by 5-HT2A receptor antagonism. This 
presents the intriguing possibility that slow-onset hippocampal neurotrophic and 
neurogenic changes that ensue following chronic antidepressant treatment and con-
tribute to the behavioral effects could be hastened through 5-HT2A receptor antago-
nism. Temporal delays in the neurotrophic and neurogenic effects of antidepressants 
may arise in part due to the time required to downregulate the 5-HT2A receptor, a 
common effect of several classes of antidepressants [333, 334]. It is tempting to 
speculate that simultaneous 5-HT2A receptor antagonism along with antidepressant 
treatment could speed up effects on both hippocampal Bdnf expression and hippo-
campal neurogenesis [164], thus providing for the possibility of a hastening of the 
behavioral outcomes of antidepressant treatments. However, this idea has yet to be 
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experimentally validated and several lines of investigation are required to explore 
the importance of a cross-talk between 5-HT2A receptors and BDNF in mediating 
antidepressant-evoked molecular, cellular and behavioral changes.

 Atypical Antipsychotic and Hallucinogenic Drug Action, 5-HT2A 
Receptors and BDNF

Atypical antipsychotics have been distinguished from conventional or first- 
generation antipsychotics based not only on their improved side-effect profile and 
enhanced therapeutic efficacy, but also on their ability to block both 5-HT2A and D2 
receptors. Atypical antipsychotics are further sub-classified based on their high 
selectivity for 5-HT2A and D2 receptors and referred to as serotonin-dopamine 
antagonists (risperidone, ziprasidone, lurasidone) or based on their affinity for 
5-HT2A and D2 receptors as well as other cholinergic and histaminergic receptors as 
multi-acting receptor targeted antipsychotics (clozapine, olanzapine, quetiapine, 
asenapine) [226]. 5-HT2A receptor antagonism exhibited by atypical antipsychotic 
drugs has been suggested to contribute to their neuroprotective, neurotrophic and 
neurogenic actions [24, 226, 335, 336]. Further, Bdnf expression is enhanced by the 
atypical antipsychotics olanzapine [337] and clozapine [161], and this effect has 
also been implicated in the atypical antipsychotic-mediated effects on cortical neu-
roprotection and neurogenesis [224, 338, 339]. However, what is still not under-
stood mechanistically is whether the reciprocal interactions between 5-HT2A 
receptors and BDNF are essential to the survival-promoting and neurogenic actions 
of atypical antipsychotics.

BDNF-mediated TrkB signaling is attenuated in the prefrontal cortex of schizo-
phrenic patients [340], which may contribute to impaired neuronal survival and plas-
ticity, in particular impacting cortical GABAergic networks [339, 341, 342]. A 
reduction in the number of parvalbumin-expressing GABAergic interneurons has 
been reported within the prefrontal cortex of both schizophrenic patients [343–345], 
as well as in animal models of schizophrenia [346–348]. Schizophrenic patients 
also exhibit altered gene expression within parvalbumin-expressing fast-spiking 
GABAergic interneurons, an effect that is thought to be regulated via reduced 
BDNF-TrkB signaling [250, 341, 349]. The 5-HT2A receptor is expressed both by 
prefrontal pyramidal neurons, as well as by parvalbumin-expressing fast-spiking 
GABAergic interneurons, and both of these cell types are excited by serotonin via 
5-HT2A receptors [350]. The role of a 5-HT2A receptor-mediated BDNF regulation in 
mechanistically contributing to altered parvalbumin expressing GABAergic inter-
neuron gene expression and neuronal survival remains unknown, and is of substan-
tial interest given the key role of this cortical microcircuit in the pathophysiology 
and treatment of schizophrenia. Studies have previously shown that acute 5-HT2A 
receptor stimulation results in enhanced activity-dependent prefrontal Bdnf expres-
sion [32, 175], though it is unclear which specific prefrontal neuronal cell types 
exhibit this increase in Bdnf expression. Further, chronic 21 days treatment with the 
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atypical antipsychotics, clozapine, olanzapine and aripiprazole that exhibit 5-HT2A 
receptor antagonism, also evokes an induction of prefrontal Bdnf expression [161, 
351]. It is indeed interesting that both acute 5-HT2A receptor stimulation and sus-
tained chronic blockade by the atypical antipsychotics olanzapine and aripiprazole 
can evoke an increase in prefrontal Bdnf expression, however the time scales of treat-
ment required for these effects are quite distinct and point to recruitment of distinct 
downstream signaling cascades. In this regard it is interesting that the atypical anti-
psychotics, clozapine and risperidone, have been reported to evoke biased signaling 
from 5-HT2A-mGluR2 heterocomplexes shifting the balance to enhanced Gi and 
reduced Gq-driven signaling [44, 45]. The signaling mechanisms that contribute to 
atypical antipsychotic mediated BDNF regulation remain poorly elucidated.

In addition to studies within the prefrontal cortex, reports indicate an increase in 
Bdnf expression in the DG and the CA fields of the hippocampus following chronic 
atypical antipsychotic treatment [139, 203]. However, it is important to note that stud-
ies with diverse atypical antipsychotics differ in the nature and magnitude of Bdnf 
regulation within specific brain regions based on differences in treatment regime, 
dose, and duration [138, 139, 161, 203, 351–353]. Predominantly, most reports indi-
cate that atypical antipsychotics, evoke an induction in Bdnf expression in hippocam-
pal subfields, an effect that parallels the increase noted in hippocampal neurogenesis 
suggesting a possible role for BDNF in contributing to the neurogenic consequences 
of atypical antipsychotics. Given that 5-HT2A receptor stimulation is associated with a 
decline in hippocampal Bdnf expression [32], it is tempting to speculate that the induc-
tion noted in Bdnf levels following atypical antipsychotic administration is mediated 
via 5-HT2A receptor antagonism. Further studies are required to address whether the 
reciprocal relationship between 5-HT2A receptors and BDNF contributes mechanisti-
cally to the neurogenic actions of atypical antipsychotics within the hippocampus 
[354]. While studies do implicate BDNF signaling in contributing to the pathophysi-
ology and treatment of schizophrenia, the role of 5-HT2A receptor-driven BDNF regu-
lation in this context remains relatively poorly explored.

Insights into the role of 5-HT2A receptors in the psychotic symptoms of schizo-
phrenia also come in part due to observations of the psychedelic properties of sero-
tonergic hallucinogens and drugs such as lysergic acid diethylamide (LSD). The 
underlying mechanism of action implicated in the hallucinogenic properties of these 
drugs is activation of the 5-HT2A receptor [355, 356]. Interestingly, hallucinogens 
such as the 5-HT2A/C receptor agonist DOI [32, 205] and LSD [143] induce cortical 
Bdnf expression. It is unclear whether non-hallucinogenic ligands of the 5-HT2 
receptor also regulate cortical Bdnf expression in a similar fashion. The role of spe-
cific signaling cascades recruited downstream of 5-HT2A receptors by hallucino-
genic and non-hallucinogenic ligands is of particular interest and will also clarify 
whether this contributes to the differential transcriptome fingerprints of these dis-
tinct classes of 5-HT2A receptor ligands [230]. Hallucinogenic ligands (DOI) of the 
5-HT2A receptor, shift 5-HT2A-mGluR2 heterocomplex signaling towards enhanced 
Gq-mediated drive and a reduction in Gi-mediated signaling, in comparison to 
non- hallucinogenic (methysergide) and endogenous (5-HT) ligands which 
appear to favour higher Gi-mediated signaling downstream of the 5-HT2A-mGluR2 

5-HT2A Receptors and BDNF Regulation: Implications for Psychopathology



420

heterocomplex [44]. Similarly, only hallucinogenic 5-HT2A receptor ligands differ-
entially influence downstream signaling from the 5-HT2A-D2R heterocomplex, allo-
sterically enhancing D2R protomer signaling [46]. Such tipping of the Gi-Gq 
balance downstream of the 5-HT2A-mGluR2 and the 5-HT2A-D2R heterocomplex 
could drive distinct transcriptional outcomes and differentially influence the regula-
tion of BDNF expression by diverse 5-HT2A receptor ligands. Given hallucinogenic 
5-HT2A receptor ligands robustly enhance cortical BDNF expression, BDNF-
mediated effects on cytoarchitecture, synaptic plasticity and long term potentiation 
could also contribute to the persistent effects of hallucinogens that result in the 
recurrence of symptoms long after cessation of the drug [357]. Future experiments 
are required to address whether hallucinogenic compounds mediate such long-last-
ing effects through a 5-HT2A receptor-mediated recruitment of BDNF signaling.

 Conclusion

In this book chapter, we have reviewed the regulation of the neurotrophin BDNF by 
5-HT2A receptors, the influence of BDNF on 5-HT2A receptor expression and func-
tion, and the relevance of such a reciprocal relationship in the pathophysiology and 
treatment of disorders such as depression and schizophrenia. While a series of stud-
ies point to an important crosstalk between 5-HT2A receptors and BDNF within the 
frontal cortex, hippocampus and amygdala, there are multiple aspects of this inter-
action that remain to be experimentally investigated. While the focus of studies so 
far has largely been to gain an understanding of the transcriptional regulation of 
Bdnf by 5-HT2A receptors, the functional consequences of changes in BDNF expres-
sion, as well as the influence of 5-HT2A receptors on BDNF synthesis, transport, 
release, signaling and BDNF-driven cellular and behavioral consequences remain to 
be investigated (Fig. 4a). Most studies addressing the influence of BDNF on 5-HT2A 
receptors have focused on using BDNF mouse mutant models to examine changes 
in 5-HT2A receptor expression and electrophysiological responses (Table 1), with 
limited understanding of the impact of BDNF on 5-HT2A receptor heterodimeriza-
tion, internalization and receptor recycling, signaling, network activity, and 5-HT2A 
receptor-driven cellular and behavioral outcomes (Fig.  4b). Further, despite an 
understanding of the key role that 5-HT [358–360] and BDNF [361–363] play dur-
ing critical period plasticity and the activity-dependent refinement of cortical cir-
cuits, there is a relative paucity of information on the role of a 5-HT2A receptor-BDNF 
crosstalk during these early temporal windows. Converging lines of evidence indi-
cate that diverse early life adverse events disrupt 5-HT2A receptor function [214, 
216, 264], and also alter gene expression of Bdnf [167, 364]. These studies motivate 
future investigation into the relationship between 5-HT2A receptors and BDNF dur-
ing development, in particular with a view to understanding the establishment of 
vulnerability for psychopathology. The vast majority of studies that have examined 
the crosstalk between 5-HT2A receptors and BDNF are based on preclinical observa-
tions in animal models, clinical studies examining this relationship are currently 
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limited. Indeed, it will be important to address the reciprocal regulation of 5-HT2A 
receptors and BDNF in clinical samples derived from patients with genetic poly-
morphisms of BDNF and the 5-HT2A receptor that influence risk and treatment 
responses for diverse psychiatric disorders. The BDNF val66met [25, 325, 365, 
366] and specific 5-HT2A receptor SNPs [297, 367, 368] have been strongly linked 
to both enhanced vulnerability for psychopathology and to altered treatment 
response to antidepressants and antipsychotics. In this regard the potential use of 
fibroblast-derived human induced pluripotent stem cells to mechanistically examine 
the association between 5-HT2A receptors and BDNF would open up important ave-
nues for future studies that examine the relevance of 5-HT2A receptor-BDNF cross-
talk in a clinical context. A deeper understanding of the relationship between 5-HT2A 
receptors and BDNF is of importance to elucidating the mechanisms underlying the 
selective vulnerability of specific neuronal populations implicated in the pathogen-
esis of anxiety and depression, and in the cortical microcircuit dysfunction associ-
ated with schizophrenia. Such studies bear promise for the identification of novel 
therapeutic targets for the treatment of psychiatric disorders such as anxiety, depres-
sion and schizophrenia.
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