Time-Dependent Problems

9.1 Introduction

We now give a brief introduction to time-dependent problems through the equations
of elastodynamics for infinitesimal deformations

d’u dv
Veo+ f = Po gz = Po s ©.1)

where V = Vx and % = ai (see Appendix B).

9.2 Generic Time Stepping

In order to motivate the time-stepping process, we first start with the dynamics of
single point mass under the action of a force ¥. The equation of motion is given by
(Newton’s Law)

mv =W, 9.2)

where ¥ is the total force applied to the particle. Expanding the velocity in a Taylor
series about t + 6 Ar, where 0 < 6 < 1, for v(t + At), we obtain

d 1 d?
v(t + A1) = v(t +0A1) + d—;’wm(l —0)Ar + Eﬁ’mema —0)*(An)* + O(Ar)?
(9.3)

and for v(¢), we obtain

dv 1d%v ) ) 3
v(t) =v(t +0AL) — E|t+9Az9Al‘ + §W|t+6m9 (A" +0(AD)°.  (94)
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Subtracting the two expressions yields

dv v(t + At) —v(t) A
E|t+9m = A + O(Ap), 9.5)

where @(At) = O(A1)?, when 6 = %, otherwise @(At) = O(At). Thus, inserting
this into Eq.9.2 yields

At A
V(1 + At) = v(t) + — W (1 + 0 A1) + O(A1)>. (9.6)
m
Note that a weighted sum of Eqs. 9.3 and 9.4 yields
V(t + 0A1) = 0v(r + Ar) + (1 — 0)v(t) + O(Ar)?, 9.7)

which will be useful shortly. Now expanding the position of the mass in a Taylor
series about ¢ 4+ 8 At we obtain

du ldzu 2 2 3
u(t + At) = u(t + 0 Ar) + El[.{.@At(l —0)Ar + Eﬁlt—‘rgA[(l —0)“(AD” + O(Ar)

(9.8)
and

du 1 d*u s N
ut)=u(t+0At) — E|z+9At9Af + Eﬁhﬁ)m@ (A" +0(A°. (9.9)

Subtracting the two expressions yields

u(t+ Ar) —u(t)

— = v(t + 041 + O(Ab). (9.10)

Inserting Eq.9.7 yields
u(t + Ar) = u(t) + (0v(t + Ar) + (1 — 0)v(1) Ar + O(Ar)?, 9.11)

and using Eq. 9.6 yields
u(t+ At) =u(@) +v()Ar + 9(21)2 V(1 4+ 0 A1) 4+ O(Ar)?, (9.12)

The term W (¢ + 6 At) can be handled in a simple way:

V(i +0A) ~OW (1 + A + (1 — )W (D). 9.13)
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We note that

e When 6 = 1, then this is theA(implicit) Backward Euler scheme, which is very
stable (very dissipative) and O(Ar)? = O(Ar)? locally in time,

e When 6 = 0, then this is the (explicit) Forward Euler scheme, which is condition-
ally stable and @(At)2 = O(At)2 locally in time,

e When 6 = 0.5, then this is the (implicit) “Midpoint” scheme, which is stable and
(’A)(At)2 = O(Ar)? locally in time.

In summary, we have for the velocityl
At
vt + A) =v(@t)+ — O¥(+ A+ (1 — )W (1)) 9.14)
m

and for the position

u(t + At) = u(t) + v(t + 0 Ar) At 9.15)
= u(t) + (Ov(t + At) + (1 — 0)bfv (1)) At,

or in terms of ¥

u(t+ At) =u(t) +v(t)Ar +

2
9(2” Ot + AD) + (1 — )W (1)) (9.16)

9.3 Application to the Continuum Formulation

Now consider the continuum analogue to “mv”

0’u v def
P0W=po§=v'0+f='l’ 9.17)
and thus
PoV(t + At) = p,v(t) + At (OW(t + Ar) + (1 — )W (2)). (9.18)

Multiplying Eq.9.18 by a test function and integrating yields

/ v-pov(t + At)dS2 = / V- pov(t)ds2 (9.19)
Q 2

+ At/ v-O¥ (4 At)+ (1 -0)¥ (1)) ds2,
2

n order to streamline the notation, we drop the cumbersome O(Af)-type terms.
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and using Gauss’s divergence theorem and enforcing v = 0 on [, yields (using a
streamlined time-step superscript counter notation of L, where t = LAt and ¢ +
At = (L 4+ 1)Ar)

/ v povitlde = / v povl d2 (9.20)
el fe)

L+1
+At9(—/ Vv;ad.(2+/ v-(a~n)dA—|—/v~fd.Q>
2 r 2

L
+At(1—9)(—/ Vv:ad[?—i—/ v-t*dA+/v~fd.Q) .
fo} n Q2

As in the previous chapter on linearized three-dimensional elasticity, we assume
(W' =[®la) and ("} =[1b} and (") =[P4},  (92D)
which yields, in terms of matrices and vectors
B M@ = B (M@ - AT (~[KHa) ! + (R} + (R
— (0)7 Ar(1 - 0) (~[K1{@)" + (Ry)E + (R} (9.22)
where [M] = fQ ol P17 [®]dS$2, and [K]{Ry}, and {R,} are as defined in the pre-
vious chapters on elastostatics. Note that {R f}L and {R;}* are known values from
the previous time-step. Since {b}” is arbitrary
(M@ ! = (M@} + (a0) (~[KHa) ™+ + (R )+ (R
+ A1 = 60) (<K Ha}" + (Ry)F + (R} 9.23)
One should augment this with the approximation for the discrete displacement:
(@}t = {a)t + At (9{(1}“1 +(1— 9){a}L) . (9.24)
For a purely implicit (Backward Euler) method 6 = 1

(IM1@)H " + AR @) = M@ + Ar ((REH + (Rp)EH), 925)

augmented with
(a}f*! = (@)t + Ar{a)t T, (9.26)

which requires one to solve a system of algebraic equations, while for an explicit
(Forward Euler) method 8 = 0 with usually [ M] is approximated by an easy-to-invert
matrix, such as a diagonal matrix, [M] &~ M[1], to make the matrix inversion easy,
yielding:

@ = (@ + a1~ (<K@ + (RE+(RYE), ©02D)
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augmented with
{@}r! = {a}F + Ar{a)". (9.28)

There is an enormous number of time-stepping schemes. For general time-stepping,
we refer the reader to the seminal texts of Hairer et al. [1,2]. In the finite element con-
text, we refer the reader to Bathe [3], Becker et al. [4], Hughes [5], and Zienkiewicz
and Taylor [6].
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