
6WeakFormulations inThree
Dimensions

6.1 Introduction

Albeit a bit repetitive, we follow similar constructions as done in the one-dimensional
analysis of the preceding chapters. This allows readers a chance to contrast and com-
pare the differences between one-dimensional and three-dimensional formulations.
To derive a direct weak form for a body, we take the balance of linear momentum
∇ · σ + f = 0 (denoting the strong form) and form a scalar product with an arbitrary
smooth vector-valued function ν, and integrate over the body (Fig. 6.1),

∫
Ω

(∇ · σ + f ) · ν dΩ =
∫

Ω

r · ν dΩ = 0, (6.1)

where r is the residual and ν is a test function. If we were to add a condition that we
do this for all possible test functions (∀ν), Eq. 6.1 implies r = 0. Therefore, if every
possible test function was considered, then

r = ∇ · σ + f = 0 (6.2)

on any finite region in Ω . Consequently, the weak and strong statements would be
equivalent provided the true solution is smooth enough to have a strong solution.
Clearly, r can never be nonzero over any finite region in the body, because the test
function will locate them. Using the product rule of differentiation,

∇ · (σ · ν) = (∇ · σ) · ν + ∇ν : σ (6.3)

leads to, ∀ν

∫
Ω

(∇ · (σ · ν) − ∇ν : σ) dΩ +
∫

Ω

f · ν dΩ = 0, (6.4)
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Fig. 6.1 A
three-dimensional body
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where we choose the ν from an admissible set, to be discussed momentarily. Using
the divergence theorem leads to, ∀ν,

∫
Ω

∇ν : σ dΩ =
∫

Ω

f · ν dΩ +
∫

∂Ω

σ · n · ν d A, (6.5)

which, since the traction t = σ · n, leads to
∫

Ω

∇ν : σ dΩ =
∫

Ω

f · ν dΩ +
∫

Γt

t · ν d A. (6.6)

If we decide to restrict our choices of ν’s to those such that ν|Γu = 0, we have,
where u∗ is the applied boundary displacement on Γu , for infinitesimal strain linear
elasticity

Find u, u|Γu = u∗, such that ∀ν,ν|Γu = 0

∫
Ω

∇ν : IE : ∇u dΩ

︸ ︷︷ ︸
def=B(u,ν)

=
∫

Ω

f · ν dΩ +
∫

Γt

t∗ · ν d A

︸ ︷︷ ︸
def=F(ν)

, (6.7)

where t = t∗ on Γt . As in the one-dimensional formulation, this is called a “weak”
form because it does not require the differentiability of the stress σ. In other words,
the differentiability requirements have been weakened. It is clear that we are able
to consider problems with quite irregular solutions. We emphasize that if we test
the solution with all possible test functions of sufficient smoothness, then the weak
solution is equivalent to the strong solution. Futhermore, that provided the true
solution is smooth enough, the weak and strong forms are equivalent, which can be
seen by the above constructive derivation.
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6.2 Hilbertian Sobolev Spaces

As in one dimension, a key question is the selection of the sets of functions in the
weak form. Somewhat naively, the answer is simple, the integrals must remain finite.
Therefore the following restrictions hold (∀ν),

∫
Ω

f · ν dΩ < ∞,
∫
∂Ω

t∗ · ν d A <

∞ and
∫
Ω

∇ν : σ dΩ < ∞, and govern the selection of the approximation spaces.
These relations simply mean that the functions must be square integrable. In order to
make precise statements one must have a method of “book keeping.” Such a system
is to employ so-called Hilbertian Sobolev spaces. We recall that a norm has three
main characteristics for any functions u and ν such that ||u|| < ∞ and ||ν|| < ∞
are

• (1) ||u|| > 0, ||u|| = 0 if and only if u = 0,
• (2) ||u + ν|| ≤ ||u|| + ||ν|| and
• (3) ||αu|| = |α|||u||,

where α is a scalar constant. Certain types of norms, so-called Hilbert space norms,
are frequently used in solid mechanics. Following standard notation, we denote
H1(Ω) as the usual space of scalar functions with generalized partial derivatives of
order ≤ 1 in L2(Ω), i.e., square integrable, in other words u ∈ H1(Ω) if

||u||2H1(Ω)

def=
∫

Ω

3∑
j=1

∂u

∂x j

∂u

∂x j
dΩ +

∫
Ω

uu dΩ < ∞. (6.8)

Similarly, we define H1(Ω)
def= [H1(Ω)]3 as the space of vector-valued functions

whose components are in H1(Ω), i.e.,

u ∈ H1(Ω) if ||u||2
H1(Ω)

def=
∫

Ω

3∑
j=1

3∑
i=1

∂ui
∂x j

∂ui
∂x j

dΩ +
∫

Ω

3∑
i=1

uiui dΩ < ∞,

(6.9)

and we denote L2(Ω)
def= [L2(Ω)]3. Using these definitions, a complete boundary

value problem can be written as follows. The data (loads) are assumed to be such
that f ∈ L2(Ω) and t∗ ∈ L2(Γt ), but less smooth data can be considered without
complications. Implicitly we require that u ∈ H1(Ω) and σ ∈ L2(Ω) without con-
tinuallymaking such references. Therefore, in summarywe assume that our solutions
obey these restrictions, leading to the following infinitesimal strain linear elasticity
weak form:

Find u ∈ H1(Ω), u|Γu = u∗, such that ∀ν ∈ H1(Ω),ν|Γu = 0

∫
Ω

∇ν : IE : ∇u dΩ =
∫

Ω

f · ν dΩ +
∫

Γt

t∗ · ν d A.

(6.10)
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We note that if the data in (6.10) are smooth and if (6.10) possesses a solution u
that is sufficiently regular, then u is the solution of the classical linear elastostatics
problem in strong form:

∇ · (IE : ∇u) + f = 0, ∀x ∈ Ω,

u = u∗, ∀x ∈ Γu,

σ · n = (IE : ∇u) · n = t = t∗, ∀x ∈ Γt .

(6.11)

6.3 The Principle of Minimum Potential Energy

Repeating the procedure that we performed for one-dimensional formulations earlier
in the monograph, we have

||u − w||2E(Ω) = B(u − w, u − w)

= B(u, u) + B(w,w) − 2B(u,w)

= B(w,w) − B(u, u) − 2B(u,w) + 2B(u, u)

= B(w,w) − B(u, u) − 2B(u,w − u)

= B(w,w) − B(u, u) − 2F(w − u)

= B(w,w) − 2F(w) − (B(u, u) − 2F(u))

= 2J (w) − 2J (u), (6.12)

where similar to the one-dimensional case, we define the elastic potential as

J (w)
def= 1

2
B(w,w) − F(w) = 1

2

∫
Ω

∇w : IE : ∇w dΩ −
∫
Ω

f · w dΩ −
∫
Γt

t∗ · w d A.

(6.13)

This implies

0 ≤ ||u − w||2E(Ω) = 2(J (w) − J (u)) or J (u) ≤ J (w), (6.14)

where Eq.6.14 is known as the Principle of Minimum Potential Energy (PMPE). In
other words, the true solution possesses theminimumpotential. As in one dimension,
theminimumproperty of the exact solution can be proven by an alternative technique.
Let us construct a potential function, for a deviation away from the exact solution u,
denoted u + λν, where λ is a scalar and ν is any admissible variation (test function)

J (u + λν) = 1

2

∫
Ω

∇(u + λν) : IE : ∇(u + λν) dΩ −
∫
Ω

f · (u + λν) dΩ −
∫
Γt

t∗ · (u + λν) d A.

(6.15)



6.3 The Principle of Minimum Potential Energy 49

If we differentiate with respect to λ,

∂J (u + λν)

∂λ
=

∫
Ω

∇ν : IE : ∇(u + λν) dΩ −
∫

Ω

f · ν dΩ −
∫

Γt

t∗ · ν d A,

(6.16)
and set λ = 0 (because we know that the exact solution is for λ = 0), we have

∂J (u + λν)

∂λ
|λ=0 =

∫
Ω

∇ν : IE : ∇u dΩ −
∫

Ω

f · ν dΩ −
∫

Γt

t∗ · ν d A = 0.

(6.17)
Clearly, the minimizer of the potential is the solution to the field equations, since it
produces the weak form as a result. This is a minimum since

∂2J (u + λν)

∂λ2 |λ=0 =
∫

Ω

∇ν : IE : ∇ν dΩ ≥ 0. (6.18)

It is important to note that the weak form, derived earlier, requires no such potential,
and thus is a more general approach than a minimum principle. Thus, in the hypere-
lastic case, the weak formulation can be considered as a minimization of a potential
energy function. This is sometimes referred to as the Rayleigh–Ritz method.

6.4 Complementary Principles

There exist another set ofweak forms andminimumprinciples called complementary
principles. Starting with∇ · τ = 0, τ · n|Γt = 0, multiplying by the solution u leads
to ∫

Ω

∇ · τ · u dΩ = 0 =
∫

Ω

∇ · (τ · u) dΩ −
∫

Ω

τ : ∇u dΩ. (6.19)

Using the divergence theorem yields

Find σ,∇ · σ + f = 0,σ · n|Γt = t such that

∫
Ω

τ : IE−1 : σ dΩ

︸ ︷︷ ︸
def=A(σ,τ )

=
∫

Γu

τ · n · u∗ d A
︸ ︷︷ ︸

def=G(τ )

∀τ ,∇ · τ = 0, τ · n|Γt = 0. (6.20)

This is called the complementary form of Eq.6.7. Similar restrictions are placed on
the trial and test fields to force the integrals to make sense, i.e., to be finite. Simi-
lar boundedness restrictions control the choice of admissible complementary func-
tions. In other words we assume that the solutions produce finite energy. Despite
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the apparent simplicity of such principles they are rarely used in practical com-
putations, directly in this form, because of the fact that it is somewhat difficult to
find approximate functions, σ, that satisfy ∇ · σ + f = 0. However, in closing, we
provide some theoretical results. As in the primal case, a similar process is repeated
using the complementary weak form. We define a complementary norm

0 ≤ ||σ − γ||2E−1(Ω)

def=
∫

Ω

(σ − γ) : IE−1 : (σ − γ) dΩ = A(σ − γ,σ − γ). (6.21)

Again, by direct manipulation, we have

||σ − γ||2E−1(Ω)
= A(σ − γ, σ − γ)

= A(σ,σ) + A(γ,γ) − 2A(σ,γ)

= A(γ, γ) − A(σ,σ) − 2A(σ,γ) + 2A(σ,σ)

= A(γ, γ) − A(σ,σ) − 2A(σ,γ − σ)

= A(γ, γ) − A(σ,σ) − 2G(γ − σ)

= A(γ, γ) − 2G(γ) − (A(σ,σ) − 2G(σ))

= 2K(γ) − 2K(σ), (6.22)

where we define K(γ)
def= 1

2A(γ, γ) − G(γ) = 1
2

∫
Ω

γ : IE−1 : γ dΩ − ∫
Γu

γ · n ·
u∗ d A. Therefore,

||σ − γ||2
E−1(Ω)

= 2(K(γ) − K(σ)) or K(σ) ≤ K(γ), (6.23)

which is the Principle of Minimum Complementary Potential Energy (PMCPE).
By directly adding together the potential energy and the complementary energy we
obtain an equation of balance:

J (u) + K(σ) = 1

2

∫
Ω

∇u : IE : ∇u dΩ −
∫

Ω

f · u dΩ −
∫

Γt

t∗ · u d A

+ 1

2

∫
Ω

σ : IE−1 : σ dΩ −
∫

Γu

t · u︸︷︷︸
(σ·n)·u∗

d A (6.24)

= 0.

Remark:Basically, the three-dimensional and one-dimensional formulations are,
formally speaking, virtually identical in structure.
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