
3AFinite Element Implementation
inOneDimension

3.1 Introduction

Classical techniques construct approximations from globally kinematically admis-
sible functions, which we define as functions that satisfy the displacement boundary
condition beforehand. Two main obstacles arise: (1) it may be very difficult to find
a kinematically admissible function over the entire domain and (2) if such functions
are found they lead to large, strongly coupled and complicated systems of equations.
These problems have been overcome by the fact that local approximations (posed
over very small partitions of the entire domain) can deliver high-quality solutions
and simultaneously lead to systems of equations which have an advantageous math-
ematical structure amenable to large-scale computation by high-speed computers.
These piecewise or “elementwise” approximations have been recognized at least 60
years ago by Courant [1] as being quite advantageous. There have been a variety of
such approximation methods to solve equations of mathematical physics. The most
popular method of this class is the finite element method (FEM). The central feature
of the method is to partition the domain in a systematic manner into an assembly of
discrete subdomains or “elements,” and then to approximate the solution of each of
these pieces in a manner that couples them to form a global solution valid over the
whole domain. The process is designed to keep the resulting algebraic systems as
computationally manageable, and memory efficient, as possible.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_3

13

14 3 A Finite Element Implementation in One Dimension

3.2 Weak Formulation

Consider the following general weak form introduced earlier

Find u ∈ H1(Ω) u|�u = d such that ∀ν ∈ H1(Ω), ν|�u = 0

∫
Ω

dν

dx
E

du

dx
dx =

∫
Ω

f ν dx + t∗ν|�t .

(3.1)

3.3 FEM Approximation

We approximate u by

uh(x) =
N∑

j=1

a jφ j (x). (3.2)

If we choose ν with the same approximation functions, but a different linear combi-
nation

νh(x) =
N∑

i=1

biφi (x), (3.3)

then we may write

∫
Ω

d

dx

(
N∑

i=1

biφi (x)

)
E

d

dx

⎛
⎝ N∑

j=1

a jφ j (x)

⎞
⎠ dx

︸ ︷︷ ︸
def= stiffness contribution

=
∫

Ω

(
N∑

i=1

biφi (x)

)
f

︸ ︷︷ ︸
def=body load contribution

dx +
((

N∑
i=1

biφi (x)

)
t∗

)
|�t

︸ ︷︷ ︸
def= traction load contribution

. (3.4)

Since the ν’s are arbitrary, the bi are arbitrary, i.e., ∀ν ⇒ ∀bi , therefore

∑N
i=1 bi

(∑N
j=1 Ki j a j − Ri

)
= 0 ⇒ [K]{a} = {R},

Ki j
def= ∫

Ω
dφi
dx E

dφ j
dx dx and

Ri
def= ∫

Ω
φi f dx + φi t∗|�t ,

(3.5)

3.3 FEM Approximation 15

where [K] is an N × N (“stiffness”) matrix with components Ki j and {R} is an
N × 1 (“load”) vector with components Ri . This is the system of equations that is to
be solved. Thus, large N implies large systems of equations and more computational
effort. However, with increasing N , we obtain more accurate approximate solutions.
We remark that large N does not seem like much of a concern for one-dimensional
problems, but is of immense concern for three-dimensional problems.

3.4 Construction of FEM Basis Functions

As mentioned, a primary problem with Galerkin’s method is that it provides no
systematic way of constructing approximation functions. The difficulties that arise
include (1) ill-conditioned systems due to poor choices of approximation functions
and (2) domains with irregular geometries. To circumvent these problems, the FEM
defines basis (approximation) functions in a piecewise manner over a subdomain,
“the finite elements,” of the entire domain. The basis functions are usually simple
polynomials of low degree. The following three criteria are important:

• The basis functions are smooth enough to be members of H1(Ω).
• The basis functions are simple piecewise polynomials, defined element by ele-

ment.
• The basis functions form a simple nodal basis where φi (x j) = 0 (i �= j) and

φi (xi) = 1, furthermore,
∑N

i=1 φi (x) = 1 for all x and φi (x) = 0 outside of the
elements that share node i .

A set of candidate functions are defined by

φ(x) = x − xi−1

hi
for xi−1 ≤ x ≤ xi , (3.6)

where hi = xi − xi−1 and

φ(x) = 1 − x − xi

hi+1
for xi ≤ x ≤ xi+1, (3.7)

and φ(x) = 0 otherwise. The derivative of the function is

dφ

dx
= 1

hi
for xi−1 ≤ x ≤ xi , (3.8)

and
dφ

dx
= − 1

hi+1
for xi ≤ x ≤ xi+1. (3.9)

The functions are arranged so that the “apex” of the ith function coincides with the
ith node (Fig. 3.1). This framework provides many advantages, for example simple
numerical integration.

16 3 A Finite Element Implementation in One Dimension

Fig. 3.1 A one-dimensional
finite element basis. At the
top, is a uniform mesh
example and at the bottom,
nonuniform

i

x x x
i+1i−1 i

φ i
(UNIFORM MESH)

φ

φ

h h
i i+1

(NONUNIFORM MESH)

x i−1 xi x i+1

h i h i+1

φ

3.5 Integration and Gaussian Quadrature

Gauss made the crucial observation that one can integrate a polynomial of order
2G-1 exactly with G “sampling” points and appropriate weights. Thus, in order to
automate the integration process, one redefines the function F(x) over a normalized
unit domain −1 ≤ ζ ≤ +1

∫ L

0
F(x) dx =

∫ 1

−1
F(x(ζ)) J (ζ)dζ =

G∑
i=1

wi F(ζi)J (ζi) =
G∑

i=1

wi F̂(ζi),

(3.10)
where J is the Jacobian of the transformation. Unlike most integration schemes,
Gaussian quadrature relaxes the usual restriction that the function sampling locations
be evenly spaced. According to the above, we should be able to integrate a cubic
(and lower order) term exactly with G = 2 points, since (2G − 1) = 3. Therefore

• For a cubic (ζ 3): ∫ 1

−1
ζ 3 dζ = 0 = w1ζ

3
1 + w2ζ

3
2 (3.11)

3.5 Integration and Gaussian Quadrature 17

• For a quadratic (ζ 2):

∫ 1

−1
ζ 2 dζ = 2/3 = w1ζ

2
1 + w2ζ

2
2 (3.12)

• For a linear (ζ): ∫ 1

−1
ζ dζ = 0 = w1ζ1 + w2ζ2 (3.13)

• For a constant (1):

∫ 1

−1
1 dζ = 2 = w11 + w21 = w1 + w2 (3.14)

There are four variables, ζ1, ζ2, w1, w2, to solve for. The solution that satisfies all of
the requirements is ζ1 = √

1/3 = −ζ2 and w1 = w2 = 1. For the general case of G
points, we have

∫ 1

−1
F̂(ζ)dζ =

G∑
i=1

wi F̂(ζi) (3.15)

and subsequently 2Gnonlinear equations for the ζi ’s andwi ’s. Fortunately, the ζi ’s are
the roots to the Gth degree Legendre polynomial, defined via the recursion (Fig. 3.2)

(G + 1)LG+1(ζ) − (2G + 1)ζ LG(ζ) + GLG−1(ζ) = 0, (3.16)

with Lo(ζ) = 1, L1(ζ) = ζ . The roots of the Legendre polynomial are well known
and tabulated. Once the roots are determined the remaining equations for thewi ’s are
linear and easy to solve. Fortunately, the roots are precomputed over a normalized
unit domain, and one does not need to compute them. The only task is to convert the
domain of each element to a standard unit domain (in the next section). A table of
Gauss weights can be found in Table3.1.

3.5.1 An Example

Consider the following integral

I
def=

∫ 1.5

0.2
10e−x2 dx . (3.17)

This integral is of the form

I
def=

∫ b

a
f (x) dx =

∫ 1

−1
f (

(b − a)ζ + b + a

2
)
(b − a)

2︸ ︷︷ ︸
J

dζ, (3.18)

18 3 A Finite Element Implementation in One Dimension

F(x)

x

F(x)F(x)

x
unevenly spacedevenly spaced

F()ζ

ζ
ζ=+1ζ=−1

PARAMETRIC DOMAIN

Fig. 3.2 Integration using Gaussian quadrature

Table 3.1 Gauss integration
rules

Gauss rule ζi wi

2 0.577350269189626 1.000000000000000

−0.577350269189626 1.000000000000000

3 0.000000000000000 0.888888888888889

0.774596669224148 0.555555555555556

−0.774596669224148 0.555555555555556

4 0.339981043584856 0.652145154862546

0.861136311594053 0.347854845137454

−0.339981043584856 0.652145154862546

−0.861136311594053 0.347854845137454

5 0.000000000000000 0.568888888888889

0.538469310105683 0.478628670499366

0.906179845938664 0.236926885056189

−0.538469310105683 0.478628670499366

−0.906179845938664 0.236926885056189

3.5 Integration and Gaussian Quadrature 19

where we have the following mapping

x = (b − a)ζ + b + a

2
⇒ dx = b − a

2
dζ. (3.19)

Applying this transformation, we have

I
def=

∫ 1.5

0.2
10e−x2 dx = 1.5 − 0.2

2

∫ 1

−1
10e−(0.65ζ+0.85)2 dζ, (3.20)

where x = 0.65ζ + 0.85. Applying a three-point rule yields (the exact answer is
6.588)

I = 1.5 − 0.2

2

∫ 1

−1
10e−(0.65ζ+0.85)2 dζ

= 6.5
(
0.5555e−(0.65(−0.77459)+0.85)2 + 0.8888e−(0.65(0)+0.85)2 + 0.5555e−(0.65(0.77459)+0.85)2

)

= 6.586. (3.21)

3.6 Global/Local Transformations

One strength of the finite element method is that most of the computations can be
done in an element-by-element manner. Accordingly, we define the entries of the
stiffness matrix [K] as

Ki j =
∫

Ω

dφi

dx
E

dφ j

dx
dx, (3.22)

and the load vector as

Ri =
∫

Ω

φi f dx + φi t
∗|�t . (3.23)

We partition the domain Ω into elements, Ω1, Ω2, ...,Ωe, ...ΩN , and can conse-
quently break the calculations (integrals over Ω) into elements (integrals over Ωe),
Ki j = ∑

e K e
i j , where

K e
i j =

∫
Ωe

dφi

dx
E

dφ j

dx
dx (3.24)

and

Re
i =

∫
Ωe

φi f dx + φi t
∗|�t,e , (3.25)

where Ri = ∑
e Re

i and �t,e = �t ∩ Ωe.

20 3 A Finite Element Implementation in One Dimension

Fig. 3.3 A one-dimensional
linear finite element mapping

e

ζ
−1 1

φ2φ1

Ω̂

Ω

e

In order to make the calculations systematic we wish to use the generic or master
element defined in a local coordinate system (ζ). Accordingly, we need the follow-
ing mapping functions, from the master coordinates to the real spatial coordinates,
Mx (ζ)
→ x (Fig. 3.3)

x =
2∑

i=1

X i φ̂i
def= Mx (ζ), (3.26)

where the Xi are the true spatial coordinates of the ith node, and where φ̂(ζ)
def=

φ(x(ζ)). These types of mappings are usually termed “parametric” maps. If the
polynomial order of the shape functions is as high as the Galerkin approximation
over the element, it is called an “isoparametric” map, lower, then “subparametric”
map, higher, then “superparametric”.

3.7 Differential Properties of Shape Functions

Themaster element shape functions form a nodal bases of linear approximation given
by

φ̂1 = 1

2
(1 − ζ) and φ̂2 = 1

2
(1 + ζ). (3.27)

They have the following properties:

• For linear elements we have a nodal basis consisting of two nodes, and thus two
degrees of freedom.

• The nodal shape functions can be derived quite easily, by realizing that it is a
nodal basis; i.e., they are unity at the corresponding node and zero at all other
nodes.

3.7 Differential Properties of Shape Functions 21

We note that the φi ’s are never really computed; we actually start with the φ̂i ’s and
then map them into the actual problem domain. Therefore in the stiffness matrix and
right-hand side element calculations, all terms must be defined in terms of the local
coordinates. With this in mind, we introduce some fundamental quantities, such as
the finite element mapping deformation gradient

F
def= dx

dζ
. (3.28)

The corresponding one-dimensional determinant is |F | = dx
dζ

def= J , which is known
as the Jacobian. We will use |F | and J interchangeably throughout this monograph.
The differential relations ζ → x are

d()

dζ
= dx

dζ

d()

dx
= J

d()

dx
. (3.29)

The inverse differential relations x → ζ are

d()

dx
= dζ

dx

d()

dζ
= 1

J

d()

dζ
. (3.30)

We can now express d
dx in terms ζ , via

dφ

dx
= d

dx
φ(M(ζ)) = dζ

dx

d

dζ
φ(M(ζ)) = dζ

dx

d

dζ
φ̂(ζ). (3.31)

Finally with quadrature for each element

K e
i j =

g∑
q=1

wq

(
d

dζ
(φi (M(ζ))

)
dζ

dx
E

(
d

dζ
(φ j (M(ζ))

)
dζ

dx
|F |

︸ ︷︷ ︸
evaluated at ζ=ζq

(3.32)

and

Re
i =

g∑
q=1

wqφi (M(ζ)) f |F |︸ ︷︷ ︸
evaluated at ζ=ζq

+ φi (M(ζ))t∗︸ ︷︷ ︸
evaluated on traction endpoints

, (3.33)

where the wq are Gauss weights.
Remarks: It is permitted to have material discontinuities within the finite ele-

ments. On the implementation level, the system of equations to be solved is
[K]{a} = {R}, where the stiffness matrix is represented by K (I, J), where (I, J) are
the global entries. However, one can easily take advantage of the element-by-element
structure and store the entries via ke(e, i, j), where (e, i, j) are the local (element)
entries. For the local storage approach, a global/local index relation must be made to

22 3 A Finite Element Implementation in One Dimension

connect the local entry to the global entry when the linear algebraic solution process
begins. This is a relatively simple and efficient storage system to encode.The element-
by-element strategy has other advantages with regard to element-by-element system
solvers. This is trivial in one dimension; however, it can be complicated in three
dimensions. This is discussed later.

3.8 Post-Processing

Post-processing for the stress, strain, and energy from the existing displacement
solution, i.e., the values of the nodal displacements, the shape functions, are straight-
forward. Essentially the process is the same as the formation of the weak form in the
system. Therefore, for each element

du

dx
= d

dx

2∑
i=1

aiφi =
(

d

dζ

2∑
i=1

ai φ̂i

)
dζ

dx
. (3.34)

3.9 A Detailed Example

3.9.1 Weak Form

Consider the following problem (Fig. 3.4)

d

dx
(E(x)

du

dx
) + f (x) = 0, (3.35)

u(0) = 0 and du
dx (1) = t , posed over a domain of unit length. The weak form is

∫ L=1

o

dν

dx
E(x)

du

dx
dx =

∫ L=1

o
f (x)ν dx + (E(x)

du

dx
ν)|10︸ ︷︷ ︸

=t∗ν

. (3.36)

Fig. 3.4 Three elements and
four nodes 1 2 3 4

L=1

Ω Ω Ω1 2 3

φ φ φ φ

3.9 A Detailed Example 23

Using three elements (four nodes), each of equal size, the following holds:

• Over element 1 (Ω1): Xi = X1 = 0 and Xi+1 = X2 = 1/3, φ1(x) = 1 − 3x and
φ2(x) = 3x ,

• Over element 2 (Ω2): Xi = X2 = 1/3 and Xi+1 = X3 = 2/3, φ2(x) = 2 − 3x
and φ3(x) = −1 + 3x ,

• Over element 3 (Ω3): Xi = X3 = 2/3 and Xi+1 = X4 = 1, φ3(x) = 3 − 3x and
φ4(x) = −2 + 3x ,

We break the calculations up element by element. All calculations between 0 ≤ x ≤
1/3 belong to element number 1, while all calculations between 1/3 ≤ x ≤ 2/3
belong to element number 2 and all calculations between 2/3 ≤ x ≤ 1 belong to
element number 3.

3.9.2 Formation of the Discrete System

For element number 1, to compute K e=1
i j , we study the following term for i = 1, 2, 3:

N∑
j=1

(∫ 1/3

0

dφi

dx
E(x)

dφ j

dx
dx

)
a j . (3.37)

Explicitly, for i = 1, we have

(∫ 1/3

0

dφ1

dx
E(x)

dφ1

dx
dx

)

︸ ︷︷ ︸
K e=1
11

a1 +
(∫ 1/3

0

dφ1

dx
E(x)

dφ2

dx
dx

)

︸ ︷︷ ︸
K e=1
12

a2 +
(∫ 1/3

0

dφ1

dx
E(x)

dφ3

dx
dx

)
a3

︸ ︷︷ ︸
=0

+0, etc.,

(3.38)
where the zero-valued terms vanish because the basis functions are zero over the first
finite element domain. The entries such as K e=1

i j multiply the term a j , which dictate
their location within the global stiffness matrix. If we repeat the procedure for i = 2,
j = 1, 2, 3, we obtain the entries for the global stiffness matrix (4 × 4)

⎡
⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 0 0

K e=1
21 K e=1

22 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ (3.39)

stemming from the placement of the local element stiffness matrix

[
K e=1
11 K e=1

12

K e=1
21 K e=1

22

]
(3.40)

24 3 A Finite Element Implementation in One Dimension

into the global stiffness matrix. Following a similar procedure for the right-hand side
(load) (∫ 1/3

0
φi f (x) dx

)
︸ ︷︷ ︸

Re=1
i

(3.41)

yields (i = 1, 2) [
Re=1
1

Re=1
2

]
. (3.42)

Repeating the procedure for all three of the elements yields

⎡
⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 0 0

K e=1
21 K e=1

22 + K e=2
11 K e=2

12 0

0 K e=2
21 K e=2

22 + K e=3
11 K e=3

12

0 0 K e=3
21 K e=3

22

⎤
⎥⎥⎥⎥⎦ (3.43)

and ⎡
⎢⎢⎢⎢⎣

Re=1
1

Re=1
2 + Re=2

1

Re=2
2 + Re=3

1

Re=3
2

⎤
⎥⎥⎥⎥⎦ . (3.44)

Note that the load vector

Re=3
2 =

∫ 1

2/3
φ4 f (x) dx + E(x)

du

dx
φ4(1) =

∫ 1

2/3
φ4 f (x) dx + t∗ (3.45)

has a traction contribution from the right endpoint. In summary, the basic process is to
(1) compute element by element and (2) to sweep over all basis function contributions
over each element.

Remark:We note that all integrals are computed using Gaussian quadrature.

3.9.3 Applying Boundary Conditions

Applying the primal (displacement) boundary conditions requires us to recall that
the bi ’s in the representation of the test functions are not arbitrary at the endpoints,
thus the equations associated with those test functions have to be eliminated, and the

3.9 A Detailed Example 25

value of the approximate solution enforced at the displacement boundary condition
via1

uh(x = 0) =
4∑

j=1

a jφ j (x = 0) = a1, (3.46)

which is the displacement-specified boundary condition. Thus,we have the following
system of equations

⎡
⎢⎣

K e=1
22 + K e=2

11 K e=2
12 0

K e=2
21 K e=2

22 + K e=3
11 K e=3

12

0 K e=3
21 K e=3

22

⎤
⎥⎦

⎡
⎢⎣

a2

a3

a4

⎤
⎥⎦ =

⎡
⎢⎣

Re=1
2 + Re=2

1 − K e=1
12 a1

Re=2
2 + Re=3

1

Re=3
2

⎤
⎥⎦

(3.47)

3.9.4 Massive Data Storage Reduction

The direct storage of K (I, J) requires N × N entries. The element-by-element stor-
age, ke(e, i, j), requires 4e. The memory requirements for an element-by-element
paradigm are much smaller than those for a direct scheme, which store needless
zeros. For example, for N = 104 nodes, the direct storage is (104)2 = 108, while the
element-by-element storage is 9999 × 4, which is essentially 2500 times less than
direct storage. Additionally, there is a massive reduction of mathematical operations
during the algebraic solution phase, because of the element-by-element structure of
FEM system.

3.10 Quadratic Elements

In many cases, if the character of the exact solution is known to be smooth, it is
advantageous to use higher-order approximation elements. Generally, if the exact
solution to a problem is smooth, for sufficiently fine meshes, if one compares, for
the same number of nodes, the solution produced with linear basis functions to the
solution producedwith quadratic basis functions, the quadratically produced solution
ismore accurate. Similarly, if the exact solution is rough (nonsmooth), for sufficiently
fine meshes, if one compares, for the same number of nodes, the solution produced
with linear basis functions to the solution produced with quadratic basis functions,
the linearly produced solution is more accurate (Fig. 3.5).

To illustrate how to construct a quadratic finite element approximation, we follow
a similar template for linear elements, however, with three nodes instead of two.
Consistent with the basic nodal basis construction, the basis function must equal

1The traction boundary conditions are automatically accounted for in the weak formulation.

26 3 A Finite Element Implementation in One Dimension

element # 3

Φ1 2 3ΦΦ

ζ

x

element # 1 element # 2

Fig. 3.5 Three quadratic elements with seven nodes

unity on the node it belongs and be zero at the others. Thus, for a generic quadratic
element:

• For node # 1: φ̂1(ζ) = − 1
2 (1 − ζ)ζ , which yields φ̂1(−1) = 1, φ̂(0) = 0,

φ̂1(1) = 0,
• For node # 2: φ̂2(ζ) = (1 + ζ)(1 − ζ), which yields φ̂2(−1) = 0, φ̂2(0) = 1,

φ̂2(1) = 0 and
• For node # 3: φ̂3(ζ) = 1

2 (ζ+1)ζ which yields φ̂3(−1) = 0, φ̂3(0) = 0, φ̂3(1) = 1.

Following the approach for linear elements, the connection between x and ζ is

x(ζ) = Xi φ̂1(ζ) + Xi+1φ̂2(ζ) + Xi+2φ̂3(ζ). (3.48)

Clearly, the weak form does not change for linear or quadratic approximations.
Furthermore, the quadratically generated system has a similar form to the linearly
generated system

N∑
j=1

Ki j a j = Ri i = 1, 2, ...N , (3.49)

where N is the number of nodes in 1-D. Let us consider an example with three
elements, resulting in 7 nodes. Breaking up the integral into the elements

∫ 1

0
=

∫ 1/3

0
+

∫ 2/3

1/3
+

∫ 1

2/3
. (3.50)

For element #1, for i = 1, 2...N , we need to compute

N∑
j=1

∫ 1/3

0

dφi

dx
E(x)

dφ j

dx
dx

︸ ︷︷ ︸
K e=1

i j

, (3.51)

3.10 Quadratic Elements 27

yielding

N∑
j=1

∫ 1/3

0

dφ1

dx
E(x)

dφ j

dx
dx

︸ ︷︷ ︸
K e=1
1 j

=
∫ 1/3

0

dφ1

dx
E(x)

dφ1

dx
dx

︸ ︷︷ ︸
K e=1
11

+
∫ 1/3

0

dφ1

dx
E(x)

dφ2

dx
dx

︸ ︷︷ ︸
K e=1
12

+

∫ 1/3

0

dφ1

dx
E(x)

dφ3

dx
dx

︸ ︷︷ ︸
K e=1
13

+
∫ 1/3

0

dφ1

dx
E(x)

dφ4

dx
dx

︸ ︷︷ ︸
K e=1
14 =0

. (3.52)

For the right-hand side, for i = 1, 2...N , we need to compute

∫ 1/3

0
φi f (x) dx = Re=1

i , (3.53)

thus

Re=1
1 =

∫ 1/3

0
φ1 f (x) dx . (3.54)

Repeating this for i = 2, 3...N , we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 K e=1
13 0 0 0 0

K e=1
21 K e=1

22 K e=1
23 0 0 0 0

K e=1
31 K e=1

32 K e=1
33 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

a6

a7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re=1
1

Re=1
2

Re=1
3

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.55)

This is then repeated for elements 2 and 3, to yield

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 K e=1
13 0 0 0 0

K e=1
21 K e=1

22 K e=1
23 0 0 0 0

K e=1
31 K e=1

32 K e=1
33 + K e=2

11 K e=2
12 K e=2

13 0 0

0 0 K e=2
21 K e=2

22 K e=2
23 0 0

0 0 K e=2
31 K e=2

32 K e=2
33 + K e=3

11 K e=3
12 K e=3

13

0 0 0 0 K e=3
21 K e=3

22 K e=3
23

0 0 0 0 K e=3
31 K e=3

32 K e=3
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

a6

a7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re=1
1

Re=1
2

Re=1
3 + Re=2

1

Re=2
2

Re=2
3 + Re=3

1

Re=3
2

Re=3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.56)

One then applies boundary conditions in the same manner as for linear elements.

28 3 A Finite Element Implementation in One Dimension

Remark: A logical question to ask is what is the accuracy of the finite element
method? This is addressed in the next chapter.

Reference

1. Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibra-
tions. Bulletin of the American Mathematical Society, 49, 1–23.

	3 A Finite Element Implementation in One Dimension
	3.1 Introduction
	3.2 Weak Formulation
	3.3 FEM Approximation
	3.4 Construction of FEM Basis Functions
	3.5 Integration and Gaussian Quadrature
	3.5.1 An Example

	3.6 Global/Local Transformations
	3.7 Differential Properties of Shape Functions
	3.8 Post-Processing
	3.9 A Detailed Example
	3.9.1 Weak Form
	3.9.2 Formation of the Discrete System
	3.9.3 Applying Boundary Conditions
	3.9.4 Massive Data Storage Reduction

	3.10 Quadratic Elements

