
A Finite Element
Primer for Beginners

Tarek I. Zohdi

The Basics

Second Edition

A Finite Element Primer for Beginners

Tarek I. Zohdi

A Finite Element Primer
for Beginners
The Basics

Second Edition

123

Tarek I. Zohdi
University of California
Berkeley, CA
USA

ISBN 978-3-319-70427-2 ISBN 978-3-319-70428-9 (eBook)
https://doi.org/10.1007/978-3-319-70428-9

Library of Congress Control Number: 2014946399

1st edition: © The Author(s) 2015
2nd edition: © Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my patient and loving wife, Britta
Schönfelder.

Preface

The purpose of this primer is to provide the basics of the finite element method,
primarily illustrated through a classical model problem, linearized elasticity. The
topics covered are:

• Weighted residual methods and Galerkin’s approximations,
• A model problem for one-dimensional linear elastostatics,
• Weak formulations in one dimension,
• Minimum principles in one dimension,
• Error estimation in one dimension,
• Construction of finite element basis functions in one dimension,
• Gaussian quadrature,
• Iterative solvers and element-by-element data structures,
• A model problem for three-dimensional linear elastostatics,
• Weak formulations in three dimensions,
• Basic rules for element construction in three dimensions,
• Assembly of the system and solution schemes,
• An introduction to time-dependent problems and
• An introduction to rapid computation based on domain decomposition and basic

parallel processing.

The approach is to introduce the basic concepts first in one dimension and then
move on to three dimensions. A relatively informal style is adopted. This primer is
intended to be a “starting point,” which can be later augmented by the large array of
rigorous, detailed books in the area of finite element analysis. Through teaching
finite element classes for a number of years at UC Berkeley, my experience has
been that the fundamental weaknesses in prerequisite mathematics, such as vector
calculus, linear algebra, and basic mechanics, exemplified by linearized elasticity,
cause conceptual problems that impede the understanding of the finite element
method. Thus, appendices on these topics have been included. Finally, I am certain
that, despite painstaking efforts, there remain errors of one sort or another.
Therefore, I would be grateful if readers who find such flaws would contact me at
zohdi@berkeley.edu.

vii

This document is under copyright. No part can be copied, electronically
stored, transmitted, reproduced or translated into another language without
written permission from T. I. Zohdi.

Berkeley, USA Tarek I. Zohdi
September 2017

viii Preface

Contents

1 Weighted Residuals and Galerkin’s Method for a Generic
1D Problem . 1
1.1 Introduction: Weighted Residual Methods 1
1.2 Galerkin’s Method . 2
1.3 An Overall Framework . 4

2 A Model Problem: 1D Elastostatics . 5
2.1 Introduction: A Model Problem . 5
2.2 Weak Formulations in One Dimension . 6
2.3 An Example . 8
2.4 Some Restrictions . 9
2.5 Remarks on Nonlinear Problems. 10
References. 11

3 A Finite Element Implementation in One Dimension 13
3.1 Introduction . 13
3.2 Weak Formulation . 14
3.3 FEM Approximation. 14
3.4 Construction of FEM Basis Functions . 15
3.5 Integration and Gaussian Quadrature . 16

3.5.1 An Example . 17
3.6 Global/Local Transformations . 19
3.7 Differential Properties of Shape Functions 20
3.8 Post-Processing. 22
3.9 A Detailed Example . 22

3.9.1 Weak Form . 22
3.9.2 Formation of the Discrete System 23
3.9.3 Applying Boundary Conditions 24
3.9.4 Massive Data Storage Reduction 25

3.10 Quadratic Elements. 25
Reference . 28

ix

4 Accuracy of the Finite Element Method in One Dimension 29
4.1 Introduction . 29
4.2 The “Best Approximation” Theorem . 30
4.3 The Principle of Minimum Potential Energy. 31
4.4 Simple Estimates for Adequate FEM Meshes 33
4.5 Local Mesh Refinement . 34
References. 35

5 Iterative Solutions Schemes . 37
5.1 Introduction: Minimum Principles and Krylov Methods 37

5.1.1 Numerical Linear Algebra . 37
5.1.2 Krylov Searches and Minimum Principles 39

Reference . 43

6 Weak Formulations in Three Dimensions . 45
6.1 Introduction . 45
6.2 Hilbertian Sobolev Spaces . 47
6.3 The Principle of Minimum Potential Energy. 48
6.4 Complementary Principles . 49

7 A Finite Element Implementation in Three Dimensions 51
7.1 Introduction . 51
7.2 FEM Approximation. 52
7.3 Global/Local Transformations . 54
7.4 Mesh Generation and Connectivity Functions. 55
7.5 Warning: Restrictions on Elements . 56

7.5.1 Good and Bad Elements: Examples. 56
7.6 Three-Dimensional Shape Functions . 58
7.7 Differential Properties of Shape Functions 59
7.8 Differentiation in the Referential Coordinates 61

7.8.1 Implementation Issues . 64
7.8.2 An Example of the Storage Scaling. 65

7.9 Surface Jacobians and Nanson’s Formula 66
7.10 Post-Processing. 67
References. 68

8 Accuracy of the Finite Element Method in Three Dimensions 69
8.1 Introduction . 69
8.2 The “Best Approximation” Theorem . 70
8.3 Simple Estimates for Adequate FEM Meshes Revisited

for Three Dimensions . 71
8.4 Local Error Estimation and Adaptive Mesh Refinement 72

8.4.1 A Posteriori Recovery Methods. 72
8.4.2 A Posteriori Residual Methods 73

References. 74

x Contents

9 Time-Dependent Problems . 75
9.1 Introduction . 75
9.2 Generic Time Stepping . 75
9.3 Application to the Continuum Formulation. 77
References. 79

10 Summary and Advanced Topics. 81
References. 84

Appendix A: Elementary Mathematical Concepts 85

Appendix B: Basic Continuum Mechanics . 93

Appendix C: Convergence of Recursive Iterative Schemes 107

Appendix D: Selected in-Class Exam Problems . 109

Appendix E: Selected Computer Projects . 125

Contents xi

List of Figures

Fig. 1.1 Orthogonality of the approximation error 3
Fig. 2.1 A one-dimensional body . 6
Fig. 2.2 Test functions actions on residuals . 7
Fig. 2.3 A residual function and a test function . 8
Fig. 3.1 A one-dimensional finite element basis. At the top, is a uniform

mesh example and at the bottom, nonuniform 16
Fig. 3.2 Integration using Gaussian quadrature. 18
Fig. 3.3 A one-dimensional linear finite element mapping 20
Fig. 3.4 Three elements and four nodes . 22
Fig. 3.5 Three quadratic elements with seven nodes 26
Fig. 4.1 A schematic of the best approximation theorem 31
Fig. 4.2 Successively refined (halved/embedded) meshes used to

estimate the error . 33
Fig. 4.3 Locally refined mesh to capture finer solution features 34
Fig. 6.1 A three-dimensional body . 46
Fig. 7.1 A two-dimensional finite element mapping 55
Fig. 7.2 An example of a mapped mesh for a semicircular strip 57
Fig. 7.3 A two-dimensional linear element and examples of

mapping . 58
Fig. 7.4 Left: A trilinear eight-node hexahedron or “brick.” Right:

a 27-node element. 59
Fig. 7.5 A cube with M elements in each directions 65
Fig. 7.6 Use of Nanson’s formula for surface integration. 66
Fig. 8.1 An illustration of the best approximation theorem 71
Fig. 8.2 Successively refined (halved/embedded) meshes used to

estimate the error . 71
Fig. 8.3 The Zienkiewicz–Zhu error estimator takes the solution

at neighboring Gauss points to estimate the error at a node 73
Fig. 10.1 Left: A two-dimensional view of the decomposition of a

domain and Right: a three-dimensional view 82

xiii

1WeightedResiduals andGalerkin’s
Method for aGeneric 1DProblem

1.1 Introduction:Weighted Residual Methods

Let us start by considering a simple one-dimensional differential equation, written
in abstract form

A(u) = f, (1.1)

where, for example, A(u) = d
dx

(
A1

du
dx

) + A2u, A1 = A1(x) and A2 = A2(x). Let
us choose an approximate solution of the form

uN =
N∑

i=1

aiφi (x), (1.2)

where the φi ’s are approximation functions, and the ai ’s are unknown constants that
we will determine. Substituting the approximation leads to a “left over” amount
called the residual:

r N (x) = A(uN) − f. (1.3)

If we assume that the φ’s are given, we would like to choose the ai ’s to minimize
the residual in an appropriate norm, denoted ||r ||. A primary question is which norm
should be chosen to measure the solution and to determine its quality. Obviously,
if the true solution is smooth enough to have pointwise solutions, and if we could
take enough φ-functions, we could probably match the solution at every value of x .
However, as we shall see, this would be prohibitively computationally expensive to
solve. Thus, we usually settle for a less stringent measure, for example a spatially
averagedmeasure of solution quality. This is not a trivial point, and wewill formalize
the exact choice of the appropriate metric (a norm) momentarily. Let us pick an
obvious choice

Π(r N)
def= ||r N ||2 def=

∫ L

0
(r N (x))2 dx . (1.4)

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_1

1

2 1 Weighted Residuals and Galerkin’s Method for a Generic 1D Problem

Taking the derivative with respect to each ai , and setting it to zero, we obtain for
i = 1, 2, ...N

∂Π

∂ai
=

∫ L

0
2r N

∂r N

∂ai
dx = 0. (1.5)

This leads to N equations and N unknowns. This method is called the “Method of
Least Squares.” Another approach is to force the residual to be zero at a discrete
number of locations, i = 1, 2, ...N

rN (xi) = 0, (1.6)

which can also be written as

∫ L

0
r N (x)δ(x − xi) dx = 0, (1.7)

where δ(x) is the Dirac Functional.1 This approach is sometimes referred to as the
“Collocation Method.” Notice that each method has the form

∫ L

0
r N (x)w(x) dx = 0, (1.9)

where w(x) is some “weight.” A general name for these methods is the “Method of
Weighted Residuals.”

1.2 Galerkin’s Method

Of all of the weighted residual methods used in the scientific community, one par-
ticular method, the Galerkin method, is by far the most widely used and has been
shown to deliver the most accurate solutions on a wide variety of problems. We now
explain the basic construction. Consider the true solution, approximate solution and
the error, related through

u − uN = eN ⇒ u = uN + eN . (1.10)

As a helpful mnemonic, now consider them as vectors (Fig. 1.1). Clearly, the error
(eN) is the smallest when eN is orthogonal to uN . The problem is that the error

1Recall, the Dirac Functional is defined via

∫ L

0
δ(x − xi) f (x) dx = f (xi). (1.8)

1.2 Galerkin’s Method 3

Fig. 1.1 Orthogonality of
the approximation error

approximation space

error=e

approximate solution=u

true solution=u
N

N

eN = u − uN is unknown. However, the “next best thing,” the residual, is known.2

This motivates Galerkin’s idea, namely to force uN and r N to be orthogonal. Math-
ematically, this can be expressed as

∫ L

0
r N (x)uN (x) dx =

∫ L

0
r N (x)

N∑

i=1

aiφi dx = 0. (1.11)

However, this only gives one equation. Thus, we enforce this for each of the individ-
ual approximation functions, which collectively form the space of approximations
comprising uN ,

∫ L

0
r N (x)aiφi (x) dx = ai

∫ L

0
r N (x)φi (x) dx = 0 ⇒

∫ L

0
r N (x)φi (x) dx = 0.

(1.12)
This leads to N equations and N unknowns, in order to solve for the ai ’s. It is the
usual practice in Galerkin’s method to use approximation functions that are so-called
kinematically admissible, which we define as functions that satisfy the so-called
Dirichlet boundary conditions on u a priori.3 Kinematically admissible functions do
not have to satisfy boundary conditions that involve derivatives of the solution (u)

beforehand.

2Although the error and residual are not the same, we note that when the residual is zero, the error
is zero.
3The use of the phrase “kinematically admissible” comes from the fact that in early applications,
the solution variable of interest was the displacement (u).

4 1 Weighted Residuals and Galerkin’s Method for a Generic 1D Problem

1.3 An Overall Framework

The basic “recipe” for the Galerkin process is as follows:

• Step 1: Compute the residual: A(uN) − f = r N (x).
• Step 2: Force the residual to be orthogonal to each of the approximation functions:∫ L

0 r N (x)φi (x) dx = 0, i = 1, 2, 3 ...N .
• Step 3: Solve the set of coupled equations. The equations will be linear if the

differential equation is linear, andnonlinear if the differential equation is nonlinear.

The primarily problem with such a general framework is that it provides no system-
atic way of choosing the approximation functions. The basic finite element method
has been designed to embellish and extend the fundamental Galerkin method by
constructing φi ’s in order to deal with such issues. In particular:

• It is based upon Galerkin’s method.
• It is computationally systematic and efficient.
• It is based on reformulations of the differential equations that remove the problems

of restrictive differentiability requirements.

The approach that wewill follow in this monograph is to introduce the basic concepts
first in one dimension.We then present three-dimensional formulations,which extend
naturally from one-dimensional formulations.

Remark: Two Appendices containing some essential background information on
vector calculus, linear algebra, and basic mechanics, exemplified by linearized elas-
ticity, are provided. Linearized elasticity will serve as our model problem in the
chapters that follow.

2AModel Problem:1DElastostatics

2.1 Introduction: AModel Problem

Inmost problems ofmathematical physics the true solutions are nonsmooth; i.e., they
are not continuously differentiable. Thus, we cannot immediately apply a Galerkin
approach. For example in the equation of static mechanical equilibrium1

∇ · σ + f = 0, (2.1)

there is an implicit requirement that the stress, σ, is differentiable in the classical
sense. Virtually the same mathematical structure form holds for other partial dif-
ferential equations of mathematical physics describing diffusion, heat conduction,
etc. In many applications, differentiability is too strong a requirement, and in many
locations it does not hold (the solution “jumps”).Therefore, when solving such prob-
lems we have two options: (1) enforcement of solution jump conditions at all of these
locations (often they are not even known a priori) or (2) weak formulations (weaken-
ing the regularity requirements). Weak forms, which are designed to accommodate
irregular data and solutions, are usually preferred. Numerical techniques employing
weak forms, such as the finite element method, have been developed with the essen-
tial property that whenever a smooth classical solution exists, it is also a solution
to the weak form problem. Therefore, we lose nothing by reformulating a problem
in a more general way, by weakening the a priori smoothness requirements of the
solution.

In the following few chapters, we shall initially consider a one-dimensional
structure which occupies an open bounded domain in Ω ∈ IR, with boundary ∂Ω .
The boundary consists of Γu on which the displacements (u), or any other primal
variable (temperature in heat conduction applications, concentration in diffusion

1Here f are the body forces.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_2

5

6 2 A Model Problem: 1D Elastostatics

Fig. 2.1 A one-dimensional
body

u=u* specified

E 1 E

t=t specified*

2
Γ Γu t

Ω

applications, etc. (see Appendix B)), are prescribed and a part Γt on which tractions

(t
def= σn, n being the outward normal) are prescribed (t = t∗, Fig. 2.1). We now

focus on weak forms of a one-dimensional version of Eq.2.1

dσ

dx
+ f = 0, (σ = E

du

dx
), (2.2)

where E = E(x) is a spatially varying coefficient (Fig. 2.1). Thereafter, we will
discuss three-dimensional problems.

2.2 Weak Formulations in One Dimension

To derive a direct weak formulation for a body, we take Eq.2.2 (denoted the strong
form), formaproductwith an arbitrary smooth scalar-valued function ν, and integrate
over the body ∫

Ω

(
dσ

dx
+ f)ν dx =

∫
Ω

rν dx = 0, (2.3)

where r is the residual. We call ν a “test” function. If we were to add a condition
that we do this for all (

def= ∀) possible “test” functions then
∫

Ω

(
dσ

dx
+ f)ν dx =

∫
Ω

rν dx = 0 ∀ν, (2.4)

implies r(x) = 0. Therefore, if every possible test function were considered, then
r = dσ

dx + f = 0 on any finite region in (Ω). Consequently, the weak and strong
statements would be equivalent, provided the true solution is smooth enough to
have a strong solution. Clearly, r can never be nonzero over any finite region in the
body, because the test function will “find” them (Fig. 2.2). Using the product rule of
differentiation on σν yields

d

dx
(σν) = (

dσ

dx
)ν + σ

dν

dx
(2.5)

which leads to, ∀ν
∫

Ω

(
d

dx
(σν) − σ

dν

dx
) dx +

∫
Ω

f ν dx = 0, (2.6)

2.2 Weak Formulations in One Dimension 7

Fig. 2.2 Test functions
actions on residuals

RESIDUAL

TEST FUNCTIONS

where we choose the ν from an admissible set, to be discussed momentarily. This
leads to, ∀ν ∫

Ω

dν

dx
σ dx =

∫
Ω

f ν dx + σν|∂Ω, (2.7)

On Γt , the stress σ on this boundary is known, σ = t∗ (Fig. 2.1), and is unknown on
Γu , and thus, we decide to restrict our choices of ν’s to those that attain ν|Γu = 0.We
note the use of the symbol t∗ stems from the identification of stresses on the boundary
as “tractions.” Also, choosing a priori for the solution from those functions such that
u|Γu = u∗, where u∗ is the applied boundary displacement, on a displacement part
of the boundary, Γu , we have

Find u, u|Γu = u∗, such that ∀ν, ν|Γu = 0

∫
Ω

dν

dx
E

du

dx
dx

︸ ︷︷ ︸
def=B(u,ν)

=
∫

Ω

f ν dx + t∗ν|Γt︸ ︷︷ ︸
def=F(ν)

. (2.8)

This is called a weak form because it does not require the differentiability of σ. In
other words, the differentiability requirements have been weakened. It is clear that
we are able to consider problems with quite irregular solutions. We observe that if
we test the solution with all possible test functions of sufficient smoothness, then
the weak solution is equivalent to the strong solution. We emphasize that provided
the true solution is smooth enough, the weak and strong forms are equivalent, which
can be seen by the above constructive derivation. To explain the point more clearly,
we consider a simple example.

8 2 A Model Problem: 1D Elastostatics

2.3 An Example

Let us define a one-dimensional continuous function r ∈ C0(Ω), on a one-
dimensional domain, Ω = (0, L). Our claim is that

∫
Ω

rν dx = 0, (2.9)

∀ν ∈ C0(Ω), implies r = 0. This can be easily proven by contradiction. Suppose
r �= 0 at some point ζ ∈ Ω . Since r ∈ C0(Ω), there must exist a subdomain

(subinterval), ω ∈ Ω , defined through δ, ω
def= ζ ± δ such that r has the same sign as

at point ζ. Since ν is arbitrary, we may choose ν to be zero outside of this interval,
and with the same sign as r inside (Fig. 2.3). This would imply that

0 <

∫
Ω

rν dx =
∫

ω
rν dx = 0, (2.10)

which is a contradiction. Now select

r = dσ

dx
+ f ∈ C0(Ω) ⇒ d

dx

(
E

du

dx

)
+ f ∈ C0(Ω) ⇒ u ∈ C2(Ω). (2.11)

Therefore, for this model problem, the equivalence of weak and strong forms occurs
if u ∈ C2(Ω).

Fig. 2.3 A residual function
and a test function

ζ−δ ζ+δζ0

r

v

L
ω

2.4 Some Restrictions 9

2.4 Some Restrictions

A key question is the selection of the sets of functions in the weak form. Somewhat
naively, the answer is simple; the integrals must remain finite. Therefore, the follow-
ing restrictions hold (∀ν),

∫
Ω

dν
dx σ dx < ∞,

∫
Ω

f ν dx < ∞,
∫
∂Ω

tν dx < ∞ and
govern the selection of the approximation spaces. In order tomake precise statements
one must have a method of “book keeping.” Such a system is to employ so-called
Hilbertian Sobolev spaces. We recall that a norm has three main characteristics for
any vectors u and ν such that ||u|| < ∞ and ||ν|| < ∞ are (1) ||u|| > 0, ||u|| = 0
if and only if u = 0 (“positivity”), (2) ||u + ν|| ≤ ||u|| + ||ν|| (triangle inequal-
ity), and (3) ||αu|| = |α|||u||, where α is a scalar constant (“scalability”). Certain
types of norms, so-called Hilbert space norms, are frequently used in mathematical
physics. Following standard notation, we denote H1(Ω) as the usual space of scalar
functions with generalized partial derivatives of order≤ 1 in L2(Ω); i.e., it is square
integrable. In other words, u ∈ H1(Ω) if

||u||2H1(Ω)

def=
∫

Ω

∂u

∂x

∂u

∂x
dx +

∫
Ω

uu dx < ∞. (2.12)

Using these definitions, a complete boundary value problemcanbewritten as follows.
The input data loading is assumed to be such that for body forces f ∈ L2(Ω) and
boundary traction σ = t∗ ∈ L2(Γt), but less smooth data can be considered without
complications. In summary we assume that our solutions obey these restrictions,
leading to the following weak form

Find u ∈ H1(Ω), u|Γu = u∗, such that ∀ν ∈ H1(Ω), ν|Γu = 0

∫
Ω

dν

dx
E

du

dx
dx =

∫
Ω

f ν dx + t∗ν|Γt .

(2.13)

We note that if the data in (2.13) are smooth and if (2.13) possesses a solution u that
is sufficiently regular, then u is the solution of the classical problem in strong form

d
dx (E du

dx) + f = 0, ∀x ∈ Ω,

u = u∗, ∀x ∈ Γu,

σ = E du
dx = t∗, ∀x ∈ Γt .

(2.14)

10 2 A Model Problem: 1D Elastostatics

2.5 Remarks on Nonlinear Problems

The treatment of nonlinear problems is outside the scope of this introductory mono-
graph. However, a few comments are in order. The literature of solving nonlinear
problems with the FEM is vast. This is a complex topic that is best illustrated with
an extremely simple one-dimensional example with material nonlinearities. Starting
with

d

dx

⎛
⎜⎜⎜⎝E(

du

dx︸︷︷︸
def= ε

)p

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
def=σ

+ f = 0 (2.15)

the weak form reads

∫ L

0

dν

dx
σ dx =

∫ L

0
f ν dx + t∗v|Γt . (2.16)

Using a Taylor series expansion of σ(ε(u)) about a trial solution u(k) yields (k will
be used as an iteration counter)

σ(u(k+1)) = E(ε(u(k+1)))p

≈ E
(
(ε(u(k)))p + p(ε(u(k)))p−1 ×

(
ε(u(k+1)) − ε(u(k))

)
+ O(||u(k+1) − u(k)||2)

)

(2.17)

and substituting this into the weak form yields

∫ L

0

dν

dx

(
Ep(ε(u(k)))p−1

)
︸ ︷︷ ︸

Etan

ε(u(k+1)) dx =
∫ L

0
f ν dx + t∗ν|Γt

−
∫ L

0

dν

dx
E

(
(ε(u(k)))p − p((ε(u(k)))p)

)
dx .

(2.18)

One then iterates k = 1, 2, ..., until ||u(k+1) − u(k)|| ≤ T O L . Convergence of such
a Newton-type formulation is of concern. We refer the reader to the seminal book of
Oden [1], which developed and pioneered nonlinear formulations and convergence
analysis. For example, consider a general abstract nonlinear equation of the form

Π(u) = 0, (2.19)

2.5 Remarks on Nonlinear Problems 11

and the expansion

Π(u(k+1)) = Π(u(k)) + ∇uΠ(u(k)) · (u(k+1) − u(k)) + O(||u(k+1) − u(k)||2) ≈ 0.
(2.20)

The Newton update can be written in the following form

u(k+1) = u(k) −
(
ΠT AN (u(k))

)−1 · Π(u(k)), (2.21)

where ΠT AN (u)
def= ∇uΠ(u) is the so-called tangent operator. One immediately

sees a potential difficulty, due to the possibility of a zero, or near zero, tangent when
employing a Newton’s method to a system that may have a nonmonotonic response,
for example those involving material laws with softening. Specialized techniques
can be developed for such problems, and we refer the reader to the state of the art
found in Wriggers [2].

References

1. Oden, J. T. (1972). Finite elements of non-linear continua. New York: McGraw-Hill.
2. Wriggers, P. (2008). Nonlinear finite element analysis. Berlin: Springer.

3AFinite Element Implementation
inOneDimension

3.1 Introduction

Classical techniques construct approximations from globally kinematically admis-
sible functions, which we define as functions that satisfy the displacement boundary
condition beforehand. Two main obstacles arise: (1) it may be very difficult to find
a kinematically admissible function over the entire domain and (2) if such functions
are found they lead to large, strongly coupled and complicated systems of equations.
These problems have been overcome by the fact that local approximations (posed
over very small partitions of the entire domain) can deliver high-quality solutions
and simultaneously lead to systems of equations which have an advantageous math-
ematical structure amenable to large-scale computation by high-speed computers.
These piecewise or “elementwise” approximations have been recognized at least 60
years ago by Courant [1] as being quite advantageous. There have been a variety of
such approximation methods to solve equations of mathematical physics. The most
popular method of this class is the finite element method (FEM). The central feature
of the method is to partition the domain in a systematic manner into an assembly of
discrete subdomains or “elements,” and then to approximate the solution of each of
these pieces in a manner that couples them to form a global solution valid over the
whole domain. The process is designed to keep the resulting algebraic systems as
computationally manageable, and memory efficient, as possible.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_3

13

14 3 A Finite Element Implementation in One Dimension

3.2 Weak Formulation

Consider the following general weak form introduced earlier

Find u ∈ H1(Ω) u|�u = d such that ∀ν ∈ H1(Ω), ν|�u = 0

∫
Ω

dν

dx
E

du

dx
dx =

∫
Ω

f ν dx + t∗ν|�t .

(3.1)

3.3 FEM Approximation

We approximate u by

uh(x) =
N∑

j=1

a jφ j (x). (3.2)

If we choose ν with the same approximation functions, but a different linear combi-
nation

νh(x) =
N∑

i=1

biφi (x), (3.3)

then we may write

∫
Ω

d

dx

(
N∑

i=1

biφi (x)

)
E

d

dx

⎛
⎝ N∑

j=1

a jφ j (x)

⎞
⎠ dx

︸ ︷︷ ︸
def= stiffness contribution

=
∫

Ω

(
N∑

i=1

biφi (x)

)
f

︸ ︷︷ ︸
def=body load contribution

dx +
((

N∑
i=1

biφi (x)

)
t∗

)
|�t

︸ ︷︷ ︸
def= traction load contribution

. (3.4)

Since the ν’s are arbitrary, the bi are arbitrary, i.e., ∀ν ⇒ ∀bi , therefore

∑N
i=1 bi

(∑N
j=1 Ki j a j − Ri

)
= 0 ⇒ [K]{a} = {R},

Ki j
def= ∫

Ω
dφi
dx E

dφ j
dx dx and

Ri
def= ∫

Ω
φi f dx + φi t∗|�t ,

(3.5)

3.3 FEM Approximation 15

where [K] is an N × N (“stiffness”) matrix with components Ki j and {R} is an
N × 1 (“load”) vector with components Ri . This is the system of equations that is to
be solved. Thus, large N implies large systems of equations and more computational
effort. However, with increasing N , we obtain more accurate approximate solutions.
We remark that large N does not seem like much of a concern for one-dimensional
problems, but is of immense concern for three-dimensional problems.

3.4 Construction of FEM Basis Functions

As mentioned, a primary problem with Galerkin’s method is that it provides no
systematic way of constructing approximation functions. The difficulties that arise
include (1) ill-conditioned systems due to poor choices of approximation functions
and (2) domains with irregular geometries. To circumvent these problems, the FEM
defines basis (approximation) functions in a piecewise manner over a subdomain,
“the finite elements,” of the entire domain. The basis functions are usually simple
polynomials of low degree. The following three criteria are important:

• The basis functions are smooth enough to be members of H1(Ω).
• The basis functions are simple piecewise polynomials, defined element by ele-

ment.
• The basis functions form a simple nodal basis where φi (x j) = 0 (i �= j) and

φi (xi) = 1, furthermore,
∑N

i=1 φi (x) = 1 for all x and φi (x) = 0 outside of the
elements that share node i .

A set of candidate functions are defined by

φ(x) = x − xi−1

hi
for xi−1 ≤ x ≤ xi , (3.6)

where hi = xi − xi−1 and

φ(x) = 1 − x − xi

hi+1
for xi ≤ x ≤ xi+1, (3.7)

and φ(x) = 0 otherwise. The derivative of the function is

dφ

dx
= 1

hi
for xi−1 ≤ x ≤ xi , (3.8)

and
dφ

dx
= − 1

hi+1
for xi ≤ x ≤ xi+1. (3.9)

The functions are arranged so that the “apex” of the ith function coincides with the
ith node (Fig. 3.1). This framework provides many advantages, for example simple
numerical integration.

16 3 A Finite Element Implementation in One Dimension

Fig. 3.1 A one-dimensional
finite element basis. At the
top, is a uniform mesh
example and at the bottom,
nonuniform

i

x x x
i+1i−1 i

φ i
(UNIFORM MESH)

φ

φ

h h
i i+1

(NONUNIFORM MESH)

x i−1 xi x i+1

h i h i+1

φ

3.5 Integration and Gaussian Quadrature

Gauss made the crucial observation that one can integrate a polynomial of order
2G-1 exactly with G “sampling” points and appropriate weights. Thus, in order to
automate the integration process, one redefines the function F(x) over a normalized
unit domain −1 ≤ ζ ≤ +1

∫ L

0
F(x) dx =

∫ 1

−1
F(x(ζ)) J (ζ)dζ =

G∑
i=1

wi F(ζi)J (ζi) =
G∑

i=1

wi F̂(ζi),

(3.10)
where J is the Jacobian of the transformation. Unlike most integration schemes,
Gaussian quadrature relaxes the usual restriction that the function sampling locations
be evenly spaced. According to the above, we should be able to integrate a cubic
(and lower order) term exactly with G = 2 points, since (2G − 1) = 3. Therefore

• For a cubic (ζ 3): ∫ 1

−1
ζ 3 dζ = 0 = w1ζ

3
1 + w2ζ

3
2 (3.11)

3.5 Integration and Gaussian Quadrature 17

• For a quadratic (ζ 2):

∫ 1

−1
ζ 2 dζ = 2/3 = w1ζ

2
1 + w2ζ

2
2 (3.12)

• For a linear (ζ): ∫ 1

−1
ζ dζ = 0 = w1ζ1 + w2ζ2 (3.13)

• For a constant (1):

∫ 1

−1
1 dζ = 2 = w11 + w21 = w1 + w2 (3.14)

There are four variables, ζ1, ζ2, w1, w2, to solve for. The solution that satisfies all of
the requirements is ζ1 = √

1/3 = −ζ2 and w1 = w2 = 1. For the general case of G
points, we have

∫ 1

−1
F̂(ζ)dζ =

G∑
i=1

wi F̂(ζi) (3.15)

and subsequently 2Gnonlinear equations for the ζi ’s andwi ’s. Fortunately, the ζi ’s are
the roots to the Gth degree Legendre polynomial, defined via the recursion (Fig. 3.2)

(G + 1)LG+1(ζ) − (2G + 1)ζ LG(ζ) + GLG−1(ζ) = 0, (3.16)

with Lo(ζ) = 1, L1(ζ) = ζ . The roots of the Legendre polynomial are well known
and tabulated. Once the roots are determined the remaining equations for thewi ’s are
linear and easy to solve. Fortunately, the roots are precomputed over a normalized
unit domain, and one does not need to compute them. The only task is to convert the
domain of each element to a standard unit domain (in the next section). A table of
Gauss weights can be found in Table3.1.

3.5.1 An Example

Consider the following integral

I
def=

∫ 1.5

0.2
10e−x2 dx . (3.17)

This integral is of the form

I
def=

∫ b

a
f (x) dx =

∫ 1

−1
f (

(b − a)ζ + b + a

2
)
(b − a)

2︸ ︷︷ ︸
J

dζ, (3.18)

18 3 A Finite Element Implementation in One Dimension

F(x)

x

F(x)F(x)

x
unevenly spacedevenly spaced

F()ζ

ζ
ζ=+1ζ=−1

PARAMETRIC DOMAIN

Fig. 3.2 Integration using Gaussian quadrature

Table 3.1 Gauss integration
rules

Gauss rule ζi wi

2 0.577350269189626 1.000000000000000

−0.577350269189626 1.000000000000000

3 0.000000000000000 0.888888888888889

0.774596669224148 0.555555555555556

−0.774596669224148 0.555555555555556

4 0.339981043584856 0.652145154862546

0.861136311594053 0.347854845137454

−0.339981043584856 0.652145154862546

−0.861136311594053 0.347854845137454

5 0.000000000000000 0.568888888888889

0.538469310105683 0.478628670499366

0.906179845938664 0.236926885056189

−0.538469310105683 0.478628670499366

−0.906179845938664 0.236926885056189

3.5 Integration and Gaussian Quadrature 19

where we have the following mapping

x = (b − a)ζ + b + a

2
⇒ dx = b − a

2
dζ. (3.19)

Applying this transformation, we have

I
def=

∫ 1.5

0.2
10e−x2 dx = 1.5 − 0.2

2

∫ 1

−1
10e−(0.65ζ+0.85)2 dζ, (3.20)

where x = 0.65ζ + 0.85. Applying a three-point rule yields (the exact answer is
6.588)

I = 1.5 − 0.2

2

∫ 1

−1
10e−(0.65ζ+0.85)2 dζ

= 6.5
(
0.5555e−(0.65(−0.77459)+0.85)2 + 0.8888e−(0.65(0)+0.85)2 + 0.5555e−(0.65(0.77459)+0.85)2

)

= 6.586. (3.21)

3.6 Global/Local Transformations

One strength of the finite element method is that most of the computations can be
done in an element-by-element manner. Accordingly, we define the entries of the
stiffness matrix [K] as

Ki j =
∫

Ω

dφi

dx
E

dφ j

dx
dx, (3.22)

and the load vector as

Ri =
∫

Ω

φi f dx + φi t
∗|�t . (3.23)

We partition the domain Ω into elements, Ω1, Ω2, ...,Ωe, ...ΩN , and can conse-
quently break the calculations (integrals over Ω) into elements (integrals over Ωe),
Ki j = ∑

e K e
i j , where

K e
i j =

∫
Ωe

dφi

dx
E

dφ j

dx
dx (3.24)

and

Re
i =

∫
Ωe

φi f dx + φi t
∗|�t,e , (3.25)

where Ri = ∑
e Re

i and �t,e = �t ∩ Ωe.

20 3 A Finite Element Implementation in One Dimension

Fig. 3.3 A one-dimensional
linear finite element mapping

e

ζ
−1 1

φ2φ1

Ω̂

Ω

e

In order to make the calculations systematic we wish to use the generic or master
element defined in a local coordinate system (ζ). Accordingly, we need the follow-
ing mapping functions, from the master coordinates to the real spatial coordinates,
Mx (ζ)
→ x (Fig. 3.3)

x =
2∑

i=1

X i φ̂i
def= Mx (ζ), (3.26)

where the Xi are the true spatial coordinates of the ith node, and where φ̂(ζ)
def=

φ(x(ζ)). These types of mappings are usually termed “parametric” maps. If the
polynomial order of the shape functions is as high as the Galerkin approximation
over the element, it is called an “isoparametric” map, lower, then “subparametric”
map, higher, then “superparametric”.

3.7 Differential Properties of Shape Functions

Themaster element shape functions form a nodal bases of linear approximation given
by

φ̂1 = 1

2
(1 − ζ) and φ̂2 = 1

2
(1 + ζ). (3.27)

They have the following properties:

• For linear elements we have a nodal basis consisting of two nodes, and thus two
degrees of freedom.

• The nodal shape functions can be derived quite easily, by realizing that it is a
nodal basis; i.e., they are unity at the corresponding node and zero at all other
nodes.

3.7 Differential Properties of Shape Functions 21

We note that the φi ’s are never really computed; we actually start with the φ̂i ’s and
then map them into the actual problem domain. Therefore in the stiffness matrix and
right-hand side element calculations, all terms must be defined in terms of the local
coordinates. With this in mind, we introduce some fundamental quantities, such as
the finite element mapping deformation gradient

F
def= dx

dζ
. (3.28)

The corresponding one-dimensional determinant is |F | = dx
dζ

def= J , which is known
as the Jacobian. We will use |F | and J interchangeably throughout this monograph.
The differential relations ζ → x are

d()

dζ
= dx

dζ

d()

dx
= J

d()

dx
. (3.29)

The inverse differential relations x → ζ are

d()

dx
= dζ

dx

d()

dζ
= 1

J

d()

dζ
. (3.30)

We can now express d
dx in terms ζ , via

dφ

dx
= d

dx
φ(M(ζ)) = dζ

dx

d

dζ
φ(M(ζ)) = dζ

dx

d

dζ
φ̂(ζ). (3.31)

Finally with quadrature for each element

K e
i j =

g∑
q=1

wq

(
d

dζ
(φi (M(ζ))

)
dζ

dx
E

(
d

dζ
(φ j (M(ζ))

)
dζ

dx
|F |

︸ ︷︷ ︸
evaluated at ζ=ζq

(3.32)

and

Re
i =

g∑
q=1

wqφi (M(ζ)) f |F |︸ ︷︷ ︸
evaluated at ζ=ζq

+ φi (M(ζ))t∗︸ ︷︷ ︸
evaluated on traction endpoints

, (3.33)

where the wq are Gauss weights.
Remarks: It is permitted to have material discontinuities within the finite ele-

ments. On the implementation level, the system of equations to be solved is
[K]{a} = {R}, where the stiffness matrix is represented by K (I, J), where (I, J) are
the global entries. However, one can easily take advantage of the element-by-element
structure and store the entries via ke(e, i, j), where (e, i, j) are the local (element)
entries. For the local storage approach, a global/local index relation must be made to

22 3 A Finite Element Implementation in One Dimension

connect the local entry to the global entry when the linear algebraic solution process
begins. This is a relatively simple and efficient storage system to encode.The element-
by-element strategy has other advantages with regard to element-by-element system
solvers. This is trivial in one dimension; however, it can be complicated in three
dimensions. This is discussed later.

3.8 Post-Processing

Post-processing for the stress, strain, and energy from the existing displacement
solution, i.e., the values of the nodal displacements, the shape functions, are straight-
forward. Essentially the process is the same as the formation of the weak form in the
system. Therefore, for each element

du

dx
= d

dx

2∑
i=1

aiφi =
(

d

dζ

2∑
i=1

ai φ̂i

)
dζ

dx
. (3.34)

3.9 A Detailed Example

3.9.1 Weak Form

Consider the following problem (Fig. 3.4)

d

dx
(E(x)

du

dx
) + f (x) = 0, (3.35)

u(0) = 0 and du
dx (1) = t , posed over a domain of unit length. The weak form is

∫ L=1

o

dν

dx
E(x)

du

dx
dx =

∫ L=1

o
f (x)ν dx + (E(x)

du

dx
ν)|10︸ ︷︷ ︸

=t∗ν

. (3.36)

Fig. 3.4 Three elements and
four nodes 1 2 3 4

L=1

Ω Ω Ω1 2 3

φ φ φ φ

3.9 A Detailed Example 23

Using three elements (four nodes), each of equal size, the following holds:

• Over element 1 (Ω1): Xi = X1 = 0 and Xi+1 = X2 = 1/3, φ1(x) = 1 − 3x and
φ2(x) = 3x ,

• Over element 2 (Ω2): Xi = X2 = 1/3 and Xi+1 = X3 = 2/3, φ2(x) = 2 − 3x
and φ3(x) = −1 + 3x ,

• Over element 3 (Ω3): Xi = X3 = 2/3 and Xi+1 = X4 = 1, φ3(x) = 3 − 3x and
φ4(x) = −2 + 3x ,

We break the calculations up element by element. All calculations between 0 ≤ x ≤
1/3 belong to element number 1, while all calculations between 1/3 ≤ x ≤ 2/3
belong to element number 2 and all calculations between 2/3 ≤ x ≤ 1 belong to
element number 3.

3.9.2 Formation of the Discrete System

For element number 1, to compute K e=1
i j , we study the following term for i = 1, 2, 3:

N∑
j=1

(∫ 1/3

0

dφi

dx
E(x)

dφ j

dx
dx

)
a j . (3.37)

Explicitly, for i = 1, we have

(∫ 1/3

0

dφ1

dx
E(x)

dφ1

dx
dx

)

︸ ︷︷ ︸
K e=1
11

a1 +
(∫ 1/3

0

dφ1

dx
E(x)

dφ2

dx
dx

)

︸ ︷︷ ︸
K e=1
12

a2 +
(∫ 1/3

0

dφ1

dx
E(x)

dφ3

dx
dx

)
a3

︸ ︷︷ ︸
=0

+0, etc.,

(3.38)
where the zero-valued terms vanish because the basis functions are zero over the first
finite element domain. The entries such as K e=1

i j multiply the term a j , which dictate
their location within the global stiffness matrix. If we repeat the procedure for i = 2,
j = 1, 2, 3, we obtain the entries for the global stiffness matrix (4 × 4)

⎡
⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 0 0

K e=1
21 K e=1

22 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ (3.39)

stemming from the placement of the local element stiffness matrix

[
K e=1
11 K e=1

12

K e=1
21 K e=1

22

]
(3.40)

24 3 A Finite Element Implementation in One Dimension

into the global stiffness matrix. Following a similar procedure for the right-hand side
(load) (∫ 1/3

0
φi f (x) dx

)
︸ ︷︷ ︸

Re=1
i

(3.41)

yields (i = 1, 2) [
Re=1
1

Re=1
2

]
. (3.42)

Repeating the procedure for all three of the elements yields

⎡
⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 0 0

K e=1
21 K e=1

22 + K e=2
11 K e=2

12 0

0 K e=2
21 K e=2

22 + K e=3
11 K e=3

12

0 0 K e=3
21 K e=3

22

⎤
⎥⎥⎥⎥⎦ (3.43)

and ⎡
⎢⎢⎢⎢⎣

Re=1
1

Re=1
2 + Re=2

1

Re=2
2 + Re=3

1

Re=3
2

⎤
⎥⎥⎥⎥⎦ . (3.44)

Note that the load vector

Re=3
2 =

∫ 1

2/3
φ4 f (x) dx + E(x)

du

dx
φ4(1) =

∫ 1

2/3
φ4 f (x) dx + t∗ (3.45)

has a traction contribution from the right endpoint. In summary, the basic process is to
(1) compute element by element and (2) to sweep over all basis function contributions
over each element.

Remark:We note that all integrals are computed using Gaussian quadrature.

3.9.3 Applying Boundary Conditions

Applying the primal (displacement) boundary conditions requires us to recall that
the bi ’s in the representation of the test functions are not arbitrary at the endpoints,
thus the equations associated with those test functions have to be eliminated, and the

3.9 A Detailed Example 25

value of the approximate solution enforced at the displacement boundary condition
via1

uh(x = 0) =
4∑

j=1

a jφ j (x = 0) = a1, (3.46)

which is the displacement-specified boundary condition. Thus,we have the following
system of equations

⎡
⎢⎣

K e=1
22 + K e=2

11 K e=2
12 0

K e=2
21 K e=2

22 + K e=3
11 K e=3

12

0 K e=3
21 K e=3

22

⎤
⎥⎦

⎡
⎢⎣

a2

a3

a4

⎤
⎥⎦ =

⎡
⎢⎣

Re=1
2 + Re=2

1 − K e=1
12 a1

Re=2
2 + Re=3

1

Re=3
2

⎤
⎥⎦

(3.47)

3.9.4 Massive Data Storage Reduction

The direct storage of K (I, J) requires N × N entries. The element-by-element stor-
age, ke(e, i, j), requires 4e. The memory requirements for an element-by-element
paradigm are much smaller than those for a direct scheme, which store needless
zeros. For example, for N = 104 nodes, the direct storage is (104)2 = 108, while the
element-by-element storage is 9999 × 4, which is essentially 2500 times less than
direct storage. Additionally, there is a massive reduction of mathematical operations
during the algebraic solution phase, because of the element-by-element structure of
FEM system.

3.10 Quadratic Elements

In many cases, if the character of the exact solution is known to be smooth, it is
advantageous to use higher-order approximation elements. Generally, if the exact
solution to a problem is smooth, for sufficiently fine meshes, if one compares, for
the same number of nodes, the solution produced with linear basis functions to the
solution producedwith quadratic basis functions, the quadratically produced solution
ismore accurate. Similarly, if the exact solution is rough (nonsmooth), for sufficiently
fine meshes, if one compares, for the same number of nodes, the solution produced
with linear basis functions to the solution produced with quadratic basis functions,
the linearly produced solution is more accurate (Fig. 3.5).

To illustrate how to construct a quadratic finite element approximation, we follow
a similar template for linear elements, however, with three nodes instead of two.
Consistent with the basic nodal basis construction, the basis function must equal

1The traction boundary conditions are automatically accounted for in the weak formulation.

26 3 A Finite Element Implementation in One Dimension

element # 3

Φ1 2 3ΦΦ

ζ

x

element # 1 element # 2

Fig. 3.5 Three quadratic elements with seven nodes

unity on the node it belongs and be zero at the others. Thus, for a generic quadratic
element:

• For node # 1: φ̂1(ζ) = − 1
2 (1 − ζ)ζ , which yields φ̂1(−1) = 1, φ̂(0) = 0,

φ̂1(1) = 0,
• For node # 2: φ̂2(ζ) = (1 + ζ)(1 − ζ), which yields φ̂2(−1) = 0, φ̂2(0) = 1,

φ̂2(1) = 0 and
• For node # 3: φ̂3(ζ) = 1

2 (ζ+1)ζ which yields φ̂3(−1) = 0, φ̂3(0) = 0, φ̂3(1) = 1.

Following the approach for linear elements, the connection between x and ζ is

x(ζ) = Xi φ̂1(ζ) + Xi+1φ̂2(ζ) + Xi+2φ̂3(ζ). (3.48)

Clearly, the weak form does not change for linear or quadratic approximations.
Furthermore, the quadratically generated system has a similar form to the linearly
generated system

N∑
j=1

Ki j a j = Ri i = 1, 2, ...N , (3.49)

where N is the number of nodes in 1-D. Let us consider an example with three
elements, resulting in 7 nodes. Breaking up the integral into the elements

∫ 1

0
=

∫ 1/3

0
+

∫ 2/3

1/3
+

∫ 1

2/3
. (3.50)

For element #1, for i = 1, 2...N , we need to compute

N∑
j=1

∫ 1/3

0

dφi

dx
E(x)

dφ j

dx
dx

︸ ︷︷ ︸
K e=1

i j

, (3.51)

3.10 Quadratic Elements 27

yielding

N∑
j=1

∫ 1/3

0

dφ1

dx
E(x)

dφ j

dx
dx

︸ ︷︷ ︸
K e=1
1 j

=
∫ 1/3

0

dφ1

dx
E(x)

dφ1

dx
dx

︸ ︷︷ ︸
K e=1
11

+
∫ 1/3

0

dφ1

dx
E(x)

dφ2

dx
dx

︸ ︷︷ ︸
K e=1
12

+

∫ 1/3

0

dφ1

dx
E(x)

dφ3

dx
dx

︸ ︷︷ ︸
K e=1
13

+
∫ 1/3

0

dφ1

dx
E(x)

dφ4

dx
dx

︸ ︷︷ ︸
K e=1
14 =0

. (3.52)

For the right-hand side, for i = 1, 2...N , we need to compute

∫ 1/3

0
φi f (x) dx = Re=1

i , (3.53)

thus

Re=1
1 =

∫ 1/3

0
φ1 f (x) dx . (3.54)

Repeating this for i = 2, 3...N , we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 K e=1
13 0 0 0 0

K e=1
21 K e=1

22 K e=1
23 0 0 0 0

K e=1
31 K e=1

32 K e=1
33 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

a6

a7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re=1
1

Re=1
2

Re=1
3

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.55)

This is then repeated for elements 2 and 3, to yield

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K e=1
11 K e=1

12 K e=1
13 0 0 0 0

K e=1
21 K e=1

22 K e=1
23 0 0 0 0

K e=1
31 K e=1

32 K e=1
33 + K e=2

11 K e=2
12 K e=2

13 0 0

0 0 K e=2
21 K e=2

22 K e=2
23 0 0

0 0 K e=2
31 K e=2

32 K e=2
33 + K e=3

11 K e=3
12 K e=3

13

0 0 0 0 K e=3
21 K e=3

22 K e=3
23

0 0 0 0 K e=3
31 K e=3

32 K e=3
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

a6

a7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re=1
1

Re=1
2

Re=1
3 + Re=2

1

Re=2
2

Re=2
3 + Re=3

1

Re=3
2

Re=3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.56)

One then applies boundary conditions in the same manner as for linear elements.

28 3 A Finite Element Implementation in One Dimension

Remark: A logical question to ask is what is the accuracy of the finite element
method? This is addressed in the next chapter.

Reference

1. Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibra-
tions. Bulletin of the American Mathematical Society, 49, 1–23.

4Accuracy of the Finite ElementMethod
inOneDimension

4.1 Introduction

As we have seen, the essential idea in the finite element method is to select a finite
dimensional subspatial approximation of the true solution and to form the following
weak boundary problem

Find uh ∈ Hh
u (Ω) ⊂ H1(Ω), with uh |Γu = d, such that

∫
Ω

dνh

dx
E
duh

dx
dx

︸ ︷︷ ︸
B(uh ,νh)

=
∫

Ω

f νh dx + νht∗|Γt︸ ︷︷ ︸
F(νh)

,

∀νh ∈ Hh
ν (Ω) ⊂ H1(Ω), with νh |Γu = 0,

(4.1)

where we refer to Hh
u (Ω) and Hh

ν (Ω) as the space of approximations (e.g.,
linear functions). The critical point is that Hh

u (Ω), Hh
ν (Ω) ⊂ H1(Ω). This “inner”

approximation allows the development of straightforward subspatial error estimates.
Wewill choose Hh

u (Ω) and Hh
ν (Ω) to coincide.We have, for any H1(Ω) admissible

function w, a definition of the so-called energy semi-norm

||u − w||2E(Ω)

def
=

∫
Ω

(
du

dx
− dw

dx
)E(

du

dx
− dw

dx
) dx = B(u − w, u − w). (4.2)

Note that in the event that nonuniform displacements are specified on the boundary
(no rigid motion produced), then u − w = constant is unobtainable unless u −
w = 0, and the semi-norm in Eq. (4.2) is a norm in the strict mathematical sense.
Under relativelymild assumptions, a fundamental a priori error estimate for the finite
element method is

||u − uh ||E(Ω) ≤ C(u, p)hmin(r−1,p)
def
= γ, (4.3)

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_4

29

30 4 Accuracy of the Finite Element Method in One Dimension

where p is the (complete) polynomial order of the finite element method used, r
is the regularity of the exact solution, and C is a constant dependent on the exact
solution and the polynomial approximation. C is independent of h, the maximum
element size in the mesh. For details, see, for example, Ainsworth and Oden [1],
Becker, Carey and Oden [2], Carey and Oden [3], Oden and Carey [4], Hughes [5],
Szabo and Babuska [6], and Bathe [7].

Remark 1: We note that set of functions specified by Hh
u (Ω) ⊂ H1(Ω) with

uh |Γu = d is technically not a space of functions and should be characterized as “a
linear variety.” This does not pose a problem for the ensuing analysis. For precise
mathematical details, see Oden and Demkowicz [8].

Remark 2: We note that
√
B(u, u) is a norm since:

• Positivity:

||u||2E(Ω) = B(u, u) ≥ 0 (4.4)

where, provided that u 	= constant , B(u, u) = 0 if and only if u = 0.
• Triangle inequality:

||u + v||2E(Ω) = B(u + v, u + v)

= B(u, u) + 2B(u, v) + B(v, v)

≤ ||u||2E(Ω) + 2||u||E(Ω)||v||E(Ω) + ||v||2E(Ω)

= (||u||E(Ω) + ||v||E(Ω))
2. (4.5)

• Scalability by a scalar constant multiplier:

||αu||E(Ω) = √
B(αu, αu) = |α|√B(u, u). (4.6)

4.2 The“Best Approximation”Theorem

The FEM solution is optimal in the energy norm. To prove this we use

B(u, ν) = F(ν), (4.7)

∀ν ∈ H1(Ω) and

B(uh, νh) = F(νh), (4.8)

∀νh ∈ Hh
ν (Ω) ⊂ H1(Ω). Subtracting Eq.4.8 from 4.7 implies a Galerkin-like

(Fig. 1.1) orthogonality property of “inner approximations”:

B(u − uh, νh) = B(eh, νh) = 0, ∀νh ∈ Hh
ν (Ω) ⊂ H1(Ω), (4.9)

http://dx.doi.org/10.1007/978-3-319-70428-9_1

4.2 The“Best Approximation”Theorem 31

ΩΩH()
1

H()
h

FEM solution

minimum distance
in the energy norm

true solution

Fig. 4.1 A schematic of the best approximation theorem

where the error is defined by eh
def
= u − uh . An important observation is that any

member of the subspace can be represented by

eh − νh = u − uh − νh = u − zh, (4.10)

where zh is kinematically admissible. Using this representation we have

B(eh − νh, eh − νh) = B(eh, eh) − 2B(eh, νh) + B(νh, νh), (4.11)

which implies

B(u − uh, u − uh) ≤ B(u − zh, u − zh). (4.12)

This is called the best approximation theorem (see Fig. 4.1 for a schematic).

4.3 The Principle of Minimum Potential Energy

A useful set of concepts in mathematical physics are minimum principles. By direct
manipulation we have (w ⊂ H1(Ω) is any kinematically admissible function)

||u − w||2E(Ω) = B(u − w, u − w)

= B(u, u) + B(w, w) − 2B(u, w)

= B(w, w) − B(u, u) − 2B(u, w) + 2B(u, u)

32 4 Accuracy of the Finite Element Method in One Dimension

= B(w, w) − B(u, u) − 2B(u, w − u)

= B(w, w) − B(u, u) − 2F(w − u)

= B(w, w) − 2F(w) − (B(u, u) − 2F(u))

= 2J (w) − 2J (u), (4.13)

where we define the “potential” via

J (w)
def
=

1

2
B(w, w) −F(w) = 1

2

∫
Ω

dw

dx
E
dw

dx
dx −

∫
Ω

f w dx − t∗w|Γt . (4.14)

This implies

0 ≤ ||u − w||2E(Ω) = 2(J (w) − J (u)) or J (u) ≤ J (w), (4.15)

where Eq.4.15 is known as the Principle of Minimum Potential Energy (PMPE). In
other words, the true solution possesses the minimum potential.

The minimum property of the exact solution can be proven by an alternative
technique. Let us construct a potential function, for a deviation away from the exact
solution u, denoted u + λν, where λ is a scalar and ν is any admissible variation
(test function)

J (u+λν) =
∫

Ω

1

2

d

dx
(u+λν)E

d

dx
(u+λν) dx−

∫
Ω

f (u+λν) dx−t∗(u+λν)|Γt .

(4.16)
If we differentiate with respect to λ,

∂J (u + λν)

∂λ
=

∫
Ω

dν

dx
E

d

dx
(u + λν) dx −

∫
Ω

f ν dx − t∗ν|Γt , (4.17)

and set λ = 0 (because we know that the exact solution is for λ = 0), we have

∂J (u + λν)

∂λ
|λ=0 =

∫
Ω

dν

dx
E
du

dx
dx −

∫
Ω

f ν dx − t∗ν|Γt = 0. (4.18)

Clearly, the minimizer of the potential is the solution to the field equations, since it
produces the weak formulation as a result. This is a minimum since

∂2J (u + λν)

∂λ2 |λ=0 =
∫

Ω

dν

dx
E
dν

dx
dx ≥ 0. (4.19)

It is important to note that the weak form, derived earlier, requires no such potential
and thus is a more general approach than a minimum principle. Thus, in cases where
a potential energy exists, the weak formulation can be considered as a minimization
of it. Numerical approaches based on this idea are usually referred to as Rayleigh–
Ritz methods. This concept allows one to construct simple error estimates for global
mesh refinement.

4.4 Simple Estimates for Adequate FEMMeshes 33

4.4 Simple Estimates for Adequate FEMMeshes

The previous results generate estimates for the mesh fineness for a desired accu-
racy. As stated earlier, under standard assumptions the classical a priori error
estimate for the finite element method is (Eq.4.3), ||u − uh ||E(Ω) ≤ C(u, p)

hmin(r−1,p)
def
= γ . Using the PMPE for a finite element solution (Eq.4.15), with

w = uh , we have

||u − uh ||2E(Ω) = 2(J (uh) − J (u)). (4.20)

By solving the associated boundary value problem for two successively finermeshes,
h1 > h2, with the following property J (uh1) ≥ J (uh2) ≥ J (uh=0), we can set up
the following system of equations for unknown constant C :

||u − uh1 ||2E(Ω) = 2(J (uh1) − J (u)) ≈ C2h2γ1 ,

||u − uh2 ||2E(Ω) = 2(J (uh2) − J (u)) ≈ C2h2γ2 .
(4.21)

Solving for C

C =
√

2(J (uh1)−J (uh2))

h2γ1 −h2γ2
. (4.22)

One can now solve for the appropriate mesh size by writing

Chγ
tol ≈ T OL ⇒ htol ≈ (T OL

C

) 1
γ . (4.23)

In summary, to monitor the discretization error, we apply the following (Fig. 4.2)
algorithm (K = 0.5)

STEP 1 : SOLVE WITH COARSE MESH = h1 ⇒ uh1 ⇒ J (uh1)

STEP 2 : SOLVE WITH FINER MESH = h2 = K × h1 ⇒ uh2 ⇒ J (uh2)

STEP 3 : COMPUTE C ⇒ htol ≈ (T OL
C

) 1
γ .

(4.24)

Remarks: While this scheme provides a simple estimate for the global mesh
fineness needed, the meshes need to be locally refined to ensure tolerable accuracy
throughout the domain.

MESH 2MESH 1

Fig. 4.2 Successively refined (halved/embedded) meshes used to estimate the error

34 4 Accuracy of the Finite Element Method in One Dimension

4.5 Local Mesh Refinement

Probably the simplest approach to local mesh refinement is to use the residual as a
guide. Residual methods require no a posteriori system of equations to be solved.
Such methods bound the error by making use of

• the FEM solution itself,
• the data on the boundary,
• the error equation and
• the Galerkin orthogonality property.

The approach is to form the following bound

||u − uh ||2E(Ω) ≤ C1

N∑
e=1

h2e ||r1||2L2(Ωe)︸ ︷︷ ︸
interior

+C2

I NT∑
I=1

heI ||[|r2|]||2L2(∂ΩI)︸ ︷︷ ︸
inter f aces

+C3

B−I NT∑
J=1

heJ ||r3||2L2(∂ΩJ B)︸ ︷︷ ︸
exterior−boundary

,

(4.25)

where

• C1, C2, and C3 are constants,
• he are the sizes of the element,
• the interior element residual is r1 = d

dx (E(x) du
h

dx) + f ,

• the interior interface “jump” residual is [|r2|] = (E(x) du
h

dx)x+ − (E(x) du
h

dx)x− ,

• the boundary interface (“dissatisfaction”) residual is r3 = (E(x) du
h

dx) − t∗ on Γt ,
and

• local error indicators are defined by

ζ2e
def
= C1h

2
e ||r1||2L2(Ωe)

+ C2heI || [|r2|] ||2L2(∂ΩI)
+ C3heJ ||r3||2L2(∂ΩJ B)

. (4.26)

The local quantities ζe are used to decidewhether an element is to be refined (Fig. 4.3).
If ζe > T OL , then the element is refined. Such estimates, used to guide local
adaptive finite element mesh refinement techniques, were first developed in Babúska

REFINED MESH

TRUE SOLUTION

INITIAL MESH

Fig. 4.3 Locally refined mesh to capture finer solution features

4.5 Local Mesh Refinement 35

and Rheinboldt [9] for one-dimensional problems and in Babùska and Miller [10]
and Kelly et al. [11] for two-dimensional problems. For reviews see Ainsworth and
Oden [1]. This will be discussed further at the end of this monograph.

References

1. Ainsworth, M., & Oden, J. T. (2000). A posterori error estimation in finite element analysis.
New York: Wiley.

2. Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: An introduction. Englewood
Cliffs: Prentice-Hall.

3. Carey,G. F.,&Oden, J. T. (1983).Finite elements: A second course. EnglewoodCliffs: Prentice-
Hall.

4. Oden, J. T., & Carey, G. F. (1984). Finite elements: Mathematical aspects. Englewood Cliffs:
Prentice-Hall.

5. Hughes, T. J. R. (1989). The finite element method. Englewood Cliffs: Prentice Hall.
6. Szabo, B., & Babúska, I. (1991). Finite element analysis. New York: Wiley Interscience.
7. Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs: Prentice-Hall.
8. Oden, J. T., & Demkowicz, L. F. (2010). Applied functional analysis. Boca Raton: CRC Press.
9. Babúska, I., & Rheinbolt, W. C. (1978). A posteriori error estimates for the finite element

method. The International Journal for Numerical Methods in Engineering, 12, 1597–1615.
10. Babúska, I., & Miller, A. D. (1987). A feedback finite element method with a-posteriori error

estimation. Part I. Computer Methods in Applied Mechanics and Engineering, 61, 1–40.
11. Kelly, D. W., Gago, J. R., Zienkiewicz, O. C., & Babùska, I. (1983). A posteriori error analysis

and adaptive processes in the finite element method. Part I-error analysis. International Journal
for Numerical Methods in Engineering, 19, 1593–1619.

5Iterative Solutions Schemes

5.1 Introduction: Minimum Principles and KrylovMethods

5.1.1 Numerical Linear Algebra

There are twomain approaches to solving systems of equations resulting fromnumer-
ical discretization of solid mechanics problems, direct and iterative. There are a large
number of variants of each. Standard direct solvers are usually employed when the
number of unknowns is not very large, and there are multiple load vectors.1 Basi-
cally, one can operate on the multiple right-hand sides simultaneously via Gaussian
elimination. For a back substitution the cost is

2(0 + 1 + 2 + 3... + N − 1) = 2
N∑

k=1

(k − 1) = N (N − 1). (5.1)

Therefore the total cost of solving such a system is the cost to reduce the system
to upper triangular form plus the cost of back substitution, i.e., 2

3N
3 + N (N − 1).

However since the operation counts to factor and solve an N ×N system areO(N 3),
iterative solvers are preferred when the systems are very large.2 In general, most
modern solvers, for large symmetric systems, like the ones of interest here, employ
Conjugate Gradient (CG) type iterative techniques which can deliver solutions in

1However, specialized direct sparse solvers can be used if the matrices have a special structure.
2For example, Gaussian elimination is approximately

2(N + (N − 1)2 + (N − 2)2 + (N − 3)2 + ...12) = 2
N∑

k=1

k2 ≈ 2
∫ N

0
k2dk = 2

3
N 3. (5.2)

An operation such as the addition of two numbers, ormultiplication of two numbers, is one operation
count.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_5

37

38 5 Iterative Solutions Schemes

O(N)2 operations.3 It is inescapable, for almost all variants of Gaussian elimination,
unless they involve complicated sparsity tracking to eliminate unneeded operations
on zero entries that the operation costs are O(N 3). However band solvers, which
exploit the band structure of the stiffness matrix, can reduce the number of operation
counts to Nb2,whereb is the bandwidth.Many schemes exist for the optimal ordering
of nodes in order to make the bandwidth as small as possible. Skyline solvers locate
the uppermost nonzero elements starting from the diagonal and concentrate only on
elements below the skyline. Frontal methods, which are analogous to a moving front
in the finite element mesh, performGaussian elimination element by element, before
the element is incorporated into the global stiffnessmatrix. In this procedurememory
is reduced, and the elimination process can be done for all elements simultaneously,
at least in theory. Upon assembly of the stiffness matrix and right-hand side, back
substitution can be started immediately. If the operations are performed in an optimal
order, it can be shown that the number of operations behaves proportionally to N 2.
Such a process, is, of course, nontrivial. We note that with direct methods, zeros
within the band, below the skyline, and in the front are generally filled and must
be carried in the operations. In very large problems the storage requirements and
the number of operation counts can become so large that solution by direct methods
is not feasible. The data structures and I/O are also nontrivial concerns. However,
we notice that a matrix/vector multiplication involves 2N 2 operation counts, and
that a method based on repeated vector multiplication, if convergent in less than
N iterations, could be very attractive. This is usually the premise in using iterative
methods, such as the Conjugate Gradient (CG) Method. A very important feature
of iterative methods is that the memory requirements remain constant during the
solution process. It is important to note that modern computer architectures are based
on (1) registers, which have virtually no memory capabilities, but which can perform
very fast operations on computer “words”, (2) cache, which have slightly larger
memory capabilities, with a slight reduction in speed, but are thermally very “hot”
and are thus limited for physical as well as manufacturing reasons, (3)main memory,
which is slower since I/O (input/output) is required, but still within aworkstation, and
(4) disk and tape ormagnetic drums, which are out of the core system and thus require
a huge I/O component and are very slow. Therefore, one point that we emphasize
is that one can take advantage of the element-by-element structure inherent in the
finite element method for data storage and matrix-vector multiplication in the CG
method. The element-by-element data structure is also critical for the ability to fit
matrix/vector multiplications into the computer cache, which essentially is a low
memory/high floating point operation per second portion of the computer hardware.

Remark:One singularly distinguishing feature of iterative solvers is the fact that
since they are based on successive updates of a starting guess solution vector, they
can be given a tremendous head start by a good solution guess, for example, provided

3Similar iterative solvers can be developed for unsymmetric systems, and we refer the reader to
Axelsson [1] for details.

5.1 Introduction: Minimum Principles and Krylov Methods 39

by an analytical or semi-analytical solution.Minimum principles play a key role in
the construction of a certain class of iterative solvers, which we exploit in the chapter.

5.1.2 Krylov Searches andMinimum Principles

By itself, the PMPE (introduced in the previous section) is a powerful theoretical
result. However, it can be used to develop methods to solve systems of equations
arising from a finite element discretization of a infinitesimal strain linearly elas-
tic structure. This result is the essence of the so-called Krylov family of searches.
Suppose we wish to solve the discrete system

[K]{a} = {R}. (5.3)

[K] is a symmetric positive definite N × N matrix; {a} is the N × 1 numerical
solution vector, and {R} is the N × 1 right-hand side. We define a potential

Π
def
=

1

2
{a}T [K]{a} − {a}T {R}. (5.4)

Correspondingly, from basic calculus we have (see Appendix A)

∇Π
def
= {∂Π

∂a1
,
∂Π

∂a2
, ...

∂Π

∂aN
}T = 0 ⇒ [K]{a} − {R} = 0. (5.5)

Therefore the minimizer of the potential Π is also the solution to the discrete sys-
tem. A family of iterative solving techniques for symmetric systems based upon
minimizing Π by successively updating a starting vector are the Krylov class. The
minimization takes place over vector spaces called theKrylov spaces. Thesemethods
are based on the assumption that a solution, to a tolerable accuracy, can be achieved in
much less than O(N 3) operations, as required with most Gaussian-type techniques.
The simplest of this family is the method of steepest descent, which is a precursor
to the widely used Conjugate Gradient Method.

5.1.2.1 TheMethod of Steepest Descent
The method of steepest descent is based upon the following simple idea: if the
gradient of the potential is not zero at a possible solution vector, then the greatest
increase of the scalar function is in the direction of the gradient; therefore we move
in the opposite direction −∇Π . The ingredients in the methods are the residual,

{r}i def= −∇Π = {R} − [K]{a}i , (5.6)

and the successive iterates,

{a}i+1 def
= {a}i + λi {r}i . (5.7)

40 5 Iterative Solutions Schemes

We seek a λi such that Π is a global minimum. Directly we have

Π = 1

2
{a}T,i [K]{a}i + λi {a}T,i [K]{r}i + 1

2
λi2{r}T,i [K]{r}i − {a}T,i {R} − λi {r}T,i {R},

(5.8)

where it was assumed that [K] was symmetric. Forcing ∂Π
∂λi

= 0 and solving for λi

yields

λi = {r}T,i ({R} − [K]{a}i)
{r}T,i [K]{r}i = {r}T,i {r}i

{r}T,i [K]{r}i . (5.9)

Therefore the method of steepest descent consists of the following:

STEP 1 : SELECT A STARTING GUESS {a}1

STEP 2 : COMPUTE :

{r}i = {R} − [K]{a}i λi = {r}T,i {r}i
{r}T,i [K]{r}i {a}i+1 = {a}i + λi {r}i

STEP 3 : COMPUTE :
||{a}i+1 − {a}i ||2K

def
= ({a}T,i+1 − {a}T,i)[K]({a}i+1 − {a}i) = λi ||{r}i ||2K

If ||{a}i+1 − {a}i||K < τ = TOL ⇒ STOP

If ||{a}i+1 − {a}i||K ≥ τ = TOL ⇒ GO TO STEP 2 WITH i = i + 1

The rate of convergence of the method is related to the condition number of the
stiffness matrix

||{a} − {a}i ||K = (1 − 1

C([K]))
i/2||{a} − {a}1||K , (5.10)

where, in this case, the Condition Number is defined by

C([K]) def
=

max [K] eigenvalue
min [K] eigenvalue (5.11)

and {a} is the exact solution to the algebraic system [K]{a} = {R}. The rate of
convergence of the method is typically quite slow; however, a variant, the Conjugate
Gradient Method, is guaranteed to converge in N iterations at most, provided the
algebra is performed exactly.

5.1.2.2 The Conjugate Gradient Method
In the Conjugate Gradient Method, at each iteration the computational cost isO(N),
due to the FEM matrix structure. We refer the reader to Axelsson [1] for details. We
define the (matrix) residual,

{r}i def= −∇Π = {R} − [K]{a}i , (5.12)

5.1 Introduction: Minimum Principles and Krylov Methods 41

and the successive iterates, for i = 1, 2, 3...,

{a}i+1 def
= {a}i + λi {z}i , (5.13)

with

{z}i def= {r}i + θ i {z}i−1. (5.14)

The coefficient θ i is chosen so that {z}i is [K] − conjugate to {z}i−1, i.e.,

{z}T,i [K]{z}i−1 = 0 ⇒ θ i = − {r}T,i [K]{z}i−1

{z}T,i−1[K]{z}i−1 . (5.15)

The value of λi which minimizes

Π = 1

2
({a}i + λi {z}i)T [K]({a}i + λi {z}i) − ({a}i + λi {z}i)T {R}, (5.16)

is (for i = 1, 2, 3...),

λi = {z}T,i ({R} − [K]{a}i)
{z}T,i [K]{z}i = {z}T,i {r}i

{z}T,i [K]{z}i . (5.17)

The solution steps are:

STEP 1 : FOR i = 1 :SELECT {a}1 ⇒ {r}1 = {R} − [K]{a}1 = {z}1

STEP 2 : COMPUTE (WITH {z}1 = {r}1)

λ1 = {z}T,1({R}−[K]{a}1)
{z}T,1[K]{z}1 = {z}T,1{r}1

{z}T,1[K]{z}1

STEP 3 : COMPUTE {a}2 = {a}1 + λ1{z}1

STEP 4 : (FOR i > 1) COMPUTE {r}i = {R} − [K]{a}i

θ i = − {r}T,i [K]{z}i−1

{z}T,i−1[K]{z}i−1 {z}i def= {r}i + θ i {z}i−1

λi = {z}T,i ({R}−[K]{a}i)
{z}T,i [K]{z}i = {z}T,i {r}i

{z}T,i [K]{z}i

COMPUTE {a}i+1 = {a}i + λi{z}i

STEP 5 : COMPUTE ei
def
= ||{a}i+1−{a}i||K

||{a}i||K = |λi|||{z}i||K
||{a}i||K ≤ τ (τ = TOL)

IF ei < τ ⇒ STOP

IF ei ≥ τ ⇒ GO TO STEP 4 AND REPEAT.

(5.18)

42 5 Iterative Solutions Schemes

5.1.2.3 Accelerating Computations
The rate of convergence of the CG method is related to the condition number

||{a} − {a}i ||K ≤ (

√
C([K]) − 1√
C([K]) + 1

)i ||{a} − {a}1||K . (5.19)

Proofs of the various characteristics of the method can be found in Axelsson [1]. As
is standard, in an attempt to reduce the condition number and hence increase the rate
of convergence, typically preconditioning of [K] is done by forming the following
transformation of variables, {a} = [T]{â}, which produces a preconditioned system,
with stiffness matrix [K] = [T]T [K][T]. Ideally we would like [T] = [L]−T where
[L][L]T = [K], and where [L] is a lower triangular matrix, thus forcing

[T]T [K][T] = [L]−1[L][L]T [L]−T = I. (5.20)

However, the reduction of the stiffness matrix into a lower triangular matrix and
its transpose is comparable in the number of operations to solving the system by
Gaussian elimination. Therefore, only an approximation to [L]−1 is computed. Thus
inexpensive preconditioners are usually used. For example, diagonal precondition-
ing, which is essentially the least expensive, involves defining [T] as a diagonal
matrix with entries

Tii = 1√
Kii

, i, j = 1, ...N , (5.21)

where Ti j = 0 for i �= j and where the Kii (no implied sum on the repeated indices)
are the diagonal entries of [K]. In this case the resulting terms in the preconditioned
stiffness matrix are unity on the diagonal. The off-diagonal terms, Ki j , are divided by

1√
Kii

√
K j j

. There are a variety of other preconditioning techniques, of widely ranging

expense to compute. For more details see Axelsson [1]. It is strongly suggested to
precondition the system. For example, with the simple diagonal preconditioner we
obtain the following stiffness matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 K12√
K11

√
K22

K13√
K11

√
K33

K14√
K11

√
K44

K15√
K11

√
K55

.

K21√
K11

√
K22

1 K23√
K22

√
K33

K24√
K22

√
K44

.

K31√
K33

√
K11

K32√
K33

√
K22

1

K41√
K44

√
K11

K42√
K44

√
K22

. 1

K51√
K55

√
K11

. . . 1

. 1 ...

.

.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.22)

5.1 Introduction:Minimum Principles and Krylov Methods 43

Remark: In the one-dimensional problem considered earlier, the actual compu-
tation cost of the matrix-vector multiplication in an element-by-element CG method
is a [2 × 2] matrix times a {2 × 1} vector times the number of elements. This is an
O(N) calculation. If we consider M iterations necessary for convergence below an
error tolerance, then the entire operation costs O(MN).

Reference

1. Axelsson, O. (1994). Iterative solution methods. Cambridge: Cambridge University Press.

6WeakFormulations inThree
Dimensions

6.1 Introduction

Albeit a bit repetitive, we follow similar constructions as done in the one-dimensional
analysis of the preceding chapters. This allows readers a chance to contrast and com-
pare the differences between one-dimensional and three-dimensional formulations.
To derive a direct weak form for a body, we take the balance of linear momentum
∇ · σ + f = 0 (denoting the strong form) and form a scalar product with an arbitrary
smooth vector-valued function ν, and integrate over the body (Fig. 6.1),

∫
Ω

(∇ · σ + f) · ν dΩ =
∫

Ω

r · ν dΩ = 0, (6.1)

where r is the residual and ν is a test function. If we were to add a condition that we
do this for all possible test functions (∀ν), Eq. 6.1 implies r = 0. Therefore, if every
possible test function was considered, then

r = ∇ · σ + f = 0 (6.2)

on any finite region in Ω . Consequently, the weak and strong statements would be
equivalent provided the true solution is smooth enough to have a strong solution.
Clearly, r can never be nonzero over any finite region in the body, because the test
function will locate them. Using the product rule of differentiation,

∇ · (σ · ν) = (∇ · σ) · ν + ∇ν : σ (6.3)

leads to, ∀ν

∫
Ω

(∇ · (σ · ν) − ∇ν : σ) dΩ +
∫

Ω

f · ν dΩ = 0, (6.4)

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_6

45

46 6 Weak Formulations in Three Dimensions

Fig. 6.1 A
three-dimensional body

u=u* specified

t=t specified*

Ω

Γu

tΓ

where we choose the ν from an admissible set, to be discussed momentarily. Using
the divergence theorem leads to, ∀ν,

∫
Ω

∇ν : σ dΩ =
∫

Ω

f · ν dΩ +
∫

∂Ω

σ · n · ν d A, (6.5)

which, since the traction t = σ · n, leads to
∫

Ω

∇ν : σ dΩ =
∫

Ω

f · ν dΩ +
∫

Γt

t · ν d A. (6.6)

If we decide to restrict our choices of ν’s to those such that ν|Γu = 0, we have,
where u∗ is the applied boundary displacement on Γu , for infinitesimal strain linear
elasticity

Find u, u|Γu = u∗, such that ∀ν,ν|Γu = 0

∫
Ω

∇ν : IE : ∇u dΩ

︸ ︷︷ ︸
def=B(u,ν)

=
∫

Ω

f · ν dΩ +
∫

Γt

t∗ · ν d A

︸ ︷︷ ︸
def=F(ν)

, (6.7)

where t = t∗ on Γt . As in the one-dimensional formulation, this is called a “weak”
form because it does not require the differentiability of the stress σ. In other words,
the differentiability requirements have been weakened. It is clear that we are able
to consider problems with quite irregular solutions. We emphasize that if we test
the solution with all possible test functions of sufficient smoothness, then the weak
solution is equivalent to the strong solution. Futhermore, that provided the true
solution is smooth enough, the weak and strong forms are equivalent, which can be
seen by the above constructive derivation.

6.2 Hilbertian Sobolev Spaces 47

6.2 Hilbertian Sobolev Spaces

As in one dimension, a key question is the selection of the sets of functions in the
weak form. Somewhat naively, the answer is simple, the integrals must remain finite.
Therefore the following restrictions hold (∀ν),

∫
Ω

f · ν dΩ < ∞,
∫
∂Ω

t∗ · ν d A <

∞ and
∫
Ω

∇ν : σ dΩ < ∞, and govern the selection of the approximation spaces.
These relations simply mean that the functions must be square integrable. In order to
make precise statements one must have a method of “book keeping.” Such a system
is to employ so-called Hilbertian Sobolev spaces. We recall that a norm has three
main characteristics for any functions u and ν such that ||u|| < ∞ and ||ν|| < ∞
are

• (1) ||u|| > 0, ||u|| = 0 if and only if u = 0,
• (2) ||u + ν|| ≤ ||u|| + ||ν|| and
• (3) ||αu|| = |α|||u||,

where α is a scalar constant. Certain types of norms, so-called Hilbert space norms,
are frequently used in solid mechanics. Following standard notation, we denote
H1(Ω) as the usual space of scalar functions with generalized partial derivatives of
order ≤ 1 in L2(Ω), i.e., square integrable, in other words u ∈ H1(Ω) if

||u||2H1(Ω)

def=
∫

Ω

3∑
j=1

∂u

∂x j

∂u

∂x j
dΩ +

∫
Ω

uu dΩ < ∞. (6.8)

Similarly, we define H1(Ω)
def= [H1(Ω)]3 as the space of vector-valued functions

whose components are in H1(Ω), i.e.,

u ∈ H1(Ω) if ||u||2
H1(Ω)

def=
∫

Ω

3∑
j=1

3∑
i=1

∂ui
∂x j

∂ui
∂x j

dΩ +
∫

Ω

3∑
i=1

uiui dΩ < ∞,

(6.9)

and we denote L2(Ω)
def= [L2(Ω)]3. Using these definitions, a complete boundary

value problem can be written as follows. The data (loads) are assumed to be such
that f ∈ L2(Ω) and t∗ ∈ L2(Γt), but less smooth data can be considered without
complications. Implicitly we require that u ∈ H1(Ω) and σ ∈ L2(Ω) without con-
tinuallymaking such references. Therefore, in summarywe assume that our solutions
obey these restrictions, leading to the following infinitesimal strain linear elasticity
weak form:

Find u ∈ H1(Ω), u|Γu = u∗, such that ∀ν ∈ H1(Ω),ν|Γu = 0

∫
Ω

∇ν : IE : ∇u dΩ =
∫

Ω

f · ν dΩ +
∫

Γt

t∗ · ν d A.

(6.10)

48 6 Weak Formulations in Three Dimensions

We note that if the data in (6.10) are smooth and if (6.10) possesses a solution u
that is sufficiently regular, then u is the solution of the classical linear elastostatics
problem in strong form:

∇ · (IE : ∇u) + f = 0, ∀x ∈ Ω,

u = u∗, ∀x ∈ Γu,

σ · n = (IE : ∇u) · n = t = t∗, ∀x ∈ Γt .

(6.11)

6.3 The Principle of Minimum Potential Energy

Repeating the procedure that we performed for one-dimensional formulations earlier
in the monograph, we have

||u − w||2E(Ω) = B(u − w, u − w)

= B(u, u) + B(w,w) − 2B(u,w)

= B(w,w) − B(u, u) − 2B(u,w) + 2B(u, u)

= B(w,w) − B(u, u) − 2B(u,w − u)

= B(w,w) − B(u, u) − 2F(w − u)

= B(w,w) − 2F(w) − (B(u, u) − 2F(u))

= 2J (w) − 2J (u), (6.12)

where similar to the one-dimensional case, we define the elastic potential as

J (w)
def= 1

2
B(w,w) − F(w) = 1

2

∫
Ω

∇w : IE : ∇w dΩ −
∫
Ω

f · w dΩ −
∫
Γt

t∗ · w d A.

(6.13)

This implies

0 ≤ ||u − w||2E(Ω) = 2(J (w) − J (u)) or J (u) ≤ J (w), (6.14)

where Eq.6.14 is known as the Principle of Minimum Potential Energy (PMPE). In
other words, the true solution possesses theminimumpotential. As in one dimension,
theminimumproperty of the exact solution can be proven by an alternative technique.
Let us construct a potential function, for a deviation away from the exact solution u,
denoted u + λν, where λ is a scalar and ν is any admissible variation (test function)

J (u + λν) = 1

2

∫
Ω

∇(u + λν) : IE : ∇(u + λν) dΩ −
∫
Ω

f · (u + λν) dΩ −
∫
Γt

t∗ · (u + λν) d A.

(6.15)

6.3 The Principle of Minimum Potential Energy 49

If we differentiate with respect to λ,

∂J (u + λν)

∂λ
=

∫
Ω

∇ν : IE : ∇(u + λν) dΩ −
∫

Ω

f · ν dΩ −
∫

Γt

t∗ · ν d A,

(6.16)
and set λ = 0 (because we know that the exact solution is for λ = 0), we have

∂J (u + λν)

∂λ
|λ=0 =

∫
Ω

∇ν : IE : ∇u dΩ −
∫

Ω

f · ν dΩ −
∫

Γt

t∗ · ν d A = 0.

(6.17)
Clearly, the minimizer of the potential is the solution to the field equations, since it
produces the weak form as a result. This is a minimum since

∂2J (u + λν)

∂λ2 |λ=0 =
∫

Ω

∇ν : IE : ∇ν dΩ ≥ 0. (6.18)

It is important to note that the weak form, derived earlier, requires no such potential,
and thus is a more general approach than a minimum principle. Thus, in the hypere-
lastic case, the weak formulation can be considered as a minimization of a potential
energy function. This is sometimes referred to as the Rayleigh–Ritz method.

6.4 Complementary Principles

There exist another set ofweak forms andminimumprinciples called complementary
principles. Starting with∇ · τ = 0, τ · n|Γt = 0, multiplying by the solution u leads
to ∫

Ω

∇ · τ · u dΩ = 0 =
∫

Ω

∇ · (τ · u) dΩ −
∫

Ω

τ : ∇u dΩ. (6.19)

Using the divergence theorem yields

Find σ,∇ · σ + f = 0,σ · n|Γt = t such that

∫
Ω

τ : IE−1 : σ dΩ

︸ ︷︷ ︸
def=A(σ,τ)

=
∫

Γu

τ · n · u∗ d A
︸ ︷︷ ︸

def=G(τ)

∀τ ,∇ · τ = 0, τ · n|Γt = 0. (6.20)

This is called the complementary form of Eq.6.7. Similar restrictions are placed on
the trial and test fields to force the integrals to make sense, i.e., to be finite. Simi-
lar boundedness restrictions control the choice of admissible complementary func-
tions. In other words we assume that the solutions produce finite energy. Despite

50 6 Weak Formulations in Three Dimensions

the apparent simplicity of such principles they are rarely used in practical com-
putations, directly in this form, because of the fact that it is somewhat difficult to
find approximate functions, σ, that satisfy ∇ · σ + f = 0. However, in closing, we
provide some theoretical results. As in the primal case, a similar process is repeated
using the complementary weak form. We define a complementary norm

0 ≤ ||σ − γ||2E−1(Ω)

def=
∫

Ω

(σ − γ) : IE−1 : (σ − γ) dΩ = A(σ − γ,σ − γ). (6.21)

Again, by direct manipulation, we have

||σ − γ||2E−1(Ω)
= A(σ − γ, σ − γ)

= A(σ,σ) + A(γ,γ) − 2A(σ,γ)

= A(γ, γ) − A(σ,σ) − 2A(σ,γ) + 2A(σ,σ)

= A(γ, γ) − A(σ,σ) − 2A(σ,γ − σ)

= A(γ, γ) − A(σ,σ) − 2G(γ − σ)

= A(γ, γ) − 2G(γ) − (A(σ,σ) − 2G(σ))

= 2K(γ) − 2K(σ), (6.22)

where we define K(γ)
def= 1

2A(γ, γ) − G(γ) = 1
2

∫
Ω

γ : IE−1 : γ dΩ − ∫
Γu

γ · n ·
u∗ d A. Therefore,

||σ − γ||2
E−1(Ω)

= 2(K(γ) − K(σ)) or K(σ) ≤ K(γ), (6.23)

which is the Principle of Minimum Complementary Potential Energy (PMCPE).
By directly adding together the potential energy and the complementary energy we
obtain an equation of balance:

J (u) + K(σ) = 1

2

∫
Ω

∇u : IE : ∇u dΩ −
∫

Ω

f · u dΩ −
∫

Γt

t∗ · u d A

+ 1

2

∫
Ω

σ : IE−1 : σ dΩ −
∫

Γu

t · u︸︷︷︸
(σ·n)·u∗

d A (6.24)

= 0.

Remark:Basically, the three-dimensional and one-dimensional formulations are,
formally speaking, virtually identical in structure.

7AFinite Element Implementation
inThreeDimensions

7.1 Introduction

Generally, the ability to change the boundary data quickly is very important in finite
element computations. One approach to do this rapidly is via the variational penalty
method. This is done by relaxing kinematic assumptions on themembers of the space
of admissible functions and adding a term to “account for the violation” on the bound-
ary. This is a widely used practice, and therefore to keep the formulation as general
as possible we include penalty terms, although this implementation is not manda-
tory. Obviously, one could simply extract the known (imposed) values of boundary
displacements (by appropriately eliminating rows and columns and modifying the
right-hand side load vector); however, it is tedious. Nevertheless we consider the
penalty method formulation for generality, although one does not necessarily need
to use it. Accordingly, consider the following statement: Find u ∈ H1(�) such that
∀ν ∈ H1(�)

∫
�

∇ν : IE : ∇u d� =
∫

�

f · ν d� +
∫

�t

t∗ · ν dA + P�

∫
�u

(u∗ − u) · ν dA,

(7.1)

where the last term is to be thought of as a penalty term to enforce the applied
displacement (kinematic) boundary condition, u|�u = u∗, andwe relax the condition
that the test function vanishes on the displacement part of the boundary, ν|�u = 0.
The (penalty) parameter P� is a large positive number. A penalty formulation has
a variety of interpretations. It is probably simplest to interpret it as a traction that
attempts to restore the correct prescribed displacement:

∫
�u

t · ν dA ≈ P�

∫
�u

(u∗ − u) · ν dA, (7.2)

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_7

51

52 7 A Finite Element Implementation in Three Dimensions

where the termP�(u∗−u) takes on the physical interpretation as a very stiff “traction
spring” which is proportional to the amount of violation from the true boundary
displacement.

Remark: In the case where a potential exists, as is the case here, we can moti-

vate this approach by considering an augmented potential J (u,P�)
def= J (u) +

P�
∫
�u

(u∗ − u) · (u∗ − u) dA, u ∈ H1(�), whose variation is

Find u ∈ H1(�) such that ∀ν ∈ H1(�)

∫
�

∇ν : IE : ∇u d� =
∫

�

f · ν d� +
∫

�t

t∗ · ν dA + P�

∫
�u

(u∗ − u) · ν dA.

(7.3)

Therefore, the penalty term can be thought of as a quadratic augmentation of the
potential energy.When no potential exists, the penaltymethod can only be considered
as an enforcement of a constraint.

7.2 FEM Approximation

It is convenient to write the bilinear form in the following (matrix) manner

∫
�

([D]{ν})T [IE]([D]{u}) d� =
∫

�

{ν}T {f } d� +
∫

�t

{ν}T {t∗} dA

+ P�

∫
�u

{ν}T {u∗ − u} dA, (7.4)

where [D], the deformation tensor, is

[D] def=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, {u} def=

⎧⎪⎨
⎪⎩
u1

u2

u3

⎫⎪⎬
⎪⎭ , {f } def=

⎧⎪⎨
⎪⎩
f1

f2

f3

⎫⎪⎬
⎪⎭ , {t∗} def=

⎧⎪⎨
⎪⎩
t∗1
t∗2
t∗3

⎫⎪⎬
⎪⎭ . (7.5)

It is clear that in an implementation of the finite element method, the sparsity of [D]
should be taken into account. It is also convenient to write the approximations as

7.2 FEM Approximation 53

uh1(x1, x2, x3) = ∑N
i=1 aiφi(x1, x2, x3),

uh2(x1, x2, x3) = ∑N
i=1 ai+Nφi(x1, x2, x3),

uh3(x1, x2, x3) = ∑N
i=1 ai+2Nφi(x1, x2, x3),

(7.6)

or {uh} = [φ]{a}, where, for example1:

[φ] def=
⎡
⎣φ1 φ2 φ3 φ4 φ5 φ6 ...φN 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 ... φ1 φ2 φ3 φ4 φ5 φ6 ...φN 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 ... φ1 φ2 φ3 φ4 φ5 φ6 ...φN

⎤
⎦ .

(7.7)
It is advantageous to write

{a} def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1
a2
a3
.

.

.

a3N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, {φi} def=
⎧⎨
⎩

φi

0
0

⎫⎬
⎭

︸ ︷︷ ︸
for 1≤i≤N

, {φi} def=
⎧⎨
⎩

0
φi−N

0

⎫⎬
⎭

︸ ︷︷ ︸
for N+1≤i≤2N

, {φi} def=
⎧⎨
⎩

0
0

φi−2N

⎫⎬
⎭

︸ ︷︷ ︸
for 2N+1≤i≤3N

,

(7.8)
and {uh} = ∑3N

i=1 ai{φi}. If we choose ν with the same basis, but a different linear
combination {νh} = [φ]{b}, then we may write

∫
�

([D][φ]{b})T [IE]([D][φ]{a}) d�

︸ ︷︷ ︸
{b}T [K]{stiffness

=
∫
�

([φ]{b})T {f } d�

︸ ︷︷ ︸
body load

+
∫
�t

([φ]{b})T {t∗}
︸ ︷︷ ︸

traction load

dA

+P�

∫
�u

([φ]{b})T {u∗ − ([φ]{a})} dA
︸ ︷︷ ︸

boundary penalty term

. (7.9)

Since {b} is arbitrary (∀ν ⇒ ∀{b}), we have:

• {b}T {[K]{a} − {R}} = 0 ⇒ [K]{a} = {R},
• [K]

def= ∫
�
([D][φ])T [IE]([D][φ]) d� + P�

∫
�u

[φ]T [φ] dA,
• {R} def= ∫

�
[φ]T {f } d� + ∫

�t
[φ]T {t∗} dA + P�

∫
�u

[φ]T {u∗} dA.

Explicitly, [K]{a} = {R} is the system of equations that is to be solved.

1Representing the numerical approximation this way is simply to ease the understanding of the
process. On the implementation level, one would not store the matrices in this form due to the large
number of zeroes.

54 7 A Finite Element Implementation in Three Dimensions

7.3 Global/Local Transformations

One strength of the finite element method is that most of the computations can be
done in an element-by-element manner. We define the entries of [K],

[K] =
∫

�

([D][φ])T [IE]([D][φ]) d� + P�

∫
�u

[φ]T [φ] dA (7.10)

and

{R} =
∫

�

[φ]T {f } d� +
∫

�t

[φ]T {t∗} dA + P�

∫
�u

[φ]T {u∗} dA. (7.11)

Breaking the calculations into elements, [K] =
∑
e

[K]e, e = 1, 2, ... number of

elements, where

[K]e =
∫

�e

([D][φ])T [IE]([D][φ]) d�e + P�

∫
�u,e

[φ]T [φ] dAe, (7.12)

and

{R}e =
∫

�e

[φ]T {f } d�e +
∫

�t,e

[φ]T {t∗} dAe + P�

∫
�u,e

[φ]T {u∗} dAe, (7.13)

where �u,e = �u ∩ ∂�e and �t,e = �t ∩ ∂�e. In order to make the calculations
systematic we wish to use the generic or master element defined in a local coordinate
system (ζ1, ζ2, ζ3). Accordingly, we need the followingmapping functions (Fig. 7.1),
from the master coordinates to the real space coordinates, Mxζ : (ζ1, ζ2, ζ3)
→
(x1, x2, x3) (e.g., trilinear bricks):

x1 = ∑8
i=1 X1iφ̂i

def= Mxζ1(ζ1, ζ2, ζ3),

x2 = ∑8
i=1 X2iφ̂i

def= Mxζ2(ζ1, ζ2, ζ3),

x3 = ∑8
i=1 X3iφ̂i

def= Mxζ3(ζ1, ζ2, ζ3),

(7.14)

where (X1i,X2i,X3i) are true spatial coordinates of the ith node and where φ̂(ζ1,

ζ2, ζ3)
def= φ(x1(ζ1, ζ2, ζ3), x2(ζ1, ζ2, ζ3), x3(ζ1, ζ2, ζ3)). As in the one-dimension,

these types of mappings are usually termed parametric maps. If the polynomial
order of the shape functions is as high as the element, it is an isoparametric map,
lower, then subparametric map, higher, then superparametric.

7.4 Mesh Generation and Connectivity Functions 55

Fig. 7.1 A two-dimensional
finite element mapping

e

X2

X1

ELEMENT
MAPPED

ELEMENT
MASTER

ζ
2

ζ1

Ω

7.4 Mesh Generation and Connectivity Functions

During the calculations, one needs to be able to connect the local numbering of the
nodes to the global numbering of the nodes. For simple geometries, this is a straight-
forward scheme to automate. For complicated geometries, a lookup array connecting
the local node numberwithin an element to the global number is needed. Global/local
connection is important since the proper (global) locations of the entries within the
stiffness element are neededwhen solving the systemof equations, either byGaussian
elimination or in element-by-element multiplication in a CG-type solver (Table7.1).

56 7 A Finite Element Implementation in Three Dimensions

Table 7.1 Local/global numbers for elements for an arch

Local node # e#1 node # e#2 node # e#3 node # e#4 node #

1 1 2 3 4

2 2 3 4 5

3 7 8 9 10

4 6 7 8 9

7.5 Warning: Restrictions on Elements

Recall that in one dimension we have the following type of calculation

∫ x+h

x

dφi

dx
E
dφj

dx
dx =

∫ +1

−1

dφ̂i

dζ

dζ

dx
E
dφ̂j

dζ

dζ

dx

dx

dζ
dζ =

∫ +1

−1

dφ̂i

dζ
E
dφ̂j

dζ

dζ

dx︸︷︷︸
1/J

dζ.

(7.15)
Clearly, a zero Jacobian will lead to problems and potentially singular integrals. In
one dimension, this was easy to avoid since the nodes are numbered sequentially and
as long as the nodes do not coincide, this will not happen, since J = h/2. However,
clearly, J < 0 is not physical, because this implies that neighboring nodes getmapped
inside out (through one another). Negative Jacobians can also lead to indefinite
stiffness matrices. As in one-dimensional formulations, for two-dimensional and
three-dimensional formulations, one has to insure that J = detF > 0, throughout
the domain.

There are two ways that nonpositive Jacobians can occur: (1) The elements are
nonconvex and (2) the node numbering is incorrect forcing the elements to be pulled
inside out. We must insure that J > 0, since J has a physical meaning: it is the ratio
of the differential volume of the master element to the differential volume of the
finite element. If the nodes are numbered correctly to insure that nodes are not pulled
“inside out” (e.g., see Fig. 7.2) and that the elements are convex, then J > 0.

7.5.1 Good and Bad Elements: Examples

Let us consider a two-dimensional linear element shown in Fig. 3.5. The shape func-
tions are:

• φ̂1 = 1
4 (1 − ζ1)(1 − ζ2),

• φ̂2 = 1
4 (1 + ζ1)(1 − ζ2),

• φ̂3 = 1
4 (1 + ζ1)(1 + ζ2),

• φ̂4 = 1
4 (1 − ζ1)(1 + ζ2).

The mapping functions are:

http://dx.doi.org/10.1007/978-3-319-70428-9_3

7.5 Warning: Restrictions on Elements 57

Fig. 7.2 An example of a
mapped mesh for a
semicircular strip

1

2
3

4

56

7

8

9

10

1

2

4

3

4

1

3

2

ζ1

ζ 2

• x1 = ∑4
i=1 X1iφ̂i

def= Mx1(ζ1, ζ2),

• x2 = ∑4
i=1 X2iφ̂i

def= Mx2(ζ1, ζ2),

where (X1i,X2i) are true spatial coordinates of the ith node and where φ̂(ζ1, ζ2)
def= φ(x1(ζ1, ζ2), x2(ζ1, ζ2)). Let us consider four examples. For the elements to be
acceptable, the Jacobian corresponding to F

dx = F · dζ (7.16)

must be positive and finite throughout the element, where

J
def= |F| def= | ∂x(x1, x2)

∂ζ (ζ1, ζ2)
| where F

def=
[

∂x1
∂ζ1

∂x1
∂ζ2

∂x2
∂ζ1

∂x2
∂ζ2

]
. (7.17)

Explicitly,

J = |F| = ∂x1
∂ζ1

∂x2
∂ζ2

− ∂x2
∂ζ1

∂x1
∂ζ2

. (7.18)

For the four cases (Fig. 7.3), we have:

• Case 1: This element is acceptable, since 0 < J(ζ1, ζ2) < ∞ throughout the
element. The Jacobian is constant in this case.

• Case 2: This element is unacceptable, since 0 > J(ζ1, ζ2) throughout the element.
The essential problem is that the nodes are numbered incorrectly, turning the
element “inside out.”

58 7 A Finite Element Implementation in Three Dimensions

4

ζ1

ζ2

CASE 1
CASE 2

CASE 4

MASTER

ELEMENT

1 2

34

1 3

24

1

2

3

4

1 2

3

4

CASE 3

1 2

3

Fig. 7.3 A two-dimensional linear element and examples of mapping

• Case 3: This element is acceptable, since 0 < J(ζ1, ζ2) < ∞ throughout the
element. While the Jacobian is not constant throughout the element domain, it is
positive and bounded.

• Case 4:This element is unacceptable, since J(ζ1, ζ2) < 0 in regions of the element.
Even though the element is positive in some portions of the domain, a negative
Jacobian in other parts can cause problems, such as potential singularities in the
stiffness matrix.

• For linear elements, the key indicator for a problematic element is the noncon-
vexity of the element (even if numbered correctly).

7.6 Three-Dimensional Shape Functions

For the remainder of the monograph, we will illustrate the finite element method’s
construction with so-called trilinear “brick” elements. The master element shape
functions form nodal bases of trilinear approximation given by:

7.6 Three-Dimensional Shape Functions 59

8

ζ2
ζ 2

ζ
3 ζ 3

ζ
1

ζ
1

1

2 3

4

8 NODES 27 NODES

5

6 7

Fig. 7.4 Left: A trilinear eight-node hexahedron or “brick.” Right: a 27-node element

φ̂1 = 1
8 (1 − ζ1)(1 − ζ2)(1 − ζ3), φ̂2 = 1

8 (1 + ζ1)(1 − ζ2)(1 − ζ3),

φ̂3 = 1
8 (1 + ζ1)(1 + ζ2)(1 − ζ3), φ̂4 = 1

8 (1 − ζ1)(1 + ζ2)(1 − ζ3),

φ̂5 = 1
8 (1 − ζ1)(1 − ζ2)(1 + ζ3), φ̂6 = 1

8 (1 + ζ1)(1 − ζ2)(1 + ζ3),

φ̂7 = 1
8 (1 + ζ1)(1 + ζ2)(1 + ζ3), φ̂8 = 1

8 (1 − ζ1)(1 + ζ2)(1 + ζ3).

(7.19)

For trilinear elements, we have a nodal basis consisting of eight nodes, and since it
is vector valued, 24 total degrees of freedom (three degrees of freedom for each of
the eight nodes).

Remark: For standard quadratic elements, we have a nodal basis consisting of
27 nodes (Fig. 7.4), and since it is vector valued, 81 total degrees of freedom (three
degrees of freedom for each of the 27 nodes). The nodal shape functions can be
derived quite easily, by realizing that it is a nodal basis, i.e., they are unity at the
corresponding node, and zero at all other nodes, etc. For more details on the con-
struction of higher-order elements, see Becker, Carey and Oden [1], Carey and Oden
[2], Oden and Carey [3], Hughes [4], Bathe [5], and Zienkiewicz and Taylor [6].

7.7 Differential Properties of Shape Functions

We note that the φi’s in the domain are never really computed. We actually start with
the φ̂i’s in the master domain. Therefore, in the stiffness matrix and right-hand side
element calculations, all termsmust be defined in terms of the local coordinates.With
this in mind, we lay down some fundamental relations, which are directly related to

60 7 A Finite Element Implementation in Three Dimensions

the concepts of deformation presented in our discussion in continuum mechanics. It
is not surprising that a deformation gradient reappears in the following form:

|F| def= | ∂x(x1, x2, x3)
∂ζ (ζ1, ζ2, ζ3)

| where F
def=

⎡
⎢⎢⎣

∂x1
∂ζ1

∂x1
∂ζ2

∂x1
∂ζ3

∂x2
∂ζ1

∂x2
∂ζ2

∂x2
∂ζ3

∂x3
∂ζ1

∂x3
∂ζ2

∂x3
∂ζ3

⎤
⎥⎥⎦ , (7.20)

where explicitly

|F| = ∂x1
∂ζ1

(
∂x2
∂ζ2

∂x3
∂ζ3

− ∂x3
∂ζ2

∂x2
∂ζ3

) − ∂x1
∂ζ2

(
∂x2
∂ζ1

∂x3
∂ζ3

− ∂x3
∂ζ1

∂x2
∂ζ3

) + ∂x1
∂ζ3

(
∂x2
∂ζ1

∂x3
∂ζ2

− ∂x3
∂ζ1

∂x2
∂ζ2

).

(7.21)

The differential relations ζ → x are

∂
∂ζ1

= ∂
∂x1

∂x1
∂ζ1

+ ∂
∂x2

∂x2
∂ζ1

+ ∂
∂x3

∂x3
∂ζ1

,

∂
∂ζ2

= ∂
∂x1

∂x1
∂ζ2

+ ∂
∂x2

∂x2
∂ζ2

+ ∂
∂x3

∂x3
∂ζ2

,

∂
∂ζ3

= ∂
∂x1

∂x1
∂ζ3

+ ∂
∂x2

∂x2
∂ζ3

+ ∂
∂x3

∂x3
∂ζ3

.

(7.22)

The inverse differential relations x → ζ are

∂
∂x1

= ∂
∂ζ1

∂ζ1
∂x1

+ ∂
∂ζ2

∂ζ2
∂x1

+ ∂
∂ζ3

∂ζ3
∂x1

,

∂
∂x2

= ∂
∂ζ1

∂ζ1
∂x2

+ ∂
∂ζ2

∂ζ2
∂x2

+ ∂
∂ζ3

∂ζ3
∂x2

,

∂
∂x3

= ∂
∂ζ1

∂ζ1
∂x3

+ ∂
∂ζ2

∂ζ2
∂x3

+ ∂
∂ζ3

∂ζ3
∂x3

,

(7.23)

and thus
⎧⎪⎨
⎪⎩
dx1

dx2

dx3

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎣

∂x1
∂ζ1

∂x1
∂ζ2

∂x1
∂ζ3

∂x2
∂ζ1

∂x2
∂ζ2

∂x2
∂ζ3

∂x3
∂ζ1

∂x3
∂ζ2

∂x3
∂ζ3

⎤
⎥⎥⎦

︸ ︷︷ ︸
F

⎧⎪⎨
⎪⎩
dζ1

dζ2

dζ3

⎫⎪⎬
⎪⎭ (7.24)

and the inverse form

⎧⎪⎨
⎪⎩
dζ1

dζ2

dζ3

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎣

∂ζ1
∂x1

∂ζ1
∂x2

∂ζ1
∂x3

∂ζ2
∂x1

∂ζ2
∂x2

∂ζ2
∂x3

∂ζ3
∂x1

∂ζ3
∂x2

∂ζ3
∂x3

⎤
⎥⎥⎦

︸ ︷︷ ︸
F−1

⎧⎪⎨
⎪⎩
dx1

dx2

dx3

⎫⎪⎬
⎪⎭ . (7.25)

7.7 Differential Properties of Shape Functions 61

Noting the following relationship, from basic linear algebra

F−1 = adjF
|F| where adjF

def=
⎡
⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦
T

, (7.26)

where

A11 = [∂x2
∂ζ2

∂x3
∂ζ3

− ∂x3
∂ζ2

∂x2
∂ζ3

] = |F| ∂ζ1
∂x1

, A12 = −[∂x2
∂ζ1

∂x3
∂ζ3

− ∂x3
∂ζ1

∂x2
∂ζ3

] = |F| ∂ζ2
∂x1

,

A13 = [∂x2
∂ζ1

∂x3
∂ζ2

− ∂x3
∂ζ1

∂x2
∂ζ2

] = |F| ∂ζ3
∂x1

, A21 = −[∂x1
∂ζ2

∂x3
∂ζ3

− ∂x3
∂ζ2

∂x1
∂ζ3

] = |F| ∂ζ1
∂x2

,

A22 = [∂x1
∂ζ1

∂x3
∂ζ3

− ∂x3
∂ζ1

∂x1
∂ζ3

] = |F| ∂ζ2
∂x2

, A23 = −[∂x1
∂ζ1

∂x3
∂ζ2

− ∂x3
∂ζ1

∂x1
∂ζ2

] = |F| ∂ζ3
∂x2

,

A31 = [∂x1
∂ζ2

∂x2
∂ζ3

− ∂x2
∂ζ2

∂x1
∂ζ3

] = |F| ∂ζ1
∂x3

, A32 = −[∂x1
∂ζ1

∂x2
∂ζ3

− ∂x2
∂ζ1

∂x1
∂ζ3

] = |F| ∂ζ2
∂x3

,

A33 = [∂x1
∂ζ1

∂x2
∂ζ2

− ∂x2
∂ζ1

∂x1
∂ζ2

] = |F| ∂ζ3
∂x3

.

(7.27)

With these relations, one can then solve for the components of F and F−1.

7.8 Differentiation in the Referential Coordinates

We now need to express [D] in terms ζ1, ζ2, ζ3, via

[D(φ(x1, x2, x3))] = [D̂
(
φ̂(Mx1(ζ1, ζ2, ζ3),Mx2(ζ1, ζ2, ζ3),Mx3(ζ1, ζ2, ζ3))

)
].

(7.28)
Therefore, we write for the first column2 of [D̂]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂ζ1

∂ζ1
∂x1

+ ∂
∂ζ2

∂ζ2
∂x1

+ ∂
∂ζ3

∂ζ3
∂x1

0

0
∂

∂ζ1

∂ζ1
∂x2

+ ∂
∂ζ2

∂ζ2
∂x2

+ ∂
∂ζ3

∂ζ3
∂x2

0
∂

∂ζ1

∂ζ1
∂x3

+ ∂
∂ζ2

∂ζ2
∂x3

+ ∂
∂ζ3

∂ζ3
∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.29)

2This is for illustration purposes only. For computational efficiency, one should not program such
operations in this way. Clearly, the needless multiplication of zeros is to be avoided.

62 7 A Finite Element Implementation in Three Dimensions

for the second column
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂

∂ζ1

∂ζ1
∂x2

+ ∂
∂ζ2

∂ζ2
∂x2

+ ∂
∂ζ3

∂ζ3
∂x2

0
∂

∂ζ1

∂ζ1
∂x1

+ ∂
∂ζ2

∂ζ2
∂x1

+ ∂
∂ζ3

∂ζ3
∂x1

∂
∂ζ1

∂ζ1
∂x3

+ ∂
∂ζ2

∂ζ2
∂x3

+ ∂
∂ζ3

∂ζ3
∂x3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.30)

and for the last column

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
∂

∂ζ1

∂ζ1
∂x3

+ ∂
∂ζ2

∂ζ2
∂x3

+ ∂
∂ζ3

∂ζ3
∂x3

0
∂

∂ζ1

∂ζ1
∂x2

+ ∂
∂ζ2

∂ζ2
∂x2

+ ∂
∂ζ3

∂ζ3
∂x2

∂
∂ζ1

∂ζ1
∂x1

+ ∂
∂ζ2

∂ζ2
∂x1

+ ∂
∂ζ3

∂ζ3
∂x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.31)

For an element, our shape function matrix (
def= [φ̂]) has the following form for

linear shape functions, for the first eight columns

⎡
⎢⎣

φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7 φ̂8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎦ , (7.32)

for the second eight columns

⎡
⎢⎣
0 0 0 0 0 0 0 0

φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7 φ̂8

0 0 0 0 0 0 0 0

⎤
⎥⎦ , (7.33)

and for the last eight columns

⎡
⎢⎣
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7 φ̂8

⎤
⎥⎦ , (7.34)

7.8 Differentiation in the Referential Coordinates 63

which in total is a 3 × 24 matrix. Therefore the product [D̂][φ̂] is a 6× 24 matrix of
the form, for the first eight columns

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ̂1
∂ζ1

∂ζ1
∂x1

+ ∂φ̂1
∂ζ2

∂ζ2
∂x1

+ ∂φ̂1
∂ζ3

∂ζ3
∂x1

, ...8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x2

+ ∂φ̂1
∂ζ2

∂ζ2
∂x2

+ ∂φ̂1
∂ζ3

∂ζ3
∂x2

, ...8

0 0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x3

+ ∂φ̂1
∂ζ2

∂ζ2
∂x3

+ ∂φ̂1
∂ζ3

∂ζ3
∂x3

, ...8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.35)

for the second eight columns

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x2

+ ∂φ̂1
∂ζ2

∂ζ2
∂x2

+ ∂φ̂1
∂ζ3

∂ζ3
∂x2

, ...8

0 0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x1

+ ∂φ̂1
∂ζ2

∂ζ2
∂x1

+ ∂φ̂1
∂ζ3

∂ζ3
∂x1

, ...8

∂φ̂1
∂ζ1

∂ζ1
∂x3

+ ∂φ̂1
∂ζ2

∂ζ2
∂x3

+ ∂φ̂1
∂ζ3

∂ζ3
∂x3

, ...8

0 0 0 0 0 0 0 0 ,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.36)

and for the last eight columns

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x3

+ ∂φ̂1
∂ζ2

∂ζ2
∂x3

+ ∂φ̂1
∂ζ3

∂ζ3
∂x3

, ...8

0 0 0 0 0 0 0 0

∂φ̂1
∂ζ1

∂ζ1
∂x2

+ ∂φ̂1
∂ζ2

∂ζ2
∂x2

+ ∂φ̂1
∂ζ3

∂ζ3
∂x2

, ...8

∂φ̂1
∂ζ1

∂ζ1
∂x1

+ ∂φ̂1
∂ζ2

∂ζ2
∂x1

+ ∂φ̂1
∂ζ3

∂ζ3
∂x1

, ...8.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.37)

Finally, with quadrature for each element, we can form each of the element contri-
butions for [K]{a} = {R}:

64 7 A Finite Element Implementation in Three Dimensions

• For the stiffness matrix:

[Ke] =
g∑

q=1

g∑
r=1

g∑
s=1

wqwrws([D̂][φ̂])T [ÎE]([D̂][φ̂])|F|
︸ ︷︷ ︸

standard

+
g∑

q=1

g∑
r=1

wqwrP
�[φ̂]T [φ̂]|Fs|

︸ ︷︷ ︸
penalty for �u∩∂�e =0

, (7.38)

• For the load vector:

{Re} =
g∑

q=1

g∑
r=1

g∑
s=1

wqwrws[φ̂]T {f }|F|
︸ ︷︷ ︸

standard

+
g∑

q=1

g∑
r=1

wqwr[φ̂]T {t∗}|Fs|
︸ ︷︷ ︸

for �t∩∂�e =0

+
g∑

q=1

g∑
r=1

wqwrP
�[φ̂]T {u∗}|Fs|

︸ ︷︷ ︸
penalty for �u∩∂�e =0

, (7.39)

where wq, etc., are Gauss weights and where |Fs| represents the (surface) Jacobians
of element faces on the exterior surface of the body, where, depending on the surface
on which it is to be evaluated upon, one of the ζ components will be+1 or−1. These
surface Jacobians can be evaluated in a variety of ways, for example using Nanson’s
formula, which is derived in Appendix B and which is discussed further shortly.

7.8.1 Implementation Issues

Following similar procedures as for one-dimensional problems, the global stiff-
ness matrix K(I, J) can be efficiently stored in an element-by-element manner via
k(e, i, j), i and j are the local entries in element number e. The amount of mem-
ory required with this relatively simple storage system is, for trilinear hexahedra,
k(e, 24, 24) = 576 times the number of finite elements, where the k are the individ-
ual element stiffness matrices. If matrix symmetry is taken into account, the memory
requirements are 300 times the number of finite elements. As in one-dimension, this
simple approach is so-called element-by-element storage. The element-by-element
storage is critical in this regard to reduce the memory requirements.3 For an element-
by-element storage scheme, a global/local index relationmust bemade to connect the

3If a direct storage of the finite element storage of the stiffness matrix were attempted, the memory
requirements would be K(DOF,DOF) = DOF ×DOF, where DOF indicates the total degrees of
freedom, which for large problems, would be extremely demanding.

7.8 Differentiation in the Referential Coordinates 65

local entry to the global entry for the subsequent linear algebraic solution processes.
This is a relatively simple and efficient storage system to encode. The element-by-
element strategy has other advantages with regard to element-by-element system
CG solvers, as introduced earlier. The actual computation cost of the matrix-vector
multiplication in an element-by-element CG method is a [24 × 24] matrix times a
{24 × 1} vector times the number of elements. This is an O(N) calculation. If we
consider I iterations necessary for convergence below an error tolerance, then the
entire operation costs are O(IN).

7.8.2 An Example of the Storage Scaling

Element-by-element storage has reduced the storage requirements dramatically. For
example, consider a cube meshed uniformly with M elements in each direction
(Fig. 7.5), thus (M + 1)3 nodes and 3(M + 1)3 degrees of freedom for elasticity
problems. A comparison of storage yields:

• Direct storage: 3(M + 1)3 × 3(M + 1)3 = 9O(M6),
• Element-by-element storage:M3 × 24 × 24 = 576M3, and
• Element-by-element storage with symmetry reduction: 300M3.

Clearly, a ratio of direct storage to element-by-element storage scales as cubically
O(M3). Thus,

• Direct/element-by-element storage ratio ≈ 9O(M6)

300M3 = 3
100O(M3) and

Fig. 7.5 A cube withM
elements in each directions

M ELEMENTS

M ELEMENTS

M ELEMENTS

66 7 A Finite Element Implementation in Three Dimensions

• Direct/element-by-element solving ratio ≈ O(N3)
300IO(N)

= 1
300IO(N2) =

1
300IO((3(M + 1)3)2) = 9

300IO((M + 1)6),
• For M = 102, direct/element-by-element storage ratio ≈ 3 × 104 and
• For M = 102, direct/element-by-element solving ratio ≈ 9

300IO(1012).

Of course there are other compact storage schemes, and we refer the reader to the
references for details.

7.9 Surface Jacobians and Nanson’s Formula

In order to compute surface integrals, for a general element that intersects the exterior
surface, one must (Fig. 7.6):

1. Identify which element face of the master element corresponds to that surface.
One of the ζ -coordinates must be set to ±1; i.e., ζ1, ζ2, and ζ3 must be set equal
to ±1 for the faces that correspond to the exposed surfaces on the body where
boundary conditions are imposed. Generally, we seek to integrate a quantity, Q,
over the surface of the actual, deformed, element by computing over the master
element, for which we can use standard Gaussian quadrature:

∫
∂�e

Q dAe =
∫

∂�̂e

Q̂ dÂe, (7.40)

Ω

ζ

ζ

ζ
n

Ω̂

e

MASTER
ELEMENT

ACTUAL
ELEMENT

Fig. 7.6 Use of Nanson’s formula for surface integration

7.9 Surface Jacobians and Nanson’s Formula 67

2. Using Nanson’s formula, ndAe = JF−T ·NdÂe; thus, dAe = (JF−T ·N) ·ndÂe =
JsdÂe, where dÂe = dζidζj is the differential element area on a master element.

3. Identify the normal at a Gauss point on the surface, and ensure that one of the ζ

coordinates is set to ±1.

7.10 Post-Processing

Post-processing for the stress, strain, and energy from the existing displacement
solution, i.e., the values of the nodal displacements, the shape functions, is straight-
forward. Essentially the process is the same as the formation of the system to be
solved. Therefore, for each element

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εh11

εh22

εh33

2εh12
2εh23
2εh13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

∑8
i=1 a1iφi∑8
i=1 a2iφi∑8
i=1 a3iφi

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
known values

(7.41)

where the a1i, a2i, and a3i are the values at the node i for the x1, x2, and x3 components,
and where the global coordinates must be transformed to the master system, in both
the deformation tensor and the displacement representation. Typically, within each
element, at each Gauss point, we add up all eight contributions (from the basis func-
tions) for each of the six components and then multiply by the corresponding nodal
displacements that have previously been calculated. Gauss point locations are the
preferred location to post-process the solution since they typically exhibit so-called
superconvergent properties (more accurate than the theoretical estimates). In other
words, they are usually the most accurate locations of the finite element approxima-
tion (see Ainsworth and Oden [7], Zienkiewicz and Taylor [6], and Zienkiewicz and
Zhu [8]). The following expressionsmust be evaluated at theGauss points,multiplied
by the appropriate weights and added together:

∂uh1
∂x1

= ∑8
i=1 a1i

∂φi
∂x1

,
∂uh2
∂x1

= ∑8
i=1 a2i

∂φi
∂x1

,
∂uh3
∂x1

= ∑8
i=1 a3i

∂φi
∂x1

,

∂uh1
∂x2

= ∑8
i=1 a1i

∂φi
∂x2

,
∂uh2
∂x2

= ∑8
i=1 a2i

∂φi
∂x2

,
∂uh3
∂x2

= ∑8
i=1 a3i

∂φi
∂x2

,

∂uh1
∂x3

= ∑8
i=1 a1i

∂φi
∂x3

,
∂uh2
∂x3

= ∑8
i=1 a2i

∂φi
∂x3

,
∂uh3
∂x3

= ∑8
i=1 a3i

∂φi
∂x3

,

(7.42)

68 7 A Finite Element Implementation in Three Dimensions

where a1i denotes the x1 component of the displacement of the ith node. Combining

the numerical derivatives to form the strains we obtain εh11 = ∂uh1
∂x1

, εh22 = ∂uh2
∂x2

,

εh33 = ∂uh3
∂x3

and 2εh12 = γ12 = ∂uh1
∂x2

+ ∂uh2
∂x1

, 2εh23 = γ23 = ∂uh2
∂x3

+ ∂uh3
∂x2

, and 2εh13 = γ13 =
∂uh1
∂x3

+ ∂uh3
∂x1

.

References

1. Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: An introduction. Englewood
Cliffs: Prentice-Hall.

2. Carey, G. F., &Oden, J. T. (1983). Finite elements: A second course. Englewood Cliffs: Prentice-
Hall.

3. Oden, J. T., & Carey, G. F. (1984). Finite elements: Mathematical aspects. Englewood Cliffs:
Prentice-Hall.

4. Hughes, T. J. R. (1989). The finite element method. Englewood Cliffs: Prentice Hall.
5. Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs: Prentice-Hall.
6. Zienkiewicz, O. C., & Taylor, R. L. (1991). The finite element method (Vol. I and II). New York:

McGraw-Hill.
7. Ainsworth, M., & Oden, J. T. (2000). A posterori error estimation in finite element analysis. New

York: Wiley.
8. Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for

practical engineering analysis. International Journal for Numerical Methods in Engineering, 24,
337–357.

8Accuracy of the Finite ElementMethod
inThreeDimensions

8.1 Introduction

As we have seen in the one-dimensional analysis, the essential idea in the finite
element method is to select a finite dimensional subspatial approximation of the true
solution and form the following weak boundary problem:

Find uh ∈ Hh
u(Ω) ⊂ H1(Ω), with uh |Γu = u∗, such that

∫
Ω

∇νh : IE : ∇uh dΩ

︸ ︷︷ ︸
B(uh ,νh)

=
∫

Ω

f · νh dΩ +
∫

Γt

t∗ · νh dA

︸ ︷︷ ︸
F(νh)

,

∀νh ∈ Hh
v (Ω) ⊂ H1(Ω), with νh |Γu = 0.

(8.1)

The critical point is that Hh
u(Ω), Hh

v(Ω) ⊂ H1(Ω). This “inner” approximation
allows the development of straightforward subspatial error estimates.Wewill choose
Hh

u(Ω) and Hh
v(Ω) to coincide. We have for any kinematically admissible function,

w, a definition of the so-called energy norm

||u − w||2E(Ω)

def=
∫

Ω

(∇u − ∇w) : IE : (∇u − ∇w) dΩ = B(u − w, u − w). (8.2)

Note that in the event that nonconstant displacements are specified on the boundary,
then u − w = constant is unobtainable unless u − w = 0, and the semi-norm in
Eq. (8.2) is a norm in the strict mathematical sense. Under standard assumptions the
fundamental a priori error estimate for the finite element method is

||u − uh ||E(Ω) ≤ C(u, p)hmin(r−1,p)
def= γ, (8.3)

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_8

69

70 8 Accuracy of the Finite Element Method in Three Dimensions

where p is the (complete) polynomial order of the finite element method used, r is
the regularity of the exact solution, and C is a global constant dependent on the exact
solution and the polynomial approximation. C is independent of h, the maximum
element diameter. For details see, Ainsworth and Oden [1], Becker, Carey and Oden
[2], Carey and Oden [3], Oden and Carey [4], Hughes [5], Szabo and Babuska [6],
and Bathe [7] for more mathematically precise treatments.

Remark: As we have mentioned previously, we note that the set of functions
specified by Hh

u(Ω) ⊂ H1(Ω) with uh |Γu = u∗ is technically not a space of func-
tions and should be characterized as “a linear variety.” This does not pose a problem
for the ensuing analysis; however, for precise mathematical details, see Oden and
Demkowicz [8].

8.2 The“Best Approximation”Theorem

As in the one-dimensional case we have

B(u,ν) = F(ν), (8.4)

∀ν ∈ H1(Ω) and

B(uh, νh) = F(νh), (8.5)

∀νh ∈ Hh
v(Ω) ⊂ H1(Ω). Subtracting Eq.8.5 from 8.4 implies a Galerkin-like

(Fig. 1.1) orthogonality property of “inner approximations”

B(u − uh,νh) = B(eh,νh) = 0, ∀νh ∈ Hh
v(Ω) ⊂ H1(Ω), (8.6)

where the error is defined by eh
def= u − uh . An important observation is that

eh − νh = u − uh − νh = u − zh, (8.7)

thus

B(eh − νh, eh − νh) = B(eh, eh) − 2B(eh,νh) + B(νh,νh)︸ ︷︷ ︸
≥0

, (8.8)

which implies

B(u − uh, u − uh) ≤ B(u − zh, u − zh). (8.9)

This implies that the FEM-constructed solution is the best possible in the energy
norm (Fig. 8.1).

http://dx.doi.org/10.1007/978-3-319-70428-9_1

8.3 Simple Estimates for Adequate FEMMeshes Revisited for Three Dimensions 71

u

H
H

u h

1
h

Fig. 8.1 An illustration of the best approximation theorem

MESH 2MESH 1

Fig. 8.2 Successively refined (halved/embedded) meshes used to estimate the error

8.3 Simple Estimates for Adequate FEMMeshes Revisited
for Three Dimensions

As stated earlier, under standard assumptions the classical a priori error estimate

for the finite element method is (Eq.8.3), ||u − uh ||E(Ω) ≤ C(u, p)hmin(r−1,p)
def= γ .

Using the PMPE for a finite element solution (Eq.6.14), with w = uh , we have

||u − uh ||2E(Ω) = 2(J (uh) − J (u)). (8.10)

By solving the boundary value problem associated for two successively finermeshes,
h1 > h2, with the following property J (uh1) ≥ J (uh2) ≥ J (uh=0), we can set up
the following system of equations for unknown constant C (Fig. 8.2):

||u − uh1 ||2E(Ω) = 2(J (uh1) − J (uh)) ≈ C2h2γ1 ,

||u − uh2 ||2E(Ω) = 2(J (uh2) − J (uh)) ≈ C2h2γ2 .

(8.11)

http://dx.doi.org/10.1007/978-3-319-70428-9_6

72 8 Accuracy of the Finite Element Method in Three Dimensions

Solving for C

C =
√

2(J (uh1)−J (uh2))

h2γ1 −h2γ2
. (8.12)

One can now solve for the appropriate mesh size by writing

Chγ
tol ≈ T OL ⇒ htol ≈ (T OL

C

) 1
γ . (8.13)

In summary, to monitor the discretization error, we apply the following (Fig. 8.2)
algorithm (K = 0.5)

STEP 1 : SOLVE WITH COARSE MESH = h1 ⇒ uh1 ⇒ J (uh1)

STEP 2 : SOLVE WITH FINER MESH = h2 = K × h1 ⇒ uh2 ⇒ J (uh2)

STEP 3 : COMPUTE C ⇒ htol ≈ (T OL
C

) 1
γ .

(8.14)

Remarks:As for one-dimensional problems, while this scheme provides a simple
estimate for the global mesh fineness needed, the meshes need to be locally refined
to ensure tolerable accuracy throughout the domain.

8.4 Local Error Estimation and Adaptive Mesh Refinement

To drive local mesh refinement schemes there are a variety of error estimation pro-
cedures. We mention the two main ones: recovery methods and residual methods.

8.4.1 A Posteriori Recovery Methods

The so-called recovery methods are based on the assumption that there is a function
G(uh) that is closer to ∇u than ∇uh , which can be used to estimate the error. The
most popular of these is the Zienkiewicz–Zhu [9] estimator. Zienkiewicz and Zhu
developed an error estimation technique that is effective for a wide class of problems.
It is based on the notion that gradients of the solution obtained on a givenmesh can be
smoothed and compared with the original solution to assess the error. The sampling
points at which the gradient’s error is to be evaluated are so-called superconvergent
points where the convergence is above the theoretical optimum. However, these
points must be searched for and may not even exist, i.e., superconvergence occurs
only in very special situations. By superconvergence, we mean that the exponent is
higher than the standard theoretical estimate (θ):

||u − uh ||Hs (Ω) ≤ C(u, p)hmin(p+1−s,r−s)
def= θ (8.15)

8.4 Local Error Estimation and Adaptive Mesh Refinement 73

Fig. 8.3 The Zienkiewicz–Zhu error estimator takes the solution at neighboring Gauss points to
estimate the error at a node

The function G is obtained by calculating a least squares fit to the gradient of a
sample superconvergent points (potentially several hundred in three dimensions) of
elements surrounding a finite element node (Fig. 8.3). The new gradient then serves
to estimate the error locally over a “patch” of elements, i.e., a group of element
sharing a common node,

||G(uh) − ∇uh ||patch ≈ error (8.16)

This is by far the most popular method in the engineering community to estimate the
error and also has the benefit of post-processing stresses as a by-product.

8.4.2 A Posteriori Residual Methods

Residual methods require no a posteriori system of equations to be solved. Such
methods bound the error by making use of

• the FEM solution itself,
• the data on the boundary,
• the error equation, and
• the Galerkin orthogonality property.

As in the one-dimensional case discussed earlier, the approach is to form the follow-
ing bound

||u − uh ||2E(Ω) ≤ C1

N∑
e=1

h2e ||r1||2L2(Ωe)︸ ︷︷ ︸
interior

+C2

I NT∑
I=1

heI ||[|r2|]||2L2(∂ΩI)︸ ︷︷ ︸
inter f aces

+C3

B−I NT∑
J=1

heJ ||r3||2L2(∂ΩJ B)︸ ︷︷ ︸
exterior−boundary

, (8.17)

74 8 Accuracy of the Finite Element Method in Three Dimensions

where

• C1, C2, and C3 are constants,
• he are the sizes of the elements,
• the interior element residual is r1 = ∇ · σh + f ,
• the interior interface “jump” residual is [|r2|] = [|t|],
• the boundary interface (“dissatisfaction”) residual is r3 = σh · n − t∗ and
• local error indicators are defined by

ζ2e
def= C1h

2
e ||r1||2L2(Ωe)

+ C2heI ||[|r2|]||2L2(∂ΩI)
+ C3heJ ||r3||2L2(∂ΩJ B)

. (8.18)

The local quantities ζe are used to decide whether an element is to be refined
(Fig. 4.3). If ζe > T OL , then the element is refined. Such estimates, used to guide
local adaptive finite element mesh refinement techniques, were first developed in
Babúska and Rheinboldt [10] for one-dimensional problems and in Babùska and
Miller [11] and Kelly et al. [12] for two-dimensional problems. For reviews see
Ainsworth and Oden [1].

References

1. Ainsworth, M., & Oden, J. T. (2000). A posterori error estimation in finite element analysis.
New York: Wiley.

2. Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: An introduction. Englewood
Cliffs: Prentice Hall.

3. Carey, G. F., &Oden, J. T. (1983).Finite elements: A second course. Englewood Cliffs: Prentice
Hall.

4. Oden, J. T., & Carey, G. F. (1984). Finite elements: Mathematical aspects. Englewood Cliffs:
Prentice Hall.

5. Hughes, T. J. R. (1989). The finite element method. Englewood Cliffs: Prentice Hall.
6. Szabo, B., & Babúska, I. (1991). Finite element analysis. New York: Wiley Interscience.
7. Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs: Prentice Hall.
8. Oden, J. T., & Demkowicz, L. F. (2010). Applied functional analysis. Boca Raton: CRC Press.
9. Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for

practical engineering analysis. International Journal for Numerical Methods in Engineering,
24, 337–357.

10. Babúska, I., & Rheinbolt, W. C. (1978). A posteriori error estimates for the finite element
method. The International Journal for Numerical Methods in Engineering, 12, 1597–1615.

11. Babúska, I., & Miller, A. D. (1987). A feedback finite element method with a-posteriori error
estimation. Part I. Computer Methods in Applied Mechanics and Engineering, 61, 1–40.

12. Kelly, D. W., Gago, J. R., Zienkiewicz, O. C., & Babùska, I. (1983). A posteriori error analysis
and adaptive processes in the finite element method. Part I-error analysis. International Journal
for Numerical Methods in Engineering, 19, 1593–1619.

http://dx.doi.org/10.1007/978-3-319-70428-9_4

9Time-Dependent Problems

9.1 Introduction

We now give a brief introduction to time-dependent problems through the equations
of elastodynamics for infinitesimal deformations

∇ · σ + f = ρo
d2u
dt2

= ρo
dv

dt
, (9.1)

where ∇ = ∇X and d
dt = ∂

∂t (see Appendix B).

9.2 Generic Time Stepping

In order to motivate the time-stepping process, we first start with the dynamics of
single point mass under the action of a force Ψ . The equation of motion is given by
(Newton’s Law)

mv̇ = Ψ , (9.2)

where Ψ is the total force applied to the particle. Expanding the velocity in a Taylor
series about t + θΔt , where 0 ≤ θ ≤ 1, for v(t + Δt), we obtain

v(t + Δt) = v(t + θΔt) + dv

dt
|t+θΔt (1 − θ)Δt + 1

2

d2v

dt2
|t+θΔt (1 − θ)2(Δt)2 + O(Δt)3

(9.3)
and for v(t), we obtain

v(t) = v(t + θΔt) − dv

dt
|t+θΔtθΔt + 1

2

d2v

dt2
|t+θΔtθ

2(Δt)2 + O(Δt)3. (9.4)

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_9

75

76 9 Time-Dependent Problems

Subtracting the two expressions yields

dv

dt
|t+θΔt = v(t + Δt) − v(t)

Δt
+ Ô(Δt), (9.5)

where Ô(Δt) = O(Δt)2, when θ = 1
2 , otherwise Ô(Δt) = O(Δt). Thus, inserting

this into Eq.9.2 yields

v(t + Δt) = v(t) + Δt

m
Ψ (t + θΔt) + Ô(Δt)2. (9.6)

Note that a weighted sum of Eqs. 9.3 and 9.4 yields

v(t + θΔt) = θv(t + Δt) + (1 − θ)v(t) + O(Δt)2, (9.7)

which will be useful shortly. Now expanding the position of the mass in a Taylor
series about t + θΔt we obtain

u(t + Δt) = u(t + θΔt) + du
dt

|t+θΔt (1 − θ)Δt + 1

2

d2u

dt2
|t+θΔt (1 − θ)2(Δt)2 + O(Δt)3

(9.8)
and

u(t) = u(t + θΔt) − du
dt

|t+θΔtθΔt + 1

2

d2u
dt2

|t+θΔtθ
2(Δt)2 + O(Δt)3. (9.9)

Subtracting the two expressions yields

u(t + Δt) − u(t)

Δt
= v(t + θΔt) + Ô(Δt). (9.10)

Inserting Eq.9.7 yields

u(t + Δt) = u(t) + (θv(t + Δt) + (1 − θ)v(t)) Δt + Ô(Δt)2, (9.11)

and using Eq.9.6 yields

u(t + Δt) = u(t) + v(t)Δt + θ(Δt)2

m
Ψ (t + θΔt) + Ô(Δt)2. (9.12)

The term Ψ (t + θΔt) can be handled in a simple way:

Ψ (t + θΔt) ≈ θΨ (t + Δt) + (1 − θ)Ψ (t). (9.13)

9.2 Generic Time Stepping 77

We note that

• When θ = 1, then this is the (implicit) Backward Euler scheme, which is very
stable (very dissipative) and Ô(Δt)2 = O(Δt)2 locally in time,

• When θ = 0, then this is the (explicit) Forward Euler scheme, which is condition-
ally stable and Ô(Δt)2 = O(Δt)2 locally in time,

• When θ = 0.5, then this is the (implicit) “Midpoint” scheme, which is stable and
Ô(Δt)2 = O(Δt)3 locally in time.

In summary, we have for the velocity1

v(t + Δt) = v(t) + Δt

m
(θΨ (t + Δt) + (1 − θ)Ψ (t)) (9.14)

and for the position

u(t + Δt) = u(t) + v(t + θΔt)Δt (9.15)

= u(t) + (θv(t + Δt) + (1 − θ)b f v(t)) Δt,

or in terms of Ψ

u(t + Δt) = u(t) + v(t)Δt + θ(Δt)2

m
(θΨ (t + Δt) + (1 − θ)Ψ (t)) . (9.16)

9.3 Application to the Continuum Formulation

Now consider the continuum analogue to “mv̇”

ρo
∂2u
∂t2

= ρo
∂v

∂t
= ∇ · σ + f

def= Ψ (9.17)

and thus

ρov(t + Δt) = ρov(t) + Δt (θΨ (t + Δt) + (1 − θ)Ψ (t)) . (9.18)

Multiplying Eq.9.18 by a test function and integrating yields

∫
Ω

ν · ρov(t + Δt) dΩ =
∫

Ω

ν · ρov(t) dΩ (9.19)

+ Δt
∫

Ω

ν · (θΨ (t + Δt) + (1 − θ)Ψ (t)) dΩ,

1In order to streamline the notation, we drop the cumbersome O(Δt)-type terms.

78 9 Time-Dependent Problems

and using Gauss’s divergence theorem and enforcing ν = 0 on Γu yields (using a
streamlined time-step superscript counter notation of L , where t = LΔt and t +
Δt = (L + 1)Δt)

∫
Ω

ν · ρov
L+1 dΩ =

∫
Ω

ν · ρov
L dΩ (9.20)

+ Δtθ

(
−

∫
Ω

∇ν : σ dΩ +
∫

Γt

ν · (σ · n) d A +
∫

Ω

ν · f dΩ

)L+1

+ Δt (1 − θ)

(
−

∫
Ω

∇ν : σ dΩ +
∫

Γt

ν · t∗ d A +
∫

Ω

ν · f dΩ

)L

.

As in the previous chapter on linearized three-dimensional elasticity, we assume

{uh} = [Φ]{a} and {νh} = [Φ]{b} and {vh} = [Φ]{ȧ}, (9.21)

which yields, in terms of matrices and vectors

{b}T [M]{ȧ}L+1 = {b}T [M]{ȧ}L − Δtθ{b}T
(
−[K]{a}L+1 + {R f }L+1 + {Rt }L+1

)

− {b}TΔt (1 − θ)
(
−[K]{a}L + {R f }L + {Rt }L

)
. (9.22)

where [M] = ∫
Ω

ρo[�]T [�] dΩ , and [K],{R f }, and {Rt } are as defined in the pre-
vious chapters on elastostatics. Note that {R f }L and {Rt }L are known values from
the previous time-step. Since {b}T is arbitrary

[M]{ȧ}L+1 = [M]{ȧ}L + (Δtθ)
(
−[K]{a}L+1 + {R f }L+1 + {Rt }L+1

)

+ Δt (1 − θ)
(
−[K]{a}L + {R f }L + {Rt }L

)
. (9.23)

One should augment this with the approximation for the discrete displacement:

{a}L+1 = {a}L + Δt
(
θ{ȧ}L+1 + (1 − θ){ȧ}L

)
. (9.24)

For a purely implicit (Backward Euler) method θ = 1

(
[M]{ȧ}L+1 + Δt[K]{a}L+1

)
= [M]{ȧ}L + Δt

(
{Rt }L+1 + {R f }L+1

)
, (9.25)

augmented with

{a}L+1 = {a}L + Δt{ȧ}L+1, (9.26)

which requires one to solve a system of algebraic equations, while for an explicit
(ForwardEuler)method θ = 0with usually [M] is approximated by an easy-to-invert
matrix, such as a diagonal matrix, [M] ≈ M[1], to make the matrix inversion easy,
yielding:

{ȧ}L+1 = {ȧ}L + Δt[M]−1
(
−[K]{a}L + {R f }L + {Rt }L

)
, (9.27)

9.3 Application to the Continuum Formulation 79

augmented with

{a}L+1 = {a}L + Δt{ȧ}L . (9.28)

There is an enormous number of time-stepping schemes. For general time-stepping,
we refer the reader to the seminal texts of Hairer et al. [1,2]. In the finite element con-
text, we refer the reader to Bathe [3], Becker et al. [4], Hughes [5], and Zienkiewicz
and Taylor [6].

References

1. Hairer, E., Norsett, S. P., &Wanner, G. (2000). Solving ordinary differential equations I. Nonstiff
equations (2nd ed.). Heidelberg: Springer.

2. Hairer, E., Lubich, C., & Wanner, G. (2006). Solving ordinary differential equations II. Stiff and
differential-algebraic problems (2nd ed.). Heidelberg: Springer.

3. Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs: Prentice Hall.
4. Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: An introduction. Englewood

Cliffs: Prentice Hall.
5. Hughes, T. J. R. (1989). The finite element method. Englewood Cliffs: Prentice Hall.
6. Zienkiewicz, O. C., & Taylor, R. L. (1991). The finite element method (Vol. I and II). New York:

McGraw-Hill.

10Summary andAdvancedTopics

The finite element method is a huge field of study. This set of notes was designed
to give students only a brief introduction to the fundamentals of the method. The
implementation, theory, and application of FEM is a subject of immense literature.
For general references on the subject, see the well-known books of Ainsworth and
Oden [1], Becker et al. [2], Carey and Oden [3], Oden and Carey [4], Hughes [5],
Szabo and Babuska [6], Bathe [7], and Zienkiewicz and Taylor [8]. For a review
of the state of the art in finite element methods, see the relatively recent book of
Wriggers [9]. Much of the modern research activity in computational mechanics
reflects the growing industrial demands for rapid simulation of large-scale, nonlinear,
time-dependent problems. Accordingly, the next concepts the reader should focus
on are:

1. Error estimation and adaptive mesh refinement,
2. Time-dependent problems,
3. Geometrically and materially nonlinear problems and
4. High-performance computing: domain decomposition and parallel processing.

The last item is particularly important. Thus, we close with a few comments on
domain decomposition and parallel processing.

Inmany cases, in particular in three dimensions, for a desired accuracy, themeshes
need to be so fine that the number of unknowns outstrips the available computing
power on a single serial processing machine. One approach to deal with this problem
is domain decomposition. Decomposition of a domain into parts (subdomains) that
can be solved independently by estimating the boundary conditions, solving the
decoupled subdomains, correcting the boundary conditions by updating them using
information from the computed solutions, and repeating the procedure has become
popular over the last 20 years as ameans of harnessing computational power afforded
by parallel processing machines.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9_10

81

82 10 Summary and Advanced Topics

DECOUPLED SUBDOMAINS

APPROXIMATED AND ITERATIVELY UPDATED

INTERFACE BOUNDARY CONDITIONS ARE

ORIGINAL DOMAIN

SUBDOMAIN

ELEMENTS

DOMAIN

Fig. 10.1 Left: A two-dimensional view of the decomposition of a domain and Right: a three-
dimensional view

Consider the three-dimensional block (an elasticity problem) where we use linear
brick elements with the following parameters (Fig. 10.1):

• The number of subdomains: M × M × M .
• The number elements in each subdomain: N × N × N .

For the original (nonpartitioned domain):

• The number elements: (N × M) × (N × M) × (N × M).
• The number nodes: (N × M + 1) × (N × M + 1) × (N × M + 1).
• The number degrees of freedom (for elasticity): 3 × (N × M + 1) × (N × M +

1) × (N × M + 1).
• The number elements in the entire decoupled domain: (N × M) × (N × M) ×

(N × M).
• The data storage for the entire domain: (N × M)3 × 300 (symmetric storage for

elasticity).

For the partitioned domain:

• The number nodes in each subdomain: (N + 1) × (N + 1) × (N + 1).
• The number degrees of freedom (for elasticity) in each subdomain: 3 × (N +

1) × (N + 1) × (N + 1).
• The data storage per subdomain: N 3 × 300 (symmetric storage for elasticity).

Let us now consider:

• The number processors involved: P .
• The number iterations needed to update the interface solution: I .

The operation counts for solving the whole domain is

Cd ∝ ((3(NM + 1))3)γ, (10.1)

10 Summary and Advanced Topics 83

while for each subdomain

Csd ∝ ((3(N + 1))3)γ, (10.2)

where 1 ≤ γ ≤ 3 is an exponent that reflects the extremes of solving efficiency. The
ratio of the amount of work done by solving the total domain to that of solving the
subdomain problems (taking into account the number of iterations (I) needed to
update the interface boundary conditions) is approximately

Cd

ICsd
∝ ((3(NM + 1))3)γ

I ((3(N + 1))3)γ
≈ M3γ

I
, (10.3)

where we have ignored the costs of computing the updated interface conditions
(considered small). If we assume that the amount of time to solve is also proportional
to the operation counts, and assume that each domain is processed in the same amount
of time, using P processors yields:

Cd

ICsd/P
= PM3γ

I
. (10.4)

In order to understand the scaling numerically, consider

• One-thousand processors: P = 103,
• One-thousand subdomains: M × M × M = 10 × 10 × 10.
• The number of updates: I = 102.

The resulting ratio of computational costs is:

• For γ = 3 : Cd
ICsd/P

= 1010,

• For γ = 2 : Cd
ICsd/P

= 107.

• For γ = 1 : Cd
ICsd/P

= 104.

This idealized simple example illustrates the possible benefits in reduction of solution
time, independent of the gains in data storage. For a historical overview, as well as a
thorough analysis of the wide range of approaches, see Le Tallec [10]. In many cases,
interprocessor communication and synchronization can be a bottleneck to obtain a
high-performance parallel algorithm. The parallel speedup (relative to a sequential
implementation), S, can be approximated byAmdahl’s law (Amdahl [11]), S = 1

1− f ,
where f is the fraction of the algorithm that is parallelizable. For example, if 40% of
the code is inherently sequential, then f = 0.6 and S = 2.5. This provides an upper
bound on the utility of adding more processors. A related expression is “Gustafson’s
law” Gustafson [12], S(f) = f − k(f − 1), where k represents the parts of the
algorithm that are not parallelizable. Amdahl’s law assumes that the problem is of
fixed size and that the sequential part is independent of the number of processors;
however, Gustafson’s law does not make either of these assumptions. We refer the

84 10 Summary and Advanced Topics

reader to the works of Papadrakakis et al. [13,14] for parallel strategies that are
directly applicable to the class of problems of interest.

Remarks: Some comments of the convergence of such iterative schemes are
provided in Appendix C.

References

1. Ainsworth, M., & Oden, J. T. (2000). A posterori error estimation in finite element analysis.
New York: Wiley.

2. Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: An introduction. Englewood
Cliffs: Prentice Hall.

3. Carey, G. F., &Oden, J. T. (1983).Finite elements: A second course. Englewood Cliffs: Prentice
Hall.

4. Oden, J. T., & Carey, G. F. (1984). Finite elements: Mathematical aspects. Englewood Cliffs:
Prentice Hall.

5. Hughes, T. J. R. (1989). The finite element method. Englewood Cliffs: Prentice Hall.
6. Szabo, B., & Babúska, I. (1991). Finite element analysis. New York: Wiley Interscience.
7. Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs: Prentice Hall.
8. Zienkiewicz, O. C., & Taylor, R. L. (1991). The finite element method (Vol. I and II). NewYork:

McGraw-Hill.
9. Wriggers, P. (2008). Nonlinear finite element analysis. Berlin: Springer.

10. Le Tallec, P. (1994). Domain decomposition methods in computational mechanics. Computa-
tional Mechanics Advances, 1, 121–220.

11. Amdahl, G. (1967). The validity of a single processor approach to achieving large-scale com-
puting capabilities. In Proceedings of AFIPS Spring Joint Computer Conference (pp. 483–485).
Atlantic City, N. J.: AFIPS Press.

12. Gustafson, J. L. (1988). Reevaluating Amdahl’s law. Communications of the ACM, 31(5), 532–
533.

13. Papadrakakis, M. (1993). Solving large-scale problems in mechanics. New York: Wiley.
14. Papadrakakis, M. (1997). Parallel solution methods in computational mechanics. Chichester:

Wiley.

AAppendixA
ElementaryMathematical Concepts

Throughout this document, boldface symbols imply vectors or tensors (matrices in
our analyses).

A.1 Vector Products

For the inner product of two vectors (first-order tensors) u and v we have in three
dimensions

u · v = uivi
︸︷︷︸

in Cartesian bases

= u1v1 + u2v2 + u3v3 = |u||v|cosθ, (A.1)

where |u| =
√

u21 + u22 + u23 and where Einstein index summation notation is used.
Two vectors are said to be orthogonal if u · v = 0. The cross (vector) product of two
vectors is

u × v =
⎛

⎝

∣

∣

∣

∣

∣

∣

e1 e2 e3
u1 u2 u3
v1 v2 v3

∣

∣

∣

∣

∣

∣

⎞

⎠ = |u||v|sinθ n, (A.2)

where n is the unit normal to the plane formed by the vectors u and v. The triple
product of three vectors is

w · (u × v) =
⎛

⎝

∣

∣

∣

∣

∣

∣

w1 w2 w3
u1 u2 u3
v1 v2 v3

∣

∣

∣

∣

∣

∣

⎞

⎠ = (w × u) · v (A.3)

This represents the volume of a parallelepiped formed by the three vectors.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9

85

86 Appendix A: Elementary Mathematical Concepts

A.2 Vector Calculus

We have the following elementary operations:

• The divergence of a vector (a contraction to a scalar) is defined by

∇ · u = ui,i (A.4)

whereas for a second-order tensor (a contraction to a vector):

∇ · A has components of Ai j, j . (A.5)

• The gradient of a vector (a dilation to a second-order tensor) is:

∇u has components of ui, j , (A.6)

whereas for a second-order tensor (a dilation to a third-order tensor):

∇A has components of Ai j,k . (A.7)

• The gradient of a scalar (a dilation to a vector) is:

∇φ has components of φ,i . (A.8)

The scalar product of two second-order tensors, for example, the gradients of
first-order vectors, is defined as

∇v : ∇u = ∂vi

∂x j

∂ui
∂x j

︸ ︷︷ ︸

in Cartesian bases

def= vi, j ui, j i, j = 1, 2, 3, (A.9)

where ∂ui/∂x j , ∂vi/∂x j are partial derivatives of ui and vi , and where ui , vi are
the Cartesian components of u and v and

∇u · n has components of ui, j n j
︸ ︷︷ ︸

in Cartesian bases

, i, j = 1, 2, 3. (A.10)

• The divergence theorem for vectors is
∫

Ω

∇ · u dΩ =
∫

∂Ω

u · n d A
∫

Ω

ui,i dΩ =
∫

∂Ω

uini d A (A.11)

and analogously for tensors
∫

Ω

∇ · B dΩ =
∫

∂Ω

B · n d A
∫

Ω

Bi j, j dΩ =
∫

∂Ω

Bi j n j d A, (A.12)

where n is the outward normal to the bounding surface.

These standard operations arise throughout the analysis.

Appendix A: Elementary Mathematical Concepts 87

A.3 Interpretation of the Gradient of Functionals

The elementary concepts to follow are important for understanding iterative solvers.
Consider a surface in space defined by

Π(x1, x2, ...xN) = C. (A.13)

Consider a unit vector b, and the inner product, forming the directional derivative
(the rate of change of Π in the direction of b):

∇Π · b = ||b||||∇Π ||cosγ. (A.14)

When γ = 0, the directional derivative is maximized, in other words when b and
∇Π are colinear. Since we can represent curves on the surface defined by Π = C
by a position vector (t is a parameter)

r = x1(t)e1 + x2(t)e2... + xN (t)eN , (A.15)

the tangent is

d r
dt

= dx1
dt

e1 + dx2
dt

e2... + dxN
dt

eN . (A.16)

If we take

dΠ

dt
= 0 = ∇Π · d r

dt
= ∂Π

∂x1

dx1
dt

+ ∂Π

∂x2

dx2
dt

... + ∂Π

∂xN

dxN
dt

, (A.17)

we immediately see that ∇Π is normal to the surface and represents the direction of
maximum change in the normal direction.

A.4 Matrix Manipulations

Throughout the next few definitions, we consider the matrix [A]. The matrix [A]
is said to be symmetric if [A] = [A]T and skew-symmetric if [A] = −[A]T . A
first-order contraction (inner product) of two matrices is defined by

A · B = [A][B] has components of Ai j B jk = Cik (A.18)

where it is clear that the range of the inner index j must be the same for [A] and [B].
The second-order inner product of two matrices is

A : B = Ai j Bi j = tr([A]T [B]) (A.19)

88 Appendix A: Elementary Mathematical Concepts

The rule of transposes for the product of two matrices is

([A][B])T = [B]T [A]T . (A.20)

The rule of inverses for two invertible n × n matrices is

([A][B])−1 = [B]−1[A]−1 [A]−1[A] = [A][A]−1 = [1] (A.21)

where [1] is the identity matrix. Clearly, [A]−1 exists only when det[A] �= 0.

A.4.1 Determinant

Some properties of the determinant (where [A] is a 3 × 3 matrix):

[A] def=
⎡

⎣

A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤

⎦ (A.22)

are

det[A] = A11(A22A33 − A32A23) − A12(A21A33 − A31A23) + A13(A21A32 − A31A22),

det[1] = 1, det α[A] = α3det [A], α = scalar,

det[A][B] = det[A]det[B], det[A]T = det[A], det[A]−1 = 1
det[A] .

An important use of the determinant is in forming the inverse by

[A]−1 = ad j[A]
det[A] , ad j[A] def=

⎡

⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤

⎦

T

, (A.23)

where the so-called cofactors are

C11 = A22A33 − A32A23 C12 = −(A21A33 − A31A23)

C13 = A21A32 − A31A22 C21 = −(A12A33 − A32A13)

C22 = A11A33 − A31A13 C23 = −(A11A32 − A31A12)

C31 = A12A23 − A22A13 C32 = −(A11A23 − A21A13)

C33 = A11A22 − A21A12

(A.24)

Appendix A: Elementary Mathematical Concepts 89

A.4.2 Eigenvalues

The mathematical definition of an eigenvalue, a scalar denoted Λ, and eigenvector,
a vector denoted E , of a matrix [A] is

[A]{E} = Λ{E} (A.25)

Some main properties to remember about eigenvalues and eigenvectors are:

1. If [A] (n×n) has n linearly independent eigenvectors then it is diagonalizable by
a matrix formed by columns of the eigenvectors. In the case of a 3 × 3 matrix,

⎡

⎣

Λ1 0 0
0 Λ2 0
0 0 Λ3

⎤

⎦ =

⎡

⎢

⎢

⎣

E(1)
1 E(2)

1 E(3)
1

E(1)
2 E(2)

2 E(3)
2

E(1)
3 E(2)

3 E(3)
3

⎤

⎥

⎥

⎦

−1 ⎡

⎢

⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎥

⎦

⎡

⎢

⎣

E(1)
1 E(2)

1 E(3)
1

E(1)
2 E(2)

2 E(3)
2

E(1)
3 E(2)

3 E(3)
3

⎤

⎥

⎦ (A.26)

2. If [A] (n × n) has n distinct eigenvalues then the eigenvectors are linearly inde-
pendent

3. If [A] (n × n) is symmetric then its eigenvalues are real. If the eigenvalues are
distinct, then the eigenvectors are orthogonal.

A quadratic form is defined as {x}T [A]{x}, and is positive when [A] has positive
eigenvalues. Explicitly, for a 3 × 3 matrix, we have

{x}T [A]{x} def= [

x1 x2 x3
]

⎡

⎣

A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤

⎦

⎡

⎣

x1
x2
x3

⎤

⎦ . (A.27)

A matrix [A] is said to be positive definite if the quadratic form is positive for
all nonzero vectors x. Clearly, from Eq.A.26 a positive definite matrix must have
positive eigenvalues.

Remark: If we set the determinant det[A − Λ1] = 0, it can be shown that the
so-called characteristic polynomial is, for example for a 3 × 3 matrix:

det (A − Λ1) = −Λ3 + IAΛ2 − II AΛ + III A = 0, (A.28)

where

IA = tr(A) = Λ1 + Λ2 + Λ3

II A = 1
2 ((tr(A))2 − tr(A2)) = Λ1Λ2 + Λ2Λ3 + Λ1Λ3

III A = det (A) = 1
6 ((tr A)3 + 2tr A3 − 3(tr A2)(tr A)) = Λ1Λ2Λ3.

(A.29)

Since IA, II A, and III A can be written in terms of tr A, which is invariant under
frame rotation, they too are invariant under frame rotation.

90 Appendix A: Elementary Mathematical Concepts

A.4.3 Coordinate Transformations

To perform a coordinate transform for a 3 × 3 matrix [A] from one Cartesian coor-
dinate system to another (denoted with a ˆ(·)), we apply a transformation matrix [Q]
(Fig.A.1):

[Â] = [Q][A][Q]−1 (A.30)

In three dimensions, the standard axes rotators are, about the x1 axis

Rot (x1)
def=

⎡

⎣

1 0 0
0 cosθ1 sinθ1
0 −sinθ1 cosθ1

⎤

⎦ , (A.31)

about the x2 axis

Rot (x2)
def=

⎡

⎣

cosθ2 0 −sinθ2
0 1 0

sinθ2 0 cosθ2

⎤

⎦ (A.32)

and about the x3 axis

Rot (x3)
def=

⎡

⎣

cosθ3 sinθ3 0
−sinθ3 cosθ3 0

0 0 1

⎤

⎦ . (A.33)

The standard axes reflectors are, with respect to the x2 − x3 plane

Ref (x1)
def=

⎡

⎣

−1 0 0
0 1 0
0 0 1

⎤

⎦ , (A.34)

Fig.A.1 Top: reflection with
respect to the x2 − x3 plane.
Bottom: rotation with respect
to the x3 axis

X1

X2

X3

X1

X2

^

X3

REFLECTION

ROTATION

^
X3

X1

X2

X3

X1

X2

^

^

^

^

Appendix A: Elementary Mathematical Concepts 91

with respect to the x1 − x3 plane

Ref (x2)
def=

⎡

⎣

1 0 0
0 −1 0
0 0 1

⎤

⎦ , (A.35)

with respect to the x1 − x2 plane

Ref (x3)
def=

⎡

⎣

1 0 0
0 1 0
0 0 −1

⎤

⎦ . (A.36)

BAppendix B
Basic ContinuumMechanics

In this chapter, we provide the reader with basic background information for field
equations of interest.

B.1 Deformations

The term deformation refers to a change in the shape of a continuum between a
reference configuration and a current configuration. In the reference configuration,
a representative particle of a continuum occupies a point P in space and has the
position vector (Fig.B.1)

X = X1e1 + X2e2 + X3e3, (B.1)

where e1, e2, e3 is a Cartesian reference triad, and X1, X2, X3 (with center O) can
be thought of as labels for a material point. Sometimes the coordinates or labels
(X1, X2, X3) are called the referential or material coordinates. In the current config-
uration, the particle originally located at point P (at time t = 0) is located at point
P ′ and can be also expressed in terms of another position vector x, with coordi-
nates (x1, x2, x3). These are called the current coordinates. In this framework, the
displacement is u = x − X for a point originally at X and with final coordinates x.

When a continuumundergoes deformation (or flow), its pointsmove along various
paths in space. This motion may be expressed as a function of X and t as1

x(X, t) = u(X, t) + X(t) , (B.2)

1Frequently, analysts consider the referential configuration to be fixed in time thus, X �= X(t). We
shall adopt this in the present work.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9

93

94 Appendix B: Basic ContinuumMechanics

which gives the present location of a point at time t , written in terms of the ref-
erential coordinates X1, X2, X3. The previous position vector may be interpreted
as a mapping of the initial configuration onto the current configuration. In classi-
cal approaches, it is assumed that such a mapping is one-to-one and continuous,
with continuous partial derivatives to whatever order required. The description of
motion or deformation expressed previously is known as the Lagrangian formula-
tion. Alternatively, if the independent variables are the coordinates x and time t , then
x(x1, x2, x3, t) = u(x1, x2, x3, t) + X(x1, x2, x3, t), and the formulation is denoted
as Eulerian (Fig.B.1).

Partial differentiation of the displacement vector u = x − X , with respect to X ,
produces the following displacement gradient:

∇Xu = F − 1, (B.3)

where

F
def= ∇X x

def= ∂x
∂X

=

⎡

⎢

⎢

⎣

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

⎤

⎥

⎥

⎦

. (B.4)

F is known as the material deformation gradient.
Now, consider the length of a differential element in the reference configuration

dX and dx in the current configuration, dx = ∇X x · dX = F · dX . Taking the
difference in the squared magnitudes of these elements yields

dx · dx − dX · dX = (∇X x · dX) · (∇X x · dX) − dX · dX
= dX · (FT · F − 1) · dX def= 2 dX · E · dX . (B.5)

Equation (B.5) defines the so-called Lagrangian strain tensor

E
def= 1

2 (F
T · F − 1) = 1

2 [∇Xu + (∇Xu)T + (∇Xu)T · ∇Xu]. (B.6)

Fig.B.1 Different
descriptions of a deforming
body

P
P’

xX

X+dX
dX

2

dx

u+du

u

O

X 3, x 3

X 1, x 1

X 2, x

Appendix B: Basic ContinuumMechanics 95

Remark: It should be clear that dx can be reinterpreted as the result of a mapping
F · dX → dx or a change in configuration (reference to current). One may develop
the so-called Eulerian formulations, employing the current configuration coordinates
to generate Eulerian strain tensor measures. An important quantity is the Jacobian of

the deformation gradient, J
def= detF, which relates differential volumes in the ref-

erence configuration (dω0) to differential volumes in the current configuration (dω)
via dω = J dω0. The Jacobian of the deformation gradient must remain positive,
otherwise we obtain physically impossible “negative” volumes. For more details,
we refer the reader to the texts of Malvern [1], Gurtin [2], Chandrasekharaiah and
Debnath [3].

B.2 Equilibrium/Kinetics of Solid Continua

The balance of linear momentum in the deformed (current) configuration is

∫

∂ω
t da

︸ ︷︷ ︸

surface forces

+
∫

ω
ρb dω

︸ ︷︷ ︸

body forces

= d

dt

∫

ω
ρu̇ dω

︸ ︷︷ ︸

inertial forces

, (B.7)

where ω ⊂ Ω is an arbitrary portion of the continuum, with boundary ∂ω, ρ is the
material density, b is the body force per unit mass, and u̇ is the time derivative of the
displacement. The force densities, t , are commonly referred to as “surface forces”
or tractions.

B.2.1 Postulates onVolume and Surface Quantities

Now, consider a tetrahedron in equilibrium, as shown in Fig.B.2, where a balance
of forces yields

t(n)ΔA(n) + t(−1)ΔA(1) + t(−2)ΔA(2) + t(−3)ΔA(3) + ρbΔV = ρΔV ü , (B.8)

where ΔA(n) is the surface area of the face of the tetrahedron with normal n, and
ΔV is the tetrahedron volume. As the distance (h) between the tetrahedron base
(located at (0,0,0)) and the surface center goes to zero (h → 0), we have ΔA(n) →
0 ⇒ ΔV

ΔA(n) → 0. Geometrically, we have ΔA(i)

ΔA(n) = cos(xi , xn)
def= ni , and therefore

t(n) + t(−1)cos(x1, xn) + t(−2)cos(x2, xn) + t(−3)cos(x3, xn) = 0. It is clear that
forces on the surface areas could be decomposed into three linearly independent
components. It is convenient to introduce the concept of stress at a point, representing
the surface forces there, pictorially represented by a cube surrounding a point. The
fundamental issue thatmust be resolved is the characterization of these surface forces.

96 Appendix B: Basic ContinuumMechanics

x

x

x

1

2

3

t

t

(n)

t
(−1) (−3)

t
(−2)

x
x

x

3
1

2
σ σ

σ
σ

σ
σ

σ

33

2

σ

σ
11

1

31

32

23

2

2

1

3

2 1

Fig.B.2 Left: Cauchy tetrahedron: a “sectioned point” and Right: Stress at a point

We can represent the surface force density vector, the so-called traction, on a surface
by the component representation:

t(i)
def=

⎧

⎨

⎩

σi1
σi2
σi3

⎫

⎬

⎭

, (B.9)

where the second index represents the direction of the component and the first index
represents components of the normal to corresponding coordinate plane. Henceforth,

wewill drop the superscript notationof t(n),where it is implicit that t
def= t(n) = σT ·n,

where

σ
def=

⎡

⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤

⎦ , (B.10)

or explicitly (t(1) = −t(−1), t(2) = −t(−2), t(3) = −t(−3))

t = t(1)n1 + t(2)n2 + t(3)n3 = σT · n =
⎡

⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤

⎦

T ⎧
⎨

⎩

n1
n2
n3

⎫

⎬

⎭

, (B.11)

where σ is the so-called Cauchy stress tensor.
Remark: In the absence of couple stresses, a balance of angular momen-

tum implies a symmetry of stress, σ = σT , and thus the difference in nota-
tions becomes immaterial. Explicitly, starting with an angular momentum balance,
under the assumptions that no infinitesimal “micro-moments” or so-called couple-
stresses exist, then it can be shown that the stress tensor must be symmetric, i.e.,
∫

∂ω x× t da+∫

ω x×ρb dω = d
dt

∫

ω x×ρu̇ dω; that is,σT = σ. It is somewhat eas-
ier to consider a differential element, such as in Fig.B.2, and to simply summoments
about the center. Doing this, one immediately obtains σ12 = σ21,σ23 = σ32 and
σ13 = σ31. Consequently, t = σ · n = σT · n.

Appendix B: Basic ContinuumMechanics 97

B.2.2 Balance Law Formulations

Substitution of Eq.B.11 into Eq.B.7 yields (ω ⊂ Ω)

∫

∂ω
σ · n da

︸ ︷︷ ︸

surface forces

+
∫

ω
ρb dω

︸ ︷︷ ︸

body forces

= d

dt

∫

ω
ρu̇ dω

︸ ︷︷ ︸

inertial forces

. (B.12)

A relationship can be determined between the densities in the current and reference
configurations,

∫

ω ρdω = ∫

ω0
ρJdω0 = ∫

ω0
ρ0dω0. Therefore, the Jacobian can also

be interpreted as the ratio ofmaterial densities at a point. Since the volume is arbitrary,
we can assume that ρJ = ρ0 holds at every point in the body. Therefore,wemaywrite
d
dt (ρ0) = d

dt (ρJ) = 0, when the system is mass conservative over time. This leads to

writing the last term in Eq.B.12 as d
dt

∫

ω ρu̇ dω = ∫

ω0

d(ρJ)
dt u̇ dω0 + ∫

ω0
ρüJ dω0 =

∫

ω ρü dω. From Gauss’s divergence theorem, and an implicit assumption that σ is
differentiable, we have

∫

ω (∇x · σ + ρb − ρü) dω = 0. If the volume is argued as
being arbitrary, then the integrand must be equal to zero at every point, yielding

∇x · σ + ρb = ρü. (B.13)

B.3 Referential Descriptions of Balance Laws and Nanson’s
Formula

Although we will not consider finite deformation problems in this monograph, some
important concepts will be useful later in the context of mapping from one configu-
ration to the next. In many cases it is quite difficult to perform a stress analysis, for
finite deformation solid mechanics problems, in the current configuration, primar-
ily because it is unknown a priori. Therefore all quantities are usually transformed
(“pulled”) back to the original coordinates, the referential frame. Therefore, it is
preferable to think of a formulation in terms of the referential fixed coordinated
X , a so-called Lagrangian formulation. With this in mind there are two commonly
used referential measures of stresses. We start by a purely mathematical result, lead-
ing to the so-called Nanson formula for transformation of surface elements. Con-
sider the cross product of two differential line elements in a current configuration,
dx(1) × dx(2) = (F · dX(1))× (F · dX(2)). An important vector identity (see Chan-
driashakiah and Debnath [3]) for a tensor T and two first-order vectors a and b is
(T · a) × (T · b) = T∗ · (a × b), where the T∗ is the transpose of the adjoint

defined by T∗ def= (detT)T−T . This leads to (detT)1 = T T · T∗. Applying the
result we have dx(1) × dx(2) = F∗ · (dX (1) × dX(2)) and FT · (dx(1) × dx(2)) =
(detF)1 · (dX (1) × dX(2)). This leads to FT · nda = (detF)n0da0. This is the
so-called Nanson formula. Knowing this, we now formulate the equations of equi-
librium in the current or reference configuration (Fig.B.3).

98 Appendix B: Basic ContinuumMechanics

0

UNDEFORMED DEFORMED

n
F

F -1

da

da
0

n

Fig.B.3 A current and reference surface element

Consider two surface elements: one on the current configuration and one on a
reference configuration. If we form a new kind of stress tensor, call it P , such that
the amount of force is the samewehave P ·n0da0 = σ·nda = σ·F−T (detF)·n0da0
which implies P = σ · F−T (detF). The tensor P is called the first Piola–Kirchhoff
stress and gives the actual force on the current area, but calculated per unit area of
reference area. However, it is not symmetric, and this sometimes causes difficulties
in an analysis. Therefore, we symmetrize it by F−1 · P = S = ST = F−1 · σ ·
F−T (detF). The tensor S is called the second Piola–Kirchhoff stress. By definition
we have

∫

∂ω0
n0 · P da0 = ∫

∂ω n · σ da, and thus

∫

∂ω0

n0 · P da0
︸ ︷︷ ︸

surface forces

+
∫

ω0

f J dω

︸ ︷︷ ︸

body forces

=
∫

ω0

ρ0
d u̇
dt

dω0, (B.14)

and therefore
∫

ω0

∇X · P dω0

︸ ︷︷ ︸

surface forces

+
∫

ω0

f J dω0

︸ ︷︷ ︸

body forces

=
∫

ω0

ρ0
d u̇
dt

dω0. (B.15)

Since P = F · S, ∫ω0
∇X · (F · S) dω0 + ∫

ω0
f J dω0 = ∫

ω0
ρ0

d u̇
dt dω0. Since the

control volume is arbitrary, we have

∇X · P + f J = ρ0
d u̇
dt

or ∇X · (F · S) + f J = ρ0
d u̇
dt

. (B.16)

Appendix B: Basic ContinuumMechanics 99

B.4 The First Law of Thermodynamics/An Energy Balance

The interconversions of mechanical, thermal, and chemical energy in a system are
governed by the first law of thermodynamics, which states that the time rate of change
of the total energy, K + I, is equal to the mechanical power, P , and the net heat
supplied, H + Q, i.e., d

dt (K + I) = P + H + Q. Here the kinetic energy of

a subvolume of material contained in Ω , denoted ω, is K def= ∫

ω
1
2ρu̇ · u̇ dω; the

power (rate of work) of the external forces acting on ω is given by P def= ∫

ω ρb ·
u̇ dω + ∫

∂ω σ · n · u̇ da; the heat flow into the volume by conduction is Q def=
− ∫

∂ω q · n da = − ∫

ω ∇x · q dω, q being the heat flux; the heat generated due to

sources, such as chemical reactions, isH def= ∫

ω ρz dω, where z is the reaction source

rate per unit mass; and the internal energy is I def= ∫

ω ρw dω, w being the internal
energy per unit mass. Differentiating the kinetic energy yields

dK
dt

= d

dt

∫

ω

1

2
ρu̇ · u̇ dω =

∫

ω0

d

dt

1

2
(ρJ u̇ · u̇) dω0

=
∫

ω0

(
d

dt
ρ0)

1

2
u̇ · u̇ dω0 +

∫

ω
ρ
d

dt

1

2
(u̇ · u̇) dω

=
∫

ω
ρu̇ · ü dω, (B.17)

where we have assumed that the mass in the system is constant. We also have

dI
dt

= d

dt

∫

ω
ρw dω = d

dt

∫

ω0

ρJw dω0 =
∫

ω0

d

dt
(ρ0)

︸ ︷︷ ︸

=0

w dω0 +
∫

ω
ρẇ dω =

∫

ω
ρẇ dω.

(B.18)
By using the divergence theorem, we obtain

∫

∂ω
σ · n · u̇ da =

∫

ω
∇x · (σ · u̇) dω =

∫

ω
(∇x · σ) · u̇ dω +

∫

ω
σ : ∇x u̇ dω. (B.19)

Combining the results, and enforcing a balance of linear momentum, leads to
∫

ω
(ρẇ + u̇ · (ρü − ∇x · σ − ρb) − σ : ∇x u̇ + ∇x · q − ρz) dω =

∫

ω
(ρẇ − σ : ∇x u̇ + ∇x · q − ρz) dω = 0.

(B.20)

Since the volume ω is arbitrary, the integrand must hold locally and we have

ρẇ − σ : ∇x u̇ + ∇x · q − ρz = 0. (B.21)

When dealing with multifield problems, this equation is used extensively.

100 Appendix B: Basic ContinuumMechanics

B.5 Linearly Elastic Constitutive Equations

We now discuss relationships between the stress and strain, so-called material laws
or constitutive relations for linearly elastic cases (infinitesimal deformations).

B.5.1 The Infinitesimal Strain Case

In infinitesimal deformation theory, the displacement gradient components are con-
sidered small enough that higher-order terms such as (∇Xu)T ·∇Xu and (∇xu)T ·∇xu
can be neglected in the strain measure E = 1

2 (∇Xu + (∇Xu)T + (∇Xu)T · ∇Xu),

leading to E ≈ ε
def= 1

2 [∇Xu + (∇Xu)T]. If the displacement gradients are small
compared with unity, ε coincides closely with E. If we assume that ∂

∂X ≈ ∂
∂x ,

we may use E or ε interchangeably. Usually ε is the symbol used for infinitesimal
strains. Furthermore, to avoid confusion, when using models employing the geomet-
rically linear infinitesimal strain assumption we use the symbol of ∇ with no X or x
subscript. Hence, the infinitesimal strains are defined by

ε = 1

2
(∇u + (∇u)T). (B.22)

B.5.2 Linear Elastic Constitutive Laws

If we neglect thermal effects, Eq.B.21 implies ρẇ = σ : ∇x u̇which, in the infinites-
imal strain linearly elastic case, is ρẇ = σ : ε̇. From the chain rule of differentiation
we have

ρẇ = ρ
∂w

∂ε
: dε

dt
= σ : ε̇ ⇒ σ = ρ

∂w

∂ε
. (B.23)

The starting point to develop a constitutive theory is to assume a stored elastic energy

function exists, a function denotedW
def= ρw, which depends only on the mechanical

deformation. The simplest function that fulfills σ = ρ∂w
∂ε isW = 1

2ε : IE : ε, where
IE is the fourth rank elasticity tensor. Such a function satisfies the intuitive physical
requirement that, for any small strain from an undeformed state, energy must be
stored in the material. Alternatively, a small strain material law can be derived from
σ = ∂W

∂ε andW ≈ c0+c1 : ε+ 1
2ε : IE : ε+ ...which impliesσ ≈ c1+ IE : ε+

We are free to set c0 = 0 (it is arbitrary) in order to have zero strain energy at
zero strain, and furthermore, we assume that no stresses exist in the reference state
(c1 = 0). With these assumptions, we obtain the familiar relation

σ = IE : ε. (B.24)

This is a linear relation between stresses and strains. The existence of a strictly
positive stored energy function in the reference configuration implies that the linear

Appendix B: Basic ContinuumMechanics 101

elasticity tensor must have positive eigenvalues at every point in the body. Typically,
differentmaterials are classified according to the number of independent components
in IE. In theory, IE has 81 components, since it is a fourth-order tensor relating 9
components of stress to strain. However, the number of components can be reduced
to 36 since the stress and strain tensors are symmetric. This is observed from the
matrix representation2 of IE:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

σ11
σ22
σ33
σ12
σ23
σ31

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

def={σ}

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

E1111 E1122 E1133 E1112 E1123 E1113
E2211 E2222 E2233 E2212 E2223 E2213
E3311 E3322 E3333 E3312 E3323 E3313
E1211 E1222 E1233 E1212 E1223 E1213
E2311 E2322 E2333 E2312 E2323 E2313
E1311 E1322 E1333 E1312 E1323 E1313

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

def=[IE]

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

ε11
ε22
ε33
2ε12
2ε23
2ε31

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

def={ε}

. (B.25)

The existence of a scalar energy function forces IE to be symmetric since the strains
are symmetric, in other words W = 1

2ε : IE : ε = 1
2 (ε : IE : ε)T = 1

2ε
T :

IET : εT = 1
2ε : IET : ε which implies IET = IE. Consequently, IE has only 21

independent components. The nonnegativity of W imposes the restriction that IE
remains positive definite. At this point, based on many factors that depend on the
material microstructure, it can be shown that the components of IE may be written
in terms of anywhere between 21 and 2 independent parameters. Accordingly, for
isotropicmaterials, we have two planes of symmetry and an infinite number of planes
of directional independence (two free components), yielding

IE
def=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

κ + 4
3μ κ − 2

3μ κ − 2
3μ 0 0 0

κ − 2
3μ κ + 4

3μ κ − 2
3μ 0 0 0

κ − 2
3μ κ − 2

3μ κ + 4
3μ 0 0 0

0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B.26)

In this case, we have

IE : ε = 3κ
trε

3
1 + 2με′ ⇒ ε : IE : ε = 9κ(

trε

3
)2 + 2με′ : ε′, (B.27)

where trε = εi i and ε′ = ε − 1
3 (trε)1 is the deviatoric strain. The eigenvalues of an

isotropic elasticity tensor are (3κ, 2μ, 2μ,μ,μ, μ). Therefore, we must have κ > 0
and μ > 0 to retain positive definiteness of IE. All of the material components of
IE may be spatially variable, as in the case of composite media.

2The symbol [·] is used to indicate the matrix notation equivalent to a tensor form, while {·} is used
to indicate the vector representation.

102 Appendix B: Basic ContinuumMechanics

B.5.3 Material Component Interpretation

There are a variety of ways to write isotropic constitutive laws, each time with a
physically meaningful pair of material values.

Splitting the strain

It is sometimes important to split infinitesimal strains into two physically meaningful
parts

ε = trε

3
1 + (ε − trε

3
1). (B.28)

An expansion of the Jacobian of the deformation gradient yields J = det (1 +
∇Xu) ≈ 1 + tr∇Xu + O(∇Xu) = 1 + trε + Therefore, with infinitesimal
strains, (1+trε)dω0 = dω andwe canwrite trε = dω−dω0

dω0
. Hence, trε is associated

with the volumetric part of the deformation. Furthermore, since ε′ def= ε − trε
3 1, the

so-called strain deviator describes distortion in the material.

Infinitesimal strain material laws

The stress σ can be split into two parts (dilatational and a deviatoric):

σ = trσ

3
1 + (σ − trσ

3
1) def= −p1 + σ′, (B.29)

where we call the symbol p the hydrostatic pressure and σ′ the stress deviator. With
(B.27) we write

p = −3κ

(

trε

3

)

and σ′ = 2μ ε′. (B.30)

This is one form of Hooke’s Law. The resistance to change in the volume is measured
by κ. We note that (trσ3 1)′ = 0, which indicates that this part of the stress produces
no distortion.

Another fundamental form of Hooke’s law is

σ = E

1 + ν

(

ε + ν

1 − 2ν
(trε)1

)

, (B.31)

and the inverse form

ε = 1 + ν

E
σ − ν

E
(trσ)1 . (B.32)

To interpret the material values, consider an idealized uniaxial tension test (pulled in
the x1 direction inducing a uniform stress state) where σ12 = σ13 = σ23 = 0, which
implies ε12 = ε13 = ε23 = 0. Also, we have σ22 = σ33 = 0. Under these conditions
we have σ11 = Eε11 and ε22 = ε33 = −νε11. Therefore, E , Young’s modulus, is
the ratio of the uniaxial stress to the corresponding strain component. The Poisson
ratio, ν, is the ratio of the transverse strains to the uniaxial strain.

Appendix B: Basic ContinuumMechanics 103

Another commonly used set of stress–strain forms are the Lamé relations:

σ = λ(trε)1 + 2με or ε = − λ

2μ(3λ + 2μ)
(trσ1) + σ

2μ
. (B.33)

To interpret the material values, consider a homogeneous pressure test (uniform
stress), where σ12 = σ13 = σ23 = 0, and where σ11 = σ22 = σ33. Under these
conditions, we have

κ = λ + 2

3
μ = E

3(1 − 2ν)
and μ = E

2(1 + ν)
, (B.34)

and consequently

κ

μ
= 2(1 + ν)

3(1 − 2ν)
. (B.35)

We observe that κ
μ → ∞ implies ν → 1

2 , and
κ
μ → 0 implies ⇒ ν → −1.

Therefore, since both κ and μmust be positive and finite, this implies−1 < ν < 1/2
and 0 < E < ∞. For example, some polymeric foams exhibit ν < 0, steels ν ≈ 0.3,
and some forms of rubber have ν → 1/2. We note that λ can be positive or negative.
For more details, see Malvern [1], Gurtin [2], Chandrasekharaiah and Debnath [3].

B.6 Related Physical Concepts

In closing, we briefly consider two other commonly encountered physical scenarios
which are formally related to mechanical equilibrium.

B.6.1 Heat Conduction

We recall from our thermodynamic analysis the first law in the current configuration

ρẇ − σ : ∇x u̇ + ∇x · q − ρz = 0, (B.36)

or in the reference configuration as

ρ0ẇ − S : Ė + ∇X · q0 − ρ0z = 0, (B.37)

where q0 = q J · F−T . When (1) the deformations are ignored, u = 0, thus S :
Ė = 0, (2) the stored energy is purely thermal, described by ρ0ẇ = ρ0C θ̇, where
C is the heat capacity, (3) the reactions are zero, ρ0z = 0, (4) the variation in time
is ignored, i.e., steady-state, and (5) q0 = −IK · ∇θ, where the conductivity tensor

104 Appendix B: Basic ContinuumMechanics

IK ∈ IR3×3 is a spatially varying symmetric bounded positive definite tensor-valued
function, then we arrive at the familiar equation of linear heat conduction:

∇X · (IK · ∇Xθ) = ρ0C θ̇. (B.38)

If the variation in time is ignored, i.e., steady-state conditions are enforced:

∇X · (IK · ∇Xθ) = 0. (B.39)

B.6.2 Solid-State Diffusion-Reaction

Consider a structure which occupies an open bounded domain in Ω ∈ IR3, with
boundary ∂Ω . The boundary consists of Γc and Γg , where the solute concentrations
(c) and solute fluxes are, respectively, specified. The diffusive properties of the
heterogeneous material are characterized by a spatially varying diffusivity ID0 ∈
IR3×3, which is assumed to be a symmetric bounded positive definite tensor-valued
function. The mass balance for a small diffusing species, denoted by the normalized
concentration of the solute c (molecules per unit volume), in an arbitrary subvolume
of material contained within Ω , denoted ω, consists of a storage term (ċ), a reaction
term (ṡ), and an inward normal flux term (−G · n), leading to

∫

ω(ċ + ṡ) dω =
− ∫

∂ω G · n da. It is a classical stoichiometrically inexact approximation to assume
that the diffusing species reacts (is created or destroyed) in amanner such that the rate
of production of the reactant (s) is directly proportional to the concentration of the
diffusing species itself and the rate of change of the diffusing species, ṡ = τc+ �ċ.

Here, τ = τ0e− Q
Rθ and � = �0e− Q

Rθ , where τ0 and �0 are rate constants, Q and
Q (Q �= Q) are activation energies per mole of diffusive species, R is the universal
gas constant, and θ is the temperature. Upon substitution of these relations into the
conservation law for the diffusing species, and after using the divergence theorem,
since the volume ω is arbitrary, one has a Fickian diffusion-reaction model in strong
form, assuming G = −ID · ∇xc

ċ = ∇x · (ID · ∇x c) − τc − �ċ ⇒ ċ(1 + �) = ∇x · (ID · ∇x c) − τc. (B.40)

When τ0 > 0, the diffusing species is destroyed as it reacts, while τ0 < 0 means
that the diffusing species is created as it reacts, i.e., an autocatalytic or “chain”
reaction occurs. We will only consider the nonautocatalytic case in this work. Also,
depending on the sign of �0, effectively the process will have an accelerated or
decelerated diffusivity as well as accelerated or decelerated reactivity. In Eq.E.14,
ID is the diffusivity tensor (area per unit time). If we ignore reactions and time
dependency, and assume that the domain is not deforming, we then arrive at the
familiar

∇X · (ID · ∇Xc) = 0. (B.41)

Appendix B: Basic ContinuumMechanics 105

B.6.3 Conservation Law Families

In summary we have the following related linearized steady-state forms (with no
body forces in mechanical equilibrium)

∇X · (IE : ∇Xu) = 0,

∇X · (IK · ∇Xθ) = 0,

∇X · (ID · ∇Xc) = 0,

(B.42)

which stem from the following coupled, time-transient, nonlinear equations:

∇x · σ + ρb = ρü

∇x · q − σ : ∇x u̇ − ρz = −ρẇ,

∇x · G + τc + �ċ = −ċ.

(B.43)

From this point forth, we consider infinitesimal deformations, and we drop the
explicit reference to differentiation with respect to X or x , under the assumption
that they are one and the same at infinitesimal deformations

∇ · (IE : ∇u) = 0,

∇ · (IK · ∇θ) = 0,

∇ · (ID · ∇c) = 0.

(B.44)

Furthermore, we shall use the notation x to indicate the location of a point in space,
under the assumption of infinitesimal deformations, where the difference between
X and x is considered insignificant.

CAppendix C
Convergenceof Recursive Iterative
Schemes

Recursive iterative schemes arise frequently in computational mechanics, for exam-
ple, in implicit time-stepping, domain decomposition, etc. To understand the con-
vergence of such iterative schemes, consider a general system of coupled equations
given by

A(s) = F , (C.1)

where s is a solution, and where it is assumed that the operator,A, is invertible. One
desires that the sequence of iterated solutions, s I , I = 1, 2, ..., converge toA−1(F)

as I → ∞. It is assumed that the I th iterate can be represented by some arbitrary
function s I = T I (A,F , s I−1). One makes the following split

s I = G I (s I−1) + r I . (C.2)

For this method to be useful the exact solution should be reproduced. In other words,
when s = A−1(F), then

s = A−1(F) = G I (A−1(F)) + r I . (C.3)

Therefore, one has the following consistency condition

r I = A−1(F) − G I (A−1(F)), (C.4)

and as a consequence,

s I = G I (s I−1) + A−1(F) − G I (A−1(F)). (C.5)

Convergence of the iteration can be studied by defining the error vector:

eI = s I − s = s I − A−1(F)

= G I (s I−1) + A−1(F) − G I (A−1(F)) − A−1(F)

= G I (s I−1) − G I (A−1(F)). (C.6)

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9

107

108 Appendix C: Convergence of Recursive Iterative Schemes

One sees that, if G I is linear and invertible, the above reduces to

eI = G I (s I−1 − A−1(F)) = G I (eI−1). (C.7)

Therefore, if the spectral radius of G I , i.e., the magnitude of its largest eigenvalue,
is less than unity for each iteration I , then eI → 0 for any arbitrary starting solution
s I=0 as I → ∞.

DAppendixD
Selected in-Class ExamProblems

The problems in this chapter are selected from exams given over the last 15 years
UC Berkeley.

D.1 Sample Problem 1

• (a) Concisely explain the classical Galerkin method (without weak form) by con-
sidering a simple one-dimensional differential equation, written in the following
abstract form

A(u) = f, (D.1)

where u(0) = c1 and u(L) = c2.
• (b) Analytically solve the following two-point boundary value problem:

d2u

dx2
+ bu + sin(ax) = 0 (BC ′s : u(0) = 0, u(L) = 0), (D.2)

with domain size (0, L) and where a > 0 and b > 0 are constants.
• (c) Using Galerkin’s method (no weak form), with the approximation

u(x) ≈ uapp(x) = a1(x − xL)+a2(x − xL)2 +a3sin(6πx/L)+a4sin(8πx/L)

(D.3)
generate the system of equations needed to determine a1 through a5 to approxi-
mately solve Eq.D.2. Set up the integrals. Put in matrix form, but do not solve.

• (d) Give expressions for the errors in the H1, H2, and H3 norms, respectively?
Which error measure is higher and why?

• (e) List two major difficulties encountered when using the classical Galerkin
method for more complex problems, which led us eventually to the finite element
method.

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9

109

110 Appendix D: Selected in-Class Exam Problems

• (f) Repeat for

d2u

dx2
+ au = ebx (BC ′s : u(0) = 0, u(L) = 0), (D.4)

and

u(x) ≈ uapp(x) = a1(x
4 − xL3) + a2(x

3 − xL2) + a3(x
2 − xL) + a4(x − L),

(D.5)

D.2 Sample Problem 2

If you were given the following

E
d2u

dx2
+ ku = 0, (D.6)

u(0) = c1, u(L) = c2, what is a quick way to determine (approximately) the mini-
mum elements would one need to capture the basic physics if E and k where positive
constants.

D.3 Sample Problem 3

Consider the boundary value problem (Fig.D.1), with domain Ω = (0, L):

d

dx

(

E
du

dx

)

+ k1
du

dx
+ k2u = cos(14πx/L)

E
du

dx
(x = 0) = c1,

u(x = L) = c2,

(D.7)

where E > 0, k1, and k2 are constants.

Fig.D.1 A 1D structure

Appendix D: Selected in-Class Exam Problems 111

• (a) Derive the weak form (step-by-step, without the penalty approach).
• (b) If N equally sized linear elements were used, set up the matrix system of

equations that one would need to solve. Draw the shape functions on the mas-
ter element. Explicitly determine the element by element contributions (leave in
integral form). In other words, derive the linear algebraic system

[K]{a} = {R}. (D.8)

Explicitly write [K]e, {a} and {R}e. Use isoparametric mappings and make all
calculations over the master element. Do not evaluate the integrals.

• (c) If N equally sized quadratic elements were used, set up the matrix system
of equations that one would need to solve. Draw the shape functions on the mas-
ter element. Explicitly determine the element-by-element contributions (leave in
integral form). In other words, derive the linear algebraic system

[K]{a} = {R}. (D.9)

Explicitly write [K], {a}, and {R}. Use isoparametric mappings and make all
calculations over the master element. Do not evaluate the integrals.

• (d) If N equally sized cubic elements were used, set up the matrix system of
equations that one would need to solve. Draw the shape functions on the mas-
ter element. Explicitly determine the element by element contributions (leave in
integral form). In other words, derive the linear algebraic system

[K]{a} = {R}. (D.10)

Explicitly write [K], {a}, and {R}. Use isoparametric mappings and make all
calculations over the master element. Do not evaluate the integrals.

• (e) How many Gauss points would be needed to evaluate each of the needed
integrals using linear element shape functions? How many Gauss points would
be needed to evaluate each of the needed integrals using quadratic element shape
functions? How many Gauss points would be needed to evaluate each of the
needed integrals, using cubic element shape functions?

• (f) Using N linear elements, if one used a direct (Gaussian solver) how much
would it “cost” to solve? Under what conditions could you use an element-by-
element ConjugateGradient solver?Howmuchwould it cost? Explain any expres-
sions that you write down.

• (g) Using N quadratic elements, if one used a direct (Gaussian solver) how
much would it “cost” to solve? Under what conditions could you use an element-
by-element Conjugate Gradient solver? How much would it cost? Explain any
expressions that you write down.

• (h) Using N cubic elements, if one used a direct (Gaussian solver) how much
would it “cost” to solve? Under what conditions could you use an element-by-
element ConjugateGradient solver?Howmuchwould it cost? Explain any expres-
sions that you write down.

112 Appendix D: Selected in-Class Exam Problems

• (i) Assuming that you know the true solution, u, give an expression for the error
in the H1(0, L) norm.

• (j) For the previous part of this problem, repeat parts (a, b, c, d) with the penalty
method to apply the specified (primal/Dirichlet) boundary conditions. It is ade-
quate to simply show the modifications.

D.4 Sample Problem 4

Given the following integral

∫ 14

4

(

(x − 11)5 + (x − 1)2 + 12
)

dx, (D.11)

using Gaussian quadrature, and assuming that the standard Gauss point weights and
locations are given to you, show how you would evaluate it. Indicate how many
quadrature points you will need to integrate it exactly.

D.5 Sample Problem 5

Given the following integral

I =
∫

Ω

(ax3 + by5) dΩ, (D.12)

where Ω is shown above and using a isoparametric mapping for a quadratic element
(Fig.D.2).

7

ζ

ζ2

1 x

y

2

2 2

4

6

11

6

4 3

25

8 9

7

4

8
3

9

5 2

Fig.D.2 A quadratic element

Appendix D: Selected in-Class Exam Problems 113

• (a) Derive the quadratic shape functions for the standard 2D (9-node) square
master element.

• (b) For the following 2D element, derive the isoparametric mapping for this ele-
ment shown in the figure.

• (c) Calculate the deformation gradient matrix F for the given mapping and the
determinant (Jacobian J = detF).

• (d) Set up the integral in the master domain.
• (e) Set up the approximation of this integral with Gaussian quadrature.
• (f)What is theminimumnumber ofGauss points that are needed in each direction?

D.6 Sample Problem 6

• (a) Carefully, derive the best approximation theorem for B(u, v) = L(v) and
support the claim that the FEM solution is “the best possible” (specify in which
norm). Include a detailed diagram of the spaces of approximations for u, v, uh ,
and vh .

• (b) What is the (true) potential J (u) for that problem?
• (c) Explain why the potential is important to monitor in the finite element method

for this class of problems.
• (d) How could one could use the potential to determine the constant C in the error

estimation expression:

||u − uh ||E(Ω) ≤ Ch (D.13)

by using two successively finer meshes. Be very explicit.
• (e) Given

d

dx

(

E(
du

dx
)

)

+ Ku = f, (D.14)

and boundary conditions u(0) = c1, du
dx |x=L = c2. Derive the weak form:

B(u, v) = L(v), (D.15)

and the potential J (u).
• (f) For this system, under what conditions will the operator

√
B(u, u) violate

being a norm?

D.7 Sample Problem 7

Consider the following (N × N) matrix equation:

[K]{a} = {R}. (D.16)

114 Appendix D: Selected in-Class Exam Problems

• (a) When can one apply the Conjugate Gradient Method to obtain a solution?
• (b) Explicitly, write down what we are trying to minimize to obtain a solution.
• (c) Derive the ingredients needed for the Conjugate Gradient Method.
• (d) If [K] happened to come from a one-dimensional finite element discretization

using linear elements, how much cheaper would it be to solve using a CG ele-
ment by element solver than a direct Gaussian approach that does not exploit the
element-by-element structure.

• (e) Define the condition number of [K]. How does your answer in (d) depend on
the condition number?

• (f) Given the following matrix:

[K] =
⎡

⎣

4 0 1
0 5 0
1 0 6

⎤

⎦ , (D.17)

what is the condition number?
• (g) Given the previous matrix and R = (1, 1, 1)T and ai=0 = (2, 2, 2), perform

two complete CG iterations.
• (h) Now use a diagonal preconditioner (like in class), and repeat part (g).
• (i) What is the condition number of the new system?
• Repeat for:

[K] =
⎡

⎣

3 2 0
2 3 0
0 0 5

⎤

⎦ . (D.18)

• Repeat for:

[K] =
⎡

⎣

4 −1 0
−1 4 0
0 0 8

⎤

⎦ . (D.19)

• Repeat for:

[K] =
⎡

⎣

5 0 3
0 4 0
3 0 2

⎤

⎦ . (D.20)

• Repeat for:

[K] =
⎡

⎣

3 0 5
0 4 0
5 0 10

⎤

⎦ . (D.21)

Appendix D: Selected in-Class Exam Problems 115

D.8 Sample Problem 8

• (a) Explain the concept of an isoparametric map in 1D, 2D, and 3D and indicate
the mathematical condition one must avoid to have “good” elements.

• (b) Using an isoparametric map, construct the mapping function for each of the
2D elements on in Fig.D.3.

• (c)What, if anything, is wrong with the following elements? Explicitly showwhat
you mean mathematically.

• (d) Determine the Jacobian of the mapping for each element.
• (e) Repeat for the 2D elements in Fig.D.4.

6

11 2

34

ζ

ζ2

1

MASTER ELEMENT

x

y

DRAWN TO SCALE

length=2

4

8

5

#4el#2el#1

3 7

2
el#3

Fig.D.3 Element group #1

#4

11 2

34

ζ

ζ2

1

MASTER ELEMENT

x

y

DRAWN TO SCALE

length=2

3 74

6
2 8

5

el#1
el#2

el#3

Fig.D.4 Element group #2

116 Appendix D: Selected in-Class Exam Problems

D.9 Sample Problem 9

• (a) Give the proper connectivity functions for the mesh in Fig.D.5. Use the stan-
dard counterclockwise for the local numbering on the master element (TablesD.1,
D.2, and D.3).

• (b) Using the standard counterclockwise local numbering for the master element,
is there anything wrong with the following connectivity? If so, what problem will
occur?

Fig.D.5 Hypothetical
mapping

1

2 3
4

56

7

8

9

10

1

2

4

3

4

1

3

2

ζ1

ζ 2

Table D.1 Above: local/global numbers for elements (YOU HAVE 4 ELEMENTS)

Local number EL # 1-GLOB EL # 2-GLOB EL # 3-GLOB EL # 4-GLOB

1 3 7 1 8

2 4 8 5 5

3 1 2 8 6

4 2 3 2 7

Table D.2 Above: local/global numbers for elements for part (a)

Local EL # 1-GLOB EL # 2-GLOB EL # 3-GLOB EL # 4-GLOB

1

2

3

4

Appendix D: Selected in-Class Exam Problems 117

Table D.3 Above: local/global numbers for elements for part (b)

Local EL # 1-GLOB EL # 2-GLOB EL # 3-GLOB EL # 4-GLOB

1 6 7 8 4

2 1 2 3 5

3 2 3 9 10

4 7 8 4 9

2

34

x

y

1

Θ Φ

rδ

4

3

2

1

rζ

ζ

1

2

Fig.D.6 First hypothetical mapping

D.10 Sample Problem 10

• (a) (5 points) Derive the linear shape (basis) functions for the standard 2D square
master element (Fig.D.6).

• (b) (5 points) For the following 2D element (Fig.D.7), derive the isoparametric
map.

• (c) (5 points) What, if anything, is wrong with the following elements? Explic-
itly show what you mean mathematically. In the second element nodes 1 and 4
coincide.

D.11 Sample Problem 11

• (a) Derive the quadratic shape functions for the standard 2D (9-node) square
master element in Fig.D.8.

• (b) For the following 2D element, derive the isoparametric mapping for this ele-
ment shown in the figure.

• (c) Using the isoparametric mapping, what is the Jacobian of the mapping for this
element?

118 Appendix D: Selected in-Class Exam Problems

2

34

x

y

1

Θ Φ

rδ

4 2

r

1

3

1

2

3

y

x

ELEMENT 1

ELEMENT 2

ζ 2

ζ 1

4

ΦΘ

r

Fig.D.7 Second hypothetical mapping

(−1,2)34

x

y

1

ζ

ζ

1

2

1 2

8

5 2

9 6

7

5 (1,0)(0,0)

4 3

6

7

8 9

length=2

(2,2)

Fig.D.8 Quadratic 2D element

D.12 Sample Problem 12

With the standard isoparametric mapping for a trilinear cube element:

x(ζ1, ζ2, ζ3) =
8
∑

i=1

Xiφi (ζ1, ζ2, ζ3) (D.22)

Appendix D: Selected in-Class Exam Problems 119

and

y(ζ1, ζ2, ζ3) =
8
∑

i=1

Yiφi (ζ1, ζ2, ζ3) (D.23)

and

z(ζ1, ζ2, ζ3) =
8
∑

i=1

Ziφi (ζ1, ζ2, ζ3) (D.24)

where φi are the standard shape functions, e.g., φi = 1
8 (1 ± ζ1) (1 ± ζ2) (1 ± ζ3)

and Xi , Yi , Zi are the nodal positions. Describe in detail how to solve for ζ1, ζ2,ζ3
with Newton’s method.

D.13 Sample Problem 13

Consider an ODE given by

u̇ + 4eu+1 = sin(ωt) (D.25)

where C > 0 and ω are a constant and u(0) = k.

• (a) Set up the solution process using an explicit time-stepping scheme.
• (b) Set up the solution process using an implicit time-stepping scheme and New-

ton’s method.
• (c) What are the general differences (pros/cons) between explicit and implicit

methods. Support claims with examples.
• (d) Repeat for:

u̇ + 5(u + 1)11 = cos(ωt) (D.26)

where C > 0 and ω are a constant and u(0) = k.
• (e) Repeat for:

u̇ − C(u + 5)5 = 0 (D.27)

where C > 0 is a constant and u(0) = k.
• (f) Repeat for:

u̇ − C(cosu + 1)4 = 0 (D.28)

where C > 0 is a constant and u(0) = k.

120 Appendix D: Selected in-Class Exam Problems

D.14 Sample Problem 14

Youare given an (L × L × L)block (Fig.D.9)with scalardiffusivity D(x, y, z) > 0,
where the concentration is governed by

ċ = ∇ · (D∇c) + f − τc, (D.29)

where f = f (x, y, z) is given data (sources), reaction coefficient τ = τ (x, y, z) and
with the initial condition c(t = 0, x, y, z) = c0(x, y, z). It is externally flux loaded
on a portion of its surface Γg

(D∇c) · n = g, (D.30)

where g is given and n is the outward surface normal, while it has as specified
concentration on a portion of its surface Γc

c = co. (D.31)

Note: The union of Γc and Γg comprises the entire boundary of the body.

• (a) Now develop a weak form for the problem, providing all the steps and assump-
tions necessary. Derive it with and without the penalty method. Explain the dif-
ferences.

• (b) Use a finite difference approximation in time, and give the modified weak
form for the implicit method with and without the penalty method. Explain the
differences.

• (c) Substitute the basis functions into the weak form, and use the penalty method
to apply concentration boundary conditions. Be very explicit in indicating what
integral terms contribute to which “matrix” and “vector” terms in the system that
you would eventually have to solve (Just set it up) with and without the penalty
method.

Fig.D.9 A block
experiencing diffusion

X

Y

Z

Appendix D: Selected in-Class Exam Problems 121

• (d) Now use a finite difference approximation in time, and give the modified weak
form for the explicit method.

• (e) Substitute the basis functions into the weak form, and use the penalty method
to apply concentration boundary conditions. Be very explicit in indicating what
integral terms contribute to which “matrix” and “vector” terms in the system that
you would eventually have to solve (Just set it up) with and without the penalty
method.

D.15 Sample Problem 15

Consider the standard heat conduction problem in two dimensions (Fig.D.10):

∇ · IK · ∇T + f = 0 (D.32)

that you are to solve on the following two-dimensional mesh:
The Dirichlet boundary condition has a temperature T = T ∗, and the Neumann

(flux) conditions are applied to every other surface (g = (IK · ∇T) · n).

• (a) Derive the weak form of the problem, imposing the Dirichlet boundary con-
ditions directly. Be sure to provide details on the spaces that the functions live
in.

• (b) Sketch the matrix system to be solved, showing how the boundary conditions
are applied. Just put X’s to denote nonzero entries.

• (c) Derive the weak form of the problem, imposing the Dirichlet boundary condi-
tions using the penalty method. Be sure to detail from the spaces that the functions
live in. You only need to state the additional terms added to the form from part
(a).

• (d) Sketch the matrix system to be solved, showing how the boundary conditions
are applied. State and illustrate the changes caused by the penalty terms.

Fig.D.10 An arch
experiencing heat transfer

el 3

T *

el 8

e 9

4 le 5 le

el 2

el 1

43

2

1

5 6

7

89

10

11

12
13 14 15 16 17

18

19

20

g

el 7el 6

122 Appendix D: Selected in-Class Exam Problems

• (e) Suppose you are using the Conjugate Gradient Method in both cases. How
does solving the matrix system change when using the penalty method? State two
differences.

D.16 Sample Problem 16

Consider the following linear elasticity problem, called “problem 1”:

problem #1 : ∇ · (IE : ∇u) + f = 0, (D.33)

where f is a given source term and the following heat conduction problem, called
“problem 2”:

problem #2 : ∇ · (IK · ∇T) + w = 0 (D.34)

where w is a given source term.
For each problem, consider the three-dimensional block where we use linear

brick elements resulting in 3N-1 elements in the x-direction, 3N-1 elements in the
y-direction, and 3N-1 elements in the z-direction, where N is given.

• (a) How much does it cost if we use a regular Gaussian solver for problem 1 and
problem 2?

• (b) Howmuch does it cost if we use a regular CG solver for problem 1 and problem
2?

• (c) How much does it cost if we use a element-by-element CG solver for problem
1 and problem 2?

Now consider the same problem with the same finite element mesh, but now the
mesh is broken up using a 5 × 5 × 5 subdomain decompositions and distributed
across 125 processors:

• (d) Draw a picture of the system and the decomposition.
• (e) How much does it cost if we use the domain decomposition process and a

regular Gaussian solver in each subdomain for problem 1 and problem 2?

D.17 Sample Problem 17

Given:

d

dx

(

A

(

du

dx

)p)

+ uq + f = 0, (D.35)

u(0) = c1, du
dx |x=L = c2

Appendix D: Selected in-Class Exam Problems 123

• (a) Derive the weak form.
• (b) Derive linearized weak form for the system in part (a) around u = uo.
• (c) If one were to attempt to apply the Conjugate Gradient Method to solve the

linearized system, for what combination of A, uo, p, and q will the CG method
fail?

EAppendix E
SelectedComputer Projects

The projects in this chapter are selected from exams given over the last 15 years UC
Berkeley.

E.1 Assignment Format

• All assignments must be typed-nothing handwritten.
• Be concise-shorter is better-provided you do not delete essential information.
• You are encouraged to talk and work with one another. Please see me for any

problems, theoretical, coding etc.
• Introduction to the problem: explain it to a layman.
• Objectives: what are the goals?
• Your procedure: Brief explanation, flow-charts, difficulties, assumptions, etc.
• Findings: figures, plots and tables. Make sure they are readable.
• Observations and discussion: some interpretation and insight into the results.
• Appendix: the messy stuff like your code or raw data.

E.2 Sample Project 1: The Basics of FEM

• Solve the following boundary value problem, with domain Ω = (0, L), analyti-
cally:

© Springer International Publishing AG 2018
T. I. Zohdi, A Finite Element Primer for Beginners, The Basics,
https://doi.org/10.1007/978-3-319-70428-9

125

126 Appendix E: Selected Computer Projects

d
dx

(

E du
dx

) = k2sin(2πkxL)

E = given constant = 0.1

k = given constant

L = 1

u(0) = Δ1 = given constant = 0

u(L) = Δ2 = given constant = 1

(E.1)

• Now solve this with the finite element method using linear equal-sized elements.
In order to achieve,

eN
def= ||u−uN ||E(Ω)

||u||E(Ω)
≤ T OL = 0.05,

||u||E(Ω)
def=

√

∫

Ω

du

dx
E
du

dx
dx

(E.2)

How many finite elements (N) are needed for

k = 1 ⇒ N =?
k = 2 ⇒ N =?
k = 4 ⇒ N =?
k = 8 ⇒ N =?
k = 16 ⇒ N =?
k = 32 ⇒ N =?

(E.3)

You should set up a general matrix equation and solve it using Gaussian elimina-
tion. Later we will use other types of more efficient solvers. Plot the numerical
solutions for N = 2, 4, 8, 16, ..., for each k, along with the exact solution. Also
make a plot of the eN for each k.

Remarks:You shouldwrite a general one-dimensional codewhere you specify the
number of elements. Your code should partition the domain automatically. However,
if you want to make the code more general (for future assignments), you should put
in the following features:

• element endpoint locations (different sized elements),
• the possibility for different material values for each element (E(x)).

Appendix E: Selected Computer Projects 127

E.3 Sample Project 2: Higher-Order Elements

• Consider the following boundary value problem, with domain Ω = (0, L):

d
dx

(

E du
dx

) = xk3cos(2πkxL)

E = 0.2

k = 12

L = 1

u(0) = Δ1 = given constant = 3

u(L) = Δ2 = given constant = −1

(E.4)

• Solve this with the finite element method using order p equal-sized elements. In
order to achieve

eN
def= ||u − uN ||E(Ω)

||u||E(Ω)

≤ T OL = 0.04,

||u||E(Ω)
def=

√

∫

Ω

du

dx
E
du

dx
dx

(E.5)

how many finite elements (N) are needed for

p = 1 ⇒ N =?
p = 2 ⇒ N =?
p = 3 ⇒ N =?

(E.6)

• Plot the numerical solutions for several values of N , for each p, along with the
exact solution.

• Plot eN as a function of the element size h for each p.
• Plot eN as a function of the number of degrees of freedom for each p.
• Determine the relationship between the error and the element size for each p.
• Note: Please be careful with the quadrature order...you will need higher order

Gauss rules for quadratic and cubic elements.

128 Appendix E: Selected Computer Projects

E.4 Sample Project 3: Potential and Efficient SolutionTechniques

• Solve the following boundary value problem, with domain Ω = (0, L), analyti-
cally:

d

dx

(

E(x)
du

dx

)

= xk3cos(
2πkx

L
)

E(x) = 10 di f f erent segments (see below)

k = 12, L = 1, u(0) = −0.3, u(L) = 0.7

(E.7)

For E

FOR 0.0 < x < 0.1 E = 2.5
FOR 0.1 < x < 0.2 E = 1.0
FOR 0.2 < x < 0.3 E = 1.75
FOR 0.3 < x < 0.4 E = 1.25
FOR 0.4 < x < 0.5 E = 2.75
FOR 0.5 < x < 0.6 E = 3.75
FOR 0.6 < x < 0.7 E = 2.25
FOR 0.7 < x < 0.8 E = 0.75
FOR 0.8 < x < 0.9 E = 2.0
FOR 0.9 < x < 1.0 E = 1.0

(E.8)

• Solve this with the finite element method using linear equal-sized elements. Use
100, 1000, and 10000 elements. You are to write a preconditioned Conjugate
Gradient solver. Use the diagonal preconditioning given in the notes. The data
storage is to be done element by element (symmetric), and the matrix vector
multiplication is to be done element by element.

• You are to plot the solution (nodal values) for each N .
• You are to plot

eN
def= ||u − uN ||E(Ω)

||u||E(Ω)

,

||u||E(Ω)
def=

√

∫

Ω

du

dx
E
du

dx
dx,

(E.9)

for each N .

Appendix E: Selected Computer Projects 129

• You are to plot

Potential energy = J (uN) (E.10)

for each N .
• You are to plot the number of PCG solver iterations for each N for a stopping

tolerance of 0.000001.
• Use a Gauss integration rule of level 5.
• Check your Conjugate Gradient generated results against a regular Gaussian

solver, for example the one available in MATLAB.

E.5 Sample Project 4: Error Estimation and Adaptive Meshing
Using the Exact Solution as a Test

• Consider the boundary value problem d
dx

(

E du
dx

) = f (x), E = 1, with domain
Ω = (0, L), L = 1, and solution u(x) = cos(10πx5).

• Compute the finite element solution uN to this problem using linear equal-sized
elements. Determine how many elements are needed in order to achieve

eN
def= ||u − uN ||E(Ω)

||u||E(Ω)

≤ T OL = 0.05 ,

||u||E(Ω)
def=

√

∫

Ω

du

dx
E
du

dx
dx

• Plot I versus AI , where

A2
I
def=

1
hI

||u − uN ||2E(ΩI)

1
L ||u||2E(Ω)

.

Here I is the element index, hI is the length of element I , and

||u||2E(ΩI)

def=
∫

ΩI

du

dx
E
du

dx
dx .

• Modify your code from HW 1 so that it can automatically refine the mesh the
following criterion:

• Refine the mesh (by dividing elements into two) until AI < T OLE for all I . Use
this criterion to refine your mesh, starting with N = 20 equal-sized elements:

– Determine how many elements are needed to achieve AI < T OLE = 0.05
for all I .

– Plot the final solution, together with the exact solution.

130 Appendix E: Selected Computer Projects

– Tabulate the final number of elements that fall into each of the initial 20 ele-
ments.

– Plot XI versus AI for the final solution (XI = position of node I).

E.6 Sample Project 5: 3D Formulations for Elasticity

Youare given a tubularmultiphase structure (Fig.E.1)with an elasticity of IE(x, y, z),
andwith dimensions shown in the figure. It is clamped on one end and externally trac-
tion loaded everywhere else, including on the interior surface. The small deformation
of the body is governed by (strong form):

∇ · (IE : ∇u) + ρb = 0 (E.11)

where IE and ρ are spatially variable and where b = b(x, y, z) is given data.

• Develop aweak form, providing all the steps and assumptions necessary. Carefully
define the spaces of approximation.

• Develop a finite elementweak form. Carefully define the spaces of approximation.
• Develop a finite element weak statement using the penalty method. Carefully

define the spaces of approximation.
• Derive the equations for element stiffness matrices (be explicit) and load vectors.

Thereafter, describe how the global stiffness matrix and load vector are generated,
using the penalty method. Use trilinear subspatial approximations. There are dif-
ferent kinds of loading on the surfaces, so be very explicit as to what each of the
individual stiffness matrices and right-hand-side vectors look like, as well as a
generic element that is not on the surface.

• Write a mesh generator. Explicitly explain how it works and, in particular, the
connectivity function. Use Nt elements in the thickness direction, Nc elements in

Fig. E.1 3D structure

Appendix E: Selected Computer Projects 131

the circumferential direction, and Nθ elements in the θ direction for each semi-
circular portion. For the given figure Nt = 3, Nc = 4, and Nθ = 8 generate the
mesh-show it.

• If one were to use a Conjugate Gradient solver, theoretically how many operation
counts would be needed to solve this problem for a mesh of Nt elements in the
thickness direction, Nc elements in the circumferential direction, and Nθ elements
in the θ direction

E.7 Sample Project 6: Implementation of the Finite Element
Method in 2D

• Solve the following boundary value problem, on an arch-shaped domain, using
the finite element method:

∇ · (K∇T) + f = 0,

T = T0 along θ = π

−K∇T · n = q0(r) along θ = 0

−K∇T · n = 0 along r = ri , ro

K = K1 for ||x − xc|| ≤ rc

K = K2 for ||x − xc|| > rc

These equations describe a thermal physics problem of the two-phase structure
that is shown in Fig.E.2.

• You are to generate a mesh of the domain for ri = 3 and ro = 4. Use Nr × Nθ

quadrilateral elements. For example, in Fig.E.3, Nr = 3 and Nθ = 12. Write
a finite element code to solve this problem with bilinear shape functions. For
elements that have material discontinuities use a 5× 5 Gaussian integration rule,
otherwise, use a 2 × 2 rule.

Fig. E.2 An arch

−k Τ.n
0

= q

−k Τ.n= 0

Τ = Τ0

cr

r

θr

r

i

o

x c

132 Appendix E: Selected Computer Projects

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1

56

2

1

2

67

3

2

3

78

4

3
5

9
10

6
4

6

10
11

7

5

7

11
12

8

6 9

13

14

10
7

10

14

15

11
8

11

15

16

12
9

13

17

18

14 1014

18

19

15 1115

19

20

16
12

17
21

22
18 1318

22

23

19 1419

23

24

20 15

21 25

2622
16

22 26

2723
17

23 27

28
24

18

25 29

3026
19

26 30

3127
20

27 31

32
28

21

29
33

34
30

22

30
34

35

31

23

31

35

36

32

24

33

37

38

34

25

34

38

39

35

26

35

39

40

36

27

37

41
42

38

28

38

42
43

39

29

39

43
44

40

30

41

45 46

42

31

42

46 47

43

32

43

47 48

44

33

45

49 50

46

34

46

50 51

47

35

47

51 52

48

36

x

y

Fig. E.3 The proposed mesh for the arch

• Solve the problem both by strictly enforcing the boundary conditions and by
using the penalty method on ΓT (the part of the boundary where the temperature
is prescribed). Explain how your choice of penalty parameter affects the results.

• To verify that your code works properly, solve this with k1 = k2 = 1, T0 = 100,
q0(r) = 40

r , and f (r, θ) = 80
r2
sin(2θ). Determine the exact solution for this

problem (Hint: the solution is independent of r). Include a plot of your solution
for Nr = 10 and Nθ = 80.

• Solve the problem with k1 = 10−3, k2 = 1, T0 = 110, q0(r) = 20
r , f (r, θ) =

40
r2
sin(2θ), rc = 0.40, and xc is given by (r = 3.5, θ = π/2). Include a plot of

your solution for Nr = 50 and Nθ = 400.

E.8 Sample Project 7:Time-Dependent Problems

Part 1: formulation

You are given a two-phase (two material) structure (Fig.E.4), comprised of a two
semicircular rings, with scalar diffusivity D(x, y, z) and with dimensions shown
in the figure. It is externally flux loaded on a portion of the top surface and one
end surface, while the other end surface has as specified concentration. All other

Appendix E: Selected Computer Projects 133

L x

zL

x

θ

r

y

θ
θ1

2

x

c(x,z,t)=specified

c .nD =f(r,
z

θ,t) =specified

c . n=g(x,z,t)=specifiedD

Fig. E.4 3D structure

surfaces are free of any “loading” (flux-free). The physics of the body is described
by a simplified version of the diffusion-reaction equation, which in strong form is:

∇ · (D∇c) − τc + f = 0, (E.12)

where D is a nonconstant, positive scalar function and where f = f (x, y, z) is given
data (sources).

• Now develop a weak form for the statement, providing all the steps and assump-
tions necessary.

• Develop a finite element weak statement. Carefully define the spaces of approxi-
mation.

• Develop a finite element weak statement using the penalty method. Carefully
define the spaces of approximation.

• Derive explicit equations for element stiffness matrices and load vectors. There-
after, describe how the global stiffness matrix and load vector are generated, using
the penalty method. Use trilinear subspatial approximations. There are different
kinds of loading on the surfaces, so be very explicit as to what each of the individ-
ual stiffness matrices and right-hand-side vectors look like, as well as a generic

134 Appendix E: Selected Computer Projects

element that is not on the surface. Also, pay attention to the fact that elements
may or may not have discontinuities when using Gaussian integration (consider
both cases).

• Using your mesh generator, modify it to handle this new problem. Explicitly
explain how it works and, in particular, the connectivity function. Use Nt elements
in the thickness direction, Nc elements in the circumferential direction, and Nθ

elements in the θ direction for each semicircular portion.
• If one were to use a Conjugate Gradient solver, theoretically how many operation

counts would be needed to solve this problem for a mesh of Nt elements in the
thickness direction, Nc elements in the circumferential direction, and Nθ elements
in the θ direction.

• Now consider the time-transient case. The body has the same boundary conditions
as before, with the initial condition that c(t = 0, x, y, z) = c0(x, y, z). The
governing equation is

∇ · (D∇c) − τc + f = ċ, (E.13)

Develop a finite element weak statement. Carefully define the spaces of approx-
imation. Use the finite difference approximation that we have used this semester
for the time-dependent term.

• Finally, given that this is a three-dimensional problem, with heterogeneous coef-
ficients, it is most likely you will need a large number of elements to solve it.
Suppose that your machine has only enough memory to allow you to solve a
wedge (sector) of 0 ≤ θ ≤ θ∗ << π degrees, but that you need to solve the entire
0 ≤ θ ≤ π problem. How would you break the problem and solve it? Give an
overall algorithm.

Part 2: Implementation in 1D

• Solve the following boundary value problem (L = 1)

∂c
∂t = ∂

∂x

(

D ∂c
∂x

)

− τc

D(x) = 10 di f f erent segments (see below)

τ (x) = 10 di f f erent segments (see below)

c(x = 0, t) = 0.5

D ∂c
∂x (x = L , t) = 5 × 10−6

c(x, t = 0) = 0.5 0 < x < L

(E.14)

Appendix E: Selected Computer Projects 135

with 100 elements (δx = 0.01) and set the total amount of time to be T = 6500 s.
Use an implicit (Backward Euler) time-stepping scheme. Solve with the following
time-step sizes: (I) δt = T

100 , (II)δt = T
1000 , and (III)δt = T

10000 with

For 0.0 < x < 0.1 D = 2.4 × 10−6

For 0.1 < x < 0.2 D = 2.0 × 10−6

For 0.2 < x < 0.3 D = 1.5 × 10−6

For 0.3 < x < 0.4 D = 0.6 × 10−6

For 0.4 < x < 0.5 D = 1.3 × 10−6

For 0.5 < x < 0.6 D = 0.14 × 10−6

For 0.6 < x < 0.7 D = 1.1 × 10−6

For 0.7 < x < 0.8 D = 2.2 × 10−6

For 0.8 < x < 0.9 D = 2.0 × 10−6

For 0.9 < x < 1.0 D = 1.5 × 10−6

(E.15)

For 0.0 < x < 0.1 τ = 1.2 × 10−3

For 0.1 < x < 0.2 τ = 0.8 × 10−3

For 0.2 < x < 0.3 τ = 0.3 × 10−3

For 0.3 < x < 0.4 τ = 1.4 × 10−3

For 0.4 < x < 0.5 τ = 1.15 × 10−3

For 0.5 < x < 0.6 τ = 0.75 × 10−3

For 0.6 < x < 0.7 τ = 0.35 × 10−3

For 0.7 < x < 0.8 τ = 0.85 × 10−3

For 0.8 < x < 0.9 τ = 1.25 × 10−3

For 0.9 < x < 1.0 τ = 2.0 × 10−3

(E.16)

• Clearly show the evolution of solution with time, together with the final time
solution. Also, comment on the effect of time-step size on the solution.

References

1. Malvern, L. (1968). Introduction to the mechanics of a continuous medium. New York: Prentice
Hall.

2. Gurtin, M. (1981). An introduction to continuum mechanics. New York: Academic Press.
3. Chandrasekharaiah, D. S., & Debnath, L. (1994). Continuum mechanics. San Diego: Academic

Press.

	Preface
	Contents
	List of Figures
	1 Weighted Residuals and Galerkin's Method for a Generic 1D Problem
	1.1 Introduction: Weighted Residual Methods
	1.2 Galerkin's Method
	1.3 An Overall Framework

	2 A Model Problem: 1D Elastostatics
	2.1 Introduction: A Model Problem
	2.2 Weak Formulations in One Dimension
	2.3 An Example
	2.4 Some Restrictions
	2.5 Remarks on Nonlinear Problems

	3 A Finite Element Implementation in One Dimension
	3.1 Introduction
	3.2 Weak Formulation
	3.3 FEM Approximation
	3.4 Construction of FEM Basis Functions
	3.5 Integration and Gaussian Quadrature
	3.5.1 An Example

	3.6 Global/Local Transformations
	3.7 Differential Properties of Shape Functions
	3.8 Post-Processing
	3.9 A Detailed Example
	3.9.1 Weak Form
	3.9.2 Formation of the Discrete System
	3.9.3 Applying Boundary Conditions
	3.9.4 Massive Data Storage Reduction

	3.10 Quadratic Elements

	4 Accuracy of the Finite Element Method in One Dimension
	4.1 Introduction
	4.2 The ``Best Approximation'' Theorem
	4.3 The Principle of Minimum Potential Energy
	4.4 Simple Estimates for Adequate FEM Meshes
	4.5 Local Mesh Refinement

	5 Iterative Solutions Schemes
	5.1 Introduction: Minimum Principles and Krylov Methods
	5.1.1 Numerical Linear Algebra
	5.1.2 Krylov Searches and Minimum Principles

	6 Weak Formulations in Three Dimensions
	6.1 Introduction
	6.2 Hilbertian Sobolev Spaces
	6.3 The Principle of Minimum Potential Energy
	6.4 Complementary Principles

	7 A Finite Element Implementation in Three Dimensions
	7.1 Introduction
	7.2 FEM Approximation
	7.3 Global/Local Transformations
	7.4 Mesh Generation and Connectivity Functions
	7.5 Warning: Restrictions on Elements
	7.5.1 Good and Bad Elements: Examples

	7.6 Three-Dimensional Shape Functions
	7.7 Differential Properties of Shape Functions
	7.8 Differentiation in the Referential Coordinates
	7.8.1 Implementation Issues
	7.8.2 An Example of the Storage Scaling

	7.9 Surface Jacobians and Nanson's Formula
	7.10 Post-Processing

	8 Accuracy of the Finite Element Method in Three Dimensions
	8.1 Introduction
	8.2 The ``Best Approximation'' Theorem
	8.3 Simple Estimates for Adequate FEM Meshes Revisited for Three Dimensions
	8.4 Local Error Estimation and Adaptive Mesh Refinement
	8.4.1 A Posteriori Recovery Methods
	8.4.2 A Posteriori Residual Methods

	9 Time-Dependent Problems
	9.1 Introduction
	9.2 Generic Time Stepping
	9.3 Application to the Continuum Formulation

	10 Summary and Advanced Topics
	Appendix A Elementary Mathematical Concepts
	A.1 Vector Products
	A.2 Vector Calculus
	A.3 Interpretation of the Gradient of Functionals
	A.4 Matrix Manipulations
	A.4.1 Determinant
	A.4.2 Eigenvalues
	A.4.3 Coordinate Transformations

	Appendix B Basic Continuum Mechanics
	B.1 Deformations
	B.2 Equilibrium/Kinetics of Solid Continua
	B.2.1 Postulates on Volume and Surface Quantities
	B.2.2 Balance Law Formulations

	B.3 Referential Descriptions of Balance Laws and Nanson's Formula
	B.4 The First Law of Thermodynamics/An Energy Balance
	B.5 Linearly Elastic Constitutive Equations
	B.5.1 The Infinitesimal Strain Case
	B.5.2 Linear Elastic Constitutive Laws
	B.5.3 Material Component Interpretation

	B.6 Related Physical Concepts
	B.6.1 Heat Conduction
	B.6.2 Solid-State Diffusion-Reaction
	B.6.3 Conservation Law Families

	Appendix C Convergence of Recursive Iterative Schemes
	Appendix D Selected in-Class Exam Problems
	D.1 Sample Problem 1
	D.2 Sample Problem 2
	D.3 Sample Problem 3
	D.4 Sample Problem 4
	D.5 Sample Problem 5
	D.6 Sample Problem 6
	D.7 Sample Problem 7
	D.8 Sample Problem 8
	D.9 Sample Problem 9
	D.10 Sample Problem 10
	D.11 Sample Problem 11
	D.12 Sample Problem 12
	D.13 Sample Problem 13
	D.14 Sample Problem 14
	D.15 Sample Problem 15
	D.16 Sample Problem 16
	D.17 Sample Problem 17

	Appendix E Selected Computer Projects
	E.1 Assignment Format
	E.2 Sample Project 1: The Basics of FEM
	E.3 Sample Project 2: Higher-Order Elements
	E.4 Sample Project 3: Potential and Efficient Solution Techniques
	E.5 Sample Project 4: Error Estimation and Adaptive Meshing Using the Exact Solution as a Test
	E.6 Sample Project 5: 3D Formulations for Elasticity
	E.7 Sample Project 6: Implementation of the Finite Element Method in 2D
	E.8 Sample Project 7: Time-Dependent Problems

