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Abstract. The RDF Stream Processing (RSP) is gaining momen-
tum. The RDF stream data model is progressively adopted and many
SPARQL extensions for continuous querying are converging to a unified
RSP query language. However, the RSP community still has to investi-
gate when transforming data streams in RDF streams pays off. In this
paper, we report on several experiments on a revolutionized version of our
Streaming Linked Data framework (namely, SLD Revolution). SLD Rev-
olution (i) operates on time-stamped generic data items (events, tuples,
trees and graphs), and (ii) it applies a lazy-transformation approach, i.e.
it processes data according to their nature as long as possible. SLD Rev-
olution results to be a cheaper (it uses less memory and has a smaller
CPU load), faster (it reaches higher maximum input throughput), yet
more accurate (it provides a smaller error rate in the results) solution
than its ancestor SLD.

1 Introduction

RDF Stream Processing (RSP) is gaining momentum. The RSP W3C community
group1 has just reached 100 members. It is actively working on a report that
will present the RDF Stream data model, the possible RDF Stream serializations
and the syntax and semantics of the RSP-QL query language.

We started using RSP in 2011, when we won the Semantic Web Challenge
with Bottari [1]. A key ingredient of our solution was the Streaming Linked
Data framework [2] (SLD). SLD is a middleware that extends RSP engines with
adapters, decorators and publishers. All these components observe and push
RDF streams to a central RDF stream bus. The adapters are able to ingest
any kind of external data, transforming them into RDF streams modeled as
time-stamped RDF Graphs and push them to the bus. A network of C-SPARQL
queries [3] analyzes the RDF streams in the bus, elaborate them, and push
the results to other internal streams. Decorators can semantically enrich RDF
streams using user defined functions (e.g., in Bottari to add the opinion that a
social media user expresses about a given named entity in a micro-post). Pub-
lishers push data to the bus encoded in the Streaming Linked Data format [4].

1 https://www.w3.org/community/rsp/.
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SLD it is currently a key component of Fluxedo2, i.e. a commercial solution
for monitoring topics on social media. A typical deployment of SLD in Fluxedo
processes in real-time thousands of micro-posts per minute on a 50 e /month
machine in the cloud (8 GB of RAM and 4 cores), providing semantic analysis
and sophisticated visualizations.

In five years of SLD usage, we learned that using RDF streams is valuable
when (i) data are naturally represented as graphs, i.e. micro-posts in the larger
social graph, and when (ii) the availability of popular vocabularies makes easy
writing adapters that semantically annotate the incoming data, e.g. we wrote
adapters that annotated streams from the major social networks using SIOC [5].

However, we have also found out several weaknesses of the approach:

– RDF streams cannot be found in the wild, yet. JSON is largely used in prac-
tice (e.g., Twitter Streaming APIs3 and W3C activity stream 2.0 working
draft4).

– The results of C-SPARQL queries are often relational and forcing them into an
RDF streams is not natural, i.e., a user would naturally use the REGISTER
QUERY ... AS SELECT ... form instead of REGISTER STREAM ... AS
CONSTRUCT ... one. It takes three triples to state how many times a hashtag
appears in the micro-posts observed in 1 min, while the tuple 〈timestamp,
hashtag, count〉 is more succinct.

– It is harder to express some computation using C-SPARQL over RDF streams
and graphs than writing a path expression over JSON; or writing an SQL
query over relations; or writing an EPL statement over events.

– SLD builds on the C-SPARQL engine and, thus, shares with it some short-
comings, i.e. it gives incorrect answers when it is overloaded engine [6,7].

In this paper, we challenge the hypothesis that RDF streams should play such
a central role in SLD. We investigate if (i) using time-stamped generic data items
(instead of focusing only time-stamped RDF graphs) and (ii) processing them
according to their event-, tuple-, tree- and graph-based nature, offer the opportu-
nity to engineer a cheaper (uses less memory and CPU), faster (it reaches higher
maximum input throughput) yet more accurate (i.t. with a smaller error in the
results) version of SLD that we called SLD Revolution. We bring experimental
evidence that supports the design decision of revolutionizing SLD in those two
directions. Using our experience on social media monitoring, we design a set of
experiments to evaluate our hypothesis: we chose the expected maximum rate
of micro-posts per minute and the machine to deal with the worst-case scenario;
by reducing the available memory and processor time requirement we push the
overload status to an higher input rate.

The remainder of the paper is organized as follows. Section 2 introduces the
state-of-the-art in stream processing with a focus on RSP. Section 3 presents SLD
Revolution and its new processing model. Sections 4 and 5, respectively, describe
2 http://www.fluxedo.com/.
3 https://dev.twitter.com/streaming/overview.
4 http://www.w3.org/TR/activitystreams-core/.
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the settings and the results of the experiments we run. Finally, in Sect. 6, we
conclude and present our future work.

2 State of the Art

Data model. RSP extends the RDF data model and the SPARQL query model
in order to take into account the streaming nature of the data.

A relational data stream [9] S is defined as an unbounded sequence of
time-stamped data items (di, ti): S = (d1, t1), (d2, t2), . . . , (dn, tn), . . . , where
di is a relation and ti ∈ N the associated time instant. Different approaches
constrain ti so that it holds either ti ≤ ti+1, i.e. stream items are in a non-
decreasing time order, or ti < ti+1, i.e. stream items are in strictly increasing
time order.

An RDF Stream is defined in the same way, but di is either an RDF
statement (as done in most of the RSP approaches [3,10–12]) or an RDF graph
(as done in SLD [2] and proposed by the RSP W3C community). An RDF
statement is a triple (s, p, o) ∈ (I ∪ B) × (I) × (I ∪ B ∪ L), where I is the set of
IRIs, B is the set of blank nodes and L is the set of literals. An RDF graph is a
set of RDF statements.

Processing Model. Also the processing model of RSP [3,10,11] inherits
from the work done in the database community. In particular, it is inspired by
the CQL stream processing model (proposed by the DB group of the Stanford
University [8]) which defines three classes of operators (Fig. 1.a):

– stream-to-relation operators are able to transform streams in relations.
Since a stream is a potentially infinite bag of time-stamped data items, those
operators extract finite bags of data enabling query answering. One of the
most studied operator of this class is the sliding window that chunks the
incoming streams into portions of length ω and slides of a length β

– relation-to-relation operators transform relations in other relations. Rela-
tional algebraic expressions are a well-known cases of this class of operators.

– relation-to-stream operators are optional and allow to output the results
as a part of a stream. Alternatively, a time-varying relation is provided.

Figure 1.b presents the CQL model adapted to the RSP case. The stream and
the relation concepts are mapped to RDF streams and to set of mappings (using

)b()a(

Fig. 1. The CQL model, cf. [8], and its adaptation for RDF stream processing
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the SPARQL algebra terminology), respectively. To highlight the similarity of
the RSP operators [12] to the CQL ones, similar names are used: S2R, R2R
and R2S to indicate the operators respectively analogous to stream-to-relation,
relation-to-relation and relation-to-stream operators.

RSP Middlewares. In order to ease the task of deploying the RSP Engine
in real-world applications, three middleware were designed: the Linked Stream
Middleware [13], a semantically enabled service architecture for mashups over
streaming and stored data [14] and our SLD [2].

The three approaches fulfill similar requirements for the end user. They offer
extensible means for real-time data collection, for publishing and querying col-
lected information as Linked Data, and for visualizing data and query results.
They differ in the approach. Our SLD and the Linked Stream Middleware take
both a data driven approach, but they address in a different way the non-
functional requirements; while SLD is an in-memory solution for stream process-
ing of RDF streams with limited support for static information, the Linked
Stream Middleware is a cloud-based infrastructure to integrate time-dependent
data with other Linked Data sources. The middleware described in [14], instead,
takes a service oriented approach, thus it also includes service discovery and
service composition among its features.

Fig. 2. The architecture of the streaming linked data framework [2].

Figure 2 illustrates the architecture of SLD that offers: (i) a set of adapters
that transforms heterogeneous data streams in RDF streams attaching to each
received element a time-stamp that identifies the ingestion time (e.g., a stream
of micro-posts in JSON as an RDF stream using the SIOC vocabulary [5] or
a stream of weather sensor observations in XML using the Semantic Sensor
Network vocabulary [15]); (ii) a publish/subscribe bus to internally manage RDF
streams, (iii) some facilities to record and replay RDF streams; (iv) a set of
user defined components to decorate an RDF stream (e.g., adding sentiment
annotations to micro-posts); (v) a wrapper for the C-SPARQL Engine [3] that
allows to create networks of C-SPARQL queries, and (vi) a linked data server
to publish results following the Streaming Linked Data Format [4].

3 SLD Revolution and Its Processing Model

SLD Revolution adopts generic programming [16] where continuous processing
operators are expressed in terms of types to-be-specified-later. This idea - which
was pioneered in [17] - can be adapted to stream processing by choosing to
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model the element di in the stream S as time-stamped generic data items that
are instantiated when needed for specific types provided as parameters.

Figure 3 illustrates the SLD Revolution processing model. The stream and
the relation concepts of CQL are mapped to generic data streams S〈T 〉 and
to instantaneous generic data items I〈T 〉.

Generic
streams

<T >

Generic
instantaneous

<T >

Fig. 3. The processing model of the SLD revolution framework.

In line with CQL and RSP-QL, SLD Revolution proposes three classes of
operators:

– The stream-to-instantaneous S2I 〈T 〉 operators transform the infinite
generic data stream S〈T 〉 in to a finite bag of instantaneous generic
data items I〈T 〉.

– The instantaneous-to-instantaneous I2I 〈T , T ′〉 operators transform
instantaneous generic data items I〈T 〉 into other instantaneous
generic data items I〈T ′〉, where T and T ′ can be of the same type or
of different types. For instance, a C-SPARQL query of the type REGISTER
QUERY ... AS SELECT ... takes in input time-stamped RDF graphs and
generates as output time-stamped relations.

– The instantaneous-to-stream I2S 〈T 〉 operators transform instanta-
neous generic data items I〈T 〉 into a generic data stream S〈T 〉.

Generic Stream Bus 

Recorder Re-player Processor Decorator 

Receiver Translator Stream Stream 

H
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P

H
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     Source                                                        Streaming Linked Data Revolution Server                                                          Sink 

Fig. 4. The architecture of the SLD revolution framework. In gray the components
that were redesign to adopt the generic programming approach.

SLD Revolution generalizes SLD architecture (cf. Fig. 4 with Fig. 2). The
Generic Stream Bus replace of the RDF stream bus. The receivers replace the
adapters. As the adapters they allow to ingest external data streams, but they
no longer transform the received events in time-stamped RDF graphs. Data
items remain in their original form, only the ingestion time is added, postponing
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the transformation to the moment when it is required (we name this approach
lazy transformation). The processors substitute the C-SPARQL-based analyz-
ers. The C-SPARQL engine remains as one of the possible processors, but SLD
Revolution can be extended with any continuous processing engine. The cur-
rent implementation includes the Complex Event Processor Esper, the SPARQL
Engine Jena-ARQ that operates on time-stamped RDF graphs one at a time,
and a custom JSON path expression evaluation engine built on gson (https://
github.com/google/gson). Translators generalize publishers, which are specific
for the Streaming Linked Data format [4], allowing SLD Revolution to output
in alternative formats.

4 Experimental Settings

In this Section, we present the experimental settings of this work. As domain we
chose Social Network analysis as done by the Linked Data Benchmark Council
(LDBC) in the SNBench5. We first explain the type of data we used for our
experiments. Then, we explain how the data were sent to SLD and SLD Revolu-
tion. We describe the two continuous processing pipelines that we registered in
SLD and in SLD Revolution. Finally, we state which key performance indicators
(KPIs) we measure and how.

Input Data. SLD and SLD Revolution receive information in the same way,
they both connect to a web socket server and handle JSON-LD files.

1 {"@context": { ... }, "@type": "Collection", "totalItems": 1,
2 "prov:wasAssociatedWith": "sr:Twitter",
3 "items":[{
4 "@type":"Post",
5 "published":"2016 -04 -26 T15 :40:03.054+02:00",
6 "actor":{"@type":"Account", "@id":"user:1", "sioc:name":"

@streamreasoning"},
7 "object":{
8 "@type":"Content", "@id":"post:2", "alias":"http :// .../2",
9 "prov:wasAssociatedWith":"sr:Twitter",

10 "sioc:content":"You ARE the #socialmedia!",
11 "dct:language":"en",
12 "tag":[{ "@type":"Tag", "@id":"tag:3", "displayName":"socialmedia"}]}
13 }]}

Listing 1. JSON representation of a Twitter micro-post. Due to the lack of space
we omitted the context declaration that contains the namespace.

In Listing 1, we propose a JSON-LD serialization of the Activity Stream rep-
resentation of a tweet as it was injected during the experiments in both systems.
The JSON-LD representation of an Activity Stream is a Collection (specified by
@type property) composed by one or more social media items. The Collection
is described with two properties, i.e., totalItems and prov:wasAssociatedWith,
which tell respectively the number of items and the provenance of the items.
The collection in the example contains a Post created on 2016-04-26 (published
property) by an actor (Line 6) that produce the object (Lines 7-13). The Actor

5 http://www.ldbcouncil.org/benchmarks/snb.

https://github.com/google/gson
https://github.com/google/gson
http://www.ldbcouncil.org/benchmarks/snb
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has a unique identifier @id, a displayName, a sioc:name and a alias. The Object
has a sioc:content, a dct:language, zero or more tags, and optionally a url and a
to to represent, respectively, links to web pages and mentions of other actors.

1 <post:2> a sma:Tweet ;
2 dcterms:created "2016 -04 -26 T15 :40:03.054+02:00"^^xsd:dateTime ;
3 dcterms:language "en"^^xsd:string ;
4 sioc:content "You ARE the #socialmedia!"^^xsd:string ;
5 sioc:has_container "Twitter"^^xsd:string ;
6 sioc:has_creator <user:1> ;
7 sioc:id "2"^^xsd:string ;
8 sioc:link "http :// .../status/2"^^xsd:string ;
9 sioc:topic <tag:3> .

10 <tag:3> a sioct:Tag ;
11 rdfs:label "socialmedia"^^xsd:string .
12 <user:1> a sioc:UserAccount ;
13 sioc:account_of "StreamReasoning"^^xsd:string ;
14 sioc:creator_of <post:2> ;
15 sioc:id "1"^^xsd:string ;
16 sioc:name "@streamreasoning"^^xsd:string .

Listing 2. RDF N3 representation of a Twitter micro-post

Listing 2 shows the RDF produced by the SLD adapter in transforming the
JSON-LD in Listing 1. The translation operation exploits well known vocabu-
laries, in particular sioc to represent the online community information, prov to
track the provenance of an item and dcterms to represents information about
the object.

Sending data. A test consists of sending a constant amount of synthetic
data using the JSON-LD serialization presented in Listing 1. The data is sent
in chunks three times per minute (i.e. at the 10th, the 30th and the 50th seconds
of the minute). Each chunk contains the same amount of posts. We tested the
configuration for different rates: 1500 posts per minute (i.e., three chunks of 500
posts), 3000 posts per minute, 6000 posts per minute, 9000 posts per minute,
12000 posts per minute and 18000 posts per minute.

The rates and and the input methodology were chosen based on our experi-
ences on social monitoring (see Sect. 1). They test a normal situation for SLD
(1500 and 3000 posts per minutes) as well as situations that we know to overload
SLD (more than 6000 posts per minute).

Pipelines. We tested SLD and SLD revolution with different pipelines:

– the area chart pipeline computes the number of tweets observed over time.
It uses a 15 min long window that slides every minute. The results can be
continuously computed (i) using a generic sliding window operator, which
works looking only to the time-stamps of the data items in the generic stream,
and (ii) accessing with a path expression the totalItems property in the JSON-
LD file, i.e., the number of items in the collection.

– the bar chart pipeline counts how often hashtags appear in the tweets received
in the last 15 min. As the area chart pipeline, the window slides every minute.
In this second pipeline, RDF streams are adequate and it is convenient to
write a C-SPARQL query that counts the number of times each hashtag
appears.
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The two pipelines are coded in SLD and SLD Revolution in two different
ways. SLD performs the transformations of JSON-LD in RDF by default, on
all the input data, independently from the task to perform. SLD Revolution
keeps the data in its original format as much as possible, i.e., it performs lazy
transformations.

Fig. 5. SLD pipeline

SLD Pipelines. Figure 5 presents the two pipelines in SLD. The input data
are translated in RDF as soon as they enter the pipelines. The computations
for the area chart and for the bar chart (see the part marked with A and B )
are composed by the same type of components and share the new RDF stream
translated by the Adapter.

The pipeline A uses two C-SPARQL queries. The first (see Listing 3) applies
a tumbling window of 1 min6 and counts the tweets.

The second aggregates the results from the first query using a 15 min time
window that slides every minute (see Listing 4).

1 REGISTER STREAM presocialstr AS
2 CONSTRUCT { ?id sma:twitterCount ?twitterC }
3 FROM STREAM <http :// .../socialstr > [RANGE 1m STEP 1m]
4 WHERE { SELECT (uuid() AS ?id) ?twitterC
5 WHERE { SELECT (COUNT (DISTINCT ?mp) AS ?twitterC)
6 WHERE { ?mp a sma:Tweet } } }

Listing 3. C-SPARQL pre-query for the area chart that applies a tumbling window
of 1min and counts the tweets.

1 REGISTER STREAM ac AS
2 CONSTRUCT { ?uid sma:twitterCount ?totTwitter ; sma:created_during ?

unixTimeFrame }
3 FROM STREAM <http :// .../presocialstr > [RANGE 15m STEP 1m]
4 WHERE {
5 SELECT (uuid() AS ?uid) ?unixTimeFrame (SUM(? twitter) AS ?totTwitter)
6 WHERE { ?id sma:twitterCount ?twitter ; sma:created_during ?timeFrame .
7 ?timeFrame a sma:15 mTimeFrame ; sma:inUnixTime ?unixTimeFrame

}
8 GROUP BY ?unixTimeFrame }

Listing 4. C-SPARQL query for the area chart that aggregates the results from
the query in Listing 3 using a 15min time window that slides every minute.

6 A tumbling window is a sliding window that slides for its length.
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It is worth to note that the first query is an important optimization in terms
of memory consumption. It avoids the engine to keep 15 min of tweets to only
count them. In SLD we often use this design pattern, we call this first query a
pre-query.

Pipeline B also exploits this design; it applies a pre-query to reduce the
amount of data and then a query to produce the final result.

It is also worth to note that all the C-SPARQL queries use the form REG-
ISTER STREAM ... AS CONSTRUCT ..., because RDF streams are the only
means of communication between SLD components.

The last components of both pipelines are publishers that make the results
available to external process outside SLD. In this case, the publisher writes JSON
files on disk.

Fig. 6. SLD revolution pipeline

SLD Revolution Pipelines. Figure 6 presents the pipelines in SLD Revo-
lution. As for SLD, the pipeline A is for the area chart, while B is for the bar
chart. The first component is no longer an adapter. The data directly enter SLD
revolution in JSON-LD format. The first query is a generic 1 min long tumbling
window implemented with the EPL statement in Listing 5. FORCE UPDATE and
START EAGER tells the stream processing engine, respectively, to emit also empty
reports and to start processing the window as soon as the query is registered
(i.e., without waiting for the first time-stamped data item to arrive). It is worth
to note that this query exploits the event-based nature of the generic stream
it is observing; it does not inspect the payload of the events, it only uses their
time-stamps.

select * from GenericEvent.win:time_batch (1\,min , "FORCE_UPDATE ,
START_EAGER")

Listing 5. The generic window query in common to both the pipelines in SLD
Revolution

The FORCE UPDATE flow control keyword instructs the view to post an
empty result set to listeners if there is no data to post for an interval. When
using this keyword the irstream keyword should be used in the select clause to
ensure the remove stream is also output. Note that FORCE UPDATE is for
use with listeners to the same statement and not for use with named windows.
Consider output rate limiting instead.
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The START EAGER flow control keyword instructs the view to post empty
result sets even before the first event arrives, starting a time interval at statement
creation time. As when using FORCE UPDATE, the view also posts an empty
result set to listeners if there is no data to post for an interval, however it starts
doing so at time of statement creation rather then at the time of arrival of the
first event.

As explained in Sect. 3, processors are the central components of SLD Revo-
lution. They can listen to one or more generic streams, compute different opera-
tions and push out a generic streams. The type of the input and output streams
can be different. The two pipelines uses different processors (e.g. RDF translator,
windower and SPARQL).

SLD Revolution maintains the data format as long as possible in order to
reduce the overhead of the translations. It can exploit the tree-based nature of
JSON-LD. In pipeline A, it exploits a path expression data to extract totalItems,
i.e., the number of items in each collection, from the time-stamped JSON-LD
items in the generic stream it listens to. It outputs a tuple 〈timeframe,count〉 that
is aggregated every minute over a window of 15 min using an EPL statement.

The Pipeline B of SLD Revolution translate JSON-LD in RDF in order to
extract information about the hashtags. As for the pipeline B of SLD, we use
a pre-query design pattern to reduce the amount of data. A SPARQL proces-
sor applies the SELECT query in Listing 6 to every data-item in the generic
stream it listens to and pushes out a stream of tuples 〈hashtagLabel,count〉. The
relational stream is then aggregated with an esper processor with a 15 min time
window that slides every 1 min (see Listing 7).

1 SELECT ?htlabel (COUNT(DISTINCT (? mpTweet)) AS ?htTweetCount)
2 WHERE { ?mpTweet a sma:Tweet ; sioc:topic ?tweetTopic .
3 ?tweetTopic a sioctypes:Tag ; rdfs:label ?htlabel }
4 GROUP BY ?htlabel
5 ORDER BY desc(? htTweetCount)

Listing 6. SPARQL pre-query for the bar chart

select htlabel , sum(count) as sumHt from HTCountEvent.win:time (15\,min)
group by htlabel output snapshot every 1\,min

Listing 7. EPL query for the bar chart

KPIs. As key performance indicators (KPIs), we measure the resources con-
sumption of the two systems and the correctness of the results. For the resource
consumption we measure every 10 seconds: (i) the CPU load of the system thread
in percent, (ii) the memory consumption of the thread in megabytes and (iii) the
memory consumption of the Java Virtual Machine (JVM). For the correctness,
we compared the computed results with the expected results. Being the input a
constant flows of tweets that only differ for the ID, the area chart is expected
to be flat and the bar chart is expected to count exactly the same number of
hashtags every minute.
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Fig. 7. An overview of the experimental results; larger bubbles means greater % errors.

5 Evaluation Results

Figure 7 offers an overview of the results of the experiments. The full results are
reported at the end of this section in Fig. 10. On the X axis we plot the median
of the CPU load in percent, while on the Y axis we plot the memory allocated
by the engine thread. The size of the bubble maps the median of the error of the
area chart. Bubbles in the lower left corner correspond to the experiment where
we sent 1500 tweets per minute.

Increasing the throughput results in more memory consumption and CPU
load for both systems. However, not SLD Revolution consumes less memory than
SLD and occupies less CPU. Moreover, SLD Revolution presents a linear incre-
ment for both these KPIs, while the resource usage for SLD grows exponentially
with the throughput. Also the error in the results increases with the throughput:
SLD already shows an error greater than 3% in the bar chart at 3000 tweets per
minutes and in the area chart at 9000 tweets per minute; SLD Revolution is
faster - i.e. it reaches higher maximum input throughput - and more accurate –
i.e. it reaches 3% error level only for 18000 tweets per minutes, providing more
precise results than SLD.

Figure 8 presents the recorded time-series for CPU load and memory usage in
both systems. The memory usage graphs contains two different time series. The
blue one represents the memory usage of the system thread, while the orange
one shows the total memory usage for the JVM.

The memory usage of the system thread accounts for all the components and
data in the pipeline. Notably, when the system under testing is not overloaded,
the memory usage is constant over time, while when the system is overloaded
it grows until the system crashes. The total memory usage of the JVM shows,
instead, the typical pattern of the garbage collector that lets the JVM memory
grow before freeing it. Also in this case, when the system it is overloaded, the
garbage collector fails to free the memory.

During the experiments the median of the memory used by SLD spans from
115 MB, when loaded with at 1500 posts/min, to 1.6 GB, when loaded with
18000 posts/min. For SLD Revolution, instead, it spans from 44 MB to 511.5 MB
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Fig. 8. Memory and CPU usage over time

in the same load conditions. The experimental results clearly shows that SLD
Revolution consumes (in average) three times less memory than its ancestor.

The same considerations can be proposed for the CPU load. The median of
the CPU load spans from 2% to 10% for SLD Revolution, while it spans from
10% to 39.5% for SLD. SLD Revolution consumes in average 4 time less CPU
time than SLD. Moreover, offers higher level of stability for both the parameters
in all the experiments. The memory usage and the CPU loads clearly explode
at higher input rate and allow the machine to produce results for a higher load
in input.

The correctness results are summarized in Fig. 9. As explained in Sect. 4, the
percentage of errors is computed by comparing the results for each time interval
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Fig. 9. Area chart and bar chart errors distributions

with the expected ones. The X axis of each plot shows the percentage of error;
it ranges from 0% to 100%. The Y axis is the percentage of results with that
error; it also ranges from 0% to 100%. A bar as tall as the Y axis in the left side
of the graph means that all results where correct. The smaller that bar is and
the greater the number of bars to the right is, the more errors were observed.

In general, the results shows that SLD Revolution is more accurate (the
result error is smaller) than SLD. For the area chart the distribution shows that
SLD Revolution percentage of error is very low when the input throughput is
between 1500 posts/min and 9000 posts/min. When it is higher (i.e., 12000 and
18000 posts/min) also SLD Revolution starts suffering and percentage of errors
starts growing. For SLD, errors are present even at lower input rate, the graph
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13

Fig. 10. The experimental results.

shows that the error distribution starts moving to the right at 6000 posts/min.
Similar consideration can be proposed for the bar chart error distribution. The
degradation of performance of SLD starts a very low rate, a substantial presence
of errors around 7% can be seen with 6000 posts/min in input.

Figures 8 and 9 show the deep correlation between resources usage and errors.
Clearly, a growing input throughput drives the systems to be less reliable. For
both the versions of the SLD framework (SLD Revolution and SLD) the cor-
rectness of the results decreases as soon as the machine is overloaded and the
resources usage starts rising out of control.

6 Conclusions and Future Works

In our future work, we intend: (i) to empirically demonstrate the value of
using SLD Revolution for all our deployments of Fluxedo, and (ii) to investigate
if SLD Revolution can be the target platform for a new generation of Ontol-
ogy Based Data Integration [18] system for Stream Reasoning [19]. This system
could have the potential to tame the velocity and variety dimension of Big Data
simultaneously.

As for the former, we first intend to stress test SLD Revolution using work-
loads that resemble reality. Then, we aim at putting it at work in parallel to
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SLD in real-world deployments. Once we will have collected enough evidence
that SLD Revolution is always cheaper faster yet more accurate than SLD, we
will start using it for all our deployments.

As for the latter, we aim at further investigating the generic processing model
presented in Sect. 3. We are defining an algebra able to capture the semantics of
complex stream processing applications that need to integrate a variety of data
sources. The current sketch of this algebra uses S2I and I2S operators from CQL
[8] but keeping them generic w.r.t. the payloads. It uses SPARQL 1.1 algebra as
I2I operators that take in input graph-based payloads and generate in output
either graph-based or tuple-based payloads. The relational algebra will cover the
I2I transformations of tuple-based payloads. We are studying the application of
R2RML [20] for formulating mappings that works as I2I operators. Indeed,
R2RML allows to write mapping from relational data to RDF; more generally,
I2I operators takes in input tuple-based payloads and output graph-based ones.
We still need to choose an algebra for transforming tree-based payloads.

In our opinion, the grand challenge is how to fit all those formal elements
in a coherent framework that allows a system to automatically decide which is
the latest moment for transforming data (i.e., introducing the concept of lazy
transformation) and to perform optimization such as introducing the pre-query
that we put in all the pipelines illustrated in Sect. 4.

When the work on this formally defined generic stream processing model will
be completed, we will be able to start investigating how to extend mapping lan-
guages like R2RML7 and, potentially, also ontological languages in order to make
them time-aware [21] while keeping the whole computational problem tractable.

Acknowledgement. We thank the reviewers of the 2nd RDF Stream Processing
Workshop co-located with ESWC 2017 for their valuable comments. They allowed
us to refine this version of [22] for the ESWC 2017 workshops post-proceedings.
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