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Abstract. In practice, software testing has been the established method
for finding bugs in programs for a long time. But in the last 15 years,
software model checking has received a lot of attention, and many suc-
cessful tools for software model checking exist today. We believe it is
time for a careful comparative evaluation of automatic software test-
ing against automatic software model checking. We chose six existing
tools for automatic test-case generation, namely AFL-fuzz, CPATiger,
Crest-ppc, FShell, Klee, and PRtest, and four tools for software model
checking, namely Cbmc, CPA-Seq, Esbmc-incr, and Esbmc-kInd, for the task
of finding specification violations in a large benchmark suite consisting
of 5 693 C programs. In order to perform such an evaluation, we have
implemented a framework for test-based falsification (TBF) that executes
and validates test cases produced by test-case generation tools in order
to find errors in programs. The conclusion of our experiments is that
software model checkers can (i) find a substantially larger number of bugs
(ii) in less time, and (iii) require less adjustment to the input programs.

1 Introduction
Software testing has been the standard technique for identifying software bugs
for decades. The exhaustive and sound alternative, software model checking,
is believed to be immature for practice. Some often-named disadvantages are
the need for experts in formal verification, extreme resource consumption, and
maturity issues when it comes to handling large software systems.

But are these concerns still true today? We claim that the answer is No,
and show with experiments on a large benchmark of C programs that software
model checkers even find more bugs than testers. We found it is time for a
comparative evaluation of testing tools against model-checking tools, motivated
by the success of software model checkers as demonstrated in the annual In-
ternational Competition on Software Verification (SV-COMP) [4], and by the
move of development groups of large software systems towards formal verification,
such as Facebook 1, Microsoft [2, 44], and Linux [38].

Our contribution is a thorough experimental comparison of software testers
against software model checkers. We performed our experimental study on
5 693 programs from a widely-used and state-of-the-art benchmarking set.2 To
represent the state of the art in terms of tools, we use AFL-fuzz, CPATiger,
1 http://fbinfer.com/ 2 https://github.com/sosy-lab/sv-benchmarks
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Crest-ppc, FShell, Klee, and PRtest as software testers, and Cbmc, CPA-Seq,
Esbmc-incr, and Esbmc-kInd as software model checkers.3 The goal in our study
is to evaluate the ability to reliably find specification violations in software. While
the technique of model checking was originally developed as a proof technique
for showing formal correctness, rather than for efficiently finding bugs, this study
evaluates all tools exclusively against the goal of finding bugs.

To make the test generators comparable, we developed a unifying framework
for test-based falsification (TBF) that interfaces between input programs, test
generators, and test cases. For each tester, the infrastructure needs to (a) prepare
the input program source code to match the input format that the tester expects
and can consume, (b) run the tester to generate test cases, (c) extract test vectors
from the tester’s proprietary format for the produced test cases, and (d) execute
the tests using a test harness to validate whether the generated test cases cover
the bug in the program under test (i.e., whether at least one test case exposes
the bug). If a bug is found, the framework outputs a witnessing test case in two
different, human- and machine-readable formats: (1) a compilable test harness
that can be used to directly provoke the bug in the program through execution
and (2) a violation witness in a common exchange format for witnesses [7], which
can be given to a witness validator to check the specification violation formally
or by execution. This allows us to use input programs, produce executable
tests, and check program behavior independently from a specific tester’s quirks
and requirements. We make the following contributions:

• Our framework, TBF, makes AFL-fuzz, CPATiger, Crest-ppc, FShell,
Klee, and PRtest applicable to a large benchmark set of C programs, without
any manual pre-processing. It is easily possible to integrate new tools. TBF
is available online and completely open-source.4
• TBF provides two different, human-readable output formats for test cases

generated by AFL-fuzz, CPATiger, Crest-ppc, FShell, Klee, and PRtest,
and can validate whether a test case describes a specification violation
for a program under test. Previously, there was no way to automatically
generate test cases with any of the existing tools that are (i) executable and
(ii) available in an exchangeable format. This helps in understanding test
cases and supports debugging.
• We perform the first comparison regarding bug finding of test-case gener-
ation tools and software model checkers at a large scale. The experiments
give the interesting insight that software model checkers can identify more
program bugs than the existing test-case generators, using less time. All our
experimental data and results are available on a supplementary web page.5

3 The choice of using C programs is justified by the fact that C is still the most-used
language for safety-critical software. Thus, one can assume that this is reflected in the
research community and that the best test-generation and model checking technology
is implemented in tools for C. The choice of the particular repository is justified by the
fact that this is the largest and most diverse open benchmark suite (cf. SV-COMP [4]).

4 https://github.com/sosy-lab/tbf 5 https://www.sosy-lab.org/research/test-study/
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Related Work. A large-scale comparative evaluation of the bug-finding capabil-
ities of software testers and software model checkers is missing in the literature
and this work is a first contribution towards filling this gap. In the area of
software model checking, SV-COMP serves as a yearly comparative evaluation
of a large set of model checkers for C programs and the competition report
provides an overview over tools and techniques [4]. A general survey over tech-
niques for software model checking is available [37]. In the area of software
testing, there is work comparing test-case generators [28]. Surveys provide an
overview of different test techniques [1] and a detailed web site is available
that provides an overview over tools and techniques 6.

2 Background: Technology and Tools
In this paper, we consider only fully automatic techniques for testing and model
checking of whole programs. This means that (i) a verification task consists of a
program (with function main as entry) and a specification (reduced to reacha-
bility of function __VERIFIER_error by instrumentation), (ii) the comparison
excludes all approaches for partial verification, such as unit testing and pro-
cedure summarization, and (iii) the comparison excludes all approaches that
require interaction as often needed for deductive verification.

2.1 Software Testing

Given a software system and a specification of that system, testing executes the
system with different input values and observes whether the intended behavior is
exhibited (i.e., the specification holds). A test vector 〈η1, · · · , ηn〉 is a sequence of
n input values η1 to ηn. A test case is described by a test vector, where the i-th
input of the test case is given by the i-th value ηi of the test vector. A test suite
is a set of test cases. A test harness is a software that supports the automatic
execution of a test case for the program under test, i.e., it feeds the values from
the test vector one by one as input to the program. Test-case generation produces
a set of test vectors that fulfills a specific coverage criterion. Program-branch
coverage is an example of a well-established coverage criterion.

There are three major approaches to software test-case generation: symbolic or
concolic execution [18, 19, 29, 39, 45, 46], random fuzz testing [30, 36], and model
checking [5, 10, 35]. In this work, we use one tester based on symbolic execution
(Klee), one based on concolic execution (Crest-ppc), one based on random
generation (PRtest), one based on random fuzzing (AFL-fuzz), and two based
on model-checking (CPATiger and FShell), which we describe in the following
in alphabetic order. Table 1 gives an overview over testers and model checkers.
AFL-fuzz [17] is a coverage-based greybox fuzzer. Given a set of start inputs,
it performs different mutations (e.g., bit flips, simple arithmetics) on the existing
inputs, executes these newly created inputs, and checks which parts of the
program are explored. Depending on these, it decides which inputs to keep, and
which to use for further mutations. Output: AFL-fuzz outputs each generated
6 Provided by Z. Micskei: http://mit.bme.hu/∼micskeiz/pages/code_based_test_generation.html
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Table 1: Overview of test generators and model checkers used in the comparison
Tool Ref. Version Technique

AFL-fuzz [17] 2.46b Greybox fuzzing
Crest-ppc [39] f542298d Concolic execution, search-based
CPATiger [10] r24658 Model checking-based testing, based on CPAchecker

FShell [35] 1.7 Model checking-based testing, based on Cbmc

Klee [19] c08cb14c Symbolic execution, search-based
PRtest 0.1 Random testing

Cbmc [40] sv-comp17 Bounded model checking
CPA-Seq [25] sv-comp17 Explicit-state, predicate abstraction, k-Induction
Esbmc-incr [43] sv-comp17 Bounded model checking, incremental loop bound
Esbmc-kInd [27] sv-comp17 Bounded model checking, k-Induction

test case in its own file. The file’s binary representation is read ‘as is’ as input,
so generated test cases do not have a specific format.
CPATiger [10] uses model checking, more specifically, predicate abstrac-
tion [12], for test case generation. Is is based on the software-verification tool
CPAchecker [11] and uses the FShell query language (FQL) [35] for speci-
fication of coverage criteria. If CPATiger finds a feasible program path to a
coverage criterion with predicate abstraction, it computes test inputs from the
corresponding predicates used along that path. It is designed to create test
vectors for complicated coverage criteria. Output: CPATiger outputs gener-
ated test cases in a single text file, providing the test input as test vectors
in decimal notation together with additional information.
Crest [18] uses concolic execution for test-case generation. It is search-based,
i.e., it chooses test inputs that reach yet uncovered parts of the program fur-
thest from the already explored paths. Crest-ppc [39] improves on the con-
colic execution used in Crest by modifying the input generation method to
query the constraint solver more often, but using only a small set of con-
straints for each query. We performed experiments to ensure that Crest-ppc
outperforms Crest. The results are available on our supplementary web page.
Output: Crest-ppc outputs each generated test case in a text file, listing the
sequence of used input values in decimal notation.
FShell [35] is another model-checking-based test-case generator. It uses
CBMC (described in Sect. 2.2) for state-space exploration and also uses FQL
for specification of coverage criteria. Output: FShell outputs generated test
cases in a single text file, listing input values of tests together with additional
information. Input values of tests are represented in decimal notation.
Klee [19] uses symbolic execution for test-case generation. After each step in a
program, Klee chooses which of the existing program paths to continue on next,
based on different heuristics, including a search-based one and one preventing
inefficient unrolling of loops. Since Klee uses symbolic execution, it can explore
the full state space of a program and can be used for software verification, not
just test-case generation. As we are interested in exploring the capabilities of
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testing, we only consider the test cases produced by Klee. Output: Klee outputs
each generated test case in a binary format that can be read with Klee. The
input values of tests are represented by their bit width and bit representation.
PRtest is a simple tool for plain random testing. The tool is delivered to-
gether with TBF and serves as base line in our experiments. Output: PRtest
outputs each generated test case in a text file, listing the sequence of used
input values in hexadecimal notation.

2.2 Software Model Checking
Software model checking tries to prove a program correct or find a property
violation in a program, by exploring the full state space and checking whether
any of the feasible program states violate the specification. A lot of different
techniques exist to do this. Since the number of concrete states of a program can
be, in general, infinite, a common principle is abstraction. A good abstraction is,
on the one hand, as coarse as possible —to keep the state space that must be
explored small— and, on the other hand, precise enough to eliminate false alarms.

Tools for software model checking combine many different techniques, for
example, counterexample-guided abstraction refinement (CEGAR) [21], predicate
abstraction [31], bounded model checking (BMC) [16, 22], lazy abstraction [9, 34],
k-induction [8, 27], and interpolation [23, 42]. A listing of the widely-used tech-
niques, and which tools implement which technique, is given in the SV-COMP’17
report [4] in Table 4. In this work, we use a general-purpose bounded model
checker (Cbmc), a sequential combination of approaches (CPA-Seq), a bounded
model checker with incrementally increasing bounds (Esbmc-incr), and a k-
induction based model checker (Esbmc-kInd).
Cbmc [22, 40] uses bit-precise BMC with MiniSat [26] as SAT-solver backend.
BMC performs model checking with limited loop unrolling, i.e., loops are only
unrolled up to a given bound. If no property violation can be found in the explored
state space under this restriction, the program is assumed to be safe in general.
CPA-Seq [25] is based on CPAchecker that combines explicit-state model check-
ing [13], k-induction [8], and predicate analysis with adjustable-block abstrac-
tion [12] sequentially. CPA-Seq uses the bit-precise SMT solver MathSAT5 [20].
Esbmc-incr [43] is a fork of Cbmc with an improved memory model. It uses an
iterative scheme to increase its loop bounds, i.e., if no error is found in a program
analysis using a certain loop bound, then the bound is increased. If no error is
found after a set number of iterations, the program is assumed to be safe.
Esbmc-kInd [27] uses automatic k-induction to compute loop invariants in
the context-bounded model checking of Esbmc. It performs the three phases of
k-induction in parallel, which often yields a performance advantage.

2.3 Validation of Results
It is well-understood that when testers and model checkers produce test cases
and error paths, respectively, sometimes the results contain false alarms. In order
to avoid investing time on false results, test cases can be validated by reproducing
a real crash [24, 41] and error paths can be evaluated by witness validation [7, 15].
A violation witness is an automaton that describes a set of paths through the
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program that contain a specification violation. Each state transition contains a
source-code guard that specifies the program-code locations at which the transition
is allowed, and a state-space guard that constrains the set of possible program
states after the transition. We considered four existing witness validators.
CPAchecker [7] uses predicate analysis with adjustable-block abstraction
combined with explicit-state model checking for witness validation.
CPA-witness2test7 creates a compilable test harness from a violation witness
and checks whether the specification violation is reached through execution.
FShell-witness2test8 also performs execution-based witness validation, but
does not rely on any verification tool.
Ultimate Automizer [32] uses an automata-centric approach [33] to model
checking for witness validation.

In this work, we evaluate the results from testers with TBF by considering
for each test case, one by one, whether compiled with a test harness and the
program, the execution violates the specification, and we evaluate the results of
model checkers by validating the violation witness using four different witness
validators. This way, we count bug reports only if they can be reproduced.

3 Framework for Test-Based Falsification
We designed a framework for test-based falsification (TBF) that makes it possible
to uniformly use test-case generation tools. Figure 1 shows the architecture of
this approach. Given an input program, TBF first pre-processes the program
into the format that the test-case generator requires (‘prepared program’). This
includes, e.g., adding function definitions for assigning new symbolic values
and compiling the program in a certain way expected by the generator. The
prepared program is then given to the test-case generator, which stores its
output in its own, proprietary format (‘test cases’). These test cases are given
to a test-vector extractor to extract the test vectors and store them in an
exchangeable, uniform format (‘test vectors’). The harness generator produces a
test harness for the input program, which is compiled and linked together with
the input program and executed by the test executor. If the execution reports
a specification violation, the verdict is false. In all other cases, the verdict
7 https://github.com/sosy-lab/cpachecker
8 https://github.com/tautschnig/cprover-sv-comp/tree/test-gen/witness2test
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int nondet_int ();
short nondet_short ();
void __VERIFIER_error ();

int main() {
int x = nondet_int ();
int y = x;

if (nondet_short ()) {
x++;

} else {
y++;

}

if (x > y) {
__VERIFIER_error ();

}
}

Fig. 2: An example C program
int nondet_int (){

int __sym;
CREST_int(__sym );
return __sym;

}

Fig. 3: A function definition
prepared for Crest-ppc

void __VERIFIER_error () {
fprintf(stderr , "__TBF_error_found .\n");
exit (1);

}

int nondet_int () {
unsigned int inp_size = 3000;
char * inp_var = malloc(inp_size );
fgets(inp_var , inp_size , stdin );
return *(( int *) parse_inp(inp_var ));

}

short nondet_short () {
unsigned int inp_size = 3000;
char * inp_var = malloc(inp_size );
fgets(inp_var , inp_size , stdin );
return *(( short *) parse_inp(inp_var ));

}

Fig. 4: Excerpt of a test harness; test vec-
tors are passed by standard input (fgets,
parse_inp)

is unknown. If the verdict of a program is false, TBF produces a self-contained,
compilable test harness and a violation witness to the user.
Input Program. TBF is designed to evaluate test-case generation tools
and supports the specification encoding that is used by SV-COMP. In this
work, all programs are C programs and have the same specification: “Func-
tion __VERIFIER_error is never called.”
Pre-processor. TBF has to adjust the input programs for the respective test-
case generator that is used. Each test-case generator uses certain techniques
to mark input values. We assume that, except for special functions that are
defined by the rules for the repository9, all undefined functions in the program
are free of side effects and return non-deterministic values of their corresponding
return type. For each undefined function, we append a definition to the program
under test to inject a new input value whenever the specific function is called.
The meaning of the special functions defined by the repository rules are also
represented in the code. Figure 2 shows a program with undefined functions
nondet_int and nondet_short. As an example, Fig. 3 shows the definition of
nondet_int that tells Crest-ppc to use a new (symbolic) input value. We display
the full code of pre-processed example programs for all considered tools on
our supplementary web page. After pre-processing, we compile the program
as expected by the test-case generator, if necessary.
Test-Vector Extractor. Each tool produces test cases as output as described
in Sect. 2.1. For normalization, TBF extracts test vectors from the generated
test cases in an exchangeable format. We do not wait until the test generator is
finished, but extract a test vector whenever a new test case is written, in parallel.
9 https://sv-comp.sosy-lab.org/2017/rules.php
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Fig. 5: Violation witness for test vector 〈43, 1〉 and two non-deterministic methods

Harness Generator and Test Executor. We provide an effective and efficient
way of checking whether a generated test vector represents a property violation:
We create a test harness for the program under test that can feed an input value
into the program for each call to a non-deterministic function. For performance
reasons, it gets these input values from standard input. For each test vector
extracted from the produced test cases, we execute the pre-compiled test harness
with the vector as input and check whether a property violation occurs during
execution. An example harness is shown in Fig. 4.
Witness Generation. A test vector 〈η1, · · · , ηn〉 can be represented by a vi-
olation witness that contains one initial state α0, one accepting state αe, one
sink sate αs, and, for each value ηi of the test vector, a state αi with, for each
non-deterministic function occurring in the program, a transition from αi−1 to αi

with the call to the corresponding function as source-code guard and ηi as return
value for the corresponding function as state-space guard, i.e.: the transition can
only be taken if the corresponding function is called, and, if the transition is
taken, it is assumed that the return value of the corresponding function is ηi.
From αn, there is one transition to αe for each occurring call to __VERIFIER_error,
and one transition to αs for each non-deterministic function in the program.
Each such transition has the corresponding function call as source-code guard
and no state-space guard. The transitions to sink state αs make sure that no
path is considered that may need an additional input value. While such a path
may exist in the program, it can not be the path described by the test vector.
Fig. 5 shows an example of such a witness. Each transition between states is
labeled with the source-code guard (no box) and the state-space guard (boxed).
The value ‘true’ means that no state-space guard exists for that transition.

When validating the displayed violation witness, a validator explores the
state-space until it encounters a call to nondet_int or nondet_short. Then, it
is told to assume that the encountered function returns the concrete value 43,
described by the special identifier \return. When it encounters one of the two
functions for the second time, it is told to assume that the corresponding function
returns the concrete value 1. After this, if it encounters a call to __VERIFIER_error,
it confirms the violation witness. If it encounters a call to one of the two non-
deterministic functions for the third time, it enters the sink state αs, since our
witnessed counterexample only contains two calls to non-deterministic functions.
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4 Experimental Evaluation
We compare automatic test generators against automatic software model checkers
regarding bug finding abilities in a large-scale experimental evaluation.

4.1 Experiment Setup

Programs under Test. To get a representative set of programs under test, we
used all 5 693 verification tasks of the sv-benchmarks set10 in revision 879e141f11

whose specification is that function __VERIFIER_error is not called. Of the
5 693 programs, 1 490 programs contain a known bug (at most one bug per
program), i.e., there is a path through the program that ends in a call to
__VERIFIER_error, and 4 203 programs are correct. The benchmark set is par-
titioned into categories. A description of the kinds of programs in the cate-
gories of an earlier version of the repository can be found in the literature
(cf. [3], Sect. 4). For each category (e.g., ‘Arrays’), the defining set of contained
programs (.set file 12), and a short characterization and the bit architecture of
the contained programs (.cfg file 13) can be found in the repository itself.
Availability. More details about the programs under test, generated test
cases, generated witnesses, and other experimental data are available on
the supplementary web page.14

Tools. We used the test generators and model checkers in the versions specified
in Table 1. TBF15 is implemented in Python 3.5.2 and available as open-source;
we use TBF in version 0.1. For Crest-ppc, we use a modified revision that
supports long data types. For readability, we add superscripts t and m to the
tool names for better visual identification of the testers and model checkers,
respectively. We selected six testing tools that (i) support the language C, (ii) are
freely available, (iii) cover a spectrum of different technologies, (iv) are available
for 64-bit GNU/Linux, and (v) generate test cases for branch coverage or similar:
AFL-fuzz, CPATiger, Crest-ppc, FShell, Klee, and PRtest. For the model
checkers, we use the four most successful model checkers in category ‘Falsification’
of SV-COMP’17 16, i.e., Cbmc, CPA-Seq, Esbmc-incr, and Esbmc-kInd. To
validate the results of violation witnesses, we use CPAchecker and Ultimate
Automizer in the revision from SV-COMP’17, CPA-witness2test in revision
r24473 of the CPAchecker repository, and FShell-witness2test in revision
2a76669f from branch test-gen in the Cprover repository17.
Computing Resources. We performed all experiments on machines with an
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4GHz,
33GB of memory, and a Ubuntu 16.04 operating system with kernel Linux 4.4.
10 https://sv-comp.sosy-lab.org/2017/benchmarks.php
11 https://github.com/sosy-lab/sv-benchmarks/tree/879e141f
12 https://github.com/sosy-lab/sv-benchmarks/blob/879e141f/c/ReachSafety-Arrays.set
13 https://github.com/sosy-lab/sv-benchmarks/blob/879e141f/c/ReachSafety-Arrays.cfg
14 https://www.sosy-lab.org/research/test-study/ 15 https://github.com/sosy-lab/tbf
16 https://sv-comp.sosy-lab.org/2017/results/
17 https://github.com/tautschnig/cprover-sv-comp
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Fig. 6: Quantile plots for the different tools for finding bugs in programs

We limited each benchmark run to 2 processing units, 15GB of memory, and
15min of CPU time. All CPU times are reported with two significant digits.

4.2 Experimental Results
Now we report the results of our experimental study. For each of the 1 490 pro-
grams that contain a known bug, we applied all testers and model checkers in
order to find the bug. For the testers, a bug is found if one of the generated
test cases executes the undesired function call. For the model checkers, a bug is
found if the tools returns answer false together with a violation witness.
Qualitative Overview. We illustrate the overall picture using the quantile
plot in Fig. 6. For each data point (x, y) on a graph, the quantile plot shows
that x bugs can be correctly identified using at most y seconds of CPU time.
The x-position of the right-most data point for a tool indicates the total num-
ber of bugs the tool was able to identify. In summary, each model checker
finds more bugs than the best tester, while the best tester (Kleet) closely
follows the weakest model checker (CBMCm).

The area below the graph is proportional to the overall consumed CPU time
for successfully solved problems. The visualization makes it easy to see, e.g., by
looking at the 400 fastest solved problems, that most testers time out while most
model checkers use only a fraction of their available CPU time. In summary, the ra-
tio of returned results by invested resources is much better for the model checkers.
Quantitative Overview. Next, we look at the numerical details as shown in
Table 2. The columns are partitioned into four parts: the table lists (i) the
category/row label together with the number of programs (maximal number of
found bugs), (ii) the number of found bugs for the six testers, (iii) the number
of found bugs for the four model checkers, and (iv) the union of the results
for testers, model checkers, and overall. In the two parts for the testers and
model checkers, we highlight the best result in bold (if equal, the fastest result
is highlighted). The rows are partitioned into three parts: the table shows first
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Table 2: Results for testers and model checkers on programs with a bug
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Arrays 81 26 0 20 4 22 25 6 3 6 4 31 13 33
BitVectors 24 11 5 7 5 11 10 12 12 12 12 14 17 19
ControlFlow 42 15 0 11 3 20 3 41 23 36 35 21 42 42
ECA 413 234 0 51 0 260 0 143 257 221 169 286 42 338
Floats 31 11 2 2 4 2 11 31 29 17 13 13 31 31
Heap 66 46 22 16 13 48 32 64 31 62 58 48 66 66
Loops 46 45 27 29 5 40 33 42 36 42 38 41 38 43
ProductLines 265 169 1 204 156 255 144 263 265 265 263 265 265 265
Recursive 45 44 0 35 22 45 31 42 41 40 40 45 43 45
Sequentialized 170 4 0 1 24 123 3 135 122 135 134 123 141 147
LDV 307 0 0 0 0 0 0 51 70 113 78 0 147 147

Total Found 1 490 605 57 376 236 826 292 830 889 949 844 887 1 092 1 176
Compilable 1 115 605 57 376 236 826 292 779 819 830 761 887 930 1 014
Wit. Confirmed 1 490 761 857 705 634 887 979 1 068

Median CPU Time (s) 11 4.5 3.4 6.2 3.6 3.6 1.4 15 1.9 2.3
Average CPU Time (s) 82 38 4.1 27 33 6.7 46 51 61 69

the results for each of the 11 categories of the programs under test, second the
results for all categories together, and third the CPU times required.

The row ‘Total Found’ shows that the best tester (Kleet) is able to find
826 bugs, while all model checkers find more, with the best model checker
(ESBMC-incrm) finding 15% more bugs (949) than the best tester. An interesting
observation is that the different tools have different strengths and weaknesses:
column ‘Union Testers’ shows that applying all testers together increases the
amount of solved tasks considerably. This is made possible using our unifying
framework TBF, which abstracts from the differences in input and output of
the various tools and lets us use all testers in a common work flow. The same
holds for the model checkers: the combination of all approaches significantly
increases the number of solved problems (column ‘Union MC’). The combination
of testers and model checkers (column ‘Union All’) in a bug-finding workflow
can further improve the results significantly, i.e., there are program bugs that
one technique can find but not the other, and vice versa.

While it is usually considered an advantage that model checkers can be
applied to incomplete programs that are not yet fully defined (as expected
by static-analysis tools), testers obviously cannot be applied to such programs
(as they are dynamic-analysis tools). This issue applies in particular to the
category ‘LDV’ of device drivers, which contain non-deterministic models of the
operating-system environment. This kind of programs is important because it
is successfully used to find bugs in systems code 18 [47], but in order to provide
a comparison without the influence of this issue, we also report the results
restricted to those programs that are compilable (row ‘Compilable’).
18 http://linuxtesting.org/results/ldv
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For the testers, TBF validates whether a test case is generated that identifies
the bug as found. This test case can later be used to reproduce the error path
using execution, and a debugger helps to comprehend the bug. For the model
checkers, the reported violation witness identifies the bug as found. This witness
can later be used to reproduce the error path using witness validation, and an
error-path visualizer helps to comprehend the bug. Since the model checkers
usually do not generate a test case, we cannot perform the same validation
as for the testers, i.e., execute the program with the test case and check if it
crashes. However, all four model checkers that we use support exchangeable
violation witnesses [7], and we can use existing witness validators to confirm
the witnesses. We report the results in row ‘Wit. Confirmed’, which counts
only those error reports that were confirmed by at least one witness validator.
While this technique is not always able to confirm correct witnesses (cf. [4],
Table 8), the big picture does not change. The test generators do not need this
additional confirmation step, because TBF takes care of this already. There are
two interesting insights: (1) Software model checkers should in addition produce
test data, either contained in the violation witness or as separate test vector.
This makes it easier to reproduce a found bug using program execution and
explore the bug with debugging. (2) Test generators should in addition produce
a violation witness. This makes it easier to reproduce a found bug using witness
validation and explore the bug with error-path visualization [6].
Consideration of False Alarms. So far we have discussed only the programs
that contain bugs. In order to evaluate how many false alarms the tools produce,
we have also considered the 4 203 programs without known bug. All testers
report only 3 bugs on those programs. We manually investigated the cause and
found out that we have to blame the benchmark set for these, not the testers.19
Each of the four model checkers solves at least one of these three tasks with
verdict true, implying an imprecise handling of floating-point arithmetics. The
model checkers also produce a very low number of false alarms, the largest
number being 6 false alarms reported by ESBMC-incrm.

4.3 Validity

Validity of Framework for Test-Based Falsification. The results of the
testers depend on a correctly working test-execution framework. In order to
increase the confidence in our own framework TBF, we compare the results
obtained with TBF against the results obtained with a proprietary test-execution
mechanism that Klee provides: Klee-replay20. Figure 7 shows the CPU time in
seconds required by Kleet using TBF (x-axis) and Klee-replay (y-axis) for each
verification task that could be solved by either one of them. It shows that Kleet

(and thus, TBF) is very similar to Klee’s native solution. Over all verification
19 There are three specific programs in the ReachSafety-Floats category of SV-COMP

that are only safe if compiled with 64-bit rounding mode for floats or for a 64-bit
machine model. The category states the programs should be executed in a 32-bit
machine model, which seems incorrect.

20 http://klee.github.io/tutorials/testing-function/#replaying-a-test-case
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Fig. 7: CPU time required by Kleet and Klee-replay to solve tasks

tasks, Kleet is able to find bugs in 826 tasks, while Klee-replay is able to find
bugs in 821 tasks. There are 15 tasks that Klee-replay can not solve, while
Kleet can, and 10 tasks that Klee-replay can solve, while Kleet can not.

For Kleet, one unsolved task is due to missing support of a corner case for
the conversion of Klee’s internal representation of numbers to a test vector. The
remaining difference is due to an improper machine model: for Klee-replay, we
only had 64-bit libraries available, while most tasks of SV-COMP are intended to
be analyzed using a 32-bit architecture. This only results in a single false result,
but interprets some of the inputs generated for 32-bit programs differently, thus
reaching different parts of the program in a few cases. This also explains the
few outliers in Fig. 7. The two implementations both need a median of 0.43 s
of CPU time to find a bug in a task. This shows that our implementation is
similarly effective and efficient to Klee’s own, tailored test-execution mechanism.
Other Threats to Internal Validity. We used the state-of-the-art bench-
marking tool BenchExec [14] to run every execution in an isolated container
with dedicated resources, making our results as reliable as possible. Our exper-
imental results for the considered model checkers are very close to the results
of SV-COMP’1721, indicating their accuracy. Our framework TBF is a proto-
type and may contain bugs that degrade the real performance of test-based
falsification. Probably more tasks could be solved if more time was invested
in improving this approach, but we tried to keep our approach as simple as
possible to influence the results as less as possible.
Threats to External Validity. There are several threats to external validity.
All tools that we evaluated are aimed at analyzing C programs. It might be the
case that testing research is focused on other languages, such as C++ or Java.
Other languages may contain other quirks than C that make certain approaches
to test-case generation and model checking more or less successful. In addition,
21 https://sv-comp.sosy-lab.org/2017/results/
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there may be tools using more effective testing or model-checking techniques
that were developed for other languages and thus are not included here.

The selection of testers could be biased by the authors’ background, but
we reflected the state-of-the-art (see discussion of selection) and related work
in our choice. While we tried to represent the current landscape of test-case
generators by using tools that use fundamentally different approaches, there
might be other approaches that may perform better or that may be able to
solve different tasks. We used most of the recent, publicly available test-case
generators aimed at sequential C programs. We did not include model-based
or combinatorial test-case generators in our evaluation.

For representing the current state-of-the-art in model checking, we only used
four tools to limit the scope of this work. The selection of model checkers is
based on competition results: we simply used the four best tools in SV-COMP’17.
There are many other model-checking tools available. Since we performed our
experiments on a subset of the SV-COMP benchmark set and used a similar
execution environment, our results can be compared online with all verifiers that
participated in the competition. The software model checkers might be tuned
towards the benchmark set, because all of the software model checkers participated
in SV-COMP, while of the testers, only FShell participated in SV-COMP before.

While we tried to achieve high external validity by using the largest and most
diverse open benchmark set, there is a high chance that the benchmark set does not
appropriately represent the real landscape of existing programs with and without
bugs. Since the benchmark set is used by the SV-COMP community, it might be bi-
ased towards software model checkers, and thus, must stay a mere approximation.

5 Conclusion
Our comparison of software testers with software model checkers has shown
that the considered model checkers are competitive for finding bugs on the
used benchmark set. We developed a testing framework that supports the easy
comparison of different test-case generators with each other, and with model
checkers. Through this, we were able to perform experiments that clearly showed
that model checking is mature enough to be used in practice, and even outperforms
the bug-finding capabilities of state-of-the-art testing tools. It is able to cover
more bugs in programs than testers and also finds those bugs faster. With this
study, we do not pledge to eradicate testing, whose importance and usability can
not be stressed enough. But we laid ground to show that model checking should
be considered for practical applications. Perhaps the most important insight of
our evaluation is that is does not make much sense to distinguish between testing
and model checking if the purpose is finding bugs, but to leverage the strengths
of different techniques to construct even better tools by combination.
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