Deferrability Analysis for JavaScript

Johannes Kloos', Rupak Majumdar!, and Frank McCabe?

1 MPI-SWS
2 Instart Logic

Abstract. Modern web browsers allow asynchronous loading of
JavaScript scripts in order to speed up parsing a web page. Instead of
blocking until a script has been downloaded and evaluated, the async
and defer tags in a script allow the browser to download the script in
a background task, and either evaluate it as soon as it is available (for
async) or evaluate it in load-order at the end of parsing (for defer). While
asynchronous loading can significantly speed up the time-to-render, i.e.,
the time that passes until the first page elements are displayed on-screen,
the specification for correct loading is complex and the programmer is re-
sponsible for understanding the circumstances under which a script can
be loaded asynchronously in either mode without breaking page func-
tionality. As a result, many complex web applications do not take full
advantage of asynchronous loading. We present an automatic analysis
of web pages which identifies which scripts may be safely deferred, that
is, deferred without any observable behavior on the page. Our analysis
defers a script if every other script that has a transitive read or modi-
fication dependency does not access the DOM. We approximate access
and modification sets using a dynamic analysis. On a corpus of 462 pro-
fessionally developed web pages from Fortune 500 companies, we show
that on average, we can identify two or three scripts to defer (mean;
median: 1). On 18 pages, we find at least 11 deferrable scripts. Deferring
these scripts can have notable impact on time-to-render: in 49 pages, we
could show that the median improvement in time-to-render was at least
100ms, with improvements up to 890ms.

1 Introduction

Modern web applications use sophisticated client-side JavaScript programs and
dynamic HTML to provide a low-latency, feature-rich user experience on the
browser. As the scope and complexity of these applications grow, so do the size
and complexity of the client-side JavaScript used by these applications. Indeed,
web applications download an average of 24 JavaScript files with about 346kB of
compressed JavaScript®. In network-bound settings, such as the mobile web or
some international contexts, optimizing the size and download time of the web
page —which is correlated with user satisfaction— is a key challenge.

One particular difficulty is the loading of JavaScript. The browser standards
provide a complicated specification for parsing an HTML5 page with scripts [28].

% See http://httparchive.org/trends.php, as of June 2017

© Springer International Publishing AG 2017

O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 35-50, 2017.
https://doi.org/10.1007/978-3-319-70389-3_3

36 J. Kloos et al.

Normally, parsing the page stops while the script is downloaded, and continues
again after the downloaded script has been run. With tens of scripts and thou-
sands of lines of code, this can significantly slow down page rendering. To address
this, HTML5 added “async” and “defer” loading modes. A script marked async
is loaded in parallel with parsing and run as soon as it is loaded. Scripts marked
defer are also loaded in parallel with parsing, but are evaluated only when pars-
ing is complete, in the order in which they were scheduled for download.

The HTMLS5 specification notes that the exact processing details for script-
loading attributes are non-trivial, and involve a number of aspects of HTML5.
Indeed, online forums such as Stack Overflow contain many discussions on the use
of defer and async tags for page performance, but most end with unchecked rules
of thumb (“make sure there are no dependencies”) and philosophical comments
such as: “[IJt depends upon you and your scripts.”

At the same time, industrial users are interested in having a simple way to
use these attributes. In this paper, we define an automatic deferring transform,
which takes a page and marks some scripts deferred without changing observable
behavior. We start by defining the notion of a safe deferrable set, comprising a set
of scripts on a given page. If all the scripts in this set are loaded using the defer
loading mode, the user visible behavior of the page does not change. To make the
idea of safe deferrable sets usable, we characterize the safe deferrable set using
event traces [23]. In particular, we can use event traces to define a dependency
order between scripts, and the notion of DOM-accessing scripts, which have user-
visible behavior. A safe deferral set is contains no DOM-accessing scripts and is
upward-closed under the dependency order. We also show that if a set contains
only deterministic scripts, it is sufficient to check a single trace to characterize
a safe deferral set, and describe a dynamic analysis based on this criterion.

We evaluate our work by applying JSDefer to a corpus of 462 websites of
Fortune 500 companies. We find that 295 (64%) of these web pages contain
at least one deferrable script, with 65 (14%) containing at least 6 deferrable
scripts. Furthermore, we find that while race conditions and non-determinism
are widespread on web pages, we can easily identify a sufficient number of scripts
that do not participate in races nor have non-deterministic behavior and are thus
candidates for deferral. Finally, actually deferring scripts on these pages shows
reasonable improvement in time-to-render (TTR) for 59 pages, where the median
improvement of time-to-render was 198.5ms, where the median load time of a
page is 3097ms.

We summarize the contributions of this paper.

1. We describe a deferrability analysis, which checks which scripts can be
marked as deferred without changing the observable behavior on the page.

2. We provide an extensive evaluation on a large corpus of professionally devel-
oped web sites to show that a significant portion of scripts can be deferred. We
show the potential for improving the load performance for these pages: in
our experiments, the median loading time improvement was 198.5 ms.

Deferrability Analysis for JavaScript 37

2 Background: Loading JavaScript

We briefly recall the WHATWG specification for loading HTML5 documents by
a browser. A browser parses an HTML5 page into a data structure called the
document object model (DOM) before rendering it on the user’s screen. Parsing
the document may require downloading additional content, such as images or
scripts, linked in the document. The browser downloads images asynchronously,
while continuing to parse the document. In contrast, it downloads scripts syn-
chronously by default, making the parser wait for the download, and evaluates
the script before continuing to parse the page. This puts script download and
parsing on the critical path. Since network latency can be quite high (on the
order of tens or hundreds of milliseconds) and script execution time may be
non-negligible, this may cause noticeable delays in page loading. To allow asyn-
chronous loading of scripts, the WHATWG specification ([28], sec. 4.12) allows
two Boolean attributes in a script element, async and defer. In summary, there
are three loading strategies for scripts:

— Synchronous loading. When encountering a script tag with no special at-
tributes, the browser suspends parsing, downloads the script synchronously,
and evaluates it after download is complete. Parsing continues after the eval-
uation of the script.

— Asynchronous loading. When encountering a <script src="..."async> tag,
the browser starts an asynchronous download task for the script in the back-
ground but continues parsing the page until the script has been loaded.
Then, parsing is suspended and the script is evaluated before continuing
with parsing.

— Deferred loading. When encountering a <script src="..."defer> tag, the
browser starts a download task for the script background but continues pars-
ing the page. Once parsing has finished and the script has been downloaded,
it is evaluated. Moreover, scripts are evaluated in the order that their corre-
sponding script tags were parsed in the HTML, even though a later script
may have finished downloading earlier.

While asynchronous or deferred loading is desirable from a performance per-
spective, it can lead to race conditions, i.e., the output of the page may depend
on the order in which scripts are executed [23]. Consider the following example:

<html><body><script src="http://www.foo.com/scriptl.js"></script>
<script>if (!scriptlexecuted) { alert("Error!"); }</script></body></html>

where scriptl.js is simply scriptlexecuted = true;. As the script is loaded
synchronously, the code has no race (yet): the alert function will never be called.

If we annotate the first script with the async tag, we introduce a race condi-
tion. Depending on how fast the script is loaded, it may get executed before or
after the inline script. In case it gets executed later, an alert will pop up, noting
that the external script has not been loaded yet. Changing the loading mode
to defer does not cause a race, but now the alert always pops up; thus deferred
loading of the script changes the observable behavior from the original version.

38 J. Kloos et al.

Another kind of race condition is incurred by scripts that perform certain
forms of DOM accesses. For instance, consider the following page:

<html><body><script src="http://www.foo.com/script2.js"></script>
Something</body></html>

where script2.js uses the DOM API to check if a tag with id marker exists.
Loaded synchronously, the outcome of this check will always be negative. Asyn-
chronous loading would make it non-deterministic, while deferred loading will
remain deterministic but the check will always be positive.

Our goal is to analyze a web page and add defer tags to scripts, wherever
possible. To ensure we can load scripts safely in a deferred way, we need to make
certain that deferred loading does not introduce races through program variables
or the DOM and does not change the observable behavior. Next, we make this
precise.

3 Deferrability analysis

In the following, suppose we are given a web page with scripts s1,...,8, (in
order of appearance). For this exposition, we assume that all the scripts are
loaded synchronously; the extension to pages with mixed loading modes and
inline scripts is straightforward.

On a high level, our goal is to produce a modified version of the page where
some of the scripts are loaded deferred instead of synchronously, but the visi-
ble behavior of the page is the same. Concretely, when loading and displaying
the page, the browser constructs a view of the page by way of building a DOM
tree, containing both the visible elements of the page and the association of
certain event sources (e.g., form fields or onload properties of images) with han-
dler functions. Concretely, the DOM tree is the object graph reachable from
document .root which consists of objects whose type is a subtype of Node; com-
pare [28]. This DOM tree is built in stages, adding nodes to the tree, modifying
subtrees and attaching event handlers. This can be due to parsing an element in
the HTML document, receiving a resource, user interaction, or script execution.

Definition 1. A DOM trace consists of the sequence of DOM trees that are
generated during the parsing of a page. The DOM behavior of a page is the set
of DOM traces that executing this page may generate.

Note that even simple pages may have multiple DOM traces; for instance, if
a page contains multiple images, any of these images can be loaded before the
others, leading to different intermediate views.

Definition 2. For a page p with scripts si,...,8n, and a set D C {s1,...,s,}
let p’ be the page where the members of D are loaded deferred instead of syn-
chronously. We say that D is a safe deferral set if the DOM behavior of p’ is a
subset of the DOM behavior of p.

Deferrability Analysis for JavaScript 39

3.1 Background: Event traces and races in web pages

We recall an event-based semantics of JavaScript [22,23,1] on which we build our
analysis; we follow the simplified presentation from [1]. For a given execution of
a web page, fix a set of events E; each event models one parsing action, user
interaction event or script execution (compare also the event model of HTML
in [28]). Our semantics will be based on the following operations:

— rd(e,x) and wr(e,z): These operations describe that during the execution
of event e € F, some shared object = (which may be a global variable, a
JavaScript object, or some browser object, such as a DOM node) is read
from or written to.

— post(e,e’): This operation states that during the execution of event e € E, a
new event ¢’ € F is created, to be dispatched later (e.g., by setting a timer
or directly posting to an event queue).

— begin(e) and end(e): These operations function as brackets, describing that
the execution of event e € E starts or ends.

A trace of an event-based program is a sequence of event executions. An
event execution for an event e is a sequence of operations such that the sequence
starts with a begin operation begin(e), the sequence ends with an end operation
end(e), and otherwise consists of operations of the form rd(e, z), wr(e,z), and
post(e,e’) for some event e’ € E. For a trace of a program consisting of event
executions of events ey, es, ..., e,, by abuse of notation, we write t = ey ... eg.

Furthermore, we define a happens-before relation, denoted hb, between the
events of a trace. It is a pre-order (i.e., reflexive, transitive, and anti-symmetric)
and e; hb e; holds in two cases: if there is an operation post(e;, ¢;) in the trace, or
if e; and e; are events created externally by user interaction and the interaction
creating e; happens before that for e;.

Two events e; and e; are unordered if neither e; hbe; nor e; hbe;. They have
a race if they are unordered, access the same shared object, and at least one
access is a write.

3.2 When is a set of scripts deferrable?

To make the deferrability criterion given above more tractable, we give a suffi-
cient condition in terms of events.We first define several notions on events, cul-
minating in the notion of the dependency order and the DOM-modifying script.
We use these two notions to give the sufficient condition. Consider a page with
scripts s1, ..., s,. For each script s;, there is an event ey, which corresponds to
the execution of s;. By abuse of notation, we write s; for e,.

We say that e posts €’ if post(e,e’) appears in the event execution of e. We
say that e transitively posts ¢’ if there is a sequence e = eq,...,ex = ¢', k > 1,
such that for all 1 < i < k, e; posts e;41; i.e., we take the reflexive-transitive
closure.

Suppose script s transitively posts event e. We call e a near event if, for all
scripts s’, shb s’ implies ehb s’. Otherwise, we call e a far event. We say that a

40 J. Kloos et al.

script s is DOM-accessing iff there is a near event e such that e reads from or
writes to the DOM.

Now, consider two events e; and e; such that ¢ < j. We say that e; must come
before e; iff both e; and e; access the same object (including variables, DOM
nodes, object fields and other mutable state) and at least one of the accesses
is a write. For two scripts s; and s;, ¢ < j, we say that s; must come before
s; iff there is a near events e; of s; and an event e; such that s;hbe; and
ey must come before e;. The dependency order s; = s; is then defined as the
reflexive-transitive closure of the must-come-before relation.

Theorem 1. Let p be a page with scripts s1,...,8, and D C {s1,...,8,}. D is
a safe deferral set if the following two conditions hold:

1. If s; € D, then script s; is not DOM-accessing in any execution.
2. If s; € D and s; = s; in any exzecution, then s; € D.

The proof can be found in the technical report [17]. The gist of the proof is that
all scripts whose behavior is reflected in the DOM trace are not deferred and
hence executed in the same order (even with regard to the rest of the document).
Due to the second condition, each script starts in a state that it could start in
during an execution of the original page, so its behavior with regard to DOM
changes is reflected in the DOM behavior of the original page.

The distinction between near and far events comes from an empirical ob-
servation: when analyzing traces produced by web pages in the wild, script-
posted events clearly separate in these two classes. Near events are created by
the dispatchEvent function, or using the setTimeout function with a delay of less
than 10 milliseconds. On the other hand, far events are event handlers for longer-
term operations (e.g., XMLHttpRequest), animation frame handlers, or created
using setTimeout with a delay of at least 100 milliseconds. There is a noticeable
gap in setTimeout handlers, with delays between 10 and 100 milliseconds being
noticeably absent.

We make use of this observation by treating a script and its near events
as an essentially sequential part of the program, checking the validity of this
assumption by ensuring that the near events are not involved in any races. This
allows us to formulate a final criterion, which can be checked on a single trace:

Theorem 2. Let page p and set D be given as above, and consider a single trace
executing events ey, ..., e,. D is a safe deferral set if the following holds:

1. If e is a near event of s and accesses the DOM, s & D.

2. If e is involved in a race or has non-deterministic control flow, s hbe and s’
happens before s in program order (including s = s'), then ' ¢ D.

3. D is <-upward closed.

The proof can be found in [17]. The key idea of this proof is that all scripts in D
are “deterministic enough,” so the conditions of the previous theorem collapse
to checking a unique trace.

Deferrability Analysis for JavaScript 41

3.3 JSDefer: A dynamic analysis for deferrability

The major obstacle in finding a deferrable set of scripts is the handling of ac-
tual JavaScript code, which cannot be feasibly analyzed statically. This is be-
cause of the dynamic nature of the language and its complex interactions with
browsers, including the heavy use of introspection, eval and similar constructs,
and variations in different browser implementations. In the following, we present
a dynamic analysis for finding a safe deferral set that we call JSDefer.

Assumption: For reasons of tractability, we assume in this paper that no user
interaction occurs before the page is fully loaded. This is because it is well-known
that early user interaction is often not properly handled; compare [1]. Hence, we
assume that early user interaction either does not occur or is handled as in [1].

With this assumption at hand, as reasoned above, we only need to consider
scripts themselves and their near events; we call this the script initialization code.
This part of the code is run during page loading and, empirically is “almost
deterministic”: it does not run unbounded loops and, for the most part, only
exhibits limited use of non-determinism. We provide experimental evidence for
this observation below. We use the second criterion in the previous section above,
aggressively marking potentially non-deterministic scripts.

JSDefer use an instrumented browser from the EventRacer project [23] to
generate a trace, including a happens-before relation. For now, we use a simple,
not entirely sound heuristic to detect non-deterministic behavior: We extended
the instrumentation to also include coarse information about scripts getting
data from non-deterministic and environment-dependent sources, marking three
sources: The random number generator, the current time, and various bits of
browser state. In JSDefer, we check if a given script accesses any of these sources
of non-determinism. We leave the integration of a proper taint-tracking based
non-determinism check (e.g., building on [4]) as future work.

We perform deferrability analysis on the collected trace using Theorem 2.
This calculation computes a safe deferrable set. We then rewrite the top-level
HTML file of the page to add defer attributes to all scripts in the deferrable set.

4 Evaluation

We evaluated JSDefer on the websites of the Fortune 500 companies [10] as a
corpus. To gather deferrability information, we used an instrumented WebKit
browser from the EventRacer project [23] to generate event traces. Out of these
500 pages, we could successfully collect 451 pages; 38 websites timed out, 11
websites returned an error and 2 contained invalid HTML.

In the evaluation, we want to answer five main questions:

. How much and in what way is defer and async already used?
. Are our assumptions about determinism justified?

. How many deferrable scripts can we infer?

. What kind of scripts are deferrable?

. Does deferring these scripts gain performance?

Tk W N~

42 J. Kloos et al.

Async or defer #pages Async only: Only standard scripts? #pages
Neither 32 Only standard scripts and snippets 256
Defer only 0 Other 148
Async only 404

Both 15

Table 1. Number of pages in the corpus that use async or defer. The sub-classification
of async scripts was done manually, with unclear cases put into “others”.

4.1 How are async and defer used so far?

As a first analysis step, we analyzed if pages were using async and defer annota-
tions already, and in which situations this was the case. The numbers are given
in Table 1.

The first observation from the numbers is that defer is very rarely used, while
there is a significant numbers of users of async. Further analysis shows many
of these asynchronous scripts come from advertising, tracking, web analytics,
and social media integration. For instance, Google Analytics is included in this
way on at least 222 websites*. Another common source is standard frameworks
that include some of their scripts this way. In these cases, the publishers provide
standard HTML snippets to load their scripts, and the standard snippets include
an async annotation. On the other hand, 254 pages include some of their own
scripts using async. In some pages, explicit dependency handling is used to make
scripts capable of asynchronous loading, simulating a defer-style loading process.

4.2 Are our assumptions justified?

The second question is if our assumptions about non-determinism are justified.
We answer it in two parts, first considering the use of non-deterministic functions,
and then looking at race conditions.

Non-determinism: To perform non-determinism analysis, we used a browser
that was instrumented for information flow control. This allowed us to iden-
tify scripts that actually use non-deterministic data in a way that may influence
other scripts, by leaking non-deterministic data or influencing the control flow.
We considered three classes of non-determinism sources:

1. Math.random. For most part, this function is used to generate unique iden-
tifiers, but we found a significant amount of scripts that actually use this
function to simulate stochastic choice.

2. Date.now and relatives. These functions are included since their result de-
pends on the environment. We found that usually, these functions are called
to generate unique identifiers or time stamps, and to calculate time-outs.

4 Many common scripts are available under numerous aliases, so we performed a best-
effort hand count.

Deferrability Analysis for JavaScript 43

Nevertheless, we found examples for which it would not be feasible to auto-
matically detect safety automatically. For instance, we found one page that
had a busy-wait loop in the following style:

var end = Date.now() + timeout; while (Date.now() < end) {}

Automatically detecting that such code can be deferred seems quite difficult.

3. Functions and properties about the current browser state, including window
size, window position and document name. While we treat these as a source
of non-determinism, it would be better to classify them as environment de-
pendent values; we find that in the samples we analyzed, they are not used
in way that would engender non-determinism. Rather, they are used to cal-
culate positions of windows and the like.

As it turns out, many standard libraries make at least some use of non-
determinism. For instance, jQuery and Google’s analytics and advertising li-
braries generate unique identifiers this way.

Additionally, many scripts and libraries have non-deterministic control flow.
We found 1704 cases of scripts with non-deterministic control flow over all the
pages we analyzed. That being said, this list contains a number of duplicates:
In total, at least 546 of these scripts were used one more than one page®. They
form 100 easily-identified groups, the largest of which are Google Analytics (187
instances), jQuery (40 instances) and YouTube (20 instances).

More importantly, we analyzed how many of the scripts we identified as
deferrable have non-deterministic control flow. As it turns out, there was no
overlap between the two sets: Our simple heuristic of scripts calling a source of
non-determinism was sufficient to rule out all non-deterministic scripts.

Race conditions: We additionally analyzed whether non-determinism due to race
conditions played a role. In this case, the findings were, in fact, simple: While
there are numerous race conditions, they all occur between far events. We did
not encounter any race conditions that involved a script or its near events.

One further aspect is that tracing pages does not exercise code in event han-
dlers for user inputs. This may hide additional dependencies and race conditions.
As reasoned above, we assume that no user interaction occurs before the page
is loaded (in particular, after deferred scripts have run). The reasoning for this
was given above; we plan to address this limitation in further work.

4.3 Can we derive deferrability annotations for scripts?

To evaluate the potential of inferring deferrability annotations, we used the anal-
ysis described above to classify the scripts on a given page into five broad classes:

— The script is loaded synchronously and can be deferred,

5 We clustered by URL (dropping all but the last two components of the domain name
and all query parameters), which misses some duplicates

44 J. Kloos et al.

Table 2. Number and percentage of deferrable scripts. The number of deferrable
scripts includes pages with no scripts; for the percentage, we only consider pages with
at least one deferrable script.

deferrable scripts # pages % deferrable scripts # pages

no scripts 11 < 10% 180
0 156 10 — 20% 56
1 86 20 — 30% 37
2 55 30 — 40% 14
3-5 89 40 — 50% 6
6-10 47 50 — 60% 1
more than 10 18 60 — 70% 1

— The script is already loaded with defer or async (no annotation needs to be
inferred here);

— The script is an inline script; in this case, deferring would require to make
the script external, with questionable performance impact;

— The script is not deferrable since it performs DOM writes;

— The script is not deferrable because it is succeeded by a non-deferrable script
in the dependency order.

The general picture is that the number of deferrable scripts highly depends on
the page being analyzed. 295 of all pages contain deferrable scripts, and 209 of all
pages permit deferring multiple scripts. Moreover, on 18 of the pages considered,
at least 11 scripts can be deferred. Among these top pages, most have between
11 and 15 deferrable scripts (4 with 11, 2 with 12, 4 with 13, 5 with 15), while
the top three pages have 16, 17 and 38 deferrable scripts on them; see the left
column of Tab. 2. We also analyzed what percentage of scripts are deferrable on
a given page; discarding the pages that had no deferrable scripts on them, we
get the picture in the right column of Tab. 2.

Further analysis shows that some pages have been hand-optimized quite heav-
ily, so that everything that could conceivably be deferred is already loaded with
defer or async. Conversely, some pages have many scripts that can be deferred.

Many scripts are marked as non-deferrable because of dependencies. In many
cases, these dependencies are hard ordering constraints: For instance, jQuery is
almost never deferrable since later non-deferrable scripts will use the functional-
ity it provides. That being said, we observe some spurious dependencies between
scripts; this indicates room for improvement of the analysis. As an example, con-
sider the jQuery library again. Among other things, it has a function for adding
event handlers to events. Each of these event handlers is assigned a unique iden-
tifier by jQuery. For this, it uses a global variable guid that is incremented each
time an event handler is added; clients treat the ID as an opaque handle. Never-
theless, if multiple scripts attach event handlers in this way, there is a an ordering
constraint between them due to the reads and writes to guid, event though the
scripts may commute with each other.

Looking at the pages with a high number of deferrable scripts, we find that
there are two broad classes that cover many deferrable scripts: “Class defini-

Deferrability Analysis for JavaScript 45

tions”, which create or extend an existing JavaScript object with additional
attributes (this would correspond to class definitions in languages such as Java),
and “poor man’s deferred scripts”, which install an event handler for one of
the events triggered at page load time (load, DOMContentLoaded and jQuery
variants thereof) and only then execute their code.

4.4 Does deferring actually gain performance?

Since we found a significant number of scripts that can actually be deferred, we
also measure how performance and behavior is affected by adding defer annota-
tions. We used a proxy-based setup to present versions of each web page with
and without the additional defer annotations from deferrability analysis to Web-
PageTest [27]. We then measured the time-to-render (i.e., the time from starting
the page load to the first drawing command of the page) for each version of
each page, We choose time-to-render as the relevant metric because the content
delivery industry uses it as the best indicator of the user’s perception of page
speed. This belief is supported by studies, e.g. [11].

Since our setup did not allow us to interpose on SSL connections, we had
to drop pages that force an upgrade to SSL. In total, out of the 500 pages
considered, 209 force an SSL upgrade. Taking the intersection of the sets of
pages that have deferrable scripts and don’t force an SSL upgrade, we were left
with 169 pages.

We took between 38 and 50 measurements for each case, with a median of
40. The measurements were taken for each page that had at least one deferrable
script and could successfully be rewritten.

The first observation to make is that the load time distribution tends to be
highly non-normal and multi-modal. This can be seen in a few samples of load
time distribution, as shown in Fig. 1. These violin plots visualize an approxima-
tion of the probability distribution of the loading time for each case.

Load time distribution: www.amphenol.com Load time distribution: www.pepsico.com
Top: without JSDefer, bottom: with JSDefer Top: without JSDefer, bottom: with JSDefer
2 2 —
G 7 i)
2 2
5 s
o o
1000 1500 2000 2400 2700 3000 3300
Load time in ms Load time in ms
Load time distribution: www.wnr.com Load time distribution: www.cummins.com
Top: without JSDefer, bottom: with JSDefer Top: without JSDefer, bottom: with JSDefer
2 2
B . 7]
2 2
5 5
=] a
800 1000 1200 800 1200 1600 2000
Load time in ms Load time in ms

Fig. 1. Violin plots of load time distributions for some pages, before and after applying
JSDefer. The graphs show a smoothed representation of the sample distribution.

46 J. Kloos et al.

For this reason, we quantify the changes in performance by considering the
median change in time-to-render for each page, meaning we calculate the median
of all the pairwise differences in time-to-render between the modified and the
unmodified version of the page. This statistic is used as a proxy for the likely
change in loading time by applying JSDefer. In the following, we abbreviate the
median change in time-to-render as MCTTR. We additionally use the Mann-
Whitney U test to ensure that we only consider those cases where MCTTR
gives us statistically significant results.

Out of the 169 considered pages, 66 had a statistically significant MCTTR.

The actual median changes are shown in Fig. 2, together with confidence
intervals. The data is also given in Table 3. This table also contains the median
TTR of the original page. Several things are of note here:

1. As promised in the introduction, the median improvement in TTR is 198.5ms
in the examples provided, while their median load time is 3097ms.

2. Most of the pages that pass the significance test have positive MCTTR,
meaning that applying JSDefer provides benefits to time-to-render: For 59
pages, JSDefer had a positive effect, versus 7 pages where it had a negative
effect. (85 versus 14 including SSL pages).

3. 49 of the pages in our sample have an estimated MCTTR of at least
100ms=0.1s. This difference corresponds to clearly perceptible differences
in time-to-render. Even when taking the lower bound of the 95% confidence
interval, 32 of the pages still have this property.

4. For 7 pages, we get a negative MCTTR, corresponding to worse loading
time. This indicates that JSDefer should not be applied blindly.

We tried to analyze the root causes for the worsening of load times. For this,
we used Chrome Developer Tools to generate a time-line of the page load, as
well as a waterfall diagram of resource loading times. The results were mostly
inconclusive; we could observe that the request for loading some scripts on two
of these pages was delayed, and conjecture that we are hitting edge cases in the
browser’s I/O scheduler.

Another observation that can be made by analyzing the violin plots is that
JSDefer sometimes drastically changes the loading time distribution of pages, but
there is no clear pattern. The interested reader may want to see for themselves
by looking at the complete set of plots in the supplementary material.

An interesting factor in the analysis was the influence of pre-loading: For each
resource (including scripts) that is encountered on a page, as soon as the reference
to the script is read (which may well be quite some time before “officially”
parsing the reference), a download task for that resource is started®, so that
many download tasks occur in parallel. This manifests itself in many parallel
downloads, often reducing latency for downloads of scripts and resources. This
eats up most of the performance we could possibly win; preliminary experiments
with pre-loading switched off showed much bigger improvements. Nevertheless,
even in the presence of such pre-loading, we were able to gain performance.

6 Glossing over the issue of connection limits

Deferrability Analysis for JavaScript 47

Table 3. MCTTR values for pages with significant MCTTR, sorted by ascending
MCTTR. All times are given in milliseconds.

Page MCTTR MCTTR 95% confidence interval Median TTR of original page
www.williams.com -452.0 -698.0,-201.0] 2300.0
www.visteon.com -401.0 -899.0,-99.0] 6996.0
www.mattel.com -401.0 -900.0,-1.0] 3995.0
www.statestreet.com -299.0 -400.0,-100.0] 2596.0
www.fnf.com -201.6 -500.0,-1.0] 3896.0
www.cbscorporation.com -99.0 -100.0,0.0] 1296.0
WWW.Wnr.com -98.0 -100.0,0.0] 895.0
www.lansingtradegroup.com 98.6 1.0,118.0 2597.0
www.kiewit.com 99.0 0.0,101.0 1096.0
WWW.emcorgroup.com 99.0 0.0,201.0 1696.0
www.dovercorporation.com 99.0 0.0,100.0 1896.0
www.domtar.com 99.0 1.0,100.0 1896.0
WWW.eogresources.com 99.0 0.0,100.0 1896.0
www.johnsoncontrols.com 99.0 0.0,101.0 3296.0
www.altria.com 99.0 0.0,101.0 499.0
www.jmsmucker.com 99.0 0.0,199.0 996.0
www.itw.com 99.0 1.0,100.0 1295.0
www.walgreensbootsalliance.com 100.0 1.0,101.0 1096.0
www.bostonscientific.com 100.0 1.0,101.0 1297.0
www.apachecorp.com 100.0 0.0,199.0 1396.0
www.lifepointhealth.net 100.0 99.0,100.0] 1396.0
www.marathonoil.com 100.0 99.0,101.0] 1097.0
www.cstbrands.com 100.0 99.0,199.0] 1897.0
www.mohawkind.com 101.0 100.0,200.0] 1496.0
www.delekus.com 101.0 98.0,200.0] 1795.0
www.stanleyblackanddecker.com 103.0 100.0,199.0] 1196.0
www.fanniemae.com 112.3 1.0,296.0] 2999.0
www.citigroup.com 114.0 99.0,201.0] 1296.0
www.microsoft.com 130.0 14.0,206.0] 1455.0
www.pultegroupinc.com 139.0 93.0,219.0] 1120.0
WWW.mosaicco.com 196.0 100.0,200.0] 1496.0
www.tysonfoods.com 198.0 100.0,280.0] 1796.0
www.iheartmedia.com 198.0 1.0,300.0] 1696.0
www.rrdonnelley.com 199.0 104.0,201.0] 2097.0
www.raytheon.com 199.0 0.0,401.0] 1697.0
www.navistar.com 199.6 53.0,318.0] 2740.0
www.genesishcc.com 200.0 1.0,399.0] 4497.0
www.chs.net 200.0 100.0,298.0] 1796.0
www.newellbrands.com 200.0 100.0,299.0] 1197.0
www.navient.com 200.0 0.0,304.0] 2597.0
WWW.NCr.com 200.0 96.0,300.0] 2096.0
WWW.sempra.com 200.0 100.0,300.0 1696.0
www.univar.com 200.0 101.0,300.0 1496.0
WWW.avoncompany.com 200.0 100.0,300.0 1596.0
www.pricelinegroup.com 200.0 199.0,201.0 1596.0
www.pacificlife.com 201.0 100.0,399.0 3296.0
www.weyerhaeuser.com 242.2 200.0,300.0 2497.0
www.techdata.com 298.0 100.0,303.0 2296.0
www.tenneco.com 299.0 200.0,300.0 1896.0
www.dana.com 299.0 200.0,300.0 1496.0
www.cablevision.com 299.0 298.0,300.0 2196.0
www.amphenol.com 300.0 200.0,400.0 1496.0
www.calpine.com 300.0 201.0,302.0 2098.0
WWW.NOV.com 300.0 103.0,498.0 3396.0
www.harman.com 303.0 300.0,400.0 2195.0
www.burlingtonstores.com 395.0 200.0,501.0 4179.0
www.centene.com 398.0 308.0,412.0 2306.0
Www.cummins.com 398.9 299.0,496.0 1695.0
www.markelcorp.com 500.0 498.0,501.0 1596.0
www.spectraenergy.com 501.0 499.0,600.0 2395.0
www.spiritaero.com 598.0 499.0,601.0 1797.0
www.wholefoodsmarket.com 611.7 412.0,790.0 2138.0
www.deanfoods.com 700.0 401.0,3900.0] 3796.0
www.mutualofomaha.com 702.0 700.0,800.0] 2396.0
www.lkqcorp.com 800.0 700.0,900.0] 3301.0
WWW.ppg.com 891.4 514.0,1299.0] 5096.0

48 J. Kloos et al.

MCTTR

1400.00
120000

1000.00-

800.00

} rt
11

i I
I_JNIMMHIMH}HH‘MH MHI

400.00

20000

o0 IHHHHIIII

I

NCTTR in ms (more i better)

-600.00
-800.00

100000

W iliams. o

Fig.2. MCTTR values for pages with significant MCTTR,; Visualization of Table 3.

We also performed some timing analysis of page downloads to understand how
performance is gained or lost, and found that the most important factor is,
indeed, the time spent waiting for scripts to become available. The time saved
by executing scripts later was only a minor factor.

Finally, to judge the impact of the improvements we achieved, we discussed
the results with our industrial collaborator. Instead of considering the MCTTR,
they analyzed the violin plots directly, and they indicated that they consider the
improvement that JSDefer can achieve to be significant.

4.5 Threats to validity

There are some threats to validity due to the set-up of the experiments.

1. External validity, questions 2-5: Websites often provide different versions of
their website for different browsers, or have browser-dependent behavior.
In practice, one would address this by providing different versions of the
website as well. An efficient way of doing this is part of further work.

2. Internal validity, question 5: We could not completely control for network
delays in the testing set-up.

3. Internal validity, question 2: Due to the set-up of the analysis, we could not
ensure that the pages did not change between analysis steps. Thus, in the
non-determinism matching step, we may have missed cases. We did cross-
check on a few samples, but could not do so exhaustively.

Deferrability Analysis for JavaScript 49

5 Related work

Accelerating web page loading: One key ingredient of website performance is
front-end performance: How long does it take to load and display the page,
and how responsive is it? One factor is script loading time [26]. Google’s guide-
lines [12] recommend using async and defer to speed up page loading.

The question of asynchronous JavaScript loading and improving page loading
times in general has lead to various patents, e.g., [19,18,9]; they describe specific
techniques for “do-it-yourself” asynchronous script loading. Only one of them
describes a technique for selecting scripts to load asynchronously, which boils
down to loading all scripts this way.

Apart from asynchronous loading, another technique to improve script load-

ing times is to make the scripts themselves smaller. Besides compression (in-
cluding compiler techniques to optimize the code for size, e.g. [13]), one may
“page out” functions from scripts by replacing function bodies with stubs that,
if called, download the function implementation from the network [20]. Asyn-
chronous loading complements these techniques, as well as the many other tech-
niques to improve load time.
Parallelisation and commutativity: The deferring transform can be seen as a close
relative of transformations employed by parallelizing compilers. In particular,
we can phrase the question of deferrability in terms of commutativity[24,2]: In
Rinard et al.’s work, two functions A and B commute if executing A and then
B gives the same results that executing B and then A gives. In our setting, a
script is deferrable if it does not access the DOM and commutes with all (later)
non-deferrable scripts.

The Bernstein Criteria [3] describe that two program blocks A and B are
parallelizable if A neither reads nor writes memory cells that B writes, and vice
versa. This is used to define the dependency graph that identifies parallelizable
parts of a program; our dependency order is constructed in a similar way.
Semantics analysis of JavaScript and web pages: The semantics of JavaScript
and HTML are complex and unusual; natural-language descriptions can be
found in [7] (JavaScript) and [28] (HTML). There are various formalizations of
JavaScript [14,21,5], and formalizations of fragments of browser behavior, consid-
ering the event mode [6], information flow control [4] and race detection [22,23].

Additional analysis tools exist for JavaScript, including Jalangi2 [25], which
performs a dynamic analysis using source-to-source-translation, and various
static analysis like TAJS [15], JSAI [16] and the type inference engine flow [8].

References

1. Adamsen, C.Q., Mgller, A., Karim, R., Sridharan, M., Tip, F., Sen, K.: Repairing
event race errors by controlling nondeterminism. In: ICSE 2017 (2017)

2. Aleen, F.; Clark, N.: Commutativity analysis for software parallelization: letting
program transformations see the big picture. In: ASPLOS ’09 (2009)

3. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Elec.
Comp. (5), 757-763 (1966)

50

0

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Kloos et al.

. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in

webkit’s javascript bytecode. In: POST 2014 (2014)

. Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene,

D., Schmitt, A., Smith, G.: A trusted mechanised javasript specification. In: POPL
14 (2014)

. Bohannon, A., Pierce, B.C.: Featherweight firefox: Formalizing the core of a web

browser. In: WebApps’10 (2010)

. ECMA International: ECMAScript 2015 Language Specification (2015)
. Facebook, Inc.: flow: a static type checker for JavaScript, https://flowtype.org
. FAINBERG, L., Ehrlich, O., Shai, G., Gadish, O., DOBO, A., Berger, O.: Systems

and methods for acceleration and optimization of web pages access by changing
the order of resource loading (Feb 3 2011), https://www.google.com/patents/
US20110029899, US Patent App. 12/848,559

Fortune 500 (2016), http://beta.fortune.com/fortune500/

Gao, Q., Dey, P., Ahammad, P.: Perceived performance of webpages in the
wild: Insights from large-scale crowdsourcing of above-the-fold QoE (2017),
arXiv:1704.01220

Google, Inc.: Remove Render-Blocking JavaScript (Apr 2015), https://
developers.google.com/speed/docs/insights/BlockingJS

Google, Inc.: Closure tools (2016), https://developers.google.com/closure/
Guha, A.; Saftoiu, C., Krishnamurthi, S.: The Essence of JavaScript. In: ECOOP
2010. See also http://arxiv.org/abs/1510.00925

Jensen, S.H., Mgller, A., Thiemann, P.: Type analysis for javascript. In: SAS 09
Kashyap, V., Dewey, K., Kuefner, E.A., Wagner, J., Gibbons, K., Sarracino, J.,
Wiedermann, B., Hardekopf, B.: JSAI: a static analysis platform for javascript. In:
FSE-22 (2014)

Kloos, J., Majumdar, R., McCabe, F.: Deferrability analysis for JavaScript. Tech.
rep., MPI-SWS (2017), see http://www.mpi-sws.org/~jkloos/jsdefer-tr.pdf
Kuhn, B., Marifet, K., Wogulis, J.: Asynchronous loading of scripts in web pages
(Apr 29 2014), https://wuw.google.com/patents/US8713424

Lipton, E., Roy, B., Calvert, S., Gibbs, M., Kothari, N., Harder, M., Reed, D.:
Dynamically loading scripts (Mar 30 2010), https://www.google.com/patents/
US7689665, US Patent 7,689,665

Livshits, V.B., Kiciman, E.: Doloto: code splitting for network-bound web 2.0
applications. In: FSE ’08 (2008)

Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for javascript. In:
APLAS 2008 (2008)

Petrov, B., Vechev, M.T., Sridharan, M., Dolby, J.: Race detection for web appli-
cations. In: PLDI 2012 (2012)

Raychev, V., Vechev, M.T., Sridharan, M.: Effective race detection for event-driven
programs. In: OOPSLA 2013 (2013)

Rinard, M.C., Diniz, P.C.: Commutativity analysis: A new analysis framework for
parallelizing compilers. In: PLDI "96 (1996)

Sen, K., Kalasapur, S., Brutch, T.G., Gibbs, S.: Jalangi: a selective record-replay
and dynamic analysis framework for javascript. In: ESEC/FSE’13 (2013)
Souders, S.: High-performance web sites. Commun. ACM 51(12), 36-41 (Dec 2008)
Viscomi, R., Davies, A., Duran, M.: Using WebPageTest: Web Performance Testing
for Novices and Power Users. O’Reilly Media, Inc., 1st edn. (2015)

WHATWG: HTML — Living Standard (Sep 2016), https://html.spec.whatwg.
org/multipage/

	3
Deferrability Analysis for JavaScript
	1 Introduction
	2 Background: Loading JavaScript
	3 Deferrability analysis
	3.1 Background: Event traces and races in web pages
	3.2 When is a set of scripts deferrable?
	3.3 JSDefer: A dynamic analysis for deferrability

	4 Evaluation
	4.1 How are async and defer used so far?
	4.2 Are our assumptions justi�ed?
	4.3 Can we derive deferrability annotations for scripts?
	4.4 Does deferring actually gain performance?
	4.5 Threats to validity

	5 Related work
	References

