
Relative Camera Pose Estimation Using
Convolutional Neural Networks

Iaroslav Melekhov1(B), Juha Ylioinas1, Juho Kannala1, and Esa Rahtu2

1 Aalto University, Helsinki, Finland
{iaroslav.melekhov,juha.ylioinas,juho.kannala}@aalto.fi

2 Tampere University of Technology, Tampere, Finland
esa.rahtu@tut.fi

Abstract. This paper presents a convolutional neural network based
approach for estimating the relative pose between two cameras. The
proposed network takes RGB images from both cameras as input and
directly produces the relative rotation and translation as output. The
system is trained in an end-to-end manner utilising transfer learning
from a large scale classification dataset. The introduced approach is com-
pared with widely used local feature based methods (SURF, ORB) and
the results indicate a clear improvement over the baseline. In addition, a
variant of the proposed architecture containing a spatial pyramid pooling
(SPP) layer is evaluated and shown to further improve the performance.

Keywords: Relative camera pose estimation · Deep neural networks ·
Spatial pyramid pooling

1 Introduction

The ability to estimate the relative pose between camera views is essential for
many computer vision applications, such as structure from motion (SfM), simul-
taneous localization and mapping (SLAM) and visual odometry. Due to its prac-
tical importance, plenty of research effort has been devoted to the topic over the
years. One popular approach to the problem is based on detecting and match-
ing local feature points and using the obtained correspondences to determine
the relative poses. The performance of such system is highly dependent on the
accuracy of the local feature matches, which are commonly determined using
methods like SIFT [1], DAISY [2], or SURF [3]. Unfortunately, there are many
practically important cases where these hand-crafted descriptors are not able
to find sufficient amount of correspondences. Particularly, repetitive structures,
textureless objects, and extremely large viewpoint changes are difficult to han-
dle. We highlight such cases in Fig. 1. An alternative solution would be to utilize
all photometric information from the images to determine the poses. However,
such methods (e.g. [4]) are usually not applicable to wide baseline settings, where
there is large viewpoint change, or they may be computationally expensive.

Recently, methods based on convolutional neural networks (CNNs) have
clearly outperformed previous state-of-the-art results in many computer vision
c© Springer International Publishing AG 2017
J. Blanc-Talon et al. (Eds.): ACIVS 2017, LNCS 10617, pp. 675–687, 2017.
https://doi.org/10.1007/978-3-319-70353-4_57

676 I. Melekhov et al.

problems, such as image classification, object recognition, and image retrieval.
In this work, we show how CNNs can also be applied to estimate the relative
camera poses. Our contributions are as follows: (1) we propose a CNN-based
method, which takes RGB images from both cameras as input and directly pro-
duces the relative rotation and translation as output; (2) we explore several
network architectures and evaluate their performance on the DTU dataset [5];
(3) we study how different training strategies affect the results and make com-
parisons to popular keypoint based approaches. In addition, we investigate how
spatial pyramid pooling [6] could be applied in the context of relative camera
pose estimation problem.

The rest of the paper is organized as follows. Section 2 describes the related
work focusing on relative camera pose estimation. The proposed approach and
details related to network architectures and objective functions are introduced in
Sect. 3. Finally, Sects. 4 and 5 present the baseline methods, experimental setup,
evaluation results, discussion, and possible directions for future investigations.

Fig. 1. Scenarios where traditional approaches are not able to estimate relative camera
pose precisely. Left : very large viewpoint changes, thus most of inliers (correspondences)
are not correct; center : the correct inliers concentrate on a small region; right : there is
insufficient number of correspondences due to textureless scene (object with reflecting
surface).

2 Related Work

Over the years, a large variety of different local feature-based methods, such
as SIFT [1], SURF [3], ORB [7], BRIEF [8], have been utilized in structure
from motion, image-based localization, and visual SLAM contexts for estimating
camera poses. The main disadvantage of these methods is their limited ability
to cope with nuisance factors such as variations in viewpoint, reflections, and
lack of distinguishable texture. As also noted in [9], some recent efforts indicate
promise in approaching geometric computer vision tasks with a dense, featureless
methods based on using full images. Taking this into account, one of the most
prominent solutions is to apply convolutional neural networks (CNNs). While
they have recently been applied in many computer vision problems, there are
only a few works that consider them in the context of relative pose estimation.

Konda and Memisevic [10] proposed a CNN architecture for predicting
change in velocity and local change in orientation using short stereo video clips.

Relative Camera Pose Estimation Using Convolutional Neural Networks 677

They used a rather shallow CNN architecture together with unsupervised pre-
training of the filters in early layers. Partly because of the shortage of training
data in their path prediction application, they were forced to discretize the space
of velocities and local changes for a softmax-based classification instead of con-
tinuous estimates with regression. Mohanty et al. [11] tried to solve the same
problem as in [10] using a monocular approach. In detail, they used an archi-
tecture based on two AlexNet-like CNN branches acting as inputs to a stack of
fully connected layers coupled with a regression layer.

Ummenhofer et al. [12] proposed a CNN architecture for depth and relative
camera motion estimation. They utilized multiple tasks in the learning phase to
provide additional supervision in order to get more accurate depth maps and
camera motion estimates. DeTone et al. [9] proposed a CNN architecture for
estimating the relative homography between two images by regressing a 4-point
homography parameterization with an Euclidean loss. Finally, instead of relative
camera pose, Kendall et al. [13] proposed a CNN-based method for absolute 6-
DoF camera pose estimation.

Our proposal is related to all previously discussed works, but it is the first
one investigating the suitability of Siamese network architectures in the relative
camera pose estimation problem. Compared with [10,11], our study aims at more
general treatment of the camera pose estimation problem. That is, our approach
is applicable for general unrestricted camera motion and for wide baseline view
pairs, unlike [10,11]. Compared with [9], we are trying to solve relative camera
pose, which can be regarded as a more general problem than solving the relative
homography between two views. Regarding [13], we adopt the same learning
objective but concentrate on solving a different problem. In particular, unlike
prediction of absolute pose [13], relative pose estimation provides means for
relation and representation learning for previously unseen scenes and objects.
Finally, compared with [12], our study focuses on analyzing the differences in
traditional and CNN-based approaches for relative camera pose estimation and
does not consider the role of additional supervisory signals. That is, our approach
does not require depth maps for training which is beneficial in practice. Further
details of our approach will be given in the following sections.

3 Methodology

Our goal is to estimate relative camera pose directly by processing a pair of
images captured by two cameras. We propose a convolutional neural network
based method that predicts a 7-dimensional relative camera pose vector Δp
containing the relative orientation vector Δq (4-dimensional quaternion), and
the relative position, i.e. translation vector Δt (3-dimensional), so that Δp =
[Δq,Δt].

3.1 Network Architectures

To estimate the relative camera pose between a pair of images, we apply a
Siamese network architecture [14] (see Fig. 2). In detail, our network consists of

678 I. Melekhov et al.

two blocks termed as the representation and the regression part. The representa-
tion part incorporates two identical CNN branches sharing the weights and other
parameters. In general, both of these branches are composed of convolutional lay-
ers and rectified linear units (ReLU). The regression part in turn is composed
of two fully-connected (FC1 and FC2) layers, where FC1 and FC2 have 4 and 3
connections respectively for estimating the 7-dimensional pose vector.

Following [13], we apply transfer learning. In detail, we take the Hybrid-
CNN [15] as a base network for both of the branches usinglearned usin large-
scale classification data. More specifically, Hybrid-CNN is AlexNet trained on
both image classification ImageNet [16] and a scene-centric Places [15] datasets.

Extracting features from convolutional layers instead of fully-connected lay-
ers has shown to produce more accurate results in image retrieval problem [17–
19]. Therefore, we removed the last three fully-connected layers (FC6, FC7
and FC8) from the original Hybrid-CNN preserving only convolutional, max-
pooling layers and ReLU. More precisely, the network architecture for one
branch has the following blocks: convB1[96,11,4,0], pool[3,2], convB2[256,5,1,2],
pool[3,2], convB3[384,3,1,1], convB4[384,3,1,1], convB5[256,3,1,1], pool[3,2]. The nota-
tion convB[N,ω,s,p] consists of a convolution layer with N filters of size ω × ω
with stride s and padding p and a regularization layer (ReLU), pool[k,s] is a
max-pooling layer of size k × k applied with a stride s. The last layer of this
baseline architecture dubbed cnnA is a pooling layer producing a tiny feature
map (6×6) as an output. Therefore, due to reduction of spatial resolution, image
details that are beneficial for relative camera pose estimation may have been lost
at this part of the network. In order to limit such information loss, we remove
the last max-pooling layer extracting features from convB5, which allows to have
slightly larger feature maps (size 13 × 13). This modified version of the cnnA
architecture is called cnnB.

Each branch of our representation part has an AlexNet-like structure origi-
nally designed for a fixed-size (227×227) input image. Such limitation may lead
to reduced accuracy in the relative camera pose estimation degrading the perfor-
mance of the system in general. To have more accurate estimations, it might be
beneficial to process larger images to be able to extract more information from
the scene structure. Theoretically, the convolutional layers accept arbitrary input
image sizes, but they also produce outputs of variable dimensions. However, the
FC layer of the regression part (see Fig. 2) requires to have fixed-length vectors
as input. To make our pipeline to accept arbitrary image sizes, we apply a spatial
pyramid pooling (SPP) layer which can maintain spatial information by pooling
in local spatial bins [6]. An SPP layer consists of a set of pooling layers of n × n
bins with the window size w = ceil(a/n) and a stride str = floor(a/n), where
a is a size of the input feature map (a × a) of the SPP layer. Therefore, the
number of output bins of the SPP layer is fixed regardless of the image size.

We modified the original architectures cnnA and cnnB by adding an SPP
layer to the end of each branch. Obtained networks (cnnAspp and cnnBspp) have
4-level (1× 1, 2× 2, 3× 3, 6× 6) and 5-level (1 × 1, 2 × 2, 3 × 3, 6 × 6, 13 × 13)
pyramid pooling respectively. An cnnBspp structure is illustrated in Fig. 2.

Relative Camera Pose Estimation Using Convolutional Neural Networks 679

More detailed evaluation of the proposed network architectures is presented in
Sect. 4.2.

3.2 Learning and Inference

To regress the relative pose, the network was designed to compute the Euclidean
loss between estimated vectors and ground truth. Following [13], we predict the
relative orientation and position together using only one neural network learnt
in a multi-task fashion.

Our loss function for training is as follows

L =
∥
∥Δt̂ − Δt

∥
∥
2

+ β ‖Δq̂ − Δq‖2 (1)

where Δq̂ and Δt̂ are the ground-truth relative orientation and translation, and
β is a parameter to keep the estimated values to be nearly equal. As described
in [13], β must balance the orientation and translation estimations and can be
set by grid search. In our experiments we set β equal to 10. The network is
trained via back-propagation using stochastic gradient descent. The details of
the training are described in Sect. 4.2.

It should be noted that quaternion vectors have unit length by definition and
therefore ||Δq̂|| = 1 in (1). Further, since the absolute scale of the translation
can not be recovered, we normalize the ground truth translations to unit length
as well, i.e. ||Δt̂||=1. However, the norm constraints are not explicitly enforced
during training. Instead, the estimates are normalized to unit length as a post-
processing step like in [13].

Thus, at test time, a pair of images is fed to a regression neural network,
consisting of two branches, which directly estimates the real-valued parameters
of the relative camera pose vector. Finally, the estimated quaternion and trans-
lation vectors are normalized to unit length.

3.3 Error Metrics

The error metrics that we use for evaluation of the performance are: (a) relative
orientation error (ROE) in degrees and (b) relative translation error (RTE) in
degrees. The latter error is the angle between the estimated translation vector
and the ground truth. The former error is measured by determining the rotation
angle for the rotation between the estimated orientation and the ground truth
(i.e. we determine the rotation which rotates the estimated orientation onto the
ground truth).

3.4 Datasets

It is essential to have a large and consistent dataset for training CNNs for rela-
tive camera pose problem. However, collecting such data may be expensive and
laborious task. We overcome this by utilizing a crowd-sourced image collection
provided by [20], where the ground truth camera poses are obtained by using an

680 I. Melekhov et al.

co
nv

B
1

co
nv

B
2

co
nv

B
3

co
nv

B
4

co
nv

B
5

sp
p

co
nv

B
1

co
nv

B
2

co
nv

B
3

co
nv

B
4

co
nv

B
5

sp
p

co
nv

B
1

co
nv

B
2

co
nv

B
3

co
nv

B
4

co
nv

B
5

sp
p

co
nv

B
1

co
nv

B
2

co
nv

B
3

co
nv

B
4

co
nv

B
5

sp
p

Representation part

Regression part

FC
2

(3
)

FC
1

(4
)

FC
2

(3
)

FC
1

(4
)

Δp

Fig. 2. Model structure (cnnBspp). Both network branches (representation part) have
identical structure with shared weights. Pre-trained Hybrid-CNN [15] neural network
was utilized to initialize the proposed architecture. Representation part maps an image
pair to a low dimensional feature vector which is processed by regression part of the
network. Regression part consists of 2 fully-connected layers (FC1 and FC2) and esti-
mates relative camera pose.

(a) Roman Forum (b) Gendarmenmarkt (c) Montreal Notre Dame

(d) Piccadilly (e) Vienna Cathedral
(f) Yorkminster

Fig. 3. Examples of the training (a–e) and the validation (f) sets representing image
pairs of six landmarks. The images were taken under different lighting and weather con-
ditions, with variations of appearance and camera positions. Additionally, the dataset
has a lot of occluded image pairs, so the problem of estimation relative camera pose
becomes more challenging.

automatic structure from motion pipeline based on local feature matching. The
collection consists of 13 subsets of images representing different landmarks and
the numerical data of the global structure from motion reconstruction for each
subset.

To evaluate the proposed CNN architectures we construct datasets for train-
ing and validation. The training set is composed of samples of five landmarks
(Montreal Notre Dame, Piccadilly, Roman Forum, Vienna Cathedral and Gen-
darmenmarkt) covering altogether 581k image pairs (see examples of each land-
mark in Fig. 3). For the validation set, we used the Yorkminster subset covering

Relative Camera Pose Estimation Using Convolutional Neural Networks 681

22k image pairs in total. The ground truth labels (relative orientation and trans-
lation) are provided by [20] and were computed by applying the SIFT keypoint
detector and descriptor followed by the structure and motion estimation via
RANSAC, triangulation and iterative optimization.

Fig. 4. Example scenes from the DTU Robot Image Dataset [5]. The images show
different objects which have been used in the evaluation dataset to estimate relative
camera poses. In the dataset, camera positions are estimated very accurately as the
camera was mounted on an industrial robot.

In order to obtain a fair comparison between our approach and point-based
methods, we need to specify an evaluation dataset where the ground truth ori-
entation and translation are accurate and reliable, and not dependent on the
success of traditional point-based motion estimation methods. For this, we uti-
lize the DTU Robot Image Dataset provided by [5], where the ground truth
is obtained by attaching the camera to a precisely positioned robot arm. The
dataset covers 124 scenes containing different number of camera positions. Sev-
eral object scenes of this dataset are illustrated in Fig. 4. See [5] for further
details about the pipeline that was used to collect the DTU dataset.

4 Experiments

We evaluated the performance of our proposal on the DTU dataset comparing
it with two traditional feature based methods, namely SURF [3] and ORB [7].

4.1 Preprocessing of the Evaluation Dataset

As explained, the DTU dataset consists of 124 scenes covering different number
of camera positions. More specifically, it contains 77 scenes (type-I) with 49
camera positions and 47 scenes (type-II) with 64 camera positions. In order to
estimate relative camera poses between pairs of views, we first determine the
camera pairs which have overlapping fields of view.

Assuming that the pairwise relationships between cameras are represented
in a symmetric n × n adjacency matrix, it is easy to see that the upper bound
for the number of overlapping view pairs is n (n − 1) /2, where n is the number
of camera positions in the scene (49 or 64). Depending on the scene, this equals
to 1176 and 2016, respectively. However, we compute relative poses only for the

682 I. Melekhov et al.

subset of pairs which have overlapping fields of view. These camera pairs can
be determined easily since the intrinsic camera parameters are known for the
dataset. In detail, we define the field of view of each camera as a cone, i.e. a
frustum, and calculate the intersection for pairs of corresponding frustums by
using the publicly available OpenMVG [21] library. As a result, the number of
overlapping pairs of views is 512 for scenes of type-I and 753 for type-II.

0 20 40 60 80 100 120 140 160 180
Angular error (degrees)

0

0.2

0.4

0.6

0.8

1

cnnA
cnnAspp
cnnB
cnnBspp
SURF
ORB

0 20 40 60 80 100 120 140 160 180
Angular error (degrees)

0

0.2

0.4

0.6

0.8

1

cnnA
cnnAspp
cnnB
cnnBspp
SURF
ORB

Fig. 5. Accuracy of our Siamese network architectures for estimating the relative cam-
era orientation (left) and translation (right). Presented is the normalized cumulative
histograms of errors for all scenes of the DTU dataset.

4.2 Comparing CNN Models

To compare the discussed Siamese network architectures with and without SPP,
i.e. cnnA/cnnB and cnnAspp/cnnBspp (see Sect. 3), we created training image
pairs by rescaling the input images so that the smaller dimension was fixed to
323 pixels and keeping the original aspect ratio. Depending on the model, we
then used either random 227 × 227 or 323 × 323 pixel crops for training (i.e.
the larger size for architectures applying SPP), and a center crop (227 × 227) at
the test time. To train our networks we used stochastic gradient descent (SGD)
and the Adam solver [22]. Learning rate

(

10−4
)

, weight decay
(

10−5
)

as well as
the size of mini-batches (128) were the same for all models during the training
phase. We used the publicly available machine learning framework Torch [23]
on two NVIDIA Titan X cards applying the data parallelism trick to speed up
training. It took around 60 h to finish 15 training epochs with the 581k image
pairs of the training dataset described in Sect. 3.4.

Figure 5 shows a set of normalized cumulative histograms of relative orien-
tation and translation errors for each of the discussed models evaluated on all
scenes of the DTU dataset. According to the results it can be seen that having
a bigger output feature map size before the final FC layers is clearly benefi-
cial. This can be seen especially in the case of the reported error on relative
translations (Fig. 5 right) where the cnnB and cnnBspp outperform cnnA and
cnnAspp. In addition, utilizing SPP yields a further improvement. We dubbed
the top-performing model (cnnBspp) to cnn-spp and used it for further experi-
ments reported in the following section.

Relative Camera Pose Estimation Using Convolutional Neural Networks 683

(a) Failure cases for which the traditional SURF approach was not able to
detect enough matching points (inliers) properly or they were not distributed
well in the image pair. As a result, the method has poor performance rela-
tive to the proposed method. ROE: 92.35◦ (52 .66 ◦); 57.86◦ (29 .27 ◦). RTE:
113.62◦ (34 .49 ◦); 118.9◦ (56 .42 ◦)

(b) Both approaches produce competitive results. ROE: 9.05◦ (12 .36 ◦);
19.93◦ (12 .9 ◦). RTE: 13.51◦ (15 .10 ◦); 53.74◦ (58 .09 ◦)

(c) Point-based descriptor finds sufficient amount of well-distributed fea-
tures and outperforms our approach in relative translation estimation. ROE:
10.53◦ (12 .52 ◦); 9.24◦ (11 .55 ◦). RTE: 3.23◦ (41 .15 ◦); 15.42◦ (57 .62 ◦)

Fig. 6. Visual illustration of the performance of a baseline (SURF) on example image
pairs. For all the cases (a, b, and c) we also report the error measures (ROE and RTE)
of the baseline and our best model (in parentheses) on the given pairs. (Color figure
online)

4.3 Comparison to Traditional Methods

We compare our best model with a baseline consisting of two feature based
methods, namely SURF and ORB. For both of these methods, we used the
OpenCV implementation with the default parameters. The pose was recovered
from the essential matrix estimated using the five-point method and RANSAC.

The results presented in Fig. 5 confirm that our proposed model cnn-spp
performs better compared with the baseline feature based methods. For fair
comparison, we resize all images of the DTU dataset to 227×227 size, transform
internal camera parameters accordingly, and evaluate CNNs and feature-based
approaches on this data. Our results show that transfer learning from external
datasets can be utilized effectively to train a general relative pose regressor.
Further, it should be noted that essential matrix estimation requires knowledge

684 I. Melekhov et al.

of the internal camera parameters, whereas our CNN based approach does not
use that information.

We illustrate example results in Fig. 6. The yellow lines show matching points
of SURF features across the images in a pair. The visualization shows that
our method is robust and in some cases produces more accurate relative pose
estimations than conventional point-based methods (Fig. 6a).

In Sect. 3.4 we described the data used to train our models in the previ-
ous experiments. However, the visual characteristics and distribution of relative
poses in this data are quite different from the data used in evaluation, namely
the DTU dataset. Therefore, given that many studies [13,16] show that it is
essential to use training data which is as close as possible to the data in the
target domain, it is interesting to see how the performance is affected if a subset
of DTU scenes is used for training. Thus, we divided the DTU scenes into two

0 20 40 60 80 100 120 140 160 180
degrees

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ORB, high-res
SURF, high-res
ORB, low-res
SURF, low-res
cnn-spp, Landmarks/low-res
cnn-spp, Landmarks+DTU(low-res)/high-res
cnn-spp, Landmarks+DTU(low-res)/low-res
cnn-spp, Landmarks+DTU(high-res)/high-res

0 20 40 60 80 100 120 140 160 180
degrees

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ORB, high-res
SURF, high-res
ORB, low-res
SURF, low-res
cnn-spp, Landmarks/low-res
cnn-spp, Landmarks+DTU(low-res)/high-res
cnn-spp, Landmarks+DTU(low-res)/low-res
cnn-spp, Landmarks+DTU(high-res)/high-res

(a) Cumulative histogram of errors for relative camera orientation (left) and
relative translation (right) for the test scenes of the DTU dataset. Experiments
were evaluated on two different pre-defined image sizes: 227 × 227 (low-res)
and 1600 × 1200 (high-res). The notation for CNN approaches is following:
model, training data and the training image size (high-res or low-res), and the
size of test images.

(b) Some scenes from the test set of the DTU dataset representing textureless
objects with light reflections.

Fig. 7. Relative camera pose performance. The first row (a) shows that in general
cnn-spp predicts relative orientation more accurately than SURF or ORB descriptor,
but in some cases falls behind in estimating relative translation. However, for cases
where point-based methods are not able to detect enough features, cnn-spp performs
significantly better (c) (Color figure online).

Relative Camera Pose Estimation Using Convolutional Neural Networks 685

0 20 40 60 80 100 120 140 160 180
degrees

0

0.2

0.4

0.6

0.8

1

ORB
SURF
cnn-spp

0 20 40 60 80 100 120 140 160 180
degrees

0

0.2

0.4

0.6

0.8

1

ORB
SURF
cnn-spp

0 20 40 60 80 100 120 140 160 180
degrees

0

0.2

0.4

0.6

0.8

1

ORB
SURF
cnn-spp

0 20 40 60 80 100 120 140 160 180
degrees

0

0.2

0.4

0.6

0.8

1

ORB
SURF
cnn-spp

(c) Our CNN-based method performs clearly better than conventional local
feature based approaches in estimating relative camera orientation (left col-
umn) and translation (right column) for the hard cases visualized in Fig. 7b.
Particularly, neither SURF nor ORB are able to localize sufficient amount of
inliers for such scenes, and, hence, their performance is quite poor.

Fig. 7. (continued)

sets, and used one of them to fine-tune cnn-spp model pre-trained on Landmarks
dataset (Sect. 3.4). The other part of the DTU images was then used as the final
testing set. Furthermore, according to the properties of SPP layer we conduct
experiments using different input image sizes for the proposed model. Particu-
larly, low resolution images (227 × 227) and high resolution (1600 × 1200) images
were evaluated. The size of high resolution images corresponds to the original
images in the test set of the DTU dataset.

The final results, illustrated in Fig. 7, show that the fine-tuned model pro-
duces more accurate relative camera orientation estimations than the one trained
just on Landmarks dataset (red and grey curves respectively). Further, utiliz-
ing high resolution images both during training and evaluation leads to the best
performance among the CNN-based methods (yellow curve). On average the pro-
posed method falls slightly behind the feature based approaches in estimating
the relative translation. However, based on our inspection it can be said that
in certain cases (see for example Fig. 7b) where the objects are mostly texture-
less the proposed CNN-based camera pose regressor significantly outperforms
traditional feature based approaches (Fig. 7c).

5 Discussion and Conclusion

We presented an end-to-end trainable convolutional neural network based app-
roach for estimating the relative pose between two cameras. We evaluated several
different network architectures which all were based on the idea of combining
two identical network structures with weight sharing, i.e. the Siamese network.
We showed that the problem is solvable by this structure and that it is useful to
have a larger feature map fed as input to the stack of final fully-connected lay-
ers. We further showed that applying spatial pyramid pooling is the key to even

686 I. Melekhov et al.

more accurate relative pose estimations as it opens the door for larger images
that according to our results is one way to improve the accuracy. Overall, our
proposal demonstrates very promising results, but there is also some room for
further improvement.

For future directions, one interesting option is to construct a model based
on two steps. During the first step, a CNN would produce coarse estimations
and then, on the second step, would further refine the final estimate using the
preliminary estimations. This kind of a model is reminiscent of the one presented
in [12]. We leave constructing such a model for future work.

References

1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

2. Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide
baseline stereo. IEEE Trans. PAMI 32, 815–830 (2010)

3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023 32

4. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2 54

5. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view
stereopsis evaluation. In: CVPR, pp. 406–413 (2014)

6. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10578-9 23

7. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative
to sift or surf. In: ICCV (2011)

8. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent
elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15561-1 56

9. DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation.
CoRR abs/1606.03798 (2016)

10. Konda, K., Memisevic, R.: Learning visual odometry with a convolutional network.
In: VISIGRAPP (2015)

11. Mohanty, V., Agrawal, S., Datta, S., Ghosh, A., Sharma, V.D., Chakravarty,
D.: DeepVO: a deep learning approach for monocular visual odometry. CoRR
abs/1611.06069 (2016)

12. Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox,
T.: DeMoN: depth and motion network for learning monocular stereo. CoRR
abs/1612.02401 (2016)

13. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-
time 6-DOF camera relocalization. In: ICCV (2015)

14. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: CVPR (2005)

https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1007/978-3-642-15561-1_56

Relative Camera Pose Estimation Using Convolutional Neural Networks 687

15. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: NIPS (2014)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
25, pp. 1097–1105. Curran Associates, Inc. (2012)

17. Babenko, A., Lempitsky, V.S.: Aggregating deep convolutional features for image
retrieval. In: ICCV (2015)

18. Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Visual instance retrieval with
deep convolutional networks. CoRR abs/1412.6574 (2014)

19. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: From generic to
specific deep representations for visual recognition. In: CVPRW (2015)

20. Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp.
61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9 5

21. Moulon, P., Monasse, P., Marlet, R., Others: OpenMVG: an open multiple view
geometry library (2012). https://github.com/openMVG/openMVG

22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

23. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment
for machine learning. In: BigLearn, NIPS Workshop (2011)

https://doi.org/10.1007/978-3-319-10578-9_5
https://github.com/openMVG/openMVG

	Relative Camera Pose Estimation Using Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Network Architectures
	3.2 Learning and Inference
	3.3 Error Metrics
	3.4 Datasets

	4 Experiments
	4.1 Preprocessing of the Evaluation Dataset
	4.2 Comparing CNN Models
	4.3 Comparison to Traditional Methods

	5 Discussion and Conclusion
	References

