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Abstract. Due to the rapidly increasing quality of cameras and process-
ing power in smartphones, citizen scientists can play a more signif-
icant role in environmental monitoring and ecological observations.
Determining the size of large bird flocks, like those observed during
migration seasons, is important for monitoring the abundance of bird
populations as wildlife habitats continue to shrink. This paper describes
a pilot study aimed at automatically counting birds in large moving
flocks, filmed using hand-held devices. Our proposed approach integrates
motion analysis and segmentation methods to cluster and count birds
from video data. Our main contribution is the design of a bird counting
algorithm that requires no human input, and functions well for videos
acquired in non-ideal conditions. Experimental evaluation is performed
using ground truth of manual annotations and bird counts, and shows
promising results.
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1 Introduction

Computer vision technologies can play an important role in environmental mon-
itoring. Significant theoretical advances have been made recently in terms of
automatic, fast, and reliable object detection, classification, and tracking. These
advances enable the design of accurate methods for environmental monitor-
ing applications [2] using a large variety of video data. Computer vision algo-
rithms, combined with new image acquisition technologies, such as those using
unmanned aerial videos [6], can trigger a revolution in the way wildlife monitor-
ing surveys are performed.

Data acquisition for environmental surveys of large bird populations, such
as bird flocks, can be challenging. A solution proposed for an airport-based bird
surveillance system uses fixed thermal cameras in order to track flying birds [9].
A static system might work well for preventing bird strikes at an airport, but not
for estimating bird abundance in large moving flocks. Bird flocks can be filmed
by amateurs using standard cameras in mobile devices; however, the quality of
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the video can vary considerably due to environmental conditions, background
complexity, and camera quality.

Ornithologists have been surveying flocks and their moving patterns long
before cameras and binoculars were common-place. Manual surveys are, however,
time-consuming, and prone to human error; they are usually performed well only
by few highly trained specialists. As there has been an increase in the number
of bird reserves, partly due to the larger human impact on animal habitats in
recent years, the need for more frequent and accurate bird population surveys has
increased. Periodic bird surveys allow for tracking migrations patterns of various
bird species. This information is vital for quantifying the effect of industrial
development on the nature conservation value of the land and can also guide
conservation policies to prevent the local, regional or global extinctions of birds
with smaller population sizes or disappearing migration patterns. Manual bird
counting from video data, even when assisted by computer programs, is a long,
tedious, and error-prone process. This paper proposes an automatic method for
estimating the number of birds in large flocks using videos acquired with hand-
held mobile devices.

The remainder of the paper is organized as follows. Section 2 presents related
work in environmental visual monitoring performed with computer vision meth-
ods and by human experts. Section 3 describes the proposed approach, and
Sect. 4 discusses its experimental evaluation. Conclusions and future work direc-
tions are provided in Sect. 5.

2 Related Work

Computer vision methods are increasingly used to estimate diversity and abun-
dance of animal populations. This is due in part to the ability of placing cam-
eras in remote/inaccessible locations, which cannot be easily reached by human
observers (i.e. deep sea and high elevation mountainous areas). Also, camera-
based environmental observations have a low environmental impact. Methods
for automatic fish classification [13,16] and counting [5] have been recently pro-
posed. Fish and bird counting share similar challenges with regards to the auto-
matic segmentation of the moving targets, mostly due to partial occlusions, poor
visual conditions and relatively low video quality. Classification and counting of
animal species and individuals from video data is a non-trivial task. Bird flocks
are of higher density than schools of fish, and the size of individual birds is much
smaller than the size of fish; thus, a straightforward adaptation of fish counting
methods for bird counting purposes is impossible.

Tracking and/or counting based on prior knowledge of individual behaviour
is used in dense crowd modeling [15]. Rittscher et. al. [12] proposed a human-
counting approach that models behaviour based on colour signature, template
matching, and probabilistic estimation of foreground data. Individual tracks are
clustered in group tracks for counting. This algorithm under-performs in high-
density crowds. Ali and Shah [1] approach the same problem by considering a
person as a set of particles that are affected by external factors. This type of
particle behaviour can be also applied to bird flocks [8].
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The standard method used by ornithologists for obtaining an unbiased mea-
sure of bird abundance employs visual observation with the naked eye, or with
binoculars and a spatial sampling strategy [7]. This involves selecting and fol-
lowing the motion of a relatively small, quasi-rectangular sample region within
the flock. The bird count is performed only within this region, which is assumed
to be representative of the overall bird density of the flock. The bird count is
then extrapolated by estimating how many sample region areas are contained
within the flock. This method outputs an approximate count which is considered
accurate enough for inferring population statistics. The method relies heavily on
expert-made, ad-hoc decisions such as the location and size of the sample region,
and the count extrapolation from the sample region to the entire flock. The
method fails when dealing with flocks that have a high variance in bird density,
which violates the basic assumption underlying sampling. Also, it is difficult to
manually count high density flocks (i.e. when birds are close and partially over-
lapping). Manual bird count is also performed with difficulty in low visibility,
hazy conditions, and for fast moving flocks.

3 Proposed Approach

While our proposed approach follows the same general strategy as the manual,
expert-based bird count, it attempts to improve its accuracy in the following
three ways. First, we automate the spatial sampling process, i.e. the detection of
sample regions, to be further called subregions; we perform a complete partition
of the flock in subregions. Second, instead of extrapolating the count from the
sample region to the entire flock, we compute individual bird counts in each
subregion; we thus allow for different motion patterns to exist within different
subregions. Third, temporal information is considered by using video segments
(or clips) of a moving flock to account for overlapping birds and flock shape
changes. The bird count is averaged over a sequence of frames in order to obtain
a better approximation of the true number of birds in the flock.

The proposed approach consists in two main processing modules (see Fig. 1),
namely subregion partitioning (Sect. 3.1), and bird detection (Sect. 3.2).

Fig. 1. Flow chart of the proposed method
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3.1 Subregion Partitioning

For all frames composing the input video sequence, the dense optical flow
algorithm [4] is used to find the region of interest (where birds are most likely
to exist) by determining the motion flow vectors at uniformly sampled points in
the frame. The motion flow vectors are partitioned into subregions by using the
density-based spatial clustering clustering algorithm (DBScan) [3]. This method
was chosen due to its high robustness with respect to noise. Each subregion is
represented by the minimum bounding rectangle (MBR) of the clustered motion
vectors.

Determination of the Region of Interest. In video sequences acquired
using hand-held cameras, individual birds in a flock may be blurry due to cam-
era motion, camera distance to flock, low light conditions, etc. Thus, the process
of extracting features required for some optical flow algorithms, such as Lucas-
Kanade [11], is not reliable. Instead, the Farneback [4] method is used; this
method estimates the displacement field between two frames and attempts to
compensate for background motion. We determine the region of interest by cal-
culating the motion displacement field, O(n):

F (x, y, n − 1) = F (x + OΔx(x, y, n), y + OΔy(x, y, n − 1), n) (1)

where n is the frame index, (x, y) are spatial coordinates of the pixel, and Δx,y

is the optical flow motion displacement between frames F (n − 1) and F (n).
To reduce computation, only a subset of the motion vectors, M(n), is used,

as shown in Eq. 2a. This subset of motion vectors is used as the feature set
to partition the region of interest into subregions using the DBScan clustering
algorithm.

P (x, y) = p(x + OΔx(x, y), y + OΔy(x, y)) (2a)
M(n) = {P (x + Δx, y + Δy) | Δxy > 0, x = 0, S, . . . X, y = 0, S, . . . , Y } (2b)

where p is the sampling point, S is the sampling rate, X is the frame width, and
Y is the frame height. For our method, a spatial sampling rate of 10 pixels is
used.

Motion Vector Clustering. The motion vector subset M(n) is used to par-
tition the region of interest into subregions. To obtain the subregions partition,
M(n) is clustered using DBScan [3]. The DBSCAN algorithm requires 2 parame-
ters: epsilon, the Euclidian distance threshold, which specifies how close points
should be to each other to be considered a part of a cluster; and minPts, the
minimum cluster size. We assume that motion vectors that differ in magnitude
by more than the sampling rate are not generated by the same “group” of birds
moving in a consistent direction and speed within the flock. Therefore, we set
the Euclidean distance threshold, epsilon, to the sampling rate (10 pixels). The
minimum cluster size MinPts is set to 3 points, due to the fact that this is the
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Fig. 2. Example showing how subregion partitioning works on frame n = 64 of video
sequence V ID4 in our dataset (a) Input frame (b) Motion displacement field O(n),
and (c) Result of motion vector clustering.

minimum number of points needed to define a planar surface. For each cluster
i, its corresponding subregion Fi(n) is found by taking the minimum bounding
rectangle (MBR) of the cluster.

Figure 2 illustrates how subregion partitioning works on a typical frame from
our experimental dataset.
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3.2 Bird Detection

Videos of moving flocks of birds may exhibit variable degrees of blurriness, due
to low contrast between birds and background (sky, grass, ground etc.) To reduce
the number of missed bird detections, we perform edge enhancement using a non-
photo-realistic rendering (NPR) algorithm [10], which exaggerates low-gradient
edges via a palette reduction method.

The NPR algorithm performs a three-iteration loop on Fi(n), using Eq. 3 to
obtain a contrast-enhanced gray-scale image, CEi(n).

CEi(x, y, n) = Fi(x, y, n) + ΔF (3)

where ΔF is computed using the intensity gradient between Fi(x, y, n) and its’
5× 5 neighbourhood.

Next, a simple thresholding operation is used to obtain the binary images
Bi(n) of the subregions, as follows.

Bi(n) =

{
255 if Oi(x, y, n) <= TB

0 otherwise
(4)

where TB is the threshold value, which was set to 10 based on experiments.

(a) F20(n = 2) (b) CE20(n = 2)

(c) B20(n = 2) (d) G20(n = 2) (e) Final Result

Fig. 3. Example showing segmentation of subregion i = 20 in the second frame (n=2)
of video sequence V ID8 in our dataset. The subregion i is contrast enhanced (b) and
then thresholded (c). The binary result of applying Gabor filter is (d) The final result
(e) is a pixelwise product of (c) and (d)

The adopted contrast enhancement method may introduce noisy structures
that could be later on be falsely counted as birds. To compensate for this effect,
a linear Gabor filter is applied to the subregion Fi(n). The Gabor filter uses
convolution in order to find the strongest vertical gradient regions, and aims to
reduce the number of false bird detections.
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The Gabor filter, Gi, is defined by:

δ = 2.0/(s − 1) (5a)
i = kδcos(θ) + mδsin(θ) (5b)

j = −kδsin(θ) + jδcos(θ) (5c)

Gi(x, y) = e− (i2+j2)
2σ2 cos(2πi + 0.5π) (5d)

where θ = 0, s is the odd-kernel size, x = s−1
2 + i, y = s−1

2 + j, and k,m ∈
{− s−1

2 , s−1
2 }. The kernel size was set to 21.

The resultant convolution generates small connected regions where strong
edges exist. This removes the low frequency textures like sky, grass and ground,
but preserves the high frequency textures of the bird shape. The output of the
Gabor filter is thresholded, resulting in the binary image Gi(n).

To summarize, two binary images are produced via independent processes
for each subregion, as follows: Bi(n), resulting from contrast enhancement, and
Gi(n), resulting from Gabor filtering. The final result SRi(n) is the pixelwise
product of Bi(n) and Gi(n). See also Fig. 3.

This image is then labelled using a standard single-pass 8-connected compo-
nent labelling algorithm. To account for partially overlapping birds, the average
area of all birds in the subregion, ā, is used to determine if there are connected
birds that weren’t separated during the bird segmentation.

The bird count per frame, birds(n), is obtained using Eq. 6a.

birdsi =
∑

{�A

ā
� | a ∈ A} (6a)

birds(n) =
∑

i∈SR

birdsi (6b)

where SR is the number of sub-regions in frame n, and A is the set of all
connected components in subregion SRi(n), and �...� is the floor operator. The
summation term in Eq. 6a shows that two or more birds can be counted inside
connected components with larger areas, i.e. areas that are greater than the
average bird area.

Temporal information is considered in order to remove noise in the bird
counts, which are performed on a frame by frame basis. For a given video, the
average bird count over a sequence of frames of predefined length is computed
as the final bird count (flock size) per video.

4 Experimental Evaluation

This section presents experimental results from a feasibility study for automatic
bird counting from videos of bird flocks acquired with hand-held cameras. The
purpose of this feasibility study is to identify which characteristics of input
video data lead to accurate results from our proposed approach, as well as which
characteristics of input video data result in failures for our approach. Our dataset
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Table 1. Dataset video properties

VID FPS Resolution Source Conditions Bird speed

1 30 1280× 720 Youtube Light clouds, clear Medium

2 30 1280× 720 Youtube Horizon visible, sunset Very fast

3 30 1920× 1080 Youtube Clear Fast

4 24 1920× 1080 SOR Horizon visible, low light Medium

5 30 1920× 1080 Youtube Light clouds, clear Slow

6 24 1920× 1080 SOR Horizon visible, low light Medium

7 30 1920× 1080 Youtube Cloud, sunset Fast

8 24 1920× 1080 SOR Horizon visible, low light Medium

9 30 1280× 720 Youtube Horizon visible, clear Medium

consists of two types of video sequences. The first type is acquired by expert
ornithologists affiliated with the Romanian Ornithological Society (SOR) [14].
The second type consists of video sequences of bird flocks that we have retrieved
from YouTube. The assembly of the dataset attempted a holistic exploration of
various environmental conditions, and speed of birds. All video sequences in our
dataset were manually annotated for ground truth purposes.

4.1 Dataset Description

The experimental dataset consists of 9 video sequences with a duration of 3 s
each, recorded using hand-held (non-stationary) devices. All video sequences
verify three criteria: (a) flock is countable by human experts, (b) flock is scale
invariant (no zooming), and (c) flock is not visually obstructed. For each video,
frames were manually annotated with the location of each bird at half-second
intervals for a total of 29,354 birds. The annotation process took approximately
15 h. Table 1 lists the video spatial and temporal resolution, environmental con-
ditions, and qualitative assessment of bird speed.

4.2 Experimental Results

The proposed method was evaluated on an 64-bit i7 Linux desktop and had an
average runtime of 1 min per second of video. The two main modules composing
our method, namely bird segmentation and counting, were evaluated individu-
ally. This was done to provide more insight into sources of error introduced by
two separate processes. Experimental evaluation uses standard metrics of detec-
tion tasks such as precision, recall, and average count error. Precision and recall
are calculated for both the intermediate bird segmentation and the bird counting
tasks. The birds segmentation outputs subregions (i.e. grids) that correspond to
birds. To calculate the precisiongrid and recallgrid, the following definitions were
used:
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true-positivegrid: the subregion i is correctly labelled as containing birds
false-positivegrid: the subregion i is incorrectly labelled as containing birds
false-negativegrid: the subregion i is incorrectly labelled as not containing birds

For the bird counting evaluation, the true-positives are the number of cor-
rectly labelled birds found in the evaluated frame, the false-positive is the number
of incorrectly labelled birds, and the false-negative is the number of birds not
detected by the proposed method.

Table 2. Algorithm results aggregated per video and compared to the average of the
ground truth labelling. The precision and recall are calculated for the bird segmentation
and bird counting tasks

VID Ground truth Proposed method Count error Precisiongrid Recallgrid Precisionbird Recallbird

1 81 ± 0 93 ± 5 12 0.9175 0.9808 0.7915 0.9847

2 185 ± 29 269 ± 38 84 0.7471 0.8247 0.485 0.8508

3 286 ± 8 262 ± 48 -24 0.8916 0.7855 0.8289 0.8317

4 295 ± 6 322 ± 37 27 0.7769 0.9097 0.785 0.9097

5 535 ± 3 554 ± 26 19 0.9214 0.9191 0.9051 0.9358

6 607 ± 63 550 ± 82 -57 0.8147 0.8856 0.8315 0.8143

7 961 ± 37 1006 ± 102 45 0.8105 0.9103 0.799 0.9363

8 1154 ± 17 1050 ± 59 -104 0.8752 0.9031 0.7867 0.6354

9 786 ± 35 777 ± 58 -9 0.8706 0.8242 0.7463 0.8848

Average ±42.3 0.8473 0.8826 0.7732 0.8648

Fig. 4. The actual bird counts vs the predicted flow counts for all videos in the sample
dataset.

We compared our approach against the ground-truth labelling at the uni-
formly sampled temporal moments. The average values over the 6 sampled
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moments (at half-second intervals) for each video are aggregated in Table 2. The
average miscount was 42.3 birds per video, with the worst average count error
of -104 belonging to VID8. Each video had a tendency either towards under- or
over-counting, as shown in Fig. 4. The best performer was VID5, which had a
low average count error and high precision and recall. This is most likely due to
the low speed of birds in VID5, which resulted in less blurring between the birds
and background.

The worst performers were on VID7 and VID8 which had a miscount of
−284 and +210, respectively. Since temporal evaluation moments were chosen
via uniform sampling at every 0.5 s, no additional image analysis was performed
to evaluate the viability of the frame selected for the count. VID7 performed
poorly at 1.5 s because the birds were blurry due to either flock movement
or camera movement. This caused the segmentation to group too many birds
together, resulting in severe under-counting. In VID8, the flock of birds was
close to the ground and the algorithm mislabelled parts of the field as birds
Precisionbird for VID2 is very low, only 0.485; this video contained very fast
moving birds, and suffered from the same segmentation problems as VID7 as a
result. One may note that, for each analyzed video, a selection of optimal frames
for bird counting and evaluation purposes, based on image quality criteria, is
likely to improve results.

5 Conclusion

This paper proposes an automatic bird counting approach using videos acquired
with hand-held devices. Based upon preliminary evaluation results, our proposed
approach is likely to have a significant impact on future surveys of abundance and
migratory patterns in various bird populations. Our proposed method performed
similarly well for all videos with respect to various environmental conditions and
flock sizes. It is very encouraging to conclude that, as the flock size grew, the
relative error in bird counts remained roughly unrelated to the size of the flock;
this is definitely a strong advantage with respect to manual count. There is a
strong correlation between the performance of the proposed method and the
quality of the frame used for evaluation. Incorporating more temporal informa-
tion to avoid false detection and partial bird overlaps, as well as automatic frame
selection based on quality criteria will likely yield improved performance.
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