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Abstract. Deep learning, also known as deep machine learning or deep
structured learning based techniques, have recently achieved tremendous suc-
cess in digital image processing for object detection and classification. As a
result, they are rapidly gaining popularity and attention from the computer
vision research community. There has been a massive increase in the collection
of digital imagery for the monitoring of underwater ecosystems, including
seagrass meadows. This growth in image data has driven the need for automatic
detection and classification using deep neural network based classifiers. This
paper systematically describes the use of deep learning for underwater imagery
analysis within the recent past. The analysis approaches are categorized
according to the object of detection, and the features and deep learning archi-
tectures used are highlighted. It is concluded that there is a great scope for
automation in the analysis of digital seabed imagery using deep neural networks,
especially for the detection and monitoring of seagrass.
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1 Introduction

Oceans are like the lifeblood of Mother Nature, holding 97% of the earth’s water. They
produce more than half of the oxygen and absorb most of the carbon from our envi-
ronment. Maintaining these and other oceanic ecosystem services requires maintenance
of critical marine habitats. Important among these are seagrass meadows and coral
reefs, which are critical to marine foodwebs, habitat provision and nutrient cycling
[29]. For example, dredging, physically remove benthic marine species, like seagrasses,
can lead to their burial and can reduce the light necessary for photosynthesis [3].
Tourism, shipping, urbanization and human intervention are damaging coral colonies,
with 19% of the world’s coral reefs having been destroyed by 2011 and 75% threatened
[4]. Monitoring is an important aspect of any robust effort to manage these destructive
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impacts but can be an arduous task. Marine optical imaging technology offers enor-
mous potential to make monitoring more efficient, in terms of both cost and time.

Many marine management strategies incorporate remote sensing and tracking of
marine habitats and species. In recent years, the use of digital cameras, autonomous
underwater vehicles (AUV) and unmanned underwater vehicles (UUV) has led to an
exponential increase of availability of underwater imagery [9]. The Integrated Marine
Observing System (IMOS) collects millions of images of coral reefs around Australia,
but less than 5% go through expert marine analysis. For the National Oceanic and
Atmospheric Administration, the rate is even lower, only 1–2% [1]. For this reason, it
is now a research priority to analyse marine digital data automatically. To solve this
issue, deep learning, the state-of-art machine learning technology, provides potentially
unprecedented opportunities for many underwater objects [12].

Low-level manually designed features have been used in traditional classification
solution so far. Face and texture classification is done by Gabor and Local Binary
Patterns (LBP) while features and object recognition is regularly done by Scale
Invariant Feature Transform (SIFT) and Histogram of oriented gradients
(HOG) hand-crafted features. In the case of specific task and data, careful execution of
hand-crafted features have achieved good performances. But many of them cannot be
reused for a new situation without core changing. Moreover, Support Vector Machine
(SVM), Linear Discriminant Analysis (LDA), Principal Component Analysis
(PCA) and other machine learning conventional tools are quickly saturated when the
training data volume increases. Hinton et al. [5] proposed learning features using deep
neural networks (DNNs) to address these short comings. To make sense of texts,
images, sounds etc., deep learning transforms input data through more layers than
shallow learning algorithms [19]. At each layer, the signal is transformed by a pro-
cessing unit, like an artificial neuron, whose parameters are ‘learned’ through training
[20]. Deep learning is replacing handcrafted features, with efficient algorithms
for feature learning and hierarchical feature extraction [21]. Deep learning attempts to
make better representations of an observation (e.g. an image) and create models to learn
these representations from large-scale data.

By the use of large amounts of training data, large and deep networks demonstrated
excellent success. For example, convolutional neural network which is trained through
ImageNet has achieved unprecedented accuracy in image classification [6]. They have
been applied in the field of object detection [7], image classification [6], face verifi-
cation [22], digits and traffic signs recognition [23] etc. and demonstrated high per-
formance. However, deep learning has not been widely applied in marine object
detection and classification.

A survey on the current deep learning approaches for various marine object
detection and classification would help researchers understanding the challenges and
explore more efficient possibilities. To the best of our knowledge, this paper is the first
survey on such approaches.

The rest of the paper is organized as follows. The existing approaches for auto-
mated marine object detection on digital data are discussed in Sect. 2. Associated
challenges, especially for seagrass identification have been outlined in Sect. 3 and
finally, conclusions are drawn in Sect. 4.
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2 Approaches for Underwater Marine Object Detection

All the known machine learning approaches especially those using deep neural network
in digital marine data analysis, image annotation, object detection and classification are
discussed in this section. The approaches are categorized according to the object of
detection. Features and classifiers used in each of the approaches are also highlighted
and summarized in Table 1 and discussed in the follow sections.

Table 1. Summary of deep learning approaches for marine object detection

Target
group

Author
(publication
year)

Type of image or dataset Feature used Classifier

Fish Li et al.
(2015) [8]

RBG photos and videos
from LifeCLIEF Fish Task
of ImageCLIEF

RGB color space Fast R-CNN

Villon et al.
(2016) [25]

Marine Biodiversity
Exploitation and
Conservation Dataset

Motion from
previous sliding
window

Soft max Classifier with
Deep Network

Planktons Dieleman
(2015) [30]

Grey scale images provided
by National Data Science
Bowl

Shapes and
rotational
symmetry

ConvNNet inspired by
OxfordNet

Py et al.
(2016) [26]

Grey scale images provided
by National Data Science
Bowl

Inception module
for multi scale
architecture

Deep CNN inspired by
GoogleNet

Lee et al.
(2016) [27]

Woods Hole Oceanographic
Institution
(WHOI-Plankton) dataset

Transfer Learning
to reduce Class
imbalance

CIFAR 10 Convolutional
Neural Network

Dai et al.
(2016) [28]

ZooScane System Dataset Data
Augmentation to
increase the
dataset

ZooPlanktoNet inspired by
AlexNet and VGGNet

Corals Shiela et al.
(2008) [14]

Video stills of coral reef
transects from the Great
Barrier Reef

Local Binary
Pattern (LBP) for
texture &
Normalized
Chromaticity
Coordinates
histogram for color

Linear Discriminant Analysis
followed by a three layer
back propagation neural
network.

Elawady
(2014) [24]

Moorea Labeled Corals and
Heriot-Watt University
Atlantic Deep Sea Digital
dataset

Color
Shape
Texture feature
Descriptors

Supervised Convolutional
Neural Networks (CNNs)

Mahmood
et al.
(2016) [10]

Moorea Labelled Coral
(MLC) dataset

Texton and color
based hand-
crafted features
Spatial Pyramid
Pooling (SPP)

VGGNet
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2.1 Deep Learning in Fish Detection and Classification

Before 2015, very few attempts were taken to integrate deep learning on fish recog-
nition. Haar classifiers were used by Ravanbakhsh et al. [13] to classify shape features.
Principal Component Analysis (PCA) modelled the features. To get a balance of
accuracy and processing time for underwater fish detection, Spampinato et al. [15] used
moving average algorithm. Both of these methods have limited ability to process large
amount of underwater imagery. Li et al. [8] first introduced deep convolution network
for fish detection and recognition. They used Fast Region-based Convolutional Neural
Network (Fast R-CNN) to detect fish efficiently and accurately. They also constructed a
clean fish dataset of 24272 images over 12 classes, a subset of ImageCLIEF training
and test dataset. As illustrated in Fig. 1, they pre-trained an AlexNet on a large aux-
iliary dataset (ILSVRC2012) with five convolutional layers and fully connected three
layers by caffe CNN library which is an open source one. They modified AlexNet so
that the Fast R-CNN can be adopted to train the Fast R-CNN parameters; they used
stochastic gradient descent (SGD). Their experimental outcome showed better per-
formance with a higher maximum a posteriori estimation (mAP). They got an average
9.4% higher precision than Deformable Parts Model (DPM). Table 2 shows the per-
formance of their approach in fish detection compared to different other approaches
using non-deep learning techniques.

Fig. 1. Architecture of fish detection and recognition using fast R-CNN (adapted from [8]).

Table 2. Fish recognition accuracy comparison (adopted from [12])

Method Accuracy (%)

LDA + SVM 80.14
Raw-pixel SVM 82.92
Raw-pixel Softmax 87.56
Raw-pixel Nearest Neighbor 89.79
VLFeat Dense-SIFT 93.58
Deep-CNN 98.57
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Villon et al. [25] evaluated the effectiveness of the deep learning against
Ground-Truth dataset made by the Fish4Knowledge project. They also compared the
performance of deep learning for fish detection with a traditional system combined with
Support Vector Machines (SVM) classification and HOG feature extraction. The
architecture of their deep network had nine inception layers, 27 layers with a soft max
classifier and was inspired by the GoogleNet [32].

2.2 Deep Learning in Plankton Classification

Planktons are frequently the foundation for aquatic food webs and therefore are fre-
quently monitored as indicators of ecosystem condition. Conventional plankton mon-
itoring and measurement systems are not adequate to meet the scope of large scale
studies. In 2015, The National Data Science Bowl [30], a data science competition, was
held to classify the images of plankton with the support of Hatfield Marine Science
Centre of Oregon State University. The winning team was a group of researchers lead
by Prof. Joni Dambre from Ghent University in Belgium using convolutional neural
network. While it generally thought that enormous datasets are required for the deep
learning approaches, the classification accuracy in this case was 81.52% where there
were about 30000 examples for 121 classes and some of the classes had less than 20
examples in total. The winning team’s output feature maps were the same as the input
maps and the pooling and overlapping had window size 3 and stride 2. By starting with
a fairly shallow model of six layers and, gradually increasing the number of layers, the
final structure had 16 layers. To give network the ability to use the same feature
extraction pipeline to look at the input from different angles, a cyclic pooling technique
was used where the same stack of convolutional layers were applied and fed into a
stack of dense layers and at the top the feature maps were pooled together. Finally, the
stacks of cyclic pooling output feature maps from different orientations were combined
into one large stack and then the next layer was learned on this combined input which
adds four times more filters than it actually had. The operation that combines feature
maps from different orientations was named a ‘roll’ (Fig. 2).

Fig. 2. Roll operation with cyclic pooling (adopted from [31]).
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Using the same dataset of National Dataset Bowl of 2015 and inspired by
GoogleNet, another published approach of plankton classification was done by Py et al.
[26]. They proposed and developed an inception module with a convolutional layer for
distortion minimization and maximization of image information extraction. Inside the
network, improved utilization of computing resources was the hallmark of their net-
work architecture. Data augmentation was done to co-op with rotational and transla-
tional invariant and rotational affine was applied to data augmentation. They divided a
deep convolutional Neural Network into classifier part and feature part. But they found,
this kind of design of classifier part is prone to overfitting if the dataset is not large
enough and, replacing the last two fully connected layers with small kernels was better
for such dataset. Performance of their model was better than the state of the art models
for particular size of images [26].

Deep network approach for classification of plankton using a much larger dataset
was done by Lee et al. [27]. They worked with the WHOI-Plankton dataset (developed
by Woods Hole Oceanographic Institution) which had 3.4 million expert-labeled
images of 103 classes. In their approach, they mainly focused on solving the class
imbalance problem of a large dataset. For the reduction of bias from class imbalance,
they chose the CIFAR 10 CNN model as a classifier. Their proposed architecture had
three convolutional layers followed by two fully connected layers. At first their clas-
sifier was pre-trained on class normalized data and then re-trained on the original data
which helped reducing the class imbalance biasness [27].

Introduction of deep convolutional network solely for the classification of
Zooplankton was done by Dai et al. [28]. Their dataset was consisting of 9460
microscopic and grey scale zooplankton images of 13 different classes captured by
ZooScan system. They proposed a new deep learning architecture called Zoo-
planktoNet for zooplankton classification which is strongly inspired by AlexNet and
VGGNet. After experimenting with different sizes of convolution, they concluded that
ZooplanktoNet with 11 layers can provide the best performance so far. To support their
claim, they did a comparative experiment with other deep learning architectures like
AlexNet, CaffeNet, VGGNet and GoogleNet and found that ZooplanktoNet performs
better with an accuracy of 93.7% [28].

2.3 Deep Learning in Coral Classification

The color, size, shape and texture of corals may vary according to the class difference.
Moreover, the boundary differences are ambiguous and organic. Furthermore, currents,
algal blooms, density of planktons can change the turbidity of water and light avail-
ability, affecting the image color. These kinds of challenges make conventional
annotation techniques like, bounding boxes, situ analysis in line or point transects,
image labels or full segmentation inappropriate [1, 16].

Local Binary Pattern (LBP) for texture and Normalized Chromaticity Coordinate
(NCC) for color were used by Shiela et al. [14]. They used a three layer back prop-
agation neural network for classification purposes. However, Beijbom et al. [1] first
addressed automated annotation on a large scale for coral reef survey image by
introducing the Moorea Labelled Corals (MLC) dataset. They proposed a method based
on color and texture descriptors over multiple scales and it out performed traditional
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methods for texture classification. Elawady et al. [24] used supervised Convolutional
Neural Networks (CNNs) for coral classification. They worked on Moorea Labeled
Corals and Heriot-Watt University’s Atlantic Deep Sea Dataset and computed Phase
Congruency (PC), Zero Component Analysis (ZCA) and Weber Local Descriptor
(WLD). With spatial color channels they also considered shape and texture features for
input images [24].

For making the conventional point-annotated marine data compatible to the input
constraints of CNNs, Mahmood et al. [10] proposed a feature extraction scheme based
on Spatial Pyramid Pooling (SPP) (as shown in Fig. 3). They used deep features
extracted from the VGGNet [10] for coral classification. They also combined texton
and color based hand-crafted features to improve capability of classification. The block
diagram of the combined approach is illustrated in Fig. 4.

2.4 DeepLearningOpportunities for SeagrassDetection andClassification

For the stabilization of sediment, sequestration of carbon and provision of food and
habitat for enormous oceanic animals, sea grasses are very vital [7]. To improve the
understanding of the temporal and spatial patterns in species composition, reproductive
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Fig. 3. Local-SPP based feature extraction scheme from the VGGNet for coral classification
(adopted from [10]).
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Fig. 4. CNNs architecture combined with Texton and color based hand-crafted features to
improve capability for coral identification and classification (adopted from [10]).

156 Md. Moniruzzaman et al.



phenology and abundance of seagrass and the influence of commercialization and
human interaction, it is very important to monitor seagrass in more and more areas.

In 2013, Teng et al. [17] performed the binary classification of seagrass using
hyperspectral images from seagrass habitats to separate tube worms from rest of the
seagrass surface. More specific work to quantify the presence of the seagrass Posidonia
oceanica in Palma Bay was performed by Campos et al. [2]. They used analogic RGB
data. They chose Logistic Model Tree (LMT) classifier and Law’s energy measure-
ments. Grey level co-occurrence matrix was used to identify the differences in texture.
Oguslu et al. [11] used sparse coding and morphological filter to detect seafloor pro-
peller seagrass scars in shallow water using panchromatic images captured using
WorldView2 orbiting satellite. This approach was only effective in the shallow
coastline and for detecting the scars in the shore line.

Presently, as a conventional digital imagery approach approved by Commonwealth
Scientific and Industrial Research Organization (CSIRO) and Health Safety and
Environment Policies (HSE), Australia, images approximately 60 � 80 cm are taken
from a digital camera every three seconds. The camera is normally kept attach to a
frame towed behind a boat travelling at 1.5–3 knots which ensures the images are
spaced approximately 2–3 m apart. These images are then analyzed using photo Grid
or TranscetMeasure (®SeaGIS) software. A regular grid of 20 dots are superimposed
(Fig. 5) and a human operator identifies the presence and species of seagrasses [18]. It
typically takes a technician several hours to process image data for a single transect of
50 m and with 25–50 images. As most surveys require several hundreds of meters of
seabed to be covered, it can require several days to perform the analysis. Furthermore,
different technicians may vary in their ability to detect seagrass within images. Deep
learning approaches may increase efficiency and simultaneously remove observer bias
for the analyses. However, to best of our knowledge, there is no approach existing
that applies deep learning to digital images for seagrass detection. Therefore, there is

Fig. 5. A screenshot of the TransectMeasure software, used to analyze seagrass [18].
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a great opportunity to use deep neural network to analyse the deep sea bed, detect and
classify the species of seagrasses. We are going to focus in this matter in our future
work.

3 Challenges

Visual content recognition is the most important problem and a quite challenging task
for underwater imagery analysis. Intra-class variability produces the variation of visual
content through views, scales, illumination and non-rigid deformation. Especially, for
the detection and classification of seagrasses, the boundary differences in different
classes are much more ambiguous than for fish or corals. Also in the digital images,
visual content becomes more ambiguous as the depth of the water increases.

4 Conclusion

In this paper, recent approaches for detecting and classifying various underwater
marine objects using deep learning are discussed. Approaches are categorized
according to the targets of detection. Features and deep learning architectures used are
summarized. It was necessary to highlight all the approaches of marine data analysis in
a single paper so that it becomes easy to focus on the possibilities of future work based
on deep neural network method. It has been found that more works have be done for
coral detection and classification using deep learning but no work has been done for the
case of seagrass which is equally vital for oceanic ecosystem. The effectiveness,
accuracy and robustness of any detection and classification algorithm can be increased
significantly if both color and texture based features are combined. Accumulation of
hand-crafted features and neural network may bring better results for seagrass detection
and classification. Therefore, the opportunity exists to develop an efficient and effective
deep learning approach for underwater seagrass imagery, which will be the focus of our
future work.
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