
ICME-13 Monographs

Teaching and Learning 
Discrete Mathematics 
Worldwide: Curriculum 
and Research

Eric W. Hart
James Sandefur Editors



ICME-13 Monographs

Series editor

Gabriele Kaiser, Faculty of Education, Didactics of Mathematics, Universität
Hamburg, Hamburg, Germany



Each volume in the series presents state-of-the art research on a particular topic in
mathematics education and reflects the international debate as broadly as possible,
while also incorporating insights into lesser-known areas of the discussion. Each
volume is based on the discussions and presentations during the ICME-13 Congress
and includes the best papers from one of the ICME-13 Topical Study Groups or
Discussion Groups.

More information about this series at http://www.springer.com/series/15585

http://www.springer.com/series/15585


Eric W. Hart • James Sandefur
Editors

Teaching and Learning
Discrete Mathematics
Worldwide: Curriculum
and Research

123



Editors
Eric W. Hart
Mathematics Department
Grand View University
Des Moines, IA
USA

James Sandefur
Department of Mathematics and Statistics
Georgetown University
Washington, DC
USA

ISSN 2520-8322 ISSN 2520-8330 (electronic)
ICME-13 Monographs
ISBN 978-3-319-70307-7 ISBN 978-3-319-70308-4 (eBook)
https://doi.org/10.1007/978-3-319-70308-4

Library of Congress Control Number: 2017957205

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

“Discrete mathematics is the math of our time.” So declared the immediate past
president of the National Council of Teachers of Mathematics, John Dossey, in
1991 (as referenced in the first chapter, “Discrete Mathematics is Essential
Mathematics in a 21st Century School Curriculum,” of this volume). Nearly 30
years later that statement is still true, although the news has not yet fully reached
school mathematics curricula. Nevertheless, much valuable work has been done,
and continues to be done. This volume reports on some of that work. It provides a
glimpse of the state of the art in learning and teaching discrete mathematics around
the world, and it makes the case once again that discrete mathematics is indeed
mathematics for our time, even more so today in our digital age, and it should be
included in the core curricula of all countries for all students.

The chapters in this book are extended versions of papers presented at the
thirteenth International Congress on Mathematical Education (ICME-13), held in
Hamburg, Germany, in July 2016, as part of Topic Study Group 17 on discrete
mathematics. The chapters are organized into six sections. The first section
examines current thinking about discrete mathematics in the school curriculum. The
remaining sections focus on core discrete mathematics content and practices for
school mathematics—combinatorics and combinatorial reasoning, recursion and
recursive thinking, networks and graphs, fair decision-making and game theory,
and, finally, logic and proof. A brief description of the chapters in each section
follows.

Part I: The Landscape of Discrete Mathematics in the School
Curriculum

Hart and Martin’s chapter launches the book. It identifies five essential discrete
mathematics problem types that should be included in robust twenty-first century
school curricula. Besides discussing these problem types in some detail—including
what they are, what mathematics is involved, and why these five, classroom
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examples are given that make the discussion immediately practical and imple-
mentable. This chapter also serves as an introduction to the entire volume.

Rosenstein looks backward and ahead at the school discrete mathematics
movement in the United States. He describes the opportunity that discrete mathe-
matics provides for supporting reasoning, problem solving, and systematic thinking
in the school mathematics curriculum and illustrates this opportunity with a set of
problems that begin “Find all ….” He analyzes the current lack of discrete math-
ematics in primary and secondary education in the U.S., despite a strong beginning
in the 1980s and 1990s. He provides some rationale for why this has happened, why
it is a counterproductive development, and then looks optimistically to a future in
which discrete mathematics will play a more prevalent role in school curricula. He
includes specific recommendations and examples.

In Discrete Mathematics in Lower School Grades? Situation and Possibilities in
Italy, Gaio and Di Paola first describe results of a survey they have taken over 150
Italian mathematics teachers at all school levels. These results indicate that, espe-
cially at the lower grades, teachers have minimal knowledge of discrete mathe-
matics topics such as cryptography, algorithms, and graph theory. On the other
hand, teachers indicate a willingness and desire to learn about these topics and to
teach them in their classes. Much of this desire is based on wanting students to
engage actively in mathematical problem solving. Later, the authors describe an
ongoing project resulting from their earlier survey in which they are working with
teachers to design and implement discrete mathematics activities involving binary
numbers, algorithms, and cryptography in grades 3 through 8.

In Discrete Mathematics and the Affective Dimension of Mathematical Learning
and Engagement, Goldin addresses the importance of student attitudes, beliefs,
emotions, and motivations when learning mathematics. The author argues that for
many students, negative attitudes and emotions toward the traditionally taught
curriculum can hinder their learning of mathematics. He goes on to describe some
possible positive affordances arising by teaching discrete mathematics topics
through problem solving contexts set in familiar experience. This can lead to
exploration, enhanced engagement, and personal satisfaction. The chapter ends with
a call for more research on the affective and conative dimensions of the learning and
teaching of discrete mathematics.

Part II: Combinatorics and Combinatorial Reasoning

Combinatorics might be considered the mathematical art of counting.
Combinatorial reasoning is the skill of reasoning about the size of sets, the process
of counting, or the combinatorial setting to answer the question, How many?
Combinatorics is a key part of discrete mathematics and combinatorial reasoning is
a powerful mode of reasoning, a mathematical habit of mind, that is specifically
developed in the learning and teaching of discrete mathematics.
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This section of the book begins with the chapter by Coenen, Hof, and Verhoef,
Combinatorial Reasoning to Solve Problems, which studies the mathematical
thinking of students, aged 14–16, as they try to solve combinatorial problems
involving combinations and permutations, such as how many dishes of ice cream
can we have using three flavors, and how many ice cream towers on a cone can we
have. One result of their research is observing that students often start problem
solving at the highest level of attention, which often leads to more mistakes and
incorrect answers then for students who start at a lower level. From the research, the
authors observe that guidance from teachers is important. In fact, the chapter
suggests how students, guided correctly, can develop relational understanding using
combinatorial reasoning, which can lead to a better understanding of the problems
and more confidence in their solutions.

In Höveler’s chapter, Children’s Combinatorial Counting Strategies and their
Relationship to Mathematical Counting Principles, the results of a qualitative study
are presented, the main goals of which were to identify how children solve com-
binatorial counting problems and to gain insights into the relationship between their
strategies and conventional mathematical counting principles. Counting strategies
identified and discussed include multiplicative, additive, and compensation strate-
gies, in addition to recursive strategies and comparing structural features of prob-
lems. These strategies are examined with respect to their conceptual and operational
differences and similarities to combinatorial counting principles, including the
multiplication principle, the principle of inclusion/exclusion, and the so-called
shepherd’s principle.

The chapter by Lockwood and Reed, Reinforcing Mathematical Concepts and
Developing Mathematical Practices through Combinatorial Activity, focuses on a
rich combinatorial task involving counting passwords. The authors provide
examples of affordances that undergraduate students gained by engaging with the
task. They highlight two kinds of affordances—those that strengthened under-
standing about fundamental combinatorial ideas, and those that fostered meaningful
mathematical practices. They consider pedagogical implications and, in particular,
maintain that combinatorics is an area of mathematics that offers students chances
to engage with accessible yet complex mathematical ideas and to develop important
mathematical practices. They present examples of sophisticated student work that
they hope will contribute to an overall goal of elevating the status of combinatorics
specifically, and discrete mathematics more broadly, in the school and under-
graduate curriculum.

The chapter by Vancso, et al. summarizes the ideas and background of a
combinatorics research and teaching project, including historical reforms in the
school curriculum in 1978 in Hungary and T. Varga’s work. Thereafter they discuss
the main elements of their current project: a pretest and developed teaching
materials, including student worksheets with rich problems and some tools for
teaching combinatorics such as Poliuniversum. In choosing the problems for the
worksheets they were led by two research questions: (a) how students handle open
tasks (which are presented in many of the combinatorial problems), and (b) how
they use various manipulatives at different ages.
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Part III: Recursion and Recursive Thinking

Recursion involves describing a given step in a sequential process in terms of the
previous step(s). Such a description is often captured in a recursive formula (also called
a difference equation), which might be informal, such as NEXT =NOW+ 2, or formal,
such as an = an−1+ 2, and is in contrast to an explicit (or closed-form) formula, such as
an = 2n. Recursion and recursive thinking are powerful modeling and problem-solving
strategies used throughout mathematics. They are particularly developed in the
teaching and learning of discrete mathematics. The two chapters in this section discuss
the benefits of recursion and recursive thinking in the classroom, as seen particularly in
the study of difference equations and discrete dynamical systems.

In Discrete Dynamical Systems: A Pathway for Students to Become Enchanted
with Mathematics, Devaney points out that the traditional mathematics curriculum
consists primarily of fourth century, BC, geometry, eleventh century algebra, and
possibly some seventeenth century calculus. He goes on to argue that to attract
students to mathematics, they should have experiences in which they engage with
some of the exciting areas of contemporary mathematics. Discrete mathematics
offers a number of opportunities for engaging students in contemporary mathe-
matics, as described throughout this monograph. In this chapter, the author
describes a number of activities involving the modern field of discrete dynamical
systems, particularly chaos and fractals. These activities, which have been suc-
cessfully used with students for years, lead to the construction of some strange and
beautiful shapes. Combining recursion and iteration with traditional geometric
topics, such as the geometry of transformations, leads to students developing an
understanding of why these shapes arise. The activities involve exploration and
creativity on the part of the students as they learn important mathematics.

In How Recursion Supports Algebraic Understanding, Sandefur, Somers, and
Dance propose the integration of recursive thinkingwith algebraic thinking.The chapter
first gives a number of simple models, appropriate at a variety of school levels, that can
be approachedusing both standard algebra and recursion.Thesemodels, buildingon the
ideas that repeated addition is multiplication and repeated multiplication is exponen-
tiation, lead to a more complete understanding of linear, quadratic, and exponential
functions. The focus is on covariational thinking, particularly the differences between
constant and variable change, an understanding that is at the core of learning calculus.
The chapter gives a vision of how this integration can be achieved from early middle
school through secondary school, within minimal change in the curriculum.

Part IV: Networks and Graphs

The two chapters in this section show how teaching networks and graphs (also
called vertex-edge graphs) can not only help students learn important mathematical
content, but also foster mathematical thinking and give students the experience of
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approaching problems similarly to how a research mathematician might approach a
problem.

In Food Webs, Competition Graphs, and a 60-Year Old Unsolved Problem,
Cozzens and Koirala define how a food web can be constructed by knowing the
predator-prey relationships in a particular habitat. They then relate food webs to
other types of graphs, most importantly competition graphs and interval graphs.
After some discussion of these different types of graphs and their interrelationships,
the authors proceed to discuss how, historically, these graphs have been used to try
to understand relationships between species competing for the same resources. This
gives a nice example of how the use of contemporary mathematics, which is
accessible and relevant for high school students, can lead to a better understanding
of our world, ecological relationships in this case.

In Graph Theory in Primary, Middle and High School, Ferrarello and Mammana
report on research they conducted on the introduction of graph theory in grades 3
through 10 in Sicily. The activities center around the Königsberg bridges problem,
and more generally, the idea of determining when a graph has an Euler cycle. While
the focus is similar, the level of the activities is adjusted depending on grade level.
The activities are described in some detail for the different grade levels and sum-
maries of students’ responses to these activities are given.

Part V: Fair Decision-Making and Game Theory

Game theory is an area of mathematics dealing with situations of cooperation and
conflict involving players, moves, strategies, and outcomes. Broadly viewed, it
includes the mathematics of fair decision-making as well as combinatorial games.
Fair decision-making is the focus of Garfunkel’s chapter; Colipan and Rougetet
consider combinatorial games.

Garfunkel discusses a number of fairness models related to fair division and
bankruptcy. Several models have a very long and colorful history. He emphasizes
the role of mathematical modeling in solving such fairness and equity problems. In
addition to showing how accessible these discrete models can be, he attempts to
show their intrinsic interest and the fact that they can and should be introduced in
high school and even middle school mathematics curricula.

In Mathematical Research in the Classroom via Combinatorial Games, Colipan
describes the Chocolate Game, one of several Nim-type combinatorial games that
can be used to give students an authentic research experience, similar to those of
research mathematicians. In particular, the students consider questions that are
mathematically easy to access, have a variety of strategies for going forward, and
solutions to one question bring out new questions. While these games could be used
for a wide variety of student levels, the chapter includes research results when this
approach was used with a group of 50 first-year college students.

Rougetet’s chapter provides a rich history of the Nim game, a prototypical
combinatorial game, and she considers the role of this game in the latest reform
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of the French high school education system. This reform has led to changes in the
content of the mathematics curricula including a new theme, algorithmic and
programming, which aims at initiating pupils (7th–9th grades) to “write, develop
and run a simple program”. To achieve this, the curriculum offers several class
activities centered on “games in a maze, …, Nim game and Tic-Tac-Toe”. As the
mathematical solution of Nim relies on the binary system, easily characterized by
bistable circuits, the first electromechanical Nim playing machines were built in the
1940s, followed later by smaller and purely mechanical machines. This chapter
presents these inventions—which claimed pedagogical purposes—and considers
their use in classrooms as a recreational application to tackle the algorithmic and
programming theme of curricula.

Part VI: Logic and Proof

Logic and proof are of course fundamental to all mathematics, discrete or not.
Discrete mathematics provides an opportunity for students to develop their logical
thinking and proof abilities in possibly new and more accessible settings.

In Mathematics and Logic: Their Relationship in the Teaching of Mathematics,
Igoshin argues that we must give our future teachers a deeper understanding of
mathematical logic for them to be totally effective in teaching their students the
fundamentals of mathematical thinking. He breaks down what future teachers
should know into four principles: (1) learning the structure of mathematical state-
ments, (2) understanding the concept of proof of a mathematical statement,
(3) training methods for proving, and (4) learning the structure of mathematical
theories. He goes into each of these principles in some detail, including numerous
examples, and shows how discrete mathematics supports the learning of logic.

Conclusion

Taken together, these authors provide a contemporary view of the teaching and
learning of discrete mathematics worldwide. We hope that this volume prompts new
work, future collaborations, and further progress in improving mathematics educa-
tion for students and teachers everywhere, particularly through incorporation of the
deep ideas, powerful methods, and modern applications of discrete mathematics.

Des Moines, USA Eric W. Hart
Washington, DC, USA James Sandefur
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Discrete Mathematics Is Essential
Mathematics in a 21st Century School
Curriculum

Eric W. Hart and W. Gary Martin

Abstract In this chapter we discuss discrete mathematics in the school curriculum.
We make the case, based on many years of curriculum research and design, that
discrete mathematics is essential in a modern, robust school mathematics curricu-
lum, and that five broad problem types emerge as ways to organize the diversity of
discrete mathematics contexts that are important and appropriate for the curriculum
—enumeration, sequential change, relationships among a finite number of elements,
information processing, and fair decision-making. In this chapter, these five prob-
lem types are briefly described and three classroom examples are provided.
Subsequent chapters in this volume provide additional analysis, research, and more
classroom examples.

Keywords Discrete mathematics � Curriculum � Sequential change
Information processing � Fair decision-making � Enumeration � Vertex-edge graphs

Discrete mathematics is a robust field of mathematics with many modern appli-
cations. Yet it has no succinct definition, so we begin this chapter, and indeed this
volume, by considering the nature and relevance of discrete mathematics.

1 The Rise of Discrete Mathematics

Discrete mathematics is described by Topic Study Group 17: Teaching and
Learning of Discrete Mathematics at the 13th International Congress on
Mathematical Education (Hart et al. 2017) as follows:

E. W. Hart (&)
Grand View University, Des Moines, IA, USA
e-mail: ehart@infinitemath.com

W. G. Martin
Auburn University, Auburn, AL, USA
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Discrete mathematics is a comparatively young branch of mathematics with no agreed-upon
definition but with old roots and emblematic problems. It is a robust field with applications
to a variety of real world situations, and as such takes on growing importance in
contemporary society. We take discrete mathematics to include a wide range of topics,
including logic, game theory, algorithms, graph theory (networks), discrete geometry,
number theory, discrete dynamical systems, fair decision making, cryptography, coding
theory, and counting. Cross-cutting themes include discrete mathematical modeling, al-
gorithmic problem solving, optimization, combinatorial reasoning, and recursive thinking.

A recent publication that looks to the future of mathematics, The Mathematical
Sciences in 2025 (Committee on the Mathematical Sciences 2025 2013), states that
“over the years there have been important shifts in the level of activity in certain
subjects—for example, the growing significance of probabilistic methods, the rise
of discrete mathematics, and the growing use of Bayesian statistics” (p. 72). The
book identifies two new drivers of mathematics–computation and big data, and for
both of these drivers it describes how discrete mathematics plays an important role–
for example, discrete mathematics algorithms for information processing, dynam-
ical systems in ecology, networks in industry and the humanities, and discrete
optimization (p. 77).

Discrete mathematics is particularly suited to applications involving technology
and computers. In fact, discrete mathematics is sometimes considered the mathe-
matics of computer science. The discrete aspect of discrete mathematics is often
contrasted with the continuous mathematics of calculus. It is appropriate to connect
discrete mathematics to computers and contrast it with calculus, but neither char-
acterization is complete.

We may take the following as a definition: Discrete mathematics is a collection of
mathematical concepts and methods that help us solve problems that involve a
countable (often finite) number of elements or processes and connections among them.

It is more helpful in coming to understand discrete mathematics to consider the
wide variety of important and interesting problems that can be solved. Examples of
questions that can be naturally investigated with discrete mathematics include:

How can you avoid conflicts when scheduling meetings, shipping hazardous chemicals, or
assigning frequencies to radio stations? How can you schedule a project for shortest
completion time when it consists of numerous interconnected sub-projects? How can you
fairly decide among competing alternatives, like candidates standing for election? How can
you fairly divide or apportion objects, such as seats of congress or property in an inheri-
tance? How can you ensure accuracy, security, and efficiency in digital transactions such as
transferring files, making online purchases, or posting to social networks? How many
different Personal Identification Numbers (PINs), IP addresses, or pizzas with different
toppings are possible? How can you model and analyse processes of sequential change,
such as year-to-year growth in population, month-to-month change in credit card debt, or
periodic medicine dosage?

The breadth and diversity of the questions above reflect the power and appli-
cability of discrete mathematics. Discrete mathematics is indeed essential to
understanding our modern technological world, and as such it is essential to include
discrete mathematics in the school curriculum. But which parts of discrete math-
ematics should be included?

4 E. W. Hart and W. G. Martin



2 Incorporating Discrete Mathematics into the School
Curriculum: Five Essential Discrete Mathematics
Problem Types

The power of discrete mathematics lies in mathematical modeling and solving
problems, so instead of focusing on which topics to include, we consider broad
problem types. Based on curriculum research, development, and implementation in
classrooms and textbooks over many years, five broad problem types emerge as the
most potent types of discrete mathematical problems that are relevant for the school
curriculum—enumeration, sequential step-by-step change, relationships among a
finite number of elements, information processing, and fair decision-making.

These five problem types, along with the respective discrete mathematics
domains of combinatorics, recursion, graph theory, informatics, and the mathe-
matics of voting and fair division (which can be viewed as part of game theory),
have been identified as fundamental for school mathematics based on the following
work over the past 30 years:

• Initial momentum provided by the collegiate discrete mathematics movement in
the 1980s (e.g., Hart 1985; Ralston 1989; Dossey 1991);

• Federally-funded professional development programs in the 1990s in the United
States to implement the National Council of Teachers of Mathematics (NCTM
1989) standard on discrete mathematics (Hart and Schoen 1989–1993;
Rosenstein 1989–1996; Sandefur 1990–1994; Kenney 1992–1996);

• Articles and books to support implementation of the discrete mathematics rec-
ommendations in NCTM’s (1989, 2000) standards (Hart et al. 1990, 2008; Hart
1991; Hirsch and Kenney 1991; Debellis et al. 2009);

• Articles recommending more discrete mathematics in the Common Core State
Standards for Mathematics (NGA Center and CCSSO 2010) in the United
States (Hart and Martin 2008, 2016; Martin and Hart 2012);

• Curriculum research and design to develop high school textbooks that integrate
discrete mathematics (Hart 1997, 1998, 2008, 2010; Hirsch et al. 2015, 2016).

Each of the five problem types is briefly discussed below in this chapter.
Subsequent chapters in this volume provide further analysis:

Rosenstein takes a broad look at several of the problem types in elementary and
secondary school in the United States. Gaio and Di Paola consider discrete math-
ematics in the lower grades in Italy, focusing on graph theory (relationship-among-
elements) and cryptography (an aspect of information processing). The enumera-
tion problem type is the focus of the chapters by Coenen et al., Hoveler, Lockwood
and Reed, and Vancso et al., as they consider combinatorics and combinatorial
reasoning. The sequential change problem type is the focus of the chapters by
Devaney and by Sandefur et al., as they discuss recursion and recursive thinking.
Cozzens and Koirala and Ferrarello and Mammana focus on the relationship-
among-elements problem type in their chapters on networks and graphs. Regarding
fair decision-making, this can be considered part of the broad area of game theory,
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and three chapters are in this broad category—Garfunkel discusses fairness models
for fair division and bankruptcy problems, while Colipan and Rougetet analyze
combinatorial games. Finally, Goldin considers the affective dimension of studying
discrete mathematics generally, and Igoshin considers logic, which can be con-
sidered part of discrete mathematics but is of course fundamental to all parts of
mathematics, discrete or not.

The following sections provide a brief description of the five problem types.
Classroom examples follow.

2.1 Enumeration

Enumeration problems involve counting. Perhaps to solve a problem or part of a
problem it would be helpful to count something. What are you counting? What is
the structure of the counting situation? Are you counting choices from a collection
of objects, outcomes from a sequence of tasks, or counting from “this or that”
distinct situation? General consideration of these questions leads to the following
three common and useful types of enumeration problems, which are particularly
relevant in the school curriculum.

• Count the number of choices from a collection of objects—Are you choosing
from a collection of objects? If so, consider the issues of order and repetition in
your choice, yielding four possible problem types, including permutations and
combinations.

• Count the number of possible combined outcomes from a sequence of tasks—Is
there a sequence of tasks? Can the situation be represented by a tree diagram,
where the outcomes from each task are represented in each level of branching in
the tree? If so, try applying the Multiplication [Fundamental] Principle of
Counting. But be careful! This seemingly simple principle requires that there is
a sequence of tasks, that the number of outcomes at each stage is independent of
the choices in the previous stages, and that the combined outcomes at the end,
which is what you are counting, are all distinct.

• Count this or that—Are there two sets involved, the members of which need to
be counted? If so, be careful of any overlap and try the Addition Principle of
Counting or the inclusion/exclusion principle.

2.2 Sequential Change

Sequential, step-by-step change is a natural part of our world. Think about all the
situations where some quantity is changing yearly, monthly, or daily; from an amount
in one period or at one state to a different amount in the next period or state.
A recursive model is often used to analyze such situations. You can build a recursive
model in school mathematics courses by considering questions such as below:

6 E. W. Hart and W. G. Martin



• Can you write an equation using the words NOW and NEXT to describe how
the quantity in the NEXT period compares to the quantity NOW? This provides
an intuitive and accessible way to model the situation with a recursive equation.
A recursive equation using subscripts or function notation can be helpful later
for further analysis, but such notation is infamously difficult for students to
understand and need not be a barrier for earlier use of recursive models to
analyze sequential change situations.

• How many steps of recursion are there? That is, does just the current step
determine the next step, or are two (or more) previous steps needed to determine
the next step? If more than one step is needed, then a simple NOW-NEXT
equation will not work and something more complicated, perhaps with sub-
scripts, will be required.

• How does the process start? What is the initial amount? To build a recursive
model, you need to know where to start as well as how to get from one step to
the next.

2.3 Relationship Among a Finite Number of Elements

This broad class of problems arises in situations where there are many objects or
elements and a relationship between pairs of those elements. These are problems
about networks, such as communication networks, transportation networks, or
social networks. Such problems can be modeled using vertex-edge graphs.

• What are the elements? Represent those as vertices. What is the relationship
between pairs of elements? Draw an edge between vertices (elements) that are
related, thus creating a vertex-edge graph model.

• Is it a conflict relationship? Try a vertex coloring model.
• Is it a prerequisite relationship? Try a critical path analysis.
• Does the context suggest visiting each vertex or using each edge of the

vertex-edge graph? Try a Hamilton path or an Euler path, respectively.
• Does the context suggest reaching all the vertices of the graph without any

redundancy (no loops)? Try a spanning tree. Are the edges weighted? Perhaps a
minimal spanning tree will be useful.

Networks are everywhere in modern life and thus vertex-edge graphs are an
important and relevant topic. Arguably, fluent use of vertex-edge graphs may be a
mathematical skill rivaling many of the traditional skills currently included in the
curriculum. We need to think hard about whether traditional topics squeeze out
important discrete mathematics topics. And if so, should they?
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2.4 Information Processing

Consider problems about information processing, that is, problems about searching,
securing, sending, or receiving information, especially digital information, partic-
ularly in contexts related to the Internet. There are four fundamental issues of
information processing that could be involved, each of which can be addressed
using fundamental school mathematics.

• Access—For information to be useful it must be accessible. How does this relate
to school mathematics? Well, for example, elementary set theory and logic are
part of Internet search engines and often can be used explicitly to specify
advanced searches. Or, in the theme of algorithmic problem solving, specifically
related to coding, searching and sorting algorithms are fundamental aspects of
computer science that help make information accessible and can be productively
studied in school mathematics.

• Accuracy—It is important to ensure the accuracy of information as it is sent or
received. For example, when sending a photo from deep space or scanning a UPC
product code at a grocery store checkout station, error-detecting and -correcting
codes are used. Such codes often use elementary number theory, like modular
arithmetic, or, in more advanced settings, linear algebra.

• Security—In many situations it is essential that information is kept secure and
private. For example, private email and secure credit card numbers are often sent
using public-key cryptography, which is based on number theory. This fasci-
nating topic is relevant to almost all students in their daily digital lives. The
mathematics of secret codes begins simply and extends to be as challenging as
students and teachers desire.

• Efficiency—In our modern digital information age we consume more and more
data. With streaming video, online mapping, photos, and constant social media
updates, everyone wants faster Internet service and more memory with a larger
data plan for their phones. All this requires efficient data transfer and storage.
Students can learn about data compression using variable-length codes and
Huffman trees. These accessible mathematical topics are highly relevant, for
example they are used in most compressed file formats today, like .jpg images
and .mpg videos. We also want the algorithms we use to solve problems to be
efficient. Basic consideration of algorithm complexity is also relevant and
appropriate for school mathematics, such as the qualitative differences among
linear, exponential, and factorial growth. For example, the famous Traveling
Salesman Problem in graph theory is easy to state and begin analyzing, but a
simple brute-force solution algorithm that checks all possible routes grows
factorially and thus is impractical, even with the world’s fastest supercomputer.
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2.5 Fair Decision-Making

Many problems require making a fair decision. In particular, consider problems
about fair voting or fair division.

Must one alternative among several be fairly chosen by a group of people?
Consider a voting model. Is it a one-person-one-vote situation, as in elections for
government office, or a one-person-many-votes situation, as in stockholder voting
where each stockholder has as many votes as shares owned?

• In a one-person-one-vote situation in which there are more than two alternatives
or candidates, ranked-choice voting is often the best option, whereby people
vote by ranking the candidates rather than just designating their favorite can-
didate. The data gathered from ranked-choice voting provides rich information
about voter preferences, which can be analyzed using a number of efficient
vote-analysis methods to choose a good winner.

• In a one-person-many-votes situation, a weighted voting model can be used, in
which both weight (the number of votes an individual has) and power (a measure
of how critical an individual’s vote is) are analyzed.

Does something need to be fairly divided or apportioned? Consider a fair
division model. The choice of an effective fair division method depends on what is
being divided.

• Is it divisible (like land or cake), or indivisible (like seats of congress or
antiques)?

• If divisible, is it homogeneous (like a flat tract of land) or heterogeneous (like
land that is hilly and forested)?

• If indivisible, are the objects identical (like seats of congress) or non-identical
(like antiques)?

Depending on answers to these questions you can use different models and
methods of fair division, many of which are accessible, engaging, and relevant for
school mathematics.

We conclude this chapter with three classroom examples, related to three of the
five problem types—sequential change, relationships among elements, and fair
decision-making. These examples are appropriate for middle or high school stu-
dents. Other chapters in this book provide additional classroom examples, including
several at the elementary school level and with respect to all five problem types.
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3 Classroom Examples

3.1 Example 1: Proper Medicine Dosage

This example is modified from Hart and Martin (2016). It illustrates the sequential
change problem type.

Consider the common situation of taking repeated daily doses of a medication.
Suppose a hospital patient is given an antibiotic to treat an infection. He is initially
given a 30 mg dose and then receives another 10 mg at the end of every six-hour
period thereafter. Through natural body metabolism, about 20% of the antibiotic is
eliminated from his system every six hours. This situation raises many interesting
questions, such as:

What is the long-term amount of antibiotic in the patient’s system?

How should this prescription be modified if the doctor decides that a long-term
amount of 25 mg is desired?

This problem is about a process of sequential change, namely, the change in the
amount of antibiotic in the patient’s system, which changes every six hours. Thus, a
recursive model may be useful. Note that a student does not need to know the
precise definition of recursion to continue, he or she can build a model as follows.

Is it possible to describe this process of sequential change with an equation using
the words NOW and NEXT? In this case, if NOW is the amount of antibiotic in the
patient’s system now, and NEXT represents the amount after the next six-hour
dose, then NEXT = 0.8 � NOW + 10. (This model assumes that the amount is
measured after the regular dose is taken.) Is there an initial amount? Yes, 30 mg.

Thus, we have a model: Start with 30, then represent the step-by-step change
based on 20% elimination and a regular 10 mg dose with NEXT =
0.8 � NOW + 10.

Now a spreadsheet or calculator can be used to easily compute the amounts over
time. Initially, the amount is 30 mg. Then, six hours later, 0.8 � 30 + 10 = 34 mg,
then, another six hours later, 0.8 � 34 + 10 = 37.2 mg, and so on.

What about the long-term amount? Is there an equilibrium value? With tech-
nology, we can quickly see that the long-term amount stabilizes at about 50 mg, as
shown in the first two columns of Fig. 1.

How can we change the prescription to get a long-term amount of 25 mg? Using
our recursive model and a spreadsheet, we can easily try different adjustments.
Maybe we start by cutting the initial dose of 30 mg in half, since the goal is to cut
the long-term amount in half. (Try it; it doesn’t work! Surprisingly, the long-term
amount stays at 50. See the third and fourth columns of Fig. 1.) How about cutting
the regular dosage in half? (Try it; it works. See the fifth and sixth columns of
Fig. 1.)
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The recursive model is very accessible and useful, especially when using tech-
nological tools such as spreadsheets, graphing calculators, or computer coding.
Further investigation can be carried out as needed and as deemed appropriate by the
curriculum and teacher. For example, students can create more formal recursive
equations using subscript or function notation; they can devise and analyze closed-
form equations; they can generate graphs showing the relationship between dose
number and amount of antibiotic in the system or use so-called cobweb graphs that
show the relationship between successive amounts of antibiotic.

Fig. 1 Spreadsheet showing the sequential change in the amount of antibiotic in a patient’s
system for different initial and recurring doses
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3.2 Example 2: Optimally Assigning Frequencies to Radio
Stations

This example is adapted from Focus in High School Mathematics (NCTM 2009,
pp. 70–72, as adapted there from Hirsch et al. 2015). It illustrates the use of
vertex-edge graphs to model and solve a problem about a relationship among
elements.

Task: The Federal Communications Commission (FCC) needs to assign radio
frequencies to seven new radio stations located on the grid in Fig. 2. Such
assignments are based on several considerations, including the possibility of cre-
ating interference by assigning the same frequency to stations that are too close
together. In this simplified situation, we assume that broadcasts from two stations
located within 200 miles of each other will create interference if they broadcast on
the same frequency, whereas stations more than 200 miles apart can use the same
frequency to broadcast without causing interference with each other.

Consider these questions:

How can a vertex-edge graph be used to assign frequencies so that the fewest
number of frequencies is used and no stations interfere with each other?

What would each vertex represent? What would an edge represent?

What is the fewest number of frequencies needed?

1 unit = 50 miles

Fig. 2 Grid showing placement of seven radio stations

12 E. W. Hart and W. G. Martin



In the Classroom: Students work on the task in groups. Each group agrees that
a vertex in the graph represents a radio station. So the graph will have seven
vertices. What about edges? Some groups decide to make a graph model in which
two vertices will be joined by an edge if the stations they represent are within
200 miles of each other. Other groups suggest that two vertices will be joined with
an edge if the stations are more than 200 miles apart. After some discussion,
realizing that both options can lead to a solution but one may be easier, the choice is
made to use the first suggestion, that of joining vertices with an edge if the distance
between them is less than (or equal to) 200 miles, because that will show stations
that cannot share the same frequency and thus when different frequencies are
needed.

The next step in building the model requires determination of the distance
between each pair of stations. Some groups compute the distances using the dis-
tance formula or Pythagorean theorem and a calculator. Other groups use a length
of string or paper strip marked off using the given scale to show 200 miles. In any
case, groups produce models similar to the one in Fig. 3.

Now students work at assigning frequencies to vertices (which can be thought of
as coloring the vertices) so that no two vertices joined by a single edge have the
same frequency (color). They look for a method that will generate the fewest
frequencies for this particular graph. Once they find a solution, they are asked to
explain.

One group explained their solution this way:

We found that the fewest number of frequencies that could be used was four. We reasoned
this way: First, look at the collection of vertices A through D. Each of these vertices is
joined by an edge to each of the other three in the collection. So no two vertices in this
collection of four vertices can have the same frequency. That means you need at least four
frequencies. But can you actually get by with four frequencies for all the vertices? Well,

Fig. 3 Vertex-edge graph
model of the radio station
problem—vertices are radio
stations, an edge between two
vertices indicates that the two
radio stations can interfere
with each other and thus must
have different assigned
frequencies
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suppose you assign frequency 1 to vertex A, frequency 2 to vertex B, frequency 3 to vertex
C, and frequency 4 to vertex D. You can finish the assignment by assigning frequency 1 to
vertex G (because G doesn’t interfere with A), frequency 2 to vertex F (because F doesn’t
interfere with B), and frequency 3 to vertex E (because E doesn’t interfere with C). So four
frequencies will do the job! So you need at least four and four actually works, so that proves
it—four is the fewest!”

Brief Analysis: Many aspects of mathematics, modeling, and mathematical
practices are evident in this example. For example: (a) choosing and using
appropriate mathematics—vertex-edge graphs, specifically vertex coloring, as well
as the Pythagorean theorem and the distance formula, (b) explicitly building a
model—carefully considering what the vertices and edges will represent, in par-
ticular notice the students’ discussion about whether to connect vertices with an
edge if they are more than 200 miles apart or less than 200 miles apart, which is in
fact an important decision (technically between a conflict graph or a compatibility
graph) that significantly affects the model and the solution method, (c) analyzing the
model in order to understand the situation and make better decisions—students
analyze the graph model to figure out how to assign frequencies in a way that
results in no interference and uses the fewest number of frequencies, (d) reasoning
and constructing arguments—the students essentially prove that a complete graph
on four vertices requires four colors, and (e) algorithmic problem solving—they
devise a systematic procedure for assigning frequencies (coloring vertices) and
explain why the procedure works. Finally, note an interesting connection and
contrast to geometry. While in this problem distance is needed to decide when two
radio stations are related, that is, close enough that their signals will interfere with
each other, distance is not an intrinsic feature of a vertex-edge graph. What matters
in a vertex-edge graph are connections, not the actual placement of the vertices or
lengths of the edges. Thus, while vertex-edge graphs can be seen as geometric
objects, and studied, for example, in a high school geometry course, the conven-
tional geometric notions of location, size, and shape are not essential features of a
vertex-edge graph model.

3.3 Example 3: Ranked-Choice Voting

In this student investigation, adapted from Hirsch et al. (2016), a fair choice is
sought from among more than two alternatives. Thus, this is an example of the fair
decision-making problem type. In the investigation below, answers to some of the
posed questions are provided in brackets.

Suppose your class is taking a trip to a nearby park. The class must decide what
to do for lunch. The options are to buy food at the park (P), bring a sack lunch (S),
or eat at a nearby restaurant (R). Everyone must do the same thing for lunch.
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What is a fair way to decide what your class will do for lunch?

Let’s vote!

Instead of just voting for your favorite, you can get more information about
everyone’s opinion by ranking the three options. You will rank your favorite with a
1, second-favorite with a 2, and your least-favorite with a 3.

Suppose the results of your class voting are summarized in Table 1. A table like
this is called a preference table.

Examine this table and each of the opinions in Fig. 4 about which lunch option
is the winner. Answer and discuss the questions that follow.

• With which of these students do you agree? Why?
• Give a reasonable explanation for Taylin’s thinking. [Taylin’s opinion that Park

should be the winner is reasonable since Park gets the most 1st and 2nd choice
votes, and also the fewest 3rd choice votes.]

• How could Isaure explain to Andreas that Restaurant should not win?
[Restaurant would be a poor choice for winner since most voters rank
Restaurant as their least preferred option.]

Table 1 Preference table showing the results of voting by ranking the lunch options

Rankings

Park (P) 1 1 2 2 3 3

Sack lunch (S) 2 3 1 3 1 2

Restaurant (R) 3 2 3 1 2 1

Number of voters 6 voters 4 voters 6 voters 7 voters 5 voters 5 voters

Fig. 4 Four students’ opinions and reasoning about which lunch option is the winner
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• Verify Cece’s claim that Sack Lunch and Restaurant each have more
first-preference votes than Park. Explain why Sack Lunch is the winner using
Cece’s method. [If you reallocate the 1st choice votes for Park to the other two
options, since Park is eliminated in Cece’s method, then the recomputed 1st
choice totals for Sack Lunch and Restaurant are 17 to 16, respectively, so Sack
Lunch wins.]

• Suppose everyone only voted for their favorite lunch option, and they did not
rank the options by preference. In this case, which lunch option is the winner?
Do you see any drawbacks to the voting method where you only vote for your
favorite? [The winner based on voting only for your favorite is Park, since Park
has the most 1st choice votes. But Park is the least preferred option for the most
students! That’s just not fair! This is a common drawback to the method where
the winner is whoever gets the most 1st choice, or favorite, votes.]

The students’ ideas above show that there are many ways to analyze the data
from ranked-choice voting. In the full lesson, you will analyze several of the most
common vote-analysis methods.

For now, consider Cece’s method more carefully, which can be called the top-
two runoff method. The top-two runoff method works by finding the top two
candidates based on 1st-choice votes, and then running those two against each other
to find the winner. Here is how it works in detail.

Step 1. Count the 1st choice votes to find the top two candidates.
Step 2. Eliminate all the other candidates. So now you have just two candidates.
Step 3. Some voters have had their 1st choice candidate eliminated. So reassign

their votes and recompute.

Table 2 summarizes the results of voting for class president of the sophomore
class at Northern High School. Use the top-two runoff method to find the winner.

Hints:

• Who are the top two candidates?
• Who gets eliminated? Cross out the row for that candidate.
• How many voters voted for the eliminated candidate as their 1st choice? Who

will they now vote for as 1st choice?
• Now who has the most 1st choice votes?

Table 2 Preference table
showing the results of
ranked-choice voting for class
president

Rankings

Jamal 1 1 3 3

Shirley 3 2 1 2

Ken 2 3 2 1

Number of
voters

4 voters 6 voters 7 voters 8 voters
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The top-two runoff method is just one of many common vote-analysis methods.
As you have already seen, different methods can yield different winners. So the
question arises: Is there a perfect method that we should always use? Surprisingly,
the answer is, no! There is a famous theorem in mathematics, called Arrow’s
Impossibility Theorem, which states that no voting or analysis method is ideal in all
situations. Thus, you must examine each particular voting situation, consider any
rules or laws that already exist, take into account all the factors that you can, and
make a decision about the best method to use for that situation.

While there is no perfect voting method, some are better than others. The
commonly-used plurality method—where you vote for your favorite and whoever
gets the most votes wins—is arguably, and unfortunately, the worst (when there are
three or more candidates). As stated in a summary of an experts workshop on voting
at the Centre for Voting Power and Procedures at the London School of Economics
(2010):

Plurality Voting is the worst of any known system to elect fairly a single winner from three
or more candidates. The most serious problem, they [the co-directors of the Centre for
Voting Power and Procedures] said, is that Plurality Voting often elects the candidate least
preferred by an absolute majority of voters.

Experts often recommend the points-for-preferences method (also called the
Borda method), Instant Runoff Voting (IRV), approval voting, or, if a winner is
produced, the all-pairs runoff method (also called the Condorcet method).

4 Conclusion

Discrete mathematics includes core mathematical content and practices that are
essential for a robust school mathematics curriculum. It naturally extends mathe-
matical analysis into additional contexts that are interesting and relevant, such as
fairness, networks, sequential change, and the Internet. It also introduces students to
mathematics that may become increasingly useful to them as fields based on
computation and coding expand.

Discrete mathematics stretches students to think about mathematics in different
ways that may help them to see mathematics in a new light, as being about more
than solving an equation or evaluating a formula. It provides an opportunity for
developing students’ reasoning ability, communication skills, problem solving
ability, and modeling skills, as well as mathematical habits of mind that are
specifically cultivated through studying discrete mathematics, such as algorithmic
problem solving, combinatorial reasoning, and recursive thinking.

In short, discrete mathematics is empirically powerful, as a tool for modeling and
solving fundamental contemporary problems, and it is pedagogically powerful in
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that it can be used in the curriculum to simultaneously address content, process, and
affect goals of mathematics education. As such, discrete mathematics is indeed
essential mathematics for a 21st century school curriculum. Read on in this volume
to find out more about the teaching and learning of discrete mathematics
worldwide.
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The Absence of Discrete Mathematics
in Primary and Secondary Education
in the United States… and Why that Is
Counterproductive

Joseph G. Rosenstein

Abstract This chapter describes the opportunity that discrete mathematics pro-
vides for supporting reasoning, problem solving, and systematic thinking in the
school mathematics curriculum and illustrates this opportunity by providing a set of
discrete mathematics problems that begin “Find all… .” It also provides a
year-by-year model for how discrete mathematics can be included in the primary
and secondary curriculum. Finally, the article describes some of the possible rea-
sons why discrete mathematics was not included in the new national mathematics
standards in the U.S., and why we consider these reasons misguided, in light of the
opportunities provided when discrete mathematics is part of the curriculum.

Keywords Counting � Combinatorics � Graphs � Systematic listing
Divide and conquer � Reasoning � Problem solving � Standards
Common Core State Standards in Mathematics

The title of this article speaks of the absence of discrete mathematics in primary and
secondary education in the United States. Why has this happened?

The Common Core State Standards for Mathematics (NGA Center and CCSSO
2010) that were developed in 2009 and adopted soon afterwards by almost all of the
states in the United States essentially excludes discrete mathematics. More
specifically, no mention is made of graphs (those with vertices and edges), no
mention is made of systematic listing and counting (combinatorics) except as an
adjunct to the probability standard in the 8th grade, no mention is made of modern
issues involving fairness (including fair division, apportionment, and elections),
recursion (including Fibonacci numbers), or codes and cryptography, and the word
pattern barely occurs in the standards even though mathematics is often referred to
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the issues raised in this article.
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as the science of patterns. Since these topics are not in the Common Core, they are
not addressed in the assessment tools that are based on the Common Core. Since
most teachers, schools, and districts are being judged on the performance of their
students on assessment tools based on the Common Core, teachers, schools, and
districts feel they cannot devote time or effort to topics that are extraneous to the
Common Core, including topics in discrete mathematics. Thus discrete mathematics
is now absent from primary and secondary education in the United States.

Was discrete mathematics present in U.S. education before the advent of the
Common Core? While not universally present, nevertheless discrete mathematics
topics were taught in many schools by many teachers, teachers were introduced to
discrete mathematics topics in professional development activities, and these topics
were the focus of several textbooks (e.g., DeBellis and Rosenstein 2005, Rosenstein
2014) and appeared in many standard textbook series (e.g., COMAP 2013; Hirsch
et al. 2015). This was in large part as a consequence of the recommendation of
discrete mathematics in the 1989 publication of Curriculum and Evaluation
Standards by the National Council of Teachers of Mathematics, and recommen-
dation for the integration of “the main topics of discrete mathematics” in the K-12
curriculum in its 2000 publication, Principles and Standards for School
Mathematics, which notes that: “As an active branch of contemporary mathematics
that is widely used in business and industry, discrete mathematics should be an
integral part of the school mathematics curriculum.”

Unfortunately, in the Common Core era discrete mathematics is hardly present
in the U.S. school curriculum. The situation in the United States prior to the
Common Core standards is described more thoroughly in an article entitled
Discrete mathematics in primary and secondary schools in the United States by
DeBellis and Rosenstein (2004).

1 Why Should Discrete Mathematics Be Included?—
Reasoning and Problem Solving

We argue that school mathematics curricula should take seriously the idea that an
important reason for studying mathematics is to understand reasoning and to learn
how to solve problems: Discrete mathematics is an excellent vehicle to help stu-
dents at all grade levels become the problem solvers and reasoners that we desire.
Although the Common Core speaks positively about reasoning and problem
solving, it ignores this important arena that is both accessible to all students at all
grade levels and that can foster the desired reasoning and problem solving.

In the examples that follow, keep in mind that the content in these examples may
not be significant in itself, but that the experience that students have with learning
how to use systematic reasoning can be very significant in shaping their thinking in
mathematics, and in other areas of human endeavor.

One class of problems for which systematic reasoning is critical consists of those
problems that begin with the phrase “Find all … .” For example, if you give young
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children cut-out shirts and trousers of several different colors and ask them to “find
all” outfits that can be made, they will typically proceed in a random fashion.
When they show you all the outfits they have made, you will find that some outfits
are omitted and that some are duplicated.

Discrete mathematics provides a way of learning to answer such questions
systematically. Students should construct a chart (see Table 1) where the shirts are
listed at the top and the trousers at the left, and the outfits can be located in the cells
of the chart. Actually, before constructing a chart with words in the cells, they
should put the outfits themselves in the cells of a “chart.”

Subsequently, they should use a tree diagram (see Fig. 1), where the first
branching is for the shirts and the second branching is for the trousers.

Ultimately, students should use the Multiplication Principle of Counting, which
in this context says that “if there are four ways of selecting a shirt and, in each case,
there are three ways of selecting trousers (independently of which shirt is selected)
then there are 4 � 3 or 12 ways of selecting both—that is, there are 12 outfits
altogether.

Note that the tree diagram also provides a way of systematically listing the 12
outfits; if you follow each of the branches of the tree, you end up with the vertical
list of all 12 outfits on the right (see Fig. 2).

Similarly, if you ask secondary students to “find all” factors of 200, they will
most likely proceed randomly. The same strategies presented above can also be
used in this situation. Consider using a chart, as in Table 2. Since
200 = 8 � 25 = 23 � 52, any factor of 200 is a product of a power of 2 from 0 to 3
—that’s four possibilities—and a power of 5 from 0 to 2—that’s three possibilities,
so 200 has 4 � 3 or 12 factors. Thus students can arrive at a systematic way of
finding and of listing all the factors of 200, and can see that this problem is
essentially the same as the previous problem of finding all the outfits.

In learning how to solve both problems above, the focus is moving from random
behavior to systematic behavior.

Here is another “find all” example. Find all graphs that have exactly four ver-
tices. Rather than proceed randomly, students can learn to break a difficult problem
into cases, a problem-solving strategy that might be called divide and conquer. This
is not an obvious strategy; students have to learn when and how it can be used. In
this example, the cases might involve the number of edges that the graph has, and
the students might solve the problem by constructing all four-vertex graphs with no

Table 1 Using a chart to solve a “Find all …” outfits problem

Red shirt Striped shirt Yellow shirt Green shirt

Black
trousers

Red shirt &
black trousers

Striped shirt &
black trousers

Yellow shirt &
black trousers

Green shirt &
black trousers

White
trousers

Red shirt &
white trousers

Striped shirt &
white trousers

Yellow shirt &
white trousers

Green shirt &
white trousers

Grey
trousers

Red shirt &
grey trousers

Striped shirt &
grey trousers

Yellow shirt &
grey trousers

Green shirt &
grey trousers
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Fig. 1 Using a tree diagram to solve a “Find all …” outfits problem

Fig. 2 A tree diagram provides a way of systematically listing all possibilities
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edges, then all four-vertex graphs with one edge, then all four-vertex graphs with
two edges, and so on. The solution to the initial problem is then obtained using the
Addition Principle of Counting, which says that if you split the items to be counted
into groups that have no elements in common, then the total number of items is the
sum of the numbers of items in each group.

So, how many different graphs are there with four vertices? The Addition
Principle of Counting says that the answer is the number of four-vertex graphs with
0 edges plus the number of four-vertex graphs with 1 edge, and so on, up to the
number of four-vertex graphs with 6 edges (see Fig. 3). Thus the total number of
different graphs with four vertices is 11.

“Wait a minute!” you or your students might exclaim. Aren’t there six different
four-vertex graphs with one edge? (See Fig. 4). Doesn’t the fact that each edge
connects two different vertices make these six graphs different? This is an important
question: When are two graphs the same and when are they different?

This question is an example of a common and fundamental question in math-
ematics: When are two objects the same and when are they different?

For example, when are two numbers the same? Although 2 and 2/1 look very
different from one another, as do the pair 12/16 and 21/28, and as do the pair 1/2

Table 2 Using a chart to systematically find all factors of 200

20 21 22 23

50 20 � 50 = 1 21 � 50 = 2 22 � 50 = 4 23 � 50 = 8

51 20 � 51 = 5 21 � 51 = 10 22 � 51 = 20 23 � 51 = 40

52 20 � 52 = 25 21 � 52 = 50 22 � 52 = 100 23 � 52 = 200

Fig. 3 Using a divide and conquer strategy to find how many graphs there are with four vertices
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and 0.5, students come to learn that they are actually the same—that is, equal. Many
are never able to reconcile themselves to the fact that 0.999… is equal to 1.

When are two triangles the same? The first two in Fig. 5 are recognizably the
same, even at a young age, but it takes a while before children recognize that the
third triangle (resulting from flipping the second triangle about a vertical axis) is
the same as the second, and probably longer to recognize that the fourth triangle
(resulting from rotating the third triangle counterclockwise by 90°) is the same as
the third, and even longer to recognize that the fifth is the same as the fourth.
Eventually, they understand that if they can reposition a shape so that it matches
another shape, then the two shapes are the “same”—in which case they are referred
to as congruent.

The same principle is used in dealing with graphs. If one graph can be reposi-
tioned so that it matches another graph, then the two graphs are the same—they are
referred to as isomorphic. Thus the six four-vertex graphs with one edge in Fig. 4
are all isomorphic, since each graph can be repositioned so that it matches each of
the other graphs.

“Wait a minute!” you or your students might exclaim. Can’t you get another
four-vertex graph with five edges beside the one we had before? The one we had
before is on the left in Fig. 6; a new one is on the right. These two graphs certainly
look different. But you can transform the new one into the old one! Just reposition

Fig. 4 Are there six different four-vertex graphs with one edge?

Fig. 5 Which triangles are the same?
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its top right vertex, and the edges adjacent to it, so that it is located below its bottom
right vertex … and you’ll see the old graph at the left.

As an exercise, systematically determine how many different 2-regular graphs
there are with 15 vertices. What is a 2-regular graph? That’s a graph where each
vertex has degree 2. What’s the degree of a vertex? The number of edges that meet
at the vertex. First, convince yourself that any 2-regular graph must be a collection
of cycles.

The problem of finding all different graphs with four vertices is one example of
systematic construction. Another kind of example is to find all different graphs with
five vertices of which two have degree 3 and three have degree 2.

How do you even begin to solve this problem? Again, you have to think
systematically.

You know that there is a vertex of degree 3 so you draw one vertex—call it A,
and link it to three other vertices, B, C, and D. (See Fig. 7) Drawing this part of a
graph is not an obvious first step; students have to learn to convert verbal infor-
mation into graphic form.

You know that there is another vertex of degree 3. Where is it?
It could be E, in which case, (see Fig. 8) since E has degree 3, it must connect to

B, C, and D, the only vertices that have room for another link. Look! We have
found a graph with the desired properties, two vertices of degree 3 and three of
degree 2.

But the second vertex of degree 3 could also be one of the vertices B, C, or D in
the graph at the top left of Fig. 9. Let’s suppose that it is C. Then we need to
connect C to two other vertices. If we connect C to B and D, as in the graph at the
top right of Fig. 9, then there are no vertices to which E can be connected, although
it must have degree 2. So connecting C to both B and D doesn’t work. We have to
connect C to E and one of B and D; let’s connect it to B, as in the graph at the
bottom left of Fig. 9. Finally, we connect D to E, since those are the only two
vertices which have empty slots for an edge. When we do that, we find that we have
a second graph with the desired properties, two vertices of degree 3 and three of
degree 2; this graph is at the bottom right of Fig. 9.

Fig. 6 Two isomorphic four-vertex graphs with five edges
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Are there any other graphs with these properties? For example, if instead of
selecting C to have degree 3, we had selected B to have degree 3, perhaps we would
have found a third graph with these properties. In fact, it can be proved that any
graph that has two vertices of degree 3 and three vertices of degree 2 must be
isomorphic to one of the two graphs we have constructed.

Wait a minute! Isn’t it possible that these two graphs are also isomorphic? After
all, they both have the same number of vertices of each degree.

However, when we look at these two graphs side-by-side (see Fig. 10), we see
that they are different. One way that they are different is that the graph on the right
has three vertices that form a triangle, but there is no triangle with three vertices in
the graph on the left. That makes it impossible for the two graphs to be isomorphic
—no matter how we move the vertices of the second graph, those three vertices will
still form a triangle.

Fig. 7 Draw a vertex of
degree 3, call it A, link it to
three other vertices, B, C,
and D

Fig. 8 Case 1: E is the other
vertex of degree 3
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The net result is that we have systematically constructed all graphs with two
vertices of degree 3 and three vertices of degree 2. There are exactly two of them.

As an exercise, you might try to construct systematically all different graphs with
two vertices of degree 3 and four vertices of degree 2, or all different graphs with
two vertices of degree 3 and five vertices of degree 2, etc. If you want a real
challenge, try constructing systematically all graphs with eight vertices, all of
degree 3.

As a final “Find all …” example of systematic reasoning, let us consider the
question of how many different dishes containing three scoops of ice cream you can
make, if eight flavors are available.

Your immediate response might be “8 choose 3” since there are that many ways
of selecting three out of the eight flavors. But that would only be correct if the
problem stated that the three scoops have different flavors. It doesn’t.

Fig. 9 Case 2: B, C, or D could be the other vertex of degree 3. Consider C

Fig. 10 Two non-isomorphic
graphs with the desired
properties
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Or your immediate response might be “8 � 8 � 8,” which would be correct if
we were counting the number of ice cream cones, since a cone that has chocolate,
then vanilla, then strawberry is certainly different than a cone that has strawberry,
then chocolate, then vanilla—so there are 8 choices for each scoop. But with a dish
of three scoops, the order of the scoops doesn’t matter.

How do you solve this counting problem, where order doesn’t matter and rep-
etition is allowed? You have to consider several cases, solve each using the
Multiplication Principle of Counting, and then add the results together, using the
Addition Principle of Counting. A student who has learned to solve this problem
has mastered several different techniques of mathematical reasoning and problem
solving.

In this problem, there are three possibilities:

• all three scoops could be different, in which case there actually are “8 choose 3”
or 56 possibilities;

• all three scoops could be the same, in which case there are 8 possibilities, since
there are 8 flavors; or

• there could be two of one flavor (8 choices there) and one of another flavor
(7 choices there), another 56 possibilities.

So adding these all together, we get a total of 120 possible ice cream dishes.
As an exercise, determine how many different dishes there are with four scoops

of ice cream, where there are eight flavors and where two dishes are the same if they
have the same number of scoops of each flavor.

As noted earlier, although the content information in these examples may not be
very significant, the experience that students have with learning how to use sys-
tematic reasoning to solve problems like this—which have no prerequisites beyond
elementary algebra—can be very significant in shaping their thinking in mathe-
matics, and in other areas of human endeavor.

2 Reasoning and Problem Solving at All Grade Levels

When should students start having these experiences? Students should start having
reasoning and problem solving experiences in the early grades, so that they can
build on those experiences in the later grades, and so they can avoid developing the
erroneous conclusion that mathematics equals computation. As can be seen from
the examples above, discrete mathematics is a useful arena for introducing rea-
soning and problem solving.

A systematic approach to incorporating reasoning and problem solving experi-
ences through discrete mathematics appeared in the New Jersey Mathematics
Standards, originally adopted in 1996, and modified in 2002, which listed appro-
priate topics for each grade level. The New Jersey Mathematics and Science
Coalition, which I served as Director for many years, reviewed the mathematics
standards in 2007 and, taking into consideration the feedback from many New
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Jersey teachers and the emerging drafts of the national standards, proposed a new
set of mathematics standards for New Jersey, building on both the earlier successful
versions of the standards and the recommendations in the national standards. These
standards were not seriously considered in the rush to adopt the national standards.

The discrete mathematics portion of those 2007 recommendations is presented in
Table 3. The proposed New Jersey standards include two topics of discrete math-
ematics that were recommended by the National Council of Teachers of
Mathematics (NCTM) in Principles and Standards for School Mathematics (2000)
as appropriate for all grades—systematic listing and counting and vertex-edge
graphs—and that were developed more fully in NCTM’s two books Navigating
Through Discrete Mathematics in Grades K–5 and Grades 6–12 (DeBellis et al.
2009; Hart et al. 2008).

Systematic listing and counting is essential preparation for probability—it
involves sorting and classifying in the early grades, organizing information in
grades 3–5, and using the Multiplication Principle of Counting in the middle
grades. Essentially all of this is missing from the Common Core, which evidently
assumes that all students will be able to absorb these topics as they learn probability
in high school, not a good assumption since probability is the trickiest of all
mathematical topics. We hope that systematic listing and counting will be added to
our national standards.

The study of vertex-edge graphs enables students to discuss and solve a variety
of modern applied problems involving networks—such as efficient routes for snow
plows or delivery trucks. This topic is also valuable, as we have seen, because it
provides an accessible arena for students to focus on problem solving and reasoning
in an interesting context.

The study of vertex-edge graphs also introduces the important modern topic of
algorithms, for example, one that given a street map will help generate an efficient
route from A to B. At early grade levels, the study of algorithms involves following
directions, and later devising instructions and developing strategic thinking skills.
Following various kinds of directions in the early grades helps children understand
and follow the arithmetical algorithms (like the algorithm for adding two two-digit
numbers) that they are later expected to learn with fluency. The study of algorithms,
like systematic counting, had been included in the New Jersey Mathematics
Standards since 1996, but is entirely absent from the Common Core. We hope that
vertex-edge graphs and algorithms will also be added to our national standards.

These topics and reasoning and problem solving experiences with these topics
are valuable to all students in all countries1 and, given the dozen years of expe-
rience with these topics in New Jersey, we believe it is possible to adjust the current
mathematics curriculum so that these topics can be added, with a decreased
emphasis on some other topics.

1A video I prepared that discusses the discrete math topics that all students should be exposed to
by the time they complete secondary school is also posted on YouTube.
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Table 3 Standards for discrete mathematics proposed for New Jersey in 2007

Standards at each grade level Topic

Pre-Kindergarten

1. Determine whether or not an object has a particular attribute Sorting

2. Sort objects into groups (e.g., sort basket of collected items into
piles of pinecones, acorns, and twigs.)

Sorting

Kindergarten

1. Sort and classify objects according to one attribute (e.g., color,
size, shape, kind, or student-generated attribute), and order the
resulting groups by the number of objects (each smaller than 10)

Sorting

Grade 1

1. Sort and classify objects according to one or two attributes (e.g.,
color, size, shape, kind), noting that a single object can belong to
more than one class

Sorting

2. Follow simple sets of directions (e.g., from one location to
another, or from a recipe)

Algorithms

Grade 2

1. Use Venn diagrams to sort and classify objects according to two
attributes (e.g., color, size, shape, kind)

Sorting

2. Generate and list all possibilities in simple counting situations
(e.g., all outfits involving two shirts and three pants)

Systematic counting

3. Follow the directions for simple two-person games (e.g.,
tic-tac-toe) and recognize that some strategies work better than others

Algorithms

Grade 3

1. Represent all possibilities for a simple counting situation in an
organized way (e.g., lists, charts) and draw conclusions from this
representation

Systematic counting

2. Follow, devise, and describe practical and logical sets of directions
for a simple sequence of events (e.g., to add two 2-digit numbers)

Algorithms

3. Find paths in concrete examples of vertex-edge graphs Vertex-edge graphs

4. Color maps (e.g., NJ counties) using as few colors as possible Vertex-edge graphs

Grade 4

1. Use Venn diagrams to represent and classify data according to
three attributes, such as shape, color, and size

Sorting

2. Represent all possibilities for a simple counting situation in an
organized way (e.g., tree diagrams) and draw conclusions from this
representation

Systematic counting

3. Devise strategies for winning two-person games (e.g., “make 5”
where players alternately add 1 or 2 and the person who reaches 5, or
another designated number, is the winner)

Algorithms

Grade 5

1. Solve counting problems, including those where multiplication
can be used (e.g., you can make 3 � 4 = 12 outfits using 3 shirts and
4 skirts)

Systematic counting

2. Justify that all possibilities in a counting problem have been
enumerated and that there is no duplication

Systematic counting

(continued)
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Table 3 (continued)

Standards at each grade level Topic

3. Follow, devise, and describe practical and logical sets of directions
for a complex sequence of events (e.g., to multiply two 2-digit
numbers)

Algorithms

4. Represent problem solving situations using vertex-edge graphs
and determine the degree of any vertex (i.e., the number of adjacent
vertices), whether or not a graph is connected (i.e., can you get from
any vertex to any other vertex?), and how many paths there are from
one vertex to another vertex

Vertex-edge graphs

Grade 6

1. Solve counting problems involving Venn diagrams with two
attributes (e.g., there are 15 students in the chess club and 20 students
on the debating team. Eight students are in both clubs. How many
different students are there participating in one or more of these two
activities?)

Sorting

2. Apply the multiplication principle of counting in various situations
(e.g., find the number of possible outcomes when three coins are
tossed or when three officers are selected from a six-person club)

Systematic counting

3. Devise strategies for winning simple games and express those
strategies as sets of directions

Algorithms

Grade 7

1. Apply the multiplication principle of counting to situations
involving permutations (where order is important), including
situations with and without replacement, and use factorial notation to
condense the results

Systematic counting

2. List the possible combinations of two or three elements chosen
from a given set (e.g., the handshake problem and the number of 2-
or 3-person committees selected from a group of 12 people)

Systematic counting

3. Use vertex-edge graphs to represent and find reasonable solutions
to practical problems
• Travel route from one site on a map to another
• Delivery route that stops at specified places
• Drawing a picture with a single line without repeating an edge
• Scheduling project meetings (to avoid conflicts) using graph
coloring

Vertex-edge graphs

Grade 8

1. Solve counting problems involving Venn diagrams with three
attributes

Systematic counting

2. Distinguish between permutations and combinations and solve
counting problems of both types using the multiplication principle of
counting (no formulas)

Systematic counting

3. List and count the number of paths from the top cell of Pascal’s
Triangle to another one and describe the connection between such
problems and problems involving combinations.

Systematic counting

4. Use vertex-edge graphs and algorithmic thinking to find solutions
to practical problems
• Finding the shortest network connecting specific sites
• Finding the shortest travel route from one site on a map to another
• Finding a low-cost circuit that visits each vertex exactly once

Algorithms
Vertex-edge graphs

(continued)
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We have focused in this section on the value of discrete mathematics as a vehicle
for improving the reasoning and problem solving skills of our students. However,
there are other reasons why topics in discrete mathematics should be included in the
school mathematics curriculum. Here are a few reasons for including discrete
mathematics at all grade levels … and in programs for prospective and practicing
teachers:

• Discrete mathematics includes valuable concepts and tools that show students
the usefulness of mathematics, and that respond to the question, “How is math
useful in the real world?”

• Discrete mathematics facilitates focus on modeling, problem solving, and rea-
soning at all grade levels.

• Discrete mathematics offers students who have been unsuccessful in traditional
school mathematics a new start in mathematics.

• Discrete mathematics offers an opportunity to generate in primary and secondary
teachers a new enthusiasm for teaching mathematics in new ways.

These and other rationales for discrete mathematics are discussed in detail in pre-
vious articles (e.g., Rosenstein 1997, 2007; Rosenstein et al. 1997), as is their value
to all students, so I will not provide further explanations here.

Table 3 (continued)

Standards at each grade level Topic

High School

1. Apply the multiplication principle of counting in complex
situations, distinguish between situations with and without
replacement, distinguish between ordered and unordered counting
situations, and justify solutions to counting problems

Systematic counting

2. Use Pascal’s Triangle to solve problems involving combinations
and probability

Systematic counting

3. Use vertex-edge graphs and algorithmic thinking to represent and
solve practical problems
• Is there a circuit that includes every edge in a graph just once
(snow-plow or delivery routes)?
• Is there a circuit that includes every vertex in a graph just once?
• Critical path analysis

Algorithms
Vertex-edge graphs

4. Develop and use strategies for making fair decisions, including
combining individual preferences into a group decision (voting
methods) and determining how many representatives each
constituency gets (apportionment)

Algorithms
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3 Why Was Discrete Mathematics Excluded
from the Standards in the United States?

Why would a state like my own, New Jersey, which had included discrete math-
ematics in its state mathematics standards since 1996 and which has consistently
been among the top states in the independently conducted National Assessment of
Educational Progress (NAEP), abandon its standards in favor of the Common Core?
That’s easy to answer: Each state’s eligibility to receive federal funds for education
was made contingent on its adopting Common Core.

Given these positive affordances of discrete mathematics, we must ask, why did
the mathematics community go along with standards that essentially excluded
discrete mathematics?

First, a major concern for many years is the number of students who come to
college with an inadequate background in mathematics. In practice, that means that
many students who have taken courses at the secondary level that presumably
prepared them for college level mathematics courses are not actually prepared for
those courses. As a result, colleges and universities have increasingly provided
remedial courses in mathematics (and, similarly, in language arts—reading and
writing).

This is not a new problem. Indeed, 35 years ago the Rutgers mathematics
department first instituted a placement examination for incoming students and we
discovered—that is, we now have data—about how many of our students were not
prepared for calculus or even precalculus. As director of the undergraduate math
program, I became co-chair of a university-wide committee on precollege prepa-
ration for the university, which strengthened Rutgers’ entrance requirements, and
subsequently became a member of a similar state-level committee, which in part led
to the New Jersey state standards adopted in 1996. This was my first involvement in
mathematics education.

Although this is not a new problem, it has been an ever-increasing problem since
colleges and universities have expanded and ever-higher percentages of secondary
school graduates are going to college. One of the negative effects of this democ-
ratization of education is that more students are enrolling in college who are
unprepared for college-level work in mathematics.

One of the principal motivations for the movement to create state standards in
the 1990s was to ensure that secondary school graduates were prepared for college,
careers, and citizenship. In the past 20 years, as a higher percentage of secondary
students went to college, the focus in primary and secondary schools became more
on preparation for college.

The mistake that has been made is that the focus has shifted from
college-readiness to calculus-readiness, and the driver of the entire mathematics
curriculum in the Common Core has become preparing students for calculus. That
requires what one of my colleagues described as “a fanatical focus on fractions” and
an early emphasis on algebra. In such a curriculum, there is no time for the frills of
discrete mathematics.
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Shifting from college-readiness to calculus-readiness assumes that all college
students, real or potential, and therefore all secondary students, need to prepare
themselves for calculus. That is simply not so. Most secondary students will have
no need for calculus and therefore no need for all the topics whose main role is to
prepare them for calculus, including division of fractions when they are 13 years
old. For these students, elementary algebra (what is referred to in the U.S. as
Algebra I), elements of geometry, and exposure to the applications of trigonometric
and exponential functions are the appropriate and sufficient topics from the calculus
track.

Instead of writing standards that would prepare students for college, careers, and
citizenship, as originally intended, the goal of the writing group, it seems to me,
was shifted to prepare students for calculus.

At this point it is appropriate for me to note that I am not opposed to having
standards in mathematics. Indeed, I played a leading role in the organization,
creation, and adoption of high mathematics standards for New Jersey in 1996
(20 years ago!) and again in 2002, standards which certainly played a role in New
Jersey’s consistently high performance on the National Assessment of Educational
Progress. Accompanying the standards was a 600+ page volume New Jersey
Mathematics Curriculum Framework, (Rosenstein et al. 1997) that provided
assistance to school personnel in implementing the standards.

Standards are, I believe, very important. But the standards should be applied to,
and be appropriate for, all students. Not all students need to take calculus. Not all
students need to be able to find 64 to the 2/3 power, and not all students need to
manipulate algebraic fractions—a skill that is primarily useful in calculus.

Many topics in discrete mathematics are more valuable for all students than
some of the topics needed to succeed in calculus, and are more accessible to all
students than the intense algebra needed for calculus. Many topics in discrete
mathematics can demonstrate to all students how mathematics is applied in today’s
data-driven world. And many topics in discrete mathematics provide opportunities
for all students to learn about mathematical reasoning and problem solving.

That is just as true for students who are planning to take calculus. Although the
Common Core may prepare them for calculus courses, they are not prepared for
later courses involving problem solving, reasoning, and proof, skills which they
could have developed through discrete mathematics topics in the school curriculum.
This inadequate preparation may be partially responsible for the prevalence of
courses in mathematical reasoning for college juniors who seek to become math
majors. Including discrete mathematics in the school curriculum could provide
prospective math majors with the reasoning skills needed to succeed in college.

Thus, the Common Core has left non-college intending students and
non-calculus intending students without the problem solving and reasoning skills
necessary for jobs in the current economy, and has left Science, Technology,
Engineering, and Mathematics- (STEM-) intending students without the requisite
problem-solving and reasoning abilities to succeed in math and science courses
beyond calculus. Thus, the new standards are not serving students who are
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non-calculus intending nor are they serving students who plan to go on in STEM
disciplines.

A second motivation behind the calculus focus of the core curriculum was the
belief that the United States needs more students who are preparing themselves for
STEM careers, and the belief that the way to increase the STEM pipeline is to
ensure that more students take calculus in secondary school.

Leaving aside the question of whether there is a shortage of STEM personnel
and STEM-prepared personnel, our research on Rutgers students who have taken
Advanced Placement (AP) Calculus—the prime candidates for the STEM pipeline
—reveals that a substantial percentage of these students do not continue in the
STEM pipeline (Ahluwalia and Rosenstein 2017).

This suggests that we are not doing what is needed to convince these students to
stay in the STEM pipeline and, just maybe, are acting counterproductively,
exposing them to topics for which they are not adequately prepared and in ways that
do not encourage them to be interested in pursuing mathematical or scientific
careers. Others were only virtually in the STEM pipeline, that is, they took
advanced math and science courses only because doing so enhanced their ability to
get into the colleges of their choice, not because of their interest in these subjects.

Thus, the problem of the STEM pipeline is not that of recruitment, but of
retention. (The 2007 report, Rising Above the Gathering Storm, seems unaware of
this issue and simplistically recommends increasing the number of students taking
AP Calculus in high school.) Thus, it is not that the STEM pipeline is too small, but
rather that it is too leaky. Too many students exit the STEM pipeline. The solution
to this problem should focus more on retaining students who are already in the
STEM pipeline than on recruiting more students into the pipeline.

What I have said above applies primarily to students who live in relatively high
socio-economic areas, where all students have the opportunity to take high level
mathematics classes. However, in many low socio-economic areas, students do not
have such opportunities and the talents of many students remain undeveloped, in
mathematics and in other areas. It is a tragedy that thousands of students in
America’s urban and rural areas never are provided the resources and support that
will enable them to be successful. For those students, STEM-based efforts must be
escalated. This is a real challenge, a challenge that can be helped by the addition of
discrete mathematics topics, which are often more engaging to students, in part
because they have fewer prerequisites, and can help encourage students from
low-resource schools to stay in the STEM pipeline.

A third reason for omitting discrete mathematics from the curriculum is concern
about the scores of United States students on international assessments. If our
students are not performing well in comparison with other countries, then it must be
our curriculum that is defective, so they argue, and improving our standards will
improve our curriculum, which in turn will improve the performance of our
students.
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There are a number of problems with this expressed concern. What do the
assessments actually show? Are there other explanations for the apparent gap in
performance? Is the gap indeed substantial? Is it really important that there is a gap?
Is changing the curriculum the appropriate response? Will it have the intended
effect?

International assessments are based on the curriculum that is common to all of
the participating countries. Countries that have a broader curriculum are at a dis-
advantage on international tests because if their students spend only 90% of the
time on the common topics they will not do as well as countries whose students
spend 100% of time on those topics. Therefore, if increasing scores is important and
the obstacle is curriculum, then it follows that we should narrow the curriculum so
that our curriculum is in line with the international tests. Thus, from this per-
spective, discrete mathematics must be deleted from the curriculum. This reasoning
is presumably an issue in other countries besides the United States; any country that
wants to broaden its mathematics curriculum risks putting its students at a disad-
vantage and lowering its scores compared to other countries.

Because of this, the Common Core decides that the focus of mathematics edu-
cation in the early grades should be primarily on fractions, which leaves little time
for inclusion of discrete topics suggested for the early grades in Table 3. Those
topics are considered frills and are not considered mathematics but play, and
including them in our curriculum will not help us catch up to the students of other
countries. But it is precisely these kinds of mathematical explorations that will
enable our students to achieve the reasoning and problem-solving skills that we
want them to have; they should not be excluded from our curriculum.

Perhaps we should rather promote the adoption of a different perspective,
namely, that all countries should be encouraged to adopt a broader curriculum. How
to do this is a problem that we all need to address.

To summarize, all three areas of concern—the focus on preparation for calculus,
the desire to expand the STEM pipeline, and the concerns about international
assessments—all seem to support the conclusion that discrete mathematics is not
important. And, in each of those three areas of concern, I believe that this con-
clusion is not justified.

My hope and belief is that the US will eventually recognize that taking discrete
mathematics will have a positive impact on students’mathematical preparation, their
interest in STEM careers, and their performance on international assessments—by
improving their reasoning and problem-solving skills and by introducing them to the
many ways in which discrete mathematics is applied in today’s world.

When will this recognition take place? I don’t know. But it can only happen if
we come to a recognition that we do not need to prepare all students for calculus,
that not all students need intense algebra, and that we should not accelerate all
students into Algebra courses and then into AP Calculus courses before they are
ready for them.
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I believe that this recognition will happen and I anticipate that in the coming
years these topics will have the prominence in the school curriculum that they
deserve, and that our students deserve. To help this come about, I have written a
high school text, Problem Solving and Reasoning with Discrete Mathematics
(Rosenstein 2014), a much expanded, revised, and refocused version of a book that
was developed by myself and Valerie DeBellis (DeBellis and Rosenstein 2005)
over ten years ago. This text presents one vision of how discrete mathematics can
be incorporated into the high school curriculum.

My hope is that other mathematicians will be motivated to actively inform the
mathematical education community, and the broader community, about the
importance and value of introducing discrete mathematics into the curriculum of
their countries’ schools, by developing their own curriculum materials, and that
together we will promote the importance of a broader curriculum.
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Discrete Mathematics in Lower School
Grades? Situation and Possibilities in Italy

Aaron Gaio and Benedetto Di Paola

Abstract This paper presents an overview of the Italian situation in teaching
discrete mathematics in primary and middle school, taking into account the national
teaching guidelines and their connection with the subject. We describe research
conducted with about 150 teachers, interviewed in a preliminary questionnaire. The
data collected shows, for all teaching grades, interest in having more discrete
mathematics in the school curriculum even if there are some difficulties in teaching
it and in inserting it in the usual mathematical activities at school, mostly related to
teachers’ knowledge and self-confidence about the subject. We also discuss results
and future plans for a continuing research project in the field. We describe in the
conclusion a design research project involving teachers in the activity-designing
process, aimed at bringing new mathematical knowledge and competences to
students.

Keywords Design research � Computational thinking � Algorithms
Programming � Unplugged

1 Introduction and Context

Discrete mathematics, graph theory and cryptography, together with various al-
gorithms found in computer science, can be a great teaching topic in lower school
grades. Some projects about this have been tried around the World (Hart 1990;
Kenney 1991; Rosenstein 1997; Casey et al. 1992; Bell et al. 1998–2015), but we
feel that not much reached the Italian education system. Discrete mathematics is not
clearly delimited in our curriculum and teachers are usually not aware that it
actually could be. The goal of our work is to study the learning of mathematical

A. Gaio (&) � B. Di Paola
Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy
e-mail: aaron.gaio@dmi.unict.it

B. Di Paola
e-mail: benedetto.dipaola@unipa.it

© Springer International Publishing AG 2018
E. W. Hart and J. Sandefur (eds.), Teaching and Learning Discrete Mathematics
Worldwide: Curriculum and Research, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-70308-4_3

41



skills through the teaching of discrete mathematics. We are studying both the
teaching of general skills, such as reasoning and modeling, and skills particular to
discrete mathematics, such as algorithmic and recursive thinking.

Our main research problem is to therefore support a proposal to alleviate the
substantial lack of (sequences of) tasks in the Italian school curriculum about
discrete mathematics, computer algorithms and cryptography, especially for pri-
mary and middle school. Both in the school programs and in textbooks, activities of
this kind are missing almost entirely, despite much agreement that they can be
really useful in improving the skills mentioned above.

1.1 In the Italian National Guidelines for Education

The Italian Ministry for Education, University and Research published in 2012 the
current Indicazioni Nazionali per il curricolo della scuola dell’infanzia e del primo
ciclo di istruzione, National Guidelines for the first cycle (kindergarten to 8th grade)
of education (Ministero della Pubblica Istruzione 2012). These guidelines are not a
detailed description of school curriculum to follow, but provide a guide from which
single schools and institutes, and teachers, can draw the basic goals and compe-
tences to be reached. Some general standards are set with objectives for the edu-
cational achievements and learning goals. It is interesting to underscore how this
first cycle is given its due relevance in the learning process of each person:

La storia della scuola italiana […] assegna alla scuola dell’infanzia e del primo ciclo
d’istruzione un ruolo preminente in considerazione del rilievo che tale periodo assume nella
biografia di ogni alunno. Entro tale ispirazione la scuola attribuisce grande importanza alla
relazione educativa e ai metodi didattici capaci di attivare pienamente le energie e le
potenzialità di ogni bambino e ragazzo.

Italian school history […] gives kindergarten and the first education cycle a prominent role
considering the importance of this time in every student’s life. Within this, the school
attributes great relevance to the education and teaching methods that can fully activate
energies and potentialities of every kid.

The importance of active student involvement is to be considered a key point in the
modern school world. Multidisciplinary features play a leading role in a school
environment where the boundaries between the different subjects should fade more
and more. Moreover, other important aspects related to our research topic, under-
lined in the national guidelines, are connected to problem solving abilities:

Favorire l’esplorazione e la scoperta, al fine di promuovere il gusto per la ricerca di nuove
conoscenze. In questa prospettiva, la problematizzazione svolge una funzione insostituibile:
sollecita gli alunni a individuare problemi, a sollevare domande, a mettere in discussione le
conoscenze già elaborate, a trovare appropriate piste d’indagine, a cercare soluzioni originali.

Support exploration and discovery as a means to promote curiosity towards new knowl-
edge. In this perspective, the irreplaceable role of problems: students are stimulated to
identify problems, pose questions, discuss these with knowledge which has already been
developed and to finally look for original solutions. [pp. 26–27, translated by authors]
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and the use of didactical activities as laboratories:

Realizzare attività didattiche in forma di laboratorio, per favorire l’operatività e allo stesso
tempo il dialogo e la riflessione su quello che si fa. Il laboratorio, se ben organizzato, è la
modalità di lavoro che meglio incoraggia la ricerca e la progettualità, coinvolge gli alunni
nel pensare, realizzare, valutare attività vissute in modo condiviso e partecipato con altri
[…]

Didactical activities as laboratories, to promote practicality and dialog at the same time, also
making the students reflect on what they are doing. A laboratory, if well administered, is the
best way to encourage planning and search abilities, involve the students in thinking,
realizing and evaluating processes, in a participative and shared with others. […] [p. 27,
translated by authors]

The national guidelines include details of the mathematical competences. In all
grades, the importance of the laboratory activities, interpreted as not only the
physical location but above all as an opportunity to have activities and experi-
mentation opportunities in first person, is reaffirmed. More specifically, there is a
division between primary (in Italy, grade 1–5) and middle school (in Italy, grade 6–
8. For primary school, the focus is:

• reading and understanding texts with logical content
• building lines of reasoning, having own ideas, defending and comparing them

with others
• having positive attitude towards mathematics, realizing how mathematical tools

are useful in the real world

While for middle school we have more specific topics:

• understanding logical aspects, as a result of correct argumentations and the
possible changes of mind they can cause

• grasping the relationship between mathematics and reality
• having positive attitude towards mathematics, realizing how mathematical tools

are useful in the real world

For primary school, the teaching objectives are not expected to go beyond basic
arithmetic capacities and some geometry. Lots of freedom is left to the single school/
teacher to plan the teaching program. Algorithmic and logical thinking is also referred
to as important in the technology chapter of the guidelines, for all school grades.

1.2 Key Competences for Lifelong Learning—European
Union

In this way, the Italian school system is compatible with the European Union
guidelines for learning, (2006), which explicitly gives necessary competencies for
students to reach. Among the eight key points by the EU, we are strongly interested
in key point 3, Mathematical competence and basic competences in science and
technology, from which:
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Mathematical competence is the ability to develop and apply mathematical thinking in
order to solve a range of problems in everyday situations. Building on a sound mastery of
numeracy, the emphasis is on process and activity, as well as knowledge. […] An indi-
vidual should have the skills to apply basic mathematical principles and processes in
everyday contexts at home and work, and to follow and assess chains of arguments. An
individual should be able to reason mathematically, understand mathematical proof and
communicate in mathematical language, and to use appropriate aids.

and key point 4, Digital competence, from which:

Digital competence requires a sound understanding and knowledge of the nature, role and
opportunities of IST (Information Society Technology) in everyday contexts: in personal
and social life as well as at work. This includes main computer applications such as word
processing, spreadsheets, databases, information storage and management, and an under-
standing of the opportunities and potential risks of the Internet and communication via
electronic media (e-mail, network tools) for work, leisure, information sharing and col-
laborative networking, learning and research.

2 Why Discrete Mathematics?

By discrete mathematics, we mean all those topics that can relate to academic
discrete mathematics in the early school years. For example, many concepts are
related to basic graph theory such as paths problems and coloring problems, binary
numbers and arithmetics, algorithms (e.g. search algorithms, sorting algorithms)
and also some sort of pre-coding activities useful in enhancing computational
thinking in the students. Why should we teach these topics?

There are plenty of reasons to try to include these tasks into the curriculum.

• First of all, affect. The subject is quite engaging, as it is seen as an innovative
topic, with the chances of increasing awareness of mathematics in everyday life
and generating interest in all the subjects involved. It can be fun for everyone to
try some new kind of teaching strategies; further arguments in this favor can be
found in Goldin (2017, in publication, pp. 6–7)

• Students are directly involved in using problem solving capacities and logical
abilities

• The approach and the teaching methodology help in enhancing communication
and creativity

• It can further improve the computational thinking ability of students
• It supports computer science competencies which can be useful in later school

grades
• There are stand-alone activities: a teacher can adapt a program to the time

available and his/her willingness to make one rather than another task
• “Education should prepare young people for jobs that do not yet exist, using

technologies that have not yet been invented, to solve problems of which we are
not yet aware” (cit. Richard Riley)
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3 A Preliminary Survey: Teachers’ Competences
and Difficulties

What do teachers think? We had this question in mind when beginning our
research. The goal was to have a clear starting point about the situation in our
Country and, at least some, teachers’ thoughts about the topics described.

We had a first survey, with results collected from about 150 Italian teachers,
mostly in-service and quite evenly divided between primary, middle and secondary
school. The survey was done with an online platform; single answers to the
questionnaire were given by the involved subjects and automatically registered in
an online database. We analysed the results in a .csv file, collecting them in a table
for the multiple-choice answers and dividing the different answers using keywords
for the open questions. The resulting analysis is mainly a quantitative approach (Di
Paola et al. 2016): the qualitative analysis was the codification of some particular
key words used by teachers.

In our preliminary survey, teachers, especially at lower levels, admit that they do
not have the necessary knowledge to teach discrete mathematics topics in school.
We look at some details of some of the questions asked.

Questions 6-7-8-9-10-11 were about their previous experience in learning
cryptography and graph theory, asking about school levels and what they were
taught at which level.

The results are shown in the Tables 1 and 2. We have a vast majority of primary
and middle school teachers not having had any prior school knowledge about the
topics, while secondary school teachers had. This is confirmed by their answers to
the question “write down some words that you think of when hearing the word

Table 1 Knowledge about cryptography, in their previous school/universities studies

Teachers in: Knowledge about cryptography No knowledge

Primary school (1–5) 3 (5.4%) 52 (94.6%)

Middle school (6–8) 5 (13.5%) 32 (86.5%)

Secondary school (9–13) 36 (63.1%) 21 (36.9%)

Total (%) 29.53 70.47

Table 2 Keywords to connect to cryptography/algorithm

Teachers in: Related to computer
science

Secret codes mystery/
games

Both

Primary school (1–5) 14 (27.4%) 31 (60.8%) 6 (11.8%)

Middle school (6–8) 15 (44.1%) 16 (47.1%) 3 (8.8%)

Secondary school
(9–13)

37 (67.2%) 8 (14.6%) 10 (18.2%)

Total (%) 47.1 39.3 13.6
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cryptography/algorithm.” Key-words were collected and grouped according to the
kind of concepts they referred to. Generally, the primary teachers think about secret
codes and hidden things, while teachers who had a mathematics background and
answered yes in the knowledge question used words connected with computer
science, data and information security. More specifically, “hidden” and “mystery”
were more frequent in a secret codes thinking. Words such as “calculator” and
“procedures” are more related to computer science, or, at least, give us some
confidence that the compiler has something in mind about computers and concepts
of informatics.

Also, teachers were asked if they had any previous experience in teaching the
topics or if “they would be interested in teaching some algorithm, cryptography and
other discrete mathematics topic to students”, and their answers are quite promising,
as seen in Table 3:

From a qualitative point of view, we had answers which were quite encouraging:

I’m not an expert in this field, but I really think that some innovative teaching methods
could be appreciated in our school; contextualizing mathematical topics to make them more
appealing, and teach things that are both useful and feel real but at the same time make kids
learn important mathematics is the way to go. (Math & Science teacher, 8th grade)

I have some basic knowledge from my personal interests, but a serious project which can
provide some guidelines for teaching it is missing. (Math teacher, 10th grade)

At the end, the data collected were giving us results as summarized above. Some
qualitative reading of the meaningful answers is compatible with the quantitative
results and confirm that we are on a path that can be appreciated by teachers,
educators, schools and researchers.

4 The Research Project

As we said previously, a literature review on the subject of discrete mathematics, in
text books, school curriculum and online resources, suggests that it is not a topic
that we often deal with in the classroom. Pedagogical content available on this is, as
a consequence, also quite poor. There are some documents about cryptography in
secondary and high schools, but the problem we are facing is to bring some
meaningful knowledge (or better, process of learning) into grades as low as the
primary grades 3–5 and to the middle school.

Table 3 Interest in teaching these topics

Teachers in: Interested Don’t know Not interested

Primary school (1–5) 32 (58.2%) 17 (30.9%) 6 (10.9%)

Middle school (6–8) 30 (83.3%) 2 (5.6%) 4 (11.1%)

Secondary school (9–13) 41 (71.9%) 12 (21.1%) 4 (7.0%)

Total (%) 69.59 20.95 9.46
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From the questionnaire results and other contacts with teachers and educators in
various Italian schools, we had encouragement to continue developing a project on
discrete mathematics for various school levels in our country.

4.1 Methodology

The methodology we used is that of design research or design experiments (Brown
1992; Cobb et al. 2003; Barab and Squire 2004; Cobb and Whitenack 1996). For
the purpose of this thesis, the developmental approach is taken into consideration
(Plomp 2007); development studies function to design and develop a research based
intervention, and to construct design principles in the process of developing it. The
goal is to explore new learning and teaching environments, and to verify their
effectiveness. Also, to develop new methods, instruments and teaching actions to
further improve problem solving and logical thinking, using unusual topics such as
algorithms and cryptography for primary school students. We therefore intend to
contribute to the development of new teaching and learning theories with clearly
defined content and goals, taking into consideration learning processes in specific
situations (Battaglia et al. 2016).

Design research is quite appropriate in this situation, as we are facing a brand
new experience in an environment that we need to analyze carefully on a local
scale, considering all the different elements in the learning environment.

The intended design experiment is a classroom experiment in which the
researcher (or researchers) cooperates with the teachers in assuming teaching
responsibilities. On the one hand, the teacher is a part of the design team and will
play a key role in the development and reviewing of the activities; on the other
hand, they need a guide to experiment with this new experience and to present this
new content (Gelderblom and Kotzé 2009).

The plan is therefore to design and develop some activities on discrete mathe-
matics topics and to evaluate them in a dynamic process of design research.
A starting point was the activities presented in the well-known This is Mega-
Mathematics workbook (Fellows and Casey 1992) and in the Computer Science
Unplugged project (Bell et al. 1998–2015).

4.2 Tasks and Implementation, The Plan

We are in the process of reviewing some activities, thinking about possible changes
and new implementation, in cooperation with a group of teachers at two Primary
and Middle Schools, in Trento, Italy; teachers from different grades are involved
directly in the project planning, and their, and other students will be part of the
project. A total number of about 370 students, from 3rd grade to the 8th, will be
involved. The final goal is to work in a vertical curriculum approach, i.e. by
competences and not by single notions. The idea is to get students from primary to

Discrete Mathematics in Lower School Grades? Situation … 47



middle school to acquire some competences, not only about discrete mathematics,
but above all in the processes of problem solving and mathematical reasoning.
Having these skills before entering secondary school could be of great use for
supporting the current curriculum. Teaching Discrete Mathematics in Grades 7–12
(Hart 1990) gives some ideas of a possible continuation of the path.

The teaching is done together with the teachers in the classroom setting and a
continuous review and design process is planned to take place after every lesson or
lesson cycle.

The first implementation step was a teaching activity (Steffe 1983), as a pilot
evaluation, in 6th grade classrooms, chosen as a first preliminary tryout for the activity
we plan to use. 6th grade is the central step in our project, lying between primary
school and middle school and was therefore suitable for this preliminary experiment.

During the past school year many teachers showed interest in the projects that
were made and were willing to have us go through these sequences of tasks with
their classes. We developed many different tasks and activities which were meant to
suit a particular age group. Some more detail regarding the topics chosen:

• 3rd and 4th grade: Binary numbers and algorithms, as for example games on
sequence algorithms and selection, as well as basic search algorithms, not only
in an unplugged approach but also with a longer view towards a future scratch-
like activity.

• 4th and 5th grade: Binary numbers and algorithms as above plus sorting algo-
rithms; computational complexity to see and grasp the difference between a fast
algorithm and a slow one, even without being formal in a P versus NP definition.

• 6th grade: In addition to the above, some basic cryptography, such as substi-
tution ciphers, both with symbols and drawing and some more algebra-related
ones, e.g. Caesar’s cipher;

• 7th and 8th grade: A mix of the previous with some higher cryptographic
content added, as for example, Vigenere’s cipher and a first example of
public-key cryptography using graph theory concepts.

As this is a work in progress project, some of the activities have already been
made and some are still in our intended plan.

As an example, we describe a part of an activity for 3rd and 4th grade in some
detail. Our first unplugged sequence of tasks occupies about 3 lesson slots of about
one and a half to two hours and follows a brief introduction on how computers
work and binary numbers, in the form of games. Task 1 was an activity on paper,
about binary image representation. Students had to color a grid which was provided
with 0 s and 1 s and produce a drawing following the numbers. This task goal was
about following instructions and beginning to understand how a computer transmits
information.

Task 2 was about giving and receiving instructions. Students were divided in
pairs and given a series of shapes and objects they could move on their table. One
student for each pair was to create a composition on his table; without looking at
each other (physical barrier between the two), student 1 had to explain to the other
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how to reproduce the same composition with the objects and shapes. Children were
required to be as precise as possible while the game went on, and to try to find
compositions that were harder to form. Only oral communication was allowed, not
to make them “correct” the other mistakes or look at the other composition.

The following tasks had the goal of making programming even more tangible for
children (Resnick et al. 2009; Hill et al. 2015). We wanted them to learn to give
instruction as a calculator, through a path to walk on. Finally, with some of the
classes we went on to construct some more complex sequence of instructions,
posing different games to strengthen the concepts, but always with similar goals.

5 Conclusion

We noticed that the subject chosen was quite engaging for both students and
teachers, as it is seen as an innovative topic with the chances of increasing
awareness of mathematics in everyday life (Gravemeijer 1994; Freudenthal 1973)
and generating interest in all the subjects involved.

In a design research paradigm, we plan on having another cycle of refinement of
the activities we have already developed and the development of those we have
planned earlier.

We are focusing our didactical research activity on some of the points mentioned
above, as computational thinking (Kramer 2007) and problem solving general
characteristics, or communication and creativity (Brousseau 2006), applied to
problem solving, among students; but also, we did notice some implications coming
from some tasks done in the classroom, in terms of group work and important
consequences in cooperation or selfishness between students. For example, (Gaio
and Di Paola 2016) focuses on one single activity which is presented to students as
a group task, giving them the rules, but with the goal that they find themselves the
algorithm for the solution. A qualitative analysis of the results, through some videos
recorded in the classroom, shows, according to Vygotsky’s perspective on the zone
of proximal development (Vygotsky 1981), how children, playing together, realize
that some greedy algorithms might never work, if we want to achieve group suc-
cess. Some dynamics in which the game cannot finish if they seek to optimize their
own result over the group result are shown.

In the last part of this project, we will focus on the collection of more focused
results and a video-based analysis of the results, qualitative and fine-grained; in
which both group activities and classroom discussions are recorded. We also have
many of the transcripts, together with field notes, student’s sheets, and interviews as
other sources of evidence. As already said, the focus is put on students’ learning
and thinking, in reaction to the different tasks proposed.
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Discrete Mathematics and the Affective
Dimension of Mathematical Learning
and Engagement

Gerald A. Goldin

Abstract This paper describes certain characteristics of discrete mathematics that
can enable teachers to evoke student interest and engagement, and develop stu-
dents’ powerful affect in relation to math—emotions, attitudes, beliefs, and values.
Special affordances of discrete mathematics include interesting topics arising in
familiar settings, special cases that are easy to set up and explore, a variety of
natural representations embodying mathematical structures, and few prerequisites
needed for in-depth inquiry. We also list several possible domain-specific sources
of commonly-occurring math anxiety (long-term negative affect) which can be
ameliorated through effective teaching making use of these features of discrete
mathematics. An example from game theory illustrates our suggested approach.
Pitfalls are also identified, including the too-early introduction of formal definitions,
theorems, and problem-solving algorithms, or (alternatively) the relegation of dis-
crete mathematics to a “slow track” in the curriculum.

Keywords Affect � Math anxiety � Game theory � Affective � Cognitive
Conative � Meta-affective � Metacognative

1 Introductory Discussion

Mathematical reasoning and problem-solving heuristics are often neglected when
the teaching focus is on rules, procedures, memorization, and domain-specific
methods. The latter tend to predominate in traditional mathematical topics—arith-
metic, algebra, geometry, and analysis—which are the content of most of the
curriculum and of most standardized testing in schools. DeBellis and Rosenstein
(2004) expressed the idea that discrete mathematics could provide new ways for
teachers to think about mathematics, and innovative strategies for them to engage
their students.
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Discrete mathematics was then a relatively non-standard domain of the school
curriculum in the United States, as it still is today. DeBellis and Rosenstein valued
discrete mathematics as a set of topics whose teaching could place central emphasis
on reasoning, strategy use, decision-making, and open-ended problem solving—
i.e., on cognitive and meta-cognitive capabilities of unquestionable importance to
understanding mathematical concepts and applying mathematics effectively.
Writing in (2004), I adopted a stance similar to theirs, elaborating on some of the
cognitions most relevant to discrete mathematics and addressing the development of
students’ internal systems of cognitive representation. The widely-applicable
heuristic process, modeling the general on the particular served as an example for
discussion (Goldin 2004).

A kind of groundswell of interest in discrete mathematics as a curriculum topic
seems to have occurred from 1990 to around 2010. In 2002 Gila Hanna (Canada),
Kristina Reiss (Germany), Jürgen Richter-Gebert (Germany), and Jacobus H. van
Lint (Netherlands) organized an international mini-workshop at the Oberwolfach
Mathematical Institute, Discrete Mathematics and Proof in the High School, with
additional participants from Austria, England, Russia, Scotland, and the USA (MFO
2002). This workshop led to publications in special issues of ZDM (Heinze et al.
2004). In response to the Principles and Standards for School Mathematics (NCTM
2000), two subsequent publications in the Navigations Series published by the
National Council of Teachers of Mathematics were devoted to discrete mathematics
(DeBellis et al. 2009; Hart et al. 2008): these provide a wealth of teaching ideas and
resources, at grades levels pre-K–5 and 6–12 respectively. Although there has been
some decline in interest recently, at least in the United States, the recent high school
level textbook by Rosenstein (2014), Problem Solving and Reasoning with Discrete
Mathematics, offers a quite detailed presentation of how higher cognitive capabilities
can be developed through discrete mathematics. This work, with an accompanying
activity book, devotes much explicit attention to processes of reasoning and problem
solving as the student explores coloring maps, graphs and graph theory in consid-
erable depth, counting and combinatorics, and fair division problems.

The college level textbook by Rosen (2012, 7th edition) likewise highlights
mathematical reasoning as a major theme, but takes a more traditional approach to
its interpretation as establishing a logical foundation for methods of proof.
Post-secondary level teaching often assumes a traditional, lecture-centered style, but
discrete mathematics offers opportunities for changing this, too (e.g., Paterson and
Sneddon 2011).

Despite the high level of topical interest and the abundance of teaching
resources, discrete mathematics was not included as a domain of mathematics in the
Common Core State Standards (CCSS 2010), adopted (as of August 2015) by 42 of
the 50 states of the United States, by Washington, D.C., and by other jurisdictions.
Here and there, a few topics of discrete mathematics occur in these standards: for
example, permutations and combinations may be found in high school statistics and
probability, and Pascal’s triangle finds a home in the context of expanding binomial
expressions in high school algebra. Most of the other areas discussed by DeBellis
et al. (2009) and Hart et al. (2008) are, however, omitted or not deeply addressed.
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Is this a bad thing? As high-stakes testing has come to be mandated by U.S.
government policy, the issue of mathematics education’s goals has become espe-
cially salient. The CCSS form the basis of standardized tests used widely (and
controversially) in the USA to assess school success and teacher efficacy. While the
absence of most topics in discrete mathematics from the CCSS might be seen as
unfortunate by some advocates, because it removes a major incentive for schools to
devote time and attention to the subject, there is an important redeeming aspect.
When mathematical content is not included in high-stakes testing, a much freer
approach to its teaching is possible, with very different purposes and very different
attitudes surrounding those purposes. The main objectives can become not only
mathematical exploration, discovery, and reasoning processes, but also motivation,
engagement, and mathematically powerful structures of affect.

On the other hand, it is usually perceived that there is little or no incentive for
teachers to allocate time to topics that are not to be included in standardized tests.
When short-term gain scores on such tests form a component of teacher evaluations,
the pressure to focus exclusively on traditional topics becomes still greater—and the
level of anxiety associated with school mathematics increases further. This perception
requires an answer. My advocacy of activity that enhances students’ mathematical
motivation, engagement, and powerful affect is based on the belief that achieving these
objectives is essential to genuine, life-long mathematics achievement.

Achievement is not synonymous with test performance. Yes, one can envision
students turned off by mathematics who manage nevertheless to acquire a level of
proficiency in routine arithmetic and algebraic methods sufficient to answer many
test questions correctly. But it is far more difficult to envision such turned off
students pursuing mathematical problem solving with enthusiasm, embarking on
STEM careers, or making meaningful use of mathematics in their planning and
decision-making. It would be my contention that over the period of a school year,
some significant time devoted to exploratory activity whose main objectives are
affective in nature is likely to pay off in increased levels of student attention, greater
persistence, and the kind of growth mindset conducive to meaningful learning
(Dweck 2006).

Here I would like to explore opportunities afforded by discrete mathematics
associated principallywith the affective domain,whichwerementioned only briefly in
my 2004 article. Affect with regard to mathematics is taken to include students’
emotions, attitudes, beliefs, and values (McLeod 1992; DeBellis and Goldin 2006;
Hannula et al. 2016). I also draw in the related conative domain. Conation is a
psychological term taken to include students’ needs, desires, goals, andmotivations—
i.e., the why of their engagement (or disengagement) with mathematics (Snow 1996;
Snow et al. 1996; Hannula 2006; Jansen andMiddleton 2011; Middleton et al. 2017).

Why should we think that discrete mathematics offers something special in these
domains? The phrase is a kind of catch-all for some diverse mathematical topics:
logic and algebra, set theory, combinatorics, number theory, graph theory, game
theory, algorithms, iteration and recursion, decision theory, fair division problems,
and more. These find application in contexts ranging from computer science and
statistics to international policy. What they have in common is far more than mere
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discreteness, in the sense of being mathematical topics where variables take
(mostly) discrete rather than continuous values. They share most or all of the
following characteristics:

1. They are topics that can be motivated directly by posing problems set in
familiar, potentially intriguing situations: elections, children’s games, art and
coloring books, sharing, or counting combinations

2. There are often mathematically easy special cases that can be thought up and
explored

3. Various natural representations can be constructed, and accessible, interesting
questions can be asked about the mathematical structures implicit in the results
of exploration and representation

4. The problem explorations typically involve few mathematical prerequisites—
they do not require much, if any, algebra, formal or analytic geometry,
trigonometry, or calculus, or even the arithmetic of fractions.

All these features—widely noted, but I believe underexploited—suggest
opportunities to influence students’ affective and conative orientations.

Next let us review the importance of the affective domain in mathematics
learning, surveying some constructs pertaining to mathematical engagement. Some
possible reasons specific to school mathematics for students’ becoming turned off
or disaffected, and for the prevalence of math anxiety in the population, are sug-
gested in the literature. I shall then consider how features of discrete mathematics
favor different affective experiences and more productive outcomes for students’
motivation and engagement. I shall suggest some techniques, and discuss a few
potential pitfalls.

2 Affective Issues in the Learning of Mathematics

2.1 General Perspectives and Construct

A growing literature addresses the importance of affect in mathematical learning,
teaching, and problem solving. Attention has been devoted to the widespread
aversion to mathematics in students and adults attributable to the trait termed math
anxiety (e.g., Baloğlu and Koçak 2006; Tobias 1993), a trait that bears complex
relationships to gender (e.g., Devine et al. 2012), to general test anxiety, and to
mathematical performance. Much of the research on math anxiety consists of
large-scale, questionnaire-based studies, and almost all is situated in or refers to the
traditional topics of school mathematics—not to discrete mathematics. This in itself
may highlight the need to take a different approach to mathematics teaching, in a
domain that offers new possibilities.

To address the affordances provided by discrete mathematics requires attention
to theoretical ideas emerging from more fine-grained, qualitative, descriptive
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research on affect, motivation, and engagement (e.g., DeBellis and Goldin 2006;
Goldin 2000, 2002, 2014; Hannula 2006; Hidi et al. 2004; Leder et al. 2002; Maasz
and Schlöglmann 2009; Op’t Eynde et al. 2007; Philipp 2007; and extensive ref-
erences within these sources). Let us mention briefly a few of these important ideas.

Affect may be seen as an internal system of representation, encoding information
and exchanging information with internal cognitive representational systems during
thinking and problem solving. It enables interaction and communication with
others. Specifically, emotions have meanings which are context-dependent, and of
which the person is not always consciously aware. They may carry information
about a mathematical problem, the student’s perceived status in understanding the
problem or finding its solution, how the student stands in relation to other people in
the immediate social context, how accessible are the near-term or longer-term goals
important to the student, and so forth.

Affective pathways are sequences of in-the-moment emotions (local affect) that
may occur and recur in mathematical situations, and interact dynamically with the
student’s strategic choices. For example, initial curiosity may lead to puzzlement
and then bewilderment, followed by frustration, evoking a change of strategy or a
request for help that leads to encouragement, pleasure as progress is made, elation
if and when insight is achieved, and satisfaction with having understood the
mathematics or solved the problem. Alternatively, frustration may generate anxiety
in the student, leading to fear, shame and/or despair, evoking defense mechanisms
and avoidance strategies.

Meta-affect refers to affect about affect, affect about cognition about affect, and
the regulation of affect. Meta-affect is far more than emotional self-regulation: it
includes the emotions one has about one’s emotions, which can wholly transform
the experience of affect. For example, one student may hate being frustrated, and
become angry with his own frustration—thinking, in effect, “This is what always
happens when I try to do math.” Another student may enjoy frustration—she feels
intrigued and excited, responding, “this is a good problem, I’m stuck but don’t tell
me how to do it, I want to solve it myself.”

Recurring pathways of local affect and accompanying meta-affect in mathe-
matical contexts result in the construction of longer-term affective structures—
comprised of mutually reinforcing emotions, attitudes, goals, beliefs, and values.
Such structures are evidenced in mathematical situations through characteristic
affective pathways, interacting dynamically with thoughts, behaviors, social situa-
tions, traits and orientations, beliefs and values, and so forth. Examples of such
affective structures include students’ mathematical self-identity, their self-efficacy,
their mathematical integrity, and the intimacy of their relationship to mathematics.

Engagement structures are conative/affective/cognitive structures descriptive of
patterns in students’ in-the-moment engagement during group mathematical activity
(Goldin et al. 2011). Such a structure is activated by a student’s immediate moti-
vating desire, which evokes characteristic emotions, thoughts (self-talk), behaviors,
social interactions, meta-affect, and so forth. Examples (among a larger set) include:
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Get The Job Done, Look How Smart I Am, Let Me Teach You, Don’t Disrespect Me,
Pseudo-Engagement, and I’m Really Into This.

The last is based on the pattern of flow discussed in depth by Csikszentmihalyi
(1990) and many subsequent researchers.

2.2 Domain-Specific Issues

The preceding constructs, while emerging from the mathematics education litera-
ture, are not limited to the domain of mathematics. However, some features specific
to mathematics have been identified as having important affective implications, and
are pertinent to the domain-specificity of math anxiety (Goldin 2014). These will
help us understand the affordances in discrete mathematics.

1. School mathematics, unlike other subjects, places much emphasis on problem
solving; and all but the most routine problem solving entails the experience of
impasse—which thus plays a central role. This is likely to evoke frustration, at
least to some degree, with accompanying consequences

2. In mathematics, knowledge of rules, procedures, and algorithms is frequently
disconnected from understanding underlying reasoning, logic, or mathematical
concepts. Skemp (1976) famously characterizes the distinction as being between
instrumental and relational understanding. This disconnection can create
unease, discomfort, and anxiety, as students follow the steps and are rewarded
for obtaining correct answers by doing so, without understanding the why
behind what they are doing

3. As their study of mathematics proceeds, students encounter embedded con-
ceptual challenges—e.g., the first introduction of rational numbers (fractions),
the transition to algebraic thinking, the introduction of formal proofs, and
expectations for higher levels of abstraction from concrete situations. Students
slow to meet these challenges may lose confidence in themselves and their
mathematical abilities

4. The school curriculum in mathematics is hierarchical, with later concepts and
skills depending heavily on prior ones. Any interruption of the sequence may
result in frustration, discouragement, and even failure

5. Correct answers in mathematics are highly valued and centrally important, but
by their nature, achieving them is unreliable—even if the student understands
well the necessary concepts and processes. A single sign or character, misplaced
or misread, can change the meaning of most mathematical expressions due to
the non-redundancy of our system of formal notation. There is always the
possibility of oversight or clerical error, leading potentially to disappointment
and frustration

6. Certain beliefs about mathematics, prevalent in the wider culture, may fulfill
some students’ emotional needs but impede their mathematical development
(Leder et al. 2002; Maasz and Schlöglmann 2009; Sheffield 2017). For example,
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success in mathematical ability is often regarded as the result of an innate,
special genius inaccessible to most people—a belief that may enable a sense of
pride in being gifted, or alternatively insulate the failing student from feelings of
guilt or shame.

3 Discrete Mathematics: Affordances and Pitfalls

Now let us consider some features of discrete mathematics in relation to the pre-
ceding discussion.

3.1 Cognitive and Metacognitive Features of Discrete
Mathematics

Discrete mathematics offers manifold opportunities for taking a problem solving
approach. Introductory questions may include:

If each person in a group of 5 shakes hands once with everyone else, how many handshakes
are there? How many different colors are needed to color the states in a map of the United
States if different colors must be used for states sharing a common border? What is the
shortest path by rail from A to B (on a presented map showing distances and rail con-
nections)? Which player has the advantage in a two-person, zero-sum game (where a
certain payoff matrix is presented)?

The contexts for such questions are not complex, but set in familiar experience.
Approaching each problem requires few mathematical prerequisites, and solution
processes do not need to make use of previously-taught mathematical procedures.
The questions are easy enough to seem accessible from the start, creating a
favorable metacognitive context, and the way they are posed suggests they may
yield to trial and error exploration.

Such problems also suggest natural directions for generalization. For example,
suppose there are 6 people in the group instead of 5, or 10 people, or n people.
A handshake involves just 2 people at a time; but we may ask how many different
ways a subset of 3 can be selected from the original 5 people, or a subset of 4, or a
subset of m from a group of n.

Then we have the opportunity to create representations. For example, it is easy
to represent a map by a planar (vertex-edge) graph, which leads naturally into a
variety of new problems—not just coloring problems—in the broader context of
graph theory. Or one can explore systematic methods for counting the possible
subsets of a set, keeping track pictorially in different ways of those included in and
those excluded from the subset—creating a variety of combinatorial situations for
which Pascal’s triangle provides a description.
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In each such activity one can explore not only the underlying mathematical
structure, but also the process of exploration itself—a kind of meta-exploration!
How does someone actually invent a new representation, or how might one think it
up if it weren’t already known? How does someone find interesting questions to
ask? How does one choose cases to explore in gaining an understanding of
generally-posed problem situations, identifying simple but generic examples?
While some questions may eventually be answered with a formula (for example,
n!/m!(n−m)! for the number of ways to choose subsets of size m from a set of size n),
the presumption from the start that formulaic knowledge is the goal need not infuse
the exploration. That is, students can experience the doing of mathematics, making
use of the same cognitive and metacognitive processes used by researchers. They
thus acquire skills of great value in science, technology, engineering, statistics, and
other fields where mathematics finds application, as well as in mathematics itself.

Nevertheless, as with more traditional school mathematics, it is also possible to
define ahead of time a body of mathematical knowledge and skills as learning
objectives, introduce definitions, prove theorems, present formulas, and test for the
student’s acquisition of the desired competencies—and, in the process, miss out on
the opportunities for exploration and discovery.

3.2 Affective, Meta-Affective, and Conative Affordances

The cognitive dimension is but part of the story, creating a context for the affective
and conative opportunities offered by these features of discrete mathematics.

Initially in the introduction of a new topic, we have the chance to foster cu-
riosity-driven engagement, based on a familiar situation and associated good
feelings. The feeling of curiosity is both emotional and conative. It is a generally
pleasant feeling, while the possibility of satisfying one’s curiosity fulfills, in a very
immediate way, a fundamental human need expressed in the natural propensity of
children toward curiosity—to enhance one’s knowledge or understanding.

Let us envision for concreteness a game theory activity for students at the middle
school level. As children, most people have played some version of odds and evens,
where each of two players (Alice and Bob) independently extends one or two
fingers. Alice has called “odds.” If the outcome is odd (3 fingers total), Alice wins;
if the outcome is even (2 or 4 fingers total), Bob wins. The very context of a game
suggests fun—pleasure in the activity itself.

Moreover, this is an out of school game, with its own rituals: sometimes the
players call out, “One, two, three, shoot,” both extending their fingers on the word
shoot to ensure simultaneity. Bringing such a schoolyard practice into the class-
room suggests something unusual, an activity transgressive of conventional
boundaries (Pieronkiewicz 2015). This can create a meta-affective context of safety
for curiosity and anticipatory pleasure.

The educational objectives of the activity are not mainly the concepts of formal
game theory; rather, they are affective, meta-affective, metacognitive, and conative.
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“Is the game fair to both players? How do we know?” Most students will
conclude it is fair and be able to give coherent reasons, without any direct
instruction. Then we may introduce the idea of changing the payoffs, through
questions that encourage exploration. What if we change them so that evens is
worth more than odds? … or so that the payoff for 2 fingers is worth more or less
than the payoff for 4 fingers? Could we change them so that one player always
wins?

We will need a way to keep track of the different payoffs. The students can
invent representations to display them. The idea of a “payoff matrix” emerges from
discussion, and the students who propose it experience satisfaction in the recog-
nition by the class and the teacher of their discovery as an important mathematical
idea.

The game context offers opportunities for productive social interactions, for
experimentation through playing the game, for flow—activation of the engagement
structure, I’m really into this. Frustration may occur when puzzling questions arise
that lack obvious answers, but this occurs with positive meta-affect. There may be a
sense of mathematical success achieved through exploration—the aha moments of
insight, the thrills of discovery. For some students, these experiences may be
entirely unusual or transgressive of their prior self-concepts with regard to
mathematics.

The teacher guides the exploration. Concepts of probability and of expected
value may come into play. Game-theoretic ideas such as a zero-sum game, games
with a saddle point, and equalizing strategy may (or may not) emerge during the
exploration. Of course the teacher knows these mathematical ideas, and gently tilts
the discussion accordingly; but the teacher’s affect is also different—since the
learning objectives are not standard, arriving at formulas and routinized procedures
need not be of the highest priority. The opportunities for building students’ con-
fidence and sense of self-efficacy are increased, as well as high-level, transferable
problem solving strategies and heuristic processes.

Many of the domain-specific issues around mathematical affect, listed in the
preceding section, are fundamentally shifted. Problem solving has been made safer,
so that frustration can be experienced as intriguing. Mathematical rules, procedures,
and formulas have nearly disappeared, or are subsidiary to the main ideas. More
challenging ideas become accessible through student-generated representations of a
fully-understood situation. The topic is mostly outside the usual hierarchical
sequence of prerequisites. Correctness matters in a way that is comfortably less
high-stakes.

And discrete mathematics embraces topics not even considered to be ‘mathe-
matical’ in the wider culture. Thus the activity offers a good chance to provide
contradictory experience to prevailing beliefs about the inaccessibility of mathe-
matics to all but the most talented.

But none of the above is straightforward. It is important to point out ways that
discrete mathematics instruction can easily, inadvertently, miss the opportunities
available.
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3.3 Possible Pitfalls

One possible pitfall is to fail to attend explicitly to affect, relying tacitly on the idea
that since discrete mathematics is fun and its contexts intrinsically motivating,
students will necessarily stay engaged when difficulties arise. Initial interest and
curiosity may not be sufficient to carry the day. Students can easily fall back into
well-worn affective pathways associated with more traditional school mathematics.

A second pitfall is to yield to the temptation of routinization—moving directly
into presenting conventional terms, definitions and theorems, illustrative examples,
or specific algorithms for solving classes of problems. This is more efficient,
probably, in reaching more advanced mathematical results in a shorter time, but it
shifts us away from the affective and meta-affective objectives we have highlighted.

For instance, in introducing game theory to older students, one may want to
begin with an abstract and beautiful characterization of maximum generality, such
as the following:

Definition 1 The strategic form, or normal form, of a two-person zero-sum
game is given by a triplet (X, Y, A), where

(1) X is a nonempty set, the set of strategies of Player I
(2) Y is a nonempty set, the set of strategies of Player II
(3) A is a real-valued function defined on X � Y. (Thus, A(x, y) is a real

number for every x 2 X and every y 2 Y.)

The interpretation is as follows. Simultaneously, Player I chooses x 2
X and Player II chooses y 2 Y, each unaware of the choice of the other. Then
their choices are made known and I wins the amount A(x,y) from II (Ferguson
2014, p. II-4)

The mathematical idea here is complete, and it is clearly communicated to
readers fluent in formal language and notation. Those with some mathematical
sophistication will appreciate the definition’s succinctness and its elegant general-
ity. But affective affordances in discrete mathematics may be lost if we begin—as
we do routinely in other domains of mathematics—with already-polished results,
expecting students to learn mainly by interpreting them, studying worked-out
examples, and then imitating the methods in the examples.

My point here is not to remove such lovely descriptions from mathematics
teaching. Rather, it is to regard them as the end point, rather than the beginning, of a
set of meaningful student experiences.

On the other hand, a different pitfall (and very real one) would be to define
discrete mathematics as part of a slow track, suitable for students unable to keep up
with the pace of traditional topics in the curriculum. This in itself creates a negative
affective, meta-affective, and conative context for the learners. Powerful affect and
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meta-affect, strategic and metacognitive capabilities, and long-term, productive
motivation, should be developed in students at all ability levels in mathematics.
Indeed, developing these may come to substantially influence what we call a stu-
dent’s mathematical ability, which is less fixed than is commonly believed
(Sheffield 2017).

4 Conclusion

In earlier work I suggested some affectively-oriented principles for fostering
inventiveness in mathematics education (Goldin 2009), in brief:

• Make powerful affect a key goal, as it is essential to mathematical success
• Create an emotionally safe environment for engagement with conceptually

challenging ideas
• Foster intimate engagement
• Develop positive meta-affect around the emotions that occur naturally during

problem solving
• Cultivate personal satisfaction in success and learning
• Value mathematically inventive ideas, and follow them up
• And respect the individuality of each student.

I believe such principles can and should be implemented in all of school
mathematics. But as we have discussed here, discrete mathematics provides some
exceptional affordances for them.

There is a great need for research on the affective and conative dimensions of
discrete mathematics—very little now exists. Can the possibilities suggested here
be realized systematically? How best can this be done? What are the longer-term
affective and motivational consequences of current discrete mathematics offerings?
If we are successful in enhancing students’ affect and motivation through discrete
mathematics, how can the transfer of new attitudes and orientations to more stan-
dard mathematical subjects be encouraged? I hope the discussion here contributes
to focusing greater attention on these issues.
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Combinatorics and Combinatorial

Reasoning



Combinatorial Reasoning to Solve
Problems

Tom Coenen, Frits Hof and Nellie Verhoef

Abstract This study reports on combinatorial reasoning to solve problems. We
observed the mathematical thinking of students aged 14–16 and study the variation
of the students’ combinatorial reasoning in terms of activity levels in a process of
emergent modelling. We interpret student reasoning with the focus on stages of
attention and describe the results in a framework of long-term mathematical
thinking. The results show that the students are tempted to begin the problem
solving process on the highest level and otherwise have difficulties transitioning
from a lower to a higher level of activities. Qualitative analysis revealed some
students’ preference for the use of formulas, while at the same time other students
showed more insight by their systematic approach of the problems, leading to better
results. We advocate matching emergent modelling with teaching of combinatorial
reasoning, stimulating students to create a relational network of knowledge.

Keywords Combinatorial reasoning � Tree diagram � Drawing with replacement
Drawing without replacement � Referential activity

1 Introduction

Combinatorial analysis is an appropriate topic in themathematics curriculum, because
it has problems suitable for all grades. Many applications in different fields can be
presented in teaching combinatorial analysis (Kapur 1970). Combinatorial problems
stimulate students’ construction of meaningful representations, mathematical
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reasoning, and the abstraction and generalization ofmathematical concepts (Sriraman
and English 2004). In this study we use emergent modelling indicating students’
strategies to solve combinatorial reasoning problems (Gravemeijer 1999).

2 Theoretical Framework: Mathematical Thinking

Most combinatorial problems do not have readily available solution methods, and
create students’ uncertainty regarding how to approach them and what method to
employ (Batanero et al. 1997). Mason (2004) distinguished four attention levels:
(1) being aware of the whole situation; (2) focus on details and awareness of
relations or similarities; (3) focus on properties as attributes that objects might
satisfy; and (4) focus on reasoning solely on the basis of properties. Tall (2013)
described a general framework for long-term development of mathematical think-
ing: (1) conceptual-embodied knowledge based on perceptions of and reflections on
properties of objects; (2) operational-symbolic knowledge that grows out of the
embodied form through physical action of the learner into mathematical procedures;
and (3) axiomatic-formal knowledge based on formal definitions and proof.
Gravemeijer (1999) emphasized students’ thinking—related to Mason’s attention
levels and Tall’s framework of development—in terms of levels of activity in a
process of emergent modelling:

1. Activity in the task setting, in which interpretations and solutions depend on
understanding how to act in the problem setting (often out-of-school settings)

2. Referential activity, in which models-of refer to activity in the setting described
in instructional activities

3. General activity, in which models-for derive their meaning from a framework of
mathematical relations

4. Formal mathematical reasoning, which is no longer dependent on the support of
models-for mathematical activity.

We use Gravemeijer’s levels to analyze student activities in the context of
combinatorial reasoning problems. An example of emergent modeling can be found
in the research of Batanero et al. (1997), exercise 6. In this exercise, students are
given the question: “How many different ways are there for a grandmother to place
four children in two different bedrooms, both with enough room for four children?”.
The addition “the grandmother can place all the four children in one room, or she
can have Alice, Bert and Carol on the first floor and Diana in the upstairs room”
reveals a clue to the solution strategy. It implies to distribute the children and this
implicit model suggests considering all decompositions of the number 4. For
example, when you place two children on the ground floor and two children
upstairs, then there are 6 possibilities to distribute the 4 children—which is a
combinatorial problem in itself to solve. If students systematically elaborate all the
possible decompositions they can find the correct answer by adding

70 T. Coenen et al.



1þ 4þ 6þ 4þ 1 ¼ 16. Batanero observed some students solving the problem
correctly this way. However, Batanero suggests that the problem could have been
solved in an easier fashion by a multiplication based on a selection model. Indeed,
if we shift our attention to the fact that for each child one room out of two needs to
be selected, then the problem is solved quickly: 2 � 2 � 2 � 2 ¼ 16 possibilities in
total. However, the first strategy is based on the model of the situation and can be
deduced from the context. The second strategy is just a model for the mathematical
solution procedure and can only be applied after a major shift of attention.

For the problems we posed to our students, imagine that students are working on
the problem ‘ice-cream top 3’:

Problem 1 “The ice-cream top 3 problem”: Out of six different flavors, how many
different ranked top threes can be made?

At the first level students may call some triples of flavors like
banana-strawberry-chocolate, vanilla-banana-cherry, banana-chocolate-banana, and
so on. At the second level, they may evaluate some of these triples as incorrect,
because they notice from the context that flavors are not to be repeated, so
banana-chocolate-banana is not a possible top 3, or they may wonder whether
strawberry-banana-chocolate is different from banana-chocolate-strawberry or not.
At the third level students could use a systematic enumeration like the odometer
strategy (English 1991), or use tree-diagrams to represent all possibilities. At the
fourth level they may deduce from the enumeration or the tree diagram the formal
calculation 6� 5� 4 as the solution to the problem.

3 Method

3.1 Participants

Three student groups participated: five boys and nine girls (aged 15–16) with a
basic knowledge on tree diagrams; seven boys and eight girls (aged 14–15) with no
prior education in combinatorial reasoning problems, tree diagrams or probability;
seven boys and fourteen girls (aged 14–15) with knowledge how to draw a tree
diagram and how to calculate basic probabilities.

3.2 Research Instrument: Field Notes of Live Observations

The field notes of live observation were in a Lesson Study context deepened by
videotapes in order to validate the field notes (Verhoef and Tall 2011).
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3.3 Analysis

The field notes and the transcribed videotapes were ordered in the levels of activity.
An example of the categorization of student’s remarks is given in Table 1. The

students are solving the “bookstore question”: A bookseller sells top-ten books in
order. He lists—from the first four customers buying a single book from the top ten
—which book they decide to buy. How many lists can arise? (the answer is
10� 10� 10� 10). Each student remark is noted, together with the level of
emergent modelling. The final column shows if the student’s remark is correct or
not.

We characterize J’s answer on level 4 because of J’s direct symbolic answer
followed by an action which confirms J’s inner thoughts. S’s remark is wrong on
level 2—an activity in the setting described in instructional activities. J’s next
formal calculation is a remark on level 4 again. J confirms his previous answer
again. The calculation, even though correct looking at S’s remark, is not appropriate
for the given problem, so it’s labelled wrong. In summary J’s answers are char-
acterized as formal level 4 based on his reactions which confirm his own formal
inner deepened knowledge.

4 Results

4.1 Procedures and Formulas

Lesson 1, one group started with the problem of t-shirts:

Problem 2 The t-shirt problem”: Going on a holiday, you want to take three of your
ten shirts. How many options are there to take three?

Student B had been taught to calculate numbers of combinations with the cal-
culator and found the right answer 120. Student A mentioned that the problem
could be solved by using a tree diagram, which would be an action at level 3.
Student A was convinced of the correctness of 10 � 9 � 8, which she deduced

Table 1 Coding of student remarks at levels and quality

Level Correctness

1 = right/0 = wrong

J: 10 � 9 � 8 � 7? 4 0

L: reads exercise out loud and draws ten books in a row 1 1

S: If you choose this one, there are only nine left 2 0

J: so 10 � 9 � 8 � 7? 4 0

S: would it be right?
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from the tree diagram, and challenged student B to explain how it is possible that
the formula for combinations gives the answer of 120 possibilities and 10 � 9
8 = 720 (an action at level 4). Student B couldn’t explain why both answers are
not the same: maybe counting lattice paths works? (B’s activities go to level 3)
Student A drew an x–y grid (Fig. 1), tried to calculate the numbers without writing
them down, made a mistake calculating and didn’t find the correct answer of 120
(A’s activity on level 4). Now student A was convinced of her solution of 720
possibilities.

Student A and B’s discussion limits to Mason’s fourth level of the focus on
reasoning solely on the basis of properties. In terms of Tall’s framework of
long-term development of mathematical thinking we see that both students A and B
are not able to use conceptual-embodied knowledge. They only use
operational-symbolic knowledge.

After solving the other problems, the students returned to the t-shirt problem.
They acknowledged that taking the three t-shirts white, blue and red is the same as
taking blue, white and red (at level 2), but they could not translate this notion to an
appropriate solution strategy (advancing to level 3 and 4). Student B mentioned that
probably there are double sets of shirts (at level 2). According to student A all
the problems can be solved with tree diagrams (at level 3). But student B drew an
x–y grid and mentioned, without any explanation, that you only have the choice
between yes and no (at level 3). Not being able to agree on a solution, they decided
to write down both answers (Fig. 2).

Student B argues in terms of Mason’s level 2 with the focus on details and
awareness of relations or similarities, while student A argues in terms of Mason’s
level 3 with the focus on properties as attributes that objects might satisfy.
Student B starts with conceptual-embodied knowledge, but without deepening this
knowledge he will end up using not understood operational-symbolic knowledge,
as is illustrated by the unexplained use of an x–y grid.

Fig. 1 An x–y grid about
choosing 3 out of 10
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A different group in lesson 1 is working on the ice-cream tower problem.

Problem 3 “The ice-cream tower problem”: How many different ice-creams can one
get if you place three scoops on top of each other. You may choose out of ten flavors
and choose a flavor more than once.

Immediately, student C says correctly 10 times 10 times 10, so 1000
(10 * 10 * 10 = 1000 at level 4). The group writes down this answer. After a
while, having solved a problem about a multiple choice test, they start all over to
solve the problem of the ice-cream tower because they couldn’t decide about
similarity or not with the multiple choice test problem. They discussed for about
10 min about it. Student D mentioned that it doesn’t matter whether you choose a
flavor twice (at level 3). Student C agrees and repeats his answer by stressing ‘you
can first choose this flavor, and after that, the same again and again. So 10 times 10
times 10’ (at level 4). Student E then states that ‘thus’ the order is not important, so
he proposes to make a lattice-grid (at level 3). Student D asks whether they should
take the order into account (at level 2). Student E states that the order is not
important because you can choose a flavor more than once. She points out that you
also may choose three different flavors (at level 2). Student C now agrees to draw a
lattice-grid (at level 3). The next step in the discussion is about how big this grid has
to be. Finally they agree that you have to say three times ‘yes’ to a flavor, but they
hesitate on the number of ‘no’s’. After a while they decide that it is 1 time yes and 9
times no per scoop, so for a tower of three scoops you have to say 3 times yes and
27 times no. Student E draws a grid and starts to calculate. She makes mistakes and
ends up with the answer 3276 (at level 4). Meanwhile student C and D are dis-
cussing the possible outcome when drawing a tree-diagram of the problem. They
conclude correctly that this would yield a number of 10 times 10 times 10, which
corresponds to the original answer (at level 4), but they never assessed the cor-
rectness of the tree-diagram for this problem (at level 3). Student C and D could not
achieve the highest level 4. Now the students together discuss this ‘huge’ number
3276 and are tending to go back to the original answer 1000 (from level 3 to 4).

Fig. 2 The solution to
choosing 3 out of 10
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They can’t make up their minds. At that moment the teacher ends the lesson. The
first—correct—answer stays their solution, but they are not certain of its correctness
(at level 4). In this case we see that the students are aware of the problem according
to Mason’s first level, and the whole situation using Mason’s second level with the
focus on details and awareness of relations or similarities. This relationship stim-
ulates and deepens their arguments. In terms of Tall’s framework of long-term
mathematical thinking the students don’t take time to interpret the context in
conceptual-embodied knowledge. This omission interferes with the use of
operational-symbolic knowledge and hence with finding and comprehending the
solution to the problem.

4.2 Construction of a Systematic Method

Lesson 2, student F had the lead. He tried to solve the ice-cream top three problem
(Problem 1). He wrote down: ice-cream top three. The problem involved an ordered
selection without repetition out of six different ice-cream flavors (numbered 1, 2, 3,
4, 5 and 6). Student F started with writing down a 1. He then wrote down 5 and 4,
because for scoop 2 and 3, there are 5 � 4 = 20 possibilities left. Next, student F
wrote down 2. Again he thought that there were 20 possibilities left for scoop 2 and
3. He repeated this for 3. Then student F hesitated. He thought that if 2 is on top,
there are only 4 � 3 = 12 possibilities left. He continued with 3 on top (3 � 2 = 6
possibilities), 4 on top (2 � 1 = 2 possibilities), etc. Again student F hesitated. The
reason for this hesitation is not clear, but he didn’t trust the solution. Student F
decided to systematically write down all the possibilities. Student F worked in a
structured way on level 2, starting with a column containing 123 till 126, followed
by 134 till 136, leading up to 156. The next column started with 234 and so on. He
noticed a pattern in the number of possibilities he wrote down: 4,3,2,1—3,2,1—2,1
—1, making a total of 10,6,3 and 1, so a total of 20, giving him a (false) sense of
security (Fig. 3).

The other students challenged him why for the example, 132 is not in the
columns. Suddenly, student F realized on level 3 that the structure and combina-
tions belong to the solution of the “ice-cream cup” problem.

Problem 4 “the ice-cream cup problem”: In how many ways can you pick three
different flavors out of six to put into a cup?

He realizes the difference with the “ice-cream top three” question. He crossed the
top of the page and replaced this with “ice-cream cup”. It is unclear how he
concluded this, as he made no remarks about it.
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4.3 Errors Within the Levels

As students often start in higher levels, it is interesting to check if this doesn’t cause
more errors. Table 1 depicted the approach to classify all remarks into the levels
and check whether the remark was correct. The results are presented in Fig. 4. As
Fig. 4 shows, the number of remarks increases as the level increases, supporting the
observation that students often start at a high level. Figure 4 also shows that more
errors indeed occur when higher level remarks are made. A mistake on a lower level
can lead to a wrong conclusion for the following levels, which may partly account
for the increasing errors reported per level. Remarkable is that at the highest level,
more mistakes are made than correct remarks, which again stresses the danger of
students immediately starting at the highest level. It will need more research to find
out whether transitions between the levels are causing mistakes, or more mistakes
are made when levels are skipped completely.

Fig. 3 The solution to
ice-cream in cup
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5 Discussion

The first example shows that students can start in the highest level intuitively and
are then unable to check (interpret) their answers at level 3. It is hard to distinguish
between students using a level 4 reasoning and students using rote operations on
numbers. Often, students will go through a number of levels without communi-
cating this. If a wrong assumption is made in one of the first steps, following steps
can be correct, whereas the answer to the problem will be wrong. This emphasizes
the need to teach students to write out each step of the process they go through to
reach the answer. This will also provide more certainty for the students regarding
their answers. In the second example we see that student F first uses a mostly formal
approach. After choosing the first flavor of ice-cream on top, he calculates the
number of possibilities for that one flavor with a multiplication. This multiplication
is based on recognition of ‘one less left’ and can be characterized as an action on
the highest level. He repeats this for flavor 2 and 3. The calculation can be con-
tinued in a correct way, but he changes his mind. He decreases both factors in the
next multiplications—for flavor 2-by 1. Student F doesn’t express his thoughts
about this, but probably again a sort of ‘one less each time’-idea makes him do it
this way. The decrease is built on a wrong interpretation of the situation that, after
flavor 1 is put in the first place, this flavor is not to be chosen in any other top 3. So,
although the combinatorial characteristics of order and repetition seem to be con-
sidered by the student, which is an action on level 2, the calculation on the fourth
level is wrong. Student F doubts himself, and after systematically writing down all
possibilities (level 3) based on the combinatorial characteristics (level 2) the student
reaches insight in what he was doing. His insight is so deep that he can interpret his
formal calculation as wrong for the problem, and even better, he is able to match the
solution to another—the right—question.

The number of errors made increases as the level increases, and at the highest
level, more errors than correct remarks were made. This stresses the need for

Fig. 4 Errors made per level
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students to use an emergent approach, so they can go through the levels of Tall. The
approach where formulas are studied through rote learning poses a danger of
jumping to false conclusions, although the path through the different levels also
does not guarantee a correct solution. We do believe that by going through the
different levels, the students are capable of checking their results and gaining
confidence in themselves concerning combinatorial problems.

The topic of combinatorics is very suitable to develop several skills of students.
DeBellis and Rosenstein (2004) confirm that discrete mathematics should be
viewed not only as a collection of new and interesting mathematical topics, but,
more importantly, as a vehicle for providing teachers with a new way to think about
traditional mathematical topics and new strategies for engaging their students in the
study of mathematics. Based on research, Lockwood (2011) argued that these
specific kinds of combinatorial reasoning problems are well suited for students to be
able to determine similarity of problem types, situations and techniques.

6 Conclusion

In mathematical reasoning, students don’t automatically develop in line with Tall’s
(2013) framework and the distinguished levels by Mason do not guarantee a correct
solution process. The students don’t focus on the whole situation but focus on a
detail, in line with the findings of Mason (2004). Teachers should be aware of the
fact that students often begin on the highest level without relational understanding
and otherwise easily make mistakes going quickly to a higher level in their solution
process. Guidance by the teacher seems important. We believe that education
focused on relational understanding is of much more value than instrumental
instruction (Skemp 1976). Students are more capable of verifying their strategies
and justifying their reasoning when education is built on their individual informal
approach (Eizenberg and Zaslavsky 2004). We believe that emergent modelling can
play an important role in this type of education. Exploration at lower levels can help
students to develop a relational network of knowledge and maybe prevent that they
start automatically, without considering the problem setting, at a high level. There
seems to be an important role for the teacher: students need guidance to develop a
model-of, individually reaching a higher level. This will strengthen the confidence
of the students in their approach and in their answers. This effect could even extend
to other fields of mathematics. We believe future research should investigate how
teaching combinatorial reasoning could be matched with emergent modelling and
what type of guidance is most effective.
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Children’s Combinatorial Counting
Strategies and their Relationship
to Conventional Mathematical
Counting Principles

Karina Höveler

Abstract In this chapter results of a qualitative study are presented, the main goals
of which were to identify how children solve combinatorial counting problems and
to gain insights into the relationship between their strategies and conventional
mathematical counting principles. Counting strategies identified and discussed
include multiplicative, additive, and compensation strategies. These strategies are
examined with respect to their conceptual and operational differences and simi-
larities to combinatorial counting principles, including the multiplication principle,
the principle of inclusion/exclusion, and the so-called shepherd’s principle.

Keywords Combinatorics � Counting strategies � Problem solving
Primary school � Undergraduate mathematics education

1 Theoretical Background

Being able to determine cardinalities is an important competency, not only in
probability contexts. Even though it is already a central issue in the first grade, a
range of studies shows that high school students and even university students often
struggle to determine cardinalities when they face combinatorial problems (e.g.,
Cadwallader et al. 2012; Eizenberg and Zaslavsky 2003; Godino et al. 1992; Hadar
and Hadass 1981; Kavousian 2008; Lockwood 2010, 2012). Errors such as over-
counting, which involves determining a quantity that is bigger than the wanted one,
and difficulties in choosing the right operation occur (e.g., Kavousian 2008). It is
predicted by several authors (e.g. English 2007; Halani 2012; Hefendehl-Hebeker
and Törner 1984) that these errors and difficulties are based on a lack of under-
standing of the underlying combinatorial ideas. Maher et al. (2011) investigated in a
long-term study over a period of twelve years how students developed central
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combinatorial ideas (such as formulas for basic combinatorial operations) based on
their own notations, strategies, and ideas. The authors (Maher et al. 2011) suggest
that the constant revision and the elaboration of key ideas in the sense of Bruner’s
idea of the spiral principle are of great importance for the acquisition of under-
standing combinatorial strategies and concepts. From this perspective, it is essential
to address combinatorial problems early with primary school pupils. To support
their learning processes in a socio-constructivist perspective, knowledge about
students’ individual strategies and underlying ideas is required. This points to the
need to specify the relationship between children’s strategies and conventional
mathematical principles (Duit et al. 2012).

1.1 Analysis of Subject Matter: Conventional Combinatorial
Counting Approaches

The term combinatorics is derived from the Latin word combination which origi-
nally describes the conclusion of two things (Knobloch 1973). Combining elements
into a new object or, in Bernoullis words: “the mixing, grouping, and co-ordination
of things to objects” forms the central content of the mathematical field of com-
binatorics (Bernoulli 1713, according to the German translation of Haussner 1899,
p. 76f.; English translation by the author). The aim of combinatorial questions is to
determine all permissible combinations (“Which ones are there?”) and their
quantity (“How many possibilities are there?”) (Kütting and Sauer 2008).
School-related combinatorics is described by Törner (1987, p. 121) as kind of a
higher multiplication, for which “new” numbers and “new” counting methods are
provided. Since these mathematical counting methods depend on the characteristics
of combinatorial counting problems—more precisely on the characteristics of the
set of objects to be counted—it is necessary not only to consider possible solution
strategies more closely, but also the characteristics of these problems.

Characteristics of the Set of Objects to be Counted

In mathematics, a combinatorial object is understood as combining things or ele-
ments to new objects on the basis of given rules (Jeger 1973). Depending on the
particular problem, the combinatorial objects to be carried out are based on different
compositional laws. Considering that the order is or is not of importance, a selection
of only some of the elements might or might not be necessary, and elements may
occur simply or repeatedly, a total of six combinatorial configurations are derived
for elements of a single set: (1) combinations of m elements, taken n at a time,
(2) arrangements, in order, of m elements, taken n at a time, and (3) permutations,
arranging m elements, taken m at a time), each with or without repetition (Batanero
et al. 1997). For each of these combinatorial configurations, there are operations
available to determine the total amount of outcomes. Since the same solution
strategies can be used for the same sought-after configuration, these terms often also
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describe the categorization of combinatorial problems and different combinatorial
operations (Jeger 1973).1

Approaches to Solve Combinatorial Counting Problems

From a mathematical point of view there are at least three approaches to solve
combinatorial counting problems: systematic listing, the application of counting
principles, and combinatorial operations, like combinations, variations or permu-
tations. In addition, representations like tables, graphs, and tree diagrams are helpful
tools. For primary school the former two approaches are of great interest. Both can
already be applied with knowledge and skills developed so far in children’s edu-
cation. Counting principles, such as the multiplication principle or the principle of
inclusion and exclusion, are of particular importance as almost any counting
problem can be solved by their skillful application (Schrage 1996). Regardless
which approach is used, the characteristics of the sought-after combinatorial con-
figuration must be taken into account.

1.2 Current State of Research on Individual Combinatorial
Counting Strategies and Ideas

Previous studies have investigated the long-term development of combinatorial ideas
(Maher and Martino 1992, 2000; Maher et al. 2011) and the difficulties of learners of
different ages (Batanero et al. 1997; Fischbein and Gazit 1988; Fischbein and
Grossman 1997; Hadar and Hadass 1981; Piaget and Inhelder 1975). Other studies
provide important findings about and ways to describe students’ combinatorial
thinking with regard to the set of elements to be counted (Lockwood 2012, 2013) and
information about individual combinatorial problem-solving strategies (e.g., English
1991, 1993, 1996; Larivée andNormandeau 1985;Martino 1992;Maher andMartino
1992). The empirical studies on children’s problem-solving strategies provide some
information about their listing strategies. In particular, the stages in their strategy
development and the use of different types of strategies have been examined. In a later
study the great influence of task variables (e.g. operation, nature of elements, or value
of parametersm and n) on the problem-solving strategies and success rates of learners
has been demonstrated by a study of Batanero et al. (1997). This influence of different
task variables was not considered in the afore mentioned investigations dealing with
young children’s problem-solving strategies. Furthermore, these studies did not
explore the underlying ideas of children’s strategies.

Early investigations of Piaget and Inhelder (1975) give hints that children at
elementary school age already use additive or multiplicative calculations as well as

1The terminology to describe the different types of combinatorial objects and operations is applied
inconsistently in different articles and books (compare for example Batanero et al. 1997 and
Kütting and Sauer 2008). In this article, the terminology of Batanero et al. (1997) is used.
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the idea of recurrence instead of counting all units particularly. But so far little is
known about these counting strategies, as later studies (e.g. English 1991, 1993;
Maher and Martino 1996; Hoffmann 2003) generally focused on solving existential
problems (“Which outcomes are possible?”) instead of counting problems (“How
many outcomes are possible?”). This lack of attention is contrary to their impor-
tance: Insights into students’ strategies and students’ underlying concepts are the
basis for helping students understand and apply basic combinatorial counting
principles. This is of vital importance since these combinatorial counting principles
are the basis to understand and justify counting formulas, as the results of a teaching
experiment with undergraduate students indicate (Lockwood et al. 2015).
A conceptual understanding of principles may furthermore help to overcome some
of the student’s known errors.

To assist learners in understanding and reinventing for themselves the ideas of
counting principles, at least the following aspects are required: Firstly, more precise
knowledge about learners’ counting strategies and especially their underlying
concepts and secondly, information about similarities and differences between
primary children’s strategies and mathematical principles.

2 The Study: Investigating Relationships
between Children’s Counting Strategies
and Combinatorial Counting Principles

Aim of the study. To address the previously described lack of knowledge about the
combinatorial problem-solving strategies and the underlying concepts of primary
children, a study with the following guiding questions was conceived:

How do primary children solve combinatorial counting problems without
prior teaching at school?

What is the relationship between primary children’s strategies and the
conventional mathematical approaches?

Due to the importance of counting principles one main focus of the study was to
shed light on the questions above by focusing on the relationship between chil-
dren’s counting strategies and mathematical counting principles:

What counting strategies do third graders use to solve combinatorial
counting problems?

What is the relationship between these strategies, including their underlying
concepts, and mathematical counting principles?

Data collection and tasks. Information was gathered from individual, clinical
interviews (30–45 min) in two episodes with n = 18 and n = 45 third graders from
different schools. Both were divided in three groups. Every group of children got
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one set of combinatorial problems. Unlike the studies of English (1991, 1993) and
Hoffmann (2003), who focused on learners’ combinatorial strategies solving
combinatorial listing problems, in the present study the question “How many
outcomes are possible?” was posed, instead of asking “Which outcomes are pos-
sible?”. Task selection was based on two frame conditions: Offering the use of a
broad range of counting principles, and considering the influence of different task
variables (operation, nature of elements, value of parameters m and n). On the basis
of these frame conditions three different types of problems were used: (1) combi-
nations with repetition, (2) combinations without repetition, (3) arrangements
without repetition. For the terminology in this study, “combination” describes
combinatorial problems in which order does not matter, while “arrangement”
describes combinatorial problems in which order does matter. Each problem set
consisted of two isomorphic combinatorial problems, differing in context and ele-
ments to be combined (for further details see Höveler 2014).

Data analysis. The video-recorded and transcribed interviews were analyzed in
two steps by central elements of the Grounded Theory (Glaser and Strauss 1967).
First, classes of children’s strategies were built. Afterwards relationships between
their strategies, including the underlying concepts, and mathematical principles
were identified by constant comparison.

3 Findings: Disparities and Similarities
between Children’s Counting Strategies
and Combinatorial Counting Principles

Data analysis shows that children determined the cardinality of the sets of outcomes
by additive, multiplicative, and compensation strategies. Also, they used recursive
strategies and structural correspondences to solve the problems. Some counting
strategies were developed without prior listing, whereas most were inferred from a
systematic listing. The comparison of children’s strategies and mathematical prin-
ciples reveals disparities and similarities in their underlying concepts.

3.1 Disparities: Children’s Multiplicative Strategy
and the Multiplication Principle

Remarkably, the use of multiplicative calculations has been observed not only in
arrangement problems but also in combination problems. In either case the deter-
mined amount was bigger than the wanted: the error of overcounting occurred.
Analysis shows that all multiplicative approaches are based on the same underlying
idea: Deducing the number of a set of outcomes on the basis of the number of a
single element in the set of outcomes. This so-called ‘from single to set
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multiplication’ and its underlying concept ‘from single to set’ are illustrated below
with reference to an interview sequence with Phil who solved the block
tower-problem (see Table 1):

Interviewer: Here are four blocks in different colors. How many two blocks high
towers can you build?

Phil: [constructs all possibilities with a blue block, six altogether]. Hum,
six blue towers. Means six towers with every color. Twenty-four.

Interviewer: Why twenty-four?
Phil: All in all there are four times six, twenty-four towers.

Phil first considers how many solutions with a fixed element, namely a blue
block, are included in the set of outcomes. He finds out that there must be six towers
with blue blocks in total. Based on the determined amount (six towers with blue
blocks), he considers the amount of solutions with a fixed other element (six towers
with every color). To determine the total amount of outcomes, he multiplies the
cardinality of elements of the initial amount (four blocks of different colors) and the
cardinality of solutions with a fixed element (six towers with every color). This
approach is used by many children.

Both basic considerations are entirely correct and reasonable. The subsequent
conclusion to multiply is presumably based on the known concept of multiplication
as repeated addition: “The product m � n is the cardinality of the union of m pairwise
disjoint sets, which all have the same cardinal number n” (Kirsch 2004, p. 23,
translated by the author). However, since the composed quantities of towers with a
special color are not disjoint (e.g., the six towers with a blue block contain already
two towers of each other color) the essential condition of disjoint sets is not fulfilled
and the overcounting occurs.

Table 1 Sets of combinatorial tasks used in the study

Set 1: Combination without
repetition (C.wo.r.)

Set 2: Combination with
repetition (C.w.r.)

Set 3: Arrangement without
repetition
(A.wo.r.)

Soccer: Four teams want to
play a soccer tournament.
Each team plays once
against each other team.
How many games are there
in total?

Ice-cream: Here are four
different flavors of ice
cream. How many different
sundaes with two scoops are
possible, if the order of
scoops does not matter?

Blocktowers: Here are four
blocks of different colors.
How many towers two
blocks high can you build?

Lottery: Here are four
different numbers in a bowl.
How many different pairs of
numbers are possible?

Domino: Suppose you create
a set of dominoes: Here are
empty dominoes. On each
half of the domino there can
be one to four dots. How
many dominoes are there in
the complete set?

Two digit numbers: Here are
four cards, each with a
different digit. How many
two digit numbers can you
build?
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The comparison of this approach with the multiplication principle shows an
essential difference. According to Tucker (2002, p. 170) the latter can be defined as
follows:Suppose a procedure can be broken into m successive (ordered) stages with r1 different

outcomes in the first stage, r2 different outcomes in the second stage, …, and rm different
outcomes in the mth stage. If the number of outcomes at each stage is independent of the
choices in the previous stages, and if the composite outcomes are all distinct, the total
procedure has r1 � r2 � � � � � rm different composite outcomes (emphasis in original).

The ‘from single to set multiplication’ is based on the idea of building groups of
solutions (for example all towers with a blue block, all towers with a green block
and so on). It produces in many cases groups which are not disjoint. The above
principle is often formulated as splitting objects into single elements or stages
which are necessarily independent. The main difference is obvious: The ‘from
single to set multiplication’ produces groups which are not disjoint, whereas the
above principle is based on disjoint sets.

The misuse of the underlying concept of the multiplication principle is of further
interest: none of the children’s multiplication strategies were based on this under-
lying concept. Instead, all multiplication strategies were based on the ‘from single
to set’ idea. There are several indications not to consider this underlying idea as a
random error, but rather as a typical concept: Firstly, as mentioned before, the ‘from
single to set multiplication’ appeared not only while solving the block
tower-problem, but also in problems with different contexts and different underlying
figures. Secondly, data analysis showed cognitive conflicts, which arose in many
cases when students, for example Paul who solved the soccer-problem (see
Table 1), noticed the emergence of double outcomes when using the ‘from single to
set’ strategy:

Paul: Hum, some games are twice. But actually, that does not make sense. Every
team plays three times. Means there should be four times three games. But, still there
are some double games, for example green plays against blue and blue against
green? Hum, every team plays three times but there are 6 games?!

Apparently, learners assume that the ‘from single to set’ strategy leads to the
right number of outcomes. The challenge seems to be the non-empty intersection of
the subsets. Thirdly, some learners who determined the cardinality by systematic
listing or addition, also used the ‘from single to set’ idea and determined an amount
which was bigger than the wanted.

Further investigation shows the similarity between the ‘from single to set mul-
tiplication’ and the idea of multiplication as repeated addition, a concept, children
know from the second year of primary school. It only differs in one important
aspect: the sets are not disjoint. This similarity leads to the assumption that the
occurrence of this error is due to learners’ incomplete prior knowledge. For most of
the typical counting problems, which children solve during the early grades, there is
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no need to reflect whether sets are disjoint or not, because the information is just
given. In contrast, this reflection is essential while solving combinatorial problems,
as the ‘from single to set multiplication’ shows.

3.2 Similarities: Children’s Compensation Strategies
and Mathematical Compensation Principles

Students who used strategies based on the mentioned ‘from single to set’ concept
realized the overcounting in most instances. To compensate the overcounting, two
systematic strategies have been observed: the ‘take-away’ and the ‘classification
strategy’. Both strategies show strong similarities to mathematical counting prin-
ciples and are described below.

Take-away strategy: This strategy is characterized by the elimination of double
units. Students, such as Phil, compared systematically the classes of outcomes with
each other. In each step those outcomes of the 2nd, 3rd, …, nth group, which
already appeared in the 1st group, were removed.

Phil: Actually, that’s easy, because, one… I have to…I have to pull out these [pulls
towers “blue-green” and “green-blue” aside] …. And actually, everything looks as
if – oh these ones can be put away [puts towers “red-green” and “green-red” from
the red group away] because of these two [points his finger on the equal objects in
the green group]. But now it looks like everything is ok with the green towers.

The comparison of this approach with counting principles shows that it includes
basic ideas of the principle of inclusion and exclusion. This principle generalizes
the addition principle of two sets whose subsets are not disjoint (Schrage 1996).
Children’s counting can be understood as forming the union of the quantities,
whereas the removal of the duplicate objects can be understood as excluding ele-
ments in the intersection.

Classification strategy: Instead of removing double outcomes, some children, for
example Jasmin, determined the total number by grouping those objects, which can
be seen as equal under the given task conditions. Afterwards they counted the
number of groups to determine the cardinality of the set of outcomes:

Situation: Jasmin solved the lottery problem by systematic listing with the under-
lying idea ‘from single to set’ and arranged her solutions in four groups on the table:
1st group: 1-2; 1-3; 1-4; 2nd group: 2-1; 2-3; 2-4; 3rd group: 3-1; 3-2; 3-4; 4th group:
4-1; 4-2; 4-3. She determined a total number of twelve instead of six solutions. After
she realized that some of her solutions were equal under the given task conditions,
the interviewer asked her if there was a way to find out the right amount of
possibilities:
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Interviewer: What can you do to find out the right number of solutions without
double outcomes?

Jasmin: I’ll pool the equal ones together. [J. rearranges her set of outcomes in
groups: 1st group: 1-2; 2-1; 2nd group: 1-3; 3-1; 3rd group: 1-4; 4-1;
4th group: 2-3; 3-2; 5th group: 2-4; 4-2; 6th group: 3-4; 4-3].

Interviewer: How many are there in total, now?
Jasmin: Hum, lets count. Well, one, two, three, four, five and six [While

counting she points her finger on each group of outcomes].

A systematic comparison between this approach and mathematical counting
principles points out the similarity between the classification strategy and the
so-called shepherd principle, a second way of indirect counting. Its idea is illustrated
by an anecdote of a shepherd described by Bourbaki (1963): To the question: how to
determine the number of sheep, the answer was “by counting the legs and dividing the
result by four.” The principle is based on the rule: “Let L and S be two sets with finite
cardinalities l and s. If there is a mapping f from L onto S (f: L ! S, surjective) such
that f�1 yð Þ�

�
�
� ¼ c for all y 2 S then l ¼ c � s.” (Schrage 1996, p. 193). The number of

smay then be determined by division of l by c, if l and c are known. Jasmin’s strategy
is based on the same idea: Firstly, she groups those outcomes, which are equal under
the given task conditions. This equals the idea of dividing l by c. Secondly, she
determines the wanted quantity of s by counting the number of groups.

During the study only two children used this strategy. This shows, however, that
some learners already autonomously develop the underlying mathematical idea of
the shepherd principle on the level of action (for detailed analysis and further
explanations and strategies see Höveler 2014).

4 Discussion and Conclusion

This study indicates that third graders already use different counting strategies to
solve combinatorial problems. Besides the multiplicative and compensation
strategies, which were presented in this chapter, they also use additive strategies as
well as recursive strategies and structural relationships when they are faced with
isomorphic problems. As has been discussed, these strategies are cogently con-
nected to mathematical counting principles. Some of the strategies are connected to
combinatorial counting principles but with substantive disparities based on sus-
tainable different concepts. For example, the ‘from single to set multiplication’
seems to be based on the idea of multiplication as repeated addition of equal
addends without recognition that the groups need to be disjoint, whereas the
multiplication principle requires disjoint sets. Other strategies, however, show a
remarkable degree of convergence with associated counting principles, for example
the ‘take-away’ and the ‘classification’ strategies, as connected to the principle of
inclusion and exclusion and the so-called shepherd’s principle, respectively.
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Which conclusions can be drawn from these results and which further investigations
are necessary?

The results provide one possible explanation for a frequently occurring type of
error: the error of overcounting (e.g. Kavousian 2008; Lockwood 2011), whereby
learners solve various counting problems by multiplication and determine a bigger
amount than the wanted. The systematic comparison of their strategies with com-
binatorial principles leads to the conclusion that their strategies are not equivalent to
the idea of the multiplication principle. Instead they are based on the ‘from single to
set’ concept. As pointed out, the ‘from single to set multiplication’ may be based on
prior knowledge, namely the notion of multiplication as continued addition of equal
addends, but this does not take into account the requirement of disjoint quantities.
As a consequence, the lack of awareness of disjoint sets should be perceived as the
cause of the overcounting. Since this lack of the idea of disjoint quantities also
appears in contexts of additive strategies and systematic listing, it seems to be a
typical misconception while solving counting problems.

The results lead to the assumption that the ‘idea of disjoint quantities’ is a key
concept in developing combinatorial understanding and a crucial point to overcome
some overcounting errors. Further investigation is needed to clarify whether the
‘from single to set’ concept and the missing awareness of disjoint quantities are a
study-specific phenomenon or whether they do typically occur when children are
solving combinatorial counting problems.

The results lead to another consideration: In this study, none of the children used
a multiplicative strategy which was based correctly on the idea of the multiplication
principle. From a mathematical perspective this principle is of major significance
while solving counting problems. Therefore, it is of special interest to find out
whether students develop an entire concept of the multiplication—including the
idea of disjoint sets—when classroom reflections focus on the awareness of disjoint
quantities and the relationship between the amount of outcomes with a specific
element and the total amount of outcomes.

Furthermore, the results show that approaches for viable mathematical counting
strategies arise from initially faulty appearing strategies: Thus based on the ‘from
single to set’ idea, the ‘take-away’ strategy and the ‘classification strategy’ were
used by students to compensate for perceived overcounting. These strategies rep-
resent at a very basic level the ideas of counting principles, in this case the idea of
the principle of inclusion and exclusion and the idea of the shepherd principle. This
observation leads to pedagogical advice for handling the ‘from single to set’ idea in
class: This strategy should not be discarded and considered as incorrect access.
Rather, it is essential to perceive it as a starting point to discuss compensation
strategies and to address the central idea of disjoint quantities.
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Reinforcing Mathematical Concepts
and Developing Mathematical Practices
Through Combinatorial Activity

Elise Lockwood and Zackery Reed

Abstract As a branch of discrete mathematics, combinatorics is an area of
mathematics that offers students chances to engage with accessible yet complex
mathematical ideas and to develop important mathematical practices. In this
chapter, we focus on a combinatorial task involving counting passwords, and we
provide examples of affordances that undergraduate students gained by engaging
with the task. We highlight two kinds of affordances—those that strengthened
understanding about fundamental combinatorial ideas, and those that fostered
meaningful mathematical practices. We hope that these examples of rich and
sophisticated student work will contribute to an overall goal of elevating the status
of combinatorics specifically, and discrete mathematics more broadly, in the K–16
curriculum. We conclude with a handful of pedagogical implications.

Keywords Counting � Combinatorics � Mathematical practices
Postsecondary students

1 Introduction and Motivation

Combinatorial tasks offer students opportunities to think deeply about accessible yet
complex mathematical ideas. In his book Applied Combinatorics, Tucker (2002)
says of his counting chapter, “We discuss counting problems for which no specific
theory exists” and emphasizes that the problems require “logical reasoning, clever
insights, and mathematical modeling” (p. 169). He goes on to say that, “for many
students, this is the most challenging and most valuable chapter in this book”
(p. 169). Martin (2001) shares a similar sentiment in his introduction to his chapter
on counting, saying “One of the things that make elementary counting difficult is
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that we will encounter very few algorithms. You will have to think. There are few
formulas and each problem seems to be different” (p. 1). Kapur (1970) points out
that “the mathematics of the continuous” (p. 113) has powerful methods that allow
some applications to be completed without requiring ingenuity. In contrast, in “the
mathematics of the discrete, not many such powerful methods are available and
ingenuity is always required” (p. 114). He goes on to list several reasons why
combinatorial mathematics should be made a higher priority in school mathematics,
and the same could be argued for its importance in the undergraduate curriculum.

We share these passages to point out that these mathematicians and researchers
see value in the kinds of thinking that combinatorial tasks elicit. This contributes to
an overall argument that combinatorial tasks, and discrete mathematics tasks more
broadly, can offer many opportunities not only for reinforcing mathematical con-
cepts but also for developing important mathematical practices.

In this chapter, we present a set of combinatorial tasks (which we call the
Passwords Activity) that we found to be useful for work with undergraduate stu-
dents. Although we focus on one particular task in this chapter, we hope that the
benefits we share related to this particular task can serve as a representative example
of benefits of combinatorial tasks more generally. We outline the task, and we
present excerpts from student work to demonstrate three ways in which a combi-
natorial task both strengthened understanding about fundamental combinatorial
ideas and also fostered meaningful mathematical practices. In terms of combina-
torial ideas, we will show how this particular task helped students strengthen their
understandings of the multiplication principle, the notion of ‘choosing,’ and com-
binatorial identities. In terms of practices, we will demonstrate how the task pro-
vided opportunities for students to develop their skills of justifying, generalizing,
and proving (specifically, engaging in combinatorial proof).

2 Background Literature and Theoretical Perspective

One reason for us to develop and study tasks like the Passwords Activity is because
there is ample evidence that students struggle to solve counting problems correctly (e.g.,
Batanero et al. 1997; Eizenberg and Zaslavsky 2004; Godino et al. 2005; Lockwood
and Gibson 2016). Although strides have been made in recent years to learn more about
how to help students solve counting problems more successfully, instructors who have
taught counting may agree with the sentiment shared by Annin and Lai: “Mathematics
teachers are often asked, ‘What is the most difficult topic for you to teach?’ Our answer
is teaching students to count” (2010, p. 403). To this end, then, we hope to develop
particular instructional techniques and activities to help students (and teachers) be more
successful when solving counting problems. This is why we highlight some of the
domain-specific combinatorial ideas that can be reinforced through this set of tasks.
In particular, we seek to demonstrate connections to three important elements of
combinatorics: the multiplication principle, combinations (binomial coefficients), and
combinatorial identities. We elaborate each of these concepts in the Results section.
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In addition, as noted in the introduction, there is a consensus among some
researchers and educators that combinatorics and discrete mathematics afford key
mathematical practices, such as those defined by the Common Core State Standards
for Mathematics (National Governors Association Center for Best Practices and
Council of Chief State School Officers 2010). For example, the 1991 book Discrete
Mathematics Across the Curriculum made a case for the value of discrete mathe-
matics topics in K–12, arguing that discrete mathematics tasks can foster practices
such as making mathematical connections, problem solving, critical thinking, and
mathematical reasoning (Kenney and Hirsch 1991, p. vii). Other mathematics
education researchers have highlighted the utility of combinatorics as a context in
which to help students make connections among representations (Maher et al. 2011)
and engage in practices like generalization (Lockwood 2011), proof (Maher et al.
2011) and problem solving (Lockwood 2015). In this chapter, we want to contribute
to this overall narrative by demonstrating some examples of how a rich combina-
torial task facilitated combinatorial insight and reinforced mathematical practices.

3 Methods

In the study described in this chapter, we had 10 undergraduate students solve
counting problems in individual, hour-long interviews. Nine of the students were
calculus students who had not taken a university level course that covered counting,
and one student was a senior math major who had taken an upper-division discrete
mathematics course. We gave students the Passwords Activity, which we explicate
below. This activity was part of a larger study and was designed to target students’
generalizing activity in combinatorial tasks specifically. We sought both to learn
about students’ combinatorial reasoning and about their generalization in combi-
natorial contexts. For data analysis, we transcribed the interviews and used quali-
tative data software to review the interviews. We used the constant comparative
method (Strauss and Corbin 1998) to identify relevant phenomena across the
interviews, and to discover particularly salient episodes that could explain such
phenomena. In the next section, we highlight details of the Passwords Activity.

4 The Passwords Activity

The Passwords Activity is designed to scaffold students’ learning as they develop a
statement of the binomial theorem. A general statement of the theorem is given as
follows: If x and y are real numbers and n is a nonnegative integer, then

xþ yð Þn¼
Xn
k¼0

n

k

 !
xkyn�k:
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We acknowledge that there are many ways to prove the binomial theorem and
that there are a variety of contexts to which the binomial theorem might be naturally
connected (block walking, Pascal’s Triangle, and committee selection are common
settings). We also recognize prior work that has examined students’ reasoning about
binomial coefficients and the binomial theorem in these different settings. For
example, Maher and Speiser (2002) connect block walking with binomial coeffi-
cients, and Maher et al. (2011) demonstrate powerful student reasoning about the
binomial theorem and Pascal’s Triangle. Our activity offers but one alternative
approach to an important combinatorial idea, but there are certainly opportunities
for other meaningful connections that we do not explicitly make here. We focus on
counting a set of passwords in two different ways, each of which is reflected by an
expression on one side of the binomial theorem. In the next section, we present
the progression of the Passwords Activity, which unfolds in three stages. We
describe the progression of tasks and what the students were instructed to do, and in
so doing we provide details about the mathematics of the task.

4.1 Details of the Task Progression

Stage 1: Passwords consisting of the letters A and B. We first had students
consider the total number of possible length 3 passwords involving A and B (we
will refer to these as 3-character A,B passwords), of which there are 8. To answer
this, students tended to list all 8 passwords (and in some cases they justified this
result by reasoning that for each entry in the password there are 2 possible options,
and so by the multiplication principle there are 23 = 8 possible passwords). Most
students listed on their own, but if they seemed stuck on the problem we asked them
to try listing some passwords. We then prompted students to make Table 1, which
organizes the total number of passwords according to the number of As in the
password (we instructed students to make such a table, but a template was not
provided for them).

Students filled out the table either by simply listing the passwords for each row
(or reading the respective numbers of passwords from a previously generated list
that they may have made), or by recognizing that the entries in the rows of the table

are binomial coefficients (
3

k

 !
for k = 0, 1, 2, 3). Some students recognized that

binomial coefficients make sense because for a given number of As in a password,
they may choose the positions in which the As will go. The placement of the As
determines the password since there are only Bs remaining to fill the empty slots.
We then asked students to create tables for passwords of length 4 and 5, and they
generated tables like Tables 2 and 3.

Next, we had students explore the relationship between the values of the table
and the total number of passwords in each case. Many students identified a pattern
of 8, then 16, then 32 total passwords for 3, 4, and 5-character passwords, and they
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could generalize that the total number of n-character A,B passwords is 2n. To justify
this, some students applied the multiplication principle to an arbitrary n-stage
counting process, in which there are two choices at each stage.

It is important to note that even if some students had not previously been
exposed to binomial coefficients or were not able to come up with a general for-
mula, they could still engage with subsequent stages in the activity and could
potentially engage in generalization. Students made note of patterns of the
respective tables (1, 3, 3, 1 for 3-character passwords, 1, 4, 6, 4, 1 for 4-character
passwords, 1, 5, 10, 10, 5, 1 for 5-character passwords, etc.1), and some students
used previously created tables in subsequent work to engage in both combinatorial
reasoning and generalization, even without referring to binomial coefficients.

Stage 2: Passwords consisting of the letters A and B and the number 1. Next,
we had students consider passwords that consist of the characters A, B, and 1. They
engaged in the same kinds of activity as they had previously, exploring the two
ways of generating the numbers of 3, 4, and 5-character 1, A,B passwords (i.e.,
using the multiplication principle or using binomial coefficients, whether explicitly

Table 1 The 3-character A,B
table

Number of As Number of passwords

0 1

1 3

2 3

3 1

Table 2 The 4-character A,B
table

Number of As Number of passwords

0 1

1 4

2 6

3 4

4 1

Table 3 The 5-character A,B
table

Number of As Number of passwords

0 1

1 5

2 10

3 10

4 5

5 1

1Again, we recognize that these numbers are rows in Pascal’s triangle, but pursuing the rela-
tionship with Pascal’s triangle is not our goal in this set of tasks.

Reinforcing Mathematical Concepts and Developing Mathematical … 97



or not). We prompted them to generate similar expressions and tables for each case,
where the tables were organized in terms of the number of 1s in each password
(instead of the number of As). Importantly, students could use the tables created in
the prior stage in order to complete this stage. As an example, we consider
4-character 1, A,B passwords.

First, we note that there are 34 total 4-character 1, A,B passwords, because there
are three choices for each of the four positions in the password. Table 4 organizes
the passwords according to the number of 1s in the password. In order to fill out an
entry in the table, we had students first place the 1s (or select positions to place the
1s) and then fill in the rest of the positions with As or Bs. Note that this allowed the
students to leverage their previous work in a couple of ways. First, they could draw
on specific entries in a previous table, and second, they could use the fact that there
are 2k total k-character A,B passwords.

Again, in this case if students did not yet have a formula for binomial coeffi-
cients, they could still interact with the task and engage in generalization. In par-
ticular, they could look back at tables created for 3, 4, or 5-character A,B passwords
and use those numerical results for the first stage in the counting process. They
could also recognize that for any of the positions that were not 1s, they were simply
creating A,B passwords, and previous results could be leveraged to complete the
more current tables.

Stage 3: Passwords consisting of numbers and letters. Once the students had
counted A,B passwords and 1,A,B passwords each in two different ways, we had
them consider a situation in which we have multiple letters and multiple numbers.
In order to discuss this, we describe one particular example of 5-character pass-
words consisting of the numbers 1 or 2 and the letters A, B, or C, which we call
5-character 1, 2, A, B, C passwords. As before, a student could count the total
number of such passwords in two ways—first by simply computing the total by
arguing about the number of choices for each position, and second by making a
table, this time according to the number of numbers in a password. There are 55

total passwords, because there are five choices (3 numbers and 2 letters) for each of
the five positions. The table can be filled out as in Table 5.

To justify the table entries, a student can consider one of the rows—for example,
the fourth row counts the 5-character 1, 2, A, B, C passwords that have exactly 3

numbers. One can first select places that will be numbers (there are
5

3

 !
ways to

Table 4 The 4-character 1,
A,B table

Number of 1s Number of passwords

0 1 � 24
1 4 � 23
2 6 � 22
3 4 � 21
4 1 � 20
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do this, which is 10), and each of those number places can be filled in with either 1
or 2, giving 23. Then the remaining two positions must be letters, and there are 32

ways to filling those positions with A, B, or C. The same line of reasoning holds for
any of the rows, and summing the rows (which count disjoint cases of how many
numbers are in the passwords) yields the total number of passwords.

If a student has previously seen binomial coefficients, this line of reasoning can
be extended to a general case of counting n-length passwords consisting of
x numbers and y letters. There is similarly a 3-stage process that determines how
many length n passwords have exactly k numbers. First, one can select k of the
n positions in which to place the numbers, and this leaves (n − k) positions that will
be letters. Then any of the k number positions can be any of the x numbers, and any
of the (n − k) letter positions can be any of the y letters. In this way, a general
statement of the binomial theorem is achieved, which is the mathematical culmi-
nation of this activity:

xþ yð Þn¼
Xn
k¼0

n

k

 !
xkyn�k:

The teaching and learning goal of this activity was not necessarily to generate a
statement of the binomial theorem (specifically in the case where x and y are
nonnegative integers), and most of the students we worked with did not get all the
way to a full statement of the binomial theorem. However, as we will see in the
following results, the activity provided opportunities for students to engage
meaningfully in combinatorial thinking and mathematical practices in a number of
ways.

5 Affordances of the Passwords Activity: Examples
from Student Work

Having described the progression of the tasks, we now present examples of students
engaging in the Passwords Activity. The aim here is both to demonstrate ways in
which the tasks have been effectively implemented with students and to highlight

Table 5 A 5-character 1, 2,
A, B, C table

Number of numbers Number of passwords

0 1 � 20 � 35
1 5 � 21 � 34
2 10 � 22 � 33
3 10 � 23 � 32
4 5 � 24 � 31
5 1 � 25 � 30
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affordances of the activity that we observed among students. We emphasize two
kinds of affordances—those that facilitated learning of combinatorial content, and
those related to the development of mathematical practices. We provide examples
of three students that demonstrate affordances.2 First, the task reinforced mean-
ingful connections to the multiplication principle while also providing an oppor-
tunity for justification. Second, the task allowed students to strengthen their
understanding of “choosing” while facilitating meaningful generalizing activity.
Third, the task encouraged student reflection on combinatorial identities while
supporting the broader practice of proving (in the context of combinatorial proof).
The point is to emphasize how combinatorial tasks like the Passwords activity can
serve both to help undergraduate students learn important combinatorial ideas and
also help students develop important practices.

5.1 Reinforcing the Multiplication Principle and Providing
Opportunities for Justification

In this case, we emphasize the content of the multiplication principle. The multi-
plication principle is one of the most foundational ideas in counting [some call it the
“Fundamental Principle of Counting” (Richmond and Richmond 2009)]. Broadly, it
is the idea that if a given counting process can be broken down into independent
successive stages, then the total number of outcomes of that process is the product
of the number outcomes of each stage, provided that the composite outcomes are all
distinct (Tucker 2002). It underlies and provides justification for many of the
counting formulas students learn. However, while it is an intuitive idea, and while it
uses the familiar operation of multiplication, there are a number of subtle mathe-
matical issues in the multiplication principle (see Lockwood et al. 2016, for more
detailed discussion of the multiplication principle; see also Höveler 2017). In light
of its importance, we feel that it is worthwhile for students to have opportunities to
use and reason about the multiplication principle. Thus, one mathematical affor-
dance of the Passwords Activity is that it can reinforce students’ fluency with the
multiplication principle.

We present an episode with Desmond,3 a vector calculus student with a back-
ground in computer science. When asked for the total number of possible n-char-
acter A,B passwords, the following exchange occurred:

2Note, in organizing the results, in each example we pair an affordance related to combinatorial
content with one related to mathematical practice. We do so to be efficient in our presentation of
three student examples, but we do not claim that the affordances must be paired in this way.
Indeed, in investigating some combinatorial idea (like the multiplication principle) students may
engage in a variety of practices.
3All names are pseudonyms.
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Int. So if you had an n-length password, again using A and B, how
many total passwords do you think there would be?

Desmond 2 to the n.
Int. Okay. And can you just explain again your thinking on that?
Desmond I mean … it’s basically, okay two states for each. So every time

you add another digit you’re multiplying it by 2 …. So, okay,
let’s just abbreviate that into powers.

When Desmond is referring to these “states,” we infer that he is considering that
within the password, each entry can either be a “state” of A or a B, and he spoke of
these states as binary choices (this language is not surprising given his experience in
computer science). He was able to articulate why multiplication occurred in this
binary case by arguing that there are two possible states at each position.

We then further prompted Desmond to discuss why the number of passwords
double each time a new entry in the password is added, and he gave the following
reasoning:

Desmond …you just tack on an extra digit to every single one, which is
either an A or a B.

Int. Okay.
Desmond So just based on—okay, we’ve had this many states for 4 digits

[refers to the 4-character A,B password case, which yields 24 total
passwords].

Int. Uh-huh.
Desmond We throw in there another digit, that’s like, okay, wait, now,

instead we’re taking this [points to the 4-character A,B table]
with A and this with B, so it’s twice that.

In his response, Desmond seemed to understand that doubling occurred each
time a new password entry was introduced because for each of the previous
password arrangements there were two new passwords created, one that ends in A
and one that ends in B. Because of this doubling, it made sense to him that we
would multiply the previous number of outcomes by 2. Desmond’s work demon-
strates the kind of meaningful reasoning about multiplication that the task may
elicit. It is worth noting that not all students were able to make meaning of the
doubling or to connect the process for generating the total number of passwords to
the multiplication principle. However, Desmond’s work suggests the potential ways
in which students might engage meaningfully with multiplication in counting,
perhaps developing stronger foundations for understanding the multiplication
principle.

In this example, we also see how a student could develop meaningful justifi-
cations. Here the multiplication principle highlighted a particular relationship,
which Desmond recognized as involving the doubling of the total number of
passwords from one stage to the next. He was able to justify this doubling in a
couple of ways. First he could justify the multiplication by 2 because he envisioned
having options for states, and this allowed him to explain and justify why the
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successive multiplication by 2 might make sense. Desmond also made the obser-
vation that the total set of outcomes was doubling (as seen in the second excerpt),
and he revealed a correct justification for why the outcomes are doubling, one that
is rooted in combinatorial reasoning and not simply a numerical pattern.

In this example from Desmond’s interview, we see an instance in which the
Passwords Activity afforded a student with the opportunity to learn more about the
multiplication principle, both in considering multiple stages in a counting process
and in determining the total number of passwords. Even more, though, we see an
example of a situation in which a combinatorial task facilitated rich justification.
Through this exploration Desmond was able to notice and make use of the com-
binatorial structure of the outcomes to formulate a sophisticated argument. We
would argue that this task, like many combinatorial tasks, was accessible for
Desmond in that he could explore the situation without invoking powerful theorems
or requiring sophisticated prior mathematical knowledge.

5.2 Strengthening Understanding of “Choosing”
and Facilitating Meaningful Generalizations

The Passwords Activity also allowed for students to strengthen their reasoning
about choosing and binomial coefficients. We use the term choosing to refer to the
act of selecting a subset of objects from a set of distinct objects, and this can be
solved using binomial coefficients. Choosing is a fundamental aspect of under-
standing counting, both because it helps us solve a number of counting problems,
but more importantly because choosing often serves as a stage in the counting
process. In prior work, we have found that in some contexts, choosing can be
particularly difficult for students to grasp. In particular, in one study, Lockwood
et al. (2015a) found that although students demonstrated success on many problems
that positioned choosing as selecting objects (such as choosing people to participate
in a contest), they came to an impasse on a problem that would have required them
to select positions in a binary string that would be occupied by zeros. Lockwood
et al. (2015b) suspect that this was an issue of the students not properly encoding
what they were trying to count as something they already knew how to count (in
particular, they did not perceive of the positions as a set of distinct objects from
which they could choose a subset). These findings were corroborated in other work
Lockwood et al. (2016), in which the authors found quantitative evidence that
students saw some combination problems as fundamentally different than others.
Specifically, they had difficulty recognizing some problems (involving encoding of
positions) as being solvable using binomial coefficients. These studies offer evi-
dence that selection problems, especially those involving choosing something like
positions or locations in a password, can be quite difficult for students.

In this context, we feel that the Passwords Activity could serve as an appropriate
introduction to the notion of choosing and selecting positions. To see this, we
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demonstrate how a student could use choosing in order to complete the activity.
James was a student who had taken discrete mathematics, and yet he was not
familiar with the binomial theorem (or at least he did not seem to recognize or recall
it). Initially he filled out the AB tables by counting outcomes, but he did not
recognize that he could use the notion of choosing, which was a topic with which he
had been familiar. Figure 1 shows his work on the table for a 4-character AB
password—Fig. 1a shows the six outcomes he found for having exactly two A’s in
the password, and Fig. 1b shows his 4-character AB table (which we had prompted
him to make).

Later, as he considered A, B, 1 passwords, he recognized that the numbers he
was generating for how many ways to place the 1s in a password were familiar.
When he was solving the 4-character A, B, 1 password case, he was trying to figure
out how many such passwords have exactly two 1s. He found that there were 6
ways to place the two 1s in a 4-character password. We explicitly asked him why he
got 6. He said “that 6 is counting how many ways…” and then he paused. Then he
said “It’s 4 choose 2… 6 is 4 choose 2.”When asked what he meant, he recognized
how to interpret the problem as a way of choosing. “I’m counting how many ways
you can choose to place two 1s in a sequence of 4.” It is noteworthy to us that
recognizing the 6 as 4 choose 2 was not an immediate connection for James. He did
not seem to make the connection to choosing right away, but after some thought he
could see why 4 choose 2 could make sense in this context. Given students’
difficulties with realizing that they can choose positions, James’ work suggests that
perhaps the Passwords Activity could facilitate students’ understanding of choosing
in such a context.

After James made this connection, he seemed able to continue to use and
understand the relationship through the remainder of his work on the task. For
example, he went on to consider the question of how many passwords of length 8
could be made from the characters 1, 2, A, B, C, and D. He was able to make the
table for this problem, as seen in Fig. 2.

James Yeah. So 8 choose 1 ways to choose where one digit goes. Two
possible digits, so you have to account for if it’s one or the other and
then for the seven remaining slots there are four possible letters.

Int. Okay. Cool. Does that make sense? Were you looking at the table?
Were you thinking about it both or what?

James Well, for me once I can convince myself that like this is true and this
is true and this is true [points to 3 of the entries in the table], and I
can like clearly see the pattern—I just like—yeah, if I like stop to
think about it, like 8 choose 5 ways to place the numbers.

Int Uh-huh.
James And then 2 to the 5th ways to arrange those 5 numbers, and then 4 to

the 3rd ways to arrange the last 3 slots.

Here we see that James seemed to be able to explain his work on this problem,
and he could articulate what each term meant. He could use this notion of choosing
effectively to pick spots in which the numbers could go. Again, this is a subtle

Reinforcing Mathematical Concepts and Developing Mathematical … 103



aspect of counting combinations (Lockwood et al. 2015b, 2016a, b), and it is
noteworthy that he was able to do this.

We also see that James was engaging in the mathematical practice of general-
ization. After James had just finished the work described above, we asked him to
find multiple representations for the number of ways to count the n-length pass-
words consisting of x numbers and y letters. After attempting to separate the terms
in the table to create two sums that he could multiply, James turned his attention to

representing the entries in the table generally. He then wrote
n

a

 !
xayn�a as a

representation for the entries in the table (see Fig. 3).
When prompted to explain his generalization, James said the following, which

indicated that he was drawing on his prior activity in order to generalize:

Fig. 1 Work on table for 4-character AB password

Fig. 2 James’ work on the 8-character 1, 2, A, B, C, D password
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James All right. Yeah. So it’s like if this is a, it’s like n choose a times x to
the a, and then y to the n minus a. I think.

Int. So, yeah, you’re choosing a to represent something. What does a
represent? Or, I mean –

James The number of numbers in the password.
Int. Okay.
James Yeah, a is, number of numbers in the password.
Int. Okay. So once you—why are you doing n choose a?
James Why am I doing n choose a? Because that’s choosing—or, I mean,

that’s telling you all the available—all the possible ways you could
put a numbers into n slots.

Here we see James’ extension of this idea of selecting positions for where the 1
(s) could go to selecting the number of ways to put numbers in the password. This is
a nice generalization of his work. We wish to demonstrate here that James’ gen-
eralization was more than symbolic abstraction, but rather it was rooted in his
understanding of the combinatorial process that generated the outcomes. After
negotiation of the intricacies of symbolic representation of his summation, James
created the statement of the binomial theorem in Fig. 4. We argue that by engaging
in this activity, James came to develop a statement of the binomial theorem that was
meaningful for him, and he created and used the practice of generalization to do so.

The design of the Passwords Activity (particularly the fact that the number and
types of characters increases through the tasks) is intended to promote mathematical
generalization both within and across stages. In this activity, not only do students
have the chance to generalize, but they also get the opportunity to make general-
izations that are grounded in reflection on the combinatorial setting, and not just on
formulaic patterning. This episodes highlights the ways in which combinatorial
tasks can be designed to develop meaningful practices like generalization.

5.3 Providing Insight into Combinatorial Identities
and Offering Occasion for Combinatorial Proof

Combinatorial identities are equality relations, and combinatorial proofs involve
arguing that an identity is true by finding two counting processes that reflect the

Fig. 3 James’ expression for
entries in a general table
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respective expressions and that count the same set of outcomes. Benjamin and
Quinn (2003) note that to prove an identity, they

pose a counting question, and then answer it in two different ways. One answer is the left
side of the identity; the other answer is the right side. Since both answers solve the same
counting question, they must be equal. Thus the identity can be viewed as a counting
problem to be tackled from two different angles (pp. ix–x).

Identities, particularly those involving binomial coefficients, are often introduced
in discrete mathematics or combinatorics courses, and the art of combinatorial proof
is powerful but difficult to master. Another affordance of the Passwords Activity is
that it provides a natural introduction to combinatorial identities, which are closely
related to combinatorial proof and to the practice of proving more broadly.

As an example of this phenomenon we look at the work of Sam, an integral
calculus student. Upon initial generation of the table involving 4-character A,B
passwords, we asked Sam whether and why it makes sense that there would be the
same number of passwords with one A as there would be with three As. He
responded by saying:

Yes. Because for only one A your other three would have to be Bs out of the total. Where if
you add three As only one of them could be a B, so it would just be like a mirror image of
the two of them.

A number of other students also made observations about this symmetric rela-
tionship in the tables. Attention to this sort of symmetry in this context could be
leveraged in a more general setting to justify the symmetry of the binomial coef-
ficients. In particular, a student could be encouraged to reason about why it must be

true that
n

k

 !
¼ n

n� k

� �
. In the context of n-character A,B passwords, he or she

could argue, similar to Sam’s reasoning above, that the number of ways of selecting
positions for some k As is the same as selecting the n − k positions for the Bs.
Arguing that both sides of the equation count the same set of outcomes (n-character
A,B passwords with exactly k As) could be a productive introduction to a com-
binatorial proof.

There are multiple opportunities during the completion of this activity for stu-
dents to generate and reflect on combinatorial identities, and, possibly, to be
introduced to combinatorial proof. Each stage in the task is structured so that

Fig. 4 James’ final statement of the binomial theorem
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students count the number of passwords in a given context in two different ways,
both having distinct mathematical expressions. By asking the students to come up
with formal expressions for both representations of the total number of passwords
and then asserting their equality, students can consider what it means for two
expressions to be equal. Equality is not merely a matter of two expressions being
computationally equivalent, but it can also entail identifying that two distinct
combinatorial processes count the same set of outcomes. This is the basic principle
of combinatorial proof, that, for some given combinatorial context, there is an
isomorphism between the set of outcomes that the respective expressions count. In
this way, the activity serves to underscore the general mathematical practice of
proving and the specific practice of proving a combinatorial identity.

6 Conclusion and Implications

In this chapter, we have presented the Passwords Activity, and we have offered
examples of student engagement with this sequence of tasks. We hope that this
chapter contributes to the overall narrative that combinatorics, and even more
broadly discrete mathematics, is an important and worthwhile topic for students at
all levels. By focusing on undergraduate students and their work on the Passwords
Activity, we hope to demonstrate some valuable affordances for engagement with
combinatorial activities. We conclude with four closing points of discussion related
to pedagogical implications.

First, we feel that the Passwords Activity may be useful for students in a couple
of different situations. It would be an appropriate exercise for students who are just
learning counting, perhaps who are familiar with solving basic problems involving
arrangement and selection but who have not yet seen the binomial theorem or
combinatorial identities. For students to arrive at a final statement of the binomial
theorem, it would be most effective if they were familiar with a formula for

binomial coefficients (that there are
n

k

 !
k-element subsets from a set of n ele-

ments). A sophomore or junior level discrete mathematics course would be an
appropriate setting for the activity. However, it is also possible to have students
engage with the activity without previously having seen binomial coefficients. Such
students will be limited in how far they can generalize (their final general statement
will perhaps be incomplete), but they can still engage in important mathematical
practices. Because of this, the first stages of the task would be appropriate even for
students with very little counting experience, and the activity might be appropriate
during students’ initial forays into counting. This might occur in a lower-division
university course, or even in a high school classroom. Anecdotally, the authors used
the activity in both a junior-level discrete mathematics class and a sophomore-level
finite mathematics class. In both cases, the students were actively engaged and
successfully completed the activity, suggesting that the materials could be
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appropriate for use in a variety of classroom settings. The activity is designed to
help students engage with counting in an accessible context, and from this per-
spective, students in pre-calculus or calculus could meaningfully engage with these
tasks. Whatever the audience, the activity could be employed during an hour-long
class period, or it would be effective as a recitation activity or homework
assignment.

Second, we offer a cautionary note about over-reliance on numerical patterning
in combinatorial tasks. In creating the tables and the general expressions in the
Passwords Activity, students were susceptible to focusing primarily on numerical
relationships and not on deeper structural relationships that are grounded in the
combinatorial context. When filling out the tables, we had some students observe
and then use a numerical pattern that they could not explain, or, worse, guess and
check with numbers that made little sense within the passwords context. This
phenomenon is common in combinatorial activity, and it occurs more generally in
mathematics learning and teaching. Thus, although some numerical patterning can
be useful in developing conjectures and formulating generalizations, a general
challenge for instructors is to make sure the students can connect numerical patterns
back to the appropriate combinatorial context. We suggest that instructors consis-
tently remind students of the problem context and ask them questions that draw
their attention back to the outcomes that they are counting.

Third, in combinatorial tasks there are often opportunities for students to deal
with formal mathematical notation. Students can struggle with coordinating the
different variables in complicated expressions involving summation (e.g., Strand
and Larsen 2013), and we conjecture that it may be beneficial to give students
experience with generating and formalizing their own notation for complicated
sums. When students generate expressions using their own notation, they can
develop an inherent ownership of the mathematics that they adopt. In our task,
writing the formal statements of the various expressions is not the only (or even the
primary) goal of the activity, but some students were able to connect their intuitive
combinatorial reasoning with more formal notation. In this way, activities like these
have a potential benefit of giving students opportunities to engage in formalizing
mathematical ideas.

Finally, as we alluded to before, the Passwords Activity is but one context
through which to explore the binomial theorem and combinatorial identities. There
are many other interesting contexts to which these tasks could be explicitly con-
nected: Pascal’s triangle, counting committees, block walking, and more. Once
students have developed a robust understanding of the Passwords context, there
may be rich opportunities for exploring connections to other contexts. Such con-
nections could propagate further discussions about topics such as isomorphisms and
bijections, as well as deeper explorations into combinatorial ideas and combina-
torial proof.
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Abstract This paper summarizes the ideas and background of a combinatorics
research and teaching project, including historical reforms in school curriculum in
1978 in Hungary and T. Varga’s work. Thereafter we discuss the main elements of
our current project: pretest and developed teaching materials, including worksheets
with some examples and some tools for teaching combinatorics such as
Poliuniversum. In choosing the problems of the worksheets we were led by two
research questions: (1) how students handle open tasks (which are presented in
many combinatorial problems) and (2) how they use various manipulatives at
different ages.
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1 The Main Ideas of the Project Following T. Varga

Through a grant from the Hungarian Academy of Sciences, our research group
investigated how Tamás Varga’s heritage, recent research results, and new tech-
nology can improve mathematics education in Hungary, and how Varga’s ideas can
be modified for the 21st century. For the first year of our project, 2015, we chose to
analyze combinatorics education. The reasons for this choice were that combina-
torics played a major role in Varga’s work, and that combinatorics and discrete
mathematics are considered a Hungarian specialty, a Hungarian branch of mathe-
matics based on the great contributions Hungarian mathematicians have made in
this area.

As combinatorics developed as a branch of mathematics, several math educators
started to examine the possibility of teaching combinatorics. And by combinatorics
they meant not only permutations, variations, and combinations. One possible—not
even the broadest—description of combinatorics is that it is the collection of
counting problems with finite sets. This is an incredibly rich collection of problems
that can already be started in primary school. But in teaching combinatorics—just
like in teaching other branches of mathematics—the primary goal is not to teach the
solutions of certain type of problems, but to teach problem solving methods, and
how to approach unknown problems.

In Hungary Tamás Varga (1919–1987) introduced combinatorics into the school
curriculum in his Grades 1–8 “complex math teaching experiment”, which started
in 1963, and lead to the new Hungarian school curriculum in 1978 (Halmos and
Varga 1978). He started his work in Grades 1 and 2, replacing arithmetic and
geometry by an integrated mathematics, containing many deep ideas of mathe-
matics in their infancy (Varga 1967). He wrote about the possibility of starting math
education early this way:

Once Zoltán Kodály was asked, “When should music education of children start?” “In the
uterus” - he answered. Mathematics education cannot be started too early either. Once we
give up force feeding, children will learn mathematics joyfully and successfully. (Varga
1969).

T. Varga was the first Hungarian researcher who considered the entire primary
and middle school curricula and methods as a whole. We would like to realize this
idea in our project too, which is one reason why we made parallel experiments for
Grades 6 and 10. He was in continuous contact with several research institutions of
other countries, adopted the good ideas and practices, but rejected the practices of
too much formalism (Freudenthal 1973; Halmos and Varga 1978). He called his
concept “post-New Math” (Varga 1988), distancing himself from the too much
formalism of the New Math, giving its “corrected” version. He put emphasis on
problem solving, especially open problems, playful tasks, and he gradually built
concepts through more individual activity done by both the students and teachers.

At the secondary level combinatorics was introduced to the official curriculum in
the 1978 curriculum reform. The new mathematics curriculum was written by
Lóránt Pálmay and János Urbán. Tamás Varga did not work directly at the high
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school level, but his ideas certainly had influence on it, and they were partially
included in this new curriculum. There was an extensive educational experiment in
the years after 1978 using Varga’s ideas, especially worksheets and discovery style
teaching at the secondary level. A Grade 9–12 textbook series was also published
by Andrea Bartal using the worksheets and discovery style teaching. It did not
become the number one textbook in Hungary, and after the start of liberalization of
the educational system in 1989 and the appearance of many new textbooks, it
disappeared.

Tamás Varga considered the use of tools extremely important. In his textbooks
and instructor’s manuals logical sets and colored rods are used in almost every
chapter. In addition to these, in the combinatorics chapters the elements of the
construction game Gabi, colored pearls, matches, boxes of matches, and elements
of the construction game Babylon are also mentioned in some problems. Varga
considered the various kinds of gaming experiences, different activities, such as
paper folding, drawing, studying models, etc. very important in concept building
and practice, too. “The theory of combinatorics is ideally taught to young children
as it can be linked to manipulative activity. We can lead children to the abstract
concept of this theory through a variety of personal experiences” (Varga 1967).

Varga and his colleagues defined their own levels of teaching combinatorics,
which have been built into the methodology of Hungarian mathematics education.
According to this theory, the levels of combinatorial problem solving are the fol-
lowing (Szitányi and Csíkos 2015, p. 226):

• Differentiating the cases
• Listing all possible cases as brainstorming
• Regular listing

– Two types of representations: objects—images (drawings, letters, tables,
graphs)

– Strategies: change, fixing, cyclicality

• Applying formal methods

– Two types of representations: objects—images
– Strategies: multiplication, addition, one-to-one mapping, recursion

• Recognition of structures.

One motive of our project was our interest in analyzing the 1978 reform, and
trying to find connections between the 1978 and 2016 situation. We would like to
follow the ideas and concepts of T. Varga, but in an extended Grade range of 1–12
instead of 1–8, and we would also like to try using new tools and take advantage of
new possibilities to teach combinatorics in school. Our research group consists of
researchers in mathematics didactics and teachers, who were involved in planning
and developing the experiment and who also taught the classes in which the
experiment was being undertaken. Moreover, they documented the teaching process
and their opinions of it.

Complex Mathematics Education in the 21st Century … 113



We planned a pretest as the first step, focusing on grades 6 and 10, to see the
current situation in Hungary. The pretest can be found at the end of this chapter.
The pretest was completed by 446 pupils (230 in Grades 6–7, 216 in Grades 10–
11), and statistics were compiled about every question. The main conclusions that
we have drawn from the test are that younger pupils use manipulatives easier, and
their thinking is more flexible, while the older students prefer formulas.
Surprisingly, in problems with more conditions, and hence with no general formula,
the results of the younger pupils are not worse than the results of the olders. The
analysis of these data also gave us some ideas on how to develop our worksheets.
For more detailed results, look at the research paper of Kosztolányi (2016) PME-40
in Szeged.

Our teaching experiment was undertaken in four middle schools with 134 stu-
dents in five classes, and in two high schools with 104 students in seven classes.

We collected tasks and chains of exercises for worksheets (“Munkalapok” at
Varga), which the pupils had to complete during the experimental teaching of
combinatorics in six to eight lessons.

We would like to illustrate the style of problems and tasks, and also show how
we were taking advantage of the tools that were used during the experiment, which
included Poliuniversum [for description of Poliuniversum see Sect. 3 below and
Stettner and Emese (2016)], and logical sets, among others. Teaching took place in
2015 in October and November. Leaders of the project visited the groups to collect
some personal experiences, and we also made videos of the lessons and conducted
interviews with teachers and students.

In the following sections we will show two of the worksheets we used and one
separate question that gave surprising result to us. The choice of these worksheets
presented here is based on special focuses of our research: one of them is the use of
open tasks in teaching and the other is the use of tools. We chose an additional
problem because we found it particularly interesting. We were wondering a lot
about why this problem was so difficult for students.

2 Third Worksheet of Open Tasks (The Third Worksheet
Both of the Seven Worksheets Comprising the Grade 6
Teaching Materials and of the Six Worksheets
for the Grade 10 Teaching Materials)

The third worksheet, which contained two question papers is particularly fasci-
nating, as it presents some tasks that can be interpreted in more than one way and
we tried as well to investigate how pupils react to open questions, which very often
occurs in the case of combinatorial problems. One teacher, our co-author H. Burian,
summarized her experiences.

Overall 60 students worked on the 3rd worksheet, which contained two sets of
questions. The 60 students were from two different high schools and were from six
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different classes. Twenty two of them were grade 11, eleven were grade 9, and
twenty seven were in grade 8. None of them managed to solve all of the problems.
Most of the questions were open type questions, and there were a lot of questions
that required the student to give his or her opinion on the matter.

2.1 “Ice Cream”: 1st Question Paper of the Third
Worksheet

Write your solutions to the questions below on a separate piece of paper,
based on this situation:

Dóri often goes to an ice cream shop near her home in the summer when she and
her family are home. Because she loves ice cream, she gets some pocket money,
from which she can afford at most 3 scoops of ice cream every day.

She told her friends that last summer she ate a different combination of scoops
every day, even though she could choose from only 5 flavors.

Panka was unconvinced if that statement was true, because she knew that Dóri and
her family spent only two weeks away from home during the summer.

Laci believes that this is only possible if she ate 4 scoops of ice cream sometimes.

Questions, solutions, and analysis

1. Figure out and write down the circumstances that could influence the truth-
fulness of Dóri’s statement!

2. Dóri ate 3 scoops of ice cream every day, and she could choose from 3 flavors
every day. This means that she could eat different combinations of scoops for
10 days

(a) Check whether the statement above is true or false! Write down your way of
thinking.

(b) Make up different “ice cream eating” conditions, and calculate the number
of days on which Dóri could eat different combinations of scoops under
these conditions! Write down the conditions and your calculations.

(c) Based on your results, what is your opinion on the truthfulness of Dóri’s
and the others’ statements?

The first question was already one where the students had to give their opinion,
and it allowed us to make one of the most interesting observations. The time spent
on discussing this question was about 15 min in almost all groups. The reasons for
this could be the following:
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• The students usually meet with closed type questions only, so they do not have a
lot of experience in solving open type questions.

• The meaning of the word “different” in the question is not obvious.

The most popular answers to the first question written above were the following.
(The numbers in parentheses are the numbers of students giving that particular
answer or using that particular method.)

• How long was the summer holiday? (25 students)
• Does the order of the purchased scoops matter? (23)
• Is it possible to buy more than one scoop from a flavor? (11)
• How many scoops did she eat a day? (8)
• Did she ask for them in a cone or a cup? (8)
• Was the ice cream shop open every day? (5)

The following questions were mentioned less often:

• Did Dóri have enough pocket money? (3)
• How much did one scoop cost? (3)

It can be concluded from the answers, that after the students came to understand
the question, they gave mostly relevant answers. Most of them saw the length of the
holiday and the order of the scoops as the most important aspect. It was fascinating
to see that fewer students thought of “How many scoops did she eat a day?”, even
though the text said “maximum”, which allows for 1, 2 or 3 scoops a day. Most of
them did some calculations in the first question and/or in questions 2a or 2b, and
then deduced their conclusions from these calculations. The following answers
were the most popular based on these calculations:

• More than one scoop per flavor is allowed, the order matters, and she ate 3
scoops a day: 53 = 125. (16 students)

• Only one scoop per flavor is allowed, and the order matters, and she ate 3 scoops
a day: 5 � 4 � 3 = 60. (13)

• Only one scoop per flavor is allowed, the order does not matter, and she ate 3
scoops a day: (5 � 4 � 3)/(3 � 2 � 1) = 10. (5)

• More than one scoop per flavor is allowed, the order does not matter, and she ate 3
scoops a day: 5 � 5 � 5/3!, and they mentioned that this is not a whole number. (3)

• Only one scoop per flavor is allowed, the order matters, but she can eat 1, 2 or 3
scoops: 5 + 5 � 4 + 5 � 4 � 3 = 85. (8)

• More than one scoop per flavor is allowed, the order matters, but she can eat 1, 2
or 3 scoops: 5 + 5 � 5 + 5 � 5 � 5 = 155. (3)

• Only one scoop per flavor is allowed, the order matters, but she can only choose
from 3 flavors, and she ate 3 scoops a day: 3! = 6. (11)

• Only one scoop per flavor is allowed, the order does not matter, but she can only
choose from 3 flavors, and she ate 3 scoops a day: 1. (3)

• More than one scoop per flavor is allowed, the order matters, she can choose
from 3 flavors, and eats 3 scoops: 33 = 27. (13)

116 Ö. Vancsó et al.



• More than one scoop per flavor is allowed, the order matters, she can choose
from 3 flavors, but she can eat 1, 2 or 3 scoops: 3 + 3 � 2 + 1 = 10. (6)

It is clear from the results that questions 1 and 2 could be interpreted in manyways.
Those students who took the length of the summer holiday into account calculated
with 9 weeks and 7 days/week, so 63 days overall. In their case, it depended on the
calculation method they used whether Dóri’s statement was true or false.

In question 2amost people calculatedwithout taking the order and the possibility to
have more than one scoop per flavor into account. An interesting aspect of the solu-
tions is that roughly the same number of people interpreted 2a and 2b in a way that
Dóri can choose from five flavors (as in the original question) and in away that she can
choose from only three flavors. In both cases the answer to whether Dóri’s statement
was true or false depended once again on the calculation method they used.

In 2b a few people mentioned, without making any calculations, that Dóri could
eat 1 or 2 scoops but could only choose from two flavors, or that she could eat
maximum 4 scoops but only choose from two flavors again (someone calculated the
second case, 2 + 4 + 8 + 16 = 30).

Very few people answered 2c, and even those who did only wrote a very short
opinion in a few words or a sentence at most. The answers mostly commented on
the unobvious interpretation of the statements. The most probable reason for the
short opinions is that the students very rarely have to do declarations like this.

3. Discuss in a group your “ice cream eating” conditions and the results you
obtained from them, as well as your way of thinking and calculation methods.
Try and come up with even more cases with different conditions, and do the
appropriate calculations for these cases as well! Write down these conditions
and the calculations as well.

4. Dóri’s friend thinks that the order of the scoops in the cone should be taken into
account as well. She believes that the results would change significantly if this
aspect of the problem would be considered as well. Have you taken this option
into account so far? If you have not, make extensions to your chart where you
take this into account as well!
What is your opinion on the statements of Dóri and the others based on these
new calculations?

About three students answered questions 3 and 4, which is not surprising due to
the fact that they were not relevant after they discussed every possibility in ques-
tions 1 and 2.

5. Ice cream eating “habits” of Dóri can change anytime, possibly even after one
day, and they can change more than once. Come up with some new situations
again based on this new piece of information, do and write down the appro-
priate calculations for these situations, then reassess your opinion on the
statements of Dóri and the others.

About three students answered this question as well.
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2.2 “Ice Cream”: 2nd Question Paper of the Third
Worksheet

Write your solutions on a separate piece of paper, but do not forget to indicate which
solution belongs to which question.

Questions, solutions, and analysis

1. Zita frequently goes to another, bigger ice cream shop, where she can choose
from 12 flavors. 6 of these flavors are her favorites, so she always chooses from
these ones. If she eats 3 scoops of ice cream every day, calculate the number of
days on which she can eat different combinations of ice cream scoops!

Define the conditions, do the necessary calculations, and make a chart from
your results!

The first question did not cause any problems to the students this time, as they
analyzed similar cases in the first set of questions. The only difference was that
there were 6 flavors to choose from this time. Most of the students calculated with 3
scoops, and some of them calculated with more than one scoop being allowed per
flavor, while some of them did not. They only took the order into account if they
calculated with only one scoop per flavor. A few students attempted to calculate the
case where more than one scoop per flavor is allowed and the order matters, but
most of them failed with their answer being 63

3!. As the result they got is a whole
number, they didn’t notice that the solution was wrong, unlike in the 1st set of
questions were they realized that 53

3! is wrong due to it being a fraction.

2. Create a task (tasks if possible), where the solution can be reached by using the
same methods as in the ice cream eating questions above! They should be based
on different everyday-life situations. Write them down together with their
solutions, and comment on which “ice cream eating cases” have similar
solutions.

The second question was answered by almost everybody, and most of them
defined similar problems as the one with the ice cream, but with different edibles or
with some permanent qualities of a phone, like its color, memory capacity, or phone
case.

3. Make a question paper that consists of 4 tasks created by people in your group,
and attach a separate piece of paper to it with the solutions.

No one answered the 3rd question because the students ran out of time.
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4. Generalization

I. We can choose from n flavors in an ice cream shop, and we eat 3 scoops.

(a) If all of our scoops are of different flavors, and their order matters,
then we can have n(n − 1)(n − 2) different possibilities.

(b) Find cases that are different from the one above by changing the initial
conditions, and try to come up with a formula for the number of
different ice creams that consist of 3 scoops. Take notes of your results.

II. We can choose from n flavors in an ice cream shop, and we eat g scoops.

(a) If all of our scoops are of different flavors, and their order matters,
then we can have n(n − 1)…(n − g + 1) different possibilities.

(b) Find cases that are different from the one above by changing the initial
conditions, and try to come up with a formula for the number of
different ice creams that consist of g scoops. Take notes of your results.

The fourth question, which was the generalization part, was dealt with by the
students in grade 8 either with the help of the teachers, or they did not look into it at
all. Some of those in grade 11 and grade 9 tried to generalize the formulae, mostly
with success, but they failed in the cases where more than one scoop per flavor was
allowed and the order mattered. The following answers were the most popular:

• Only one scoop per flavor is allowed, the order does not matter:
n� n�1ð Þ� n�2ð Þ��� n�gþ 1ð Þ

g! . (12)
• More than one scoop per flavor is allowed, the order matters: ng. (5)
• More than one scoop per flavor is allowed, the order does not matter: ng

g!. (5)

For these questions, we provided an optional help table, which students could or
could not use. See Table 1.

The most interesting observation made in the second set of the questions was
related to Table 1. Thirty-two students tried to fill in this table, which is insufficient
to draw well-backed conclusions, however it is still interesting to take a look at the
results:

• Maximum of 2 scoops per flavor, the order does not matter: n�n� n�1ð Þ
3! or 6�6�5

3! (4);
6�5�4
3! þ 6 � 5 ¼ 50 (6); 6�6�5

3 = 60 (4); 20þ 6�5
3 ¼ 30 (2)

• Maximum of 2 scoops per flavor, the order matters: n � n � n� 1ð Þ or 6 � 6 � 5 (6);
120þ 6 � 5 ¼ 150 (2); 120þ 6 � 5 � 2 ¼ 180 (2); 6 � 5 � 5 (1); 120þ 6 � 5 � 3 ¼
210 (3)

• Maximum of 3 scoops per flavor, the order does not matter: n3
3! or

63
3! ¼ 36 (6);

30 + 6 = 36 (4); 50 + 6 = 56 (6); 30 + 10 = 40 (1); 6þ 6 � 5þ 6 � 5 � 4 ¼ 156
(1)

• Maximum of 3 scoops per flavor, the order matters: n3 or 6 � 6 � 6 ¼ 216 (8);
150 + 6 = 156 (2); 180 + 6 = 186 (2); 210 + 6 = 216 (2)
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Most of the students filled in the first row correctly, but they either filled the
second row and the first column of the third row incorrectly or they left it empty. It
is impossible to determine that from the people who filled these in correctly, how
many worked alone and how many copied the results from the board. As well we
observed that there were students who filled in these problematic cells incorrectly,
but at least attempted to break down the problem into sub-cases (most of them were
grade 11, though).

There were no problems with the 2nd column of the 3rd row due to both n3 and
63 being correct solutions, and even those students who filled in the previous row
incorrectly got these correct.

As already mentioned, these are the results of only 32 students so the conclu-
sions we made have to be checked within a wider population. Nevertheless in our
opinion in these three problematic cases (the second row and the first column of the
third row) the students failed to get the right results because they would have had to
either break down the problem into sub-cases, or list all the possible combinations,
or use a tree graph. They had only encountered the break-down method in the first
set of questions of the 1st lesson before, and it seems that this was not enough for
them to try and use it to solve this problem, and to throw away the ingrained
method of deriving a formula with some multiplication in it and division by fac-
torial due to repetitions. These results seem to back the hypothesis that “teachers
insist on the students solving the problems with the method they are learning at that
time”, and for students in higher year classes searching for a formula is seen most
often, so this gets ingrained.

The failure to achieve the desired goal seemed to be caused by the questions and
tables as well. Namely, the questions and tables might have discouraged the search
for different methods to solve the problems.

Firstly, the first question in the first set of questions was solved by the students
by taking the order into account and either with or without more than one scoop per
flavor being allowed, which means the solution was mostly 5 � 5 � 5 ¼ 125 or
5 � 4 � 3 = 60, both of which are too great a number for the students to list all the
possible combinations. Therefore, it is unsurprising that they did not use this
method in the question where more than one scoop per flavor was allowed, but the
order did not matter (even though there were only 35 possible combinations). There
were even more scoops to be calculated with in the second set of questions, which
obviously means more combinations, and does not encourage to find an alternative
method.

Table 1 Optional help table for “ice cream” 2nd question paper

The order does not matter The order matters

Different scoops

2 scoops per flavor at most

3 scoops per flavor at most
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The table, which has limited cell size as per usual, prevents to find an alternative
to the formula method. Thus it would have been a better option to ask questions
which result in smaller numbers so students can list all possibilities and they can see
that the sum of the different cases gives the result when more scoops per flavor is
allowed.

In our point of view, a third factor also exists that contributed to the lack of
success. That is the fact that in combinatorics the hardest cases to calculate are the
ones where repetition is allowed, but the order does not matter (combination with
repetition). “Selection problems, especially those involving choosing something
like positions or locations in a password, can be quite difficult for students”
(Lockwood et al. 2015). Only a very limited number of students can figure out the
solutions to these by themselves, the others are either unable to solve the problem,
or they find an incorrect solution, as it happened in this case as well.

2.3 Summary

The open-type questions confused the students at the beginning, because most of
the questions they encounter in class are closed-type questions, and the previous
question papers in this project were the latter type as well. They are even less used
to having to communicate their opinions, therefore questions that required this
mostly remained unanswered, or were answered in only a few words.

In the case of calculations, most answers were incorrect when more scoops per
flavor were allowed and the order did not matter. Most of the students either did not
give an answer, or used the usual strategy of finding a formula with which they can
get the result by using simple multiplication and division. The only exceptions from
this were a few students from the higher year classes.

3 Teaching Tools of the Experiment

Teaching mathematics is done too often at the symbolic level. Using well-chosen
tools can improve creative thinking, according to Bruner et al. (1966) theory.
Following Tamás Varga’s spirit, we also considered the use of tools extremely
important. In choosing the appropriate tools we took advantage of the experiences
of the Experience Workshop lead by Kristóf Fenyvesi (http://www.elmenymuhely.
hu/?lang=en) and we reviewed their publications (Fenyvesi et al. 2014; Fenyvesi
and Stettner 2011). We found most tools in the publication Adventures On Paper
Math-Art Activities for Experience-centred Education of Mathematics. We con-
sidered the ZomeTool (http://www.zometool.com/) and the 4D Frame (http://
4dframe.com/eng/) modelling sets. For financial and other practical reasons, we
finally chose the Poliuniversum set, the Logical set, and some hand-made tools/
toys: pentominos, cat cards, and drawings of animals of Noah’s Ark.
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In the 5th worksheet of our experiment, pupils used the Poliuniversum set, which
is intended to improve combinatorial and geometric skills. Boxes contain one of 3
plastic shapes: triangle, square and (almost) circle, made in red, yellow, green and
blue. The two sides are of the same color. There are three semicircles attached to the
boundary of the circle in directions making 120° angles with one another, the
largest has radius that is half of the original circle, for the medium it is one fourth,
and for the smallest it is one eighth. The diameters of the three semicircles cut off
three segments from the original circle so the basic form is not exactly a circle. So
this shape is bordered by 3 arcs and 3 line segments, so they can stand on their line
segment parts in a stable way, as kids tried it. The forms having the same shape and
colored in all possible ways are packed in a box. We bought boxes containing the
circle figures. The mathematics of Poliuniversum can be explored at the following
website: http://poly-universe.com/dimensions/mathematics.

3.1 Fifth Worksheet (Using the Poliuniversum Tool)1

The worksheet is unusual for an average pupil because they are only familiar with
easier combinatorial tasks. These problems involve geometrical figures and trans-
formation, which seem to be more complex and harder for pupils. From the pupils’
solution it can be seen that this worksheet was the least successful for secondary
students. There were many creative and “tricky” solutions, but the teacher had to
help more than with other worksheets, and nobody answered all of the questions
correctly. At the end of the experiment teachers used a questionnaire made by a
researcher of the project in order to get information about the popularity of
worksheets on a scale of 1–5. The “Poliuniversum worksheet” was ranged at the
top. They liked to use the set of Poliuniversum, but they thought that this worksheet
was the hardest of the six worksheets according to teachers’ reports and student
questionnaires.

Let us get acquainted with Poliuniversum. It contains shapes of almost-circles of red,
yellow, green, or blue color. Each almost-circular shape contains all four colors. One
such shape is shown in Fig. 1. The shape in Fig. 1 is primarily green, with
different-size half circles of blue, red, and yellow around the edge.

Questions, solutions, and analysis

1. How many of the circular shapes are there in a box if there is one of each
possible coloring?

1Sections 3.1 and 4 are from Eliza Beregszászi’s dissertation.
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Fig. 1 A Poliuniversum
circular shape with base color
green

Fig. 2 A ring made of all six
different green Poliuniversum
circular shapes
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2. Let us choose all the different possible green circular shapes and make a ring as
shown. Joining semicircles should be of the same size and color (Fig. 2).

(a) How many rings can we make this way?

We would like to show some of the students’ solutions now. The correct answer
of 2a can be seen in Fig. 3. We chose green as base color. Let’s look at only the
circles with the same base color, which in our case are the green ones. There are six
of these, because there are three semicircles on each piece, which can be three
different colors, but every color has to be used once. The problem can be solved
based on just one piece of the Poliuniversum, as the placement of that determines
the order and position of the others. Let us say we draw a solution on a piece of
paper, then we choose a random Poliuniversum circle, and place it in such a way
that a semicircle is facing outside the greater circular ring. Then we can get all the
solutions from this by rotating this small circle. Because there are three semicircles
on a piece, rotating it results in two more solutions. Furthermore, if we flip the small
circle, we can place three different semicircles facing outside again, which results in
three more solutions. So overall there are 6 different solutions, as shown in Fig. 3.

This problem was extraordinarily troublesome and unusual for the students.
Teachers rarely use such tasks in combinatorics lesson, due to them requiring
highly complex geometrical thinking. Students have to decide which cases are
different and which ones are the same, and these depend on specific geometrical
transformations. This could explain why so many students got only three solutions
instead of six.

Now consider parts b, c, and d of question 2:

(b) Can we get rings that are symmetric about a line?
(c) How about ones with rotational symmetry?
(d) What would be your answer to (b) and (c) if we do not care about the colours,

only about sizes?

The teachers’ guideline explains that if we do not take the colors into account,
then form the six rings in Fig. 3, the ones in the first row are rotationally symmetric
at a 180° angle. The ones in the second row have three axes of symmetry, and are
rotationally symmetric at the angles of 120° and 240°.

We believe that the creators of this problem expected lengthy answers like the
one above from the students, but they worded their questions as “yes or no” type
questions, which resulted in all the students giving brief answers like “yes, no, there
is, there is not”… Even though every student answered the questions right, we
cannot be sure whether their thought process was right as well, due to their short
answers. The teachers usually expect justifications to the answers but students can
do it at different levels depending on the grade level and how strong the class and
the school are mathematically.
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3. Make a “wavy” chain using 6 circles of the same base color. Only same size
and same color semicircles can join (see Fig. 4).

(a) How many such chains of length 6 can be made?
(b) Can you see a connection to the previous problem?

We believe that this question is much easier for the students than the previous
one, but only if they managed to solve the previous question well. If they had to
solve the worksheet alone, without any help, then those who could not figure out
the second question would have been in a great disadvantage. Therefore in our
opinion it was very useful that they discussed the solution of the previous problem
before starting this one.

To the first question, which was “How many such chains of length 6 can be
made?”, the students gave some diverse answers. Based on the teachers’ guideline,

Fig. 3 The six different rings made with green Poliuniversum circles

Fig. 4 A wavy chain of yellow Poliuniversum circles
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the correct answer is 144, which can be calculated by transforming each ring
solution of the previous question into chains with 6 different starting pieces, then
realizing that both end pieces can be attached to the chain in two different ways,
because they can be flipped. Hence the number of solutions is 6 � 6 � 2 � 2 = 144.

It turned out from the remarks of the teachers of the Grade 10 students that some
pupils think the correct answer is the one above multiplied by 2, due to their
considering solutions rotated by 180° as different solutions. See Fig. 5. We agree
with the solution in the guideline, that 144 is the better answer.

The majority of the students got 288 as the answer, which is what the teacher
expected from them, but a few of them got 144. We noticed that those who wrote
144 as the answer, solved the question alone. Some of them even made comments
on their choice numbers while multiplying. In Fig. 5 we can see the solution of a
student who tried to solve the problem based on the previous question. He found 3
solutions in the previous question, then the teacher helped him, and he realized that
there are 3 more solutions, so he corrected his solution for 2a by writing 3 + 3. That
is why he wrote 3 + 3 in his solution to this question as well. The 4 stands for the
two end pieces and their two possible positions, which he condensed into a 4
instead of 2 � 2. The 6 at the end stands for the six possible starting elements of the
chain. It can be seen though that he added the �2 (for the rotating) subsequently, so
in the end his answer was 288, even though his answer was 144 without the
teachers’ influence.

We believe that the reason for almost everyone obtaining 288 as the answer was
that firstly the students discussed the solutions with the teacher, who expected an
answer of 288, and only then did they put it down on the worksheet. Evidence for
this is seen in Fig. 6, since the answer was written down first, and the calculation
was only written down afterwards.

Another possible explanation of this is that they heard the correct solution from
someone, and then they tried to backtrack it. In many combinatorial problems like
this the correct answer depends on which configurations are considered different. In

Fig. 5 One student’s solution to question 3a

Fig. 6 Another pupil’s
solution
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our worksheets these were not defined beforehand deliberately. These issues were
discussed in class when the problem came up.

Most of the students answered “yes” to question 3b, or they left the answer space
empty.

4. Solve the previous problem if the base colors can be different (Fig. 7).

(a) How many starting elements can you choose?
(b) How many second elements can you choose for a given starting element?
(c) In how many ways can you choose the third element? Does it depend on the

choice of the first two elements?

Everyone attempted the first three questions, but there was not enough time left
to solve this question as well, therefore only a limited number of students tried to
solve it. Those who were intrigued by the questions, and managed to obtain answers
to the previous questions faster, started thinking about this problem, and they had
some clever ideas and solutions. They did not discuss these on a class level, though.

Six students answered part a, four of them correctly said the answer was 24,
while two of them got 144 as an answer, which they calculated as (6 � 4) � 6. Those
who answered 144 did not continue solving the question.

Only three students answered part b, and they all answered correctly. All of them
answered part a correctly as well.

There were two questions in part c, and two students tried to deal with these.
One of them answered “it does not depend on the choice of the first two elements”,
but did not answer the other question about the number of ways in which you can
choose the third element.

The other student answered 2 � 5, which is the solution of one of the cases. He
did not figure out the other case.

If there was more time to work on the worksheet, and the students got to this
question, many of them probably would have made the same mistake of calculating
with only this one case. It is a brilliant idea from the creators of the worksheet that
they ask about the dependency of the third element on the first two elements, as this
provokes the students to think about this, which would probably result in more of
them answering correctly.

Fig. 7 A wavy chain with different base colors
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5. Solve the problem of “full joining of circles” (see Fig. 8), using all elements to
make six rings joining in a super ring (a seventh ring will be created in the
middle).

No one could solve Questions 5, as there was not enough time for it.

4 A Particularly Interesting Problem (In Worksheet 2
for Grade 10)

Finally let us see a very interesting task from the second worksheet in grade 10.

A bug is walking on the edges of a cube from a vertex to the opposite vertex.
Moving backwards is not allowed. How many different routes can the bug take?

This was the question in this worksheet that the students found the hardest to
solve. The correct answer is six different routes, but there were eight cubes drawn
for them to help them try out possibilities. They draw correct routes on the first few
cubes, but then they created many different wrong solutions as well. Quite a few of
them drew routes where the bug did not even arrive at the opposite vertex. There
were some who were just scribbling, while some of them repeated a route they had
drawn before, then realized their mistake, and crossed it out. It seems that the eight

Fig. 8 A super ring of
Poliuniversum circles
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cubes confused them, and many of them were not confident enough to believe
themselves when they had all six solutions, and they tried to find even more
solutions.

There were barely any students who obtained the correct solutions by following
some kind of system. Most of those who got all six routes obtained them in a
completely random order. It is rather surprising that they found it so hard, because
they could get as many physical cubes (in addition to the drawings) as they wanted
from the teacher as a help, and they could draw the routes on these cubes with
markers. The teachers’ evaluations make it clear that this was a time-consuming
activity. The students were enthusiastic about drawing, nevertheless they still found
it hard to solve the question. One explanation for why they found it hard could be
because it required stereopsis. One of the teachers mentioned that he put a great
emphasis on telling the students that the bug is hurrying to the opposite vertex, so it
does not turn back, but the eight cubes confused them, and some of them wanted to
draw a route on all of them, which resulted in them drawing longer routes as well.

In our opinion, the problem was not unambiguously worded, since it only
mentioned that the bug is hurrying to the opposite vertex, and many students did not
conclude from this that only the shortest routes should be taken into account. We
think it would have been a better choice to write down the number of ways in which
the bug can get to the opposite vertex on the quickest route. We do not know
whether only one, or every teacher drew the attention of the students on the fact that
only the shortest routes should be considered as a solution, but the students found
the problem hard to solve regardless of the school they were in.

In one of the schools many students did not know which one is the vertex
opposite to their chosen starting vertex. Some of the students thought it was not the
vertex opposite the whole cube, but only a side of the cube. A few of the students
drew routes of length five on the last two cubes, which did end in the opposite
vertex, but they were not the shortest routes, so they did not fulfil this condition.

In Fig. 9 we can see an edifying solution of a student, which illustrates the
phenomenon that occurs with most students very often. Firstly, this student tried to
draw in the possible routes of the bug as well, but he could not find all the solutions.
Afterwards he started to calculate and write down the number of ways in which the
bug can get to a vertex. Many students tried this in every school, and in our
experience they wrote down the correct numbers, but they did not write down the
final sum of six at the last vertex, which would be the correct solution. They got
stuck at this last step, which was probably caused by a lack of stereopsis and their
unfamiliarity with questions of such type.

At the beginning they can easily figure out that the bug can only get to the
adjacent vertices in one way. At this point, the problem resembles the number line,
which makes it easy to solve. At the next step they have to think in two dimensions
already, and see a square where they have to count the routes from one vertex to the
opposite one, and they have to take it into account that the bug can get there from
two different vertices as well. They managed to think through the problem well up
to this point. At the last step they have to look at the problem in three dimensions
though, and consider that the bug can get to the opposite vertex from three different
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vertices. This proved troublesome for most of the students, which resulted in them
not obtaining the final solution, even though they were very close. Afterwards some
of the students, including the one whose solution can be seen on Fig. 9, denoted the
directions with letters, and this way they found all six solutions.

5 Conclusion

We found that many of Tamás Varga’s ideas can be used successfully today (e.g.
worksheets with carefully constructed problems), his heritage is a very rich one.
Both students and teachers liked these worksheets, many of them being discovery
type worksheets: leading students to discover the solutions to certain type of
problems using a chain of problems that students solve individually or in pairs and
small groups, with the teacher walking around and helping the students.

A very positive consequence of implementing and testing the worksheets is that
it revealed flaws (for example the ones described in the next three paragraphs) in the
teaching methods for combinatorics that can be taken into account in the upcoming
phases of the project or generally in teaching combinatorics.

It was clear that the students often struggled with the open-type questions, which
meant a big cognitive load for them, because most of the questions they have solved
are closed-type. We believe that this is the case with most of the students in the
Hungarian teaching system. Teaching open-type questions should be started as
early as possible, maybe even in lower year classes, and then continue for the entire
duration of their schooling, so they would be continuously exposed to questions of
this type.

It also became clear that students find it hard to solve questions where repetition
is allowed and the order does not matter. One of the aims of the project is to make
teaching guidelines for teachers. One possible recommendation is to have this type
of question included in these guidelines with a great weight at the earliest possible
stage.

Fig. 9 A student’s solution to the bug-walking problem
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It seems that in given situations students could not find the model best suited to
solve certain questions even when they had tools to help them. One reason can be
that the question was not unambiguously worded. At the same time, we have to
recognize that students had more problems where they needed geometrical thinking
as well to count the options. Another probable reason is that they are only familiar
with a limited number of combinatoric models. It also needs to be included in the
guidelines that students should be exposed, during the entire time they are taught
combinatorics, to questions of different type and difficulty levels, which need to be
solved with different methods, so just using a formula does not become too
significant.

Analysis of student work on some worksheets was included in this paper. We
plan to analyze other worksheets, too, and publish the results.

We have included the pretest (see the next section) and several problems from
the worksheets in this paper. We plan to translate the other worksheets to English
also, and make them available for interested teachers. It would be interesting to see
how students in different countries like these worksheets and how successful they
are on them. We already have some data on how students in different countries
perform on the pretest. It would be nice to extend this database.

We hope the problems of our worksheets illustrate our desire that in teaching
combinatorics—just like in teaching other branches of mathematics—the primary
goal is not to teach the solutions of certain type of problems, but to teach problem
solving methods, and how to approach unknown problems. We wish to encourage
other teachers and educators to use these types of problems and this approach.

Acknowledgements This study was funded by the Content Pedagogy Research Program of the
Hungarian Academy of Sciences.

Appendix: Pretest

Sixty minutes are allocated to answer the following questions. Give reasons to your
answers in detail. Make sure that you indicate your final answer. Have fun.

1. Robert, John, Kate and Elizabeth are sitting on a bench next to each other.

(a) How many sitting arrangements are possible?
(b) Another boy, called Michael joined them. How many different ways can

they be seated on the bench if a girl can sit next to a boy and a boy can sit
next to a girl only (if girls and boys alternate)?

(c) Robert, Michael, John, Kate, Maria, Elizabeth and Susanne line up (in a
row) in the schoolyard. How many ways is it possible?

(d) How many different ways could this be done if boys and girls alternate? (A
girl can stand next to a boy and a boy can stand next to a girl only.)
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2. Consider clowns.

(a) A clown has 3 buttons on each leg of his trousers, 3 on each arm of his coat
and 3 in the middle of his coat. There were three colors used on each place:
one red, one yellow and one green button. Is it possible that the order of the
colors of the five places is different?

(b) A class of the Riverside Clown School has students with a special uniform.
Their uniform has 5 buttons on each leg of their trousers, 5 on each arm of
their coats and 5 in the middle of their coats. There were 5 colors used on
each place: one red, one yellow, one green, one blue and one purple. (See
diagram.) We know that each student has a different dress (uniform). It
means that the order of the colors on each of the 5 places is different. What
is the maximum number of students in a class under the given conditions?

3. Mary made towers by using colored cubes of the same size.

(a) How many four-story towers can be made by using 4 cubes if each cube has
different color?

(b) How many five-story towers can be made by using 5 cubes if 3 of them are
red and 2 cubes are blue?

(c) How many eight-story towers can be made by using 8 cubes if 3 of them are
red and 5 of them are green?

4. Consider the numbered cards below.

(a) How many five digit numbers can be formed by using all these cards if each
of them is used exactly once?

(b) How many five-digit numbers can be formed by using all these cards if each
of them is used exactly once?

(c) How many seven-digit numbers can be formed by using all these cards if
each of them is used exactly once?
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5. Consider a magician.

(a) A magician put 2 red and 5 blue balls of the same size onto a table where the
table can be turned around. (See diagram.) Two arrangements of the balls
are identical if they match when the table turns. How many different
arrangements of the balls are possible?

(b) This time the magician put 2 red and 17 blue balls of the same size onto a
table where the table can be turned around. (See diagram.) Two arrange-
ments of the balls are identical if they match when the table turns. How
many different arrangements of the balls are possible this way?

6. We put 1, 2, 3 and 4 into the boxes by using the following rules:

• Firstly 1 is placed in a box, followed by 2. Then 3 comes. Finally, 4 is put
into the leftover place.

• We put a single number into each square.
• The first number can be put anywhere.
• Then you can put each leftover number into a box which has already a

number NEXT to it.

(a) How many ways can you fill the boxes in? (Two arrangements are different
if you find at least one box with two different numbers.)

(b) How will your answer change if you must use 1, 2, 3, 4, 5, 6 and 7 under the
same conditions (see list above)?
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Part III
Recursion and Recursive Thinking



Discrete Dynamical Systems: A Pathway
for Students to Become Enchanted
with Mathematics

Robert L. Devaney

Abstract Discrete dynamical systems and fractal geometry are two of the most
interesting fields of research in contemporary mathematics. One reason for this is the
absolutely beautiful images that often arise in these fields. A second reason is that
many topics in these fields are completely accessible to all, including high school
students. One of the aims of this paper is to describe one such topic, namely, the
chaos game. Not only do students get quite excited when they first encounter this
topic, but they also see how the fractal geometry they use to understand the chaos
game relates directly to what they are currently studying in their geometry classes.

Keywords Chaos game � Sierpinski triangle � Sierpinski hexagon
Fractalina � Fractanimate

1 Introduction

One of the things that we in the US do not do well is to expose our K–12 students to
what is new, exciting, and beautiful in contemporary mathematics. We have these
students in our math classes for twelve years, during which we show them fourth
century BC geometry, eleventh century algebra, and, if they really work hard and
do well, some seventeenth century calculus. No wonder many students think that
there is nothing interesting or important going on in mathematics. Just imagine
physicists restricting attention to eleventh century physics or biologists to fourth
century BC biology! No way that would happen!

In an effort to change this in our area of the country, my University has organized
Math Field Days for the past twenty years or so. These are held two or three times a
year, and, each time, around five hundred high school students and their teachers
show up for a day where we expose them to some exciting areas of contemporary
mathematics. There are no competitions; students who participate in math contests
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are already “hooked” on mathematics and will very likely end up in STEM careers.
But there are plenty of other students out there who are very talented and quite
creative, but who have no idea of what is going on in today’s mathematics.

In an effort to reach out to these students, at the Field Days we focus primarily
on discrete dynamical systems. This is a topic that is incredibly accessible to
younger students. Indeed, one of the major areas of interest in the field is what
happens when you iterate the simple quadratic expression x2 þ c. This iterative
process often leads to extremely chaotic behavior, and viewing the corresponding
chaotic regime in the complex plane produces incredibly beautiful fractal objects
like the Julia and Mandelbrot sets. When students hear that we finally understood
what happens when the real expression x2 þ c is iterated in the 1990s, and that we
still don’t understand what happens when the complex expression z2 þ c is iterated,
they become quite intrigued. I cannot count the number of letters and emails I have
received from teachers and students over the years raving about how great it was to
see how beautiful and exciting mathematics can be.

As an illustration of how these topics can be used to excite students, we shall
restrict attention in this paper to just one of the many topics in discrete dynamics
that we delve into at the Field Days, namely, the chaos game, or, as dynamicists call
it, an iterated function system (See Barnsley 1988; Choate et al. 1998; Peitgen
1991). One of the beauties of this topic, besides the exquisite and quite surprising
fractal images that arise, is the fact that it brings together many of the topics that
high school students are currently studying, like the geometry of transformations,
geometric measurement, and probability, in a very different and appealing way.

2 The “Classical” Chaos Game

The easiest chaos game to explain is played as follows. Start with three points at the
vertices of an equilateral triangle. Color one vertex red, one green, and one blue.
Take a die and color two sides red, two sides green, and two sides blue. Then pick
any point whatsoever in the triangle; this is the seed. Now roll the die. Depending
upon which color comes up, move the seed half the distance to the similarly colored
vertex. Then repeat this procedure, each time moving the previous point half the
distance to the vertex whose color turns up when the die is rolled. After a dozen
rolls, start marking where these points land.

When you repeat this process many thousands of times, the pattern that emerges
is a surprise: it is not a random mess, as most first-time players would expect. Rather,
the image that unfolds is one of the most famous fractals of all, the Sierpinski triangle
shown in Fig. 1. Notice that there are no points in the “missing” triangles in this set.
This is why we did not plot the first few points when we rolled the die.

To enable students to understand what is going on here, it is helpful to provide
them with a copy of the Sierpinski triangle. Then, given a particular point in the
original triangle, have them plot the three possible points to which this point is
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moved when the die is rolled. Then, have them plot the nine points at the next level,
and the 27 points at the next level, and so on. It is probably easiest to start this
process with a point in the middle of the largest empty triangle. This explains why,
after just a very few rolls of the die, the corresponding point is in an empty triangle
that is too hard to see because the size of this triangle has become miniscule. So this
shows students why the Sierpinski triangle emerges when this game is played, and
it also helps their geometric visualization as well as their measurement skills.
Starting this process at a point that lies on the Sierpinski triangle leads to a more
complicated process, and also helps the student to understand the algorithm for the
chaos “game” described in Sect. 5.

It is nice at this point to show students an interesting connection between the
Sierpinski triangle and Pascal’s triangle. Have them list the numbers in Pascal’s
triangle down to some level. Then have them erase all of the even numbers and
block out each odd number with a black disk. As this process continues down
Pascal’s triangle, they should begin to see the Sierpinski triangle emerging.

Now here is an observation that fosters other geometric skills: the Sierpinski
triangle consists of three self-similar pieces, each of which is exactly one half the
size of the original triangle in terms of the lengths of the sides. And these are
precisely the numbers that we used to play the game: three vertices and move half
the distance to the vertex after each roll. So we can go backwards: just by looking at
the Sierpinski triangle, and with a keen eye for its geometry, we can read off the
rules of the game we played to produce it.

Fig. 1 The Sierpinski
triangle. The original red,
green and blue vertices are
located at the vertices of this
image
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3 Other Chaos Games

For a different example of a chaos game, put six points at the vertices of a regular
hexagon. Number them one through six and erase the colors on the die. We change
the rules a bit here: instead of moving the point half the distance to the appropriate
vertex after each roll, we now compress the distance by a factor of three. By this we
mean we move the point so that the resulting distance from the moved point to the
chosen vertex is one-third the original distance. We say that the compression ratio
for this game is three.

Again we get a surprise: after rolling the die thousands of times the resulting
image is a Sierpinski hexagon depicted in Fig. 2. And again we can go backwards:
this image consists of six self-similar pieces, each of which is exactly one-third the
size of the full Sierpinski hexagon—the same numbers we used to design the game.
By the way, there is much more to this picture than meets the eye at first: notice that
the interior white regions of this figure are all bounded by the well-known Koch
snowflake fractal!

This is where the geometry of transformations arises: given a fractal that results
when a certain chaos game is played, can you determine the rules that were used to
produce this image? In Fig. 2, the second fractal is the Sierpinski carpet. How many
vertices were used to produce this image, and what was the compression ratio? You
need to determine a collection of different geometric transformations that take the
entire carpet onto a certain number of distinct, self-similar pieces. An applet called
Fractalina that can be used to create a variety of chaos game images is available at
the Boston University Dynamical Systems and Technology website (http://math.bu.
edu/DYSYS/applets).

One quick question: which object emerges when we play the chaos game
with four vertices at the corners of a square and a compression ratio of two?

Fig. 2 The Sierpinski hexagon and carpet
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(Answer is given in Sect. 6.) As you see, fractals do not always emerge when the
chaos game is played.

4 Rotations

Now let’s add rotations to the mix. This is where the geometry of transformations
becomes even more important. Start with the vertices of a triangle as in the case of
the Sierpinski triangle. For the bottom two vertices, the rules are as before: just
move half the distance to that vertex when that vertex is called. For the top vertex,
the rule is: first move the point half the distance to that vertex, and then rotate the
point 90° about the vertex in the clockwise direction. The result of this chaos game
is shown in Fig. 3a: note that there are basically three self-similar pieces in this
fractal, each of which is half the size of the original, but the top one is rotated by
90° in the clockwise direction. Again, as before, we can use geometric transfor-
mations to go backwards and determine the rules of the chaos game that produced
the image. In addition, plotting the possible images of a given point in the fractal
now involves both contractions and rotations and hence more and different geo-
metric skills.

Changing the rotation at this top vertex to 180° yields the image in Fig. 3b. This
time, the top self-similar piece is rotated 180°. For the fractal in Fig. 3c, we rotated
20° in the clockwise direction around the lower left vertex, 20° in the counter-
clockwise direction around the lower right vertex, and there was no rotation around
the top vertex.

In the math classes that most students take, usually the geometry of transfor-
mations involves rotations, expansions, or contractions of simple geometric objects,
like squares or circles. Here the objects are much more interesting to look at, and
determining these transformations can be difficult at times. We often challenge
students at the Field Days to figure out the rules of a chaos game that produced a
certain image. For example, in Fig. 4, we give you the opportunity to try your hand

Fig. 3 Sierpinski with rotations
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at this. You must determine the number of vertices, the compression ratio, and the
rotations involved in each case. Not so easy! (Answer in Sect. 6.)

Another activity that greatly motivates students is fractal movie-making (See
Devaney 2004b). Once you know how to create a single fractal pattern via the chaos
game, you can slowly vary some of the rotations, compression ratios, or locations of
the vertices to create a fractal movie. I often challenge students to make a movie that
is “beautiful” and that I cannot figure out how they made it. The students often work
for hours to make these animations. Of course, beautiful here means “with a lot of
symmetry,” so there really is a lot of geometry in this activity. Another applet called
Fractanimate is available to make these movies at the Boston University DS & T
website. A number of fractal movies created by students are also posted at this site.

5 The Chaos “Game”

One final topic that is always a big hit at the Field Days arises when I challenge the
students present to beat me at the Chaos Game (See Peitgen et al. 1991). To play
this game, we begin with the outline of the Sierpinski triangle down to some level.
That is, we begin with the original triangle and successively remove groups of
sub-triangles at each level. The first level is defined to be the case where the middle
triangle has been removed from the original triangle, leaving behind three
equal-sized triangles. At the second level, the three smaller middle triangles are
removed from these three, leaving behind nine equal-sized triangles. At the level n
stage, there are then 3n triangles. Then highlight one of the remaining small tri-
angles at this given level. This triangle is the target. Now place a point at the lower
right vertex of the original triangle. This is the starting point. The goal of the game
is to move the starting point into the interior of the target. The moves are just the
moves of our original chaos game: At each stage the point is moved half the

Fig. 4 Challenging chaos game images
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distance to one of the three original vertices. The chaos game setup for a level three
game is displayed in Fig. 5.

At a given level, it is always possible to move the starting point into the interior
of the target in the same number of moves, no matter where the target is located. For
example, for the three targets available at level one, it is possible to hit any target in
exactly three moves. (Recall that you must end up in the interior of the target, not
the boundary.) At level two, four moves suffice, and at level n exactly nþ 2 moves
can be found to hit any target. The challenge to students is to figure out the
algorithm for hitting any possible target. Students can usually come up fairly
quickly with a way to hit a specific target, but the algorithm necessary to hit any
target is much more difficult both to formulate and to explain. But that, as I always
tell the students, is what mathematics is all about—being able to figure out a
solution, and then being able to explain it in a coherent fashion.

For example, in Fig. 5, the moves to hit the prescribed target are, in order: top,
left, right, left, and top. There is only one other way to hit this target in five moves:
left, top, right, left, top. This in general is the case: there are exactly two sequences
of moves that allow you to hit the target in the minimum number of moves. An
interactive version of this game is also available at the DS & T website. At this
website, there are also several other variants of this game that include rotations in
the mix. These are even more challenging!

6 Some Solutions

In this section we briefly describe the answers to some of the questions posed earlier
in this paper. First, what happens when you play the chaos game with four vertices
at the corners of a square and a compression ratio of two? Well, the points gen-
erated by this process eventually fill up the entire square densely. Indeed, the square
is a self-similar object: it can be broken into four equal-sized sub-squares, each with
sides exactly half the length of the original square.

Fig. 5 Level three of the
chaos game
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In Sect. 4, the two fractals displayed in Fig. 4 were obtained as follows. Each
was generated using three vertices, a compression ratio of two, and a rotation of
90°. In Fig. 4a, the rotation was in the clockwise direction, and, in Fig. 4b, in the
counterclockwise direction. The three vertices were placed at the corners of an
isosceles right triangle. In particular, using the applet Fractalina, in the first case the
vertices were placed at (100, 50), (−50, 0), and (50, −50) and, in the second, the
vertices were placed at (0, 50), (−50, −100), and (50, −50).

Finally, winning the chaos game in the previous section is a two-step process.
The first step involves moving the starting point into the interior of original triangle.
This can be accomplished by either moving left then top, or by moving top then left,
since the starting point is located at the lower right vertex of the triangle. The
second step involves determining the address of the target triangle. For example, at
stage one, there are three possible target triangles, one on the top, one at the left,
and one at the right. We denote these targets by T, L, and R respectively. At stage
two, each of these level one triangles is sub-divided into three smaller triangles. For
example, the upper triangle T now contains three smaller target triangles, which we
denote by TT, TL, and TR. Then each of these targets contains three smaller targets.
So, for example, TL can be divided into TLT, TLL, and TLR. Continuing, each
possible target at level n has a unique address consisting of a sequence of n letters
T, L, and R. Then, to reach the given target at phase two of the process, we just
reverse the letters in the address and follow that pattern to move the point into the
interior of the target. That is why, in the example in Sect. 5, the winning strategy to
reach the given target was either LTRLT or TLRLT.

References

Barnsley, M. (1988). Fractals everywhere. Boston: Academic Press.
Choate, J., Devaney, R. L., & Foster, A. (1998). Fractals: A toolkit of dynamics activities.

Bloomberg: Key Curriculum Press.
Devaney, R. L. (2004a). Fractal patterns and chaos games. Mathematics Teacher, 98, 228–233.
Devaney, R. L. (2004b). Chaos rules! Math Horizons, 12(2), 11–14.
Frame, M. L., & Mandelbrot, B. B. (2002). Fractals, graphics, and mathematics education.

Mathematical Association of America Notes (Vol. 58). Washington: Mathematical Association
of America.

Peitgen, H.-O., Jurgens, H., & Saupe, D. (1991). Fractals for the classroom. New York: Springer.

144 R. L. Devaney



How Recursion Supports Algebraic
Understanding

James Sandefur, Kay Somers and Rosalie Dance

Abstract This article discusses the advantages of integrating recursion and dif-
ference equations into the middle school and high school algebra curriculum as a
means to promote a deeper mathematical understanding of algebraic topics, par-
ticularly the covariation of variables. This integration of difference equations builds
on earlier mathematical concepts and prepares students for studying the mathe-
matics of change: calculus. In addition, recursive problems can reinforce a student’s
ability to communicate mathematically through the use of contextual situations.

Keywords Difference equations � Recursion � Covariation � Constant change
Quadratic functions

1 Introduction

In recent years, there has been a push to include more discrete mathematics in the
school curriculum. Advocates argue that it presents the students with different
useful ways of thinking and that this mathematics is becoming more important in
our data-heavy age. This movement was met with resistance. Some argued that the
currently taught mathematics, including pre-algebra, algebra, geometry and anal-
ysis, is important for preparing students for calculus, which can be a gateway into
STEM professions, and that limiting students’ exposure to the traditional skills
might limit their future options. What both groups have missed is that this need not
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be an either/or situation. Other chapters in this monograph describe how discrete
topics such as graph theory and combinatorics can support the goals of the current
curriculum taught in many countries. We describe in this chapter how the discrete
topic of recursion can be integrated into the algebra curriculum in a way that
develops alternative thinking skills among the students while simultaneously
deepening and broadening their understanding of traditional algebra. We propose
that this integration of recursion can better prepare students for calculus than the
traditional algebra curriculum.

In early grades, students are frequently encouraged to think in terms of patterns
and change, such as the recursive nature of many sequences. This thinking process is
exploited when students learn that repeated addition is multiplication, and later, that
repeated multiplication is exponentiation. Unfortunately, in most cases, recursive
thinking is not further developed. For example, students know thatmþmþ � � � þm
(n times) equals nm, After they are introduced to linear functions and their graphs, do
they make the connection that, when x is an integer, the right-hand-side of the linear
equation y ¼ mxþ b is just bþmþmþ � � � þm, where we are adding m, x times?
In some sense, the linear equation is just extending the idea of repeated addition to
cases where we are adding m a non-integer number of times. Thinking about lines in
this fashion reinforces one of the most important aspects of lines, constant rate of
change; as x changes by 1, y changes by m. Further, recursive models with constant
change resulting in linear solutions develop students’ understanding of rate of
change within contextual situations, as we will elaborate later.

In many situations, the variable x in the linear equation represents time. We
consider these situations as dynamic with the slope describing how y changes per
unit change in time. This early use of repeated addition resulting in multiplication,
and more complex dynamic situations, which are described in later sections, can
help support students’ ability to use covariational reasoning, a skill that some
research indicates is crucial for developing a robust understanding of calculus
(Carlson et al. 2002). By covariational reasoning, we mean

the cognitive activities involved in coordinating two varying quantities while attending to
the ways in which they change in relation to each other (Carlson et al. 2002, p. 354).

For example, y ¼ �4:9t2 describes how distance fallen (in meters) relates to
time passing (in seconds). We will discuss covariational thinking in more detail in
examples given in later sections.

Mathematics at the secondary level and the first or second year of college is, in
our opinion, too often focused on geometric facts and algebraic manipulation.
Recently, there has been an increased effort to provide applications, but these
applications are often exercises that involve little more than substitution into a
formula followed by algebraic manipulation. Students often have little or no idea
how the formula was derived nor do they understand if it really models the problem
situation. Some of these problems can be worked while ignoring the context. It is
our common experience that this approach fails to show students the power of
mathematics to solve real problems; it also does not support the deeper under-
standing of algebra that can result from contextual thinking.
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In our view, doing mathematics within a contextual situation should serve the
dual purposes of

1. engaging the students and
2. having the context reinforce the logic of the mathematics they are doing.

We are strong believers that a physical context can lead to better conceptual
understanding. Just as lower level students can use simple contexts, such as cutting
a cake, to come to understand why

1
2
þ 1

3
¼ 5

6

makes sense, contexts, such as finding the area of a triangular stack of squares,
should help secondary students understand why an algebraic formula such as

1þ 2þ � � � þ n ¼ nðnþ 1Þ
2

makes sense. These two purposes can be accomplished through the use of differ-
ence equations and recursion, as our later examples illuminate.

Harel (2001) compared a traditional approach to teaching the recursive proof
technique, induction, to an experimental approach used in his study. Instead of the
mechanical approach of giving students a closed formula solution to a problem and
being asked to prove it is true using induction, Harel introduced induction by
having students solve problems in contexts that are recursive in nature. The students
solved these problems by observing and using the recursive pattern. From here, it is
natural to move into full proof by induction. His study indicates that through this
contextual introduction to induction, students better understand what induction is
about, how to apply it, and why the original statement is true. We describe in the
following how a similar approach of introducing naturally recursive situations
within the algebra curriculum can be used to promote algebraic understanding. In
addition, we discuss specifics of how this integration of standard algebra, difference
equations, and engaging contextual problem solving can promote deeper and more
robust student learning.

2 Constant Change and Linear Functions

Situations resulting in constant change arise in numerous contexts and can be
represented in a variety of manners. For example, consider the following situation:

Situation 1: Let Tn represent the number of 1 m by 1 m tiles needed to form
a border around the outside of a square garden measuring n meters by
n meters.
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For example, T4 ¼ 20 as can be seen in Fig. 1. One way to think about the
function Tn is that the border is made up of 4n-meter long strips and 4 corners, that
is,

Tn ¼ 4nþ 4: ð1Þ

Linear function (1) is considered a closed form representation of our function.
If our garden is increased to a 5-by-5 m garden, that is, each dimension is

increased by 1 m, then one way to think about the border is that each of the strips
will have to be lengthened by 1 m (keeping the tiles in the corners); that is

Tnþ 1 ¼ Tn þ 4: ð2Þ

Equation (2) is called a recursive equation or a difference equation. This form
emphasizes the constant rate of change, Tnþ 1 � Tn ¼ 4, telling us we need 4
additional tiles per additional meter increase in dimensions of the garden. We must
note that for a recursive equation to be useful, we have to be given the value of the
function for some value of n, such as T0 ¼ 4. If we do not consider a 0-by-0 garden
as making sense, we could give T1 ¼ 8. Students generally agree a 0-by-0 garden is
no garden at all, although we can certainly surround a point where we have no
garden at all with 4 corner tiles, thus illustrating T0.

We note that Eq. (2) can be depicted by a flow diagram, such as seen in Fig. 2,
which describes pictorially how Tn is changing over time. A flow diagram is useful
when we describe how a process is changing, and is of the form

Tnþ 1 � Tn ¼ things added� things taken away:

The circle in Fig. 2 represents the quantity T. An arrow is drawn going into the
circle for each quantity added during a phase and an arrow is drawn going out for
each quantity that is removed from T during that same phase. We have found that

Fig. 1 4-by-4 garden with 1
meter border
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even with college students, both upper level math students and liberal arts students
fulfilling a general education requirement, being able to visually depict a dynamic
situation using a flow diagram aids in their ability to understand and model real
situations. Different students have different learning styles, and while flow diagrams
add to the understanding of most students, they are particularly valuable for visual
learners. As the situation being modeled becomes more complex, as seen in later
examples, flow diagrams become more valuable. It is helpful for students to first
learn how to use flow diagrams in simple situations such as our garden problem.

A classroom presentation of this problem could ask students to generate an
expression that describes this situation. Both the recursive and closed form solutions
would be correct answers, and if different students generate different solutions, they
should explain their reasoning. For example, some students may generate the closed
formula Tn ¼ 4nþ 4; and explain that this formula arises because the border is
comprised of the sum of the four sides (4n) and the four corners (4). Other students
might explain that each side of the border consists of n + 1 tiles, n tiles against the
garden plus one additional tile for a corner. When the four (n + 1) pieces of edging
are fitted together, they complete the border, leading to Tn ¼ 4ðnþ 1Þ. (One college
student in a Discrete Mathematics class who provided this description added a
comment that his experience as a carpenter led him to view the border in that way.)

When middle or secondary students are introduced to recursion, they may write a
recursive equation such as

‘Next T 0 ¼ ‘Current T 0 plus 4:

Secondary and college students should eventually learn the subscripted version
of this recursive equation, either Tn ¼ Tn�1 þ 4 or Tnþ 1 ¼ Tn þ 4. If no student
generates the recursive relation, the teacher can present one of these versions and
ask the students to describe what this equation means to them. This gives an
opportunity to focus student-thinking on the slope, or constant change aspect of
linear equations. Discussion of a graph of the points ðn; TnÞ where n ¼ 0; 1; 2; 3; . . .
connected by the line they define can help students develop an understanding of the
slope concept. A table of values with three columns, such as Table 1, can further

Fig. 2 Flow diagram for
change in tiles in border per
unit change in dimensions of
garden
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help students focus on how a change of 1 in one variable effects a change of 4 in the
other, and thus can deepen their understanding of slope.

The point is that students need to understand that a linear function often
describes a dynamic situation, something that is changing, not just a static object
that answers a particular question for a specific value of the independent value.
Thinking of this covariational relationship between the independent and dependent
variables is vital for students who will eventually study calculus.

To help students understand the relationship between the recursive equation and
the initial value, we could change the problem, stating we want the border as
described previously, plus a 1-m2 tile in the interior of the garden, on which we can
place a statue or fountain. The closed form solution would become Tn ¼ 4nþ 5 but
the recursive formula would remain Tnþ 1 ¼ Tn þ 4. Now, though, we would have
T1 ¼ 9, or if we do not view a 1-by-1 garden with a tile filling the interior as a
garden, T2 ¼ 13 (12 tiles in the border of the 2 by 2 garden, plus a tile in the interior
of the garden) as our initial value. For problems in which T0 makes sense, students
will discover that T0 corresponds to the vertical intercept, 4 for the garden with no
interior tile as the equation is Tn ¼ 4nþ 4, and 5 for the garden with an interior tile
since the equation is Tn ¼ 4nþ 5. As this problem shows, the vertical intercept may
not have physical meaning in some contextual situations. As discussed above,
students will gain understanding from constructing both a table and a graph as well
as the different symbolic representations of the new situation.

In the garden example, because of the tiles, the function only makes good sense
for integer values for the independent variable. It is relatively easy to come up with
contexts in which this is not the case. For example, suppose a car has a gas tank that
holds 12 gallons of gas and it is full. Suppose we also know that the car gets
20 miles per gallon of gas. If we let f ðmÞ represent the amount of gas left after
driving m miles, we could use the linear function f ðmÞ ¼ �0:05mþ 12 or the
recursive model, f ðmþ 1Þ ¼ f ðmÞ � 0:05, with f 0ð Þ ¼ 12, which would have been
derived from the flow diagram in Fig. 3. (We use the convention that functions
whose domain is inherently restricted to a subset of the integers will be given using
subscripts, as Tn, but functions which can reasonably be extended to an interval of
real numbers will be given in function notation, as in f ðmÞ.)

We can present this car problem to students and ask them to find both a closed
formula for f(m) (in terms of m) and a recursive formula for f ðmÞ. In each case,
they should describe how they found their formulas. We note that the recursive

Table 1 Description of
changes in sides of garden to
size of boarder

n Tn Verbal description

0 4 No garden at all

1 8 1 tile on each side and 1 at each corner

2 12 2 on each side and 1 at each corner

3 16 3 on each side and 1 at each corner

⋮ ⋮ ⋮

n 4n + 4 n on each side and 1 at each corner
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formula only works for an integer number of miles driven, but it can be used to help
students extrapolate to the linear function for any real number of miles driven, up to
240. The recursive formula still helps to make the connection between the slope of
the linear function and the constant change of −0.05 per mile driven.

Initially, students seem to be drawn to one particular way of thinking; requiring
them to think in multiple domains about a single problem can broaden their
thinking. It is productive to ask students to compare and contrast the advantages and
disadvantages of recursive solutions versus closed form solutions, especially after
they have worked on several examples of both, such as the previous two problems.
From their writing, we have seen that most students initially consider the closed
form solution more useful: To find the number of tiles needed for a garden that is
20-by-20, they know that a simple substitution into the closed formula is sufficient,
while numerous calculations or access to a spreadsheet would be needed to answer
the question with the recursive formula. They also note that the closed form
solution can be used in situations where non-integer values of the independent
variable are reasonable, such as m in the car model.

On the other hand, there are several strengths of the recursive formula that
students should understand. One advantage of the recursive approach is that it
emphasizes that the amount of gas in the tank is not static, but changes as the car is
driven. Furthermore, the rate of change is clearly visible with the recursive
approach. This visibility helps to focus students’ attention on the change as they
answer questions such as: How many more tiles would we need to enlarge an
existing 20 m by 20 m garden by a meter (or two meters) in each direction?

Both approaches give students an opportunity to reason coherently about
mathematics and learn to clearly explain their reasoning orally and in writing, a skill
that needs to be developed in mathematics classrooms. For example, in situations
where a geometric model is lacking, such as the gas-tank problem, the flow diagram
gives a pictorial way of thinking about this problem; this allows a recursive
development that can be translated into the closed form solution. In fact, after some
exposure to flow diagrams, students will be able to quickly identify situations
modeled by a linear equation and translate their flow diagram into closed formulas.

Fig. 3 Flow diagram for
amount of gas left in tank
after driving one additional
mile
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To further challenge students, they can be asked to prove that their formulas are
correct. This question provides an opportunity to discuss the difference between
explaining why they think their formula is correct and providing a proof that it is
correct. It can lead to interesting discussions concerning what constitutes a math-
ematical proof. Teachers will need to make explicit what they consider a reasonable
explanation versus what they consider a proof.

3 Linear Change and Quadratic Functions

Situations resulting in variable change arise in numerous contexts and can be
represented in a variety of ways. In this section, we consider situations in which
there is linearly increasing or decreasing change. To clarify, we now consider the
following well-known situation, but describe a different twist on this problem which
promotes its use in developing students’ deeper conceptual understanding of
quadratic functions and how they contrast with linear functions. Finally, it gives a
foreshadowing of calculus.

Situation 2: If the n people in a room each shake hands exactly one time with
everyone else in the room, how many handshakes take place?

This question can be introduced by asking all the students in a class to introduce
themselves to each other and shake hands. This works well in the first few days of a
course as an ice-breaker. Afterwards, we can ask if everyone shook hands with
everyone else. If the class is reasonably large, the answer is usually ‘no.’ We then
ask how we can ensure that everyone meets everyone else. Some students may
suggest that everyone line up. The first student goes around and shakes hands with
all the other students. Then the second student does the same thing. At some point,
someone notices that with this method, everyone shakes hands with everyone else
twice. If there are n people in the room, this results in nðn� 1Þ handshakes with
each counted twice, so the total number of handshakes required is only half of that,

hn ¼ nðn� 1Þ
2

:

To avoid the double-shaking, often someone suggests a modification of this
approach by having each student shake hands only with those behind him or her in
the line. This gives the total of

hn ¼ ðn� 1Þþ ðn� 2Þþ � � � þ 2þ 1

handshakes. If no one suggests it, the teacher can propose a third, similar approach:
The teacher comes early to class. After the first student arrives, he or she shakes
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hands with the teacher. When the second student arrives, this student shakes hands
with the two people already in the room. As each person arrives, that person shakes
hands with everyone already in the room. This gives rise naturally to the recursion
equation

hnþ 1 ¼ hn þ n;

that is, the number of handshakes hnþ 1 equals the number of handshakes that have
already taken place, hn, plus the number of handshakes this (n + 1)th person
engages in with the n people already in the room.

This handshake example, which many teachers already use, connects the closed
formula and recursive approach, and gives a nice justification of the formula for the
sum of the first n integers given in the introduction. Many students still prefer
solving problems using a closed formula, but there is less enthusiasm for the direct
approach in this problem because, in some sense, it was not direct: the students
solved a different problem (the number of permutations of 2 people chosen from
n people) and then had to divide by 2 after recognizing that this was twice as many
handshakes as needed. The recursive approach gives a natural way to approach this
problem.

In the handshake problem, the recursive and closed formulas both arise naturally
in an engaging classroom activity. A similar problem can be introduced using the
triangle numbers, that is, constructing ‘triangles’ by starting with a 1-by-1 square,
then adding a 2-by-1 rectangle beside it, then a 3-by-1 and so forth (or by placing
bowling pins, or balls, in a triangular configuration with rows containing 1 pin, 2
pins, 3 pins, …). Then, with the function tn representing the number of squares (or
pins) when there are n columns (or rows), we get t0 ¼ 0; t1 ¼ 1;
t2 ¼ 3; t3 ¼ 6; . . ., whereas for the handshake problem, h1 ¼ 0; h2 ¼ 1; h3 ¼ 3,
and so forth. Students will see from a table that the dependent values resulting from
the triangle numbers are the same as those for the handshake problem. On the other
hand, the function, tn ¼ nðnþ 1Þ = 2, and the difference equation,
tnþ 1 ¼ tn þ nþ 1, are different. It is valuable to have students discuss how the
geometric (or physical) construction of the triangle numbers compares and contrasts
to the handshaking situation. Comparison of their graphs will visually illustrate
their similarity and their difference.

Let’s refer back to the approach to the handshake problem in which you are in a
room and people keep entering. As someone enters, you shake hands with them as
does everyone else in the room. Students can be asked to develop a formula
describing how the number of handshakes they make changes as the nth person
enters the room and a formula for how the total number of handshakes changes as
the nth person enters the room. Letting sn represent the number of handshakes you
make and hn, as before, represent the total number of handshakes, the corre-
sponding formulas would be
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snþ 1 ¼ sn þ 1 and hnþ 1 ¼ hn þ n

The students should notice that one formula results in constant change,
snþ 1 � sn ¼ 1, while the other formula results in linearly increasing change,
hnþ 1 � hn ¼ n. The corresponding closed form expressions are

sn ¼ n� 1 and hn ¼ nðn� 1Þ
2

Students have already experienced that constant change produces a linear
function. They can now extend that understanding: linearly increasing (or
decreasing) change produces a quadratic function. The students can be asked to
explain why

fnþ 1 � fn ¼ an

should result in a closed formula of the form

fn ¼ an ðn� 1Þ
2

þ f0;

and more generally, why

fnþ 1 � fn ¼ anþ b

should result in a closed formula

fn ¼ anðn� 1Þ
2

þ bnþ f0;

They can discover this by computing one value at a time and substituting, using
the formula

Xn�1

i¼1

i ¼ nðn� 1Þ
2

:

Students can be given similar problems to reinforce their understanding. One
such example is the number of unit-squares needed to construct an n-by-n square.
While students at a certain level should know that rðnÞ ¼ n2, we have seen middle
school students working on this problem express the answer as, ‘each time you add
two more unit-squares than the last time.’ In particular, they notice that
rð1Þ ¼ rð0Þþ 1; rð2Þ ¼ rð1Þþ 3; rð3Þ ¼ rð2Þþ 5; . . ., or more generally
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rðnþ 1Þ ¼ rðnÞþ 2nþ 1:

Again, linear change results in a quadratic function. (Since a square does not
have to have integer sides, this function can be extended to rðxÞ ¼ x2.)

Further investigations can be done on the relationships discussed above to
support covariational reasoning. For example, students can be asked to graph the
function hn and then find the slope of the secant line connecting ðn; hnÞ to
ðnþ 1; hnþ 1Þ. Note that the slope of the secant line, which is actually n, increases as
the value of n increases. Students can now observe that whereas linear functions
have constant slope, the slope of a quadratic function is not constant, something that
can be seen both in the graph and by looking at the slopes of the secant lines. Now
when students reach calculus and find that the derivative of a quadratic function is a
linear function, they can be asked why this makes intuitive sense. Hopefully they
will refer back to their understanding that linear change (derivative) corresponds to
a quadratic function.

In summary, we have seen that:

• constant change, f ðxþ 1Þ � f ðxÞ ¼ m, corresponds to a linear function, f ðxÞ ¼
mxþ f0 and

• linear change, f ðxþ 1Þ � f ðxÞ ¼ axþ b corresponds to a quadratic function,

f ðxÞ ¼ axðx�1Þ
2 þ bxþ f0.

This should not be confused with the difference equation Tnþ 1 ¼ aTn þ b which
is a linear difference equation but is not linear change if a 6¼ 1. In this case Tnþ 1 �
Tn ¼ ða� 1ÞTn þ b so the change is proportional to the amount. This difference
equation corresponds to a much more complicated formula which will be discussed
in the next section.

4 Proportional Change and Exponential Functions

In this section, we discuss situations where there is constant proportional change,
such as a bank account that is increasing by a constant percent, say i percent. Flow
diagrams for such situations are similar to those for constant change, as Fig. 4
demonstrates. For example if someone deposits að0Þ ¼ 1000 dollars into an
account earning 3% interest per year, then

að1Þ ¼ að0Þþ 0:03að0Þ; að2Þ ¼ að1Þþ 0:03að1Þ; . . .;

or more generally

aðnþ 1Þ ¼ aðnÞþ 0:03aðnÞ
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Continued substitution leads to the closed form

aðnÞ ¼ 1:03nð1000Þ

illustrating that repeated multiplication is just exponentiation. Students should
observe that the difference, aðnþ 1Þ � aðnÞ, is always the same proportion, 3
percent, of aðnÞ.

Simple situations can be given to students to study and explain, such as finding
the number of layers when a sheet of paper is folded n times or the size of a slice of
pie that is halved repeatedly. In the first case i ¼ 100% while in the second case, the
arrow in the flow diagram is going out, meaning you are subtracting 50%, leading
to the equations pnþ 1 ¼ pn � 0:5pn ¼ 0:5pn and pn ¼ ð0:5Þnp0.

A context that often engages older students arises when they learn that about
13% of the caffeine in our body at the beginning of an hour is filtered out during the
hour, leading to the recursive equation

cðnþ 1Þ ¼ cðnÞ � 0:13cðnÞ

and the closed form

cðnÞ ¼ ð0:87Þncð0Þ

where n represents the number of hours after the consumption of the caffeine. While
the difference equation approach helps explain the process and is often easier to
understand, the closed form expression can be used for fractions of an hour, so is
more general.

Students’ comprehension of exponential functions can be extended using the
caffeine problem. For example, if students are asked to compute the amount of
caffeine left 5 h after consumption, they will find that it is about half of what they
started with. Thus, if we construct the function c(j) where j is the number of 5-h
periods since initial consumption, then the corresponding equation would be
cðjÞ ¼ ð0:5Þ jcð0Þ. We note that 5 h is the approximate half-life of caffeine in the
body. Students might be asked to compare the advantages and disadvantages of

Fig. 4 Flow diagram for
bank account earning i%
interest per time period
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each formula. We would expect students to say that the second form is much easier
to use for mental math; you can relatively easily estimate the amount of caffeine in
your body at points of time throughout the day.

To extend this problem, students can be asked to find an estimate for the amount
of caffeine in a beverage of choice. This is relatively easy to find online. Students
can also be asked to estimate the amount of caffeine in a person’s body at different
times of the day, given that they drink several caffeinated beverages throughout the
day. The idea is that at the point in time that a second beverage is consumed, you
compute how much caffeine is left from the first beverage, add that to the second
beverage and start the timer again. It is a good exercise for students to derive a
piecewise defined function for this situation. For example, suppose 150 mg of
caffeine is consumed at 9:00 AM and an additional 100 mg is consumed at 1:00
PM. Letting n be the number of hours after 9:00 AM, one possible function,
assuming that the amount of caffeine in the body remaining from the previous day
is negligible, is

f ðnÞ ¼ ð0:87Þn150 0� n\4
ð0:87Þn�4186 4� n

�

Note that the exponent for the second condition must be n� 4 because n is the
number of hours after 9:00 AM. An alternate form of this function is

f ðnÞ ¼ ð0:87Þn150 0� n\4
ð0:87Þn150þð0:87Þn�4100 4� n

�

In this case, the second expression differentiates between the old caffeine and the
new caffeine.

We note that in the case of proportional change, the difference equation can be
written as f ðnþ 1Þ � f ðnÞ ¼ pf ðnÞ; that is, the change is proportional to the
amount. The closed form is f ðnÞ ¼ pnf ð0Þ, so proportional change results in
exponential growth or decay. Students should note that the slope of the secant line
connecting ðnþ 1; f ðnþ 1ÞÞ and ðn; f ðnÞÞ is ðp� 1Þ f ðnÞ; that is, the slope is
proportional to the value of the function. For the caffeine example, the slope of this
secant line is therefore �0:13 f ðnÞ, meaning during that hour, 13% of the caffeine is
eliminated. Students might be asked to graph the caffeine function for some initial
amount of caffeine, and then be asked to draw secant lines at different points and
compute the slopes of these lines. This will reinforce that the amount of caffeine
being eliminated per hour is decreasing, which can be seen from the graph. They
will see this again in a calculus course when they take the derivatives of exponential
functions. This concept will also help them understand that the derivative is not just
the slope of a tangent line, but is a rate of change of some quantity.
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5 Constant and Proportional Change Together

In the examples previously discussed, we have used the recursive form to help
students develop an understanding of the mathematics of change and apply it to the
closed form. In each case it was relatively easy to develop a closed form model of
the situation. More advanced students can be exposed to situations where the
change is more complex, such as when change results from two or more aspects of
the situation. In such cases, the recursive form is easier to develop. One such
situation is a relatively simple extension of the caffeine model, in which there are
repeated doses of whatever the chemical is. In the following situation, we assume
we are studying an antihistamine, but numerous chemicals that we put into our
bodies behave similarly (alcohol is not one of them).

Situation 3: Suppose a person takes a dose of 16 ml of antihistamine medicine at
the beginning of a day. At the beginning of each of the following days, the person
takes an additional dose of 16 ml. Each day, the kidneys eliminate 25% of the drug
that was in the body at the beginning of the day. Let Dn represent the amount of drug
in this person’s body after n days, just after taking that day’s dose. This means
D0 ¼ 16 ml. Also, D1 ¼ 28 ml, the 12 ml from the previous day that were not
eliminated plus that day’s dose of 16 ml. Develop a recursive formula for Dnþ 1 in
terms of Dn and explain your formula. See if you can find a closed formula for Dn

and explain that formula.

After constructing a flow diagram similar to Fig. 5, students can relatively easily
develop the recursive formula

Dnþ 1 ¼ 0:75Dn þ 16

which represents the 75% of the previous day’s amount that was not removed, plus
that day’s dose of 16 ml. Using D0 ¼ 16, students can use a spreadsheet to see the
buildup of the drug in the body over time, similar to Table 2. This leads to the
discovery that the amount of drug in the body seems to level off at about 64 ml.

Fig. 5 Flow diagram describing change in drug in body
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The closed formula is

Dn ¼ �48ð0:75Þn þ 64:

A student with no background in discrete mathematical systems is unlikely to
discover this formula without help and is perhaps even more unlikely to be able to
explain why it is correct for all n. Students familiar with induction may be able to
prove this formula works, but we believe that few will have insight into why the
formula works or how to develop a formula for similar problems.

On further examination of the recursive form, students may be able to see why
the closed form formula is reasonable for large n because the spreadsheet showed
that Dn approaches 64 and they will be able to determine that (0.75)n approaches 0
as n gets large.

Students familiar with translations of functions should be encouraged to explore
the difference equation Dnþ 1 ¼ 0:75Dn þ 16 using a spreadsheet and a variety of
initial values. If they observe that the graphs generated using this difference
equation look like translations of an exponential function by 64, they may be able to
come up with the translation

Dn ¼ An þ 64:

Notice that as Dn approaches 64, An approaches 0. Substitution into the differ-
ence equation and simplification gives the difference equation

Anþ 1 ¼ 0:75An

which is already known to give rise to An ¼ cð0:75Þn. Substitution back results in
the closed formula Dn ¼ cð0:75Þn þ 64. Using the initial condition D0 ¼ 16 allows
us to solve for c which results in the formula given above.

Most chemicals in the body have interactions, such as being absorbed into the
liver or other organs, then being released from them, or being converted to a second
chemical, which is then converted back to the first chemical, a process called
interconversion. We can model one such interaction with a variation of our anti-
histamine model.

Situation 4: Suppose a person takes a dose of 16 ml of antihistamine medicine at
the beginning of each day, which we assume is immediately absorbed into the
plasma. Each day, the kidneys eliminate 25% of the drug from the plasma, 25% of
the drug in the plasma is absorbed into the liver, and 50% of the drug in the liver
gets released back into the plasma.

Table 2 Amount of antihistamine in body in ml at beginning of nth day

n = 0 1 2 … 20 21

Dn ¼ 16 28 37 … 63.85 63.89
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We note that this is similar to what happens to vitamin A in the body, except
with different percentages; we are using percentages that work well in class. Let Dn

represent the amount of drug in this person’s plasma at the beginning of the nth day,
just after taking that day’s dose, and let Ln represent the amount of the drug in the
liver at the beginning of the nth day. Thus, D0 ¼ 16 ml and L0 ¼ 0 ml. If students
have not appreciated the use of flow diagrams before, they will for this problem.
Figure 6 shows a flow diagram for this situation, which is easily constructed by
going through the statement of the problem, one step at a time.

Using the flow diagram, we add quantities corresponding to arrows in and
subtract quantities corresponding to arrows out to describe the change in the
amounts of the drug in both the liver and plasma. Note that some arrows both go out
of one circle and into the other circle. This gives the pair of equations

Dnþ 1 � Dn ¼ 16� 0:25Dn � 0:25Dn þ 0:5Ln
Lnþ 1 � Ln ¼ �0:5Ln þ 0:25Dn

These equations simplify to

Dnþ 1 ¼ 0:5Dn þ 0:5Ln þ 16
Lnþ 1 ¼ 0:5Ln þ 0:25Dn

While we would not expect students to be able to come up with closed formulas
for Dn and Ln, they can explore using a spreadsheet, as before. In this case, no
matter the starting amounts, Dn will approach 64 ml and Ln will approach 32 ml.
These values are called equilibrium values. If we designate the equilibrium amounts
by D and L, they are the solutions to the pair of equations

D ¼ 0:5Dþ 0:5Lþ 16
L ¼ 0:5Lþ 0:25D

Thus, while students may not be able to find a formula, they can use their
methods for solving systems of linear equations to solve for equilibrium values for
the drug problem, which is the primary result of interest.

Fig. 6 Flow diagram of
plasma/liver drug model
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While the antihistamine model involves a more complicated closed formula, we
note that there are some relatively simple difference equations, such as
snþ 1 � sn ¼ a sn2, for which a closed form solution does not even exist for most
values of a, making the recursive approach necessary.

These important insights build a foundation for new mathematics. The recursive
and closed form models combine to give students deeper mathematical insights and
connections between different algebraic and geometric topics.

Having given a number of writing assignments asking students whether they
prefer the recursive or closed formula, we believe that students generally prefer the
recursive formula after they begin to understand what it says and how it is derived.
Students tend to prefer closed formulas when they are easily obtainable, but
develop the understanding that for more complex situations, recursive formulas
may be more easily obtained and more easily used, provided a tool such as a
spreadsheet is available.

The antihistamine and caffeine examples help us see the importance of providing
examples using meaningful contexts in mathematics classrooms. The recursive
formula is easily understood by students within the context given, and students gain
appreciation that they can develop their own models.

If instead, students are simply given the closed formula for the drug problem,
they could answer questions about the limit as n goes to infinity, or how many days
it will take for the amount of drug to exceed 60 ml. This gives them practice in
working with exponential functions, but the function itself is generally a mystery to
them. They learn about mathematics, but they do not learn to do mathematics. Deep
mathematical insight can result from development of the recursive formula and use
of a spreadsheet.

6 Conclusion

At an early level, students learn to think recursively, such as when they learn that
repeated addition is multiplication

aðnþ 1Þ ¼ aðnÞþ b is equivalent to aðnÞ ¼ bnþ c

and repeated multiplication is exponentiation

aðnþ 1Þ ¼ b aðnÞ is equivalent to aðnÞ ¼ cðbÞn:

At this level, students are beginning to learn to use covariational reasoning, but
this approach usually ends there. We should continue to support covariational
reasoning among our students by building on recursive thinking in algebra, as
recommended by Carlson (2002) and others. This will help students understand the
implications of how quantities are changing in our closed formulas. This is a useful
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understanding in its own right, and a precursor to a deep understanding and
appreciation of calculus, should the students study that at a later point in time.

Recursive thinking and problems in contexts of a recursive nature provide
excellent opportunities for this at an elementary level. As an introduction to more
advanced mathematics, the students’ experience of writing recursive equations to
model a situation themselves and exploration of the closed forms that represent the
same situations, help to increase students’ mathematical self-efficacy. Introducing
recursive thinking early in students’ educational careers also makes the introduction
of the powerful tool of mathematical induction seem more natural and easier to
comprehend, as suggested by Harel (2001).

In summary, we are suggesting that recursive reasoning should permeate the
middle and secondary math curriculum, and not be taught all at once, or omitted.
Models similar to the garden example can be introduced in middle school. Problems
similar to the handshake problem and the caffeine problem could be introduced in
late middle school and continued through early secondary school. The antihis-
tamine problems could continue in later secondary school. We suggest that a little
recursive thinking integrated over several years of mathematics learning may lead
to a deeper and more robust mathematical understanding for our students. It will not
take too much time when taught in this manner, and in fact may save time because
of students’ better understanding of topics in the current curriculum: Students will
gain from this second, recursive, look at topics that many currently understand at
only a superficial level. Used in an integrated fashion as we have described here, the
study of recursion can enhance and deepen students’ algebraic understanding.
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Food Webs, Competition Graphs,
and a 60-Year Old Unsolved Problem

Margaret (Midge) Cozzens and Pratik Koirala

Abstract Food webs describe the flow of energy through an ecosystem.
Understanding food webs can help to predict how important any given species is
and how ecosystems change with the addition of a new species or the removal of an
existing species. This paper indicates how teachers can challenge students to solve
real world problems and, in the process, provides ways to model food webs with
directed graphs and model competition by creating competition graphs. It has
students consider a long standing conjecture that competition graphs derived from
real food webs are interval graphs. The last section considers this sixty-year old
unsolved problem and introduces the weighted model of a food web to better
understand competition in an ecosystem.

Keywords Food webs � Competition graph � Predator-prey � Interval graph

1 Background

Food webs, through both direct and indirect interactions, describe the flow of
energy through an ecosystem, moving from one organism to another.
Understanding food webs can help to predict how important any given species is,
and how ecosystems change with the addition of a new species or the removal of an
existing species.

The study of food webs has occurred over the last sixty plus years, primarily
undertaken by ecologists working in natural habitats. Mathematicians subsequently
became interested in the graph- theoretical properties of food webs and their corre-
sponding competition graphs. This paper provides a research problem that high school
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students can work to solve by creating (1) discrete models (graphs), (2) creating
hypotheses, (3) experimentation, (4) coming up with alternative hypotheses, and
(5) repeating the process. In this way, mathematics looks more like an experimental
science, and discrete mathematical techniques allow this to happen.

The first section of this paper introduces graph models: food webs, together with
associated directed graphs and parameters that play an important role in linking
mathematics and ecology; competition graphs related to food webs; and interval
competition graphs. The second section provides ways of generating reasonable
hypotheses and experimenting to see if these hypotheses are true. The last section
indicates how to generate an alternative hypothesis with an example.

Teacher and student notes and questions are indicated in boxes throughout the
paper. The goals of this material for teachers and students are to:

• Recognize various relationships between organisms.
• Look for patterns across food webs.
• Use graphs to model complex trophic relationships.
• Make conjectures and hypotheses.
• Test conjectures and create alternative hypotheses.

2 Modeling with Directed Graphs and Graphs

2.1 Predator Prey Relationships Modeled with Directed
Graphs

A food web is represented by a directed graph (digraph) D ¼ V;Að Þ with vertex set
V and arc set A. Each vertex represents a species in the ecosystem and the arc x; yð Þ
is directed from a prey species x to a predator y of that prey. Food webs by their
very nature are directed graphs with no cycles, called acyclic (i.e. a; bð Þ, and b; cð Þ
and c; að Þ is not allowed). No cannibalism implies that food webs contain no loops,
no a; að Þ arcs. A basal species is one that does not depend on any other organism in
the ecosystem for food. That is, these are species usually located at the bottom of
the food web.

Have students draw a food web to model the following predator prey relationships:
Sharks eat sea otters who eat sea urchins and large crabs. Sea urchins eat kelp and
large crabs eat small fishes, who in turn eat kelp. Questions: What are the basal
species? Is there a species that is not preyed upon, sometimes called a dominant
species?

Figure 1 depicts a food web in which sharks eat sea otters, sea otters eat sea
urchins and large crabs, large crabs eat small fishes, and sea urchins and small fishes
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eat kelp. Equivalently, sea urchins and large crabs are eaten by sea otters (both are
prey for sea otters) and sea otters are prey for sharks. Kelp is the only basal species,
whereas sharks are at the top of this food web with no prey, no outgoing arcs.

In the early 1960s, when food webs were first used to model predator-prey
relationships, arcs were directed from predator to prey. The current usage, which
tracks the flow of energy from prey to predator, reverses this earlier convention.
The interactions of species as they attempt to acquire food determine much of the
structure of a community. Food webs represent these feeding relationships within a
community. Basal species correspond to vertices with no incoming arcs: vertices
with indegree 0. Species at the top of the food web correspond to vertices with
outdegree 0. The digraph of a food web contains no directed cycles (since a species
does not prey upon itself, either directly or indirectly). A larger food web is shown
in Fig. 2.

Fig. 1 Small food web

Fig. 2 Large shark food web
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Question 1: What are the basal species? Kelp, organic debris, and microscopic
planktonic algae, each of which has indegree 0.

Question 2: What species are at the top of the food web? Sharks are the only species
at the top of this food web with no outgoing arcs, thus sharks have outdegree 0.

Question 3: Find a path of length four in the food web: (i.e. a species is eaten by
another, is eaten by another, and in turn by another, or a path with four arcs on it.)
One example is: kelp ! sea urchins ! sea stars ! sea otter ! shark.

Scientists use trophic levels in food webs to provide a way of organizing species
in a community food web into feeding groups. They have used various measures to
classify species in a food web into these various feeding groups, typically based on
the positioning of species in the food web (the number of arcs between species).
The food web shown in Fig. 1 is drawn indicating the relative positioning of the
various species, whereas the food web drawn in Fig. 2 is not that precise.

In addition, not all ecological relationships have the same strength. Species may
consume much more of one prey species than another. To model this, we can assign
weights to the arcs of a food web to indicate food preferences, or the percentage of a
species’ diet that comes from a particular prey. This weighted model of food web
will be described in detail in the next section. Also, for more on this topic see
Cozzens (2011) and Cozzens et al. (2015).

2.2 Modeling with Competition Graphs and Interval Graphs

There has been considerable attention paid lately to creating graphical models for
better understanding predator-prey relationships, especially to inform conservation
policy makers. This section introduces several undirected graphs and parameters
that are useful in understanding the competition of species.

Have students talk about how they could model competition given they had a
particular food web—describe who competes with who for food. Try drawing a
graph depicting the competition among species in Fig. 1.

Suppose a food web is represented by the directed acyclic graph D with n
vertices and m arcs. The competition graph associated with D is an undirected
graph G whose vertices are the species in D. There is an edge in G between species
a and species b if and only if a and b have a common prey: i.e., there is some vertex
x such that there exist arcs (x, a) and (x, b) in D.

Suppose we have a graph G, can we find a directed graph (food web) associated
with G? For example, suppose we have the triangle in Fig. 3a.
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Question 4: Can you find a directed graph whose competition graph is the triangle
ABC in Fig. 3a?

One option is that there is a species X such that both A and B eat X, and a
species Y such that both B and C eat Y and a species Z such that both A and C eat Z
represented in Fig. 3b. Option 2 is that A, B, and C eat species W, as indicated in
Fig. 3c.

Question 5: Are there other possibilities?

For a graph G, the competition number k Gð Þ of G is the fewest number of
isolated vertices that need to be added to G so that G is the competition graph for
some acyclic directed graph. In our example of a triangle, for option 1, we had to
add 3 vertices X, Y, and Z to G to make it the competition graph of the food web,
but in option 2 we only needed one, so k Gð Þ ¼ 1.

Are you sure you need any at all?

Competition graphs are also known as niche overlap graphs and predator graphs,
while common enemy graphs are also known as prey graphs. If D is a directed
acyclic graph, then there must exist an isolated vertex in its corresponding com-
petition graph G. One example would be a vertex having no incoming arcs in D.
(Every directed acyclic graph contains at least one vertex of indegree 0.) In the case
of food webs, these vertices represent the basal species. An interesting note is that

Fig. 3 a Triangle graph AB. b Option 1. c Option 2
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any graph G can be the competition graph for some directed acyclic graph D by
adding a sufficient number of isolated vertices to G.

Draw a competition graph for the food web of Fig. 1. Who competes with whom?
Sea urchins and small fishes both have kelp as a common prey, so (sea urchins, small
fishes) is an edge of the competition graph. This simple competition graph, has one
edge and four isolated vertices, as shown in Fig. 4.

So far, we have constructed models of food webs and competition using graphs
and directed graphs. We will next describe a specific type of graph as an interval
graph and we give some characterizations of interval graphs.

2.3 Models that Are Interval Graphs

A graph is an interval graph if we can find a set of intervals on the real line so that
each vertex is assigned an interval and two vertices are joined by an edge if and
only if their corresponding intervals overlap.

If G is the competition graph corresponding to a real community food web and G
is an interval graph, then ecologists believe that the species in the food web have
one-dimensional habitats or niches. That is, each species can be mapped to the real
line with overlapping intervals if they have common prey, and this single dimension
applies to each species in the web. This single dimension might be determined by
temperature, moisture, pH, or a number of other factors. An example is shown in

Fig. 4 A food web and its corresponding competition graph
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Fig. 5 in which the intervals in Fig. 5 overlap if and only if they correspond to an
edge in G. Therefore, G is an interval graph.

Question 6: Give an example of an interval graph with 5 vertices and 6 edges.

Question 7: Is the square, C4 (left graph in Fig. 6) an interval graph?

2.4 Characterizing Interval Graphs

In the 1960s, Joel Cohen found that food webs arising from single habitat
ecosystems (homogeneous ecosystems) generally have competition graphs that are
interval graphs. In order to study this relationship between food webs and interval
graphs arising from competition graphs, we need ways to easily tell if a graph is an
interval graph. In the following, we describe several ways in which this has been
done.

Fig. 5 A set of intervals, which correspond to graph G

Fig. 6 Two forbidden
subgraphs of interval graphs
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There are a number of characterizations of interval graphs, including a forbidden
subgraph characterization: A cycle Cn is a graph with n number of edges connected
in a closed chain. C4 shown in Fig. 6a is a cycle with 4 edges. Formally, a cycle in
a graph can be identified by finding a sequence of vertices v1, v2,… vn, v1 such that
vi; viþ 1f g and vn; v1f g are edges and vi; vj

� �
are not edges for all j 6¼ iþ 1. Graphs

with no cycles of 4 or more vertices are called chordal graphs (Gilmore and
Hoffman 1964; Lekkerkerker and Boland 1962).

An independent set of three vertices such that each pair is joined by a path that
avoids the vertices connected to the third, such as vertices A, F and D in K3+p in
Fig. 6b, is called an asteroidal triple. It has been shown that a graph is an interval
graph if and only if it does not contain a subgraph that is either cycle with 4 or more
vertices or an asteroidal triple: the forbidden structures. Therefore, we can say that a
graph is an interval graph if it is chordal and contains no asteroidal triple (Cozzens
2015).

A second characterization of interval graphs relates to maximal cliques. A clique
of the graph G is a subgraph of G in which every pair of distinct vertices are
connected by an edge in the subgraph. We call graphs complete graphs on n
vertices if every pair of the n vertices in the graph is connected by an edge. For
example, a triangle graph is a clique, as is a square with its diagonals. A maximal
clique is a clique (all possible edges in the subgraph) that cannot be extended by
including additional vertices. The graph K3+p in Fig. 6b contains a maximal clique
of size 3, the subgraph triangle BCE and three maximal cliques with two vertices
each, edges AB, CD, and EF. So K3+p has one maximal clique on three vertices and
three maximal cliques on two vertices.

Maximal Clique Characterization of Interval Graphs: A graph is an interval
graph if and only if one can order the maximal cliques C1, C2, …, Ck such that
Ci \Ciþ 1 6¼ U (Fulkerson and Gross 1965).

Question 8: Identify the maximal cliques in the graph in Fig. 5. Do they satisfy the
maximal clique characterization of interval graphs?

Question 9: Apply the Maximal Clique characterization to K3+p.

If we try to order the maximal cliques, and start with AB, proceed to BCE then CD,
there is no placement of EF. Similarly, if we order them as AB, BCE and EF then there
is no place for CD. We have a further indication that K3+p. is not an interval graph.

2.5 Transitive Orientation

An undirected graph G has a transitive orientation if its edges can be oriented in
such a way that if edges x; yð Þ and y; zð Þ exist in the directed graph then there is an
edge x; zð Þ in the directed graph. For example, Fig. 7 illustrates a transitive ori-
entation of C4.
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Question 10: Are there any other transitive orientations of C4?

Question 11: Can you find a transitive orientation of K3+p?

You should have discovered that K3+p in Fig. 6 with an asteroidal triple doesn’t
have a transitive orientation. However, the other forbidden subgraph (C4) in Fig. 6
does have a transitive orientation.

The complement of Graph G, call it G′ has the same vertex set as G and a; bð Þ is an
edge in G′ if and only if it is not an edge in G. Analyzing 20 real food webs from an
online food web database (globalwebdb.com), we see that the corresponding com-
petition graphs and their complements were found to have transitive orientations.

An alternative characterization of interval graphs is that a graph G is an interval
graph if it contains no cycles size 4 or greater and there is a transitive orientation of
its complement G′. For example, K3+p contains no cycle of size 4 or greater, but
there is no transitive orientation of its complement.

2.6 Consecutive Ones Property

Recall that a clique is a complete subgraph and a maximal clique is clique where no
more vertices can be included. A clique incidence matrix is a binary matrix where
rows are maximal cliques and columns are vertices of a graph. Presence of a vertex
in a clique is represented by 1 in the respective entry of the matrix, and 0 for
absence. Consider the graph in Fig. 8 and its corresponding clique incidence matrix

M ¼

1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1

0
BBBBBB@

1
CCCCCCA
:

Note that the columns of this incidence matrix consists of the vertices 1 through
12, listed in order. You can now read off the cliques from each row. For example,

Fig. 7 Transitive orientation
of the C4 graph in Fig. 6
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the second row consists of 1’s in columns 2, 3, and 4, corresponding to the triangle
formed by 2, 3, and 4.

A clique incidence matrix has a consecutive ones property if the rows of the
matrix can be organized to get consecutive 1’s in each column as indicated in matrix
M. Note that matrix M is the clique incidence matrix of graph G depicted in Fig. 8.

Question 12: Construct the clique incidence matrix for G. Does it have the con-
secutive ones property?

A graph is an interval graph if its clique incidence matrix has the consecutive
ones property, in that if its cliques can be represented overlapping along a real line,
then its vertices can as well.

Question 13: Give the clique incidence matrix for K3+p. Try to order the cliques so
that the matrix has the consecutive ones property. Hint: You can’t do it.

The competition graphs of the 20 food webs obtained from an online food web
database (globalwebdb.com) showed the consecutive ones property, proving that they
were in fact interval graphs. In a real food web, the competition graph has cliques with
only a fewvertices. This is the reasonwhy the clique incidencematrix has a lot of 0 entries
in the rows. This further explains the opportunistic nature of the species in a community.

Big Question: Are all competition graphs of real food webs interval graphs?

Fig. 8 Graph G with 6
cliques and 12 vertices
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3 How Do We Think About (Open) Questions?

The remarkable empirical observation of Cohen that real-world competition graphs
are usually interval graphs, has led to a great deal of research on the structure of
competition graphs and on the relation between the structure of digraphs and their
corresponding competition graphs. It has also led to a great deal of research in
ecology to determine just why this might be the case (Cohen 1978). Using ran-
domly generated food webs (digraphs), Cohen et al. showed that the probability that
a competition graph is an interval graph goes to 0 as the number of species
increases. In other words, it should be highly unlikely that competition graphs
corresponding to food webs are interval graphs (Cohen et al. 1979).

3.1 Generate a Hypothesis

For example: All competition graphs of real world food webs are interval graphs.
What are ways to test this hypothesis?

One way is to try and characterize the acyclic directed graphs whose corre-
sponding competition graphs are interval graphs? Once we have a characterization
we can then see if it fits all food webs. Is there such a characterization? has been a
fundamental open question in applied graph theory since the 1960s. Indeed, no one
has found a forbidden list of directed graphs (finite or infinite) such that when these
directed graphs are excluded, one automatically has a competition graph that is an
interval graph. A second way is to look at the hypothesis from the ecology vantage
point: what are the ecological characteristics of food webs that seem to lead to
interval competition graphs? This latter question has puzzled ecologists and con-
servation biologists as well. As Cohen indicated, most (random) acyclic directed
graphs do not have corresponding interval competition graphs. A third way is to
find large classes of acyclic directed graphs that have corresponding interval
competition graphs and hope that these classes cover all of the food webs. Indeed,
researchers have tried to find classes of acyclic directed graphs with interval
competition graphs, but these classes are very limited (Cho and Kim 2005). As it
turns out understanding a little graph theory and the ecology of predator prey
relationships is at the crux of solving both open problems. Both the relevant discrete
mathematics and ecology are accessible to high school students.

Where do we start to try and find a characterization of acyclic directed graphs
(food webs) whose corresponding competition graph is an interval graph? One way
to start is to look at what kinds of things are forbidden for a graph to be an interval
graphs, and back each type of graph up to a directed graph (a food web). For
example, to get a forbidden C4 in the competition graph corresponding to an acyclic
diagraph (food web), you would need an acyclic subdigraph that looks like the one
in Fig. 9. A and B have a common prey, B and C have a common prey, C and D
have a common prey, and D and A have a common prey, but A and C have no
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common prey and B and D have no common prey. The resulting digraph is acyclic.
F is then a forbidden subdigraph for food webs when considering interval com-
petition graphs.

3.2 Test the Hypothesis

Note that the above approach is not a test of the hypothesis, but an attempt at a
characterization of food webs with interval competition graphs. We would then see
if any food webs had D as a subgraph. That, however, would require knowing all
food webs.

In addition to pursuing this graph theoretical approach let’s look at a second
approach, one from an ecological standpoint. Consider a predator’s territory (home
range) and potential results of competition for the same prey (Dobson 2009;
May 2009). An interesting example to consider is the community that includes
predators: cougar (mountain lion), grizzly bear (brown bear), and grey wolves. Each
has a common prey of deer (white tail and mule deer). Therefore, the competition
graph component containing these three species is a triangle and there is an isolated
vertex deer as shown in Fig. 10.

A logical ecological question, would be within that territory are there other
predators A, F, and D such that A competes with cougars and not grey wolves and
not grizzly bears; F competes with cougars and grizzly bears and not grey wolves,
and D competes with grizzly bears and wolves and not cougars? If this were the
case then each of the vertices in the triangle would have a pendant and look like
K3+p, shown in Fig. 6, a forbidden subgraph for interval graphs. Using the example
of the community which includes wolves, cougars, grizzly bears and coyotes,
coyotes compete with mountain lions and grey wolves but not grizzly bears for elk

Fig. 9 A directed graph F (food web) with a competition graph G that contains a C4
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or anything else. Thus, there is an additional triangle of coyote, cougar, and grey
wolf attached to the original triangle in the competition graph, a C4 with diagonal.

Let’s consider the clique characterization of interval graphs. Real food webs
have very few maximal cliques in their corresponding competition graphs (Yodzis
1989). These constraints on the number of maximal competition cliques in a habitat
or community in turn may account for the presence of interval competition graphs
detected by Cohen and others. Perhaps these elements of internal structure represent
“small, functionally coevolved guilds or component communities,” which Colwell
(1979) suggested.

Predators are first and foremost opportunistic. Large obligate carnivores will
choose rabbits over deer if the rabbits are plentiful and other larger species like deer
are not. Does this make a difference?

Possible suggestions for thinking about why competition graphs are generally
interval graphs: (1) When there are four species, three of which compete for a
specific prey, the fourth predator competes with at least two of them, not just one.
(2) When species A competes with B and B competes with C then does A compete
with C, a transitivity condition? It is hard to test as general a hypothesis as stated
here, one that requires knowing all food webs. As we will see in the next section, it
is more likely one finds a counterexample by accident.

4 Alternative Hypothesis—Use a Weighted Model Food
Web

Why might we want to use a weighted model food web?
Like we mentioned earlier, not all ecological relationships have the same

strength. By adding weights on the edges of the , the resulting competition graph
may better model the competition in the community. A weight of an edge represents

Fig. 10 An example of a part of a food web containing cougars and the corresponding
competition graph
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the percentage of predator’s diet. So, we have an added complexity in the definition
of a competition graph. Two species have an edge in the competition graph if they
share a common prey and their edges from the common prey in the food web have
weights greater than a threshold value. The threshold value, essentially determines
if there is a competition between two species. The need to use a threshold value in
order to determine if there is a competition between species comes from a simple
example. If there are 10 species in an ecosystem and 5% of their diet contains dead
organic matter then the species aren’t really competing for the dead organic matters.
So, putting edges between the species in their competition graph would be an
inaccurate model of the competition in the ecosystem.

Draw the competition graph for the Yellowstone wolf food web. Is it an interval
graph, if not why not?

The competition graph for the food web in Fig. 11 is shown in Fig. 12. This
graph is not an interval graph as the triangle coyote-bighorn sheep-elk has three
pendant edges one to wolf from coyote, one from bighorn sheep to deer mouse, and
one to beaver from elk, thus forming a K3+p, a forbidden subgraph for interval
graphs.

Alternative Hypothesis: If predator A consumes only a small amount of a prey
B then exclude the arc from B to A in the food web and construct the corresponding
competition graph for the new food web.

The wolf food web shown in Fig. 11 is an interesting food web of the predator
prey relationships for wolves in Yellowstone National Park. As indicated in the last
section, the competition graph of this food web has a forbidden subgraph K3+p as
shown in Fig. 12. The vertices joined by the bold edges and a dotted edge forms an
asteroidal triple as shown in Fig. 6, which is a forbidden subgraph of interval graph.

Now we test our alternative hypothesis using a weighted model of the
Yellowstone wolf food web and compute its competition graph. To do this, we
approximate the percentage of the diet consumed of each species by each species.
While it is impossible to know these percentages exactly, an ecologist working in
Yellowstone gave the following estimates:

• Wolf eats 0.3 bison, 0.5 elk, 0.1 bighorn sheep and 0.1 beaver
• Bear eats 0.03 pronghorn, elk 0.05, deer mouse 0.02, pine 0.3 moths 0.2, berries

0.4
• Coyote eats pronghorn 0.3, elk 0.4, deer mouse 0.2, grasses 0.1
• Big horn sheep eats grasses 0.9 and willow 0.1
• Beaver eats pond lily.5 and pine 0.5

178 M. (Midge) Cozzens and P. Koirala



Fig. 11 The directed graph representing the wolf food web in the Yellowstone National Park with
21 species (it represents the predator prey relationships for wolves and their prey and competitors.
It does not include species who do not interact with wolves or their competitors or prey)

Fig. 12 This undirected graph represents the competition graph of the wolf food web in the
Yellowstone National Park
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• Elk eats grasses 0.4, pond lily 0.3, pine 0.3
• For example, 30% of the wolf diet is bison, 50% elk, 10% bighorn sheep, and

10% beaver

Label the edges of the food web in Fig. 11 with these weights. Now set a threshold
of 10% and eliminate all arcs in the food web with weights less than or equal to 0.1.
Redo the competition graph with these arcs removed.

Setting a threshold above 10% means the edge between big horn sheep and deer
mouse in the competition graphs, the red edge in Fig. 12, is eliminated, as is the
K3+p. Now the competition graph of the weighted wolf food web in Yellowstone is
an interval graph.

In summary, food webs and their corresponding competition graphs are easy to
understand, and their characteristics evoke many questions that are also easily
understood even if not easily answered. A remaining question raised by the
Yellowstone National Park wolf food web is whether there is a way of setting
threshold values that insures all resulting competition graphs will be interval graphs
and can we prove that is the case?
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Graph Theory in Primary, Middle,
and High School

Daniela Ferrarello and Maria Flavia Mammana

Abstract In this paper we present an experimental teaching activity conduced in
some primary, middle and high schools in Sicily. The activity concerned several
topics of graph theory. Here we highlight, in particular, the approach to teaching
Eulerian graphs. The aim of the whole project was to present a fun, easy approach
to mathematics in order to promote a good attitude towards mathematics in primary
school children and to improve it in middle school kids and in high school young
people. This goal is pursued also by showing some connections of mathematics
with real life, making mathematics less abstract than the topics too often taught in
school. Through this activity we also reach mathematical knowledge and practical
abilities (related to graph theory), and above all mathematical competencies related
to reasoning and mathematization, in particular by the use of graphs in mathe-
matical models to solve problems. The teaching experiments were different,
according to the different school level, but unified by the method, based on labo-
ratorial activities, by presenting a problem to be solved together with classmates, by
manipulating objects and guided by the teacher. These activities were realized by
the use of artefacts: in the sense of Vygotskijan semiotic mediation, we used signs,
symbols, maps, language and, in many cases, new technology’s artefacts, to
mediate mathematical concepts. Lessons involved also the body as a mean to
learning, especially with children, according to embodied cognition theory.
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1 Introduction

The capability of using mathematical knowledge in solving real life problems is
widely tested in various national and international tests (INVALSI, PISA, TIMSS)
and, since last year, in the Italian final mathematics’ exam, at the end of high
school. But, according to the results obtained, students have difficulties in solving
these kinds of problems.

Mathematics is more often seen as the subject of numbers and rules that is hard
to understand and difficult to study: lots of students see it as something of no use
and cannot see the connection with everyday life. The study of real life problems is
becoming central in teaching at all levels:

The National Council of Teachers of Mathematics (NCTM) is providing leadership in
communicating to teachers, students, and parents what mathematical modeling looks like in
K–12 levels. The 2015 Focus issue of NCTM’s Mathematics Teaching in the Middle
School was about mathematical modeling and the 2016 Annual Perspectives in
Mathematics Education also focused on the topic (Levy 2015).

The idea is, given a real life problem, to translate it into amath problem, solve it with
mathematical knowledge, and interpret the solution in terms of the given problem.

In this context graph theory is a good tool for modeling problems. Even if it is a
quite new branch of mathematics (it was born at the end of 1700), over the years it
has acquired a leading role for its use for applications in areas such as trans-
portation, telecommunications, science experiments …

Graph theory presents, in mathematics education, several advantages: it permits
students to see applications of mathematics, to start some argumentation and it
boosts reasoning.

Graph theory is easy to understand, fun to use and intriguing to use in modeling
real situations. It can be used to develop “a suitable vision of mathematics, not
reduced to a set of rules to be memorized and applied, but recognized as a
framework to address significant questions, to explore and perceive relationships
and structures recurring in nature and in the creations of mankind” (MIUR 2012).

With this respect, in this paper we discuss an approach to graph theory that we
carried out in primary, middle and high schools over the past 12 years. Countries
other than Italy have a structured approach to Discrete mathematics (including
graph theory, counting methods, recursion, iteration, induction, and algorithms), see
DeBellis and Rosenstein (2004), Rosenstein (2014). The introduction of Discrete
mathematics in school is, in fact, recommended by the National Council of
Teachers of Mathematics (NCTM) in the USA since 1989, while in Italy it is not
explicitly asked for in the curricula.

2 Königsberg Bridges Problem

In 1736 the Academy of Sciences in Petersburg published an article in which Leonard
Euler solves the problem of the bridges of Königsberg: The city of Königsberg in
Prussia (now Kaliningrad, Russia), crossed by the Pregel River, includes two large
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Fig. 1 Figure retrieved from
Euler (1741)

islands. The islands and the mainland are connected to each other by seven bridges
(Fig. 1). In 1700, the citizensofKönigsbergused to havea nicewalk around the city and
wondered if they could find a walk that would cross each bridge once and only once,
with the condition (optional) that they would be back to the same point they started.

Euler proposes to denote by A, B, C and D the four parts of the city, A and D are
the islands and B and C the mainland (Fig. 1). He denotes a bridge between A and
B by AB, one between B and D by BD: so, if a citizen starts from A, moves to B
and then to D we can denote his/her walk by ABD. If the citizen then moves from D
to C the whole walk would be ABDC. Then, the word ABDC states which walk the
citizen did and how many bridges he crossed: three bridges in this case, one less
than the number of letters, in general. And vice versa, if the citizen crosses n
bridges then the number of letters of the word describing his/her walk is nþ 1.
Then, the word solving the problem should have 8 letters (among A, B, C, D)
corresponding to the 7 bridges. Solving the problem means to find the correct word.

Euler showed that this problem cannot be solved by essentially using the fol-
lowing reasoning. If the region A is connected to another area with only one bridge,
then the correct word contains A only once, no matter if the walk starts in A or not.
If the region A is connected with another area with three (five, seven…) bridges,
then the correct word contains A twice (respectively three times, four times…), no
matter if the walk starts in A or not. In general, if an area is connected to other areas
with an odd number of bridges, say n, then the letter associated to that area appears
exactly nþ 1ð Þ=2 times. Then, in the specific case of Königsberg, the letter A must
appear three times, the letter B must appear two times, so as letters C and D: so we
should have a word with 3þ 2þ 2þ 2 ¼ 9 letters, other than the 8 letters that the
correct word must have. The Königsberg citizen then cannot find the walk they
were looking for. This problem was basically modelled with the aid of what has
become known as a graph (Fig. 2).

A graph is a pair G ¼ V; Sð Þ, with V a finite set, whose elements are called
vertices or nodes, and S is a set of pairs of elements of V, called edges with
endpoints the vertices of the pair.

The Königsberg bridges graph (Fig. 2) is a graph with vertices A, B, C and D
and edges represented with the drawn lines, that are A;B½ �1 A;B½ �2, A;C½ �1, A;C½ �2,
A;D½ �, B;D½ � and C;D½ �. The problem of Königsberg’s citizens can be seen as the
problem of drawing the graph in Fig. 2 without lifting the pencil from the paper and
without passing twice on the same line.
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3 Theoretical Framework

Several activities have been developed by the authors to introduce graph theory at
all school levels.

The activities are realized in the perspective of horizontal teaching (Ferrarello
et al. 2014) and with the use of technology. In horizontal teaching, the teacher
enters the realm of the students’ real life and offers activities fitting with the stu-
dents’ age, needs and the needs of the whole class. Technology helps to model
situations by using “ad hoc” applications.

The activities on graphs we carried out are all based on a common theoretical
framework: semiotic mediation in a Vygotskijan perspective supporting the activity
of construction of mathematical concepts, through laboratorial activities, based in
embodied cognition theory.

Mathematical content is mediated by the use of artefacts, in the Vygotskijan
sense (Vygotskij 1981, p. 137): writing, speaking, using mathematical symbols,
maps, diagrams are all involved in the mediation process that transforms situated
signs into mathematical signs whenever a task is given. Our students (from children
to adults) used written signs such as words and figures to represent the situation
asked for by the task, to conjecture a possible solution, to test it, and then they used
words to argue about possible solutions and to communicate it to the others, and
finally transformed situated signs into mathematical meanings (Bartolini Bussi and
Mariotti 2008).

Graphs perfectly fit in the embodied mind framework (Lakoff and Johnson
1999). Graphs can be used not only drawn on paper, but also to be manipulated as
real objects: real strings in primary school, for instance, but also constructed by
using special software; in such a way that nodes can be dragged and edges can be
warped, as they were real. Body and mind, as a whole, participate in the con-
struction of mathematical meaning, by using grounding metaphors (Lakoff and
Nunez 2000), strings as edges, for instance.

Fig. 2 Graph superimposed
on map of Königsberg
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Manipulation of objects is one the four components of a laboratory activity
(Anichini et al. 2004; Reggiani 2008): (1) A problem to be solved; (2) Objects to be
manipulated; (3) Interaction with people; (4) Role of the teacher.

1. A problem to be solved is a task that has to be not too hard (in the
non-competence area of Vygotskij) nor too easy (in the competence area of
Vygostskij), but accessible: a problem that can be solved in the interaction with
others (peers or teacher), i.e. in the Zone of Proximal Development;

2. Objects, real or virtual, are to be manipulated;
3. Interaction with people refers to collaboration with mates to solve problems and

mathematical discussion among teacher and students to strengthen concepts.
4. Role of the teacher is as a trainer, guiding and encouraging students to discover,

to argue, to conjecture, to prove.

In fact,

we can imagine the laboratory environment as a Renaissance workshop, in which the
apprentices learned by doing, seeing, imitating, communicating with each other, in a word:
practicing. In the laboratory activities, the construction of meanings is strictly bound, on
one hand, to the use of tools, and on the other, to the interactions between people working
together […] to the communication and sharing of knowledge in the classroom, either
working in small groups in a collaborative and cooperative way, or by using the
methodological instrument of the mathematic discussion, conveniently lead by the teacher
(Anichini et al. 2004).

All the activities are oriented toward a good approach to mathematics supported
by a positive interaction of affect and thinking in the learning process, because
“affect influences thinking, just as thinking influences affect” (Brown 2012, p. 186).

The same topic (graphs) is treated, in our activities, in very different contexts by
using different levels, as suggested by Van Hiele (1986), from visualization and
description to rational and logical, in the view of vertical curriculum. In primary
school, students receive tools to be able “to represent relationships and data and, in
meaningful situations, use representations to obtain information, to express judg-
ments and make decisions”—goals to be reached at the end of the fifth grade, in the
“Relations, data and forecasts” part (MIUR 2012). In addition, significant time is
given to playing, as a means for the “development of strategies suitable to different
contexts.” In middle school more attention towards formalization, generalization,
argumentation is given, in order to “develop the ability to communicate and discuss,
to properly argue.” In high-school simple proofs and algorithms can be introduced
(MIUR 2012). For high-school students it is important to understand the concept of
a mathematical model. Generally, in Italian schools, it is proposed as a connection
between mathematics and physics (for example the physical concept of velocity
through the mathematical concept of derivative). It should also be used as an
approach to reasoning with the help of graphical representation and referring to real
contexts, as other mathematical models.
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4 Topics

In this paper we present some activities we carried out in recent years that have
been developed. The topic is the same for primary, middle and high schools,
Eulerian graphs,1 but the approach changes depending on level (Van Hiele 1986).
We briefly present the contents here in an intuitive way. For a rigorous approach
refer to West (2001), Wilson (1996).

Recall that a graph is a pair G ¼ V ; Sð Þ, V being a finite set whose elements are
called vertices or nodes, and S is a set of pairs of elements of V , called edges with
endpoints being the vertices of the pair.

A graph is connected if from each vertex you can always reach any other vertex
through adjacent edges. In this paper we always deal with connected graphs.

The degree of a vertex is the number of edges for which that vertex is an
endpoint. For example, the graph in Fig. 2 is connected and the degree of C is 3, the
degree of A is 5.

SemiEulerian graphs are those that you can draw without lifting the pen from the
paper and passing through each edge exactly once. The taken walk is called an
Eulerian trail. Eulerian graphs are SemiEulerian graphs such that there exists a
closed Eulerian trail, i.e. such that the first vertex and the last vertex are the same.
Such trail is called an Eulerian cycle.

The Königsberg Bridges Problem, mentioned at the beginning of the paper,
consists in finding an Eulerian cycle/trail in the graph in Fig. 2. Euler found a
necessary and sufficient condition for the existence of an Eulerian trail/cycle in a
given graph, referring to words (Euler 1741). Referring to graphs, there is an
Eulerian cycle in a connected graph if and only if each vertex has even degree; there
is an Eulerian trail in a connected graph if and only if there are at most two vertices
of odd degree.

Fleury’s algorithm produces an Eulerian cycle (trail) in an Eulerian graph. The
algorithm works as follows: if the graph is connected and with all vertices of even
degree (at most two of odd degree), choose any vertex (a vertex of odd degree, if
any) as starting vertex and select successively adjacent edges choosing a bridge
only if there is no other choice, where a bridge is an edge which, if removed,
produces a disconnected graph.

5 Eulerian Graphs in Primary, Middle and High School

Several activities have been carried out in several schools, but in different years.
In 2007, for the first time, we tested a graph theory activity in middle school, 8th

grade, (Mammana and Milone 2009a, b) and the following year, a different one in
6th grade (Mammana and Milone 2010). In 2012 we brought graphs in primary

1Other graph theory topics have been proposed to students but are not presented here.
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schools, 3rd, 4th and 5th grade. Then, a proposal for high-school was written (Aleo
et al. 2009) and tested in 9th and 10th grade (Ferrarello and Mammana 2017).

The way of conducting the activity was the same for all levels: laboratorial
activities (Chiappini 2007). We also used some technology. Specifically, we used
technological artefacts to support teaching and learning at every level, and we
employed both old and new technology, namely paper, pencils, strings, but also
software and online games. The new technologies used were:

• yEd, graph editor (https://www.yworks.com/products/yed);
• Cabri (http://www.cabri.com/);
• Icosien (http://www.freewebarcade.com/game/icosien/);
• Planarity (http://planarity.net/);
• Fly tangle (http://www.giochigratisonline.it/giochi-online/giochi-puzzle/

FlyTangle3/).

yEd is a free software developed to draw and manipulate graphs. With yEd we
can import images or our own data from existing spreadsheets, easily create dia-
grams via an intuitive user interface, automatically (or manually) arrange our dia-
grams elements, and export images of the created graphs (see Fig. 3). yEd has been
used in primary school and in high school, while in middle school we used Cabri
geometre. We used Cabri just to draw graphs, not as a dynamic geometry system.
Any other Dynamic geometry software can be used. Of course, the first mission of a
DGS is not drawing graphs, but back then (2007) yEd was not developed yet.

Icosien is an online game. It is not an educational game, but we used it with
didactic purpose. In fact, the aim of the game is to wrap a string around some nails
to create the given shape in each level, by constructing Semieulerian and
Hamiltonian graphs (graphs in which a trail can be constructed that uses every
vertex exactly once, but not necessarily every edge) (see Fig. 4).

Planarity and Fly-tangle are games in which the player has to arrange the
vertices of a graph so that none of the lines intersect, except at the vertices.

Fig. 3 Screen of a yEd
developed graph
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• Contents of the activities in primary school are: definition of graph, planar
graph, vertex colouring, Eulerian graph, Hamiltonian graph (these activities
lasted between 30 and 40 h).

• Contents of the activities in middle school are: definition of graph, graphs to
model situations, Eulerian graphs (these activities lasted between 15 and 20 h).

• Contents of the activity in high school are: definition of graph, Eulerian graphs,
Fleury algorithm, Spanning threes, Kruskal’s algorithm, applications (these
activities lasted about 20 h).

At all levels we proposed the Eulerian graph topic, that is the one we concentrate
in this paper from this point forward.

In the activities we developed we had the following goals (in the following P
stands for Primary, M for middle, H for High-school):

• recognize that a graph provides a possible modelling of a problem; (P, M, H)
• know how to go from a problem to its model as a graph; (P, M, H)
• recognize the essential elements of a graph; (P, M, H)
• identify similarities and differences between graphs; (P, M, H)
• recognize same graphs but with different representations; (P, M, H)
• know how to draw and represent a graph both with paper and pencil and by

means of a suitable software; (P, M, H)
• formulate hypotheses on the characteristics of an Eulerian/SemiEulerian graph;

(M, H)
• test formulated hypotheses on the characteristics of an Eulerian/SemiEulerian

graph; (M, H)
• formulate conjectures, discussion supervised by teachers; (M, H)
• independently develop conjectures, argumentation; (H)
• compare hypotheses with classmates to achieve shared results; (P, M, H)

Fig. 4 Example of Icosien
game
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• use the condition of existence of a Semieulerian/Eulerian path for solving
problems; (P, M, H)

• knowing how to apply an algorithm in order to find an Eulerian/Semieulerian
path; (M, H)

• think about the fact that mathematical objects are “hidden” in various everyday
situations. (P, M, H).

5.1 Eulerian Graphs in Primary School

Activities with 8 and 9 years old students were carried out (Ferrarello 2014, 2017).
We aimed to make children enjoy the topic, rather than focus on mathematical
competencies (that were achieved anyway). So the Eulerian activity was related to
storytelling, playing with games, and a little of argumentation, as described below.

The first approach, using storytelling, was the problem of Königsberg seven
bridges. Children tried to solve the problem by using a map of Königsberg, and
then they were guided to construct the model of Fig. 2, by using yEd. We did not
use standard definitions, but we called Eulerian and Semieulerian graphs walkable
graphs, with the aim to recall in students’ minds the activity to walk around the
graph, by touching, just once, all the edges.

Together with the impossible graph of Königsberg, other solvable problems were
given, as the classical cabin graph of Fig. 5.

Fig. 5 SemiEulerian cabin
graph
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In such a way pupils did not give up and carried on, trying and playing with
solvable and non-solvable problems.

After nodes, edges and nodes degree were introduced, children were guided to
notice similarities among walkable graphs: they discovered that such graphs had
only nodes of even degree, we called them closed walkable, or just two nodes of
odd degree, we called them open walkable. Students practiced with several graphs,
with paper and pencil, by using the online game Icosien and with real string (see
Fig. 6).

Activities with paper and pencil also included games of words and sentences, by
using graphs whose nodes are letters and two letters are joined by an edge if you
can use the two letters consecutively in a word. Semieulerian graphs hiding sen-
tences were given: children found the right sentence by walking on each edge just
once.

The use of the Icosien game was useful: it lets you know if you are wrong and
pupils could try by themselves, even at home without the teacher. Pupils were
happy to learn how to win the game, but they did not care at all about the moti-
vation of why the strategy worked.

To argument about the reason behind the winning strategy we used the graph in
Fig. 7, by orienting the edges in the direction of a winning path and by colouring
every source (where the oriented edge starts) with a green chalk and every sink
(when the oriented edges finish) with a red chalk. Then we focused on the first node
of the winning path and reasoned on the number of going out and going in edges:
two of them are used to pass through the path and one of them is used to go out at
the beginning. Similarly, an even number of edges (two) are used in the last node to
cross the trail and one is used to go in at the end of the trail. The other nodes are all
used to cross the path, so they must have even degree. Similar considerations were
given for Eulerian graphs.

Fig. 6 Eulerian graphs made
of string
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The whole phase of argumentation was led by the teacher, who stimulated pupils
with questions, encouraging them to express their thoughts, making them think on
their own actions and claims. And finally exulting for their good insights and
reasoning.

In Table 1, the major components of the lab (described in Sect. 3), related to the
activity, are described.

Fig. 7 Color-coding in and out parts of edges in a path

Table 1 Description of major components of Königsberg bridges activity

Problem to be solved Objects Interaction Role of the
teacher

Königsberg bridges
problem;
Necessary and sufficient
condition for the existence
of Eulerian cycle/trail

Paper
and
pencil;
Maps;
Strings;
Icosien

Collaboration among students;
Mathematics discussion;
Groups formed by students
themselves: Each group had a
“task”: writers, drawers,
thinkers

Prepare the
activity;
Coordinate the
groups and the
Math
discussion
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5.2 Eulerian Graphs in Middle School

Again, to arouse students’ interest, they were immediately given the real problem
situation of The Königsberg bridges problem, which they modelled using the graph
that simplifies the analysis of the problem. They were then asked to solve the same
problem on other graphs, obtained from the Königsberg graph by adding or deleting
or moving an edge (Fig. 8). Through the identification of similarities and differ-
ences, students were lead to discover the conditions that must be satisfied in order to
solve the problem, that is, so that there exists an Eulerian cycle.

This condition is then applied to polygons: precisely, students were asked to find
polygons that are possible to draw, together with their diagonals, without lifting the
pencil from the paper. At the end of this phase, the algorithm of Fleury is presented.
For a better understanding of the algorithm and for catching students interest, the

Fig. 8 Figure 2 with edges added and deleted

Fig. 9 Graph for problem 2
of worksheet 3
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Cabri software was used—of course, Cabri was not used as a dynamic geometry
software but for visualizing, step by step, the algorithm. They were also posed the
problem of the existence of an Eulerian trail, and students were lead to discover the
conditions that must be met for such a trail to exist. By using Cabri Geometre,
students did find an Eulerian cycle/trail in several graphs. At the end of the whole
activity students were asked to solve a problem (Table 2) that they had to model
using a graph and to solve with graph theory tools.

Alice goes Florence, in Tuscany. She wants to visit some cities in Tuscany,
Florence, Pisa, Arezzo, Livorno, Lucca, Siena, returning to Florence airport. Alice
also wants to see as much scenery as possible along all the connections between the
cities one and only one time because she does not have much time. Can you help
Alice?

The table shows the existing connections between the various cities. (The empty
boxes indicate that between the two cities there is not a direct link.)

Fig. 10 Graph for high
school activity

Table 2 Connections between various cities

Florence Pisa Arezzo Livorno Lucca Siena

Florence YES YES YES YES

Pisa YES YES

Arezzo YES YES

Livorno YES YES

Lucca YES YES

Siena YES YES
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We have chosen to provide concepts through descriptions in natural language
using gradually increasingly formalized language: in this way some linguistic dif-
ficulties could be avoided. For example, we did not define the degree of a vertex,
but we talked of number of edges for a vertex: in this manner, although not correct
from the graph language point of view, we used an expression that is nearer to the
natural language of the pupils.

The whole activity has been carried out by means of worksheets, prepared by the
teacher. The students worked on the worksheets by themselves, in class or at home,
but there was always a class discussion to make sure that everybody got to the same
point.

Here we report Worksheet 3 (in Worksheet 1, the Königsberg problem was
introduced and students were asked if it was solvable or not, and in Worksheet 2
students were asked if, given the graph on the left in Fig. 8, it was possible to find a
walk passing through all the edges exactly once, starting and finishing at the same
vertex) (Table 3).

In Table 4, the major components of the lab related to this activity are described.

Table 3 Worksheet 3 for Königsberg problem

WORKSHEET 3

(INDIVIDUAL WORK IN CLASS)
Problem 3: It follows the graphs of Problem 1 (see Fig. 8a) and Problem 2 (see Fig. 9):
For graph of Problem 1 you can find a solution and for graph of Problem 2 no. Why is that?
What is the difference between the graphs?
Try to give some answer:
a) ……………………………………………………………………………
……………………………………………………………
b) ……………………………………………………………………………
………………………………………………………………………………..

Table 4 Description of major components to middle school lab

Problem to be solved Objects Interaction Role of the teacher

Königsberg bridges problem;
Finding the necessary and sufficient
condition for the existence of
Eulerian cycle/trail;
Application to polygons;
Application to “Alice’s Tuscany
tour”

Paper and
pencil;
Cabri
geometre;
Guided
worksheets

Collaboration
among
students;
Mathematics
discussion;
Groups works

Prepare the activity;
Coordinate the
groups and the
Math discussion

196 D. Ferrarello and M. F. Mammana



5.3 Eulerian Graphs in High School

The activity was carried out in a high-school by following the path described in
Aleo et al. (2009). The contents were the same as in middle school but the approach
slightly different. Since the whole terminology is new for the students and to list all
definitions can be quite boring, we decided to have the students discover them, with
the aid of a guided activity (an example in Table 5). A final worksheet, called Trip
logbook, collects all definitions as a reference for students during their tour around
graphs. Afterwards, after modelling some problems in terms of graphs and after
understanding that their solution consists in finding an Eulerian cycle, we present
and use the Fleury algorithm for finding possible solutions.

At the end of the activity the following real life problem was given:

Air Transportation is a complex activity: there are big money investments (aircrafts
and infrastructure), highly qualified workers (pilots and staff), real time information
(booking service for example). Expenses on air traffic are huge and we have to avoid
waste. For example, an airplane on the ground does not result in any revenue for the
company: therefore, no-fly time has to be reduced. To this end, some airline com-
panies, once the routes are decided, study «circular trails» for each aircraft (a cir-
cular trail is a trail that covers all the routes only once).

Eurofly, has to organize a circular route for an aircraft that has to cover the routs
indicated in Table 6. If there is an empty cell then there is not a direct link between
the cities.

Most of the students were able to model the given problem with the aid of a graph
and understood that they were asked to find an Euler cycle of that graph. Students
were very happy to have mathematics touch real life. One of them thought to use
graph theory to model some problem of his father’s company (a logistic trans-
portation company).

Table 5 Guided activity for high school

Observe the following graph (see Fig. 10):

We have:  

Degree of A = 1 

Degree of B = 4 

Degree of C = 2 

Degree of D = 3 

Degree of E = 2 

Degree of F = 0 

Definition: The Degree of a vertex is the number of…… whose the vertex
is an endpoint.
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In Table 7, the major components of the lab, related to the activity, are
described.

6 Brief Conclusions

We strongly believe that graph theory deserves space in school teaching, because it
permits an approach to modelling, argumentation, and connection with reality and,
it may foster affection to mathematics from those students that have had a bad
experience with it.

Students we worked with did benefit from this experience both for mathematical
skills developed and a positive affective point of view. In particular:

Mathematical knowledge: Students, from primary to high school, were able to
recognize the essential elements of a graph, to know how to draw, represent and
manipulate a graph both with paper and pencil and by means of software, to identify
similarities and differences between graphs and recognize the same graph drawn
with different representations, to know the condition of existence of Semieulerian/
Eulerian paths in a graph.
Graphs were easily understood and manipulated as real and everyday-life objects
(from cartoon princesses for pupils to social network friendships for teenagers), as
suggested by horizontal teaching and embodied cognition theory.

Table 6 Routes for Eurofly aircraft

Rome Paris London Athen Milan Madrid

Rome YES YES YES YES

Paris YES YES

London YES YES

Athen YES YES

Milan YES YES

Madrid YES YES

Table 7 Description of major components of high school activity

Problem to be solved Objects Interaction Role of the teacher

Königsberg bridges problem;
Represent the network of an airline
company with a graph;
Finding necessary and sufficient
condition for the existence of
Eulerian cycle/trail;
Application to Airline companies
problem

Maps;
yEd;
Icosien;
Worksheets

Collaboration
among
students;
Mathematics
discussion

Prepare the activity;
Coordinate the
groups and the
Math discussion

198 D. Ferrarello and M. F. Mammana



Practical abilities: All the students used the condition of existence of a
Semieulerian/Eulerian paths for solving problems, and most of the students in
middle and high school knew how to apply an algorithm in order to find an
Eulerian/Semieulerian path: Because when you discover properties, by touching
them through laboratorial activities, instead of listening to the teacher, you get
better and remember those properties.
Mathematization: Students, from primary to high school, achieved the ability to
recognize in a graph a possible model of a problem, to know how to go from a
problem to its model through a graph and to see mathematical objects hidden in
various situations and everyday objects.
The mathematization process was driven by the use of speech, diagrams, gestures,
… as situated signs later on transformed into mathematical signs.
Reasoning: Students of all grades formulated and tested hypotheses on Eulerian/
SemiEulerian graphs and compared their own hypotheses with classmates to
achieve shared results. In middle and high school, they formulated conjectures, with
argumentation guided by teachers. In high school some students independently
developed conjectures, through argumentation.
Affect: The most enthusiastic were primary school children who saw a beautiful and
different mathematics, rich in games and cartoon characters. Middle school students
organized an exhibition of the activity they did in class and invited parents and
future students of the school to visit it.
Some of the high school students in the last experimentation came to the graphs
meetings forced by a project carried out by their own school, but in the end they
were happy to have participated and brought some modeling results home (one of
them, for instance, thought to use graph theory for modelling problems of the
transportation company of his father).
For all of them, fun and motivation was the first step towards learning. We aimed to
promote a vision of mathematics not made of cold calculations, or of
pseudo-problems to solve, which is often thought just to blindly apply those rules
you read about some pages before.
The vision of mathematics we want to achieve is a mathematics included in
everyday life, but hidden: to see it you should raise the veil that covers it.
Despite all of its usefulness and beauty, teachers are not prepared to teach it in class.
Sometimes they do not even know the topic itself. Some teacher-training programs
may include these topics in the future. More to come!
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Fairness

Sol Garfunkel

Abstract In this paper we discuss a number of fairness models related to fair
division and bankruptcy problems, including several with a very long and colorful
history. We emphasize the role of mathematical modeling in solving such fairness
and equity problems. In addition to showing how accessible these discrete models can
be, we attempt to show their intrinsic interest and the fact that they can and should be
introduced in students’ high school and even middle school mathematics curricula.

keywords Fairness models � Bankruptcy � Discrete models

1 Introduction

For the past 45 years I have worked to bring mathematical modeling and appli-
cations of mathematics into the mainstream mathematics curricula at all grade
levels. This work has continuously (pun intended) bucked up against those who
believe that analysis is mathematics and therefore courseware must be designed to
prepare students for continuous mathematics. Hence the emphasis on algebraic
manipulative skills. And even those who give a nod to modeling see it in terms of
physics and engineering, reinforcing their belief in the calculus escalator. I have
actually heard people say that ‘if it doesn’t involve a differential equation, it’s not
really modeling.’

We know better. Discrete models of very real and important phenomena abound.
But due to the prejudice just described, these are generally discussed in separate
discrete mathematics courses at the high school and undergraduate level often
aimed at underachieving students. As with modeling, the mistake is made in
somehow distinguishing them from ‘mathematics’. Having a mathematics course
called discrete math or mathematical modeling is like having an English language
course called nouns or one called verbs. I realize that I come at this from a U.S.
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perspective, where we are still living with a layer-cake approach to secondary
school mathematics, but I believe I am describing a worldwide phenomenon.

I believe that we need to make the case that discrete models of important and
interesting real world situations can and should be introduced throughout a stu-
dent’s mathematics education—at ALL levels. Let me first discuss material at the
secondary level, because it is where I have done a significant amount of work. As
indicated, I believe in an integrated approach to teaching mathematics, not in
making a big deal of sub disciplines, certainly not at the high school level. But
while courses titled Mathematics 1, 2, or 3 make eminent sense, it also makes sense
to have reasonable themes in order to organize the instruction. Themes such as
Fairness and Equity, Risk, Growth and Change, Shape and Space, Conflict and
Cooperation, Optimization, Information…are all possibilities—and many involve
discrete models!

As an example let’s consider some Fairness and Equity problems. Among the
reasons that I find this theme compelling is that the problems are immediately
recognizable to students, and much of the mathematics needed to get deeply into the
analysis is essentially arithmetic and therefore universally accessible. And yet, the
reasoning is mathematically sophisticated and the choice of models not at all
obvious. Students can see how mathematicians really work—exploring, conjec-
turing, inventing representations. In addition there are many historical references, as
these problems have been around for a long, long time.

2 Fair Division

Consider an inheritance problem where there is one asset, say for example a house,
to divide between two heirs. Further imagine that both heirs want the asset and do
not wish to have it sold and then to split the proceeds. We proceed by conducting an
auction. In this simple case, the heirs write down what they think the property is
worth to them. Let us imagine that the first heir thinks the house is worth $500,000
and the second thinks it’s worth $400,000. In this case the house is awarded to the
heir who values it most highly, heir 1. The question is how much money should heir
1 give to heir 2 to be ‘fair’.

The logic is as follows. Heir 1 believes the house is worth $500,000, therefore he
believes that his share is worth $250,000. Heir 2 believes the house is worth
$400,000 so she believes her equity is $200,000. If we split the difference in half
and Heir 1 gives Heir 2 $225,000 look at what happens—Heir 1 gets the house for
$25,000 less than he thought it was worth and Heir 2 receives $25,000 more than
she thought she deserved. A similar tactic can be used when there are more items to
divide. This works with more ‘players’ as well.

Suppose for the moment that there is a house and four heirs—Bob and Carol and
Ted and Alice. We assume that all four want the house (rather than selling it and
dividing the money). We begin with an auction, i.e. each heir writes down what
they would pay for the house. Let’s say that the bids are as in Table 1.
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Because she is the highest bidder, Carol gets the house. The question is how
much should she pay each of the other heirs. Carol values the house at $200,000, so
she thinks her share should be worth $50,000. She now puts $150,000 in a kitty.
Each of the other heirs withdraws what they think their share was worth from the
kitty. So,

• Bob withdraws 120,000/4 or 30,000
• Ted withdraws 140,000/4 or 35,000
• Alice withdraws 180,000/4 or 45,000

That is a total of 110,000, leaving 40,000 in the kitty. Each heir (including
Carol) gets their share or 10,000 each and thus Carol gets the house, Bob gets
40,000, Ted gets 45,000, and Alice gets 55,000. Note that each heir is $10,000 to
the good.

2.1 The Adjusted Winner

In 1991 (I know, it’s a long time ago, but distressingly current) Donald and Ivana
Trump went through a celebrity divorce which received a great deal of media
attention. However, despite the hype they decided to attempt an out of court
property settlement. Of course, we have no way of really knowing what went on in
their minds while going through the negotiations and can only give a rough estimate
of the actual items involved. But we do know a fair amount about their assets.

To attempt a realistic illustration we take the following list of marital property: a
45-room mansion in Greenwich, Connecticut; the 118-room mansion in Palm
Beach, Florida; an apartment in the Trump Plaza; a 50-room Trump Tower triplex;
and just over a million dollars in cash and jewelry.

We begin the adjusted winner procedure by giving each party 100 points to
distribute over the items in a way that reflects their relative worth to that party.
Again we can’t get into the minds of our divorcing couple, but given what we
know, let’s assume that Donald and Ivana used the point assignments in Table 2.

Table 1 Four heirs’ bids on
a house

Bob Carol Ted Alice

$120,000 $200,000 $140,000 $180,000

Table 2 Point assignments
for marital assets by two
parties

Marital asset Donald Ivana

Connecticut estate 10 38

Palm beach mansion 40 20

Trump plaza apartment 10 30

Trump tower triplex 38 10

Cash and jewelry 2 2
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The adjusted winner procedure now allocates the property as follows:

1. Each party is initially given each asset for which he or she placed more points
than the other party. Thus Donald receives the Palm Beach mansion (40 of his
points) and the Trump Tower triplex (38 of his points), while Ivana initially
receives the Connecticut estate (38 of her points) and the Trump Plaza apartment
(30 of her points). Donald now has 78 points and Ivana only 68. Because she
has fewer points Ivana gets the asset they both valued the same, i.e. the cash plus
jewelry. She now has 70 points.

2. Now we have to transfer assets from Donald to Ivana until they have the same
point total. The process is as follows.

Donalds’s assets are arranged from left to right so that the fractions (Donalds’s
point value of the asset)/(Ivana’s point value of the asset) increase or stay the same.
For our example, the fractions for Donald’s two assets are

• 40/20 (Palm Beach) and 38/10 (triplex)

We now transfer assets or fractions of assets until the points are equal. We begin
with the Palm Beach mansion since he values it relatively less.

Note that if we were to transfer all of the Palm Beach mansion (worth 40 points
to Donald and 20 points to Ivana) then Donald would have 78 − 40 or 38 points,
while Ivana would get 70 + 20 or 90 points. So, we want to transfer only a fraction
of the mansion to Ivana from Donald.

Let’s call the fraction of the mansion that Donald keeps, x. Then the fraction that
Ivana gets will be 1 − x. Since Donald values the mansion at 40 points, his points
from the mansion become 40x. Ivana on the other hand values the mansion at 20
points, so her points from the mansion become 20(1 − x). Therefore, since Donald
starts with 38 points (before the mansion) and Ivana with 70 points, we want

38þ 40x ¼ 70þ 20 ð1�xÞ:

Solving for x, we get

38þ 40x ¼ 70þ 20� 20x

38þ 40x ¼ 90� 20x

60x ¼ 52

x ¼ 52=60

So, equality is reached when Donald retains 52/60 or about 87% ownership of
the Palm Beach mansion and Ivana gets the remaining 13%. What is interesting
here is that the actual settlement they reached is very close to that given by the
adjusted winner procedure: Donald received the Trump Tower triplex, and Ivana
received the CT estate, the Trump plaza apartment and the cash and jewelry. As to
the split of the Palm Beach mansion, Ivana was awarded use of it for one month a
year as a vacation home—pretty close to what we came up with!
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Not only are variants of this procedure actually used in divorce courts, it is clear
that examples of this type can be used to emphasize both arithmetic and elementary
algebraic skills.

2.2 Claims

There is a class of inheritance problems first mentioned in the Talmud of the
following kind. A father has two sons. At his passing the first son says that his
father informed him that he would be left the entire estate. The second son claims
that his father told him that the estate would be divided equally. How should we
divide the estate?

In this simple example there are two apparent solutions. The first is proportionality,
i.e. we divide the estate in the same proportion as the claims. In this case since one son
claims all and the second claims half, the proportion of the claims is two to one and
hence we give the first son two-thirds of the estate and the second one-third. This in
fact was the form of solution used by the secular courts. However, the rabbis had a
different interpretation. They argued that by claiming only half the estate, the second
son gave up all claims on the second half that should go therefore to the first son. If the
disputed half was then divided equally, the first son would be given three-quarters of
the estate and the second son one-quarter. This is sometimes called the nested claims
solution. Those of you who would expect more complication from a Talmudic dis-
cussion will be pleased to know that the problem as put forth there had ten sons—the
first who claimed all, the next a half, the next a third, then a fourth and so on.

3 Bankruptcy1

This class of problems deals with the dissolution of a firm with a collection of assets
that are insufficient to pay off the total claims against those assets. In the simplest
form of a bankruptcy problem we have a collection of claimants: C1, C2, C3,…, Cn,
with verified claims c1, c2, c3,…, cn. The remaining assets E have also been verified
and are to be distributed by a “wise person” or judge. (The letter E is used to
suggest the word “estate.”) If someone leaves a will, it may turn out that the estate is
not large enough to make the suggested dispersals. In this case, we have a
“bankruptcy” problem where we treat the desired amounts to be dispersed as the
claimant amounts and E is to be used to pay off these claims.

Assume that the amount to be distributed is strictly less than the amount which is
being claimed. Thus, c1 + c2 + c3 + ��� + cn > E. We would like to be able to

1This section is liberally adapted with permission from the AMS online feature column
by Malkevitch 2015.
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advise the judge about how to distribute the money using the best insights about
fairness and equity principles. We are assuming that the claimants are isolated from
each other and do not “bargain” or “negotiate” with each other regarding the
amounts they might get from the judge. One can imagine that one could have a
“game” where the claimants would get nothing if they could not agree how to split
the estate, but if they could agree to share all of E in some way, they would be
collectively allocated this amount. In this type of situation negotiations among the
claimants would be required.

3.1 Total Equality

Let’s begin with an example. Consider the case of two claimants.

Suppose E (remaining assets with which to settle claims) = $210
Claimant 1 has verified claims of $300
Claimant 2 has verified claims of $60.

Perhaps the first approach to solving equity problems is to treat individuals with
total equality. It is this thought that governs the famous dictum with regard to
voting: one person, one vote. If we do this in our example, we take the estate E,
which amounts to $210 and divide by 2, giving $105. This amount would be given
to each of the claimants. This may seem strange because we are not taking into
account the size of the claims to get this value, only the number of claimants and the
value of E being used. In particular, for the numbers here this means giving
Claimant 2 more than he/she claimed!

Should we decide that the above method is unreasonable, we might adopt the
following second method: Equalize the claims of the claimants as much as possible
but never give a claimant more than is requested. This notation of solving a
bankruptcy has very old roots, having been in essence suggested by the great
medieval philosopher Moses Maimonides (1135–1204) (often referred to only as
Maimonides or as Rambam) (Fig. 1).

3.2 The Method of Maimonides

In modern mathematical terminology what we have here is a constrained opti-
mization problem. Our desire is to make the amount given to each of the claimants
as equal as possible but not to have any claimant receive more than his/her claim.
This means in the mathematical formulation that certain inequalities would have to
hold for a solution. Here is a geometrical way to solve this kind of problem easily

208 S. Garfunkel



without converting it to highly symbolic mathematical form. Imagine that the
money in the estate to be distributed is a blue fluid. We begin to fill up two bins or
tanks of size 300 and 60 (the claim sizes) with a small bit of fluid in each, keeping
the amounts as equal as possible, as illustrated in Fig. 2. Remember that the size of
the tanks corresponds to the size of the claims.

We keep filling the two containers equally until we fill up the smaller of the two
bins, which amounts to completely filling this claim. The situation is now as shown
in Fig. 3.

How much of the estate has been used up at this stage? The answer is 2(60) or
$120. This leaves $210 − $120 = $90 to distribute and this all goes to Claimant 1

Fig. 1 Moses Maimonides

Fig. 2 Begin filling two bins
to illustrate the method of
Maimonides
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since the complete claim of Claimant 2 has been met. Since $60 + $90 is $150 the
final settlement gives Claimant 1 $150 and Claimant 2 $60. Figure 4 shows this
solution.

This geometric approach works very well for a large number of claimants.
Typically, the claim of the smallest claimant can be fulfilled and then if there is
more “estate fluid” to distribute this is done until the next smallest claimant’s claim
is fulfilled. The process continues until all the estate “fluid” is gone.

Fig. 3 Continue filling the
bins equally until the smaller
is filled

Fig. 4 Bins showing the
Maimonides solution
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3.3 Loss Methods

Are you happy with the Maimonides solution to the bankruptcy problem? Unlike
the total equality solution, it takes into account the size of the claims. However, let
us look, for example, at how much of what each claimant hoped for, failed to get
recovered. For C2 this amount is 0, while for C1 this amount is $150. This does not
seem to spread the pain of loss very fairly. How much do the claimants collectively
lose? Since E = $210 and the claimants are claiming $300 and $60 respectively, the
loss L = $360 − $ 210 = $150. This notion suggests a new method. Why not
spread the loss equally?

This would mean assigning a loss of $75 to each claimant. For C1 this amounts
to giving him/her $300 − $75 or $225, while for C2 this amounts to giving him/her
$60 − $75 = − $15! Although $225 + (−$15) adds to $210, the amount E the
judge must distribute, something seems wrong here! The problem is that Claimant 2
is being asked to “subsidize” the settlement. The −$15 that Claimant 2 coughs up is
given to Claimant 1 along with all of the $210 available to the judge. This total of
$225 makes it possible to cut Claimant 2’s loss to $75, which is equal to that
of Claimant 1. However, many people will consider this unfair because the pain of
Claimant 2 is made worse by having to subsidize the settlement.

Like the contrast between total equality and Maimonides, one can consider the
analogue for loss using Maimonides. The idea is to equalize loss as much as
possible without any claimant’s loss becoming negative as a result.

To do this we must reduce the loss of the player with the largest claim to that of
the person with the second largest claim, if this is possible. In this case, if we give
C1 $210 this will bring his loss to only $90; to reduce the loss further requires more
money than is available in E. Thus, we accept the solution of c1 = $210 and
c2 = $0.

Suppose we have three claimants with claims of $100, $80, and $60, and there is
an estate E of $210. We can give $20 to the first claimant reducing his/her current
loss to $80. Now we can give $20 to each of Claimants 1 and 2 which reduces all
the claimants to a current loss of $60. At this point $60 of the estate has been used.
This leaves $210 − $60 = $150. By giving each claimant $50 of this we can
equalize the losses. Thus Claimant 1 gets $90, Claimant 2 gets $70 and Claimant 3
gets $50. These numbers add to $210 as required and give each claimant a loss of
$10. Of course, in this problem one can also conceptualize as follows. Since the
claims are $240, and E = $210, each claimant of the three will sustain a loss of $10.
This means that $10 less than each claim is given to the claimant.

3.4 Proportional Methods

Another natural approach to settling a bankruptcy is to award the claimants an
amount proportional to their claims. This would entail in our prime example giving
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C1 the amount (300/360)(210) = $175 and C2 the amount (60/360)(210) = $35.
This seems a very natural approach because it uses the size of the claims to decide
how to divide what is given to each claimant.

We might also look at settling the bankruptcy by proportionality of loss. The loss
in this example is $150. Computing C1’s loss we get (5/6)(150) = $125 and C2’s
loss would be (1/6)(150) = $25. Thus, we would have c1 = $300 − $ 125 = $175
and c2 = $60 − $25 = $35. This is the same solution as when we assign the gains
proportionally. Is this an accident? No! We can use a bit of algebra to see that this
result holds in general.

3.5 Contested Garment Rule

Finally, let us jump to a solution concept that goes back hundreds of years. This
solution idea is discussed in a “document” known as the Babylonian Talmud, which
initially consisted of oral materials handed down from one generation to another.
(There is also a Jerusalem Talmud.). It was Barry O’Neil who called attention in
modern times to the fact that the Babylonian Talmud treats various examples of
bankruptcy problems. In modern accounts the technique described in the Talmud
has come to be known as the contested garment rule, since the method was applied
to a situation where two individuals claimed portions of a single garment.

How does the contested garment rule work? The basic idea is that depending on
the amounts of the claims and size of E, sometimes one or both of the claimants can
argue that some of the money “belongs” to that claimant. For example, in our
situation Claimant 1 goes to the judge and says, since the only other claimant is
only asking for $60 and you have $210 available, $150 of your $210 should be
awarded to me. Suppose we refer to this $150 as Claimant 1’s uncontested claim
against Claimant 2. Claimant 2 might try to argue in a similar vein, but in this case
since Claimant 1 is claiming $300, Claimant 2 has no non-zero uncontested claim
against Claimant 1. Now there remains $60 that both are claiming. Thus, the judge
splits this amount equally between them. Hence, Claimant 1 gets
$150 + $30 = $180 and Claimant 2 gets $0 + $30 = $30. On first hearing, this
seems like a strange approach but it also has a certain appeal! (Suppose Claimant 1
and Claimant 2 claim respectively $100 and $80 and E = $140. Claimant 1’s
uncontested claim against Claimant 2 is $60, while Claimant 2’s uncontested claim
against Claimant 1 is $40. Hence, the total of uncontested claims is $60 + $40
which means there is $40 remaining that both claim. The judge splits this evenly.
Claimant 1 gets $60 + $20 = $80 and Claimant 2 gets $40 + $20 = $60.) It may
not even be obvious that the sum of the uncontested claims is always less than the
amount E but it always will be.

There are a number of additional methods that can be described. It is rather
remarkable that so seemingly simple and classical a problem can give rise to so
much good mathematics—so accessible at early levels. And that is our main point.
Students need to see that mathematics is useful in a variety of domains. They need
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to understand that it is not simply the application of the machinery of mathematics
which accounts for its usefulness, but the power of mathematical reasoning. And as
beautiful as continuous mathematics may be, it is only one piece of what we call
mathematics and what we should teach as our subject. For a detailed survey of
bankruptcy results see Thompson (2003).

4 Conclusion

I want to conclude with a quote from the recent GAIMME Report, Guidelines for
Assessment and Instruction in Mathematical Modeling (Garfunkel and
Montgomery 2016), published jointly by the Society for Industrial and Applied
Mathematics (SIAM) and COMAP.

The authors of this report firmly believe that mathematical modeling should be taught at
every stage of a student’s mathematical education. After all, why does society give us so
much time to teach mathematics? In part, it is because mathematics is important for its own
sake, but mostly because mathematics is important in dealing with the rest of the world.
Certainly mathematics will help students as they move on through school and into the
world of work. But it can and should help them in their daily lives and as informed citizens.
It is crucial that students’ experiences with mathematical modeling, as they progress
through the grades, give them exposure to a wide variety of problems — how do we
determine the average rainfall in a state? Where’s the best place to locate a fire station?
What is a fair voting system? How can I hang pictures along a staircase so they look
straight? As we demonstrate in subsequent sections of this report, students can learn and
appreciate the importance of modeling in their lives at all educational levels.

If mathematical modeling is a life skill to be taught and nurtured throughout a
student’s educational experience, then discrete mathematics and its applications
must be at the heart of that experience.
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Mathematical Research in the Classroom
via Combinatorial Games

Ximena Colipan

Abstract In this paper we present a summary of the results of our research con-
cerning 2-player combinatorial games and its applications used to teach the
know-hows of the mathematical activity via certain a-didactical research situations,
called SiRCs, that transpose to the classroom the activity of an actual researcher in
mathematics. We use a specific kind of combinatorial game called Nim-type games
and here we only present in some detail a game called the chocolate game. Our
main conclusion is that SiRCs based on Nim-type combinatorial games are effective
tools to introduce a genuine (but not necessarily original) mathematical research
activity to students from high school and above.

Keywords Combinatorial games � Nim-type games � Winning position
Losing position � Chocolate game

1 Introduction

This work is based on the Ph.D. thesis of the author (Colipan 2014) and is centered
on combinatorial games and the role they may play in learning the fundamental
know-hows of mathematical activity. We understand by know-how the knowledge,
methods and techniques that are the base of all mathematical activity such as
experimentation, particular case studies, building models, construction of proofs
and definitions, etc.

In the interest of bringing problem solving abilities into the main focus of
mathematics classes, several groups around the world have centered their research
on playful problems as a device that may play an important role in learning and
teaching mathematics. Several authors (Coppé and Houdement 2002; Godot 2005,
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2006; Giroud 2011; Gravier and Ouvrier-Buffet 2009) have shown that they can be
used not only to introduce a new concept, but also to stimulate the learning of the
know-hows related to the mathematical activity.

As a framework for our work we apply the model, Situation de Recherche pour
la Classe (SiRC), created in the French research group math-à-modeler (Grenier
and Payan 2002). This model has been shown to be effective in providing such
playful problems from the field of discrete mathematics (Godot 2006; Giroud
2011). SiRCs are a-didactical situations transposing to the classroom the activity of
an actual researcher in mathematics. Some of their characteristics are that they are
directly related to a real research problem in mathematics, the initial problem can be
easily accessed, elementary mathematical knowledge is enough to understand and
attempt a solution to the problem, it is possible to apply several different solving
strategies, a solution to a problem leads to a new problem, and the didactical
variables of the problem are left open for the student.

In our research we have created several SiRCs based on 2-player combinatorial
games (Colipan 2014, 2015; Colipan and Grenier 2015; Colipan 2016). In partic-
ular, we use Nim-type games, i.e., games played with several stacks of objects. In
each turn a player must remove at least one object according to rules of the game.
The game ends when all stacks are empty (Grundy 1939; Sprague 1935; Berlekamp
et al. 2001). Our choice to use Nim-type games is justified since the competitive
nature makes them attractive and playful, they require little material making them
appropriate for the classroom, the rules are simple and few, and games are usually
short (Delahaye 2009; Rougetet, this volume).

Our main conclusion is that such SiRCs based on Nim-type games indeed show
promise to be effective tools to introduce an authentic mathematical research
activity to students from high school and above. This research activity may or may
not correspond to actual research problems as we will explain in the main body of
the paper, but the goal is to put the students in the position of a researcher. We
believe that mathematical research should be at the core of all mathematical training
since it is by doing what mathematicians do that the students can genuinely learn
mathematical thinking rather than by training procedures.

2 Nim-Type Combinatorial Games

As stated in the introduction, our aim is to provide playful problems that would
develop problem solving skills by recreating with the students the activity of an
actual researcher in mathematics. For such an aim, we have chosen Nim-type
combinatorial games. In all its generality, a Nim-type game is a game where two
players have a number of objects arranged in stacks in front of them. In each move,
a player must take a certain number of objects from the stack according to a rule
agreed upon before the game. The loser is the first player who is unable to play
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since no more valid moves are available. The usual Nim game is the one where the
rule is to take any positive number of objects from one and only one of the stacks
(Grundy 1939; Sprague 1935; Berlekamp et al. 2001).

We give the following example of a Nim-type game. Two players have in front
of them a stack with 11 matches. In each move, a player must take 1 or 2 matches
from the stack. This game is called la course à n in (Brousseau 1998). In Fig. 1 we
show an example where the two players are designated with blue for the first player
and red for the second one.

In the interest of winning the game, a player will inevitably try to find a winning
strategy, i.e., a recipe/method/algorithm that will allow the player to always make a
move leading to victory regardless of what the opponent plays (Duchêne 2006). For
example, in the above game, after playing for a while it is easy to realize that
leaving three matches to the opponent will always allow us to win. See Fig. 2.

A position in the game such that a winning strategy exists is called a winning
position. In the other case it is called a losing position. For instance, the position
with 3 matches in the above game is a losing position as shown in Fig. 2. Some
authors call such positions N and P, respectively. Here N stands for next and P
stands for previous. The meaning for such notation is that for a winning position the
next player to play has a winning strategy and for a losing position the previous
player, i.e., the last player to have played, has a winning strategy. A more careful
analysis of the above game shows that losing positions are exactly those where the
number of matches is a multiple of 3. For any other position, the winning strategy is
to remove the appropriate number of matches to leave a multiple of 3 matches to the
opponent.

Fig. 1 Example of a game

Fig. 2 Winning strategy with
three matches
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3 Research Situations for the Classroom (SiRC)

Research situations for the classroom are usually called SiRCs as an acronym for its
French name Situations de recherche pour la classe. The main goal of SiRCs is,
building on elementary mathematical knowledge, to bring the students, from ele-
mentary school to undergraduate, to a real mathematical practice giving them the
opportunity to develop research in an autonomous way.

SiRCs are a-didactical situations in the sense of Brousseau (1998) that transpose
to the classroom the activity of an actual researcher in mathematics. The SiRC
model was described by Grenier and Payan (2002) as a research situation having the
following properties.

The situation is included in a research problem. Even if the problem has been
already completely solved by professional mathematicians, it must be close to
unsolved problems. The hypothesis is made that this proximity to unsolved
questions, not only for the students but also for the teacher and the presenter
of the situation is crucial for the way the students will face the situation.

The initial question is easy to access. For the question to be easily accessed by
the students, the problem must lay outside over-formalized branches of mathe-
matics. It must be the situation itself that brings the students into the mathematical
aspects of the problem.

Initial solving strategies for the problem exist without the need of mathematical
knowledge out of reach of the students. Such initial solving strategies are required
not to bring a complete resolution of the problem, but some particular cases should
be easy to handle with such strategies. The mathematical knowledge needed to
approach the situation must be kept as elementary and reduced as much as possible,
even if more developed techniques may be required to reach a full solution.

Several strategies to go forward into the research are available and multiple,
possibly conflicting, developments are possible. This, from both the point of view
of the activity (new constructions, proofs, computations) and the point of view of
the mathematical notions required.

A solution to a particular case immediately brings out a new question. The
problem may be extended without limit by the variables left open for the students.
A counter-example does not finish the problem. Instead, it simply changes the
question.

3.1 The Position of the Actors in a SiRC

The didactic contract in a SiRC is not usual since the actors (students and teacher)
are in different positions than in the case of a usual didactical situation. The students
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are in the position of the researcher and they have as the main task to solve the
problem and to produce results that are new to them. The teacher is in a double
position of researcher and manager. He is in the position of a researcher since the
students can ask him questions that he cannot answer easily. In this case he can join
them to look for answers. He is in the position of manager since he has to control
the activity of the students in regards to the learning objectives of the activities: the
fundamental know-hows of mathematical activity.

In the remainder of this paper, we will describe a study of the environment, the
position of the actors and the management of a SiRC in the case of the Nim-type
game known as the chocolate game.

4 The Chocolate Game

The rules for the chocolate game are the following. The players are provided with a
chocolate bar. At each turn, the players have to break the bar following a vertical or
horizontal line and eat one of the pieces, but one of the chocolate squares is made
out of soap. The winner is the player who avoids eating the soap square.

To be able to describe the positions of the game during our mathematical and
didactic analysis below, every position will be denoted by a quadruple P ¼
a; b; s; tð Þ with a; b; s; t integers such that s� a and t� b, corresponding to a
chocolate bar of dimensions a� b where the soap square is located in the position
s; tð Þ as shown in Fig. 3.
It is easy to show that the chocolate game is a geometrical incarnation of the

usual Nim game with 4 stacks of sizes a� s, s� 1, b� t, and t � 1 (Colipan 2014).
As an example, the successive plays in a match of the chocolate game starting with
a bar of dimensions 4� 3 with the soap square at s; tð Þ ¼ 2; 1ð Þ s; tð Þ ¼ 2; 2ð Þ are
shown in Fig. 4.

Light gray color denotes the part of the chocolate that has already been taken.
This match consists in 5 plays since the first image shows the initial position.

Fig. 3 Chocolate bar given
by the position P ¼ a; b; s; tð Þ
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The first player is forced to take the soap square and therefore losses the match.
With best play, the second player can be forced to take the soap square.

5 A Priori Analysis of the Chocolate Game

At first sight, the study of the SiRC, the chocolate game, can be developed in two
stages: the search for easily treatable particular cases and the validation of the
conjectures obtained by studying such particular cases.

On solving the game, we can observe that the size of the chocolate bar and the
position of the soap square constitute research variables of the SiRC. Indeed, the
problem is proposed in an open way and such values are left for the students to
choose while progressing in their research. The direction that the research will
follow will strongly depend on the choices the students make for these variables.

To make their first attempts to solve the problem (initial strategies), the students
have several choices that will lead them to uncover different aspect of the game.
One possible choice for the research variables is to fix s; tð Þ, the position of the soap
square, for instance, a usual choice is to fix the soap square in a corner of the
chocolate bar. Another initial strategy is to fix a; bð Þ, the size of the soap bar, for
instance, work with a bar of size a� 1. The mathematical description of the
winning and losing positions of the chocolate game were described in the author’s
thesis (Colipan 2014). We will not repeat this analysis here.

Fig. 4 Example of a match of the chocolate game
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5.1 Mathematical Notions in the Game

In the SiRC model, the mathematical notions that come into play are not considered
learning goals, but each SiRC certainly brings into play mathematical notions that
appear in the resolution process. In the chocolate game we can find the following
notions that we classify by their nature.

Mathematical notions: these may appear depending on the strategy chosen
to solve the problem. Among them, we have the development and application
of basic notions of number theory concerning prime numbers, factor, multi-
ples and Euclidean division; the use of equivalence classes in the integers
modulo p, the application of symmetry, etc.
Notions specific to combinatorial games: notions described above such as
winning strategy, winning position and losing position.
Fundamental know-hows of the mathematical activity: the chocolate game
brings into play the element needed to formulate and validate results and
hypothesis. We give a detailed account of such know-hows in the remainder
of this section.

5.2 Formulation of Conjectures

To reach conjectures, the students are likely to make two different kinds of
experimentations. First, they will randomly play the game in the phase we call
random experimentation. During this phase, the students will just play on any bar
chosen without meaning. The manager of the situation may later propose that the
students, if they do not overcome this phase on their own, choose certain particular
cases to bring them forward into their research.

In this experimentation the students will appropriate the game and they will
begin to discover its first properties. For instance, they may discover that the losing
positions are all symmetric in the cases where the chocolate bar is of dimension
a� 1 or whenever the chocolate bar is in a corner. Such a conjecture can actually
be proven by a symmetry argument. Indeed, a symmetric position is a losing
position since the opponent may imitate the moves of the first player to play until
the position where only the soap square is left and so winning the match. Another
particular case that can be analyzed with this kind of reasoning is the case of a bar
of dimensions a� 2 after the case of a bar of dimension a� 1 is solved.

After this phase of random play, we make the hypothesis that the students
will follow into a new phase that we call inductive experimentation. In this phase,
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the students will study particular cases specifically chosen to produce more elab-
orate conjectures about the winning strategy regarding more general cases.

The nature of the experimentation in this phase will strongly depend on the
properties identified in the random phase. For instance, the students that have
realized that symmetrical positions are losing in the special cases shown above may
analyze larger bars to try to find more intricate symmetries.

5.3 Validation of Conjectures

We expect the students to produce three different kinds of arguments to validate the
conjectures they may find during the experimentation phase.

Iterative and validative experimentations: a group of experiments is called
repetitive when after issuing a conjecture the students play several matches in
chocolate bars corresponding to their conjecture to test its correctness. As stated by
Giroud (2011), it is not absurd to think that a result that repeats itself over and over
is true. Nevertheless, this is not enough in mathematics.

Experimentation is called validative if it is aimed at finding a counter-example
for a given conjecture. If such counter-example is not found, the conjecture is
considered valid. Such an argument is not a valid proof. Nevertheless, this kind of
reasoning can lead to a proof by exhaustion of cases in the case where we restrict
the research variables so that there are only a finite number of cases. For instance,
the match starting with the position P ¼ 6; 2; 3; 1ð Þ is interesting since it provides
new insight on the game while still possible to be handled by exhaustion of cases.

Mathematical arguments: such arguments appear when attempting to research
more general values for the research variables. A full set of valid mathematical
arguments on different levels were presented in (Colipan 2014) in a language that
may be out of reach of the students. Nevertheless, the contents of such arguments
may be used in demonstrations in a less elaborated form.

Generic examples: A generic example for a SiRC is one that will reveal all the
features of the game needed to come to a conjecture and proof for a winning
strategy. Lacking the formalism to provide an actual proof, students may resort to
such examples as a device that shows what must be done to prove their conjecture.
In the particular case of a chocolate bar with the soap square in a corner, a generic
example is any rectangle large enough that it will allow identifying that symmetric
positions are the losing positions, for instance, the game with initial position
P ¼ 6; 7; 1; 1ð Þ. The same happens for the game with a bar of size a� 1. A generic
example that allows recognizing the symmetric nature of losing positions is
P ¼ 12; 1; 6; 1ð Þ. A complex enough example may allow the students to realize that
they can work out particular examples using a backward case-by-case approach.
Nevertheless, we believe that for the general case, no particular example is enough
to convey all the information contained in the situation.
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5.4 Didactic Variables of the Chocolate Game

There are two kinds of didactic variables in the SiRC, the chocolate game. First, we
have the variables related to the physical support for the game. We can play the
game with several supports such as the obvious pen and paper version but other
supports are also possible and will influence the way the SiRC is perceived. The
game can also be played with cardboard and scissors or even in an online support.

The main research variables for the SiRC are the values of a; bð Þ and s; tð Þ.
Starting from the values a; bð Þ and s; tð Þ we can extract all the necessary infor-
mation to play and even to find a winning strategy for the game. Different values of
P ¼ a; b; s; tð Þ lead to different conjectures inherent to the identification of winning
and losing positions for each subproblem studied.

There is yet another research variable which is related to the number of chocolate
squares that the players are allowed to take at every turn. Even if the statement of
the SiRC we provide introduces no restriction on this number, a restriction would
lead to a development of this SiRC into the grounds of subtraction games that have
also been studied by the author in her thesis (Colipan 2014). Such problems are, in
general, unsolved from the point of view of research in mathematics.

6 Description of Student Work

An experimentation of the chocolate game as a SiRC was carried out with first year
students at the Universidad Católica del Maule whose studies are leading to
becoming mathematics teacher at the high school level. Here page restrictions only
allow us to give a brief account. Detailed analysis can be found in (Colipan 2015).

A total of fifty students participated in the experiment for a total time of four
hours each divided into two sessions. The participants were organized in groups of
three or four students. The material the students had at their disposal was controlled.
This was done since previous studies by the author (Colipan and Grenier 2015)
suggest that for such geometrical versions of Nim-type games the availability of
squared paper distracts the students from the research nature of the problem and
they restrict their analysis to cases bounded by the number of squares in their paper
sheets. Each group had at their disposal the statement of the chocolate game as
stated above but translated into Spanish, white paper and pens of different colors.

All the interactions in five of the groups were recorded via audio and video
recorders. Moreover, to gather as much information as possible, four observers took
selected notes on each of the groups developments. The experiment was managed
by two researchers including the author of this paper. Both researchers were
observing every group to check for understanding. They specifically did not provide
answers based on their previous knowledge of the game, but could provide neutral
answers to encourage the students in their research.
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The devolution of the game was rapidly developed by the students and remained
active through all two sessions. Once the game description was delivered to the
students they all quickly started looking in a playful way for winning strategies for
the game. This led them to perform autonomous research without any difficulty and,
at times, without even realizing they were indeed doing mathematical research.

The notions of winning and losing positions were well assimilated by the stu-
dents during their research and especially in the elaboration of conjectures. In
particular, the students were able to capture the difference between a win due to
random play and a win due to a winning strategy. They also grasped the idea that a
winning strategy depends only on the current position of the game and not on the
previous moves. Figure 5 shows the results by a group that managed to obtain a
valid winning strategy for the case of a chocolate bar of dimensions a� 1. On the
left side drawing, they conclude that whoever leaves equal number of chocolate
squares on each side of the soap square wins. On the left side drawing, they
conclude that if there is equal number of chocolate squares on each side of the soap,
then the first player to play loses.

All groups were able to formulate some conjectures regarding the situation, even
if not all of them were correct. On the other hand, the search for winning strategies
was not the same in all groups. Some groups remained in the local level for their
conjectures by working on particular cases while other groups tried to generalize
their observations by attempting to find winning strategies for some families of
chocolate bars as shown in Fig. 5.

The elements of validations of conjectures were mainly examples and coun-
terexamples. The only formal mathematical proofs that were observed during this
experimentation were done by exhaustion of cases. In all other cases the validation
was done in an informal way. For instance, in Fig. 6, the student gives an informal
proof by symmetry of a winning strategy for the chocolate bars of dimensions a� a
and a� 1.

Shortcomings in oral and written expression by the students were a problem for
them to be able to communicate their ideas. Most groups had serious problems in
finding words that described their actions already at the level of oral communica-
tion. We believe this may happen due to lack of practice in group interaction in their
mathematical training.

Fig. 6 Informal proof of a winning strategy by symmetry

Mathematical Research in the Classroom via Combinatorial Games 225



7 Conclusion

The SiRC called the chocolate game, is a playful situation that brings into play the
fundamental know-hows of mathematical activity such as experimentation via trial
and error (by random and validative experimentation), experimentation on partic-
ular cases to reach conjectures about more general cases (in the search for a winning
strategy), ruling out conjectures by counter-examples or the validation of conjec-
tures. This allows us to reach the conclusion that research situations based on
Nim-type combinatorial games may induce a genuine mathematical activity that
goes beyond the development and practice of techniques inherent to current
mathematical instruction. Indeed, such SiRCs show themselves as a source for
learning the fundamental know-how of all mathematical activity. Recall from the
introduction that we understand by fundamental know-how of the mathematical
activity the knowledge, methods and techniques that are the base of all mathe-
matical activity such as experimentation, particular case studies, building models,
construction of proofs and definitions, etc. This conclusion agrees with our previous
study based on a different combinatorial game called the Euclid game (Colipan and
Grenier 2015).

On the other hand, the perception that the manager has in regard to the situation
is of fundamental importance. The manager must be convinced that in the context of
a playful situation it is possible to create the environment for an a-didactical situ-
ation in mathematics. The manager must also understand that the main goal is to
bring the students into the resolution process of a mathematical problem and that
the research for solutions, and not the solution itself, is the interesting part in the
process. This requires the acceptance of contributions by the students into the
research process that comes only from intuitive or even personal grounds.

As a byproduct of our approach, it is possible that students improve their
mathematical writing techniques while experimenting with a Nim-type SiRC.
Indeed, it is only by having the need to communicate their findings to others that
students can develop such skills. The SiRC model has embedded in its core the
need to communicate results and Nim-type games can be particularly suited for this
due to the little formal mathematical language needed to write statements.

We can say that such situations created around combinatorial games can induce
in the students a significant learning of the fundamental know-hows of mathe-
matical activity, as long as we accept that the objective in studying mathematics is
to learn mathematical thinking and processes rather than to cover a fixed mathe-
matical curriculum. For this learning to take place, the goal of such activities must
be made clear to all involved: get the students to participate in an autonomous and
effective way in a research situation without constraining them to learn any par-
ticular notion or procedure. We believe that mathematical teaching should have as
main goal to develop critical thinking and this can better be achieved by bringing
the student into a genuine mathematical activity rather than by learning a specific
set of skills and notions.
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Machines Designed to Play Nim Games
(1940–1970): A Possible (Re)Use
in the Modern French Mathematics
Curriculum?

Lisa Rougetet

Abstract The latest reform of the French high school education system leads to
changes in the content of the curricula. In mathematics, a new theme entitled
algorithmic and programming aims at initiating pupils (7th–9th grades) to “write,
develop and run a simple program.” To achieve this, the curriculum offers several
class activities centered on “games in a maze, …, Nim game and Tic-Tac-Toe.” As
the mathematical solution of Nim relies on the binary system, easily characterized
by bistable circuits, the first electromechanical Nim playing machines were built in
the 1940s, followed later by smaller and purely mechanical machines. This article
presents these inventions—which claimed pedagogical purposes—and considers
their use in class as a recreational application to tackle the algorithmic and pro-
gramming theme.

Keywords Algorithmic � Boolean algebra � Combinatorial games
Nim game � Nim-like games � Nimatron � Nimrod � Geniacs � Dr. Nim

1 Introduction: High School Curriculum Reform
in France and Nim Games

Up to September 2016 in France, the high school mathematics curriculum was
structured around four main themes: functions and data management, numbers and
calculus, quantity and measurement, and geometry. Since the latest reform, a new
theme has been added, entitled algorithmic and programming.1 The resources
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provided by the government point out that “It [the teaching] makes possible to
acquire methods that build the algorithmic thinking […]. Having an expert
knowledge of computing languages is not a purpose, but using them is a way to
acquire other processes of investigation, other methods to solve simulation or to
model problems.” The expected skills at the end of the 9th grade are:

• breaking down a problem: analyzing a complex problem, and dividing it into
sub problems;

• recognizing patterns: looking for invariant and repetition;
• generalization and abstraction;
• designing algorithms.

To do so, one of the proposed activities is to work on games: “to program
playful applications (mazes, pong, battleship, nim, tic-tac-toe …)”. And one of the
suggestions is that it can be done “unplugged”, i.e. without any computer devices.

This idea raises the question of using Nim-like games, and the machines that
were built to play them, in mathematics teaching; how can they motivate students,
which skills do they develop, could the machines be (re)-used in class to help pupils
develop algorithmic thinking? As the reform is brand new, the considerations
developed in this chapter remain theoretical, especially concerning the construction
and the use of mechanical Nim playing machines.2

The first part of this chapter underlines the pedagogical aspects of Nim-like
games and presents a short history of combinatorial game theory. We will see, as
Ximena Colipan highlighted it in her Ph.D. thesis (2014) and in her chapter in this
book, that combinatorial games may play a role in developing certain skills of
mathematical practice and that they offer research activities for students from high
school to university.3 Knowing their history and the development of their mathe-
matical theory is important to understand the epistemic issues that students face
when they play the game and try to solve it.

The second part focuses on the first machines that were built to play Nim against
a human being between the 1940s and the 1970s. They were designed not only to
entertain, but also to explain concepts in mathematics, algorithmics, and computer
science to a general public, when exhibited during fairs or science shows. During
the 1950s, to reduce production costs, purely mechanical or slightly electrical
machines were manufactured for personal use, with claimed pedagogical benefits to
understand elementary level instructions in computing as well as the rules of the
binary system and notions of Boolean algebra.

2A preliminary version of the present chapter can be found in Radford et al. (2016).
3As far as I know, Colipan and the group she worked with during her Ph.D. are the only ones, in
France, who experimented combinatorial games in class and published didactical results on it. The
federative structure “Maths à Modeler” (whose aim is to propose workshops to the general public
to discover fundamental computer sciences and mathematics) and “Plaisir Maths” (structure of
mathematics popularization which gather animators, teachers and researchers to create and orga-
nize playful and didactical mathematical projects) also use combinatorial games in their actions of
scientific dissemination.
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I have not been able to find any documents or evidences that could show if these
machines were actually used in class, or in other teaching contexts, to teach students
some particular notions of discrete mathematics (this work is still in progress).
Therefore, the discussion presented in this chapter about the educational potential of
Nim game playing machines—both in their building and their practicing—to
acquire algorithmic knowledge and develop skills in problem solving remains
embryonic. As of this writing, I do not know of any classroom implementations that
were led on this matter, but hope such experiments will be recorded soon.4

2 Nim-Like Games: History and Didactical Features

Nim-like games fall within the class of combinatorial games. In a combinatorial
game, there are only two players, playing alternately. Usually, there are a finite
number of positions and the information is complete—which means both players
know what is going on at any moment of the game. There are no chance moves
such as rolling dice or shuffling cards and in the normal play convention the player
who finds himself unable to play loses.5

The Nim game—as it was introduced for the first time in 1901—is considered a
take away game: usually three (or more) piles of counters are set on a table; each
pile contains a different number of counters. Alternately, both players select one of
the piles and remove as many counters as they want: one, two … or the whole pile.
The first player who takes the last counter(s) wins the game. An example of a
possible initial position is shown in Fig. 1. There are many different versions of
Nim, depending on the initial number of piles and counters, and how they can be
removed. Thus, any initial position poses a new problem, which needs to be ana-
lyzed using the results obtained for the previous configurations. This characteristic
leads to developing pattern recognition skills (to find out how we attain a position
already reached, which made us win), and to work on generalization (to find out if a
general method can be developed to win the game in any position).

Being familiar with the history and the mathematical development of Nim-like
games has a double interest: on one hand, it provides material to set up interdis-
ciplinary activities (required in the curriculum) that combine history, mathematics,
and computer science. On the other hand, playing Nim-like games in order to solve
them (finding a winning strategy) places students in an epistemic approach through
a singular experimental situation “that they can live and in which the knowledge
will appear as the optimal solution to the problem” (Brousseau 1998, p. 49).

4In the same way that there are objects in physics and chemistry, there exist mathematical objects
whose handling gives a meaning to theoretical mathematical concepts, and there exist studies on
the construction and analysis of such mathematical objects, for instance Caroline Poisard’s thesis
on calculation instruments (Poisard 2005, p. 9).
5In the misère play convention the player who finds himself unable to play wins.
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2.1 A Brief History of Combinatorial Game Theory

The starting point of the history of combinatorial game theory is commonly dated to
1901, when a Nim game was first mentioned under this name in an article published
in the Annals of Mathematics by Charles Leonard Bouton (1869–1922), a mathe-
matician from Harvard.6 In this article, Bouton gives the complete mathematical
solution to Nim (Bouton 1901), that is, a strategy to win every game. First, the
number of counters in each pile must be written in binary. Then these binary
numbers are placed in three horizontal lines so that the units are in the same vertical

Fig. 1 Example of an initial
position of the Nim game:
three piles containing
respectively 7, 5 and 3
matches

6Actually, things are not so definite: we have found earlier analyses of combinatorial games in
recreational mathematics books from the 16th century and thereafter. See, e.g. Rougetet (2014,
2016).
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column. The sum of each column is calculated and if all of them are congruent to 0
mod 2, the position left on the table is called a safe combination. Such positions
should be reached at each move in order to win the game, and as soon as we reach
one, it is possible to obtain another one on our next move, but not for our opponent.

Indeed, safe combinations have the following properties: “I. If A leaves a safe
combination on the table, B cannot leave a safe combination on the table at his next
move. II. If A leaves a safe combination on the table and B diminishes one of the
piles, A can always leave a safe combination” (Bouton 1901, p. 36). The general
theory of Nim using the binary system may not often be discovered by pupils, but
the aforesaid properties of safe combinations, defined in a recursive manner, are
often understood rather well, even if not explicitly assimilated (Colipan 2014,
p. 140 in the context of the geometrical Euclidean game).

Bouton’s article is considered as a cornerstone of the development of combi-
natorial game theory, because, unlike recreational mathematics books of the 16th,
17th and 18th centuries, it gives a solution to any possible initial position, no matter
the number of piles and objects in each pile. Admittedly, one can find the earliest
trace of combinatorial game in Luca Pacioli’s De Viribus Quantitatis (1508), a
collection of arithmetical and geometrical problems, in which the following prob-
lem is proposed: “alternatively, two persons sum up numbers between 1 and 6, the
first who reaches 30 wins. Does the first or the second player win?” We can
recognize here a variant of “la course à 20”7 that Brousseau extensively analyzed
while presenting the frame of his theory of didactical situations (Brousseau 1998).
But it should be noted that those recreational problems were solved only in a
particular case; only one solution was given to a specific problem with particular
numbers and there was no explanation using arbitrary numbers or variables. This
remained true until the end of the 19th and the early 20th century, probably because
of the relatively late development of algebra (Rougetet 2016).

After Bouton’s article, combinatorial game theory was developed within the
field of mathematics and became a beautiful abstraction with John Conway’s sur-
real numbers in 1976. Conway’s construction admirably generalizes Dedekind cuts
and his theory distances itself from its original subject of study, namely games.
Nowadays, combinatorial game theory is a branch of mathematics that connects
mathematics (graph theory, set theory) and computer science (programming, arti-
ficial intelligence).

2.2 Didactical Aspects of Nim-Like Games

Nim-like games, and combinatorial games in general, provide a winning strategy
for one of the two players. It means that, theoretically, it is possible to know the

7In “la course à 20” (“the race to 20”) each player adds 1 or 2 to the previous result and the first
who reaches 20 wins.
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nature of any arbitrary position in the game (winning position or losing position), if
we assume that both players play optimally.8 In this chapter, a position is said to be
a winning position if there exists a winning strategy for the player who is about to
play. A position is a losing position if there exists a winning position for the
previous player who just played.

2.2.1 Mathematical Practice, Institutional Knowledge,
Non-institutional Knowledge

Different kinds of knowledge are associated with combinatorial games. Colipan
(2014, p. 36) distinguishes non-institutional knowledge, which includes
game-specific notions, such as winning and losing positions and winning strategy,
and institutional knowledge, which consists of mathematical notions that can be
found in the usual curriculum, for example properties of integers, induction,
recursion, etc. The association of the latter type of knowledge indicates that the use
of combinatorial games in class is appropriate for learning fundamental notions in
mathematics through a playful situation.9

Playing and analyzing Nim-like games is also appropriate to develop the skills
inherent in the “algorithmic and programming” theme of the new French curricu-
lum reform. First, to understand how a game can be won in a general case, one
needs to analyze simpler positions, i.e., positions that occur at the end of game.10

This requires a player to break down the initial problem, which is quite complex,
into simpler sub-problems and to try to generalize some configurations.11 Then,
even if games differ in their design from one to another, the ideas implemented to
develop winning strategies are the same, centered on the properties of winning and
losing positions. Thus, they stimulate pattern recognition (to identify a configura-
tion seen before) and abstraction (to understand the underlying strategy regardless
of the form of the game).

Beyond these notions connected to combinatorial games properties, Nim-like
games could be good training to develop abstract thinking (to imagine what the
opponent will play to better counter him). They could be used to introduce

8In practice, the analysis can be very complex, because of the high number of possible positions in
most games.
9This approach is not new: the oldest analyses of games—which we would qualify nowadays as
combinatorial—have been found in recreational mathematics books in the 16th century. Their
main purpose was to “tickle curiosity” (Barbin 2007, p. 22), but also to use a playful dimension to
acquire mathematical knowledge.
10For instance, when they play Nim game, pupils quickly start to analyze whether (1, 1), (1, 2) or
(1, 1, 1) are winning or losing positions. These observations have been made on a group of 12
pupils (14–15 years old) in the context of a “mathematical summer camp” organized by Plaisir
Maths in June 2016.
11E.g., once pupils have understood that (1, 1) and (2, 2) are losing positions, they can figure out
that (n, n) is also a losing position, for any n. The same occurs with (1, 1, n), which is a winning
position for any n.
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enumeration (given a position, what are the possible moves?) and to broach graph
theory through game trees, which represent the possible connections between the
positions in the game. But, as we said before, since the reform is brand new, the use
of combinatorial games in class is still in its early stages.

Furthermore, combinatorial games enable the creation of situations of mathe-
matical research through an experimental approach. For example, Nicolas Giroud
(2011) describes an experimental approach focused on the implementation and
analysis of three kinds of actions in problem solving: “presenting new problems,
experimenting-observing-confirming, and trying to prove” (Giroud 2011, p. 7), all
of which actions can arise when playing combinatorial games.

More generally, combinatorial games stimulate an interaction with an environ-
ment suitable for developing mathematical practices: discovery phases, conjectures,
trial and error periods, reformulation, proof arguments, etc. For instance, it is
interesting to submit a given position of a game to pupils and to ask them to
determine its nature (winning or losing). They can put their ideas to the test and
confirm or invalidate their hypothesis by playing directly.

Combinatorial games also enable pupils to become more autonomous, and
improve their personal relationship with mathematics. In this kind of playful
activity, pupils’ involvement is different, because it stimulates group work and
communication, prevents from determent, and can motivate pupils with learning
difficulties: wanting to find how to win is a strong pedagogical lever (Pelay 2011,
p. 199). Thus, these games help address the affective domain of learning mathe-
matics, as discussed more fully in Goldin’s chapter in this book.

2.2.2 Playfulness and Learning

Playing Nim-like games—first of all meaning having a playful activity—is directly
connected with the mathematical issue of the situation: to find a winning strategy.
Brousseau (1998) fully describes this aspect when he presents “la course à 20” (“the
race to 20”) to explain his theory of didactical situations. This idea is in accordance
with Nicolas Pelay’s main thesis: “it is possible to play and learn mathematics
simultaneously and without inconsistency in an activity” (Pelay 2011, p. 53). The
background of his work is slightly different from the regular school environment—
scientific activities with teenagers in holiday camp—but his fundamental hypothesis
“games are a decisive motivation of devolution in an a-didactical situation” (Pelay
2011, p. 52) seems completely compatible with playing combinatorial games in
class to discover mathematical notions of game theory and other associated
mathematics.

One factor that makes games enjoyable is the manipulation of objects:
“Manipulation of objects belongs both to a playful environment and to a mathe-
matical environment. The playful enjoyment is a lot into the manipulation of the
game in itself (pieces, dice, counters, cards, etc.)” (Pelay 2011, p. 204). Thus, pupils
may be more focused on the task and may less directly feel the pressure of an
explicit mathematical approach that will enable them to find the winning strategy.
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Moreover, using counters in Nim-like games can help to picture the problem better
and enables a quick representation of a position at any moment of the activity (if the
teacher is in a devolution or institutionalization phase).

Godot (2005) shows that concrete materials, even very simple ones such as those
required for combinatorial games, stimulates manipulation, which is useful to
investigate problems. Concrete material helps pupils to exhibit their solutions, their
methods, to formulate their conjectures, without using any complex mathematical
notions. Action is an essential part of mathematics learning for it gives meaning to
the mathematical activity through its experimental dimension. While playing, pupils
enter an activity of investigation and are involved in the game at the same time, in
order to develop new strategies (Pelay 2011, p. 256).

Finally, combinatorial games present an important cultural dimension; they have
endured over time, and the interest they arouse among mathematicians is a witness
of their richness. The teacher willing to organize activities and experiments centered
on combinatorial games in class should be informed by epistemic and historical
knowledge (Durand-Guerrier 2007, p. 17) in order to understand the epistemic
approach that students face when they play the game and try to solve it. Thus, a
historical perspective is essential to maximize the mathematical and play potential
of combinatorial games.

3 Machines Designed to Play Nim Games (1940–1970)

As outlined above, (Sect. 2.1) combinatorial game theory was developed within the
mathematical field. Meanwhile, the Nim game was introduced to the general public
through machines designed to play against human players. The initial ambition was
to entertain, but also to explain to people how machines operated, and what
mathematics was involved. We will see that the first machines were so big that they
were exhibited during fairs or science shows. Then, personal machines, totally
mechanical or partially electronic, were designed, especially to serve as learning
tools to help understand some basic ideas in computer science (and also to reduce
the production costs).

3.1 Machines Exhibited During Fairs and Science Shows

In the spring of 1940, an electromechanical Nim player machine weighing a ton,
called The Nimatron (see Fig. 2), was exhibited at the Westinghouse Building of
the New York World’s Fair and played more than 100,000 games (and won 90,000
of them). Two members of the Westinghouse Electric Company staff invented it
during their lunch break. Condon, the signatory of the US Patent (Condon et al.
1940), underlined the entertaining purpose of the Nimatron, but also specified that it
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could illustrate “how a set of electrical relays can be made to make a decision in
accordance with a fairly simple mathematical procedure.” (Condon 1942, p. 330).

The Nimatron was set to play Nim with 4 piles containing up to 7 counters. The
human player began the game, and only 9 initial configurations were possible (due to
spacelimitations), each of them being unsafe combination (using Bouton’s vocab-
ulary), so that the human player had a chance to win. The lamps (which can be seen
on Fig. 2) a1 to a7 (7 lamps for the 7 counters of the column a), b1 to b7, c1 to c7
and d1 to d7 were connected in circuits, which were controlled by relays A1 to A7,
B1 to B7, C1 to C7 and D1 to D7 respectively, each of them controlled by a master
relay A, B, C and D (one for each column). Other relays, AZ, BZ, CZ and DZ were
activated when the number of energized lamps in the corresponding columns a, b,
c and d, respectively, contained a zero power of 2; the relays AF, BF, CF and DF
were activated when the number of energized lamps in the corresponding columns a,
b, c and d, respectively, contained a first power of 2, and the relays AS, BS, CS and
DS were activated when the number of energized lamps in the corresponding col-
umns a, b, c and d, respectively, contained a second power of 2 (the maximal number
of lamps being 7, 111 in binary). To play the game properly, the machine had to
determine whether any power of 2 was contained in the number of energized lamps
in an even or an odd number of columns. If the three powers of 2 appeared in an even
number—which meant that the human player left a safe combination—the machine
played randomly; otherwise it analyzed in which column a change should be made to
obtain an even number of the three powers of 2.

In 1942, the Nimatron was exhibited for the last time at the convention of the
Allied Social Sciences associations in New York City under the sponsorship of the
American Statistical Association and the Institute of Mathematical Statistics. Then
the machine was added to the scientific collections of the Buhl Planetarium in
Pittsburgh (Condon 1942, pp. 330–331).

A few years later, Ferranti, the electrical engineering and defense electronics
equipment firm, designed the first digital computer dedicated to play Nim, The
Nimrod. It was exhibited at the Festival of Britain (Exhibition of Science) in May
1951 and afterwards at the Berlin Trade Fair (Industrial Show) in October of the
same year. These exhibitions were a great success and many witnesses related that
the most impressive thing about the Nimrod was not to play against the machine,
but to look at all the flashing lights which were supposed to reflect its thinking
activity. It had even been necessary to call out special police to control the crowds
(Gardner 1959, p. 156). This particular display was built for the purpose of illus-
trating the algorithm and the programming principles involved.

The instructions followed by the Nimrod were written on the left side, as shown
in Fig. 3. Moreover, a booklet was available for visitors,12 for the price of one
shilling and six pence, which contained a lot of information about automatic digital
computers in general. The introduction states:

12The booklet, released in 1951, The Ferranti Nimrod Digital Computer, is available at the
following website: http://goodeveca.net/nimrod/NIMROD_Guide.html.
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the machine has been specially designed to demonstrate the principles of automatic digital
computers […] the booklet has been prepared for those persons who desire to learn a little
more about computers in general and of Nimrod in particular.

Fig. 2 A young lady playing against Nimatron (Condon 1942, p. 330)

Fig. 3 Drawing of the Nimrod, with instructions on the left side. “The display in front of the
machine is used to demonstrate the process involved when Nimrod carried out a move” (Nimrod
1951)
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Explanations of main notions, such as electronic brains, calculating machines,
automatic computers, automatic sequence control and characteristics of automatic
computers (calculation, memory, and making decisions) are given in the first part of
the booklet. The second part is devoted to Nimrod functioning (“some details of the
machine”, “the way in which Nimrod plays Nim”…). “Nimrod has been designed
so that it can play the game of Nim with an opponent from the general public or it
can be given a “split personality” so that for demonstration purposes it will play a
game without an opponent” (Nimrod 1951).

For instance, the instructions run by the program while Nimrod plays Nim are
the following:

1. Examine the column specified by the column counter. If this is even, transfer
control to 7.

2. Examine the digit specified by the column and heap counters. If this is 1,
transfer control to 4.

3. Add 1 to heap counter. Transfer control to 2.
4. Examine heap selected memory. If a heap has previously been selected, transfer

control to 6.
5. Operate heap selected memory.
6. Substitute modifying number in heap specified by heap counter.
7. Deduct 1 from column counter. If this does not complete examination of col-

umns transfer control to 1.
8. STOP.

This terminology is specific to algorithmics and programming: a set of
instructions is provided, ordered in a logical way and described with conditional
statements proper to Boolean data type. In a common language that everyone can
understand, the procedure executed by the machine is thus explained (the earliest
high-level programming languages with strong abstraction were written in the
1950s). The study of the program above with pupils in class could be used as an
introduction to explain how to design an algorithm (as a systematic set of
instructions), which is a required skill in the new French curriculum.

The Nimrod booklet also contains a glossary with definitions of the terms used.
The authors highlight the quick evolution of automatic digital computers during the
1950s and want to clarify the new terminology that arises for describing the
machines. Once again, there was a real will to use the simplest possible explana-
tions in order to embrace the widest audience. We do not know for sure if the
Nimatron or the Nimrod had a pedagogical impact in mathematics education, but
obviously their exhibition attracted a lot of people. A few years later, smaller
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machines, cheaper to produce, appeared for pedagogical purposes, and were
intended for a wide audience.13 They are the subjects of the next section.

3.2 Machines Designed for Personal Use

Since 1945 there has been interest in helping people understand how automatic
machines reason, calculate, and function. For example, consider Geniacs:

And we know that equipment that you can take into your hands, play with, and do exciting
things with, will often teach you more, and give you more fun besides, than any quantity of
words and pictures. (Geniacs, 1955a, p. 2)

This promotes the educational toy Geniac designed and marketed by Edmund
Berkeley and Oliver Garfield between 1955 and 1958.

Berkeley (1909–1988) was a mathematician, insurance actuary, inventor, pub-
lisher, and one of the founders of the Association for Computing Machinery
(ACM) (Longo 2015). In 1949, he published a book titled Giant Brains or
Machines That Think, which was the first explanation of computers intended for a
general readership.14 In the 1950s, Berkeley developed mail-order kits for small,
personal computers such as Simple Simon and the Brainiac. At a time when
computer development was on a scale barely affordable by universities or gov-
ernment agencies, Berkeley took a different approach and sold simple computer kits
for middle income Americans. He believed that digital computers, using mecha-
nized reasoning based on symbolic logic, could help people to make more rational
decisions. These considerations show that the idea of handling objects to help the
teaching of mathematical (here, logical) concepts is not new.

It has been suggested (Brougère 1995) that until the 20th century, games were
not considered as direct educational tools. “Recreation is essential but game has no
status beyond it” (Brougère 1995, p.135). This position has been evolving and now
it is recognized that to construct a mathematical concept, a first phase of action is
essential to build a mental representation (even if this handling phase alone cannot

13Other machines designed to play Nim were created between 1941 and 1958, but in a more
mathematical sphere. In 1941, an assistant professor of mathematics at the University of California
in Los Angeles (Gardner 1959, p. 156), Raymond Moos Redheffer, improved considerably the
Nim-playing machine (Redheffer 1948). To our knowledge, Redheffer’s machines were not
exhibited to a broad public, consequently they were less known. In 1952, engineers from W.L.
Corporation, Hubert Koppel, Eugene Grant and Howard Bailer, developed a lighter machine than
Nimatron or Nimrod, as it weighed less than 25 kg and cost $2000 to build. We would like to note
that the machines mentioned in this note had no clearly expressed pedagogical or educational
aspirations and were probably not much widespread. Nevertheless, Pollack’s DEBICON (1958)
can be found on Popular Electronics magazine cover, which soon became the “World’s
Largest-Selling Electronics Magazine” (see Fig. 4, left).
14His journal Computers and Automation (1951–1973) was the first journal for computer
professionals.
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be enough to learn, and a mediation with the teacher, or someone who knows, is
necessary). Construction kits such as Simple Simon and Geniac provide the nec-
essary material to grasp mathematical and easy computer science notions and could
be revisited nowadays in mathematic classes to illustrate the procedure of an
algorithm. This idea will be further developed in the section devoted to Machines or
Computer Type Devices for Educational Use Patented, with Dr. Nim.

When it was released in 1950, Simple Simon was the “World’s Smallest Electric
Brain” (see Fig. 4, right). It weighed 39 lb and showed how a machine could do
long sequences of reasoning operations. “The machine itself has been demonstrated
in more than eight cities of the United States”15 (Geniacs 1955a, p. 2). “He will be
useful in lecturing, educating, training and entertaining” (Berkeley and Jensen
1950, p. 29). By 1959, more than 350 sets of Simon plans had been sold, but it cost
over $300 for materials alone, and Berkeley and Garfield admitted, “it is therefore
too expensive for many situations in playing and teaching” (Geniacs 1955a, p. 2).
That is the reason why they worked four years long to develop a really inexpensive
electric brain: Geniac, a construction kit costing less than $20.

Fig. 4 Popular Electronics cover, January 1958 (left) and Radio-Electronics cover, October 1950
(right)

15Simple Simon was exhibited in New York, Seattle, Philadelphia, Boston, Washington, Detroit,
Minneapolis, Pittsburgh, and other smaller cities. The fact that Berkeley could take Simon from
place to place meant that students and other non-experts could have firsthand contact with auto-
matic computing equipment “for real”.
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3.2.1 Geniacs

The name Geniac stood for “Genius almost-Automatic Computer” (Geniacs 1955a,
p. 2). The construction kit consisted of 30 small electric brain machines—each one
being a Geniac—which could be made with very simple electrical equipment. The
guide supplied with the kit first gave a general description of the material and the
way the different components worked.

One of the proposed problems was to design a Geniac that could play Nim in
normal convention with four piles of matches, containing respectively 4, 3, 2 and 1
matches. The solution of the wiring is shown in Fig. 5.

Besides the construction of machines to play games such as Nim, Tic-Tac-Toe or
to answer recreational mathematical riddles such as the Two Jealous Wives, the kit
provided other Geniacs to illustrate more purely mathematical problems such as the
adding machine, the multiplying and the dividing machines, or the machine for
arithmetical carrying (Geniacs 1955a, p. 4). A 1958 advertisement explained all the
interesting aspects of Geniac and highlighted its popularity, its pedagogical interest
and its low price (see Fig. 6).

For only $19.95, Geniac offered a complete course in computer fundamentals
used by thousands of colleges, schools and private individuals. It seems that in
October 1958, more than 30,000 Geniacs kit were in use by satisfied customers.
The advertisement clearly underlined the pedagogical purposes of Geniac for
understanding notions of mathematics and computer engineering:

Fig. 5 a Geniacs (1955a, p. 36), b Geniacs (1955b p. 15)
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Geniac is a genuine electric brain machine, not a toy. The only logic and reasoning machine
kit in the world that not only adds and subtracts but presents basic ideas of cybernetics,
Boolean algebra, symbolic logic, automation, etc. So simple to construct that a
twelve-year-old can construct what will fascinate a Ph.D. (Geniac 1958, p. 29)

Berkeley designed Geniac to be a tool for educators and it seemed it had some
success in this area (Longo 2015). In 1958, the Mathematical Gazette published an
article of a mathematics teacher, Martyn H. Cundy, who developed plans for a
binary adding machine for classroom use. The machine could add two binary
numbers of two digits or three digits (with or without carry). Cundy credited his
work to Geniac that taught him the fundamentals for building his own machine and
demonstrated that some knowledge of binary arithmetic should be part of the
mathematical knowledge of the normal grammar-school pupil (Cundy 1958,
p. 272). In 1956, in the magazine about education Phi Delta Kappan, Daniel

Fig. 6 Advertisement for
Geniac (Geniac 1958, p. 29)
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Davies16 covered “breakthroughs” in educational administration, in which he
detailed areas where new developments were having impacts on education. These
included mathematics, for example game theory or binary numbers systems, and
Davies claimed: “Boolean algebra is already at work in problem solving. One firm
is advertising a kit for setting up an ingenious device known as Geniac which can
quickly solve a wide range of problems involving multiple choices” (Davies 1956,
p. 276). Moreover, as the 1958 advertisement stressed: “In addition to its value as a
source of amusement and education the kit exhibits certain technological features
that may have widespread implications in other areas” (Geniac 1958, p. 28).

The use of Berkeley small electrical brain machines in classrooms and how they
impacted the teaching of mathematics is difficult to ascertain and this part of the
work is still in progress. However, the popularity of Geniac during the 1950s is seen
through many electronics magazines and science journals.17

3.2.2 Machines or Computer Type Devices for Educational Use
Patented

We have already mentioned that the main problems of electromechanical machines
such as Nimrod and Nimatron were, first of all, their size, and also their expensive
production cost: “Standard electronic computers […] have been both bulky and
expensive” (Du Bosque 1962). That is why during the 1960s, smaller electric or
purely mechanical inventions, in the same vein as Geniac,18 were patented for their
“durability and reliability in use” (Weisbecker 1968). And they were explicitly
designed to have educational value.

For example Joseph Weisbecker’s invention, related to a unique mechanism in
the nature of a computer for use as a toy, game, puzzle or educational device, was
advertised “to illustrate computer operation and logical techniques […]”
(Weisbecker 1968). Moreover, these inventions permitted “the achievement of
elementary level instructions in computers” (Godfrey 1968). “[…] the invention is
an educational device for indicating the best play to be made […]” (Du Bosque
1962). “It is a principal object of the present invention to provide improved edu-
cational game apparatus which permits the learning of strategy techniques, logic
methods, and mathematical systems” (Morris 1971). Authors of such patents also
justified the interest of their machines by filling the gap left “in the ability of the

16Daniel R. Davies was executive director between 1954 and 1959 of the UCEA (University
Council for Educational Administration), an organization aimed to improve the professional
preparation of educational administrators.
17For example, Popular Electronics or Galaxy Science Fiction magazines. A Ngram research in
the English Google books corpus shows a net increase of the use of the term “Geniac” between
1955 and 1960: https://books.google.com/ngrams/graph?content=Geniac&year_start=1940&year_
end=2000&corpus=15&smoothing=3&share=&direct_url=t1%3B%2CGeniac%3B%2Cc0.
18For example, during the early 1960s, Berkeley created other electric brain machines with
Brainiacs and Tyniacs kits.
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student to understand and comprehend what a computer is all about” since the
venue of high-speed electronic digital computers (Godfrey 1968). They emphasized
the importance of presenting an invention that would provide a game and a teaching
aid “so as to attract persons of higher intellectual level, while maintaining relative
simplicity for attention arresting use as a toy by relatively young children”
(Weisbecker 1968).

Some of these inventions were marketed and sold as family parlor games.
Dr. Nim is one of them: it was manufactured by E.S.R. Inc., a company specialized
in education toys during the 1960s, and was equivalent to a single pile Nim game
where 1, 2 or 3 counters could be removed at each move. Dr. Nim was played by
one player—against the machine—and offered several starting positions: the game
could be played in normal or in misère convention (the last player to move loses)
and the initial number of marbles could vary between 9 and 20 (see Fig. 7). Here
again the diversity of initial configurations encouraged the investigation of a
strategy that could lead to a win for any game.

The Dr. Nim device included a number of flip-flops—bistable circuits (see
Fig. 8)—being moved by marbles when they fell down, “so as to allow mathe-
matical computations to be effected upon binary numbers to which the flip-flops are
set” (Godfrey 1968).

Inclusive among the concepts which may be explained and understood by this computer
invention are the following: the binary number system; the simplicity for machine design
using binary arithmetic; […] the rule for binary counting and addition; modular arithmetic;
the use of two’s complement arithmetic to achieve subtraction with only its add capability;
[…] binary multiplication. (Godfrey 1968)

Like the Nimrod, Dr. Nim provided a manual (Nim 1966) of fully detailed
instructions (23 pages, A4 paper sized) with the rules of the game, its variations,
how it was programmed, and also deeper considerations such as “can machines
really think?” A few pages were devoted to the explanation of Boolean algebra in
use behind flip-flops mechanisms. A capital letter was assigned to every flip-flop

Fig. 7 Dr. Nim red plastic
board with white flip flops,
owned by the author
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(A, B, C, D and E) and a bar was put over the letter when the flip-flop was open, for
instance Ā. Then, every number of marbles left in the top row of the machine was
written in the form of equation; for example, when 13 or 9 or 5 or 1 marbles are left
in the top row, the corresponding flip-flop configuration is Ā B C D E. Instructions
given to the machine could be expressed with Boolean algebra operations and and
or.

The program to play Dr. Nim against one person was also provided (see Fig. 9),
such that one could understand how it operated only by counting the number of
remaining marbles. This shows an example of how algorithmic and programming
thinking could be approached in a classroom without necessarily using a computer.

At the beginning of the 1970s, other inventions were patented that “relate to
educational game apparatus,” for example a “computer-controlled apparatus for
playing the game of NIM” (Morris 1971), but with the advent of electronic toys, the

Fig. 8 Patent of a binary
digital computer (Godfrey
1968)
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number of purely mechanical inventions declined. Moreover, the increase of per-
sonal computers favored the development of programs, and by the middle of the
1970s one could find game programming books.

In 1973 one of the first compilations of computer games in BASIC programming
language was published: 101 BASIC Computer Games, in which the Nim game was
presented. The author, David Ahl, explained this interest in computer games by the
expansion of minicomputers and timesharing networks that enlarged an emerging
group of “computer hackers and of people who were furtively writing and playing
game at lunchtime, before and after work on their employers’ computer” (Ahl 1978,
p. x). The PCC (People’s Computer Company),19 created in the early 1970s, was
one of the first organizations to recognize and advocate playing as a legitimate way
of learning. PCC recognized the potential of BASIC and helped install computers
for children in libraries or schools to encourage a hands-on learning approach.

Fig. 9 Program to play Dr.
Nim against a person
provided in the manual (Nim
1966)

19In honor of Janis Joplin’s rock group Big Brother and the Holding Company (Levy 1984,
p. 136).

Machines Designed to Play Nim Games (1940–1970) … 247



4 Conclusion

In the 1980s, the construction of mechanical Nim playing machines was still of
interest, as “there are no commercial teaching materials that provide concrete
modeling of Boolean algebra” (Cohen 1980) and such mechanical models could
render this algebra intelligible. Nowadays, computers are part of our everyday life
and most of us use them without necessarily knowing which operations and logical
techniques underlie their functioning.

We believe that these Nim playing machines have great potential to improve
skill in mathematics reasoning and problem solving. Furthermore, new theme
“algorithmic and programming” in the reformed French curriculum recommends
games to help pupils to break down a problem (such as when analyzing simpler
positions), develop recursive thinking (analyzing the recursive properties of win-
ning and losing positions), develop logical thinking (devising a winning strategy
with conditional statements), and develop algorithmic thinking (creating an algo-
rithm that solves the problem). The creation of machines such as Geniacs or a
simpler Dr. Nim could help pupils to acquire such knowledge and skills.20

More generally, combinatorial games offer situations that enable pupils to take
control of their own learning; they directly confront it by playing the game to
confirm or invalidate their theory, and in this way build their knowledge. Games are
also effective tools that can help students develop the skill of generalizing (an
expected skill of the new curriculum) as they try to solve the games. In particular,
by generalization we mean engaging in “at least one of the three actions: (a) iden-
tifying commonality across cases, (b) extending one’s reasoning beyond the range
in which it originated, or (c) deriving broader results from particular cases” (Ellis
2011, p. 311).

We are confident that the strength of games for teaching, and the features they
share with devolution (involvement, action, freedom, responsibility) make them
essential tools for mathematics education.
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Part VI
Logic and Proof



Mathematics and Logic: Their
Relationship in the Teaching
of Mathematics

Vladimir I. Igoshin

Abstract Since the time of the ancient Greeks, the concepts of mathematics have been
closely associated with the notions of logical reasoning and proof. After analyzing
various aspects of this interaction, the author identifies four features that are important for
the educationofprospectivemathematics teachers: learning the structure ofmathematical
sentences, learning the concept ofmathematical proof, learningmethods ofmathematical
proof, and learning the structure ofmathematical theories.Discretemathematics offers an
exceptional means through which students can learn these four features.

Keywords Logic of mathematics � Definitions and theorems �Mathematical proof
Methods of proof � Mathematical theories � Education of prospective mathematics
teachers

1 Introduction

Mathematical logic occupies a unique place among the disciplines studied by
prospective mathematics teachers. Logic, as a science, emerged in Ancient Greece
through the work most notably of Aristotle. Greek mathematicians such as Thales,
Pythagoras, and Euclid, transforming mathematics from an empirical and descriptive
science to one that is deductive, requires proof, and is based on the laws of logic.

In the nineteenth century, English mathematician George Bool first started to
apply mathematical methods in logic, and mathematical logic became a branch of
mathematics. In 1931 the Austrian mathematician K. Gödel achieved a result which
became triumphal for mathematical logic. He proved, figuratively speaking, that the
method of establishing the truth based on reasoning in accordance with the laws of
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logic is not omnipotent: there is truth that by this method cannot be proven.
Mathematics by its own methods established limitations and boundaries on its
applicability. This it is possible to do only by means of mathematical logic.

So, mathematics and logic have become inseparable. Therefore, because of the
role that logic plays in mathematics as a science, logic should have a special role in
the teaching of mathematics. In the preparation of future teachers of mathematics,
particular attention should be paid to their training in logic. This idea was noted by
the famous Dutch mathematician and pedagogue H. Freudenthal:

It is an axiom of teachers’ training that the teacher should know more than merely what he
teaches. This “more” does not only aim at the subject matter. The teacher has to know the
things he knows in a form different from that in which he is teaching them. He shall not
only stand above the subject matter which he teaches but also above its logical form. To
reach this goal he shall be able to fathom the logical depth of subject matter. Logic can help
him to do so if it is more than indirect proof, conversion of theorems, equivalence, and so
on. Rather than teaching logic, the mathematics teacher shall use logic and he shall make
conscious to the learner that logic the learner is using.

The teacher should be able to do more. He should also stand above the method he has
chosen of presenting subject matter, and be able to make this method conscious to himself.
In this task, too, logical analysis can be helpful. Not in the trivial sense that it is the logical
structure that determines the method, but rather because by logical analysis one can dis-
cover the level of understanding and its logical relation.” (Freudenthal 1977 vol. 2, p. 181)

Thus, the preparation of prospective teachers of mathematics in the field of logic
should be professionally-pedagogically directed. To identify a creature of this kind,
we first consider the question of how logic interacts with mathematics in learning
mathematics and in learning mathematics, i.e. how is the didactic interaction of
mathematics and logic.

1.1 The Didactic Interaction of Mathematics and Logic

Math and logic work closely together in the process of learning mathematics. The
notion of mathematical rigor associated with logic is closely related to the level of
development of logic. Analyzing the merits of this interaction, we identify four
logical components inextricably linked with mathematics, and call them principles
of logic in mathematical didactics.

These four components are: (1) the principle of learning the structure of math-
ematical sentences, (2) the principle of teaching the concept of proof of a mathe-
matical theorem, (3) the principle of training methods for the proof of mathematical
theorems, (4) the principle of learning the structure of mathematical theories. These
are general provisions related to logic that are fundamental to methods of teaching
mathematics. The fundamental nature of these principles in methods of teaching
mathematics is that by failing to comply with them in the process of teaching
mathematics, mathematics loses its main features as a science, i.e. qualities which
distinguish it from the system of other sciences. In the end, the learner receives a
distorted view about the general picture of mathematics and its particular parts.
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2 The Principle of Learning the Structure
of Mathematical Sentences—Definitions and Theorems

First of all, it is necessary to be able to see the logical structure of a mathematical
sentence, both a definition and a theorem, and where and what logical connectives
and quantifiers are involved in its formulation. In rewriting a mathematical sentence
in the language of logical, mathematical logic is really helpful in the analysis of the
structure of the mathematical sentence. The rewritten form of the sentences rep-
resents formulas (or correctly constructed expressions) of propositional algebra or
predicate logic. Moreover, it is important to not only know how to convert these
sentences (formulas), but also be able to write the negation of the mathematical
sentences using the appropriate logical laws of propositional algebra and predicate
logic.

Suppose we have a statement A ! B (direct). As we know, the converse,
B ! A, of a particular theorem, is not always a theorem, i.e. A ! B can be true
while B ! A is false. Discrete topics offer easy examples of demonstrating this. For
example, if n is divisible by 6, then n is divisible by 3 is true but the converse, if n is
divisible by 3, then n is divisible by 6 is false.

In the following, we will discuss direct statements, converse statements, inverse
statements, :A ! :B, and contrapositive statements, :B ! :A, which are the
inverse of the converse.

2.1 Analysis of the Structure of Mathematical Propositions
by Writing It in a Logical, Mathematical Language

Prospective mathematics teachers need to understand formal logical definitions
such as those for the properties of binary relations. For example, they should know
that the transitive property of a relation, written as ‘for every, x, y, and z, if x ¼ y
and y ¼ z then x ¼ z’ can be written as

ð8xÞð8yÞð8zÞ½ððx ¼ yÞ ^ ðy ¼ z)) ! ðx ¼ zÞ�:

Consider a graph in the graph-theoretic sense of edges and vertices. Define the
relation that x ¼ y if there exists a path from x to y. Then clearly this statement is
true since if x ¼ y and y ¼ z, then x ¼ z, the path from x to z consisting of the path
from x to y combined with the path from y to z.

Similarly, a linearly ordered set satisfies the condition

ð8xÞð8yÞ½ðx� yÞ _ ðy� xÞ�

and that for a linearly ordered set to be discrete means that for each element x there
is a next element, written logically as
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ð8xÞð9yÞ½ðx\yÞ ^ ð8zÞððz� xÞ _ ðy� zÞÞ�:

They should also be able to use formal logical notation to express fundamental
geometric notions, such as the definition of when two straight lines are parallel or
when they overlap or are skew. Similarly, they should know the definition of when
two planes are parallel or when they overlap, and they should use logic to recognize
that the relation of being parallel for straight lines or for planes or for direct line
segments is an equivalence relation.

2.2 The Ability to Take Negation of Mathematical Sentences

When working with the definitions of mathematical notions, we often have to figure
out whether a particular object satisfies this concept. For this we have to formulate
the negation of the definition of the concept, and then bring this negation to such
equivalent sentences in which the negation applies only to elementary propositions.
Such a transition is carried out using equivalent transformations of definitions of
mathematical notions. So an important skill in the process of equivalent transfor-
mations of the structure of mathematical propositions is the ability to take the
negation of the logical form of propositions using the laws of propositional and
predicate logic.

For instance, prospective mathematics teachers need to understand that each of
the ordered sets N,Z,Q,R is linearly ordered. At the same time the set of all subsets
of some set A, ordered with respect to inclusion of subsets, hPðAÞ; �i is not linearly
ordered. In particular, it is easy to find two sets X and Y that satisfy negation of
linear order : 8Xð Þ 8Yð Þ X�Yð Þ _ Y�Xð Þ½ �, i.e.

ð9XÞð9YÞ½:ðX � YÞ ^ :ðY � X)�:

Also, they should be able to write the negation of being discrete,

:ð8xÞð9yÞ½ðx\yÞ ^ ð8zÞððz� xÞ _ ðy� zÞÞ�
ffi ð9xÞð8yÞ½ðx\yÞ ! ð9zÞððx\zÞ ^ ðz\yÞÞ�:

Students often confuse the negation of a property with an alternate property, for
example distinguishing between functions that are not increasing versus those that
are decreasing. For f to be non-increasing means that

:ð8x1Þð8x2Þ½x1\x2 ! f ðx1Þ\f ðx2Þ�
ffi ð9x1Þð9x2Þ½ðx1\x2Þ ^ f ðx1Þ � f ðx2Þ�,
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whereas for f to be decreasing means that

ð8x1Þð8x2Þ½x1\x2 ! f ðx1Þ[ f ðx2Þ�.

Students can work with rewriting sentences to see the difference in properties
defined two different ways. For example, parallel lines can be defined in a broad
sense as that they are either equal straight lines or lines that do not intersect, or in
the narrow sense that the lines lie in the same plane and do not have common
points. The relation of parallelism in the narrow sense is

• anti-reflexive: 8að Þ : a k að Þð Þ;
• symmetric: 8að Þ 8bð Þ a k bð Þ ! b k að Þ½ �;
• transitive: 8að Þ 8bð Þ 8cð Þ a k bð Þ ^ b k cð Þð Þ ! a k cð Þ½ �;
while the relation of parallelism in broad sense is reflexive 8að Þ½ a k að Þ, symmetric,
and transitive, i.e. it is an equivalence relation.

2.3 Equivalent Transforms of the Structure of Mathematical
Statements—Definitions and Theorems

It is crucial here to learn how to determine which mathematical statements are
equivalent to what, i.e. to learn how to transform the structure of mathematical
statements to equivalent forms. Examples of such equivalents at the level of
propositional logic are as follows:

A ! B ffi :B ! A ;

A ! B ^ Cð Þ ffi A ! Bð Þ ^ A ! Cð Þ ;
A _ Bð Þ ! C ffi A ! Cð Þ ^ B ! Cð Þ ;
A ! B _ Cð Þ ffi A ^ :Bð Þ ! C ffi A ^ :Cð Þ ! B:

The discrete topic of number theory can frequently be used to help students
understand the truth of seemingly abstract statements such at these, as the following
example demonstrates.

An example of the statement A ^ Bð Þ ! C ffi A ^ :Cð Þ ! :B is that, If n is
divisible by 3 and is divisible by 5, then n is divisible by 15, is logically
equivalent to: If n is divisible by 3 and is not divisible by 15, then it is not
divisible by 5.
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Geometry also offers a good means for making these statements clear, as the next
example shows.

The sentence If two lines lie in parallel planes, they are either parallel or
skew lines is logically equivalent to the sentence If two lines lie in parallel
planes and are not parallel, then they are skew lines, that is,
A ! B _ Cð Þ ffi A ^ :Bð Þ ! C:

The transformation ability of theorems is essential for teachers of mathematics.
The transformation procedure helps one to consider the same one theorem per se
from various logical points of view. Such consideration gives an opportunity,
firstly, to replace the proof of the theorem in one formulation with its proof in the
equal one, and then return to the original formulation by a purely logical method.
Secondly, such consideration helps us involve mental mechanisms of the subcon-
scious (intuition) to search for ways to prove the theorem. The more logic equiv-
alences are acquired, the higher is the logical culture of the teacher.

Consider the following sign of parallelism of two planes: “If every plane that
crosses one of the two planes a and intersects the other, then planes a and b are
parallel”.

Written at logical-mathematical language, this statement becomes:

8cð Þ c� að Þ ! c� bð Þ½ � ! a k bð Þ: ð	Þ

The entry c� a means that planes c and a intersect, i.e. c and a are different and
have at least one common point. Then the denial of intersecting two planes c� að Þ
means that the planes c and a are either the same or have no common points, i.e.
cjja. Converting the original theorem to its equivalent using the law of contrapo-
sition, A ! B ffi :B ! :A, gives:

ð	Þ ffi : a k bð Þ ! : 8cð Þ c� að Þ ! c� bð Þ½ �
ffi : a k bð Þ ! 9cð Þ : ðc� að Þ ! c� bð Þ½ �
ffi : a k bð Þ ! 9cð Þ : :c� að Þ _ c� bð Þ½ �
ffi : a k bð Þ ! 9cð Þ c� að Þ ^ : c� bð ÞÞ½ �:

So, instead of (*) we can prove the equivalent statement: If the planes a and b
are not parallel, then there exists a plane c that intersects one of them and does not
intersect the other. It’s enough to hold the plane c through any point of the plane a
parallel to the plane b, which is always possible if a and b intersect, which in our
case takes place.
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2.4 Analyses of Structure of Converse Sentences

The ability to equally transform the logical structure of mathematical sentences
helps to better understanding the essence of relationships between a direct theorem
and its converse sentences of various kinds.

So, for theorems that have a logical structure A1 ^ A2ð Þ ! B, we can specify two
equivalent forms that represent conditional statements: A1 ! A2 ! Bð Þ and
A2 ! A1 ! Bð Þ. This can be clearly using graph theoretic examples, such as, the
statement, if there exists a path from x to y and a path from y to z, then there exists a
path from x to z, is logically equivalent to the statement, if there exists a path from x
to y, then if there exists a path from y to z, then there exists a path from x to z.

Each of these forms has a converse statement:

B ! A1 ^ A2ð Þ ; A2 ! Bð Þ ! A1 ; A1 ! Bð Þ ! A2:

It would be illuminating for students to write these converse statements using the
previous graph theoretic example and then discuss their meaning.

In addition, we can consider the following converse forms of these theorems,
taking the converse statements for A2 ! Bð Þ and A1 ! Bð Þ:

A1 ! B ! A2ð Þ ffi B ! A1 ! A2ð Þ ffi A1 ^ Bð Þ ! A1;

A2 ! B ! A1ð Þ ffi B ! A2 ! A1ð Þ ffi A2 ^ Bð Þ ! A1:

It is easy to see that, among these five forms of converse statements, no two are
equivalent. For each direct theorem of the form A1 ^ A2ð Þ ! B, not all of these
forms will be true statements.

For example, consider the following theorem, having the structure
A1 ^ A2ð Þ ! B: «If the circles are equal A1ð Þ and belonging to them chords are
equal too A2ð Þ, then chords are equidistant from the centers of their circles Bð Þ».
We formulate for it the converse all five of these forms.

1. B ! A1 ^ A2ð Þ: If two chords of two circles equidistant from the respective
centers of the circles, then these circles are equal and the chords are equal to
each other.

2. A2 ! Bð Þ ! A1: If equal chords of two circles implies these chords are
equidistant from the centers of their circles, then these circles are equal.

3. A1 ! Bð Þ ! A2: Being chords in equal circles, they are equidistant from the
centers of these circles, these segments are equal.

4. A1 ! B ! A2ð Þ: In equal circles, chords equidistant from a respective center
equal.

5. A2 ! B ! A1ð Þ: If the chords held in the two circles are equal, then the
equidistance of these chords from the centers of the corresponding circles
implies the equality of the circles.
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It is easy to show that the first inverse assertion is the only one that is true, and
the rest are false.

3 The Principle of Teaching the Concept
of Proof of the Mathematical Theorem

A mathematical theorem is a statement that can be proven true using what we call a
proof. In turn, a proof is a kind of reasoning undertaken by one person and designed
to convince other people of the truth of the assertion.

Mathematical logic allows us to characterize the logical form of arguments in
order to determine whether our reasoning is correct. So, in the proof of a mathe-
matical theorem, having the structure A ! B: If A, then B, we assume that there is a
(true) condition of the theorem, A. Then we start to talk, bringing a sequence of
claims C0;C1; . . .;Cm. Each of these statements follows from statement, an axiom,
or is derived from preceding statements of the sequence by the rule of inference
Modus Ponens (MP): from statements P and P ! Q it follows statement Q, and
the final statement Cm is the statement B.

Constructing such a chain, we prove that A deduces B, with the result that we
conclude that the theorem A ! B: If A, then B is true. The rationale for this
transition is a logical theorem of deduction. When proving the theorem, we need to
strive to ensure that the chain of successive claims looms clearly in the mind of the
learner.

Let’s consider an example. A parallelogram is a quadrilateral whose opposite
sides are parallel. We prove the theorem: In a parallelogram the opposite sides are
equal. We give first the proof of this theorem, available in the usual geometry
textbook:

Let ABCD be a parallelogram, as seen in Fig. 1. Let the diagonals be AC and BD
and let O be the common point of intersection. Then the triangles AOB and COD are
equal because their angles at vertex O are equal, and OA ¼ OC and OB ¼ OD
which is a property of the diagonals of a parallelogram (the point of intersection
divides each diagonal in half). From the equality of triangles the sides: AB ¼ CD are
equal. Similarly, from the equality of triangles AOD and BOC from which follows
the equality of the other pair of opposite sides: AD ¼ BC

Fig. 1 Parallelogram ABCD
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We present this proof as a sequence (chain) of claims that make it up:

(a) ABCD—parallelogram (the condition);
(b) O—the intersection point of its diagonals (to build);
(c) \AOB ¼ \COD , \AOB ¼ \COD (as vertical angles, the vertical angles

property);
(d) OA ¼ OC (property of diagonals of a parallelogram);
(e) OB ¼ OD (property of diagonals of a parallelogram;
(f) DAOB ¼ DCOD (from the c, d, e by the basis of equality of triangles);
(g) AB ¼ CD (from the e by definition of congruent triangles).

Extend this sequence of statements to a sequence of statements that provide the
evidence:

1. ABCD—parallelogram (hypothesis)
2. O—the intersection point of its diagonals (hypothesis)
3. \AOB and \COD are vertical angles (hypothesis);
4. If angles \AOB and \COD are vertical angles then \AOB ¼ \COD (previ-

ously proven theorem)
5. \AOB ¼ \COD (MP): (3), (4)
6. ABCD parallelogram and O, intersection point of diagonals ^-intr.: (1), (2)
7. If ABCD—parallelogram and O—the intersection point of its diagonals then

OA ¼ OC (previously proven theorem)
8. OA ¼ OC (MP): (6), (7)
9. If ABCD—parallelogram and O—the intersection point of its diagonals then

OB ¼ OD (previously proven theorem)
10. OB ¼ OD (MP): (6), (9)
11. \AOB ¼ \COD and OA ¼ OC and OB ¼ OD; ^-intr.: (5), (8), (10)
12. If \AOB ¼ \COD and OA ¼ OC and OB ¼ OD, then DAOB ¼ DCOD

(proven earlier, the sign of equality of triangles)
13. DAOB ¼ DCOD (MP): (11), (12)
14. If DAOB ¼ DCOD, then AB ¼ CD (by definition of equal triangles);
15. AB ¼ CD (MP): (13), (14).

Similarly we can prove that AD ¼ BC.
Statements (5), (8), (13) and (15) use a rule of inference, Modus Ponens (MP, or

rule of removal of implication): P; P ! Q 
 Q, and statements (6) and (11) use
the rule of introduction of conjunction (^-intr.): P; Q 
 P ^ Q, or
P; Q; R 
 P ^ Q ^ R.

So, from the hypothesis “ABCD is a parallelogram” we prove the statement
“AB ¼ CD”. As a result, we conclude that we have proved the theorem: If ABCD is
a parallelogram, then AB = CD. This conclusion is based on the logical rule of
introduction of implication: If C;P 
 Q, then C 
 P ! Q. Here .C is some set
of known (previously proven) theorems, in our case, the theorems on the equality of
vertical angles, about the point of intersection of the diagonals of a parallelogram,
the equality of triangles; P: ABCD is a parallelogram; Q: AB ¼ CD.

Mathematics and Logic: Their Relationship in the Teaching of … 261



In connection with this example, let us note two circumstances. First, when
building a chain-proof C0;C1; . . .;Cm, we can use those two rules of logical
inferences (MP) and ^-intr that we used in the previous example, but also a number
of others. Here are some of them:

1. P ^ Q 
 P ; P ^ Q 
 Q (removal of conjunction)
2. P 
 P _ Q ; Q 
 P _ Q (introduction of disjunction)
3. P ! Q; Q ! R 
 P ! R (rule of the syllogism, or chain conclusion)
4. P ! Q 
 :Q ! :P (rule contraposition)
5. P ! Q ; :Q 
 :P (rule Modus Tollens)
6. P ^ Qð Þ ! R 
 P ^ :Rð Þ ! :Q (rule extended contraposition)
7. P ! Q ! Rð Þ 
 Q ! Pð Þ ! R (rule rearrangement of parcels)
8. P ! R ; Q ! R 
 P _ Qð Þ ! R (rule parsing cases)
9. P1 ! Q ; P2 ! Q ; P1_P2 
 Q (simple constructive dilemma)

10. P1 ! Q1 ; P2 ! Q2 ; P1_P2 
 Q1_Q2 (complex constructive dilemma)
11. P ! Q1 ; P ! Q2 ; :Q1_:Q2 
 :P (simple destructive dilemma)
12. P1 ! Q1 ; P2 ! Q2 ; :Q1_:Q2 
 :P1_:P2 (complex destructive dilemma)
13. ::P 
 P (strong deletion of negation)
14. P ; :P 
 Q (weak deletion of negation).

Here is an example of inference performed by the rule of extended contrapo-
sition, where P represents “The straight line l is perpendicular to two straight lines
a and b lying in the plane p”; Q represents “Straight lines a and b are not parallel”
and R represents “The straight line l is perpendicular to every straight c lying in the
plane p”.

P ^ Qð Þ ! R: If a straight line l is perpendicular to two straight lines a and b lying
in the plane p, and lines a and b are not parallel, then line l is perpendicular to any
line c lying in the plane p.

P ^ Qð Þ ! R P^:Rð Þ^:Q: If a straight line l is perpendicular to two straight
lines a and b lying in the plane p, and l is not perpendicular to some line c lying in
this plane, then the straight lines a and b are parallel.

The given inference rules are a mathematical formalization of those thought
processes that occur in our brain when reasoning in the search for proofs of
mathematical theorems.

Secondly, if we have already proven any theorems, they can of course be
included in the proof C0;C1; . . .;Cm, as in the example.
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4 The Principle of Teaching the Ways and Methods
of Proving Mathematical Theorems

4.1 Direct (Synthetic) and Backward (Analytical) Ways
of Searching for Proofs of Mathematical Theorems

So, a proof of the theorem A ! B is a chain of claims C0;C1; . . .;Cm. How to find
this chain? There are two methods of finding this chain. The first is synthetic or
direct which is the construction of the chain in the forward direction, i.e. from A to
B. The second is analytical or ascending analysis in which the construction of the
chain is in the opposite direction, from B to A.

In Sect. 3, the proof of A ! B applied the synthetic method. Let’s see how we
can reason when we build a proof of the same theorem A ! B in the analytical
method, bottom-up parsing.

As the first step in proving that in a parallelogram ABCD, the opposite sides are
equal AB ¼ CD, we need to represent the segments AB and CD as the corre-
sponding sides of equal triangles. This can be done by noting the parallelogram
diagonals AC and BD intersect at point O. This forms two triangles DAOB and
DCOD.

The second step is to prove that DAOB ¼ DCOD. It is enough to prove that they
satisfy the conditions of one of the theorems for the equality of triangles. This we
can do by noting that (Step 3) OB ¼ OD, by the property of the diagonals of a
parallelogram, the point of intersection bisects the diagonal. Similarly (Step 4),
OA ¼ OC, by the same property. Finally (Step 5), \AOB ¼ \COD by the vertical
angles property.

The analytical way allowed us to clearly find a way to prove the theorem. Now,
to give (synthetic) proof of the theorem, we need to travel back: 5-4-3-2-1. h

From this example we can see that the analytical and synthetic ways are
reversible. In the analytical method, we turn to the opposite claims in relation to the
method that we operate in a synthetic proof. The analytical method is a way of
searching for proofs; it allows the teacher and students to work together to find a
way to prove the theorem, with the result that students become active participants in
the learning process. The synthetic method is more prescriptive, algorithmic; ana-
lytical—more heuristic.

The logic of these methods of constructing proofs is the following. With syn-
thetic, the way of finding a proof searches for steps in the forward direction, from
the condition to the conclusion, and are carried out according to the rules of logical
connections. These rules serve as prompts to the steps of the proof in the forward
direction, which helps to move from top to bottom. The analytical way is finding
evidence in the opposite direction, from the conclusion to the condition, bottom-up.
The steps are in the opposite direction, from the conclusion to the condition, and are
carried out by rules of introduction of logical connections. Using these rules, there
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is the need to find sufficient conditions for the execution of the assertion, and the
challenge for the proof of the approval is reduced to the task of proving more
simple assertions.

4.2 Additional Methods of Proving Mathematical Theorems

The most important method for proving mathematical theorems, dating back to
Euclid, is the method of contradiction. It is based on the following equivalence of
the propositional algebra (the law of contraposition): X ! Y ffi :Y ! :X.

It consists of the following. Let it be required to prove the assertion (theorem) “If
X, then Y”, which in symbolic form is represented as X ! Y , i.e., from the
assumption X to draw the conclusion of Y . This is equivalent to assuming the
negation of Y ; :Y , is true and hence proving :X, i.e. we prove theorem :Y ! :X:
“If :Y then :X.” Hence the conclusion that the theorem X ! Y is true. This
conclusion is based on the logical law of contraposition :Y ! :X ffi X ! Y
establishing equivalence of these allegations. Thus, the proof of the theorem X ! Y
actually is replaced by the proof of theorem :Y ! :X, opposite inverse (or inverse
opposite) for this theorem.

The method of proof by contradiction can also be given such an interpretation.
We assume true X and :Y , and deduce hence :X, i.e. prove the theorem
X^:Yð Þ ! :X. Hence we conclude the original theorem X ! Y . It is easy to see
that the basis for this conclusion is easy to check the logical equivalent:
X ! Y ffi X ^ :Yð Þ ! :X.

Discrete math offers many easy to follow examples of the use of contradiction,
one famous one being the following example.

A famous result from graph theory is that if every vertex in a connected graph has an
even number of edges incident to it, then there exists a path that uses every edge
exactly once, returning to the vertex at which it started. One proof of this result is to
assume it is not true. We then assume we have a path that uses as many edges as
possible, but does not use all of them. This path must return to the first vertex used in
the path, since it is the only vertex left with an odd number of incident edges: For
every other vertex, if there is an edge in, there must be an edge out because there are
an even number of incident edges. So our largest path is a cycle. We now argue that
there must exist a larger path. This is because since our largest cycle does not use all
edges and the graph is connected, there must be an unused edge with one vertex on
our cycle. Starting at this vertex and using this unused edge, we continue to use
unused edges until we cannot go any further. We must have returned to the original
vertex of this path, since it would be the only vertex with an odd number of unused
edges. This forms a cycle which can now be inserted into the original cycle, forming
a larger cycle, which contradicts that our original cycle was the largest.
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Consider this final interpretation of method of proof by contradiction. To prove
the assertion X ! Y , we again assume true X and :Y , but instead derive the
assertions Z and :Z (not related to the theorem X ! Y ). Thus prove the theorem

X ^ :Yð Þ ! Z ^ :Zð Þ:

Hence we conclude the original theorem X ! Y . Again it is easy to see that the
basis for this conclusion corresponds to the logical equivalent:

X ! Y ffi X ^ :Yð Þ ! Z ^ :Zð Þ:

We now consider the following method of proving theorems—the method of
reduction to absurdity (Latin reductio ad absurdum). It has two modifications,
which, as we shall see below, are substantially different in form and in substance.
This is the method of bringing the opposing claim to absurdity and the method of
bringing data claim to absurdity.

The method of bringing opposing statement to absurdity consists in the fol-
lowing. Let it be required to prove the statement X. Consider the opposite statement
:X and from it derive two contradictory statements (i.e. a statement and its
negation) Y and :Y : :X ! Y and :X ! :Y . From this it is concluded that the
original assertion X is true. This proof-logic can be represented as a formula of the
proposition algebra about which it is easy to prove that it is a tautology:
:X ! :Yð Þ ! :X ! Yð Þ ! Xð Þ.
The method of bringing statement to absurdity consists in the following.

Suppose that we want to disprove the statement X, i.e. to prove a negative statement
:X. In this case, two contradictory statements Y and :Y are derived from X, the
denial of :X, that is, we show the statement X : X ! Y and X ! :Y . The con-
clusion that the statement :X is true, i.e., statement X is refuted. This logic proof
can be represented as a formula of the proposition algebra:
X ! :Yð Þ ! X ! Yð Þ ! :Xð Þ. It is easy to check that this formula is a tautology.
We emphasize again that this method is applicable for the proof of negative
statements.

In school geometry courses, it is shown that in any triangle: (1) the square of the
length of the side lying opposite an acute angle is less than the sum of the squares of
the lengths of the other two sides; (2) the square of the length of the side opposite a
right angle is equal to the sum of the squares of the lengths of the other two sides
(theorem of Pythagoras); (3) the square of the length of the side lying opposite an
obtuse angle is greater than the sum of the squares of the lengths of the other two
sides of this triangle. We introduce the following notation for statements:

A1: «In the triangle the angle a is acute»;
A2: «In the triangle the angle a is right»;
A3: «In the triangle the angle a is obtuse»;
B1: «a2\b2 þ c2»;
B2: «a2 ¼ b2 + c2»;
B3: «a2 [ b2 þ c2»;
where a; b; c are the lengths of the sides of a triangle, a is the angle opposite side
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a. Then the three theorems can be written symbolically as: A1 ! B1;
A2 ! B2; A3 ! B3. It is clear that of the three assumptions A1, A2, A3, at least one
true, that is, the angle a in the triangle must be either acute or right or obtuse. The
consequences B1, B2, B3 are pairwise mutually exclusive due to the properties of
trichotomy for real numbers: for any two real numbers r and s, one, and only one of
the following three relations is true: r\s; r ¼ s; r[ s.

If B1 is true, then :B2 and :B3 so by contraposition :A2 and :A3. This means
A1 is true, leading to B1 ! A1, Similarly, we can show B2 ! A2 and B3 ! A3. In
particular, theorem B2 ! A2, the converse of the Pythagorean theorem, reads as
follows: If in a triangle the square of the length of one side is equal to the sum of the
squares of the lengths of the other two sides, then the triangle is rectangular, and the
right angle is the angle lying opposite the first side.

This is an example of the principle of full disjunction. Assume all the following:

ðm[ 2Þ : A1 ! B1 ; A2 ! B2; . . .;Am ! Bm,

and from the assumptions A1;A2; . . .;Am, at least one is true. Also assume that the
consequences B1;B2; . . .;Bm are pairwise mutually exclusive (i.e. no two different
consequences not be true simultaneously. Then all inverse implications

B1!A1 , B2 ! A2; . . .;Bm ! Am

are true. This is essentially a logical theorem about mathematical theorems. Such
theorems in logic are called metatheorems to distinguish them from the theorems of
mathematical theories.

The essence of the principle of full disjunction is that it guarantees the truth-
fulness of converse statements to a special set of direct statements of one or another
theory. In this case, it is not necessary to prove the converse statements of this
theory if corresponding direct statements proven.

The principle of full disjunction has wide applications in mathematics. Classic is
its application to the proof of the converse of the Pythagorean theorem, given
above. Students often confuse the Pythagorean theorem and the converse, espe-
cially when it is necessary to use to prove other theorems or find the solutions to
problems. This approach will make the students more closely relate to the merits of
the concept of the converse theorem.

5 The Principle of Learning the Structure
of Mathematical Theories

This refers to both an understanding of the axiomatic idea for the construction of a
mathematical theory and teaching it. This includes the comprehension of the initial,
undefined concepts of the theory, its axioms and theorems, including the
meta-theory. In other words, the properties of this theory; consistency,
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completeness, categoricity, and independence of the axiom-system. The subject
matter of Axiomatic theory as part of a course on mathematical logic must be
continued in the pedagogy of all other mathematical courses at the university level.

In each of these courses the relevant axiomatic theories which are at the base of
the relevant mathematical discipline must be consider in terms of mathematical
logic. These mathematical principles will naturally extend into the foundation of the
relevant school mathematics discipline. So, the axiomatic theory of numerical
systems is the basis for the school course of algebra and elements of analysis, while
the axiomatic construction of geometry based on the axiom systems of D. Hilbert
and H. Weyl are the grounds of a school course of geometry.

Almost all mathematicians and methodologists agree that a purely axiomatic
teaching of geometry in school is pointless and not necessary. “Should axiomatics
be taught in schools?” asks Freudenthal (1977 p. 451), and says, “If it is taught in
the form it has been in the majority of projects in the last few years, I say ‘no’.
Prefabricated axiomatics is no more a teaching matter in school instruction than is
prefabricated mathematics in general.” Arguing this thesis, he notes: “Euclidean
geometry is acted out unaxiomatically by all reasonable people… As a full-fledged
mathematician I am allowed to exercise geometry unaxiomatically because this is
the indispensable preliminary stage of the axiomatic organization of the subject
matter.” (Freudenthal 1977 p. 449). “But what is judged to be essential in
axiomatics by the adult mathematician, I mean axiomatizing, may be a teaching
matter.” (Freudenthal 1977 p. 451). Every adult mathematician knows that “ax-
iomatic systems of Euclidean geometry are not created for exercises in Euclidean
geometry but for metageometric exploration, for research into the foundations of
geometry… If the axiomatic system of Euclidean geometry are considered, the
business that matters is to reason about the axioms, to explore their mutual rela-
tions, their dependence and independence, their completeness.” (Freudenthal 1977
p. 449).

Prospective mathematics teachers need to learn all these issues related to the
axiomatic construction of mathematical theories. Propositional calculus can serve as
an excellent model for studying all these methodical issues.

Consider the following formulas of proposition algebra (as we have said above
that some of them model or simulate some methods of proving mathematical
theorems):

(A3) :G ! :Fð Þ ! :G ! Fð Þ ! Gð Þ (the method of bringing inverse state-
ment to absurdity);

(A3′) :G ! :Fð Þ ! F ! Gð Þ (the method by contraposition);
(A3″) G ! :Fð Þ ! G ! Fð Þ ! :Gð Þ (the method of bringing data statement

to absurdity).
Let us consider three formulas of proposition algebra further:
(A1) F ! G ! Fð Þ,
(A2) F ! G ! Hð Þð Þ ! F ! Gð Þ ! F ! Hð Þð Þ,
(A4) ::F ! F.
Formed from these formulas are four systems of axioms:
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X

1

¼ A1ð Þ; A2ð Þ; A30ð Þf g;
X

2

¼ A1ð Þ; A2ð Þ; A3ð Þf g;
X

3

¼ A1ð Þ; A2ð Þ; A300ð Þf g;
X

4

¼ A1ð Þ; A2ð Þ; A300ð Þ; A4ð Þf g:

On the basis of these systems of axioms will build a formal propositional cal-
culus: Ti ¼ Th

P
i

� �
; i ¼ 1; 2; 3; 4. Regarding them, we prove the following the-

orems (meta-theorems).

Theorem 1 T1 ¼ T2.
Theorem 2 T3 is included in T2, but T3 6¼ T2. (A formula belonging to T2 but not
by T3, is the formula (A4).)
Theorem 3 T4 ¼ T2.

These formal-logical results can be meaningfully interpreted in the following
way:

• Method of proof by contradiction is equivalent to the method of bringing
opposing statement to absurdity (Theorem 1)

• Method of proof by bringing this claim to absurdity is a weaker method of proof
then by bringing opposite statement to absurdity (Theorem 2), and therefore the
method of proof by contraposition;

• Method of proof by bringing data statement to absurdity is comparable in
deductive power with the method of proof by bringing inverse statement to
absurdity, as well as with the method of proof by contraposition, if there is
added the opportunity to use in the process of proving a rule of removing a
double negation (A4) (Theorem 3).

6 Educating Mathematics Teachers in Accordance
with the Principles of Logic

The considered principles of logic indicate the main directions for implementation
of logic into mathematics teaching. When these principles are absent in the learning
of mathematics, mathematics loses its basic features as a science, i.e. those qualities
which actually distinguish it from the system of other sciences. In the end, the
learner receives a corrupted overall perception of both mathematics and its parts.

Therefore, in educating and developing would-be mathematics teachers, it is
necessary to pay particular attention to their training in the field of logic. Taking
into consideration the importance of logic in mathematics as a science and in
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teaching mathematics in general, the expertise in logic for would-be mathematics
teachers is a most essential part of their training. This training must consist of two
parts which are actual logical training per se and logical-didactic training.

Firstly, the foundation of training for would-be mathematics teachers is a course
on mathematical logic which is aimed at teaching as their future main professional
activity (Igoshin 2005, 2010, 2014, 2016, 2017). Here students acquire the
knowledge and develop the skills in logic that will be in demand in their future
teaching.

Secondly, the concepts, ideas and methods of mathematical logic from the
fundamental course of mathematical logic are implemented in higher mathematical
courses in the school curriculum such as geometry, algebra, number theory,
mathematical analysis, number systems, discrete mathematics, theory of algorithms
(Igoshin 2013, 2016), as well as into disciplines of psychological and pedagogical
basis of teaching mathematics, methods of mathematics teaching, history and
methodology of mathematics. In these courses students’ attention is focused on
those issues which are of fundamental logical value.

Thirdly, through higher mathematics courses, the ideas and methods of mathe-
matical logic are supposed to naturally extend into the base of the relevant school
mathematics discipline. The courses on teaching methods at universities aim to
demonstrate how the knowledge of logic is used in teaching specific topics of
school mathematics. Moreover, it is crucial to analyze in terms of logic the entire
school course of mathematics both in general and some of its particular details
(Igoshin 2012).

7 Concluding Remarks on the Teaching of Mathematics:
Logic (Rigor) and Intuition (Visualization)

Despite its logic and rigor, mathematics could not develop without intuition and
visualization. As we know, in mathematics, known facts are proven using logic, but
these facts are discovered with the help of intuition and visualization. Logic is the
tool of proof, intuition is the tool of invention. Logic and intuition are inseparable
components of mathematical creativity. Consequently, in teaching mathematics,
both of these components must be used. The importance of intuition in both science
and education was emphasized by H. Poincare: “We need an ability that would
allow us to see the target from a distance, and this ability is intuition. It is required
by the researcher in selecting the way, it is no less necessary for the one who
follows in his footsteps and wants to know why he chose it.” (Poincaré 1983
p. 166).

In teaching mathematics, the issue of the relationship between logic and intuition
is particularly vital when it is necessary to define the standard and criteria of
assessment for teaching different parts of the course. One of the main tasks of any
teacher is to achieve conscious acquisition of the presented material by the students.
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Absolutely logically rigorous and perfect step-by-step proof of the theorem does not
always lead to understanding of this proof per se. Poincare (1983 p. 311) describes
this circumstance in this way:

A mathematical proof is not just some conglomeration of syllogisms: a syllogism is located
in a known order, and the order of the elements is much more important than the elements
themselves. If I have a sense, so to say the intuition, of this order, so that I can see at a
glance all the arguments as a whole, I don’t have to fear that I will forget any one of the
elements; each of them itself would take its assigned place without any effort of memory on
my part.

The same idea is expressed by Hadamard (1970 p. 63): “…any mathematical
argument, however complicated, must appear to me as a unique thing. I do not feel
that I have understood it as long as I do not succeed in grasping it in one global
idea…”

Thus, understanding the proof of the theorem is not reduced to the understanding
and validation of each step of the formal proving, but is achieved by understanding
the general idea that has led to this sequence of steps. To clarify this idea, it is
impossible to do without non-strict, intuitive thoughts and images. Intuitive aspects
of the proof of a particular theorem, and moreover, a mathematical theory, help
students better understand their rigorous logic and are critical for teaching. “Of
course, we will learn to prove, but also will learn to guess,” urged Polya (1954
pp. 15–16).

Many discrete math topics offer a method for helping students develop their
intuition as the discreteness allows them to visual and demonstrate the statements
within numerous examples. This is in contrast to many analysis steps, such as proving
limits, in which visualization is much more difficult and the prover must resort more
directly to the logical statements without developing as clear an intuition.

However, herewe need to keep inmind the following. Itmay seemparadoxical, but
in mathematics, both in science and in school subjects, in fact the proofs used are far
from strict logical canons, and represent arguments, designed to convince certain
people that this or that statement is true. These circumstances impose a certain sub-
jectivity on such understanding of proving: what convinces one may be unconvincing
for another. In this sense, it may seem that inmathematics, the notion of proof is vague
and uncertain, and has some in commonwith proofs in the humanities. This is not true.
Since Ancient Greece, mathematics has been distinguished from all other sciences by
the fact that it is a convincing science. Mathematicians at all times more or less have
agreed on whether this statement proves or not. As the history of mathematics shows,
this sort of rigorous standard changed alongside the development of mathematics, and
what seemed strict, for example, in XVII–XVIII centuries, was criticized in the XIX
century.Many of the arguments given by themathematicians of the XIX century were
considered to be totally unconvincing to mathematicians, and especially logicians, of
the XX century.

Therefore, although in modern mathematics there is no strict definition of a
rigorous proof of a mathematical theorem, however, each mathematician under-
stands rigor intuitively. In every mathematical proof he/she feels the majestic
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shadow of the immutable logical laws and criteria elaborated by the logic
throughout the twenty centuries. Although the proof in all its details may not be
given, intuitively, he/she realizes that it can be converted into such, though this will
need a great deal of time and effort. It is important to feel the possibility of such
transformation in principle. This intuitive sense of rigor must be developed in a
prospective scientist/mathematician and in a prospective teacher of mathematics.
Each of them will use fundamental logic-training gained in adolescence as the basis
for this education. It will serve as a source of intuition about logical rigor and will
feed this intuitive sense.

This concept of logical and logical-based didactic training of would-be teachers
of mathematics makes it a strategic part of the whole training of would-be teachers
of mathematics. Namely, this approach to logic makes students feel as clearly as
possible the pervasive influence of logic on mathematics. Due to this approach,
logical knowledge will become the foundation of a scientifically oriented peda-
gogical outlook for the would-be teachers of mathematics. This approach to logical
training, of course, requires a high level of teachers` professional qualification at
teacher training departments, and their considerable effort and cooperation, but
these efforts will result in significantly improving the quality of training.
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