
A Large-Scale Analysis of Download Portals
and Freeware Installers

Alberto Geniola1, Markku Antikainen2(B), and Tuomas Aura1

1 Aalto University, Espoo, Finland
2 Helsinki Institute for Information Technology,

University of Helsinki, Helsinki, Finland
markku.antikainen@helsinki.fi

Abstract. We present a large-scale study of Windows freeware
installers. In particular, we look for potentially unwanted programs
(PUP) and other potentially unwanted modifications to the target sys-
tem made by freeware installers. The analysis is based on almost 800
installers gathered from eight popular software download portals. We
measure how many of them drop PUP, such as browser plugins, or make
other modifications to the system. In addition to these results, we find
that most installers that download executable files over the network are
vulnerable to man-in-the-middle attacks, which in the worst cases may
be used to execute arbitrary code with elevated privileges on the target
system. Moreover, serious man-in-the-middle vulnerabilities are found in
application managers provided by download portals.

1 Introduction

Most computer users download and install some freeware applications from the
Internet. The source is often one of the many download portals, which aggre-
gate software packages and also offer locations for hosting them. It is common
concern that the downloaded software might be infected with malware or have
other unwanted side effects. Freeware installers are also known for dropping
potentially unwanted programs (PUP) to the user’s computer. PUP and other
unwanted system modifications to desktop computers can be considered a secu-
rity threat [5,21]. This phenomenon is partly caused by the pay-per install (PPI)
business model where freeware software developers monetize their software by
bundling it with other third-party applications or by promoting some software
and services by changing the user’s default settings. This business model is not
always illegal as the application installer may inform the users about the third-
party software and even allow them to opt-out. However, this is often done in a
way that the user is not fully aware of the choices made.

In this paper, we set out to analyze nearly 800 popular software installers from
download portals. We do this with an automated analysis system that downloads
and installs the applications in a sandbox while monitoring the target system.
The sandbox emulates the behavior of a lazy user who tries to complete the
installation process with the default settings of the installer. That is, we assume
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 209–225, 2017.
https://doi.org/10.1007/978-3-319-70290-2_13

210 A. Geniola et al.

that the user wants to finish the installation as fast as possible and is habituated
to accept the default settings and to bypass warnings.

Our study differs from earlier research [4,20] in several respects. First, we
try to better understand the prevalence of any problems by gathering large
quantities of software from the most popular download portals. Second, we do
not differentiate between legitimate and malicious actions, which would easily
lead to complicated legal and moral arguments, but instead try to cover all
potentially unwanted changes to the system. Thirdly, our research methodology
provides insights to software installers and download portals in general.

The most important findings from our study are following. We find that, while
the most popular download portals do not distribute malware, some (1.3%) of
the studied installers drop a well-known PUP to the target system. Furthermore,
nearly 10% of the installers came with a with a third-party browser (e.g. Chrome)
or a browser extension. On the positive side, we find no evidence that download
portals would themselves bundle significant amounts of potentially unwanted
content to the downloads – the PUPs seem to come from the original freeware
authors. When analyzing the installers, we also find prevalent vulnerabilities.
The installers often download the application binaries over HTTP, and over half
of the installers that do so, do not verify the integrity of the binary and are thus
vulnerable to man-in-the-middle (MitM) attacks. We also spot serious MitM
vulnerabilities in update managers of two major download portals, which allow
an attacker to underhandedly advertise malicious binaries as software updates.

The rest of this paper is organized as follows. Section 2 reviews related work.
In Sect. 3, we describe the methodology and then briefly explain the analysis
system. Analysis results are presented in Sect. 4 and further discussed in Sect. 5.
Section 6 concludes the paper.

2 Background

This section describes the related work and ideas on which our research is based.
Downloading applications from the Internet can be dangerous, and this also

applies to download portals [9,10]. The applications might come with unwanted
features that range from clearly malicious, such as bundled malware and spy-
ware, to minor nuisances like changing the browser’s default search engine. Such
software is often referred to as potentially unwanted programs (PUP)1. We use
the broad definition of Goretsky [8], which states that a PUP is an application
or a part of an application that installs additional unwanted software, changes
the behavior of the device, or perform other kinds of activities that the user has
not approved or does not expect. PUP often functions in a legal and moral gray
area. The threat of legal action from PUP authors has been suggested as the
reason why anti-malware labels it as “potentially unwanted” rather than “mali-
cious” [2,13], and this was also confirmed by anti-malware developers who gave
feedback on our research.

1 Potentially Unwanted Application (PUA) is another often used term.

A Large-Scale Analysis of Download Portals and Freeware Installers 211

Recent studies have shown that freeware installers only rarely come bun-
dled with critical malware [11]. More often, the system modifications are just
unnecessary and unexpected. The user may even be informed about them, e.g.,
in the EULA, or the installer may allow a careful user to opt out of unwanted
features. Users, however, do not always read EULAs and may be habituated to
accept default settings and ok any warnings [1,17]. This rushing-user behavior
leads the user to giving uninformed consent to the system modifications. While
solutions have been proposed, they have not been widely adopted [2]. Moreover,
PUP installers often come with a complex EULAs [7], which users are likely to
accept blindly [3].

One root cause for the problem of unwanted software is the pay-per-install
(PPI) business model. PPI is a monetization scheme where a software developer
or distributor gets payed for dropping unrelated third-party applications to the
target computer. This may be done with or without the user’s consent. Recent
research publications have studied the PPI business model [4,11,20]. The PPI
application installer typically downloads the third-party software from a PPI
distributor. Caballero et al. [4] reverse engineered protocols used by PPI distrib-
utors and found that the choice of applications depends on the target computer’s
geolocation. Another result is that, while PPI distributors do spread some known
malware, this is not a very prevalent phenomenon—probably because black-
listing by anti-virus vendors would hurt the PPI business [11]. Another related
paper analyzed black-market PPI that installs third-party applications silently
in the background [20]. In the current research, we consider commercial PPI
that does not necessarily try to hide its actions but rather takes advantage of
the rushing user behavior to maximize the number of installs. We also analyze
other unwanted side effects of the installers even if not part of the PPI business.

In summary, while there is plenty of anecdotal evidence showing that down-
load portals distribute PUP [10,18], probably due to the PPI business model,
the true extent of this problem has not been studied methodically. We aim to
fill this gap by providing a comprehensive analysis of nearly 800 application
installers retrieved from the most popular download portals. While the PUP
phenomenon is not limited to a single operating system or platform, we focus
purely on Microsoft Windows, which still is the most popular OS on desktop
and laptop computers (84% market share at the time of writing [19]).

3 Methodology

This section describes the methodology and the analysis system used in our
study. While the analysis system is rather complex, we describe them only briefly
because the focus of this paper is on the analysis results.

3.1 Analysis System Overview

Our goal is to implement automated analysis of large numbers of Windows free-
ware installers. For this, we need an infrastructure that automatically downloads,

212 A. Geniola et al.

executes and analyzes the application installers. On a high level, the analysis
system (1) crawls selected download portals for Windows freeware installers,
(2) automatically runs them in guest machines with emulated user interaction,
(3) monitors the modifications made to the guest machine as well as network
communication, and (4) saves the results for later use.

Fig. 1. Analysis system architecture

The architecture of the analysis system is shown in Fig. 1. First of all, we
implemented crawlers for the download portals. The actual analysis is orches-
trated by the host controller. It handles the life cycle of the guest machines, in
which the installers are executed. This essentially means that the host controller
is responsible for (1) fetching a job from the database, (2) initializing a guest
machine and serving it the installer binary, (3) pre-processing and storing data
about the installation process, and finally (4) cleaning up the guest machine. In
each guest machine, there is a guest agent that pulls the installer from the host
controller and drives its execution by launching it and interacting with its UI.
The agent also monitors any filesystem and registry modifications and reports
these to the host controller. The network traffic to the guest machines is routed
through a network sniffer, which captures it. While the analysis system is mod-
ular and can support any guest OS, we have so far implemented the guest agent
only for 32-bit Windows 7 guest machines.

The installers require user attention. Therefore, we implemented a heuristic
interaction system which emulates the behavior of a lazy user during the instal-
lation process. When the installer runs, the guest agent tries to detect when it is
waiting for user input and then sends the input event that is most likely to cause
progress. The guest agent does this by observing screenshots that are taken peri-
odically from the installer UI: the installer is likely to wait for user input if it
is not performing any I/O operations and if the screenshots are stable for some
time. The next input is chosen using heuristics that, for example, prefer rectan-
gular shapes containing text such as “OK”, “Install”, or “Next”. The graphical
screenshot approach was taken because most installers do not make use of the
standard Windows UI components. The UI interaction heuristics in the guest
agent were optimized for Windows; however, they could easily be adapted to
other operating systems.

A Large-Scale Analysis of Download Portals and Freeware Installers 213

3.2 Installer Crawling

We chose eight download portals based on their Alexa rankings (Table 1). While
some of these sites also provide other content than application downloads, the
ranking gives a rough picture of their popularity and perceived trustworthiness.

Each studied download portal promotes a list of the most popular applica-
tions on its front page, except Softpedia which promotes recent downloads. We
decided to focus on the promoted applications and set a crawler to download
up top 200 installers from each portal. When possible, it applied a filter for 32-
bit Windows or Windows 7 freeware. With some portals, there were fewer than
200 actual downloads, mainly because of the limitations of the web interface.
Table 1 summarizes portals chosen for our study and the number of downloaded
files.

In addition to crawling, we also manually downloaded installers for the most
popular freeware applications directly from the developers’ websites. We used
Alexa rankings of top freeware applications as well as Google Trends for the
most popular searches that include the words “software download”. The manual
download was done to compare the behavior of the installers published directly
by the shareware authors with those distributed through the download portals.
However, it should be emphasized that we only downloaded 20 installers man-
ually. More extensive comparison between the portals and “original” software
would not scale because it cannot be automated, and it would also be com-
plicated by the fact that many authors use one of the portals as their main
distribution point.

Table 1. Download portals studied in this paper

Download portal Alexa rank Oct.2016 Filters Downloaded files Successfully
analyzed

download.cnet.com 159 Win,free 200 146

softonic.com 285 Win7,free 170 126

filehippo.com 662 Win 90 64

informer.com 881 Win,free 200 117

softpedia.com 1732 Win,free 200 148

majorgeeks.com 6077 Win,free 55 37

soft32.com 7279 Win,free 200 113

brothersoft.com 8600 Win,free 41 26

manual download – – 20 15

1177 792

We were not able to automatically analyze every installer. First, almost 10%
of the crawled files failed either because the application was not an installer in
the first place (e.g. a stand-alone application) or because of missing hardware,

https://download.cnet.com
https://softonic.com
https://filehippo.com
https://informer.com
https://softpedia.com
https://majorgeeks.com
https://soft32.com
https://brothersoft.com

214 A. Geniola et al.

software dependency, product key, or a similar reason. Additionally, 23% of the
installers failed because the automated UI interaction was not smart enough. The
reason was mostly complex interaction, such as selecting the directory to which
the program should be installed. Another reason was that the installer used some
other language than English. Nevertheless, a relatively high percentage of the
installers (67%) completed. This was the result of iterative improvements to the
UI automation heuristics and other parts of the analysis system.

The results discussed in the rest of this paper were obtained from the 792
installers completed successfully. Of these files, 751 were unique. We nevertheless
consider even the installers with the same hash as distinct because some down-
load portals have in the past served identical installers for several applications2.
In these cases, the installer executable determines the further files to download
and install based on its own filename.

4 Results

We present the results of our analysis in two parts. Section 4.1 describes what we
can learn simply by looking at the files served by the download portals. Then,
Sect. 4.2 presents the results of dynamic analysis. All the results are based on
the 792 installers that were successfully executed. Some of the results are not
directly related to security but are of general interest and serve as background
information.

4.1 Static Properties of the Installers

This section describes some of the basic properties of the analyzed installers.

Analyzed Applications: We first compare the applications promoted on dif-
ferent portals. This helps to understand the data and is interesting in itself.
We manually grouped the different versions of the same applications. Table 2
shows the overlap in applications at different portals. The number of distinct
applications served by each portal is on the diagonal.

Our first observation is that the portals serve quite different sets of applica-
tions. Those promoted by CNET, FileHippo, Informer and Soft32 overlap the
most. On the other hand, Softonic and Softpedia tend to promote applications
that are not on the other portals. In the case of Softpedia, the reason may be
that it does not promote the most popular software but the latest downloads.
Finally, some portals use only the last week’s downloads for the popularity rank-
ing. This metric is susceptible to manipulation and short-term fluctuation, e.g.
when an update is published. For these reasons, one has to be very careful when
comparing different download portals based on our data.

2 CNET’s downloader VT report available at https://virustotal.com/it/file/
9961ebc9782037f68b73096bcff3047489039d6dc5c089f789b3dbff4109e21b/analysis/.

https://virustotal.com/it/file/9961ebc9782037f68b73096bcff3047489039d6dc5c089f789b3dbff4109e21b/analysis/
https://virustotal.com/it/file/9961ebc9782037f68b73096bcff3047489039d6dc5c089f789b3dbff4109e21b/analysis/

A Large-Scale Analysis of Download Portals and Freeware Installers 215

Table 2 also shows the median ages of the installers served by each portal.
Software age may be an indication of how seriously the publisher or download
portal take security. We obtained the application ages from VirusTotal. Our
assumption is that popular software tends to be submitted to VirusTotal soon
after release. Although the first-seen date obtained from VirusTotal does not
precisely tell how old a binary file is, it gives an independent indication of when
the software began spreading more widely.

The overall observation is that much of the popular freeware is not frequently
updated, and many installers are several years old. This can be a cause for con-
cern. The collected data also shows that CNET, MajorGeeks and Softpedia serve
relatively recent software installers while the rest of the portals serve consider-
ably older binaries. In addition to the actual age of the software, the results could
be explained by differences in which software the sites promote and the type of
software that each portal distributes. For instance, there may be value to archiv-
ing popular legacy software that is no longer updated. But even considering such
alternative explanations, we can still assert that the most popular download site
CNET distributes relatively recent software: its installer ages align closely to
those of manually downloaded files, which can serve as a reference metric.

Table 2. Number of common applications served by each download portal pair (dif-
ferent versions of same application have been combined). Age shows the median age in
days of the installers served by each portal.

B
ro
th

er
so
ft

C
N
ET

Fi
le
H
ip
po

In
fo
rm

er

M
aj
or
G
ee
ks

So
ft
32

So
ft
on

ic

So
ft
pe

di
a

m
an

ua
l

ag
e

Brothersoft 26 1 3 2 0 0 1 0 0 953
CNET 1
FileHippo 3 19
Informer 2 22 18
MajorGeeks 0 6 6 7 35 3 1 0 1 8
Soft32 0 21 15 14 3
Softonic 1 7 4 3 1 6
Softpedia 0 0 1 0 0 2 2
manual 0 4 4 5 1 2 0 0

144 19 22 6 21 7 0 4 111
64 18 6 15 4 1 4 160

117 7 14 3 0 5 604

112 6 2 2 573
125 2 0 723

148 0 18
15 117

distinct files 26 146 64 117 37 112 126 148 15

Application Signing: Our first security-related question was whether the
installer binaries are signed. Recent research showed that while malware is gen-
erally not signed, potentially unwanted programs are [12]. We wanted to know
where software distributed by the download portals stands.

The application signature verification results can be seen in Table 3. While
most of the analyzed binaries (64%) had a valid signature, 30 (3.8%) cases did
not verify correctly. Publisher certificate expiration was the most common cause

216 A. Geniola et al.

Table 3. Signature verification of analyzed installers

Verification outcome # .EXE # .MSI # Total

Signed and verified 486 23 509

Verification error 26 4 30

Unsigned 239 14 253

of failure (24 cases). Other causes were explicit revocation (1 case) and untrusted
root CA (5 case). The remaining 32% of the analyzed installers were unsigned.

Interestingly, there were differences between the download portals. CNET,
FileHippo and Informer had about 80% correctly signed code while Soft32, Soft-
onic and Softpedia had lower rates (62%, 61%, 44%, respectively). The other
portals appeared to belong to the latter group, but there were too few installers
for a fair comparison. The high percentage of signed files in three of the four most
popular download sites seems to indicate that there is value for the publishers
in code signing even though the portals do not require it.

4.2 Dynamic Analysis of Installers

This section presents results from the dynamic execution and monitoring of the
installers.

Network Traffic Analysis: The sniffed traffic was analyzed with the Tshark
and Bro protocol analyzers. We also implemented custom Python scripts for
extracting further information.

We begin the discussion by looking at the network protocols (Table 4). Most
of the traffic is HTTP and HTTPS over TCP (99%). The most frequent UDP
packets were for UPnP, SSDP and DNS. Our script was unable to classify some of
the UDP packets. Manual investigation revealed that such traffic mainly belongs
to the BitTorrent protocol, legitimately used by torrent-based installers. In three
cases, we identified JSON encoded text over UDP, which is used by content-
sharing applications for advertising themselves on the local network. In one case,
the installer used a variant of the GVSP video streaming protocol, presumably
to show a video to the user.

Next, we focus on HTTP, which constitutes the bulk of the network traf-
fic. Figure 2 shows the domains that are contacted by most installers and from
which the installers download most of the data. It can be seen that more than
80% of the HTTP downstream traffic is from well-known CNDs. Akamai and
Google are the two most-contacted ones. The figure also reveals that quite a
few installers contact Google but only download small volumes of data. A close
investigation revealed that 23 installers made least one HTTP request for the
Google Analytics web beacon and 29 installers downloaded the Google Analytics
JavaScript library. This may indicate that many freeware authors benefit from
its value-added services such as user tracking and demographic data.

A Large-Scale Analysis of Download Portals and Freeware Installers 217

Table 4. Breakdown of network traffic (inbound and outbound), total for all analyzed
installers

Transport layer Application protocol MB (%)

TCP HTTP 6567.84 95.22

TLS/SSL 328.63 4.76

Others 1.25 0.02

6897.72 99.25

UDP UPnP 18.03 34.51

SSDP 17.25 33.02

DNS 4.39 8.40

Others 2.90 5.55

Unknown 9.67 18.52

52.24 0.75

ICMP 0.01 0.00

Total 6949.96 100

Fig. 2. HTTP downstream traffic breakdown by top domains. The blue bars (left)
represent downstream traffic volume, while the cyan bars (right) indicate the number
of installers that contacted the domain (Color figure online)

We reassembled and inspected the HTTP streams for binary content. Table 5
shows the results. Executable files and binary payloads constitute most of the
traffic. This indicates that many of the installers (348) behave as install-time
downloaders. To see if there is a clear distinction, we plotted the installer binary
size and the downloaded traffic volume in Fig. 3. We have visually classified the

218 A. Geniola et al.

Table 5. HTTP downloads by MIME type

MIME type Downloaded
data (MB)

Installers

application/x-dosexec 1879.17 96

application/octet-stream 1808.99 227

application/vnd.ms-cab-compressed 475.02 25

application/gzip 462.82 11

application/zip 267.32 32

application/vnd.ms-office 257.15 8

application/x-7z-compressed 228.09 4

application/x-bzip2 29.51 4

text/plain 16.90 787

text/html 12.33 138

others 18.13 155

Total 5455.42 788 (Distinct)

Fig. 3. Scatter plot of installer size vs downstream traffic volume. The points were
divided to the three classes based on visually observed grouping

installers into three classes: downloaders, installers that call home but do now
download significant amounts of data, and stand-alone installers. It can be seen
from the figure that there is no apparent correlation between the installer size
and the amount of data it downloads.

Man-in-the-middle Vulnerability: As seen in Table 4, installers tend to
download binary files over insecure HTTP connections. These files are typically

A Large-Scale Analysis of Download Portals and Freeware Installers 219

executed within the installation process, possibly with high system privileges.
In such a context, it is essential that the installers authenticate the downloaded
files, e.g. with a digital signature. To check if they do that, we implemented an
automated MitM attack against the installers. This was done with a transparent
HTTP proxy in the sniffer component of the analysis system, which replaced
executable files in HTTP responses (but not HTTPS) with its own. The mali-
cious binary (EXE or MSI file) that was fed to the installer simply took note of
its running privileges and terminated. The malicious binary was injected in the
following cases:

1. Request URL ended with .EXE or .MSI
2. Response MIME type matched executable or MSI
3. First bytes of the HTTP response body matched magic numbers for EXE or

MSI.

Among the 792 analyzed installers, the MitM attack was triggered 100 times.
Amazingly, more than half of the attempted attacks (55%) led to immediate exe-
cution of the attacker’s binary file, meaning that no authentication or integrity
check was done for the downloaded binaries. Only 8 installers refused to exe-
cute the tampered file and removed it right away. In the remaining 37 cases, the
attacker’s file was not executed, yet it was found on the disk after the installa-
tion. 17 of these were saved in temporary system folders (subject to later removal
upon system cleanup) while 20 were stored in persistent file system locations,
such as under the Program Files directory. The latter cases leave the system
open to a delayed attack when the application is used.

The MitM attack is particularly dangerous because the attacker’s file is exe-
cuted with the same privileges as the installer application. In 75 out of the 100
successful attacks, the malicious binary was executed with elevated privileges.

There are straightforward ways of mitigating the MitM vulnerability. One
approach would be to use HTTPS for the download. Another possibility is to use
asymmetric signature verified by the installer application with a static publisher
public key. Clearly, there is no good technical excuse to be vulnerable.

It is worth noticing that most of the download portals distribute installers via
HTTP in the first place, and the installer itself could be fake. The user, however,
has the opportunity to check that the installer binary is signed by the correct
publisher. In comparison, the MitM attack succeeds even if the user takes care
to only execute legitimate, signed installer binaries from the correct publisher.

File System Analysis for Malware Drops: We collect the hashes of all
files that are temporarily or permanently stored on the guest machine as well
as hashes of files reconstructed from network traces including HTTPS connec-
tions. We looked up all the collected file hashes in VirusTotal, which aggregates
results from various virus scanners. This was done two months after running the
installers to leave time for new malware variants to be detected.

The number of positive results was high (235 files) but most of these were
reported by only one scanner and, most likely, were false positives. Only 1.3% of

220 A. Geniola et al.

the installers contained files detected as malware by six or more scanners. More
importantly, majority of such the positives were labeled as PUP. There was only
one detected critical threat, and it was an Android rootkit that does not infect
Win32 systems. The files with highest detection rates are listed in Table 6.

The analysis shows that download portals are not used for blatant malware
distribution. The portals probably perform scans of the binaries before publish-
ing them. On the other hand, the presence of PUP related to the well-known
InstallCore PPI network indicates that download portals could still implement
stricter countermeasures against grayware and bundled unwanted applications.

Table 6. Threats ranked by VirusTotal detection rate.

File name
(truncated)

Positive
scanner(s)

Inst Description Source portal

rootf.apk 30 1 Android rootkit Soft32

fusion.dll 17 1 PUP InstallCore CNET

videora.exe 15 1 PUP OpenCandy Softonic

...Setup.exe 14 1 Adware Mobogenie CNET

fusion.dll 14 1 PUP InstallCore CNET

fusion.dll 12 1 PUP InstallCore Soft32

...0061e.exe 12 1 PUP Montiera toolbar Soft32

...B2C6B.dll 8 1 PUP Conduit Brothersoft

...126C1.exe 6 1 PUP Zugo Toolbar Softonic

Registry Modifications: We tracked the registry modifications made by the
installers and analyzed changes to the following:

– Automatic program startup
– Default browser
– Browser plugins

There are many ways for a program to start automatically in Windows includ-
ing registry keys [16] and specific file system folders. We found that 88 installers
(12%) configured the installed software to automatically run at system startup.

Similar analysis was done on default browser changes: 26 installers replaced
the default browser. Interestingly, 11 of these are not browser installers. Table 7
reports the details. Google Chrome turned to be the only third-party browser
installed by non-browser installers. Manual investigation revealed that, in all
cases, Google Chrome installation is optional but pre-selected by default.

Our analysis continued with the inspection of installed third-party browser
modules. We focused on Internet Explorer, which was the only browser installed
by default on the fresh Windows 7 guest machine. There were 69 registry modi-
fications regarding browser extensions by 38 installers. As shown in Table 8, the

A Large-Scale Analysis of Download Portals and Freeware Installers 221

Table 7. Installers bundling unrelated third party browsers

Product name Publisher Bundled browser

Adobe Shockwave Player Adobe Systems Inc Google Chrome

CCleaner Piriform Ltd Google Chrome

Defraggler Piriform Ltd Google Chrome

PhotoScape Mooii Google Chrome

Recuva Piriform Ltd Google Chrome

Speccy Piriform Ltd Google Chrome

SUPERAntiSpyware Free SUPERAntiSpyware Google Chrome

Table 8. Third-party plugins dropped on IE

Portal #Installers Toolbar Menu extensions BHO Total %

Brothersoft 26 2 0 4 6 23.1

CNET 146 4 7 7 18 12.3

FileHippo 64 7 0 9 16 25.0

Informer 117 4 1 7 12 10.3

MajorGeeks 37 0 0 0 0 0.0

Soft32 113 2 0 4 6 5.3

Softonic 126 1 1 2 4 3.2

Softpedia 148 1 0 3 4 2.7

manual 15 1 0 2 3 20.0

Total 792 22 9 38 69

predominant type of installed extension is the Browser Helper Object (BHO),
which is the most powerful and potentially most dangerous IE component type
because it runs in the same memory context as the browser and has access to
the user’s browsing data [6].

In the case of browser extensions, there were differences between the portals.
MajorGeeks installers did not bundle any browser plugins, and Softpedia reg-
istered a total of just 4 dropped items over 148 installers (2.7%). Softonic and
Soft32 had also relatively low rates. CNET and Informer, on the other hand,
dropped considerably more browser plugins, and FileHippo topped the league
with 25% drop rate. Interestingly, even manual downloaded installers bundled
browser plugins. This could indicate that the plugins are bundled by the original
software vendors and not by the portals.

Installer Best-Practices Compliance: Microsoft advises vendors to follow
certain best practices for installers [15]. Firstly, each installed application should
provide a consistent uninstall feature. For this, the installer should populate
two registry keys on the system, one with the program’s human-readable name

222 A. Geniola et al.

and the other with a path to the uninstaller binary. If one of these two values
is missing, removal of the application becomes cumbersome. Of the analyzed
installers, 82 failed to specify both the program name and uninstaller path.
Another 5 only stored the product name without specifying an uninstaller binary.

Secondly, Microsoft requires installers to specify valid ProductName property
in their metadata, which is usually placed within the resource section of the
executable file. It is exposed to the user in a properties dialog [14]. 174 of the
analyzed installers failed to provide this information.

4.3 App Managers and Software Updates

Some download portals provide app-manager clients for simplifying software
downloads and updates. By default, app managers run at system startup and
regularly check for application updates. We analyzed three app managers (File-
Hippo, Informer and MajorGeeks).

Fig. 4. Example of a successful MitM attack. User decides to update FileZilla (1), but
is served a VLC installer instead (2)

Two of the analyzed app managers (FileHippo and Informer) are vulnera-
ble to MitM attack. More specifically, they communicate with the portal using
HTTP and do not check the integrity of the served binaries in any way. We
were able to make modifications to the list of available updates, such as chang-
ing the download URL or adding new entries to the list of available software.
Furthermore, both vulnerable app managers by default periodically check for
software updates. This makes the attack even more serious in two respects: first,
the attacker can push arbitrary binaries to the victim’s computer without any
initial user action and, second, the MitM attack can be mounted when a mobile
user is visiting an untrusted access network such as wireless hotspot.

Figure 4 illustrates the MitM attack. Windows UAC still asks user’s permis-
sion to run the attacker-selected application, which is either unsigned or has a
different name from what the use should expect, but the user may not pay atten-
tion to such details—especially after explicitly deciding to install the update.

A Large-Scale Analysis of Download Portals and Freeware Installers 223

5 Discussion and Future Work

This research was motivated, in part, by the suspicion that download portals
might distribute malware or bundle excessive amounts of unwanted programs to
freeware downloads. The results of our analysis do not support these suspicions.
No serious infections by known malware were detected, and the bundled PUPs
seem to have been mostly included by the original freeware authors. Thus, free-
ware distribution does not appear to be such a Wild West as has been suggested
in the past.

From the security viewpoint, the most important negative discoveries were:

– The median age of installers varies notably among portals, and the distributed
freeware versions are often not the latest.

– Some portals host installers that bundle known PUP.
– The most common types of PUP bundled with freeware are third-party

browser plugins and the Google Chrome browser.
– Many installers that download executable files are vulnerable to MitM attacks

that enable code injection to the client machine.
– Some app managers provided by the portals are similarly vulnerable to MitM

attacks and code injection.

While we make some comparisons between the portals throughout the paper,
it would not be possible to make fair ranking of the portals regarding security or
PUP. The portals differ in the types and quantity of software available. While
Softpedia does well on all the metrics, it promotes a different set of software than
the other portals (based on recent downloads rather than popularity), and thus
the results may not be comparable. Further, our study is based on a snapshop
and is limited to a single point in time. A longitudinal study would be needed
for comparing different portals.

Our methodology does have some limitations. Firstly, our UI automation
could still be more reliable. Manual inspection of installation screenshots con-
firmed that our UI engine was able to correctly automate 67% of the installers.
There clearly is still scope for improvement. Secondly, our current analysis sys-
tem only supports 32-bit Windows 7 on the guest machines. This is because of
the free availability of an API hooking library for this platform. Thirdly, it is
possible that some installers drop a plugin to an already installed third-party
application (e.g. a Google Chrome plugin). Because the guest machines were
initialized with a fresh OS, we have not spotted these. Fourthly, we have focused
on grayware PUP and explicit changes to the system. We did not emphasize
stealthiness in the design of our analysis system, due to which evasive malware
may have escaped our analysis. We also cannot exclude the possibility of custom
backdoors, spyware features, or other malicious behavior in the software.

6 Conclusion

We present analysis results from almost 800 freeware application installers
obtained from download portals. The results indicate that portals do not actively

224 A. Geniola et al.

distribute known malware. Many freeware installers, however, come bundled
with unwanted programs and have links to PPI networks. The most danger-
ous detected security flaw is the lack of authentication for downloads made by
installers and app managers. They are vulnerable to man-in-the-middle attacks
that enable code injection to the client machines. We expect to extend the scope
and coverage of the analysis and will share our data with the research community.

References

1. Böhme, R., Köpsell, S.: Trained to accept? A field experiment on consent dialogs.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI 2010, pp. 2403–2406. ACM, New York (2010)

2. Boldt, M., Carlsson, B.: Privacy-invasive software and preventive mechanisms. In:
International Conference on Systems and Networks Communications, ICSNC 2006,
p. 21, October 2006

3. Bruce, J.: Defining rules for acceptable adware. In: Proceedings of the Fifteenth
Virus Bulletin Conference (2005)

4. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: Proceedings of the 20th USENIX
Conference on Security, SEC 2011, USENIX Association, Berkeley (2011)

5. Emm, D., Unuchek, R., Garnaeva, M., Ivanov, A., Makrushin, D., Sinitsyn, F.: It
threat evolution in Q2 2016. Technical report (2016). https://securelist.com/files/
2016/08/Kaspersky Q2 malware report ENG.pdf

6. Esposito, D.: Browser helper objects: the browser the way you want it.
https://msdn.microsoft.com/en-us/library/bb250436(v=vs.85).aspx. Accessed 29
Dec 2016

7. Good, N., Dhamija, R., Grossklags, J., Thaw, D., Aronowitz, S., Mulligan, D.,
Konstan, J.: Stopping spyware at the gate: a user study of privacy, notice and
spyware. In: Proceedings of the 2005 Symposium on Usable Privacy and Security,
SOUPS 2005, pp. 43–52. ACM, New York (2005)

8. Goretsky, A.: Problematic, unloved and argumentative: what is a potentially
unwanted application (PUA)? Technical report, November 2011. Accessed 03 June
2016

9. Heddings, L.: Stop testing software on your PC: use virtual machine snapshots
instead. http://www.howtogeek.com/206286/stop-testing-software-on-your-pc-
use-virtual-machine-snapshots-instead/

10. Heddings, L.: Yes, every freeware download site is serving crapware (here’s the
proof). Technical report. http://www.howtogeek.com/207692/yes-every-freeware-
download-site-is-serving-crapware-heres-the-proof/

11. Kotzias, P., Bilge, L., Caballero, J.: Measuring PUP prevalence and PUP distri-
bution through Pay-Per-Install services. In: Proceedings of the USENIX Security
Symposium (2016)

12. Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified PUP: abuse in authen-
ticode code signing. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 465–478. ACM (2015)

13. McFedries, P.: Technically speaking: the spyware nightmare. IEEE Spectr. 42(8),
72–72 (2005)

14. Microsoft: VERSIONINFO resource. https://msdn.microsoft.com/en-us/library/
aa381058.aspx. Accessed 05 Jan 2017

https://securelist.com/files/2016/08/Kaspersky_Q2_malware_report_ENG.pdf
https://securelist.com/files/2016/08/Kaspersky_Q2_malware_report_ENG.pdf
https://msdn.microsoft.com/en-us/library/bb250436(v=vs.85).aspx
http://www.howtogeek.com/206286/stop-testing-software-on-your-pc-use-virtual-machine-snapshots-instead/
http://www.howtogeek.com/206286/stop-testing-software-on-your-pc-use-virtual-machine-snapshots-instead/
http://www.howtogeek.com/207692/yes-every-freeware-download-site-is-serving-crapware-heres-the-proof/
http://www.howtogeek.com/207692/yes-every-freeware-download-site-is-serving-crapware-heres-the-proof/
https://msdn.microsoft.com/en-us/library/aa381058.aspx
https://msdn.microsoft.com/en-us/library/aa381058.aspx

A Large-Scale Analysis of Download Portals and Freeware Installers 225

15. Microsoft: Windows installer and logo requirements. https://msdn.microsoft.com/
en-us/library/windows/desktop/aa372825(v=vs.85).aspx. Accessed 30 Dec 2016

16. Microsoft: Run, RunOnce, RunServices, RunServicesOnce and Startup, November
2006. Accessed 08 Dec 2016

17. Motiee, S., Hawkey, K., Beznosov, K.: Do windows users follow the principle of
least privilege? Investigating user account control practices. In: Proceedings of the
Sixth Symposium on Usable Privacy and Security, p. 1. ACM (2010)

18. Slade: Mind the PUP: top download portals to avoid. Technical report, March
2015. http://blog.emsisoft.com/2015/03/11/mind-the-pup-top-download-portals-
to-avoid/

19. Statcounter: Desktop operating system market share worldwide, June 2017.
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-2017
06-201706-bar

20. Thomas, K., Crespo, J.A.E., et al.: Investigating commercial pay-per-install and
the distribution of unwanted software. In: 25th USENIX Security Symposium
(USENIX Security 2016), pp. 721–739. USENIX Association, Austin, August 2016

21. Wood, P., Nahorney, B., Chandrasekar, K., Wallace, S., Haley, K., et al.: Symantec
internet security threat report trends for 2016. Technical report, April 2016

https://msdn.microsoft.com/en-us/library/windows/desktop/aa372825(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa372825(v=vs.85).aspx
http://blog.emsisoft.com/2015/03/11/mind-the-pup-top-download-portals-to-avoid/
http://blog.emsisoft.com/2015/03/11/mind-the-pup-top-download-portals-to-avoid/
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201706-201706-bar
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201706-201706-bar

	A Large-Scale Analysis of Download Portals and Freeware Installers
	1 Introduction
	2 Background
	3 Methodology
	3.1 Analysis System Overview
	3.2 Installer Crawling

	4 Results
	4.1 Static Properties of the Installers
	4.2 Dynamic Analysis of Installers
	4.3 App Managers and Software Updates

	5 Discussion and Future Work
	6 Conclusion
	References

