
Helger Lipmaa
Aikaterini Mitrokotsa
Raimundas Matulevicius (Eds.)

 123

LN
CS

 1
06

74

22nd Nordic Conference, NordSec 2017
Tartu, Estonia, November 8–10, 2017
Proceedings

Secure IT Systems

Lecture Notes in Computer Science 10674

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Helger Lipmaa • Aikaterini Mitrokotsa
Raimundas Matulevičius (Eds.)

Secure IT Systems
22nd Nordic Conference, NordSec 2017
Tartu, Estonia, November 8–10, 2017
Proceedings

123

Editors
Helger Lipmaa
University of Tartu
Tartu
Estonia

Aikaterini Mitrokotsa
Chalmers University of Technology
Gothenburg
Sweden

Raimundas Matulevičius
University of Tartu
Tartu
Estonia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-70289-6 ISBN 978-3-319-70290-2 (eBook)
https://doi.org/10.1007/978-3-319-70290-2

Library of Congress Control Number: 2017957852

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at NordSec 2017, the 22nd Nordic Con-
ference on Secure IT Systems. The conference was held during November 8–10, 2017,
in Tartu, Estonia.

The NordSec conferences started in 1996 with the aim of bringing together
researchers and practitioners in computer security in the Nordic countries, thereby
establishing a forum for discussions and cooperation between universities, industry,
and computer societies. NordSec addresses a broad range of topics within IT security
and privacy and over the years it has developed into an international conference that
takes place in the Nordic countries. NordSec is currently a key meeting venue for
Nordic university teachers and students with research interests in information security
and privacy.

NordSec 2017 received 42 submissions, with all valid submissions receiving three
reviews by the Program Committee (PC). After the reviewing phase, 18 papers were
accepted for publication and are all included in these proceedings. Furthermore, we had
a poster session that encouraged discussions and brainstorming on current topics of
information security and privacy.

We were honored to have had three brilliant invited speakers with talks on current
topics in information security focusing on machine learning, blockchains, and verifi-
able computation. More precisely, Dr. Ananth Raghunathan from Google gave a talk
on “Security and Privacy Challenges in Machine Learning,” Prof. Aggelos Kiayias
from the University of Edinburgh gave a talk on “Proof of Stake Blockchain Proto-
cols,” and Dr. Dario Fiore from IMDEA Software Institute gave a talk on “Homo-
morphic Authentication for Computing Securely on Untrusted Machines.”

We sincerely thank everyone involved in making this year’s instance a success
including but not limited to: the authors who submitted their papers, the presenters who
contributed to the NordSec program, and the PC members and the additional reviewers
for their thorough and very helpful reviews. Last but not least, we sincerely thank the
Cybernetica AS company for the support given to the NordSec 2017 conference.

November 2017 Helger Lipmaa
Aikaterini Mitrokotsa

Raimundas Matulevičius

Organization

General Chair

Helger Lipmaa University of Tartu, Estonia

Program Committee Chairs

Helger Lipmaa University of Tartu, Estonia
Aikaterini Mitrokotsa Chalmers University of Technology, Sweden

Program Committee

Tuomas Aura Aalto University, Finland
Musard Balliu Chalmers University of Technology, Sweden
Céline Blondeau Aalto University, Finland
Billy Brumley Tampere University of Technology, Finland
Sonja Buchegger KTH Royal Institute of Technology, Sweden
Ahto Buldas Cybernetica AS, Estonia
Úlfar Erlingsson Google Brain, Iceland
Simone Fischer-Hübner Karlstad University, Sweden
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Rene Rydhof Hansen Aalborg University, Denmark
Camilla Hollanti Aalto University, Finland
Thomas Johansson Lund University, Sweden
Audun Jøsang University of Oslo, Norway
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Martti Lehto University of Jyväskylä, Finland
Ville Leppänen University of Turku, Finland
Bei Liang Chalmers University of Technology, Sweden
Olaf Maennel Tallinn University of Technology, Estonia
Raimundas Matulevičius University of Tartu, Estonia
Christian W. Probst Technical University of Denmark, Denmark
Carla Ràfols Universitat Pompeu Fabra, Spain
Alejandro Russo Chalmers University of Technology, Sweden
Berry Schoenmakers Technical University of Eindhoven, The Netherlands
Carsten Schuermann IT University of Copenhagen, Denmark
Zheng Yan Xidian University, China
Bingsheng Zhang Lancaster University, UK

Additional Reviewers

Daniel Bosk
Alessandro Bruni
Prastudy Fauzi
Wei Feng
Rosario Giustolisi
Oliver Gnilke
Shohreh Hosseinzadeh
Xuyang Jing
Joona Kannisto
Xueqin Liang
Gao Liu

Samuel Marchal
Yoan Miche
Mads C. Olesen
Cesar Pereida Garcia
Sampsa Rauti
Jukka Ruohonen
Razane Tajeddine
Nicola Tuveri
Daren Tuzi
Thomas Zacharias
Daode Zhang

Organization Chair

Raimundas Matulevičius University of Tartu, Estonia

Steering Committee

Tuomas Aura Aalto University, Finland (Chair)
Karin Bernsmed SINTEF ICT, NTNU, Norway
Billy Brumley Tampere University of Technology, Finland
Bengt Carlsson Blekinge Institute of Technology, Sweden
Úllfar Erlingsson Google Inc., Mountain View, USA
Simone Fischer-Huebner Karlstad University, Sweden
Dieter Gollmann TUHH Technische Universität Hamburg-Harburg,

Germany
Audun Jøsang University of Oslo, Norway
Stewart Kowalski Gjøvik University College, Norway
Peeter Laud Cybernetica AS, Estonia
Helger Lipmaa University of Tartu, Estonia
Hanne Riis Nielson Technical University of Denmark, Denmark
Juha Röning University of Oulu, Finland
Andrei Sabelfeld Chalmers University of Technology, Sweden
Simin Nadjm-Tehrani Linköping University, Sweden
Magnus Almgren Chalmers University of Technology, Sweden
Sonja Buchegger KTH, Royal Institute of Technology, Sweden

VIII Organization

Abstracts of Invited Talks

Homomorphic Authentication for Computing
Securely on Untrusted Machines

Dario Fiore

IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

Abstract. Due to phenomena like the ubiquity of the Internet and cloud com-
puting, it is increasingly common to store and process data on third-party
machines. In spite of its attractive aspects, this trend raises a number of security
concerns, including: how to ensure that the results computed by third parties are
correct (integrity) and no unauthorized information is leaked (privacy)? This talk
focuses on cryptographic solutions for integrity, and more specifically on the
notion of homomorphic authentication. It presents this notion, gives an overview
of the state of the art in this area, and covers some of the recent efficient
constructions.

Introduction

Due to phenomena like the ubiquity of the Internet and cloud computing, it is
increasingly common to store and process data on third-party machines. While this
computing trend is undoubtedly successful for its attractive features, it also raises a
number of security concerns, such as:

How to ensure that the results computed by third parties are correct (integrity) and no
unauthorized information is leaked (privacy)?

Recent work in cryptography has shown a variety of new cryptographic means for
protecting information processed on third-party, untrusted machines. For example, it is
widely known that fully homomorphic encryption [6] can solve privacy by allowing
one to compute on data that is encrypted. Here, we analyze the problem of guaranteeing
the authenticity of data during computation, and more specifically we focus on the
notion of homomorphic authentication.

Homomorphic Authenticators. Akin to standard authentication mechanisms (e.g.,
digital signatures or message authentication codes), homomorphic authenticators
(HAs) allow a user Alice to authenticate a collection of data items x1, …, xn using her
secret key. The distinguishing feature of HAs is that an untrusted party, without the
need of any secret, can use the authenticators on x1, …, xn to generate a value rP;y that
vouches for the correctness of y ¼ Pðx1; . . .; xnÞ. Finally, a user Bob who is given the
tuple ðP; y;rP;yÞ and Alice’s verification key can verify the authenticity of y as output
of the program P executed on data authenticated by Alice. In other words, Bob can

verify that the server did not tamper with the computation’s result and that it used the
very same data authenticated by Alice. Alice’s verification key can be either secret or
public. In the former case, this primitive is known as homomorphic MACs, while in the
latter case it is known as homomorphic signatures.

In terms of security, HAs must be unforgeable. Intuitively, this means that an
adversary must not be able to forge a valid authenticator on an incorrect computation’s
result y� 6¼ Pðx1; . . .; xnÞ. In addition to security, HAs are interesting because of two
additional properties. The first one is succinctness, which says that the authenticators
remain short, i.e., much shorter than P’s input size: this means that one can convince
Bob about the correctness of a program executed on a huge amount of data by sending
him only a very short piece of information. The second interesting property is com-
posability, which says that derived authenticators can be used further as inputs to new
computations: this means that one can, for example, distribute different subtasks to
several untrusted workers, ask each of them to produce a proof of its local task, and use
these proofs to create another single proof for the final job (as in the MapReduce
approach).

Thanks to these properties, homomorphic authenticators can provide a nice and
elegant solution to the problem of ensuring authenticity and integrity of data during
computation.

A glance at the state of the art.1 The notion of homomorphic authentication was first
introduced by Desmedt [4] and later reconsidered more formally by Johnson et al. [8].
A more formal definition, as the one depicted above, came only more recently starting
with the works of Boneh et al. [1, 2]. Since then, research was mainly devoted towards
two fundamental goals: (i) to broaden the class of functionalities that can be computed
homomorphically, and (ii) to obtain efficient instantiations. With respect to (i), research
has gone far up to the notable result of Gorbunov, Vaikuntanathan and Wichs who
showed a scheme that supports boolean circuits of bounded polynomial depth [7]. Yet,
the existence of truly fully homomorphic schemes remain an open problem. As far as
(ii) is concerned, the problem is less settled as practically efficient instantiations
essentially are confined to schemes supporting linear functions. The situation is slightly
better in the symmetric-key setting: a fully homomorphic MAC that can deal with all
circuits was proposed by Gennaro and Wichs [5] based on FHE, and a simpler, more
efficient homomorphic MAC supporting only NC1 circuits has been shown by
Catalano and Fiore [3] based on pseudorandom functions.

Talk Overview. This talk begins with an introduction to the notion of homomorphic
authentication and an overview of the state of the art. Next, it covers some recent
constructions, and finally concludes by discussing some of the main open problems in
this research area.

1 This is not meant to be an exhaustive analysis; we only mention a selection of milestones in the area.

XII D. Fiore

Acknowledgements. I would like to thank the program chairs and the entire PC of NordSec 2017
for inviting me to give this talk. I am also grateful to Michael Backes, Manuel Barbosa, Dario
Catalano, Rosario Gennaro, Katerina Mitrokotsa, Luca Nizzardo, Elena Pagnin, Valerio Pastro,
Raphael Reischuk, Konstantinos Vamvourellis, and Bogdan Warinschi for their fruitful collab-
oration in this research area.

References

1. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Berlin
(2011)

2. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for
network coding. In: Jarecki,S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87.
Springer, Berlin (2009)

3. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352.
Springer, Berlin (2013)

4. Desmedt, Y.: Computer security by redefining what a computer is. NSPW (1993)
5. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako, K.,

Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320. Springer, Berlin
(2013)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM STOC, pp. 169–
178. ACM Press (2009)

7. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from
standard lattices. In: 47th ACM STOC. ACM Press (2015)

8. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes. In:
Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Cham (2002)

Homomorphic Authentication for Computing Securely on Untrusted Machines XIII

Security and Privacy Challenges
in Machine Learning

Ananth Raghunathan

Google, Mountain View, CA, USA
pseudorandom@google.com

Abstract. This talk covers many of the security and privacy issues raised by the
recent advances in machine learning. In particular, I’ll present recent results in
protecting the privacy of sensitive training data, and recent attacks enabled by
semi-supervised learning and knowledge transfer.

Proof of Stake Blockchain Protocols

Aggelos Kiayias

University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk

Abstract. In this talk I will cover recent developments in the design of block-
chain protocols focusing on proof of stake based solutions. The talk will
overview design challenges and analysis approaches, from both a security and a
high performance perspective.

Contents

Outsourcing Computations

A Server-Assisted Hash-Based Signature Scheme . 3
Ahto Buldas, Risto Laanoja, and Ahto Truu

Outsourcing of Verifiable Attribute-Based Keyword Search 18
Go Ohtake, Reihaneh Safavi-Naini, and Liang Feng Zhang

Privacy Preservation

Is RCB a Leakage Resilient Authenticated Encryption Scheme? 39
Farzaneh Abed, Francesco Berti, and Stefan Lucks

Practical and Secure Searchable Symmetric Encryption
with a Small Index . 53

Ryuji Miyoshi, Hiroaki Yamamoto, Hiroshi Fujiwara,
and Takashi Miyazaki

Anonymous Certification for an e-Assessment Framework 70
Christophe Kiennert, Nesrine Kaaniche, Maryline Laurent,
Pierre-Olivier Rocher, and Joaquin Garcia-Alfaro

PARTS – Privacy-Aware Routing with Transportation Subgraphs 86
Christian Roth, Lukas Hartmann, and Doğan Kesdoğan

Security and Privacy in Machine Learning

Bayesian Network Models in Cyber Security: A Systematic Review 105
Sabarathinam Chockalingam, Wolter Pieters, André Teixeira,
and Pieter van Gelder

Improving and Measuring Learning Effectiveness
at Cyber Defense Exercises . 123

Kaie Maennel, Rain Ottis, and Olaf Maennel

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 139
Peeter Laud and Alisa Pankova

http://dx.doi.org/10.1007/978-3-319-70290-2_1
http://dx.doi.org/10.1007/978-3-319-70290-2_2
http://dx.doi.org/10.1007/978-3-319-70290-2_3
http://dx.doi.org/10.1007/978-3-319-70290-2_4
http://dx.doi.org/10.1007/978-3-319-70290-2_4
http://dx.doi.org/10.1007/978-3-319-70290-2_5
http://dx.doi.org/10.1007/978-3-319-70290-2_6
http://dx.doi.org/10.1007/978-3-319-70290-2_7
http://dx.doi.org/10.1007/978-3-319-70290-2_8
http://dx.doi.org/10.1007/978-3-319-70290-2_8
http://dx.doi.org/10.1007/978-3-319-70290-2_9

Applications

Free Rides in Denmark: Lessons from Improperly Generated
Mobile Transport Tickets . 159

Rosario Giustolisi

Using the Estonian Electronic Identity Card for Authentication
to a Machine . 175

Danielle Morgan and Arnis Parsovs

Data Aware Defense (DaD): Towards a Generic and Practical
Ransomware Countermeasure . 192

Aurélien Palisse, Antoine Durand, Hélène Le Bouder, Colas Le Guernic,
and Jean-Louis Lanet

A Large-Scale Analysis of Download Portals and Freeware Installers 209
Alberto Geniola, Markku Antikainen, and Tuomas Aura

Access Control

GPASS: A Password Manager with Group-Based Access Control 229
Thanh Bui and Tuomas Aura

Towards Accelerated Usage Control Based on Access Correlations 245
Richard Gay, Jinwei Hu, Heiko Mantel, and Johannes Schickel

Emerging Security Areas

Generating Functionally Equivalent Programs Having Non-isomorphic
Control-Flow Graphs . 265

Rémi Géraud, Mirko Koscina, Paul Lenczner, David Naccache,
and David Saulpic

Proof of a Shuffle for Lattice-Based Cryptography 280
Nuria Costa, Ramiro Martínez, and Paz Morillo

An Analysis of Bitcoin Laundry Services . 297
Thibault de Balthasar and Julio Hernandez-Castro

Author Index . 313

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-70290-2_10
http://dx.doi.org/10.1007/978-3-319-70290-2_10
http://dx.doi.org/10.1007/978-3-319-70290-2_11
http://dx.doi.org/10.1007/978-3-319-70290-2_11
http://dx.doi.org/10.1007/978-3-319-70290-2_12
http://dx.doi.org/10.1007/978-3-319-70290-2_12
http://dx.doi.org/10.1007/978-3-319-70290-2_13
http://dx.doi.org/10.1007/978-3-319-70290-2_14
http://dx.doi.org/10.1007/978-3-319-70290-2_15
http://dx.doi.org/10.1007/978-3-319-70290-2_16
http://dx.doi.org/10.1007/978-3-319-70290-2_16
http://dx.doi.org/10.1007/978-3-319-70290-2_17
http://dx.doi.org/10.1007/978-3-319-70290-2_18

Outsourcing Computations

A Server-Assisted Hash-Based Signature Scheme

Ahto Buldas1, Risto Laanoja1,2, and Ahto Truu1,2(B)

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A.H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. We present a practical digital signature scheme built from
a cryptographic hash function and a hash-then-publish digital time-
stamping scheme. We also provide a simple proof of existential unforge-
ability against adaptive chosen-message attack (EUF-ACM) in the ran-
dom oracle (RO) model.

1 Introduction

All the digital signature schemes in use today (RSA [42], DSA [22], ECDSA [30])
are known to be vulnerable to quantum attacks by Shor’s algorithm [46]. While
the best current experimental results are still toy-sized [35], it takes a long time
for new cryptographic schemes to be accepted and deployed, so it is of consid-
erable interest to look for post-quantum secure alternatives already now. Error-
correcting codes, discrete lattices, and multi-variate polynomials have been used
as foundations for proposed replacement schemes [4]. However, these are rel-
atively complex structures and new constructions in cryptography, so require
significant additional scrutiny before gaining trust.

Hash functions, on the other hand, have been studied for decades and are
widely believed to be quite resistant to quantum attacks. The best currently
known quantum results against hash functions are using Grover’s algorithm [25]
to find a pre-image of a given k-bit value in 2k/2 queries instead of the 2k queries
needed by a classical attacker, and Brassard et al.’s modification [7] to find a
collision in 2k/3 instead of 2k/2 queries. To counter these attacks, it would be
sufficient to deploy hash functions with correspondingly longer outputs when
moving from pre-quantum to post-quantum setting.

2 Related Work

The earliest digital signature scheme constructed from hash functions is due
to Lamport [19,31]. Merkle [37] introduced two methods for reducing the key
sizes, one proposed to him by Winternitz. The Winternitz scheme has subse-
quently been more thoroughly analyzed and further refined by Even et al. [23],

This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS.

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 3–17, 2017.
https://doi.org/10.1007/978-3-319-70290-2_1

4 A. Buldas et al.

Dods et al. [21], Buchmann et al. [9], and Hülsing [27]. All of these schemes are
one-time, and require generation of a new key pair and distribution of a new
public key for each message to be signed.

Merkle’s arguably most important contribution in [37] was the concept of
hash tree, which enables a large number of public keys to be represented by a
single hash value. With the hash value published, any one of the N public keys
can be shown to belong to the tree with a proof consisting of log2 N hash values,
thus combining N instances of a one-time scheme into an N -time scheme. Buldas
and Saarepera [16] and Coronado Garćıa [17] showed the aggregation to be secure
if the hash function used to build the tree is collision resistant. Rohatgi [43] used
the XOR-tree construct proposed by Bellare and Rogaway [3] to create a variant
of hash tree whose security is based on second pre-image resistance of the hash
function instead of collision resistance. Dahmen et al. [18] proposed a similar
idea with a more complete security proof.

A drawback of the above hash tree constructs is that the whole tree has to be
built at once, which also means all the private keys have to be generated at once.
Merkle [38] proposed a certification tree that allows just the root node of the tree
to be populated initially and the rest of the tree to be grown gradually as needed.
However, to authenticate the lower nodes of the tree, a chain of full-blown one-
time signatures (as opposed to a chain of sibling hash values) is needed, unless
the protocol is used in an interactive environment where the recipient keeps the
public keys already delivered as part of earlier signatures. Malkin et al. [34]
and Buchmann et al. [8,11] proposed various multi-level schemes where the keys
authenticated by higher-level trees are used to sign roots of lower-level trees to
enable the key sets to be expanded incrementally.

Buchmann et al. [10] proposed XMSS, a version of the Merkle signature
scheme with improved efficiency compared to previous ones. Hülsing et al. [28]
introduced a multi-tree version of it. Hülsing et al. [29] described a modification
hardened against so-called multi-target attacks where the adversary will succeed
when it can find a pre-image for just one of a large number of target output
values of a hash function.

A risk with the N -time schemes is that they are stateful : as each of the one-
time keys may be used only once, the signer will need to keep track of which
keys have already been used. If this state information is lost (for example, when
a previous state is restored from a backup), keys may be re-used by accident.

Perrig [39] proposed BiBa which has small signatures and fast verification,
but rather large public keys and slow signing. Reyzin and Reyzin [41] proposed
the HORS scheme that provides much faster signing than BiBa. These two are
not strictly one-time, but so-called few-time schemes where a private key can
be used to sign several messages, but the security level decreases with each
additional use. Bernstein et al. [5] proposed SPHINCS, which combines HORS
with XMSS trees to create a stateless scheme that uses keys based on a pseudo-
random schedule that makes the risk of re-use negligible even without tracking
the state.

A Server-Assisted Hash-Based Signature Scheme 5

3 Our Contribution

We propose a signature scheme with a hash function as its sole underlying
primitive. At the time of writing, XMSS and SPHINCS are the state of the
art in the stateful and stateless hash signature schemes, respectively, so these
are what new schemes should be measured against.

XMSS has fast signing and verification, and small signatures, but requires
careful management of key state [36]. Our scheme has comparable efficiency, but
the private key to be used is determined by signing time, which removes the risk
of accidental roll-backs. Also, a single private key can be used to sign multiple
messages simultaneously, so no synchronization is required when the scheme is
deployed in multi-threaded or multi-processor environments.

SPHINCS has small keys and efficient verification, but quite large signatures
and rather expensive signing. Our scheme requires orders of magnitude less com-
putations for signing and produces signatures roughly a tenth the size.

A more general feature is that each signature produced by our scheme is
inherently time-stamped. Most other schemes require time-stamping as a sep-
arate step after signing to handle key expirations, key revocations, and time-
limited signing authority. Due to the time-stamping component, our scheme is
necessarily server-assisted. While this may look like a disadvantage, it may in
fact be beneficial in enforcing various key usage policies and limiting damage in
case of a key leakage. For these reasons, even the technically off-line schemes are
usually deployed within on-line frameworks in practice.

4 Preliminaries

Hash Trees. Introduced by Merkle [37], a hash tree is a tree-shaped data struc-
ture built using a 2-to-1 hash function h : {0, 1}2k → {0, 1}k. The nodes of
the tree contain k-bit values. Each node is either a leaf with no children or an
internal node with two children. The value x of an internal node is computed
as x ← h(xl, xr), where xl and xr are the values of the left and right child,
respectively. There is one root node that is not a child of any node. We will use
r ← Th(x1, . . . , xN) to denote a hash tree whose N leaves contain the values
x1, . . . , xN and whose root node contains r.

Hash Chains. In order to prove that a value xi participated in the computation
of the root hash r, it is sufficient to present values of all the siblings of the nodes
on the unique path from xi to the root in the tree. For example, to claim that
x3 belongs to the tree shown on the left in Fig. 1, one has to present the values
x4 and x1,2 to enable the verifier to compute x3,4 ← h(x3, x4), r ← h(x1,2, x3,4),
essentially re-building a slice of the tree, as shown on the right in Fig. 1. We will
use x

c� r to denote that the hash chain c links x to r in such a manner.
Intuitively, it seems obvious that if the function h is one-way, the existence

of such a chain whose output equals the original r is a strong indication that x
was indeed the original input. However, this result was not formally proven until
25 years after the hash tree construct was proposed [16,17].

6 A. Buldas et al.

r = h(x1,2, x3,4)

x1,2 = h(x1, x2)

x1 x2

x3,4 = h(x3, x4)

x3 x4

r

x1,2 x3,4

x3 x4

Fig. 1. The hash tree Th(x1, . . . , x4) and the corresponding hash chain x3 � r.

Hash-Then-Publish Time-Stamping. The general idea of time-stamping informa-
tion by publishing its hash value was used already by Galilei and Hooke in the
XVII century. In more modern cryptographic times, Haber and Stornetta [26]
were the first to propose time-stamping a sequence of records by having each of
them contain the hash of the previous one, in a manner that was later popular-
ized as the blockchain structure. Bayer et al. [2] proposed using hash trees to
aggregate the inputs in batches and then linking the roots of the trees instead of
individual records. The most recent results on security bounds of such schemes
are by Buldas et al. [13–15].

5 Description of the Scheme

The principal idea of our signature scheme is to have the signer commit to a
sequence of keys such that each key is assigned a time slot when it can be used
to sign messages and will transition from signing key to verification key once the
time slot has passed.

Signing itself then consists of time-stamping the message-key pair in order to
prove that the signing operation was performed at the correct time. For simplicity
of presentation, we count time in aggregation rounds of the time-stamping service
and use the expression “at time t” to mean “during aggregation round t”.

More formally, the classic triple of procedures for key generation, signature
generation, and signature verification [24] is as follows:

Key Generation. To prepare to sign messages at times 1, . . . , N , the signer:

1. Generates N signing keys: (z1, . . . , zN) ← G(N, k).
We assume the keys are unpredictable values drawn from {0, 1}k.

2. Binds each key to its time slot: xi ← h(i, zi) for i ∈ {1, . . . , N}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p ← Th(x1, . . . , xN).

The resulting data structure is shown in Fig. 2 and its purpose is to be able to
extract hash chains ci ← h(i, zi) � p for i ∈ {1, . . . , N}.

A Server-Assisted Hash-Based Signature Scheme 7

p

x1,2

x1

1 z1

x2

2 z2

x3,4

x3

3 z3

x4

4 z4

Fig. 2. Computation of public key for N = 4.

Signing. To sign message m at time t, the signer:

1. Uses the appropriate key to authenticate the message: y ← h(m, zt).
2. Time-stamps the authenticator: at ← y � rt.

Here rt is the root hash of the aggregation tree built by the time-stamping
service for the aggregation round t. We assume the root is committed to in
some reliable way, such as broadcasting it to all interested parties, but place
no other trust in the service.

3. Outputs the tuple (t, zt, at, ct), where t is the signing time, zt is the signing
key for time slot t, at is the hash chain from the time-stamping service linking
the key usage to rt, and ct is the hash chain linking the binding of zt and
time slot t to the signer’s public key p.

Note that the signature is composed and emitted after the time-stamping step,
which makes it safe for the signer to release the key zt as part of the signature:
the aggregation round t has ended and any future uses of the key zt can no
longer be stamped with time t.

Verification. To verify that the message m and the signature s = (t, z, a, c) match
the public key p, the verifier:

1. Checks that z was committed as signing key for time t: h(t, z) c� p .
2. Checks that m was authenticated with key z at time t: h(m, z) a� rt .

6 Security Proof

Goldwasser et al. [24] proposed a framework for studying security of signature
schemes where the attackers have various levels of access to signing oracles and
various requirements on what they need to achieve for the attack to be considered
successful (and the scheme broken).

As the highest security level, they defined the concept of existential unforge-
ability (EUF) where an attacker should be unable to forge signatures on any
messages, even nonsensical ones.

They also defined the chosen-message attack where the attacker can submit
a number of messages to be signed by the oracle before having to come up with
a forged signature on a new message, and in particular, as the one giving the

8 A. Buldas et al.

attacker the most power, the adaptive chosen-message attack (ACM) where the
attacker will receive each signature immediately after submitting the message
and can use any information gained from previous signatures to form subsequent
messages.

Luby [33] defined the time-success ratio as a way to express the resilience
of a cryptographic scheme against attacks as the relationship of the probability
that the attack will succeed to the computation time the attacker is allowed to
spend.

We will now combine these notions to define and prove the security of our
signature scheme.

Definition 1. A signature scheme is S-secure existentially unforgeable against
adaptive chosen-message attacks (EUF-ACM), if any T -time adversary, having
access to a signer’s public key p and to a signing oracle S to obtain signatures
s1 ← S(m1), . . . , sn ← S(mn) on adaptively chosen messages m1, . . . , mn, can
produce a new message-signature pair (m, s) such that m �∈ {m1, . . . ,mn}, but s
is a valid signature on m, with probability at most T/S.

Oracle S (signing oracle)

Query Sig(m, t):
return h(m, zt)

Query Get(t):
If c ≥ t then:

return (zt, xt � p)
else:

return ⊥

Oracle R (repository)

Initialize:
c ← 0

Query Put(r):
c ← c + 1
rc ← r

Query Get(t):
If c ≥ t then:

return rt
else:

return ⊥

Fig. 3. The oracles used in the security condition.

To formalize our security assumptions, we introduce three oracles:
We model the publishing of the root hashes of the time-stamping aggregation

trees as the oracle R (Fig. 3, right) that allows each rt to be published just once.
The signing oracle S (Fig. 3, left) will compute the message authenticators

at any time, but will release only the keys that have already expired for signing
(transitioned to verification keys).

We model the hash function h as a random oracle using the lazy sampling
technique: every time h is queried with a previously unseen input, a new return
value is generated by uniform random sampling from {0, 1}k; when h is queried
with a previously seen input, the same value is returned as last time.

The adversary A will be interacting with the oracles as shown in Fig. 4 with
the goal of producing a forgery.

A Server-Assisted Hash-Based Signature Scheme 9

A(x1, . . . , xN)

(m, (t, z, a, c))

S(z1, . . . , zN)

S
i
g
(m

,t
)

h
(m

,z
t
)

G
e
t
(t

)

(z
t
,c

t
)

/
⊥

h R

P
u
t
(r

)

G
e
t
(t

)

r t
/

⊥

Fig. 4. The adversary’s interactions with the oracles.

To model the fact that the signer needs to keep secret only the keys z1, . . . , zN ,
we explicitly initialize the adversary with x1, . . . , xN . Note that the verification
rule still assumes that the verifier has access only to the signer’s public key p,
which means the adversary is not limited to presenting hash chains that were
actually extracted from Th(x1, . . . , xN).

Also note that we leave the aggregation process of the time-stamping service
fully under the adversary’s control; only the repository R needs to be trusted to
operate correctly.

As normally signing message m involves first calling S.Sig(m, t), then com-
mitting to R the root of a hash tree that includes the return value, and then
calling S.Get(t), we formalize the forgery condition by demanding that the adver-
sary can’t make the two S calls in that order:

Definition 2. The pair (m, s) produced by an adversary is a successful forgery if
s is a valid signature on m, but the adversary did not make the calls S.Sig(m, t),
S.Get(t), in that order, for any t ∈ {1, . . . , N}.

Theorem 1. Our signature scheme, when instantiated with a hash function
h : {0, 1}2k → {0, 1}k indistinguishable from a random oracle, is at least 2(k−2)/2-
secure existentially unforgeable against adaptive chosen-message attacks by any
T -time adversary.

Proof. We will directly show an upper bound on the success probability of the
adversary in the forgery game F (Fig. 5).

Assume that the adversary does not call S.Get(t). To win the game F, he must
produce t, z, c such that h(t, z) c� p. For that, the output of the last step of
the chain computation must equal the root of the tree Th(x1, . . . , xN). Let’s
now consider the inputs to that step. If they equal the corresponding children
of the root of the tree, we can repeat the reasoning for the second last step and
the corresponding node of the tree, and so on. As we walk a finite chain and

10 A. Buldas et al.

Game F (forgery)

(z1, . . . , zN) ← G(N)
xi ← h(i, zi) for i ∈ {1, . . . , N}
p ← Th(x1, . . . , xN)

(m, (t, z, a, c)) ← Ah,S,R(x1, . . . , xN)

If A did not call S.Sig(m, t), S.Get(t),

but h(t, z)
c� p and h(m, z)

a� rt
then:

return 1
else:

return 0

Fig. 5. The forgery game.

simultaneously traverse a finite tree from the root towards leaves, one of the
following events must eventually happen:

1. We run out of the chain at the same time we run out of the tree. This means
the adversary has found t and z such that xi = h(t, z) for some i ∈ {1, . . . , N}.
If i �= t, then the adversary has found a second pre-image for the xi originally
computed as h(i, zi). With h being a random oracle, the probability of a
T -time adversary achieving that for any given i is ≤ T/2k. If i = t, then
the adversary may have found a second pre-image for xt, with probability
≤ T/2k, or may have guessed zt, also with probability ≤ T/2k. Thus the
total probability of h(t, z) matching a leaf of the tree is πA,1 ≤ (N + 1)T/2k.

2. We run out of the chain before we run out of the tree. This means h(t, z)
matches one of the internal nodes of the tree, say x. This can be the case in
two ways:
(a) The left child of x contains t and the adversary uses the right child of x

as z. The probability of any given node having the given value t is 1/2k.
As there are N − 1 candidate nodes and N possible values of t, the total
probability is ≤ (N − 1)N/2k.

(b) The adversary has found a second pre-image for x. The probability of a
T -time adversary achieving that for any given node is ≤ T/2k. As the
adversary has N − 1 nodes as potential targets for such a hit, the total
probability is ≤ (N − 1)T/2k.

Thus the total probability of h(t, z) matching an internal node of the tree is
πA,2 ≤ (N − 1)(N + T)/2k.

3. We run out of the tree before we run out of the chain. This means that the
adversary has found a pre-image for one of the 2N values {1, z1, . . . , N, zN}.
The probability of that is πA,3 ≤ 2NT/2k.

4. We encounter a hash step where the output of the step equals an internal
node in the tree, say x, but the inputs of the step do not match the children
of x. This means the adversary has found a second pre-image for x. The
probability of that is πA,4 ≤ (N − 1)T/2k.

A Server-Assisted Hash-Based Signature Scheme 11

So, the total success probability of a T -time adversary who does not call S.Get(t)
is πA ≤ πA,1+πA,2+πA,3+πA,4 ≤ (N +1)T/2k+(N −1)(N +T)/2k+2NT/2k+
(N − 1)T/2k < (N2 + 5NT)/2k.
Assume now that the adversary does call S.Get(t). Then we can, without loss of
generality, also assume that

– he calls S.Get(t) only after committing rt, as before that S.Get(t) would
always return ⊥, which would provide no useful information;

– he calls S.Get(t) only once, as all additional calls to S.Get(t) would return
the same result, which would provide no new information;

– he never calls S.Sig(m, t), as he is not allowed to call S.Sig(m, t) before
calling S.Get(t) according to the security condition, but after calling S.Get(t)
he already has zt and can compute h(m, zt) directly with no need to call the
signing oracle any more.

Finally, we can also assume that in order to win the game F, the adversary must
produce m and a such that h(m, zt)

a� rt. Indeed, if the adversary wins the game
with h(m, z) a� rt where z �= zt, then he has not used the information gained
from the S.Get(t) call and thus could not have done any better than without the
call, a case we have already analyzed.

Let H be the set of h-calls y ← h(x1, x2) the adversary made before commit-
ting rt. As the adversary is T -time, we have |H| ≤ T . Consider now the h-calls
to be made during the computation of h(m, zt)

a� rt:

1. If all the calls are in H, then the adversary must have called h(m, zt) before
committing rt and thus also before learning zt from the call to S.Get(t). This
means that the adversary guessed zt. The probability of a T -time adversary
achieving that is πB,1 ≤ T/2k.

2. If none of the calls are in H, then there are two possibilities:
(a) The value rt was not returned from any of the calls in H. This means

the adversary was able to find a pre-image of rt after committing it, the
probability of which is ≤ T/2k.

(b) The value rt was returned by some call in H. Since the chain a is com-
puted entirely using calls not in H, the inputs of the final step of the
computation represent a second pre-image of rt. The probability of a
T -time adversary achieving that is also ≤ T/2k.

Thus the total probability of the adversary finding a chain entirely outside of
H is πB,2 ≤ 2T/2k.

3. Some, but not all of the calls are in H. Let’s examine, among the calls that
are not in H, the one made last during the computation of the chain. Let it
be y ← h(x1, x2). Again, there are two possibilities:
(a) The value y was not returned from any of the calls in H. However, the

next step in a is already a call in H. This means that y is among the
inputs of calls in H and the adversary was able to find a pre-image of it.
The probability of the adversary achieving that for any given y is ≤ T/2k.
As there are 2|H| possible values of y, the total probability is ≤ 2|H|T/2k.

(b) The value y was returned by some call in H. Since the call y ← h(x1, x2)
is not in H, the adversary must have found a second pre-image of y. The
total probability of that over all available values of y is ≤ |H|T/2k.

12 A. Buldas et al.

Thus the probability of the adversary finding a chain entering into H is πB,3 ≤
3|H|T/2k ≤ 3T 2/2k.

Hence the total success probability of a T -time adversary who calls S.Get(t) is
πB ≤ πB,1 + πB,2 + πB,3 ≤ T/2k + 2T/2k + 3T 2/2k = (3T + 3T 2)/2k.

Summary. If the adversary does not call S.Get(t), he can win the forgery game
F with probability πA < (N2 + 5NT)/2k. If he does call S.Get(t), he can win
with probability πB ≤ (3T + 3T 2)/2k. Overall, he can win with probability
π = max(πA, πB).

Since generating the N keys z1, . . . , zN and making the 2N − 1 calls to h to
compute x1, . . . , xN and Th(x1, . . . , xN) is something the signers are expected
to do routinely, we can assume that N � T . Already with N < T/10, we have
πA < (N2 + 5NT)/2k < (T 2/100 + T 2/2)/2k < T 2/2k. With T > 10N ≥ 10, we
have T 2 > 3T and thus πB ≤ (3T + 3T 2)/2k < 4T 2/2k.

Therefore, π = max(πA, πB) < 4T 2/2k, or T 2/π > 2k−2. As π ≤ 1, we also
have (T/π)2 ≥ T 2/π, which yields the claim T/π > 2(k−2)/2.

7 Practical Considerations

Key Generation. In the description of the scheme we assumed that the signing
keys z1, . . . , zN are unpredictable values drawn from {0, 1}k, but left unspecified
how they might be generated in practice. Obviously they could be generated
as independent truly random values, but this would be rather expensive and
also would necessitate keeping a large number of secret values over a long time.
It would be more practical to generate them pseudo-randomly from a single
random seed s. There are several known ways of doing that:

– Iterated hashing: zN ← s, zi−1 ← h(zi) for i ∈ {2, . . . , N}.
This idea of generating a sequence of one-time keys from a single seed is due
to Lamport [32] and has also been used in the TESLA protocol by Perrin
et al. [40]. Implemented this way, our scheme would also bear some resem-
blance to the Guy Fakes protocol by Anderson et al. [1]. Note that the keys
have to be generated in reverse order, otherwise the earlier keys released as
signature components could be used to derive the later ones that are still
valid for signing. To be able to use the keys in the direct order, the signer
would have to either remember them all, re-compute half of the sequence
on average, or implement a traversal algorithm such as the one proposed by
Schoenmakers [45].

– Counter hashing: zi ← h(s, i).
With a hash function behaving as a random oracle, this scheme would gen-
erate keys indistinguishable from truly random values, but there does not
appear to be much research on the security of practical hash functions when
used in this mode.

– Counter encryption: zi ← Es(i).
The signing keys are generated by encrypting their indices with a symmet-
ric block cipher using the seed as the encryption key. This is equivalent to

A Server-Assisted Hash-Based Signature Scheme 13

using the block cipher in the counter mode as first proposed by Diffie and
Hellman [20]. The security of this mode is extensively studied and well under-
stood for all common block ciphers. Another benefit of this approach is that it
can be implemented using standard hardware security modules where the seed
is kept in a protected storage and the encryption operations are performed
in a security-hardened environment.

Time-Stamping. As already mentioned, we side-step the key state management
problems [36] common for most N -time signing schemes by making the signing
keys not one-time, but time-bound instead. This in turn raises the issue of clock
synchronization.

We first note that even when the signer’s local clock is running fast, prema-
ture key release is easy to prevent by having the signer verify the time-stamp on
h(m, zt) before releasing zt. This is how the condition c ≥ t of the signing oracle
S in Fig. 3 should be implemented in practice.

The next issue is that the signer needs to select the key zt before computing
h(m, zt) and submitting it to time-stamping. If, due to clock drift or network
latency, the time in the time-stamp received does not match t, the signature
can’t be composed. To counter clock drift and stable latency, the signer can first
time-stamp a dummy value and use the result to compare its local clock to that
of the time-stamping service.

To counter network jitter, the signer can compute the message authenticators
h(m, zt′) for several consecutive values of t′, submit all of them in parallel, and
compose the signature using the components whose t′ matches the time t in the
time-stamps received. Buldas et al. [12] have shown that with careful scheduling
the latency can be made stable enough for this strategy even in an aggregation
network with world-wide scale.

Finally, we note that time-stamping services operating in discrete aggre-
gation rounds are particularly well suited for use in our scheme, as they only
return time-stamps once the round is closed, thus eliminating the risk that a fast
adversary could still manage to acquire a suitable time-stamp after the signer
has released a key.

Efficiency. In the following estimates, we assume the use of SHA-256, a common
256-bit hash function. On small inputs, a moderate laptop can perform about a
million SHA-256 evaluations per second. We also assume a signing key sequence
containing one key per second for a year, or a total of a bit less than 32 million,
or roughly 225 keys.

Using the techniques described above, generation of N signing keys takes N
applications of either a hash function or a symmetric block cipher. Binding them
into a public key takes 2N − 1 hashing operations. Thus, the key generation in
our example takes about 100 seconds.

The resulting public key consists of just one hash value. In the private key,
only the seed s has to be kept secret. The signing keys z1, . . . , zN can be erased
once the public key has been computed, an then re-generated as needed for sign-
ing. The hash tree Th(x1, . . . , xN) presents a space-time trade-off. It may be
kept (in regular unprotected storage, as it contains no sensitive information),

14 A. Buldas et al.

taking up 2N − 1 nodes, or about 1 GB, and then the key authentication hash
chains can be just read from the tree with no additional computations needed.
Alternatively, one can use a hash tree traversal algorithm, such as the one pro-
posed by Szydlo [47], to keep only 3 log2 N nodes of the tree and spend 2 log2 N
hash function evaluations per chain extraction, assuming all chains are extracted
consecutively.

The size of the signature (t, zt, at, ct) is dominated by the two hash chains.
The key authentication chain consists of log2 N hash values, for a total of about
800 B for our 1-year key sequence. The time-stamping chain consists of log2 M
hash values, where M is the number of requests received by the time-stamping
service in the round t. Assuming the use of the KSI service described in [12]
under its theoretical maximum load of 250 requests, this adds about 1 600 B.
Thus we can expect signatures of less than 3 kB.

As the verification means re-computing the hash chains, it amounts to less
than a hundred hash function evaluations.

8 Conclusions and Outlook

We have presented a simple and efficient digital signature scheme built from a
hash function and a hash-then-publish time-stamping scheme. Considering that
the existence of hash functions is a necessary pre-condition for the existence of
digital signatures [44], one could argue our scheme is based on minimal assump-
tions. However, there is still much room for improvement in both theoretical and
practical aspects.

Current security proofs are given in the random oracle model and in the
classical setting. It would be desirable to prove the security also in the standard
model and in the quantum setting, in particular taking into account the effects of
quantum-oracle access to the hash function [6] and possible quantum interactions
between the aggregation and the hash chain extraction phases of time-stamping,
as these are all under the adversary’s control.

It would also be good to reduce, or at least defer, the key generation costs,
perhaps by adopting some of the incremental tree generation approaches, and to
develop a version of the scheme suitable for personal signing devices like smart
cards and USB dongles. These devices, in addition to having significantly less
memory and computational power, also lack several functional qualities of the
full-sized computers: they are powered on only intermittently, and do not have
on-board real-time clocks or independent network communication capabilities.

References

1. Anderson, R.J., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham,
R.M.: A new family of authentication protocols. Oper. Syst. Rev. 32(4), 9–20
(1998)

A Server-Assisted Hash-Based Signature Scheme 15

2. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of
digital time-stamping. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences
II, Proceedings. LNCS, vol. 9056, pp. 329–334. Springer, Heidelberg (1992). doi:10.
1007/978-1-4613-9323-8 24

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, Proceedings, pp. 62–73. ACM (1993)

4. Bernstein, D.J., Buchmann, J.A., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). doi:10.1007/978-3-540-88702-7

5. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 15

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 3

7. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). doi:10.1007/BFb0054319

8. Buchmann, J.A., Coronado Garćıa, L.C., Dahmen, E., Döring, M., Klintsevich, E.:
CMSS – an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006).
doi:10.1007/11941378 25

9. Buchmann, J.A., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. IJACT 3(1), 84–96 (2013)

10. Buchmann, J.A., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure
signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25405-5 8

11. Buchmann, J.A., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72738-5 3

12. Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how to
build global distributed hash-trees. In: Nielson, H.R., Gollmann, D. (eds.) NordSec
2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41488-6 21

13. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using
hash functions with small output size. In: Boyd, C., Simpson, L. (eds.) ACISP
2013. LNCS, vol. 7959, pp. 235–250. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39059-3 16

14. Buldas, A., Laanoja, R., Laud, P., Truu, A.: Bounded pre-image awareness and the
security of hash-tree keyless signatures. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 130–145. Springer, Cham
(2014). doi:10.1007/978-3-319-12475-9 10

15. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish time-
stamping. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp.
318–335. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14081-5 20

16. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30539-2 35

http://dx.doi.org/10.1007/978-1-4613-9323-8_24
http://dx.doi.org/10.1007/978-1-4613-9323-8_24
http://dx.doi.org/10.1007/978-3-540-88702-7
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/BFb0054319
http://dx.doi.org/10.1007/11941378_25
http://dx.doi.org/10.1007/978-3-642-25405-5_8
http://dx.doi.org/10.1007/978-3-642-25405-5_8
http://dx.doi.org/10.1007/978-3-540-72738-5_3
http://dx.doi.org/10.1007/978-3-540-72738-5_3
http://dx.doi.org/10.1007/978-3-642-41488-6_21
http://dx.doi.org/10.1007/978-3-642-41488-6_21
http://dx.doi.org/10.1007/978-3-642-39059-3_16
http://dx.doi.org/10.1007/978-3-642-39059-3_16
http://dx.doi.org/10.1007/978-3-319-12475-9_10
http://dx.doi.org/10.1007/978-3-642-14081-5_20
http://dx.doi.org/10.1007/978-3-540-30539-2_35

16 A. Buldas et al.

17. Coronado Garćıa, L.C.: Provably secure and practical signature schemes. Ph.D.
thesis, Darmstadt University of Technology, Germany (2005)

18. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J.A., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88403-3 8

19. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

20. Diffie, W., Hellman, M.E.: Privacy and authentication: an introduction to cryp-
tography. Proc. IEEE 67(3), 397–427 (1979)

21. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005). doi:10.1007/11586821 8

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

23. Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

25. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, Proceedings, pp. 212–219. ACM (1996)

26. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991)

27. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38553-7 10

28. Hülsing, A., Rausch, L., Buchmann, J.A.: Optimal parameters for XMSSMT .
In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES
2013. LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40588-4 14

29. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49384-7 15

30. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

31. Lamport, L.: Constructing digital signatures from a one way function. Technical
report, SRI International, Computer Science Laboratory (1979)

32. Lamport, L.: Password authentification with insecure communication. Commun.
ACM 24(11), 770–772 (1981)

33. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton (1996)

34. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). doi:10.1007/
3-540-46035-7 27

35. Mart́ın-López, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.-Q., O’Brien, J.L.:
Experimental realization of Shor’s quantum factoring algorithm using qubit recy-
cling. Nat. Photonics 6(11), 773–776 (2012)

http://dx.doi.org/10.1007/978-3-540-88403-3_8
http://dx.doi.org/10.1007/978-3-540-88403-3_8
http://dx.doi.org/10.1007/11586821_8
http://dx.doi.org/10.1007/978-3-642-38553-7_10
http://dx.doi.org/10.1007/978-3-642-40588-4_14
http://dx.doi.org/10.1007/978-3-642-40588-4_14
http://dx.doi.org/10.1007/978-3-662-49384-7_15
http://dx.doi.org/10.1007/978-3-662-49384-7_15
http://dx.doi.org/10.1007/3-540-46035-7_27
http://dx.doi.org/10.1007/3-540-46035-7_27

A Server-Assisted Hash-Based Signature Scheme 17

36. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.-L., Butin, D., Buchmann,
J.A.: State management for hash-based signatures. In: Chen, L., McGrew, D.,
Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 244–260. Springer, Cham
(2016). doi:10.1007/978-3-319-49100-4 11

37. Merkle, R.C.: Secrecy, authentication and public key systems. Ph.D. thesis, Stan-
ford University (1979)

38. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2 32

39. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: ACM CCS 2001, Proceedings, pp. 28–37. ACM (2001)

40. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The TESLA broadcast authentica-
tion protocol. CryptoBytes 5(2), 2–13 (2002)

41. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002). doi:10.1007/3-540-45450-0 11

42. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

43. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet
authentication. In: ACM CCS 1999, Proceedings, pp. 93–100. ACM (1999)

44. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, Proceedings, pp. 387–394. ACM (1990)

45. Schoenmakers, B.: Explicit optimal binary pebbling for one-way hash chain rever-
sal. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 299–320.
Springer, Heidelberg (2017). doi:10.1007/978-3-662-54970-4 18

46. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

47. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24676-3 32

http://dx.doi.org/10.1007/978-3-319-49100-4_11
http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1007/3-540-45450-0_11
http://dx.doi.org/10.1007/978-3-662-54970-4_18
http://dx.doi.org/10.1007/978-3-540-24676-3_32

Outsourcing of Verifiable Attribute-Based
Keyword Search

Go Ohtake1(B), Reihaneh Safavi-Naini2, and Liang Feng Zhang3

1 Japan Broadcasting Corporation, Tokyo, Japan
ohtake.g-fw@nhk.or.jp

2 University of Calgary, Calgary, Canada
3 ShanghaiTech University, Shanghai, China

Abstract. In integrated broadcast-broadband services, viewers receive
content via the airwaves as well as additional content via the Internet.
The additional content can be personalized by using the viewing histo-
ries of each viewer. Viewing histories however contain private data that
must be handled with care. A verifiable attribute-based keyword search
(VABKS) scheme allows data users (service providers), whose attributes
satisfy a policy that is specified by the data owner (viewer), to securely
search and access stored data in a malicious cloud server, and verify
the correctness of the operations by the cloud server. VABKS, however,
requires data owners who have computationally weak terminals, such as
television sets, to perform heavy computations due to the attribute-based
encryption process. In this paper, we propose a new VABKS scheme
where such heavy computations are outsourced to a cloud server and
hence the data owner is kept as light as possible. Our scheme is prov-
ably secure against two malicious cloud servers in the random oracle
model: one performing the attribute-based encryption process, and the
other performing the keyword search process on the encrypted data. We
implement our scheme and the previous VABKS scheme and show that
our scheme significantly reduces the computation cost of the data owner.

1 Introduction

The user’s history of interaction with a service provider provides a valuable
source of information with which service providers can construct a user profile
and offer personalized services that match the profile. This data however is
private and users who are data owners must be able to control access to it. On
the other hand, data owners likely do not have sufficient computational resources
to store and control access to data, so these operations have to be delegated to
a cloud server that in general cannot be trusted. In this paper, we focus on a
particular type of service history and propose an architecture that allows the
user’s history data to be stored in the cloud server and makes it available to the
service providers that the user approves, while keeping the user computation at
an acceptable level by outsourcing part of it to the cloud server. This architecture
and approach can be extended to other broadcast services such as online games
and entertainment services.
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 18–35, 2017.
https://doi.org/10.1007/978-3-319-70290-2_2

Outsourcing of Verifiable Attribute-Based Keyword Search 19

Integrated broadcast-broadband services: Integrated broadcast-broadband ser-
vices [5,7,8,16] allow viewers to view content via the airwaves and, simulta-
neously, additional content via the Internet. The additional content can be used
to personalize broadcasts and provides opportunities for electronic commerce. To
make the personalization of the broadcast and services effective, viewers must
share their viewing preferences with the service provider. Viewing histories are
a rich source of data for service providers to learn about the viewers’ interests.
Their data however could reveal sensitive personal information about a viewer
and so must be handled with care. Ideally, viewers want to share their view-
ing histories with service providers that pass certain criteria, including being
trustworthy or having a high rating based on customer reviews. Attribute-based
encryption (ABE) [2,14] enables a viewer to specify a policy when encrypting
their viewing history at the user terminal and store them in a cloud server, and
only service providers whose attributes satisfy the policy can decrypt it.
Attribute-based keyword search: Attribute-based keyword search (ABKS) [11,12,
15] provides attribute-based access control for data and the ability to search for
keywords in the encrypted domain. This allows service providers to acquire the
desired viewing histories from the cloud server while viewer privacy is protected.
Most of the existing ABKS schemes assume that the cloud server that performs
the keyword search is honest-but-curious. Zheng, Xu, and Ateniese [18] proposed
verifiable attribute-based keyword search (VABKS) that allows the cloud server to
be malicious and gave a generic construction of VABKS that is based on an ABE
scheme, an ABKS scheme, a digital signature scheme, and a Bloom filter and
that enables one to verify the correctness of the keyword search result. However,
the computational cost of this construction, in particular, the index generation
algorithm, is rather high for weak user terminals such as television sets. This
is because the index generation algorithm uses an ABE scheme and an ABKS
scheme many times, which imposes heavier loads than those of conventional
public key encryption schemes such as RSA and ElGamal encryption.

1.1 Our Contribution

In this paper, we propose a new VABKS scheme where the heavy computations
for a data owner (viewer) are outsourced to a cloud server, while being able
to verify the correctness of the computation. Our scheme is provably secure
against two malicious cloud servers in the random oracle model: one performing
the attribute-based encryption process, and the other performing the keyword
search process on the encrypted data. We upgrade the model of VABKS in [18]
with more security requirements to accommodate the additional outsourcing
of the attribute-based encryption process. This outsourcing process makes our
scheme more efficient than the VABKS scheme in [18].

Concretely, we follow the generic construction of [18] and use an ABE scheme
and an ABKS scheme whose computations can be verifiably outsourced. This
allows us to construct a VABKS scheme with a verifiably outsourceable compu-
tation (See Fig. 1). For an ABE scheme, we will use the construction of Ohtake,
Safavi-Naini, and Zhang [10] that requires the data owner to only perform

20 G. Ohtake et al.

ElGamal encryption and outsources the heavy computations of the ABE scheme
to the cloud server. However, to the best of our knowledge, no outsourcing scheme
has been proposed for ABKS. Hence, to make an ABKS scheme whose compu-
tations can be outsourced and be compatible with the ABE construction, we
start by defining the model of secure outsourcing of ABKS to a malicious cloud
server and then give a construction based on the ABKS scheme in [15], which
is provably secure in the random oracle model. After that, we define the model
of VABKS outsourcing scheme for the generic construction of VABKS [18] and
show our construction of VABKS that uses the outsourceable ABE scheme [10]
and our outsourceable ABKS scheme.

Fig. 1. Overview of index generation algorithms of VABKS scheme [18] (the upper half
of this figure) and our VABKS outsourcing scheme (the lower half of this figure). SE
denotes a symmetric key encryption scheme, BF denotes a Bloom filter generation algo-
rithm, HF denotes a hash function, SIG denotes a digital signature scheme, ABEDOwn

and ABKSDOwn are part of the encryption processes of ABE and ABKS performed by
the data owner, and ABECloud and ABKSCloud are the encryption processes of ABE
and ABKS that are outsourced to a cloud server.

Outsourcing of Verifiable Attribute-Based Keyword Search 21

As shown in Fig. 1, the generic construction of VABKS [18] has four kinds
of signature for verifying the correctness of search results from a cloud server,
whereas our VABKS outsourcing scheme has three kinds of proofs, generated
simply by using hash function, and two kinds of signature. In the VABKS
scheme [18], a data user can verify that the cloud server faithfully performed
the keyword search operation by using the signatures that validate the integrity
of the ciphertexts of the data, temporary keys for encrypting data, keywords,
Bloom filter, and random data for masking the Bloom filter. In contrast, in
our VABKS outsourcing scheme, a data user can verify the correctness of the
outsourced ABE/ABKS encryption process by using the proofs that validate
the integrity of the ciphertexts of the temporary keys for encrypting the data,
keywords, and random data for masking the Bloom filter. Namely, both signa-
tures and proofs are used only for validating the integrity of the ciphertexts.
Hence, the proofs for verifying the outsourced encryption data can also be used
for verifying the search results and the number of signatures can be reduced
by replacing some of them with proofs, which means that our scheme is more
efficient in terms of the signing costs of the data owner.

Finally, we compare our VABKS outsourcing scheme with the previous
VABKS schemes (which do not outsource the encryption processes to a cloud
server) in terms of the computation cost for the index generation algorithm and
show that our scheme is the most efficient VABKS scheme for the data owner.
Outsourcing computations to the cloud server increases the total cost of the data
owner and the cloud server. However, the cloud server usually has higher perfor-
mance CPUs compared with those of the user terminal, so the total processing
time for the index generation algorithm in our scheme will be smaller than that
of the previous VABKS scheme. We also implement the index generation algo-
rithms of our scheme and one of the previous VABKS schemes on a PC and
show that our scheme requires only half the processing time of the previous one
because it outsources part of the encryption process of ABE and ABKS to the
cloud server.

1.2 Related Work

Attribute-based encryption and its outsourcing: Sahai and Waters [13] pro-
posed the first ABE scheme as an extension of identity-based encryption (IBE).
ABE schemes can be classified into (i) key-policy ABE (KP-ABE) [4] and
(ii) ciphertext-policy ABE (CP-ABE) [2,14]. In KP-ABE, a ciphertext is asso-
ciated with a set of attributes, and a private key is associated with a policy.
In CP-ABE, a private key is associated with a set of attributes, and a cipher-
text is associated with a policy. A ciphertext can be decrypted by a user whose
attributes satisfy the policy that is attached to the ciphertext. In this paper, we
consider CP-ABE.

Green, Hohenberger, and Waters [3] first considered outsourcing of ABE.
They proposed an outsourcing scheme for ABE decryption with the goal of min-
imizing the users’ decryption cost. After that, several outsourcing schemes for
ABE encryption were proposed [6,9,17], but they all assumed honest or honest-
but-curious cloud servers. In contrast, Ohtake, Safavi-Naini, and Zhang [10]

22 G. Ohtake et al.

proposed an outsourcing scheme of ABE encryption for when the cloud server is
malicious. In this paper, we use the same approach as taken in [10] and extend
it to include a search functionality.
Attribute-based keyword search: ABKS combines ABE with a keyword search
functionality. Several ABKS schemes have been proposed [11,12,15], but they all
assume the cloud server that performs keyword search to be honest-but-curious.
In contrast, Zheng, Xu, and Ateniese [18] proposed the first VABKS scheme that
assumes that the cloud server performing the keyword search is malicious and
proposed a generic construction of VABKS that enables anyone to verify the
result of the keyword search. However, the generic construction imposes high
computation costs on the data owner for the index generation algorithm. In this
paper, we modify the generic construction by using the idea of ABE outsourcing
in [10] and construct a more efficient VABKS scheme than that in [18].

2 Preliminaries

Definition 1 (Access structure [1]). Let P = {P1, P2, ..., Pn} be a set of par-
ties. A ⊆ 2P\{∅}, a collection of non-empty subsets of P, is a monotone access
structure if B ∈ A and B ⊆ C, then C ∈ A (∀B,C). The sets in A are called
authorized sets, and the sets not in A are called unauthorized sets.

In our context, attributes play the role of parties in the secret sharing scheme.
Thus, the access structure A contains the authorized sets of attributes.

Definition 2 (Linear secret sharing schemes (LSSS) [14]). A secret-
sharing scheme Π over a set of � parties P is called linear (over Zp) if,

1. The shares of the parties form a vector of length � over Zp.
2. There exists a matrix M with � rows and n columns, called the share-

generating matrix for Π, and a function ρ which maps each row of the matrix
to an associated party. That is, for i = 1, ..., �, the value ρ(i) is the party
associated with row i. If we consider a column vector v = (s, r2, ..., rn), where
s ∈ Zp is the secret to be shared, and r2, ..., rn ∈ Zp are randomly chosen,
then Mv is the vector of � shares of the secret s according to Π. The share
(Mv)i belongs to party ρ(i).

It is shown in [1] that every linear secret sharing scheme having the above def-
inition also enjoys the linear reconstruction property, defined as follows: Suppose
that Π is a LSSS for the access structure A. Let S ∈ A be any authorized set, and
let I ⊂ {1, 2, ..., �} be defined as I = {i : ρ(i) ∈ S}. Then, there exist constants
{wi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s according to Π,
then

∑
i∈I wiλi = s. Furthermore, it is shown in [1] that these constants {wi}

can be found in polynomial time to the size of the share-generating matrix M .

Definition 3 (Bilinear maps). Let G and GT be two multiplicative cyclic
groups of prime order p. Let g be a generator of G and e : G × G → GT be a
bilinear map that has the following properties: (Bilinearity) e(ua, vb) = e(u, v)ab

for all u, v ∈ G and a, b ∈ Zp, (Non-degeneracy) e(g, g) �= 1.

Outsourcing of Verifiable Attribute-Based Keyword Search 23

We say that G is a bilinear group if the group operation in G and the bilinear
map e : G × G → GT are both efficiently computable. Notice that the map e is
symmetric, since e(ga, gb) = e(g, g)ab = e(gb, ga).

3 System Model

The system model of our VABKS outsourcing scheme is shown in Fig. 2. There
are five entities: the trusted authority (TA), a data owner (DOwn), two untrusted
cloud servers (Cloud 1 and Cloud 2) with a public storage that can be written
to by only Cloud 1 and is accessible to public (including Cloud 2), and a data
user (DUsr). TA issues secret keys to DUsrs according to their attributes. DOwn
performs a basic encryption of their data files as well as the related keywords
(index), and uses Cloud 1 to perform the remaining computation of generating
attribute-based ciphertexts for the files and the keywords. Cloud 1 stores the
result in a public storage. When DUsr wants to files that are attached to a
particular keyword, they create a token for the keyword search and send it to
Cloud 2, who will perform the search over the encrypted keywords and gives the
corresponding encrypted files to DUsr, iff the set of attributes of DUsr satisfies
the policy attached to the encrypted keywords. DUsr can verify the correctness
of the search result and can decrypt the data with their secret key. We assume
that Cloud 1 and Cloud 2 are malicious and may not follow the protocol.

In the case of integrated broadcast-broadband services, DOwn is a viewer
that holds their viewing history and DUsr is a service provider that uses it for

Fig. 2. System model of our VABKS outsourcing scheme. The data file F1 is related
to the keywords X and V, the data file F2 is related to the keywords Y , and the data
file F3 is related to the keywords X and W. The keywords X and Y are encrypted with
access policy 1, and the keywords V and W are encrypted with access policy 2.

24 G. Ohtake et al.

their service. The index generation for the viewing history imposes a heavy load
on DOwn, so part of the above process is outsourced to Cloud 1.

4 ABKS Outsourcing Scheme

Our ABKS outsourcing scheme is based on the idea of ABE outsourcing in [10].
The generic construction of the VABKS scheme in [18] uses an ABKS scheme
as a building block. In particular, the index generation algorithm of the VABKS
scheme uses the keyword encryption algorithm of ABKS many times, which
imposes a heavy load on DOwn. Therefore, we outsource part of the encryption
process to a cloud server. First, we define the model and security of the ABKS
outsourcing scheme by modifying those of the ABKS scheme in [18]. After that,
we describe our construction. To achieve expressive policy settings by using a
LSSS and provable security in the random oracle model, our scheme is based on
the ABKS scheme in [15].

4.1 Model of ABKS Outsourcing Scheme

The model of the ABKS outsourcing scheme is based on the model of the ABKS
scheme in [18], where a cloud server can see if an encrypted keyword, called
a “keyword ciphertext”, corresponds to the search token from DUsr. Multiple
keyword ciphertexts are attached to an encrypted data file, but the data file is
outside the scope of this model.

The model of the ABKS outsourcing scheme consists of seven algorithms. In
this model, EncDOwn and EncCloud replace one algorithm, Enc, in the model
of the ABKS scheme in [18]. Furthermore, Verify is added to the model for
verifying the correctness of the search result by using a proof.

– (mk, pm) ← Setup(1�): This algorithm is run by TA. It takes as input
a security parameter 1� and outputs the master key mk and the public
parameter pm.

– sk ← KeyGen(mk, S, pm): This algorithm is run by TA. It takes as input
(mk, pm) and a set of attributes S and outputs a secret key sk corresponding
to S. DUsr gets sk.

– (cph′, π) ← EncDOwn(w,A, ID, pm): This algorithm is run by DOwn. It takes
as input a keyword w, an access policy A, a DOwn’s identifier ID, and pm
and outputs an intermediate keyword ciphertext cph′ and a proof π.

– cph ← EncCloud(cph′, pm): This algorithm is run by Cloud 1. It takes as
input cph′ and pm and outputs a keyword ciphertext cph.

– tk ← TokenGen(sk, w, id, pm): This algorithm is run by DUsr. It takes as
input sk, w, a DUsr’s identifier id, and pm and outputs a search token tk.

– ({0, 1}, aux) ← Search(cph, tk, ID, pm): This algorithm is run by Cloud 2. It
takes as input cph, tk, ID, and pm and outputs (1, aux) if (i) S satisfies A

and (ii) cph and tk correspond to the same keyword, where aux is auxiliary
data for verifying the search result; otherwise, it outputs (0, aux).

Outsourcing of Verifiable Attribute-Based Keyword Search 25

– {0, 1} ← Verify(cph, tk, aux, π, pm): This algorithm is run by DUsr. It takes
as input cph, tk, aux, π, and pm and outputs 1 if π is a valid proof of cph;
otherwise, it outputs 0.

4.2 Security Definition of ABKS Outsourcing Scheme

We define the security of the ABKS outsourcing scheme by modifying the secu-
rity of the ABKS scheme in [18]. The model of the ABKS outsourcing scheme in
Sect. 4.1 is created by the combination of those of the ABKS scheme in [18] and
the ABE outsourcing scheme in [10], so we consider the security of the ABKS
outsourcing scheme based on those in [10,18]. We assume that DOwn is honest,
DUsr is honest-but-curious, Cloud 1 is malicious, and Cloud 2 is honest-but-
curious, as in the security models of the ABE outsourcing scheme in [10] and
ABKS scheme in [18]. We define three kinds of security as follows (we omit the
formal security definitions because of limited space and will show them in the
full version of this paper):

(1) Selective security against chosen-keyword attack: Without being given any
matching search token, an adversary (Cloud 1) cannot infer any information
about the plaintext keyword of an intermediate keyword ciphertext in the
selective security model. This security requirement is a modification of the
one in [18]: in the challenge phase of our scheme, an adversary gets a tuple
of an intermediate keyword ciphertext and a proof. This modification is due
to outsourcing the encryption process to Cloud 1.

(2) Keyword secrecy: The probability that an adversary (Cloud 2) learns the
keyword from the intermediate keyword ciphertext and search tokens is neg-
ligibly more than the probability of a correct random keyword guess. This
security requirement is a modification of the one in [18]: in the challenge
phase of our scheme, an adversary gets a tuple of an intermediate keyword
ciphertext and a proof as well as a related token. This modification is due
to outsourcing the encryption process to Cloud 1 (Note that Cloud 1 and
Cloud 2 might collude with each other).

(3) Unforgeability: Given an intermediate keyword ciphertext, an adversary
(Cloud 1) cannot create a keyword ciphertext that corresponds to a dif-
ferent keyword from the original one. This is a security requirement based
on [10], not in [18].

The above security definitions assume that the adversaries that break the
ABKS outsourcing scheme are Cloud 1 and Cloud 2, and they collude with each
other. Intuitively, (1) and (3) are the securities related to the encryption process
outsourced to Cloud 1, and (2) is the security related to the search process run
by Cloud 2. Namely, (1) ensures that Cloud 1 cannot get any information on
the keyword from the intermediate keyword ciphertexts that DOwn sent to it,
(2) ensures that Cloud 2 cannot get any information on the keyword from the
search tokens that DUsr sent to it, and (3) ensures that Cloud 1 cannot modify a
keyword ciphertext by using the intermediate ciphertexts that DOwn sent to it.

26 G. Ohtake et al.

4.3 Our ABKS Outsourcing Scheme

To reduce the computation cost for DOwn, we use the idea of [10] to outsource
part of the keyword encryption process to Cloud 1. Our scheme is based on the
ABKS scheme in [15], which achieves expressive policy settings by using a LSSS
and is likely provably secure in the random oracle model (although there is no
security proof provided in [15]).

Setup(1�): TA selects a bilinear group G of prime order p, a bilinear map
e : G × G → GT , a generator g of G, hash functions H : {0, 1}∗ → G,
H ′ : {0, 1}∗ × GT × {0, 1}∗ → {0, 1}∗, H ′′ : {0, 1}∗ → {0, 1}∗, and a mes-
sage authentication code function F : GT × {0, 1}∗ → {0, 1}m, where m is
the length of the message authentication code. It also chooses random num-
bers α, a ∈ Zp. TA sets the public parameter and the master key as pm =
〈g, ga, e(g, g)α, F (·, ·),H(·),H ′(·, ·, ·),H ′′(·)〉 and mk = α.
KeyGen(mk, S, pm): DUsr sends its identifier id and a set of its attributes S
to TA. TA chooses a random value t ∈ Zp, creates K = gαgat, L = gt, and
{Kx = H(x)t}x∈S , and adds an entry (id, gat) to the user list. TA sets a secret
key as sk = 〈K,L, {Kx}x∈S〉 and sends it to DUsr.
EncDOwn(w, (M , ρ), ID, pm): This is an algorithm for encrypting a keyword
w with a policy (M , ρ). Here, M is an access matrix and ρ is a function that
associates the rows of M with attributes. DOwn randomly chooses s, y2, ..., yn,
β1, β2, ..., βn ∈ Zp and sets a column vector v = (s + β1, y2 + β2, ..., yn + βn) ∈
Z

n
p . It then calculates C ′ = gs and k̂ = e(g, g)αse(g,H(w))s. After that, it

chooses a random bit string t̂ and sets the index of the keyword w: idx(w) =
(t̂, F (k̂, t̂)). After that, it calculates a proof π = H ′(ID, k̂,H ′′(posM)). Here, ID
is an identifier of DOwn, and posM is a string including all of the positions of
1 in the access matrix M . For example, if the matrix M is

M =
(

0 1
1 1

)

,

then posM = {(1, 2), (2, 1), (2, 2)}. For 1 ≤ i ≤ �, let Ji be a set Ji = {j : Mij =
1(1 ≤ j ≤ n)}. DOwn calculates Ei = ga

∑
j∈Ji

βj and sets an intermediate
ciphertext as cph′ = 〈C ′, (Ei)1≤i≤�, v, (M,ρ), idx(w)〉. It sends (ID, cph′, π) to
Cloud 1.
EncCloud(cph′, pm): For 1 ≤ i ≤ �, Cloud 1 calculates λi = Miv, where Mi is
the row vector corresponding to the ith row of M . In addition, it chooses random
numbers r1, ..., r� ∈ Zp. It then calculates

Ci =
gaλiH(ρ(i))−ri

Ei
, Di = gri (1 ≤ i ≤ �)

and sets a ciphertext as cph = 〈C ′, (Ci,Di)1≤i≤�, (M,ρ), idx(w)〉. Cloud 1 stores
(ID, cph, π) in a public database.
TokenGen(sk, w, id, pm): DUsr chooses a random value u ∈ Zp and com-
putes qu = gu. It sends id and qu to TA. Then, TA retrieves gat accord-
ing to id, generates qid = gatqα

u , and sends it to DUsr. DUsr calculates

Outsourcing of Verifiable Attribute-Based Keyword Search 27

Tq(w) = H(w)q1/u
id , L′ = L1/u, and K ′

x = K
1/u
x (∀x ∈ S), and sets a search

token as tk = 〈Tq(w), L′, {K ′
x}x∈S〉. It sends the token to Cloud 2.

Search(cph, tk, ID, pm): Cloud 2 outputs (0, ⊥) if S does not satisfy (M , ρ).
Otherwise, let I ⊂ {1, 2, ..., �} be defined as I = {i : ρ(i) ∈ S} and {μi ∈ Zp}i∈I

be a set of constants such that if {λi} are valid shares of any secret s according
to M , then

∑
i∈I λiμi = s. Then, Cloud 2 calculates

aux1 =
∏

i∈I

(
e(Ci, L

′)e(Di,K
′
ρ(i))

)μi

, k =
e(C ′, Tq(w))

aux1
.

Cloud 2 sets aux = (aux1, ID). If F (k, t̂) = F (k̂, t̂), Cloud 2 outputs (1, aux).
Otherwise, it outputs (0, aux).
Verify(cph, tk, aux, π pm): DUsr outputs 0 if aux = ⊥. Otherwise, it outputs 1
if

π = H ′
(

ID,
e(C ′, Tq(w))

aux1
,H ′′(posM)

)

.

Otherwise, it outputs 0.

Remark 1. DOwn can verify the correctness of a tuple of (ID, cph, π) stored
in a public database if DOwn keeps the random number s that is generated in
the EncDOwn algorithm. Namely, even if Cloud 1 creates another tuple of (ID,
cph∗, π∗) from scratch and stores it in the public database, DOwn can detect
the attack (although this requires DOwn to check the status of the database
periodically).

Theorem 1. The security of the above ABKS outsourcing scheme is as follows:

– It is selectively secure against chosen-keyword attack in the random oracle
model if the decisional q-parallel DBHE assumption holds.

– It has keyword secrecy in the random oracle model if H is a one-way hash
function.

– It is unforgeable in the random oracle model if H is collision-resistant.

We omit the proof of Theorem1 because of limited space (We will show it in
the full version of this paper).

5 VABKS Outsourcing Scheme

The generic construction of VABKS in [18] is composed of ABE, ABKS, digital
signatures, and a Bloom filter. However, ABE and ABKS imposes heavier loads
than those of conventional public key encryption schemes such as RSA and
ElGamal encryption. In particular, the keyword encryption process using ABE
and ABKS is performed by DOwn, whose device (e.g. television set) might have
a low-performance CPU. To reduce the burden on such devices, we make it so
that part of the encryption process of ABE and ABKS by DOwn is outsourced
to Cloud 1.

28 G. Ohtake et al.

5.1 Model of VABKS Outsourcing Scheme

Let FS = {F1, ...,Fn} be a set of data files. Let KGj (1 ≤ j ≤ l) be a set of
keywords (called keyword group) that will be encrypted with an access policy
Aj . That is, A1, ..., Al are assigned to KG1, ..., KGl, respectively. Let KG =
{KG1, ...,KGl}. For each keyword w, let MP(w) be the set of identifiers of data
files that contain keywords w. Let MP = {MP(w)|w ∈ ⋃l

i=1 KGi}. Let D =
(KG,MP,FS) denote data files with keywords and identifiers.

The VABKS outsourcing scheme consists of the following seven algorithms.
In this model, BuildIndexDOwn and BuildIndexCloud replace one algorithm,
BuildIndex, in the model of the VABKS scheme in [18].

– (mk, pm) ← Init(1�): This algorithm is run by TA. It takes as input a security
parameter 1� and outputs the master key mk and the public parameter pm.

– sk ← KeyGen(mk, S, pm): This algorithm is run by TA. It takes as input
(mk, pm) and a set of attributes S for DUsr and outputs a secret key sk
corresponding to S.

– (Au′, Index′,D′
cph) ← BuildIndexDOwn({A}l, {A′}n,D, pm): This algorithm

is run by DOwn. It takes as input a set of access policies {A}l = {A1, ..., Al}
for encrypting the l keyword groups KG1, ..., KGl respectively, a set of access
policies {A′}n = {A′

1, ..., A′
n} for encrypting the n data files FS1, ..., FSn

respectively, data D, and pm. It outputs intermediate auxiliary information
Au′, an intermediate index ciphertext Index′ that includes encrypted keywords
related to data files, and an intermediate data ciphertext D′

cph that includes
encrypted data files.

– (Au, Index,Dcph) ← BuildIndexCloud(Au′, Index′,D′
cph, pm): This algorithm

is run by Cloud 1. It takes as input Au′, Index′, D′
cph, and pm and outputs

auxiliary information Au, an index ciphertext Index, and data ciphertext Dcph.
– tk ← TokenGen(sk, w, pm): This algorithm is run by DUsr. It takes as input
sk, a keyword w, and pm and outputs a search token tk.

– (rslt, proof) ← SearchIndex(Au, Index, Dcph, tk, pm): This algorithm is run
by Cloud 2. It takes as input Au, Index, Dcph, tk, and pm and outputs a search
result rslt and a proof proof.

– {0, 1} ← Verify(sk, w, tk, rslt, proof, pm): This algorithm is run by DUsr. It
takes as input sk, w, tk, rslt, proof, and pm and outputs 1 if (rslt, proof) is
valid and 0 otherwise.

5.2 Security Definition of VABKS Outsourcing Scheme

The security of the VABKS outsourcing scheme is a modification of the secu-
rity of the VABKS scheme in [18]. We assume that DOwn is honest, DUsr is
honest-but-curious, and Cloud 1 and Cloud 2 are malicious. Note that Cloud 2
is assumed to be honest-but-curious in the security definition of ABKS outsourc-
ing scheme in Sect. 4.2. This is because an ABKS scheme, where a cloud server
who performs keyword search is assumed to be honest-but-curious, can be used
as one of the building blocks to construct a VABKS scheme (See [18]). We define

Outsourcing of Verifiable Attribute-Based Keyword Search 29

four kinds of security as follows (we omit the formal security definitions because
of limited space and will show them in the full version of this paper):

(1) Data secrecy: Given encrypted keywords and search tokens, an adversary
(Cloud 2) cannot learn any information about the data files. This definition
can be formalized as a chosen-plaintext security game, where two challenges
D0 = (KG,MP,FS0) and D1 = (KG,MP,FS1) correspond to the same KG
and MP, and |FS0| = |FS1|. This security requirement is the same as that
in [18].

(2) Selective security against chosen-keyword attack: Same as the selective secu-
rity against chosen-keyword attack of ABKS (See Sect. 4.2).

(3) Keyword secrecy: Same as the keyword secrecy of ABKS (See Sect. 4.2).
(4) Verifiability: If an adversary (Cloud 1) illegally modified a keyword cipher-

text or an adversary (Cloud 2) returns an incorrect search result, it can be
detected by Dusr with an overwhelming probability. This security definition
is a modification of verifiability in [18]: in the setup phase of our scheme,
an adversary gets a tuple of an intermediate index ciphertext and an inter-
mediate data ciphertext as well as intermediate auxiliary information. This
modification is due to outsourcing the encryption process to Cloud 1.

In the above security definitions, we assume that the adversaries that attempt
to break the VABKS outsourcing scheme are Cloud 1 and Cloud 2, and they
collude with each other. Intuitively, (2) and (4) are related to the encryption
process outsourced to Cloud 1, and (1), (3), and (4) are related to the search
process run by Cloud 2. Namely, (1) ensures that Cloud 2 can get no information
of the data file from the keyword ciphertexts in the public storage and the search
tokens that DUsr sent to it, (2) ensures that Cloud 1 can get no information of
the keyword from the intermediate keyword ciphertexts that DOwn sent to it,
(3) ensures that Cloud 2 can get no information of the keyword from the search
tokens that DUsr sent to it, and (4) ensures that Cloud 1 cannot modify the
keyword ciphertext and Cloud 2 cannot modify the search result, by using the
intermediate ciphertexts that DOwn sent to it.

5.3 Our VABKS Outsourcing Scheme

We construct our VABKS outsourcing scheme by combining the generic construc-
tion of VABKS in [18] with the idea of outsourcing attribute-based encryption
processes to Cloud 1. Concretely, we replace ABE.Enc in the BuildIndex algo-
rithm in [18] by Encryptu of the ABE outsourcing scheme in [10] and ABKS.Enc
by EncDOwn of the ABKS outsourcing scheme in Sect. 4.3. These outsourcing
processes reduce the computation cost for DOwn. In addition, four kinds of
signature are generated in the BuildIndex algorithm in [18], which imposes
a heavy load on DOwn. Therefore, we try to reduce these signatures as much
as possible by using a proof in the ABE outsourcing scheme and the ABKS
outsourcing scheme.

Init(1�): Given a security parameter �, TA chooses k universal hash func-
tions H ′

1, ..., H ′
k, which are used to construct an m-bit Bloom filter.

30 G. Ohtake et al.

Let H : {0, 1}� → {0, 1}m be a secure pseudorandom generator, SE be a
secure symmetric encryption scheme, Sig be a secure signature scheme, ABEO
be the ABE outsourcing scheme in [10], and ABKSO be the ABKS outsourc-
ing scheme in Sect. 4.3. TA executes (ABEO.pm,ABEO.mk) ← ABEO.Setup(1�)
and (ABKSO.pm,ABKSO.mk) ← ABKSO.Setup(1�). It sets the public para-
meter and the master key as pm = (ABEO.pm,ABKSO.pm,H ′

1, ...,H
′
k) and

mk = (ABEO.mk,ABKSO.mk).
KeyGen(mk, S, pm): TA runs ABEO.sk ← ABEO.KeyGen(ABEO.pm, ABEO.mk,
S) and ABKSO.sk ← ABKSO.KeyGen (ABKSO.pm, ABKSO.mk, S), sets sk =
(ABEO.sk, ABKSO.sk), and sends sk to DUsr over an authenticated private
channel.
BuildIndexDOwn({A}l, {A′}n,D, pm): DOwn runs (Sig.sk,Sig.pk) ←
Sig.KeyGen(1�), keeps Sig.sk private, and makes Sig.pk public. Given D = (KG
= {KG1, ..., KGl}, MP = {MP(w) | w ∈ ⋃l

i=1 KGi}, FS = {F1, ..., Fn}), DOwn
performs the following actions:

1. Encrypt each data file with hybrid encryption: ∀Fj ∈ FS, generate an interme-
diate ciphertext cph′

Fj
= (cph′

skj , cphSEj
) by running SE.skj ← SE.KeyGen(1�),

cphSEj
← SE.Enc(SE.skj , Fj), and (cph′

skj , πskj) ← ABEO.Encryptu(pm,
IDDOwn, A′

j , SE.skj), where IDDOwn is an identifier of DOwn. In addition,
generate σSEj

← Sig.Sign (Sig.sk, cphSEj
)

2. Encrypt each keyword: Given KGi, 1 ≤ i ≤ l, for each w ∈ KGi, run
(cph′

w, πw) ← ABKSO.EncDOwn(w, Ai, IDDOwn, pm), and set MP(cph′
w) =

{IDcph′
Fj

|IDFj
∈ MP(w)}, where IDFj

and IDcph′
Fj

are identifiers for identifying

data file Fj and intermediate data ciphertext cph′
Fj

, respectively.
3. Generate a Bloom filter for each group KGi: Let BFi ← BFGen({H ′

1, ...,H
′
k},

KGi), (cph′
BFi

, πBFi
) ← ABEO.Encryptu(pm, IDDOwn, Ai, M) for some ran-

domly chosen M from the message space of ABEO, compute BF′
i = H(M) ⊕

BFi, and generate σBFi
← Sig.Sign(Sig.sk, BF′

i).
4. Let Au′ = (IDDOwn, cph′

BF1
, ..., cph′

BFl
, σBF1 , ..., σBFl

, σSE1 , ..., σSEn
, πsk1 , ...,

πskn , {πw|w ∈ ⋃l
i=1 KGi}, πBF1 , ..., πBFl

, BF′
1, ..., BF′

l), Index
′ = ({cph′

w|w ∈
⋃l

i=1 KGi}, {MP(cph′
w)|w ∈ ⋃l

i=1 KGi}), and D′
cph = ({cph′

Fj
|Fj ∈ FS}).

BuildIndexCloud(Au′, Index′, D′
cph, pm): Cloud 1 runs cphskj ←

ABEO.Encryptc(pm, cph′
skj), cphw ← ABKSO.EncCloud(cph′

w, pm), and cphBFi
←

ABEO.Encryptc(pm, cph′
BFi

). Set MP(cphw) = {IDcphFj
| IDcph′

Fj
∈ MP(cph′

w)}.

Let Au = (IDDOwn, cphBF1
, ..., cphBFl

, σBF1 , ..., σBFl
, σSE1 , ..., σSEn

, πsk1 , ..., πskn ,
{πw|w ∈ ⋃l

i=1 KGi}, πBF1 , ..., πBFl
, BF′

1, ..., BF′
l), Index = ({cphw|w ∈ ⋃l

i=1 KGi},
{MP(cphw)|w ∈ ⋃l

i=1 KGi}), and Dcph = ({cphFj
|Fj ∈ FS}).

TokenGen(sk, w, pm): DUsr generates a search token tk ← ABKSO.
TokenGen(ABKSO.sk, w, IDDUsr, pm), where IDDUsr is an identifier of DUsr.
SearchIndex(Au, Index,Dcph, tk, pm): Let rslt and proof initially be empty sets.
Cloud 2 enumerates

∏
i = {cphw|w ∈ KGi}, 1 ≤ i ≤ l, which are the keyword

ciphertexts with the same access control policy.

Outsourcing of Verifiable Attribute-Based Keyword Search 31

– For each cphw ∈ ∏
i, it runs (γ, aux) ← ABKSO.Search(cphw, tk, IDDOwn,

pm). If γ = 0, it continues to process the next keyword ciphertext in
∏

i. If
γ = 1, it adds the tuple (IDDOwn, cphw, {cphFj

|IDcphFj
∈ MP(cphw)}) to rslt

and (πw, cphBFi
) to proof.

– If there is no γ = 1 after processing all cphw in
∏

i, it adds (BF′
i, cphBFi

, σBFi
,

πBFi
) to proof.

Verify(sk, w, tk, rslt, proof, pm): DUsr verifies the search result from Cloud 2 as
follows:

1. For i = 1, ..., l, it verifies that the cloud indeed returned the correct result for
each keyword group i as follows:

Case 1: If (IDDOwn, cphw, {cphFj
|IDcphFj

∈ MP(cphw)}) ∈ rslt, meaning that a
keyword ciphertext cphw exists which corresponds to the same access
control policy as specified by cphBFi

and having the same keyword spec-
ified by tk, it runs (γ, aux) ← ABKSO.Search(cphw, tk, IDDOwn, pm)
and γ′ ← ABKSO.Verify (cphw, tk, aux, πw, pm) to verify whether cphw

matches tk and is not modified. If either γ = 0 or γ′ = 0, it returns 0.
Otherwise, it runs {SE.skj/ ⊥} ← ABEO.Dec(cphskj , πskj , ABEO.sk,
pm, IDDOwn). If the output is ⊥, it returns 0. Otherwise, it runs
γ′′ ← Sig.Verify(Sig.pk, σSEj

, cphSEj
). If γ′′ = 0, it returns 0. Other-

wise, it continues to i = i + 1.
Case 2: If (BF′

i, cphBFi
, σBFi , πBFi) ∈ proof meaning that there is no matching

keyword ciphertext, it continues to verify the integrity of the masked
Bloom filter by running γ′ ← Sig.Verify (Sig.pk, σBFi

, BF′
i). If γ′ = 0, it

returns 0; otherwise, it executes the following:

– If DUsr is authorized, compute {M/ ⊥} ← ABEO.Dec(cphBFi
, πBFi

, ABEO.sk,
pm, IDDOwn). If the output is ⊥, return 0; otherwise, BFi = H(M) ⊕ BF′

i.
Execute δ ← BFVerify ({H ′

1, ...,H
′
k}, BFi, w) to check whether w is present

in the keyword group as represented by BFi.
• If δ = 0, meaning that w is not present in the keyword group as repre-

sented by BFi, continue to i = i + 1.
• If δ = 1, download

∏
i = {IDDOwn, (cphw, πw)|w ∈ KGi} from Cloud 2.

Then, run (τ, aux) ← ABKSO.Search(cphw, tk, IDDOwn, pm) and τ′ ←
ABKSO.Verify(cphw, tk, aux, πw, pm) by enumerating cphw in {cphw|w ∈
KGi}. If there exists some τ ′ = 0 after processing all cphw (meaning that
the ciphertext is modified), return 0; otherwise, if there exists some τ = 1
after processing all cphw (meaning that there exists cphw that matches
tk), return 0; otherwise, continue to i = i + 1.

– If DUsr is unauthorized, continue to i = i + 1 because cphBFi
cannot be

decrypted.

Case 3: If neither case happens, return 0.

2. Return 1 if all tuples in the search result have been successfully verified, and
0 otherwise.

32 G. Ohtake et al.

Theorem 2. The security of our VABKS outsourcing scheme is as follows:

– It achieves data secrecy if ABEO and SE are secure against chosen-plaintext
attack.

– It is selectively secure against chosen-keyword attack if ABEO is secure against
chosen-plaintext attack, H is a secure pseudorandom generator, and ABKSO
is selectively secure against chosen-keyword attack.

– It achieves keyword secrecy if ABEO is secure against chosen-plaintext attack,
H is a secure pseudorandom generator, and ABKSO achieves keyword secrecy.

– It achieves verifiability if Sig, ABEO, and ABKSO are unforgeable.

We omit the proof of Theorem 2 for lack of space (We will show it in the full
version of this paper).

6 Comparison

Table 1 compares our VABKS outsourcing scheme with the previous VABKS
schemes in terms of the computation cost for DOwn. In this table, MG and
MGT

denote the computation cost of one modular exponentiation in G and GT ,
respectively, P denotes the computation cost of one pairing over an elliptic curve,
� denotes the number of attributes in a policy (also the number of rows of the
access matrix), l denotes the number of keyword groups, nw denotes the number
of keywords in all of the keyword groups, and n denotes the number of data files.
ABE.Enc and ABKS.Enc respectively denote the computation costs of one ABE
encryption and one ABKS encryption. ZXA-1 denotes the VABKS scheme that
uses the CP-ABE scheme in [2] and the CP-ABKS scheme in [18] in the generic
construction in [18]. ZXA-2 denotes the VABKS scheme that uses the CP-ABE
scheme in [14] and the CP-ABKS scheme in [15] in the generic construction
in [18]. Ours denotes the VABKS outsourcing scheme in Sect. 5.3. DOwn runs
ABE n + l times and ABKS nw times, so the total encryption costs of ZXA-1,
ZXA-2, and Ours are ((2� + 1)n + (2� + 1)l + (2� + 4)nw)MG + (n + l)MGT

,
((3�+1)n+(3�+1)l+(3�+1)nw)MG+(n+ l+2nw)MGT

+nwP , and ((�+1)n+
(�+1)l+(�+1)nw)MG+(n+l+2nw)MGT

+nwP , respectively. For example, in the
case of � = 5, n = 10, l = 1, and nw = 30, the total costs of ZXA-1, ZXA-2, and
Ours are 541MG +11MGT

, 656MG +71MGT
+30P , and 246MG +71MGT

+30P ,
respectively. ZXA-2 and Ours require nw pairing computations, so their costs
are higher than that of ZXA-1. However, while ZXA-1 is provably secure in the
generic group model, ZXA-2 and Ours are provably secure in the random oracle
model. Therefore, under this more realistic assumption, Ours is the most efficient
VABKS scheme in terms of the encryption cost for DOwn.

ZXA-1, ZXA-2, and Ours use 2l + nw + 1, 2l + nw + 1, and l + n signatures,
respectively. For example, in the case of n = 10, l = 1, and nw = 30, ZXA-1,
ZXA-2, and Ours use 33, 33, and 11 signatures, respectively. Hence, Ours uses
fewer signatures. On the other hand, in Ours, some of the signatures are replaced
by proofs and the number of proofs is n + l + nw. In the case of n = 10, l = 1,
and nw = 30, the number of proofs is 41, which is larger than the number

Outsourcing of Verifiable Attribute-Based Keyword Search 33

Table 1. Comparison of our VABKS outsourcing scheme and previous VABKS
schemes.

ZXA-1 ZXA-2 Ours

ABE.Enc (for
DOwn)

(2� + 1)MG + MGT (3� + 1)MG + MGT (� + 1)MG + MGT

ABE.Enc (for
Cloud 1)

- - (3�)MG

ABKS.Enc
(for DOwn)

(2� + 4)MG (3� + 1)MG + 2MGT + P (� + 1)MG + 2MGT + P

ABKS.Enc
(for Cloud 1)

- - (3�)MG

Num. of
signatures

2l + nw + 1 2l + nw + 1 l + n

Num. of proofs 0 0 n + l + nw

Policy
structure

access tree LSSS LSSS

Security
model

generic group model random oracle model random oracle model

Fig. 3. Experimental results. (CPU: Intel Core i7-4790 (3.60GHz))

of signatures in ZXA-1 and ZXA-2. However, a proof can be generated simply
by using a hash function at a smaller computation cost than that of a digital
signature scheme. This means that Ours is the most efficient VABKS scheme in
terms of the signing cost for DOwn.

34 G. Ohtake et al.

We implemented the index generation algorithms of Ours and ZXA-2 on
a PC having the following specifications. CPU: Intel Core i7-4790 (3.60 GHz),
Memory: 8 GB, OS: CentOS 7.2, and Browser: Firefox 38.3.0. The algorithms
were mainly written in JavaScript; the pairing computations were written in
C/C++. We considered a viewing history that consisted of 13 records including
54 related keywords (index) and five possible attributes for DUsr. We measured
the processing time of the index generation algorithms as the average of 100
trials. In Fig. 3, the horizontal axis denotes the number of attributes in the policy,
and the vertical axis denotes the processing time (seconds). For simplicity, we
used a ciphertext policy consisting of only AND-gates. It can be seen that Ours
costs much less than ZXA-2 and the processing time depends on the number of
attributes in the policy. In particular, for five attributes, Ours takes about 9 s,
while ZXA-2 takes about 18 s. Therefore, our scheme significantly reduces the
computation cost for DOwn.

7 Conclusion

We proposed a VABKS outsourcing scheme where the computation cost for a
data owner can be significantly reduced by outsourcing part of the index gener-
ation algorithm to a cloud server. Our scheme supports expressive policy setting
with a LSSS and is provably secure against malicious cloud servers in the random
oracle model. We implemented the index generation algorithms of our scheme
and a previous VABKS scheme on a PC and showed that our scheme takes
about half the processing time of the previous scheme. Our scheme is based on
the generic construction of VABKS in [18]; constructing a more efficient VABKS
scheme without a generic construction remains an open problem.

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology (1996)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of IEEE S&P 2007, pp. 321–334 (2007)

3. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: Proceedings of USENIX Security Symposium (2011)

4. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of ACMCCS 2006, pp.
89–98 (2006)

5. ETSI: TS 102 796: hybrid broadcast broadband TV, V1.3.1
6. Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In: Pro-

ceedings of PKC 2014, pp. 293–310 (2014)
7. NHK, Hybridcast (in Japanese). http://www.nhk.or.jp/hybridcast/online/
8. KBS: Icon (in Korean). http://icon.kbs.co.kr/site/main/main.php
9. Li, J., Jia, C., Li, J., Chen, X.: Outsourcing encryption of attribute-based encryp-

tion with MapReduce. In: Proceedings of ICICS 2012, pp. 191–201 (2012)

http://www.nhk.or.jp/hybridcast/online/
http://icon.kbs.co.kr/site/main/main.php

Outsourcing of Verifiable Attribute-Based Keyword Search 35

10. Ohtake, G., Safavi-Naini, R., Zhang, L.: Outsourcing scheme of ABE encryption
secure against malicious adversary. In: Proceedings of ICISSP 2017, pp. 71–82
(2017)

11. Shi, J., Lai, J., Li, Y., Deng, R., Weng, J.: Authorized keyword search on encrypted
data. In: Proceedings of ESORICS 2014, pp. 419–435 (2014)

12. Sun, W., Yu, S., Lou, W., Hou, Y., Li, H.: Protecting your right: attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: Proceedings of IEEE Infocom 2014, pp. 226–234 (2014)

13. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Proceedings of Euro-
crypt 2005, pp. 457–473 (2005)

14. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. eprint 2008/290

15. Wang, C., Li, W., Li, Y., Xu, X.: A ciphertext-policy attribute-based encryption
scheme supporting keyword search function. In: Proceedings of CSS 2013, pp. 377–
386 (2013)

16. BBC: YouView: extraordinary TV for everyone. http://www.youview.com/
17. Zhou, Z., Huang, D.: Efficient and secure data storage operations for mobile cloud

computing. eprint 2011/185
18. Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search

over outsourced encrypted data. In: Proceedings of IEEE Infocom 2014, pp. 522–
530 (2014)

http://www.youview.com/

Privacy Preservation

Is RCB a Leakage Resilient Authenticated
Encryption Scheme?

Farzaneh Abed1, Francesco Berti2(B), and Stefan Lucks1

1 Bauhaus-Universität Weimar, Weimar, Germany
{farzaneh.abed,stefan.lucks}@uni-weimar.de

2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-neuve, Belgium

francesco.berti@uclouvain.be

Abstract. Leakage resilient cryptography wants to provide security
against side channel attacks. In this paper, we present several issues
of the RCB block cipher mode, proposed by Agrawal et al. in [2]. RCB is
the first Leakage Resilient Authenticated Encryption (AE) scheme ever
presented. In particular, we present a forgery attack that breaks the
INT-CTXT security which is a fundamental requirement in the design of
AE schemes.

Keywords: Authenticated encryption · Leakage resilience · Block
cipher · Attack

1 Introduction

One of the main issues of modern cryptography is the vulnerability of cryptosys-
tem implementations against side channel attacks. To thwart this kind of attack,
countermeasures such as masking [19], shuffling [25] and noise addition [12] have
been proposed. For constrained devices, which are likely exposed to side-channel
attacks, those countermeasures are quite expensive.

Leakage Resilient Cryptography. A complementary approach initiated with high
hopes [9,14] is to design “leakage resilient” schemes. The goal is to maintain a
certain level of security even when the implementation leaks to the adversary
some information about the internal values computed by the algorithm. Dur-
ing the last decade, many methods have been proposed, yet few did focus on
symmetric cryptography, or block cipher based schemes.

There have been a handful of proposals for leakage resilient encryption
schemes (such as [16]), message authentication codes (MACs) (such as [16,22])
leakage resilient pseudorandom generators (PRGs) or stream ciphers (such as [9,
24,26,27]) and pseudorandom functions (PRFs) (such as [10,18]). Although in
some cases the underlying primitives have looser requirements (e.g. “weak prf”),
all those proposals can be naturally instantiated using a block cipher. They often
use a rekeying scheme, introduced by Borst [7].

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 39–52, 2017.
https://doi.org/10.1007/978-3-319-70290-2_3

40 F. Abed et al.

To the best of our knowledge, the problem of leakage resilient authenticated
encryption remained untouched until Agrawal et al. [2] proposed RCB. Later,
other schemes appeared: Berti et al. [6] proposed DTE and DCE, Dobraunig
et al. [8] proposed ISAP, and Barwell et al. [4] proposed SIVAT in three indepen-
dent works.

The RCB Mode. Agrawal et.al [2] proposed the RCB mode, which is based on the
OCB mode [20], a well-known Authenticated Encryption scheme. The security
of the OCB mode has been proved in the black-box model (i.e., without leakage)
[11,20]. Agrawal et al. [2] enhanced OCB using a rekeying schemes [13]. With
other minor modifications, explained in Sect. 3, this generates RCB. Using re-
keying makes sure that the block cipher is never called twice under the same
key. This is the core of the claims that RCB is leakage resilient.

Our Contribution and Results. In this paper we analyze security of RCB. As it
will turn out, RCB suffers from some issues. In fact:

1. Neither RCB nor OCB are nonce-misuse resistant. Moreover they cannot face
the release of unverified plaintexts (INT-RUP), see [1,3].1

2. RCB requires sender and receiver to synchronize counters and to keep
them continually synchronized, otherwise an interactive resynchronization is
required (cf. [2, Figure 2]).

3. RCB is vulnerable to Denial-of-Service (DoS) attacks,
4. RCB is not secure to be used in full-duplex communication.
5. The privacy provided by RCB fails in many practical side channel settings.
6. RCB fails to provide secure authenticated encryption since it cannot provide

INT-CTXT security.

We stress that none of the issues 2–4, 6 applies to OCB, when used with nonces.
Issues 1–4 might be acceptable trade-offs for leakage resilient schemes. Issue 2
is an intentional design decision made by RCB’s creators [2]. Issue 5 is a general
problem for block cipher based leakage resilient cryptography (we will discuss
this in Sect. 5). Issue 6, the lack of secure authentication is damning for any
Authenticated Encryption scheme. We presents explicit attacks to prove these
issues. Apart from issue 5, all attacks do not use Side-Channel leakages, so they
are in the black-box model.

Outlook. We start fixing fixing the notions and the general definitions in Sect. 2.
Section 3 provides an overview over the RCB scheme, and Sect. 4 describes our
attacks with regard to Issue 1–4 and 6. Section 5 discusses the privacy of RCB
when the adversary has also access to leakage (issue 5), and at the end we
conclude providing an idea to face issue 6.

2 Preliminaries and Notions

Notations. We denote the set of all n-bits strings with {0, 1}n. If x is a string,
we denote with |x|, its bit length. Given two strings x, y, we denote with x ⊕ y

1 The authors of OCB did never claim nonce misuse resistance, but [2] made such
claims for RCB.

Is RCB a Leakage Resilient Authenticated Encryption Scheme? 41

their bitwise exclusive-OR (XOR) and with x‖y the padding of the two strings
x, y. Given a string m ∈ M, we denote with m = (m1, ...,ml) the parsing of the
string m in l strings with |m1| = ... = |ml−1| = b (the size b will be clear by the
context) and |ml| ≤ b (m = m1‖m2‖...‖ml). Given a string x with |x| ≤ b, we
denote with x0b the string x‖0b−|x| (with 0b−|x| we denote the string of length
b − |x| bit, whose bits are all 0). Given a string x with |x| ≥ b, we denote with
�x�τ the string obtained from x keeping only the first τ bits of x and dropping
the others. With x � X , we denote that an element x is taken uniformly random
from the set X .

If an algorithm Alg has many arguments, we may write part of them as
subscripts or superscripts, that is Alg(x1, x2, x3, x4) = Algx2,x3

x1
(x4).

We denote adversary with A. An adversary is an efficient Turing machine
interacting with some oracles, and we denote with AO1,...,On → 1 the event that
the adversary A interacts with the n oracles O1, ..., On and outputs 1. Adver-
saries have a bounded running time and are allowed to ask a certain number of
queries to the oracles they are granted access to.

The algorithm RCB uses a block cipher E, which is a pseudorandom function
{0, 1}b
−→ {0, 1}b. The block length of the block cipher E is b bits. A pseudoran-
dom function is a family of functions (indexed by a key k ∈ K) which has the
property that the outputs of a random instance of the family should be “compu-
tationally indistinguishable” from those of a random function, even if the inputs,
for these outputs, are chosen by the adversary. This means that every adversary
behaves in the same way if it has access to an oracle implemented with a random
instance of the family or with a random function.

For authenticated encryption we follow Namprempre et al. [15].

Definition 1 (Authenticated Encryption (AE)). A nonce-based authen-
ticated encryption (AE) scheme is a tuple Π = (K,Enc,Dec) of a deterministic
encryption algorithm Enc : K × N × H × M → C × T , and a deterministic
decryption algorithm Dec : K × N × H × C × T → M ∪ {⊥}. It uses an associ-
ated non-empty key space K, a non-empty nonce space N . We denote with H,
M, C ⊆ {0, 1}∗, the header space, message space, and ciphertext space, respec-
tively. The tag space T = {0, 1}τ for a fixed τ ≥ 0. If given a tuple (n, h, c, τ),
Deck(n, h, c, τ) returns a plaintext m �= ⊥, we say that the tuple (n, h, c, τ) is
valid, otherwise it is invalid.

We require Enc and Dec to be the inverse of each other. This is formalized by
the following two properties:

– Correctness: if Encn,h
k (m) = (c, τ), then Decn,h

k (c, τ) = m.
– Tidiness: if Decn,h

k (c, τ) = m �= ⊥, then Encn,h
k (m) = (c, τ).

3 General Overview of RCB

Agrawal et al. [2] proposed a new symmetric leakage resilient authenticated
encryption scheme called RCB. It uses a block cipher E with b bits block length

42 F. Abed et al.

to encrypt and authenticate the message, but in every call the block cipher E is
used with a different key provided by the re-keying scheme G. The scheme uses
a counter ctr and a master key k∗, so that every round key ki := G(k∗, ctri)
is chosen randomly and it is independent from the others keys. The rekeying
scheme is supposed not to leak any information about the master key k∗, while
the block cipher E may leak some information about its key ki. Both sender
and receiver need to synchronize the counter. To do this, at the beginning, both
sender and the receiver initialize the values of their counters ctr to 1, and, if the
synchronization is lost, they need to perform a resynchronization process.

As shown in Fig. 1, RCB first parses a message m into l blocks, with
|m1| = ... = |ml−1| = b and |ml| ≤ b. Then it encrypts these message blocks
to c = (c1, ..., cl) (with |ci| = |mi| ∀i = 1, ..., l) using E. The output is the pair
(ctr, c, τ) ∈ {0, 1}τs for some tag size τs ≤ b (see Algorithm 1).

Fig. 1. A schematic view of the RCB structure.

As shown in Algorithm 1, the first l − 1 blocks, which are always full b-bit
blocks, are encrypted in lines 4–7. These lines are skipped if the message is only
a single block one. The last message block ml, which can be smaller than b bits,
is encrypted in lines 8–13, and the authentication tag is computed in lines 14–17.

To decrypt, given a pair (Ind, c, τ), RCB first computes m, then its own
authentication tag τ ′, and returns the original message m if τ ′ = τ , else it
returns ⊥.

The authors of RCB claimed the following securities for their construction:

– Privacy under chosen plaintext attacks (IND-CPA), even with leakage, and
– authenticity against chosen-message existential forgery attacks (INT-CTXT)

even with leakage.

They also claimed that RCB is robust, meaning it can provide security in
both

Is RCB a Leakage Resilient Authenticated Encryption Scheme? 43

Algorithm 1. RCB encryption.
1: state long-term key k∗, counter ctr (∗ k∗ is constant, ctr always increases ∗)
2: input message m = (m1, . . . , ml)
3: Ind ← ctr
4: for i ∈ {1, . . . , l − 1} do
5: ki ← Gk∗(ctr)
6: ctr ← ctr + 1
7: ci ← Eki(mi)
8: ctr ← ctr + 1 (∗ skip one value ∗)
9: kl ← Gk∗(ctr)

10: ctr ← ctr + 1
11: x ← |ml| ⊕ (ctr + l + 1)
12: y ← Ekl(x)
13: cl ← y ⊕ ml

14: s ← m1 ⊕ · · · ⊕ ml−1 ⊕ (cl0
b) ⊕ y (∗ checksum ∗)

15: ctr ← ctr + 2
16: kl+1 ← Gk∗(ctr)
17: τ ← �Ekl+1(s)�τs [first τs bits]

18: return (Ind,

c
︷ ︸︸ ︷

(c1, · · · , cl), τ)

– nonce-misuse setting, and
– decryption misuse or release of unverified plaintexts (RUP) setting.

We show, presenting our attacks, that none of the above claims is correct
for the RCB construction. Thus, we prove that the RCB construction is totally
insecure and that it is broken even in the black-box model, therefore it should
not be considered as a secure AE scheme.

4 Attacks on RCB

In this section, we show some attacks which violate the securities claimed in [2].
We start each subsection presenting the property of the attack that breaks, and
then we explain the attack itself. We first present the most important attack,
the forgery attack which breaks the ciphertext integrity (INT-CTXT), then the
other attacks.

Below, we assume Alice uses RCB to send authenticated and encrypted mes-
sages to the receiver Bob. We assume that Alice and Bob have shared a secret
key k∗ and synchronized the counter ctr. The adversary A is trying to attack
Alice and Bob.

4.1 Forgery Attack

Definition 2 (INTCTXT Security [5]). Let Π = (K,Enc,Dec) be a nonce-
based AE scheme, k � K, and let A be a computationally bounded adversary
with access to an encryption and a decryption oracle. We suppose that A never

44 F. Abed et al.

queries the decryption oracle with outputs of the encryption one. Then, the INT-
CTXT advantage of A with respect to Π is defined as

AdvINT-CTXT
Π (A) :=

∣

∣

∣Pr
[

AEnck(·,·,·),Deck(·,·,·,·) ⇒ 1
]

− Pr
[

AEnck(·,·,·),⊥(·,·,·,·) ⇒ 1
]∣

∣

∣ ,

where ⊥ (·, ·, ·, ·) is an oracle that always outputs ⊥ for every input. Furthermore,
we define AdvINT-CTXT

Π (q, �, t) as the maximum advantage over all INT-CTXT
adversaries A against Π that run in time at most t, and make at most q queries
of total length � to the available oracles.

The idea of the attack is to use one valid ciphertext to produce another valid
ciphertext. To do this, we prevent Bob from receiving the valid ciphertext with
the aim that his counter will not change. We prove that this message will contain
all the information that an adversary A needs to forge a 2 blocks message. We
first start presenting a forgery attack using only an encryption of a 5 blocks
message, we then generalize the attack.
Attack on 5 Blocks Message:

1. Alice and Bob share the same counter ctr = Ind at the beginning.
2. An adversary A chooses arbitrary message blocks m1,m2 in {0, 1}b.
3. He then chooses another arbitrary message block m′

2 ∈ {0, 1}b′
with b′ ≤ b.

4. As a third message block, he chooses m3 = |m′
2| ⊕ Ind.

5. Now, he computes m4 = m1 ⊕ (m′
20

b).
6. As a last message block, an adversary A chooses arbitrary message m5 in

{0, 1}b′′
with b′′ ≤ b.

7. Now, an adversary A asks for the encryption of m = (m1, ...,m5).
8. Alice encrypts the message m and obtains corresponding ciphertexts and

the tag (Ind, (c1, ..., c5), τ).
9. In this phase, an adversary A sets c′

2 := c3 ⊕ m′
2.

10. He then sends (Ind, (c1, c
′
2), �c4�τs) to Bob.

11. Bob accepts this message as a valid one.

In our attack, we assume that the counter ctr is a known value. This hypothesis is
sound, since to get the actual value of ctr, it is enough to see the last encryptions
made by Alice (Ind, c1, ..., cl′ , τ). Now Alice’s counter is Ind + l′ + 2.

We argue that (Ind, (c1, c
′
2), �c4�τs) is the legitimate encryption of the message

(m1,m
′
2) with initial counter ctr = Ind, therefore Bob accepts it as a valid one.

Firstly, it is easy to see that c1 is the encryption of m1.
Secondly, the ciphertext block c3 is the encryption of |m′

2| ⊕ Ind under the
key Gk∗(Ind + 2), and the ciphertext block c′

2 has been chosen as c3 ⊕ m′
2, as

required by lines 8–13 of Algorithm 1.
Thirdly, as can be seen, m4 has been chosen as m1 ⊕ m′

20
b, and the tag is

the encryption of m1 ⊕ m′
20

b under the key Gk∗(Ind + 3).
Finally, note that, if the last message block m′

2 of the forged message is a
b-bit block, then the ciphertext is valid, because the tag is correct. Otherwise, it
is valid if the last b − b′ bits of y are 0, where y := Ek4(|m′

2| ⊕ (Ind + 2 + 1)). In
this case, the success probability of the attack is about 2−b+b′

.

Is RCB a Leakage Resilient Authenticated Encryption Scheme? 45

Generalized Attack on Message ≥ 4:

1. Initially, Alice and Bob share the same counter ctr = Ind.
2. An adversary A chooses a ≥ 4.
3. He chooses arbitrary message blocks m1, . . . , ma−4,ma−3 in {0, 1}b.
4. He chooses another arbitrary message block m′

a−3 ∈ {0, 1}b′
with b′ ≤ b.

5. As a next, he chooses ma−2 = |m′
a−3| ⊕ (Ind + a − 2 + 1).

6. Now, the adversary A computes ma−1 =
(⊕a−4

i=1 mi

)
⊕ m′

a−3.

7. As a last message, the adversary A chooses arbitrary message ma in {0, 1}b′′

with b′′ ≤ b.
8. In this step, the adversary A asks for the encryption of the message m =

(m1, ...,ma).
9. Alice encrypts the message m = (m1, ...,ma) and gets the corresponding

ciphertext and the tag (Ind, (c1, ..., ca), τ).
10. The adversary A sets c′

a−3 := ca−3 ⊕ m′
a−3.

11. He now sends (Ind, (c1, ..., ca−4, c
′
a−3), �ca−1�τs) to Bob.

12. Bob accepts this message as a valid one.

The validity of the attack derives from the previous observations.

Decryption-misuse: Since RCB can not provide INT-CTXT security in the black-
box model, it can neither provide this security in the RUP setting (introduced
by Andreeva et al. [3]). As a result, RCB in not robust in terms of nonce-misuse
and decryption-misuse settings.

4.2 Attacks on Misuse Resistance

Misuse-resistance Agrawal et al. [2] claimed that RCB is nonce-misuse resistance
because it does not have the nonce requirement. From our point of view, the
counter ctr behaves as a nonce, since it is used in a way that prevents its reuse.
Moreover, if the counter ctr is reused then the nonce misuse security (Defini-
tion 3) will fall.

Definition 3 (MRAE (Misuse resistance Security. [21]). Let Π = (K,Enc,
Dec) be a nonce-based AE scheme, as defined in Definition 1. Then, the MRAE
advantage of A with respect to Π is defined as

AdvMRAE
Π (A) :=

∣

∣

∣Pr
[

AEnck(·,·,·,·),Deck(·,·,·,·,·) ⇒ 1
]

− Pr
[

A$(·,·,·,·),⊥(·,·,·,·,·) ⇒ 1
]∣

∣

∣ ,

where $(·, ·, ·, ·) is an oracle which outputs random values at every query of length
|Enc(·, ·, ·, ·)|, and ⊥ (·, ·, ·, ·, ·) is an oracle that outputs always ⊥ for every input.
Furthermore, we define AdvMRAE

Π (q, �, t) as the maximum advantage over all
MRAE adversaries A against Π that run in time at most t, and make at most q
queries of total length � to the available oracles. If AdvMRAE

Π (q, �, t) ≤ ε we say
that Π is (q, t, l, ε)-nonce misuse resistant.

An example of nonce-misuse resistant AE scheme is SCT presented by Peyrin
and Seurin [17].

As we show below, when the counters repeat (i.e., if nonces are misused),
then there is a simple attack on RCB as follow:

46 F. Abed et al.

1. An adversary A knows the current value of Alice’s counter, ctr = Ind.
2. He chooses three different message blocks m1

1,m
2
1,m

2
2 ∈ {0, 1}b.

3. Alice encrypts message m1 = (m1
1,m

1
2) obtaining (Ind, (c1

1, c
1
2), τ

1).
4. Now, an adversary A resets the Alice’s counter to ctr = Ind (nonce-reuse!)
5. Then Alice encrypts m2 = (m2

1[= m1
1 ⊕ e],m2

2 = m1
2) (with e ∈ {0, 1}b, e �=

0...0) obtaining (Ind, (c2
1, c

2
2)τ

2) (Due to the nonce reuse, the value ctr is the
same as in step 3.)

6. An adversary A can easily distinguish the real encryption RCB from the
random oracle $(·, ·, ·), In fact if c2

1 = c1
1 ⊕ e, Alice is using real encryption

with overwhelming probability, otherwise she is using the random oracle.

The success probability of an adversary A to correctly distinguish the two oracles
is 1 − 2−b because it may happen that $(m2

1) = c2
1.

4.3 A Denial-of-Service (DoS) Attack

In general, an AE scheme is correct, if decrypting a ciphertext obtained by a
genuine encryption oracle, it recovers the original message (Definition 1). We
explain two attacks on the correctness of the RCB algorithm. For this purpose,
we show that an adversary A can tamper the counter in order to deny the service
and to make Bob reject a valid ciphertext. Our first DoS attack works as follow:

1. Alice’s counter current value is ctr = Ind.
2. Alice chooses a message m to encrypt and obtains (Ind, c, τ). Her new counter

value is now ctr = Ind + a for some a > 0.
3. Alice chooses another message m′ to encrypt and obtains (Ind+ a + 2, c′, τ ′).

Her counter value is incremented to ctr = Ind + a + a′ + 4 for some a′ > 0.
4. Now, an adversary A forwards (Ind + a + 2, c′, τ ′) to Bob.
5. If a + 2 does not exceed a pre-defined threshold,2 then Bob decrypts (Ind +

a + 2, c′, τ ′) obtaining m′. Bob’s new counter is now ctr = Ind + a + a′ + 4.
6. As the final step, an adversary A forwards (Ind, c, τ) to Bob. Because Ind <

Ind+a+a′ +4, Bob aborts to decrypt (Ind, c, τ). Therefore, he cannot recover
the original message m, and he only performs a resynchronization.

Our second DoS attack does not even require Alice to encrypt two messages:

1. Alice’s counter current value is ctr = Ind.
2. Alice chooses message m to encrypt and obtains (Ind, c, τ). Her new counter

value is now ctr = Ind + a + 2 for a certain a > 0.
3. An adversary A chooses c′ and τ ′ on his own desire and sends (Ind, c′, τ ′) to

Bob to get the message.
4. Bob decrypts (Ind, c′, τ ′) to ⊥. Bob’s new counter value is ctr = Ind + a′ + 2

for a certain a′ > 0.3

2 Else, Alice and Bob would perform interactive resynchronization [2, Fig. 2].
3 Bob must increase the counter, even if the message turns out to be invalid. Otherwise,

Bob would use the same internal key more than once, thus destroying the main
purpose of using RCB, namely its claimed leakage-resilience.

Is RCB a Leakage Resilient Authenticated Encryption Scheme? 47

5. As a final step, an adversary A forwards (Ind, c, τ) to Bob. Because Ind < Ind+
a′ + 2, Bob aborts instead of decrypting (Ind, c, τ). Therefore, he is not able
to recover the original message m, and he only performs a resynchronization.

4.4 Attack on Full-Duplex Communication

Contrary to many symmetric schemes, it is not possible for both Alice and
Bob to use the same key to communicate with each other. In fact, if they use
the same master key k∗, then the adversary A can destroy the privacy of the
communication in this way:

1. Alice and Bob share the same initial counter ctr = Ind.
2. An adversary A chooses m1,m2 ∈ {0, 1}b with m1 �= m2 and asks Alice to

encrypt it.
3. Alice encrypts (m1,m2) and gets (Ind, (c1, c2), τ). Bob should not receive this

message.
4. An adversary A chooses another message m′ = (m1,m1) and asks Bob to

encrypt it.
5. Bob encrypts the message m′ and gets (Ind, (c′

1, c
′
2), τ

′).
6. Since c1 = c′

1 in the first case, an adversary A is able to distinguish between
the real encryption RCB and a random function.

It is easy to evade this attack using two independent keys, one for messages
from Alice to Bob, and the other one for messages from Bob to Alice. One can
also use two different counters ctrAB for communication from Alice to Bob and
ctrBA for communications from Bob to Alice, but the set of values taken by
ctrAB and that of those taken by ctrBA must have no intersection.

5 Privacy by RCB

In many practical leakage settings, algorithm RCB fails to provide privacy [15].
Actually, as we mentioned before, this does not contradict the security claims
made by Agrawal et al. [2], but it is related to a more general problem for block
cipher based (authenticated) encryption.

One of the many implications of the semantic security (Defintion 4) is the
following: given two messages m0,m1 with |m0| = |m1|, if Alice encrypts either
of two messages, any adversary A should not be able to decide which message
has been encrypted, otherwise, the privacy is gone.

Definition 4 (IND-CPA Security). Let Π = (K,Enc,Dec) be an AE scheme,
as defined in Definition 1. Let A be a computationally bounded adversary. Then,
the IND-CPA (Indistinguishibility under a Chosen Plaintext Attack) advantage of
A is defined as

AdvIND-CPA
Π (A) =

∣∣∣Pr
[
AEnck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]∣∣∣ ,

48 F. Abed et al.

where the probabilities are taken over a key k � K and the random coins of A.
Here $(·, ·, ·) is an oracle that for every input (n, h,m) outputs a random string
whose length |$(n, h,m)| = |Enck(n, h,m)|. Moreover the oracle $(·, ·, ·) keeps
track of its queries in order to answer in the same way if the same query is asked
again. Furthermore, we define AdvIND-CPA

Π (q, �, t) as the maximum advantage
over all IND-CPA adversaries A against Π that run in time at most t, and make
at most q queries of total length � to the available oracles.

In leakage resilient schemes, we consider this security notion in the presence
of the leakage function L.

Leakage. Let L be the leaking space. A leakage function is a function L : K ×
N × H × M
−→ L. The leakage function can be any function.

The Leakage privacy or Indistinguishibility under a Chosen Plain-
text Attack with Leakage (IND-CPA-L) is defined as the following in [2]:

Definition 5 (IND-CPA-L Security). LetΠ = (K,Enc,Dec) be anAE scheme,
as defined in Definition 1, and L be the leakage function of Enc. Let A be a com-
putationally bounded adversary. Then, the IND-CPA-L advantage of A is defined
as

AdvIND-CPA-L
Π (A) =

∣∣∣Pr
[
AEnck(·,·,·),EncLk (·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),EncLk (·,·,·) ⇒ 1

]∣∣∣ ,

where the probabilities are taken over a key k � K and the random coins of A.
Here $(·, ·, ·) is an oracle that for every input (n, h,m) outputs a random string
whose length |$(n, h,m)| = |Enck(n, h,m)|. Moreover, the oracle $(·, ·, ·) keeps
track of its queries in order to answer in the same way if the same query is
asked again. The oracle EncL

k (·, ·, ·) is an oracle that on input (n, h,m) outputs
the leakage of the algorithm Enck. Furthermore, we define AdvIND-CPA-L

Π (q, �, t)
as the maximum advantage over all IND-CPA-L adversaries A against Π that run
in time at most t, and make at most q queries of total length � to the available
oracles.

We now employ an attack on RCB showing how it is possible to violate the
privacy of RCB in terms of distinguishing the encryption of two messages m0

and m1, with |m0| = |m1|.
Recall line 7 in Algorithm 1:

ci ← Eki
(mi).

If any information about mi leaks, then the privacy of RCB will completely be
gone.

As it turns out, typical side channels allow an adversary to gather information
about the messages mi, the outputs ci and the inner computation. Therefore,
it is very difficult to obtain security of privacy against side channel adversaries.
See Fig. 2 for a power analysis trail. The “peaks” may, e.g., reveal information
about the Hamming weight of the data currently processed, including the Ham-
ming weight of mi at the beginning and the Hamming weight of ci at the end.

Is RCB a Leakage Resilient Authenticated Encryption Scheme? 49

Fig. 2. A leakage trail for a block cipher encryption, computing ci = Eki(mi) [23].

This means that the adversary will be able to distinguish what message mi is
being encrypted.

Implicitly, RCB assumes that information about the round key ki may leak,
but also that information about mi must not leak. In particular Agrawal et al.
[2] relates the privacy of RCB to the privacy of the block cipher implementation.
Thus, if a side channel trace, such as the one in Fig. 2 leaks information about mi,
then the privacy of the block cipher implementation (one-time leakage resiliency)
is low, therefore the privacy claimed for RCB becomes invalid.

We need to stress that maintaining a good privacy security for block cipher
based leakage resilient cryptosystems seems to be an unsolved issue because it
seem impossible to have that every block cipher evaluation does not leak any
information about the message. For example, for CPA-security Pereira et al. [16],
give a security notion where the security of a multiple block cipher calls is related
to the security of a single block cipher call (the quantification of the security of
a single block cipher call remains an open problem).

6 Conclusion

What went wrong? And can one repair RCB? RCB has been derived from the
well-established OCB mode. OCB is neither leakage resilient nor misuse resistant,
but it provides secure authenticated encryption in the black-box model (without
leakage). On the other hand, RCB is not even secure in the black-box model.

In [2] Agrawal et al. list the following modifications to turn OCB into RCB:

1. Instead of masking the input and output of the block cipher, they change the
key of the block cipher.

2. The starting counter, which is not secret, is XORed to the input of the block
cipher E during processing the last block of the message to prevent adversary

50 F. Abed et al.

to create a valid pair of message and a tag. Instead OCB uses a secret masking
derived from the key in this phase.

3. One fresh key is omitted before processing the last message block with the
aim of thwarting the forgery attack by the adversary.

The second modification clearly weakens RCB in contrast to OCB. It seems that
the creators of RCB [2] have discovered the issue and thus have applied the third
modification. However, our forgery attack, explained in Sect. 4.1, showed that
the third modification cannot be considered as a sufficient countermeasure to
prevent the attack.

To thwart the attack, one could propose the following modification on RCB:
use a different rekeying scheme, which works differently if the output key is
used to encrypt or to compute a tag. For example, instead of having Gk∗(ctr),
use Gk∗(0, ctr) for round keys used to encrypt the message, and Gk∗(1, ctr) to
compute the tag.

We conjecture that this would prevent black-box forgery attacks such as ours,
but it would not solve any of the other issues.

Summary. This work described several attacks on RCB leakage resilient Authen-
ticated Encryption scheme. RCB is not robust, neither against nonce misuse, nor
release of unverified plaintexts. The most important issue of RCB is the forgery
attack in the black-box model, which is a fundamental requirement for any AE
schemes. Moreover, its requirement to maintain synchronized counters between
sender and receiver opens the door to Denial-of-Service attacks. In addition,
RCB cannot be securely used for full-duplex communication. Finally, its privacy
succumb to many practical side channel attacks.

In spite of all these negative results, we give credit to Agrawal et al. [2] to be
the first, to the best of our knowledge, to present a leakage-resilient authenticated
encryption scheme, and we hope that our solution can help them to improve their
construction.

Acknowledgments. Farzaneh Abed was supported by the Simple Scry project with
Cisco.

References

1. Abed, F., Fluhrer, S.R., Forler, C., List, E., Lucks, S., McGrew, D.A., Wen-
zel, J.: Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 205–223. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46706-0 11

2. Agrawal, M., Bansal, T.K., Chang, D., Chauhan, A.K., Hong, S., Kang, J.,
Sanadhya, S.K.: RCB: leakage-resilient authenticated encryption via re-keying. J.
Supercomput. 1–26. Springer, Heidelberg (2016). doi:10.1007/s11227-016-1824-6

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Advances in
Cryptology -ASIACRYPT 2014–20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
7–11 December 2014, Proceedings, Part I, pp. 105–125 (2014)

http://dx.doi.org/10.1007/978-3-662-46706-0_11
http://dx.doi.org/10.1007/978-3-662-46706-0_11
http://dx.doi.org/10.1007/s11227-016-1824-6

Is RCB a Leakage Resilient Authenticated Encryption Scheme? 51

4. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the
face of protocol and side channel leakage. IACR Cryptology ePrint Archive 2017,
68 (2017)

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

6. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient
and misuse-resistant authenticated encryption. IACR Cryptol. ePrint Arch. 2016,
996 (2016)

7. Borst, J.: Block ciphers: design, analysis and side-channel analysis. Ph.D. thesis,
KULeuven, Belgium (2001)

8. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP -
towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, 25–28
October 2008, Philadelphia, PA, USA, pp. 293–302 (2008)

10. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 13

11. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

12. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 18

13. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.-X.: Fresh re-
keying II: securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-27257-8 8

14. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 16

15. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 15

16. Pereira, O., Standaert, F.-X., Vivek, S.: Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, 12–16 October 2015, pp. 96–108 (2015)

17. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 2

18. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01001-9 27

19. Rivain, M., Emmanuel, P.: Provably secure higher-order masking of AES. IACR
Cryptol. ePrint Arch. 2010, 441 (2010)

http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/978-3-642-33027-8_13
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/978-3-540-24660-2_18
http://dx.doi.org/10.1007/978-3-642-27257-8_8
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-642-55220-5_15
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/978-3-642-01001-9_27

52 F. Abed et al.

20. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

21. Rogaway, P., Thomas, S.: Deterministic authenticated-encryption: a provable-
security treatment of the key-wrap problem. IACR Cryptol. ePrint Arch. 2006,
221 (2006)

22. Schipper, J.H.: Leakage resilient authentication, master thesis, Utrecht university,
The Netherlands (2010)

23. Standaert, F.-X.: Directory authorities specifications from the tor project. http://
perso.uclouvain.be/fstandae/PUBLIS/96 slides.pdf. Invited talk at SKEW 2011

24. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald,
E.: Leakage resilient cryptography in practice. In: Towards Hardware-Intrinsic
Security - Foundations and Practice, pp. 99–134 (2010)

25. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 44

26. Yu, Y., Standaert, F.-X.: practical leakage-resilient pseudorandom objects with
minimum public randomness. In: Dawson, Ed (ed.) CT-RSA 2013. LNCS, vol.
7779, pp. 223–238. Springer, Heidelberg (2013)

27. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010,
pp. 141–151 (2010)

http://perso.uclouvain.be/fstandae/PUBLIS/96_slides.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/96_slides.pdf
http://dx.doi.org/10.1007/978-3-642-34961-4_44

Practical and Secure Searchable Symmetric
Encryption with a Small Index

Ryuji Miyoshi1, Hiroaki Yamamoto1(B), Hiroshi Fujiwara1,
and Takashi Miyazaki2

1 Faculty of Engineering, Shinshu University, 4-17-1 Wakasato,
Nagano 380-8553, Japan

{yamamoto,fujiwara}@cs.shinshu-u.ac.jp
2 National Institute of Technology, Nagano College, 716 Tokuma,

Nagano 381-8550, Japan
miya@nagano-nct.ac.jp

Abstract. From a view point of information security, researches on an
encrypted search system have been done intensively. Such search systems
are called searchable symmetric encryption (SSE). The main part of SSE
is an encrypted index which affects security and efficiency. Until now
many SSE schemes have been proposed, but most of them uses a random
oracle to achieve both adaptive security and an optimal index size. The
index size of adaptively secure SSE schemes without a random oracle
can be much larger. In this paper, we propose a new SSE scheme which
satisfies adaptive security in the standard model and has an optimal
index size. Furthermore the index of our scheme consists of Bloom filters
and simple arrays, that is, arrays of integers. Since Bloom filters are also
implemented by an array of integers, the structure of the index is simple.
Thus, unlike other SSE schemes with an optimal index size, the size does
not depend on a security parameter.

Keywords: Searchable symmetric encryption · Keyword search · Bloom
filter

1 Introduction

1.1 Backgrounds

In recent years, many services have come to be performed through a network. In
such an information society, protection of personal data and confidential data has
been a very important subject. Also in information retrieval, the importance of
the security is increasing. For example, in a remote storage service and an email
service, there is a case where a server administrator differs from the owner of
data. In this case, the server administrator is assumed to be trusted. However,
putting this assumption on the administrator who is the 3rd person is not enough
from a viewpoint of security. In order to use a server more safely, a user stores
data in an encrypted form. By such an encryption, the server administrator
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 53–69, 2017.
https://doi.org/10.1007/978-3-319-70290-2_4

54 R. Miyoshi et al.

can access only encrypted data, but he cannot know the contents. A problem
is that a search becomes difficult by encryption. A trivial method to resolve a
search problem is that a user downloads all encrypted data and searches data
by decrypting it. However it is clear that this method is impractical. Therefore
a technique for searching efficiently the encrypted data on the server is desired.
Up to now, researches on efficient and secure search techniques for encrypted
data, which is called searchable symmetric encryption (SSE), have been actively
done under such a background [1,4–8,11–14,16,18,19,22–32].

1.2 Our Contributions

The main part of SSE schemes is an encrypted index and a number of SSE
schemes use an inverted index which consists of keyword-document pairs in
order to realize an encrypted index. Since a keyword is usually encrypted by
a pseudo-random function, the size of the index depends on a security parame-
ter. Therefore the size becomes larger in proportion to the security parameter.
In this paper, we propose a new SSE scheme which is constructed using Bloom
filters and integer arrays. Our index does not depend on a security parameter.
Therefore we can realize a smaller index. To do this, we design a secure mapping
from an encrypted keyword to a keyword ID using a Bloom filter. Namely, the
Bloom filter does not leak any information about an encrypted keyword. Using
this mapping, we can realize an inverted index of keyword-document pairs with
a simple array of integers. Since Bloom filters are also implemented by an array
of integers, the whole index can be implemented by only integer arrays. Our
scheme uses two rounds of communication at search phase. By this, however, we
can design an adaptively secure scheme in the standard model and achieve an
almost optimal index size which does not depend on a security parameter. We
summarize the features of our scheme. Here let D be the set of documents and
K(D) be the set of distinct keywords.

– For any keyword w, the search time is O(log m+nw) and the communication
complexity is O(nw). Here, m = |K(D)|, that is, the number of distinct key-
words, nw is the number of documents containing w. In addition, the number
of rounds of communication is 2.

– The encrypted index can be constructed using arrays of integers and the
size is O(m log m + N), where N =

∑
w∈K(D) nw, that is, the number of

keyword-document pairs. In fact, if we use a 4-byte integer, then the size is
at most m log m + 12m + 8N bytes. This is bounded by 9N from above if m
is small enough compared to N . Thus the size is almost optimal and does not
depend on a security parameter. The size of adaptive SSE schemes proposed
previously depends on a security parameter, which is typically 128 or more
bits, because of a pseudo-random function. Therefore previous SSE schemes
need at least 16N bytes.

– The proposed scheme is secure against adaptive attacks in the standard
model. Most of the existing schemes which achieves an optimal size is proved
to be adaptively secure in the random oracle model.

Practical and Secure Searchable Symmetric Encryption with a Small Index 55

1.3 Related Works

Table 1 shows a comparison of related works. Goh [11] first presented an
encrypted search scheme using a Bloom filter. His method stores keywords of
each document in one Bloom filter and searches all documents for a given key-
word. Hence the size of the index is O(N) and the search time is O(n). Since Goh
uses a Bloom filter, the size does not depend on a security parameter. Curtmola
et al. [10] presented an encrypted index using an inverted index. They pointed
out the drawback of the security models used in Goh [11] and introduced two new
security models, a non-adaptive semantic security model and an adaptive seman-
tic security model. They gave two secure SSE schemes, called SSE-1 and SSE-2.
SSE-1 meets non-adaptive semantic security, but the index size is O(λN). The
search time is proportional to the number of documents containing a keyword,
that is, O(nw). SSE-2 meets adaptive semantic security in the standard model
and runs in time proportional to the number of documents containing a key-
word. However, the index size of SSE-2 becomes O(λnsmax). In addition, SSE-2
generates n encrypted keywords (called a trapdoor) to search documents for
any keyword. Goh’s scheme only satisfies non-adaptive semantic security under
Curtmola’s security models. Chase et al. [4] proposed an adaptively secure SSE
scheme in the standard model. However, the index size becomes much larger, that
is, O(nm) in the worst case. As seen in our experiment of Sect. 6, the scheme
generates a huge index. Kamara et al. [21] presented a dynamic SSE (DSSE)
scheme, which can add and delete a document. Kamara’s DSSE scheme meets
adaptive security and achieves an optimal index size in the random oracle. As
with SSE-1, the size is proportional to a security parameter.

Since Kamara’s paper, a number of DSSE schemes have been proposed
and proved to be adaptively secure in the random oracle [6,14,20,28,30].

Table 1. Comparison of related works. m is the number of distinct keywords, n is the
number of documents, nw is the number of documents containing w, N =

∑
w∈K(D) nw,

smax is the maximum number over {|K(d)| | d ∈ D}, kI is the number of bits of an
integer, which is usually 32 bits, and λ is a security parameter, which is typically 128
or more bits. RO means that the scheme uses a random oracle. The column “rounds”
shows the number of rounds of communication and the column “commun” shows the
complexity of communication (bits) except for encrypted documents finally sent by the
server.

Scheme Size of index Search time Security Rounds Commun Dynamic

Goh [11] O(N) O(n) non-adap 1 λ No

Curtmola [10]

(SSE-1)

O(λN) O(nw) non-adap 1 λ No

Curtmola [10]

(SSE-2)

O(λnsmax) O(nw) adap 1 λn No

Chase [4] O(nm) O(nw) adap 1 2λ No

KamaraRO [21] O(λN) O(nw) adap 1 3λ Yes

This work O(m log m + N) O(log m + nw) adap 2 λ + kI(nw + 3) No

56 R. Miyoshi et al.

The schemes [6,28,30] achieve an optimal index size, but the size is proportional
to a security parameter like Kamara’s scheme. For example, Chash et al. [6] and
Stefanov et al. [28] proposed DSSE schemes with an optimal index size, but the
size of the indexes becomes O(λN) because it stores encrypted keywords. They
also show an implementation of the schemes without a random oracle. In this
case, the complexity of communication gets much larger by removing a random
oracle. In addition, their schemes need several rounds of communication and
the client must generate many trapdoors. Yavuz [31] proposed an adaptively
secure DSSE scheme in the standard model. Yavuz’s scheme leaks less informa-
tion than other schemes, but the index size of their scheme becomes O(nm),
which is much larger than N , and the search time is O(n). Thus the existing
schemes with an optimal index size has an index in proportion to a security
parameter. In Sect. 6, we will evaluate the proposed scheme using a real dataset
and compare our scheme with SSE-2 and Chase’s scheme. Then the index size of
SSE-2 and Chase’s scheme can be much larger. In particular, the size of Chase’s
scheme can be huge for our dataset.

We design an adaptively secure SSE scheme with an optimal index size in
the standard model by adding one more round of communication. As seen in
Table 1, other SSE schemes use only one round of communication, but our scheme
requires two rounds of communication. By this added communication, however,
we achieve an adaptively secure SSE scheme with an almost optimal index size
in the standard model. Hirano [15] recently proposed a general-purpose method
to build a DSSE scheme from an SSE scheme. By applying their method to our
scheme, we can modify our SSE scheme into a DSSE scheme which can add new
documents.

2 Preliminaries

We consider the following search problem. Let D = {d0, . . . , dn−1} be the set
of n documents and let n = |D|, where |D| denote the number of elements in
D. Each document di (0 ≤ i ≤ n − 1) is assigned a unique number i called a
document ID and we write ID(di) = i. For each document di, let K(di) be the
set of keywords taken out from di. Furthermore let us define K(D) = ∪d∈DK(d)
and m = |K(D)|. Thus m denotes the total number of distinct keywords used
in our scheme. For any w ∈ K(D), let D(w) be the set of IDs of documents
containing w. We let nw = |D(w)| and N =

∑
w∈K(D) nw. The search problem is

to find all documents di containing w for a given keyword w. By x||y we denote
the concatenation of two strings x and y and by [i, j] (i ≤ j) we denote the set
{i, i + 1, . . . , j} of integers.

In this paper, we address the search problem using a symmetric encryp-
tion scheme. A symmetric encryption scheme is a set of three polynomial time
algorithms SKE = (KeyGen,Enc,Dec), where KeyGen(1λ) takes as an input a
security parameter λ and randomly outputs a secret key sk; Enc(sk, d) takes as
inputs a secret key sk and a text d and returns a ciphertext c; Dec(sk, c) takes as
inputs a key sk and a ciphertext c and returns d if sk is the key which is used to

Practical and Secure Searchable Symmetric Encryption with a Small Index 57

produce c. As seen in [17], we consider that a symmetric encryption scheme sat-
isfies chosen-plaintext attack security (CPA-security). For simplicity, by Esk(·)
we denote an encryption function Enc(sk, ·) with a secret key sk. In addition
to a symmetric encryption scheme, we make use of pseudo-random functions,
which are polynomial-time functions that cannot be distinguished from random
functions. Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a pseudo-random function.
Then we will write FK(x) instead of F (K,x).

The search system consists of two parties, a client and a server. We assume
that the server is honest but curious. A client is an owner of documents and
stores them in encrypted form in a server. Given an encrypted keyword (which
is called a trapdoor) from a client, a server performs a search using an encrypted
index. In the following, we show an outline of an encrypted search scheme.

(1) A client randomly generates a secret key SK = (sk1, sk2, sk3) using a secu-
rity parameter λ.

(2) Construction of an encrypted index. The client encrypts all documents using
his secret key sk1. In addition, the client makes an encrypted index from
keywords using a pseudo-random function Fsk2 and the secret key sk2. After
that, the client sends encrypted documents and the encrypted index to the
server.

(3) Search phase. For a keyword w, the client makes a trapdoor Tw = Fsk2(w||0)
using a pseudo-random function Fsk2 , and then sends them to the server.
Receiving Tw, the server searches for documents d containing w using Tw

and the encrypted index. After that, the server returns {ci}i∈D(w) to the
client. The client decrypts each ci using the secret key sk1 and gets original
documents di.

3 Bloom Filter

A Bloom filter is a data structure proposed by Bloom [2], which consists of a bit
sequence and is used for efficiently checking whether x ∈ S for a set S and an
element x. Let BF be a Bloom filter of m bits and let W = {w1, . . . , wl} be a set
of l words, h1, . . . , hk be hash functions mapping words to [0,m − 1]. Then, for
wi ∈ W , we set all bits at positions h1(wi), . . ., hk(wi) in BF to 1. For any word
w, whether w ∈ W or not is checked as follows. First we compute h1(w), . . .,
hk(w), and then check bits at positions h1(w), . . ., hk(w) in BF . If all bits are 1,
then we decide w ∈ W ; otherwise w /∈ W . The drawback of a Bloom filter is to
make an error called a false positive, that is, there is a possibility such that for
v /∈ W , all bits at positions h1(v), . . ., hk(v) are 1. In this case, we get a wrong
answer such that v ∈ W . Note that for w ∈ W we always get a correct answer.
Broder and Mitzenmacher [3] analyze the relationship among the size m1 of a
Bloom filter, the number m2 of elements, the probability of false positive, and the
number of hash functions. They showed that given m1 and M2, the probability
of false positive becomes minimum when k = (m1/m2) ln 2. In this case the false
positive rate is approximately (0.6185)m1/m2 . We give an example of a Bloom

58 R. Miyoshi et al.

Fig. 1. An example of a Bloom filter.

filter and a counting Bloom filter in Fig. 1 for W = {w1, w2}. Let W = {w1, w2}
and let h1, h2, h3 be hash functions. Then, to make a Bloom filter for W , we
set bits at position h1(w1), h2(w1), h3(w1) to 1 for w1 and set bits at positions
h1(w2), h2(w2), h3(w2) to 1 for w2. On the other hand, for a counting Bloom
filter, h3(w1) and h2(w2) indicate the same position; therefore the position has
a value 2. For example, for a word x, since the bit at the position h2(x) is 0, we
see x /∈ W . For a word y, since all bits of positions h1(w2), h2(w2), h3(w2) are 1,
we decide y ∈ W .

4 Proposed Scheme

The proposed SSE scheme consists of six polynomial-time algorithms
SSE= (KeyGen,Enc,Dec,BuildIndex,Trapdr,Search) such that

– KeyGen(1λ) is a probabilistic algorithm which takes as an input a security
parameter λ and returns secret keys SK = (sk1, sk2, sk3).

– Enc(sk1, d) is a probabilistic algorithm which takes as inputs a secret key sk1
and a document d and returns an encrypted document c = Esk1(d).

– Dec(sk1, c) is a deterministic algorithm which takes as inputs a secret key sk1
and an encrypted document c and returns the decrypted document.

– BuildIndex(SK ,D, ε) is a probabilistic algorithm which takes as inputs secret
keys, a set of documents, and a parameter ε and returns an encrypted index
Π = (Kmap, Nmap, Dmap).

– Trapdr(sk2, w) is a deterministic algorithm which takes as inputs a secret key
sk2 and a keyword w and returns a trapdoor Tw. We define Trapdr(sk2, w) =
Fsk2(w||0) (= Tw) where Fsk2(·) is a pseudo-random function.

– Search(Tw) is a deterministic algorithm which takes an input as a trapdoor
Tw and returns document IDs containing w.

We use a CPA-secure symmetric encryption scheme for (KeyGen, Enc, Dec).
In the following, we will show an algorithm BuildIndex and a search algorithm
Search.

Practical and Secure Searchable Symmetric Encryption with a Small Index 59

4.1 Constructing an Encrypted Index

An encrypted index Π = (Kmap,Nmap,Dmap) consists of Kmap, Nmap,
and Dmap. Kmap is constructed by Bloom filters and is used to compute a
keyword ID from a trapdoor. Nmap is an array of m entries, each of which has
start position of a list of D(w) and nw for each keyword w. Dmap is an array of
N entries which have a pair of a document ID and a next address. The encrypted
index is built by BuildIndex given in Algorithm 1. The operator ⊕ denotes an
exclusive-OR. Let π be a random permutation over [1, N − 1].

Construction of Kmap. We assign a unique number (called an identifier)
from [0,m − 1] to each keyword of K(D). This time, we randomly take a unique
number from [0,m − 1] for each keyword of K(D). The identifier of a keyword
w is denoted by ID(w). Let K(D) = {w0, . . . , wm−1}, where for 0 ≤ i ≤ m − 1,
ID(wi) = i. Kmap is an array consisting of Bloom filters, that is, Kmap[i] has
a Bloom filter. Then, for any w ∈ K(D), Kmap realizes a mapping the trapdoor
Tw of w to ID(w). Now we present how to build Kmap in the following. We
use a binary tree to manage the set K(D).

Let us define h = �log2 m�. We use 2 as the base of logarithm in this paper.
First of all, for any level 0 ≤ lev ≤ h, we define a decomposition K(D)lev of
K(D) at level lev . The decomposition K(D)lev is the set {W lev

0 ,W lev
2α , W lev

2·2α ,
. . . ,W lev

(2lev−1)·2α} such that for any i = 0, 2α, 2 · 2α, 3 · 2α, . . . , (2lev − 1) · 2α,
W lev

i = {wi, wi+1, . . . , wi+2α−1}, where α = h − lev . For level lev , each W lev
i is

a subset of K(D) and consists of at most 2lev elements. Note that for any lev ,
W lev

i is numbered with an interval of 2α starting from 0. Furthermore W lev
i is a

subset of K(D) consists of at most 2α elements. And the number i is called the
node ID of W lev

i .
The decomposition forms a binary tree by regarding subsets as nodes. For

W lev
i (1 ≤ lev ≤ h), we define W lev+1

i and W lev+1
i+2h−(lev+1) to be children of W lev

i .
Then the decomposition constructs a binary tree such that each W lev

i is a node
and the root is W 0

0 . We call this tree a keyword tree and i the ID of node W lev
i .

For a keyword tree, each leaf Wh
i is a set {wi} consisting of just one keyword

wi. We build one Bloom filter BFlev for 0 ≤ lev ≤ h and store it in Kmap[lev].
Since we use a Bloom filter of size ε · m bits for each level, the size of Kmap is
(h + 1) · ε · m bits.

Example 1. We give an example of a keyword tree. Let K(D) = {w0, w1, w2, w3,
w4}. Then, Fig. 2 depicts the keyword tree for K(D). In Fig. 2, BF0, BF1, BF2,
and BF3 are a Bloom filter for each level, and each node consists of the following
sets, respectively.

W 0
0 = {w0, w1, w2, w3, w4},

W 1
0 = {w0, w1, w2, w3}, W 1

4 = {w4},
W 2

0 = {w0, w1}, W 2
2 = {w2, w3}, W 2

4 = {w4}, W 2
6 = ∅,

W 3
0 = {w0}, W 3

1 = {w1}, W 3
2 = {w2}, W 3

3 = {w3}, W 3
4 = {w4}, W 3

5 = ∅,
W 3

6 = ∅, W 3
7 = ∅.

60 R. Miyoshi et al.

Algorithm 1. BuildIndex((sk1, sk2, sk3),D , ε)
1: n ← |D|, m ← |K(D)|, h ← �logm�
2: initialize Kmap, Nmap, and Dmap
3: start ← 1

4: for lev = 0 to h do
5: initialize a Bloom filter BFlev of ε · m bits with 0

6: for all W lev
i ∈ K(D)lev = {W lev

0 , W lev
2α , W lev

2·2α , . . . , W lev
(2lev−1)·2α} do

7: for all w ∈ W lev
i do

8: X ← Fsk2 (w||0),
9: p1 ← FX(i||1), . . . , pk ← FX(i||k), and set all bits of positions p1, . . . , pk of BFlev

10: if lev = h then

11: let set nw = |D(w)| and D(w) = {id0, . . . , idnw−1}
12: Nmap[i] ← (FX(0), (nw||π(start)) ⊕ Fsk2 (w||1))
13: for j = 0 to nw − 2 do

14: Dmap[π(start + j)] ← (idj ||π(start + j + 1)) ⊕ Fsk3 (w||j)
15: end for
16: Dmap[π(start + nw − 1)] ← (idnw−1||0) ⊕ Fsk3 (w||nw − 1)

17: start ← start + nw

18: end if

19: end for
20: end for
21: store BFlev to Kmap[lev]

22: end for
23: output Π = (Kmap,Nmap,Dmap)

Fig. 2. Keyword tree and the corresponding Bloom filters (Kmap).

Construction of Nmap. For any keyword w ∈ K(D), let nw = |D(w)|.
Then we store (FX(0), (nw||π(start)) ⊕ Fsk2(w||1)) in Nmap[ID(w)], where
X = Fsk2(w||0). As we store document IDs in D(w) in Dmap, the number
start is randomly chosen as the position of the first element in D(w). Further-
more, we can exclude a false positive which may occurs on Kmap by checking
if the first element of Nmap[ID(w)] is equal to FX(0). The size of Nmap is
O(m). If we use a 4-byte integer, then the size becomes 12m bytes because
(FX(0), (nw||π(start)) ⊕ Fsk2(w||1)) can be represented by 3 integers.

Construction of Dmap. Recall that N =
∑

w∈K(D) nw. Dmap[i] is an array
of N entries which are pairs of a document ID and a next address. Then, for

Practical and Secure Searchable Symmetric Encryption with a Small Index 61

Algorithm 2. Search(Tw,Π)
Require: Tw:a trapdoor, Π Fan encrypted index
1: cid ← NULL
2: ListOfID ← ∅, stackIDLevel ← ∅
3: push (0, 0) onto stackIDLevel //stackIdLevel is a stack holding (nodeID, level)
4: while stackIDLevel �= ∅ do
5: pop (id , lev) from stackIDLevel
6: if cid �= id then
7: p1 ← FTw (id||1), . . . , pk ← FTw (id||k)
8: cid ← id
9: end if

10: if all bits of positions p1, ... ,pk in Kmap[lev] are 1 then
11: if lev = h then
12: add id to ListOfID
13: else
14: lev ← lev + 1
15: push (id + 2h−lev , lev) onto stackIDLevel
16: push (id , lev) onto stackIDLevel
17: end if
18: end if
19: end while
20: for all id ∈ ListOfID do
21: (X, Y) ← Nmap[id]
22: if FTw (0) = X then
23: return Y
24: end if
25: end for

any keyword w, document IDs in D(w) are stored in Dmap as follows. Let
D(w) = {id0, . . . , idnw−1}. Let start be the start position stored in Nmap for
w. For any 0 ≤ j ≤ nw − 2, we store (idj ||π(start + j + 1)) ⊕ Fsk3(w||j) in
Dmap[π(start+j)] and (idnw−1||0)⊕Fsk3(w||nw−1) in Dmap[π(start+nw−1)].
Note that 0 is used as a sentinel value. Since Dmap becomes a simple array of
2N integers, the size of Dmap is 8N bytes if we use a 4-byte integer.

The total size of the index. From the above discussion, it is obvious that the
total size of Kmap, Nmap, and Dmap becomes O(m log m + N).

4.2 Search Protocol

The following shows a search protocol which requires two rounds of commu-
nication between the client and the server.

1. The client makes a trapdoor Tw = Trapdr(sk2, w) for a keyword w and sends
it to the server.

2. Receiving Tw, the server performs Search on Tw and gets (nw||π(start)) ⊕
Fsk2(w||1). After that, the server sends it to the client.

62 R. Miyoshi et al.

Algorithm 3. Search2(first , T0, . . . , Tnw−1)
1: addr ← first , j ← 0, and DocID ← ∅
2: while addr �= 0 do
3: (id ,next) ← Dmap[addr] ⊕ Tj

4: addr ← next and j + +
5: add id to DocID
6: end while
7: return DocID

3. The client decrypts (nw||π(start)) ⊕ Fsk2(w||1) and gets (nw, π(start)). The
client computes T0 = Fsk3(w||0), . . . , Tnw−1 = Fsk3(w||nw − 1), and sends
(π(start), T0, . . . , Tnw−1) to the server.

4. Receiving (π(start), T0, . . . , Tnw−1), the server gets the set DocID of
document IDs by performing Search2(π(start), T0, . . . , Tnw−1) given in
Algorithm 3. After that, the server encrypted documents cid (id ∈ DocID)
to the client.

5. The client gets the original documents did by decrypting cid.

We explain how Search behaves. Given a trapdoor Tw, Search computes
ID(w) using Kmap. Search visits each node of a keyword tree from the root in
preorder using a stack stackIDLevel . For any node, if all bits related to Tw in
Kmap[lev] are 1, then Search checks two children of the node. If not, then all
descendants of the node are excluded for checking. For any leaf, if all bits related
to Tw in Kmap[h] are 1, then Search adds id to ListOfID . Since a keyword ID
is unique, the number of IDs in ListOfID is exactly one if false positive does not
occur. Search picks (X,Y) from Nmap[id] for all id ∈ ListOfID and checks if
FTw

(0) = X. If id is a correct position for w, then FTw
(0) = X always holds;

else the equation does not. Thus we can eliminate false positive if any. Finally
Search returns Y = (nw||π(start)) ⊕ Fsk2(w||1).

Let us analyze the running time of Search. It takes O(log m) to compute a
keyword ID using Kmap, and O(1) to pick data from Nmap. The time to pick
document IDs from Dmap is O(nw). Indeed, this job can be performed very fast
because we can get the ID by simply computing an exclusive-OR of two integers.
Thus the search time on the server is O(log m + nw), which is almost optimal.

Let us analyze the communication complexity. Our scheme requires two
rounds of communication. At the first round, the client sends a trapdoor to
the server and the sever returns data (nw||π(start)) ⊕ Fsk2(w||1). Therefore the
amount of communication data becomes λ bits plus 2kI bits, where kI is the
number of bits of integer, typically 32 bits. At the second round, the client
sends π(start) and nw trapdoors T0, . . . , Tnw−1 to the server. Since these can
be all represented as an integer, the amount of bits sent to the server becomes
kI + kInw bits. Finally the server sends encrypted documents to the client. Let
us compare our scheme with other SSE schemes. We examine communication
other than the encrypted documents sent by the server because it is common
in all SSE schemes. Following the above discussion, the communication com-

Practical and Secure Searchable Symmetric Encryption with a Small Index 63

plexity of our scheme becomes λ + kI(nw + 3) bits. Since Curtmola’s SSE-2 [10]
must sends n trapdoors to the server, the communication complexity becomes
λ · n bits. Chase’s scheme [4] sends one trapdoor; therefore it is λ bits. There-
fore our scheme requires two rounds of communication, but the complexity of
communication is less than Curtmola’s SSE-2 and more than Chase’s SSE.

5 Security Analysis

We show that the propose scheme satisfies adaptive security in the standard
model. Other schemes with an optimal index size is proved to be adaptively
secure in the random oracle model. We eliminate a restriction of a random oracle
by increasing a round of communication by one. We define a negligible function
for a security definition.

Definition 1. A function f from natural numbers to positive real numbers is
negligible in a security parameter λ if for every positive polynomial p(·) and
sufficiently large λ, f(λ) < 1/p(λ).

To analyze the security, we consider two games, a real game REALA and
a simulation game SIMA,S . As you see below, REALA performs the proposed
scheme, while SIMA,S simulates the proposed scheme using only information
that an adversary (that is, a server) can get from leakage functions L1 and L2.
The leakage functions L1 and L2 are defined as follows.

– L1(Π, c): This is information leaked from the initial setting. Given an
encrypted index Π and a collection c = {c0, . . . , cn−1} of encrypted docu-
ments, L1 outputs the length of each document |d0|, · · · , |dn−1| and the doc-
ument IDs ID(d0), . . . , ID(dn−1). In addition, it outputs the size of Bloom
filters, n, m, and N .

– L2(Π,Tw, c, t): This is information leaked by a search at time t. Given a
trapdoor Tw at time t, L2 outputs the identifier ID(w) of a keyword w, nw,
the access pattern consisting of D(w) and the search pattern which is the set
of trapdoors used previously by a search.

Now, we define two games to define adaptive semantic security. These games
are played by three player, an adversary A, a challenger C, and a simulator S.

REALA(λ)

– The adversary A chooses D = {d0, . . . , dn−1} and sends them C
– C generates secret keys SK = (sk1, sk2, sk3) using KeyGen(1λ) and build an

encrypted index Π = (Kmap, Nmap, Dmap) using BuildIndex(SK ,D, ε).
After that, C sends (Π ,Esk1(D)) to A.

– repeat the following polynomially many times.
1. A sends a keyword w to C.
2. C makes a trapdoor Tw for w using Trapdr(sk2, w) and sends it to A.
3. A gets (nw||π(start)) ⊕ Fsk2(w||1) using Search(Tw,Π) and sends it to C.

64 R. Miyoshi et al.

4. C decrypts (nw||π(start))⊕Fsk2(w||1) and gets (nw, π(start)). After that,
C computes T0 = Fsk3(w||0), . . . , Tnw−1 = Fsk3(w||nw − 1), and sends
(π(start), T0, . . . , Tnw−1) to A.

5. A picks document IDs from Dmap.
– Finally, A outputs a bit b ∈ {0, 1}.

SIMA,S(λ)

– The adversary A chooses D = {d0, . . . , dn−1} and sends them to C. C sends
information obtained from L1 to the simulator S.

– S builds an encrypted index Π∗ = (Kmap∗, Nmap∗, Dmap∗) and sends
them to C. C sends them to A.

– Repeat the following polynomially many times.
1. A sends a keyword w to C and C sends information obtained from L2

to S.
2. S generates a trapdoor T ∗

w, and then sends it to C. C sends it to A.
3. A gets Y using Search(T ∗

w,Π∗) and sends it to C. C sends it to S.
4. S generates (p∗, T ∗

0 ,. . .,T ∗
nw−1) and sends them to C. C sends them to A.

5. A picks document IDs from Dmap.
– Finally, A outputs a bit b′ ∈ {0, 1}.

Definition 2. An SSE scheme is (L1,L2)-secure against adaptive attacks if for
any probabilistic polynomial time algorithm A, there is a simulator S such that

|Pr[A outputs 1 in REALA(λ)] − Pr[A outputs 1 in SIMA,S(λ)]|
is negligible.

Theorem 1. The proposed SSE scheme is (L1,L2)-secure against adaptive
attacks.

Proof. We will show that we can construct a simulator S step by step such that
the adversary cannot distinguish REAL and SIM. S uses a random permutation
π∗ to simulate π.

1. Simulating encrypted documents for the document set D. Simulator S gener-
ates a random strings c∗

i of |di| bits for a document di (0 ≤ i ≤ n − 1). Since
a symmetric encryption scheme is CPA-secure, ci and c∗

i is indistinguishable.
2. Simulating Kmap. From the leakage information L1, the simulator S

knows the number m of keywords. First S generates m random strings
T ∗

w0
, . . . , T ∗

wm−1
of λ bits. Each T ∗

wi
(0 ≤ i ≤ m − 1) is used as a trapdoor for

a keyword wi. S builds Kmap∗ in a similar way to BuildIndex.
3. Simulating Nmap. To simulate Nmap, S builds Nmap∗ in the following way.

For i (0 ≤ i ≤ m − 1), S generates a random string ri of 3kI bits and stores
ri in Nmap∗[i], where kI is the number of bits of an integer. In REAL,
Nmap[i] has (FX(0), (nw||π(start)) ⊕ Fsk2(w||1)), which is represented by
3kI bits. Since Fsk2 is a pseudo-random function, Nmap and Nmap∗ are
indistinguishable.

Practical and Secure Searchable Symmetric Encryption with a Small Index 65

4. Simulating Dmap. To simulate Dmap, S builds Dmap∗ in the following way.
S knows the size N of Dmap from leakage information by L1. For all j (1 ≤
j ≤ N − 1), S generates two random strings r1j and r2j of kI bits, and then
stores (r1j ||r2j) in Dmap∗[j]. In REAL, Dmap has (id||next) ⊕ Fsk3(w||cnt)
for some cnt ∈ [0, N − 1]. Thus, Dmap∗ and Dmap are indistinguishable
due to pseudo-randomness of Fsk3 .

5. Simulating a search at time t. Let w be a keyword for which the adversary A
searches at time t and let Qt−1 be the set of keywords which are searched for at
some time t′ < t. S knows an access pattern D(w) from leakage information
by L2. First, S checks if w is a keyword searched for before. If so, then S
uses the same random string T ∗

w as one used previously for w; otherwise S
chooses T ∗

w from {T ∗
w0

, . . . , T ∗
wm−1

} such that T ∗
w is not used yet and uses it

as a trapdoor of w. This time, S memorizes that T ∗
w is used for w. S sends

T ∗
w to C. After performing Serach, A sends a random string r to C and C

sends it to S. Then S acts as follows. Let D(w) = {id0, . . . , idnw−1} and let
startw = 1 +

∑
w∈Qt−1

nw.
(a) S computes p∗

j = π∗(startw + j) for all 0 ≤ j ≤ nw − 1.
(b) For 0 ≤ j ≤ nw − 2, S generates T ∗

j such that (idj ||π∗(startw + j + 1) =
Dmap[π∗(startw +j)] ⊕ T ∗

j . In addition, S generates T ∗
nw−1 such that

(idnw−1||0) = Dmap[π∗(startw+ nw − 1)] ⊕ T ∗
nw−1.

(c) S sends (p∗
0, T

∗
0 , . . . , T ∗

nw−1) to C.
Now let us show that A cannot distinguish REAL and SIM in a search
protocol. Given T ∗

w with ID(w) = j, A picks (FT ∗
w
(0), rj) from Nmap∗[j]. If

A accesses an element (X,Y) other than Nmap∗[j] by a false positive, then X
does not match with FT ∗

w
(0). Therefore A cannot distinguish REAL and SIM

at this moment because two games behave in a similar way. Next A sends rj to
C and C sends it to S. Receiving rj , S generates (p∗

0, T
∗
0 , . . . , T ∗

nw−1) as follows.
If w is a keyword asked before, then S picks the same one as used before. If w
is a new keyword, then S generates them using the procedure stated above.
This time, we must note that T ∗

j can be viewed as a string chosen randomly
because each entry of Dmap∗ is set to a random string. Finally S gives
(p∗

0, T
∗
0 , . . . , T ∗

nw−1) to A. It follows from the property of (p∗
0, T

∗
0 , . . . , T ∗

nw−1)
that A can get D(w) using Dmap∗. In REAL, each ID of D(w) is stored
according a random permutation π and T0, . . . , Tnw−1 are generated using a
pseudo-random function. Therefore A cannot distinguish REAL and SIM
with all but negligible probability.

Thus difference between the probabilities that the adversary A outputs 1 in
REAL and in SIM is negligible. Hence the theorem holds.

6 Experimental Results

We present an experimental evaluation of the proposed method on a real world
dataset: the Enron Email Dataset [9]. We use a total of 517431 mails and extract
at most 500 keywords per a mail to built an encrypted index. Note that we

66 R. Miyoshi et al.

regard a mail as a document. The total size of keywords extracted is 348MB and
the number of distinct keywords is 307830. We implemented all algorithms in
JAVA language on a Win10 (64 bits) machine with Intel Core i7-6700 Proces-
sor 3.4 GHz and a memory of 16 GB. We use AES of key-length 128 bits as a
symmetric encryption scheme to encrypt a keyword, and HMAC-SHA256 as a
pseudo-random function and a hash function to register an encrypted keyword
in a Bloom filter.

The size of the index. In implementation of Kmap, we set ε = 10 and h = 20.
First of all, let us evaluate the size of the index, Kmap, Nmap, and Dmap.
Kmap consists of 20 Bloom filters each of which has a size of 3078300 bits.
Therefore the size of Kmap becomes 307830 × 10 × 20 = 61566000 bits. This
is about 7.7 MB. Nmap is an array of 307830 entries, each of which has a form
of (FX(0), (nw||π(start)) ⊕ Fsk2(w||1)). We use 4 bytes for FX(0). Furthermore
we can express (nw||π(start)) ⊕ Fsk2(w||1) in 8 bytes because nw and π(start)
are integers. Hence, we use 12 bytes per one entry. Therefore the size of Nmap
becomes 307830× 12 = 3693960 bytes, that is, about 3.7MB. Dmap is an array
of 37776352 pairs of two integers. Since we use a 4-byte integer, the size of Dmap
becomes 37776352× 8 = 302210816 bytes, that is, about 303 MB. Consequently,
the total size of the index is about 315 MB, which is almost same the size of the
original data. This is because our index depends on only the number of bits of
an integer type but not on a security parameter.

Curtmola’s SSE-2 needs to store 517431 × 500 = 258715500 keyword-
document pairs because every document ID needs to appear in the index the
same number of times and there is a document ID with 500 keywords. A keyword-
document pair is represented as a pair of a trapdoor of the keyword and docu-
ment ID. In our setting, the trapdoor is 128-bit (32 bytes) and a document ID
is represented by a 4-byte integer. Therefore the total size of the index becomes
258715500 × 36 bytes, that is, about 9.3 GB. Chase’s scheme [4] further needs
a larger index because it stores a pair (a keyword, a list of document IDs) in
the index and a list of document IDs is padded so that all lists are of the same
length. In our dataset, there is a keyword such that it appears in all documents.
Therefore the length of all lists is 517431 and the size of the index becomes
at least 517431 × 307830 bytes, that is, 150GB. Thus Chase’s scheme requires
an extremely large index if there a high frequency keyword; that is, a keyword
appears in many documents. How about SSE schemes with an O(λN) index size.
We have λ = 128 bits (16 bytes) and N = 37776352 for our experiment. There-
fore such SSE schemes need at least 604MB because 16×37776352 = 604441632
bytes.

The search time. Next, we examine the search time of all keywords. Note
that we implement the search protocol as one program on a computer, so the
time related to communication is not considered in a search time stated in the
following. The time taken by the client is included. We measure the time taken
to gets document IDs from a given keyword w for all keywords. The experiment
results are shown in Fig. 3 and Table 2. In this experiment, a false positive did
not occur in Kmap. This is because we made the size of Bloom filters large

Practical and Secure Searchable Symmetric Encryption with a Small Index 67

Fig. 3. Relationship between search time (ms) and the number of documents containing
a search keyword.

Table 2. Summary of search time. The column “# of matching documents” denotes
the number of documents containing a search keyword.

of matching documents Search time (ms)

1 to 100 0.17 to 0.23

101 to 1000 0.23 to 2.0

1001 to 10000 2.0 to 18

10001 to 100000 18 to 221

100001 to 517431 221 to 946

517431 946

sufficiently (that is, ε = 10. Note that the larger ε, the smaller a false positive.).
Figure 3 shows the relation between the search time and nw which is the number
of documents containing w. Table 2 shows the outline of the search time. As
shown in Fig. 3, the search time is proportional to nw. Since the theoretical
analysis tells us that the search time is O(log m+nw), we can see that the search
time almost depends on searching Dmap. In the worst case that nw = 517431
(this means that w appears in all documents), it takes 946[ms]. This time includes
the time for the client to generate 517431 trapdoors Ti for searching Dmap. We
note that SSE-2 must always generate 517431 trapdoors for any keyword even
though nw is small. On the other hand, our scheme generates only nw trapdoors.

68 R. Miyoshi et al.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP17K00183.

References

1. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In: Pro-
ceedings of STOC 2016, pp. 1101–1114 (2016)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

3. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey.
Internet Math. 1(4), 485–509 (2004)

4. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 33

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

6. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.-C., Steiner,
M.: Dynamic searchable encryption in very-large database: data structures and
implementation. In: Proceedings of NDSS 2014 (2014)

7. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on
remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi:10.1007/
11496137 30

8. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: Proceedings of INFOCOM 2011, pp.
829–837 (2011)

9. Cohen, W.W.: Enron email dataset. http://www.cs.cmu.edu/∼enron/
10. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-

tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

11. Goh, E.-J.: Secure indexes. Stanford Univ. Technical report. IACR ePrint Cryp-
tography Archive (2003). http://eprint.iacr.org/2003/216

12. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24852-1 3

13. Hacigümüş, H., Hore, B., Iyer, B., Mehrotra, S.: Search on encrypted data. In: Yu,
T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems, vol. 33,
pp. 383–425. Springer, Boston (2007). doi:10.1007/978-0-387-27696-0 12

14. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: Proceedings of ACM CCS 2014, pp. 310–320 (2014)

15. Hirano, T., Hattori, M., Kawai, Y., Matsuda, N., Iwamoto, M., Ohta, K.,
Sakai, Y., Munaka, T.: Simple, secure, and efficient searchable symmetric encryp-
tion with multiple encrypted indexes. In: Ogawa, K., Yoshioka, K. (eds.)
IWSEC 2016. LNCS, vol. 9836, pp. 91–110. Springer, Cham (2016). doi:10.1007/
978-3-319-44524-3 6

16. Jho, N.-S., Hong, D.: Symmetric searchable encryption with efficient conjunctive
keyword search. KSII Trans. Internet Inf. Syst. 7(5), 1328–1342 (2013)

http://dx.doi.org/10.1007/978-3-642-17373-8_33
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://www.cs.cmu.edu/~enron/
http://eprint.iacr.org/2003/216
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/978-0-387-27696-0_12
http://dx.doi.org/10.1007/978-3-319-44524-3_6
http://dx.doi.org/10.1007/978-3-319-44524-3_6

Practical and Secure Searchable Symmetric Encryption with a Small Index 69

17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2015)

18. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32946-3 21

19. Kurosawa, K., Sasaki, K., Ohta, K., Yoneyama, K.: UC-secure dynamic
searchable symmetric encryption scheme. In: Ogawa, K., Yoshioka, K. (eds.)
IWSEC 2016. LNCS, vol. 9836, pp. 73–90. Springer, Cham (2016). doi:10.1007/
978-3-319-44524-3 5

20. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39884-1 22

21. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of ACM CCS 2012, pp. 965–976 (2012)

22. Liu, L., Gai, J.: Bloom filter based index for query over encrypted character strings
in database. In: Proceedings of CSIE 2009, pp. 303–307 (2009)

23. Liu, Q., Wang, G., Wu, J.: An efficient privacy preserving keyword search scheme
in cloud computing. In: Proceedings of CSE 2009, pp. 715–720 (2009)

24. Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: Proceedings
of ACM ASIACCS 2013, pp. 265–276 (2013)

25. Naveed, M., Prabhakarn, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: Proceedings of IEEE on Security and Privacy, pp. 639–654 (2014)

26. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: process-
ing queries on an encrypted database. Commun. ACM 55(9), 103–111 (2012)

27. Suga, T., Nishide, T., Sakurai, K.: Secure keyword search using bloom filter with
specified character positions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y.
(eds.) ProvSec 2012. LNCS, vol. 7496, pp. 235–252. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33272-2 15

28. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Proceedings of NDSS 2014 (2014)

29. Song, D.X., Wagner, D., Perrig, A.: Techniques for searchers on encrypted data.
In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

30. Xu, P., Liang, S., Wang, W., Susilo, W., Wu, Q., Jin, H.: Dynamic searchable
symmetric encryption with physical deletion and small leakage. In: Pieprzyk, J.,
Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 207–226. Springer, Cham
(2017). doi:10.1007/978-3-319-60055-0 11

31. Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with min-
imal leakage and efficient updates on commodity hardware. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 241–259. Springer, Cham (2016).
doi:10.1007/978-3-319-31301-6 15

32. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over
encrypted cloud data. In: Proceedings of ICDCS 2010, pp. 253–262 (2010)

http://dx.doi.org/10.1007/978-3-642-32946-3_21
http://dx.doi.org/10.1007/978-3-319-44524-3_5
http://dx.doi.org/10.1007/978-3-319-44524-3_5
http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.1007/978-3-642-33272-2_15
http://dx.doi.org/10.1007/978-3-319-60055-0_11
http://dx.doi.org/10.1007/978-3-319-31301-6_15

Anonymous Certification
for an e-Assessment Framework

Christophe Kiennert, Nesrine Kaaniche, Maryline Laurent,
Pierre-Olivier Rocher, and Joaquin Garcia-Alfaro(B)

SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, Paris, France
garcia a@telecom-sudparis.eu

Abstract. We present an anonymous certification scheme that provides
data minimization to allow the learners of an e-assessment platform
to reveal only required information to certificate authority providers.
Attribute-based signature schemes are considered as a promising cryp-
tographic primitive for building privacy-preserving attribute creden-
tials, also known as anonymous credentials. These mechanisms allow the
derivation of certified attributes by the issuing authority relying on non-
interactive protocols and enable end-users to authenticate with verifiers
in a pseudonymous manner, e.g., by providing only the minimum amount
of information to service providers.

Keywords: Attribute-based signatures · Attribute-based credentials ·
Privacy · Bilinear pairings · Anonymous certification · e-Assessment
applications

1 Introduction

E-Assessment is an innovative form for the evaluation of learners’ knowledge and
skills in online education, as well as in blended-learning environments, where
part of the assessment activities is carried out online. As e-assessment involves
online communication channel between learners and educators, as well as data
transfer and storage, security measures are required to protect the environment
against system and network attacks. Issues concerning the security and privacy
of learners is a challenging topic. Such issues are discussed under the scope of
the TeSLA project (cf. http://www.tesla-project.eu/ for further information), a
EU-funded project that aims at providing learners with an innovative environ-
ment that allows them to take assessments remotely, thus avoiding mandatory
attendance constraints.

In [16], security of the TeSLA e-assessment system were analyzed and dis-
cussed. A security proposal for securing the TeSLA platform according to the
General Data Protection Regulation (GDPR) [11] was proposed. With respect

N. Kaaniche and M. Laurent—Member of the Chair Values and Policies of Personal
Information.

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 70–85, 2017.
https://doi.org/10.1007/978-3-319-70290-2_5

http://www.tesla-project.eu/

Anonymous Certification for an e-Assessment Framework 71

to the protection of learners’ data, and more specifically in terms of learners’
certification techniques, it was highlighted the necessity of enhancing the frame-
work with privacy-preserving attribute credentials, in order to allow learners to
authenticate with verifiers in a pseudonymous manner. Indeed, an open educa-
tional system like TeSLA has to be properly secured with classical measures,
such as authentication, data ciphering and integrity checks, in order to mitigate
cyber-attacks that may lead to disastrous consequences, such as data leakage or
identity theft.

To meet the GDPR recommendations, it is also necessary to ensure a reason-
able level of privacy in the system. Security and privacy are very close domains,
and yet important differences have to be highlighted, since it is possible to build
a very secure system that fails to ensure any privacy properties. Security, from
a technological standpoint, consists in guaranteeing specific requirements at dif-
ferent levels of the architecture, such as confidentiality, integrity or authenti-
cation. It mainly targets the exchange and storage of data, which in the case
of TeSLA may contain some traces of learner’s biometric data, the learner’s
assessment results, and other sensitive information. In contrast with security,
privacy consists in preventing the exploitation of metadata to ensure that no
personal information leakage will occur. However, it always remains mandatory
to comply with legal constraints, which may prevent full anonymization of the
communications. Therefore, the main objective of privacy, from a technological
perspective, is to reveal the least possible information about the user’s identity,
and to prevent any undesired traceability, which is often complex to achieve.

In the context of TeSLA, several privacy technological filters have been
included in the underlying design of the architecture. The randomized TeSLA
identifier (TeSLA ID for short) associated to each learner is a proper exam-
ple. This identifier is used each time the learner accesses TeSLA, hence ensur-
ing pseudo-anonymity to every learner—full anonymity not being an option in
TeSLA for legal reasons. Yet, a randomized identifier alone cannot protect the
learners against more complex threats such as unwanted traceability. The system
can still be able to link two different sessions of the same learner. A technical
solution that could be integrated in the TeSLA architecture to handle such issues
is the use of anonymous certification.

Anonymous certification allows users to prove they are authorized to access a
resource without revealing more than they need about their identity. For exam-
ple, users can be issued with certified attributes that may be required by the
system verifier, such as older than 18, or lives in France. When the users want to
prove that they own the right set of attributes, they perform a digital signature
based on the required attributes, allowing the system verifier to check if a precise
user is authorized, sometimes without even knowing precisely which attributes
were used.

Such an approach could be integrated in several points of the TeSLA archi-
tecture where it is not necessary to identify the learner. For example, to access
course material on the VLE, it should be enough to prove that the learner comes
from an allowed university and is registered for this course. That way, it becomes

72 C. Kiennert et al.

impossible for the VLE (Virtual Learning Environment) to follow the studying
activity of each learner, while still letting the learners access the course material.
Similarly, when a student has taken an assessment, the student’s work can be
anonymously sent to anti-cheating tools (such as anti-plagiarism). With anony-
mous certification, each tool might receive a request for the same work without
being able to know which learner wrote it, but also without being able to corre-
late the requests and decide whether they were issued by the same learner.

Therefore, anonymous certification might prove to be a solid and innovative
asset to enhance privacy in TeSLA, and to prevent traceability of the learn-
ers whenever it is not required. This paper reports an anonymous certification
scheme that addresses the aforementioned challenges. It allows the learners of an
e-assessment platform to reveal only required information to certificate authority
providers. It builds on attribute-based signature schemes and allows the deriva-
tion of certified attributes by issuing authorities. The resulting construction pro-
vides a non-interactive protocol that allows the e-assessment users to authen-
ticate with verifiers by providing only the minimum amount of information to
service providers.

Paper Organization—Section 2 surveys some related work. Section 3 provides
a short description of the mathematical details of our proposed anonymous cer-
tification mechanism. Section 4 presents a description of the TeSLA architecture,
provides a use case towards validating our anonymous certification mechanism.
Section 5 briefly discusses some details of the ongoing implementation of the solu-
tion and details about the security levels of the proposal. Section 6 concludes the
paper.

2 Related Work

Privacy-preserving authentication mechanisms, called also anonymous certifica-
tion schemes, are based on advanced cryptographic primitives, such as anony-
mous credentials, minimal disclosure tokens, self-blindable credentials, group sig-
natures, sanitizable signatures or attribute-based signatures [3,4,6,8,10,14,28].

In these schemes, users obtain certified credentials for their attributes from
trusted issuing organizations and later derive, without further assistance from
any issuing authority, presentation tokens that reveal only the required attribute
information that might be verified by the verifier under the issuing organization’s
public key. Well-known examples include Brands scheme [4], mainly relying on
blind signatures, and Camenisch-Lysyanskaya scheme, using group signatures
[6], which have been implemented in Microsoft U-Prove and IBM Identity Mixer,
respectively.

Attribute-based signature schemes (ABS for short) are considered as a pro-
moting cryptographic primitive for building privacy-preserving attribute creden-
tials [19]. To use ABS, a user shall possess a set of attributes and a secret signing
key per attribute. The signing key must be provided by a trusted authority. The
user can sign, e.g., a document, with respect to a predicate satisfied by the set of

Anonymous Certification for an e-Assessment Framework 73

attributes. Several ABS schemes exist in the related literature, considering dif-
ferent design directions. This includes ABS solutions in which (i) the attribute
value can be a binary-bit string [13,18,19,21,23] or general-purpose data struc-
tures [29]; (ii) ABS solutions satisfying access structures under threshold poli-
cies [13,18,23], monotonic policies [19,29] and non-monotonic policies [21]; and
(iii) ABS solutions in which the private keys associated to the attributes are
either issued by a single authority [19,23,29] or by a group of authorities [19,21].

Kaaniche and Laurent present in [14] a complete anonymous certification
scheme, called HABS, and constructed over the use of ABS. In addition to
common requirements such as privacy and unforgeability, HABS is designed
with three additional properties: (i) signature traceability, in order to grant
some entities the ability of identifying the user originating an ABS signature;
(ii) issuing organization unlinkability, to avoid that colluding ABS authorities
link user requests sharing a single public key; and (iii) mitigation of replayed
sessions, by imposing the use of random nonces and secure timestamps.

In [26,27], some of the requirements imposed by HABS are questioned by
Vergnaud. The concrete realization of the HABS primitive is presented as unsat-
isfactory with regard to the unforgeability and privacy properties under the ran-
dom oracle model. PCS [15], built over HABS, addresses the limitations pointed
out by [26,27] is used in this paper as the underlying construction deployed as
an AC scheme of TeSLA.

The work by Aı̈meur et al. in [1,2] discusses about the necessity of extended
analysis of security and privacy techniques for e-learning systems. E-learning sys-
tems are presented by Aı̈meur et al. as a composition of Internet-based protocols
and tools, that require from well-established cryptographic techniques, in order
to allow learners to perform on-line studies while preserving a minimum of pri-
vacy requirements. The authors survey in their work a list of security challenges
to address, as well as some common threats to the privacy of the learners. A high-
level overview of research examples in terms of attribute-based encryption and
anonymous credentials is reported—without providing any explicit construction.

3 Anonymous Certification (AC) Construction

3.1 Background

In [9], Chaum introduced the notion of Anonymous Credentials (AC). Camenisch
and Lysyanskaya fully formalized the concept in [6,7]. AC, also referred to as
privacy-preserving attribute credentials, involve several entities and procedures.
It fulfills some well-identified security and functional requirements. In the sequel,
we first present some further details about the type of entities and procedures
associated to traditional AC schemes. Then, we provide our specific AC con-
struction.

3.1.1 Entities
An AC involves several entities. Figure 1 identifies several AC entities. Some
entities, such as the user, the verifier and issuer are mandatory, while other

74 C. Kiennert et al.

Fig. 1. Traditional AC entities

entities, such as the revocation authority and the inspector are optional [5].
These entities can be defined as follows:

– The user is the central entity, whose interest is to have privacy-preserving
access to services, offered by service providers, known as verifiers. The user
has first to collect credentials from various issuing organizations. Then, he
selects the appropriate information from credentials, to present to the request-
ing verifier, under the presentation token.

– The verifier protects access to a resource or service that it offers by imposing
restrictions on the credentials that users have to own and the information from
these credentials that users must present to access the service. The verifier
restrictions are referred to as presentation policy. The user generates from his
credentials a presentation token that contains the required information and
the supporting cryptographic evidence.

– The issuing organization issues credentials to users, while attesting the cor-
rectness of the information contained in the credential with respect to the
user. Notice that before issuing a credential, the issuer may have to authen-
ticate the user.

– The revocation authority has to revoke issued credentials and maintain the
list of valid credentials in the system. So that, these credentials can no longer
be used to derive presentation tokens. Both the user and the verifier have to
obtain the most recent revocation information from the revocation authority
to generate, respectively verify, presentation tokens.

– The inspector is a trusted entity, which has the technical capabilities to, when
needed, remove the anonymity of a user.

3.1.2 Procedures
As depicted in Fig. 1, privacy-preserving ABC systems mainly rely on two main
procedures (i.e., issuance and presentation).

Anonymous Certification for an e-Assessment Framework 75

The issuance of a credential is an interactive protocol, between the user
and the issuing organization. At the end of this phase, the issuing organization
provides a signed credential to the user, certifying the validity of the contained
information. A user may have several credentials, each asserting some collection
of attributes.

The presentation phase starts when a user requests access to the service
provider’s resources. Indeed, the verifier sends to the user the presentation pol-
icy, that describes which proofs must be sent, and which information from the
credential(s) have to be revealed. The user then checks the combination of cre-
dentials that fulfill the policy in order to generate the response, referred to as
presentation token, then sent to the verifier. Thus, a presentation token may
reveal information about the user (reveal attribute values), but also prove cer-
tain facts about some other attributes (while hiding the values), such as proving
that the birth date is earlier than a given day.

During a presentation procedure, the user may also need to prove not only
that he possesses certain attribute values, but also that the credentials certifying
those attributes have not been revoked.

3.1.3 Security and Functional Requirements
Privacy preserving authentication systems have to fulfill the following security
requirements:

– anonymity – the user must remain anonymous during the authentication
process.

– unforgeability – a party that does not belong to the set of authorized users
should not be able to successfully run the protocol with the verifier.

– unlinkability – this property is important to preserve the privacy of users.
Two sub-proprieties have to be identified: issue-show unlinkability, ensuring
that any information gathered during the credential issuing cannot be used
to later link the credential to its issuance while proceeding to its verification,
and multi-show unlinkability, guarantying that multiple presentation sessions
w.r.t. the same credential should not be linked.

Additionally, privacy preserving attribute-based credentials have to ensure
several functional features, namely revocation, inspection and selective disclo-
sure. The selective disclosure property refers to the ability provided to users,
to present to the verifier partial information extracted or derived from their
credentials.

3.2 Our Construction

In this section, we present our precise anonymous certification scheme, in order
to extend the e-assessment framework reported in [16]. The solution is based on

76 C. Kiennert et al.

an existing attribute-based signature scheme previously presented in [15]. Our
construction relies on the following list of algorithms:

– Setup—It takes as input the security parameter ξ and returns the public
parameters params. The public parameters are considered an auxiliary input
to all the algorithms.

Global Public Parameters params – the Setup algorithm first generates an
asymmetric bilinear group environment (p,G1,G2,GT , ê) where ê is an asym-
metric pairing function such as ê : G1 × G2 → GT .

The random generators g1, h1 = g1
α, {γi}i∈[1,U] ∈ G1 and g2, h2 = g2

α ∈ G2

are also generated, as well as α ∈ Zp where U denotes the maximum number
of attributes supported by the span program.

We note that each value γi is used to create the secret key corresponding to
an attribute ai.

Let H be a cryptographic hash function. The global parameters of the system
are denoted as follows:

params = {G1,G2,GT , ê, p, g1, {γi}i∈[1,U], g2, h1, h2,H}

– KeyGen—It returns a pair of private and public keys for each participating
entity (i.e., issuing organization and user). In other words, the user has a pair
of keys (sku, pku) where sku is chosen at random from Zp and pku = h1

sku

is the related public key. The issuing organization also holds a pair of secret
and public keys (sko, pko). The issuing organization secret key sko relies on
the couple defined as sko = (so, xo), where so is chosen at random from Zp

and xo = g1
so . The public key of the issuing organization pko corresponds to

the couple (Xo, Yo) = (ê(g1, g2)so , h2
so).

– Issue—It is executed by the issuing organization. The goal is to issue the
credential to the user with respect to a pre-shared set of attributes S ⊂ S, such
that S represents the attribute universe, defined as: S = {a1, a2, · · · , aN},
where N is the number of attributes such that N < U .

The Issue algorithm takes as input the public key of the user pku, the set of
attributes S and the private key of the issuing organization sko. It also picks
an integer r at random and returns the credential C defined as:

C = (C1, C2, {C3,i}i∈[1,N]) = (xo · [pku
soH(S)−1

] · h1
r, g2

r, {γi
r}i∈[1,N])

where H(S) = H(a1)H(a2) · · · H(aN) and γi
r represents the secret key asso-

ciated to the attribute ai, where i ∈ [1, N].
– Obtain—It is executed by the user. It takes as input the credential C, the

secret key of the user sku, the public key of the issuing organization pko and

Anonymous Certification for an e-Assessment Framework 77

Fig. 2. ABS for the support of AC (Presentation Procedure)

the set of attributes S. The algorithm returns 1 if Eq. 1 holds true; or 0,
otherwise.

ê(C1, g2)
?= Xo · ê(gskuH(S)−1

1 , Yo) · ê(h1, C2) (1)

– Show ↔ Verify: this two-party algorithm is illustrated by Fig. 2. The dif-
ferent algorithms are defined as follows:
• Verify: this algorithm is executed by the verifier upon receiving an

authentication request from a user. In a first step, it outputs the pre-
sentation policy, including a randomized message M = g1

m, a predicate Υ
and the set of attributes that have to be revealed. In the following, we note
that:
∗ m should be different for each authentication session to prevent replay
attacks,
∗ SR denotes the set of attributes revealed to the verifier and SH denotes
the set of non-revealed attributes, such as S = SR ∪ SH ,
∗ Υ is represented by an LSSS access structure (M,ρ), where M is an l×k
matrix, and ρ is an injective function that maps each row of the matrix
M to an attribute.

• Show: The Show algorithm takes as input the user secret key sku, the
credential C associated to the attribute set S for pku, the message M and
the predicate Υ . The showing process is as follows:
1. The user first randomizes his credential in the following way: it selects

uniformly at random an integer r′ ∈ Zp and sets:

78 C. Kiennert et al.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C ′
1 = C1 · h1

r′
= xo · [pku

soH(S)−1
] · h1

r+r′

C ′
2 = C2 · g2

r′
= g2

r+r′

C ′
3,i = C3,i · γi

r′
= γi

r+r′

The resulting credential C ′ is set as follows:

C
′
= (C

′
1, C

′
2, {C

′
3,i}i∈[1,N]) = (xo · [pku

soH(S)−1
] · h1

r+r′
, g2

r+r′
, {γi

r+r′ }i∈[1,N])

2. As the attributes of the user in S satisfy Υ , the user can compute a
vector v = (v1, · · · , vl) that also satisfies vM = (1, 0, · · · , 0).

3. For each attribute ai, where i ∈ [1, l], the user computes ωi = C ′
2
vi

and calculates a quantity B that depends on {C ′
3,i}i∈[1,N] such that

B =
∏l

i=1(γ
′
ρ(i))

vi .
4. Afterwards, the user selects a random rm and computes the couple

(σ1, σ2) = (C ′
1 · B · Mrm , g1

rm). Notice that the user may not have
knowledge about the secret value of each attribute in Υ . If this happens,
vi is set to 0, so to exclude the necessity of this value.

5. Using now the secret key of the user, it is possible to compute an
accumulator on non-revealed attributes as follows:

A = Yo

skuH(SH)−1

rm

The user returns the presentation token Σ = (Ω, σ1, σ2, C
′
2, A,SR),

that includes the signature of the message M with respect to the pred-
icate Υ , and where Ω = {ω1, · · · , ωl} is the set of committed element
values of the vector v, based on the credential’s item C ′

2.
• Verify: In a second step, given the presentation token Σ, the public key of

the issuing organization pko, the set of revealed attributes SR, the message
m and the signing predicate Υ , the verifier first computes an accumulator
AR such as AR = σ2

H(SR)−1
. Then, it picks uniformly at random k − 1

integers μ2, · · · , μk and calculates l integers τi ∈ Zp for i ∈ {1, · · · , l}
such that τi =

∑k
j=1 μjMi,j where Mi,j is an element of the matrix M . It

accepts the presentation token as valid (i.e.; outputs 1) if and only if Eq. 2
holds:

ê(σ1, g2)
?= Xoê(AR, A)ê(h1, C

′
2)

l∏

i=1

ê(γρ(i)h1
τi , ωi)ê(σ2, g2

m) (2)

4 E-learning Use Case for PCS
In this section, we describe how anonymous certification relying on attribute-
based signatures may be integrated into an e-learning environment to enhance
the learners’ privacy. We first present the TeSLA architecture for e-learning
and e-assessment, before detailing in which parts of the architecture anonymous
certification may be implemented.

Anonymous Certification for an e-Assessment Framework 79

4.1 TeSLA Architecture

The TeSLA project aims at providing an e-learning environment that integrates
secure e-assessment, in order to allow the learners to take assessments remotely
while providing the necessary countermeasures to prevent cheating.

The TeSLA architecture is comprised of several components that may belong
to two domains: the university domain and the TeSLA domain. Components that
belong to the university domain must be present in the network of each univer-
sity willing to make use of the TeSLA e-assessment framework, while components
that belong to the TeSLA domain are completely independent of the univer-
sity network. The two domains do not share data unless explicitly stated. The
TeSLA domain contains the following components:

– The TeSLA E-assessment Portal (TEP), which acts as a service broker that
gathers and forwards requests to the TeSLA components.

– The TeSLA Portal, that aims at gathering statistics regarding the
e-assessment activities.

– Instruments that analyze the biometric samples and send their analysis results
back to the client side.

The university domain contains the following components:

– A Virtual Learning Environment (VLE), which can be provided by a classic
Learning Management System (LMS) such as Moodle1.

– A plugin integrated to the VLE that acts as a client side interface with the
TeSLA components.

– Various tools integrated to the VLE that send requests and data to the
TeSLA components through the plugin. There are three categories of tools:
the learner tool, the instructor tool, and external tools. The learner tool and
instructor tool are respectively designed to take or setup an e-assessment.
External tools are in charge of sampling the learner’s biometric data and send-
ing them to TeSLA instruments for evaluation, as part of the anti-cheating
countermeasures.

– The TeSLA Identity Provider (TIP), which is in charge of generating an
anonymized identity for each learner, called TeSLA ID, to be used in the
communication with TeSLA components.

The TeSLA architecture is represented in Fig. 3. The communications
between the components are secured by the TLS protocol [22], deployed on the
whole architecture with mutual authentication, hence ensuring confidentiality
and integrity of every data exchange. The underlying Public Key Infrastructure
for TLS deployment and management is detailed in [16].

Taking an e-assignment in this architecture first requires to log in on the VLE
that contains the client-side plugin. The learner can require the e-assignment
using the learner tool available on the VLE as a third-party tool. The learner

1 https://moodle.org/.

https://moodle.org/

80 C. Kiennert et al.

Fig. 3. Simplified TeSLA architecture representation

tool sends a request through the plugin to the TEP. The incoming request does
not contain the name of the learner, but only the TeSLA ID, that the plugin
requested from the TIP. Then, the TEP fetches the e-assignment in its database
and sends it back to the VLE, where the learner will take the assignment while
external tools sample biometric data that will be regularly sent to instruments
for anti-cheating analysis.

4.2 Pseudonymity

A project for secure e-assessment such as TeSLA does not make it possible
to implement full anonymity for the learners. Indeed, the very nature of the
assessment makes it mandatory to store the association between the examinee
number (e.g., the TeSLA ID) and the real name of the learner. Therefore, in such
context, only partial anonymity, i.e. pseudonymity can be provided to learners
during exchanges with the TeSLA components.

In this architecture, pseudonymity is ensured with a randomized TeSLA
identifier named TeSLA ID, which becomes the learner’s identity within the
TeSLA domain. Therefore, no TeSLA component has ever access to the learner’s
true identity.

The TeSLA ID is generated by the TIP component as a random number com-
puted according to version 4 of the UUID standard [17]. The matching between
the learner’s identity and the TeSLA ID is stored in the TIP database. The TIP
database is placed at the university side and is not accessible from TeSLA. The
TIP database shall be shared with all the VLEs. Since any interaction between
the university domain and the TeSLA domain involve the plugin on one hand,
and the TEP on the other hand, it is sufficient to make sure that any request

Anonymous Certification for an e-Assessment Framework 81

sent to the TEP through the plugin is first redirected to the TIP to retrieve the
learner’s TeSLA ID and use it in place of the learner’s identity. Notice that the
TeSLA ID enables pseudonymity for all learners, who can take e-assessments
without revealing their identity to the TeSLA system. However, it should be
noted even though the learners are anonymized with respect to the e-assessment
system, it is not enough to prevent the acquisition and correlation of personal
data by the system. For example, the TeSLA ID does not ensure multi-session
unlinkability, since the e-assessment system is obviously able to know when the
same learner is logging in over two different sessions and gather data about this
learner’s actions, even without knowing his identity. Anonymous certification,
as described in Sect. 3, is a solution that ensures many more privacy properties
than a simple anonymized identifier. In the next subsection, we describe how the
system can be integrated to an e-learning environment such as TeSLA.

4.3 Integrating Anonymous Certification to TeSLA

The purpose of anonymous certification is to perform anonymous access control,
in order to certify that users are allowed to access a resource because they own
some attributes required by the verifier. However, the verifier only knows that the
users’ attributes match the policy, without necessarily knowing which attributes
they own exactly.

Therefore, anonymous certification cannot be used in a context where it is
necessary to perform authentication in order to identify a specific user. Obvi-
ously, it can be adapted to such a situation by requiring the user identifier as
an attribute that must be revealed, but it loses its interest by doing so. In the
context of TeSLA, it means that anonymous certification cannot be used during
e-assessment itself, since the e-assessment needs to be associated to the unique
identifier of a learner.

However, anonymous certification can be naturally added to the VLE. Indeed,
a LMS generally aims at informing learners about courses they registered at, and
letting them access the course material. In both cases, the VLE does not need
to identify the learner in a unique way, but only needs to prove that the learner
is authorized. In this case, the following attributes could be defined and used to
decide whether to authorize a learner:

– The university where the learner is enrolled
– The courses at which the learner registered

These attributes are enough to let every learner access to the VLE pages he
is entitled to visit, without proceeding to an usual, nominative authentication
(even using a pseudonym or an anonymized identifier). Thus, learners might be
able to access the course document at any time without any possibility for the
VLE to log and profile the learners’ activity. This can be a significant advance
for learners’ privacy since learners may for example abhor to let the system know
at which hours they are awake, and at which moment they accessed the course
material.

82 C. Kiennert et al.

Likewise, it is also possible to enhance the privacy of e-assignments’ post
processing. When an e-assignment is completed by a learner, it must first be sent
to a number of external anti-cheating instruments, that will for example check
if the assignment contains plagiarism. Instead of transmitting requests associ-
ated to the learner’s TeSLA ID, the requests can be anonymized and authorized
with anonymous certification. The attributes may be defined similarly as above.
On top of preventing each instrument from profiling students based on their
TeSLA ID, the unlinkability property of the anonymous certification scheme
guarantees that two different instruments will not be able to know that the
request was emitted from the same learner. This greatly limits the possibility
for the instruments to correlate data, i.e., it enhances the learners’ privacy.

5 Implementation and Security Details of PCS
We briefly discuss in this section the ongoing implementation of the proposal
reported in this paper, as well as some remarks about the security level of PCS.

5.1 Implementation Details

Available at http://j.mp/PKIPCSgit as a multi-platform C++ software code, and
mainly based on existing cryptographic libraries such as PBC [25] and MCL [24],
the construction is available online to facilitate understanding, comparison and
validation of the solution. Special attention has been paid to the nature of the
elliptic curves required to validate the operations of the construction in Sect. 3.
We recall that Anonymous Credentials (AC) are built on top of Attribute-Based
Cryptography, which makes use of pairing-friendly elliptic curves, i.e., elliptic
curves that satisfy certain conditions [12]. For instance, the degree of immer-
sion of such curves. Some parts of the implementation and testing of the elliptic
curve operations are based on either Ate or Tate pairing implementations (cf., for
instance, the Ate Pairing over Barreto-Naehrig Curves implementation, avail-
able at https://github.com/herumi/ate-pairing). Extended versions of the Miller
algorithm [20] from [12] are used to computing the pairings. Precise examples,
and data computed to verify the security of the construction, are available at
http://j.mp/PKIPCSgit as well.

5.2 Security Level Sketch of Our Proposal

We recall that brute-force attacks consist in checking all possible keys until the
correct one is discovered (i.e., with a key of length k bits, there are 2k possible
keys). Thus, k denotes the security level in symmetric cryptography. In public-
key cryptography, the security level of an algorithm is defined with respect to
the hardness of solving a mathematical problem such as the Discrete Logarithm
Problem (DLP). The time required to resolve the DL problem is much less
important than trying the 2k keys by a brute-force attack. For instance, a 1024-
RSA key-length bits provides a 80 key-length equivalent key of a symmetric
algorithm.

http://j.mp/PKIPCSgit
https://github.com/herumi/ate-pairing
http://j.mp/PKIPCSgit

Anonymous Certification for an e-Assessment Framework 83

In order to generate security parameters for each security level of the
PCS proposal, we shall investigate the structure of G1, G2 and GT . The
attribute-based signature scheme depends on the pairing function ê : G1 ×G2 ←
GT . Let E(Fq) denote an elliptic curve [12] defined over the finite prime field Fq

of order q. G1 is a finite additive subgroup of E(Fq), GT is a finite multiplicative
subgroups of E(Fqk) with order equal to p, such as k is the embedding degree of
the curve E(Fqk) relatively to p.

k defines the type of pairing function (type A, E, D, G) with respect to PBC
library [25]. As such, the security level is related to the hardness of solving the
DLP in the group GT . Let the order of G1 be the ECC key and the order of GT

be p = q ∗ k. In order to generate the security parameters using PBC library, it
is necessary to know the rbit order of G1 and the qbit order of Fq. Table 1 shows
the equivalent sizes of rbits and qbits for three considered security levels.

Table 1. Equivalent key sizes for some representative security levels (in bits)

Security level Pairing type GT Size Fq Size G1 Size

80 A 1024 512 160

80 E 1024 1024 160

≥80 D 1050 175 167

≥80 G 1080 108 103

112 A 2028 1024 224

112 E 2048 2048 224

≥112 D 2082 347 332

≥112 G 3010 301 279

128 A 3072 1536 256

128 E 3072 3072 256

≥128 D 3132 522 514

≥128 G 5250 525 487

From Table 1, we notice that the computation duration of pairing functions,
while considering different security levels, should be taken into consideration
while implementing PCS, since the size of GT , Fq and G1 groups size, mainly
depend on the selected security level. For our PCS construction, the security
level depends on the sensitivity level of handled e-learners data.

6 Conclusion

We have detailed an anonymous certification scheme for e-assessment systems.
The proposed construction revisits an existing mechanism based on homomor-
phic attribute-based signatures, and offers a selective disclosure of features to
enable anonymous certification of learners of an e-assessment system. A precise

84 C. Kiennert et al.

use case has been presented, and an ongoing implementation of the approach
discussed. Perspectives of future work include extending the framework for addi-
tional use cases, as well as an exhaustive performance reporting of the full C++
implementation of the construction, will be released at http://j.mp/PKIPCSgit.

Acknowledgements. This work is supported by the H2020-ICT-2015/H2020-ICT-
2015 TeSLA project An Adaptive Trust-based e-assessment System for Learning, Num-
ber 688520. The authors graciously acknowledge as well the support received from the
Chair Values and Policies of Personal Information of the Institut Mines-Télécom.

References

1. Aı̈meur, E., Hage, H.: Preserving learners’ privacy. In: Nkambou, R., Bourdeau,
J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308,
pp. 465–483. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14363-2 23

2. Aı̈meur, E., Hage, E., Onana, F.S.M.: Anonymous credentials for privacy-
preserving e-learning. In: 2008 International MCETECH Conference on
E-Technologies, pp. 70–80. IEEE (2008)

3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Delegatable anonymous credentials. Cryptology ePrint Archive, Report
2008/428 (2008)

4. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

5. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pederson,
M.O.: Scientific comparison of ABC protocols: Part i - formal treatment of privacy-
enhancing credential systems (2014)

6. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
doi:10.1007/3-540-44987-6 7

7. Camenisch, J., Mödersheim, S., Sommer, D.: A formal model of identity mixer.
In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 198–214.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15898-8 13

8. Canard, S., Lescuyer, S.: Protecting privacy by sanitizing personal data: a new
approach to anonymous credentials. In: Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, ASIA CCS
2013. ACM, New York (2013)

9. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.
1007/3-540-46416-6 22

11. European Council: Proposal for a regulation of the European parliament and of the
council on the protection of individuals with regard to the processing of personal
data and on the free movement of such data. In General Data Protection Regulation
(2016)

12. Hankerson, D., Menezes, A., Vanstone, A.: Guide to Elliptic Curve Cryptography.
Springer Science & Business Media, New York (2006)

13. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signa-
tures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol.
7178, pp. 51–67. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27954-6 4

http://j.mp/PKIPCSgit
http://dx.doi.org/10.1007/978-3-642-14363-2_23
http://dx.doi.org/10.1007/3-540-44987-6_7
http://dx.doi.org/10.1007/978-3-642-15898-8_13
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/978-3-642-27954-6_4

Anonymous Certification for an e-Assessment Framework 85

14. Kaaniche, N., Laurent, M.: Attribute-based signatures for supporting anonymous
certification. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9878, pp. 279–300. Springer, Cham (2016). doi:10.
1007/978-3-319-45744-4 14

15. Kaaniche, N., Laurent, M., Rocher, P.-O., Kiennert, C., Garcia-Alfaro, J.: PCS,
a privacy-preserving certification scheme. In: Garcia-Alfaro, J., Navarro-Arribas,
G., Hartenstein, H., Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT-
2017. LNCS, vol. 10436, pp. 239–256. Springer, Cham (2017). doi:10.1007/
978-3-319-67816-0 14

16. Kiennert, C., Rocher, P.O., Ivanova, M., Rozeva, A., Durcheva, M., Garcia-Alfaro,
J.: Security challenges in e-assessment and technical solutions. In: 8th International
Workshop on Interactive Environments and Emerging Technologies for eLearning,
21st International Conference on Information Visualization, London, UK (2017)

17. Leach, P.J., Salz, R., Mealling, M.H.: A Universally Unique IDentifier (UUID)
URN Namespace. RFC 4122, July 2005

18. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ASIACCS 2010 (2010)

19. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19074-2 24

20. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.
1007/3-540-39799-X 31

21. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 3

22. Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, August 2008

23. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and
their application to anonymous credential systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02384-2 13

24. Shigeo, M.: MCL - Generic and fast pairing-based cryptography library, version:
release20170402. https://github.com/herumi/mcl

25. Stanford University: PBC - The Pairing-Based Cryptography Library, version:
0.5.14. https://crypto.stanford.edu/pbc/

26. Vergnaud, D.: Comment on “attribute-based signatures for supporting anonymous
certification” by N. Kaaniche and M. Laurent (ESORICS 2016). IACR Cryptology
ePrint Archive (2016)

27. Vergnaud, D.: Comment on attribute-based signatures for supporting anonymous
certification by N. Kaaniche and M. Laurent (ESORICS 2016). Comput. J. 1–8,
June 2017

28. Verheul, E.R.: Self-blindable credential certificates from the Weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg
(2001). doi:10.1007/3-540-45682-1 31

29. Zhang, Y., Feng, D.: Efficient attribute proofs in anonymous credential using
attribute-based cryptography. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012.
LNCS, vol. 7618, pp. 408–415. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34129-8 39

http://dx.doi.org/10.1007/978-3-319-45744-4_14
http://dx.doi.org/10.1007/978-3-319-45744-4_14
http://dx.doi.org/10.1007/978-3-319-67816-0_14
http://dx.doi.org/10.1007/978-3-319-67816-0_14
http://dx.doi.org/10.1007/978-3-642-19074-2_24
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/978-3-642-19379-8_3
http://dx.doi.org/10.1007/978-3-642-02384-2_13
https://github.com/herumi/mcl
https://crypto.stanford.edu/pbc/
http://dx.doi.org/10.1007/3-540-45682-1_31
http://dx.doi.org/10.1007/978-3-642-34129-8_39
http://dx.doi.org/10.1007/978-3-642-34129-8_39

PARTS – Privacy-Aware Routing
with Transportation Subgraphs

Christian Roth(B), Lukas Hartmann(B), and Doğan Kesdoğan

Chair of IT Security Management, University of Regensburg, Regensburg, Germany
{christian.roth,lukas.hartmann,dogan.kesdogan}@ur.de

Abstract. To ensure privacy for route planning applications and other
location based services (LBS), the service provider must be prevented
from tracking a user’s path during navigation on the application level.
However, the navigation functionality must be preserved. We introduce
the algorithm PARTS to split route requests into route parts which will
be submitted to an LBS in an unlinkable way. Equipped with the usage
of dummy requests and time shifting, our approach can achieve better
privacy. We will show that our algorithm protects privacy in the presence
of a realistic adversary model while maintaining the service quality.

Keywords: Routing · Location privacy · Anonymity

1 Introduction

In most areas of life, people are using smart devices and thereby generating data
with personally identifiable information. Smart services collect personal data and
base their quality of service (QoS) on this information. For this reason, data min-
ing is on a broad research agenda, being able to extract precise user information
from massive databases. With this data, the user experience and convenience of
a service can be improved. For example, Apple’s operating system iOS 9 studies
a user’s behavior to suggest the probable next locations the user wants to drive
to [4]. However, this can be misused to control a user and massively violate his
privacy. This was demonstrated by Facebook by experimentally changing the
emotional perception of the user through news feed consumption [5].

Consequently, the user has the choice either not to use the smart service
and lose the QoS improvements or use the smart device and resign their privacy.
Since opting out of a service is less attractive for most users, the service provider
almost always can collect highly sensitive user data without any significant con-
sequences. On the first look, there is no possibility to resolve this dilemma. But
nowadays smart phones are powerful enough to apply intelligent techniques to
combine sensitive data in offline mode with additional online (real-time) infor-
mation. With this approach, it will be much harder for an adversary, like data
miners, to collect sensitive personal data.

To demonstrate our approach, we chose the well-known and popular field of
route planning. Route planning services need location information from the user,
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 86–101, 2017.
https://doi.org/10.1007/978-3-319-70290-2_6

PARTS – Privacy-Aware Routing with Transportation Subgraphs 87

which can be linked and analysed so that micro- and macroscopic profiles can
be easily generated. It is shown that the start and target of a route are enough
to deanonymise an otherwise anonymous user with a high probability [3]. Thus,
the location information is very sensitive and protection algorithms have to be
carefully designed. In addition, traditional obfuscation techniques from other
scenarios dealing with location privacy cannot be applied because the route must
be calculated for the exact given locations to provide the best user experience.

It would be theoretically possible to exclusively use the smart phone in offline
mode by downloading all routing information from an area. But this means relin-
quishing any helpful third party information, i.e. any useful additional services.
Consequently, to soften the trade-off between privacy and utility in the case
of routing, we introduce privacy-aware routing with route parts using several
interim destinations on the path to the overall target location.

1.1 Contribution

To the best of our knowledge, this is the first paper to investigate straightforward
mechanisms to protect a user’s route. We implement a basic set of these mech-
anisms (see Sect. 4) in a routing algorithm which divides the route into several
parts to hide location information. However, we can still guarantee navigation to
an exact location from a specific start while also including real time data from
the untrusted cloud. We believe that these are real crucial arguments to create
a widely adopted application. In this paper, we follow the classical approach
of the triple bottom line of security “algorithm, adversary and evaluation” and
contribute with:

1. Our algorithm PARTS based on dynamical, unlinkable route parts using
straightforward protection mechanisms.

2. A realistic adversary model in which a honest-but-curious location based ser-
vice (LBS) provider wants to reconstruct full routes.

3. A detailed evaluation of our algorithm by means of a self generated data set
based on our theoretical user model, where we derive the best combination
of privacy protection methods.

Due to limited space, we plan to present a real smartphone application imple-
menting our algorithm in future work. Therefore, we do not analyze extended
performance figures such as battery impact and user experience.

1.2 Structure

The remainder of the paper is organised as follows: After a review of related
work in Sect. 2, the general system model is introduced in Sect. 3. In Sect. 4 we
present techniques for privacy-aware routing, introducing our PARTS algorithm
based on route parts. Section 5 contains the description of the adversary model
who wants to reconstruct the navigated route. The results of our evaluation
are depicted in Sect. 6 where we analyse PARTS’ overhead, its performance and
ability to protect a user’s privacy. We discuss and summarise the results in
Sects. 7 and 8 respectively.

88 C. Roth et al.

2 Related Work

Anonymity of location information is a relevant topic in academic research. The
best discussed concept is the idea of k-Anonymity introduced by Sweeney [10].
A subject is anonymous within a set of k subjects reporting the same cloaked
geographical region instead of the real locations of the subjects. Implementations
of this concept tend to minimise the area of the cloaking region making it easy for
adversaries with background knowledge to infer sensitive data [9]. An extension
of this model called l-Diversity was introduced by Machanavajjhala et al. [6].
Here, the cloaking area should contain at least l different locations.

Wang and Liu [11] showed that anonymity and diversity of locations can be
achieved by realising k-Anonymity with a graph based scalable model. However,
this approach requires a certain number of active users. They state that different
road segments per user can be used to realise l-diversity for disclosed locations.

Palanisamy and Liu [8] introduce their approach of MobiMix in which mix
zones are placed on the road network to gain anonymity of locations. The users’
location anonymity is ensured by unlinkable pseudonyms when entering or exit-
ing a mix zone and within such a zone by non-traceability.

Michalevsky et al. [7] introduce PowerSpy, an application which is able to
infer a user’s location and his driving route by using the power consumption of his
smart phone, without any permissions to access GPS, WiFi, or other location
data on the phone. Their basic idea is to measure the power consumption of
different routes in advance and train a machine learning algorithm.

While using semantic information to obtain a contextual service (e.g. recom-
mendation of restaurants nearby) or to share information about a visited venue,
Agir et al. [1] present a solution where the semantic dimension of a location can
be protected by generalising the semantic tag and locations can be obfuscated.

To counteract location breaches by inference attacks or the reveal of semantic
behaviour by membership inclusion attacks, Bindschaedler and Shokri [2] intro-
duce synthesised plausible location traces which are separated into semantic and
geographic features. This separation is required, because people with similar
lifestyles share common semantic traces but differ in geographical patterns.

3 System Model

We assume that users utilise route planning devices that combine offline and
online data to find the best possible route for a trip. The real start and tar-
get location should be hidden from a location based service (LBS). Therefore, a
trusted application on the user’s (mobile) device is used which employs anonymi-
sation techniques and/or dummy requests. This application uses static offline
data and sends the anonymised request to the LBS. Here, the route request
is processed and online real-time information like traffic jams are taken into
account. For the sake of simplicity, we assume that an LBS has access to this
information, even though it gets harder for an LBS to collect such data when
PARTS is widely applied. The app on the user’s device deanonymises the calcu-
lated route and presents the user with the routing information from the actual

PARTS – Privacy-Aware Routing with Transportation Subgraphs 89

Start and target location (1)

User (Mobile)
User Device

PARTS

Online
Service

LBS

Route (4)

Anonymised information,
dummy requests (2)

Traffic information,
Route parts (3)

Trusted zone

Fig. 1. Our PARTS framework works offline on the user’s device and sends anonymised
information to the LBS to protect the user’s real start and target location (vS , vT).
The LBS processes the requests and returns traffic information and route parts which
are aggregated by our algorithm to the actual route.

start to target location. The user sticks to the route recommended by the local
device, as depicted in Fig. 1. Here, the trusted application on the user’s device
is our PARTS framework (c.f. Sect. 4) which uses route parts as anonymisation
technique.

In this setting, we consider an honest-but-curious LBS that is interested in
deriving the start and target point of a user’s route.

3.1 Road Network

We model the road network in the well-known way of a directed graph G =
(V,E). The road transitions form the set of vertices v ∈ V and are connected
via road segments represented by the edges e ∈ E. Since G is directed, a route
segment from v1 to v2 has two corresponding edges v1v2 and v2v1, whereas
one-way streets are represented by a single edge. The degree of a vertex deg(v)
corresponds to the number of different roads one could reach from this point.
Thus, road intersections are vertices v with deg(v) ≥ 3, whereas vertices with
deg(v) = 1 are equivalent to the end of a dead-end street. In our setting, points
which connect road segments but are neither dead-ends nor intersections are of
little relevance. To simplify the algorithm, we use the minor G∗ of G in which
the degree 2 vertices have been deleted by contracting one of the adjacent edges.

3.2 Users

Simplifying the presentation, we focus on route planning from intersection to
intersection. Therefore, each location can be identified uniquely with a vertex v
in the graph G representing the road network.

The set of users in our model is described with U = (u1, u2, . . . , um). There
can be time intervals where no user moves and different users can travel to the
same location at any time. Users submit their route requests with their current
location vS and their target vT to the PARTS algorithm in a trusted zone,
as depicted in Fig. 1. Our algorithm processes the user’s request and submits
several (anonymised) route requests to the LBS. Each request results in an event

90 C. Roth et al.

ru(t) = (vSi
, vTi

) from user u at time t recorded by the LBS. Hence a route (part)
can be uniquely described with a pair of start and target (vSi

, vTi
).

3.3 LBS Provider

Additional information for a requested route can be provided by an LBS that
has knowledge about context like real time traffic information or road blocks due
to road constructions. Our algorithm PARTS uses this information to combine
it with a locally generated route solely based on geographical information. By
providing vSi

and vTi
as a result of a user request, an LBS collects personal data

such as the request time. Furthermore, it is worthwhile to mention that the LBS
has a similar amount of geographical information as our algorithm.

3.4 Adversary

The adversary in this paper is typically an LBS or an external observer who
has access to all requests of all users, i.e. all received requests of an LBS. The
adversary’s main goal is to link the requests again and hence learn a route’s
overall start vS and target vertex vT . The adversary runs his attack a posteriori.
Since he cannot be sure which requests are performed by a specific user, he
collects a whole event log A for a specific amount of time and carries out his
attack. It is reasonable for him to assume that A contains events from multiple
users. However, it is possible that some of these events differ in time but share
the same tuple of start and end vertices (vS , vT).

For his attack, the adversary takes into account geographical and temporal
information described in Sect. 5. With limitation, the attack can also be per-
formed by third-party services such as an Internet service provider (ISP) who
has access to a user’s request log but lacks knowledge about, for example, geo-
graphical information.

For our setup, we assume that the adversary knows all system parameters,
i.e. he knows which privacy protection methods (PPMs) are applied and what
specific parameters are used. This results in an even stronger adversary to stress
our algorithm. Together with the PPMs and the event log, he starts his attack
to deanonymise a route R, respectively a user u.

4 Strategies for Privacy-Enhanced Routing

Users request routing instructions from an LBS providing their geographical
data vS and vT . To enforce their privacy goals, users apply PPMs, like our
following PARTS framework, to hide their start and target location. To achieve
this, PARTS can deploy different countermeasures which will be described in
the following section.

In this work we focus on the route planning algorithm which resides in
the application layer and tries to prevent information leakage from there. Hid-
ing traffic data (such as IP addresses) is not the focus of our algorithm.

PARTS – Privacy-Aware Routing with Transportation Subgraphs 91

However, this data can be used to link different route requests including dummy
requests to a specific user. In this case, our algorithm does not provide any
anonymity at all. We therefore assume that route requests will be submitted
using an anonymous channel like Tor in order to hide information from lower
communication layers.

The PPMs mentioned in this section may be combined to provide a stronger
protection against an honest-but-curious LBS. We will evaluate different settings
and combinations of the following PPMs in Sect. 6.

4.1 Route Parts

PARTS splits every route R into multiple route parts Ri with start nodes vSi

and target nodes vTi
. The iterative combination of all Ri shall be the complete

route R, thus vSi+1 = vTi
holds. For each route part, a separate route request is

necessary to obtain semantic information like traffic information. This request
results in an event ru(t) = (vSi

, vTi
) at the LBS. The LBS gains information that

a user u wants to drive from vSi
to vTi

without knowing which of the start nodes
vS1 , vS2 , . . . is the overall start vS (resp. which vTi

is the overall target vT).
For each route part Ri, a subgraph G∗

i of G∗ is constructed. The graph
G∗

i shall contain all vertices having at most a specific distance to vSi
. We call

this adjustable distance Hops within our framework. Therefore, distG∗(vSi
, v) ≤

Hops holds for all vertices v in G∗
i . The vertices v with distG∗(vSi

, v) = Hops are
called boundary vertices ∂V (G∗

i) and are candidates for being the target node
vTi

. The subgraph G∗
i contains at least one vertex with degree 3 by construction

of G∗ and therefore at least one intersection resulting in at least two candidates
for vTi

. It is obvious that a higher Hops count results in more target node
candidates. To prohibit recursive routes, already used vertices are stored in a
blacklist VBL for the i-th iteration and will be ignored.

The node v∗ ∈ V cand
i = {v ∈ ∂V (G∗

i) | v /∈ VBL} with the shortest straight
line distance1 |v∗ − vT | to vT is selected and used as target node vTi

for the
i-th iteration. A route request for vSi

to vTi
is submitted to the LBS and the

calculated route forms the next route part Ri. For an example of a subgraph,
see Fig. 2. For the next iteration, the algorithm sets vSi+1 = vTi

and calculates
a new subgraph G∗

i+1. This process stops, until the overall target node vT is
contained in one of the subgraphs G∗

i . In this case, the last route part Ri will
be the route from vSi

to vT .

4.2 Dummy Traffic

We extend the PARTS algorithm from the previous section to include dummy
requests to an LBS which may be needed in order to provide privacy. Using the
previous setup, a route R =

⋃n
i=0 Ri consisting of n parts results in n events

ru(ti) at an LBS. It is trivial for an LBS to derive the complete route R by

1 The straight line distance is used since it is locally computable and does not require
any additional requests to a third party, thus not leaking any information.

92 C. Roth et al.

Fig. 2. The subgraph G∗
3 is depicted in black, whereas the subgraphs G∗

1 and G∗
2 are

grey. The already calculated routes R1 and R2 are red. The vertex v∗ has the lowest
straight-line distance |v∗ − vT | to the overall target vT and will be used as the next
step vT3 . (Color figure online)

chronologically combining Ri. To oppose this, we introduce dummy requests in
our system which should make it more challenging for an LBS to gain s and t.

Instead of submitting only one route request in the i-th iteration for the
node v∗ with the shortest straight-line distance to vT , our algorithm produces
one route request from vSi

to v for some of the target vertex candidates v ∈
V cand
i . Still, v∗ is used as target vertex vTi

and only the associated route is
used as the route part Ri. In particular, the upper bound for dummy requests
is |V cand

i | − 1 since one request is always a legitimate request (vSi
, vTi

). The
PARTS algorithm extended with the maximum number of dummy requests is
depicted as Algorithm 1.

4.3 Time Shift Requests

As stated in the previous subsection, an event always contains time information
(e.g. request time of a route by a user) which is outside of a user’s sphere. There-
fore, it is easy for an LBS to use this information to reconstruct the complete
route using all part requests Ri just by chronologically sorting the request log.
The attack is even possible if dummy traffic is used if an adversary uses statis-
tical attacks. By time shifting the subsequent route requests, the attack can be
hindered. Different methods of time shifting are possible:

– All route requests are executed after a specific but static amount of time, not
allowing any insight into the length of a route part.

– All route requests occur at a random time resulting in no correlation between
the length of a route and the request time.

– Route requests happen in batches, i.e. a specific number of requests are sent
to the LBS at the same time to maintain unlinkability between requests.

PARTS – Privacy-Aware Routing with Transportation Subgraphs 93

Algorithm 1. PARTS with dummy requests
Input: Start vertex vS , target vertex vT
Result: Route R from vS to vT

1 vS1 ← vS ;
2 VBL ← {vS};
3 while vTi �= vT do
4 i ← i + 1;
5 construct G∗

i with V (G∗
i) = {v ∈ G∗ | distG∗(vSi , v) ≤ Hops};

6 V cand
i ← {v ∈ ∂V (G∗

i) | v /∈ VBL};
7 if vT ∈ V (G∗

i) then

8 V cand
i ← V cand

i ∪ {vT };

9 foreach v ∈ V cand
i do

10 submit route request (vSi , v) to LBS;

11 vTi ← argminv∈V cand
i

{|v − vT |};

12 VBL ← VBL ∪ {vTi};
13 Ri ← route from vSi to vTi calculated by LBS;

14 return R = (R1, R2, . . .)

5 Adversary’s Inference Model

In this section, we will present our inference model for the adversary which he
uses to deanonymise specific users from the event log of route requests. We will
explain how an adversary can exploit the route requests to reconstruct the full
route from route parts. Based on this adversary model, we evaluate the privacy
provided by our route planning algorithm in Sect. 6.

5.1 Background Knowledge

We assume that the adversary’s inference model is based on the knowledge that
users move along geographically valid routes using a valid behavior pattern. For
example, users respect traffic regulations such as speed limits.

In our scenario, an adversary has extensive knowledge about the geographical
structure of the road network represented. However, an adversary may utilise
his own geographical database which can partially differ from the database on
which our PARTS algorithm works (see Sect. 6.1). In general, we assume that
such deviations are not harmful to perform the attack illustrated in Sect. 5.2.
Thus, he is able to derive the same V cand

i as our algorithm because all system
parameters are known, as defined in Sect. 3.4. As a consequence, the adversary
can, for example, compute the average travel time t(Ri) for route segments.

5.2 Empirically Improved Guessing

The adversary plans to reconstruct complete routes with the given route requests
submitted by different users. Since the adversary is an LBS, he has access to the

94 C. Roth et al.

full event log A. He selects one of the requests for which he has a high interest
in recovering the corresponding route. Starting with this route request, the LBS
calculates a likelihood tree Γ including possible past and future route parts.

Let r0 = (vS0 , vT0) ∈ A be the route request for which the adversary
is interested in reconstructing the full route. The adversary collects all route
requests A→

r0 whose start vertex is the target vertex vT0 and which have been
submitted to the LBS after r0. For r1 = (vS1 , vT1) ∈ A→

r0 , we can define the
function f(r1 | r0) which models the likelihood that r1 was the subsequent
route request. Here, both temporal correlation and behavioural plausibility will
be taken into account. With t(R) being the travel time of the ideal route R
from vS0 to vT0 = vS1 calculated by the LBS and t0 and t1 being the sub-
mission times of r0 and r1, respectively, the temporal correlation is denoted by
ft(r1 | r0) = exp

(
−c · |(t1−t0)−t(R)|

t(R)

)
, where c is a scaling factor with c ∈ [0, 1].

If the request r1 was submitted close to the travel time calculated by the LBS,
it is more likely that r1 will be the subsequent route request and ft(r1 | r0)
increases.

For the behavioural plausibility fb(r1), we count how many requests in the
event log A have the same points as r1 and divide this number by the total
number of requests. Additionally, we introduce a factor λ ∈ [0, 1] indicating the
weight of the temporal correlation ft in the likelihood f . Hence, we obtain

f(r1 | r0) = λ · ft(r1 | r0) + (1 − λ) · fb(r1)

= λ · exp

(
−c · |(t1 − t0) − t(R)|

t(R)

)
+ (1 − λ) · |{r ∈ A | r = (vS1 , vT1)}|

|A|
Since both values ft(r1 | r0) and fb(r1) are in the range [0, 1], we also have
f(r1 | r0) ∈ [0, 1]. Here, a value close to 1 indicates a high likelihood that the
route r1 is the subsequent route part to r0.

The adversary forms sets A→
r1 for all r1 ∈ A→

r0 and evaluates the function
f(r2 | r1) for r2 ∈ A→

r1 . He repeatedly continues with this approach and con-
structs a likelihood tree Γ with root r0 and r1 ∈ A→

r0 being the first level nodes,
etc. An edge (r, r′) in this tree is weighted with the likelihood function f(r′ | r).
To construct the prior route parts w.r.t. r0, the adversary uses a similar app-
roach by forming sets A←

rj containing route parts whose target vertex equals the
start vertex of rj . If the value of f falls below a predefined threshold value ε, the
process will not be continued within the related subtree of Γ . Finally, the adver-
sary chooses the path in Γ whose multiplied likelihood value along this path
is the highest and uses the corresponding route requests as the reconstructed
route R′.

5.3 Privacy Measurement

To evaluate the privacy of our algorithm, we compare the real route R =
(R1, . . . , Rk) from vS to vT from a user with the guess R′ = (R′

1, . . . , R
′
l) from vS′

to vT ′ calculated by the adversary. His guess R′ is the path in the tree Γ intro-
duced in Sect. 5.2 with the highest likelihood. The following metrics will be
applied, each measuring a different privacy aspect.

PARTS – Privacy-Aware Routing with Transportation Subgraphs 95

Distance to Start/Target Vertex. One of the goals of our algorithm was the
protection of the start and target location of a route request. For this reason, we
measure the straight-line distance dist(R,R′) = |vS − vS′ | + |vT − vT ′ | between
the start vertices and target vertices from R and R′.

Fit of Reconstructed Route. To protect movement patterns, reconstructing
a route from route parts should not be easy for the adversary. Therefore, we
measure fitrou(R,R′), the percentage of the fit between guessed route and orig-
inal one. Here, we count the number of correctly guessed route parts normalised
over the total number of route parts in the original route.

Fit of Continuous Segments. In order to measure the attained linkabil-
ity protection of our algorithm, we calculate the fit of continuous segments
fitseg(R,R′). We count the number of route segments successfully linked
together by an adversary without any error in-between and normalise this figure
over the total number of route segments. For instance, if R has k = 6 segments
and an adversary was able to link segments (R1, R2, R3) and (R5, R6) but missed
to link R4, we have fitseg(R,R′) = 0.5.

6 Evaluation

This section explains how we generated data according to our system model and
applied the adversary’s inference model to evaluate the quality of our algorithmic
approach based on route parts, presented in Sect. 4.

6.1 Dataset and Simulator

PARTS is based on data from OpenStreetMap (OSM). In our setting we used
a small portion of the whole dataset, more specifically a subregion of Bavaria,
Germany. This region was converted to correspond to our graph setting.

Several users were created using a custom simulator. They move along the
region in a predefined (but somewhat random) way2. Since our simulation should
model users realistically, users follow different moving patterns resulting in route
requests. All users submit route requests for activities which happen multiple
times, like trips to a supermarket, whereas 80% of the users follow individual
regular routines. Additionally, 30% of the users make random trips. On average,
there are three moving patterns per user. We simulated a whole month which
led to 398 moving patterns (every person therefore travels between 25–50 times
a month) resulting in 36,167 (part) route requests. These are summed up values
for the different combinations of our PPMs in place including direct requests.
2 Since our users are exclusively moving within a city, we use the simplified assumption

that travel speed is constant per road segment (homogeneous flow). Hereby, we use
values from 37.5 kph to 62.5 kph. The adversary only knows that people will respect
traffic regulations, therefore he uses a constant value of 50 kph for the whole route.

96 C. Roth et al.

6.2 Experimental Setup

After generating the data as explained above, we applied the adversary’s infer-
ence model to reconstruct the complete route from route segments (c.f. Sect. 5).
To prove the power of our inference model, we showed that the usage of temporal
correlation improves the chance of reconstructing a route correctly.

We successively applied more PPMs to get an insight into the adversary’s
ability to reconstruct the whole route of a user from the event log. We also tested
different values for the parameters in the inference model to obtain the strongest
adversary. More precise, we evaluated c ∈ {0.01, 0.1, 1} for the scaling factor in
the temporal correlation function ft and λ ∈ {0, 0.5, 1} for the weighting of ft in
the likelihood function f (see Sect. 5.2). Since the combination of c = 0.01 and
λ = 0.5 results in the strongest adversary, we chose these values. Furthermore,
we set ε = 0.3 for the threshold under which further route segments will not be
considered in the likelihood tree Γ . If dummy traffic is used, we will send two
dummy route requests per real request. A timeslot occurs every nine minutes.

6.3 Overhead of Segmented Routes

In this paragraph, we will investigate how the parameter Hops, as described
in Sect. 4.1, will influence the route quality of our routing algorithm, i.e. the
distance overhead of a route built with route parts compared to the ideal route.

Even though a user should have the possibility to select the ideal Hops size,
not every option makes sense regarding user experience and privacy – the main
factors for the QoS. It is obvious that a higher Hops size results in larger route
segments and thus may disclose more private information. However, it often
results in a better user experience because routes constructed of fewer segments
lead to routes more similar to thoroughly constructed and therefore ideal routes.

In order to find a good trade-off between privacy and user experience we
analysed routes with different numbers of intersections. Figure 3 shows the ratio
to the optimal route for routes with 10 to 25 intersections (100% is the optimum).
The different colors indicate the different values for the Hops parameter. MIXED
uses a random value of {1, 3, 6, 12} as the Hops parameter for each iteration.

Fig. 3. Distance overhead for different values for the parameter Hops with 250 itera-
tions per number of intersections. (Color figure online)

PARTS – Privacy-Aware Routing with Transportation Subgraphs 97

Figure 3 illustrates that the smaller the Hops parameter gets the higher the
distance overhead of a route is. Furthermore, MIXED yields almost the same
results as Hops = 6 does. In our simulation, on average all settings for the privacy
enhanced routing resulted in an overhead to the optimal route. Obviously, there
is no overhead if the complete route is shorter than the used Hops size since the
complete route equals the first and only route segment (resulting in no privacy).

6.4 Privacy Related Results

We applied the privacy measures presented in Sect. 5.3 to our simulated data,
namely the number of times in which an adversary was able to reconstruct
the route (fitrou and fitseg) and the distance between the reconstructed route’s
start/end point and the real ones (dist). We chose Hops to be 6, 12 and MIXED.

In the remainder of this section and in the subsequent figures, we use the fol-
lowing abbreviations for the applied PPMs of our PARTS algorithm: DIRECT
= route request without any PPMs applied, P = Route Parts, D = Dummy
requests, Tb = Timeshift in batch mode, Tr = Timeshift in random mode, and
Ts = Timeshift in timeslot mode.

fitrou and fitseg. Figure 4a shows the box plot for the metric fitrou for dif-
ferent combinations of PPMs and Hops ∈ {6, 12,MIXED} sizes, whereas Fig. 4b
illustrates the results for fitseg.

First, fitrou and fitseg have a value of 100% for the combinations DIRECT ,
P + Tb and P + Tb + D, i.e. an adversary is able to reconstruct the full route in
these cases without having a single outlier. Thus, there is no protection applying
any combination which uses time shifting in batch mode. This seems reasonable
since batch mode apparently eliminates all benefits of using route parts.

Regarding the Hops parameter, it can be stated that MIXED performs
best, followed by Hops = 6 and Hops = 12, independently from the used PPMs.
This is especially pleasant, considering the little distance overhead added to
a route when Hops = MIXED is used (c.f. Fig. 3). Furthermore, Hops = 6
creates more route parts compared to Hops = 12. Therefore, the adversary has
to do more work to relink all parts, providing more privacy.

We also analysed how combinations of PPMs affect the user’s privacy. It can
be stated, that P increases the privacy with every Hops parameter. Between
the timeshifting modes, timeslot (Ts) performs best, followed by random (Tr)
and trailed by the ineffective batch mode (Tb). Interestingly, the performance in
MIXED seems to lightly suffer from using dummy traffic (D) across the board.

Last, figrou and fitseg show the same tendencies, although the spread of
values for fitseg is generally larger. This seems reasonable, since reconstructing
a route in the correct order tends to be harder than finding used route segments.

dist. Figure 4c shows the box plot for the distance metric for the different com-
binations of PPMs and Hops size. Since an adversary is able to reconstruct the
full route for DIRECT , P + Tb and P + D + Tb, it is obvious that dist is zero
and that there is no difference between vS and vT and the guessed locations.

98 C. Roth et al.

(a) Results for fitrou for different PPM combinations grouped by Hops (lower is better)

(b) Results for fitseg for different PPM combinations grouped by Hops (lower is better)

(c) dist in km between the real and guessed start and target vertices (higher is better)

Fig. 4. The figures show the protection performance of our algorithm against the
described inference model w.r.t our metrics (M is short for MIXED).

Overall, dist follows the same trend as figrou and fitseg: MIXED yielded
the highest distance across the board, i.e. an adversary guesses very distant
points when reconstructing start and target. On the other hand, dist is higher
for P + D than for P in contrast to figrou and fitseg values.

It can further be seen that every combination of Ts with Hops = MIXED
shows the best results, even though D decreases dist.

6.5 Performance Analysis

We also analysed the performance of our algorithm w.r.t. runtime and data size
of a request. Because of its easy-to-use API and the overall quality of service,
Google Maps was chosen as the LBS for our performance measurement. All traf-
fic to Google Maps is end-to-end encrypted, hence we used a man-in-the-middle

PARTS – Privacy-Aware Routing with Transportation Subgraphs 99

Table 1. Overview of 100 route requests to the Google API.

Mean Min Max

Time [ms] Roundtrip 185 162 500

Size [byte] Request 296 296 296

Response 2,765 997 5,263

proxy to gain access to the data. For the sake of reproducibility, we did not simu-
late connection resets or data loss which can occur in mobile networks.

Runtime. Table 1 shows the duration in milliseconds for a query to Google
Maps. The mean duration is 185 ms per query (min 162 ms, max 500 ms). The
bandwidth used is about 20 KB/s, a value easily achievable on mobile networks.

Executing requests in parallel does not seem to impact the duration. This
is important since it proves that sending dummy requests does not significantly
influence the performance and user experience. Furthermore, the time Google
Maps needs to find a route is not significantly affected by the length of a route
segment. In addition, we were unable to measure any difference regarding the
time between real requests and dummy requests. This is obvious because both
kinds of requests are using the same API calls. We thus assume that an LBS
cannot distinguish real and dummy requests on a time basis.

Data Size. In a next step, we analysed the data size of requests for the different
combinations of PPMs. It is obvious that DIRECT uses the least amount of
traffic. However, using route parts has almost the same data size. This seems
reasonable since a direct route has a similar amount of routing instructions like
the same route constructed from combining different route parts (i.e. number
of navigation instructions). There is a slight amount of overhead since every
Google Maps API call provides additional metadata. Table 1 shows that each
request has the same size since it only contains start and target vertices encoded
as coordinates. However, the resulting response differs in size due to a different
number of instructions.

It is interesting that the growth of data is linear, i.e. every additional
request is roughly the same in size. Arguing that an average route request needs
about 3 KB, a route has 4 segments and 2 more dummy requests are sent, PARTS
requires acceptable 24 KB per privacy enhanced route request in addition.

We skipped the analysis of performance figures such as CPU and RAM usage
because our proof of concept implementation is running on a desktop client.
For future work, it is planned to create an Android application to measure
performance figures on a real mobile device as well.

7 Discussion

One can observe that by using route parts, the overall privacy increases. However,
the route part approach yields more privacy, as more requests of different users

100 C. Roth et al.

overlap. The required level of simultaneous requests can also be achieved by
generating dummy traffic. One can see that the combination of route parts with
dummy traffic always performs better than solely using route parts.

Another finding regarding dummy traffic is that it is sometimes easy for an
adversary to filter. This fact may be connected to the number of requests at the
same time and should improve if more users use the system and have overlapping
route requests. Ideally, one dummy request from a user could be a real request
from another user. It may also help to choose dummy target locations and run
PARTS in parallel for both the real and dummy locations instead of creating
artificial requests per iteration.

In addition, a constant Hops parameter adds a static component to PARTS
detectable by an adversary. Thus, it performs worse than MIXED mode. This
setting uses different Hops parameters for each iteration and therefore weakens
the adversary’s ability to use behaviour knowledge by diluting his data pool.

A surprising result is that by sending route requests in batch mode, there
is no privacy at all, regardless if dummy traffic is included or not. Hence, it is
easy for an adversary to filter dummy requests and combine the different route
segments just by comparing start and target vertices of each request since this
indicates a chronological order. The attack is independent from the number of
users in the system because it is very unrealistic that two requests from different
users occur at the exact same time.

8 Conclusion

We presented the routing algorithm PARTS which protects a user’s movement
pattern by splitting each route request into several route segments without
revealing the real start and target locations vS and vT of the overall route. In
this way it is possible to combine local offline knowledge, such as a geographical
layout, with global online real-time data, like traffic information.

A simulation further emphasised the need for such an algorithm and revealed
that it is trivial for an adversary to derive a movement pattern for a user. Our
simulation has shown that route parts can provide additional privacy but need
to be combined with further PPMs to achieve their full potential. Therefore we
extended our algorithm to use dummy traffic and time shifting. It was shown
that the application of time shifting with timeslots was very powerful to protect
a user’s privacy in almost every case. The usage of MIXED mode for the Hops
parameter provides a good overall user experience, since it offers a very high
privacy level and produces a reasonable distance overhead compared to the ideal
route. In general, the PARTS algorithm has no significant influence to the user
experience in terms of performance and data consumption.

For future work, we plan to include semantic background information in our
scenario. On the one hand, we want to strengthen our adversary with these
capabilities. On the other hand, we want to improve the way dummy traffic
is constructed since our experiments have identified that randomly generated
dummy traffic is not that powerful. Furthermore, we plan to evaluate PARTS

PARTS – Privacy-Aware Routing with Transportation Subgraphs 101

against real-world datasets such as Microsoft Geolife [12] to prove its feasibility
on a daily usage. In addition, we want to implement the algorithm as a mobile
application to further elaborate its usability.

References

1. Ağır, B., Huguenin, K., Hengartner, U., Hubaux, J.P.: On the privacy implications
of location semantics. In: Proceedings on Privacy Enhancing Technologies 2016,
vol. 4, p. 1 (2016)

2. Bindschaedler, V., Shokri, R.: Synthesizing plausible privacy-preserving location
traces. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 546–563.
IEEE (2016)

3. Golle, P., Partridge, K.: On the anonymity of home/work location pairs. In:
Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive
2009. LNCS, vol. 5538, pp. 390–397. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01516-8 26

4. Hughes, N.: Inside ios 9: Apple’s maps app. gets smarter with automatic directions
based on user habits. Apple Insider (2015)

5. Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-
scale emotional contagion through social networks. Proc. Natl. Acad. Sci. 111(24),
8788–8790 (2014)

6. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discovery Data (TKDD) 1(1),
3 (2007)

7. Michalevsky, Y., Schulman, A., Veerapandian, G.A., Boneh, D., Nakibly, G.: Pow-
erSpy: location tracking using mobile device power analysis. In: 24th USENIX
Security Symposium (USENIX Security 2015), pp. 785–800 (2015)

8. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over
road networks. In: IEEE 27th International Conference on Data Engineering (ICDE
2011), pp. 494–505. IEEE, Piscataway (2011)

9. Shokri, R., Troncoso, C., Diaz, C., Freudiger, J., Hubaux, J.P.: Unraveling an old
cloak: k-anonymity for location privacy. In: Al-Shaer, E., Frikken, K. (eds.) Pro-
ceedings of the 9th Annual ACM Workshop on Privacy in the Electronic Society,
p. 115. ACM, New York (2010)

10. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

11. Wang, T., Liu, L.: Privacy-aware mobile services over road networks. Proc. VLDB
Endowment 2(1), 1042–1053 (2009)

12. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: a collaborative social networking service
among user, location and trajectory. IEEE Data Eng. Bull. 33, 32–39 (2010)

http://dx.doi.org/10.1007/978-3-642-01516-8_26
http://dx.doi.org/10.1007/978-3-642-01516-8_26

Security and Privacy in Machine
Learning

Bayesian Network Models in Cyber Security:
A Systematic Review

Sabarathinam Chockalingam(B), Wolter Pieters, André Teixeira,
and Pieter van Gelder

Faculty of Technology, Policy and Management, Delft University of Technology,
Delft, The Netherlands

{S.Chockalingam,W.Pieters,Andre.Teixeira,P.H.A.J.M.vanGelder}@tudelft.nl

Abstract. Bayesian Networks (BNs) are an increasingly popular mod-
elling technique in cyber security especially due to their capability to
overcome data limitations. This is also exemplified by the growth of BN
models development in cyber security. However, a comprehensive com-
parison and analysis of these models is missing. In this paper, we conduct
a systematic review of the scientific literature and identify 17 standard
BN models in cyber security. We analyse these models based on 8 differ-
ent criteria and identify important patterns in the use of these models.
A key outcome is that standard BNs are noticeably used for problems
especially associated with malicious insiders. This study points out the
core range of problems that were tackled using standard BN models in
cyber security, and illuminates key research gaps.

Keywords: Bayesian attack graph · Bayesian network · Cyber security ·
Information security · Insider threat

1 Introduction

The lack of data, especially historical data on cyber security breaches, incidents,
and threats, hinders the development of realistic models in cyber security [1,2].
However, standard (or classical) Bayesian Networks (BNs) possess the poten-
tial to address this challenge. In particular, the capability to combine different
sources of knowledge would help to overcome the scarcity of historical data in
cyber security modeling.

Standard BNs belong to the family of probabilistic graphical models [3].
A standard BN consists of two components: qualitative, and quantitative [4].
The qualitative part is a Directed Acyclic Graph (DAG) consisting of nodes
and edges. Specifically, each node represents a random variable, whereas the
edges between the nodes represent the conditional dependencies among the cor-
responding random variables. The quantitative part takes the form of conditional
probabilities, which quantify the dependencies between connected nodes in the
DAG by specifying a conditional probability distribution for each node. A toy
example of a standard BN model, representing the probabilistic relationships
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 105–122, 2017.
https://doi.org/10.1007/978-3-319-70290-2_7

106 S. Chockalingam et al.

between cyber-attacks (“Denial of Service Attack” and “Malware Attack”) and
symptoms (“Internet Connection” and “Pop-ups”), is shown in Fig. 1. Given
symptom(s), the BN can be used to compute the posterior probabilities of var-
ious cyber-attacks as shown in Fig. 1. In this case, the user sets evidence for
the “Pop-ups” node as “True”, and “Internet Connection” node as “Normal”
in the BN model based on his/her observations. Based on these evidences, the
BN computes the posterior probabilities of the other nodes “Denial of Service
Attack” and “Malware Attack” using Bayes rule. The BN model shown in Fig. 1
determines that the presence of pop-ups and normal internet connection are
more likely due to a Denial of Service attack rather than to a Malware attack.

Fig. 1. Standard BN model - example

The major advantages of standard BNs include: the ability to combine differ-
ent sources of knowledge, the capacity to handle small and incomplete datasets,
and the availability of a broad range of validation approaches apart from data-
driven validation approaches [5,6]. Some notable real-world applications of stan-
dard BNs include medical diagnosis [7] and fault diagnosis [8]. In addition, the
advantages lead to the predominant use of standard BNs in domains where there
is a limited availability of data, notably in Ecosystem Services (ESS) [5], water
resource management [9], and security [10]. Similarly, we have seen the use of
standard BNs in cyber (or information) security in recent years [11–29]. However,
an overarching comparison and analysis of standard BN models in cyber secu-
rity which could help to identify important usage patterns is currently lacking.
Kordy et al. give a broader overview of modeling approaches based on DAGs,
and thus only briefly mention BNs [10]. In contrast to Kordy et al., we specifi-
cally focus on BN models with the aim of performing comparison and analysis of

Bayesian Network Models in Cyber Security: A Systematic Review 107

these models to identify important usage patterns and key research gaps. This
review would benefit the practical application of BN models in cyber security
by providing important usage patterns and key research gaps. Therefore, this
research aims to fill this gap by addressing the research question: “What are
the important patterns in the use of standard Bayesian Network (BN) models
in cyber security?”. The research objectives are:

• RO 1. To identify standard BN models in cyber security literature.
• RO 2. To identify the important patterns in the use of standard BN models

in cyber security based on the analysis of identified models.

In this paper, we focus on comparison and analysis of standard BN models
[11–29] which also include Bayesian Attack Graphs (BAGs) [11–13] as they pos-
sess more comparable features. This would help to identify consistent patterns
in the use of standard BN models in cyber security. However, the approaches
in cyber security modeling that extend BN such as Bayesian Decision Network
(BDN) [30], Causal event graph [31], Dynamic BN [32–34], Extended influence
diagram [35,36], and Multi-entity BN [37,38] are beyond the scope of this paper
as they are incomparable especially based on their structure development. For
instance, decision and utility nodes are specific to BDN/Influence Diagram which
would allow decision making under uncertainty. In contrast, these types of nodes
are not applicable to standard BN.

The scope of this comparison and analysis is the structured development,
application and validation of the existing standard BN models in cyber security.
The comparison and analysis of identified models is performed using the charac-
teristics that were chosen based on related literature and domain-specific objec-
tives as described in Sect. 2. The key contributions of this work are: important
patterns in the use of standard BN models in cyber security, and key research
gaps in the use of standard BN models in cyber security.

The remainder of this paper is structured as follows. Section 2 describes the
review methodology. In Sect. 3, we perform the comparison and analysis of iden-
tified BN models using the characteristics that we chose, followed by a discussion
on the key findings in Sect. 4. Finally, we highlight important patterns in the use
of standard BN models in cyber security followed by future work directions in
Sect. 5.

2 Review Methodology

We perform the systematic literature review based on the guidelines provided
by Okoli et al. [39]. The methodology which we used to select the standard BN
models in cyber security literature and the appropriate characteristics to perform
the comparison and analysis of the selected BN models is described below.

The selection of standard BN models in cyber security literature consists of
two stages:

• Searches were performed on ACM Digital Library, DBLP, Google Scholar,
IEEE Xplore Digital Library, Scopus, and Web of Science – All Databases.

108 S. Chockalingam et al.

Search-strings were constructed from keywords “Bayesian”, “Bayesian Belief
Network”, “Bayesian Network”, “BBN”, “BN”, “Cyber*”, “Information*”,
and “Security”. The wildcard “*” was used for “Cyber” and “Information”
to match all words around these two keywords.

• Models were selected from the search results according to the listed criteria:
– The model should employ standard BN.
– The model should address problem(s) associated with cyber (or information)

security.
– The literature should have basic information about both DAGs and Con-

ditional Probability Tables (CPTs). This criterion is important taking into
account the scope of our comparison and analysis which is the structured
development, application and validation of the existing standard BN models
in cyber security.

– The literature should be in English language.

Once a standard BN model in cyber security was selected, the scientific lit-
erature that cited it was also traced.

The characteristics used to perform the analysis of the selected BN mod-
els were chosen based on related literature and domain-specific objectives as
described in Sects. 2 and 3. Landuyt et al. presented 47 BN models in ESS pub-
lished from 2000 to 2012 [5]. In addition, they analysed these models based on 9
characteristics. Similarly, Phan et al. presented 111 BN models in water resource
management [9]. Moreover, they analysed these models based on 10 character-
istics. We adopted the characteristics from Landuyt et al. and Phan et al. that
are generic and relevant to the scope of our analysis, as shown in Table 1. Also,
we adapted and used the characteristic: Citation details provided by Phan et al.
to perform the analysis of BN models in cyber security as described in Sect. 3.

Table 1. Adopted characteristics from Landuyt et al. and Phan et al.

Characteristics used in our analysis Adopted from
Landuyt et al.

Adopted from
Phan et al.

I. Citation details �
II. Data sources used to construct DAGs
and populate CPTs

� �

III. The number of nodes used in the model �
IV. Type of threat actor

V. Application and Application sector

VI. Scope of variables

VII. The approach(es) used to validate
models

� �

VIII. Model purpose and type of purpose

Bayesian Network Models in Cyber Security: A Systematic Review 109

3 Analysis of Standard Bayesian Network Models
in Cyber Security

This section aims to address RO 1. To identify standard BN models in cyber
security literature, and RO 2. To identify the important patterns in the use of
standard BN models in cyber security based on the analysis of identified models.
Based on the methodology described in Sect. 2, we identified 17 standard BN
models in cyber security. The corresponding article titles are listed in Table 2.
Furthermore, this section performs the analysis of identified BN models based
on the following characteristics.

• Citation details
• Data sources used to construct DAGs and populate CPTs
• The number of nodes used in the model
• Type of threat actor
• Application and Application Sector
• Scope of variables
• The approach(es) used to validate models
• Model purpose and Type of purpose

3.1 Citation Details

We adapted and used the components of the characteristic “Citation details”
provided by Phan et al. Specifically, we used an additional component citations in
our definition of “Citation details” because this will help us to assess the research
impact/quality of each BN model [40]. In Table 2, citations is the number of
citations of the article according to Google Scholar Citation Index as on 15th
September 2017. The number of articles covering standard BN model in cyber
security varies between 0 and 3 per year. No noticeable increase in the number of
papers over time is encountered. The largest number of citations (247) is acquired
by Poolsappasit et al. [11] published in 2012. The second most cited paper,
among analysed, with 136 citations, is Frigault et al. [12] which is published in
2008. Interestingly, BAG-based standard BN models [11–13] are extensively used
compared to the other standard BN models [14–29] in cyber security based on
the number of citations.

3.2 Data Sources Used to Construct DAGs and Populate CPTs

We used the characteristic “Data sources used to construct DAGs and populate
CPTs” to identify the type of data sources utilised in the reviewed BN models.
We employed the coding scheme provided by Phan et al. in Table 2 where “Expert
Knowledge (K)” refers to domain expert(s) and/or article’s author(s) knowledge,
“Empirical Data (D)” refers to observational or experimental evidence or data,
either available directly to the authors or derived from the literature [9]. From
Table 2, we observe that 5 out of 17 BN models used only expert knowledge to
construct DAGs, whereas 5 out of 17 BN models employed only empirical data

110 S. Chockalingam et al.

to construct DAGs. 7 out 17 BN models made use of both expert knowledge and
empirical data to construct DAGs. In particular, 10 out of 12 BN models which
utilised empirical data to construct DAGs relied on the literature. In contrast,
2 out of 12 BN models which utilised empirical data to construct DAGs relied
on the inputs from vulnerability scanner [11] and incidents data [18].

From Table 2, we infer that 11 out of 17 BN models utilised only expert
knowledge to populate CPTs, whereas 3 out of 17 BN models used only empir-
ical data to populate CPTs. On the other hand, there were 3 out of 17 BN
models which employed both expert knowledge and empirical data to populate
CPTs. Specifically, the sources of empirical data includes literature, incidents
data, National Vulnerability Database (NVD), Open Source Vulnerability Data-
base (OSVDB), and Exploithub to populate CPTs. Notably, the review of BN
models in water resource management and ESS pointed out model simulations
as another data source used to construct DAGs and populate CPTs [5,9]. Model
simulations refers to outputs of other empirical, deterministic or stochastic mod-
els [5]. Interestingly, there was no standard BN model in cyber security that used
model simulation as the data source to construct DAGs and populate CPTs.

3.3 The Number of Nodes Used in the Model

The number of nodes can be used to describe the model complexity [5]. A high
number of nodes often lead to a lot of intermediary layers between the layer
of input nodes and the layer of output nodes. This could weaken the relation
between input and output nodes. Marcot et al. recommended to limit the number
of node layers or sequential relationships to less than five to prevent this dilution
of interactions [41].

Landuyt et al. indicate that BN models with nodes lower than 40 can safe-
guard the functionalities of BNs [5]. Based on our analysis, we conclude that
the amount of nodes is relatively kept low in the identified BN models in cyber
security as 16 out of 17 BN models have a node number lower than 40. On the
other hand, the BN model developed by Shin et al. exceeds the node number
40 [19]. However, the BN model developed by Shin et al. is a combination of
two networks. If it is not possible to keep the model structure shallow, Marcot
et al. suggested to break up the model into two or more networks [41]. Shin
et al. utilised this idea to prevent the dilution of interactions between the input
and output nodes.

3.4 Type of Threat Actor

We used the characteristic “Type of threat actor” because this will allow us
to understand whether the BN model in cyber security was developed with a
focus on particular type of threat actor(s). We classified threat actors as insider
versus outsider [42]. Furthermore, we also considered their intentions, which
could be either malicious/deliberate or accidental [42]. Figure 2 shows the general
distribution of the BN models reviewed according to the type of threat actors
and their intent.

Bayesian Network Models in Cyber Security: A Systematic Review 111

Table 2. List of Bayesian network models in cyber security (ordered by the number
of citations)

Article title (year) Citations Data

source

(DAG)

Data

source

(CPT)

Application Application

sector

Dynamic security risk

management using

Bayesian attack graphs [11]

(2012)

247 D K Risk

Management

Non-specific

Measuring network

security using Bayesian

network-based attack

graphs [12] (2008)

136 K K Risk

Management

Non-specific

Network vulnerability

assessment using Bayesian

networks [13] (2005)

106 K K Risk

Management

Non-specific

Reasoning about evidence

using Bayesian networks

[14] (2008)

39 K K Forensic

Investigation

Law

Enforcement

A Bayesian network model

for predicting insider

threats [15] (2013)

35 D,K D,K Threat Hunting

(Insider Threat)

Non-specific

Identifying at-risk

employees: modeling

psychosocial precursors of

potential insider threats

[16,17] (2012, 2010)

31,24 D,K K Threat Hunting

(Insider Threat)

Non-specific

Identifying compromised

users in shared computing

infrastructures: a

data-driven Bayesian

network approach [18]

(2011)

23 D D Forensic

Investigation

University

Development of cyber

security risk model using

Bayesian networks [19]

(2015)

21 D,K K Risk

Management

Nuclear

Studying interrelationships

of safety and security for

software assurance in cyber

physical systems: approach

based on Bayesian belief

networks [20] (2013)

20 K K Risk

Management

Petroleum

(Oil)

Vulnerability

categorization using

Bayesian networks [21]

(2009)

10 D D Vulnerability

Management

(Classification)

Software

Quantitative assessment of

cyber security risk using

Bayesian network-based

model [22] (2009)

8 D D,K Risk

Management

Non-specific

A Bayesian network model

for likelihood estimations

of acquirement of critical

software vulnerabilities and

exploits [23] (2015)

7 D,K D,K Governance Software

(continued)

112 S. Chockalingam et al.

Table 2. (continued)

Article title (year) Citations Data

source

(DAG)

Data

source

(CPT)

Application Application

sector

Analysis of the digital

evidence presented in the

Yahoo! case [24] (2009)

2 K K Forensic

Investigation

Law

Enforcement

Modeling information

system availability by using

Bayesian belief network

approach [25] (2016)

1 D,K K Risk

Management

Non-specific

A Bayesian network model

for predicting data

breaches [26] (2016)

0 D,K K Risk

Management

Health Care

Information security risk

assessment of smartphones

using Bayesian networks

[27,28] (2016, 2015)

0,0 D,K K Risk

Management

Smartphone

(In Finland)

Bayesian network

modelling for analysis of

data breach in a bank [29]

(2011)

0 D D Risk

Management

Banking

Fig. 2. Characterization of threat actors in the BN models reviewed

From Fig. 2, we infer that 4 out of 17 BN models are used only for problems
associated with insiders [15,16,26,29]. In particular, we observe that 4 out of
these 4 BN models are appropriate for malicious insiders [15,16,26,29], and
only 1 out of these 4 BN models is relevant for accidental insiders in addition
to malicious insiders [26]. Holm et al. developed a BN model with a focus on
malicious outsider (professional penetration tester) [23].

Bayesian Network Models in Cyber Security: A Systematic Review 113

Importantly, there was no integrated BN model that considers problem(s)
associated with both insider and outsider type of threat actors, and their inter-
actions. This type of BN models would help to combat especially social engi-
neering attacks, and outsider collusion attacks [43]. Finally, there were 12 out
of 17 BN models which did not focus on any specific type of threat actor
[11–14,18–22,24,25,28]. For instance, the BN model developed by Pecchia
et al. is used to identify compromised users in shared computing infrastructures
based on alerts [18]. This model did not focus on any specific type of threat
actor, but rather focused on alerts which could be appropriate to any type of
threat actor. Therefore, we categorized it as ‘non-specific’.

3.5 Application and Application Sector

We used the characteristic “Application” to understand the type of applications
that partially or completely benefit from these BN models. We used the Chief
Information Security Officer mind map as the basis to classify the reviewed BN
models based on their application [44]. In addition, we used the characteristic
“Application Sector” to identify the type of application sectors in which these
BN models were demonstrated. From Table 2, we infer that 10 out of 17 BN
models in cyber security completely or partially benefit Risk management. In
addition, Forensic investigation, Governance, Threat hunting, and Vulnerability
management were the other applications which completely or partially benefit
from these BN models. From Table 2, we observe that the application sectors
were quite diverse. However, 15 out of 17 BN models focused on the cyber
security of Information Technology (IT) environment. In contrast, 2 out of 17
BN models focused on the cyber security of Industrial Control Systems (ICS)
environment [19,20].

3.6 Scope of Variables

We used the characteristic “Scope of Variables” to identify the entities to which
the variables used in the reviewed BN models are related. In addition, we classify
the variables used in the reviewed BN models based on the key elements of cyber
security. Cyber security is a combination of three key elements: People, Process
and Technology [45].

From Table 3, we observe that the variables used in the BN models that
focus on the cyber security of ICS environment did not consider the ‘people’
element of cyber security [19,20]. Importantly, the variables used in these BN
models are mainly related to the technological components of ICS (‘Technology’
focussed) [19,20]. In addition, we infer that the variables used in 2 out of 4 BN
models employed for the problems associated with insiders consider the three
key elements of cyber security [26,29] which are application-specific, whereas
the variables used in 2 out of 4 BN models employed for the problems associated
with insiders take into account only the ‘people’ element of cyber security [15,16]
which might be applicable to different organizations.

114 S. Chockalingam et al.

Table 3. Scope of variables used in the BN models reviewed

Authors Variables - entities Variables - key
element(s) of
cyber security

Poolsappasit et al. [11] Mail server, DNS server, SQL
server, NAT Gateway server, Web
server, Administrator machine,
Local desktops

Technology

Frigault, Wang [12] N/A N/A

Liu, Man [13] Network hosts Technology

Kwan et al. [14] Seized computer Technology

Axelrad et al. [15] Employee People

Grietzer et al. [16,17] Employee People

Pecchia et al. [18] User profile, Shared computing
infrastructure

People, Technology

Shin et al. [19] Organization (Management)
checklist, Reactor Protector
System (RPS) components

Process, Technology

Kornecki et al. [20] Components of ICS used to control
oil pipeline flow

Technology

Wang, Guo [21] Software Technology

Mo et al. [22] Organization (Management),
Attack pathway

Process, Technology

Holm et al. [23] Software Technology

Kwan et al. [24] Suspect, Seized computer, Yahoo!
email account, Internet service
provider

People, Technology

Ibrahimovic,
Bajgoric [25]

Organization (Management) Process

Wilde [26] Employee, Organization
(Management), Mobile Device

People, Process,
Technology

Herland et al. [27,28] Smartphone Technology

Apukhtin [29] Employee, Organization
(Management), Security controls

People, Process,
Technology

3.7 The Approach(es) Used to Validate Models

We used the characteristic “The approach(es) used to validate models” to iden-
tify the type of validation approaches used in the reviewed BN models. Based
on our analysis, we observe that real-world case study [14,24], cross-validation
[15,18], goodness of fit [16], Monte-Carlo simulation [25], expert evaluation
[26,27], and sensitivity analysis [26,29] were the approaches used to validate
the reviewed BN models. Importantly, there was no validation performed in

Bayesian Network Models in Cyber Security: A Systematic Review 115

8 out 17 BN models [11–13,19–23]. Finally, there was only one BN model which
utilized several approaches such as sensitivity analysis, and expert evaluation to
perform the validation [26]. However, the reviewed BN models validated differ-
ent aspects depending on their objectives. For instance, Wilde [26] validated the
usefulness of their model in practice, whereas Herland et al. [27,28] validated
the accuracy and completeness of the qualitative BN model.

3.8 Model Purpose and Type of Purpose

We used the characteristic “Model Purpose” to point out the problems that were
tackled using BN models in cyber security. In addition, we used the characteristic
“Type of Purpose” to identify the corresponding category of model purpose.
Table 4 highlights the authors of the BN model, the corresponding purpose of
the BN model, and the corresponding type based on the model purpose.

From Table 4, we observe that the reviewed BN models in cyber security
were mainly used for two types of purposes based on their model purpose: I.
Diagnostic: To reason from effects to causes, and II. Predictive: To reason from
causes to effects. Importantly, 13 out of 17 BN models in cyber security were
used for predictive purposes.

Table 4. BN model purpose and type of purpose

Authors Model purpose Type of
purpose

Poolsappasit et al. [11] To quantify the chances of network
compromise at various levels

Predictive

Frigault, Wang [12] To determine the likelihood of attaining
the goal state by exploiting
vulnerabilities in a network

Predictive

Liu, Man [13] To perform quantitative vulnerability
assessment of a network of hosts

Predictive

Kwan et al. [14] To reason about digital evidence in the
BitTorrent case

Diagnostic

Axelrad et al. [15] To predict degree of interest in a
potentially malicious insider

Predictive

Greitzer et al. [16,17] To predict the psychosocial risk level of
an individual

Predictive

Pecchia et al. [18] To detect compromised users in shared
computing infrastructures

Diagnostic

Shin et al. [19] To evaluate the cyber security risk of the
reactor protection system

Predictive

Kornecki et al. [20] To jointly assess safety and security of a
SCADA system used to control oil
pipeline flow

Predictive

(continued)

116 S. Chockalingam et al.

Table 4. (continued)

Authors Model purpose Type of
purpose

Wang, Guo [21] To categorise software security
vulnerabilities

Diagnostic

Mo et al. [22] To evaluate the security readiness of
organizations

Predictive

Holm et al. [23] To estimate the likelihood that a
penetration tester is able to obtain
information about critical vulnerabilities
and exploits for these vulnerabilities
corresponding to a desired software and
under different circumstances

Predictive

Kwan et al. [24] To reason about digital evidence in the
Yahoo! Case

Diagnostic

Ibrahimovic, Bajgoric [25] To predict information system
availability

Predictive

Wilde [26] I. To predict the probability of a data
breach caused by a group of insiders who
lose employee- and employer-owned
mobile devices or misuse the
employer-owned mobile devices, II. To
help health care organizations determine
which additional measures they should
take to protect themselves against data
breaches caused by insiders

Predictive,
Diagnostic

Herland et al. [27,28] To assess information security risks
related to smartphone use in Finland

Predictive

Apukhtin [29] To predict the probability of a data
breach in a bank caused by a malicious
insider

Predictive

4 Discussion

In the previous section, we identified key usage patterns of BNs in cyber security.
This section discusses potential reasons for the key findings and suggests future
research directions.

There is an emphasis on problems associated with insiders compared to out-
siders in the use of standard BN models in cyber security. In general, this empha-
sis could be due to the most significant threat posed by insiders. This was elu-
cidated by IBM’s cyber security intelligence index which concluded that 60%
of all attacks were carried out by insiders [46]. In connection with the use of
standard BNs, the availability of characteristics associated with insiders in the
literature provided a good starting point to determine appropriate variables and

Bayesian Network Models in Cyber Security: A Systematic Review 117

their relationships which form an integral part of a standard BN. In addition, the
variables and their relationships determined from the literature were fine-tuned
and/or complemented with other suitable variables based on expert knowledge
in a few instances. This is one of the major advantages of standard BNs described
in Sect. 1 which is the ability to combine different sources of knowledge. This
could be the rationale behind the predominant use of standard BNs for problems
associated with the insiders.

Special importance is given to problems associated with malicious insiders
compared to accidental insiders in the use of standard BN models in cyber secu-
rity. In general, this could be due to the fact that malicious insiders are more
natural than accidental insiders in security contexts, as malicious insiders have
a clear intent of compromising security, while accidental insiders do not. More-
over, malicious insiders have been shown to be the cause of more incidents than
accidental insiders, as it was demonstrated by IBM’s cyber security intelligence
index which concluded that 44.5% of attacks were carried out by malicious insid-
ers, and accidental insiders were responsible for 15.5% of attacks [46]. In order
to use standard BNs for problems associated with accidental insiders compared
to malicious insiders, it is important to identify features associated with acci-
dental insiders in the literature to determine appropriate variables and their
relationships, which form an essential part of a standard BN. There are stud-
ies which identify features associated with accidental insiders in the literature
[43,47]. Once the appropriate variables and their relationships are determined
for problems associated with accidental insiders, this could always be updated
based on expert knowledge. It would also be useful to explore variables and
their relationships in the reviewed BN models that focus on problems associated
with malicious insiders, as some of the indicators might also apply for problems
associated with accidental insiders [43].

The focus on insiders may also explain why there is little research on appli-
cations in the ICS domain. The reviewed BN models that focus on problems
associated with the insiders might not be suitable for ICS environments, espe-
cially for control rooms with an operator. This is prevalent in control rooms
that are used to operate sluices in the Netherlands. Not accepting feedback,
Anger management issues, Confrontational issues, Counterproductive behaviour
towards individuals (CPB-I), Counterproductive behaviour towards the organi-
zation (CPB-O) were some of the variables used in the reviewed BN models
[15,16]. Most of these variables might be measured/observed based on interac-
tions of the particular individual with the co-workers. However, this would not
be possible in the control rooms where there would be no co-worker. It would be
interesting to explore in the future whether the variables and their relationships
in the reviewed BN models focused on problems associated with the insiders are
suitable for ICS environment, and also whether the size of the organization in
which the BN model would be applied have an effect on these variables and their
relationships. In general, the limited use of standard BN models in cyber secu-
rity on problems associated with ICS environment could be due to the shortage
of ICS security expertise [48] as majority of the reviewed BN models relied on
expert knowledge especially to construct DAGs and populate CPTs.

118 S. Chockalingam et al.

There is no integrated BN model which takes into account the problem(s)
associated with both insiders and outsiders, and their interactions. The German
steel mill incident is a typical example of a cyber-attack which involves both
accidental insiders and malicious outsiders, and their interactions [49]. As an
initial step, the adversaries used both the targeted email and social engineering
techniques to acquire credentials for the plant’s office network. Later, once they
acquired credentials for the plant’s office network, they worked their way into
the plant’s control system network and caused damage to the blast furnace.
Standard BNs would help to tackle problem(s) associated with both insiders
and outsiders, and their interactions, for instance a standard BN model that
could predict the probability of an individual being deceived by outsider(s) to
cause a cyber-attack in an organization, given certain risk factors and symptoms.
This BN model would especially help to identify vulnerable individuals in an
organization against social engineering attacks, and effective measures which
could reduce the likelihood of an individual deceived by outsiders to cause a
cyber-attack in an organization.

It is evident that the initial attempts in the use of standard BN models
in cyber security were using BAG-based standard BN models [11–13]. BAG-
based standard BN model combines acyclic attack graph which acts as the DAG
with computational procedures of BN. Attack graph is one of the extensively
used approaches in security modeling which was introduced in 1998 [10,50]. The
use of BAG-based standard BN models in the intial attempts could be due to
practicality. It could be practical to build attack graphs first which had been
extensively studied in this domain and use BN computational procedures for
quantification during the early stages in the use of standard BN models in cyber
security. Similarly, there were attempts in the safety domain which mapped fault
tree to BN [51,52]. Importantly, BAG-based standard BN models model static
systems. Therefore, they are not directly applicable to multi-step attacks.

Risk management, forensic investigation, governance, threat hunting, and
vulnerability management were the applications of standard BNs in cyber secu-
rity. However, it would also be useful to investigate the potential of standard
BNs to benefit other applications. Chockalingam et al. highlighted the impor-
tance of integrating safety and security especially in the context of modern ICS
[53]. BNs possess the potential to develop an integrated BN model that could
diagnose the root cause of an abnormal behavior in the ICS especially whether
the abnormal behavior is caused by an attack (security-related) or technical fail-
ure (safety-related) by taking into account certain risk factors and symptoms.
This would allow the operator(s) to point out the best possible response strategy.
For instance, the process of routing traffic through a scrubbing center would be
a suitable response strategy for a Distributed Denial of Service (DDoS) attack
whereas this may not be an appropriate response strategy for a sensor failure.

The sources of empirical data used to construct DAGs and populate CPTs
include: literature, incidents data, NVD, OSVDB, and exploithub. It is impor-
tant to identify other domain-specific empirical data sources which would help to
develop realistic models in cyber security. For instance, Capture-The-Flag (CTF)

Bayesian Network Models in Cyber Security: A Systematic Review 119

events like SWaT security showdown (S3) [48] could be a potential data source to
construct DAGs and populate CPTs. CTF events could generate datasets that
are realistic in nature [54]. However, this could have been overlooked because the
data generated in these events would be in most cases specific to that particular
system, and the quality of data generated could depend on the participants.

5 Conclusions and Future Work

In this paper, we have identified 17 standard BN models in cyber security. Based
on the analysis, we identified important patterns in the use of standard BN
models in cyber security.

• The standard BN models in cyber security were significantly used for prob-
lems associated with malicious insiders.

• There is an emphasis on the use of standard BN models in cyber security for
problems associated with IT environment compared to ICS environment. In
addition, the standard BN models that focus on the cyber security of ICS envi-
ronment did not consider the ‘people’ element of cyber security. This implies
that there is no standard BN model which deal with problem associated with
insiders in ICS environment.

• There is a lack of standard BN models usage for problems associated with
insiders and outsiders, and their interactions.

• Expert knowledge, and empirical data predominantly from literature were the
data sources utilised to construct DAGs and populate CPTs.

• The standard BN models in cyber security completely or partially benefited
risk management, forensic investigation, governance, threat hunting, and vul-
nerability management.

• The approaches used to validate standard BN models in cyber security were
real-world case study, cross-validation, goodness of fit, monte-carlo simula-
tion, expert evaluation, and sensitivity analysis.

These patterns in the use of standard BN models in cyber security would
help to make full use of standard BNs in cyber security in the future especially
by pointing out the current trends, limitations and future research gaps.

In the future, it is important to investigate whether the BN models used
for problems associated with insiders are applicable for ICS environments, espe-
cially for a control room with an operator. It would be useful to demonstrate
the capacity of standard BNs to tackle problems associated with both insid-
ers and outsiders, and their interactions like social engineering attacks, collusion
attacks. It would be intriguing to investigate how to deal with multi-step attacks
using standard BNs. The potential of alternative data sources like model simula-
tions, CTF events to construct DAGs and populate CPTs in cyber security also
needs to be explored, as well as the capability of standard BNs to completely or
partially benefit the other applications in cyber security.

120 S. Chockalingam et al.

Acknowledgements. This research received funding from the Netherlands Organi-
sation for Scientific Research (NWO) in the framework of the Cyber Security research
program under the project “Secure Our Safety: Building Cyber Security for Flood Man-
agement (SOS4Flood)”.

References

1. WEF: Partnering for Cyber Resilience: Towards the Quantification of Cyber
Threats (2015)

2. Yu, S., Wang, G., Zhou, W.: Modeling malicious activities in cyber space. IEEE
Netw. 29, 83–87 (2015)

3. Ben-Gal, I.: Bayesian Networks. Encyclopedia of Statistics in Quality and Relia-
bility. Wiley, Hoboken (2008)

4. Darwiche, A.: Chapter 11 - Bayesian networks. In: Foundations of Artificial Intel-
ligence, vol. 3, pp. 467–509 (2008). doi:10.1016/S1574-6526(07)03011-8

5. Landuyt, D., et al.: A review of Bayesian belief networks in ecosystem service
modelling. Environ. Model. Softw. 46, 1–11 (2013)

6. Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental
modelling. Ecol. Model. 203, 312–318 (2007)

7. Nikovski, D.: Constructing Bayesian networks for medical diagnosis from incom-
plete and partially correct statistics. IEEE Trans. Knowl. Data Eng. 12(4), 509–516
(2000)

8. Nakatsu, R.T.: Reasoning with Diagrams: Decision-Making and Problem-Solving
with Diagrams. Wiley, Hoboken (2009)

9. Phan, T.D., et al.: Applications of Bayesian belief networks in water resource
management: a systematic review. Environ. Model. Softw. 85, 98–111 (2016)

10. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38
(2014)

11. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9, 61–74 (2012)

12. Frigault, M., Wang, L.: Measuring network security using Bayesian network-based
attack graphs. IEEE (2008)

13. Liu, Y., Man, H.: Network vulnerability assessment using Bayesian networks. In:
Proceedings of the SPIE, pp. 61–71 (2005)

14. Kwan, M., Chow, K.-P., Law, F., Lai, P.: Reasoning about evidence using Bayesian
networks. In: IFIP International Conference on Digital Forensics, pp. 275–289
(2008)

15. Axelrad, E.T., Sticha, P.J., Brdiczka, O., Shen, J.: A Bayesian network model for
predicting insider threats. In: Security and Privacy Workshops, pp. 82–89 (2013)

16. Greitzer, F.L., et al.: Identifying at-risk employees: modeling psychosocial precur-
sors of potential insider threats. In: Hawaii International Conference on System
Science (HICSS), pp. 2392–2401 (2012)

17. Greitzer, F.L., et al.: Identifying at-risk employees: a behavioral model for predict-
ing potential insider threats. Pacific Northwest National Laboratory (2010)

18. Pecchia, A., et al.: Identifying compromised users in shared computing infrastruc-
tures: a data-driven bayesian network approach. In: 2011 30th IEEE Symposium
on Reliable Distributed Systems (SRDS), pp. 127–136. IEEE (2011)

19. Shin, J., Son, H., Heo, G.: Development of a cyber security risk model using
Bayesian networks. Reliab. Eng. Syst. Saf. 134, 208–217 (2015)

http://dx.doi.org/10.1016/S1574-6526(07)03011-8

Bayesian Network Models in Cyber Security: A Systematic Review 121

20. Kornecki, A.J., Subramanian, N., Zalewski, J.: Studying interrelationships of safety
and security for software assurance in cyber-physical systems: approach based on
bayesian belief networks. In: 2013 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1393–1399. IEEE (2013)

21. Wang, J.A., Guo, M.: Vulnerability categorization using Bayesian networks. In:
Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, p. 29. ACM (2010)

22. Mo, S.Y.K., Beling, P.A., Crowther, K.G.: Quantitative assessment of cyber secu-
rity risk using Bayesian network-based model. In: 2009 Systems and Information
Engineering Design Symposium, SIEDS 2009, pp. 183–187. IEEE (2009)

23. Holm, H., Korman, M., Ekstedt, M.: A bayesian network model for likelihood
estimations of acquirement of critical software vulnerabilities and exploits. Inf.
Softw. Technol. 58, 304–318 (2015)

24. Kwan, M., Chow, K.-P., Lai, P., Law, F., Tse, H.: Analysis of the digital evidence
presented in the Yahoo! case. In: Peterson, G., Shenoi, S. (eds.) DigitalForen-
sics 2009. IAICT, vol. 306, pp. 241–252. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04155-6 18

25. Ibrahimović, S., Bajgorić, N.: Modeling information system availability by using
Bayesian belief network approach. Interdisc. Description Complex Syst. 14, 125–
138 (2016)

26. Wilde, L.: A Bayesian Network Model for predicting data breaches caused by
insiders of a health care organization. University of Twente (2016)

27. Herland, K., Hammainen, H., Kekolahti, P.: Information security risk assessment
of smartphones using Bayesian networks. J. Cyber Secur. Mobility 4, 65–85 (2016)

28. Herland, K.: Information security risk assessment of smartphones using Bayesian
networks. Aalto University, Finland (2015)

29. Apukhtin, V.: Bayesian Network Modeling for Analysis of Data Breach in a Bank.
University of Stavanger, Norway (2011)

30. Khosravi-Farmad, M., Rezaee, R., Harati, A., Bafghi, A.G.: Network security risk
mitigation using Bayesian decision networks. In: 4th International eConference on
Computer and Knowledge Engineering (ICCKE), pp. 267–272. IEEE (2014)

31. Pan, S., Morris, T.H., Adhikari, U., Madani, V.: Causal event graphs cyber-physical
system intrusion detection system. In: Proceedings of the Eighth Annual Cyber
Security and Information Intelligence Research Workshop, p. 40. ACM (2013)

32. Frigault, M., et al.: Measuring network security using dynamic Bayesian network.
In: Proceedings of the 4th ACM Workshop on Quality of Protection, pp. 23–30
(2008)

33. Sarala, R., Kayalvizhi, M., Zayaraz, G.: Information security risk assessment under
uncertainty using dynamic Bayesian networks. Int. J. Res. Eng. Technol. 3, 304–
309 (2014)

34. Tang, K., Zhou, M.-T., Wang, W.-Y.: Insider cyber threat situational awareness
framwork using dynamic Bayesian networks. In: 2009 4th International Conference
on Computer Science and Education, ICCSE 2009, pp. 1146–1150. IEEE (2009)

35. Sommestad, T., Ekstedt, M., Johnson, P.: Cyber security risks assessment with
Bayesian defense graphs and architectural models. In: 2009 42nd Hawaii Interna-
tional Conference on System Sciences, HICSS 2009, pp. 1–10. IEEE (2009)

36. Ekstedt, M., Sommestad, T.: Enterprise architecture models for cyber security
analysis. In: Power Systems Conference and Exposition, pp. 1–6. IEEE (2009)

37. Laskey, K., et al.: Detecting threatening behavior using Bayesian networks. In:
Conference on Behavioral Representation in Modeling and Simulation, p. 33 (2006)

http://dx.doi.org/10.1007/978-3-642-04155-6_18
http://dx.doi.org/10.1007/978-3-642-04155-6_18

122 S. Chockalingam et al.

38. AlGhamdi, G., et al.: Modeling insider behavior using multi-entity Bayesian net-
works (2006)

39. Okoli, C., Schabram, K.: A guide to conducting a systematic literature review of
information systems research. Sprouts: Working Papers on Information Systems,
vol. 10 (2010)

40. Meho, L.I.: The rise and rise of citation analysis. Phys. World 20, 32 (2007)
41. Marcot, B.G., Steventon, J.D., Sutherland, G.D., McCann, R.K.: Guidelines for

developing and updating Bayesian belief networks applied to ecological modeling
and conservation. Can. J. For. Res. 36, 3063–3074 (2006)

42. Alberts, C., Dorofee, A.: OCTAVESM Threat Profiles
43. Bureau, F.I.P.: Unintentional Insider Threats: A Foundational Study (2013)
44. Rehman, R.: CISO MindMap (2017). http://rafeeqrehman.com/wp-content/

uploads/2017/07/CISO Job MindMap v9.png
45. Andress, A.: Surviving Security: How to Integrate People, Process, and Technology.

CRC Press, Boca Raton (2003)
46. Cyber Security Intelligence Index. IBM Security (2016)
47. Greitzer, F.L., et al.: Unintentional insider threat: contributing factors, observ-

ables, and mitigation strategies. In: 2014 47th Hawaii International Conference on
System Sciences (HICSS), pp. 2025–2034. IEEE (2014)

48. Antonioli, D., et al.: Gamifying Education and Research on ICS Security: Design,
Implementation and Results of S3. arXiv preprint arXiv:1702.03067 (2017)

49. Database, R.: German Steel Mill Cyber Attack (2017). http://www.risidata.com/
database/detail/german-steel-mill-cyber-attack

50. Lippmann, R.P., Ingols, K.W.: An annotated review of past papers on attack
graphs. Massachusetts Institute of Technology Lincoln Laboratory, Lexington
(2005)

51. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis
of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng.
Syst. Saf. 71, 249–260 (2001)

52. Khakzad, N., Khan, F., Amyotte, P.: Safety analysis in process facilities: compar-
ison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 96,
925–932 (2011)

53. Chockalingam, S., et al.: Integrated safety and security risk assessment methods:
a survey of key characteristics and applications. In: International Conference on
Critical Information Infrastructures Security (CRITIS), Paris (2016)

54. Salem, M.B., Hershkop, S., Stolfo, S.J.: A Survey of Insider Attack Detection
Research. In: Stolfo, S.J., Bellovin, S.M., Keromytis, A.D., Hershkop, S., Smith,
S.W., Sinclair, S. (eds.) Insider Attack and Cyber Security. Advances in Informa-
tion Security, vol. 39. Springer, Boston (2008)

http://rafeeqrehman.com/wp-content/uploads/2017/07/CISO_Job_MindMap_v9.png
http://rafeeqrehman.com/wp-content/uploads/2017/07/CISO_Job_MindMap_v9.png
http://arxiv.org/abs/1702.03067
http://www.risidata.com/database/detail/german-steel-mill-cyber-attack
http://www.risidata.com/database/detail/german-steel-mill-cyber-attack

Improving and Measuring Learning Effectiveness
at Cyber Defense Exercises

Kaie Maennel, Rain Ottis, and Olaf Maennel(B)

Tallinn University of Technology, Tallinn, Estonia
{kaie.maennel,rain.ottis,olaf.maennel}@ttu.ee

Abstract. Cyber security exercises are believed to be the most effective
training for the training audiences from top professional teams to individ-
ual students. However, evidence of learning outcomes is often anecdotal
and not validated. This paper focuses on measuring learning outcomes
of technical cyber defense exercises (CDXs) with Red and Blue teaming
elements. We studied learning at Locked Shields, which is the largest
unclassified defensive live-fire CDX in the world. This paper proposes a
novel and simple methodology, called the “5-timestamp methodology”,
aiming at accommodating both effective feedback (including benchmark-
ing) and learning measurement. The methodology focuses on collection of
timestamps at specific points during a cyber incident and time interval
analysis to assess team performance, and argues that changes in per-
formance over time can be used to evidence learning. The timestamps
can either be collected non-intrusively from raw network traces (such as
pcaps, logs) or using traditional methods, such as interviews, observa-
tions and surveys. Our experience showed that traditional methods, such
as self-reporting, fail at high-speed and complex exercises. The suggested
method enhances feedback loop, allows identifying learning design flaws,
and provides evidence of learning value for CDXs.

Keywords: Cyber defence exercise · Training and education · Learning
outcomes · Measuring learning

1 Introduction

Cyber security exercises are quickly gaining popularity as a teaching method
for cyber-readiness. Globally there are over 200 cyber security exercises and
more than 50% have a performance objective focusing on learning [17]. The
European Union Agency for Network and Information Security survey describes
the state of art: “... after-action reports and ‘lessons learned’ documents have
become increasingly at risk of becoming fantasy documents. There is an increased
demand that lessons must have been successfully learned, and that noting such
instances of lesson-drawing is all there is to it. Few, if any, controls are actually
made to verify that they can even be called lessons by any sensible definition, or
that anything has actually been learned” [17]. The evidence of learning outcomes
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 123–138, 2017.
https://doi.org/10.1007/978-3-319-70290-2_8

124 K. Maennel et al.

is limited and evaluation methodologies focus on the improvement of one exercise
to the next [2]. On one side the literature describes enthusiasm of participants
for the knowledge gained and lessons learned [11]. At other end of spectrum,
Pusey et al. [19] claim that evidence is often anecdotal and little work has been
done to validate learning outcomes.

This paper focuses on cyber defense exercises (CDXs) with the Red (RT)
and Blue Team (BT) elements and looks at measuring learning effectiveness
from an organizer’s perspective. We use the NATO Cooperative Cyber Defense
Centre of Excellence’s (CCD COE) Locked Shields (LS) as testing platform. LS,
that took place 26–28 April 2017 (LS17), is one of the largest and advanced
team based live-fire RT/BT technical exercise with nearly 900 participants [14].
The exercise is a hybrid of competition, assessment and complex scenario-based
learning event. The training audience comprises of the national BTs that in
the exercise context take the role of the computer emergency response teams
tasked to defend the pre-built virtualized networks of fictional organizations
against the RT attacks. The other teams involved in the exercise are: Green Team
(GT) responsible for game network and infrastructure development, White Team
(WT) for game scenario development and execution control, and Yellow Team
(YT) for monitoring and situational awareness [15]. One additional advantage
of such CDXs is that permission to study individual and team performances and
learning can be easily obtained by the organizers before the exercise starts.

2 Learning Measurement Dimensions in CDX’s

CDXs in the current form are often not sufficiently instrumented for learning
measurement and existing measurements focusing on scoring are not using learn-
ing related metrics. We recommend an overall CDX’s learning measurement app-
roach that brings together pre-exercise, execution and post-exercise phases and
individual/team/organizational aspects. The measurement should include mix-
ture of quantitative and qualitative methods. As a novel method we discuss the
idea of the 5-timestamp methodology that focuses on unobtrusive data collection
and comparable data analysis linked to learning objectives. This methodology
is only a part of overall learning measurement (including traditional methods,
such as surveys, interviews, etc.).

2.1 5-Timestamp Methodology

Learning in CDXs is affected by many variables, however the basic measure-
ments, such as timing and accuracy metrics are still key elements that provide
comparable trends in learning process and benchmarking for the teams. For
example, Henshel et al. measurements in Cyber Shield 2015 showed that when
teams took 20 or more minutes to identify an inject’s NIST categorization, they
were more accurate [9]. That means an overly time-constraint game-rule may
prove to be an unrealistic expectation, which will not contribute to learning.
Instead it forces teams to learn, share and store wrong behaviors and later

Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 125

Fig. 1. 5-timestamp non-intrusive methodology

retrieve learned, but wrong behavioral models in real life situations [26]. Such
metrics support development of appropriate exercise learning design.

Furthermore, measuring learning effectiveness and collecting data in order to
provide feedback can be combined. The learning potential is not fully realized,
if the BTs do not know what their weaknesses are, and how they progressed in
the exercise. Scoring might give some indication of how teams compare, how-
ever, without knowing a baseline or standard in more detail, the overall score
is worthless from learning viewpoint. For example, scoring may not take into
account how much resistance the BTs put up and how efficient they were in
responding.

As a part of solution we propose a non-intrusive methodology to collect and
analyze timestamps from both the RT and BT actions from their digital foot-
print. The analysis of time intervals between the proposed timestamps enables
to measure technical skills, but also soft skills (including leadership, team com-
munications, decision making). The methodology is analysing data at a cyber
incident/attack vector/target machine level, but provides metrics for different
learning objectives (Fig. 1). For example, the assessment whether the BTs are
effective and achieve incident handling related learning objectives, needs basic
timing and accuracy metrics—how long does it take to respond to an attack, how
long did teams take to respond to a significant threat vs. minor issues, what is
correlation between the teams’ detection time and quality of reporting. Further
analysis can be carried out whether the most effective strategy from qualitative
aspects was applied by the BTs, but having timing and accuracy metrics will
provide input and focus to such qualitative analysis and feedback.

The analysis breaks an incident into phases to demonstrate strengths and
bottlenecks in individual and team skills in each phase, and provides the basis
for effective feedback. The model follows the incident timeline, and information
can be collected non-intrusively (Fig. 2) from game-net/management network1.
Even when t1 and t2 are intrusive for the RTs, data collection is non-intrusive

1 The exercise runs on separate virtualised machines which are accessed remotely over
the VPN [15]. The BTs can reside in their home location and connect via a dedicated
management network to the game-environment. The game-net resides typically on
a different interface and is where the attacks are happening.

126 K. Maennel et al.

Timestamp Description Non-intrusive Data Intrusive (optional)

t1 RT starts attacking RT activity reporting N/A

t2 RT compromises RT activity reporting
and scoring data

N/A

t3 BT detects Possibly by access pat-
tern

BT observation or self-
reporting via inject

t4 BT mitigates management network
(showing traffic activity)

BT observation or self-
reporting via inject

t5 BT restores scoring, management
network (end of session)

N/A

Fig. 2. Data sources for 5-timestamps, non-intrusive for the BTs (as the training audi-
ence). Intrusive methods can be used for cross-checking and validation.

for the BTs. For cross-checking, a sample using intrusive methods should be
selected.

In order to fully understand this methodology, it should be noted that there
are typically several target machines in a game-network that can be attacked
repeatedly using the same attack methods. However, one of the advantages of
a live-fire RT/BT exercise is defending against a “thinking” adversary, which
implies that the same target can be attacked using different methods.

Collecting Timestamps Non-intrusively From PCAPs. The idea relies on the fact
that the organizers are able to collect all raw network traffic (e.g., pcaps) not
only from within the game-net, but also from the management network. From
those traces it is possible to automatically detect the times of a BT activity
for each target machine (e.g., when a BT member is working on a machine or
not). This can be done by observing a ssh or remote desktop connection from
the BT-network through management network. Even if the traffic is encrypted,
and the BT member remains logged-in in the background, simply observing
the traffic volume and packet inter-arrival times allows automatically detecting
times at which someone is working on a specific game-net target. With traditional
methods, this can also be achieved by asking the team member to keep a detailed
log about timestamps.

The time intervals between timestamps provide basic learning metrics as
shown in Fig. 3. In addition to measuring technical skills, these metrics also give
insight to:

Team vs. individual—how long an individual and/or sub-team takes to
resolve an issue, e.g., several members connecting to the same machine to work
together.

Soft skills (leadership and decision making)—as the teams must make quick
decisions (likely to have immediate and significant consequences), teams also
learn decision-making. The OODA (Observation, Orientation, Decision, and
Action) loop is a decision-making theory where time is the dominant parame-
ter [23], and thus supports this framework using time intervals. The teams need
to perform reliably and adapt their responses to mitigate adverse scenarios, and

Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 127

Timestamps Description Learning Objectives Team vs.
Interval Individual

t5–t2 incident response time Overall performance (orga-
nizer’s objectives=scoring)

team

t5–t4 time to mitigate Responding to attacks individual,
(technical skills) sub-team

t4–t3 time between mitigation
and detection

Time management and pri-
oritization; Teamwork: dele-
gation, dividing and assign-
ing roles, leadership; Han-
dling cyber incident

team

t3–t2 time between compromise Monitoring networks, individual,
and detection detecting of attacks sub-team

t2–t1 time to compromise Learning the network; individual,
System administration and
prevention of attacks

sub-team

Fig. 3. Learning metrics from 5-timestamps intervals

that can be measured by t4–t3, i.e., time needed for intra-team communication,
prioritization, task allocation.

Benefits and Application in Learning Process. The 5-timestamp methodology
provides several advantages. Firstly, during a post-exercise debrief, it helps to
create a general mental map of the events. For example, letting participants
search for events in the BTs of pcaps or logfiles to figure out what happened is
not useful for learning. In a similar analogy, where security cameras have become
more effective when combined with a motion sensor—logfiles become more easily
“searchable” when combined with accurate timestamp annotations. Debriefing
an attack from the high-level objectives together with accurate timestamps, facil-
itates finding the relevant information. As the participants have already been in
the situation during exercise, they understand the RT objectives, and are able
to “relive” the events. Useful feedback can only be given, if the exercise can be
debriefed in a meaningful way, and accurate timestamps are a first critical step
towards achieving this.

Secondly, the timestamps can be used in building a baseline for perfor-
mance or effectiveness. When grouped by the attack methods (not the target
systems), those values become comparable. These can be further analyzed in
several ways: (1) as an average overall performance against defending against a
certain type of attack, (2) viewed over time for the same target machine (e.g.,
looking at repeated attacks using the same attack method) whether anything
has been learned during the exercise—or potentially, even between exercises (if
similar team composition returns to an event in which the same attack vector
is repeated), and (3) for understanding whether the BTs are able to transfer
learned knowledge (e.g., is a BT able to detect and defend the same type of
attack against a different target system provided they have learned it earlier).

128 K. Maennel et al.

Thirdly, analyzing the timestamps provides insight into the BTs’ strategies.
Do the BTs only focus on certain class or difficulty-level of attacks, and maybe
miss some more important/unknown challenges? Do they invest time during the
exercise to understand the systems? The metrics enable a way of getting some
basic baseline and benchmarking for the organizers and participants.

It is important to note that the timestamps themselves only measure effec-
tiveness. However, there is an implicit assumption that measuring changes in
effectiveness over time (e.g., repeated comparable events, such as repeated
attacks), shows changes in performance. This is an indicator for learning, a
dynamic process, together with other qualitative data. The complete exercise
data analysis and projections are left for future work, and the scope of this
paper discussing the suitability of proposed methodology with the community.

Challenges and Limitations. It is also important to acknowledge the challenges
and limitations. The learning measurement process needs to be pre-planned,
agreed with the stakeholders, and form an integral part of a CDX organization
and evaluation process. Selection of what to measure is a challenging task and
depends on training objectives. What learning metrics are “must have”, “nice
to have” and “wasteful” metrics from learning perspective? Having comparative
metrics from several CDXs, would enable developing comparable standardized
set of learning metrics.

Data monitoring and collection may fail to capture timing metrics and team
actions with perfect reliability. Also a challenge is to develop clearly defined mea-
sures that integrate both qualitative and quantitative inputs. Metrics for future
evaluation should include appropriateness and quality of responses and actions.
Some training goals (such as incident handling procedures) may prove difficult to
measure due to teams following different operating procedures, standards, and
practices. Separating learning impact from other behavior effects (i.e., learning
might not be visible straight away or recognized by participants by themselves,
or overestimated and not result in behavior change) will remain a challenging
area to assess.

2.2 Data Collection and Sources

The data collected as part of CDXs may vary based on training objectives and
software environment, but it should not be an additional burden to the orga-
nizers. As shown by the 5-timestamp methodology, often such data is already
collected. The learning related data is obtained from several sources:

1. RT reporting—failed attacks, resistance time to the attacks, number of
repeated attacks;

2. YT reporting—reporting about situational awareness;
3. Scores—scoring for availability, usability and injects (trends over time);
4. Traffic from game-net and management-net;
5. Surveys—pre-exercise and post-exercise survey with pre- and post knowledge

assessment if possible;

Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 129

6. Injects—can be used to qualitatively verify a data sample from overall
dataset (see below) and collecting learning feedback during the exercise;

7. Information from the RT—ratings for resistance level, classification of attack
type (this might also be semi-automated by using Cobalt Strike [13] or
similar);

8. Observations of the BTs;
9. Communication channels—chat logs, GT management network traffic (vol-

umes and trends);
10. Interviews with participants (and management)—assessing the immediate

reaction to exercise and long term impact on the job.

Sample Selection for Qualitative Validation. Due the large volume of virtual
machines, attacks, and activities, it is not be possible to confirm all incidents
during an exercise qualitatively as it may distract the BTs from learning. How-
ever, for a sample of attacks qualitative feedback can obtained from the BTs
in order to cross-check the metrics. Such sample should be designed into the
exercise as inquiries to the BTs via injects and/or observations.

The sample selection depends on the exercise training objectives, however
should cover differing aspects, such as complexity, method of attacking, ease of
detecting and mitigating the attack. There is no widely accepted taxonomy that
can be applied from learning perspective in CDXs context. In order to measure
learning impact, a comparison between easy tasks (potentially nothing learned
and knowledge is already existing) and complex tasks (more challenging, more
potential to learn) is valuable. As the teams have differing skillset any such crite-
ria classification is somewhat forced and arbitrary, however it provides a compar-
ison and feedback on the appropriate difficulty levels and learning opportunities
created by the organizer. We propose the following classification matrix in Fig. 4,
when a selection of specific events for learning impact measurement is based on:
(1) detection and analysis—some attacks and incidents have visible signs that
can be easily detected, whereas others are almost impossible to detect. (2) mit-
igation and recovery—responding to an incident involves different skillset and
actions to be taken containing the damage, eradicating the incident components,
and restoring systems to normal operation, and remediating vulnerabilities to
prevent similar future attacks.

Easy to Detect and Easy to Mitigate Easy to Detect and Difficult to Mitigate

Difficult to Detect and Easy to Mitigate Difficult to Detect and Difficult to Mitigate

Fig. 4. Sample selection matrix

In addition to those two criteria and as an incident is part of whole exer-
cise (scenario, mission), the prioritization of attacks (strategy) needs to be
considered.

130 K. Maennel et al.

3 LS17—Learning Measurement

LS provides full experience of managing a major cyber incident to the BTs. The
exercise consists of different attacks and tasks based on a scenario over two days
and the data set is over 2500 attacks [14]. The measurement plan needs to ensure
that the intrusive data collection is not distracting the participants’ focus from
learning efforts.

LS17 learning measurement included a mixture of quantitative and quali-
tative methods with focus on gaining some experience using the 5-timestamp
methodology, combined analysis of participants’ feedback and metrics collected,
and identification of plausible learning correlations for further work.

3.1 5-Timestamp Methodology Experience

We illustrate how the 5-timestamp methodology works using the example of
LS17. We picked one high-profile RT objective—a Siemens system part of Indus-
trial Control System (ICS) segment for all timestamps to be recorded. The
timestamps were obtained from the BTs self-reporting (through Injects), RT
attack reports, and scoring data for all teams. Furthermore, those RT members
conducting the attack on those systems were asked to keep a detailed log of all
events, as accurately as possible. Regarding the pcaps from management inter-
faces, there was a technical issue and very unfortunately, the GT was unable
to record the traffic from management interfaces; leaving analysis of the inter-
arrival times for future work in next exercises.

The purpose of this objective was to gain control of the airport fueling station
and cause a fuel leak. The BTs had time to mitigate before “all fuel was spilled”.
Before the exercise the RT had prepared some attack vectors, but which vector
would work or not depends on the BT defenses. Starting the fuel spill is a very
“noisy” attack, which means even if the initial compromise remained undetected,
the BT had some time respond.

Four teams were successfully attacked by the RT (i.e., all fuel was spilled).
For two more the RT managed to compromise the systems and start spilling,
however, those two BTs managed to mitigate the attack before all fuel was
spilled. The remaining 13 teams defended their systems well (e.g. no spilling
started).

While all teams were analyzed, for anonymity and clarity reasons only one
timeline is presented here. Figure 5 shows detailed timeline of events recorded
according to the 5-timestamp methodology for BT Z (Z anonymized).

Before the RT is allowed to attack in the exercise, the respective objective
must be opened. For this specific team and objective, this was done at 06:59
UTC, which corresponds roughly to the time first phase of attacks was allowed
to start. The objectives are not opened individually in the RT reporting system,
but rather for all teams at the same time—and because a RT member might have
to “entertain” several teams at a time, the opening of an objective and actual
start of an attack might differ. In this example case, BT Z was only attacked
at 07:35 UTC (about 1/2 h later), i.e., the timestamp reported from the detailed

Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 131

Incident Timeline Time Description Data source

t1 RT starts an attack 06:59 Campaign officially opened RT reporting system

t1.1 RT starts 1st attack 07:35 Attack started RT members

t2 RT compromises 07:40 Spilling started Scoring

t2 RT compromises 07:43 Spilling started RT members

t2.1 BT mitigates 07:44 Spilling stopped Scoring

t2.1 BT mitigates 07:45 Spilling stopped RT members

t1.1 RT starts 2nd attack 07:58 Attack repeated RT members

t3 BT detects 09:00 Suspicious activity noted BT Inject

t2.1.3 RT reporting 09:18 Partial RT objectives scored RT reporting system

t4 BT starts mitigating 09:20 Timestamp or interval reported BT Inject

t2 RT compromises 09:23 Spilling started Scoring

t2.1 BT mitigates 09:30 Spilling stopped Scoring

t5 BT fights back 09:30 Timestamp or interval reported BT Inject

t5 BT resolves 09:40 Suspicious user removed BT Inject

Fig. 5. Example of 5-timestamps reconstructed timeline for an incident

RT member logs. LS has a comprehensive and automated scoring system, which
recorded at 07:40 UTC that the attack has been successful and spilling started.
However, the RT members reported that spilling started at 07:43 UTC. This
small time difference is an artifact of the self-reporting, and understandable, as
all teams are very busy during the exercise. It also highlights that self-reporting
timestamps should be avoided, if possible. This is not only for accuracy reasons,
but also to reduce the work-load for various teams during the exercise. Simi-
larly, the scoring system reported that the BT mitigated the attack at 07:44
UTC, while the RT member recorded a timestamp of 07:45 UTC. Such minor
discrepancies were observed throughout. As this attack has only partially been
successful, the RT does not give up and manages to gain foothold in the systems
again at 07:58 UTC (reported by RT member log), but this time the RT does
not manage to cause any fuel spilling. This is not recorded in the scoring (and
should not be scored as the BT successfully defended), but it is an important
factor that hints at resistance and team performance. Having such timestamps
facilitate a reflective team debrief after the event.

However, when analyzing the BT self-reporting then the BT only reports
detecting any suspicious activities for the very first time at 09:00 UTC. Clearly,
some BT members must have mitigated the attack already before 07:44 UTC, so
this points to an intra-team communication/reporting problem. Therefore ask-
ing the BTs to self-report accurate timestamps, while defending systems during
a “crisis situation”, is not going to work (neither observations). The team’s inter-
nal reporting systems do not capture such information, or at least not accurately
enough. It is therefore of vital importance to obtain such timestamps from the
management network (e.g., by observing in the pcaps when a BT member logs
into the target system, or in case they are already logged in when the activ-
ity of system changes by a changed inter-arrival frequency of packets on the
management network).

132 K. Maennel et al.

Overall during the exercise, spilling attempts start 7 more times using at
least two different attack vectors. The first time spilling was for 3′39′′ (3 min
and 39 s), the second spilling continued for 6′44′′. The next day spilling durations
were significantly reduced, in the end only taking 0′07′′ (7 s) to mitigate—despite
the fact that different attack vectors were used.

The main challenges encountered in the process and assumptions for data
quality are:

1. RT scoring timestamps from the system need to be sufficiently accurate—
when attacking multiple teams the objectives are started for all teams simul-
taneously and final scoring is often delayed, so scoring data is not accurate;

2. BTs self-reporting is not reliable and more accurate data collection method
is required—this supports the argument that non-intrusive methods for col-
lecting and analysing data from logs (network traffic, log, etc.) is helpful;

3. Traditional observations methods are not possible as in a technical exercise
there is nothing to see.

Of course, this is a first attempt to understand the feasibility of proposed
methodology. Before drawing any conclusions on learning more data and mea-
surements needs to be obtained in future work, however, such initial tests appear
to be promising.

3.2 Discussion and Findings from LS17 Learning Measurement

In addition to the 5-timestamps methodology experience, we also discuss
selected findings relevant from other learning measurements, as the 5-timestamps
methodology is one integral part of the overall measurement framework. Only
aggregated statistics are presented due to the confidential nature and privacy of
participants. We used pre-survey, injects, post-survey and interviews to collect
the feedback from individuals and teams. Our overall response rate was 21% for
individual pre-survey, and team based injects had 89% response rate. Due to the
timing constraints, post-survey results have not been included.

Learning in Pre-exercise Phase. We collected information about the partici-
pants, their experiences and learning process in the pre-execution phase, team
environment, learning expectations about the execution and evidence of long-
term learning from previous exercise participation. Our findings confirm that
pre-exercise phase is vital part of the overall exercise with 53% of respondents
spending 10–50 h preparing. Majority of participants (73%) however report that
they prepared individually (over half of the preparation time); whereas sub-
teams preparations were taking place either half of the time (35%) or seldom
(31%). Despite that the exercise is team-based, whole team preparations were
mostly seldom 37% and 22% of participants claim they never attended whole
team preparation sessions.

No clear distinction between learning knowledge/skill on technical vs. soft
skills learned in pre-exercise phase is visible—on average in each learning

Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 133

area 40% minor and 13% significant improvement was reported. This links to the
fact that training audience consist mainly of the professionals, who assess their
knowledge and skills in majority at medium (43%) to high level (37%), related
to the similar working experience level (both medium and high 39%). When
comparing what the participants have learned in preparation phase and what
they expect to learn during the exercise, there is no clear distinction that some
training objectives (e.g., teamwork) are more relevant for execution than pre-
execution phase or that technical skills are mainly obtained in the pre-exercise
phase.

Feedback on the Exercise Design. Feedback was focused on the Industrial Control
System (ICS) segment design that has been designed and seen as one of the most
complex and technically challenging areas in the exercise. By comparison we can
draw conclusions also on other parts of the exercise. The attempt was also made
to assess, how teams perceive individual team members/sub teams and whole
team learning outcome.

Based on pre-survey 52% of respondents felt they do not have ICS capabilities
in their teams, despite of nearly all teams reporting dedicated ICS team mem-
ber(s). Average self-believed resistance level in the ICS segment was surprisingly
low compared to the RT members’ assessment—44% believed that their resis-
tance was at medium level, 33% at high level 22% strong. This links positively
to an assumption that learning can happen when team acknowledges they lack
some knowledge or skills and “sensing more than see” (OODA loop). It is also
interesting to see how the teams perceive level of difficulty to defend against
those attacks—41% find it easy to detect and easy to mitigate, 39% easy to
detect, but difficult to mitigate, 12% difficult to detect, easy to mitigate and
8% find it difficult to detect and difficult to mitigate. In comparison to other
attacks in the exercise 44% of teams assessed level of difficulty at same level. Pri-
ority for ICS attacks was consistently (78% of teams) at high or critical priority
level, as expected in the scenario. 52% of the BT reported that they managed to
track the root cause of malicious activity and 42% not (showing missed learning
opportunity without proper feedback).

An attempt to evaluate how individual and team learning outcomes are per-
ceived, shows that team learning has quite even distribution (25%) from slight to
significant improvement, then individual learning was in majority (59%) assessed
as significant. This is somewhat expected, due to the technical specialization but
therefore needs further focus of learning transferability within a team.

Furthermore, a question collecting narratives about the teams’ learning expe-
rience to uncover and understand the big picture was asked. Top 5 expressions
that emerged were “successes in learning” (“learning curve”), “challenges in
learning”, “complexity/variety of system”, “preparations” and “team learning”.
All these themes confirmed the focus of measurement objectives.

Long-Term Learning Impact. We looked at LS16 for long-term impact indicators,
based on responses of returning participants, and enquiries with previous LS
participants. When asked individually about skills learned and maintained 69%

134 K. Maennel et al.

responded that they recall a skill from participating earlier LS—average for
technical training objective is 67% and soft skill related training objective 69%.
Sadly survey results were limited in the participants’ comments what exactly
they learned.

58% agreed that their team has become more coherent, confident and col-
laborative. Similarly, 64% agreed that their team’s knowledge has increased (as
a result of individuals sharing). However, as majority (59%) of the teams have
changed significantly (less than 50% old team members)—long-term impact need
to be interpreted carefully.

Feedback from few participants who participated over five years back tends
to indicate long term impact of CDXs on mindset (e.g., “to have an emergency
procedure in place, as when you’re in the middle of the event there is no time to
think, just to act.”, “... key is thinking and mindset and learning why something
was done, not what.”).

Despite of limited evidence, the survey and interview results support the
learning value of the LS. Further work needs to be conducted to evaluate long-
term impact for specific training objectives.

4 Related Work in Learning Measurement Context

Unfortunately, there are no widely accepted methodological evaluation methods
published and scientifically proven measuring learning impact or assessing cyber
security skills/competencies obtained through CDXs. Some general guidance,
such as [10,18], describe how organizers should look at design and performance
(training success) measurements. The related work includes articles published on
learning (and other) measurements at cyber exercises, and also interdisciplinary
papers, game based learning and team learning, as relevant.

Cyber Exercises. Dr. Ahmad [1] investigated how a cyber crisis exercise benefits
participants’ individual learning and how their experience in the exercises is
transferred to their organization using the four-level Kirkpatrick training post-
assessment model (reaction about the exercise, learning skills experienced during
the exercise, behavior developed during the exercise, and result, i.e., how the
benefits are transferred to their organization). This approach lacks team aspects
of learning. U.S. Army Research Institute for the Behavioral and Social Sciences
Research [22] measured game-based simulations by different questionnaires and
complemented those interviews with probing questions.

Game Based Learning and Serious Games. Connolly et al. [3] proposes a model
for the evaluation of games for learning that includes motivational variables such
as interest and effort, as well as learners’ preferences, perceptions and attitudes
to games in addition to looking at learner performance. Outcomes relate to learn-
ing and skill acquisition but also affective and motivational aspects. Methods to
evaluate learning outcomes include meta-analyses, randomized controlled tri-
als, quasi-experimental designs, single case experimental designs—pre- and post

Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 135

test, and non experimental designs—surveys, correlation, qualitative [7]. The
effect on learning (acquisition of skills or knowledge) was measured by calculat-
ing the difference between pre-test and post-test scores on the questionnaires or
cognitive tests, and comparison to control group [5]. Game-based learning and
serious games provide excellent environments for mixed-method data gathering
(i.e., triangulation), including crowd sourcing, panel discussions, surveys and
observations, in-game logging and tracking on hundreds of events and results,
including distances, paths, play time and avoidable mistakes, etc. [12]. Not yet
explored issues are seamless, or “stealth” data-gathering and assessment as well
as performance based evaluation [7]. Stealth assessment (i.e., non-invasive, non-
intrusive assessment) could potentially increase the learning efficacy given that
much of the learning remains relatively “implicit” and “subjective” [12]. These
issues are very relevant in the CDXs context, and the cornerstones for the pro-
posed 5-timestamp methodology in this paper.

Team Learning. Measuring team learning is a complex task with many factors,
such as learning impact has not been identified (i.e., simply there is no similar
event in reality), change can be environmental (i.e., not due to learning) and
learning could be dysfunctional (i.e., false connections made between actions
and outcome) [26]. Most common methods used are combination of interviews,
surveys, questionnaires, observations, and learning maps. Edmondson [4] used
observation and interviews (based on “informant sampling approach”) to study
role of teams in learning and based on her study half of the teams engaged in
reflective discussion about process that led to subsequent changes, and would
constitute a team learning. Newman et al. [16] measured critical thinking during
group learning using a questionnaire and the content analysis method, whereas
Hay [8] used concept mapping on the topic before and after. Learning maps or
curves at team and organization level were used by Uzumeri et al. and Chiva
et al. [24,25]. Two valuable points to note are: (1) the learning is not necessarily
consciously accessible, thus asking the team members (survey or interview) what
they have learned may not uncover any changes, however there might be learned
patterns that members were not consciously aware of [4,26]; (2) measuring long-
term learning effect requires detailed and multiple real-time observations of the
same group over time [26].

Other Measurements Conducted at CDXs. Some team performance and effec-
tiveness metrics also relate to learning measurement. Study about Baltic Cyber
Shields 2010 team effectiveness [6] used different interdisciplinary methods
and concluded that a combination of technical performance measurements and
behavioral assessment techniques are needed to assess team effectiveness, and
cyber situation awareness is required for the defending teams, but equally for
the observers and the game control. In Cyber Shield 2015, Henshel et al. [9]
attempted predicting proficiency in the teams and to identify the best train-
ing and assessment methods by pre- and post-event survey and data collection
during the event, and developed proficiency metrics, such as Time-to-Detect,
Time-to-apProval, Time-to-End and Category Correct. Reed et al. [20] evaluated

136 K. Maennel et al.

cyber defender situation awareness, and showed that the most pervasive form
of competition-based exercise is comprised of jeopardy-style challenges, which
compliment a fictional cyber-security event. Silva et al. [21] study considered
factors of successful performance in Tracer FIRE exercise with emphasis on the
use of software tools and bring out a relevant consideration that speed is often
not the main consideration—participants who devoted more time to challenges
tended to make more correct submissions (similar finding to [9]).

Findings for CDXs. From CDXs viewpoint, all these methods are applica-
ble. However, similar challenges are faced as by researches so far—i.e., sepa-
rating learning from other factors and that learning might not be necessarily
visible. Also, for the incident response teams activities are conducted on the
computers/network—thus observations of behavior (sitting quietly behind com-
puter screen but at the same time mitigating a significant risk or attack) might
not provide sufficient information. Observation method should be seen with a
different kind of eyes—on the network and system-level and to learn observing
at such technical levels.

The key takeaways for CDXs are that learning measurement needs to use
mixed-method approach with qualitative and quantitative data, have wide
scope, provide comparison (“benchmarking”), consider both individual and team
aspects, and ideally be non-intrusive (not distracting participants from main goal
of learning).

5 Conclusion

Learning is such a complex and intractable process that its study is difficult
and contentious. However, methodological measurement is required to conclude
whether an exercise design was appropriate and effective, and planned learning
outcomes were achieved.

We presented an idea for non-intrusive data collection and measurement, i.e.,
the 5-timestamp methodology as an integral part of overall learning measurement
framework. Future work should continue with performing the data analysis of
an exercise to compile learning metrics and trends benchmark. Identification
and analysis of the data trends, will provide solid baseline and demonstrate
learning improvement achieved in CDXs. This will complement often anecdotal
and positive feedback obtained via traditional methods (surveys, interviews)
that participants have actually learned. As we demonstrated, incorporating non-
intrusive, social and behavioral research methods into the cyber security field can
give new insights and possibilities in effective training for cyber defense teams
in the future.

We explored CDXs’ learning measurement state of play and presented inter-
disciplinary literature review, incorporating relevant findings from team (group)
and game based learning studies. The findings support the proposed novel non-
intrusive 5-timestamp methodology for mainly timing and accuracy metrics for
measuring technical skills improvements, but equally incorporating team aspects

Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 137

and soft skills. As part of the methodology proposal, we also considered some
practicalities of data collection and proposed practical validation approaches
with the qualitative measurements.

With work performed in this paper, we have attempted to provide practical
steps how the organizers can evidence the learning value and lessons learned
at CDXs, and at the same time improve the participants’ and teams’ learning
experience by providing valuable feedback based on such measurement data.

Acknowledgments. This work would not have taken place without the NATO CCD
COE open-minded and friendly organizing team of LS17, who allowed the authors to
experiment on this large cyber exercise.

References

1. Ahmad, A.: A cyber exercise post assessment framework. Malaysia perspectives.
Ph.D. thesis, University of Glasgow (2016)

2. Ahmad, A., Johnson, C., Storer, T.: A cyber exercise post assessment: adoption of
the Kirkpatrick model. Adv. Inf. Sci. Serv. Sci. 7(2), 1 (2015)

3. Connolly, T.M., Boyle, E.A., MacArthur, E., Hainey, T., Boyle, J.M.: A systematic
literature review of empirical evidence on computer games and serious games.
Comput. Educ. 59(2), 661–686 (2012)

4. Edmondson, A.C.: The local and variegated nature of learning in organizations: a
group-level perspective. Organ. Sci. 13(2), 128–146 (2002)

5. Girard, C., Ecalle, J., Magnan, A.: Serious games as new educational tools: how
effective are they? A meta-analysis of recent studies. J. Comput. Assist. Learn.
29(3), 207–219 (2013)

6. Granasen, M., Andersson, D.: Measuring team effectiveness in cyber-defense
exercises-a cross-disciplinary case study. Cogn. Technol. Work 18(1), 121–143
(2016). Springer-Verlag, London

7. Hauge, J.B., Boyle, E., Mayer, I., Nadolski, R., Riedel, J.C., Moreno-Ger, P., Bel-
lotti, F., Lim, T., Ritchie, J.: Study design and data gathering guide for serious
games’ evaluation. In: Connolly, T.M., Hainey, T., Boyle, E., Baxter, G., Moreno-
Ger, P. (eds.) Psychology, Pedagogy, and Assessment in Serious Games, pp. 394–
419 (2014)

8. Hay, D.B.: Using concept maps to measure deep, surface and non-learning out-
comes. Stud. High. Educ. 32(1), 39–57 (2007)

9. Henshel, D.S., Deckard, G.M., Lufkin, B., Buchler, N., Hoffman, B., Rajivan, P.,
Collman, S.: Predicting proficiency in cyber defense team exercises. In: 2016 IEEE
Military Communications Conference, MILCOM 2016, pp. 776–781. IEEE (2016)

10. Kick, J.: Cyber exercise playbook. Technical report, DTIC Document (2014)
11. Mattson, J.A.: Cyber defense exercise: a service provider model. In: Futcher,

L., Dodge, R. (eds.) Fifth World Conference on Information Security Education.
IFIP – International Federation for Information Processing, vol. 237, pp. 81–86.
Springer, Boston (2007)

12. Mayer, I., Bekebrede, G., Warmelink, H., Zhou, Q.: A brief methodology for
researching and evaluating serious games and game-based learning. In: Psychol-
ogy, Pedagogy, and Assessment in Serious Games, pp. 357–393. IGI Global (2014)

13. Mudge, R.: Cobalt Strike. https://www.cobaltstrike.com. Accessed 18 Sept 2017

https://www.cobaltstrike.com

138 K. Maennel et al.

14. NATO CCD COE: Locked Shields (2017). https://ccdcoe.org/locked-shields-2017.
html. Accessed 18 Sept 2017

15. NATO CCD COE: Locked Shields 2016 After Action Report. NATO Cooperative
Cyber Defence Centre of Excellence Publication (2016)

16. Newman, D.R., Webb, B., Cochrane, C.: A content analysis method to measure
critical thinking in face-to-face and computer supported group learning. Interper-
sonal Comput. Technol. 3(2), 56–77 (1995)

17. Ogee, A., Gavrila, R., Trimintzios, P., Stavropoulos, V., Zacharis,
A.: The 2015 Report on National and International Cyber
Security Exercises. https://www.enisa.europa.eu/publications/
latest-report-on-national-and-international-cyber-security-exercises

18. Patriciu, V.-V., Furtuna, A.C.: Guide for designing cyber security exercises. In:
Proceedings of the 8th WSEAS International Conference on E-Activities and Infor-
mation Security and Privacy. World Scientific and Engineering Academy and Soci-
ety (WSEAS), pp. 172–177 (2009)

19. Pusey, P., Gondree, M., Peterson, Z.: The outcomes of cybersecurity competitions
and implications for underrepresented populations. IEEE Secur. Priv. 14(6), 90–95
(2016)

20. Reed, T., Nauer, K., Silva, A.: Instrumenting competition-based exercises to eval-
uate cyber defender situation awareness. In: Schmorrow, D.D., Fidopiastis, C.M.
(eds.) AC 2013. LNCS, vol. 8027, pp. 80–89. Springer, Heidelberg (2013). 10.1007/
978-3-642-39454-6 9

21. Silva, A., McClain, J., Reed, T., Anderson, B., Nauer, K., Abbott, R., Forsythe,
C.: Factors impacting performance in competitive cyber exercises. In: Proceedings
of the Interservice/Interagency Training, Simulation and Education Conference,
Orlando, FL (2014)

22. Singer, M.J., Knerr, B.W.: Evaluation of a game-based simulation during distrib-
uted exercises. Army Research Institute for the Behavioral and Social Sciences,
Orlando, FL (2010)

23. Stytz, M.R., Banks, S.B.: Addressing simulation issues posed by cyber warfare
technologies. SCS M&S Mag., no. 3 (2010)

24. Svetlik, I., Stavrou-Costea, E., Chiva, R., Alegre, J., Lapiedra, R.: Measuring
organisational learning capability among the workforce. Int. J. Manpower 28(3/4),
224–242 (2007)

25. Uzumeri, M., Nembhard, D.: A population of learners: a new way to measure
organizational learning. J. Oper. Manage. 16(5), 515–528 (1998)

26. Wilson, J.M., Goodman, P.S., Cronin, M.A.: Group learning. Acad. Manag. Rev.
32(4), 1041–1059 (2007)

https://ccdcoe.org/locked-shields-2017.html
https://ccdcoe.org/locked-shields-2017.html
https://www.enisa.europa.eu/publications/latest-report-on-national-and-international-cyber-security-exercises
https://www.enisa.europa.eu/publications/latest-report-on-national-and-international-cyber-security-exercises
http://dx.doi.org/10.1007/978-3-642-39454-6_9
http://dx.doi.org/10.1007/978-3-642-39454-6_9

Privacy-Preserving Frequent Itemset Mining
for Sparse and Dense Data

Peeter Laud1(B) and Alisa Pankova1,2

1 Cybernetica AS, Tartu, Estonia
{peeter.laud,alisa.pankova}@cyber.ee

2 Software Technologies and Applications Competence Centre (STACC),
Tartu, Estonia

Abstract. Frequent itemset mining is a data mining task that can in
turn be used for other purposes such as associative rule mining. The
data may be sensitive. There exist multiple privacy-preserving solutions
for frequent itemset mining, which should consider the tradeoff between
efficiency and privacy. Leaking some less sensitive information such as
density of the datatable may improve the efficiency. In this paper, we con-
sider secure multiparty computation setting, where the final output (the
frequent itemsets) is public, and no other information should be inferred
by the adversary that corrupts some of the computing parties. We devise
privacy-preserving algorithms that have advantage when applied to very
sparse and very dense matrices. We compare them to related work that
has similar security requirements, estimating the efficiency of our new
solution on a similar secure multiparty computation platform.

Keywords: Secure multiparty computation · Frequent itemset mining

1 Introduction

Frequent itemset mining (FIM) is a standard data mining task. Given a collection
of sets, the goal is to find the subsets that are contained in sufficiently many of
these sets. After finding out which elements are more likely to occur together, one
may search for the reason for that co-occurrence, and whether the existence of
one item implies the existence of the other one, extracting some more interesting
knowledge such as association rules. Not only the task itself, but also its privacy-
preserving variants have been well studied in related work.

In this paper, we consider the security model where the final output is public,
and the adversary, corrupting some of the parties, should be unable to infer any
other information in addition to these public outputs. Our goal is to see if we
can gain more efficiency given some additional assumptions about the matrix
density. This allows us to make use of FIM algorithms whose efficiency depends
on data density, that would not give advantage in privacy-preserving settings
otherwise. Since the standard algorithms for FIM are iterative, even if data has
not been sparse on the first iteration, it may become very sparse or very dense on
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 139–155, 2017.
https://doi.org/10.1007/978-3-319-70290-2_9

140 P. Laud and A. Pankova

later iterations. We propose algorithms that allow to combine dense and sparse
columns in the same computation.

2 Preliminaries

Let the sets be called transactions, and their elements items. These names come
from one possible use case of FIM, where the items are goods sold in the super-
market, and each transaction corresponds to contents of a shopping cart. The
task of FIM is to find out which subsets of items occur together in sufficiently
many transactions. In general, the shopping carts are nothing more than just
sets T over some universal set U (e.g. all the goods sold in the shop), and the
task is to find the subsets of items I ⊆ U that are encountered in sufficiently
many sets T . A subset I is considered frequent iff |{T | I ⊆ T}| ≥ t, where t ≥ 1
is some threshold that is given as a parameter.

2.1 Secure Multiparty Computation

In this paper, we solve FIM using secure multiparty computation. We adjust
our algorithms to a specific platform Sharemind [3], which is based on secret
sharing. The main security domain of Sharemind supports 3 computing parties
(P1, P2, P3), tolerating at most one passively corrupted party. The number of
input parties who provide the inputs by secret-sharing them among computing
parties is unbounded. No party should learn any private data besides the final
output that we consider public. There is some less sensitive information that we
agree to leak, such as the total number of items and transactions.

Sharemind uses mainly additive and bitwise secret sharing. The costs of their
standard operations are different. In the additive sharing, the value is shared as
a = a1 + a2 + a3 over some ring (in Sharemind Z2m), where ai is the share
that belongs to the party Pi, and linear combinations can be computed without
communication. In the bitwise sharing, the value is shared bitwise as a = a1 ⊕
a2 ⊕ a3, and bitwise linear combinations of bitvectors can be computed without
communication. Also, bitwise sharing is more efficient for comparison operations.

This paper builds algorithms from standard operations of Sharemind that it
uses as black boxes. The algorithms would work for any platform in which these
basic operations are universally composable. However, the particular costs that
we get in this paper are very related to particular Sharemind protocols. On some
other platform, the new methods could give even more advantage, but they also
could be too inefficient to make sparse representation reasonable.

2.2 Notation

Throughout this paper, we use the following quantities:

– capital letters X denote sets, and calligraphic font X denotes a set of sets;
– σ(I) is the support of I, i.e. the set of transactions that contain itemset I;

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 141

– Δ(I1, I2) := σ(I1) \ σ(I2) is the difference of supports of I1 and I2;
– secret shared value (either additive or bitwise sharing) 〈[a]〉;
– additively shared value [[a]]; a = a1 + · · · + an;
– bitwise shared value 〈〈a〉〉; a = a1 ⊕ · · · ⊕ an;
– i-th element of a vector a: a[i];
– element of a matrix A in the i-th row and j-th column: A[i, j];
– i-th row and j-th column of a matrix A: A[i, :], A[:, j];
– vector concatenation: x‖y;

Protocol Cost. We measure the number of rounds as well as the total number
of bits communicated through the network. Formally, we define a type Cost =
N × N, where the first component is the number of communicated bits, and
the second component is the number of rounds. We define the operations ⊗ :
Cost × Cost → Cost (parallel composition) and ⊕ : Cost × Cost → Cost
(sequential composition) as follows:

– (a, b) ⊗ (c, d) = (a + c,max (b, d));
– (a, b) ⊕ (c, d) = (a + c, b + d).

We will use the shorthand (a, b)⊗n to denote (a, b)⊗ · · ·⊗ (a, b), and (a, b)⊕n

to denote (a, b) ⊕ · · · ⊕ (a, b), where (a, b) occurs n times. Let the operation ⊗
have higher priority than ⊕.

For a protocol Prot, we write Protnk to denote the cost of application of Prot
to a vector of length n of k-bit values. The number n is omitted if the protocol
is applied to a single input, and Protn1,...,nm

k denotes applying the protocol to
several inputs of different lengths.

2.3 General FIM Algorithms

There exist several variations of the standard (not privacy-preserving) FIM
algorithms. We give some examples in this section. A similar property of these
algorithms is that, on each iteration, all they compute a frequent itemset of
size k, based on the frequent itemsets of size k − 1 found so far. The basis of
finding a k-set from k − 1 subsets is set intersection, or set difference. We will
turn special attention to these set operations when we use these algorithms in a
privacy-preserving setting.

Apriori. This algorithm sequentially constructs all the frequent itemsets of size 1,
then of size 2, until all the frequent sets are obtained in this way. Any infrequent
itemsets are immediately discarded. The frequent sets of size k are constructed
only for those sets whose all subsets of size k − 1 have been frequent. The
way in which these subsets are constructed depends on the particular algorithm
instance. One possible implementation of this method is given in Algorithm1.

Eclat. Similarly to Apriori, this algorithm constructs a set of size k from sets
of size k − 1. The main difference from Apriori is that Eclat uses depth-first
search, considering on one step not all the possible subsets of size k, but rather

142 P. Laud and A. Pankova

Algorithm 1. Apriori

Data: M: frequent itemsets of size k − 1 found so far
Result: Frequent itemsets of size at least k

1 F ← ∅ ;
2 foreach Xi ∈ M do
3 foreach Xj ∈ M, j > i do
4 R ← Xi ∪ Xj ;
5 if |σ(R)| ≥ t then
6 F ← F ∪ {R} ;

7 if F �= ∅ then
8 F ′ ← Apriori(F) ;

9 return F ∪ F ′ ;

Algorithm 2. Eclat

Data: P all the frequent sets of size k − 1 with a prefix P
Result: Frequent itemsets of size at least k with a prefix P

1 foreach Xi ∈ P do
2 Fi ← ∅ ;
3 foreach Xj ∈ P, j > i do
4 R ← Xi ∪ Xj ;
5 σ(R) ← σ(Xi) ∩ σ(Xj) ;
6 if |σ(R)| ≥ t then
7 Fi ← Fi ∪ {R} ;

8 if Fi �= ∅ then
9 F ′

i ← Eclat(Fi) ;

10 return
⋃

i F ′
i ;

constrains one step to the sets of size k with a common prefix P of length k − 1
(sets of the form P ∪ {x} for x /∈ P). Let σ(P) be the support of P . For each
item x, all possible frequent sets with prefix P ′ := P ∪ {x} can be constructed
as σ(P ∪ {x}) ∩ σ(P ∪ {y}) from the sets P ∪ {y} such that y = x. The new
prefix is then processed recursively. The description of this method is given in
Algorithm 2.

Diffset. If the matrix columns are very dense, then instead of keeping transac-
tions that contain the given dataset, one could try to keep transactions that do
not contain the given dataset. Actually, even something more interesting can
be done. Another FIM algorithm Diffset [14] is similar to Eclat, but instead of
keeping the set of transactions in each itemset, it keeps the sizes of supports of
sets of size k − 1, and the differences between a set of size k and its subsets of
size k − 1. In this way, even if the initial matrix is not dense, the set differences
that this algorithm keeps may become very small on later iterations.

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 143

Algorithm 3. Diffset

Data: P all the frequent sets of size k − 1 with a prefix P
Result: Frequent itemsets of size at least k with a prefix P

1 foreach Xi ∈ P do
2 Fi ← ∅ ;
3 foreach Xj ∈ P, j > i do
4 R ← Xi ∪ Xj ;
5 Δ(P, R) ← Δ(P, Xj) \ Δ(P, Xi) ;
6 |σ(R)| ← |σ(P)| − |Δ(P, R)| ;
7 if |σ(R)| ≥ t then
8 Fi ← Fi ∪ {R} ;

9 if Fi �= ∅ then
10 F ′

i ← Diffset(Fi) ;

11 return
⋃

i F ′
i ;

Let the itemsets P ∪{x} and P ∪{y} be frequent. We want to know whether
the itemset P ∪ {x} ∪ {y} is frequent. Let Δ(P, P ∪ {x}) be the difference
in supports of the itemsets P and P ∪ {x}. We can compute the support as
σ(P ∪ {x}) = σ(P)\Δ(P, P ∪ {x}), and the difference as Δ(P, P ∪ {x} ∪ {y}) =
Δ(P, P ∪ {x}) \ Δ(P, P ∪ {y}). The description of this method is given in
Algorithm 3.

3 Privacy-Preserving FIM

Since FIM can in turn be used for various purposes such as associative rule
mining, preserving privacy may be very important. For example, several shops
may want to make some statistics of the contents of shopping carts without
revealing what exactly has been sold. Privacy is especially important in cases
where the shopping cart is associated with the customer.

Privacy-preserving versions of Apriori and Eclat have been implemented and
optimized in [1,5,11]. There are also some solutions designed for specific initial
data sharing, such as vertical or horizontal partitioning [9]. Implementing an
algorithm such as FP-tree is not suitable for our security model since its structure
leaks more information than the frequent itemsets themselves. In [11], the FP-
tree is constructed after the frequent itemsets have been found (using Apriori-
based algorithm), and the goal is to introduce noise into the public output.

Besides making the computation secure, it may be also important to consider
how much the public output leaks by itself. Differential privacy guarantees that
the adversary will not learn too much from the public output, providing statisti-
cal privacy for each individual record in the dataset. There exist systems such as
PINQ [12], PDDP [4], RAPPOR [6], that allow to make statistical computations
that achieve this property. In the context of FIM, differential privacy has been
considered in [5,11,15]. Similar distortion-based approach is also used in [13].

144 P. Laud and A. Pankova

In this work, we do not consider differential privacy. To achieve it, we could
add noise to the initial data, so that the final output (that is, all the frequent
itemsets up to certain size) would provide privacy for each individual record. We
would need to define what exactly an individual record is (a column or a row),
while in this paper the initial distribution of the records is not important.

In this work, we mainly extend the results of [1], where Eclat and Apriori
algorithms (but not Diffset), as well as hybrid solutions, have been implemented.
The algorithms of [1] are based on bit matrix representation. Their efficiency
does not depend on matrix sparsity, and they could not use the advantages of
Diffset. We give a solution that works better with sparse matrices. Our algorithms
use some blackbox operations that in general depend on the underlying secure
multiparty computation platform, and whose implementation is not the part
of FIM algorithms. The cost estimations for our algorithms are based on the
blackbox operation costs of Sharemind [3].

Bit Matrix Representation. First, we describe the existing implementations of [1]
based on representing the data table as a secret shared bit matrix. Initially, the n
items and m transactions are assigned unique indices {1, . . . , n} and {1, . . . , m}
respectively. A matrix B is defined, such that B[i, j] = 1 iff the i-th transaction
contains the j-th item. On further iterations of FIM algorithms, the columns
correspond not to single items, but to itemsets.

Although all matrix elements are bits, in order to determine whether an
itemset is frequent, at some moment the sum of column elements has to be
computed. Therefore, at least before the addition, the bits should be converted
to at least (log m)-bit values to avoid addition overflow, since the maximal value
that the sum may take is m. In [1], the matrix elements are permanently stored
as log m-bit values to avoid conversion overheads. For very sparse sets, such an
encoding may consume excessive space due to large amount of zeroes that will
not be needed anyway. In Sect. 3.2, we discuss whether it is better to keep the
bits in log m format, or to convert 1-bit values to log m-bit values on demand.

Finding an intersection of two itemsets i and j and checking its cardinality
is implemented as follows:

1. multiply pointwise two log m-bit vectors of length m;
2. sum the obtained m products up;
3. compare the obtained log m-bit number with a log m-bit threshold t.

Sparse Set Representation. In this paper, we propose another way to represent
transactions that contain the given itemset. This representation makes sense for
sparse matrices, i.e. when each column of the matrix contains at most m′ entries
for m′ � m. We will now use an m′ × n matrix for data table representation.
Each column will now contain not the characteristic bit vector, but the indices
of transactions. The order of indices in a column does not matter. Encoding a
number from {1, . . . , m} requires log m bits. If the table contains at most nm′

nonzero entries, then nm′ ·log m bits are sufficient to encode it. If the size of some
column is mj < m′, then some m′ − mj of its entries are set to 0. Since 0 now
has special meaning, we start indexation with 1. Alternatively, we could leave

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 145

exactly mj elements in the column, but that would leak too much additional
information about the data.

3.1 Algorithms for Privacy Preserving FIM

Existing Building Blocks. We describe the building block algorithms that we
use for our constructions. Some very basic operations that do not require addi-
tional description are given in Table 1. We now describe some more complicated
algorithms. The summary of the costs of used building blocks is given in Table 2.

Radix Sort (Rsort) and Counting Sort (Csort). We use the algorithms from
[2, Algorithm 3]. Let k be the number of bits needed to encode each value.
The sorting protocol runs in k iterations. On each iteration, the elements are
sorted according to one bit using counting sort (we denote it by Csort), start-
ing from the least significant bit. In our algorithms, we will use CSort when
we need to sort values just by one bit. Using numbers of [2], the cost of a sin-
gle counting sort, applied to a vector of length n of k-bit values, is Csortnk =
ShareConvn

k ⊕ Multnk ⊕ Shufflen
2k ⊕ Declassifyn

k (the description of used subproto-
cols is given in Table 1). The cost of the entire radix sort is Rsortnk = (Csortnk)⊕k.

Quicksort (Qsort). We use the algorithm from [8, Protocol 1] to sort n elements
of k bits each. First of all, the array is shuffled, and then ordinary quicksort
algorithm is run, declassifying only the outcomes of comparisons to decide where
the element should be placed. As far as all elements are distinct, this does not
cause any privacy breach. A Sharemind version of this algorithm is described
in [2], and its average complexity is Shufflen

k ⊕ (LessThann
k ⊕ Declassifyn

1)⊕ log n.
Because of the random shuffle, the worst case comes with negligible probability,
and we may indeed expect the average cost in practice.

In some cases, we apply quicksort to arrays that have already been shuffled.
In this case, we denote the sorting itself by PQsort (plain quicksort), and its cost
is PQsortnk = (LessThann

k ⊕ Declassifyn
1)⊕ log n. A good property of this sort is,

that the sorting permutation is public.

Table 1. Basic blackbox operations

Operation call Returned value

Sum(〈[x]〉) 〈[∑m
j=1 x[j]]〉

Mult(〈[x]〉, 〈[y]〉) 〈[x · y]〉
OuterProd(〈[x]〉, 〈[y]〉) 〈[Z]〉, where Z[i, j] = x[i] · y[j]

ShareConv(〈[x]〉, k) 〈[y]〉, where x ∈ Z2, y ∈ Z2k , x = y

Shuffle(〈[x]〉) 〈[y]〉, where y is a random reordering of x

UnShuffle(〈[y]〉) 〈[x]〉, where x is a restored previously shuffled vector

Equal(〈[x]〉, 〈[y]〉) 〈[x == y]〉 ∈ Z2

LessThan(〈[x]〉, 〈[y]〉) 〈[x ≤ y]〉 ∈ Z2

Declassify(〈[x]〉) x

146 P. Laud and A. Pankova

Table 2. Building block operations (k-bit elements, |x| = |b| = n)

Protocol call Returned value Cost

Csort(〈[x]〉, 〈[b]〉) 〈[x]〉 sorted by 〈[b]〉 ShareConvnk ⊕ Multnk ⊕ Shufflen2k ⊕ Declassifynk

Rsort(〈〈x〉〉) sorted x (ShareConvnk ⊕ Multnk ⊕ Shufflen2k ⊕ Declassifynk)⊕k

Qsort(〈[x]〉) sorted x Shufflenk ⊕ (LessThann
k ⊕ Declassifyn1)⊕ logn

PQsort(〈[x]〉) sorted x (LessThann
k ⊕ Declassifyn1)⊕ logn

Set Intersection and Difference. We describe the algorithms that we use for
set intersection and set difference. The sets are represented as arrays of elements.
We do not want to leak the precise set cardinality, and we assume that there is
a known upper bound n on the number of elements. If the set has less than n
elements, then the entries that represent missing elements are set to 0.

Let two sparse vectors be represented as sequences of index-value pairs, where
the indices are encoded by � bits, and values are encoded by k bits. We give an
algorithm for a bit more general task, that allows to compute a pointwise product
of values these vectors, matching their entries by indices. We then show how to
instantiate it to set intersection and set difference.

Let u be a vector of length n. For each u[i], let u[i].idx and u[i].val denote
the index and value component respectively. The pointwise product algorithm
is given in Algorithm 4. It concatenates the vectors u and v, obtaining a vector
w. It then sorts the obtained vector w by indices, so that similar indices are
now consequent. It then computes the products w[i].val ·w[i + 1].val and leaves
only those w[i] for which w[i].idx = w[i + 1].idx holds. In other words, it leaves
exactly the products v[i].val ·u[j].val such that v[i].idx = u[j].idx. In the end, the
algorithm sorts the entries back to their initial positions (applying the sorting
permutation inverse σ−1 and UnShuffle), so that the second half of the resulting
vector (the entries that are 0 anyway) can be discarded. Counting the number
of all used subprotocols of this algorithm, we get the cost

Shuffle2n
�+k ⊕ PQsort2n

� ⊕ (Equal� ⊕ ShareConvk ⊕ Mult2k)⊗2n−1 ⊕ UnShuffle2n
k .

This algorithm can be easily adjusted to set intersection and set difference.
The summary of costs of these set operations is given in Table 3. Let the set
elements be the indices of u and v. We show how to assign the values.
Set Intersection. For the set intersection task, we set u[i].val = u[i].idx and
v[i].val = 1 for all i ∈ {1, . . . , n}. As the result, Algorithm 4 returns exactly
those indices of 〈[u]〉 that are present in 〈[v]〉.
Set Difference. To compute the difference between two sets, we need to keep
exactly those elements of 〈[u]〉 that are not present in 〈[v]〉. If we flip the bit
〈[b[i]]〉 = Equal(〈[w[i].idx]〉, 〈[w[i + 1].idx]〉) and keep only those elements 〈[w[i].idx]〉
for which 〈[b[i]]〉 = 0, we will also get elements of 〈[v]〉 that are not present in 〈[u]〉,
and we do not need them. To get rid of these elements, for all i ∈ {1, . . . , n},

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 147

Algorithm 4. Pointwise product of two sparse vectors
Data: Shared sparse vectors 〈[u]〉, 〈[v]〉
Data: n — the number of non-zero elements in a vector
Result: The vector 〈[d]〉 such that d[i] = u[i] · v[i]
〈[w]〉 ← 〈[u]〉‖〈[v]〉 ;
〈[w]〉 ← Shuffle(〈[w]〉) ;
〈[w]〉 ← PQsort(〈[w]〉, 〈[w]〉.idx) ;
Let σ be the public sorting permutation of PQsort ;
foreach i ∈ {1, . . . , 2n − 1} do

〈[b[i]]〉 ← ShareConv(Equal(〈[w[i].idx]〉, 〈[w[i + 1].idx]〉), k)
〈[d[i]]〉 ← Mult(〈[b[i]]〉, Mult(〈[w[i].val]〉, 〈[w[i + 1].val]〉))

[[d]] ← σ−1([[d]])
[[d]] ← UnShuffle([[d]])
return 〈[d[1]]〉, . . . , 〈[d[n]]〉

Table 3. Set operations (k-bit elements, |a| = |b| = n)

Protocol call Returned value Cost

Set∩(〈[a]〉, 〈[b]〉) 〈[c]〉 = 〈[a ∩ b]〉 Shuffle2n2k ⊕ PQsort2nk

Set\(〈[a]〉, 〈[b]〉) 〈[c]〉 = 〈[a \ b]〉 ⊕(Equalk ⊕ ShareConvk ⊕ Mult2k)
⊗2n−1 ⊕ UnShuffle2nk

we may initially set u[i].val = u[i].idx and v[i].val = 0, and take 〈[d[i]]〉 ←
Mult(1 − 〈[b[i]]〉, 〈[w[i].val]〉)) as the final result. Only those entries 〈[d[i]]〉 that
correspond to u can now be nonzero.

Algorithm Costs on Sharemind. We assume that the algorithms are run on
secure multiparty computation system Sharemind [3]. In Table 4 we present the
costs of basic operations that are used in our algorithms. The numbers are taken
mainly from [3,10]. We take the cost of set intersection (and set difference) from
Table 3, and substitute the costs of basic operations with values from Table 4.
The summary of protocol costs on Sharemind platform is presented in Table 5.

Table 4. Basic operation costs of Sharemind

Sharing Operation Rounds Communication

additive Sumn
k 0 0

Multk 1 6k

OuterProdn,m
k 1 3(n + m)k

ShareConvk 2 5k + 4

bitwise LessThank log k 30k

Equalk log k 12k − 9

both Shufflenk , UnShufflenk 3 6nk

Declassifyk 1 6k

148 P. Laud and A. Pankova

Table 5. Auxiliary algorithm costs of Sharemind

Sharing Protocol Rounds Communication

bitwise PQsortnk log n(log k + 1) log n(30nk + 6n)

Set∩n
k , Set\

n
k

9 + (log 2n + 1)(log k + 1) 60nk log n + 154nk

both Csortnk 7 30nk

Counting Sort: The sorting assumes that the secret-shared input bits, according
to which the sorting is done, are already given. The cost of counting sort is
ShareConvn

k ⊕ Multnk ⊕ Shufflen
2k ⊕ Declassifyn

k . The total communication is n ·
(5k + 4) + n · 6k + 6n · 2k + n · 6k = n(29k + 4) ≈ 30nk bits. The total number
of rounds is 2 + 1 + 3 + 1 = 7.

Quicksort: The cost of PQsort is (LessThann
k ⊕Declassifyn

1)⊕ log n. Since LessThan
is more efficient using bitwise sharing, the entire PQsort is also more efficient
using bitwise sharing. For PQsort, the total number of rounds is (log k+1) · log n,
and the total communication is log n · (30nk + 6n) bits.

Set Intersection and Difference: let us assume that the values are bitwise shared,
since the comparisons and the quicksort are faster in this case. The number of
bits for a single instance of intersection is 6 ·2n ·2k +(30k +6)2n log 2n+(12k −
9 + 5k + 4 + 12k) · (2n − 1) + 6 · 2n · k = 24nk + (60nk + 12n)(log n + 1) + (29k −
5)(2n − 1) + 12nk = 154nk + 60nk log n + 12n log n + 2n − 29k + 5 bits, which is
ca 60nk log n + 154nk. The number of rounds is 3 + log 2n(log k + 1) + (log k +
2 + 2) + 3 = 9 + (log 2n + 1)(log k + 1).

3.2 Comparing Bit Matrix and Set Based Approaches

We will now compare the bit representation and the sparse representation for
FIM task. As mentioned in Sect. 3, for the bit representation, the intersections
are found by multiplying two bit vectors pointwise, and the set difference can
be computing analogously, by taking the negation of the bit vector that is being
subtracted. For the sparse representation, the set operations can be found by
using the algorithms defined in Sect. 3.1. The size of the sparse sets is m′, and
the set elements are encoded with log m bits. The numbers m′ and n are defined
as in the beginning of Sect. 3.

Cost of Intersection for Bit Representation. First of all, we estimate the
rounds and communication of the bit matrix intersections, based on the opera-
tion costs of Table 4.

According to the multiplication protocol [10] of Sharemind, this is 6m log m
for multiplying pointwise two log m bit vectors of length m. Another possibility
to do the same thing is to keep all the bits in Z2, doing the share conversion after
the multiplication. Now the multiplication of m bit pairs has cost Multm1 = 6m,
and the share conversion ShareConvm

log m = m · (5 log m + 4), which is in total
5m log m + 10m. This approach is more efficient for m ≥ 210.

http://dx.doi.org/10.1007/978-3-319-70290-2_3
http://dx.doi.org/10.1007/978-3-319-70290-2_3

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 149

Note that, if we need to compute Mult(〈[ai]〉, 〈[bj]〉) for all i ∈ {1, . . . , na}, j ∈
{1, . . . , nb}, then we could apply OuterProd(〈[a1]〉| . . . ‖〈[ana

]〉, 〈[b1]〉‖ . . . ‖〈[bnb
]〉)

instead, which has the same operation cost as Multna+nb
1 . However, the share con-

version would still have to be applied to all products, having cost ShareConvna·nb

log m ,
and it does not scale well with na and nb. Hence, we use only the first approach
in this paper. The number of rounds in the first approach is 1, compared to the
3 rounds of the second approach.

Cost of Intersection for Sparse Representation. Now we estimate the
rounds and communication of the sparse intersections, based on the operation
costs of Table 4. We compare them to the analogous cost metrics of bit matrix
approach.

In the sparse representation, we have m′ elements in the sets, each encoded
using log m bits. Suppose that we are going to find the intersections of some na

sets with some nb sets.

Round Advantage: An intersection takes 9 + (log 2m′ + 1)(log log m + 1) rounds
instead of 1 round of bit representation. This is an obvious disadvantage, but we
hope to win in memory consumption and communication.

Communication: One set intersection requires 60m′ log m log m′ + 154m′ log m
bits of communication, compared to 6m log m of the bit based approach. Hence,
for a single intersection, the advantage is non-negative iff m ≥ 10m′ log m′+26m′.
However, while the total cost of all intersections is (na +nb) ·6m log m for the bit
approach, it is na ·nb · (60m′ log m log m′ +154m′ log m), so the sparse approach
scales badly. The advantage of set intersection is non-negative iff

m ≥ na · nb

na + nb
(10m′ log m′ + 26m′) .

Comparisons of the bit and the set representations is given in Table 6.

Table 6. Multiple set algorithm costs of Sharemind

Type Bit communication cost

Bit representation (na + nb) · 6m log m

Set representation (na · nb) · 6m′ log m · (10 log m′ + 26)

Caveats of Sparse Representation. The best choice of m′ depends on the
values of na and nb, which in turn depends on particular input data and the
parameters, and these values are in general not known beforehand. In general,
we would like to fix m′ already in the beginning, since making m′ dependent
on data may leak more about it. On the other hand, we can make some further
intersections worse if we underestimate the values of na and nb.

Another problem is that, even if the data is sparse, they may be some sin-
gle columns that have too many elements to make sparse approach applicable.

150 P. Laud and A. Pankova

Algorithm 5. Bit vector to a set Bits2Set

Data: A bit vector [[b]] of length m with at most m′ nonzero entries
Result: A bitwise shared set representation 〈〈c〉〉 of 〈〈b〉〉

1 〈〈b〉〉 = [[b]] mod 2 ;
2 foreach i ∈ {1, . . . , m} do
3 〈〈c[i]〉〉 = 〈〈b[i]〉〉 · i ;

4 〈〈d〉〉 = CSort(〈〈c〉〉, 〈〈b〉〉) ;
5 return 〈〈d[1]〉〉, . . . , 〈〈d[m′]〉〉 ;

We cannot just remove excessive transactions since we would have to decide
which transactions exactly should be removed, and that choice may affect the
final result significantly. On the other hand, finding an intersection between a
dense column and a set of sparse columns is even worse than if sparse columns
were treated as bit columns, regardless of the advantage that intersections of
sparse columns give themselves.

If we agree to leak whether the number of nonzero entries has become at most
m′ after finding the intersection of two dense columns, then we may turn the
resulting column into sparse. We convert bit columns of some branch of Diffset
and Eclat to set columns only after all columns of that branch become sparse,
and only if conversion still makes sense for the number of intersections that is
going to be done on the next step.

Converting a Bit Matrix Column to a Set Matrix Column. The protocol
Bits2Set transforms a column of a bit matrix to m′ bitwise shared row identifiers,
where m′ is a known upper bound on the number of nonzero entries of a sparse
column. This protocol is given in Algorithm5. Assuming that m is a power of 2,
even though the input bit vector is additively shared in Zm, it is easy to convert
it to a bit vector shared in Z2 by locally truncating each entry up to the least
significant bit. In practice, at least using Sharemind system, the entries should
be shared over Z2�log m� anyway.

Computing the multiplications is a local operation since we are multiplying
by a public value j. The bit b[i] ∈ {0, 1} should be multiplied (in Z2) with each
bit of j, and this is a local operation. The cost of Csort is 7 rounds and 30mk
communication. For fixed m and m′, the total cost of the protocol is denoted
Bits2Setm,m′ , which is 7 rounds and 30m′ log m communication.

3.3 Combining Dense and Sparse Representations

We still assume that we are using the standard Eclat and Diffset algorithms with-
out modifying them in general. The algorithms should now additionally decide,
which columns should be represented as sets, and which columns as bit vectors.
As an example, we describe the new privacy preserving Eclat algorithm, and
Diffset would be analogous, just using set difference instead of set intersection.
Let m′ be the bound for which set based approach is applicable. Each iteration
of privacy preserving Eclat (depicted in Algorithm6) works as follows.

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 151

Algorithm 6. Privacy Preserving Eclat

Data: X is a set of n itemsets of size k − 1 with the same prefix
Data: 〈[M]〉 is the m × n matrix of supports of the itemsets
Data: threshold t
Result: Frequent itemsets of size at least k with the same prefix

1 if 〈[M]〉 has a bit representation then
2 〈[C]〉 ← OuterProd(〈[M]〉, 〈[M]〉) ;
3 〈[s]〉 ← Sum(〈[C]〉) ;

4 else
5 〈[C]〉 ← Set∩(〈[M]〉, 〈[M]〉) ;
6 〈[s]〉 ← Sum(1 − Equal(〈[C]〉, 0)) ;

7 b ← Declassify(〈[s]〉 ≥ t) ;
8 foreach i ∈ {1, . . . , n} do
9 Fi ← ∅; 〈[Mi]〉 ← [] ;

foreach j ∈ {i + 1, . . . , n} do
10 R = Xi ∪ Xj ;
11 if b[i · n + j] ≥ t then
12 Fi = Fi ∪ {R} ;
13 〈[Mi]〉 = 〈[Mi]〉‖〈[C]〉[i · n + j] ;

14 if Fi �= ∅ then
15 n′ = |Fi| ; //number of all columns
16 n′′ = Sum(〈[s]〉 ≤ m′) ; //number of sparse columns

17 costbit = (OuterProductn
′,n′

logm)⊗m ;

18 costset = (Bits2Setm,m′ ⊕ Equalm
′

logm)⊗n′ ⊕ Set∩
(n′2−n′)/2
logm ;

19 if (n′ �= n′′) or (costbit < costset) then
20 F ′

i = Eclat(Fi, 〈[Mi]〉, t) ;

21 else
22 F ′

i = Eclat(Fi, Bits2Set(〈[Mi]〉, m), t) ;

23 return
⋃

i F ′
i ;

The itemsets that are found to be frequent are public: similarly to [1], they
will be declassified in the end anyway and hence do not leak any additional
information. Let the itemsets of the current iteration of Eclat be represented
by P, as in Algorithm 2. The invariant is that, the secret shared supports of the
itemsets P are either all in bit representation, or are all in set representation. It
is not possible that some supports of the same prefix are bit columns, while oth-
ers are set columns, since computing intersections between columns of different
representations would be too inefficient.

The representation determines the algorithm used to compute the supports of
the next iteration, which are the intersections of current supports. The resulting
bit columns that have at most m′ elements are converted to set columns using

152 P. Laud and A. Pankova

Bits2Set protocol. To keep the invariant, this is being done only if all columns
of the current prefix have at most m′ elements. It is important that, even if a
column is sparse enough, it make sense to convert bit columns to set columns
only if it indeed gives advantage on the next step. This is done by estimating
the cost of both approaches and comparing them.

Let n′ be the current number of columns for the given prefix. The cost of one
conversion is Bits2Setn

′
m,m′ . In addition, set representation makes counting ones

a bit harder, requiring more comparisons of cost Equalm
′n′

log m. This overhead should
be added to the cost of sparse intersections (Set∩m′

log m)(n
′2−n′)/2. The resulting

cost costset is compared to the cost that we would have without converting
bit columns to sparse columns, which is costbit = (OuterProdn′,n′

log m)m. The bit
columns are converted to set columns iff costset ≤ costbit.

We note that comparison with m′ can be done only if all other conditions
are satisfied, and it is not needed for the bit representation. Hence, the cost
LessThann′

log m ⊕ Declassifyn′
1 of the comparison itself can be added to costset as

well, but its contribution is very small.

4 Benchmarks

We have implemented our algorithms in Sharemind and tested them on some
public datasets that are available e.g. in [7]. We tested Diffset on the denser
dataset Chess (3196 rows, 75 columns, 49,3% density), the medium density
dataset Mushroom (8124 rows, 119 columns, 19,3% density), and we tested Eclat
on the sparse dataset Retail (88162 rows, 16470 columns, 0.06% density). Since
Retail is a very large set, and we had to take a very small threshold t to get use
of sparse columns, we have taken only the first 5500 of its rows for our tests. We
ran the FIM task them with different thresholds t and different upper bounds
m′ on sparse column size. If m′ = 0, then only the bit representation was con-
sidered. The results are given in Table 7. In addition to time, we measured the
memory usage and the bit communication. For these two metrics, we have three
columns “sparse”, “dense” and “total”, denoting how much overhead was com-
ing from the set operations of sparse columns, the dense columns, and in total.
The communication cost of converting a bit column to a set column is treated
as the cost of sparse representation.

We see that the advantage of sparse representation is very small. The reason
is that there are too few columns for which set representation was more efficient.
Sometimes, the results are even slightly worse than for pure bit representation.
One reason for that is the data types of Sharemind are of fixed size, and it is
not possible to encode value in k bits for an arbitrary k. Moreover, the set rep-
resentation increases the number of rounds, and even some local computations,
which still affect the efficiency, even though they are less significant than the
communication.

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 153

Table 7. Benchmarks on Sharemind

dataset, FIM alg. t m′ Memory Communication Time (s)

Sparse Dense Total Sparse Dense Total

chess,Diffset 3000 36 288B 968KB 968KB 22KB 16.5MB 16.6MB 2.0 s

18 360B 929KB 930KB 22.9KB 16.4MB 16.4MB 2.5 s

9 72B 968KB 968KB 15.2KB 16.5MB 16.6MB 3.0 s

4 32B 965KB 965KB 14KB 16.5MB 16.5MB 2.5 s

0 0 991KB 991KB 0 16.5MB 16.5MB 2.6 s

2800 36 1.4KB 8.5MB 8.5MB 154KB 140MB 141MB 18 s

18 396B 8.6MB 8.6MB 122KB 140MB 140MB 19 s

9 144B 8.6MB 8.6MB 115KB 140MB 140MB 19 s

4 64B 8.6MB 8.6MB 113KB 140MB 140MB 19 s

0 0 8.6MB 8.6MB 0 140MB 140MB 18 s

2600 36 8KB 38.6MB 38.6MB 710KB 595MB 596MB 83 s

18 2.1KB 38.9MB 38.9MB 528KB 595MB 595MB 83 s

9 576B 39.1MB 39.1MB 487KB 595MB 596MB 80 s

4 208B 39MB 39MB 476KB 595MB 594MB 79 s

0 0 39MB 39MB 0 594MB 594MB 77 s

2400 36 220KB 130MB 130MB 2.2MB 2.0GB 2.0GB 265 s

18 857B 130MB 130MB 1.8MB 2.0GB 2.0GB 267 s

9 738B 132MB 132MB 1.57MB 2.0GB 2.0GB 255 s

4 328B 131MB 131MB 1.55MB 1.95GB 1.95GB 254 s

0 0 132MB 132MB 1.5MB 1.95GB 1.95GB 253 s

mushroom,Diffset 2600 92 180B 30.4MB 30.4MB 701KB 516MB 517MB 83 s

46 136B 29.4MB 29.4MB 546KB 510MB 511MB 81 s

23 7.64KB 29MB 29MB 641KB 507MB 508MB 80 s

11 3.43KB 29.2MB 29.2MB 430KB 506MB 507MB 80 s

0 0 31.7MB 31.7MB 0 512MB 512MB 64 s

2400 92 35KB 45.5MB 45.5MB 1.29MB 769MB 769MB 117 s

46 25.3KB 43.9MB 43.9MB 958KB 757MB 758MB 124 s

23 13.9KB 43.5MB 43.5MB 952KB 754MB 755MB 123 s

11 6.67KB 43.4MB 43.4MB 556KB 753MB 753MB 123 s

0 0 48.2MB 48.2MB 0 761MB 761MB 97 s

2200 92 53.5KB 62.7MB 62.7MB 1.94MB 1.10GB 1.10GB 183 s

46 38KB 60.3MB 60.4MB 1.43MB 1.08GB 1.08GB 172 s

23 36.5KB 59.9MB 59.9MB 7.97MB 1.07GB 1.08GB 180 s

11 18KB 59.3MB 59.4MB 3.70MB 1.07GB 1.07GB 179 s

0 0 66.9MB 66.9MB 0 1.08GB 1.08GB 151 s

2000 92 82KB 101MB 101MB 3.00MB 1.73GB 1.73GB 279 s

46 74KB 94.8MB 94.9MB 2.59MB 1.70GB 1.70GB 260 s

23 76.5KB 92.2MB 92.2MB 16.8MB 1.67GB 1.69GB 289 s

11 92.5KB 88.4MB 88.5MB 28.4MB 1.63GB 1.66GB 300 s

0 0 108MB 108MB 0 1.72GB 1.72GB 214 s

retail (trimmed), Eclat 15 62 744B 25.0MB 25.0MB 22.9MB 49.8GB 49.8GB 2660 s

31 1.05KB 24.9MB 24.9MB 22.9MB 49.8GB 49.8GB 2640 s

15 0 25.0MB 25.0MB 0 49.7GB 49.7GB 2690 s

7 0 25.0MB 25.0MB 0 49.6GB 49.6GB 2690 s

0 0 25.0MB 25.0MB 0 49.6GB 49.6GB 2620 s

154 P. Laud and A. Pankova

5 Conclusion

We have presented two basic FIM algorithm for sparse datasets, an Eclat/Apriori
based one, and a Diffset based one, where Diffset may be useful also for non-
sparse matrices. The algorithms turn out to be not as efficient as we wanted.
The main challenge is that the algorithms for sparse representation are not as
linearizable as the bit vector algorithms are. Nevertheless, since our protocols
can be easily integrated into the bit based approach, we may choose to apply
them only on those steps where they indeed give advantage. Also, while sparse
representation has not improved efficiency for the benchmarked tables, it allowed
to reduce the local memory usage, which may be important for large datasets.

References

1. Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptographically
secure privacy-preserving data mining. In: Chau, M., Wang, G.A., Yue, W.T.,
Chen, H. (eds.) PAISI 2012. LNCS, vol. 7299, pp. 112–126. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30428-6 9

2. Bogdanov, D., Laur, S., Talviste, R.: A practical analysis of oblivious sorting algo-
rithms for secure multi-party computation. In: Bernsmed, K., Fischer-Hübner, S.
(eds.) NordSec 2014. LNCS, vol. 8788, pp. 59–74. Springer, Cham (2014). doi:10.
1007/978-3-319-11599-3 4

3. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

4. Chen, R., Reznichenko, A., Francis, P., Gehrke, J.: Towards statistical queries over
distributed private user data. In: Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
25–27 April 2012, pp. 169–182. USENIX Association (2012)

5. Cheng, X., Su, S., Xu, S., Li, Z.: Dp-apriori: a differentially private frequent itemset
mining algorithm based on transaction splitting. Comput. Secur. 50, 74–90 (2015)

6. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7
November 2014, pp. 1054–1067. ACM (2014)

7. Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/. Accessed
16 Sept 2017

8. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37682-5 15

9. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 16(9), 1026–
1037 (2004)

10. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer
and floating-point arithmetic. In: Proceedings of WAHC 2016 - 4th Workshop on
Encrypted Computing and Applied Homomorphic Cryptography (2016)

http://dx.doi.org/10.1007/978-3-642-30428-6_9
http://dx.doi.org/10.1007/978-3-319-11599-3_4
http://dx.doi.org/10.1007/978-3-319-11599-3_4
http://fimi.ua.ac.be/data/
http://dx.doi.org/10.1007/978-3-642-37682-5_15

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data 155

11. Lee, J., Clifton, C.W.: Top-k frequent itemsets via differentially private fp-trees.
In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2014, pp. 931–940. ACM (2014)

12. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. Commun. ACM 53(9), 89–97 (2010)

13. Sun, C., Fu, Y., Zhou, J., Gao, H.: Personalized privacy-preserving frequent itemset
mining using randomized response. Sci. World J. 2014 (2014). 10 pages. Article
ID 686151. doi:10.1155/2014/686151

14. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2003, pp. 326–335. ACM (2003)

15. Zeng, C., Naughton, J.F., Cai, J.-Y.: On differentially private frequent itemset
mining. Proc. VLDB Endow. 6(1), 25–36 (2012)

http://dx.doi.org/10.1155/2014/686151

Applications

Free Rides in Denmark: Lessons from
Improperly Generated Mobile Transport Tickets

Rosario Giustolisi(B)

IT University of Copenhagen, Copenhagen, Denmark
rosg@itu.dk

Abstract. The term security ceremony describes a technical system
extended with its human users. In this paper, we examine the inspection
ceremony for the mobile transport ticket in Denmark. We find several
security weaknesses that are ascribable to both human and computer
components of the ceremony. The main vulnerabilities are due to the
design choices of how the visual inspection ceremony is organised and
the lack of information that is stored into the 2D barcode. These vul-
nerabilities allow a ticket holder to travel up to 8 zones with a 2-zone
subscription and enable several people to travel with the same subscrip-
tion. The attack is significant as it can be automated, and rather mod-
est skills are necessary to break the inspection ceremony. We state four
principles that aim at strengthening the security of inspection ceremonies
and propose an alternative ceremony whose design is driven by the stated
principles.

1 Introduction

Denmark has a modern transport infrastructure. The Danish government has
recently allocated substantial investments in infrastructure for railways, buses
and new metro lines [1]. Copenhagen, the capital with just over 700,000 inhab-
itants, has one of the most advanced metro systems in the world that runs
autonomously 24 h a day. Approximately one million people use the metro every
week [2]. Several transportation companies operate bus, metro, and train services
sharing the same ticketing system. Travellers can purchase three different ticket
formats: paper, contactless smart card, and digital app. Each ticket format has
its purchase and inspection procedures.

Travellers can purchase season tickets in digital format through a smartphone
app, which in Danish is called Mobilpendlerkort. The app enables commuters to
buy a digital subscription for a 30 up to 183 days in adjacent travel zones in
Denmark. Season tickets allow commuters to take advantage of unlimited trips
on buses, trains and metro for a discounted price. Hence, they are personal and
should be used only by the person who is registered as the user in the app.

Introducing new payment technologies goes hand in hand with designing the
corresponding process to check the validity of a ticket. There are many different
ways of how such a process could be organised. London transit, for example,

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 159–174, 2017.
https://doi.org/10.1007/978-3-319-70290-2_10

160 R. Giustolisi

has introduced the Oyster card, which is physically checked upon entering and
before leaving buses or stations. In Denmark, the solution is different. Train
guards are going around and checking the validity of the tickets. In long distance
trains, every customer is asked to provide a ticket, in local trains and Metro
trains inspections occur often, and in buses, inspections are permitted but rarely
happen at all, although one has to display the proof of purchase to the bus
driver before entering. Also, new mobile payment technologies brings along new
challenges of adjusting existing and designing new ticket inspection ceremonies.
Nowadays, the inspection ceremony must also work for digital tickets including
those printed on paper or displayed on a mobile phone’s screen. Inspectors may
use barcode scanning technology or use other means to assess the validity of a
ticket.

In this paper, we investigate the security ceremony that involves the inspec-
tion of the mobile transport tickets. According to Ellison [3], the term ceremony
refers to a technical system extended with its human users. Security ceremony
analysis, also known as socio-technical security analysis, is an area of research
that has been initiated only recently although it is widely accepted that security
incidents usually bootstrap from social engineering practices. Those practices
target the weakest link in the security chain, namely, the user. The idea behind
the socio-technical security analysis is to combine computer security and social
sciences into an interdisciplinary approach that brings the human in the context
of information security analysis. Recently, a socio-technical attack has been car-
ried out against UK rail tickets [4]. BBC reporters bought forged rail tickets on
the dark web. Although the tickets appeared genuine, magnetic strips were not
accepted by the barriers. However, train guards let BBC reporters through the
barriers at all occasions without asking any questions.

In a similar vein, we conduct our security analysis considering both human
and computer components involved in the inspection ceremony. Our findings
include an attack, which would allow a malicious commuter to exploit weaknesses
in the app and the inspection ceremony to ride trains, buses, and metro in
Denmark for free. If carefully orchestrated, the attack can elude post-processing
inspection analysis attempting to detect fraudulent activities and may affect
railway companies: the prices of a personal season ticket range from a minimum
of 375 kroner (50 euros), for one month covering 2 zones, to a maximum of
32099 kroner (4315 euros), for three months covering 28 zones in first class.
The cost depends on multiple factors such as period, travel class, the number
of travel zones, and type of ticket. Our work in this paper makes the following
contributions:

– We detail the security analysis of the inspection ceremony of digital season
tickets and reports some security weaknesses that enable a concrete attack
to the ceremony. Since there are no publicly available specifications of the
ceremony, we build the ceremony via a three-phase analysis (observation,
interaction, validation) of the procedures that train guards follow during
an inspection. For a similar reason, we decode the barcode printed into the
Mobilpendlerkort to gain the encoded data.

Free Rides in Denmark 161

– We advance four principles to transport operators aimed at improving the
security design of the tickets. We formulate our principles on the basis of the
outcome of our ceremony analysis and findings. It follows that the principles
are specifically devised for the ticket inspection ceremony but can be further
generalised and applied to other socio-technical contexts.

– We propose an alternative inspection ceremony that is aimed at strength-
ening the security of the inspection procedure. The design of the alternative
ceremony is driven by our principles. While it provides stronger security guar-
antees, it is simpler than the original ceremony.

Outline. Section 2 describes the Mobilpendlerkort app and the inspection cere-
mony; Sect. 3 details the steps that enable the attack to the ceremony; Sect. 4 out-
lines four principles for the design of ticket inspection ceremony; Sect. 5 details
an alternative ceremony that mitigates the attack in the original one; Sect. 6
discusses related work; finally, Sect. 7 concludes the paper.

2 Ceremony Description

The inspection ceremony is pivoted on the elements provided by the
Mobilpendlerkort app and on how the train guard interprets these elements. The
user installs the app and purchases a season ticket. The train guard is expected
to execute the inspection ceremony according to the details of the season ticket
available in the app.

2.1 Description of Mobilpendlerkort

The Mobilpendlekort app is available for mobile devices running iOS or Android
operating systems. It is published by DSB, the largest train operating company
in Scandinavia. We consider the latest available version (3.01) that is avail-
able at the time of writing this paper. Both iOS and Android versions of the
Mobilpendlerkort implement the same functionalities. Hence, the security issues
and the principles later described in this paper apply to both versions of the
app.

Once the app is installed, it requires the commuter to enter the mobile phone
number. The app generates a subscription number (stamkortnr) that is bound
to both device and phone number. If the commuter changes device or phone
number, the app generates a new subscription number, hence former season
ticket cannot be restored, and the commuter should purchase a new season ticket.
To purchase a season ticket, the commuter provides her personal details (i.e.,
name, surname, and birth date), chooses the starting and ending dates, and the
desired travel zones. After payment, the app downloads and installs the ticket,
which is represented via two screens. The primary screen is intended for visual
inspection and includes an animated visual watermark. The secondary screen
is intended for computer inspection and includes a 2D barcode that encodes a
digital signature on the ticket data. An instance of a valid ticket is depicted in
Figs. 1 and 2, which show the primary and secondary screens, respectively.

162 R. Giustolisi

Fig. 1. A screenshot of the
primary screen (personal
details are hidden)

Fig. 2. A screenshot of
the secondary screen

Fig. 3. A screenshot of the
primary screen with an
extra zone ticket

The center of the primary screen displays the valid travel zones and the time
interval for which the ticket is valid. In the lower-right corner, the screen displays
the personal details of the commuter, the type of the ticket (i.e., young, adult,
or senior), the number of zones and the number of days included in the subscrip-
tion, the purchase price, and the subscription number. In the lower-left area
of the primary screen there is the animated visual watermark that is intended
to provide visual assurance about the authenticity of the app. The secondary
screen displays the phone number of the commuter, the ticket number, and a 2D
barcode, specifically an Aztec type of barcode, which is the de facto standard
for mobile transport tickets. A new ticket number is generated whenever the
subscription is renewed. The Aztec barcode contains most of the data displayed
on the primary screen and the respective digital signature. Section 3 provides a
detailed description of the content of the barcode.

The app also allows commuters to purchase additional extra zone tickets that
extend the number of travel zones temporarily. Extra zone tickets are visually
stapled on the primary screen. For instance, the extra zone ticket in Fig. 3 allows
the commuter to travel to one additional zone, namely, any of the zones that
are adjacent to the zones already included in the subscription. It is possible to
purchase extra zone tickets for up to 8 additional zones.

Free Rides in Denmark 163

2.2 Building the Inspection Ceremony

There is no available public specification for the inspection ceremony of trans-
port tickets in Denmark. Thus, we derived the steps that form the ceremony
empirically. The procedure to build the ceremony included three phases. In the
observation phase, we observed how train guards interact with the app, either
when a valid or invalid ticket (i.e., expired, with wrong zones or personal details)
is checked. We noted the behaviours of train guards on metro and trains in the
Copenhagen metropolitan area. On buses, we observed the inspection done by
bus drivers. The output of this phase was a preliminary draft version of the cere-
mony. The draft served as input to the interaction phase in which we interacted
with train guards to refine the structure of the ceremony when they checked our
valid tickets. For example, we asked the train guard to execute a full inspec-
tion. We found that the inspection ceremony varies according to the mean of
transport and the cost of the ticket. For example, guards on metro and buses
are not equipped with scanners that can check barcodes, hence those guards can
only proceed with the visual inspection. Also, we realised that guards check ID
documents on metro rides either randomly or if they believe that the personal
details displayed on the primary screen of the app do not match with the mobile
phone holder (e.g., the app reports a typical female first name but the holder
is a male). Then, we moved to the validation phase, in which we asked the IT
security department at DSB to confirm about the correctness of the ceremony.
DSB personnel confirmed that steps outlined in the ceremony are correct, while
they preferred not to comment whether the ceremony comprises other steps that
we have not observed empirically. More details about DSB response are outlined
in Sect. 4.

Figure 4 summarises the various steps required for mobile ticket inspection,
which unfolds as follows. Upon request of the train guard, the commuter shows
the primary screen of the ticket along with an authentic and valid ID document.
The train guard visually checks the authenticity of the primary screen provided
by the animated visual watermark, image background, and font of the text. The
train guard then checks the validity of dates and zones reported on the ticket.
For short rides, such as metro rides, or in rush hours, the train guard may decide
to conclude the inspection and consider the ticket valid. Earlier successful con-
clusions of the ceremony are depicted with dashed lines in Fig. 4. Otherwise, the
train guard may check that the personal details of the ID document match name,
surname, and birth date reported in the primary screen. During the last step of
the inspection ceremony, the train guard checks the validity of the barcode using
an hand-held scanner, which is equipped with the verification key to validate the
signature. The device emits a green light if the verification is successful and a
red light otherwise.

It is clear that ticket inspection is a socio-technical procedure as it involves
actions and decisions from both human and computer components. It follows that
the security of such procedure depends on elements ascribable to human users
(i.e., the train guard), computer technology (i.e. the app and the scanner), and
the interaction among them. As we shall see later, this observation is important

164 R. Giustolisi

Fig. 4. The inspection ceremony executed by the train guard

as it leads to the finding of security weaknesses and provides grounds for the
security principles.

3 Attack Demonstration

This section describes an attack that exploits the security weaknesses of the
inspection ceremony. To describe the attack, we first report the procedure leading

Free Rides in Denmark 165

to evidence of weaknesses on the generation of the barcode. Then, we discuss
how to forge the primary screen to break the inspection ceremony by combining
the forged primary screen with the barcode.

Fig. 5. Raw data encoded in the 2D barcode. The sequence 302c 0214 reveals the
header of the signature. The sequence 78da reveals the header of a compressed payload.

3.1 Barcode Analysis

The first step for the analysis of the barcode content is to get the raw data cod-
ified in the barcode. There are many barcode decoders available on the Internet
that can recover data from barcodes, e.g., ZXing, WebQR. Figure 5 shows the
raw data encoded in the barcode contained in the secondary screen of Fig. 2.
The first 14 bytes are reserved for the header of the ticket. The presence of the
string “#UT” in the header confirms that the structure of the barcode follows
the UIC 918-3 standard [5], which prescribes the use of public key cryptogra-
phy. Information about the verification keys used by DSB and most popular
train operators in Europe are publicly available for download [6]. The header is
followed by a digital signature that is generated using DSA-SHA1 (1024-160).

Most of the data encoded in the barcode is the payload, which is compressed
into zlib format. Since only the content of the payload is signed, it is important
that it contains as much information as possible about the ticket to prevent its
forgery.

Since the structure of digital tickets is not open source, we derived it using
a differential analysis approach. We purchased different season tickets and stud-
ied how the respective payloads differ. In so doing, we were able to isolate the
elements that form the structure of the digital ticket, for example, the purchase
date, the price, etc. This approach led to an interesting finding. We consid-
ered two season tickets for the same travel zones but having different personal

166 R. Giustolisi

Fig. 6. The payload of the two tickets. The differences between the two payloads are
in bold. There is no mention of the personal details of the commuters.

details, starting, and ending dates. We expected that the different key informa-
tion between the tickets should be reflected on the payload. Figure 6 highlights
the data of the two payloads. As expected, we found that the payload includes
information about the ticket number, purchase date and time, ticket type, travel
zones, and purchase price. Surprisingly, the personal details of the commuter
cannot be found in the payload. This means that the authenticity of the per-
sonal details reported in the primary screen only relies on the unforgeability of
that screen.

3.2 Primary Screen Forgery

The primary screen should be usable, namely the visual inspection should not
take too long to evaluate the authenticity of the data reported on the screen.
On the other hand, any alteration of the screen should be noticeable to the
train guard at visual inspection. We note that the unforgeability of the primary
screen mainly depends on fonts, the position of the text, background image, and
animated visual watermark. As expected, the animation has complex elements
that make the animation difficult to reproduce.

Unfortunately, the primary screen can be forged in few steps and, most
importantly, once the background and the visual watermark are reproduced, the
forgery can be automated. We observe that no text overlays the visual water-
mark, hence the latter can be obtained by recording a video of the primary screen
on the phone (Quicktime can capture iPhone screens). Then, the resulting video
can be converted into a GIF image to facilitate editing. We also observe that
only name, surname, and birth date need to be edited because other informa-
tion is sealed into the signature encoded in the barcode. It follows that only a
small portion of the background needs to be edited and replaced with the desired

Free Rides in Denmark 167

Fig. 7. A screenshot of a
complete empty forged pri-
mary screen as template

Fig. 8. A screenshot of
the forged primary screen
as template

Fig. 9. A screenshot of the
forged primary screen filled
with a placeholder name

name, surname, and birth date, although a complete empty primary screen can
be easily obtained (Fig. 7). This makes the forgery procedure even easier than
expected: there is no need for a dedicated app, a GIF image is sufficient to make
a successful forgery.

The last step needed to complete the forgery is to use the correct font. Any
online font identifier can recognise the font, which in this case is RobotoSlab
Regular. Figure 8 shows a screenshot of a forged primary screen that can be used
as a template to create several primary screens with different personal details
automatically. Figure 9 depicts the template filled with placeholder details.

The attack is carried out by combining the secondary screen with a forged
primary screen. In fact, even if the train guard checks the ticket holder’s ID
document, she may end up accepting the forged digital ticket. The attack breaks
the inspection ceremony in both its human and computer components. It takes
advantage of poor security choices in the design of the primary screen breaking
the visual inspection on the screen (human component). The attack exploits the
naive generation of the signature encoded in the barcode to pass the electronic
check (computer component) of the secondary screen.

One may note that post-processing systems will eventually identify the
concurrent use of a forged digital ticket, and annul it. Still, a forged digital
ticket can be successfully used at different times of the day by different people.

168 R. Giustolisi

The attack is very effective if orchestrated carefully. A more sophisticated version
would be to purchase a season ticket with many travel zones and take advan-
tage of the reduced price due to the incremental discount rate. The ticket would
be distributed among several commuters that travel to different zones. In this
case, the forged digital ticket can be implemented into a dedicated app that
allows users to report when a forged digital ticket is scanned. This sophisticated
version would be particularly virulent: fraudsters can coordinate the issue of
forged digital tickets, minimising the risk that post-processing systems identify
the concurrent or suspicious use of the tickets.

3.3 Extra Zone Ticket Forgery

Forging the extra zone ticket is even easier than the primary screen as there is no
need to forge the app at all in this case. Less than one person-day of effort was
needed to make an Android floating app that overlaps the primary screen of the
Mobilpendlerkort. A floating app is an application that opens in a window and
floats over all other applications allowing multitasking on a device. A popular use
of floating apps are the chat heads of messaging apps like Facebook Messenger.
In our case, the floating app consists of a fake extra zone ticket with a countdown
timer that simulates the remaining validity time of the ticket. Our app does not
float freely but sticks to the primary screen.

The extra zone ticket forgery is effective because the barcode does not change
when extra zone tickets are purchased and takes advantage of the poor security
design of the ticket in the primary screen to attack the visual inspection (human
component).

4 Principles

Upon the basis of our findings, we formulate four principles that form the founda-
tion for our proposed solution. The first principle focuses on differences between
paper and mobile tickets.

Principle 1. The security design of paper tickets should not influence the secu-
rity design of electronic tickets.

Often, look and feel of traditional systems tend to be copied in their electronic
counterpart. This is a natural design choice because it takes advantage of the
preexisting familiarity that stakeholders have with the system: it minimises end-
user confusion caused by the introduction of electronic components; it allows
system developers to get immediate correctness feedback from a system they
already know well. With a security take, this approach should be practised more
cautiously, prioritising secure by design principles when possible. For instance,
it is mistakenly believed that a digital animation image gives the same degree
of authenticity to mobile tickets as watermarks give to paper tickets. In our
setting, the forged digital ticket is a clear example of how a pre-existing (working)
approach in the traditional system influences the electronic one negatively.

Free Rides in Denmark 169

Principle 2. Computer inspection should be prioritised over visual inspection.

An immediate consequence of Principle 1 is that computer components should
not be seen as add-ons that follow the traditional inspection ceremony. Train
guards are used to that a successful visual inspection signifies that the ticket is
valid. Habits are hard to eradicate, especially when traditional and electronic sys-
tems coexist, as in the case for transport tickets. The human-then-computer cer-
emony may lead train guards to execute only the traditional inspection ceremony
and consider mobile tickets valid when they are not. Designing a computer-then-
human ceremony would result in train guards to diverge from the traditional
ceremony, fostering awareness of the different inspection ceremonies.

When possible, it is also advisable to intertwine human and computer com-
ponents in the inspection ceremony. A closer look at the inspection ceremony in
Fig. 4 reveals an additional issue due to the separation of human and computer
components. The last check validates the signature of a payload that is unin-
telligible to the human because the payload is encoded as a 2D barcode. The
payload may contain different data respect to the information reported in the
primary screen, and the output of the scanner (i.e., green or red light) is not
sufficient to the train guard to check whether the payload actually encodes the
same data as in the primary screen.

Principle 3. The inspection ceremony should enable the verification of ticket
key information either electronically or manually.

Maintaining information in electronic form has many advantages, such as quick
and human-errorless ticket verification. However, it is necessary that all key
information is considered for checking. Complete information may not be avail-
able due to intentional or unintentional computer malfunctions. For example,
scanners may not work properly during the inspection. It is desirable that the
inspection ceremony provides the strongest possible security guarantees to both
electronic and manual verification procedures. For example, the ceremony would
benefit from practices such as data redundancy and data duplication. Both prac-
tices prompt verification procedures to have access to the necessary data and
would help to avoid weaknesses such as the exclusion of commuter personal
details from the payload of the barcode.

Principle 4. Security should be preferred over usability in the design of visual
inspection of an electronic ticket.

The rationales underlying this principle are twofold. First, it comes from the
observation that a ticket is not a receipt. The goal of a transport ticket is to
prove to the train guard that the holder has a certain right, while the goal of
a receipt is to prove to the holder that ticketing system received the money. A
common mistake is not to separate concerns, for example, separate tickets with
receipts. The design of a ticket demands security and usability towards the train
guard while the design of receipt focuses on usability towards the ticket holder.
The effort in balancing those conflicting requirements may lead to compromises

170 R. Giustolisi

and may introduce security weaknesses, which can be easily avoided by designing
ticket and receipt separately.

Secondly, electronic tickets are more suitable for computer inspection than
visual inspection, hence it is easier to guarantee the security of the inspection
via computer components rather than human components. The security of visual
inspection cannot be taken for granted, and visual assurance elements should be
carefully designed to maximise security, sacrificing usability if necessary. The
following design advice list aims at maximising the security of visual inspection.

– Prefer complex, large, and dynamic visual watermarks over simple, small, and
static ones to mitigate forgery.

– Superimpose critical information and visual watermark to prevent data alter-
ation.

– Display the current time to ensure liveness.
– Display visual watermarks across the screens to evidence screen correlation.

Of course, the list contains elements that may negatively affect the usability of
the ceremony. However, we observe that this is not a real issue since train guards
are expected to be specifically trained to perform a visual inspection. This is an
additional element in support of prioritising security over usability in the design
of visual inspection.

5 Alternative Inspection Ceremony

We propose a new inspection ceremony inspired by the principles outlined above.
Where possible, we reuse the components of the actual ceremony. We believe that
the reuse of existing components will reduce the need of training for train guards,
hence will favour a faster adoption of the new ceremony.

Figure 10 shows the steps of the alternative inspection ceremony. A main
pillar of the alternative ceremony is to prioritise computer inspection over visual
inspection, as advocated in Principle 2. The primary screen is replaced with a
barcode screen, that contains the Aztec barcode, which should encode zones,
dates, and personal details of the commuter. This enables the verification of all
ticket key information electronically as suggested in Principle 3. The hand-held
scanner checks the barcode and, if the signature is valid, it shows the content of
the payload (i.e., zones, dates, and personal details) on the screen of the scanner.
The train guard now checks the validity of zones and dates by looking at the
screen of the scanner. The last step consists of checking whether the personal
details displayed on the screen of the scanner match with the details reported
on the ID document.

The proposed inspection ceremony is simpler than the original one. The app
needs only one screen to represent the ticket. This is possible by taking advan-
tage of the screen on the scanner. The visual inspection now takes place on a
device controlled by transport companies rather than on the commuter’s device,
which provides only the elements for computer inspection. Thus, the alternative
inspection ceremony minimises the attack surface due to forged digital tickets

Free Rides in Denmark 171

Computer

Human

Barcode Screen

Scan 2D barcode

Check signature

Valid?

Public Key

ID Document

Authentic?

Zones, dates, details

Check zones, dates

Valid?

Check details

Check details

Match?

PassFail

Pass

yes

yes

no

yes

yes

no

yes

no

yes

Fig. 10. The proposed inspection ceremony

on the human visual inspection. The proposed design provides more security
guarantees in case of an earlier successful conclusion of the ceremony. The scan-
ner does not emit light to signal the outcome of the verification anymore, hence
the train guard needs to validate travel zones and dates, whose authenticity is
provided by the digital signature encoded in the barcode. Although an earlier
successful conclusion of the proposed ceremony does not ensure that the holder
has the right to travel with that digital ticket, it still guarantees that the ticket
is valid. Conversely, an early successful conclusion of the original ceremony does

172 R. Giustolisi

not give any guarantees about the validity digital ticket, which might be forged.
An additional element in support of the proposed inspection is that it helps the
post-processing analysis as each ticket inspection entails ticket scanning. The
device can store the data collected on each scan, which is eventually sent to
the post-processing systems as it happens with tickets in the form of contactless
smart cards.

A secondary screen might still be necessary in the event that an hand-held
scanner is unavailable. The animation image displayed on that screen should be
replaced by a more robust form of digital watermark as suggested by the elements
listed in Principle 1. It is important to stress that the ceremony should lead the
train guard to look at this screen only under exceptional circumstances. This
justifies the use of a more sophisticated and secure form of digital watermark at
the cost of a slower visual inspection. The security of the alternative inspection
ceremony is not proven, and it would be interesting to use formal approaches to
appreciate the security of both original and proposed ceremonies.

Responsible Disclosure. We notified DSB as soon as we completed the secu-
rity analysis of the inspection ceremony and found the security weaknesses. DSB
examined our report and started reviewing the Mobilpendlerkort app. However,
at the time of writing this paper, no new version of the app has been released.
While DSB personnel confirmed that all the steps depicted in the inspection
ceremony are correct, they preferred not to comment whether the ceremony
comprises other steps that we have not observed empirically. For example, we
would have been interested to know whether the scanner can remotely check a
ticket online. If so, it is essential to know what data is exchanged between the
scanner and the remote server. The presence of the digital signature into the
barcode suggests that the scanner makes an offline check.

6 Related Work

Ceremony analysis has been increasingly studied as a way to better understand
the security issues of real-world systems. Radke et al. [7] investigated strengths
and weaknesses of ceremony analysis. Bella and Coles-Kemp [8] advanced a
model in support of the socio-technical analysis of security termed the cere-
mony concertina. Johansen and Jøsang [9] proposed a probabilistic modelling
of humans based on the ceremony concertina. Probst et al. [10] have recently
discussed different approaches to modelling and analysing socio-technical sys-
tems formally. In our case, the approach to the ceremony analysis is informal.
However, we believe that our case study would benefit from formal approaches
and that new security issues might be found.

Garcia et al. [11] reverse engineered and made a cryptoanalysis of the
MIFARE Classic card, a major player in contactless smart card market, with
a strong presence in public transport systems. They found two attacks that
allowed an intruder to get the secret key of a card. MIFARE Classic card could

Free Rides in Denmark 173

be cloned in under a second. Differently from our work, they exploit a secu-
rity vulnerability of the cryptographic primitive of the authentication protocol.
Murdoch et al. [12] attacked “Chip and Pin” cards issued by the EMV (Europay,
MasterCard, Visa) consortium. They were able to make a successful transaction
with a stolen card without knowing the PIN. They exploited the fact that the
PIN verification step is never explicitly authenticated. In so doing, they were
able to build a man-in-the-middle attack using a few hardware components and
a fake card.

E-ticketing insecurity traces back to Schneier [13], which explained how easy
was to fly on someone else’s ticket by changing the name on the e-ticket boarding
pass printed out at home. More recently, Jaroszewski [14] created a fake board-
ing pass app to enter airline lounges. Instead of generating the boarding pass, the
app generates a barcode that is based on the flight number, and that can then be
scanned at the entrance to lounges. The fake barcode worked because it was gen-
erated without any cryptographic authentication mechanism so unmanned auto-
matic scanners could not check properly the eligibility of the passenger. This case
is complementary to the case studied in our paper in which the involvement of
human user (i.e., the train guard) might be harmful to the security of the system.

7 Conclusions

The socio-technical approach to the security analysis allowed us to find the
security weaknesses that lead to the attacks. The contribution of this work is
not in the attacks that we have identified but in the principles we have derived
from our observation for the design of security ceremony. Building a security
ceremony is not a straightforward task. There is no standard notation or known
guideline that prescribes the right formalism to represent the flow of information
in a security ceremony. The presence of human users further complicates the
construction of the ceremony. In our case, we decided to use flowcharts because
they provide a simple and clear graphical description, and naturally describe the
heterogeneous protocol where users and computers are the players. The presence
of the human component also complicates the design of a security ceremony.
Human users tend to take shortcuts as in the case of earlier successful conclusions
of the ceremony. With a security take, the shortcuts should be reduced as much
as possible and, ideally, eradicated.

Acknowledgement. This work is supported in part by DemTech grant 10-092309
from the Danish Council for Strategic Research, Programme Commission on Strategic
Growth Technologies.

References

1. Ministry of Transport of Denmark: Danish infrastructure investments (2012).
https://goo.gl/irpQQR

2. Ministry of Foreign Affairs of Denmark: Transport infrastructure in
Denmark (2012). http://denmark.dk/en/practical-info/work-in-denmark/
transport-infrastructure-in-denmark

https://goo.gl/irpQQR
http://denmark.dk/en/practical-info/work-in-denmark/transport-infrastructure-in-denmark
http://denmark.dk/en/practical-info/work-in-denmark/transport-infrastructure-in-denmark

174 R. Giustolisi

3. Ellison, C.: Ceremony design and analysis. IACR eprint (2007)
4. BBC News: Forged rail tickets sold on dark web, BBC investigation reveals (2016)
5. International Union of Railways: Uic 918–3: International rail ticket for home print-

ing (2007)
6. International Union of Railways: the UIC public key management website (2017).

https://railpublickey.uic.org/download.php
7. Radke, K., Boyd, C., Gonzalez Nieto, J., Brereton, M.: Ceremony analysis:

strengths and weaknesses. In: Camenisch, J., Fischer-Hübner, S., Murayama, Y.,
Portmann, A., Rieder, C. (eds.) SEC 2011. IAICT, vol. 354, pp. 104–115. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21424-0 9

8. Bella, G., Coles-Kemp, L.: Layered analysis of security ceremonies. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 273–286.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30436-1 23

9. Johansen, C., Jøsang, A.: Probabilistic Modelling of Humans in Security Cer-
emonies. In: Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Lupu, E., Posegga, J.,
Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA/SETOP -2014. LNCS, vol.
8872, pp. 277–292. Springer, Cham (2015). doi:10.1007/978-3-319-17016-9 18

10. Probst, C.W., Kammüller, F., Hansen, R.R.: Formal modelling and analysis
of socio-technical systems. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.)
Semantics, Logics, and Calculi. LNCS, vol. 9560, pp. 54–73. Springer, Cham (2016).
doi:10.1007/978-3-319-27810-0 3

11. Garcia, F.D., Koning Gans, G., Muijrers, R., Rossum, P., Verdult, R., Schreur,
R.W., Jacobs, B.: Dismantling MIFARE classic. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88313-5 7

12. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and pin is broken. In:
2010 IEEE Symposium on Security and Privacy, pp. 433–446 (2010)

13. Schneier, B.: Flying on someone elses airplaine ticket (2003). https://www.schneier.
com/crypto-gram/archives/2003/0815.html#6

14. Jaroszewski, P.: How to get good seats in the security theater? Hacking boarding
passes for fun and profit. In: DEF CON 24 Hacking Conference (2016)

https://railpublickey.uic.org/download.php
http://dx.doi.org/10.1007/978-3-642-21424-0_9
http://dx.doi.org/10.1007/978-3-642-30436-1_23
http://dx.doi.org/10.1007/978-3-319-17016-9_18
http://dx.doi.org/10.1007/978-3-319-27810-0_3
http://dx.doi.org/10.1007/978-3-540-88313-5_7
http://dx.doi.org/10.1007/978-3-540-88313-5_7
https://www.schneier.com/crypto-gram/archives/2003/0815.html#6
https://www.schneier.com/crypto-gram/archives/2003/0815.html#6

Using the Estonian Electronic Identity Card
for Authentication to a Machine

Danielle Morgan1 and Arnis Parsovs2,3(B)

1 Tallinn University of Technology, Tallinn, Estonia
2 Software Technology and Applications Competence Center, Tartu, Estonia

3 University of Tartu, Tartu, Estonia
arnis@ut.ee

Abstract. The electronic chip of the Estonian ID card is widely used
in Estonia to identify the cardholder to a machine. For example, the
electronic ID card can be used to collect rewards in customer loyalty
programs, authenticate to public printers and self-checkout machines in
libraries, and even unlock doors and gain access to restricted areas. This
paper studies the security aspects of using the Estonian ID card for this
purpose. The paper shows that the way the ID card is currently being
used provides little to no assurance to the terminal about the identity of
the cardholder. To demonstrate this, an ID card emulator is built, which
emulates the electronic chip of the Estonian ID card as much as possible
and is able to successfully impersonate the real ID card to the terminals
deployed in practice. The exact mechanisms used by the terminals to
authenticate the ID card are studied and possible security improvements
for the Estonian ID card are discussed.

1 Introduction

The state of Estonia issues several types of credit card-sized identity documents
that contain a contact-type smart card chip. These are the identity card, the
residence permit card, the digital identity card and the e-resident’s digital iden-
tity card [24]. The common term “ID card” is used in this paper to refer to all
these chip cards.

The main purpose of the electronic chip embedded in the ID card is to per-
form cryptographic operations with two RSA 2048-bit keys stored on the chip.
One key is used for authentication and the other for digital signatures. The
authentication key can be used to sign TLS client certificate authentication chal-
lenges and to decrypt encrypted documents sent to the cardholder, while the dig-
ital signature key can be used by the cardholder to create eIDAS-compatible [29]
qualified electronic signatures (QES). Cryptographic operations require that the
cardholder authenticate using a PIN.

In Estonia, it is a widespread practice to use the ID card as a credential to
electronically identify oneself to a machine. Several large merchants in Estonia
allow the ID card to be used as a customer loyalty card [6], providing access
to rewards once the ID card is inserted in the merchant’s terminal. Similarly,
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 175–191, 2017.
https://doi.org/10.1007/978-3-319-70290-2_11

http://orcid.org/0000-0002-0459-6580
http://orcid.org/0000-0002-3746-8059

176 D. Morgan and A. Parsovs

the ID card can be used to authenticate to self-service printing machines and
self-checkout machines in libraries. Pharmacies use the ID card chip to look up
the drugs prescribed using the digital prescription system. In some public and
less public security installations the ID card can be used as an entrance card
to unlock the door and gain access to restricted areas [5]. Using the ID card is
convenient, as every Estonian resident is supposed to have one, and using such
a universal identification token means that people do not need to carry around
a large number of service provider-specific identification tokens.

However, one common characteristic observed in this type of identification is
that the ID card is authenticated without the cardholder being required to enter
a PIN. This means that the cryptographic capabilities provided by the card are
not used to authenticate the chip. The card terminal simply reads a cardholder
identifier stored on the card and uses it to decide if access to the service should
be granted.

This paper studies how the smart card terminals deployed authenticate the
ID card chip in practice. This is done by building an ID card emulator, which
emulates the chip of the real ID card as much as possible and logs the commands
received from the terminal. We discuss the security aspects of using this type
of chip authentication and also analyze the risks faced by the cardholder when
inserting their ID card in an untrusted terminal. We acknowledge that for certain
ID card use cases discussed in this paper, the risk of fraud is so low that a secure
authentication solution may not be needed. The analysis of fraud feasibility,
however, is not in the scope of this study.

The paper is structured as follows. Section 2 describes the current ID card
chip authentication mechanism and the related issues. Section 3 analyzes the
security risks faced by the cardholder when inserting their card in a malicious ter-
minal. Section 4 describes the design of the ID card emulator. Section 5 describes
the results of using the ID card emulator in the terminals deployed in practice.
Section 6 discusses possible improvements to the current card authentication
mechanism. Finally, Sect. 7 concludes the paper.

2 Card Authentication

To identify the cardholder, the terminals deployed in practice read the publicly
readable personal data file that resides on the chip of the Estonian ID card.
The records contained in the personal data file are shown in Table 1.1 To read
the records, the terminal has to send several Application Protocol Data Unit
(APDU) commands to the smart card and read the responses. An example of
reading the 5th record (nationality code) from the personal data file is shown
in Table 2. In practice, the process of reading the whole personal data file takes
half a second.

For the purpose of identifying the cardholder, the personal ID code (record
No. 7) is the best option. The personal ID code does not change during the
1 The digital identity cards issued before December 2014 only have the document

number (field No. 8) filled. These cards will expire by December 2017.

Using the Estonian Electronic Identity Card for Authentication to a Machine 177

Table 1. Contents of a personal data file stored on an ID card [30, Sect. 10]

No Content Example Length (bytes)

1 Surname ŽAIKOVSKI Max 28

2 First name line 1 IGOR Max 15

3 First name line 2 Max 15

4 Sex M 1

5 Nationality code POL 3

6 Date of birth 01.01.1971 10

7 Personal ID code 37101010021 11

8 Document number X0010536 8 or 9

9 Expiry date 13.08.2019 10

10 Place of birth POOLA / POL Max 35

11 Date of issuance 13.08.2014 10

12 Permit type Max 50

13 Notes line 1 EL KODANIK / EU CITIZEN Max 50

14 Notes line 2 ALALINE ELAMISÕIGUS Max 50

15 Notes line 3 PERMANENT RIGHT OF RESIDENCE Max 50

16 Notes line 4 LUBATUD TÖÖTADA Max 50

Table 2. APDU commands for reading the 5th record from the personal data file

Command Command APDU Response APDU Description

SELECT FILE 00 A4 01 0C 02 EE EE 90 00 Select EstEID DF

SELECT FILE 00 A4 02 0C 02 50 44 90 00 Select personal data file

READ RECORD 00 B2 05 04 00 61 03 Read 5th record

GET RESPONSE 00 C0 00 00 03 50 4F 4C 90 00 Retrieve 3-byte response

cardholder’s lifetime and is the standard identifier used by Estonian information
systems to uniquely identify a person. The personal ID code, however, is not
just a unique identifier – it also reveals the person’s date of birth, sex, and the
district where the code was issued.

2.1 Document Expiration and Revocation Checks

To verify that the card has not expired and is not revoked, the terminal can
check the expiry date (record No. 9) and use the document number (record No.
8) to run an online check against the public online document validity service
provided by the Estonian Police and Border Guard Board [7]. Alternatively, the
terminal can check the validity of X.509 certificates stored on the card using the
OCSP service provided by the CA free of charge. However, since the certificates
on the card can be revoked without revoking the identity document, the validity

178 D. Morgan and A. Parsovs

status of certificates may not reflect the validity status of the document. For
example, the cardholder could have revoked the certificates only to disable the
card’s cryptographic functionality. On the other hand, in case a card is lost
or stolen the validity of certificates is often suspended temporarily in hopes of
finding the card later, at which time the suspension can be terminated. The
validity life-cycle of the identity document, however, does not allow temporarily
suspending the validity of the document.

2.2 Card Impersonation

The data records stored in the personal data file are not cryptographically pro-
tected, therefore the terminal has to trust that the data received has not been
modified and is read from an authentic ID card. With cheap programmable
smart cards available on the market, this assumption of trust does not hold in
practice. In Sect. 4 we demonstrate the design of a fake ID card chip that is able
to trick the terminals into accepting the fake chip as a genuine ID card, and
respond to the terminal with arbitrary data contained in the personal data file.
This makes the schemes relying on chip authentication vulnerable to cardholder
impersonation attacks.

3 Attacks by Malicious Terminals

The lack of cryptographic assurance in the chip authentication process allows a
malicious cardholder to deceive the terminal. However, the cardholder also faces
security risks if the ID card is inserted in a malicious terminal. These risks will
be discussed in this section.

3.1 Compromising the Cardholder’s Privacy

While their personal ID code is the only record needed to identify the card-
holder, a malicious terminal can read other records from the personal data file,
such as place of birth or information about a residence permit. There may be
a legitimate reason for reading the expiry date and document number, if the
document expiration and revocation checks are to be performed (see Sect. 2.1).
Without the data stored in the personal data file, there is also other publicly
readable information available on the chip, such as X.509 public key certificates,
private key usage counters and PIN retry counters.

The X.509 certificates stored on the ID card [30, Sect. 13] do not contain any
personal information other than the personal ID code and name of the card-
holder. The certificates can also be obtained from the public LDAP directory
maintained by the CA. Instead of reading the personal data file, the ID code to
authenticate the cardholder could be extracted from the certificate. This app-
roach, however, is not used in practice, since it is faster and easier to read a
single record from the personal data file. On the other hand, by verifying the

Using the Estonian Electronic Identity Card for Authentication to a Machine 179

signature on the certificate, the terminal could at least obtain a cryptographic
assurance that a person with such a name and personal ID code exists.

Private key usage counters [30, Sect. 12.4] show how many private key oper-
ations have been performed with a particular private key. The terminal can use
this information to find out how active the cardholder is in using the ID card
for authentication and digital signatures.

The PIN and PUK code retry counters [30, Sect. 12.2] show the remaining
PIN tries, which lets the terminal find out how many times the particular PIN
or PUK code has been entered incorrectly. Note that the retry counter is reset
to 3 after each successful PIN/PUK verification, and hence these counters are
unlikely to have any other value except 3.

Privacy Risk for Residence Permit Card Holders. Residence permit cards
are ID cards issued to Estonian residents who are not citizens of the European
Union [8]. These cards contain an additional contactless smart card chip that
runs the ICAO compliant ePassport application storing digitally signed card-
holder data, including biometric data. However, to read that information wire-
lessly, the terminal has to authenticate to the ePassport chip using the Basic
Access Control (BAC) mechanism. To create the BAC key, the reader has to
optically read the machine-readable zone (MRZ) and extract the document num-
ber, expiration date and date of birth. However, since the fields comprising the
BAC key are also stored on the contact chip in the personal data file, a malicious
terminal – if equipped with an additional contactless reader – can read the data
stored on the ePassport chip without needing to scan the MRZ. The additional
personal information that can be obtained this way are the cardholder’s facial
image and two fingerprints2.

We note that the reading of the facial image may be useful for the purpose
of cardholder verification (see Sect. 6.2), although the wireless reading of 20 KB
480× 640 pixel facial image from the residence permit card takes around 15 s.

3.2 Denial-of-Service Attacks

A malicious terminal can execute denial-of-service attacks against the card, leav-
ing the card in an impaired state. The most straightforward attack is to decrease
the PIN/PUK retry counters to 0. This will block the cardholder’s access to cryp-
tographic operations, forcing the cardholder to visit the ID card customer service
point to obtain a new PIN envelope. Such a service does not exist for holders
of the e-resident’s digital identity card, which means that their only option is
to apply for a new ID card. Similarly, a malicious terminal can block the Glob-
alPlatform [10] applet management key, which will prevent the cardholder from
renewing the applet in ID card customer service points or over the Internet.

2 Fingerprints on cards issued after 3 November 2014 are additionally protected using
the Extended Access Control (EAC) mechanism, which requires terminal authenti-
cation.

180 D. Morgan and A. Parsovs

One could argue that these logical denial-of-service attacks against the ID
card should not be of concern, since a malicious terminal can always cause
damage, for example, by supplying excessive voltage to the electronic chip. In
practice, however, the attacker may have gained only a logical control over the
terminal, leaving application-level attacks against the smart card the only option
available.

3.3 Unauthorized Use of Private Keys

A malicious terminal could also try to perform private key operations by guessing
the 4-digit PIN1 protecting the authentication key or the 5-digit PIN2 protect-
ing the digital signature key. The probabilities of guessing a random 4-digit or
5-digit PIN in 3 tries are 0.03% and 0.003%, respectively. In practice, however,
the probability of successfully guessing the PIN can be several times higher,
since some of the cardholders may have updated the random PIN generated by
the card issuer with a PIN of their choice. Bonneau and others in [1, Table 3]
show that compared to randomly generated PINs, for human-chosen PINs the
probability of successfully guessing a 4-digit PIN increases from 0.03% to 5.52%
if 3 guesses are allowed.

While this type of an attack has quite a low success probability for a targeted
attack, an opportunistic attacker in contact with thousands of cards can succeed
in guessing the PIN for some of the cards. Instead of performing 3 guesses per
PIN (which will cause the PIN to be blocked), the attacker can perform only one
try per PIN. The cardholder is unlikely to notice that after inserting the card in
a terminal, the PIN retry counter has decreased. In fact, the malicious terminal
can continue the attack once the cardholder returns with the PIN retry counter
reset.

Nevertheless, the probability of guessing both PINs for the same cardholder
is negligible. Therefore, high-risk transactions should always involve both the
authentication as well as the digital signing operation.

4 Design of ID Card Emulator

In this section, we show the design of the ID card emulator that we used in
the experiments performed in Sect. 5. The purpose of the ID card emulator is
to emulate the chip of a real ID card as closely as possible. Since the private
keys from the real chip cannot be extracted, the operations performed with the
private keys cannot be emulated. However, as discussed before, for the purpose
of card authentication, the emulation of private key operations is not needed. As
the experiments will show, in practice the terminals only use the personal data
file feature.

To implement ID card functionality in a smart card, a programmable smart
card supporting JavaCard technology was chosen. The JavaCard technology
allows smart card applications to be written using a subset of the Java program-
ming language. Nowadays, most of the smart cards on the market run appli-
cations written using the JavaCard technology. The Estonian ID cards issued

Using the Estonian Electronic Identity Card for Authentication to a Machine 181

starting from 2011 also use the JavaCard technology to implement the required
functionality. The source code of the EstEID JavaCard applet, which is installed
on the ID cards in the card personalization stage, is the intellectual property of
the card personalizer Trüb Baltic AS and is not public [3]. However, a detailed
specification for terminal and chip communication is provided in [30] and [31].
Furthermore, there is an open source implementation of the EstEID applet called
FakeEstEID [19], on which we based our ID card emulator. The FakeEstEID
applet was modified to implement the APDU command logging functionality,
add support for the arbitrary applet application identifier (AID), implement the
GET RESPONSE emulation for T=0 Case 2 APDUs, and to emulate the EstEID
v3.5 personal data file format.

4.1 Card ATR Adjustment

Whenever the power or the reset signal is supplied to a card, the card responds
with a sequence of bytes called Answer To Reset (ATR). These bytes identify
communication parameters supported by the card and may contain historical
bytes that typically hold some kind of a card identifier. Several generations of
Estonian ID cards in circulation respond with different ATRs. Each generation
of ID card responds with two different ATRs, cold and warm ATR, depending
on whether the power or the reset signal has been supplied to the card.

Since the ATR returned by the card can be used by the terminal to ver-
ify if the inserted card is the Estonian ID card, the ID card emulator had
to be adjusted to respond with the ATR of the real ID card. The historical
bytes of ATR can be changed within the applet using the JavaCard API call
GPSystem.setATRHistBytes(). However, the ATR prefix, which encodes the
electrical communication parameters of the card, cannot be changed. The solu-
tion was to find a blank JavaCard whose ATR prefix would match the prefix of
the Estonian ID card.

Fortunately, a blank JavaCard “G&D SmartCafe Expert 6.0 80K Dual” [9]
sold for under 15 pounds in small quantities by a UK-based seller [28] was found
to have the ATR3 whose ATR prefix 3B F? 18 00 00 80 31 FE 45 matched
the ATR prefix of Estonian identity cards issued since 2011. Since this blank
JavaCard returns a single ATR value for both the cold and warm ATR, we chose
to configure the ID card emulator to respond with the cold ATR4 of the Estonian
identity card version issued from October 2014. The inability to emulate both
ATRs at the same time is a deficiency of our ID card emulator. The terminals
deployed in practice, however, are unlikely to validate both ATRs.

4.2 APDU Logging Functionality

The purpose of the APDU logging functionality is to study how the terminals
deployed in practice interact with the ID cards. The logging functionality of the
3

3B FE 18 00 00 80 31 FE 45 53 43 45 36 30 2D 43 44 30 38 31 2D 6E 46 A9 (ATR of SmartCafe
Expert 6.0).

4
3B FA 18 00 00 80 31 FE 45 FE 65 49 44 20 2 F 20 50 4B 49 03 (cold ATR of EstEID v3.5
(10.2014)).

182 D. Morgan and A. Parsovs

emulator applet writes the received APDU commands on the card’s EEPROM
storage and later releases them when a specific command is received.

Since in the JavaCard each APDU received from the terminal is passed to
the selected applet’s process() method, this method is the central place where
all the APDU commands received are logged. The smart card technology allows
several applications to reside on one card; however, only one applet on the card
can be set as the implicitly selected (default) applet. To communicate with
another applet, an explicit SELECT FILE APDU has to be sent, specifying the
application identifier (AID) for the applet that should be selected. For the ID
card emulator, the emulator applet is set as the default applet. This means
that all the commands, including applet selection commands containing non-
existent AIDs, will be received and logged by the emulator applet. In addition
to logging the received APDUs, the emulator applet logs invocations of the
applet’s select() and deselect() methods.

The applet’s select() method is invoked automatically when the first APDU
is received from the terminal and before it is passed to the applet’s process()
method. The logging of select() invocation allows detecting if the card has
been reset in the middle of an APDU trace. Note that if the terminal powers up
the card just to read the ATR, this fact will not be logged, because the select()
method is invoked only when the first APDU is to be processed. Since the smart
card does not have a built-in clock, the timing of the APDUs received cannot
be logged either.

The Estonian ID card being emulated supports both electrical transport
protocols T=0 and T=1 defined by ISO 7816. To find out which communi-
cation protocol the terminal prefers, the applet’s select() method logs the
protocol used in the communication. The protocol used is obtained using the
APDU.getProtocol() JavaCard API call.

The invocation of the applet’s deselect() method is also logged. This
method is invoked whenever the terminal selects the emulator applet or some
other applet residing on the card. The possibility that the applet’s deselection
is caused by the terminal’s explicit selection of the emulator applet itself can be
ruled out, because the AID of the emulator applet is set to a random value. The
only other selectable applet on the card is the Issuer Security Domain (ISD) with
the standard AID A000000003000000, which is used for GlobalPlatform’s [10]
applet management purposes. A legitimate terminal should not communicate
with the ISD. However, if it does, this fact is logged and detected.

From the 80 KB of the card’s total EEPROM size, a 4 KB memory buffer
was allocated to store logged APDU commands. The amount allocated is more
than enough to store the APDU trace of a usual interaction between terminal
and card.

4.3 Visual Imitation of ID Card

Since we wanted to avoid drawing attention to our fake ID card when it was used
in supervised terminals, the white blank of the fake ID card had to be disguised
to imitate the design of the real ID card. To avoid the potential legal problems

Using the Estonian Electronic Identity Card for Authentication to a Machine 183

associated with imitating a physical identification document, we decided to imi-
tate the visual design of the digital identity card. The digital identity card does
not serve the purpose of physical identification and hence has neither a facial
image nor any security features on it.

We used a scanner to scan the original digital identity card and printed the
scan on a sticker paper, which was then glued onto both sides of the fake ID card.
Visually, the results were not bad, but the added layer created issues when the
card was inserted into some terminals and the paper got wet and dirty very fast.
A much better result was obtained using the Zebra ZXP Series 3 card printer to
print the scanned image on both sides of the white plastic.

Chip Transplantation. A perfect visual imitation of the real ID card could
be obtained if the chip from the fake ID card was transplanted onto the plastic
of the real ID card. This way even a thorough inspection of the card’s security
features along with the verification of the cardholder’s facial image would give no
signs that the card’s electronic communication was inauthentic. The only way to
detect the inauthentic behavior of the card would be to compare the data read
from the chip with the data printed on the surface of the card.

Since we did not wish to experiment with a real identity card, we tested the
feasibility of chip transplantation using the ID card test cards obtained from SK
ID Solutions AS [27]. The test card fully replicates the visual appearance of the
identity card, including all the security features on it. The only difference from
the real identity card is that the test card has the word “SPECIMEN” placed
diagonally on the front of the card and the identity information on the card is
that of a fictitious cardholder. We removed the fake ID card chip from the white
blank card by heating the back of the card with a lighter for a few seconds.
To remove the chip from the test card, we used a utility knife to carefully cut
out the chip without damaging the plastic around the chip. The fake ID card
chip was then glued to the test card. We found the chip transplantation process
(Fig. 1) to be straightforward and reliable, and the end result (Fig. 2) had no
visible traces of chip replacement other than the different contact pad layout of
the fake chip.

5 Card Authentication in Practice

To study the exact mechanisms used by the terminals to authenticate a card,
we used the ID card emulator in the most popular public deployments where
the ID card is used for authentication to a machine. The protocol trace logged
by the ID card emulator was later retrieved from the card and analyzed. Each
terminal was tested using four slightly different fake ID cards.

1. The first card was a perfect ID card emulator described in Sect. 4. The card
was used to test if the terminal accepts the fake ID card and to obtain APDU
commands received from the terminal.

184 D. Morgan and A. Parsovs

Fig. 1. Cards with the chips removed Fig. 2. Original vs. transplanted card

2. The second card was the same as the first card, but with the ATR historical
bytes set to random values. This card was used to test if the terminal validates
the ATR against the list of ATRs for the ID cards in circulation.

3. The third card was the same as the first card, but with a document expiry
date that has already passed and an invalid document number. This card was
used to test if the terminal performs document validity checks described in
Sect. 2.1.

4. The fourth card was used to test if the terminal supports both ISO 7816
electrical transport protocols. If the terminal preferred the T=0 protocol to
communicate with the first card, the fourth card was the card with the arbi-
trary ATR supporting only the T=1 protocol, and vice versa. It is not par-
ticular important which protocol the terminal supports, since all ID cards in
circulation support both protocols.5

The results of the tests are summarized in Table 3. In total 15 terminals
were tested from May to July 2017. A more detailed description of the terminals
analyzed and the raw APDU traces obtained from the terminals are provided in
the extended version of this paper [16].

As expected, our ID card emulator was accepted by all the terminals tested.
This shows that the terminals are vulnerable to card impersonation attacks. The
results show that all the terminals perform cardholder identification based on
data from the personal data file and not from the certificates. Most of the termi-
nals read more records from the personal data file than required for cardholder
identification. While we do not know if the personal data read is retained by the
systems, this practice of excessive personal data reading is troubling.

As we can see from Table 3, not all of the terminals check the ATR of the
ID card. ATR validation makes ID card forgery more challenging (see Sect. 4.1),
however, in the past it has resulted in newer-generation ID cards being rejected
temporarily [22]. Our tests with the third card show that none of the termi-
nals tested perform the ID card expiration and revocation checks described in

5 The exception is the digital identity cards issued before 2014, which support T=0
only.

Using the Estonian Electronic Identity Card for Authentication to a Machine 185

Table 3. The results of using the ID card emulator in terminals deployed in practice

Terminal Records read ATR check Protocol

Apotheka (PC reader) First nine records No T=0 pref

Apotheka (prescr. lookup) Name, ID code, doc. No No T=1 pref

Ektaco ARGOS Doc. No Yes T=0 pref

Ingenico iPP320 All records Yes T=0 pref

National Library All records No T=1 pref

Pilveprint Doc. No No T=0 only

TUT library entrance All records No T=1 pref

TUT library checkout ID code Yes T=1 pref

VeriFone Vx805/Vx820 Name, ID code, doc. No., expiry date No T=0 pref

Worldline YOMANI ID code, doc. No., expiry date Yes T=0 pref

Sect. 2.1. Almost all the terminals support both smart card communication pro-
tocols, but T=0 is widely preferred.

Use of ID Cards in Payment Terminals. Using the ID card as a loyalty
card is a popular authentication method in Estonia.6 To avoid the need for a
separate smart card reader, the merchants tested in this study communicate
with the ID card chip using the point-of-sale (POS) terminal. Support for the
ID card has been implemented in the firmware of payment terminals, and the
merchant’s systems only receive the predefined records of the personal data file.
We found three payment terminal models that were used by Estonian merchants
to communicate with an ID card. These are: Ingenico iPP320 (Apollo, Apotheka,
Grossi Toidukaubad, Olerex), VeriFone Vx805/Vx820 (Lido, Rahva Raamat)
and Worldline YOMANI (K-Rauta, Prisma).

Digital Prescription Lookup. In the Apotheka pharmacy chain, the card
reader connected to the pharmacist’s computer is used to both identify a loyal
customer and to automate the lookup of drugs prescribed to the patient in the
digital prescription system [4]. We noted that contrary to the legal requirement,
in the process of prescription lookup the pharmacist used our ID card emula-
tor without asking for any physical identification document. However, even if
a physical identification document was verified, the identity read from the chip
would likely not be verified with the information printed on the card, and thus
the chip transplantation (Sect. 4.3) could allow impersonating another person.

Using the ID Card as an Entrance Card. The Estonian company Ektaco
has developed an ARGOS-series access control system where the ID card can
6 For various reasons, not all merchants in Estonia accept the ID card as a loyalty

card [21]. These merchants provide their own loyalty cards, which are usually mag-
netic stripe cards or contactless chip cards [15].

186 D. Morgan and A. Parsovs

be used as a key. The APDU traces were collected from unsupervised Ektaco
terminals installed on the side gate of TTK University of Applied Sciences and
the front door of Tudengimaja. The National Library of Estonia and the library
of Tallinn University of Technology (TUT) allow entering the library using an
ID card and a standard smart card reader connected to a computer.

6 Discussion: Improvements

As demonstrated in the previous sections, the chip authentication mechanism
currently used can be abused by a malicious cardholder to execute card imper-
sonation attacks. In this section, we discuss the ID card’s possible technological
improvements that could improve its security and usability, therefore enabling
wider use of the ID card as a physical authentication token.

6.1 Cloning Prevention

To prevent a card impersonation attack, the card authentication process should
verify that the unclonable private key objects are on the chip. To achieve this,
the terminal should require the card to sign a random challenge and verify it
using the certificate. To prevent the abuse of the authentication or digital sig-
nature keys, the ID card should contain a separate card authentication key and
the corresponding certificate. The key should be used only for card authen-
tication purposes and should be operable without the requirement to enter a
PIN. The data in the personal data file or its hash should be embedded in
the card authentication certificate to prove its integrity. The validity informa-
tion of the card authentication certificate should correspond to the validity of
the document, thereby enabling reliable document validity checking (Sect. 2.1).
This chip cloning prevention feature is similar to the FIPS 201-2 (PIV card)
“card authentication key (CAK)” [18], and Active Authentication in the ICAO
ePassport [11]. The card authentication feature can be remotely deployed as
an additional JavaCard applet on the ID cards that have already been issued.
The use of a separate applet provides flexibility, since then the applet will not
have to be Common Criteria certified, which is a requirement for applets used
to create eIDAS-compatible QESs. To make use of the cryptographic feature,
the terminal owners will have to invest in adapting the terminal software. The
software, however, will have to be updated to some extent anyway, since the
new-generation ID cards (to be issued starting from 2019) will have a new ATR,
and due to the eIDAS certification requirements, the EstEID applet will have to
be replaced with the internationally developed IAS-ECC applet [20, slide 14]. It
is not yet known if it will support the Estonian personal data file feature in its
current form.

Performance. To evaluate the performance of the suggested card authenti-
cation feature, we performed measurements using two ID card generations in
circulation: the chip of ID cards issued since 2011 and the newest-generation

Using the Estonian Electronic Identity Card for Authentication to a Machine 187

chip in ID cards issued since October 2014. The results are shown in Table 4. To
summarize, if the ECDSA is used, the cryptographic card authentication process
takes around 1.5 s on the ID cards issued after 2011, but only 0.6 s on the cards
issued after October 2014. By utilizing the certificate caching mechanisms, this
time could be decreased to be under 200 ms on the latest generation of ID cards.
This would considerably improve the user experience when using the ID card as
an entrance card.

Table 4. The performance of two ID card chip generations

Measurement 2011 (ms) 2014 (ms)

Reading the personal ID code 150 150

Reading the entire personal data file 625 450

Reading the 1.5 KB certificate 440 380

RSA-2048 signing 1500 385

ECDSA with NIST P-256 1000 160

Relay Attacks. While the card authentication process would prevent the use
of ID card forgeries, a more sophisticated relay attack where the fraudulent
card relays card authentication commands to the legitimate card is still possi-
ble. Relay attacks are not easy to prevent. The EMV contactless payment card
specification tries to prevent them using distance bounding protocols, which are
far from easy to implement in the actual physical hardware [17].

6.2 Cardholder Verification

Verification Using a PIN. Basic protection against the unauthorized use
of an ID card by a non-owner of the card can be implemented by requiring
cardholder verification using an additional PIN3. In practice, however, the added
security value may be too insignificant to compensate for the degraded user
experience caused by memorizing and entering yet another PIN. Entering a PIN
into a terminal and in an environment controlled by some third party would also
greatly increase the risk of the PIN being compromised. In the EMV payment
card rollout in the U.S., banks have chosen to abandon PIN verification, because
most fraud cases involve counterfeit cards, while fraud related to lost and stolen
cards is minimal [13]. The use of lost or stolen cards can instead be prevented
by card revocation mechanisms.

Cardholder verification using a PIN does not prevent fraud where the owner
of the card has authorized the use of their ID card by some other person. In
some fraud schemes (e.g., in some customer loyalty programs) the owner may
have a direct or indirect interest in their card being used by someone else.

188 D. Morgan and A. Parsovs

Verification Using Biometrics. To completely eliminate the use of an ID
card by someone who is not the cardholder, the identity of the card user has to
be verified. Due to chip transplantation attacks (Sect. 4.3), not only the facial
image printed on the identity document has to be verified, but also the personal
ID code retrieved electronically should be compared with the personal ID code
printed on the document. To automate the verification task as much as possi-
ble, the facial image of the cardholder should be stored on the card, indirectly
signed by including its hash in the card authentication certificate. The person
performing cardholder verification would then only need to compare the digital
image retrieved from the chip with the facial features of the card user. This task
could be further delegated to a face recognition system.

A similar feature is already provided by the ePassport chip on the resi-
dence permit cards (see Sect. 3.1). Therefore, as an alternative to cryptographic
improvements for the ID card chip, all types of ID cards could be equipped
with the ICAO ePassport chip. The advantage of this solution would be that an
internationally standardized method would then be used for cardholder authen-
tication, and in the case of the Estonian ID card, the BAC key would be read
from the contact chip without the need for optical character recognition. The dis-
advantage would be the need for two readers, which complicates the deployment
and slows down the speed of card authentication transactions.

6.3 Contactless Interface

With the exception of the residence permit card, which contains a separate
contactless ICAO ePassport chip, the current ID cards in circulation do not have
a contactless interface. The potential benefits of adding a contactless interface
to the ID card have been discussed in [3,12]. A non-public pilot for using NFC-
enabled digital identity cards with mobile phones has been described in [14,23].

While the traditional electronic use of ID cards does not benefit much from
a contactless interface (except perhaps to interface with mobile devices), the
convenience provided by a contactless interface would be especially useful for
using the ID card as an entrance card. This would allow making the terminals
more vandal-proof and enhancing the convenience of the process.

However, the introduced security risk is that the cardholder’s identifiable
information could be retrieved covertly from a distance, and covert access to a
PIN-less card authentication key would make relay attacks easier to execute. The
security risk could be largely solved by introducing an NFC antenna-enabling
button to the card [25]. Cards with such buttons, however, are currently not
available on the market. The U.S. Department of Defense, for example, has
decided to enable contactless interface for CAC cards, but has issued radio fre-
quency shielding sleeves to cardholders [26].

7 Conclusion

We have shown the design of an ID card emulator able to impersonate a real
Estonian ID card to the terminals deployed in practice. Building such an ID

Using the Estonian Electronic Identity Card for Authentication to a Machine 189

card emulator today is both feasible and affordable, and therefore the current ID
card chip authentication mechanism, which does not involve any cryptographic
assurance, should not be used for high-risk transactions. By demonstrating the
reliability of the ID card chip transplantation process, we have shown that the
authenticity of the data read from the chip should not be trusted even if the
chip is part of a visually authentic ID card.

The study of terminals deployed in practice shows that the terminals do
not perform document expiration and revocation checks, and most of the ter-
minals read more personal data from the ID card than required for cardholder
identification.

We hope that this paper will raise awareness of the risks related to the current
ID card chip authentication mechanism and will facilitate the development of a
secure and universal authentication solution. Such a solution is highly needed in
the current situation in Estonia where a variety of proprietary solutions vulner-
able to cloning and replay attacks are ubiquitous [2,15].

Acknowledgements. We would like to thank Martin Paljak for his feedback and the
technical support he provided for this study, and all the people who gave their feed-
back on this paper. This work was supported by the European Regional Development
Fund through the Estonian Centre of Excellence in ICT Research (EXCITE) and the
Estonian Doctoral School in Information and Communication Technologies.

References

1. Bonneau, J., Preibusch, S., Anderson, R.: A birthday present every eleven wallets?
The security of customer-chosen banking pins. In: Keromytis, A.D. (ed.) FC 2012.
LNCS, vol. 7397, pp. 25–40. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32946-3 3

2. Cybernetica AS: Cryptographic algorithms lifecycle report 2016. In: Cryptographic
protocols over radio connection. 22 June 2016. https://www.ria.ee/public/RIA/
Cryptographic Algorithms Lifecycle Report 2016.pdf

3. e-Governance Academy: Study on the functionality of documents in ID-1 format
(in Estonian), December 2013. https://www.siseministeerium.ee/sites/default/
files/dokumendid/Uuringud/Isikut toendavad dokumendid/2013 id-1 formaadis
dokumentide funktsionaalsuse uuring.pdf

4. Estonian Health Insurance Fund: Digital Prescription, July 2017. https://www.
haigekassa.ee/en/digital-prescription

5. Estonian Information System Authority: Electronic Identity Application Guide:
ID card as an entrance card, May 2014. https://eid.eesti.ee/index.php/ID card
as an entrance card

6. Estonian Information System Authority: Electronic Identity Application Guide:
Using ID-card as a loyalty card, May 2014. https://eid.eesti.ee/index.php/Using
ID-card as a loyalty card

7. Estonian Police and Border Guard Board: Online identity document validity check,
May 2017. https://www.politsei.ee/en/teenused/inquiries/

8. Estonian Police and Border Guard Board: Residence card, May 2017. https://
www.politsei.ee/en/nouanded/residence-card.dot

https://doi.org/10.1007/978-3-642-32946-3_3
https://doi.org/10.1007/978-3-642-32946-3_3
https://www.ria.ee/public/RIA/Cryptographic_Algorithms_Lifecycle_Report_2016.pdf
https://www.ria.ee/public/RIA/Cryptographic_Algorithms_Lifecycle_Report_2016.pdf
https://www.siseministeerium.ee/sites/default/files/dokumendid/Uuringud/Isikut_toendavad_dokumendid/2013_id-1_formaadis_dokumentide_funktsionaalsuse_uuring.pdf
https://www.siseministeerium.ee/sites/default/files/dokumendid/Uuringud/Isikut_toendavad_dokumendid/2013_id-1_formaadis_dokumentide_funktsionaalsuse_uuring.pdf
https://www.siseministeerium.ee/sites/default/files/dokumendid/Uuringud/Isikut_toendavad_dokumendid/2013_id-1_formaadis_dokumentide_funktsionaalsuse_uuring.pdf
https://www.haigekassa.ee/en/digital-prescription
https://www.haigekassa.ee/en/digital-prescription
https://eid.eesti.ee/index.php/ID_card_as_an_entrance_card
https://eid.eesti.ee/index.php/ID_card_as_an_entrance_card
https://eid.eesti.ee/index.php/Using_ID-card_as_a_loyalty_card
https://eid.eesti.ee/index.php/Using_ID-card_as_a_loyalty_card
https://www.politsei.ee/en/teenused/inquiries/
https://www.politsei.ee/en/nouanded/residence-card.dot
https://www.politsei.ee/en/nouanded/residence-card.dot

190 D. Morgan and A. Parsovs

9. Giesecke & Devrient: Sm@rtCafé Expert operating systems: Sm@rtCafé
Expert 6.0, February 2013. https://www.gd.gd/gd media/media/en/documents/
brochures/mobile security 2/nb/SmartCafe-Expert.pdf

10. GlobalPlatform Inc.: GlobalPlatform Card Specification, Version 2.1.1, March
2013. http://www.win.tue.nl/pinpasjc/docs/Card%20Spec%20v2.1.1%20v0303.
pdf

11. International Civil Aviation Organization: DOC 9303. Machine Readable Travel
Documents. Part 11: Security Mechanisms for MRTDs (2015). https://www.icao.
int/publications/Documents/9303 p11 cons en.pdf

12. Joandi, E., Kuusik, A., Tammet, T.: Analysis of potential RFID usage in the
context of extending Estonian ID-card (in Estonian), January 2008. https://www.
mkm.ee/sites/default/files/rfid id analyys - koopia.doc

13. Krebs, B.: Chip & PIN vs. Chip & Signature, October 2014. http://krebsonsecurity.
com/2014/10/chip-pin-vs-chip-signature/

14. Lehmann, A.: New Generation of eID Smartcard, 06 November 2014. https://
sk.ee/upload/files/AK2014 New%20Generation%20of%20eID%20Smartcard
Andreas%20Lehmann.pdf

15. Morgan, D.: Security of Loyalty Cards Used in Estonia. MSc thesis, Tallinn Uni-
versity of Technology (2017). http://kodu.ut.ee/∼arnis/loyalty thesis.pdf

16. Morgan, D., Parsovs, A.: Using the Estonian Electronic Identity Card for Authen-
tication to a Machine (Extended Version). Cryptology ePrint Archive, Report
2017/880 (2017). http://eprint.iacr.org/2017/880

17. Murdoch, S.J.: Do you know what you’re paying for? How contactless cards are
still vulnerable to relay attack, August 2016. https://www.benthamsgaze.org/
2016/08/02/do-you-know-what-youre-paying-for-how-contactless-cards-are-still-
vulnerable-to-relay-attack/

18. NIST: FIPS PUB 201–2: Personal Identity Verification (PIV) of Federal Employ-
ees and Contractors, August 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.201-2.pdf

19. Paljak, M.: FakeEstEID JavaCard applet, 16 January 2015. https://github.com/
martinpaljak/esteid-applets/blob/master/docs/FakeEstEID.md

20. Paljak, M.: Off-line ID card (in Estonian), 18 October 2016. http://kliendikaart.
publicon.ee/userfiles/RIA/idkaart/Martin Paljak.pdf

21. Postimees: No plans to connect Kaubamaja Partnercard with ID-
card (in Estonian), 5 August 2011. http://www.postimees.ee/521494/
partnerkaarti-id-kaardiga-uhendada-ei-kavatse

22. Postimees: The new ID-cards will be refused (in Estonian), 23 January 2015.
http://tarbija24.postimees.ee/3067299/uued-id-kaardid-voivad-torkuda

23. Postimees: Contactless Estonian ID-card has been built (in
Estonian), 5 March 2016. http://tehnika.postimees.ee/3607697/
video-valminud-on-kontaktivaba-eesti-id-kaart

24. Riigi Teataja: Identity Documents Act (2000). https://www.riigiteataja.ee/en/eli/
504112013003/consolide/current

25. Roland, M., Hlzl, M.: Evaluation of Contactless Smartcard Antennas, June 2015.
https://arxiv.org/abs/1507.06427

26. SecureIDNews: Defense Department order RF shields from National
Laminating, November 2010. https://www.secureidnews.com/news-item/
defense-department-order-rf-shields-from-national-laminating/

27. SK ID Solutions AS: Cards for testing 01 July 2017. https://sk.ee/en/services/
testcard/

https://www.gd.gd/gd_media/media/en/documents/brochures/mobile_security_2/nb/SmartCafe-Expert.pdf
https://www.gd.gd/gd_media/media/en/documents/brochures/mobile_security_2/nb/SmartCafe-Expert.pdf
http://www.win.tue.nl/pinpasjc/docs/Card%20Spec%20v2.1.1%20v0303.pdf
http://www.win.tue.nl/pinpasjc/docs/Card%20Spec%20v2.1.1%20v0303.pdf
https://www.icao.int/publications/Documents/9303_p11_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p11_cons_en.pdf
https://www.mkm.ee/sites/default/files/rfid_id_analyys_-_koopia.doc
https://www.mkm.ee/sites/default/files/rfid_id_analyys_-_koopia.doc
http://krebsonsecurity.com/2014/10/chip-pin-vs-chip-signature/
http://krebsonsecurity.com/2014/10/chip-pin-vs-chip-signature/
https://sk.ee/upload/files/AK2014_New%20Generation%20of%20eID%20Smartcard_Andreas%20Lehmann.pdf
https://sk.ee/upload/files/AK2014_New%20Generation%20of%20eID%20Smartcard_Andreas%20Lehmann.pdf
https://sk.ee/upload/files/AK2014_New%20Generation%20of%20eID%20Smartcard_Andreas%20Lehmann.pdf
http://kodu.ut.ee/~arnis/loyalty_thesis.pdf
http://eprint.iacr.org/2017/880
https://www.benthamsgaze.org/2016/08/02/do-you-know-what-youre-paying-for-how-contactless-cards-are-still-vulnerable-to-relay-attack/
https://www.benthamsgaze.org/2016/08/02/do-you-know-what-youre-paying-for-how-contactless-cards-are-still-vulnerable-to-relay-attack/
https://www.benthamsgaze.org/2016/08/02/do-you-know-what-youre-paying-for-how-contactless-cards-are-still-vulnerable-to-relay-attack/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.201-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.201-2.pdf
https://github.com/martinpaljak/esteid-applets/blob/master/docs/FakeEstEID.md
https://github.com/martinpaljak/esteid-applets/blob/master/docs/FakeEstEID.md
http://kliendikaart.publicon.ee/userfiles/RIA/idkaart/Martin_Paljak.pdf
http://kliendikaart.publicon.ee/userfiles/RIA/idkaart/Martin_Paljak.pdf
http://www.postimees.ee/521494/partnerkaarti-id-kaardiga-uhendada-ei-kavatse
http://www.postimees.ee/521494/partnerkaarti-id-kaardiga-uhendada-ei-kavatse
http://tarbija24.postimees.ee/3067299/uued-id-kaardid-voivad-torkuda
http://tehnika.postimees.ee/3607697/video-valminud-on-kontaktivaba-eesti-id-kaart
http://tehnika.postimees.ee/3607697/video-valminud-on-kontaktivaba-eesti-id-kaart
https://www.riigiteataja.ee/en/eli/504112013003/consolide/current
https://www.riigiteataja.ee/en/eli/504112013003/consolide/current
https://arxiv.org/abs/1507.06427
https://www.secureidnews.com/news-item/defense-department-order-rf-shields-from-national-laminating/
https://www.secureidnews.com/news-item/defense-department-order-rf-shields-from-national-laminating/
https://sk.ee/en/services/testcard/
https://sk.ee/en/services/testcard/

Using the Estonian Electronic Identity Card for Authentication to a Machine 191

28. Smartcard Focus: Giesecke & Devrient: SmartCafe Expert 6.0 80K
Dual, 11 April 2017. https://www.smartcardfocus.com/shop/ilp/id∼684/
smartcafe-expert-6-0-80k-dual-/p/index.shtml

29. The European Parliament, the Council of the European Union: Regulation
910/2014 on electronic identification and trust services for electronic transactions
in the internal market and repealing Directive 1999/93/EC (2014)

30. Trüb Baltic AS: EstEID v3.4 card specification, 11 June 2012. http://www.id.ee/
public/TB-SPEC-EstEID-Chip-App-v3.4.pdf

31. Trüb Baltic AS: EstEID v3.5 card specification, 14 March 2017. http://www.id.
ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf

https://www.smartcardfocus.com/shop/ilp/id~684/smartcafe-expert-6-0-80k-dual-/p/index.shtml
https://www.smartcardfocus.com/shop/ilp/id~684/smartcafe-expert-6-0-80k-dual-/p/index.shtml
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.4.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.4.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf

Data Aware Defense (DaD): Towards a Generic
and Practical Ransomware Countermeasure

Aurélien Palisse1(B), Antoine Durand2, Hélène Le Bouder3,
Colas Le Guernic1,4, and Jean-Louis Lanet1

1 INRIA, Campus de Beaulieu, 263 Avenue Général Leclerc, Rennes, France
aurelien.palisse@inria.fr

2 ENSEIRB - MATMECA, 1 Avenue du Dr Albert Schweitzer, Talence, France
3 IMT Atlantique, 2 Rue de la Châtaigneraie, Cesson Sévigné, France
4 DGA - Mâıtrise de l’Information, Route de Laillé, Bruz, France

Abstract. We present the Malware - O - Matic analysis platform and
the Data Aware Defense ransomware countermeasure based on real time
data gathering with as little impact as possible on system performance.
Our solution monitors (and blocks if necessary) file system activity of
all userland threads with new indicators of compromise. We successfully
detect 99.37% of our 798 active ransomware samples with at most 70 MB
lost per sample’s thread in 90% of cases, or less than 7 MB in 70% of
cases. By a careful analysis of the few false negatives we show that some
ransomware authors are specifically trying to hide ongoing encryption.
We used free (as in free beer) de facto industry standard benchmarks to
evaluate the impact of our solution and enable fair comparisons. In all
but the most demanding tests the impact is marginal.

1 Introduction

Ransomware is a type of malware that prevents legitimate users from accessing
their machine or files and demands a payment for restoring the functionalities of
the infected computer. There are two classes of ransomware: the “simple lockers”,
which block the usage of the computer, and “cryptors”, that encrypt files on the
computer. In the case of encryption-based ransomware, the user data can only
be restored with the secret key(s) used during the attack.1

This class of malware has existed for a few decades [32], but the number
of attacks has increased drastically over the past couple of years [25]. The lat-
est notable examples are the WannaCry and the Nopetya attacks. However,
recent findings suggest that Nopetya is a wiper with ransomware-like appearance.
Microsoft is concerned by the ransomware threat and plans to add a controlled
folder access feature in the next operating system update [3].

Recent advances have contributed in the current proliferation of ransomware.
Command and control (C&C) servers can be protected through the use of domain

1 Usually the encryption keys are themselves encrypted with an asymmetric cryptosys-
tem, the ransom must be paid in order to get the corresponding private key.

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 192–208, 2017.
https://doi.org/10.1007/978-3-319-70290-2_12

Data Aware Defense (DaD) 193

generation algorithms or The Onion Router (TOR) network. Popular applica-
tions have been diverted from their legitimate usage: Imgur [27], Twitter API [1],
and Telegram Bot API [12] have been used to implement a C&C. Bitcoin and
other cryptocurrencies (e.g., Zcash, Ethereum) facilitate ransom processing and
handling. Similarly to most modern malware, current ransomware, hinder detec-
tion and analysis, through packing, virtualization, Windows Management Instru-
mentation (WMI) queries or obfuscated API calls. On March 28, Trend Micro
discovered a new technique used by the Cerber family to evade static machine
learning solutions [28]. A generic efficient defense mechanism seems challenging,
but encryption-based ransomware have a clear common semantic that can be
taken advantage of: they encrypt user data.

Similarly to recent approaches [5,13,14,23], reporting satisfying detection
rates, we propose to monitor file activity. Since it has already been proven a
valid approach in terms of detection, our main goal in this paper is to show
that a good detection rate can be achieved with little to no impact on system
performances. To this end we limit our monitoring to a minimum. In order
to reduce the impact on detection with a low rate of false positive, we use
the chi-square goodness-of-fit test instead of Shannon entropy (i.e., sensitive
to compressed chunks of data [17]). We also achieve system completeness and
fine granularity by monitoring the whole file system for all userland threads. In
order to evaluate our prototype implementation, Data Aware Defense (DaD),
under realistic conditions, we developed a bare-metal analysis platform, Malware
- O - Matic (MoM), and ran it on a large and heterogeneous (compared to
the litterature) live ransomware collection. We used de facto industry standard
benchmarks to get a pertinent and reproducible assessment of the performance
penalties.

Related work are presented in Sect. 2. Section 3 compares different statistical
tests and their effectiveness to detect encryption. DaD, our ransomware coun-
termeasure is introduced in Sect. 4, a significant effort is made to tackle the
performance bottleneck. We evaluate its impact on the protected system per-
formance in Sect. 5 and its effectiveness in Sect. 6 together with a description of
our bare-metal automated malware analysis platform, MoM, and a discussion
on our findings. Section 7 concludes the paper.

2 Related Work

Detecting malware is of prime importance. The main deployed approaches
are either static pattern-based signatures, or behavioral signatures dynamically
checked in a sandboxed environment. Unfortunately they rarely cover new mal-
ware or even new variants of known malware. The challenge is to design fast
detection schemes that cover many samples with no false positives.

The subfield of ransomware countermeasures is relatively young. On top of
classical malware approaches, one can rely on the specific common behavior of
ransomware: they encrypt the victim’s files. Dynamic solutions found in the liter-
ature are divided in two parts as suggested by Kharraz et al. [14]: cryptographic

194 A. Palisse et al.

primitives hooks (i.e., user space) and low level disk activity monitoring (i.e.,
kernel space). One targets the cryptographic primitives as an essential gateway
for ransomware whereas the second focuses on the system consequences.

In 1996 Young et al. [33] implemented a proof of concept “cryptoviral extor-
tion” based on the Microsoft’s Crytographic API (CryptoAPI). Nowadays a
significant number of ransomware do indeed use the CryptoAPI to perform file
encryption. This API enables the use of specific cryptographic providers, Palisse
et al. [20] implemented their own and forced its use to get a trace of all crypto-
graphic operations. PayBreak [15] live solution makes use of dynamic and static
cryptographic hooks. A key escrow system is implemented and allows complete
file recovery. However only symmetric-key encryption is considered and some
obfuscation techniques will defeat the hooks, according to the authors. More-
over the static hooks need a prior knowledge of the libraries. Both papers suffer
from two critical limitations: any ransomware that will embed its own crypto-
graphic primitives bypass the solution (e.g., AES-NI [22]) and nothing prevents
the ransomware to detect the hooks or the redirection.

Other approaches, like ours, focus on disk activity thanks to a file system
driver. UNVEIL [13] detects ransomware by computing the increase, in term of
Shannon entropy, between data read and written to disk by the same process
and is also able to detect desktop locker, a benign type of ransomware. Crypto-
Drop [23] relies on entropy too, but also takes into account file type changes and
a file similarity score. ShieldFS [5] applies machine learning to the disk activity.
Features are selected from millions of disk I/O requests gathered from normal
usage and ransomware attacks. The solution is composed of three drivers. One in
charge of file recovery: for each write and renaming operations the correspond-
ing file is backed up. The second detects cryptographic materials embedded in
processes. Finally the third performs detection thanks to random forests mixed
with incremental models which takes into account the short and long life of a
process.

The three report good detection rate, over 96%, and almost no false posi-
tive on their respective data sets. Concerning the impact on system performance
UNVEIL and CryptoDrop give little information. The former is presented as
an analysis tool and not a live solution, the authors of the later “believe that with
future optimizations, CryptoDrop can be run on a live system with a small
overhead.” and report a 9ms overhead per write operation without specifying
their evaluation procedure. There are more information on ShieldFS perfor-
mance overhead. The time taken to open then read, or open the write, files of
increasing size (from 1 KB to 128 MB) is measured. Using hard disk drive they
get a 180% to 380% overhead if files need to be backed up or 30% to 90% if not.
A “typical” overhead is also reported, unfortunately the evaluation procedure is
unclear and hardly reproducible: they extrapolated a typical overhead from IRP
logs taken from five users, resulting in an average estimated overhead of 26%.

Dynamic monitoring of file system activity seems to be the most promising
approach to defend against ransomware. Indeed, the Intel AES-NI instructions
defeat the approaches centered on the cryptographic libraries proposed in [15,20].

Data Aware Defense (DaD) 195

The remaining challenge lies in an efficient implementation on a live system.
One approach would be to limit the level of monitoring and focus on a single
efficient distinguisher, at least at first, only suspicious threads need to be closely
monitored.

3 Statistical Tests for Ransomware Attacks Detection

Ransomware involve a large number of ciphertext going through the file system;
to detect such behavior, statistical tests can be used. The main idea is that
ciphertext content distribution should be uniform. A one sample goodness of
fit (GOF) test measures how close an information source is to a theoretical
probability distribution function, also known as the “model”. In practice, one
data set F is compared to a known distribution function G and disproves or not
the null hypothesis H0 : ∀x, F (x) = G(x).

We do not prove that both data sets come from a single distribution function
but rather that there is no significant difference between them. The objective
is to figure out which indicators of compromise is the most relevant to detect
ransomware attacks in real time.

Shannon Entropy. It is a measure of the uncertainty of a random variable.
Lots of disorder raise high entropy and structured data low entropy. The entropy
of X a discrete random variable from the alphabet Ω = {x1, x2, . . . , xn} with the
probability distribution function p(xi) at xi is: H(X) = −∑n

i=1 p(xi) log p(xi).

Chi-Square. The chi-square goodness-of-fit test (χ2) is a test of distributional
accuracy, it measures how closely a set of numbers follows a particular distri-
bution. It is a non-parametric statistical test, meaning that no assumption is
done on the samples distribution. The observed sequence of data is considered
as discrete and arranged in a frequency histogram [[0; 255]] with the degree of
freedom v equals to 255 (i.e., number of possible outcome minus one). Suppose
that Ni is the number of hit observed for the bin i, and ni is the expected num-
ber according to a known distribution function. The formula for calculating the
one-sided χ2 test is:

χ2 =
∑

i

(Ni − ni)
2

ni
(1)

A large value indicates that the null hypothesis is not likely verified, the Ni

can not be drawn from the ni. The significance level of the test denoted αTW,
is the probability of rejecting the null hypothesis when it is true. Traditionally,
experimenters have used the 0.05 level (e.g., biology), thus we choose the same.
The observed test statistic is compared to a boundary value, called the critical
value, uniquely determined from the degree of freedom (or equivalently the size of
the alphabet) and the desired significance level. If the χ2 result is more extreme
than the critical value [10], the null hypothesis is rejected.

196 A. Palisse et al.

Discussion. The robustness of the tests need to be checked against real world
conditions (i.e., small and large samples). Previous papers [5,13,23], use the
plug-in method (i.e., discrete symbols in histogram bins) to estimate the Shan-
non entropy. Nevertheless a study on TorrentLocker [17] shows that the Shannon
entropy is not a good distinguisher especially with respect to JPEG compres-
sion2. Achieving encryption detection on compressed files that already have high
entropy is a non-trivial task. The χ2 test on the contrary can distinguish ran-
domness (or encryption) from some compression schemes and is thus a more
relevant statistic as shown in appendix Tables 4 and 5. For that reason we use it
to detect suspicious behaviors in the next sections. No extensive study of a ran-
somware solution embedding the χ2 has been presented earlier, but this statistic
is already used in numerous applications [6,31].

A practical issue remains, like all statistical tests, the χ2 test is not accurate
on small samples. A good practice is to have at least five elements in each bins of
the histogram, but we can reasonably think that this will not happen plenty of
time. In this case, the test statistic will only reflect the small magnitude of the
expected frequencies. To fix this problem we made the choice that the solution
favor false positives over false negatives, by also computing the χ2 test for small
data. Moreover, the number of bytes involved in the computation is limited to
10,000. Indeed, if we do not set a limit, a zip bomb [11] can be used to crash or
slow down our solution.

4 Towards a Generic and Practical Ransomware
Countermeasure

In this section the architecture of Data Aware Defense is detailed, a file system
driver for Microsoft Windows. An important part of the contribution is the
usability of the solution, furthermore it can be used against zero-day ransomware.

4.1 File System Activity Monitoring

Windows, as most modern operating systems, splits its memory in several regions
with different privilege requirements. The kernel mode (ring 0) has a high privi-
lege level and is responsible, among other things, for managing disk operations.

Standard applications run in userland (ring 3), they are much less privileged
and cannot perform disk operations directly. Instead they call the corresponding
service from the Windows kernel, let the kernel manage the privileged operations,
before safely returning in the userland application code. This separation ensures
that no userland code directly manage critical operations in the system. To
complete this security feature the 64-bit versions of the OS requires all kernel
mode code to be signed by Microsoft to be accepted.

Up to now, to the best of our knowledge ransomware live in userland. That
is why a countermeasure in kernel space can not be tampered with by malicious
2 They use the Kullback-Liebler divergence instead but do not introduce an imple-

mentation.

Data Aware Defense (DaD) 197

code and is fully transparent. Users interactions with files are ultimately mapped
to operations in the kernel. On top of this stack stand the I/O manager and at
the bottom the file system driver (ntfs.sys). Microsoft offers a file system drivers
framework [18] that allows third party developers to add functionalities between
the two previous layers. Such component is called a file system minifilter driver
and it is managed by the filter manager. The position of each minifilter driver
in the I/O stack is defined by its “altitude”. A minifilter driver that performs
full disk encryption is below an anti-virus filter and thus avoid false positive
detection of ransomware-like behavior. A minifilter driver can inspect all the
operations that target the disks, regardless of whether the requested operation is
an I/O request packet (IRP) or a fast I/O. In this context we are able to monitor
write, read operations and so on. However a clever usage of such functionalities
has to be done, otherwise a significant performance penalty occurs [23] and the
solution can not be deployed in real world. Our file system minifilter driver has
been extensively tested on Windows 7 and 10, for the 32 and 64-bit versions and
follows the Windows Driver Model (WDM).

4.2 Implementation Design

In order to catch malicious behaviors efficiently we restrict our monitoring to
write and information operations. We want to demonstrate that detecting ran-
somware behaviors with only two callbacks on the I/O requests is possible, while
previous solutions [5,13,23] have at least twice as many callbacks. The so-called
information operations allow to change various information about a file object,
create a hard link, change the file position or the file name. We block all the
information operations once a thread is marked as malicious to prevent aggres-
sive files renaming. But without malicious activity, the information operations
are always accepted and are not used to construct our compromise indicators.
For each intercepted write operation the time spent in the callback function is
minimized by collecting only the essential information. We are only interested
in the content of the buffer that is passed through the file system stack, its
size, offset, the corresponding absolute file name, process name, process id and
thread id. This information is then copied to nonpaged memory and passed over
to a new dedicated thread that is not part of the file system stack. Only the
indispensable data is copied, not the thread context coming from the operation.
As a consequence, write operations are immediately authorized to go through.
Such features allow us to monitor all file system trees without excluding some
assumed trusted threads. So far, we are the first to inspect the I/O operations
with a thread granularity. It is a significant improvement in case of malicious
code injection into a benign process. The Cerber ransomware already used a
particular code injection technique, named process hollowing [28]. All costly
computations are deferred to threads running at the lowest kernel priority level.
This model solves the time restriction for the statistical computations and the
synchronization deadlocks on shared resources.

Once the compromise indicator (e.g., χ2) is obtained on the corresponding
data we update an internal structure related to this thread behavior in nonpaged

198 A. Palisse et al.

memory. This structure is stored for each thread of each process. To reduce the
memory footprint, our own garbage collector has been implemented. All tracked
information in memory can be exported to disk as a JSON file.

4.3 A Single Indicator of Compromise

To build an efficient filter, a sliding median on the last fifty write operations is
computed. The goal of this basic statistic is to capture, for each thread, the ongo-
ing file system behavior: it gives us a measure of central tendency. No assumption
is made on the I/O patterns observed. This elementary statistic is low cost and
does not involve complex calculations. Furthermore by monitoring the whole file
system we have more chances to only lose files that did not belong to the user’s
important paths (e.g., Windows Defender, Python libraries, $Recycle.Bin).

At runtime if the χ2 median go beyond the threshold, we suspend the cor-
responding process and collect information for postmortem analysis. We take
advantage of the process suspension (i.e., malicious code will not notice) to
dump from RAM the Portable Executable (PE) file and the committed pages of
memory that belong to this process threads. All the process threads are stopped
to ensure consistency of the memory dump, especially in case of self-modifying
code. Finally, the thread that triggered the dump is tainted as malicious and all
subsequent write and renaming operations are blocked for this particular thread.

Section 3 presents the χ2 test. The significance level αTW is set to be small (i.e.,
0.05). It corresponds to the probability of rejecting the null hypothesis when it is
true (i.e., type I error). This parameter also called the “testwise” alpha is relevant
for one given hypothesis test. The sliding median is based on fifty consecutive
χ2 tests. Thus, the “experimentwise” alpha is the probability of having one or
more errors of type I within the hypothesis tests. The experimentwise error rate
can be calculated using the Bonferroni threshold [2] as follows:

αEW = 1 − (1 − αTW)K (2)

K is the number of uncorrelated hypotheses being tested at the αTW level.
However, the experimentwise error rate is the same than the testwise error rate
when only one hypothesis is tested for a given dataset. Moreover, it is likely that
for each thread the write operations are correlated to each others. Therefore, the
experimentwise error rate is equal to 0.05.

5 Experiments: Performance Evaluation

An important contribution in this paper is to address the performance penalty.
This section shows that our solution is the first live ransomware coutermea-
sure based on a file system driver able to tackle the performance bottleneck.
The workload model is office work. In this configuration the solution is almost
imperceptible. In the following parts, the global impact of the solution on the

Data Aware Defense (DaD) 199

system is investigated with de facto industry standards software3. No formal
studies of the in-memory footprint have been conducted, it can be considered
negligible on consumer computers (i.e., less than 50 Mb). All test were run under
Windows 7 with 4 Gb of RAM and a SSD4. In order to focus on performance
and not interfere with the benchmarks, we deactivated the blocking mechanism
of our solution.

5.1 Disk Performance

To precisely measure the driver impact on disk, we used the Windows Perfor-
mance Toolkit (WPT) [19]. It produces in-depth performance profiles of Win-
dows operating systems. We set the minifilter I/O activity scenario for two hours
and a half and obtained 11348 writes that give us ≈ 133ms spent in total in the
file system driver. Thus, an average of 11.7µs per operation. During the profil-
ing, normal work activities were simulated, with office suite use, downloads and
compression. CryptoLock [23] produces an overhead of 9 ms per write oper-
ation, even without knowing their testing procedure, it is probably safe to say
that performance has been significantly enhanced by a factor of a few hundreds.

Additionally a second test based on a free software, CrystalDiskMark [7],
has been performed. Two types of write operations are considered: “Sequential”
correspond to large contiguous blocks of data and “Random” focus on small (4K)
blocks to random locations. As shown in Table 1, with the Random 4K tests our
solution lead to a significant loss of performance but the resulting bandwidth of
9.5 MB/s is still reasonable. On an hard disk drive (HDD) the seek time and the
rotational latency create a bottleneck. Consequently, the Random 4K tests will
be bounded by the HDD mechanical limitations (i.e., 2.5 MB/s for the fastest
HDD5), not the file system driver. On the other hand no performance loss is
observed when dealing with big chunks of data. Pushing the limit of the solution
on disk access do not create undesirable effects (e.g., freeze).

Table 1. CrystalDiskMark tests (in MB/s) configured with 5 tests passes, file size of
2GiB, random data generation and 3 min interval time.

Write test Solution off Solution on Impact

Sequential 136.3 134.2 −1.5%

Sequential Q32T1 135.7 135.8 +0.07%

Random 4K 55.28 9.581 −82.66%

Random 4KQ32T1 122.0 65.48 −46.32%

3 We restricted ourselves to free (as in free beer) softwares used to assess performance
of personal computers to ensure pertinence and affordable reproducibility.

4 Windows 7 SP1 6.1.7601, Intel Xeon W3550, NVIDIA Quadro FX 1800, 4Gb DDR3,
Intel SSD 120 Go SATA III.

5 http://hdd.userbenchmark.com/WD-Black-6TB-2015/Rating/3519.

http://hdd.userbenchmark.com/WD-Black-6TB-2015/Rating/3519

200 A. Palisse et al.

5.2 CPU Performance

Due to the high number of threads that complete asynchronous jobs, the system
load needs to be considered. For this we used Geekbench 4 [9] that contains an all
in one test with different workload models and PCMark 8 [21] that is recognized
as an industry standard benchmark. For more details on the underlying tests
performed by the software please refer to their technical reports. We measure
initially (without our protection) a Geekbench overall score of 6625 (multi-core)
and 5841 after enabling the protection, for a performance loss of 11.83%. Con-
trary to the previous test, with PCMark the system impact is less palpable. We
executed two built-in scenarios, “work” that measures basic work tasks on office
machine and “home” that focus more on media capabilities (e.g., gaming, photo,
chat). As shown in Table 2, only a very small difference occurs (less than 1%).

Table 2. PCMark 8 benchmark score.

Test Solution off Solution on Performance loss

Work conventional 2.0 2859 2845 −0.49%

Home conventional 3.0 2728 2705 −0.84%

5.3 Discussion

Precise comparison with other contributions [5,23] is difficult: we can not repro-
duce their evaluation procedure (when they have one) and we were not able to
apply our own6. Still, with a significant impact only on the most demanding
test that is only exhibited when using solid state drives, we can safely assume a
significant improvement over previous work and report that DaD is practical.

6 Experiments: Ransomware Detection

In this section, the experiments demonstrate that Data Aware Defense (DaD)
detects and blocks in real time, most of the ransomware in the collection
(i.e., 99.37%) with a low number of bytes lost. Then we discuss about the
ransomware-like behaviors that lead to false positives, and finally review two
false negatives that bypass the countermeasure using mimicry attacks.

Before delving into the experimental evaluation of our approach and an analy-
sis of ransomware behavior in the next section, let us present our malware analy-
sis platform that was used to conduct those experiments.

6 We solicited the authors and got a negative answer from [5], and no answer from
[23] as of submission.

Data Aware Defense (DaD) 201

6.1 Malware - O - Matic

We designed and built Malware - O - Matic (MoM), an automated analysis
platform that does not use a virtual machine, while keeping all the main fea-
tures of a regular analysis framework. Such fully bare-metal platform is built on
top of two open source software, Clonezilla [4] and Viper [29], which makes it
reproducible. The platform is made of a single master server and several slaves,
each one running the analysis loop in parallel. The whole system is on a ded-
icated network under the supervision of the network autonomous system (AS)
and directly connected to the Internet, to emulate a typical home network. The
loop itself consists in a few simple steps: setup of the monitoring environment,
malware execution, results gathering and storage, cleanup. In the first step the
slave download a script from the master, that will act as instructions about how
to conduct the next analysis. Once the procedure is completed, the slave sets its
next environment and reboot for cleanup. The cleanup process simply consists of
flashing a clean disk image onto the slave’s drive. So far, MoM is able to analyze
up to 360 malware per-day with only 1 server and 5 slaves. The end goal of this
platform is to run uninterruptedly and thus automate the analysis of samples.

6.2 Experimental Setup

MoM is used in two distinct modes for the experiments: “passive” or “active”.
The first one, downloads a sample, executes it and according to a cryptographic
hash already determined on the user files, labels the sample as active if the hash
changes or discards it. The second mode, evaluates DaD ransomware counter-
measure (i.e., file system driver) with the samples marked as actives. With such
scenario, once the analysis is complete a set of information (e.g., PE file) is sent
to a remote server. To avoid evasion during the analysis, a corpus of files that
looks like a plausible user environment is built, thanks to the Digital Corpora
corpus [8] and manual additions. In the same way, a set of user interactions is
emulated (e.g., mouse, keyboard). Each run is fifteen minutes long. A Windows
7 SP1 32-bit snapshot is chosen as the operating system to be infected, the user
is logged in as administrator with the User Account Control (UAC) disabled.

The experiments are based on a long-term collection gathered from August
2016 to March 2017. A VirusShare archive dedicated to ransomware was used
in combination with daily crawling on online repositories [16,30]. Such mixing
allows us to have an heterogeneous ransomware collection of 798 active ran-
somware (i.e., they encrypt the user’s files), decomposed in more than twenty
families, with numerous singletons. The previous studies due to their virtualized
analysis environment were unable to run the Cerber samples7. Our dataset is
not limited by the anti-virtualization techniques. Samples labeling is achieved
through the Avclass tool [24]. Detailed information about the collection can be
found in appendix, Table 3. For each sample, a manual analysis has been per-
formed in accordance with its JSON log file to highlight irrelevant samples, but
also false positives and negatives.
7 PayBreak did, might be samples mislabeling.

202 A. Palisse et al.

6.3 Detection Results

DaD is only interested in the write operations on disk, with a thread granular-
ity and irrespectively of any signature. Such feature makes the solution agnos-
tic which is necessary to tackle zero-day ransomware. The solution successfully
detects 99.37% of our ransomware. Solely five circumvent the countermeasure.
The following activities are simulated during the evaluation: mouse move, key-
board input and web browser usage. Only one false positive is encountered as
seen Fig. 1. Up to 238K threads have been monitored during the samples evalu-
ation. A very important point is that DaD’s classification error rate is very low:
7.08e−05.

A
c
tu

a
l
v
a
lu
e

Prediction outcome

1 0

1
True
Positive
1870

False
Negative
16

0
False
Positive
1

True
Negative
238098

Fig. 1. The confusion matrix related to the suspicious (1) and non suspicious (0)
threads monitored by Data Aware Defense (DaD) during the samples evaluation.

1Ko 10Ko 100Ko 1Mo 10Mo 100Mo

0

0.5

0.7

0.9

Number of bytes lost

F
n
(x

)

Fig. 2. The cumulative probability of the malicious threads for each thread number of
bytes lost.

To assess the effectiveness of DaD, an estimation of the number of bytes
lost across the ransomware collection is displayed Fig. 2. One can notice that
for 70% of the samples’ threads, at most 6.5 megabytes (MB) are encrypted,
which is acceptable for most of the users. Unfortunately, considering 90% of the
collection, 70 MB is lost per-thread in the most extreme scenario. Depending
on the user needs, such loss can be tolerated, but it might be unacceptable for
businesses. Most of the samples are single threaded, respectively 76.88%.

Data Aware Defense (DaD) 203

The detection is affected by the nature of the explored paths, and may be
more or less prompt to block a malicious thread. Indeed, the folders with a few
number of encrypted files set the sliding median far beyond the detection thresh-
old. The epidemic of ransom notes is to blame. Even when this scenario occurs
the malicious thread is successfully stopped. It demonstrates that monitoring the
whole file system makes our solution resilient. Moreover, the compromise indica-
tion, a χ2 sliding median on the last fifty write operations can be circumvented
if less than half of the thread activity is dedicated to files encryption.

An important observation that we made, is that different χ2 “layers” can be
distinguished on the disk. Each one corresponding to a specific behavior, such
as ransom notes and metadata appended to files. These patterns suggest a crite-
rion to distinguish reversible from non-reversible ransomware. Indeed, metadata
appended to files during encryption are visible on the file system and suggests
a chance to get the data back (e.g., authors implement the decryption routine).
Furthermore, no dissociation into separate threads has been observed for all the
three following tasks: files encryption, ransom notes and the metadata.

6.4 Ransomware-Like Applications

Experimental results point that the solution is effective to stop infection but
we did not discuss about limitations, in particular false positives and negatives.
The primary purpose was to design DaD as an practical and efficient first line
of defense against the ransomware.

False Positives. Looking at the χ2 sliding median with a significance level,
αEW of 0.05, allows us to eliminate a significant number of false positives among
most of the traditional applications. DaD monitors about dozens of processes and
hundreds of thread while an user interacts with its machine. Few applications are
blocked, in such cases, it disables a particular task (e.g., update), not the entire
process. Moreover only very specific applications are able to obtain malicious file
system behavior: files compression or encryption, secure files deletion, browsers
startup and so on as shown Fig. 3.

0 50 100

500

1,000

Write operation

C
h
i-
S
q
u
a
re

Fig. 3. χ2 of the 100 first write operation of Mogrify (•), 7-zip (�), GPG4Win (�),
and μTorrent (◦).

204 A. Palisse et al.

Indeed, the solution is not yet able to distinguish compression from encryp-
tion and a false positive is raised with 7-Zip, GPG4Win, or μTorrent. Still, as
mentioned in Sect. 3 we can distinguish JPEG compression. The χ2 statistic cor-
responding to the images rewritten by the Mogrify software is far away from the
critical value (i.e., 293.24). In any cases, a major observation can be made: only
a single “layer” is present. The χ2 statistic alone is not sufficient to avoid false
positives. The ransomware business model is based on extortion, in order to be
paid, they need to make the ransom notes as visible as possible. Future works
should focus on this idea.

False Negatives. The Data Aware Defense ransomware countermeasure focus
on very specific activities on disk that belong to ransomware behavior but not
exclusively. The underlying mechanics that comes with the ransomware to date
is well known and documented: they encrypt files. However, the ransomware
industry is very prolific and no one is immune to more stealthy behaviors, we
are faced with an arms race. For example, the specific problem of boot sectors
encryption (e.g., master boot record) is not addressed in this paper, a solution is
proposed by the Talos Group [26]. In addition, as outlined in Mbol et al. [17], if
an encryption algorithm preserving the distribution of the original files is used,
it will evade the solution because randomness is the root of the detection. The
ransomware which interleave malicious write operations with loops of unneces-
sary or redundant operations that look non random will go through DaD, as
shown Fig. 4. Prior to block a malicious thread, DaD need to have a windows on
the last fifty write operations. A multi-threaded ransomware where each file is
encrypted by a unique thread can exploit this limitation. Finally, a kernel exploit
is a potential breach that ransomware might use to unload DaD and more, in
this scenario, the system is completely compromise.

Five ransomware samples among the collection (i.e., 0.62%) bypass the solu-
tion. Three Xorist samples used weak encryption algorithms (e.g., Tiny Encryp-
tion Algorithm). The last two samples behaviors are different than all we have
previously observed. Figure 4, illustrates such statements.

2.5K 5K
102

104

106

Write operation

C
h
i-
S
q
u
a
re

(a) Crysis

2.5K 5K

103

Write operation

C
h
i-
S
q
u
a
re

(b) Purge

Fig. 4. Two false negatives samples: crysis and purge. Both interleave each malicious
write operation with numerous garbage operations.

Data Aware Defense (DaD) 205

The Crysis sample does not write ransom notes, and after approximately
3,000 write operations begin to perform large write operations of 218 bytes.
Such operations with a zeroed buffer are repeated multiples times. The Purge
sample hide his malicious behavior through a set of heterogeneous write oper-
ations. For each encrypted files, the ransom note is rewritten with chunks of
128 bytes. In both cases, the sliding median is inefficient to detect the under-
lying encryption process, the willingness of the ransomware authors is to hide
the primary purpose of the application behind useless operations (i.e., mimicry
attack). The ransomware can not be seen any more like a simplistic version of
malware, in the future they will pretend to do something else than just encrypt-
ing files, which was not the case so far to the best of our knowledge.

7 Conclusions

The Data Aware Defense is based on file system monitoring and no assump-
tions is done concerning the malicious I/O patterns. In addition we achieved
a thread granularity control on the system and do not restrict files protection
on a particular folder. The χ2 test by its own can replace the Shannon entropy
and catch up some of its weaknesses. Moreover our countermeasure is efficient
and can be deployed on Windows 7/10 machines with a reasonable performance
hit, with an average delay of 12µs per write operation on disk, a few hundred
times smaller than previous approaches. Our extensive experiments show that
the more sophisticated ransomware already use mimicry attacks. However we
successfully detect 99.37% of the samples with at most 70 MB lost per sample’s
threads in 90% of cases and less than 7 MB in 70% of cases.

These promising results in terms of performance and detection rate were
obtained thanks to single simple metric computed for all threads of all processes
running on the system, allowing us to track code injection attacks in particu-
lar. False positives seem inherent to the approach: we are detecting large write
operations of random data. But its speed and low negative rate makes it a good
candidate as a first line of defense. Once a thread is deemed malicious, instead of
blocking disk accesses, other more costly metrics can be used to improve the false
positive rate without impacting performance, since it would not be computed for
all other threads. As an example, future work should focus on the distribution of
random (encrypted files) and constant (ransom notes) data. Once false positive
rate is small enough, an interaction with the user to eliminate the last ones seem
reasonable. Indeed ransomware have a very specific behavior and the average
user should know if she is encrypting all its files on purpose or not. Future work
should investigate which information to report to a user and if the approach is
practical.

206 A. Palisse et al.

Appendix 1: Ransomware Collection

Table 3. An overview of the active ransomware families used in the experiments (i.e.,
87.98%). More details at: http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html.

Family Samples Family Samples Family Samples

Teslacrypt 195 (24.43%) Yakes 25 (3.13%) Shifu 9 (1.12%)

Cerber 135 (16.91%) Deshacop 19 (2.38%) Fsysna 8 (1%)

Xorist 125 (15.66%) Locky 17 (2.13%) Shade 7 (0.87%)

Bitman 101 (12.65%) Gpcode 13 (1.62%) Dalexis 5 (0.79%)

Zerber 27 (3.38%) Gamarue 9 (1.12%) Usteal 5 (0.79%)

Appendix 2: Empirical Tests

Table 4. Shannon entropy values with 10K files for each file type.

File types Minimum Average Maximum Variance

PNG 0.14 7.87 7.99 0.33

PDF 1.45 7.74 7.99 0.16

ZIP 3.21 7.93 7.99 0.07

Table 5. Chi-Square (χ2) values with 10K files for each file type.

File types Minimum Average Maximum Variance

PNG 275.72 1.69e+6 3.76e+9 2.74e+15

PDF 306.86 1.50e+6 5.07e+8 1.30e+14

ZIP 220.44 4.74e+5 9.11e+8 1.23e+14

References

1. Bisson, D.: C&C servers? too risky! Android botnet goes with
Twitter instead. https://www.bleepingcomputer.com/news/security/
candc-servers-too-risky-android-botnet-goes-with-twitter-instead/

2. Bonferroni, C.E.: Teoria statistica delle classi e calcolo delle probabilita. Libreria
internazionale Seeber (1936)

3. Cimpanu, C.: Microsoft announces controlled folder access to fend off
crypto-ransomware. https://www.bleepingcomputer.com/news/microsoft/
microsoft-announces-controlled-folder-access-to-fend-off-crypto-ransomware/

http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html
https://www.bleepingcomputer.com/news/security/candc-servers-too-risky-android-botnet-goes-with-twitter-instead/
https://www.bleepingcomputer.com/news/security/candc-servers-too-risky-android-botnet-goes-with-twitter-instead/
https://www.bleepingcomputer.com/news/microsoft/microsoft-announces-controlled-folder-access-to-fend-off-crypto-ransomware/
https://www.bleepingcomputer.com/news/microsoft/microsoft-announces-controlled-folder-access-to-fend-off-crypto-ransomware/

Data Aware Defense (DaD) 207

4. Clonezilla: The free and open source software for disk imaging and cloning. http://
clonezilla.org/

5. Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A., Zanero,
S., Maggi, F.: ShieldFS: a self-healing, ransomware-aware filesystem. In: Proceed-
ings of the 32nd Annual Conference on Computer Security Applications, pp. 336–
347. ACM (2016)

6. Craig: Differentiate encryption from compression using
math, June 2013. http://www.devttys0.com/2013/06/
differentiate-encryption-from-compression-using-math/

7. Crystal Dew World: CrystalDiskMark is a disk benchmark software. http://
crystalmark.info/software/CrystalDiskMark/index-e.html

8. Corpora, D.: Producing the digital body. http://digitalcorpora.org/
9. Geekbench: New benchmarks, redesigned interface. http://geekbench.com/

10. Octave, G.N.U.: Scientific programming language. https://octave.sourceforge.io/
octave/function/chi2inv.html

11. Haschek, C.: How to defend your website with ZIP bombs. https://blog.haschek.
at/2017/how-to-defend-your-website-with-zip-bombs.html

12. Ivanov, A., Sinitsyn, F.: The first cryptor to exploit telegram. https://securelist.
com/blog/research/76558/the-first-cryptor-to-exploit-telegram/

13. Kharraz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E.: UNVEIL: a large-
scale, automated approach to detecting ransomware. In: Proceedings of the 25th
USENIX Security Symposium, Austin Texas, pp. 757–772. Usenix (2016)

14. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the Gor-
dian knot: a look under the hood of ransomware attacks. In: Almgren, M., Gulisano,
V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 3–24. Springer, Cham
(2015). doi:10.1007/978-3-319-20550-2 1

15. Kolodenker, E., Koch, W., Stringhini, G., Egele, M.: PayBreak: defense against
cryptographic ransomware. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 599–611. ACM (2017)

16. Malekal: Malware repository. http://malwaredb.malekal.com/
17. Mbol, F., Robert, J.-M., Sadighian, A.: An efficient approach to detect Tor-

rentLocker ransomware in computer systems. In: Foresti, S., Persiano, G. (eds.)
CANS 2016. LNCS, vol. 10052, pp. 532–541. Springer, Cham (2016). doi:10.1007/
978-3-319-48965-0 32

18. Microsoft: File system minifilter drivers. https://msdn.microsoft.com/en-us/
windows/hardware/drivers/ifs/file-system-minifilter-drivers

19. Microsoft: Windows performance toolkit. https://msdn.microsoft.com/en-us/
windows/hardware/commercialize/test/wpt/index

20. Palisse, A., Le Bouder, H., Lanet, J.-L., Le Guernic, C., Legay, A.: Ransomware
and the legacy crypto API. In: Cuppens, F., Cuppens, N., Lanet, J.-L., Legay, A.
(eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 11–28. Springer, Cham (2017). doi:10.
1007/978-3-319-54876-0 2

21. PCMark 8: The complete benchmark for Windows 8.1, Windows 8 and Windows
7. https://www.futuremark.com/benchmarks/pcmark

22. PolarToffee: Found a sample of the AES-NI ransomware, April 2017. https://
twitter.com/PolarToffee

23. Scaife, N., Carter, H., Traynor, P., Butler, K.R.: Cryptolock (and drop it): stopping
ransomware attacks on user data. In: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), pp. 303–312. IEEE (2016)

http://clonezilla.org/
http://clonezilla.org/
http://www.devttys0.com/2013/06/differentiate-encryption-from-compression-using-math/
http://www.devttys0.com/2013/06/differentiate-encryption-from-compression-using-math/
http://crystalmark.info/software/CrystalDiskMark/index-e.html
http://crystalmark.info/software/CrystalDiskMark/index-e.html
http://digitalcorpora.org/
http://geekbench.com/
https://octave.sourceforge.io/octave/function/chi2inv.html
https://octave.sourceforge.io/octave/function/chi2inv.html
https://blog.haschek.at/2017/how-to-defend-your-website-with-zip-bombs.html
https://blog.haschek.at/2017/how-to-defend-your-website-with-zip-bombs.html
https://securelist.com/blog/research/76558/the-first-cryptor-to-exploit-telegram/
https://securelist.com/blog/research/76558/the-first-cryptor-to-exploit-telegram/
http://dx.doi.org/10.1007/978-3-319-20550-2_1
http://malwaredb.malekal.com/
http://dx.doi.org/10.1007/978-3-319-48965-0_32
http://dx.doi.org/10.1007/978-3-319-48965-0_32
https://msdn.microsoft.com/en-us/windows/hardware/drivers/ifs/file-system-minifilter-drivers
https://msdn.microsoft.com/en-us/windows/hardware/drivers/ifs/file-system-minifilter-drivers
https://msdn.microsoft.com/en-us/windows/hardware/commercialize/test/wpt/index
https://msdn.microsoft.com/en-us/windows/hardware/commercialize/test/wpt/index
http://dx.doi.org/10.1007/978-3-319-54876-0_2
http://dx.doi.org/10.1007/978-3-319-54876-0_2
https://www.futuremark.com/benchmarks/pcmark
https://twitter.com/PolarToffee
https://twitter.com/PolarToffee

208 A. Palisse et al.

24. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: AVclass: a tool for massive
malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds.)
RAID 2016. LNCS, vol. 9854, pp. 230–253. Springer, Cham (2016). doi:10.1007/
978-3-319-45719-2 11

25. SonicWall: Annual threat report. Technical report, SonicWall (2017). https://www.
sonicwall.com/docs/2017-sonicwall-annual-threat-report-white-paper-24934.pdf

26. The Talos Group: MBR filter driver. https://github.com/vrtadmin/MBRFilter
27. Micro, T.: CryLocker uses Imgur as C&C. http://www.

trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/
ransomware-recap-sept-2-2016-crylocker-uses-imgur-as-c-c

28. Micro, T.: Cerber starts evading machine learning. http://blog.trendmicro.com/
trendlabs-security-intelligence/cerber-starts-evading-machine-learning/

29. Viper: Binary management and analysis framework. http://viper.li/
30. VirusShare: Malware repository. https://virusshare.com/
31. Wardle, P.: Towards generic ransomware detection. https://objective-see.com/

blog/blog 0x0F.html
32. Young, A., Yung, M.: Cryptovirology: extortion-based security threats and coun-

termeasures. In: 1996 IEEE Symposium on Security and Privacy, Proceedings, pp.
129–140. IEEE (1996)

33. Young, A.L., Yung, M.M.: An implementation of cryptoviral extortion using
Microsoft’s crypto API. CiteSeerX (2005)

http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_11
https://www.sonicwall.com/docs/2017-sonicwall-annual-threat-report-white-paper-24934.pdf
https://www.sonicwall.com/docs/2017-sonicwall-annual-threat-report-white-paper-24934.pdf
https://github.com/vrtadmin/MBRFilter
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-recap-sept-2-2016-crylocker-uses-imgur-as-c-c
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-recap-sept-2-2016-crylocker-uses-imgur-as-c-c
http://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-recap-sept-2-2016-crylocker-uses-imgur-as-c-c
http://blog.trendmicro.com/trendlabs-security-intelligence/cerber-starts-evading-machine-learning/
http://blog.trendmicro.com/trendlabs-security-intelligence/cerber-starts-evading-machine-learning/
http://viper.li/
https://virusshare.com/
https://objective-see.com/blog/blog_0x0F.html
https://objective-see.com/blog/blog_0x0F.html

A Large-Scale Analysis of Download Portals
and Freeware Installers

Alberto Geniola1, Markku Antikainen2(B), and Tuomas Aura1

1 Aalto University, Espoo, Finland
2 Helsinki Institute for Information Technology,

University of Helsinki, Helsinki, Finland
markku.antikainen@helsinki.fi

Abstract. We present a large-scale study of Windows freeware
installers. In particular, we look for potentially unwanted programs
(PUP) and other potentially unwanted modifications to the target sys-
tem made by freeware installers. The analysis is based on almost 800
installers gathered from eight popular software download portals. We
measure how many of them drop PUP, such as browser plugins, or make
other modifications to the system. In addition to these results, we find
that most installers that download executable files over the network are
vulnerable to man-in-the-middle attacks, which in the worst cases may
be used to execute arbitrary code with elevated privileges on the target
system. Moreover, serious man-in-the-middle vulnerabilities are found in
application managers provided by download portals.

1 Introduction

Most computer users download and install some freeware applications from the
Internet. The source is often one of the many download portals, which aggre-
gate software packages and also offer locations for hosting them. It is common
concern that the downloaded software might be infected with malware or have
other unwanted side effects. Freeware installers are also known for dropping
potentially unwanted programs (PUP) to the user’s computer. PUP and other
unwanted system modifications to desktop computers can be considered a secu-
rity threat [5,21]. This phenomenon is partly caused by the pay-per install (PPI)
business model where freeware software developers monetize their software by
bundling it with other third-party applications or by promoting some software
and services by changing the user’s default settings. This business model is not
always illegal as the application installer may inform the users about the third-
party software and even allow them to opt-out. However, this is often done in a
way that the user is not fully aware of the choices made.

In this paper, we set out to analyze nearly 800 popular software installers from
download portals. We do this with an automated analysis system that downloads
and installs the applications in a sandbox while monitoring the target system.
The sandbox emulates the behavior of a lazy user who tries to complete the
installation process with the default settings of the installer. That is, we assume
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 209–225, 2017.
https://doi.org/10.1007/978-3-319-70290-2_13

210 A. Geniola et al.

that the user wants to finish the installation as fast as possible and is habituated
to accept the default settings and to bypass warnings.

Our study differs from earlier research [4,20] in several respects. First, we
try to better understand the prevalence of any problems by gathering large
quantities of software from the most popular download portals. Second, we do
not differentiate between legitimate and malicious actions, which would easily
lead to complicated legal and moral arguments, but instead try to cover all
potentially unwanted changes to the system. Thirdly, our research methodology
provides insights to software installers and download portals in general.

The most important findings from our study are following. We find that, while
the most popular download portals do not distribute malware, some (1.3%) of
the studied installers drop a well-known PUP to the target system. Furthermore,
nearly 10% of the installers came with a with a third-party browser (e.g. Chrome)
or a browser extension. On the positive side, we find no evidence that download
portals would themselves bundle significant amounts of potentially unwanted
content to the downloads – the PUPs seem to come from the original freeware
authors. When analyzing the installers, we also find prevalent vulnerabilities.
The installers often download the application binaries over HTTP, and over half
of the installers that do so, do not verify the integrity of the binary and are thus
vulnerable to man-in-the-middle (MitM) attacks. We also spot serious MitM
vulnerabilities in update managers of two major download portals, which allow
an attacker to underhandedly advertise malicious binaries as software updates.

The rest of this paper is organized as follows. Section 2 reviews related work.
In Sect. 3, we describe the methodology and then briefly explain the analysis
system. Analysis results are presented in Sect. 4 and further discussed in Sect. 5.
Section 6 concludes the paper.

2 Background

This section describes the related work and ideas on which our research is based.
Downloading applications from the Internet can be dangerous, and this also

applies to download portals [9,10]. The applications might come with unwanted
features that range from clearly malicious, such as bundled malware and spy-
ware, to minor nuisances like changing the browser’s default search engine. Such
software is often referred to as potentially unwanted programs (PUP)1. We use
the broad definition of Goretsky [8], which states that a PUP is an application
or a part of an application that installs additional unwanted software, changes
the behavior of the device, or perform other kinds of activities that the user has
not approved or does not expect. PUP often functions in a legal and moral gray
area. The threat of legal action from PUP authors has been suggested as the
reason why anti-malware labels it as “potentially unwanted” rather than “mali-
cious” [2,13], and this was also confirmed by anti-malware developers who gave
feedback on our research.

1 Potentially Unwanted Application (PUA) is another often used term.

A Large-Scale Analysis of Download Portals and Freeware Installers 211

Recent studies have shown that freeware installers only rarely come bun-
dled with critical malware [11]. More often, the system modifications are just
unnecessary and unexpected. The user may even be informed about them, e.g.,
in the EULA, or the installer may allow a careful user to opt out of unwanted
features. Users, however, do not always read EULAs and may be habituated to
accept default settings and ok any warnings [1,17]. This rushing-user behavior
leads the user to giving uninformed consent to the system modifications. While
solutions have been proposed, they have not been widely adopted [2]. Moreover,
PUP installers often come with a complex EULAs [7], which users are likely to
accept blindly [3].

One root cause for the problem of unwanted software is the pay-per-install
(PPI) business model. PPI is a monetization scheme where a software developer
or distributor gets payed for dropping unrelated third-party applications to the
target computer. This may be done with or without the user’s consent. Recent
research publications have studied the PPI business model [4,11,20]. The PPI
application installer typically downloads the third-party software from a PPI
distributor. Caballero et al. [4] reverse engineered protocols used by PPI distrib-
utors and found that the choice of applications depends on the target computer’s
geolocation. Another result is that, while PPI distributors do spread some known
malware, this is not a very prevalent phenomenon—probably because black-
listing by anti-virus vendors would hurt the PPI business [11]. Another related
paper analyzed black-market PPI that installs third-party applications silently
in the background [20]. In the current research, we consider commercial PPI
that does not necessarily try to hide its actions but rather takes advantage of
the rushing user behavior to maximize the number of installs. We also analyze
other unwanted side effects of the installers even if not part of the PPI business.

In summary, while there is plenty of anecdotal evidence showing that down-
load portals distribute PUP [10,18], probably due to the PPI business model,
the true extent of this problem has not been studied methodically. We aim to
fill this gap by providing a comprehensive analysis of nearly 800 application
installers retrieved from the most popular download portals. While the PUP
phenomenon is not limited to a single operating system or platform, we focus
purely on Microsoft Windows, which still is the most popular OS on desktop
and laptop computers (84% market share at the time of writing [19]).

3 Methodology

This section describes the methodology and the analysis system used in our
study. While the analysis system is rather complex, we describe them only briefly
because the focus of this paper is on the analysis results.

3.1 Analysis System Overview

Our goal is to implement automated analysis of large numbers of Windows free-
ware installers. For this, we need an infrastructure that automatically downloads,

212 A. Geniola et al.

executes and analyzes the application installers. On a high level, the analysis
system (1) crawls selected download portals for Windows freeware installers,
(2) automatically runs them in guest machines with emulated user interaction,
(3) monitors the modifications made to the guest machine as well as network
communication, and (4) saves the results for later use.

Fig. 1. Analysis system architecture

The architecture of the analysis system is shown in Fig. 1. First of all, we
implemented crawlers for the download portals. The actual analysis is orches-
trated by the host controller. It handles the life cycle of the guest machines, in
which the installers are executed. This essentially means that the host controller
is responsible for (1) fetching a job from the database, (2) initializing a guest
machine and serving it the installer binary, (3) pre-processing and storing data
about the installation process, and finally (4) cleaning up the guest machine. In
each guest machine, there is a guest agent that pulls the installer from the host
controller and drives its execution by launching it and interacting with its UI.
The agent also monitors any filesystem and registry modifications and reports
these to the host controller. The network traffic to the guest machines is routed
through a network sniffer, which captures it. While the analysis system is mod-
ular and can support any guest OS, we have so far implemented the guest agent
only for 32-bit Windows 7 guest machines.

The installers require user attention. Therefore, we implemented a heuristic
interaction system which emulates the behavior of a lazy user during the instal-
lation process. When the installer runs, the guest agent tries to detect when it is
waiting for user input and then sends the input event that is most likely to cause
progress. The guest agent does this by observing screenshots that are taken peri-
odically from the installer UI: the installer is likely to wait for user input if it
is not performing any I/O operations and if the screenshots are stable for some
time. The next input is chosen using heuristics that, for example, prefer rectan-
gular shapes containing text such as “OK”, “Install”, or “Next”. The graphical
screenshot approach was taken because most installers do not make use of the
standard Windows UI components. The UI interaction heuristics in the guest
agent were optimized for Windows; however, they could easily be adapted to
other operating systems.

A Large-Scale Analysis of Download Portals and Freeware Installers 213

3.2 Installer Crawling

We chose eight download portals based on their Alexa rankings (Table 1). While
some of these sites also provide other content than application downloads, the
ranking gives a rough picture of their popularity and perceived trustworthiness.

Each studied download portal promotes a list of the most popular applica-
tions on its front page, except Softpedia which promotes recent downloads. We
decided to focus on the promoted applications and set a crawler to download
up top 200 installers from each portal. When possible, it applied a filter for 32-
bit Windows or Windows 7 freeware. With some portals, there were fewer than
200 actual downloads, mainly because of the limitations of the web interface.
Table 1 summarizes portals chosen for our study and the number of downloaded
files.

In addition to crawling, we also manually downloaded installers for the most
popular freeware applications directly from the developers’ websites. We used
Alexa rankings of top freeware applications as well as Google Trends for the
most popular searches that include the words “software download”. The manual
download was done to compare the behavior of the installers published directly
by the shareware authors with those distributed through the download portals.
However, it should be emphasized that we only downloaded 20 installers man-
ually. More extensive comparison between the portals and “original” software
would not scale because it cannot be automated, and it would also be com-
plicated by the fact that many authors use one of the portals as their main
distribution point.

Table 1. Download portals studied in this paper

Download portal Alexa rank Oct.2016 Filters Downloaded files Successfully
analyzed

download.cnet.com 159 Win,free 200 146

softonic.com 285 Win7,free 170 126

filehippo.com 662 Win 90 64

informer.com 881 Win,free 200 117

softpedia.com 1732 Win,free 200 148

majorgeeks.com 6077 Win,free 55 37

soft32.com 7279 Win,free 200 113

brothersoft.com 8600 Win,free 41 26

manual download – – 20 15

1177 792

We were not able to automatically analyze every installer. First, almost 10%
of the crawled files failed either because the application was not an installer in
the first place (e.g. a stand-alone application) or because of missing hardware,

https://download.cnet.com
https://softonic.com
https://filehippo.com
https://informer.com
https://softpedia.com
https://majorgeeks.com
https://soft32.com
https://brothersoft.com

214 A. Geniola et al.

software dependency, product key, or a similar reason. Additionally, 23% of the
installers failed because the automated UI interaction was not smart enough. The
reason was mostly complex interaction, such as selecting the directory to which
the program should be installed. Another reason was that the installer used some
other language than English. Nevertheless, a relatively high percentage of the
installers (67%) completed. This was the result of iterative improvements to the
UI automation heuristics and other parts of the analysis system.

The results discussed in the rest of this paper were obtained from the 792
installers completed successfully. Of these files, 751 were unique. We nevertheless
consider even the installers with the same hash as distinct because some down-
load portals have in the past served identical installers for several applications2.
In these cases, the installer executable determines the further files to download
and install based on its own filename.

4 Results

We present the results of our analysis in two parts. Section 4.1 describes what we
can learn simply by looking at the files served by the download portals. Then,
Sect. 4.2 presents the results of dynamic analysis. All the results are based on
the 792 installers that were successfully executed. Some of the results are not
directly related to security but are of general interest and serve as background
information.

4.1 Static Properties of the Installers

This section describes some of the basic properties of the analyzed installers.

Analyzed Applications: We first compare the applications promoted on dif-
ferent portals. This helps to understand the data and is interesting in itself.
We manually grouped the different versions of the same applications. Table 2
shows the overlap in applications at different portals. The number of distinct
applications served by each portal is on the diagonal.

Our first observation is that the portals serve quite different sets of applica-
tions. Those promoted by CNET, FileHippo, Informer and Soft32 overlap the
most. On the other hand, Softonic and Softpedia tend to promote applications
that are not on the other portals. In the case of Softpedia, the reason may be
that it does not promote the most popular software but the latest downloads.
Finally, some portals use only the last week’s downloads for the popularity rank-
ing. This metric is susceptible to manipulation and short-term fluctuation, e.g.
when an update is published. For these reasons, one has to be very careful when
comparing different download portals based on our data.

2 CNET’s downloader VT report available at https://virustotal.com/it/file/
9961ebc9782037f68b73096bcff3047489039d6dc5c089f789b3dbff4109e21b/analysis/.

https://virustotal.com/it/file/9961ebc9782037f68b73096bcff3047489039d6dc5c089f789b3dbff4109e21b/analysis/
https://virustotal.com/it/file/9961ebc9782037f68b73096bcff3047489039d6dc5c089f789b3dbff4109e21b/analysis/

A Large-Scale Analysis of Download Portals and Freeware Installers 215

Table 2 also shows the median ages of the installers served by each portal.
Software age may be an indication of how seriously the publisher or download
portal take security. We obtained the application ages from VirusTotal. Our
assumption is that popular software tends to be submitted to VirusTotal soon
after release. Although the first-seen date obtained from VirusTotal does not
precisely tell how old a binary file is, it gives an independent indication of when
the software began spreading more widely.

The overall observation is that much of the popular freeware is not frequently
updated, and many installers are several years old. This can be a cause for con-
cern. The collected data also shows that CNET, MajorGeeks and Softpedia serve
relatively recent software installers while the rest of the portals serve consider-
ably older binaries. In addition to the actual age of the software, the results could
be explained by differences in which software the sites promote and the type of
software that each portal distributes. For instance, there may be value to archiv-
ing popular legacy software that is no longer updated. But even considering such
alternative explanations, we can still assert that the most popular download site
CNET distributes relatively recent software: its installer ages align closely to
those of manually downloaded files, which can serve as a reference metric.

Table 2. Number of common applications served by each download portal pair (dif-
ferent versions of same application have been combined). Age shows the median age in
days of the installers served by each portal.

B
ro
th

er
so
ft

C
N
ET

Fi
le
H
ip
po

In
fo
rm

er

M
aj
or
G
ee
ks

So
ft
32

So
ft
on

ic

So
ft
pe

di
a

m
an

ua
l

ag
e

Brothersoft 26 1 3 2 0 0 1 0 0 953
CNET 1
FileHippo 3 19
Informer 2 22 18
MajorGeeks 0 6 6 7 35 3 1 0 1 8
Soft32 0 21 15 14 3
Softonic 1 7 4 3 1 6
Softpedia 0 0 1 0 0 2 2
manual 0 4 4 5 1 2 0 0

144 19 22 6 21 7 0 4 111
64 18 6 15 4 1 4 160

117 7 14 3 0 5 604

112 6 2 2 573
125 2 0 723

148 0 18
15 117

distinct files 26 146 64 117 37 112 126 148 15

Application Signing: Our first security-related question was whether the
installer binaries are signed. Recent research showed that while malware is gen-
erally not signed, potentially unwanted programs are [12]. We wanted to know
where software distributed by the download portals stands.

The application signature verification results can be seen in Table 3. While
most of the analyzed binaries (64%) had a valid signature, 30 (3.8%) cases did
not verify correctly. Publisher certificate expiration was the most common cause

216 A. Geniola et al.

Table 3. Signature verification of analyzed installers

Verification outcome # .EXE # .MSI # Total

Signed and verified 486 23 509

Verification error 26 4 30

Unsigned 239 14 253

of failure (24 cases). Other causes were explicit revocation (1 case) and untrusted
root CA (5 case). The remaining 32% of the analyzed installers were unsigned.

Interestingly, there were differences between the download portals. CNET,
FileHippo and Informer had about 80% correctly signed code while Soft32, Soft-
onic and Softpedia had lower rates (62%, 61%, 44%, respectively). The other
portals appeared to belong to the latter group, but there were too few installers
for a fair comparison. The high percentage of signed files in three of the four most
popular download sites seems to indicate that there is value for the publishers
in code signing even though the portals do not require it.

4.2 Dynamic Analysis of Installers

This section presents results from the dynamic execution and monitoring of the
installers.

Network Traffic Analysis: The sniffed traffic was analyzed with the Tshark
and Bro protocol analyzers. We also implemented custom Python scripts for
extracting further information.

We begin the discussion by looking at the network protocols (Table 4). Most
of the traffic is HTTP and HTTPS over TCP (99%). The most frequent UDP
packets were for UPnP, SSDP and DNS. Our script was unable to classify some of
the UDP packets. Manual investigation revealed that such traffic mainly belongs
to the BitTorrent protocol, legitimately used by torrent-based installers. In three
cases, we identified JSON encoded text over UDP, which is used by content-
sharing applications for advertising themselves on the local network. In one case,
the installer used a variant of the GVSP video streaming protocol, presumably
to show a video to the user.

Next, we focus on HTTP, which constitutes the bulk of the network traf-
fic. Figure 2 shows the domains that are contacted by most installers and from
which the installers download most of the data. It can be seen that more than
80% of the HTTP downstream traffic is from well-known CNDs. Akamai and
Google are the two most-contacted ones. The figure also reveals that quite a
few installers contact Google but only download small volumes of data. A close
investigation revealed that 23 installers made least one HTTP request for the
Google Analytics web beacon and 29 installers downloaded the Google Analytics
JavaScript library. This may indicate that many freeware authors benefit from
its value-added services such as user tracking and demographic data.

A Large-Scale Analysis of Download Portals and Freeware Installers 217

Table 4. Breakdown of network traffic (inbound and outbound), total for all analyzed
installers

Transport layer Application protocol MB (%)

TCP HTTP 6567.84 95.22

TLS/SSL 328.63 4.76

Others 1.25 0.02

6897.72 99.25

UDP UPnP 18.03 34.51

SSDP 17.25 33.02

DNS 4.39 8.40

Others 2.90 5.55

Unknown 9.67 18.52

52.24 0.75

ICMP 0.01 0.00

Total 6949.96 100

Fig. 2. HTTP downstream traffic breakdown by top domains. The blue bars (left)
represent downstream traffic volume, while the cyan bars (right) indicate the number
of installers that contacted the domain (Color figure online)

We reassembled and inspected the HTTP streams for binary content. Table 5
shows the results. Executable files and binary payloads constitute most of the
traffic. This indicates that many of the installers (348) behave as install-time
downloaders. To see if there is a clear distinction, we plotted the installer binary
size and the downloaded traffic volume in Fig. 3. We have visually classified the

218 A. Geniola et al.

Table 5. HTTP downloads by MIME type

MIME type Downloaded
data (MB)

Installers

application/x-dosexec 1879.17 96

application/octet-stream 1808.99 227

application/vnd.ms-cab-compressed 475.02 25

application/gzip 462.82 11

application/zip 267.32 32

application/vnd.ms-office 257.15 8

application/x-7z-compressed 228.09 4

application/x-bzip2 29.51 4

text/plain 16.90 787

text/html 12.33 138

others 18.13 155

Total 5455.42 788 (Distinct)

Fig. 3. Scatter plot of installer size vs downstream traffic volume. The points were
divided to the three classes based on visually observed grouping

installers into three classes: downloaders, installers that call home but do now
download significant amounts of data, and stand-alone installers. It can be seen
from the figure that there is no apparent correlation between the installer size
and the amount of data it downloads.

Man-in-the-middle Vulnerability: As seen in Table 4, installers tend to
download binary files over insecure HTTP connections. These files are typically

A Large-Scale Analysis of Download Portals and Freeware Installers 219

executed within the installation process, possibly with high system privileges.
In such a context, it is essential that the installers authenticate the downloaded
files, e.g. with a digital signature. To check if they do that, we implemented an
automated MitM attack against the installers. This was done with a transparent
HTTP proxy in the sniffer component of the analysis system, which replaced
executable files in HTTP responses (but not HTTPS) with its own. The mali-
cious binary (EXE or MSI file) that was fed to the installer simply took note of
its running privileges and terminated. The malicious binary was injected in the
following cases:

1. Request URL ended with .EXE or .MSI
2. Response MIME type matched executable or MSI
3. First bytes of the HTTP response body matched magic numbers for EXE or

MSI.

Among the 792 analyzed installers, the MitM attack was triggered 100 times.
Amazingly, more than half of the attempted attacks (55%) led to immediate exe-
cution of the attacker’s binary file, meaning that no authentication or integrity
check was done for the downloaded binaries. Only 8 installers refused to exe-
cute the tampered file and removed it right away. In the remaining 37 cases, the
attacker’s file was not executed, yet it was found on the disk after the installa-
tion. 17 of these were saved in temporary system folders (subject to later removal
upon system cleanup) while 20 were stored in persistent file system locations,
such as under the Program Files directory. The latter cases leave the system
open to a delayed attack when the application is used.

The MitM attack is particularly dangerous because the attacker’s file is exe-
cuted with the same privileges as the installer application. In 75 out of the 100
successful attacks, the malicious binary was executed with elevated privileges.

There are straightforward ways of mitigating the MitM vulnerability. One
approach would be to use HTTPS for the download. Another possibility is to use
asymmetric signature verified by the installer application with a static publisher
public key. Clearly, there is no good technical excuse to be vulnerable.

It is worth noticing that most of the download portals distribute installers via
HTTP in the first place, and the installer itself could be fake. The user, however,
has the opportunity to check that the installer binary is signed by the correct
publisher. In comparison, the MitM attack succeeds even if the user takes care
to only execute legitimate, signed installer binaries from the correct publisher.

File System Analysis for Malware Drops: We collect the hashes of all
files that are temporarily or permanently stored on the guest machine as well
as hashes of files reconstructed from network traces including HTTPS connec-
tions. We looked up all the collected file hashes in VirusTotal, which aggregates
results from various virus scanners. This was done two months after running the
installers to leave time for new malware variants to be detected.

The number of positive results was high (235 files) but most of these were
reported by only one scanner and, most likely, were false positives. Only 1.3% of

220 A. Geniola et al.

the installers contained files detected as malware by six or more scanners. More
importantly, majority of such the positives were labeled as PUP. There was only
one detected critical threat, and it was an Android rootkit that does not infect
Win32 systems. The files with highest detection rates are listed in Table 6.

The analysis shows that download portals are not used for blatant malware
distribution. The portals probably perform scans of the binaries before publish-
ing them. On the other hand, the presence of PUP related to the well-known
InstallCore PPI network indicates that download portals could still implement
stricter countermeasures against grayware and bundled unwanted applications.

Table 6. Threats ranked by VirusTotal detection rate.

File name
(truncated)

Positive
scanner(s)

Inst Description Source portal

rootf.apk 30 1 Android rootkit Soft32

fusion.dll 17 1 PUP InstallCore CNET

videora.exe 15 1 PUP OpenCandy Softonic

...Setup.exe 14 1 Adware Mobogenie CNET

fusion.dll 14 1 PUP InstallCore CNET

fusion.dll 12 1 PUP InstallCore Soft32

...0061e.exe 12 1 PUP Montiera toolbar Soft32

...B2C6B.dll 8 1 PUP Conduit Brothersoft

...126C1.exe 6 1 PUP Zugo Toolbar Softonic

Registry Modifications: We tracked the registry modifications made by the
installers and analyzed changes to the following:

– Automatic program startup
– Default browser
– Browser plugins

There are many ways for a program to start automatically in Windows includ-
ing registry keys [16] and specific file system folders. We found that 88 installers
(12%) configured the installed software to automatically run at system startup.

Similar analysis was done on default browser changes: 26 installers replaced
the default browser. Interestingly, 11 of these are not browser installers. Table 7
reports the details. Google Chrome turned to be the only third-party browser
installed by non-browser installers. Manual investigation revealed that, in all
cases, Google Chrome installation is optional but pre-selected by default.

Our analysis continued with the inspection of installed third-party browser
modules. We focused on Internet Explorer, which was the only browser installed
by default on the fresh Windows 7 guest machine. There were 69 registry modi-
fications regarding browser extensions by 38 installers. As shown in Table 8, the

A Large-Scale Analysis of Download Portals and Freeware Installers 221

Table 7. Installers bundling unrelated third party browsers

Product name Publisher Bundled browser

Adobe Shockwave Player Adobe Systems Inc Google Chrome

CCleaner Piriform Ltd Google Chrome

Defraggler Piriform Ltd Google Chrome

PhotoScape Mooii Google Chrome

Recuva Piriform Ltd Google Chrome

Speccy Piriform Ltd Google Chrome

SUPERAntiSpyware Free SUPERAntiSpyware Google Chrome

Table 8. Third-party plugins dropped on IE

Portal #Installers Toolbar Menu extensions BHO Total %

Brothersoft 26 2 0 4 6 23.1

CNET 146 4 7 7 18 12.3

FileHippo 64 7 0 9 16 25.0

Informer 117 4 1 7 12 10.3

MajorGeeks 37 0 0 0 0 0.0

Soft32 113 2 0 4 6 5.3

Softonic 126 1 1 2 4 3.2

Softpedia 148 1 0 3 4 2.7

manual 15 1 0 2 3 20.0

Total 792 22 9 38 69

predominant type of installed extension is the Browser Helper Object (BHO),
which is the most powerful and potentially most dangerous IE component type
because it runs in the same memory context as the browser and has access to
the user’s browsing data [6].

In the case of browser extensions, there were differences between the portals.
MajorGeeks installers did not bundle any browser plugins, and Softpedia reg-
istered a total of just 4 dropped items over 148 installers (2.7%). Softonic and
Soft32 had also relatively low rates. CNET and Informer, on the other hand,
dropped considerably more browser plugins, and FileHippo topped the league
with 25% drop rate. Interestingly, even manual downloaded installers bundled
browser plugins. This could indicate that the plugins are bundled by the original
software vendors and not by the portals.

Installer Best-Practices Compliance: Microsoft advises vendors to follow
certain best practices for installers [15]. Firstly, each installed application should
provide a consistent uninstall feature. For this, the installer should populate
two registry keys on the system, one with the program’s human-readable name

222 A. Geniola et al.

and the other with a path to the uninstaller binary. If one of these two values
is missing, removal of the application becomes cumbersome. Of the analyzed
installers, 82 failed to specify both the program name and uninstaller path.
Another 5 only stored the product name without specifying an uninstaller binary.

Secondly, Microsoft requires installers to specify valid ProductName property
in their metadata, which is usually placed within the resource section of the
executable file. It is exposed to the user in a properties dialog [14]. 174 of the
analyzed installers failed to provide this information.

4.3 App Managers and Software Updates

Some download portals provide app-manager clients for simplifying software
downloads and updates. By default, app managers run at system startup and
regularly check for application updates. We analyzed three app managers (File-
Hippo, Informer and MajorGeeks).

Fig. 4. Example of a successful MitM attack. User decides to update FileZilla (1), but
is served a VLC installer instead (2)

Two of the analyzed app managers (FileHippo and Informer) are vulnera-
ble to MitM attack. More specifically, they communicate with the portal using
HTTP and do not check the integrity of the served binaries in any way. We
were able to make modifications to the list of available updates, such as chang-
ing the download URL or adding new entries to the list of available software.
Furthermore, both vulnerable app managers by default periodically check for
software updates. This makes the attack even more serious in two respects: first,
the attacker can push arbitrary binaries to the victim’s computer without any
initial user action and, second, the MitM attack can be mounted when a mobile
user is visiting an untrusted access network such as wireless hotspot.

Figure 4 illustrates the MitM attack. Windows UAC still asks user’s permis-
sion to run the attacker-selected application, which is either unsigned or has a
different name from what the use should expect, but the user may not pay atten-
tion to such details—especially after explicitly deciding to install the update.

A Large-Scale Analysis of Download Portals and Freeware Installers 223

5 Discussion and Future Work

This research was motivated, in part, by the suspicion that download portals
might distribute malware or bundle excessive amounts of unwanted programs to
freeware downloads. The results of our analysis do not support these suspicions.
No serious infections by known malware were detected, and the bundled PUPs
seem to have been mostly included by the original freeware authors. Thus, free-
ware distribution does not appear to be such a Wild West as has been suggested
in the past.

From the security viewpoint, the most important negative discoveries were:

– The median age of installers varies notably among portals, and the distributed
freeware versions are often not the latest.

– Some portals host installers that bundle known PUP.
– The most common types of PUP bundled with freeware are third-party

browser plugins and the Google Chrome browser.
– Many installers that download executable files are vulnerable to MitM attacks

that enable code injection to the client machine.
– Some app managers provided by the portals are similarly vulnerable to MitM

attacks and code injection.

While we make some comparisons between the portals throughout the paper,
it would not be possible to make fair ranking of the portals regarding security or
PUP. The portals differ in the types and quantity of software available. While
Softpedia does well on all the metrics, it promotes a different set of software than
the other portals (based on recent downloads rather than popularity), and thus
the results may not be comparable. Further, our study is based on a snapshop
and is limited to a single point in time. A longitudinal study would be needed
for comparing different portals.

Our methodology does have some limitations. Firstly, our UI automation
could still be more reliable. Manual inspection of installation screenshots con-
firmed that our UI engine was able to correctly automate 67% of the installers.
There clearly is still scope for improvement. Secondly, our current analysis sys-
tem only supports 32-bit Windows 7 on the guest machines. This is because of
the free availability of an API hooking library for this platform. Thirdly, it is
possible that some installers drop a plugin to an already installed third-party
application (e.g. a Google Chrome plugin). Because the guest machines were
initialized with a fresh OS, we have not spotted these. Fourthly, we have focused
on grayware PUP and explicit changes to the system. We did not emphasize
stealthiness in the design of our analysis system, due to which evasive malware
may have escaped our analysis. We also cannot exclude the possibility of custom
backdoors, spyware features, or other malicious behavior in the software.

6 Conclusion

We present analysis results from almost 800 freeware application installers
obtained from download portals. The results indicate that portals do not actively

224 A. Geniola et al.

distribute known malware. Many freeware installers, however, come bundled
with unwanted programs and have links to PPI networks. The most danger-
ous detected security flaw is the lack of authentication for downloads made by
installers and app managers. They are vulnerable to man-in-the-middle attacks
that enable code injection to the client machines. We expect to extend the scope
and coverage of the analysis and will share our data with the research community.

References

1. Böhme, R., Köpsell, S.: Trained to accept? A field experiment on consent dialogs.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI 2010, pp. 2403–2406. ACM, New York (2010)

2. Boldt, M., Carlsson, B.: Privacy-invasive software and preventive mechanisms. In:
International Conference on Systems and Networks Communications, ICSNC 2006,
p. 21, October 2006

3. Bruce, J.: Defining rules for acceptable adware. In: Proceedings of the Fifteenth
Virus Bulletin Conference (2005)

4. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: Proceedings of the 20th USENIX
Conference on Security, SEC 2011, USENIX Association, Berkeley (2011)

5. Emm, D., Unuchek, R., Garnaeva, M., Ivanov, A., Makrushin, D., Sinitsyn, F.: It
threat evolution in Q2 2016. Technical report (2016). https://securelist.com/files/
2016/08/Kaspersky Q2 malware report ENG.pdf

6. Esposito, D.: Browser helper objects: the browser the way you want it.
https://msdn.microsoft.com/en-us/library/bb250436(v=vs.85).aspx. Accessed 29
Dec 2016

7. Good, N., Dhamija, R., Grossklags, J., Thaw, D., Aronowitz, S., Mulligan, D.,
Konstan, J.: Stopping spyware at the gate: a user study of privacy, notice and
spyware. In: Proceedings of the 2005 Symposium on Usable Privacy and Security,
SOUPS 2005, pp. 43–52. ACM, New York (2005)

8. Goretsky, A.: Problematic, unloved and argumentative: what is a potentially
unwanted application (PUA)? Technical report, November 2011. Accessed 03 June
2016

9. Heddings, L.: Stop testing software on your PC: use virtual machine snapshots
instead. http://www.howtogeek.com/206286/stop-testing-software-on-your-pc-
use-virtual-machine-snapshots-instead/

10. Heddings, L.: Yes, every freeware download site is serving crapware (here’s the
proof). Technical report. http://www.howtogeek.com/207692/yes-every-freeware-
download-site-is-serving-crapware-heres-the-proof/

11. Kotzias, P., Bilge, L., Caballero, J.: Measuring PUP prevalence and PUP distri-
bution through Pay-Per-Install services. In: Proceedings of the USENIX Security
Symposium (2016)

12. Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified PUP: abuse in authen-
ticode code signing. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 465–478. ACM (2015)

13. McFedries, P.: Technically speaking: the spyware nightmare. IEEE Spectr. 42(8),
72–72 (2005)

14. Microsoft: VERSIONINFO resource. https://msdn.microsoft.com/en-us/library/
aa381058.aspx. Accessed 05 Jan 2017

https://securelist.com/files/2016/08/Kaspersky_Q2_malware_report_ENG.pdf
https://securelist.com/files/2016/08/Kaspersky_Q2_malware_report_ENG.pdf
https://msdn.microsoft.com/en-us/library/bb250436(v=vs.85).aspx
http://www.howtogeek.com/206286/stop-testing-software-on-your-pc-use-virtual-machine-snapshots-instead/
http://www.howtogeek.com/206286/stop-testing-software-on-your-pc-use-virtual-machine-snapshots-instead/
http://www.howtogeek.com/207692/yes-every-freeware-download-site-is-serving-crapware-heres-the-proof/
http://www.howtogeek.com/207692/yes-every-freeware-download-site-is-serving-crapware-heres-the-proof/
https://msdn.microsoft.com/en-us/library/aa381058.aspx
https://msdn.microsoft.com/en-us/library/aa381058.aspx

A Large-Scale Analysis of Download Portals and Freeware Installers 225

15. Microsoft: Windows installer and logo requirements. https://msdn.microsoft.com/
en-us/library/windows/desktop/aa372825(v=vs.85).aspx. Accessed 30 Dec 2016

16. Microsoft: Run, RunOnce, RunServices, RunServicesOnce and Startup, November
2006. Accessed 08 Dec 2016

17. Motiee, S., Hawkey, K., Beznosov, K.: Do windows users follow the principle of
least privilege? Investigating user account control practices. In: Proceedings of the
Sixth Symposium on Usable Privacy and Security, p. 1. ACM (2010)

18. Slade: Mind the PUP: top download portals to avoid. Technical report, March
2015. http://blog.emsisoft.com/2015/03/11/mind-the-pup-top-download-portals-
to-avoid/

19. Statcounter: Desktop operating system market share worldwide, June 2017.
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-2017
06-201706-bar

20. Thomas, K., Crespo, J.A.E., et al.: Investigating commercial pay-per-install and
the distribution of unwanted software. In: 25th USENIX Security Symposium
(USENIX Security 2016), pp. 721–739. USENIX Association, Austin, August 2016

21. Wood, P., Nahorney, B., Chandrasekar, K., Wallace, S., Haley, K., et al.: Symantec
internet security threat report trends for 2016. Technical report, April 2016

https://msdn.microsoft.com/en-us/library/windows/desktop/aa372825(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa372825(v=vs.85).aspx
http://blog.emsisoft.com/2015/03/11/mind-the-pup-top-download-portals-to-avoid/
http://blog.emsisoft.com/2015/03/11/mind-the-pup-top-download-portals-to-avoid/
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201706-201706-bar
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201706-201706-bar

Access Control

GPASS: A Password Manager
with Group-Based Access Control

Thanh Bui(B) and Tuomas Aura

Aalto University, Espoo, Finland
{thanh.bui,tuomas.aura}@aalto.fi

Abstract. Password managers make it easy for users to choose stronger
and more random passwords without the burden of memorizing them.
While the majority of our passwords should be kept secret, sharing pass-
words and access codes is necessary in some cases. In this paper, we
present GPASS—a password manager architecture that allows groups
to share passwords via an untrusted server. GPASS provides its own
cryptographic access control mechanism in which all the information is
transparent to the clients so that they can detect any misbehavior of the
server. We implemented a proof-of-concept prototype to demonstrate the
feasibility and effectiveness of the architecture.

1 Introduction

Despite the growing awareness of the security limitations of passwords, they
remain the most widespread mean of user authentication. The main security
issues in password authentication are that users tend to choose weak passwords
[7,12] and re-use them in multiple services. Password managers offer a solution
to these issues because they store passwords in an encrypted password vault, in
which the encryption key is typically derived from a master password. Moreover,
password managers enable users to select stronger and more random passwords,
since they only need to memorize the master password that opens the vault.

While the majority of our passwords should remain secret, sharing passwords
is useful in some scenarios. For example, third-party services may not allow
creation of multiple user accounts, or the cost may lower with one shared user
account. Also, short access codes are common in doors or photocopiers. If used
as one-factor authentication, the short codes cannot be personalized because of
the birthday paradox would make them easy to guess. In the workplace and
at home, there may be need to manage dynamic groups of users and to share
passwords and other access codes within those groups.

The application scenario that directly motivated this work is the following:
“In a company, employees can belong to multiple groups, such as projet teams or
departments. Each group shares a set of access credentials. Each group has one
or more leaders who can add or remove members.” This is the kind of system
that we address in this paper: users form groups and share passwords among
the group members, and a group might have several group leaders who have the
authority to add new leaders and members and to remove existing ones.

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 229–244, 2017.
https://doi.org/10.1007/978-3-319-70290-2_14

230 T. Bui and T. Aura

Unlike the current popular password managers [1–3] that require consider-
able trust on the cloud server to enforce roles and permissions on the shared
passwords, we aim to minimize the trust as much as possible. The reason is that
with various incidents caused either by hackers [30] or governments [9,14,24],
it is better not to place too much trust on any single party to protect such
critical data. None of password managers presented in the literature features
secure password-sharing. However, data sharing on untrusted cloud servers has
been widely studied in the context of cryptographic distributed file systems
[13,15,19,27]. We were inspired by these results, but our solution goes further
by allowing group leaders to delegate their responsibility to others. The file own-
ers in the cryptographic file systems generally cannot delegate their role to other
users.

In this paper, we propose GPASS, a novel password manager architecture
that enables passwords to be shared within groups and requires minimum trust
on the storage server. The access control mechanism in the system is key-oriented
in the sense that entities are represented by their public keys and authorizations
are encoded into signed events. These events are transparent to the users so that
they can detect server misbehavior. Like all other systems that do not depend
on trusted entities, GPASS is unable to guarantee freshness of its data for users
that are offline and do not observe the updates [22]. We propose an extension
to GPASS that relies on trusted observers to tackle the issue. This solution is
inspired by the recent proposals for monitoring the security of the web PKI
[4,20,21,31]. To demonstrate the feasibility and efficiency of the solution, we
implemented a prototype of the password manager and measured its performance
from the user’s perspective. We emphasize that our design is generic and can be
used to implement similar group dynamics in other data-sharing applications,
such as file systems.

The rest of the paper is structured as follows: Sect. 2 covers the related work.
Section 3 describes the system and threat models and assumptions. Section 4
presents our password manager construction and Sect. 5 analyzes its security.
Section 6 presents an extension of GPASS. In Sect. 7, we demonstrate its feasibil-
ity with a proof-of-concept implementation. Section 8 contains further discussion
and Sect. 9 concludes the paper.

2 Related Work

Much of the literature on password managers focuses on solutions against offline
brute-force attacks [6,8,16,26] and security analysis of existing password man-
ager designs [23,28,29]. None of the effort has been put into secure password
sharing. Existing work close to ours can be found in the area of cryptographic
file systems and data access control on untrusted cloud servers. Access control in
these systems usually rely exclusively on knowledge of cryptographic keys that
are used to encrypt or sign the data.

The Cryptographic File System (CFS) [5] encrypts each file with a unique
symmetric key, and access control is determined by possession of the key. Thus,

GPASS: A Password Manager with Group-Based Access Control 231

only coarse-grained access control is supported. Cryptfs [33] is similar to CFS
except that the keys are associated with groups of files. Cepheus [13] is also
similar to CFS but supports group sharing. However, it relies on a trusted group
database server to determine access rights.

SiRiUs [15] is the most closed to our proposal. In SiRiUs, each file is encrypted
with a file encryption key. For access control, SiRiUs attaches to each file a
metadata that contains the file access control list. Each entry in the list is the
encryption of the file encryption key under an authorized user’s public key. Only
the file owner has the authority to change the metadata, while in GPASS, our
goal is to allow group leaders to be able to delegate their role to other users.
To guarantee freshness, each SiRiUs’s user generates a hash tree of its files and
directories and periodically timestamps the root of the tree using a freshness
daemon. We consider having such a always-running daemon to be too strong
assumption for a password manager application.

Plutus [19] is a similar cryptographic file system to SiRiUs. Each file in
Plutus is divided into several blocks, each of which is encrypted with a unique
symmetric file-block key. Files can be grouped into a filegroup and share the
same set of file-block keys. These file-block keys are further encrypted with the
lockbox-key of the filegroup. If the owner of a filegroup wants to share access,
it distributes the lockbox-key of the filegroup to the intended users. These users
can then redistribute the key to other users. We can see that an independent
mechanism is required to identify members of a group with such access control
mechanism. The paper also does not specify how it can be done.

Yu et al. [32] proposed a file system whose access control is based on key-
policy attributed-based encryption (KP-ABE) [17] and proxy re-encryption.
With these techniques, the system achieves fine-grain access control and data
owners can delegate most computation tasks to the cloud server. However, like
SiRiUs, the system does not allows delegation of administration rights.

3 Models and Assumptions

This section presents the system and threat models of GPASS. We also describe
the system goals and the security properties that we aim to achieve.

3.1 System Model

At a high level, GPASS is composed of the following principals: server, user,
and device. The users manage accounts on their set of trusted devices (since
passwords are always stored with the respective usernames and domains, we will
use “accounts” instead). Each device runs the password manager client software
that performs all cryptographic operations to protect the user data before send-
ing it to the server for synchronization purpose. The server is operated by the
service provider. It stores the encrypted user accounts as well as access control
information. It also allows update and synchronization requests from authorized
clients.

232 T. Bui and T. Aura

3.2 Threat Model

We assume the following in our threat model. First, the service provider might be
malicious. That is, it will try to discover as much secret information as possible
based on its inputs. However, we assume that the service provider does not wish
to attack its users in a public manner because it has a reputation to protect.

Second, the password manager client is trusted. While an attacker who has
obtained user devices can crack the master password with brute-force attacks,
we do not consider this threat. The password manager design presented in this
paper can be combined with other proposals in the literature [6,8,16,26] to
provide both secure group management and password-cracking resistance.

Third, each entity is preloaded with a public-key pair and the public key can
be securely obtained by others when necessary.

3.3 System Goals

GPASS allows groups to share accounts. Users can arbitrarily form groups, and
each user can belong to multiple groups. A user can have multiple roles in a
group. We consider two roles in this paper: leader and member. These roles have
the following properties:

Authorizations: Any member or leader can add, edit, or remove the shared
accounts of the group, while only the leaders have the authority to add new
leaders and members and to remove existing ones. For simplicity, we do not
differentiate between read and write access in GPASS. Extending our proposal
to support this privilege separation is trivial by using an additional key for
signing data as in [15].

Separate Revocation: If a user has multiple roles in a group, each role can
be revoked separately.

Role Persistence: A member’s role is valid until it is explicitly revoked. It
means that even when the leader who grants the role to the member is
revoked, the role of the member remains valid.

3.4 Security Goals

GPASS aims to achieve the following security properties.

Confidentiality and Integrity of Shared Accounts: The shared accounts
should be protected from the users that are not granted access. Even the
administrators of the server or the attackers who have compromised the server
should not be able to read them. Moreover, unauthorized modifications to the
accounts must be detected by GPASS.

Secure Group Sharing: The server should enforce access control on all
requests to the shared password vaults and allow only authorized operations.
Any unauthorized operations must be detected by GPASS.

GPASS: A Password Manager with Group-Based Access Control 233

Freshness of Access Control Information: GPASS should guarantee the
freshness of the access control information. This guarantee allows timely
revocation and prevents rollback attacks [25] on access control information.
However, it is practically impossible to guarantee freshness without online
trusted parties. Thus, GPASS aims to achieve fork consistency, which is the
strongest notion of freshness possible without trusted parties [22]. Fork con-
sistency implies that if users can communicate or see each other’s operations,
they can detect the rollback attacks.

4 GPASS

We now get to present our password manager architecture. Before getting into
the details, we introduce our notation: We denote an encryption using key K
as EK(.), in which K can be either a symmetric key or the public part of an
asymmetric key pair. We denote a hash function as H(.). We denote a message
authentication code (MAC) that is created with symmetric key K as MACK(.)
and a signature generated by the private key of an entity I as SigI(.). For sim-
plicity, we will use MACK and SigI to denote a MAC and a signature of all the
data that the they are tagged with, respectively.

4.1 Overview

We take a key-oriented approach in GPASS. Specifically, each user is represented
by an asymmetric key pair [PKU ,SKU]. The public key PKU identifies the user,
while the private key SKU is stored in the user’s devices and never divulged.
If the user has multiple devices, its key pair needs to be synchronized between
them via a secure out-of-band channel. The user authenticates itself to the server
with its key pair when requesting access or performing any operation. With this
key-oriented approach, the group management in GPASS is as follows.

Any user can create a group by generating a key pair [PKG,SKG] and giving
the group a name. The group is identified by the combination of the public key
PKG and the name. We denote a group as G:

G = 〈PKG, name〉. (1)

We refer to PKG as the group’s master key. Initially, PKG is the only leader
of the group. The group owner will use it to add new members to the group.

The members of a group share access to a password vault on the server.
The password vault contains two parts: the encrypted data and the metadata.
The encrypted data contains the shared accounts in encrypted form, while the
metadata contains the access control information.

Encrypted Data. The shared accounts are encrypted with a symmetric cipher.
The encryption key must have sufficient entropy to make offline cracking attacks
infeasible. We refer to the key as the data encryption key (DEK). The key is

234 T. Bui and T. Aura

initially chosen by the group owner. When a member of the group is revoked,
the DEK is changed and the shared accounts are re-encrypted with the new key.
We assume that a user account includes: a unique ID, a username, a password,
and the respective domain (e.g. a website’s URL):

EncryptedData = EDEK(account1, . . . , accountn), MACDEK

where account i = 〈IDi,namei, password i, domaini〉, for i = 1 . . . n.
(2)

To provide integrity, the encrypted data is tagged with a message authenti-
cation code (MAC) calculated over a hash of the accounts using the DEK .

Metadata. The metadata contains access control information. It consists of a
list of lock boxes and a timeline of membership events. Only the group leaders
have the authority to edit the metadata.

Each lock box corresponds to a member of the group. The lock box of user
U is of the following form:

LockboxU = 〈KeyIDU , EPKU
(DEK)〉 (3)

The lock box includes the DEK encrypted under the public key of the mem-
ber and is tagged with the key ID corresponding to the public key (e.g. a hash
of the public key). With these lock boxes, the group members can easily access
the shared vault without storing the DEK locally. They also help to distribute
the new DEK when it is changed.

The timeline is an ordered list of all membership events related to the group,
which can be of either of two types: add-member and revoke-member. We con-
struct the timeline as follows. Initially, it is empty. When a group leader issues a
membership event, it appends the event to the end of the timeline. More specifi-
cally, after n−1 events, if a group leader PKL wants to add role R to key PKU ,
it appends the following event to the timeline:

En = 〈n,PKL,PKU , R,G, “add-member′′,H(En−1),H(DEK),SigL〉. (4)

A revocation is represented by a similar event:

En = 〈n,PKL,PKU , R,G, “revoke-member′′,H(En−1),H(DEK),SigL〉. (5)

These events function like signed certificates and revocations in public-key
infrastructures (PKI) such as X509 [18] and SPKI [10,11]. The difference is that
they are stored on a central server for timestamping and accounting purposes,
instead of being distributed to the intended users. By including in each event
a hash of the previous event, no single entity, including the server, can tamper
with their linear order if the signature algorithm is secure. The addition of events
to the timeline is synchronized by the server so that no conflict is caused by
multiple users updating the timeline at the same time. As we will see below, the
timeline enables determination of each key’s roles in the group. It also provides
transparency to the access control information, which allows users to detect
misbehavior of the server.

GPASS: A Password Manager with Group-Based Access Control 235

4.2 Fundamental Operations

Now we get to describe the fundamental operations of the system.

Role Determination. Role determination is a crucial process in GPASS. It
enables the server to enforce access control on the password vaults. Also, it allows
the users to verify the access control information stored in the metadata.

Algorithm 1. Constructing lists of leaders and members of a group
Input: PKG, TimelineG

1: leaders ← {PKG}
2: members ← ∅
3: for all Ei ∈ TimelineG do
4: PK I ← getIssuer(Ei)
5: PKS ← getSubject(Ei)
6: if PK I ∈ leaders & validSignature(Ei,PK I) then
7: if getType(Ei) = “add-member” then
8: if getRole(Ei) = “leader” then
9: leaders ← leaders ∪ {PKS}

10: else if getRole(Ei) = “member” then
11: members ← members ∪ {PKS}
12: end if
13: else if getType(Ei) = “revoke-member” then
14: if getRole(Ei) = “leader” then
15: leaders ← leaders\{PKS}
16: else if getRole(Ei) = “member” then
17: members ← members\{PKS}
18: end if
19: end if
20: end if
21: end for
22: return leaders, members

Before presenting the process, we define who is a group member or leader.
Let G = 〈PKG, name〉 be a group, which is created at time t0. At time t0, PKG

is assigned role “leader” in G by default. A key PKU has role R in a group at
time t > t0 if the following are satisfied: (1) there exists a key PK 1 that adds
role R to PKU at time t1, such that t0 < t1 < t and PK 1 has role “leader” in G
at time t1, and (2) there does not exist a key PK 2 that revokes role R of PKU

at time t2, such that t1 < t2 < t and PK 2 has role “leader” in G at time t2.
According to the above definition, a role can only be granted to a key by a

group leader and the role is persistent until it is explicitly revoked. Furthermore,
if a key has multiple roles, revoking one does not invalidate the others. Thus,
the definition satisfies all the properties that we specified in Sect. 3.3.

The role determination process is as follows. First, the verifier runs
Algorithm 1 to construct the lists of leaders and members of the group. Ini-
tially, only the group’s master key is in the list of leaders. The verifier then

236 T. Bui and T. Aura

traverses through the timeline of the group. For each event in the timeline, it
checks whether the event is authorized. An event is authorized if (1) the signature
is cryptographically valid and (2) the issuer is in the list of leaders after the pre-
vious event. If the check succeeds, the subject of the event is added or removed
from the lists depending on whether it is a add-member or revoke-member event,
respectively. After the last event has been processed, the two lists of leaders and
members indicate the current role assignments of the group. The verifier can
then determine the roles of any key by finding it in the lists.

In practice, the server can maintain the lists of leaders and members together
with the password vault of each group and update them when a new event is
available. In the rest of the paper, we assume that the server maintains these
two lists for each group.

Before describing other operations, we define two sub-processes, which will
be used in all the operations.

Subprocess: Verifying Metadata Updates (run by the server). The
server must verify all the updates to the metadata before accepting them. This
verification is to prevent denial-of-service attackers from filling the timeline with
invalid data. It is not needed for the correctness of membership management.
The server verifies a new event as follows.

1. If the issuer of the event is not in the list of leaders, the verification fails.
2. Verify whether the signature of the event is cryptographically valid. If not,

the verification fails. Otherwise, the verification succeeds.

If the verification succeeds, the server updates its local lists of leaders and
members according to the event’s information as in Algorithm 1.

Subprocess: Verifying the Metadata (run by any group member).
Whenever accessing the shared password vault, the group members need to ver-
ify it first. This is to guarantee that the server does not accept any unauthorized
membership events and the DEK is up-to-date. If the verification fails, it means
that the service provider might have equivocated. Thus, the group members
should raise an alarm about the honesty of the service provider in these cases
(We do not specify how this is done in this paper).

To verify the metadata, the user remembers the last event that it has
processed and maintains the lists of leaders and members locally as the server
does. This way, the user only needs to download and verify the new events that
it has not seen before. The verification process is as follows.

1. Traverse through the new events in their linear order. For each event, check
whether it is authorized. If not, the verification fails. Otherwise, update the
local lists of leaders and members as in Algorithm 1.

2. Calculate a hash of the DEK . If it is equal to that of the last event, the
verification succeeds. Otherwise, the verification fails.

GPASS: A Password Manager with Group-Based Access Control 237

Accessing Shared Accounts (run by any group member). A group mem-
ber can access the shared accounts with the following steps:

1. Authenticate itself to the server to download the password vault. Note that
in all operations, a user does not need to download the lock boxes of all the
members but only its respective one.

2. Decrypt the DEK and verify the metadata. Raise an alarm if the verification
fails.

3. Decrypt the encrypted data and verify the MAC with the DEK .

Creating a New Account (run by any group member). A group member
can create a new shared account with the following steps:

1. Run the process of accessing shared accounts above.
2. Append the new account to the existing list of shared accounts.
3. Encrypt the list and re-calculate the MAC using the DEK .
4. Submit the updates to the server.

Modifying an account is similar to this process. Thus, we will not present it
in this paper.

Adding a Member (run by a group leader). Group leader PKL adds user
PKU to role R in group G with the following steps.

1. Run the process of accessing shared accounts above.
2. Create a lock box for the new user:

LockboxU = 〈KeyIDU , EPKU
(DEK)〉 (6)

3. Create a new add-member event:

En = 〈n,PKL,PKU , R,G, “add-member′′,H(En−1),H(DEK),SigL〉. (7)

4. If R is “member”, add PKU to its local list of members. Otherwise, add PKU

to its local list of leaders.
5. Send the updates to the server. The server must verify the updates before

accepting them.

Revoking a Member (run by a group leader). Group leader PKL revokes
role R of user PKU in group G with the following steps.

1. Run the process of accessing shared accounts above.
2. Generate a new data encryption key DEKnew and re-encrypt the shared

accounts with the new key.
3. If R is “member”, remove PKU from its local list of members. Otherwise,

remove PKU from its local list of leaders.

238 T. Bui and T. Aura

4. Create a new lock box for each remaining key in the lists of leaders and
members.

5. Create a new revoke-member event:

En = 〈n,PKL,PKU , R,G, “revoke-member′′,H(En−1),H(DEKnew),SigL〉.
(8)

6. Send the updates to the server. The server must verify the updates before
accepting them.

The above process only prevents the revoked member from accessing accounts
that are added after the revocation. It is naturally not able to revoke access of
the member to the existed passwords. Thus, in practice, the group leader must
change these passwords immediately besides revoking the member. This task
could be done automatically with the password manager as some of the current
password managers have already done12.

5 Security Analysis

This section analyzes the security of GPASS. We can see that the role determi-
nation process is the basis of the security of the system. We will first present
and prove a lemma about its correctness. We will then use the lemma to argue
about the security properties of the system.

Lemma 1. Algorithm 1 correctly identifies all the members of a group and their
roles in the group.

Proof. Let G = 〈PKG, name〉 be a group. Suppose that the timeline of G con-
tains n events E1, . . . , En, where n ≥ 0.

Denote leadersk as the set of leaders and membersk as the set of members
after the kth iteration of the for-loop of Algorithm 1. We will show by induction
that leadersn and membersn are correct, i.e. they correctly represent the role
assignments of the group after n membership events, for any n ≥ 0.

1. Basis step: With n = 0, we have: leaders0 = {PKG},members0 = ∅. By
definition, PKG is the only leader of the group initially. Thus, the sets are
correct.

2. Induction step: Assume that leadersn and membersn are correct for some
n ≥ 0, we will prove that leadersn+1 and membersn+1 are also correct. Denote
the issuer, the subject and the role specified in En+1 as PK I , PKS , and R,
respectively.
According to the algorithm, if PK I /∈ leadersn or En+1 is not cryptographi-
cally valid, leadersn+1 = leadersn and membersn+1 = membersn. Thus, they
are correct by our assumption.

1 https://www.dashlane.com/features/password-changer.
2 https://blog.lastpass.com/2014/12/introducing-auto-password-changing-with.

html/.

https://www.dashlane.com/features/password-changer
https://blog.lastpass.com/2014/12/introducing-auto-password-changing-with.html/
https://blog.lastpass.com/2014/12/introducing-auto-password-changing-with.html/

GPASS: A Password Manager with Group-Based Access Control 239

Otherwise, En+1 is issued by a leader, meaning that it is authorized. In this
case, if En+1 is an add-member event, PKS is assigned role R by a leader
and the role has not been revoked at the moment. By definition, PKS has
role R after the event. Thus, adding PKS to leadersn if R = “leader” or
adding PKS to membersn if R = “member” is a valid change to the lists.
It follows that leadersn+1 and membersn+1 are correct. Similarly, if En+1 is
a revoke-member event, it also leads to a valid removal to one of the lists.
Thus, leadersn+1 and membersn+1 are also correct in this case.

By induction, leadersn and membersn are correct for all n ≥ 0. Therefore,
the lemma always holds.

Confidentiality and Integrity of the Shared Accounts. Assuming that the
symmetric encryption algorithm used to protect the shared accounts is secure
(e.g., using standard algorithm such as AES) and the encryption key is suf-
ficiently strong, only those with the correct DEK can decrypt the encrypted
data. Since the DEK is initially created by the group owner and then securely
distributed to the new members via the lock boxes, none other than the group
members have access to the key. Furthermore, the DEK is changed for every
revocation, the revoked members do not have access to the new DEK and thus,
all the future updates to the shared accounts. A malicious user or server might
attempt to add unauthorized events to the timeline so that it gets recognized
as a valid group member. This attack will not work if the role determination
process is correct, which can be deduced from Lemma 1.

GPASS achieves integrity of the encrypted accounts with the MAC created
using the DEK .

Secure Group Sharing. According to Lemma 1, the role determination
process correctly identifies all the members of a group and their roles. Thus,
unauthorized operations, such as adding new timeline events without being a
leader, will be detected by the users during the metadata verification process.
In other words, the users act as auditors that monitor the server’s behavior.

Freshness. As we mentioned in Sect. 3.4, freshness can never be guaranteed
unless a trusted party is involved. In fact, the current construction of GPASS
cannot prevent rollback attacks performed by a malicious server: Suppose that
the latest event in the timeline is the revocation of Carol, which is issued by Alice,
and Bob is not aware of the revocation. The server can conceal the event from
Bob and roll the lock boxes back to their previous version accordingly. This way,
Bob will not notice the revocation and keep using the old DEK . Consequently,
Carol can read any updates made by Bob to the shared accounts.

GPASS does not prevent the attack, but it allows users to detect it. By
including in each membership event a hash of the preceding, the events are linked
to each other and the last event commits to the entire membership history of the
group. If the server equivocates as in the above scenario, it will have to fork the

240 T. Bui and T. Aura

timeline between Alice and Bob. Assuming that n events have occurred before
the revocation of Carol, the forked timelines will share only these n events and
never be the same again. As a result, the forked users will not see changes made
by each other. Thus, if users can communicate or see each other’s operations,
they can detect the attack.

6 Extended GPASS

We propose an extended version of GPASS, which tackles the rollback attack
discussed in the previous section. The idea is to have multiple observers mon-
itoring the service provider’s behavior. The observers may be its major clients
or independent organizations. Periodically, the service provider publishes sum-
maries of its data to the observers. Users can then compare their view with the
observers’ and be confident that their data is fresh. This architecture is similar
to that of the proposals for monitoring the security of the web PKI [4,20,21,31].

The service provider can consolidate all of its data to one hash value by
constructing a Merkle prefix hash tree as follows. (A Merkle prefix tree is basically
a binary tree where each branch of the tree corresponds to a unique bit string
x. Each bit in x represents either a left or right turn on the way down. We say
that the leaf node that corresponds to x is indexed by x.) Each leaf node in the
tree is indexed by a group’s id (e.g. a hash of the group’s master key and name)
and contains a summary of the group’s access control information. Since the last
event of the timeline covers the whole membership history of the group, we can
use a hash of this event as the summary. The value of a non-leaf node is the
hash of its two children. This way, the value of the root of the tree summarizes
the whole tree. The service provider periodically (e.g. once per hour) signs the
root and sends it to the observers. The observers then publish this value for the
benefit of the users.

With the new architecture, the metadata verification process run by the user
needs to be changed. The user is required to perform an additional check of
whether the timeline is fresh with the following steps.

1. Query a proof-of-freshness (POF) of the group from the server. The server
constructs the POF by following the path determined by the group’s id in the
Merkle prefix tree. On the way down, it accumulates the proof as a list of the
values of the siblings of the path. Together with a hash of the last timeline
event, the POF allows the user to calculate the root of the tree.

2. Calculate the root of the tree using the received POF and compare it with
the observers. The more observers the user consults, the more confident it
is about the freshness of the metadata. If there is inconsistency between the
root value that the user calculated and the observers’, the verification fails.
Otherwise, the verification succeeds.

We leave the analysis and evaluation of this extension as an interesting avenue
for future work.

GPASS: A Password Manager with Group-Based Access Control 241

7 Implementation

We implemented a proof-of-concept of the basic GPASS. The system includes
a server and a command-line client. They were written with Python (2.7.11)
and the PyCryptodome cryptography library (3.4.5)3. We used AES-GCM for
authenticated encryption, SHA-256 as the hash function and RSA-2048 keys as
the user identities. The DEK was 256-bit long and chosen uniformly at random.

To evaluate the system, we setup groups that shared a fixed number of 50
accounts. The accounts were randomly generated so that the passwords were 15
characters long and the domains were in Alexa’s top 500 websites4. We then sim-
ulated the membership management in each group and measured the overhead
of the system from a user’s point of view when the number of users of the group
changed. More specifically, we measured the processing time and the bandwidth
of the password manager client (for both downloading and uploading). In the
simulations, we assumed that 20% of the membership events were revocations
and that the client always saw n∗0.1 new events, where n is the number of users
of the group, in the metadata whenever it accessed the shared password vault.
(The client needed to download these new events only instead of the whole time-
line.) We ran the simulation on a 3.4 GHz Intel(R) Zeon(R) E3-1231 machine
with 32 GB of RAM.

Table 1. Average client’s processing time and bandwidth of three operations, accessing
accounts, adding members, and revoking members, when the numbers of users of a
group changes (sampled over 1000 executions)

Number of users 100 1000 10000

Access accounts (processing time) 11.24 ms 92.5 ms 951.94 ms

Access accounts (bandwidth) 7.75 KB 37.97 KB 340.40 KB

Add member (processing time) 13.92 ms 94.57 ms 1.04 s

Add member (bandwidth) 7.83 KB 38.92 KB 341.42 KB

Revoke member (processing time) 139.86 ms 1.39 s 14.14 s

Revoke member (bandwidth) 42.61 KB 354.16 KB 3.48 MB

Table 1 summarizes the results that we obtained. We evaluated three main
operations of the client: accessing shared accounts, adding a member, and revok-
ing a member. To access the shared accounts, the client basically has to verify
the metadata and the encrypted data, and decrypt the encrypted data using the
DEK . The process of adding member is mostly the same, except that the client
additionally needs to add a new lock box and a new add-member event to the
metadata. We can see that the simulation results also illustrate this similarity.
The processing time of revocations is significantly more than that of the others.
3 https://github.com/Legrandin/pycryptodome.
4 http://www.alexa.com/topsites.

https://github.com/Legrandin/pycryptodome
http://www.alexa.com/topsites

242 T. Bui and T. Aura

It is due to the computationally expensive distribution of the new DEK . Assum-
ing that there are n users in the group, revoking a member involves n− 1 public
key encryptions. In fact, when there are 10000 users in the group, approximately
13.17 out of 14.14 s were devoted for the encryption of the new DEK .

Regarding the bandwidth, the encrypted data containing 50 accounts in our
setting was approximately 4KB in size. The rest of the bandwidth is mainly
for downloading the new membership events and if the operation is revoking
a member, uploading the new lock boxes. Thus, the bandwidth will increase
linearly with the number of users of the group.

It can be seen that the averaged processing time and bandwidth increase
linearly with the number of users in the group. This makes GPASS not scale
well when large groups of users share passwords. However, groups usually do not
get too big in practice. Most of the largest organizations in the world have less
than a million employees5. Furthermore, passwords are usually shared within a
team in an organization, which make the number of members of a group even
smaller.

8 Discussion

This section describes the lessons that we have learned from this research.
First, in a system that involves distribution of confidential data (the DEK in

our case), accountability for access control information is required. In a distrib-
uted access control mechanism, such as SPKI, entities are usually represented
by their public keys and access rights are encoded into certificates. These cer-
tificates are kept by the subjects instead of being stored with a central entity.
When requesting access to a resource, a subject sends related certificates to the
verifier, which then determines whether the subject is permitted to perform the
requested operation by verifying the certificates. Such distributed access control
models do not allow identifying all the subjects that have access rights to a
resource. While it might be tempting to maintain a list of these subjects, such
tasks cannot be left to the care of an untrusted party because the list could be
tampered with. Therefore, if we apply a distributed access control model to our
password manager application, it is difficult for a group leader to determine all
the group members. Of course, it can locally maintain a list of the members that
it has added, but it is not aware of those added by other leaders. As a result, it
cannot distribute the DEK when the key is changed.

Second, we can entrust access control to an untrusted server as long as all
access control information is transparent. Indeed, the transparency of the access
control information in GPASS enables the users to audit the system. They are
able to detect whether there are any unauthorized operations allowed by the
server. The users, however, cannot detect the rollback attack without commu-
nicating with each other. In systems where communication between users is a

5 https://www.statista.com/statistics/264671/top-20-companies-based-on-number-
of-employees/.

https://www.statista.com/statistics/264671/top-20-companies-based-on-number-of-employees/
https://www.statista.com/statistics/264671/top-20-companies-based-on-number-of-employees/

GPASS: A Password Manager with Group-Based Access Control 243

natural part, such as messaging applications, the users themselves could detect
all misbehaviors of the server without depending on trusted observers.

9 Conclusion

This paper presents GPASS—a password manager architecture that allows shar-
ing passwords within groups. GPASS assumes that the storage server can be
malicious and provides a cryptographic access control mechanism which allows
users to monitor the behavior of the server. The system protects the confiden-
tiality and integrity of shared accounts. The tradeoff for efficient sharing through
the online server is that freshness of the stored data cannot be guaranteed. To
tackle this, we propose an extended version of GPASS, which will be analyzed
and evaluated in future work.

References

1. 1Password, December 2016. https://agilebits.com/onepassword
2. F-secure key, December 2016. https://www.f-secure.com/en/web/home global/key
3. LastPass: Password manager, autoform filter, random password generator & secure

digital wallet app, December 2016. https://lastpass.com/
4. Basin, D., Cremers, C., Kim, T.H.J., Perrig, A., Sasse, R., Szalachowski, P.: ARPKI:

attack resilient public-key infrastructure. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pp. 382–393. ACM (2014)

5. Blaze, M.: A cryptographic file system for UNIX. In: Proceedings of the 1st ACM
conference on Computer and communications security, pp. 9–16. ACM (1993)

6. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: loss-resistant pass-
word management. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 286–302. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3 18

7. Bonneau, J.: Guessing human-chosen secrets. Ph.D. thesis, University of
Cambridge (2012)

8. Chatterjee, R., Bonneau, J., Juels, A., Ristenpart, T.: Cracking-resistant password
vaults using natural language encoders. In: IEEE Symposium on Security and
Privacy, pp. 481–498. IEEE (2015)

9. Electronic Frontier Foundation: National security letters, July 2016. https://www.
eff.org/issues/national-security-letters

10. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI
certificate theory. RFC 2693, IETF (1999)

11. Ellison, C.M.: The nature of a usable PKI. Elsevier Comput. Netw. 31(9), 823–830
(1999)

12. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web, pp. 657–666. ACM
(2007)

13. Fu, K.E.: Group sharing and random access in cryptographic storage file systems.
Ph.D. thesis, Massachusetts Institute of Technology (1999)

14. Gellman, B.: The FBI’s secret scrutiny, July 2015. http://www.washingtonpost.
com/wp-dyn/content/article/2005/11/05/AR2005110501366.html

https://agilebits.com/onepassword
https://www.f-secure.com/en/web/home_global/key
https://lastpass.com/
http://dx.doi.org/10.1007/978-3-642-15497-3_18
http://dx.doi.org/10.1007/978-3-642-15497-3_18
https://www.eff.org/issues/national-security-letters
https://www.eff.org/issues/national-security-letters
http://www.washingtonpost.com/wp-dyn/content/article/2005/11/05/AR2005110501366.html
http://www.washingtonpost.com/wp-dyn/content/article/2005/11/05/AR2005110501366.html

244 T. Bui and T. Aura

15. Goh, E.J., Shacham, H., Modadugu, N., Boneh, D.: SiRiUS: securing remote
untrusted storage. NDSS 3, 131–145 (2003)

16. Golla, M., Beuscher, B., Dürmuth, M.: On the security of cracking-resistant pass-
word vaults. In: Proceedings of the 23rd ACM Conference on Computer and Com-
munications Security. ACM (2016)

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and communications security, pp. 89–98. ACM (2006)

18. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X. 509 public key infrastructure
certificate and CRL profile. RFC 2459, IETF (1998)

19. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: scalable
secure file sharing on untrusted storage. In: Fast, vol. 3, pp. 29–42 (2003)

20. Kim, T.H.J., Huang, L.S., Perring, A., Jackson, C., Gligor, V.: Accountable key
infrastructure (AKI): a proposal for a public-key validation infrastructure. In: Pro-
ceedings of the 22nd International Conference on World Wide Web, pp. 679–690.
International World Wide Web Conferences Steering Committee (2013)

21. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962 (2013)
22. Li, J., Krohn, M.N., Mazières, D., Shasha, D.: Secure untrusted data repository

(SUNDR). In: OSDI, vol. 4, p. 9 (2004)
23. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager:

security analysis of web-based password managers. In: USENIX Security, pp. 465–
479 (2014)

24. Lichtblau, E.: Judge tells Apple to help unlock iPhone used by San
Bernardino Gunman, July 2016. http://www.nytimes.com/2016/02/17/us/
judge-tells-apple-to-help-unlock-san-bernardino-gunmans-iphone.html

25. Mazires, D., Shasha, D.: Don’t trust your file server. In: Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems, pp. 113–118. IEEE (2001)

26. McCarney, D., Barrera, D., Clark, J., Chiasson, S., van Oorschot, P.C.: Tapas:
design, implementation, and usability evaluation of a password manager. In: Pro-
ceedings of the 28th Annual Computer Security Applications Conference, pp. 89–98.
ACM (2012)

27. Miller, E., Long, D., Freeman, W., Reed, B.: Strong security for distributed file
systems. In: IEEE International Conference on Performance, Computing, and Com-
munications, pp. 34–40. IEEE (2001)

28. Silver, D., Jana, S., Boneh, D., Chen, E.Y., Jackson, C.: Password managers:
attacks and defenses. In: Usenix Security, pp. 449–464 (2014)

29. Vigo, M.: Even the LastPass will be stolen, deal with it! February 2017. http://
www.martinvigo.com/even-the-lastpass-will-be-stolen-deal-with-it/

30. Whitney, L.: LastPass CEO reveals details on security breach, December 2016.
http://www.cnet.com/news/lastpass-ceo-reveals-details-on-security-breach/

31. Yu, J., Cheval, V., Ryan, M.: DTKI: a new formalized PKI with no trusted parties.
IACR Cryptol. ePrint Arch. 2014, 600 (2014)

32. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: INFOCOM, 2010 Proceedings IEEE,
pp. 1–9. IEEE (2010)

33. Zadok, E., Badulescu, I., Shender, A.: Cryptfs: A stackable vnode level encryption
file system. Technical report, Technical report CUCS-021-98, Computer Science
Department, Columbia University (1998)

http://www.nytimes.com/2016/02/17/us/judge-tells-apple-to-help-unlock-san-bernardino-gunmans-iphone.html
http://www.nytimes.com/2016/02/17/us/judge-tells-apple-to-help-unlock-san-bernardino-gunmans-iphone.html
http://www.martinvigo.com/even-the-lastpass-will-be-stolen-deal-with-it/
http://www.martinvigo.com/even-the-lastpass-will-be-stolen-deal-with-it/
http://www.cnet.com/news/lastpass-ceo-reveals-details-on-security-breach/

Towards Accelerated Usage Control Based
on Access Correlations

Richard Gay(B), Jinwei Hu, Heiko Mantel(B), and Johannes Schickel(B)

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{gay,hu,mantel,schickel}@mais.informatik.tu-darmstadt.de

Abstract. Low run-time overhead is crucial for the practicability of
usage-control mechanisms. In this article, we propose an approach to
accelerate usage control by exploiting access correlations. Our approach
combines two main ingredients: firstly, a technique to compute decisions
ahead of time and, secondly, a method to guide selection of usage events
to pre-compute decisions for. For the first, we speculatively pre-compute
decisions for usage events. For the second, we exploit access correlations
to identify high acceleration potential. We implemented our approach
and evaluated it in a case study of security policy enforcement in a
distributed storage system. Our empirical results show that the speedup
is substantial. More concretely, the speedup on average is up to 61.5%.

1 Introduction

Usage control [29] augments access control by protecting the access to resources
as well as the subsequent use of the resources. For instance, usage control can
ensure that a confidential document can only be accessed by authorized users
and can also constrain the number of times the document is printed or propa-
gated to other authorized users. Dynamic mechanisms are a popular approach to
enforce usage control (e.g., [7,9,13,15,20]). Analysis of the system at run-time
allows such approaches to precisely enforce usage control policies. However, by
operating at the run-time of the system, dynamic mechanisms inevitably impose
a performance overhead on the system.

Large performance overheads can easily deter the users of a system. How
much overhead is acceptable in practice depends on the application domain.
The question how much overhead is tolerable has been investigated, for instance,
in the area of web services with the finding that delays of already a few hun-
dred milliseconds can result in sales loss, reduced service use, and generally a
competitive disadvantage [5,12,25,30,31].

A standard approach to reduce overhead of dynamic mechanisms is to reduce
the number of program instructions that are instrumented to invoke the mech-
anism by static analysis (e.g., [1,3,10,11,22,27]). In this article we follow an
orthogonal approach: We exploit domain knowledge to accelerate enforcement
during run-time. Thus, our approach can be employed in addition to existing
approaches based on static analysis.

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 245–261, 2017.
https://doi.org/10.1007/978-3-319-70290-2_15

246 R. Gay et al.

In this article, we propose SPEEDAC, an approach to speculatively pre-
compute decisions based on access correlations. Concretely, a usage-control
mechanism following our approach computes and stores decisions for possible
future usage events on the side and uses these pre-computed decisions when the
events actually occur. Our approach exploits that a lookup of a decision can be
more efficient than computing the decision. For example, in a distributed set-
ting, computing a decision is expensive when it requires network communication
[13,20]. For selecting which decisions to pre-compute, SPEEDAC exploits access
correlations on pieces of data such as files, database entries, and in-memory
objects. By access correlations we refer to correlations between accesses to data
in a program resulting from access patterns encoded in the program logic and
from how the program is used. For instance, that an employee uses her com-
pany’s storage service to access the agenda of a business meeting correlates with
her accessing the meeting presentation.

We demonstrate our approach in a case study of a distributed storage system
in which we employ usage control against conflicts of interest. For this scenario,
we implemented our approach in a concrete usage-control mechanism and empiri-
cally evaluated the performance of our implementation based on the 6-hour MSN
BEFS access trace by Microsoft [18]. Our evaluation showed speedup on average
of up to 61.5% compared to not utilizing access correlations, which indicates
that our approach is feasible and can significantly accelerate usage control.

In summary, the technical contributions of this article are:

– the SPEEDAC approach to accelerate usage control by speculatively pre-
computing decisions, where selection of usage events is guided by access cor-
relations

– an implementation of SPEEDAC against conflict of interest in distributed
storage systems, and

– an empirical evaluation of the performance of our proposed mechanism based
on a 6-hour access trace by Microsoft.

To our knowledge, our work is the first based on the idea of exploitation
of probabilistic correlations between usage events to accelerate dynamic mecha-
nisms. Our evaluation shows that the speedup can be substantial and hence that
this is an interesting direction to counter the overhead caused by dynamic usage-
control mechanisms. Our article constitutes a first step: Further research will
enable a better understanding of the full design space for concrete SPEEDAC-
based mechanisms and its potential to accelerate usage control.

2 The Problem

Performing usage control means ensuring that the usage events performed by a
target program comply with given usage constraints. Dynamic approaches can
utilize accurate usage histories for precisely enforcing usage constraints. This
comes at the cost of run-time overhead that is perceivable by users of the system.

According to studies by Amazon, Bing, and Google Search [5,12,30], page
load time increases of 100–200 ms already have a negative impact on sales and

Towards Accelerated Usage Control Based on Access Correlations 247

user experience. This suggests that the run-time overhead caused by a usage-
control mechanism for a single page request should remain below 100 ms for the
mechanism to be acceptable in practice. A single page request, however, can
trigger a cascade of requests. For example, we observed that loading a single
page of Dropbox’s web interface for browsing photos1 triggered Firefox to send
75 requests to Dropbox. That is, in this example a usage-control mechanism may
take at most 1.33 ms per request to remain below 100 ms in total.

We looked at several usage-control mechanisms whose perceivable overhead
has been measured experimentally: a non-distributed [15] and a distributed [19]
mechanism for usage control on data and copies of data; an access control mecha-
nism for grid computing [7]; and a generic mechanism to enforce security policies
in distributed systems, which has been used to enforce Chinese Wall policies in
distributed systems [13]. Table 1 summarizes our observations. The mechanism
by Harvan et al. [15] exhibits overheads between about 1.5 ms and 1 s, depending
on the test case. The mechanism by Kelbert et al. [19] introduces overheads of at
least 106 ms for file transfers of size 100kB. The mechanism by Colombo et al. [7]
exhibits overheads between 6 ms and 400 ms. CliSeAu, by Gay et al. [13], yields
overheads between 1.9 ms and 16.1 ms, depending on the concrete experiment.

Table 1. Perceivable overhead caused by usage-control mechanisms

Reference Experiments Overhead of Overhead

[15] File copying;
compilation

Dummy policy 1.5–33 ms

[15] File copying;
compilation

Policy monitoring 4–1000ms

[19] FTP and HTTP file
transfers

Data-flow tracking
(best-case), dummy policy

106–2931ms

[19] FTP and HTTP file
transfers

Data-flow tracking
(worst-case), dummy
policy

131–53353ms

[7] Data storage via
custom test program

Access control, trust and
reputation management

6–400ms

[13] FTP file transfers Local decision-making 1.9–3 ms

[13] FTP file transfers Cooperative
decision-making

2.7–16.1 ms

The overhead of the different approaches is low already. However, in the
Dropbox example, even the lowest overheads – 1.5 ms per access for a dummy
policy and 1.9 ms for a Chinese Wall policy – accumulate to a total overhead of
112.5 ms for 75 requests. This raises the question how to further reduce overhead
of dynamic mechanisms. The problem we therefore address in this article is how
to further accelerate dynamic usage-control mechanisms.
1 https://www.dropbox.com/photos.

https://www.dropbox.com/photos

248 R. Gay et al.

3 Our Approach: SPEEDAC

The SPEEDAC approach for accelerating usage control is to speculatively pre-
compute decisions (“SPEED”) on the side and to use access correlations (“AC”)
to determine the speculative aspect of the pre-computation. Through the pre-
computation on the side, SPEEDAC enables a reduction of the overhead that one
can perceive when using a program that is subject to a usage-control mechanism.

3.1 Speculative Pre-computation of Decisions

With SPEEDAC, the decisions made by a usage-control mechanism are not all
computed when they are needed but are, to some extent, pre-computed. That
is, the mechanism computes decisions for some usage events already before the
events actually occur. Since it is typically not known in advance which usage
events occur, decisions are pre-computed speculatively for usage events that the
mechanism can suspect to occur. Such a decision is then computed as if the
usage event was actually about to occur. Rather than being used directly, the
decision is stored in memory or in a database and might not be used at all when
the respective usage event never occurs. For brevity, in the following we refer to
speculatively pre-computed decisions simply as pre-computed decisions.

The pre-computation of decisions with SPEEDAC is performed “on the side”
by a usage-control mechanism. That is, the mechanism need not suspend the
target program for pre-computing decisions but uses, e.g., a concurrent thread for
the pre-computation. The mechanism triggers the pre-computation of decisions
after it has handled a concrete usage event. In particular, it allows the pre-
computation to take the decision for this newest usage event into account.

Concretely, the decision-making with SPEEDAC integrates as follows into
how the usage-control mechanism processes usage events. When the mechanism
intercepts a usage event that the running target program is about to perform,
the mechanism first performs a lookup for a pre-computed decision. In case of
success, i.e., if a pre-computed decision for the intercepted event is available, this
decision is enforced. For instance, if the decision is to permit the usage event,
then the mechanism allows the program to perform the event. If the decision is to
prevent the usage event, then the mechanism can, e.g., return an error code to the
target such that it can afterwards resume its execution. When the lookup fails,
i.e., when no pre-computed decision is available, then the mechanism computes
a decision on the spot and enforces this decision. Unless a decision demanded to
terminate the target program, the mechanism resumes the target after enforcing
the decision and simultaneously triggers the pre-computation of decisions.

Figures 1 and 2 illustrate the cases of lookup success and, respectively, lookup
failure. In the figures, time flows from left to right and shaded boxes represent
functionality that is performed during the time. Notably, the target is blocked
while the mechanism has intercepted an event and has not yet enforced a decision
for the event. The target is not blocked while decisions are pre-computed.

We consider an attacker model of a malicious user of the target program.
Concretely, the attacker can interact with the interface exposed by the program,

Towards Accelerated Usage Control Based on Access Correlations 249

Fig. 1. Enforcement in case of lookup success

Fig. 2. Enforcement in case of lookup failure

such as a graphical user interface or a web interface, for trying to circumvent
usage control. The attacker cannot directly observe or modify the mechanism.
For the given attacker, neither soundness nor precision need to be sacrificed for
increased performance when exploiting access correlations as well as parallelism
for speculatively pre-computing decisions on the side. Preserving soundness and
precision requires careful design and implementation of concrete mechanisms
that use SPEEDAC. For instance, pre-computed decisions should not be utilized
by a mechanism when they have been rendered obsolete by subsequent events.

3.2 Utilization of Access Correlations

Pre-computing decisions for all possible usage events is infeasible with regard to
storage and computation time due to the generally vast number of such events.
For selecting a limited set of decisions to pre-compute and yet achieving a high
rate of successful lookups, we propose to use access correlations.

Access correlations on data result from access patterns encoded in a target
program and from usage patterns established by the program’s users. They cap-
ture which accesses to pieces of data are stochastically dependent. In this article,
we focus on positive correlations, i.e., on cases in which the likelihood of accesses
to two pieces of data occurring together during the run-time of the program is
higher than the likelihood would be in case of stochastic independence. When
the correlation between accesses to two pieces of data is sufficiently strong, we
call the pieces of data correlated. An example of access correlations are corre-
lations between accesses to disk blocks and files. Outside the domain of usage
control, exploiting such correlations has already been proposed for accelerating
file accesses through improved caching and prefetching (e.g., [16,23]). Access
correlation between files have been successfully calculated, e.g., by treating the
metadata of files as a multi-dimensional attribute space and marking files in
close proximity as correlated [16].

SPEEDAC proposes that a mechanism utilizes access correlations as follows.
Suppose a decision for a usage event that accesses a piece of data d has just

250 R. Gay et al.

been enforced. Then the mechanism selects, using some selection strategy, a
subset D of all pieces of data correlated to d and pre-computes decisions for
usage events on D . Later during the run-time, the mechanism employs some
termination strategy to remove obsoleted pre-computed decisions again.

When access correlations are considered sufficiently strong as well as the
selection strategy and termination strategy are scenario-specific and to be spec-
ified by concrete instances of SPEEDAC. When the chosen access correlations
and strategies capture the actual program and user behavior well, the success
rate of lookups is high and pre-computed decisions can be used often.

3.3 Perceivable Overhead

The perceivable overhead of a usage-control mechanism on a program is the
additional delay, caused by the mechanism, that a user of the program experi-
ences in her interaction with the program. The user might experience this delay,
e.g., between a mouse click and the response by the GUI program or between a
browser request to a web service and the resulting page being displayed.

Figures 1 and 2 depict the perceivable overhead caused with SPEEDAC for
a single usage event. The overhead for a successful lookup includes the time for
intercepting the event, for looking up a decision, and for enforcing a decision.
The overhead for a failed lookup additionally includes the decision-making. The
pre-computation of decisions is not part of the perceivable overhead, as it is
performed while the target is running rather than while the target is blocked.

Fig. 3. Enforcement in current approaches

Traditional usage-control mechanisms (e.g., [1,11,13,20,27]) handle usage
events as shown in Fig. 3: The mechanisms block the target program for inter-
ception, decision-making, and enforcement. They do not pre-compute decisions
and perform their functionality sequentially to the target.

The perceived overhead in traditional mechanisms clearly is smaller than the
perceived overhead caused by failed lookups in SPEEDAC: The latter comprises
all tasks of the former and additionally includes the lookup. How the case of
a lookup success compares to the traditional approach boils down to how the
successful lookup compares to the decision-making. Decision-making can be sig-
nificantly more time-consuming than a lookup in scenarios with complex usage
constraints or in distributed systems, in which decision-making involves network
communication. SPEEDAC reduces the perceived overhead if the time saved
through successful lookups outweighs the overhead of failed lookups on average.
We elaborate an example of such a setting in the remainder of this article.

Towards Accelerated Usage Control Based on Access Correlations 251

4 Case Study

We use a case study to demonstrate how SPEEDAC can be realized in a concrete
application scenario and how much acceleration can be achieved. In the applica-
tion scenario, a distributed storage service offers storage space to its users. The
service consists of multiple, spatially distributed servers through which the users
can access the storage. Figure 4 depicts the possible interactions between users
and the service. Through a network such as the Internet, each user can connect
to any of the servers for storing and retrieving files from the service.

Fig. 4. Distributed storage service

The usage of the service shall be constrained according to a Chinese Wall
policy [4] in order to technically counter conflicts of interest. That is, from a
class of competing companies, each user may only access the files owned by one
company. A mechanism can enforce this usage constraint by controlling the read
and write events performed on behalf of users. We chose the Chinese Wall policy
as an example of a business security requirement for which the computation of
decisions in a distributed setting is non-trivial in general [26].

In the remainder of this article, we call two files conflicting if they are owned
by competing companies. We lift this notion to usage events (i.e., read and write
events) by calling two usage events conflicting when the files accessed by the
usage events are conflicting. The notion establishes an irreflexive and symmetric
binary relation on usage events. By equivalence classes on usage events, we refer
to the equivalence classes of the reflexive transitive closure of this relation.

5 Enforcement Mechanism

We design and implement a mechanism following SPEEDAC for the setting in
Sect. 4. The core challenge is to design a mechanism that is effective and per-
formant. Effectiveness demands soundness, i.e., that the mechanism assures the
absence of policy violations, and transparency, i.e., that the mechanism permits
all accesses that do not violate the policy [24].

Our mechanism is built on Gay, Hu, and Mantel’s mechanism in [13]. To
monitor and to intervene with a target program’s execution, the mechanism

252 R. Gay et al.

encapsulates the target program into enforcement capsules, which we refer to as
nodes in our setting. We re-use interception and enforcement, but design our
own decision-making algorithm. The original decision-making algorithm works
as follows: The mechanism maps usage events to nodes that are responsible for
deciding on them. Effectiveness is achieved through the following requirement:
Whenever two usage events conflict, the same node is responsible to decide on
the events. We call this property on the responsibility distribution properness.

We first explore the design space for the decision-making algorithm. Second,
we describe the proposed decision-making algorithm and the underlying design
decisions. Finally, an overview over key implementation details is presented.

5.1 Design Space

In the design space for applying SPEEDAC to a mechanism for our application
scenario, we identify three particular dimensions: the selection of usage events for
the pre-computation, the location at which pre-computed decisions are stored,
and the lifetime of pre-computed decisions. For each dimension we discuss its
impact on soundness and performance and provide points in the design space.

In our case study, pre-computation does not affect transparency: As time
advances and users access files, the set of accesses that comply with the Chinese
Wall policy shrinks monotonically. Pre-computed decisions from earlier points
in time, thus, do not violate transparency when they are enforced.

Selection. According to SPEEDAC, a mechanism can select the usage events
for the pre-computation from the set of usage events that are correlated to the
previously intercepted usage event. A greedy strategy is to select all correlated
usage events. More cautious strategies are, e.g., to select at most a single corre-
lated usage event and ensure that for each user only one pre-computed decision
exists or to select a maximal set of correlated usage events such that for each
user and equivalence class only one pre-computed decision exists.

The selection strategy can affect the soundness and performance of a mech-
anism. For instance, the greedy strategy might select two permissible but con-
flicting usage events for the pre-computation. If the mechanism would enforce
the decisions for both events, it would violate the Chinese Wall policy. The
more cautious strategies do not exhibit this property, as they prevent conflicting
pre-computed decisions. Concerning performance, the greedy strategy yields a
higher chance of successful lookups than the cautious strategies. However, it also
increases the lookup and maintenance costs for pre-computed decisions.

Location. The location, i.e., the node at which a pre-computed decision is stored,
is a dimension opened up by the distributed setting. A strategy to select the
location can be static or dynamic. A static strategy does not adapt to system
behavior but always uses the same node for each pre-computed decision. For
example, the strategy could fix a node for each usage event based on the file

Towards Accelerated Usage Control Based on Access Correlations 253

location. A dynamic strategy selects the node based on observed system behav-
ior. For example, the strategy could track where a usage event occurs most often
and store the associated pre-computed decision there.

The locations of pre-computed decisions affect the mechanism’s performance.
A pre-computed decision can only be looked up efficiently, when it is stored
at the node intercepting the respective usage event. Otherwise, comparatively
expensive network communication is required. A dynamic strategy can increase
efficient lookup chances but at the cost of additional bookkeeping. When some
nodes are only temporarily reachable via the network, using these nodes to store
pre-computed decisions also affects the soundness of the mechanism.

Lifetime. The lifetime of pre-computed decisions can be controlled by termina-
tion strategies. A termination strategy can be to terminate certain pre-computed
decisions during the lookup, after the enforcement of a pre-computed decisions,
during on-the-spot decision-making, and/or during the selection of events for
pre-computation. The strategy can be to terminate pre-computed decisions that
would conflict with newly selected usage events for the pre-computation. Con-
versely, the termination strategy can also be to keep once pre-computed decisions
and rather select fewer events in the next pre-computation step.

The termination strategy can affect the soundness and performance of the
mechanism. For instance, if conflicting pre-computed decisions are not termi-
nated when a permitting decision is computed on the spot, then subsequently
utilizing a pre-computed decision might violate the Chinese Wall policy. The
performance impact of a termination strategy is in two directions. Firstly, ter-
minating a pre-computed decision that is not located at the node that triggers
the termination requires network communication and is therefore expensive. Sec-
ondly, terminating more or fewer decisions has the same impact on the perfor-
mance as choosing fewer or, respectively, more events for the pre-computation.

5.2 Design for Effectiveness

In our mechanism responsible nodes compute and pre-compute decisions. Each
node memorizes its permitted usage events to compute decisions in compliance
with the Chinese Wall policy. A node decides to prevent a usage event only when
a conflicting usage event was permitted previously. On enforcement of a permit
decision the responsible node memorizes the permission of the usage event.

We let pre-computed decisions induce temporary responsibility shifts: a node
storing the pre-computed decision becomes temporarily responsible for the equiv-
alence class of the underlying usage event. Conversely, when the pre-computed
decision is terminated, the responsibility shifts back to the originally responsible
node. As a result, the responsibility distribution is proper also in presence of
temporary responsibility shifts. A temporarily responsible node can only lookup
the pre-computed decision, it can not compute decisions by itself.

Our mechanism employs a cautious selection strategy: it selects a maximal
set of correlated usage events such that for each user and equivalence class only
one pre-computed decision exists. The employed termination strategy is twofold:

254 R. Gay et al.

it terminates pre-computed decisions after their enforcement and during on-
the-spot decision-making. We fix a static strategy to select the location of pre-
computed decisions: for each usage event a node is fixed based on the file location.

Augmenting the mechanism, i.e., [13] with SPEEDAC based on the design
choices we made preserves the effectiveness of the mechanism. Our mechanism’s
on-the-spot decision-making preserves effectiveness due the responsibility dis-
tribution being proper even in presence of temporary responsibility shifts. As
previously discussed, pre-computed decisions do not affect transparency of our
mechanism. Enforcing a pre-computed decision u would only break soundness
when u permits a usage event and a decision v permits a conflicting usage event.
We distinguish the two cases that could lead to a policy violation. (1) between
computation of u and its enforcement an on-the-spot decision v is enforced. How-
ever, the termination strategy prevents this by terminating u during computation
of v. (2) between computation of u and its enforcement a pre-computed decision
v is enforced. The selection strategy prevents this: if v is computed before u, u is
never pre-computed. If u is computed before v, v is never pre-computed. Thus,
only either u or v is enforced. Absence of both (1) and (2) preserves soundness.

Fig. 5. Decision-making examples

Example. Consider an audit process where Alice is hired to audit car manufac-
turing companies. The companies’ data is distributed over servers USA, Estonia,
and China. To avoid conflict-of-interest Alice is only given access to a single com-
pany’s data. Server China is responsible to decide on usage events. Files of the
companies VW and Audi are correlated in both directions.

A successful lookup is given in Fig. 5a. Initially, a pre-computed decision
for access to VW arrives at node USA. An access to VW on server USA is
performed by Alice. USA does a lookup of the pre-computed decision, terminates
the decision, and reverts the responsibility shift through a notification to China.

Towards Accelerated Usage Control Based on Access Correlations 255

The notification causes China to update the set of permitted events. Since VW
and Audi are correlated, a decision for access to Audi is pre-computed.

A failed lookup is given in Fig. 5b. After the pre-computed decision for
VW arrives at USA, Alice performs an access to Audi on Estonia. A deci-
sion for access to Audi is computed on-the-spot. The mechanism terminates the
pre-computed decision for VW and reverts the responsibility shift. Correlation
between Audi and VW causes a pre-computation of a decision for access to VW .

A key property of our design is that a lookup of a pre-computed decision
requires no coordination among the nodes, as indicated also in our example.
The coordination was done on the side during the pre-computation. That is, no
network communication takes place for a usage event in case of a lookup success.
We therefore expect that our mechanism exhibits a lower perceivable overhead
compared to traditional approaches, which perform all coordination on the spot.

5.3 Implementation

We prototypically implemented our mechanism using the CliSeAu tool [13]. The
implementation of the decision-making algorithm consists of 757 source lines of
Java code (SLOC; empty/comment lines excluded) in 13 classes. This implemen-
tation is generic with respect to the target program. For a concrete target pro-
gram to establish the distributed storage service, we selected CrossFTPServer.2

The target-specific implementation consists of 81 SLOC in 3 classes.
We complement SPEEDAC for efficiency at the design level by efficient data

structures at the implementation level that assure efficient lookup and mainte-
nance of pre-computed decisions. This includes: pre-computed decision lookup,
temporary responsibility shifts, and our usage event selection strategy. We real-
ized all utilizing hash maps, which feature average O(1) running time for all
operations [8, p. 253]. By using representatives of equivalence classes as keys, we
could efficiently implement lookup, deletion, and responsibility shifting.

To assure effectiveness of our mechanism we implemented JUnit tests and
on top applied systematic manual testing. The JUnit tests cover functionality
of decision-making, responsibility shifting, and bookkeeping for event selection.
We complemented the tests with systematically testing an instantiation of our
mechanism for CrossFTPServer. In a system setup with a concrete a policy, we
manually accessed files to test the soundness and transparency of our implemen-
tation. In all cases we found our mechanism to be sound and to be transparent.

6 Performance Evaluation

We experimentally evaluate the performance of our mechanism by investigating
its perceivable overhead. Through the evaluation, we assess whether and to which
extent SPEEDAC reduces perceivable overhead compared to a traditional usage-
control mechanism in our case study. As the reference point for the comparison,
we employ the mechanism by Gay, Hu, and Mantel [13], which we call SOA
(abbreviating State-Of-the-Art) in the following.
2 http://www.crossftp.com/crossftpserver.htm.

http://www.crossftp.com/crossftpserver.htm

256 R. Gay et al.

6.1 Experimental Setup

For our experimental evaluation we employ a distributed file-storage system,
a concrete instance of the system setting in Sect. 4. The system consists of 8
servers hosting a file structure modeled after the MSN BEFS trace [18], which
captures the operation of a file server of Microsoft’s Live services. We replay a
post-processed MSN BEFS trace to simulate a system execution.

The MSN BEFS trace is a block I/O trace of a Microsoft’s Live services server
containing 8 physical disks. The trace captures operation during 6 hours. For
our experiments, a file access event represents an aggregation of block accesses
in close succession. We place the files for each disk on a separate server.

Our experiments use multiple synthesized Chinese Wall policies, i.e., 0.2, 0.5,
0.8, 0.8d, 0.8g. For each policy we target a rate of cooperative decision-making
in SOA for a trace replay. Conflicting files distributed over nodes require SOA
to cooperatively compute decisions. Our synthesis randomly selects files from
different nodes and marks them as conflicting until we reach the targeted rate.
The rate is represented by the name, e.g., 0.2 targets a rate of 20% in SOA. For
policy 0.8g an equivalence class contains files from at most seven nodes, for 0.8d
from at most four, and for the remaining ones from at most two.

Our experiments use a synthesized file-correlation that predicts, for each file
access, the following file access in 80% of cases. Our synthesis follows the process:
For each file f , the most frequent access following f is marked correlated until
the hit-rate reaches 80%.3

In our experiments we employ 8 Lenovo ThinkCentre M93p as servers. Each
is equipped with an Intel(R) Core(TM) i5-4590 CPU, 32 GB of RAM, and an
1000Mbit/s Intel I217-LM Ethernet adapter. As operating system Ubuntu Linux
14.04.2 LTS is run. The FTP server we employ is CrossFTPServer version 1.11.
The JavaVM is OpenJDK version 7u79-2.5.5-0ubuntu0.14.04.2.

We conduct experiments for each Chinese Wall policies for both SOA and
SPEEDAC. An experiment consists of 5 independent trace replays, i.e., we start
fresh instances of all software. A trace replay measures the response time for
5552150 file accesses by 256 distinct users. We average the obtained results.

6.2 Perceivable Overhead

Our system exhibits an average response time of 2.03 ms without usage control
enforcement. The perceivable overhead of SPEEDAC and SOA is obtained by
subtracting 2.03 ms from their response times. Table 2 presents our results.

For SOA perceivable overhead is between 1.49 ms (for 0.2) and 2.62 ms (for
0.8 and 0.8d) with an average of 2.27 ms. The perceivable overhead for SPEEDAC

is between 0.96 ms (for 0.2) and 1.83 (for 0.8g) with an average of 1.25 ms. The
reduction is between 29.1% (for 0.8g) and 61.5% (for 0.8), averaging at 44.9%.

3 The seemingly high hit-rate of 80% in fact constitutes a conservative choice: Hua
et al. [16] obtained a 95.2% hit-rate on the same trace data.

Towards Accelerated Usage Control Based on Access Correlations 257

Table 2. Perceivable overhead

Type 0.8 0.8d 0.8g 0.5 0.2 ∅

SOA 2.62 ms 2.62 ms 2.58 ms 2.02 ms 1.49 ms 2.27 ms

SPEEDAC 1.01 ms 1.48 ms 1.83 ms 0.99 ms 0.96 ms 1.25 ms

abs. speedup 1.61 ms 1.16 ms 0.75 ms 1.03 ms 0.53 ms 1.02 ms

rel. speedup 61.5% 44.3% 29.1% 51.0% 35.6% 44.9%

We particularly find the variability in the perceivable overhead among experi-
ments 0.8, 0.8d, and 0.8g with SPEEDAC very interesting, given that these exper-
iments feature nearly the same perceivable overhead with SOA. We identified
the size of an equivalence class, i.e., its number of usage events, as cause. Our
selection and termination strategies allow for fewer pre-computed decisions with
increased size of equivalence classes. Further investigation showed that, indeed,
fewer pre-compute decisions are enforced during 0.8d and even fewer during 0.8g.

Our results show a reduced perceivable overhead for SPEEDAC in all cases.
On average SPEEDAC reduces perceivable overhead by 44.9% compared to SOA,
i.e., the average perceivable overhead is reduced from 2.27 ms to 1.25 ms. We find
this encouraging to depoly SPEEDAC for efficient usage control enforcement.

6.3 File-Correlation Effects

Our results made us curious about the effects of different file-correlation hit-rates
on perceivable overhead. We conducted additional experiments to identify the
relation between hit-rate and reduction of perceivable overhead.

A single run was conducted for 3 additionally synthesized file-correlations
with hit-rates 50%, 35%, and 30%. As lowest hit-rate 30% captures only corre-
lating the most frequent successive file access for each file. Our experiments use
policy 0.8 due to high reductions for SPEEDAC in our previous experiments.

Fig. 6. Effects of file-correlation on perceivable overhead.

Figure 6 shows the results of our experiments. For 80% the reduction is taken
from our previous experiment. Hit-rates 50%, 35%, and 30% show a reduction of

258 R. Gay et al.

58%, 43%, and respectively 38%. Between hit-rates 50% and 80% the perceivable
overhead reduction only differs by 3%. A curve, fitted on the obtained results,
allows to anticipate reduction rates for hit-rates beyond the ones we employed.

To our surprise hit-rates above 50% only cause marginal additional reduction
of perceivable overhead. On the other side of the spectrum, even hit-rates low as
30% result in a significant reduction of 38%. Thus, our results show SPEEDAC

is useful even in settings with limited knowledge of access correlations.

7 Related Work

Optimizations for enforcement mechanisms, including usage-control mechanisms,
are common and have been pursued in several directions. Mechanisms that utilize
the inlining technique [10], e.g., based on aspect-oriented programming [21], use
static program analysis to reduce the number of program instructions that are
instrumented to invoke the mechanism (e.g., [1,13,27]). SASI [11] and Clara [3]
expand the analysis to sequences of instructions in order to further reduce the
number of invocations of the mechanism. Automata-theoretic techniques have
been proposed for minimizing the composition of a program and an enforcement
mechanism [6,22]. The optimizations performed by these approaches can be
viewed as a form of statically pre-computed decisions (“permit”) for security-
irrelevant events.

Techniques for optimizing the performance of enforcement mechanisms them-
selves have also been proposed. JavaMOP [27] employs an optimization for
enforcing properties on individual Java objects based on a decentralized indexing
scheme that accelerates the lookup of mechanism state. JavaMOP furthermore
optimizes the number of monitor state updates by exploiting the structure of the
enforced property to achieve a low number of monitors. A dynamic optimiza-
tion of an enforcement mechanism is proposed by the RV system [17], which at
run-time collects dead monitors to reduce bookkeeping overhead.

Particularly for distributed enforcement mechanisms, architecture-based
optimizations have been proposed. Gay et al. [13] and, subsequently, Decat
et al. [9] propose to use a decentralized coordination among the distributed
components of the mechanism for efficiently and effectively enforcing given prop-
erties. Kelbert et al. [20] employ a general-purpose distributed database for an
efficient coordination. Our approach, i.e., optimizing via access correlations, is
orthogonal to the related works presented in this section. That is, existing opti-
mization techniques based on static analysis, individual decision-making, and
distributed architectures can be utilized in addition to our optimization.

Application scenarios similar to the one in our case study have been subject of
enforcement mechanisms before [9,13,14,26]. We use the scenario because, firstly,
the Chinese Wall policy [4] is a classic business requirement and, secondly, we
could use a publicly available mechanism as a reference for our evaluation [13].
Note, however, that SPEEDAC is a generally applicable approach for accelerating
usage control. How special-purpose mechanisms, e.g., for DRM [28] or distributed
access control [2], could be optimized is beyond the scope of the article.

Towards Accelerated Usage Control Based on Access Correlations 259

8 Conclusion

We proposed SPEEDAC, an approach for accelerating distributed usage control
enforcement by speculatively pre-computing decisions for usage events based on
access correlations. In our case study, we developed a usage-control mechanism
with SPEEDAC against conflicts of interest in distributed storage systems. The
performance evaluation based on a real world data trace from Microsoft’s Live
services provides first evidence that our approach has the potential to signifi-
cantly accelerate usage control. Concretely, our mechanism exhibited perceiv-
able overheads that are up to 61.5% lower on average compared to not utilizing
SPEEDAC. In absolute terms, the acceleration allowed us to reduce the perceiv-
able overhead from 2.27 ms to 1.25 ms on average (see Table 2).

Our work constitutes a first step in this promising direction. Further investi-
gation in this direction will provide a better understanding of the full potential
of our approach. Questions for further investigations are: How can the approach
be exploited to accelerate usage control even further and in other application
scenarios, e.g., involving also dynamic policies? Does SPEEDAC influence how
much information an attacker capable of measuring perceivable overhead can
learn about processed secrets?

Acknowledgments. We thank the anonymous reviewers for their constructive com-
ments. This work was partially funded by CASED (www.cased.de) and by the DFG
as part of the project Secure Refinement of Cryptographic Algorithms (E3) within the
CRC 1119 CROSSING.

References

1. Bauer, L., Ligatti, J., Walker, D.: Composing expressive runtime security policies.
TOSEM 18(3), 9:1–9:43 (2009)

2. Becker, M.Y., Sewell, P.: Cassandra: distributed access control policies with tunable
expressiveness. In: POLICY, pp. 159–168. IEEE Computer Society (2004)

3. Bodden, E., Hendren, L.: The clara framework for hybrid typestate analysis. STTT
14(3), 307–326 (2012)

4. Brewer, D.F., Nash, M.J.: The chinese wall security policy. In: IEEE S&P, pp.
206–214 (1989)

5. Brutlag, J.: Speed Matters for Google Web Search. (2009). https://services.google.
com/fh/files/blogs/google delayexp.pdf. Accessed 16 July 2017

6. Colcombet, T., Fradet, P.: Enforcing trace properties by program transformation.
In: POPL, pp. 54–66. ACM (2000)

7. Colombo, M., Martinelli, F., Mori, P., Petrocchi, M., Vaccarelli, A.: Fine Grained
Access Control with Trust and Reputation Management for Globus. In: Meersman,
R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4804, pp. 1505–1515. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-76843-2 26

8. Cormen, T.H., Leierson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

9. Decat, M., Lagaisse, B., Joosen, W.: Scalable and secure concurrent evaluation of
history-based access control policies. In: ACSAC, pp. 281–290. ACM (2015)

www.cased.de
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
http://dx.doi.org/10.1007/978-3-540-76843-2_26

260 R. Gay et al.

10. Erlingsson, U.: The Inlined Reference Monitor Approach to Security Policy
Enforcement. Ph.D. thesis, Cornell University (2004)

11. Erlingsson, Ú., Schneider, F.B.: sasi enforcement of security policies: a retrospec-
tive. In: NSPW, pp. 87–95. ACM (1999)

12. Forrest, B.: Bing and Google Agree: Slow Pages Lose Users. (2009). http://radar.
oreilly.com/2009/06/bing-and-google-agree-slow-pag.html. Accessed 16 July 2016

13. Gay, R., Hu, J., Mantel, H.: CliSeAu: securing distributed java programs by
cooperative dynamic enforcement. In: Prakash, A., Shyamasundar, R. (eds.)
ICISS 2014. LNCS, vol. 8880, pp. 378–398. Springer, Cham (2014). doi:10.1007/
978-3-319-13841-1 21

14. Gay, R., Mantel, H., Sprick, B.: Service automata. In: Barthe, G., Datta, A., Etalle,
S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 148–163. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29420-4 10

15. Harvan, M., Pretschner, A.: State-based usage control enforcement with data flow
tracking using system call interposition. In: NSS, pp. 373–380. IEEE Computer
Society (2009)

16. Hua, Y., Jiang, H., Zhu, Y., Feng, D., Xu, L.: SANE: semantic-aware namespace
in ultra-large-scale file systems. TPDS 25(5), 1328–1338 (2014)

17. Jin, D., Meredith, P.O., Griffith, D., Rosu, G.: Garbage collection for monitoring
parametric properties. In: PLDI, pp. 415–424. ACM (2011)

18. Kavalanekar, S., Worthington, B.L., Zhang, Q., Sharda, V.: Characterization of
storage workload traces from production windows servers. In: IISWC, pp. 119–128
(2008)

19. Kelbert, F., Pretschner, A.: Data usage control enforcement in distributed systems.
In: CODASPY, pp. 71–82. ACM (2013)

20. Kelbert, F., Pretschner, A.: A fully decentralized data usage control enforcement
infrastructure. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M.
(eds.) ACNS 2015. LNCS, vol. 9092, pp. 409–430. Springer, Cham (2015). doi:10.
1007/978-3-319-28166-7 20

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.
1007/BFb0053381

22. Lemay, F., Khoury, R., Tawbi, N.: Optimized inlining of runtime monitors. In:
Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 149–161. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29615-4 11

23. Li, Z., Chen, Z., Srinivasan, S.M., Zhou, Y.: C-miner: mining block correlations in
storage systems. In: FAST, pp. 173–186. USENIX (2004)

24. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1–2), 2–16 (2005)

25. Lohr, S.: Bing and Google Agree: Slow Pages Lose Users (2012). http://www.
nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.
html. Accessed 16 July 2017

26. Martinelli, F., Matteucci, I.: Synthesis of local controller programs for enforc-
ing global security properties. In: ARES, pp. 1120–1127. IEEE Computer Society
(2008)

27. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012)

28. Ongtang, M., Butler, K.R.B., McDaniel, P.D.: Porscha: policy oriented secure con-
tent handling in Android. In: Gates, C., Franz, M., McDermott, J.P. (eds.) ACSAC,
pp. 221–230. ACM (2010)

http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://dx.doi.org/10.1007/978-3-319-13841-1_21
http://dx.doi.org/10.1007/978-3-319-13841-1_21
http://dx.doi.org/10.1007/978-3-642-29420-4_10
http://dx.doi.org/10.1007/978-3-319-28166-7_20
http://dx.doi.org/10.1007/978-3-319-28166-7_20
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/978-3-642-29615-4_11
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html

Towards Accelerated Usage Control Based on Access Correlations 261

29. Park, J., Sandhu, R.S.: The UCONABC usage control model. TISSEC 7(1), 128–174
(2004)

30. Shalom, N.: Amazon found every 100ms of latency cost them 1% in sales (2008).
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-
in-sales/. Accessed 16 July 2017

31. Singla, A., Chandrasekaran, B., Godfrey, B., Maggs, B.M.: The internet at the
speed of light. In: HotNets, pp. 1:1–1:7. ACM (2014)

https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

Emerging Security Areas

Generating Functionally Equivalent Programs
Having Non-isomorphic Control-Flow Graphs

Rémi Géraud1, Mirko Koscina1,2(B), Paul Lenczner1, David Naccache1,
and David Saulpic1

1 École Normale Supérieure, 45 Rue d’Ulm, 75230 Paris Cedex 05, France
{remi.geraud,paul.lenczner,david.naccache,david.saulpic}@ens.fr
2 Almerys, 46 Rue du Ressort, 63967 Clermont-Ferrand Cedex 9, France

mirko.koscina@almerys.com

Abstract. One of the big challenges in program obfuscation consists in
modifying not only the program’s straight-line code (SLC) but also the
program’s control flow graph (CFG). Indeed, if only SLC is modified, the
program’s CFG can be extracted and analyzed. Usually, the CFG leaks
a considerable amount of information on the program’s structure.

In this work we propose a method allowing to re-write a code P into
a functionally equivalent code P ′ such that CFG(P) and CFG(P ′) are
radically different.

1 Introduction

In the white-box security model, adversaries have access to a program’s
internals—assembly code, memory, etc. This model captures real-world attacks
against low-end devices, as well as software disassembly and dynamic analysis.
Such attacks may allow the adversary to extract secrets from the implementation,
either in the form of tokens (passwords, etc.), intellectual property (algorithms,
etc.), or may help uncover design flaws that may later be exploited. Reverse-
engineering may also help the adversary recognize some trait that the program
shares with other programs, e.g. in the case of malware analysis or intellectual
property infringement. The general aim of obfuscation is to prevent reverse-
engineering, by defeating automated methods and stave off human efforts to
make sense of the code. Applications of RE-evasion techniques are many, and
constitute for instance an essential building block of digital rights management
(DRM) systems.

Historically, program identification focused on finding known code chunks
called signatures in the binary. While this technique is still widely in use amongst
intrusion and virus detection systems, such an approach requires both extensive,
and up-to-date, databases (to account for the ever-growing corpus of threats) and
a very efficient binary comparison method. At the same time, widely used pack-
agers with self-modifying code capacity, now standard amongst virus designers,
made the traditional signature-based approach less and less effective.

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 265–279, 2017.
https://doi.org/10.1007/978-3-319-70290-2_16

266 R. Géraud et al.

Indeed, an increasing number of malicious programs re-write their executable
code so as not to feature any recognizable code of significant length. In prac-
tice, it is not even necessary to resort to very complex re-writing mechanisms:
the malicious code can simply add (or remove) useless instructions or instruc-
tion sequences (such as nop, and reversible register operations, e.g. inc/dec) to
thwart a trivial comparison. While such variations can be accounted for, they
require significantly more effort from the analyst, especially when scanning a
large number of files.

An alternative, and certainly complementary approach to malware detection
and analysis consists in running the program under certain controlled environ-
ment, or sandbox, in which every operation can be monitored and does not
impact the “real” underlying system. Sandboxes typically implement a form of
virtualized environment, and monitor access to resources, secrets, and peripher-
als to detect abnormal behavior. Naturally, the term “abnormal” is application-
dependent, hence this approach assumes that characteristic behavioral features
are known and are sufficiently distinguishable from those of uninfected soft-
ware. Furthermore, running such a controlled environment is resource- and time-
demanding. This limits the interest of sandboxing as a program identification
tool.

Between these two approaches, recent research focused on methods for com-
paring programs using control-flow graph isomorphism [4,6,7]. The rationale is
that the program’s flow graph (CFG) wouldn’t be altered significantly by the
adjunction or removal of useless “decoy” operations, the kind of which thwarts
direct comparison. CFG comparison techniques are also unaffected by straight-
line code obfuscation techniques, e.g. when each function’s code is completely
rewritten. CFGs can be extracted statically to a large extent, and therefore con-
stitute an attractive and resource-frugal alternative to full-blown virtualisation.

Defeating CFG analysis. In the malware-writing community, a typical anti-
reverse engineering technique is the trampoline: instead of using typical control
flow instructions such as jmp or call, the program makes heavy use of exception
handling, that preempts the instruction pointer and runs the exception handler,
which re-dispatches control flow to another program part (see e.g. [3]). After
execution, each program part raises an exception, and falls back to an excep-
tion handler (hence the name, trampoline). There can be several trampolines,
which may be created and moved at runtime, and code boundaries need not be
rigid. This prevents disassemblers from reliably cross-referencing information,
and makes it difficult to perform dynamic analysis as well, because it is typically
impossible to run such code within a debugger.

However, because there is no classical call hierarchy, trampolines have to
emulate the stack, and an analyst that recognizes the mechanism can easily
reconstruct the control flow graph by following this pseudo-stack. Therefore,
while the use of trampolines slows down analysis, it is by no means an efficient
method anymore against trained reverse engineers, and the additional effort put
into designing such code is not worth the marginal gain.

Generating Functionally Equivalent Programs 267

Recent work tried to automate the process, which strives to achieve a “flat”
control flow graph, i.e. a graph with either a single central trampoline that dis-
patches execution, or a program that is fully unrolled and appears as a long
straight-line code segment without internal structure [1,2,8,10,11,14,16]. How-
ever not only are such techniques not always applicable, but more importantly
they tend to produce code that, while “flat”, has salient signatures.

Our contribution. This paper addresses the question of rewriting a program
in a way that hides its original control flow graph from static analysis (and,
to a certain extent, from dynamic analysis as well), while preserving function-
ality. Straight-line code (SLC) obfuscation techniques can be used on top of
our construction to destroy remaining signatures. Indeed SLC obfuscators have
already been described in the literature and shown to effectively defeat classic
code analysis techniques [15]. The rewriting is randomized, and produces differ-
ent outputs every time. Unlike the trampoline construction, whose heavy use of
exception handling is easily recognizable, and from there, traceable, our construc-
tion only uses common instructions and relies on a specific routing mechanism
along execution—which is much harder to detect.

More formally, given a program P , we show how to obtain a functionally
equivalent program P ′, such that the CFG of P ′ is essentially a random graph.
This transformation is automatic, and we show how to implement a CFG-
transcompiler for the x86-64 architecture, which is widely used and furthermore
makes our implementation easier.

2 Control Flow Graph Transcompilation

2.1 Prerequisites

The control flow graph of a program is a graphical representation, based on
nodes and edges, of the paths that might be traversed by the program during
its execution.

Definition 1 (Control Flow Graph). The (full) control flow graph of a pro-
gram P is the graph whose nodes are the program’s instructions and the edges
are control flow transitions. The restricted control flow graph of P has for nodes
straight-line blocks, i.e. a maximal sequence of code without departure or arrival
of static jumps, and there is an edge from node x to node y (and we write x → y)
if either of the following conditions hold:

– The code of node y is located immediately after the node x, and both are
separated by a conditional jump.

– The last instruction of the node x is either a conditional or a static jump,
which is a call to the physical address of the beginning of the node y.

In the following, unless specified otherwise, we always refer to the restricted con-
trol flow graph. This construction does not include information about dynamic

268 R. Géraud et al.

jumps: In practice it is challenging to statically and reliably resolve dynamic
jumps. The ret instruction, which we cannot ignore since it is often used to
implement function calls, will be dealt with in a special way.

However, other dynamic and indirect control flow modifications (e.g. by direct
alteration of the instruction pointer, or non-standard exception handling) are
not considered in this work. On the one hand this is a limitation that may
prevent some programs from undergoing the transformation that we propose.
On the other hand, this may constitute an interesting countermeasure against
code-reuse and hijack attacks that leverage such possibilities.

Let P be the program to be obfuscated. We denote by G = (V,E) the CFG
of P , where V and E correspond respectively to the nodes and edges of G. Let
G′ = (V ′, E′) be a given “final” target CFG.

Example 1. Consider the following program, implementing a simple double-and-
add algorithm:
dbl_add(int , int): ; Compute ab from integer arguments a and b

test esi , esi
mov eax , 0 ; tmp = 0
jle .end ; if b == 0, return tmp

.loop:
lea edx , [rax+rax] ; tmp2 = 2 tmp
add eax , edi ; tmp = tmp + a
test sil , 1
cmovne eax , edx ; if b even set tmp = tmp2
sar esi ; shift b to the right
jne .loop ; loop if b > 0
rep ret

.end:
rep ret

The CFG associated to this program is represented in Fig. 1, where the instruc-
tions’ arguments have been removed for clarity. The associated restricted CFG
is represented in Fig. 2.

Fig. 1. Full CFG of the program of Example 1.

Fig. 2. Restricted CFG of the program of Example 1.

Generating Functionally Equivalent Programs 269

2.2 Overview of Our Approach

Our goal is to rewrite P into a program P ′ that achieves the same functionality
as P , but whose CFG is G′ �� G = (V,E) = CFG(P). This is achieved in
successive steps, illustrated in Figs. 3, 4, 5 and 6.

Step 1: Relabeling. We start from a morphism π between the two graphs, i.e. a
function that is injective on nodes and preserves edges. If we fail to find enough
nodes or edges to perform this operation, which happens with very low proba-
bility when the target graph is large enough, we simply start over with a new
random graph G′. The process is illustrated in Fig. 3.

Fig. 3. Illustration of Step 1: Relabeling. The original nodes and edges from CFG(P)
are assigned different colors, other nodes are in gray. (Color figure online)

Step 2: Breaking Edges. Then, additional nodes will be added by transforming
the graph. The idea is to replace simple edges by paths in G′ = (V ′, E′), i.e.
for each edge (a, b) ∈ E, corresponding to an edge (π(a), π(b)) ∈ E′, we replace
(π(a), π(b)) by a path (π(a), f((a, b)), π(b)), where f is a prescribed function.
Such a function f : E → List(V ′) must return paths already present in G′, i.e.
assuming that f((a, b)) = (s1, . . . , sn),

– (π(a), s1) ∈ E′

– (sn, π(b)) ∈ E′

– ∀i ∈ {1, . . . , n − 1}, (si, si+1) ∈ E′

We keep track of which edges were originally present and which edges were added
at this step. The process is illustrated in Fig. 4.

Step 3: Identify Active and Passive Nodes. The previous step introduced “extra”
operations between a and b. Since we wish to preserve the original program’s
functionality, we should make sure that only the original endpoints, a and b, are
executed, while all the intermediary nodes are without effect when executed. We
call a and b the active nodes, and the intermediary nodes (i.e. nodes that do not
exist in the original CFG) are called passive.

270 R. Géraud et al.

Fig. 4. Illustration of Step 2: Breaking edges. The original path π(a) → π(b) is extended
by a path f((a, b)) = (s1, . . . , sn) of G′.

Remark 1. A node that is neither active nor passive in the control flow graph G
can be considered either active or passive in G′.

Depending on the execution path taken, some nodes may be active or passive
(e.g. Fig. 5). To decide whether a given node is active or passive, the program
(more precisely, the node itself) checks at runtime the value of a routing variable
(see below).

Fig. 5. Illustration of Step 3: Identifying active and passive nodes. Here two original
sequences π(a) → π(b) and π(c) → π(d) cause some nodes to be passive (empty circle),
active (filled black circle), or active depending on the execution path taken (grey circle).

Step 4: Routing. Finally, we transform each node so that the execution of passive
nodes is without side effects (a process we call passivation), except continuing
through the sequence of nodes until an active node is attained. To that end we
introduce an additional “routing” variable that will be updated as the program
is executed (e.g. Fig. 6).

Nodes consult the routing variable to know whether they are active or not;
if not, they simply hand over execution to the next node in sequence (possibly
after executing dummy instructions).

2.3 Contexts

During program execution, every node in the transformed program undergoes
the following procedure:

1. Determine whether node is active or passive.
2. If active, restore the registers. Otherwise passivate itself.
3. Run the code.
4. Call the next node in the sequence.

Generating Functionally Equivalent Programs 271

Fig. 6. Illustration of Step 4: The path is taken according the routing variable m. If
the node is passive (m = 0), the path to be taken will be the subsequent node. In the
case of a active node (m = 1), the next node will be defined by the current node

To allow this series of operations, we introduce the concept of contexts.
A context is a set of variables that save the node’s state, in a way that

can later be restored. Each traversed node is associated to a context, which is
available just during the time that the node is being traversed.

Since passive nodes do not suffer side effects, they cannot in particular find
the next node to be called; hence the next node is part of the context. If the
node is active, it may ignore this part of the context and branch itself to another
destination.

2.4 Node Passivation

Node passivation requires us to cancel the instruction(s) being executed, or com-
pensate their effects in some way. We do this by using both the registers and the
stack (it is not possible to rewrite registers that are in active mode), leveraging
the specificities of the x86-64 architecture.

Register operations. Any register operation can be dealt with by using contexts,
with the exception of the stack registers.

Stack operations. Stack operations are harder to compensate: the following
instructions have an effect on the stack

PUSH, POP, PUSHA, POPA, PUSHAD, POPAD, PUSHF, POPF, PUSHFD,

POPFD

We control writing and reading in the stack by using a pointer to a “trash”
address, stored as a fixed value. If a passive node attempts to write something
in the stack, we redirect the address to the trash, nullifying the instruction’s
effects. The reading process is handled in the same way. If the node is active,
the real address is used.

272 R. Géraud et al.

The context m is used in the following way: after a PUSH, we perform the
following operation to the pointer to the top of the stack p:

p ← p + (8 & m)

where

– m = 1 · · · 12 if the node is passive. In this case the operation will be compen-
sated and will not have any effect due to the top of the stack not changing.

– m = 0 if the node is active. In this case the addition is useless and the PUSH
works as intended.

MOV instruction. mov instructions from one register to another are already with-
out effect, since register values are restored at the beginning of each active node,
and are stored in the environment. However, mov instructions that involve a
memory address require additional care, and we use the same technique as for
the stack: the address is rewritten to the “bin” when the node is passive. This is
followed by the transformation:

address = (address & (¬m))|(trash_address & m)

This technique also hides the addresses that are really used during program
execution.

Function calls. We will distinguish library function calls and calls to internal
functions, that are defined in the code.

Library calls. In the case of library function calls, each of them is treated sep-
arately by using a specific context per function. Now, considering that it is
impossible to handle all the functions at the same time, we propose to call the
functions by using parameters that make them ineffective.

Example 2. In the following "Hello World" program, where we make ineffective
the function printf by loading to EAX the address of an empty sentence (auxiliary
parameter) and set the stack pointer to the address of EAX.
extern _printf
global _main

section .data
param1: db "Hello World" ,10,0
paramaux: db "" ,0 ; declaration of the empty sentence

section .text
_main:

push param1
lea eax , [paramaux] ; paramaux address placed in EAX
mov [esp], eax ; pointer to the empty sentence
call _printf
add esp ,4
ret

Generating Functionally Equivalent Programs 273

2.5 Jumps and Internal Calls

Internal calls. Recall that we distinguish between a call to an address in a PUSH
from a static jump. This makes the above transformation effective to handle
these instructions. However, the RET instruction corresponds to a dynamic jump
and is subtler to handle.

Let n be a node with a RET instruction in G, and assume that in G′ the
corresponding node π(n) has two neighbors, f1 and f2. Their addresses are fixed,
so that one can place, on the top of the stack, the address of the node that follows
π(n) (either f1 or f2).

Example 3. In the following example, we print on the screen the result returned
by func1. In this case, we jump from func1 to func2 adding the desired address
on the top of the stack by using a push operation. As a result, the program
jumps to func2 instead of jumping back to the address after the call.
extern _printf
global _main

section .data
num DD 2,3
format: dd "num: %d" , 10, 0

section .text

_main:
mov eax ,0 ; eax = 0
mov esi , [num] ; edi = 2
mov edi , [num+4] ; esi = 3
push esi ; pass param 3 to .func1
push edi ; pass param 2 to .func1
push eax ; pass param 1 to .func1
call .func1 ; jump to func1
add esp ,12 ; pop edi , esi and eax from the stack

push eax
push dword format

call _printf ; print eax in the screen
add esp ,8 ; pop stack 2*4-byte

.func1:
push ebp
mov ebp ,esp ; set stack base pointer
sub esp , 4 ; creat space for one 4-byte local variable
push edi ; Save the values of the register that the function will use
push esi
mov eax ,[ebp+8] ; move param 1 to EAX
mov edi ,[ebp +12] ; move param 2 to EDI
mov esi ,[ebp +16] ; move param 3 to ESI

mov [ebp -4],edi ; var local = 2
add [ebp -4],esi ; var local = 5
mov eax , [ebp -4] ; EAX = 5

pop esi ; remove esi from the stack
pop edi ; remove edi from the stack
mov esp ,ebp
pop ebp ; takedown stack base pointer
lea ecx ,[.func2]
push ecx ; push func2 address on the top of the stack
ret ; jump func2

274 R. Géraud et al.

.func2:
push ebp
mov ebp ,esp ; set stack base pointer
sub esp , 4 ; creat space for one 4-byte local variable
push edi ; Save the values of the register that the function will use
mov edi ,[num] ; edi = 2

mov [ebp -4],eax ; var local = 5
add [ebp -4], edi ; var local = 7
mov eax ,[ebp -4] ; EAX = 7

pop edi ; remove edi from the stack
mov esp ,ebp
pop ebp ; takedown stack base pointer
ret

2.6 Routing

Once we have passed through a passive node, without changing the environment,
we must be capable to take the next desired branch. As each node is a maximum
of two out-degree, all that we need is a boolean variable in the environment that
will indicate to which child we must to go.

In practice, it is enough to maintain a global routing variable r. This allows
the sequence of branches to follow (left or right) between two consecutive nodes.
Hence, we modify r for each active node found and its i-th bit gives the direction
of the i-th branch of the current path. We will denote by ri the i-th bit of r.

Remark 2. Routing variables have a limited size if we use native types, it is
straightforward to extend them but additional arithmetic is needed.

JUMP instruction. First of all, we need to transform a conditional jmp from P
into a jmp that goes to the next node as determined by ri. For simplicity, we
assume that all conditional jumps test a “zero flag”, which is set by a comparison
just before the jump. For example, we have the node A (with children B and C)
and the following program:

cmp (...) ; comparison
je B ; conditional jump to B
C ; next node

As we know how to move from node A to node B or C in advance, we can save
the routes in some constants A_to_B and A_to_C. For doing so we use the
following code:

mov routing_variable , A_to_C ; set routing variable
cmp (...) ; comparison
cmove routing_variable , A_to_B ; set routing variable iif comparison succeeds

This program then jumps according to the first value of the routing variable.
Note that, for passive nodes, routing variables are set to the (masked) trash

address.
RET instruction. When a node is passive, we want to have two possible branches
as in the case of the jump instruction. To achieve this we also store the constants
A_to_B and A_to_C; and we will use the mask m as the context. We will go
to node B if ri = 1 and to node C if ri = 0.

Generating Functionally Equivalent Programs 275

We want to put at the top of the stack the address to which we want to go.
Hence, we just add the following line before the ret:

p ← (p & m)|((r & A_to_B)|(¬r & A_to_C)) & ¬m

The transformation presented above allows us to modify the program’s control
flow graph. We are capable of transforming an arch into a path, and ensuring
that the path’s execution is identical to the effect of running the arch in the
original graph.

3 Control Flow Graph Obfuscation

While the presented construction effectively transforms the program’s CFG, the
resulting construction has a strong signature, and it is easy to reverse the process
to obtain the initial graph. It is indeed enough to run the program and identify
nodes that change the routing variable. These nodes are the active ones, and it
is possible to reconstruct the original control flow graph.

In this section we propose several ways to obfuscate the transformed program
and make this reconstruction harder. First, we will “force” the execution of the
program in order to recover successfully the initial control flow graph, we then
hide the nodes’ activity, including the operations on the routing variable, which
is a signature of an active node.

3.1 Forcing Execution

For now, we know that the routing variable suffices to determine the next active
node. We will modify its definition and use it to hide the control flow from
static analysis. The routing variable is now maintained as a sequence of bits
(r1, . . . , rn).

Upon transitioning to node i, we apply to the routing bit ri a random per-
mutation fi of {0, 1}.

Example 4. For example, if one seeks to obtain at the end of the function a bit
equal to 1, the following operations can be used:

r ← 0 Null routing variable
a ← rand() Introduce randomness
t ← 5a
t ← t + r × a
r′ ← t/a mod 2

At the end of the code execution we obtain r′ = 1. If we declare r = 1 instead,
we get r′ = 0.

We can easily generate the random flips fi by using an arithmetic operation and
its inverses. As determining the value of a variable is undecidable, running the
program is the most natural way to get information about the execution paths
taken.

276 R. Géraud et al.

3.2 Node Hiding

The same way that routing bits are masked, we can hide the value of the bit
indicating whether a node is active or passive. However by doing so node i only
hides the status of node i+1. The mask’s value can also be changed by choosing
a random number between m and ¬m, and updating the formula accordingly.

3.3 Route Hiding

Updates of the routing variable are crucial, as they immediately reveal active
nodes. To hide the information about the routing changes, we extend each path
beyond the active node, and introduce a weak form of “onion” routing, where the
next node is determined at runtime. The rationale is that determining whether
a node is active or inactive will require recovering the full route leading to this
particular node.

We introduce two additional variables per node, called path and next path.
The next path variable is masked (XORed) with a value that depends on the
node. Upon execution of an active node, the values of these two new variables
are further modified.

If the next node is C, the route from B to C is stored in next path, and
masked by being XORed with the constants of every intermediary node between
A and B.

The number of hops is counted. Upon arriving at the final hop B of the path
from A to B, we swap next path and path.

The route hiding process is illustrated in Fig. 7.

Fig. 7. Diagram of hiding process for nodes and routes

Generating Functionally Equivalent Programs 277

4 Security

Intuitively, the security of our construction depends on the hardness of identi-
fying active nodes. This can be formalized as an adversarial game, whereby a
more precise security notion can be given:

CFG-FullRecovery Game:
1. The challenger provides a program CFG G = (V, E)
2. The adversary chooses a set N ⊆ V

The adversary wins the game if the nodes in N are the active ones.

To get a grasp on how hard this game is, assume that we choose N at random
in V , where there are exactly |N | active nodes:

Pr [N is exactly the active nodes | N ⊆R V] =
1

(|V |
|N |

) =
|N |!(|V | − |N |)!

|V |! .

If one node out of two is active, and there are more than 42× 2 nodes in V , this
probability is negligible. Thus we may hope, for realistically large programs, to
resist adversaries for which there is no better way to choose N than selecting a
random subset of V .

However, in practice, adversaries may succeed in recovering smaller portions
of the CFG. This corresponds to the following game:

CFG-OneRecovery Game:
1. The challenger provides a program CFG G = (V, E)
2. The adversary chooses a node n ∈ V

The adversary wins the game if n is active and n is not the first node of G
(which is always active).

The success probability if n is chosen at random is

Pr [n is active | n ∈R N] =
|N |
|V |

where again N is the set of (actually) active nodes. In the balanced case, where
2|N | = |V | this probability is exactly one half. When that is the case, and V is
large enough, security in this second game implies security in the first game.

As discussed above, static analysis cannot in general determine the variables’
values in a given node (by Rice’s theorem [13]). Given that the difference between
active and passive nodes is only semantic, for a general program determining
whether a given node is active is undecidable.

Hence, our obfuscation scheme should be secure against static analysis, for
large enough values of N and few enough active nodes.

4.1 Security Against Dynamic Analysis

Dynamic analysis is performed by running and monitoring the program. As men-
tioned previously, the first node is always active. The second node can be deter-
mined as follows: Execution continues until the next path variable is updated.

278 R. Géraud et al.

At that point, we know that there is an active node between the current node
B and the first node A.

The analyst then performs the following operation: For each node n between
A and B in the CFG, replace n by another operation, and run the program up to
B. There are at most |V | nodes to test. A node is active if, when modified, the
program’s state at B has changed.

As each test is required to continue running the program until B, which can
take up to |V | steps, it is then possible to determine the next active node in
O(|V |2). By running this procedure iteratively for all nodes, we reconstruct the
list of active nodes, i.e. the original CFG, in O(|V |3) operations.

5 Implementation

Given as input a program CFG, we construct a “target” CFG to which the
original program is mapped.

1. Graph generation. We generate a random graph with n edge and maximum
out-degree two, using a variant of the Tarjan-Eswaran algorithm [5,12].

2. Linearisation. This graph is linearised, so that it corresponds to a CFG. For
this purpose we use the scheme presented by Leroy for the CompCert compiler
[9]. We then select a random morphism π between the initial graph and the
new graph that we are creating.

3. Transformation. We begin the transformation by identifying the active and
passive nodes, the edges for paths are then changed by neutralizing (passi-
vation) the instructions using: registers and stacks operations, transforming
the jumps and internal call, and defining the route to follow according to the
routing variable. Finally, we remove the signature of the new graph hiding the
routing variable and node’s status (active or passive) by randomizing their
values and adding the variables path and next path. To mask the variable next
path we XOR it with the node’s values.

The source code of this implementation is available from the authors upon
request.

6 Conclusion

This paper presents a control flow graph trans-compilation algorithm allowing
to transforms a program into a new functionally equivalent program. This algo-
rithm uses common instructions such as register and stack operations, and a
random routing variable, such that the resulting CFG is entirely different from
the original one. We let as a future work the study of the obfuscation perfor-
mance regarding the time expended in the transformation process for different
code size and if the obfuscation can be improved if we apply on P the same
transformation more than once.

Generating Functionally Equivalent Programs 279

References

1. Cappaert, J., Preneel, B.: A general model for hiding control flow. In Proceedings of
the tenth annual ACM workshop on Digital rights management, pp. 35–42. ACM,
2010

2. Chow, S., Gu, Y., Johnson, H., Zakharov, V.A.: An approach to the obfuscation of
control-flow of sequential computer programs. In: Davida, G.I., Frankel, Y. (eds.)
ISC 2001. LNCS, vol. 2200, pp. 144–155. Springer, Heidelberg (2001). doi:10.1007/
3-540-45439-X_10

3. Davi, L.V.: Code-Reuse attacks and defenses. Ph.D. thesis (2015)
4. Dullien, T., Rolles, R.: Graph-based comparison of executable objects (English

version). In: SSTIC, vol. 5, pp. 1–3 (2005)
5. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4),

653–665 (1976)
6. Flake, H.: Structural comparison of executable objects. In: DIMVA 2004, 6–7 July,

Dortmund, Germany, pp. 161–173 (2004)
7. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm

detection using structural information of executables. In: Valdes, A., Zamboni,
D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006).
doi:10.1007/11663812_11

8. László, T., Kiss, Á.: Obfuscating C++ programs via control flow flattening.
Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae,
Sectio Computatorica 30, 3–19 (2009)

9. Leroy, X.: The CompCert C verified compiler: documentation and user’s manual.
Ph.D. thesis, Inria (2015)

10. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to sta-
tic disassembly. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, pp. 290–299. ACM (2003)

11. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
USENIX Security (2007)

12. Raghavan, S.: A note on Eswaran and Tarjan’s algorithm for the strong connectiv-
ity augmentation problem. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Next
Wave in Computing, Optimization, and Decision Technologies, vol. 29. Springer,
Boston (2005). doi:10.1007/0-387-23529-9_2

13. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. Am. Math. Soc. 74(2), 358–366 (1953)

14. Schrittwieser, S., Katzenbeisser, S.: Code obfuscation against static and dynamic
reverse engineering. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH
2011. LNCS, vol. 6958, pp. 270–284. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24178-9_19

15. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.: Pro-
tecting software through obfuscation: Can it keep pace with progress in code analy-
sis? ACM Computing Surveys (CSUR) 49(1), 4 (2016)

16. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resistance: obstructing
static analysis of programs. Technical Report CS-2000-12, University of Virginia,
12 2000 (2000)

http://dx.doi.org/10.1007/3-540-45439-X_10
http://dx.doi.org/10.1007/3-540-45439-X_10
http://dx.doi.org/10.1007/11663812_11
http://dx.doi.org/10.1007/0-387-23529-9_2
http://dx.doi.org/10.1007/978-3-642-24178-9_19
http://dx.doi.org/10.1007/978-3-642-24178-9_19

Proof of a Shuffle for Lattice-Based
Cryptography

Nuria Costa1(B), Ramiro Mart́ınez2, and Paz Morillo2

1 Scytl Secure Electronic Voting, Barcelona, Spain
nuria.costa@scytl.com

2 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. In this paper we present the first proof of a shuffle for lattice-
based cryptography which can be used to build a universally verifi-
able mix-net capable of mixing votes encrypted with a post-quantum
algorithm, thus achieving long-term privacy. Universal verifiability is
achieved by means of the publication of a non-interactive zero knowl-
edge proof of a shuffle generated by each mix-node which can be verified
by any observer. This published data guarantees long-term privacy since
its security is based on perfectly hiding commitments and also on the
hardness of solving the Ring Learning With Errors (RLWE) problem,
that is widely believed to be quantum resistant.

Keywords: Mix-nets · Evoting · Post-quantum cryptographic protocol ·
RLWE encryption · Proof of a shuffle

1 Introduction

In the last years, several countries have been introducing electronic voting sys-
tems to improve their democratic processes: electronic voting systems provide
more accurate and fast vote counts, reduce the logistic cost of organizing an
election and can offer specific mechanisms for voters with disabilities to be able
to cast their votes independently. In particular, internet voting systems provide
voters with the chance to cast their votes from anywhere: their homes, hospitals,
or even from foreign countries in case they are abroad at the time of the election.

Anonymity and verifiability are two fundamental requirements for internet
voting systems that seem to be contradictory. Anonymity requires that the link
between the vote and the voter who has cast it must remain secret during
the whole process, while verifiability requires that all the steps of the electoral
process - vote casting, vote storage and vote counting - can be checked by the
voters, the auditors or external observers.

The different techniques used by the actual internet voting systems to achieve
anonymity can be classified in three categories:

Blind signature: this method allows the voter to obtain a message signed by
an authorized entity in such a way that this entity gets no information at all
about the message. Consequently, votes are anonymized before being sent.
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 280–296, 2017.
https://doi.org/10.1007/978-3-319-70290-2_17

Proof of a Shuffle for Lattice-Based Cryptography 281

Homomorphic tallying : the votes are encrypted using a homomorphic cryp-
tosystem and during the tallying phase they are aggregated. The resulting cipher-
text is decrypted and the ballot count results are obtained. This anonymizes the
votes at the end of the election since no vote is individually decrypted.

Mixing : the ciphertexts are permuted and re-encrypted in such a way that the
correlation between the input and output of the mixing process is hidden and it is
not possible to trace it back. This operation is called a shuffle and it is executed
in a mixing network (mix-net) composed of mixing nodes each one performing
in turns the same operation. This is done in order to be able to preserve the
privacy of the process even if some nodes are dishonest: as long as one of the
mix nodes remains faithful and does not reveal the secret permutation or re-
encryption values, unlinkability is preserved. Notice that this method requires
to provide a proof of a shuffle so that it can be checked that the contents of the
output are the same as the contents of the input.

On the other hand, in order to build verifiable systems one key instrument is
the Bulletin Board: a public place where all the audit information of the election
(encrypted votes, election configuration, . . .) is published by authorized parties
and can be verified by anyone: voters, auditors or third parties. However, once
published in the Bulletin Board, it is not possible to ensure that all the copies
are deleted after the election and the audit period ends, and long-term privacy
may not be ensured by encryption algorithms used nowadays, for example due to
efficient quantum computers. Learning how a person voted some years ago may
have political, as well as personal implications (e.g. in case of family coercion).

Everlasting privacy is a recent research topic meaning that even if a compu-
tationally unbounded adversary exists, the voter’s privacy is preserved. Several
solutions have been proposed in order to address the problem exposed above
and the majority of them use Pedersen commitments [31] to protect the infor-
mation that is going to be published in the Bulletin Board. These commitments
perfectly hide the committed message since its privacy does not depend on any
computational assumption whose strength may be eroded in the future. Never-
theless most of these proposals require an anonymous channel to send additional
information (for instance, the encrypted openings of the commitments) to the
server either during the voting phase [13,28] or during the authentication phase
[23,24]. Since these anonymous channels are difficult to implement, mix-nets
are frequently used as an alternative. There are some proposals to construct
universally verifiable mix-nets with everlasting privacy [6], where a mixing of
commitments instead of ciphertexts is performed.

Nevertheless, our goal is to achieve long-term privacy, in which the voter’s
privacy is preserved against a polynomially bounded quantum capable adver-
sary. Lattice-based cryptography [27] is maybe the most promising approach to
get cryptosystems that will remain secure in the post-quantum era, and so it has
become a very active area of research in the last years. The security of lattice-
based cryptography is based on the worst-case problem meaning that breaking
a lattice-based cryptosystem implies finding an efficient algorithm for solving
any instance of the underlying lattice problem, for instance, the Shortest Vector

282 N. Costa et al.

Problem (SVP), the Closest Vector Problem (CVP) or the Shortest Independent
Vector Problem (SIVP). There are several proposals to build lattice-based cryp-
tosystems such as public key encryption schemes, digital signatures schemes,
hash functions, Identity Based Encryption schemes or ZK proofs.

Since mix-nets are of paramount importance in an online voting scenario and
lattice-based cryptography seems to be one of the main alternatives to achieve
post-quantum security, we consider it necessary to have a system with a mix-net
capable of shuffling lattice-based encryptions. As far as we know there is only
one proposal of an e-voting protocol that uses lattice-based cryptography [9]. In
the cited paper, the authors present an e-voting scheme that uses LWE-based
fully homomorphic encryption in order to provide a homomorphic tally system.
Nevertheless, to the best of our knowledge, there is no proposal for a lattice
based e-voting scheme using mix-nets in the literature.

1.1 Related Work

The first mix-net was introduced by Chaum [8] in 1981 where the plaintext
is encrypted as many times as mixing nodes using RSA onions with random
padding, and during the mixing process each node decrypts the outer layer and
removes the random padding, so the last node obtains the original message. In
1993, Park et al. noticed that Chaum’s mix-net required a ciphertext size pro-
portional to the number of mixing nodes and proposed a re-encryption mix-net
[30] where instead of concatenating, they re-randomized the ciphertexts using
a homomorphic cryptosystem like ElGamal. In this system decryption occurs
after shuffling is finished, however they also proposed a different mix-net in the
same paper [30] where each node performs partial decryption besides the shuf-
fling. Two years later, Sako and Kilian [35] defined the property of universal
verifiability and proposed the first universally verifiable mix-net, that provides
a zero-knowledge proof of correct mixing that any observer can verify. Achiev-
ing efficient mixing proofs was the challenge of the late 1990s, where two solu-
tions were proposed for an efficient universally verifiable mix-net [1,26]. In 2001,
Furukawa and Sako [16] proposed a proof of correct mixing more efficient than
the previous ones, in this scheme each node uses a matrix to do the ciphertexts
permutation and proves that this matrix is a permutation matrix. In the same
year, Neff [29] introduced the fastest, fully-private, universally verifiable mix-net
shuffle proof known so far, optimized and generalized by Groth in [18]. In 2004,
Golle et al. [17] proposed a mix-net with universal re-encryption, that does not
require that each mix node knows the public key of the ciphertexts they are mix-
ing. This can be done with homomorphic cryptosystems like ElGamal. In the
same year, Wikström [40] gave the first mix-net definition and implementation
in the UC framework [7] as well as a simpler and efficient construction [41].

Adida and Wikström introduced a different mix-net approach [2,3] motivated
by the complexity of using mix-nets in elections. They proposed an offline pre-
computation technique in order to reduce the online computation complexity.
However, the scheme [2] was quite inefficient while the construction in [3] was
very efficient but reduced to a relatively small number of senders. In 2010 Terelius

Proof of a Shuffle for Lattice-Based Cryptography 283

and Wikström [38] proposed a provably secure technique to prove the correctness
of a cryptographic shuffle using simple shuffle arguments and two years later,
Bayer and Groth, proposed an honest verifier zero-knowledge argument for the
correctness of a shuffle of homomorphic encryptions that, compared with previ-
ous work, matched the lowest computation cost for the verifier. Nevertheless, as
these non-interactive proofs are known in the random oracle model, several works
have studied how to construct NIZK shuffle arguments in the Common Reference
String (CRS) model without using random oracles [14,15,19,22]. However, given
that these CRS-based proposals are constructed for bilinear groups, we are going
to use the approach presented in [38,42] to build our proof of a shuffle. In [42]
Wikström presented a mix-net based on homomorphic cryptosystems using the
idea of permutation matrices. In the proposal, a proof of a shuffle is split in an
offline and online phase that reduces significantly the computational complexity
in the online part. More precisely, in the offline part the mixing node computes
a commitment to the permutation matrix and proves in zero knowledge that it
knows an opening for that commitment. In the online part, the node computes
a commitment-consistent proof of a shuffle to demonstrate that the committed
matrix has been used to shuffle the input.

To the best of our knowledge, the concept of using mix-nets for lattice-based
cryptography is very new in the research literature, and as such, there are not
many proposed schemes. There have been proposals for a lattice based universal
re-encryption for mix-nets [36,37] but none of them proposes a proof of a shuffle,
which is essential for verifiable protocols.

1.2 Our Contribution

We propose the first universally verifiable mix-net for a post-quantum cryptosys-
tem. The mix-net receives at its input a set of messages encrypted using a RLWE
encryption scheme [25] whose security is based on the hardness of solving the
Learning With Errors problem over rings (RLWE problem) [33]. In the proposal,
we show how to permute and re-encrypt RLWE encryptions and we also give the
first proof of a shuffle that works for a lattice-based cryptosystem. This proof is
based on what is proposed in [42] but it is not a direct adaptation of it, since we
introduce a new technique to implement the last part of the proof that differs
from what is presented in that article.

We split the proof of a shuffle into two protocols following Wikström’s tech-
nique. In the offline part, the permutation and re-encryption parameters used to
shuffle the ciphertexts are committed and it is demonstrated using zero knowl-
edge proofs that these values meet certain properties and that the openings for
the commitments are known. The zero-knowledge proofs used in this part satisfy
special soundness and special honest verifier zero-knowledge [11]. The first prop-
erty means that given two accepting conversations with identical first messages
but different challenges, it is possible to extract a valid witness. Regarding the
second property, it means that for a given challenge the verifier can be simulated.

In the online part, instead of computing a commitment-consistent proof of
a shuffle, each mix node should compute a commitment to its output using the

284 N. Costa et al.

commitments calculated in the offline protocol taking advantage of the homo-
morphic property of both the commitment and encryption schemes. Finally, the
node should reveal the opening of the output commitment in order to demon-
strate that it has used the committed permutation and re-encryption values to
do the shuffle. It is important to notice that we are not opening directly the com-
mitments to the secret permutation neither to the secret re-encryption values
but the commitments to a linear combination of them. The openings revealed
by each node perfectly hide the secret values and no information is leaked that
could compromise the privacy of the process. Commitments used to construct the
proof are generalized versions of the Pedersen commitment, which is perfectly
hiding and computationally binding under the discrete logarithm assumption
and it is widely used to provide everlasting privacy. The reason why we use this
commitment is for efficiency and simplicity, nevertheless since our protocol only
requires a commitment that allows us to prove linear relations between commit-
ted elements, the protocol presented in this paper could be modified in order to
use the commitment scheme proposed by Benhamouda et al. in [5]. This would
allow us to construct a mix-net totally based on post-quantum cryptography. As
this is a non-trivial modification we first show how to mix RLWE ciphertexts
using Pedersen commitments and how to do it universally verifiable.

The organization of this paper is as follows. In Sect. 2 we define the nota-
tion and review the cryptographic background that is necessary to understand
the mix-net proposal. In Sect. 3 we give the details about the shuffle of RLWE
encryptions, and finally in Sect. 4 we conclude the paper.

2 Preliminaries

In this section we present the notation that we are going to use throughout
the paper and we also give some details about the cryptographic background
required for the latter sections.

Standard notation regarding vectors and matrices will be used. Vectors will
be represented by boldface lowercase roman letters (such as v or w) and matrices
will be represented by boldface uppercase roman letters (such as M or A). Let
〈·, ·〉 denote the standard inner product in Z

N
q , given two vectors v,w ∈ Z

N
q

〈v,w〉 is defined by means of
∑N

i=1 viwi. When working with lattices we are
going to follow the notation proposed in [25].

2.1 Ideal Lattices

A lattice is a set of points in an n-dimensional space with a periodic struc-
ture. Given m-linearly independent vectors a1, . . . ,am ∈ R

n, the rank m lattice
generated by them is the set of vectors:

L(a1, . . . ,am) =

{
m∑

i=1

xiai : xi ∈ Z

}

Proof of a Shuffle for Lattice-Based Cryptography 285

We denote the basis of the lattice as A = (a1, . . . ,am), i.e., the matrix whose
columns are a1, . . . ,am. We are going to work with lattices that are full-rank
(n = m), that is, the number of linearly independent vectors in the basis of the
lattice is equal to the number of dimensions in which the lattice is embedded.

Definition 1. An ideal lattice is a lattice defined by a basis A constructed with
a vector a ∈ Z

n iteratively multiplied by a transformation matrix F ∈ Z
n×n

defined from a vector f ∈ Z
n as follows.

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 −f0
. . . −f1

I
...

. . . −fn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The basis is defined as: A = F∗a = [a,Fa, . . . ,Fn−1a].

Lattices that follow this particular structure have been named ideal lattices
because they can be equivalently characterized as ideals of the ring of modular
polynomials R = Z[x]/〈f(x)〉 where f(x) = xn + fn−1x

n−1 + · · · + f0 ∈ Z[x].
That means that working on the polynomials domain modulo f(x) is equivalent
to working on the ideal lattice domain characterized by F. We will use the ring
where f(x) = xn + 1, as proposed by [25]. When working in this ring, where
we know that f(x) is a cyclotomic polynomial for n a power of 2, one obtains
the family of the so called anti-cyclic integer lattices, i.e., lattices in Z

n that are
closed under the operation that cyclically rotates the coordinates and negates the
cycled element. The vector f corresponding to f(x) = xn + 1 is f = (1, 0, . . . , 0)
and therefore the basis A is:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1 −an −an−1 . . . −a2

a2 a1 −an . . . −a3

a3 a2 a1 . . . −a4

...
...

...
. . .

...
an an−1 an−2 . . . a1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

Notice that using ideal lattices we are able to express a rank n ideal lattice with
only n values, rather than n × n as is the case for general lattices, which allows
a more compact representation that requires less storage space.

Given a prime q, let Rq be Zq[x]/〈f(x)〉. Henceforth we will write a either
as a polynomial a = a1 + a2x + a3x

2 + . . . + anxn−1 ∈ Rq or as a vector with
coefficients (a1, a2, a3, . . . , an) ∈ Z

n
q . Notice that given two polynomials a ∈ Rq

and p ∈ Rq, the product a · p in Rq is equivalent to the product of the matrix A
with the vector p = (p1, . . . , pn). Working with the polynomial representation
in Rq allows a speedup in operations commonly used in lattice-based schemes:
polynomial multiplication can be performed in O(n log n) scalar operations, and
in parallel depth O(log n), using the Fast Fourier Transform (FFT).

286 N. Costa et al.

2.2 RLWE Encryption Scheme

Let Rq be the ring of integer polynomials Rq = Zq[x]/〈xn + 1〉 where n is a
power of 2, q is a prime; and let χσ be a discretized Gaussian distribution with
standard deviation σ = αq/

√
2π.

Definition 2 (RLWE distribution). Given the “secret” s ∈ Rq and an error
distribution χσ, the RLWE distribution As,χ over Rq × Rq consists of samples
of the form (a, b = a · s + e) ∈ Rq × Rq where a ← Rq is chosen uniformly, and
e is the error polynomial sampled from the error distribution χσ.

Definition 3 (Search RLWE). Given many samples (ai, bi = ai · s + ei) ∈
Rq × Rq from the RLWE distribution As,χ the goal is to recover the “secret”
s ∈ Rq with high probability.

Definition 4 (Decision RLWE). Given a vector (a, b) the goal is to efficiently
distinguish if it has been sampled uniformly at random from Rq × Rq or from a
RLWE distribution As,χ.

Hardness of RLWE. For any large enough q, solving certain instantiations of
the search RLWE problem is at least as hard as quantumly solving a correspond-
ing poly(n)-approximate Shortest Vector Problem (approx -SVP) on any ideal
lattice. On the other hand, solving decision RLWE in any cyclotomic ring (for
any poly(n)-bounded prime q = 1 mod n) is as hard as solving search RLWE.
See [25] for the details about the hardness of RLWE and the quantum reduction
from worst-case approx -SVP on ideal lattices to the search RLWE.

RLWE parameters. How to choose secure parameters for lattice based cryp-
tosystems is still an open question, nevertheless there are some parameters’ pro-
posals in the literature that take into account various security levels or attacker
types [34], that consider the requirements of security reductions [32] or that
consider an upper bound on the decryption error probability [20].

A RLWE encryption scheme is a triplet (KeyGen, Enc, Dec) which operates
on rings such as Rq for which the RLWE is difficult to be solved. The original
definition of the algorithm requires choosing small elements in Rq from an error
distribution at several points. For practical purposes we will construct these
small elements by taking their coefficients from an error distribution χσ which
will be a discrete Gaussian distribution with parameter σ, as defined above. The
RLWE encryption scheme that we are going to use is that proposed in [25] which
defines the following algorithms:

KeyGen(): choose a uniformly random element a ∈ Rq as well as two random
small elements s, e ∈ Rq from the error distribution. Output sk = s as the secret
key and the pair pk = (a, b = a · s + e) ∈ Rq × Rq as the public key.

Encrypt(pk, z, r, e1, e2): to encrypt an n-bit message z ∈ {0, 1}n, we view it
as an element of Rq by using its bits as the 0–1 coefficients of a polynomial.
The encryption algorithm then chooses three random small elements r, e1, e2 ∈
Rq from the error distribution and outputs the pair (u, v) ∈ Rq × Rq, as the
encryption of z: (u, v) = (r · a + e1 mod q, b · r + e2 +

⌊
q
2

⌉
z mod q) ∈ Rq × Rq

Proof of a Shuffle for Lattice-Based Cryptography 287

Decrypt(sk, (u, v)): the decryption algorithm simply computes v − u · s =
(r · e − s · e1 + e2) + � q

2�z mod q.
For an appropriate choice of parameters (namely q and σ) the coefficients of

r · e − s · e1 + e2 have magnitude less than q/4, so the bits of z can be recovered
by rounding each coefficient of v − u · s back to either 0 or

⌊
q
2

⌉
, whichever is

closest modulo q. Notice that in the RLWE encryption scheme presented above
the secret s is taken from the error distribution, as well as r, e1 and e2. This is
done in order to build efficient encryption schemes and it is demonstrated in [4]
that the hardness of the underlying problem is not affected by this change.

Security. The RLWE encryption scheme is semantically secure given the
pseudorandomness of the RLWE samples [25]. Notice that both the public key
(a, b) and the ciphertexts are RLWE samples, where the encrypted messages can
be seen as the pairs (a, u), (b, v) ∈ Rq × Rq (ignoring the message component
� q
2�z mod q) with secret r. Then, these values are pseudorandom. Consequently,

the encryption of a message using the RLWE encryption scheme is indistinguish-
able from an element sampled uniformly at random from Rq ×Rq as long as the
number of samples containing the same secret r is polynomial on the security
parameter. The number of nodes in a mix-net is fixed and every re-encryption
is computed using different parameters r, so the security is not compromised.

For our proposal we will need not only to encrypt messages but also to re-
encrypt them. Since an RLWE encryption scheme is an additive homomorphic
cryptosystem, we can re-encrypt a message just adding to the original ciphertext
the encryption of the neutral element, that is, the encryption of a polynomial
whose coefficients are 0. Notice that semantic security in an RLWE encryption
scheme implies semantic security under re-encryption.

Reencrypt((u, v), r′, e′
1, e

′
2): to re-encrypt an n-bit message z, the algorithm

chooses three random small elements r′, e′
1, e

′
2 ∈ Rq from the error distribution

and outputs the pair (u′, v′) = (u, v) + Encrypt(pk, 0, r′, e′
1, e

′
2) ∈ Rq × Rq.

Decrypting this re-encrypted ciphertext we would obtain v′ − u′ · s = (r +
r′) + (e2 + e′

2) − s · (e1 + e′
1) +

⌊
q
2

⌉
z. The plaintext is preserved but the error

terms may grow after every homomorphic operation. In order to avoid decrypting
errors the number of mixing nodes must be taken into account when choosing
the parameters q and σ, such that the error is still small compared to q even
after as many re-encryptions as mixing nodes we are planning to use.

2.3 Zero Knowledge Proofs

A zero-knowledge proof is a protocol between two parties, the prover P and
the verifier V, where the first tries to convince the second that it knows some
secret w that satisfies a public relation (x,w) ∈ R (where x would be some
public information), for instance, that P knows the discrete logarithm of a public
element. This proof is done in such a way that the prover does not reveal any
information beyond the fact that a certain statement is true.

Definition 5. A two party protocol (P,V) is a Σ-protocol [12] for relation R if
it is a three round public-coin protocol of the form:

288 N. Costa et al.

1. The prover P sends a message t to the verifier V.
2. V sends a random string e to P.
3. P sends a response s to V. The verifier decides to accept or reject the proof

based on the protocol transcript (t, e, s).

and the following requirements hold:

– Completeness: if an honest prover P knows w satisfying the public relation
(x,w) ∈ R, then V always accepts.

– Special soundness: given two accepted protocol transcripts (t, e, s) and
(t, e′, s′) where e 	= e′, there exists a Probabilistic Polynomial-Time (PPT)
algorithm which outputs w such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge: given a pair (x, e) there exists a
PPT algorithm that outputs a valid protocol transcript (t, e, s) with the same
probability distribution as transcripts between the honest P and V.

The underlying structure behind the zero-knowledge proofs constructed in our
proposal is that of a Σ-protocol. As Terelius and Wikström mention in their
article [38], we need to prove knowledge on how to open commitments such that
the committed values satisfy a public polynomial relation.

Σ-proof[e ∈ Z
N
q , s ∈ Zq|a = Com(e, s) ∧ f(e) = e′)] (2)

We refer the reader to [38] for more details on how this can be done.

2.4 Pedersen Commitments

Let p and q be large primes, Z
∗
p a group of integers modulo p = 2q + 1 and

Gq ⊂ Z
∗
p a subgroup of order q where the discrete logarithm assumption holds.

Given two independent generators {g, g1} of Gq, to commit to a message x ∈ Zq

using the Pedersen commitment scheme [31], choose a random α
$←− Zq and

output Com(x, α) = gαgx
1 . In order to open this commitment simply reveal the

values α and x. This scheme is perfectly hiding and computationally binding as
long as the discrete logarithm problem is hard in Gq.

In our proposal we are going to work with the extended version of the Ped-
ersen commitment scheme, that allows to commit to more than one message
at once. Given N + 1 independent generators {g, g1, . . . , gN} of Gq and a ran-

domness α
$←− Zq, the commitment to N messages x = (x1, . . . , xN) ∈ Z

N
q is

computed as:

Com(x, α) = gα
N∏

i=1

gxi
i

We use this extended version of the Pedersen commitment to commit to a matrix
M ∈ Z

N×N
q . In order to do that just compute a commitment to each of its

columns (m1, . . . ,mN) where mj = (m1j ,m2j , . . . ,mNj) for j = 1, . . . , N . This

Proof of a Shuffle for Lattice-Based Cryptography 289

means that a matrix commitment is a vector whose components are the com-
mitments to the matrix columns:

Com(M, α1, α2, . . . , αN) = (Com(m1, α1), . . . ,Com(mN, αN)) (3)

Due to the homomorphic property of the Pedersen commitment we can compute
a commitment to the product of a matrix M by a vector x from the commitment
to the matrix Com(M,α) = (cm1 , . . . , cmN

).

N∏

j=1

c
xj
mj =

N∏

j=1

(

gαj

N∏

i=1

g
mi,j

i

)xj

= g〈α,x〉
N∏

i=1

g
〈(mi,1,...,mi,N),(x1,...,xN)〉
i (4)

3 Shuffling Ring-LWE Encryptions

In this section we first present an overview of the mixing protocol and then
we explain in more detail how is it proved that the committed matrix is a
permutation matrix, the random re-encryption paramenters are small and that
all these values have been used to perform the shuffle.

Let M1, . . . ,Mk be the mix-nodes that participate in the mixing protocol
and let N be the number of encrypted messages at the input of each node.

3.1 Protocol Overview

Given the the ring Rq and the encryption scheme presented in Sect. 2, and the
matrices A and B constructed from vectors a and b (RLWE public key) following
Eq. 1; we can express a ciphertext (u(i), v(i)) ∈ R2

q as a vector of 2n elements

(u(i),v(i)) = (u(i)
1 , . . . , u

(i)
n , v

(i)
1 , . . . , v

(i)
n) ∈ Z

2n
q and its re-encryption as:

(
u′(i) v′(i))T

=
(
u(i) v(i)

)T
+

(
A
B

)

(r′(i))T +
(
e

′(i)
1 e

′(i)
2

)T

∀i ∈ [1, . . . , N]

Following this notation and given a permutation π characterized by the matrix
M and a set of re-encryption parameters

(
r′(i),e′(i)

1 ,e
′(i)
2

)
for each one of the

messages, we can express the shuffling of N RLWE encryptions as:
⎛
⎜⎜⎝

u
′′(1)
1 · · · u

′′(1)
n v

′′(1)
1 · · · v

′′(1)
n

...
. . .

...
...

. . .
...

u
′′(N)
1 · · · u

′′(N)
n v

′′(N)
1 · · · v

′′(N)
n

⎞
⎟⎟⎠

N×2n

=

⎛
⎜⎝

m11 · · · m1N

...
. . .

...
mN1 · · · mNN

⎞
⎟⎠

N×N

⎛
⎜⎜⎝

u
(1)
1 · · · u

(1)
n v

(1)
1 · · · v

(1)
n

...
. . .

...
...

. . .
...

u
(N)
1 · · · u

(N)
n v

(N)
1 · · · v

(N)
n

⎞
⎟⎟⎠

N×2n

+

⎛
⎜⎜⎝

r
′(1)
1 · · · r

′(1)
n

...
. . .

...

r
′(N)
1 · · · r

′(N)
n

⎞
⎟⎟⎠

N×n

⎛
⎜⎜⎜⎝

a1 · · · an b1 · · · bn

−an · · · an−1 b2 · · · bn−1

...
. . .

...
...

. . .
...

−a2 · · · a1 −b2 · · · b1

⎞
⎟⎟⎟⎠

n×2n

+

⎛
⎜⎜⎝

e
′(1)
1,1 · · · e

′(1)
1,n e

′(1)
2,1 · · · e

′(1)
2,n

...
. . .

...
...

. . .
...

e
′(N)
1,1 · · · e

′(N)
1,n e

′(N)
2,1 · · · e

′(N)
2,n

⎞
⎟⎟⎠

N×2n

290 N. Costa et al.

(
U′′ V′′) = M

(
U V

)
+ R′ (AT BT

)
+

(
E′

1 ,E′
2

)
(5)

A mix-net node should prove that it knows the matrices M,R′,E′
1,E′

2 such that
the output of the node

(
U′′ V′′) is the input

(
U V

)
re-encrypted and permuted,

without revealing any information about M,R′,E′
1 and E′

2.

Σ-proof

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π
r′(1), . . . , r′(N)

e
′(1)
1 , . . . ,e

′(N)
1

e
′(1)
2 , . . . ,e

′(N)
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

((
u′′(1),v′′(1)) , . . . ,

(
u′′(N),v′′(N)

))T

=
⎛

⎜
⎜
⎝

Re-encrypt
((

uπ(1),vπ(1)
)
, r′(1),e′(1)

1 ,e
′(1)
2

)T

. . .

Re-encrypt
((

uπ(N),vπ(N)
)
, r′(N),e

′(N)
1 ,e

′(N)
2

)T

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Following Wikström’s proposal we are going to split the proof into two protocols.

Offline Phase

1. The mix-node Mj chooses a random permutation πj characterized by the
matrix M j ∈ Z

N×N
q , computes a matrix commitment Com(Mj ,αmj

) and
publishes it. It also proves knowledge of the committed permutation.

2. Mj chooses randomly the re-encryption parameters: R′
j ∈ Z

N×n
q , E′

1j ∈
Z

N×n
q and E′

2j ∈ Z
N×n
q . It computes the corresponding matrix commitments,

publishes them and prove that the committed elements are small.

Online Phase

1. Given a list of N input ciphertexts, the mix-node Mj permutes and re-
encrypts the list using Eq. 5.

2. In order to prove that the committed matrices have been used to perform the
mixing, Mj computes the commitment to its output using those commitments
calculated during the online phase, and finally reveals its opening.

3.2 Proof of Knowledge of Permutation Matrix

The permutation matrix is characterized by the following theorem.

Theorem 1. Given a matrix M ∈ Z
N×N
q and a vector x = (x1, . . . , xN) ∈ Z

N
q

of N independent variables, M is a permutation matrix if and only if M1 = 1
and

∏N
i=1 xi =

∏N
i=1 x′

i where x′ = Mx.

We refer the reader to [38] for the details about the theorem’s proof.
Given a commitment to a matrix Com(M,αm) = (cm1 , . . . , cmN

) and a
vector x = (x1, . . . , xN), we can compute a commitment to the product of the
matrix by a vector Com(Mx, k) using Eq. 4, where k = 〈αm,x〉. In the special
case where the vector x = 1 the identity above is Com(1, t) where t =

∑N
i=1 αmj

.
Another important observation is that given a vector r̂ = (r̂1, . . . , r̂N) we can

Proof of a Shuffle for Lattice-Based Cryptography 291

express a commitment to the product of the elements of x′ in a recursive way
ĉi = gr̂i ĉ

x′
i

i−1 for i = 1, . . . , N and ĉ0 = g1.
Applying the second condition for a permutation matrix (

∏N
i=1 xi =

∏N
i=1 x′

i), it is possible to obtain a commitment ĉN such that ĉN = gr̂g
∏N

i=1 x′
i

1 =

gr̂′
g
∏N

i=1 xi

1 , and prove that two different valid openings, (r̂,
∏N

i=1 x′
i) and

(r̂′,
∏N

i=1 xi), are known. Due to the binding property of the commitments we
know that if someone is able to open a commitment to two different openings,
this means that either both openings are the same or the discrete logarithm,
g1 = gz where z = (r̂ − r̂′) /

(∏N
i=1 xi − ∏N

i=1 x′
i

)
, can be computed.

Observe that using the Schwartz-Zippel lemma we can prove the polynomial
equality

∏N
i=1 xi =

∏N
i=1 x′

i holds with overwhelming probability just verifying
that the equation holds for a point (λ1, . . . , λN) randomly chosen from Z

N
q .

Given these preliminaries we can construct a Σ-proof to prove that the mix-
net node knows an opening for the commitment and that the element committed
is a permutation matrix. Since this proof follows the approach given by Wik-
ström, we left the details for the full version [10].

3.3 Proof of Knowledge of Small Exponents

The second step in the offline part will be to prove that the random values used
to re-encrypt are small. Remember that in order to re-encrypt a message, the
following randomness is used: r′(i) =

(
r

′(i)
1 , . . . , r

′(i)
n

)
, e′(i)

1 =
(
e
′(i)
1,1 , . . . , e

′(i)
1,n

)

and e′(i)
2 =

(
e
′(i)
2,1 , . . . , e

′(i)
2,n

)
for i ∈ [1, . . . , N]. In our case, we would require that

the coefficients of these vectors belong to [−β + 1, β − 1] where β = 2k. In order
to prove this we are going to use the strategy proposed in [21] by Ling et al.
As it is explained in [5] the probability of obtaining an element from the error
distribution with norm larger than β is negligible (notice that β will depend
on the parameters of the encryption). Even when this restriction on the re-
encryption elements norm is applied, the RLWE samples remain pseudorandom.
This prevents a corrupted node from modifying the plaintext of the ciphertexts,
while an honest node can still use the pseudorandomness to hide the relation
between its input an output. We decompose r

′(i)
j , e

′(i)
1,j and e

′(i)
2,j as

r
′(i)
j =

k−1∑

l=0

r
′(i)
j,l 2l e

′(i)
1,j =

k−1∑

l=0

e
′(i)
1,j,l2

l e
′(i)
2,j =

k−1∑

l=0

e
′(i)
2,j,l2

l

with r
′(i)
j , e

′(i)
1,j,l, e

′(i)
2,j,l ∈ {−1, 0, 1} and we prove that these elements have one of

the possible values in the set {−1, 0, 1} using an OR-proof. Afterwards, using
the commitment to every bit of the decomposition we obtain a commitment to
the coefficients, and consequently a commitment to each of the corresponding
matrix columns. The protocol used to demonstrate that a value belongs to a
specific set, x ∈ {−1, 0, 1}, is based on a zero knowledge proof that proves that
the element x has one of the values in the set without revealing which one it is.

292 N. Costa et al.

Σ-proof
[
x
∣
∣x ∈ {−1, 0, 1}, c = grhx

]

Informally, the proof consists of computing three proofs simultaneously, for
x = −1, x = 0 and x = 1, where two of them will be simulated and only
that which corresponds to the real value of x will be the real proof. As this is
a standard proof [11] the details are omitted here and both the proof and the
demonstration of its properties are given in [10].

3.4 Opening the Commitments

Given the commitments to the permutation matrix and to the re-encryption
matrices, the only thing that is left to prove is that these matrices have been
used during the mixing process. This is an operation that should be done online
since we need the list of encrypted messages to compute the proof. In order to
do that we propose a methodology that differs from what Wikström proposes.

Given the commitments cmj
= Com

(
mj , αmj

)
, cr′

j
= Com

(
r′

j , αr′
j

)
,

ce′
1,j

= Com
(
e′
1,j , αe′

1,j

)
and ce′

2,j
= Com

(
e′
2,j , αe′

2,j

)
and Eq. 5, we can com-

pute the following commitments to matrix products and sums,

ce′
1,k

(
N∏

j=1

c
u
(j)
k

mj

)(
n∏

j=1

c
ak,j

r′
j

)
= Com

(
û′′
k, αe′

1,k
+ 〈αM , ûk〉 + 〈αr′ , (ak,1, . . . , ak,n)〉

)

ce′
2,k

(
N∏

j=1

c
v
(j)
k

mj

)(
n∏

j=1

c
bk,j

r′
j

)
= Com

(
v̂′′
k, αe′

2,k
+ 〈αM , v̂k〉 + 〈αr′ , (bk,1, . . . , bk,n)〉

)

naming ûk, v̂k, û′′
k, v̂′′

k the corresponding k-column of each matrix U,V,U′′,V′′.
The only thing that the mix node should do in order to prove that it has used
the appropriate values during the shuffling, is to open the commitments above
revealing the openings.

(
αe′

1,k
+

〈
αM ,

(
u
(1)
k , . . . , u

(N)
k

)〉
+ 〈αr′ , (ak,1, . . . , ak,n)〉

)
∀k ∈ [1, . . . , n]

(
αe′

2,k
+

〈
αM ,

(
v
(1)
k , . . . , v

(N)
k

)〉
+ 〈αr′ , (bk,1, . . . , bk,n)〉

)
∀k ∈ [1, . . . , n]

The verifier has to check that these values are appropriate openings of the com-
mitments in order to verify the node has used the committed matrices M,R′,E′

1

and E′
2 to shuffle the encrypted messages (at its input).

As we have seen above, given the commitments to M,R′,E′
1 and E′

2 we
can compute the commitment to the matrix of permuted votes M

(
U V

)
and

the re-encryption matrix
(
R′ (AT BT

)
+

(
E′

1 E′
2

))
. Notice that the 2n linear

combinations of the values αmj
, αr′

j
, αe′

1,j
, αe′

2,j
that the mix node reveals, allow

us to open the commitments to the sum of these matrices, but not to each matrix
separately. Given that αM , and αr appear on all the openings that we reveal
we have to double check if they could leak any information about any relations
between the α’s that (in a post-quantum scenario) may reveal information about

Proof of a Shuffle for Lattice-Based Cryptography 293

the permutation and the re-encryption elements. This is not the case because
all the αe1′,j and αe′

2,j
are uniformly and independently chosen from Zq. All the

linear combinations that we reveal have a different αe′
i,j

, and this implies that
the combinations are also uniformly and independently distributed, and thereby
it is impossible to isolate any of the α. The full protocol and a discussion about
its properties are given in the full version of the paper [10].

4 Conclusions

We have proposed the first universally verifiable proof of a shuffle for a lattice-
based cryptosystem. The messages at the input of the mix-net are encrypted
using an RLWE encryption system and then they are shuffled by the mixing
nodes. In order to prove the correctness of this shuffle each node must provide a
proof of a shuffle, demonstrating that the protocol has been executed correctly
without leaking any secret information. Our proposal follows the idea presented
in [42] but introduces two significant differences: during the offline part the ran-
dom elements used to re-encrypt the ciphertexts are committed using the gen-
eralized version of Pedersen commitment and it is proved that these elements
belong to a certain interval using OR-proofs. On the other hand, during the
online part each node computes a commitment to its output using the homo-
morphic properties of both the commitment scheme and the encryption scheme.
Opening this commitment the mix node proves that it has used the values com-
mitted during the offline part to compute its output. Revealing this opening
does not give any information about the secret information required to do the
shuffling.

It is worth noticing that shuffling the votes is not enough to guarantee the
voters’ privacy, as the system can be insecure, for instance, due to malleability
attacks [39]. To avoid this kind of attack additional security proofs might be
provided before the mixing process starts.

Regarding efficiency, the number of OR-proofs to be computed by each mix
node is proportional to knN , where N is the number of encrypted messages
received by the node, n is the dimension of the lattice and k is the number of
bits of each element of the re-encryption matrices. There are some techniques
that allow to reduce the computational cost of these proofs and we leave for a
future work to explore these improvements. We refer the reader to [42] for the
details about the efficiency of the ZKP for a permutation matrix.

References

1. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999). doi:10.1007/978-3-540-48000-6 21

2. Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70936-7 30

http://dx.doi.org/10.1007/978-3-540-48000-6_21
http://dx.doi.org/10.1007/978-3-540-70936-7_30
http://dx.doi.org/10.1007/978-3-540-70936-7_30

294 N. Costa et al.

3. Adida, B., Wikström, D.: Offline/Online mixing. In: Arge, L., Cachin, C., Jur-
dziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484–495.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-73420-8 43

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 35

5. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325.
Springer, Cham (2015). doi:10.1007/978-3-319-24174-6 16

6. Buchmann, J., Demirel, D., Graaf, J.: Towards a publicly-verifiable mix-net pro-
viding everlasting privacy. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
197–204. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 16

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, FOCS 2001, Washington, USA, pp. 136–145. IEEE Computer Soci-
ety (2001)

8. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). doi:10.1007/978-3-319-29360-8 16

10. Costa, N., Mart́ınez, R., Morillo, P.: Proof of a shuffle for lattice-based cryptogra-
phy. IACR Cryptology ePrint Archive (2017)

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 9

12. Damgard, I.: On σ-protocols. Lecture on Cryptologic Protocol Theory, Faculty of
Science, University of Aarhus (2010)

13. Demirel, D., Henning, M., van de Graaf, J., Ryan, P.Y.A., Buchmann, J.: Prêt à
voter providing everlasting privacy. In: Heather, J., Schneider, S., Teague, V. (eds.)
Vote-ID 2013. LNCS, vol. 7985, pp. 156–175. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39185-9 10

14. Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument without
random oracles. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 200–216.
Springer, Cham (2016). doi:10.1007/978-3-319-29485-8 12

15. Fauzi, P., Lipmaa, H., Zaj ↪ac, M.: A shuffle argument secure in the generic model.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 841–
872. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6 28

16. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 22

17. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 14

18. Groth, J.: A verifiable secret shuffe of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003).
doi:10.1007/3-540-36288-6 11

http://dx.doi.org/10.1007/978-3-540-73420-8_43
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-319-24174-6_16
http://dx.doi.org/10.1007/978-3-642-39884-1_16
http://dx.doi.org/10.1007/978-3-319-29360-8_16
http://dx.doi.org/10.1007/3-540-69053-0_9
http://dx.doi.org/10.1007/978-3-642-39185-9_10
http://dx.doi.org/10.1007/978-3-642-39185-9_10
http://dx.doi.org/10.1007/978-3-319-29485-8_12
http://dx.doi.org/10.1007/978-3-662-53890-6_28
http://dx.doi.org/10.1007/3-540-44647-8_22
http://dx.doi.org/10.1007/978-3-540-24660-2_14
http://dx.doi.org/10.1007/3-540-36288-6_11

Proof of a Shuffle for Lattice-Based Cryptography 295

19. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 4

20. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

21. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36362-7 8

22. Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive
zero-knowledge shuffle argument. In: Visconti, I., Prisco, R. (eds.) SCN
2012. LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32928-9 27

23. Locher, P., Haenni, R.: Verifiable internet elections with everlasting pri-
vacy and minimal trust. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.)
VOTELID 2015. LNCS, vol. 9269, pp. 74–91. Springer, Cham (2015). doi:10.1007/
978-3-319-22270-7 5

24. Locher, P., Haenni, R., Koenig, R.E.: Coercion-resistant internet voting with ever-
lasting privacy. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 161–175. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53357-4 11

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2013)

26. Markus, J., Ari, J.: Millimix: mixing in small batches. Technical report (1999)
27. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-

mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). doi:10.1007/978-3-540-88702-7 5

28. Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
In: Proceedings of the 14th ACM Conference on Computer and Communications
Security, CCS 2007, pp. 246–255. ACM (2007)

29. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: Pro-
ceedings of the 8th ACM Conference on Computer and Communication Security,
CCS 2001, pp. 116–125, NY, USA (2001)

30. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7 21

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 84–93, New York, NY, USA. ACM (2005)

33. Regev, O.: The learning with errors problem. In: IEEE 25th Annual Conference
on Computational Complexity (CCC), pp. 191–204 (2010)

34. Rückert, M., Schneider, M.: Estimating the security of lattice-based cryptosystems.
IACR Cryptology ePrint Archive, Report 2010/137 (2010). http://eprint.iacr.org/
2010/137

35. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). doi:10.1007/3-540-49264-X 32

http://dx.doi.org/10.1007/978-3-540-76900-2_4
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-36362-7_8
http://dx.doi.org/10.1007/978-3-642-32928-9_27
http://dx.doi.org/10.1007/978-3-642-32928-9_27
http://dx.doi.org/10.1007/978-3-319-22270-7_5
http://dx.doi.org/10.1007/978-3-319-22270-7_5
http://dx.doi.org/10.1007/978-3-662-53357-4_11
http://dx.doi.org/10.1007/978-3-540-88702-7_5
http://dx.doi.org/10.1007/3-540-48285-7_21
http://dx.doi.org/10.1007/3-540-46766-1_9
http://eprint.iacr.org/2010/137
http://eprint.iacr.org/2010/137
http://dx.doi.org/10.1007/3-540-49264-X_32

296 N. Costa et al.

36. Singh, K., Pandu Rangan, C., Banerjee, A.K.: Lattice based universal re-encryption
for mixnet. J. Int. Serv. Inf. Secur. (JISIS) 4(1), 1–11 (2014)

37. Singh, K., Pandu Rangan, C., Banerjee, A.K.: Lattice based mix network for loca-
tion privacy in mobile system. Mob. Inf. Syst. 1–9, 2015 (2015)

38. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12678-9 7

39. Wikström, D.: The security of a mix-center based on a semantically secure cryp-
tosystem. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551,
pp. 368–381. Springer, Heidelberg (2002). doi:10.1007/3-540-36231-2 29

40. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 317–335. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 18

41. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005). doi:10.1007/11593447 15

42. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02620-1 28

http://dx.doi.org/10.1007/978-3-642-12678-9_7
http://dx.doi.org/10.1007/3-540-36231-2_29
http://dx.doi.org/10.1007/978-3-540-24638-1_18
http://dx.doi.org/10.1007/978-3-540-24638-1_18
http://dx.doi.org/10.1007/11593447_15
http://dx.doi.org/10.1007/978-3-642-02620-1_28

An Analysis of Bitcoin Laundry Services

Thibault de Balthasar1 and Julio Hernandez-Castro2(B)

1 Chainalysis Inc., 43 West 23rd Street, 2nd Floor, New York, NY 10010, USA
thibault@chainalysis.com

2 School of Computer Science, University of Kent, Cornwallis South,
Canterbury CT2 7NF, UK

jch27@kent.ac.uk

Abstract. This work briefly (An extended version can be found at
https://kar.kent.ac.uk/id/eprint/63502) examines some of the most rel-
evant Bitcoin Laundry Services, commonly known as tumblers or mix-
ers, and studies their main features to try to answer some fundamental
questions including their security, popularity, transaction volume, and
generated revenue. Our research aims to inform both legitimate users
and Law Enforcement about the characteristics and limitations of these
services.

Keywords: Bitcoin · Tumbler · Alphabay · Helix · Anonymity ·
Cybercrime

1 Introduction to Tumblers

Bitcoin offers pseudo-anonymity [10] because all transactions are visible and
traceable, but no names are stored in the Blockchain. Bitcoin laundry services are
open, like most modern technologies, to dual use. They are employed by regular
users who do not engage in any illicit activities and simply want to improve on
the anonymity features of Bitcoin. On the other hand, they can also be used by
cyber criminals for laundering their ill-gotten gains before exchanging them into
traditional currencies such as Dollars, Euros or Sterling. It is also common for
stolen Bitcoins (i.e. after a wallet compromise or a hack) and for ransom money
to be processed by one or more tumblers to reduce its traceability. In either
scenario, Bitcoin laundry services play a central role in the Bitcoin economy,
but they have been relatively poorly studied [8,9,11], and their operation is not
that well understood. We will try to address this in this work, by focusing on
a small number of very well-known Bitcoin tumblers that vary widely in their
characteristics and sophistication.

Methodology. For this purpose, multiple transactions have been carried out
involving the mixers under study, transactions that have been later carefully
studied for finding patterns, regularities and correlations with a set of tools
we have developed. Using our own tools, and together with other commercially
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 297–312, 2017.
https://doi.org/10.1007/978-3-319-70290-2_18

https://kar.kent.ac.uk/id/eprint/63502

298 T. de Balthasar and J. Hernandez-Castro

available ones1, it becomes possible to demonstrate that these services suffer
from serious limitations that expose their users to traceability and, sometimes,
even de-anonymisation attacks.

Attacker Model. The attacker model we will consider in this paper is based
around the concept of taint analysis. The objective of taint analysis is to link
multiple Bitcoin addresses. Typically at least one is known to contain stolen
Bitcoins, or Bitcoins that are otherwise clearly linked with a criminal activity,
so establishing this link will show the latter addresses (ones that have received
funds from it) are tainted and, for example, money from them should not be
accepted by reputable merchants or at legitimate exchanges. To break this link
or taint cyber-criminals use mixers, so our aim at attacking a mixer is first and
foremost to be able to characterize all (or a sizable proportion) of the Bitcoins
that have gone through it. Of course, this taint can also be interpreted in terms
of anonymity levels, when tainted addresses and wallets can be linked back to
individuals. Apart from this, we will try to find how exactly these mixers work
and establish clusters or other patterns between input and output addresses so
that, to a certain extent, we can ’reverse’ the operation of a tumbler and, at
least probabilistically, trace back and deanonymise it.

2 Results

We present in the following our most relevant results in terms of security and
privacy characteristics of the mixers we have studied.

2.1 DarkLaunder, Bitlaunder and CoinMixer

Darklaunder, Bitlaunder and CoinMixer are probably the weakest mixers of all
tested in this work. We analyse these jointly because we have reasons to believe
they share a common owner and are almost identical in their functioning and
features. So, albeit in the following we will mostly refer to Darklaunder many
of our findings also apply to Bitlaunder and CoinMixer, which will be explicitly
mentioned only to highlight any differences. Darklaunder is available on both
the clearnet2 where it makes usage of CloudFlare (a widely used proxy service)
and on the darknet3. This duality is uncommon in good mixers, as is the use of
CloudFlare.

The service offers two types of laundering: the quick one is claimed to take
between one and six hours to process, and has a 2% fixed fee. The secure one
is said to be dealt with by hand and to be more secure. In this case there is

1 In addition to a large set of python scripts developed by the authors, we have also
been given access to some of the proprietary Chainalysis tools.

2 At https://darklaunder.com, last accessed on 17/02/2017.
3 At http://wwxoxavgqbhthyz7.onion, last accessed on 17/02/2017.

https://darklaunder.com
http://wwxoxavgqbhthyz7.onion

An Analysis of Bitcoin Laundry Services 299

a 3% fixed fee. For both, the lowest accepted sum is 0.01 BTC4. According to
the service’s FAQ, there is an upper limit of 1,000 BTC. To be able to use
the service, registration is mandatory and a username, name, password and
email address have to be provided. This is common in other mixers, but not
a good practice regarding privacy. To launder Bitcoin, the user has to make a
deposit on a given address. When withdrawing, the only choices are the amount
of Bitcoin to withdraw and the destination address. Despite their claim that
it does not keep any personal information, we have found it stores data about
their user’s previous transactions with the service, including their exact date and
time and the involved IPs and Bitcoin addresses. All these weaknesses could be
also found in Bitlaunder. Since there is precedent of authorities arresting owners
of laundering services5, and the service retains full historical transaction data,
this mixer can not be considered secure. In addition, PHP errors creep around
frequently during its usage.

Security Analysis. On top of its bad design, the service is also subject to
other critical problems. First, it is possible to find the IP address of the server
hosting the mixer. This makes easy to establish a link to an individual’s name
and address, and to other mixers he owns and operates. Since the server is using
CloudFlare, which is only an HTTP proxy, the emails sent by the service (in
response to customer’s questions) do not go through it. By analyzing the header
of these emails it is possible to find that the mail server is located at the address
mail.darklaunder.com, which points to the IP address 94.23.45.166. We can,
therefore, access the website directly now without going through CloudFlare.
Furthermore, the SSL certificate used by the service is quite weak: It is using
the SHA-1 algorithm, that is deprecated [3,4], with a 2048-bit key. Finally, the
service certificate is self-signed, and has expired. It was signed in August 2015,
which suggest the service has been probably first online around this time. The
HTTP server used is Nginx 1.0.14, which is a legacy version as the latest one
at the time of writing is 1.10. There are multiple CVEs affecting the server ver-
sion, as shown at cvedetails.com [5], notably CVE-2013-4547, CVE-2013-0337,
CVE-2012-2089 and CVE-2012-1180. An additional serious security issue is that
the server is allowing SSL v3, which is vulnerable to multiple attacks [6,7].
Bitlaunder suffers from many of the previously described problems.

Transactions with the Service. At total of 61 transactions were carried out
with Darklaunder. At the beginning, the transactions were processed correctly
even if the time needed to get the money back was longer than expected, usually
between 8 and 10 h. From the 29th test on, transactions took more than 20 h to
withdraw. From the 45th, it took between one and seven days to get the with-
draw (sometimes, due to multiple failures during the laundering process). Eleven
4 During our tests we encountered some issues, and the contact support stated that

the minimum value was 0.5 BTC. This is strange, since despite this message the
mixer eventually worked after some time with the initial 0.01 BTC.

5 For example in the case of coin.mx [1,2].

http://mail.darklaunder.com
http://cvedetails.com

300 T. de Balthasar and J. Hernandez-Castro

transactions have also been made with Bitlaunder but no delays were encoun-
tered, probably because they were requested to be more evenly spaced on time.
For both services, the fees taken have always been exactly as announced, but
once Darklaunder returned the money twice (so we received double the money we
sent!) and another time, the service returned slightly less: 10% of the total sum
was missing. These errors suggest that, at some point, the algorithm in charge
of withdrawing the money was suffering from flaws. Another important mistake
is that the service is using counters as transaction IDs, so the total number of
transactions can be simply read. Furthermore, several issues with the launder-
ing algorithm can be detected after analyzing our database of transactions. First
and foremost, the independent accounts we have used happen to have common
transactions. Also, when the service takes money from the wallet, the transaction
used involves multiple input wallets and they have always exactly two outputs,
one of them, as we will see later, being a central address. This is quite a poor
practice since a malicious user may simply engage in making transactions on a
regular basis to find the addresses of other users, thus partially de-anonymising
the service (Fig. 1).

Fig. 1. Darklaunder: withdrawing to multiple addresses

Tracking the Money. Using a script to trace the money, some common paths
between the addresses used have emerged. In particular, we can detect a path
between wallets and return addresses, showing the anonymity offered by the
service is poor.

Figure 2 shows the output of the program we developed to follow the money,
where we can see the results when tracking the wallet generated in the first
transaction with the service. The watch-list is made of the addresses given to
the service to get the money back. We can see that, in this case, the money has
been redistributed to three known addresses generated in the next tests (these
three addresses are the only ones that belong to us within four levels of tracking
for all the tests, however, with a deeper tracking it is possible to find even more).

Drawing and Analysing the Transactions. We will begin the analysis of
the service by using Fig. 3, which is the graph generated after analysing the
transactions we performed with Darklaunder and Bitlaunder, to one level of
depth.

The image allows to quickly visualise the very high centralization of the
service, which is a poor characteristic regarding anonymity. All the wallets are

An Analysis of Bitcoin Laundry Services 301

Fig. 2. Darklaunder: output of the program following the money

Fig. 3. Darklaunder and Bitlaunder transactions, at depth one

sending their funds to address 15u...FKF6. This central address has been used
for the first time on the 18th October 2015 - which matches nicely with our
estimate of the creation time of the service - and has been continuously used
since.

Figure 4 shows the number of operations of the 15u...FKF address since its
creation.

Fig. 4. Number of transactions by 15u...FKF, from October 2015 to February 2017

The address has a total of 1,635 operations. The number of credit transac-
tions (934) is roughly equal to the number of debit transactions (719). However,
6 15uyvmNQtLPyzeNcBCvuvgH4f7MUN6XFKF.

302 T. de Balthasar and J. Hernandez-Castro

this address received money from 4,277 addresses but sent money to only 1,327
addresses. The total in and out by day from the creation of the address to the
26th February 2017 tends to confirm the hypothesis that the address has only
be used as a gateway. We can observe that the credit and debit per day are
approximately equal, leaving the address with only a few bitcoin in reserve. Our
last 2016 test transaction with the service was on the 5th May 2016, and at this
time the wallet7 was still using the same central address. However, another
transaction has been carried out on the 27 June, and we can see that the
wallet8 has used another address to get back the money: 13K...isR9. This address
has been created on the 15 June 2016, which matches with the moment when
15u...FKF’s traffic started to decrease. In just 10 days, the new address made
110 transactions, sent 187.812357 BTC and received 190.612357 BTC.

By analysing money in, out and the total credit by day of address 13K...isR,
we can see a very similar behaviour to that shown in Fig. 5. We can also observe
that the percentages of credit and debit transactions are similar for the two
addresses. Considering these elements, we can guess that the service periodically
switches its central address. This is a good security practice, but by itself not
sufficient to provide enough anonymity. The characteristics we underlined above
may allow to easily detect these new addresses, thus completely defeating its
security aims.

Fig. 5. Transactions by 13K...isR from June 2016 to March 2017

The interactions involving the central address follow recognisable patterns, as
shown in Fig. 6. We can see that in each case wallets send bitcoins to the central
address (label 1) but sometimes they also send to another addresses (labels 2
and 3). These secondary addresses will receive bitcoins from other transactions
involving the withdraw addresses, and will then send it to other addresses and
back to the central node. Sometimes the rest of the transaction is directly sent to
the central address, as with node 26. Node 6 on the graph represents the address
15v...j2N10. Looking at its transactions is particularly interesting: there are a
total of 51 at the time of writing, and the pattern followed is very characteristic.
The address receives money and then sends it to two types of addresses; most of
the bitcoins go to the central node, but a few of them go to another address (not
the same every time) which is probably there to confuse a potential attacker.

7 1GgfvBoVpeJLKdVkqMehbFPrm4VjoqUP7.
8 1MC8VD89moVwXL4s213vNpdbrmUZQZf1DV.
9 13KtxHChVmGu43A19narE3hbKGCUBGAisR.

10 15vXhKcnNZo6su5PkKeZQPavvFhjVG3j2N.

An Analysis of Bitcoin Laundry Services 303

The fact that the money of all wallets is sent to the central node is a terrible
weakness, since it allows to find the wallet addresses with great ease. In addition,
performing most of the withdrawal transactions within only one or two levels of
the central node is also extremely poor.

Fig. 6. Interaction with central address

When observing the withdrawal transactions, a specific pattern is also inter-
esting to notice: almost every withdrawal is at a distance of one address, as we
can see on Fig. 7 which has been adapted from real data. Address 1 (that has
not been analysed) establishes a link between two withdrawals, and Address 2
send the funds to the addresses used to withdraw.

Fig. 7. Interaction between withdrawal transactions.

Using Walletexplorer, we can find that Address 2 belongs to localBitcoins.com
while Address 1 behaves similarly to Addresses 3 and 4. We can see that the debit
transactions follow two distinct patterns. Either the central address gives money
to localBitcoins, or it makes a peeling-chain (which consist in dividing the sums
again and again) and eventually sends money to localBitcoins after a small num-
ber of transactions. Using the information gathered so far, we are now able to
understand the complete workflow of the service, that we display in Fig. 8.

http://localBitcoins.com

304 T. de Balthasar and J. Hernandez-Castro

Fig. 8. Darklaunder workflow

The wallets are used to credit the central address (1) but at the same time
they can also make use of a change address (7). This change address will receive
credit at the end of the withdraw chain and send it to the central address.
The central address sends Bitcoins to localBitcoins directly but also, sometimes,
starts a peeling chain where bitcoins can be sent to localBitcoins.com during the
process (49, 51) or later (55, 56, 57, 58). Then, localBitcoins sends back money
to the service (17, 28) which starts a new withdraw chain. Using the Chainalysis
tool, a graph of the exchanges has been drawn (Fig. 9).

Fig. 9. Interaction of the service with external clusters

So we can conclude that the laundering algorithm itself is quite poor. The
service is characterised by a heavy centralization because a central address is
gathering all the Bitcoins from the customer’s wallets and receives the rest of the
money at the end of the withdraw chain. Furthermore, it is easy to find a direct
route (only a few levels deep) from the central address to some of the wallets.
Tracking is further facilitated because a significant number of transactions have
multiple input addresses. Finally, the scarcity of traffic makes for an even easier
address identification (Fig. 10).

http://localBitcoins.com

An Analysis of Bitcoin Laundry Services 305

Fig. 10. Estimated darklaunder transaction volume

2.2 Helix

The Service. Helix is accessible only using Tor11 and offers two different ser-
vices: a standard version and a light version. The two versions only differ in that
the light one allows to withdraw to up to five addresses, and to choose to receive
multiple transactions and/or within a random time delay of a few hours while
the standard version requires registration and allows to manage a wallet and to
automatically mix money send to the wallet to a defined address. Both standard
and light services are taking 2.5% off fees, and only allow withdrawals of 0.02
BTC or more.

Analysis of the Transactions. A total of 34 transactions were carried out
with this service. The money always returned on time, and to the right number
of addresses. On the more negative side, the page which displays the status of
the laundering process has been observed to remain active a few days after the
mixing has finished, when it is claimed to be available only for 24 h. Furthermore,
a major problem has been found in the pattern of transactions: Regardless of
whether we ask for multiple transactions or to use multiple addresses, our tests
suggests that there will always be 5 transactions done in total. Some of our
wallets and return addresses (issued from different tests) have also been observed
taking part in the same transactions. Finally, our tests revealed that it always
takes between one and two minutes to make a transaction. The average time is
ninety seconds and the average duration for all the transactions to perform is
five minutes and fifty seconds. This allows for a trivial timing-based attack.

Analysis of the Addresses. Our analysis has started by drawing a graph of
the exchanges we carried out, at a depth level of 2 from our wallet and return
addresses, as shown in Fig. 11.

First, it is possible to observe that the green addresses (which are the
addresses where the coins have been returned) are very close to each other.
Sometimes even present in the same transaction. This can be explained by the
fact that the service is using a peeling chain to fund its customers. An inter-
esting fact is that the transactions in these chains have always a single input
but can have between two and five outputs, thus allowing withdrawals to mul-
tiple customers at the same time. Three addresses involved in a big amount
of transactions are shown in the graph. The one in the center is identified by
11 Main address is at http://grams7enufi7jmdl.onion/helix/light.

http://grams7enufi7jmdl.onion/helix/light

306 T. de Balthasar and J. Hernandez-Castro

Fig. 11. Helix light exchanges at depth 2 - August 2016 (Color figure online)

Chainalysis’s tool as part of LocalBitcoins.com. This cluster receives money from
multiple points in peeling chains; This suggests it is widely used by customers
of the service. The two other addresses are identified by the tool as part of the
same cluster, which will be named C112 and studied later. Finally, the graph
shows that multiple addresses are receiving coins from multiple wallet addresses
(in red).

Fig. 12. Helix light withdrawal pattern - February 2017 (Color figure online)

Figure 12 has been drawn using Reactor. It represents the return transactions
made by Helix. The point on the left is a custom cluster, made of all the return
addresses used to perform the tests. The red point on the right is the Helix
cluster, and the big point in the middle is cluster C1. It is possible to observe
that C1 is receiving multiple transactions originated from an important number
of addresses in the graph. This cluster seems to be receiving only coins from the
12 1MiaNEG1jqoAeLPSE8JuZ8ync1e6i1y6ho.

http://LocalBitcoins.com

An Analysis of Bitcoin Laundry Services 307

Helix’s peeling chains. The money sent by C1 can not be linked to Helix, but it
is possible to formulate two hypothesis: Either the owner of the service is using
the cluster to recover some money, or this is a very special customer making an
extensive usage of the service (190 BTC have been received).

The second interesting point is that (even though not all the chains are shown
in the graph) all the money that have been sent to the return addresses goes
through the Helix cluster, after a few transactions on the peeling chain. This
allows to guess the algorithm used by the service: it generates multiple wallets
and recovers their money using a few transactions. This money is then directly
sent to a peeling chain for the customers withdrawal.

Assessment of the Service. The Chainalysis’s tool suggests that at least
216,000 BTC have been mixed using this service until early 2017 showing it is
widely13 used. However, our findings indicate that it does not offer adequate
anonymity. We observed that wallets and withdrawals of multiple customers are
present on the same transaction, or very close to each other, so that it is easy to
identify them. For example, by processing regular and small-amount transactions
with the service we can gain valuable insights that can help us compromise its
security and anonymity at a very low cost.

2.3 Alphabay

The Service. Alphabay was accessible only through Tor14 and required to open
a customer account to use it. The registration was straightforward, and only a
username and password were required. A wallet address is automatically gener-
ated by the service for the user, and that address changes every time a deposit
is made. However, the address was still usable seven days after the change. On
top of that, if the generated address is not used after ten days, it will be deleted.
Each deposit to the service must be at least of 0.01 BTC, and it is possible
to withdraw money for a fee of 0.001 BTC. The service offered the possibility
to withdraw to one to five addresses, in an interval of time between one and
twenty-four hours. An option labeled Sent a single transaction suggest that the
service was capable of returning money in multiple transactions.

Transaction Analysis. We performed 35 transactions with the service before
proceeding with a first analysis of the tumbler. Multiple problems were detected
as this early point. First, the service was taking more than what was claimed in
fees (0.007 BTC instead of 0.001). In addition, the money was moved from the
user’s wallet before the withdrawal was carried out. During the tests, we also
noticed that the service was never returning the money in multiple transactions

13 The number of bitcoins in circulation at the time of writing is approximately 16.2
million, according to Blockchain.info.

14 The main address was at pwoah7foa6au2pul.onion, but many others existed to cope
with frequent DDoS attacks.

http://Blockchain.info
http://pwoah7foa6au2pul.onion

308 T. de Balthasar and J. Hernandez-Castro

(a feature that is proposed in the form) and that it did not returned money to
multiple addresses if the sum to withdraw is less than (#Addresses ·0.01 BTC).
During our tests, we also notice that the service never returned money by doing
multiple transactions to a single address. This was still true as of our last test
on the 16th February, 2017. Another important problem was in the history of
withdrawals, as IDs are used and they are simply incremental counters that leak
the number of transactions. Using this information we can, for example, estimate
the number of transactions to be around 33.76 per minute between the 4 and the
6 August 2016. Recent cluster size estimation tends to suggest the number of
transactions did not changed a lot a year later. Finally, we can also detect some
specific patterns concerning the number of input and outputs in the transactions
performed by Alphabay, which can allow for simple heuristics to recognize them.
On a more positive note, the money is always returned on time.

Analysis of the Addresses. By drawing the exchanges of the addresses on
two depth levels, we can observe that while the money on the wallet addresses
is going to addresses with a lot of traffic, the withdrawals are performed within
a basic peeling chain. The peeling chain is a pattern of use widely present in
the Bitcoin network; for example, various services often use it to withdraw their
customers. Basically, the chains starts with an address receiving a decent amount
of coins. This address will then send the coins to two (or more) addresses. One
of these addresses will belong to the service and will then send coins to two (or
more) addresses until there is no money left. In our example (Fig. 13), we can see
a withdraw chain started by the service (in blue) with 50 BTC. Another common
characteristic is that the nodes of a peeling chains have only two transactions.
One credit and one debit. In the case that a peeling chain is used by a service,
it can happen that the orange nodes are not to withdraw to a customer but just
a redirection of some part of the money to another peeling chain also owned
by the service. For example, 1dj6nAA7Sp456Ph9EvM8LYnvb6aYX9NPQ is the
start of a classical peeling chain.

Fig. 13. How a peeling chain works (Color figure online)

If we look closely at Fig. 14, the first thing we will notice is that three
addresses on the graph are involved in a lot of transactions. These addresses

An Analysis of Bitcoin Laundry Services 309

Fig. 14. Alphabay exchanges at depth 2.

will be discussed later and will be named A115 (the one on the left), A216 (the
one at the bottom) and A317 (the one on the upper right). We will first focus on
the exchanges carried out by our wallets: We can observe that, every time, the
service is making transactions with the wallet following the exact same pattern.
Money is moved with a transaction having only one input and one output, and
goes to an address which has multiple transactions. We can observe a lot of trans-
actions on this destination address, so we used Chainalysis’s tools to gather more
information.

There are multiple types of clusters we can observe in Fig. 15:

1. Some are identified by Chainalysis as belonging to well-known services, such
as BTC-e or localBitcoins.com

2. Some are not identified as known services, and only receive money from
addresses identified as part of the Alphabay cluster, or from addresses match-
ing the wallet pattern. Then, they send money to an unique service using
different addresses (for example 19Gc...X1d18). In this case, we hypothesize
that Alphabay is using these services to mix the bitcoins.

3. Some are matching pattern 2, but do not send money directly to ser-
vices and instead start peeling chains (e.g.: 1JJww8DFoAp5whSu4oV
89yZyY8MPVomsiz). The peeling chain is probably used to withdraw money
off the service.

4. Some are matching the pattern 2, but sending money directly to multiple
services. We do not have a good enough explanation for these cases.

5. A few clusters are sending and receiving money to/from multiple services.
In this case, they probably belong to services that are not detected by the
tool yet.

15 1HBsi9dDzHQecyy4xtRnvqjiT1KvLUwRcH.
16 16ZZ6svbB36o5Q2gLtAMHMiKJXtbs6nvuF.
17 14cGaFD4iUyqX9NQaB1ff8uLUb42qd5deM.
18 19Gc23Ggr58ZRhemmx7rtZnqTj6tasX1d.

http://localBitcoins.com

310 T. de Balthasar and J. Hernandez-Castro

What we can tentatively conclude from this study is that Alphabay is using
other third party services to mix their bitcoins, but that it probably also makes
some custom in-house mixing. Here, we can identify a clear flaw: multiple cus-
tomer wallets are sending money to the same address, which could make the
detection of wallet addresses and the tainting process particularly easy. When
studying addresses A1, A2 and A3 in Fig. 15, we observe that these are receiving
a total of 8,582 credit transactions and only 122 debit transactions. Moreover,
the credit transactions have (with a few exceptions) only one input and one
output. This suggests we are dealing with users’ wallets. We noticed that the
clusters have a relatively large number of transactions matching the same pat-
tern: Deposit transactions having one (or two in some cases) inputs and two
outputs.

Fig. 15. Alphabay Wallet exchanges

We then analyzed return addresses. We can see in Fig. 15 that these addresses
are often linked together and, sometimes, have associations to addresses
exchanging with many more addresses than usual. In the first case, we observed
that the addresses are part of a peeling chain. These peeling chains are most
of the time tainted with Alphabay addresses, but sometimes we can track-back
their origin to services such as localBitcoins. The second case is a direct with-
draw from a known service (most of the time, localBitcoins). Our address is never
alone on the outputs, and most of the time another output in the withdraw trans-
action leads to Alphabay. On both cases, we can say that the withdraw is not
secure. On the first case, since the peeling chain is highly tainted by Alphabay, it
would be easy to identify withdraw chains tainted by the service. Even without
knowing which cluster Alphabay is, engaging in regular, low-cost transactions

An Analysis of Bitcoin Laundry Services 311

with it should be enough for taint purposes. In the second case, we would need
to know Alphabay’s addresses to be able to find the withdraw addresses. This
would be a little more involved but not too difficult. In any case, this is not the
most common way the money is withdrew.

3 Conclusions

Bitcoin mixers are quite popular nowadays, but even the most well-known and
established ones seem to have serious security and privacy limitations, as exposed
in this work. Together with the major players, a myriad of smaller laundry
services such as Bitlaunder, Darklaunder and Coinmixer exist, and we have
shown some of them offer an appalling service that can seriously compromise
the security and privacy expectations of any legitimate user. Unfortunately also
the major players such as Alphabay and Helix present significant deficiencies.
Our findings show that devising and implementing a secure mixer is far from
an easy task, and as such it is plagued with a multitude of opportunities to
get things wrong and compromise the service. This is refreshing news for Law
Enforcement, who will be able to taint Bitcoin transactions and even back-track
them by using our findings and some readily available technology. But at the
same time this is worrying news to any legitimate Bitcoin user that simply
wants to use these services for the purpose of increasing its anonymity. More
study needs to be done on the advantages and shortcomings of the different
algorithms employed by these tumblers, as a well-founded theoretical analysis
of a highly secure and privacy-aware protocol for providing the required mixing
services is unfortunately still lacking. Whether these mix services will continue to
be popular and profitable in the near future, when alternative cryptocurrencies
that offer improved anonymity and untraceability properties such as Monero or
Zcash become widely accepted, is still an open question.

Acknowledgements
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme, under grant agreement
No. 700326 (RAMSES project). One co-author also wants to thank
EPSRC for project EP/P011772/1 on the EconoMical, PsycHologi-
cAl and Societal Impact of RanSomware (EMPHASIS) which partly
supported this work.

References

1. Higgins, S.: Coin.mx Execs Arrested for Operating Illegal Bitcoin Exchange (2015).
http://www.coindesk.com/coin-mx-arrested-operating-illegal-bitcoin-exchange/

2. United States District Court Southern District of New York Sealed Indictment
(2015). http://bit.ly/2aC9Mpl

3. Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. https://
eprint.iacr.org/2015/967.pdf

http://www.coindesk.com/coin-mx-arrested-operating-illegal-bitcoin-exchange/
http://bit.ly/2aC9Mpl
https://eprint.iacr.org/2015/967.pdf
https://eprint.iacr.org/2015/967.pdf

312 T. de Balthasar and J. Hernandez-Castro

4. Prince, M.: SHA-1 Deprecation: No Browser Left Behind. https://blog.cloudflare.
com/sha-1-deprecation-no-browser-left-behind

5. Nginx CVE for version 1.0.14 (2013). CVEdetails.com
6. Barnes, R.: The POODLE Attack and the End of SSL 3.0 (2014). https://blog.

mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
7. Möller, B., Duong, T., Kotowicz, K.: This POODLE Bites: Exploiting The SSL3.

Fallback (2014). https://www.openssl.org/∼bodo/ssl-poodle.pdf
8. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,

G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with
no names. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference, pp. 127–140. ACM (2013)

9. Moser, M., Bohme, R., Breuker, D.: An inquiry into money laundering tools in the
Bitcoin ecosystem. In: eCrime Researchers Summit (eCRS), 2013, pp. 1–14. IEEE
(2013)

10. Bitcoin Organisation: Protect your Privacy (2016). https://bitcoin.org/en/
protect-your-privacy

11. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 31

https://blog.cloudflare.com/sha-1-deprecation-no-browser-left-behind
https://blog.cloudflare.com/sha-1-deprecation-no-browser-left-behind
http://cvedetails.com/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://bitcoin.org/en/protect-your-privacy
https://bitcoin.org/en/protect-your-privacy
https://doi.org/10.1007/978-3-662-45472-5_31

Author Index

Abed, Farzaneh 39
Antikainen, Markku 209
Aura, Tuomas 209, 229

Berti, Francesco 39
Bui, Thanh 229
Buldas, Ahto 3

Chockalingam, Sabarathinam 105
Costa, Nuria 280

de Balthasar, Thibault 297
Durand, Antoine 192

Fujiwara, Hiroshi 53

Garcia-Alfaro, Joaquin 70
Gay, Richard 245
Geniola, Alberto 209
Géraud, Rémi 265
Giustolisi, Rosario 159

Hartmann, Lukas 86
Hernandez-Castro, Julio 297
Hu, Jinwei 245

Kaaniche, Nesrine 70
Kesdoğan, Doğan 86
Kiennert, Christophe 70
Koscina, Mirko 265

Laanoja, Risto 3
Lanet, Jean-Louis 192
Laud, Peeter 139
Laurent, Maryline 70
Le Bouder, Hélène 192
Le Guernic, Colas 192

Lenczner, Paul 265
Lucks, Stefan 39

Maennel, Kaie 123
Maennel, Olaf 123
Mantel, Heiko 245
Martínez, Ramiro 280
Miyazaki, Takashi 53
Miyoshi, Ryuji 53
Morgan, Danielle 175
Morillo, Paz 280

Naccache, David 265

Ohtake, Go 18
Ottis, Rain 123

Palisse, Aurélien 192
Pankova, Alisa 139
Parsovs, Arnis 175
Pieters, Wolter 105

Rocher, Pierre-Olivier 70
Roth, Christian 86

Safavi-Naini, Reihaneh 18
Saulpic, David 265
Schickel, Johannes 245

Teixeira, André 105
Truu, Ahto 3

van Gelder, Pieter 105

Yamamoto, Hiroaki 53

Zhang, Liang Feng 18

	Preface
	Organization
	Abstracts of Invited Talks
	Homomorphic Authentication for Computing Securely on Untrusted Machines
	Security and Privacy Challenges in Machine Learning
	Proof of Stake Blockchain Protocols
	Contents
	Outsourcing Computations
	A Server-Assisted Hash-Based Signature Scheme
	1 Introduction
	2 Related Work
	3 Our Contribution
	4 Preliminaries
	5 Description of the Scheme
	6 Security Proof
	7 Practical Considerations
	8 Conclusions and Outlook
	References

	Outsourcing of Verifiable Attribute-Based Keyword Search
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 System Model
	4 ABKS Outsourcing Scheme
	4.1 Model of ABKS Outsourcing Scheme
	4.2 Security Definition of ABKS Outsourcing Scheme
	4.3 Our ABKS Outsourcing Scheme

	5 VABKS Outsourcing Scheme
	5.1 Model of VABKS Outsourcing Scheme
	5.2 Security Definition of VABKS Outsourcing Scheme
	5.3 Our VABKS Outsourcing Scheme

	6 Comparison
	7 Conclusion
	References

	Privacy Preservation
	Is RCB a Leakage Resilient Authenticated Encryption Scheme?
	1 Introduction
	2 Preliminaries and Notions
	3 General Overview of RCB
	4 Attacks on RCB
	4.1 Forgery Attack
	4.2 Attacks on Misuse Resistance
	4.3 A Denial-of-Service (DoS) Attack
	4.4 Attack on Full-Duplex Communication

	5 Privacy by RCB
	6 Conclusion
	References

	Practical and Secure Searchable Symmetric Encryption with a Small Index
	1 Introduction
	1.1 Backgrounds
	1.2 Our Contributions
	1.3 Related Works

	2 Preliminaries
	3 Bloom Filter
	4 Proposed Scheme
	4.1 Constructing an Encrypted Index
	4.2 Search Protocol

	5 Security Analysis
	6 Experimental Results
	References

	Anonymous Certification for an e-Assessment Framework
	1 Introduction
	2 Related Work
	3 Anonymous Certification (AC) Construction
	3.1 Background
	3.2 Our Construction

	4 E-learning Use Case for PCS
	4.1 TeSLA Architecture
	4.2 Pseudonymity
	4.3 Integrating Anonymous Certification to TeSLA

	5 Implementation and Security Details of PCS
	5.1 Implementation Details
	5.2 Security Level Sketch of Our Proposal

	6 Conclusion
	References

	PARTS -- Privacy-Aware Routing with Transportation Subgraphs
	1 Introduction
	1.1 Contribution
	1.2 Structure

	2 Related Work
	3 System Model
	3.1 Road Network
	3.2 Users
	3.3 LBS Provider
	3.4 Adversary

	4 Strategies for Privacy-Enhanced Routing
	4.1 Route Parts
	4.2 Dummy Traffic
	4.3 Time Shift Requests

	5 Adversary's Inference Model
	5.1 Background Knowledge
	5.2 Empirically Improved Guessing
	5.3 Privacy Measurement

	6 Evaluation
	6.1 Dataset and Simulator
	6.2 Experimental Setup
	6.3 Overhead of Segmented Routes
	6.4 Privacy Related Results
	6.5 Performance Analysis

	7 Discussion
	8 Conclusion
	References

	Security and Privacy in Machine Learning
	Bayesian Network Models in Cyber Security: A Systematic Review
	1 Introduction
	2 Review Methodology
	3 Analysis of Standard Bayesian Network Models in Cyber Security
	3.1 Citation Details
	3.2 Data Sources Used to Construct DAGs and Populate CPTs
	3.3 The Number of Nodes Used in the Model
	3.4 Type of Threat Actor
	3.5 Application and Application Sector
	3.6 Scope of Variables
	3.7 The Approach(es) Used to Validate Models
	3.8 Model Purpose and Type of Purpose

	4 Discussion
	5 Conclusions and Future Work
	References

	Improving and Measuring Learning Effectiveness at Cyber Defense Exercises
	1 Introduction
	2 Learning Measurement Dimensions in CDX's
	2.1 5-Timestamp Methodology
	2.2 Data Collection and Sources

	3 LS17---Learning Measurement
	3.1 5-Timestamp Methodology Experience
	3.2 Discussion and Findings from LS17 Learning Measurement

	4 Related Work in Learning Measurement Context
	5 Conclusion
	References

	Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data
	1 Introduction
	2 Preliminaries
	2.1 Secure Multiparty Computation
	2.2 Notation
	2.3 General FIM Algorithms

	3 Privacy-Preserving FIM
	3.1 Algorithms for Privacy Preserving FIM
	3.2 Comparing Bit Matrix and Set Based Approaches
	3.3 Combining Dense and Sparse Representations

	4 Benchmarks
	5 Conclusion
	References

	Applications
	Free Rides in Denmark: Lessons from Improperly Generated Mobile Transport Tickets
	1 Introduction
	2 Ceremony Description
	2.1 Description of Mobilpendlerkort
	2.2 Building the Inspection Ceremony

	3 Attack Demonstration
	3.1 Barcode Analysis
	3.2 Primary Screen Forgery
	3.3 Extra Zone Ticket Forgery

	4 Principles
	5 Alternative Inspection Ceremony
	6 Related Work
	7 Conclusions
	References

	Using the Estonian Electronic Identity Card for Authentication to a Machine
	1 Introduction
	2 Card Authentication
	2.1 Document Expiration and Revocation Checks
	2.2 Card Impersonation

	3 Attacks by Malicious Terminals
	3.1 Compromising the Cardholder's Privacy
	3.2 Denial-of-Service Attacks
	3.3 Unauthorized Use of Private Keys

	4 Design of ID Card Emulator
	4.1 Card ATR Adjustment
	4.2 APDU Logging Functionality
	4.3 Visual Imitation of ID Card

	5 Card Authentication in Practice
	6 Discussion: Improvements
	6.1 Cloning Prevention
	6.2 Cardholder Verification
	6.3 Contactless Interface

	7 Conclusion
	References

	Data Aware Defense (DaD): Towards a Generic and Practical Ransomware Countermeasure
	1 Introduction
	2 Related Work
	3 Statistical Tests for Ransomware Attacks Detection
	4 Towards a Generic and Practical Ransomware Countermeasure
	4.1 File System Activity Monitoring
	4.2 Implementation Design
	4.3 A Single Indicator of Compromise

	5 Experiments: Performance Evaluation
	5.1 Disk Performance
	5.2 CPU Performance
	5.3 Discussion

	6 Experiments: Ransomware Detection
	6.1 Malware - O - Matic
	6.2 Experimental Setup
	6.3 Detection Results
	6.4 Ransomware-Like Applications

	7 Conclusions
	References

	A Large-Scale Analysis of Download Portals and Freeware Installers
	1 Introduction
	2 Background
	3 Methodology
	3.1 Analysis System Overview
	3.2 Installer Crawling

	4 Results
	4.1 Static Properties of the Installers
	4.2 Dynamic Analysis of Installers
	4.3 App Managers and Software Updates

	5 Discussion and Future Work
	6 Conclusion
	References

	Access Control
	GPASS: A Password Manager with Group-Based Access Control
	1 Introduction
	2 Related Work
	3 Models and Assumptions
	3.1 System Model
	3.2 Threat Model
	3.3 System Goals
	3.4 Security Goals

	4 GPASS
	4.1 Overview
	4.2 Fundamental Operations

	5 Security Analysis
	6 Extended GPASS
	7 Implementation
	8 Discussion
	9 Conclusion
	References

	Towards Accelerated Usage Control Based on Access Correlations
	1 Introduction
	2 The Problem
	3 Our Approach: SPEEDAC
	3.1 Speculative Pre-computation of Decisions
	3.2 Utilization of Access Correlations
	3.3 Perceivable Overhead

	4 Case Study
	5 Enforcement Mechanism
	5.1 Design Space
	5.2 Design for Effectiveness
	5.3 Implementation

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Perceivable Overhead
	6.3 File-Correlation Effects

	7 Related Work
	8 Conclusion
	References

	Emerging Security Areas
	Generating Functionally Equivalent Programs Having Non-isomorphic Control-Flow Graphs
	1 Introduction
	2 Control Flow Graph Transcompilation
	2.1 Prerequisites
	2.2 Overview of Our Approach
	2.3 Contexts
	2.4 Node Passivation
	2.5 Jumps and Internal Calls
	2.6 Routing

	3 Control Flow Graph Obfuscation
	3.1 Forcing Execution
	3.2 Node Hiding
	3.3 Route Hiding

	4 Security
	4.1 Security Against Dynamic Analysis

	5 Implementation
	6 Conclusion
	References

	Proof of a Shuffle for Lattice-Based Cryptography
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Ideal Lattices
	2.2 RLWE Encryption Scheme
	2.3 Zero Knowledge Proofs
	2.4 Pedersen Commitments

	3 Shuffling Ring-LWE Encryptions
	3.1 Protocol Overview
	3.2 Proof of Knowledge of Permutation Matrix
	3.3 Proof of Knowledge of Small Exponents
	3.4 Opening the Commitments

	4 Conclusions
	References

	An Analysis of Bitcoin Laundry Services
	1 Introduction to Tumblers
	2 Results
	2.1 DarkLaunder, Bitlaunder and CoinMixer
	2.2 Helix
	2.3 Alphabay

	3 Conclusions
	References

	Author Index

