Chapter 13

Progressive Visualization Tasks

and Semiotic Chaining for Mathematics
Teacher Preparation: Towards

a Conceptual Framework

Barbara M. Kinach

Abstract Visualization plays an important role in mathematics learning, but in the
United States where many prospective teachers (PTs) have few if any experiences
learning mathematics through visualization, mathematics teacher educators are
challenged to design tasks that generate within PTs’ thinking an appreciation for the
role visualization plays in mathematics learning. This chapter examines the affor-
dances of progressive visualization tasks and semiotic chaining for use in mathe-
matics teacher preparation. To the literature on dyadic and nested forms of semiotic
chaining, data analysis in this chapter contributes a new type of semiotic chaining
based on Peirce’s three principles of diagrammatic reasoning.

Keywords Teacher education-preservice - Learning trajectories (Progressions)
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13.1 Why Visualization? ... as a Semiotic System? ...
for Preservice Mathematics Teachers?

While recognition of visualization and its importance for learning is beginning to
capture the attention of mathematics teachers in the United States, in part due to the
conceptual demands of the national mathematics standards initiative (National
Governors Association 2010), researchers in mathematics education have long
recognized the role visualization plays in mathematics learning. Presmeg’s chapter
on visualization in the Psychology of Mathematics Education Handbook (2006a)
traces the evolution of visualization research beginning with its roots in spatial and
mathematical abilities research (Bishop 1980; Krutetskii 1976) during the period
from 1976 to 2006. These studies have generated broad consensus on a definition of
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visualization. Since 2003 Arcavi’s conceptualization of visualization as “both the
product and the process of creation, interpretation, and reflection upon pictures and
images” (p. 215) has been the prevailing definition in the field. More recently, the
ZDM journal further advanced the field of visualization research by publishing a
special issue on “visualization as an epistemological learning tool” (Rivera et al.
2013; Presmeg 2013). Examining the role of visual tools in mathematics learning,
the ZDM papers range from studies of young students using the number line as a
visual tool to older students comparing graphic representations of a function and its
derivative. Despite researchers’ attention to the role of visualization within school
mathematics, relatively little work has been done on visualization in mathematics
teacher preparation. With one exception, none of the visualization papers discussed
above focus on teacher education.

This chapter aims to close this gap in the literature by taking up the question of
visualization within mathematics teacher preparation. Specifically, the chapter
examines the problem of preparing pre-service teachers (PTs) to teach mathemat-
ical concepts, processes, and relationships through progressive visualization with
visual tools. To do this, for reasons that are described below, the chapter first
defines visualization as a semiotic system. The chapter then employs Peirce’s
theory of signs and Krutetskii’s system of problem types for developing mathe-
matical reasoning to examine the chains of significance in a progressive visual-
ization task from an innovative digital K-8 mathematics curriculum designed to
teach mathematics concepts visually without words. To the literature on dyadic and
nested forms of semiotic chaining (Presmeg 2006b), this analysis contributes a new
type of semiotic chaining based on Peirce’s principles of diagrammatic reasoning.
Semiotic chaining of diagrams is proposed as a visualization-pedagogy for
preparing PTs to foster deep understanding of mathematical notions through design
of progressive visualization tasks that (1) make connections between visual and
symbolic representations of the same mathematical notions and (2) promote
mathematical generalization and abstraction. Semiotic perspectives on mathematics
learning as a sign-interpreting game and on mathematics teaching as the art of
chaining representations to foster generalization of mathematical concepts recom-
mend the study of signs and their interpretation as a central component of math-
ematics teacher preparation (cf., Sdenz-Ludlow, this volume).

13.2 The Problem of Preparing Preservice Mathematics
Teachers to Teach Through Visualization

From my practice as a mathematics teacher educator (MTE) in the mathematics
methods course, I know that many PTs come to their study of mathematics learning
and teaching with few if any experiences learning mathematics through visual-
ization and visual tools (Kinach 2002). It is important, therefore, for MTEs to
determine what types of tasks generate within PTs’ thinking an appreciation for the
role visualization plays in mathematics learning. A deep understanding of how
students learn mathematics can generate such appreciation. For this, representa-
tional theories of mathematics learning are useful. In the methods course, PTs learn
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from these theories that the human mind learns abstract mathematical ideas not by
reflection on mathematical symbols but by generalizing the abstract idea from
multiple concrete representations of it (Dienes 1973). PTs also learn that it is
advisable to sequence representations from concrete to pictorial to abstract, or as
Bruner (1961) proposed—from enactive to iconic to symbolic—to facilitate stu-
dents’ ability to infer an abstract mathematical idea from a series of representations.
Representational theories perturb conceptions of mathematics learning as memo-
rizing rules and direct-instruction conceptions of mathematics teaching, by featur-
ing the interplay between visual representations and inferential reasoning in the
formation of mathematical notions.

Appreciation for the role of visualization in mathematics learning further
develops as PTs internalize the necessity of implementing the mathematics stan-
dards in their future teaching. The Representation Standard from the Principles and
Standards for School Mathematics (National Council of Teachers of Mathematics
2000) recommends that students use and connect representations to communicate
abstract mathematical ideas and translate across representations to solve problems.
The Lesh translation model (Cramer 2003) is a cognitive tool for guiding the design
of learning sequences that build representational fluency across five modes of
representation: manipulatives, pictures, written numerical and algebraic symbols,
verbal symbols, real world contexts (Fig. 13.1). Sequencing representations logi-
cally and visually to facilitate generalization of mathematical ideas is an art that is
challenging for PTs to learn and MTEs to teach.

As researchers increasingly suggest (Presmeg 2006b), thinking of mathematics
semiotically as the study of signs is likely to generate new insight into how students
make sense of mathematics and how teachers ought to sequence the signs of
mathematics for optimal and meaningful learning. It is for this reason that in this
chapter I choose to investigate visualization as a semiotic system by focusing
specifically on semiotic chaining and its affordances for developing an appreciation
for the role of visualization in mathematics learning and the ability to design pro-
gressive visualization tasks that foster mathematical abstraction and generalization.

Real Life
Situations

~#— ( Verbal Symbols

Fig. 13.1 Lesh translation model
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13.3 Theoretical Framework

13.3.1 Peircean Theory of Signs

Semiotics is the study of signs and how they signify meaning. A semiotic system,
according to Peirce’s triadic theory of signs, consists of three parts: object, sign, and
interpretant. The object is the thing represented; as conceptualized for this chapter
the object is the abstract mathematical idea intended for the student to learn. PTs
learning to use visualization and semiotic principles to foster mathematics learning
might think of the object as the learning goal—the abstract mathematical notion to
be signified through any of the five modes of representation in the Lesh translation
model previously described. The sign in Peirce’s triadic model is the representation
of the object; the sign is the signifier, the vehicle through which the learner comes
to comprehend the object. The sign is also known as the representamen in Peirce’s
theory. The interpretant is the idea about the object that the sign triggers in the
mind of the interpreter (who in this chapter is the pre-service mathematics teacher
or K-12 learner). The interpretant itself can be considered a sign for it represents
the learner’s understanding of the sign/object relation at a particular moment in the
learning process. Once formed, the initial interpretant shapes a learner’s under-
standing of the object providing a cognitive foundation for subsequent
re-interpretation of the sign and formation of an evolved interpretant. This elabo-
ration of Peirce’s theory of signs is based on his definition of sign as “a thing which
serves to convey knowledge of some other thing, which it is said to stand for or
represent. This thing is called the object of the sign; the idea in the mind that the
sign excites, which is a mental sign of the same object, is called an interpretant of
the sign” (Peirce 1998, p. 13).

The above description of Peirce’s theory of signs is, I believe, an accessible
rendering for pre-service teachers. Mathematics teacher educators can employ it,
along with his definition of sign, in the methods course to introduce pre-service
teachers to (1) the role of visualization and representations in mathematics learning
and (2) the practice of scaffolding visual representations to develop students’
understanding of a mathematical concept, procedure, or relation. Peirce’s definition
of sign aligns with the previously discussed representational theories of mathe-
matics learning that PTs study in the methods course. Moreover, his concept of
interpretant is useful for directing teacher candidates’ attention to the sense that
students make of the representations, problems, and other curriculum materials
teachers use to develop understanding of mathematical notions. Students’ inter-
pretations of learning materials are not always those intended by the teacher
(Séenz-Ludlow, this volume), implying a need for scaffolding learning experiences
to allow for re-interpretation until the desired learning objective approximates the
intended learning goal. This idea of learning as an interpreting game requiring
informative feedback and learner reinterpreting toward the intended learning goal
(Saenz-Ludlow) is, in my experience as a MTE, an effective counter to beliefs about
mastery learning gleaned from direct-instruction teaching practices.
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Peirce’s theory of signs is, in fact, much more complex than the elaboration
above suggested for PTs. Indeed it is necessary for the semiotic analysis of the
progressive visualization task examined in this chapter to delve more deeply into
Peirce’s triadic theory and to define how I will use his terms. One complexity is his
use of the term sign. In the above definition, he conceptualizes sign as a signifier,
specifically the thing signifying the object. In other instances (e.g., Peirce 1992), he
uses the term sign to refer to the entire triad (object, sign, interpretant) in which case
sign is being used in what may be thought of as both a macro-sense (SIGN) and
micro-sense (sign). To avoid confusion, Peirce scholars tend to substitute the term
sign vehicle for sign when discussing sign in the sense of signifier or representamen
of the object. In this chapter I use the lower-case spelling of the term sign to refer to
the sign in its micro sense as signifier of the object and use the upper-case spelling
of the term SIGN to indicate the entire triad of object-sign(representamen)-inter-
pretant. I employ the terms sign, representamen, sign vehicle, and representation
interchangeably in this chapter for pedagogical reasons, in order to investigate
whether my semiotic analysis of the visualization task is compatible with the Lesh
translation model used in the methods course to motivate teaching mathematics
through representations.

13.3.1.1 Sign as Icon, Index, or Symbol

Analysis of visualization tasks in this chapter also requires note of Peirce’s
three-part categorization of signs as icon, index, or symbol. Icons refer to their
objects by similarity in features, or as Peirce described, icons are “likenesses ...
which serve to convey ideas of the things they represent simply by imitating them”
(Peirce 1998, p. 5). Indices, which Peirce also called indications (p. 5), show
something about the object or thing they represent in the sense that, for example,
smoke indicates fire or a highway milepost indicates miles traveled from the origin.
Symbols, having no likeness or natural connection to the object they represent, refer
to the thing by virtue of consensus and use within a community. Words, algebraic
characters, and mathematical symbols such as + or = are examples of symbols. The
meanings of symbols exist by virtue of their common usage within a community of
discourse.

13.3.1.2 Diagrams and Diagrammatic Reasoning

Icons are further categorized by Peirce into images, diagrams, and metaphors.
A diagram as a category of icon is especially relevant for the analysis of visual-
ization tasks in this chapter as these tasks consist almost entirely of iconic diagrams.
According to Peirce, the diagram is a particularly useful kind of icon because it
“suppresses a quantity of details, and so allows the mind more easily to think of the
important features.” For Peirce, this was the “great distinguishing property of this
[type of] icon ... that by direct observation of it other truths concerning its object
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can be discovered than those which suffice to determine its construction” (Peirce as
quoted in Stjernfelt 2007, p. 358).

For Peirce all mathematical reasoning is diagrammatic. His conceptualization of
diagrammatic reasoning will be instructive for the task analysis conducted later in
the chapter:

That is, we construct an icon of our hypothetical state of things and proceed to observe it.
This observation leads us to suspect that something is true, which we may or may not be
able to formulate with precision, and we proceed to inquire whether it is true or not. For this
purpose it is necessary to form a plan of investigation and this is the most difficult part of
the whole operation. We not only have to select the features of the diagram which it will be
pertinent to pay attention to, but it is also of great importance to return again and again to
certain features. Otherwise, although our conclusions may be correct they will not be the
particular conclusions at which we are aiming. But the greatest point of art consists in the
introduction of suitable abstractions. By this I mean such a transformation of our diagrams
that characters of one diagram may appear in another as things. A familiar example is where
in analysis we treat operations as themselves the subject of operations. (Peirce 1998,
pp. 212-213)

Given this conceptualization of diagrammatic reasoning, Peirce (pp. 212-213)
identifies three steps for designing such reasoning. I will argue that these steps are
the design principles underlying the visualization task analyzed in this chapter:

1. “copulating separate propositions into one compound proposition”,

2. “omitting something from a proposition without possibility of introducing
error”,

3. “inserting something into a proposition without introducing error”.

13.3.1.3 The Triadic Nature of Interpretant and Object

Just as Peirce categorizes the icon into three types, so he conceives both the
interpretant and object as triadic notions. The triadic nature of each component
within Peirce’s theory of signs is grounded in his conceptualization of the nature of
reality: firstness, secondness, and thirdness. Firstness refers to the initial unreflected
state of things. It is, for example, the first impression learners have when reading a
mathematics problem—the immediate interpretant. Secondness refers to reflections
on the object subsequent to the initial interpretant/impression. Secondness is an
intermediate state between firstness and thirdness. During the problem solving
process, secondness is the dynamic state of a learner’s understanding as it con-
tinuously refines as learners delve deeper into the relationships within a problem
setting. Secondness gives rise to what Peirce called the dynamic interpretant.
Thirdness is the final interpretant, the notion that the sender intended to commu-
nicate. In learning situations, thirdness is the desired learning goal; it is the
taken-as-shared understanding of the object. The above gives rise to three states of
being and experience (ontology and phenomenology) of the interpretant and the
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object: immediate, dynamic, and real. Figure 13.2 (Séenz-Ludlow and Kadunz
2016) summarizes the relations among object, sign, and interpretant emphasizing
how the sign mediates between the object and the interpretant.

13.3.2 Semiotic Chaining

Semiotics is the study of signs and how they signify meaning. Semiotic chaining, as
used in this chapter, is a process of sign-making involving the artful sequencing of
signs to evolve understanding of an intended learning goal by the designer of the
semiotic chain. Understanding of the intended object develops continually through
arange of experiments on linked representations that manifest the intended qualities
of the object. In mathematics lessons, it is recommended by Bruner and other
representational learning theorists that the designer of the semiotic chain sequence
representations from enactive to iconic to symbolic. Chaining therefore is based on
the assumption that meaning and understanding develop over time, and are not
limited to any one point in time.

Presmeg (2006b) cites two examples of the use of semiotic chains in mathe-
matics teacher education research. Both are rooted in real world contexts.
Adeyemi’s (2004) use of chains with pre-service elementary teachers centers on
linking K-12 students’ activities with the mathematics curriculum while Hall’s
(2000) use of chains with in-service teachers involves use of an everyday activity to

validates signifies

Ly
um‘ﬁes,v' SIGN  \evokes
/ \

Y M.

L. .. materializes
Djecl sign-vehicle

1. immediate 1. icon
2. dynami ( 2. index
3. real 3. symboi

represents

Fig. 13.2 Saenz-Ludlow and Kadunz (2016): Peircean triadic sign model
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motivate a mathematics concept. Specifically, Hall’s teachers evolved the concept
of a batting average through the following semiotic chain:

Baseball game — hits versus at bats — success fraction — batting average (Presmeg
2006b, p. 168). Both semiotic chains are characterized as Peircean nested semiotic chains,
in contrast to Saussurean dyadic chains. The sequence of signifiers (representamen) is such
that each sign (representamen) ‘slides under’ the subsequent signifier, in the sense that each
triad is contained in the next, after the manner of Russian nested dolls (Presmeg 2006b,
p. 165). In this formulation, the new signifier in the chain stands for everything that
precedes it in the chain. The previous signifier, as well as everything that it represents, is
now the new signified. (p. 169)

In contrast, the semiotic chains examined in this chapter employ interactive dia-
grams and Peirce’s three principles of diagrammatic reasoning to foster general-
ization of a mathematics concept.

13.3.3 Krutetskii’s Problem Types and Mathematical
Abilities

Krutetskii’s categorization of problem types and mathematical abilities also informs
my analysis of visualization tasks for this chapter. Of the 26 problem series
Krutetskii created to investigate, assess, and ultimately develop students’ mathe-
matical abilities, three are relevant for my purposes in this chapter: Series V,
Series VII, and Series XVII (Table 13.2). Series V—systems of problems of a single
type (p. 100)—was intended to develop a type of generalization that Krutetskii
called “subsumption under a concept.” This series introduces a new concept and
provides students the opportunity to generalize the new concept from particular
instances of it. The extent of students’ ability to generalize is judged by three
abilities: (1) how well a student can “see a general type in different problems,”
(2) how the student passes from “solving simpler problems to solving more com-
plex ones of the same type,” and (3) how the student can “differentiate problems of
one type from externally similar problems of another type” (Krutetskii 1976,
p. 115). Within Series V, it is possible to abstract, or generalize, specific features
despite external differences among the problems because certain “associations” (to
use Krutetskii’s term) or commonalities exist across the system of problems. For
Krutetskii, these associations are of two types. First, there are characteristics of the
given geometric figure and its elements; and second, there is the recognition that
solving the problem requires an operation or action (Krutetskii 1976, p. 52).

Series VII—systems of problems with graded transformations from concrete to
abstract—was intended to develop perception, specifically the forming of a gen-
eralization. As described by Krutetskii,

this series of problems shows how easily and quickly a pupil can translate the solution of a
problem into a general scheme, how capable he is of transferring from operations with
concrete quantities to operations with conventional symbols that enable him to express
relations between quantities in a general, abstract form. (p. 125)
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The structure and rationale for this problem series is instructive for analyzing how
the visualization task analyzed in this chapter transitions from concrete to abstract
variants through intermediate forms. Specifically, Krutetskii describes this series to
be

A system of ten problems, each of which is gradually transformed from a concrete to an
abstract, general scheme. Each problem has from three to five variants. The first problem
(a) is a problem on a completely clear concrete plan; the last (e) is the same problem
translated onto an abstract, general level. Variants b, ¢, and d are intermediate representing
gradual translations from a to e, with successive generalizations of increasingly greater
number of elements of the problem. (p. 123)

Series XVII—direct and reverse problems—was intended to investigate the
ability to “restructure the direction of a mental process, to change from a direct to a
reverse train of thought” (Krutetskii 1976, p. 143). Acknowledging that not all
relations are symmetric, Krutetskii separated the question into psychological and
mathematical components. Primary was the question of reversibility. Was the pupil
able, for example, to reverse the logical direction of a problem that asks for the area
measurement of a rectangle given its dimensions to one that asks for the possible
dimensions of a rectangle given its area measurement. Even with non-symmetric
relations such as cats are a subset of mammals, the intention was to test ability to
reverse the train of thought to mammals are a subset of cats. Mathematical accu-
racy, for Series XVII reversibility problems, was a secondary concern.

Table 13.1 summarizes the three Krutetskii problem series pertinent to the
analysis of progressive visualization tasks in this chapter. Each series was designed
to investigate certain mathematical abilities, which for the featured series are:
(1) isolate form from content, (2) abstract from concrete (and I would add digital)
spatial forms, (3) reverse a mental process, and (4) generalize mathematical material
to see what is common in what is externally different (Krutetskii 1976). All but
reversibility of thought (#3) relate to the ability to generalize mathematical objects,
relations, and operations.

Table 13.1 Krutetskii’s problem types and mathematical abilities operating within area of
rectangle visualization task

Krutetskii problem type series Krutetskii Visualization task
mathematical relevance
ability

\% Systems of problems of a Generalization Applies within each game
single type (subsumption level 1 through 5

under a concept)

vl Systems of problems of with Perception Applies across levels when
graded transformations from (forming levels are considered a
concrete to abstract generalizations) system of problems

XVII Direct and reverse problems Reversibility of Game levels 4-5 reverse

mental process levels 1-2-3
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13.3.4 Visualization Task Context: The Mathematics
Methods Course

In this section, I consider a digital visualization task that I have used with
pre-service elementary teachers in the mathematics methods course. The task is
based on the 5th grade Area of Rectangle game in the Spatial Temporal
Mathematics (ST Math) curriculum. ST Math is a neuroscience-based supple-
mentary mathematics curriculum for grades K through 8 that is available to schools
through the MIND Research Institute (MRI 2014), a former research affiliate of the
University of California at Irvine. This supplementary mathematics program, which
develops mathematics concepts visually without words through interactive, ani-
mated digital game-like mathematics puzzles, mobilizes visual examples, anima-
tions, and informative feedback to facilitate evolution of students’ understanding of
a mathematics concept.

I think of these games as progressive concept visualizations. Since 2013,
through a partnership with MRI, I have been conducting design research in the
methods courses that I teach for elementary PTs to determine a role for this
innovative technology in the preparation of mathematics teachers. Among other
things, I have employed select games to assess PTs’ mathematics content knowl-
edge, develop their ability to write learning objectives, and model Bruner’s rep-
resentational theory of mathematics learning and instructional sequencing
(concrete-pictorial-abstract).

Viewed from a semiotic perspective, the games are concerned with the con-
struction of concept(s) through signs (Kadunz 2016). The signs employed within
the games are collections of Peirce icons, symbols, and indices. Each game includes
interactive iconic diagrams. Experimentation with the diagrams produces infor-
mative visual feedback providing further opportunity to reason with the diagram—
to notice patterns, form inductive hypotheses, and conduct deductive experiments
on the icon diagram—for the purpose of discovering the game’s hidden mathe-
matical learning goal (object). Reasoning elicited by the visual puzzles spans the
reasoning types Peirce examines, from deduction to induction, hypothesis, and
abduction.

Structurally each game design consists of multiple levels. Each level deploys a
Series V Krutetskii system of problems of a similar type whose function it is to
foster generalization of a concept, or what I identify as the Intended Interpretant for
that level. Collectively the SIGNS across game levels form a Series VII Krutetskii
system of problems with graded transformations from concrete to abstract, whose
purpose is to facilitate generalization of the intended object (abstract mathematical
learning goal) from the SIGN sequence. Levels 4 and 5 exemplify Krutetskii
Series XVII direct and reverse problems for assessing ability to change the
direction of a mental process. While it is impossible to depict the interactivity of
these concept visualization games in print format, Fig. 13.3 provides a static visual
overview of one game and its five levels.
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Fig. 13.3 A bird’s eye view of the visual flow of the 5-level ST Math Area Game

13.3.5 Analysis of Visualization Task

Figure 13.3 depicts the 5-level Area of Rectangle game, a progressive visualization
task I use in the methods course to illustrate learning and teaching mathematics
through visualization and representations. Below I examine the game within and
across levels for chains of significance in search of design principles for a con-
ceptual framework to guide prospective teachers’ creation of progressive visual-
ization tasks (semiotic chains) for the mathematics classroom.

The semiotic object of this ST Math game is area. Area is essentially a geo-
metric concept; it is the two-dimensional (flat) space within a bounded region.
A related concept is area measurement, or the number of square units covering
two-dimensional space. The game relates the spatial concept area to its measure-
ment; this relationship, which is illustrated particularly for a rectangle, applies as
well to other geometric figures that may be regular or irregular.

Level 1. In level 1 of the game, the semiotic object is area of a rectangle. The sign
(representamen), which signifies both the spatial quality of a rectangle’s area and its
measurement, consists of three parts: (a) rectangle icon, subdivided into unit
squares, which initially appears static but breaks apart during the game to confirm
the game player’s area-measurement hypotheses, (b) two linked symbols (the word
area followed by the mathematical equal sign), and (c) 10-by-2 highlightable
interactive rectangular icon with numerical symbol label (index) that automatically
pops up to indicate the number of highlighted squares (Fig. 13.4). To solve the
interactive visual puzzle, which is without verbal directions, learners must click on
various parts of the screen to see what happens. For each click the game generates
visual feedback. Through trial and error guided by this visual feedback, students
infer the level 1 puzzle’s underlying mathematical concept, the intended
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area = J

Fig. 13.4 Level 1 problem type

interpretant (11;), namely that the interior space of the rectangle is called area and
that its size can be determined by counting the unit squares in the interior of the
rectangle.

Students infer the II; through noticing what happens to the highlighted unit
squares of the dynamic 10-by-2 rectangle. Once highlighted, a numeral automati-
cally pops up to indicate the quantity of highlighted squares after which the
highlighted squares break up. The game then provides visual feedback to show
whether or not the highlighted squares can be arranged into a shape that is con-
gruent to the interior of the given rectangle. If this occurs, JiJi the penguin avatar
walks across the screen to indicate mathematical success. If not, JiJi’s path will be
blocked and an opportunity to retry the visual puzzle provided.

Another important semiotic feature of level 1, and all levels of the Area of
Rectangle game, is the Krutetskii Series V system of similar problems that comprise
the level. Multiple examples and opportunities for experimentation on the repre-
sentamen (diagrams) are required to generalize the intended game-level concept
(Krutetskii 1976) or interpretant for, as Peirce maintained, with any communication,
inferring the intended interpretant from one example is unlikely as there is always a
certain range of interpretation (Peirce as quoted by Joswick 1996, p. 100). To arrive
at the intended consensus interpretation, the interpreter (or in this case the learner)
requires multiple signs exemplifying the concept (object) with opportunity to
experiment on them in order to experience the concept, reason with it (Joswick
1996, pp. 100-101), and ultimately infer the qualities of the intended object from
the sign (representamen). For example, a common initial interpretation of the sign
in level 1 is that the aim of the visual puzzle is to highlight a shape congruent to the
given rectangle. Through experimentation learners notice however that the high-
lightable squares activate linearly in order from 1 to 10 making it impossible to
highlight a rectangle comprised of three squares in row 1 and three squares directly
above in row 2. Thus, the learners’ initial conjecture must be re-thought and a new
hypothesis formed and tested. Further, as Peirce explains, even if a particular puzzle
were to be solved correctly on the first attempt, it is unlikely that the desired level of
generality for the intended interpretant will be noticed on the first inference (Peirce
1998, p. 212). The series of similar problems at game level 1 (as well as for the
similar problem series at each of the other game levels) therefore provides,
according to Peirce, opportunity for thought to develop about the intended object
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through experimentation on the level 1 sign. This experimentation produces a
sequence of inductions and hypotheses that ultimately yield dynamic interpretants
that tend toward the intended interpretant, that is, the desired ultimate consensual
understanding of the initial intended object.

In sum, the intended interpretant (II;) for game level 1 is the spatial concept of
area of a rectangle, its measurement, and the following inductive argument: If
highlighted squares can be arranged into a shape that is congruent to the interior
space of the rectangle, then the rectangle interior is called the area of the rectangle
and the rectangle’s area measurement can be found by counting the unit squares of
the given subdivided rectangle. This interpretant is a generalization derived from
the series of eight similarly structured problems for which Fig. 13.4 serves as
exemplar. The dimensions of other rectangles in the problem series vary from
3-by-2 to 4-by-3 to 3-by-4 to 5-by-2 to 2-by-4 to 1-by-6 to 2-by-3 to 2-by-5.

Level 2. The semiotic object for game level 2 is the same as for level 1, area of a
rectangle. The sign (representamen) for level 2 is identical to that for level 1 with
the exception that the numerical dimensions of the given rectangular icon are
labeled (Fig. 13.5). Diagrammatically, therefore, the sign for level 1 is a subset of
the sign for level 2. Generalizing from the Krutetskii Series V system of eight
similar problems in level 2, and benefiting from the interpretive lens that the
Intended Interpretant from level 1 (II;) provides, students infer the level 2 puzzle’s
underlying mathematical concept, the intended interpretant (Il,): the area, or
interior space of this rectangle, can be measured in one of two ways, either by
counting unit squares of the subdivided rectangle or by multiplying the numerical
linear dimensions of the rectangle. In fact, it is possible that level 2
game-interpreters may solve the visual puzzle but not notice that the product of the
rectangle’s dimensions equals the area measurement of the given rectangle. This
inference, however, will be required for game level 3. Notice here how each level of
the game changes the previous sign to open up a new perspective on the object
(Kadunz 2016, p. 35).

—3

K

drea =

Fig. 13.5 Level 2 problem type
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darea =

Fig. 13.6 Level 3 problem type

Level 3. The semiotic object for game level 3 is, again, area of a rectangle. As for
prior game levels, the sign (representamen) for level 3 represents two qualities of
the intended object—its spatial character and its numerical measurement. The sign
for level 3 is nearly identical to that for level 2 with the exception that the given
rectangle is not subdivided into unit squares (Fig. 13.6). The interpreter must either
hypothesize the number of unit squares to highlight (and have this confirmed or
rejected by the interactive puzzle) or recall the relation discovered in level 2 (i.e.,
area measurement of a rectangle can be determined by either counting the unit
squares within the rectangle interior or multiplying the rectangle dimensions). With
the benefit of the intended interpretant from level 2 (II,), a reasonable conjecture for
the area problem in Fig. 13.6 is to highlight 6 unit squares. The game will provide
visual feedback identical to that previously described: highlighted squares will
break apart and either cover (or be shown to not cover) the interior space (area) of
the rectangle. From this experimentation on the level 3 sign/representamen, students
infer the level 3 puzzle’s underlying mathematical concept, the intended interpre-
tant (113): the area, or interior space of this rectangle, can be measured by mul-
tiplying the numerical linear dimensions of the rectangle.

Level 4. The semiotic object for game level 4 is, as for previous levels, area of a
rectangle. While the component parts of the sign (representamen) for level 4 are
identical to that for levels 1 and 2, their order and relation are reversed (Fig. 13.7).
Whereas levels 1, 2, and 3 posit a rectangle of given magnitude and require
inference of the rectangle’s area measurement, level 4 posits the rectangle area
measurement pictorially as a collection of unit squares and requires creation of a
rectangle whose magnitude equals the given area measurement. Through experi-
mentation on the representamen students infer the level 4 puzzle’s underlying
mathematical concept, the intended interpretant (I1l,): area of any rectangle equals
the product of its dimensions. For the given area of 6 square units in Fig. 13.7 a
variety of rectangles (1-by-6, 2-by-3, 3-by-2, or 6-by-1) could be drawn on the
interactive digital grid to solve the visual puzzle.
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area =

Fig. 13.7 Level 4 problem type

area= . 0 cm?

Fig. 13.8 Level 5 problem type

Level 5. Level 5 maintains the structure and reversed logic of level 4 but presents
the area measurement of the rectangle numerically (e.g., 6 cm?) instead of as a
picture of unit squares (compare Figs. 13.7 and 13.8). Given the area measurement
of a rectangle numerically, players must manipulate the representamen diagram to
create a partitioned rectangle whose area measurement equals the given measure.
Essentially, therefore, the intended interpretant of level 5 (Ils) is the symbolic
formula for area of a rectangle, Area = length times width, or A = L x W.
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13.3.6 Semiotic Chaining Analysis

To determine whether the area of rectangle game is a semiotic chain, I analyzed the
game from a variety of perspectives. First, I examined the representamens across
game levels for a Peircean nested semiotic chain in the sense reported by Presmeg
(2006b) for Adeyemi and Hall. Analysis of the game’s representamen failed to
produce such a chain. Second, I examined the argumentation that produced the
Intended Interpretants for each game level. Finally, I analyzed the game according
to Peirce’s design principles for diagrammatic reasoning sequences.

13.3.6.1 Chaining by Argumentation Through Deductive Inference

Given that the SIGN at each level of the Area of Rectangle game includes repre-
sentamens comprised of iconic diagrams that for Peirce invited deductive reason-
ing, it is a logical move to explore deductive inference as the source of a syllogism
that might yield a semiotic chain within this game. Recalling Peirce’s claims that all
mathematical reasoning is diagrammatic and that reasoning with diagrams has the
power to reveal things hidden from view about the logical structure of the diagram,
about the relationship of its parts to one another, and about the analogical relation of
these parts to the intended object, I examined the argumentation within the game.
Table 13.2 illustrates the results of my analysis also elaborated below.

In the following argument, I define A, B, and C to hold the following meanings:

A = area = rectangle interior space

B = measure(A) = count A’s unit squares

C = measure(A) = multiply dimensions of A

Level 1 diagram implies:

Through diagrammatic reasoning on the level 1 diagram, students discover:
measure(A) = B

Level 2 diagram implies:

Through diagrammatic reasoning, students discover:

measure(A) = B,

measure(A) = C.

Through deductive reasoning, students discover that two things equal to the same thing are
equal to each other, or B = C.

Level 3 diagram implies:

Through diagrammatic reasoning OR through application of relationships learned at level 2,
students discover:

measure(A) = C.
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Table 13.2 Application of Peirce three-step plan for design of diagrammatic chains of significant

Representamen Argumentation Intended interpretant Level
6 con? m(A) = C, then create A Given the area of any rectangle |5
interior as a numerical quantity
of unit squares, a rectangle of
appropriate size can be created
on a dynamic grid either by
“ recalling from levels 3 or 4 that
the product of the rectangle
dimensions equals the area
measurement or by applying the
area of rectangle formula,
Area = length x width
eox m(A) = B, then create A Given the area of any rectangle |4
interior as a picture of unit
squares, a rectangle of
appropriate size can be created
R on a dynamic grid either by trial
and error or by recalling from
level 3 that the product of the
rectangle dimensions equals the
area measurement
m(A) =C Interior rectangle space is called |3
: From level 2, we know m area; its size is measured by
w |(A)=Band m(A)=C multiplying dimensions of
Since both members of the rectangle
conjunction (or copulation per
Peirce, 1998, p. 213) are true,
one of the members of the
conjunction can be dropped
without changing the truth value
of the conjunction from True to
False
m(A) = B and m(A) =C Interior rectangle space is called |2
,,,,, area; its size is measured by
« counting unit squares in the
interior of the rectangle; its size
is also measured by multiplying
the dimensions of the rectangle
m(A) =B Interior rectangle space is called | 1

R1

area; its size is measured by
counting rectangle unit squares

Object: area of
rectangle

A = area = rectangle interior
space

B = measure(A) = count A’s
unit squares

C = measure(A) = multiply
dimensions of A
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Through inductive reasoning conducted on the level 3 system of similar problems, students
discover the formula:

Area measurement of rectangle = length x width.
Level 4 diagram implies:

Through diagrammatic reasoning OR through application of relationships learned at levels
1 and/or 2, students discover:

if B = measure(A), then a rectangle interior (A) of appropriate size can be created to equal
B square units.

Level 5 diagram implies:

Through diagrammatic reasoning OR through application of relationships learned at levels
2 and/or 3, students discover:

if C = measure(A), then a rectangle interior (A) of appropriate size can be created to equal
C square units and the dimensions of this rectangle will be factors of C.

Argued more succinctly, it follows that if the area measurement of the rectangle
subdivided into unit squares equals the number of unit squares covering the rect-
angle interior (II,), and the number of unit squares covering the rectangle interior
equals the product of the rectangle dimensions (II,), then by deductive argument,
the product of a rectangle’s dimensions equals the area measurement of a rectangle
subdivided or not (II3). From an inferential reasoning point of view, the concepts
and relations inferred across levels 1, 2, and 3 form a semiotic chain based on
deductive inference in the sense that the argumentation for level 1 implies the
argumentation for level 2 which in turn implies the argumentation for level 3
because it was already established in level 2. The model of chained inferential
reasoning described above does not extend to levels 4 and 5. I argue, however, that
a semiotic chain based on deductive inference exists across game levels 1-3.

13.3.6.2 Chaining by Design: Peirce’s Three-Step Plan for Chaining
Diagrams

At this point, it would be instructive for the reader to return to Peirce’s description
of diagrammatic reasoning quoted earlier in the chapter. In this passage, he alludes
to the design of chains of signification with diagrams (Peirce 1998):

We not only have to select the features of the diagram which it will be pertinent to pay
attention to, but it is also of great importance to return again and again to certain features.
Otherwise, although our conclusions may be correct they will not be the particular con-
clusions at which we are aiming. But the greatest point of art consists in the introduction of
suitable abstractions. By this I mean such a transformation of our diagrams that characters
of one diagram may appear in another as things. (p. 213)

To create such a sequence of diagrams, Peirce proposes a plan based on three basic
principles of inference: principle 1, “copulating several propositions into one
compound proposition;” principle 2, “omitting something from a proposition
without introducing error;” and principle 3, “inserting something into a proposition
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without introducing error” (Peirce 1998, p. 213). I will argue that these principles
undergird the Area of Rectangle game.

Table 13.2 illustrates application of Peirce’s three principles to the design of
semiotic chains based on diagrammatic reasoning in the representamen and argu-
mentation columns. Beginning with the level 1 diagram (representamen), apply
Peirce’s third principle to yield the diagram (representamen) for level 2. This results in
the addition of numerical dimensions to the level 1 diagram without introducing error.
At level 2, experimentation with the diagram produces a diagrammatically reasoned
and previously confirmed (true) proposition m(A) = B along with a newly inferred
true proposition m(A) = C. Following Peirce’s first principle, form these two
propositions into a (true) compound proposition, m(A) = B and m(A) = C, using the
laws of logic for truth tables. Next apply Peirce’s second principle: drop one of the true
propositions (m(A) = B) from the compound statement to infer the true proposition at
level 3, namely m(A) = C: since both members of the conjunction (“copulation” in
Peirce’s terminology) are true, one of the members of the conjunction can be dropped
without changing the truth value of the conjunction from True to False.

13.3.7 Towards a Conceptual Framework for Semiotic
Chaining

Peirce’s three design principles constitute the basis for a conceptual framework of
semiotic chaining grounded in diagrammatic reasoning. The semiotic chain
revealed by the above analysis is an application of Peirce’s design principles for
diagrammatic reasoning. I suggest that the innovative progressive concept visual-
ization task analyzed above exemplifies a new type of semiotic chain that I char-
acterize as a Peircean diagrammatic semiotic chain. As illustrated by the
progressive concept visualization task analyzed in this chapter, the links within
diagrammatic semiotic chains are Peircean iconic diagrams sequenced with the
planned inferential logic of the Peircean design principles for true statements: A, A
and B, B. Also noteworthy in the above analysis is the role that translation of
representations may play in the design of diagrammatic semiotic chains. In this
instance, the insertion without adding error of a numerical representation into a
pictorial one makes application of Peirce’s third principle possible. I suggest the
three Peircean principles of diagrammatic reasoning provide mathematics teacher
preparation with an accessible, conceptually clear visualization-pedagogy for use
with pre-service teachers to guide their planning of progressive visualization tasks
that (1) link visual and symbolic representations of the same mathematical notion
and (2) foster mathematical generalization and abstraction. The diagrammatic
reasoning structure proposed by Peirce, together with the principle of translating
representations, provide the basis for a specialized conceptual framework of
semiotic chaining grounded in Peircean iconic diagrams. Future reflection and
comparative research on the affordances of the three types of semiotic chains—
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dyadic, nested, diagrammatic—will help to close the gap in our understanding of
visualization practices for mathematics teacher preparation.
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