
Chapter 11
Iconicity and Diagrammatic Reasoning
in Meaning-Making

Adalira Sáenz-Ludlow

Abstract The focus of this chapter is twofold. The first is a semiotic description of
the nature of diagrams. The second is a description of the type of reasoning that the
transformation of diagrams facilitates in the construction of mathematical mean-
ings. I am guided by the Peircean definition of diagrams as icons of possible
relations and his conceptualization of diagrammatic reasoning. When a diagram is
actively and intentionally observed, perceptually and intellectually, a manifold of
structural relations among its parts emerges. Such relations among the parts of the
diagram can potentially unveil the deep structural relations among the parts of the
Object that the icon plays to represent. An Interpreter, who systematically observes
and experiments with diagrams, mathematical or not, also generates evolving chains
of interpretants by means of abductive, inductive and deductive thinking. Using
Stjernfelt’s model of diagrammatic reasoning, which is rooted in Peircean semi-
otics, I illustrate an emergent reasoning process to prove two geometric proposi-
tions that were posed by means of diagrams.
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11.1 Introduction

Borrowing from Kant and Peirce, I first present a theoretical rationale to justify that
perceptual and logical judgments are not only essential for diagrammatic reasoning
but that they also go hand in hand with the active and passive workings of the mind
in the construction of objects of knowledge. I also justify both why mathematical
diagrams have important iconic characteristics that facilitate the elicitation of
inferential thinking and why they evolve in the mind of the Interpreter to acquire
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symbolic levels that are essential for abstract mathematical thinking. I then present a
rationale to justify that diagrammatic reasoning is essentially an inferential process
and that mathematical diagrams serve as epistemological tools in the
learning-teaching of mathematics. I finally analyze the proofs of two propositions,
posed in the form of geometrical diagrams, using Stjernfelt’s (2007) model for
diagrammatic reasoning. In the conclusion I highlight the importance of diagrams,
diagrammatic reasoning and the interpretation process they entail, for the
learning-teaching of mathematics.

11.2 The Passive-Active Actions of the Mind
in the Construction of Objects of Knowledge

For Kant (1781/2007), the objects of knowledge have two independent sources of
representations, namely, sensibility and intelligence. He calls the first source phe-
nomena or ‘things-as-they-appear’ and the second noumena or ‘things-as-they-are’.
Therefore, an object of knowledge is both sensible and intellectual or rational. It is
sensible insofar as it is the product of the laws of sensibility, and it is intellectual or
rational insofar as it is the product of the laws of intelligence.

Kant also argues that themind can be influenced by a thing or can create an object of
thought.When themind establishes a relationwith a thing, insofar as it is affected by it,
then the mind is passive with respect to that experienced thing. He calls this relation
sensible intuition. In contrast, when the object depends upon the mind, then the mind
is active creating that object. He calls this relation intellectual intuition.

On the one hand, sensible intuition is the receptivity of the person through which
it is possible that his/her power of representation is affected in a certain manner by
the presence of some object of experience. The object of sensibility is the phe-
nomenon. When an object affects the senses directly, it produces a variety of
sensible intuitions—a manifold of sensations and perceptions. This manifold carries
with it two kinds of elements: (i) a subjective or material element (colors, taste,
hardness, etc.), which has no cognitive value; and (ii) a formal or knowledge-giving
element, which is the spatiotemporal organization and ordering of sensations that
facilitates the formation of perceptual judgments (Wolff 1973).

On the other hand, intellectual intuition is the faculty of the person that enables the
representation of things, which cannot act upon the senses by their own character. The
object of intelligence is the intelligible which contains nothing except what must be
known through intelligence—the noumenon.Kant contends that intelligence can have
two uses: the real use and the logical use. The real use generates representations of
objects or relations out of inner resources, thereby giving concepts to the mind. In
contrast, the logical use orders and compares concepts, whatever their origin, in
systems of species and genera according to the laws of logic. Both the real and logical
uses of intelligence require the formation of conceptual judgments to complement and
expand perceptual judgments (Wolff 1973).
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What is a judgment for Kant? It is an act of the intellect in which two ideas,
comprehended as different, are compared for the purpose of ascertaining their
agreement or disagreement (Wolff 1973). Judgments are usually expressed in
propositions composed of subject, copula or linking verb, and predicate.

Borrowing from Kant, Peirce argues that perceptual judgments on the particular
and concrete contain general elements from which one can intuit general patterns,
universal propositions, and principles. Perceptual judgments, he writes, are also
related to the more deliberate and conscious processes of inferential reasoning, and
this reasoning is continuous and carries with it the vital power of self-correction and
refinement (Peirce 1992). That is, for Peirce, all knowledge is the product of the
self-corrective activity of the mind. He also contends that there is nothing in the
intellect that has not been first in the senses (CP 8.738) and that

realities compel us to put some things into very close relation and others less so; but in the
end, it is only the genius of the mind that takes up all those hints of sense, adds immensity
to them, makes them precise, and shows them in an intelligible form of intuitions of space
and time. (CP 1.383)

Both Kant and Peirce contend that observation has epistemological value and
power because it genuinely depends on both sensible and intellectual intuitions.
They argue that observation is tied to judgment, and that judgment is tied to
intentionally planned reasoning. Peirce also contends that any inquiry activity, fully
carried out by a person, is rooted in observation. For example, he writes, when
different people observe a geometric diagram, they are able to see different rela-
tions, some perceived by the senses and some inferred with the aid of collateral
knowledge. He also adds that collateral knowledge is a prerequisite in the appre-
hension and construction of new meanings (Peirce 1998).

Consequently, it can be said that in the observation of geometric diagrams,
sensible and intellectual intuitions, collateral knowledge, perceptual and intellectual
judgments, altogether, trigger abductive, inductive, and deductive inferences. Then
it can also be said that the transformation of a diagram-token (an object of per-
ception) into a diagram-symbol (an object of thought) is the product of the inter-
twined passive-active actions of the mind. Thus, a person’s perceptual and
intellectual judgments with and through diagrams are mediated by both sensible and
intellectual intuitions.

11.3 Diagrams Initially Seen as Sign Vehicles of Iconic
Nature

To say that ‘diagrams are icons’ is a very general and even strange statement when
considered in colloquial speech. Nonetheless, it makes sense in the Peircean
semiotics in which the notion of ‘sign’ is a manifold of elements and relations
among them. Here I use only capital letters for the word SIGN to unambiguously
signify not only its three constituent elements but also the three possible dyadic
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relations among them. The three constituent elements are: the sign vehicle,1 the
interpretant, and the Object. The three dyadic relations are: (1) between the sign
vehicle and the Object it plays to represent; (2) between the sign vehicle and the
interpretant it determines; and (3) between the interpretants generated and the
dynamic object they progressively construct (i.e., an object which approximates the
Object that the sign vehicle purports to represent and which is in a continuous state
of refinement as new and more sophisticated interpretants are gradually generated).
These three relations are not isolated from each other but interdependent on one
another.

It is important to note that the interpretant is not the Interpreter. The interpretant
is the effect of the sign vehicle on the mind of the Interpreter. The Interpreter,
instead, is an agent who takes part in and presumably exerts control over the
process of interpretation. Colapietro (1993) argues that the interpretant is not just
any other result generated by a sign vehicle since this could also produce unrelated
results. For example, he says, a fire indicating the presence of survivors of an
airplane crash might also set a forest ablaze. The forest fire would be an incidental
result but not an interpretant of the sign vehicle calling for help or indicating the
whereabouts of the survivors.

Thus, the interpretant of a sign vehicle depends on what the Interpreter ‘makes of
it’ and it is not just any co-emergent secondary result the sign vehicle might
produce. In fact, the interpretant of a sign vehicle is another sign vehicle which is a
transformation of the former; thus we could also denominate the interpretant as a
sign-interpretant. This transformation enhances the initial sign vehicle and devel-
ops, in the mind of the Interpreter, a dynamic object which is more meaningful and
more closely related to the Object that the initial sign vehicle plays to represent.
Thus the interpretants are the product of acts of interpretation that progressively can
move forward the conceptualization of the hidden Object that the initial sign vehicle
stands to represent. As long as the Interpreter so desires, the interpretants become
more sophisticated and abstract and the process of approximation of the dynamic
object towards the Object continues through the process of interpretation which
could be a never ending process of semiosis for the individual.

1The word SIGN, in capital letters, is used here to refer to the Peircean notion of ‘sign’ defined as a
system constituted by a set of three elements and the dyadic relations among the three elements.
The Peircean triadic notion of ‘sign’ was and continues to be a historically new conceptualization
of ‘sign’ for which he is famously known (see Vasco et al. 2009). In other words, we could
symbolize his triadic notion of ‘sign’ as a system constituted by a set and the relations governing
the elements of the set in the following way:

SIGN = ({sign vehicle, interpretant, Object}, Dyadic relations among the three elements of the
set).

The sign vehicle is only one of the elements of the set that stands as a representation of another
element in the set, namely the Object. Most of the time, Peirce used the word ‘sign’ for sign
vehicle without advising the reader about the use that he meant; the meaning has to be decoded
from the context in which the words were used. However, sometimes he clearly uses the words
sign vehicle and representamen to refer to the representation of the Object.
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For Peirce a sign vehicle is “anything which, being determined by an Object,
determines an interpretation to determination, through it, by the same Object”
(1906, p. 495). He also adds that “a sign [sign vehicle] is not a sign [sign vehicle]
unless it translates into another sign [sign vehicle]” (CP 5.594) and that “a sign
[sign vehicle] is anything which determines something else (its interpretant) to refer
to an object to which itself refers in the same way, the interpretant becoming in turn
a sign [sign vehicle], and so on ad infinitum” (CP 2.303, italics added). He goes
even further to say that the relation between the sign vehicle and its Object could be
of iconic, indexical, or symbolic nature.

When is the relation between a sign vehicle and its Object of iconic nature? The
icon is a sign vehicle determined by its Object by partaking in certain characteristics
of that Object. In other words, the icon is a sign vehicle that bears some sort of
resemblance or similarity to its Object. Peirce subdivides the icons into three types:
diagrams, images, and metaphors. The diagram is characterized by some kind of
similarity with its Object in the sense that it displays somewhat the existing rela-
tions between the parts of the Object in a skeleton-like manner (Stjernfelt 2007). In
contrast, the image represents the Object through simple qualities, and the metaphor
represents the Object through a similarity found in something else.

When is the relation between a sign vehicle and its Object of indexical nature?
The index is a sign vehicle determined by its Object by being in its individual
existence and connected with it. The index has a cause-effect connection to its
Object, and it directs the attention to that Object by blind compulsion that hinges on
association by contiguity (CP 1.558, 1867). An example of an index is the con-
nection between the letter ‘x’ and an unknown variable quantity.

When is the relation between a sign vehicle and its Object of symbolic nature?
The symbol is a sign vehicle determined by its Object by more or less approximate
certainty that it will be interpreted as denoting the Object as a consequence of a
habit. The symbol hinges on intellectual operations, cultural conventions, and habit
(CP 3.419).

Fisch (1986) argues that these three relations between the sign vehicle and its
Object are not independent of each other and that they also evolve in the mind of
the Interpreter. In fact, these relations constitute a nested triad in which the more
complex sign vehicle involves specimens of the simpler ones. In other words,
symbols typically involve indices which, in turn, involve icons. This also means
that icons are incomplete indices which, in turn, are incomplete symbols. This
relation between the sign vehicle and its mathematical Object also depends on what
the Interpreter ‘makes of it’. For example, when a mathematician reads the insti-
tutionalized definition of limit, he can ‘see’ symbols hinting at relations, among
others infinite embedded intervals of real numbers on the x- and y-axis. In contrast,
students can only ‘see’ awkward mathematical marks (iconic sign vehicles with no
clear meaning). Thus the teacher has to guide the evolution of the students’
interpretations of these ‘icons’ so that they can advance their understanding of them
as symbolic sign vehicles that carry with them the rich meanings of the notion of
limit.
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From this categorization of sign vehicles into icons, indices, and symbols, we
learn that different sorts of sign vehicles can represent, in different ways, the Object
that reasoning is concerned with. Now, since reasoning has to make its conclusions
manifest, to oneself and to others, it also has to be concerned with the dynamic
objects of perceptual and rational insights, objects which are evolving in the mind
of the Interpreter. Therefore, reasoning has to be concerned with the interpretation
of sign vehicles and their transformation, through the interpretants, into mental sign
vehicles.

Mathematical diagrams, as icons, implicitly represent the structural features of
the mathematical Object through some kind of similarity. Thought-experimentation
on the diagrams facilitates the perceptual and intellectual progress of such evolution
in the mind of the Interpreter. The Interpreter may see a diagram merely as a
diagram-token (a pure icon), or as a diagram-icon or schema (an icon with indexical
traits), or as a diagram-symbol (an icon with iconic-indexical-symbolic traits).
Then, what type of icon is a diagram for the Interpreter? It depends on what the
Interpreter ‘makes of it.’ This means that it depends both on prior and collateral
knowledge that the Interpreter has and is able to draw into the situation at a
particular point in time, and on his/her own ways of observing and interpreting by
means of perceptual and intellectual judgments. This is also to say that the
Interpreter, in the process of observation and interpretation, simultaneously plays
the perceptual elements in thought and the thought elements in perception in order
to mediate them.

11.4 Mathematical Diagrams Elicit Deductive Reasoning

Peirce (1906) argues that symbols afford the means of thinking about thoughts in
ways in which we could not otherwise think of them; they enable us to create
abstractions, which are the genuine means of discoveries. Knowledge is habit and
symbols rest exclusively on already well preformed habit; thus symbols do not
furnish any self-observation and so they do not enable addition to our knowledge.
On the other hand, indices provide only positive assurance of the reality and
nearness of their Objects. This assurance does not give any insight into the nature of
those Objects. In contrast to symbols and indices, icons partake in the more or less
overt character of their Objects and therefore they do not stand unequivocally for
this or that existing thing. As a consequence, the Object “may be a pure fiction as to
its existence, … but there is one assurance that the icon does afford in the highest
degree; namely, that which is displaced before the mind’s gaze—the Form of the
icon, which is also its Object—must be logically possible” (1906, p. 496).

This is to say that diagrams, being icons, implicitly present by analogy, per-
ception or inference the structural characteristics of the Object that they play to
represent. Therefore, the perceptual and intellectual observation of diagrams, on the
part of the Interpreter, has the potential to bring to the fore possible logical relations
that have the effect of unveiling the structural elements of the Object (the
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object-as-it-is). Mathematical diagrams such as geometric figures, mathematical
formulas and equations, graphs, tables, maps, etc., are essentially icons that also
carry with them potential indexical and symbolic features that can guide perceptual
and intellectual intuitions. These features of diagrams in general, and of mathe-
matical diagrams in particular, pertain to the forms of the relations that structure the
parts of the Object. Peirce also argues that diagrams are necessary for deductive
reasoning; nonetheless, this necessity only means that the conclusion follows from
the premise(s):

Deduction is that mode of reasoning which examines the state of things asserted in the
premises, forms a diagram of that state of things, perceives in the parts of the diagram
relations not explicitly mentioned in the premises, satisfies itself by mental experiments
upon the diagram that these relations will always subsist, or at least would do so in a certain
proportion of cases, and concludes the necessary, or probable truth. (CP 1.66)

Given that diagrams present only a skeleton representation of the relations
among the constituent parts of their Objects, they trigger through observation and
experimentation abductive, inductive and deductive inferential processes.

11.5 Diagrammatic Reasoning as an Inferential Process

Peirce argues that the structure of a diagram has structural similarities with the
abstract and hidden structure of its Object. This similarity warrants that the pur-
poseful observation, perceptual and intellectual, of the structural relations among
the parts of the physical diagram (the phenomenon or the Object-as-it-is-perceived)
will enable thought-experimentation to infer the structural relations among the parts
of the Object (the noumenon or the Object-as-it-is) by means of inferential rea-
soning. Peirce calls this amalgamated thinking process diagrammatic reasoning:

By diagrammatic reasoning, I mean reasoning which constructs a diagram according to a
precept expressed in general terms, performs experiments upon this diagram, notes their
results, assures itself that similar experiments performed upon any diagram constructed
according to the same precept would have the same results, and expresses it in a general
form. (CP 2.96, italics added)

The aim of diagrammatic reasoning is the construction of a mathematical
argument that warrants the abstract structure of the mathematical Object. This
argument is constituted not only by the construction of isolated inferences but also
by the logical and cohesive concatenation of them. Each inference is the result of
evolving related interpretants to form a logical assertion. In contrast, the argument
is the concatenation of logical inferences that lend themselves to form a coherent
chain of mathematical inferences. In this chain, any inference is sustained by prior
ones. The formation of the argument is, for Peirce, the formation of a logical rule
that has coherence and completeness. When Peirce uses the terms logical or logic,
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he means it in the sense of ‘logic’ as the study of thought insofar as it is subject to
self-control with the aim of developing good habits of reasoning.

The mathematical argument, once formed, has to be expressed in complete
sentences or mathematical statements. Each sentence or statement (subject, copula
or verb, and predicate) uses mathematical terms or notations in order to convey a
unit of thought. This is to say that sentences or statements can encode logical
inferences in linguistic and mathematical terms. For a collection of sentences or
statements to constitute a written mathematical argument they have to be combined
and concatenated in a logical and linear manner to unveil the holistic abstract
structure of the mathematical Object.

The analysis of the parts of a diagram, the relations among those parts, and the
synthesis expressed in the argument reflect not only the perceptual elements in
thought and the thought elements in perception but also the audacity of the mind to
bring into play relevant collateral knowledge to aid in the justification of certain
assertions. From this nonlinear activity of the mind, the holistic unity of the
argument emerges out of the formation of a diversity of perceptions and percepts,
perceptual and logical judgments, and conceptions. The differentiation between
perception, percepts, conceptions and concepts will be made in a later section.
Altogether, they come to unveil, in no uncertain terms, the structure of the math-
ematical Object and the validity of the conclusion.

It comes then as no surprise that Peirce appropriates the triad term/noun,
proposition, and argument as the triad that reveals the connection between the sign
vehicle and the nature of the interpretants it produces in the mind of the Interpreter.
Peirce expands the meaning of this triad and he considers it as the triad seme/
possibility/concept/term, pheme/actuality/proposition, and argument. A seme/term
is “anything which serves for any purpose as a substitute for an Object”; it is, after
all, “the Immediate Object of all knowledge and all thought” (1906, pp. 506–507).
The pheme/proposition is “intended to have some sort of compulsive effect on the
Interpreter of it” (ibid.). The argument tends “to act upon the Interpreter through his
own self-control, representing a process of change in thoughts or signs [sign
vehicles], as if to induce this change in the Interpreter” (ibid.).

It will be worthwhile here to summarize that the SIGN, for Peirce, is a triadic
relation between its constitutive elements, namely, the sign vehicle, its Object, and
the interpretant it provokes in the mind of the Interpreter. He unfolds the relation
between the sign vehicle and the Object in the triad (icon, index, symbol); the
relation between the sign vehicle and the interpretant in the triad (seme/term,
pheme/proposition, argument) assigning to the argument a high logical standing;
and the relation between the sign vehicle and its own internal nature in the triad
(qualisign, sinsign, legisign). A qualisign is a quality and it cannot act as a sign
vehicle until it is embodied; however its embodiment has nothing to do with its
character as a sign vehicle. A sinsign (meaning being only once) is an actual
existing thing or event. A legisign is a law; it is not a single object but a general
type. Each legisign signifies through an instance of its application and each instance
is a replica or a sinsign (Peirce 1998).

200 A. Sáenz-Ludlow



Although the latter triad does not have an immediate impact on the main goal of
this paper, the coordination of the above three triads are at the root of Peirce’s
tenfold classification of sign vehicles. They can support a better analysis of dia-
grammatic reasoning in the classroom and a better analysis of the epistemological
process necessary for the learning-teaching of mathematics. In this chapter, I
concentrate on the chains of interpretants that geometric diagrams prompt when
they are intentionally observed and experimented with.

11.6 Mathematical Diagrams as Epistemological Tools

Stjernfelt, a semiotician who has dedicated several books and articles to the analysis
of Peirce’s diagrammatic reasoning, extensively argues about the benefits of his
non-trivial definition of icon. He argues that Peirce’s definition avoids the weakness
of most definitions of iconicity by similarity because of its connection with
observation and thought-experimentation to discover additional pieces of infor-
mation about the Object that the icon stands to represent. Peirce argues that “a great
distinguishing property of the icon is that by direct observation of it other properties
concerning its Object can be discovered than those which suffice to determine its
construction” (CP 2.279, quoted in Stjernfelt 2007, p. 90; italics added).

In other words, diagrams, as icons, afford the formation of perceptions and
conceptions that the grammar and syntax of their construction permit. However,
while physical diagrams remain in the field of the senses, new logical relations
among their parts can possibly emerge by means of imagination, manipulation,
observation, and thought-experimentation. After all, a diagram can be characterized
in one’s mind in a variety of ways, “as a token, as a general sign [sign vehicle], as
definite form of relation, as a sign [sign vehicle] of an order in plurality, i.e., of an
ordered plurality or multitude” (Robin 1967, p. 31).

Peirce argues that “both the iconic diagram and its Initial Symbolic Interpretant
constitute what… Kant calls schema, which is, on one side, an object capable of
being observed while, on the other side, is a General” (1976, p. 316, italics added).
He also argues that more can be learned about the Object of the diagram by the
contemplation of explicit and implicit relations hidden in the physical structure of
the diagram. He also adds that “all necessary reasoning is diagrammatic” and that
“the diagram is an icon of a set of rationally related objects, a schema which
entrains its consequences” (Robin 1967, p. 31). Furthermore, it can be said that
diagrams are epistemological tools for inferential thinking.

Peirce adopts and adapts Kant’s cognitive notion of schema for the inner
workings of the mind of the Interpreter that a geometric diagram can produce, and
gives an operational definition for this cognitive activity. A geometric diagram

is a construction formed according to a precept furnished by the hypotheses; being formed,
the construction is submitted to the scrutiny of observation, and new relations are dis-
covered among its parts, not stated in the precept by which it was formed, and are found, by
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a little experimentation, to be such that they will always be present in such a construction.
(CP 3.560, italics added)

This operational definition of diagram and diagrammatic reasoning entails that once
a geometric diagram is constructed, it can be observed, manipulated physically and
mentally, and transformed through physical and intellectual experimentation. As a
result, what follows is the formation of dynamic interpretants that sooner or later
become logical interpretants. The latter will become logically harmonized to con-
tribute to the formation of chains of inferences that, in time, come to be expressed,
organized and synthesized in coherent and logically coordinated sentences or
mathematical statements. This is to say that the formation of mathematical argu-
ments, geometric or otherwise, is an evolving cognitive process that is by no means
linear but that will be presented as linear in the written argument.

Euclidean geometry is a classic example of physical and intellectual manipu-
lation, and of thought-experimentation that can be performed on geometric dia-
grams. “Euclid first announces, in general terms, the proposition he intends to
prove, and then proceeds to draw a diagram, usually a figure, to exhibit the ante-
cedent condition thereof” (Peirce 1976, p. 317). Peirce’s assertion reminds us of
Polya’s heuristics for solving problems and the formation of the mental schema to
support construction of solutions. This is to say, understanding the problem and
constructing a figure or diagram, devising a plan by means of thought experi-
mentation on the diagram and bringing into play appropriate collateral knowledge,
carrying out the plan within the logic of mathematical systems, and retrospectively
and prospectively reflecting on possibilities for generating new problems or gen-
eralizing the one at hand (Polya 1957).

Nowadays, given the dragging mode of dynamic geometry environments, the
manipulation of geometric figures is expedited, and with it, the observation of
intentional manipulation and planned experimentation. Thus, the observation of
variant and invariant relations among the elements of a geometric figure facilitates
the formation of conjectures as well as their validation. The role of diagrams in
deductive reasoning is well argued by Peirce:

All deductive reasoning, even simple syllogism, involves an element of observation;
deduction consists in constructing an icon or diagram the relations of whose parts shall
present a complete analogy with those of the parts of the object of reasoning; in experi-
menting upon this image in the imagination; and in observing the result so as to discover
unnoticed and hidden relations among the parts. (CP 3.363, italics added)

Netz (2014), who has dedicated himself to studying the evolution of Greek
mathematical thinking, describes the Greeks’ history of reasoning with geometric
diagrams as follows: (a) Greek mathematical diagrams shaped deduction in math-
ematics; (b) mathematical objects were determined through diagrams; (c) letters
inserted in diagrams were indices, not symbols; (d) diagrams are the metonymy of
the propositions; (e) the writing of a proof was preceded by an oral rehearsal. He
then concludes that, in general, the emergence of mathematical thought requires an
inter-subjectively given object.
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All in all, in this and prior sections we have a semiotic and a historical assurance
that mathematical diagrams are tools that mediate deductive thinking. Given that
deductive thinking is a source of knowledge, we can conclude that mathematical
diagrams serve as epistemological tools for the learning-teaching of mathematics.

11.7 Visualization as an Indispensable Element
in Diagrammatic Reasoning

For centuries it has been recognized that sense perception is an essential element of
cognition. Kant (1781/2007) asserted that perception without conception is simply
blind and that conception without perception is merely empty. For him, the thought
elements in perception and the perceptual elements in thought are complementary
and both make human cognition a unitary process that leads the way from the
elementary acquisition of sensory information to the most generic theoretical ideas
(Wolff 1973).

Following Kant, Peirce differentiates between immediate perceptions and per-
cepts. Kant argues that perceptions are the effect of the empirical object
(thing-as-it-appears) upon bodily sense organs and that by subjective association
the mind forms a manifold of perceptions that are coordinated by means of
empirical judgments—this manifold of perceptions is the percept. Percepts need to
be transcended by means of mental operations for a conception to be formed.

The synthetic unity of a manifold, therefore, is the characteristic possessed by a collection
of mental contents by virtue of their having been produced by the imagination in accor-
dance with a single rule. The consciousness of that synthetic unity is the conception of the
rule by which it has been produced. (Wolff 1973, p. 130)

In general, it can be said that percepts are concrete instantiations of the Object
(phenomenon or the Object-as-it-appears) and whose gradual and continuous dif-
ferentiation proceed toward conceptions. Peirce argues that this “continuity is a
special kind of generality among the relation of all of a certain kind of parts of one
whole and that this continuity implies a passage from one percept to a contiguous
conception” (CP 7.535). In fact, this continuity is the essence of the process of
unlimited semiosis which mediates the transformation of perceptions into percepts,
of percepts into conceptions, and of conceptions into concepts or the conceptual
Object (noumenon or the Object-as-it-is).

During the last decades, cognitive scientists, by means of experimentation, have
reinforced the notion that to perceive the external environment “our brain uses
multiple sources of sensory information derived from several different modalities,
including vision, touch and audition. All these sources of information have to be
efficiently merged to form a coherent and robust percept” (Ernst and Bülthoff 2004,
p. 162).

In the classroom, dynamic geometric environments offer not only the visual
modality but also the simultaneous touch modality during the dragging process,
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which is mediated by the mouse or by the touch-pad. The integration of these two
sources of information not only reduces perceptual estimations produced by
paper-pencil drawings of geometric figures but it also enhances the formation of
more reliable perceptions. The transformation of these perceptions entails the for-
mation of percepts and empirical and logical judgments to produce all sorts of
interpretants that sustain the formation of conceptions in the process of reasoning
through diagrams.

During the last decades, there has been a history of research in mathematics
education focusing on visual perception and its close connection with conceptu-
alization. Seminal theoretical works from cognitive scientists were and continue to
be influential in mathematics education. Among some of these works could be
mentioned, with apologies to all who are not mentioned here but who are
nonetheless recognized in our minds, Arheim’s book on Visual thinking (1969),
Johnson-Laird’s book on Mental models (1983), and Davis and Anderson’s (1979)
article on Nonanalytic aspects of mathematics and their implication for research
and education. To place specific emphasis on visual perception, Arheim (1969)
rephrased Kant and wrote, “vision without abstraction is blind and abstraction
without vision is empty” (p. 188).

For a synthesis of research on visualization in the learning and teaching of
mathematics, the reader is referred to Presmeg’s (2006) handbook chapter. In what
follows I present a bird’s eye view of some of the seminal notions that emerged in
the 1980s.

Bishop (1989) proposed two types of ability constructs: integrating figural
information and visual processing. The first is described as the ability to relate to a
particular situation presented in some form of visual representation. The second is
described as the ability to translate abstract relations and non-figural information
into visual terms. The notions of concept definition, concept image, and image
schemata also contributed a good amount of research in mathematics education.
Concept definition refers to the definition institutionalized by the mathematics
community at large (Tall and Vinner 1981). Concept image refers to subjective
construction of meaning that corresponds to the concept definition of institution-
alized mathematics (Arcavi 1999; Tall and Vinner 1981). Image schemata refers to
the individual’s mental constructions connecting those related concept images
subjectively constructed by the individual (Dörfler 1991). Both the concept image
and the image schemata provide a non-verbal, non-propositional component of
cognition that contrasts with the notational and/or verbal descriptions of the concept
definition. These notions, directly or indirectly, somewhat address the abstract and
analytic nature of inferential reasoning (abductive, inductive, and deductive).

Skemp’s (1987) book, The psychology of learning mathematics, also has been
very influential in mathematics education research. Skemp goes beyond the above
mentioned notions when he links perception and symbolic systems (symbolic
mathematical notations or what he calls surface structures) as mediators in the
construction of concepts (or what he calls conceptual structures or deep structures).
His diagram shows this connection (p. 177) (Fig. 11.1). Figure 11.1 is Skemp’s
diagram complemented with other definitions in his book.
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Skemp’s diagram is a clear illustration of Goodman’s (1978) argument in the
introduction to his book, Ways of worldmaking. He writes,

Kant exchanged the structure of the world for the structure of the mind; C.I. Lewis
exchanged the structure of the mind for the structure of the concepts; and this book makes
the argument for the exchange of the structure of the concepts for the structure of the
several symbol systems of the sciences, philosophy, the arts, perception, and everyday
discourse. (p. x)

In summary, all symbolic mathematical notations (surface structures) are
essentially special kinds of diagrams; diagrams with iconic aspects and with the
potential to unveil the indexical and more general symbolic aspects of the mathe-
matical Objects that these diagrams stand to represent. The relations among the
parts of the diagram (as-they-appear-to-the-senses) are physical representations of
possible logical structural relations (as-they-appear-to-the-mind’s eye) among the
parts of the conceptual Object (the-Object-as-it-is). Reasoning through diagrams is
essentially a process of unlimited semiosis, in which the interpretants mediated by
diagrams are inferentially constructed and should also be logically connected to
produce the conceptualization of the deep structure of the conceptual Object or an
acceptable approximation of it. This semiosis is unlimited in the sense that even
when an approximation to the conceptual object has been reached, a better and
more sophisticated approximation could be produced in the future. For the notion
of approximation we refer the reader to the article on inter-intra interpretation
(Sáenz-Ludlow and Zellweger 2016).

Fig. 11.1 Skemp’s connection between perceptions and concepts
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11.8 Stjernfelt Model for Diagrammatic Reasoning

Stjernfelt (2007) captures, in Fig. 11.2, the essence of the process of diagrammatic
reasoning, a process rooted in perceptual and mental activity to produce chains of
inferences. This figure, which is itself a diagram, is a useful tool for thinking about
the processes of proving and problem-solving. It synthesizes a manifold of relations
that integrates the construction of the diagram, the observation of structural rela-
tions among its parts, and the perceptual manipulation and thought-experimentation
to infer new possible relations conducive to the attainment of a logical conclusion
or a solution.

He also describes this process in terms of the transformation of diagrams
co-emerging with the formation of evolving interpretants. In this transformation, the
implicit deep structural aspects of the Object (the Object-as-it-is) can be unveiled
because of their analogy with the relations among the parts of the diagram. This is
to say that, during the process of interpretation, the Interpreter mentally refurbishes
the given or initially constructed diagram (transformand diagram) into more
meaningful diagrams (transformate diagrams). In this process, a given or con-
structed diagram-symbol is interpreted by an Interpreter as a diagram-token and
transformed into a diagram-icon or schema that is transformed again and again until
the structural relations among the parts of the mathematical Object are unveiled by
the Interpreter so as to see it as a diagram-symbol with the deep and hidden
meaning that the initial diagram-symbol played to represent. Each time, new
transformate diagrams reveal more and deeper structural relations among the parts
of the mathematical Object that hinge on mental operations and inferential rea-
soning. It is in this sense that iconic sign vehicles grow into symbolic sign vehicles
in the mind of the Interpreter. Although guided by the initial diagram-symbol, the
Interpreter is giving freedom to think and to be creative within the context of a
particular mathematical situation.

The sequence of interpretants that co-emerge with the transformations of the
initial diagram is summarized by Stjernfelt (2007) using the letters a, b, c, d, e, f, g.
to describe the progressive steps in the development of deeper meanings con-
structed with and through new transformate diagrams.

Fig. 11.2 Diagrammatic reasoning as a process (Stjernfelt 2007)

206 A. Sáenz-Ludlow



a. Symbol (1): Diagram-symbol [i.e., transformand diagram or mathematical
symbol in the mind of the proposer of a problem or proposition].
b. Immediate Iconic Interpretant (b < a): Diagram-token [a rule-bound diagram].
An initial interpretation of the diagram-symbol a.
c. Initial interpretant (b + c < a): The diagram-token is transformed into a
diagram-icon [schema or skeleton relations among the parts of the diagram emerge
in the mind of the Interpreter]. Initial transformate diagram.
d. Middle Interpretant ((b + c) + d < a): A diagram with three sources, a, b, and
c. An emergent symbol-governed diagram equipped with possibilities of transfor-
mation [diagram-symbol, a more advanced transformate diagram with possibilities
of further mental transformations].
e. Eventual, Rational Interpretant: New emergent transformate diagram-symbol.
f. Symbol (2): Concluding transformate diagram-symbol or conclusion.
g. Post-Diagrammatical Interpretant (different from b): This interpretant is an
interpretant of a as well; however, now the diagram-symbol produced is enriched
by the total interpretant of Symbol (1).

It is important to note that transformate diagrams are substantially embedded in
the transformand diagram with all their unveiled significant features. That is, dia-
grammatic reasoning is the mental process of the Interpreter who intentionally
endeavors both in the observation and in the manipulation of an initial diagram
[transformand diagram/symbol (1)]. He first interprets this diagram as a
diagram-token and then progressively enriches it and transforms it into
diagram-icon and diagram-symbol (transformate diagrams). The final
diagram-symbol [transformate diagram/symbol (2)] is the Interpreter’s construction
of the symbolic meaning of the initial diagram-symbol [transformand diagram/
symbol (1)]. This is to say that the Interpreter finally unveils, as best as he/she can,
the structure of the Object that the transformand diagram [symbol (1)] stands for.

It can be said that diagrammatic reasoning is a process by which the Interpreter
intentionally endeavors in a process of inter-intra interpretation (Sáenz-Ludlow and
Zellweger 2016) to enhance both the observation and manipulation of an initially
proposed diagram-symbol in the mind of the proposer but only perceived by the
Interpreter as a diagram-token. The Interpreter then transformes it into a
diagram-icon, which in turn is transformed into a diagram-symbol enriched with
new inferred general relations that contribute to unveil the hidden structural rela-
tions of the mathematical Object implicit in the proposed diagram.

11.9 Examples of Diagrammatic Reasoning

11.9.1 The Five Point Star

The geometric diagram of a five-point star was taken from Nelsen’s (1993) book
Proofs without words (p. 14). This example was modified to ask for the formulation
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of a conjecture with the use of the Geometer’s Sketch Pad (GSP). Below I first
present the transformand diagram and the formulation of the conjecture. Then I
present a sequence of interpretants and transformate diagrams which aided in the
proof (Fig. 11.3).

Given the dragging and measuring modes of the GSP, a conjecture can be
inductively constructed: the sum of the five point-angles of a five-point star is 180°.
A first observation reveals a pentagon with five non-overlapping triangles (here
called point-triangles) formed by the extension of each of its sides. A second
observation reveals implicit overlapping triangles constituted by the pentagon and
two point-triangles. A third observation indicates that there are five overlapping
triangles, each sharing one vertex with the pentagon.

Now it is necessary to bring to the fore some sort of appropriate collateral
knowledge to make some sense of the observation. For example, the measure of the
interior and exterior angles of triangles, the measure of straight angles, the measure of
exterior and interior angles of pentagons, and the measure of vertical angles. The
ensuing mental operations are to inquire about the possible connections among the
collateral knowledge, the point-triangles, and overlapping triangles to prove the
conjecture. Figures 11.4, 11.5 and 11.6 present a sequence of transformate diagrams.

In what follows I describe the sequence of interpretants that enabled transfor-
mations of the given diagram-symbol which was initially interpreted as a
diagram-token.

Immediate interpretant. Visual perception of the five-point star as constituted by
a pentagon and five point-triangles. The Interpreter mentally creates a transformate
diagram-token representing the initial relations among the parts of the given dia-
gram (see Fig. 11.4).

Initial interpretant. The visualization of the five-point star as constituted by a
pentagon with five point-triangles formed by the extension, in both directions, of
each of its sides. The Interpreter transforms the prior diagram-token into a
diagram-icon. The latter indicates new relations and new possibilities for the con-
struction of regular and irregular five-point stars.

Middle interpretant. The visualization of five implicit overlapping triangles:
ΔWJK, ΔZMI, ΔQKL, ΔNIJ, and ΔPLM, each of which shares a vertex (W, Z, Q,
N, or P) with the pentagon and two corresponding vertices of the star. Thus each

m IJK m KLM m JIM m LKJ m LMI m IJK + m KLM + m JIM + m LKJ + m LMI
44.75° 31.99° 32.95° 28.60° 41.71° 180.00°
44.75° 28.19° 38.30° 28.60° 40.16° 180.00°
39.43° 28.19° 39.63° 32.59° 40.16° 180.00°
39.07° 28.19° 46.16° 32.59° 33.98° 180.00°
46.38° 28.19° 41.34° 30.11° 33.98° 180.00°

Conjecture :
The sum of the five point-angles of any five-point star is 180°

1

2

3

4

5

K

L

M

J

I

Fig. 11.3 Transformand diagram and the conjecture
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triangle has already two point-angles of the star that when added give the measure
of an external angle of that particular triangle. The Interpreter transforms the prior
diagram-icon into a diagram-symbol. The latter enables the selection of appropriate
collateral knowledge for the attainment of the proof of the conjecture (see
Fig. 11.5).

Eventual rational interpretant. How are the angles of any point-triangle related
to the angles of overlapping triangles that share a vertex with the pentagon? Focus
on one point-triangle at a time, for example ΔWZL. Which overlapping triangles
will be related to this triangle? To make a decision, it would be useful to consider

5

4

3

2
1

I

J

M

L

K

Fig. 11.4 Point triangles and
pentagon
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5
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W

K

L

M

J

I

Fig. 11.5 Two of the five
overlapping triangles: ΔINJ
and ΔIZM
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the vertices W and Z of this triangle because they are also vertices of the pentagon.
This leads one to consider the overlapping triangles ΔJWK and ΔIZM (see
Fig. 11.6).

Consider triangles ΔJWK and ΔIZM
∠LWZ = ∠1 + ∠4 (external angle of ΔJWK)
∠LZW = ∠3 + ∠5 (external angle of ΔIZM)
(∠1 + ∠4) + (∠3 + ∠5) + ∠2 = 180° (the sum of angles of △WZL is 180°).
Since ∠4, ∠1, ∠3, ∠5, ∠2 are the point-angles of the five-point star, they add

up to 180°.
Post-diagrammatical interpretant. The systematic dragging and observation of

the five-point star guided the reasoning to formulate a conjecture about the sum of
its point-angles and its proof. Several questions come to mind. Is this conjecture
true for regular five-point stars? Can this conjecture be proved using the interior and
exterior angles of the pentagon? Can this conjecture be proved using straight
angles? Can the conjecture be generalized for n-point regular and irregular stars?
The answers to these questions are in the positive. Unfortunately, space limitation
does not allow for the presentation of the other proofs and the generalization but the
reader is invited to try them. Nonetheless, the generalization arrived at is that the
sum of the point-angles of any n-point star, regular or irregular, is (n − 4) 180°.

11.9.2 Trigonometric Functions of the Sum and Difference
of Angles

The second example presents a geometric diagram proposed by Nelsen (2000,
pp. 46–47) for proving the six trigonometric identities sin(a + b), cos(a + b), sin

4+ 1

5

4

3

2

1

Q

P

W

Z

N

K

I

J

M

LFig. 11.6 Overlapping
ΔJWK and ΔIZM correlated
to point-triangle WZL
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(a − b), cos(a − b), tan(a + b), and tan(a − b). The diagram proposed is an
ingenious partition of a rectangle into four non-overlapping right-triangles. This
partition is a creative abduction on the part of the proposer of the problem.
Nonetheless, the inferential reasoning that follows from the observation of this
transformand diagram is rooted in overcoded abductions as opposed to genuinely
creative abductions (Sáenz-Ludlow 2016).

The analysis of the diagrammatic reasoning for each proof is presented visually
by a sequence of transformate diagrams (Figs. 11.7 and 11.8) followed by a brief
description of the co-emerging interpretants. The first four proofs are very similar in
nature due to the strategic position of the length 1 for the hypotenuse of the most
interior right-triangle.

Immediate interpretant. Visual perception and collateral knowledge aided the
identification and justification of the positions of the angles a, b, a + b, a − b as
well as the strategic position of b as one of the acute angles of the most interior
right-triangle with hypotenuse of length 1.

Initial interpretant. In Fig. 11.7 the angle a with vertex C repeats with vertex B
due to their perpendicular sides, and the angle (a + b) with vertex C repeats with
vertex A due to their position as alternate interior angles between parallel sides of
the rectangle and the transversal AC. In Fig. 11.8 the angle a with vertex C repeats
with vertex B due to their position as alternate interior angles between parallel sides
of the rectangle and transversal CB, and it also repeats with vertex A due to
perpendicular corresponding sides. Angle (a − b) is directly given because a and b
overlap and a > b. The right-triangle AFC in Figs. 11.8 and 11.9 facilitates the
visual and determination of sine and cosine of (a + b) and (a − b) in terms of
segment-lengths due to the length 1 of the hypotenuse AC of right-triangle AFC.

β

1

cos β

α

sin αcos β+cosαsin β

cos αcos β-sinαsin β

α
sin β

(α+β)

sin(α+β) 1

(α+β)(α+β)

α

α

α
β

1

β

sin β
α

cos(α+β)

cos αcos β

sinαcos β

cos αsin β

sinαsin β

α

cos β

1

β
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E

D
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E

D A
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Fig. 11.7 Transformand and transformate diagrams for sin(a + b) and cos(a + b)
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Fig. 11.8 Transformand and transformate diagrams for sin(a − b) and cos(a − b)
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Middle interpretant. The right triangles ADB and CEB with hypotenuses sin b
and cos b, respectively, enable the visual determination of the sine and cosine of
their acute angles. The addition and subtraction of length-segments give the for-
mulas for sin(a + b) and cos(a + b) (Fig. 11.7), and sin(a − b) and cos(a − b)
(Fig. 11.8) from the respective transformate diagrams.

Eventual rational interpretant. By the definition of the sine and cosine functions
of the angle a + b in the right-triangle AFC in Fig. 11.7, we have that sin(a + b)
= sin a cos b + cos a sin b and that cos(a + b) = cos a cos b − sin a sin b.

Also by the definition of the sine and cosine functions of the angle a − b in the
right-triangle AFC in Fig. 11.8, we have that sin(a − b) = sin a cos b − cos a sin
b and cos(a − b) = cos a cos b + sin a sin b.

In the following two figures, Figs. 11.9 and 11.10, I present two sequences of
diagrams to deduce the formulas for tan(a + b) and tan(a − b). The transformand
diagrams (first diagram in each sequence) are the proposer’s creative abductions.
They are essentially the same transformand diagrams as in Figs. 11.7 and 11.8 but
assigning the length 1 to the side CE in Fig. 11.9 or to side BE in Fig. 11.10.
Clearly, the interpretants for these proofs incorporate the immediate and initial
interpretants generated during the first four proofs shown above. Thus, this process
is initiated with middle interpretants.

Middle interpretant. This is a realization that tan(a + b) and tan(a − b) can be
determined from the ratios of the sides of the right-triangle FAC in Figs. 11.9 and
11.10, which have (a + b) and (a − b) as acute angles respectively. Thus, the task
now is to use the trigonometric definitions of tangent and secant to determine the
length of the sides of the other right-triangles ADB and CEB.
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Fig. 11.9 Transformand and transformate diagrams for tan(a + b)
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Fig. 11.10 Transformand and transformate diagrams for tan(a − b)
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Rational interpretant. The lengths of the sides AD, DB, BE and CE of triangles
ADB and CEB in the third transformate diagrams in Figs. 11.9 and 11.10 are the
results of calculations with the definitions of the trigonometric functions. Once they
are performed, the lengths of the sides FA and FC of right-triangle AFC are
determined by simple addition or subtraction of segment-lengths.

Eventual rational interpretant. By the definition of the tangent function in the
right-triangle AFC in Fig. 11.10, we have that tan(a + b) = (tan a + tan b)/
(1 − tan a tan b). Also by the definition of the tangent functions in the right-triangle
AFC in Fig. 11.10, we have that tan(a − b) = (tan a − tan b)/(1 + tan a tan b).

Post-diagrammatical Interpretant. What is the significance of the position of the
length 1 in each of these proofs? Suppose that in Fig. 11.9 we make EB = 1 or
BD = 1 and in Fig. 11.10 we make AD = 1. Will the proof hold? The answer to
this question is in the positive. The reader could make an effort to arrive at the same
formulas for tan(a + b) and tan(a − b) in these cases. These changes are motivated
by the systematic manipulation of the transformand diagram and corresponding
calculations.

11.10 Conclusion

Mathematical diagrams, such as geometric figures, mathematical formulas, equa-
tions and graphs, serve as epistemological tools to mediate not only the formulation
and validation of conjectures but also the conceptualization of well-established
mathematical ideas. The above examples illustrate that a systematic observation of a
transformand diagram assists not only in the visual perception of different relations
among its parts but also in the inference of new relations among them. Some of
these relations are perceived by the senses and still others are inferred with the aid
of perceptual and logical judgments as well as collateral knowledge. Both explicit
and implicit relations embedded in the diagram enable the construction of new
transformate diagrams to make explicit new relations among their parts; relations
that, by analogy, will unveil the structural relations of the mathematical Object that
the initial diagram plays to stand for.

The evolving perceptual and mental transformation of diagrams co-emerges with
the formation of new interpretants in the mind of the Interpreters and with their
progressive inferential reasoning process to reach the desired goal. This means a
progression in the conceptualization of the deep structure of the mathematical
Object that diagrams purport to stand for. It goes without saying that, when working
with diagrams, the interpretants generated by different Interpreters, although they
should be somewhat similar in nature, may have different iconic, indexical, and
symbolic features according to their personal knowledge and level of sophistication
of their mathematical thinking. The wanted outcome is that these interpretants share
a tendency to converge to the desired mathematical Object (Sáenz-Ludlow and
Zellweger 2016). This clearly indicates that teachers need to develop two simul-
taneous and parallel types of awareness: (1) awareness of the teachers’ own
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evolving interpretations of transformate diagram(s) and (2) awareness of the stu-
dents’ interpretations of those diagrams. This double awareness on the part of
teachers will enable the guidance of students by using the students’ current inter-
pretations and understanding. It is in this sense that diagrams serve as tools for
meaning-making—epistemological tools—for teachers and students alike, although
such a meaning could be at different but compatible levels of understanding.
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