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Chapter 1
Introduction

Norma Presmeg, Luis Radford, Wolff-Michael Roth and Gert Kadunz

Abstract This introductory chapter presents an overview of the role of semiotic
issues in the teaching and learning of mathematics, as these issues are characterized
and elaborated in the chapters of this monograph. Several threads are represented in
the four sections of this book: the evolving sociocultural perspective is addressed in
Sects. 1 and 4; Sect. 2 addresses linguistic and textual aspects of signification, and
Sect. 3 represents Peircean perspectives that were recognized as important in our
field more than two decades ago, which continue to have relevance.

Keywords Signs � Semiotics � Semiosis � Signification � Gesturing

1.1 Introduction

All the chapters in this monograph grew out of presentations by the authors in
Topic Study Group 54 (TSG 54), Semiotics in Mathematics Education, of the
Thirteenth International Congress on Mathematics Education (ICME-13), held in
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Hamburg, Germany, 24–31 July 2016. The four regular sessions of TSG 54, and the
associated Oral Communications in the Congress timetable, were well attended by
scholars who had been working in the field of semiotics in mathematics education
for decades, as well as interested newcomers to the field. This variety of experience
in the topic is reflected in the chapters in this book, which is thus intended both as
an introduction to the field, and a reasoned appraisal of research on semiotics in
mathematics education, its significance, old and new theoretical developments,
where it has been and where it might be going.

1.2 What Is Semiotics and Why Is It Significant
for Mathematics Education?

Semiotics is related to semantics, according to one dictionary (Funk and Wagnall
2003), and may be defined as “The relation between signs or symbols and what they
signify or denote.” The same dictionary defines the verb signify as follows: “1. To
make known by signs or words; express; communicate; announce; declare. 2.
Hence, to betoken in any way; mean; import. 3. To amount to; mean.” The adjective
significant has this definition: “1. Having or expressing a meaning; bearing or
embodying a meaning. 2. Betokening or standing as a sign for something; having
some covert meaning; significative. 3. Important, as pointing out something
weighty; momentous.”

These definitions point to a number of elements intrinsic to the nature of the
activity with which semiotics is concerned, semiosis: it involves signs; these signs
have meanings, which suggests that there are interpretations, and that consciousness
is involved in some way—and also communication. Semiosis is “a term originally
used by Charles S. Peirce to designate any sign action or sign process: in general,
the activity of a sign” (Colapietro 1993, p. 178). A sign is “something that stands
for something else” (p. 179); it is one segmentation of the material continuum in
relation to another segmentation (Eco 1986). Semiotics, then, is “the study or
doctrine of signs” (Colapietro 1993, p. 179). Sometimes designated “semeiotic”
(e.g., by Peirce), semiotics is a general theory of signs or, as Eco (1988) suggests, a
theory of how signs signify, that is, a theory of signification (see Presmeg et al.
2016, p. 1).

The significance of semiosis for mathematics education lies in the use of signs;
this use is ubiquitous in every branch of mathematics. It could not be otherwise: the
objects of mathematics are ideal, general in nature, and to represent them—to others
and to oneself—and to work with them, it is necessary to employ sign vehicles,1

1A note on terminology: The term “sign vehicle” is used here to designate the signifier, when the
object is the signified. Peirce sometimes used the word “sign” to designate his whole triad, object
[signified]-representamen [signifier]-interpretant; but sometimes Peirce used the word “sign” in
designating the representamen only. To avoid confusion, “sign vehicle” is used for the
representamen/signifier.

2 N. Presmeg et al.



which are not the mathematical objects themselves but stand for them in some way.
An elementary example is a drawing of a triangle—which is always a particular
case—but which may be used to stand for triangles in general (Radford 2006).

Semiotics has long been a topic of relevance in connection with language (e.g.,
de Saussure 1959; Vygotsky 1997). However, it is in the last few decades that its
potential has been realized for mathematics education research. In the early 1990s,
David Kirshner may be credited with the introduction of semiotics, in the form of
Saussurean semiology, Peircean semiotics, and semiotic chaining, to many
researchers in mathematics education in the USA. He organized the Annual
Meeting of the North American chapter of the International Group for the
Psychology of Mathematics Education in Baton Rouge, Louisiana, and Whitson
(1994, 1997) delivered the keynote address, in which he also provided an entry to
the semiotic activity of Walkerdine (1988). Semiotics gained the attention of many
researchers interested in furthering the understanding of processes involved in the
learning and teaching of mathematics (e.g., Anderson et al. 2003; Presmeg 1997,
1998, 2003, 2006a, 2006b; Radford 2013; Radford et al. 2008, 2011;
Sáenz-Ludlow and Kadunz 2016; Sáenz-Ludlow and Presmeg 2006a). In the
Vygotskian tradition, semiotic mediation was used as a powerful research lens
(Mariotti and Bartolini Bussi 1998).

As characterized by Presmeg et al. (2016), the study of signs has a long and rich
history. However, as a self-conscious and distinct branch of inquiry, semiotics is a
contemporary field originally flowing from two independent research traditions:
those of Peirce (1931–1958), the American philosopher who originated pragma-
tism, and de Saussure (1959), a Swiss linguist generally recognized as the founder
of contemporary linguistics and the major inspiration for structuralism. In addition
to these two research traditions, several others implicate semiotics either directly or
implicitly: these include semiotic mediation (the “early” Vygotsky 1978), social
semiotics (Halliday 1978), various theories of representation (Goldin and Janvier
1998; Vergnaud 1985; Font et al. 2013), relationships amongst sign systems (Duval
1995), and more recently, theories of embodiment that include gestures and the
body as a mode of signification (Bautista and Roth 2012; de Freitas and Sinclair
2013; Radford 2009, 2014; Radford et al. in press; Roth 2010). Components of
some of these theories are elaborated in this book.

As a text on the origin of (Euclidean) geometry suggests, the mathematical
concepts are the result of the continuing refinement of physical objects that Greek
craftsmen were able to produce (Husserl 1939).2 For example, craftsmen were
producing rolling things called in Greek kylindros (roller), which led to the
mathematical notion of the cylinder, a limit object that does not bear any of the
imperfections that a material object will have. Children’s real problems are in

2Husserl distinguished two aspects of signs, namely expression and indication (Husserl 1970;
Zagorianakos 2017). It is beyond the scope of this monograph to explore the implications of
Husserl’s phenomenological distinction here; however, both of these aspects of signs are highly
relevant in the issues addressed in this book. Expression relates to intention and the grounding of
ideation, whereas indication relates to communication and is the essence of semiotics.

1 Introduction 3



moving from the material things they use in their mathematics classes to the
mathematical things (Roth 2011). This principle of “seeing an A as a B” (Otte 2006;
Wartofsky 1968) is by no means straightforward and directly affects the learning
processes of mathematics at all levels (Presmeg 1992, 2006a; Radford 2002). Thus
semiotics, in several traditional frameworks, has the potential to serve as a powerful
theoretical lens in investigating diverse topics in mathematics education research.

1.3 Sociocultural Perspectives on Semiosis

Sociocultural perspectives on semiosis emphasize the social, cultural, and historical
dimension of signs. In these perspectives signs are understood not as artifacts to
which an individual resorts to represent or present knowledge, but as artifacts of
communication and signification. Signs are not considered as mere expressions of
the individual’s thought; they appear rather as entities through which the individual
orients her actions and reflections and shapes her experience of the world.

The origin of this non-representational view of signs goes back to the early
Vygotsky, who considered the sign as a sort of psychological instrument deeply
related to the way we conduct ourselves in society. The essence of sign use,
Vygotsky argued, “consists in man’s [sic] affecting behavior through signs” (1978,
p. 54). Vygotsky was particularly interested in the role of language. In a notepad
dated 1926 he defines language as follows:

Language is not the relation between a sound and the denoted thing. It is the relation
between the speaker and the listener, the relation between people directed toward an object,
it is an interpsychic reaction that establishes the unity of two organisms in the same
orientation toward an object. (Vygotsky in Zavershneva 2010, p. 25)

More than a representation device, language is a nexus between individuals.
At the end of his life, Vygotsky was moving away from the instrumentalist view

of signs to a view where meaning and signification acquired a more prominent role
and where consciousness was understood in semiotic terms. Vygotsky wrote:
“Consciousness as a whole has a semantic structure” (1997, p. 137). By this,
Vygotsky meant that consciousness is not something metaphysical but our actual
link to the world. He continues: “We judge consciousness by its semantic structure,
for sense, the structure of consciousness, is the relation to the external world” and
concludes that “Speech produces changes in consciousness. Speech is a correlate of
consciousness, not of thinking” (p. 137; emphasis in the original).

Vygotsky’s non-representational view of signs leads to a conception of semiotics
that opens an interesting path in which to investigate the problems underlying
education in general and mathematics education in particular. Consciousness and
thinking are not merely the production of the individual. Consciousness and
thinking come into life against the backdrop of their sociocultural context. But this
context is not a mere facilitator of consciousness and thinking. Consciousness and
thinking do not merely adapt to the context, they are modified by it and, in a

4 N. Presmeg et al.



dialectic movement, they come to modify the context from which they emanate. In
the dialect materialist framework in which Vygotsky sets the problem of con-
sciousness and thinking, both the individual and culture are coterminous entities in
perpetual flux, one continuously becoming the other and the other the one.

This is so because signs and semiotic systems more generally are bearers of a
worldview that includes mathematical, scientific, aesthetic, legal, and ethic com-
ponents through which individuals organize their world (Radford 2008). As a
result, the apparently transparent and neutral manner in which students encounter
mathematics and other disciplines in the school has an unavoidable ideological
valence. For instance, the Cartesian graph, which is featured in several chapters in
this monograph, conveys a conceptual view according to which things in the world
can be related and referred to the same point (the Cartesian origin). It stresses a
relational view of phenomena attended to in terms of variables and their
relationship. In opposition to other kind of graphs, such as maps, what a Cartesian
graph depicts is not the elements of the considered phenomena but specific math-
ematical relationships between them—their covariation. Behind a Cartesian graph
lies thus a general view of the world, where things are thought of in certain cul-
turally and historically constituted ways. Implicitly, they organize and orient the
kind of experience that students and teachers make of the world, creating thereby
sociocultural conditions for the emergence of specific forms of mathematical
thinking and learning. The same can be said of other semiotic systems too (e.g., the
alphanumeric symbolism of algebra). Through them, our view of the world
becomes naturalized. The world appears in specific ways. This is what the ideo-
logical valence of signs means.

Of course, the ideological valence of signs expressed in the worldview that the
signs unavoidably carry and the concepts to which they refer cannot be revealed to
the students spontaneously, that is, in an immediated or unmediated manner.
A student can spend hours looking at a Cartesian graph without necessarily
understanding what this complex mathematical sign means and is meant for. A sign
as such is no more than that: a sign. To signify, to reveal its conceptual power, a
sign has to become part of an activity. It is not hence through signs as such that
students make the experience of mathematics their own, and that they encounter the
culturally and historically constituted forms of mathematical thinking in the school
or the university. Mathematics can only be disclosed to the students through
sign-based activity. It is through material and concrete sign-based activity that
students learn mathematics and that teachers teach it.

One of the differences between sociocultural perspectives on semiotis resides in
how they conceptualize the learning activity and the role they ascribe to signs.
Some perspectives emphasize the discursive dimension of activity, while others
emphasize its intersubjective and ethical relational dimension and the evolving
object/motive of the activity. Some perspectives consider signs as mediators of
activity (Bartolini Bussi and Mariotti 2008), others consider signs as part of activity
and as part of the material texture of thinking (Radford 2016a, b).

1 Introduction 5



1.4 Language and Text Orientations

The importance of language for the learning of mathematics is a widely studied
subject (Hoffman 2005; Sáenz-Ludlow and Presmeg 2006b; Schreiber 2013).
A search query on the subject “language” in the journal Educational Studies in
Mathematics resulted in more than a thousand responses (June 2017). As an
example, reference should be made here to two anthologies published in recent
years or forthcoming (Moschkovich 2010; Barwell 2017) and to a recent review of
language in mathematics education published during the past 10 years in the
Proceedings of PME (Radford and Barwell 2016). A much smaller result followed
the request for “semiotics and language,” to which the contributions in the second
section of this volume are devoted. What is the relationship between text and
language, the written and the spoken (Radford 2002; Kadunz 2016)?

In the brevity of this introduction, let us concentrate on two of the most
important authors. On the one hand, we focus here on Peirce (see also the next
section of this introduction), whose semiotics can be seen as paradigmatic for the
importance of the written when doing mathematics. On the other hand, in contrast
let us consider the work of the philosopher Ludwig Wittgenstein, who, with his
theory of language play, has made a significant contribution to the philosophy of
language, as used also in didactics of mathematics (Vilela 2010; Knijnik 2012).

A semiotic view of the learning of mathematics—if one chooses a Peircean
orientation—is mainly determined by interpreting the use of visible signs. What
approaches and questions open up when a linguistic approach is added to this
theory of signs? Which parallels can be found between the formulations of Peirce
and Wittgenstein? A simultaneous use of both approaches for questions involving
the didactics of mathematics took place a few years ago (Dörfler 2004, 2016).

Documented parallelism between the central concepts of Peirce and Wittgenstein
can be found mainly outside mathematics didactics. In this respect, starting several
years ago, Gorlée (1994, 2012) presented a series of publications dealing with
Peirce’s semiotics as a tool for the analysis of translation questions. In “Semiotics
and the problem of translation” (1994), she dedicated a chapter to the relationship
between notions of Peirce and Wittgenstein. What are the similarities between
Peirce’s semiotics and Wittgenstein’s philosophy of language? Wittgenstein pre-
sented one of his most far-reaching tools, namely, the language game, in his
philosophical investigations (1953–1968). In this formulation, among others, he
included the following:

Giving orders, and obeying them;

Describing the appearance of an object, or giving its measurement;

…

Forming and testing a hypothesis;

Presenting the results of an experiment in tables and diagrams;

…

6 N. Presmeg et al.



Solving a problem in practical arithmetic;

Translating from one language into another.

… (Wittgenstein 1953–1968 Part 1 paragraph 23; Gorlée 1994, p. 97)

In particular, he counted mathematical activities among these games. On the one
hand the participation in a language game is characterized by the obeying of rules.
On the other hand, the language game is embedded in a form of life: “Though
primarily language-based, language-games do not function in a social vacuum, but
are inscribed in so-called ‘forms of life’.” A form of life is “… a pattern of
meaningful behavior in so far as this is constituted by a group” (Finch 1977, p. 91;
Gorlée 1994, p. 99).

Practicing a language game is practicing an activity within a form of life which,
according to Wittgenstein, combines language and reality. If we follow Umberto
Eco (1979), the concept of the form of life provides a first bridge between
Wittgenstein and Peirce. “Eco identifies the cultural system as a whole with the
dynamic process of semiosis, and therefore, cultural units with Peircean interpre-
tants.” (Gorlée 1994, p. 100). In Peirce’s terminology, the meaning of a sign is
another sign which leads to a never ending process of interpretation embedded in
our sociocultural life, which can be seen as a certain kind of practice.

Another similarity between the theories of Peirce and Wittgenstein can be found
when we look at Peirce’s concept of “ground.” For Peirce, ground seems to be a
kind of context that determines how a character represents a designated object. As
Gorlée portrays it, then, “this ground is an abstract but knowable idea serving as
justification for the mode of being manifested by the sign” (1994, p. 101). This
embedding in a context corresponds in some respects to Wittgenstein’s concept of
“inner motivation”. This motivation is the “ground,” in which a language game has
to be played within the framework of the corresponding rules. Similar comparisons,
which can be only hinted at here, concern the Peircean concepts of firstness, sec-
ondness and thirdness, contrasted with concepts from Wittgenstein`s language
games (Gorlée 1994). What is common to these opposites is the fact that for Peirce
and for Wittgenstein, the interpretation of signs (semiosis) as well as the activities
within the context of a language game are more focused on the process than on the
result. After this excursion into a certain philosophy of language let us return to
pure Peircean semiotics, in the next section.

1.5 Peircean Semiotics, Including Semiotic Chaining
and Representations

Throughout the 1990s and in the early 2000s, the issue of how representations of
various kinds played a role in mathematics education was a significant focus for
researchers. There were Working Groups on this topic in the meetings of the
International Group for the Psychology of Mathematics Education (PME) and its
North American affiliate (PME-NA), resulting in an edited volume of papers from
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these conferences (Hitt 2002). Several authors in the current monograph were
represented in this volume (Otte, Presmeg, Radford, Sáenz-Ludlow). In this early
work, researchers were groping for theoretical formulations that went beyond a
dualistic view of mathematical representation and captured the complexity involved
in learning mathematics using its signs. A Peircean semiotic perspective provided
one such conceptual lens.

Although a representational perspective on semiotics has largely given way to
evolving sociocultural views (see Sects. 1 and 4 of this monograph), Peircean
semiotics still has a foundational role to play in semiotics defined as “the relation
between signs and symbols and what they denote” (Funk and Wagnall 2003).
Further, semiotic chaining based on Peirce’s semiotics has historical significance in
the field of mathematics education on account of its contribution to research in this
field since the early 1990s (Whitson 1994, 1997; Presmeg 1997, 1998, 2003, 2006a,
b; Sáenz-Ludlow and Presmeg 2006a), and it still continues to provide a viable
research lens for the teaching and learning of mathematics (Sect. 3 of this
monograph).

The essence of Peirce’s semiotics is his use of triads (see Chap. 11 by
Sáenz-Ludlow for a fuller treatment of this topic). “But it will be asked, why stop at
three?” Peirce asked, and he replied that unlike a triad, which adds something to a
pair, “four, five, and every higher number can be formed by mere compilations of
threes” (Peirce 1992, p. 251). His triad of signs as composed of object (signified),
representamen (signifier) and the essential component of interpretant made pos-
sible the chaining of signs, since each sign as a whole is subject to further repre-
sentation and interpretation, in a never-ending process of potential signification.
Presmeg (1998, 2002, 2006b) used the metaphor of Russian nested dolls to describe
this process, which was useful in linking home cultural practices of students with
the mathematics that they learned in school (see also Presmeg 2007). Sáenz-Ludlow
and colleagues used elaborated versions of Peirce’s triads and the chaining of signs
in fine-grained analyses of the processes involved in teaching and learning geom-
etry (Sáenz-Ludlow and Kadunz 2016, and see Chap. 11 of this monograph). Sign
vehicles characterized by Peirce’s triad of icon, index, or symbol were the basis for
an analysis of connections among early processes in the teaching and learning of
trigonometry at high school level, obviating the compartmentalization that is often a
hindrance in such learning (Presmeg 2006a).

Semiotic resources including gesturing and tools; developments in theoretical
frameworks that involve these aspects, are discussed in the next section.

1.6 Semiotic Resources Including Gestures and Tools

In most general terms, the sign has been defined as a relation between one portion
of the material continuum, which serves as sign vehicle for a relationship with other
portions of the continuum (Eco 1986). Thus, any material thing—scribbles with
pens, characters printed by a machine, sounds coming from a mouth, or tools used

8 N. Presmeg et al.



for doing things—constitutes a segmentation of matter that may be part of a relation
between things. Such relations among material things indeed reflect relations
between persons; in turn, human relations are reflected in the relation between
things (Marx and Engels 1978). The relation between material things comes to be
attributed to one of these as a suprasensible (ideal) characteristic, namely, its value
in economic (Marx and Engels 1962) or verbal exchange (Rossi-Landi 1983; Roth
2006); human relations, once represented in the individual, have become higher
psychological functions and personality (Vygotsky 1989). Indeed, the human body,
being material, may be part of a material configuration and thus serve as the sign
vehicle for other things. It is therefore not without surprise to read that “as subjects,
we are what the shape of the world produced by signs makes us become” (Eco
1986, p. 45).

Any human action may become significant and, thereby, become part of a
signifying relation. Thus, for example, when asked to describe and explain an
experiment they have done, physics students invited the teacher, “Look!,” and then
redid the experiment (Roth and Lawless 2002). When students in a mathematics
class have their heads down, writing in a notebook, this bodily configuration and
writing itself may be treated as the sign of their engagement with the task.
Work-related body movements that are taken to stand for something are denoted by
the term ergotic gestures [gestes ergotiques] (Cadoz 1994; Roth 2003).
Interestingly, in speaking, more is happening than the production of sound words
that are somehow referring to or invoking something else. The very act of speaking
may be significant as an act generally or as a speech act specifically (Schütz 1932).
“Did you say something?” is a query to find the significance in the former case,
whereas “What did you say?” is a query to find out the significance in the latter
case.

In individual development, there actually is a movement from ergotic gestures to
symbolic gestures [gestes symboliques], which, in humans, may morph into or be
replaced by productions such as sound-words or hand/arm movements that take
their place (e.g., the stinky finger, a square formed by an appropriate configuration
of thumbs and index fingers of two hands). This movement first was described in
the case of children learning to gesture: an infant may be seen by the mother as
reaching for an object; she takes the object and puts it into the hand of the infant;
and finally, the infant moves hand and arm intentionally to point at objects
(Vygotsky 1989). The same transformation also was reported among the bonobo
chimpanzees, where part of the infant’s movement involved in the mother’s picking
up the infant later, deployed in a frozen form, is treated by the mother as a sign that
the infant wants to be picked up (Hutchins and Johnson 2009). In school science,
the same trajectory has been described beginning with the initial ergotic gestures,
which then turned into symbolic gestures using part of the equipment or substituted
artifacts (tools), all of which eventually were replaced in verbal descriptions and
diagrams (Roth and Lawless 2002). Materials, artifacts and tools have commu-
nicative and thus both social and psychological function. In the context of using
graphs as part of lectures, hand/arm movements initially appeared to carve out the
space, exploring possible placements of curves, before some of these movements
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actually produced the graph expressing a mathematical function (Roth 2012). That
is, gestures may indeed pave the way for linguistic and conceptual development
(Iverson and Goldin-Meadow 2005). It also has been shown that the relation
between symbolic gestures and what they stand for may change in the course of
time, thereby changing (developing) signifier–signified relations.

In the mathematics education literature, we can find the term “body language”
(e.g. Evans et al. 2006). But this notion, though “common in everyday language, is
not a useful concept here because body movements and positions are neither
structured nor used like language” (Roth 2001, p. 368). Hand/arm movements may
be located somewhere along a continuum ranging from idiosyncratic movements
that accompany speech (gesticulation) to highly structured sign language, with
language-like gestures, pantomime, and emblems lying between the two extremes.
Sign language consists of hand/arm movements that indeed have a relatively fixed
syntax and semantics (lexicon): it is language in a strong sense. Emblems take
specific places in and in lieu of linguistic expressions. Gesticulations accompany
speech but are not subject to syntax and semantics, so that the same movements
may appear in many different contexts contributing in very different ways to
communication. Finally there are body movements that are completely incidental:
grooming gestures and body positions and configurations. None of these forms
deserve to be classified as language in the linguistic sense.

It is useful to distinguish different functions of hand/arm and other body
movements. Movements may have deictic (pointing) function, stand in an iconic
relation with something else, or constitute a rhythmic feature denoted as beat
gesture (McNeill 2005). Although a pointing gesture does not have mathematical
content, it may nevertheless have an important function in making manifest a gestalt
in the environment that is part of the sense-making process (e.g. Radford 2009).
Iconic gestures may be sign vehicles for the relation with other concrete portions of
the continuum, such as when a lecturer moves a hand in a straight line while talking
about a linear function drawn on a chalkboard (Núñez 2009). Or they may stand for
an idea, such as that of a mathematical limit (itself modeled on material limits),
when the speaker holds one hand still while approaching it with the other (McNeill
1992). Although not immediately apparent, beat gestures, too, may have important
functions in mathematical teaching|learning events, for example, supporting
grouping and counting (Roth 2011).

In the past, mathematical knowing was considered in terms of mental con-
structions and conceptual frameworks. More recently, it was recognized that body
movements generally and hand/arm-produced gesticulations more specifically
manifest knowing. Some research is based on the conviction that there are two
underlying cognitive systems, whereas others consider there to be one cognitive
system that manifests itself in two different, sometimes contradictory ways (see the
review by Roth 2001). Even more recently, embodiment and enactivist perspectives
have attempted to emphasize the role of the body in human communication and
knowing (e.g. Núñez 2009; Proulx 2013). Both approaches, however, have been
subject to critique because of the underlying Cartesianism (Sheets-Johnstone 2009).
This Cartesianism is overcome by a Marxian-Spinozist approach in which body and
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mind (thought) are two manifestations of the same underlying substance (Roth
2017). Consider the example of a circle. By inscribing a circle with a pen on a piece
of paper, the body is in a state identical with the circle outside of the body (Spinoza
2002). Indeed, the body comes “into a state of real action in the form of a circle”
(Il’enkov 1977, p. 69), and the associated awareness (consciousness) is the idea of
and fully adequate to the circle. Even seeing a circle as such is fully adequate,
because the eyes have to move along (but saccading to and away from) the circular
line to produce the visual experience of a circle (Yarbus 1967). Drawing a circle
and knowing a circle have become indistinguishable.

1.7 Conclusion

This introductory chapter gives the reader a preliminary overview of the diversity of
theoretical formulations of semiotics as a field of scholarship, and of the power of
semiotics as a research lens in investigating the complexities of learning and
teaching mathematics. At present, semiotic theories have proved valuable mainly in
fine-grained qualitative research studies involving students’ learning of mathe-
matics, the relationships involved in activities towards this end, and the role of
teachers and teaching in this regard, at various levels and in diverse social contexts.
The chapters in this book exemplify the efficacy of semiotic theories as lenses in
such research. However, as attested by Morgan’s chapter, there is also the potential
for semiotics research in the wider fields of institutional contexts and policy
research. Because of its relevance in the human endeavor of creating and learning
mathematics, and all that entails, semiotics will continue to have significance in
mathematics education and its research.
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Part I
Sociocultural Perspectives on Semiosis

Introduction to Section 1: Luis Radford

This part deals with semiosis understood as the continuous production of signs and
significations. The part comprises five chapters. There are two elements that tie
them together. First, they share a general interest in exploring the social, cultural,
and historical dimension of semiosis. Second, they resort to a Vygotskian concept
of the sign.

It is worth recalling that, in the main Western semiotic traditions, signs have
been understood as entities that represent things. Ferdinand de Saussure (1959), for
instance, suggested that a sign is the union of a signified (i.e., the meaning or the
concept) and the signifier (the sound-image).Vygotsky took a completely different
route. Although Vygotsky’s concept of signs evolved from a rather instrumental
view—developed at the end of the 1920s where the sign was conceptualized as a
psychological tool (Vygotsky and Luria 1994)—to a more social-relational one
envisioned at the end of his life, a common point in Vygotsky’s concept of signs
was that signs are not entities to represent things or ideas or knowledge. In
Vygotsky’s view, the most streaking feature of signs is the orientating role that they
play in the social life of the individuals, allowing them to organize and reorganize
their interactions with other individuals and their deeds in the historical world. In a
notebook containing notes written toward the end of his life, and referring in
particular to language, Vygotsky’s noted that

Language is not the relation between a sound and the denoted thing. It is the relation
between the speaker and the listener, the relation between people directed toward an object,
it is an interpsychic reaction that establishes the unity of two organisms in the same
orientation toward an object. (Vygotsky in Zavershneva 2010, p. 25)

Vygotsky’s concept of sign leads to a complex and multilayered concept of
semiosis. Revolving around the context of mathematics teaching and learning, each
chapter explores different aspects of it.

Chapter 1, written by Luis Radford, explores a key question of subjectivity: how
through cultural-historical activity people simultaneously are produced and



co-produce themselves as individuals in the making, as unfinishable projects of life.
The chapter starts with a metaphor where individuals are considered as dynamic
agentic signs and goes on to explore the role of rules in a preschool setting around a
mathematical game. Through an analysis of the children’s game, where emotions
and actions are fueled with tensions resulting from the cultural normative character
of rules and the subjective enactment of them, the children come to position
themselves and to be socially and historically positioned. The analysis suggests that
responsibility and empathy (pátheia) appear as two essential intertwined threads of
the fabric of subjectivity. While the former points to a culturally and historically
evolved relation to the Other, the latter signals a truly human listening, based on a
pre-conceptual, emotional understanding of the misery and agony of the other
through which we recognize ourselves and the fragility of our human nature.

Chapter 2, written by Wolff-Michael Roth, deals with the later Vygotsky’s
conception of signs and delves into the relational nature it conveys. Like pointing
gestures, the sign emerges as a relation where one person acts on another and only
later as something to act upon oneself. Roth starts by drawing a parallel between
commodity exchange and word use. He uses this parallel to illustrate, through an
example with young children, the birth of a relation between a sign vehicle and its
(ideational) content, while showing how this first relation yields place to a new
relation. The parallel between commodity exchange and word use allows Roth to
stress an often missed key point in semiotic analysis: that the relation between sign
vehicle and its content or suprasensible character is not merely an idiosyncratic
product but reflects a social relation: “a reflection of societal (i.e., universal) rela-
tions that exist as societal relation of material things (e.g., sign vehicles).” This
conceptualization of signs is hence far away from the representational conceptu-
alization. It is relational through and through. The chapter closes with an interesting
suggestion, namely the possibility of abandoning the idea of sign mediation that
Roth explores by resorting to a Spinozist-Marxian materialist approach.

Chapter 3 in this part, written by Ulises Salinas-Hernandez and Isaias Miranda,
deals with the understanding of the Cartesian graph associated with the motion of a
tennis ball in an inclined plane in a technological environment. The authors turn to
the theory of objectification (Radford 2008) where the students’ understanding is
considered to be the result of the manner in which mathematical knowledge appears
progressively in the classroom through the students’ and teachers’ sensuous,
semiotic, and material activity. Through a fine-grained semiotic analysis, Salinas-
Hernandez and Miranda show how the students’ understanding of the graph
undergoes a lengthy process of objectification that is correlated to various moments
of classroom activity. These various moments of activity are not independent of
each other. They can be conceptualized as the successive transformation of an
initial moment. The initial moment is characterized by an abstract stance where the
graph is imagined as a straight line. The initial moment of activity is transformed
into another moment and so on until of more concrete moment of activity is
reached: one where, through sensuous corporeal, symbolic, linguistic, and kines-
thetic actions, the mathematical variables and the axes provided by the software
become objects of attention and consciousness.
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Chapter 4 in this part, written by Anna Shvarts, tackles the question of joint
attention using a dual eye-tracking setting. Shvarts investigates the manner in which
five pairs of a Grade 1 child and his/her parent inter-coordinate perception with
other semiotic resources—gestures, oral language, and mathematical signs—in the
processes of objectification involved in the understanding of Cartesian coordinates.
In the beginning, the child and the parent see the graph but they do not attend to it
in the same manner. Although the meaning of the Cartesian coordinates is there, as
an “ideal form” in culture, the child does not perceive it yet. The disclosing of the
meaning, its progressive grasping by the child, occurs in processes of objectification
embedded in the participants’ joint activity. In such a disclosing, the semiotic
resources move from what Shvarts calls pre-semiotic means of objectification to
proper semiotic means of objectification (Radford 2003). One of the major con-
tributions of this chapter is to reveal the dynamics of such a movement—how, for
example, progressively, through semiotic resources, the participants achieve joint
attention, how they adjust their evolving interpretations, and how they assume the
initiative in the task.

Chapter 5, written by Debbie Stott, revolves also around the question of joint
attention. She resorts to the theoretical constructs of the space of joint action and
togethering (Radford and Roth 2011). While the former refers to an “evolving,
tuning, and reciprocating of the participants’ perspectives, making thinking a col-
lective phenomenon” (p. 232), the latter rests on an ethical commitment to produce
joint activity out of which ideal cultural-historical mathematical forms are disclosed
to the students’ consciousness. Stott draws also on the concept of attention catching
(Meira and Lerman 2009), the moment when attention is caught during a mathe-
matical activity involving more than one participant. She presents two episodes
from interviews in an after-school math club and investigates how joint action is (or
is not) produced. In particular, she is interested in investigating the moments of
poēsis—i.e., the creative moments in which an ideal mathematical form becomes an
object of the students’ attention and understanding (Radford 2015). Stott’s analysis
provides insights into the way attention catching and togethering occur and are
sustained by the participants; her chapter also sheds light on the question of how
spaces of joint action evolve.
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Chapter 2
Semiosis and Subjectification:
The Classroom Constitution
of Mathematical Subjects

Luis Radford

Abstract In this chapter, I consider semiosis as the continuous production of signs
and significations. However, I do not limit the scope of signs to marks or
inscriptions. I consider individuals as signs too. Like signs, individuals come to
occupy positions in the social world and behave in ways that are not at all different
from signs in a text. A crucial difference between inscriptions and individuals,
though, is that individuals are not merely signified through well-defined syntaxes as
inscriptions and traditional signs are. The cultural syntaxes through which indi-
viduals come to be positioned in the social world are less visible: they are part of a
dynamic cultural symbolic superstructure. Another crucial difference is that, unlike
inscriptions and marks, individuals co-produce themselves—even if it is within the
limits of the aforementioned symbolic superstructure. Individuals co-produce
themselves in what in this chapter I term processes of subjectification. This chapter
is an attempt to study the processes of subjectification in the mathematics class-
room. To do so, I analyze a classroom episode with pre-school children.

Keywords Semiosis � Being and becoming � Subjectification � Subjectivity
Ethics � Pre-school mathematics � Pre-school games

2.1 Introduction: Life as a Semiotic Zone

Traditionally speaking, signs have been considered as marks or inscriptions. The
inscriptions on Mesopotamian clay tablets or footprints on the sand are examples of
signs. In the first case, the signs are produced intentionally by an individual or
group of individuals. In the second case, the production of signs may not be the
result of an intentional act. Yet, by being noticed and accentuated someone may
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interpret the footprint as the presence of human beings in the surroundings. In both
cases, the signs signify something.

Now, we can also think of signs in a more dynamic way—as entities that unfold
in time, as part of a semiotic process that generates and regenerates itself according
to semiotic rules—e.g., implicit, explicit or partially explicit rules of syntax or rules
of meaning production, such as politeness and social behavior more generally. The
heroes or protagonists in a novel may be seen as signs in this sense. Heroes or
protagonists evolve as they engage with others in various manners and activities.
They evolve in accordance with semiotic rules that are historically and culturally
situated—an idea that brought Bakhtin (1981) to talk about literary genres. Bakhtin
considered literary genres as being framed by three driving vectors: ideology,
differentiation, and polyglossia. I would like to go a step further and argue that life
can also be seen as a semiotic zone: the confluence and interaction of various
activities in which, through semiosis—i.e., through processes of signification—
individuals come to agentically position themselves in differential, polyglossic, and
ideological manners.

Polyglossia (the acknowledgment of a variety of ways of thinking/speaking) and
differentiation (A 6¼ B as well as A 6¼ A) refer to an always unique individual who,
through her engagement in social activities, continuously positions herself through
other individuals in the cultural-historical world as an unrepeatable entity always in
flux—an entity in perpetual be-coming. Ideology refers to an already present system
of ideas (scientific, ethical, aesthetic, legal, etc.) that subsumes the individuals and
that transcends the individual qua individual.1 Ideology ubiquitously operates in the
agentic processes of differentiation and polyglossia so that, as different and unique
as individuals are, their uniqueness is nonetheless shaped by the common cultural
ground of ideology. Similarity and dissimilarity, likeness and unlikeness, difference
and uniqueness are cultural concepts whose content does not come from the indi-
vidual’s own interior but from the situationally operating ideology, history, and
culture.

This way of conceptualizing individuals is certainly at odds with the conception
of the individual that we have inherited from the philosophy of the Enlightenment
that has informed modern Western thought. We have become used to the idea that
we are equipped with an interior from where our true Being emanates. It is in this
interior that our deepest feelings and meanings are allegedly formed, so that what
we need in order to grow as human beings is simply a stimulating environment. The
transposition of this idea to children during the 19th and 20th centuries has allowed
educators and psychologists to imagine and formulate education as a project that
consists precisely in getting rid of the multitude of interferences that impede the
natural growth and self-fulfillment of the student. The conceptualization of

1Hence, my use of ideology has nothing to do with something such as false consciousness or with
claims of mistaken outlooks of reality. I use ideology as Bakhtin (1981) and Voloshinov (1973)
used it: as a system of ideas that operates in a culture at a certain historical moment and that
unavoidably embodies and refracts the contradictions of the various voices and theoretical and
practical dominant and non-dominant attitudes of the individuals.

22 L. Radford



individuals that I am suggesting here, as reflective signs in an unfinished process of
becoming, subsumed within a dynamic symbolic ideological superstructure, goes in
another direction. It is a direction that does not posit the student as the origin of
knowing and becoming, as an essentially already given and already made entity. It
rather conceives of the student as a continuously moving sign in the making.

This chapter is organized into three parts. The first part is a continuation of this
introduction. In this part I continue to problematize the question of the subject and
to show how the manner in which we come to conceive of ourselves is always
culturally and historically situated. In the second part I suggest a definition of Being
and subjectivity. Subjectivity refers to the idea of the subject as a dynamic sign, an
unachievable project of life. The way subjectivity moves and how it is subjectively
and societally produced, are accounted for in terms of a conception of life as the
confluence and interaction of activities embedded in an always changing semiotic
zone full of contradictions and agonies, hope and laughter, whose syntactic and
semantic (explicit and implicit) rules (more often implicit than explicit) I explore
through the concept of semiotic systems of cultural signification. In the third part I
discuss a classroom episode in a pre-school setting that intends to show a concrete
example of the processes through which subjectivities are societally co- and
self-produced.

2.2 The Question of the Subject

To a very large extent, mathematics education research has drawn—rather
implicitly—on the concept of the subject that philosophers of the Enlightenment
articulated in the 18th century. As I argue elsewhere (Radford 2012), the
Enlightened philosophers sought to build, in the overcoming of fear, tradition, and
feudal hierarchies, their idea of the new subject. They found in freedom the sub-
ject’s most fundamental trait (Adorno 2006). The idea of subject that they envi-
sioned is someone who is not there to follow what others say or do, but one who has
to think and reason by him or herself. Kant illustrates this idea perhaps better than
anyone else: the Kantian subject is a subject of reason, the crafter of its own destiny,
the architect of its own projects of life, the origin and source of meaning and
knowledge. From the Kantian perspective, to be a subject is to be free. And to be
free is not to be subjected to anything other than one’s reasons. The result is a
self-sufficient, humanist, and substantialist idea of the subject. In this chapter I
explore the question of the subject from a different viewpoint. I suggest that the
subject is a cultural-historical entity in perpetual transformation—i.e., a
subjectivity-in-the-making. My starting point is the rather banal—although rarely
considered—fact that mathematics classrooms are not only producers of knowledge
but of subjectivities as well. Drawing on the theory of objectification (Radford
2008a), I am particularly interested in investigating the processes of subjectification
out of which subjectivities produce themselves and are at the same time produced
by the activities in which they engage.
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2.3 Being and Subjectivity

To move beyond the Enlightened substantialist concept of the subject, I suggest
distinguishing between Being and subjectivity. The concept of Being that the theory
of objectification brings forward highlights what we may call the being’s cultural
nature. What this means is that our idea of what an individual and his/her power of
action and will (i.e., agency) are, are relative to their historical moment. If we were
born in ancient Greece or another historical period, we would have conceived of
ourselves in a very different manner from the way we do today. In the Athens of
Plato, for example, in the midst of a society articulated around the distinction
between free citizens and slaves, with a negative valence to manual work and a
positive valence to intellectual work, our sense of individuality would have been
embedded in a political-geographical criterion of inclusion/exclusion—Athenians
versus foreigners—and defined in terms of the opposition between passion and
temperance and the struggle for “self-mastery” (Taylor 1989). Very different is the
contemporary concept of the individual, defined as a private owner (Radford 2014)
—an individualist subject, drawn by possessive, consumerist and instant gratifi-
cation drives who is continuously urged to express herself “creatively and
authentically” (Illouz 1997, p. 35).

Taylor’s and Illouz’s remarks reveal not only the political-cultural axis that
structures the subject, but also the fact that the sense of ourselves is ineluctably
embedded in an ethical axis: how we conduct ourselves in the social world, how we
show ourselves to others, and how we are expected to behave socially and to be
recognized by others. These examples show that culture provides the “raw material”
from which subjects draw the ideas of what they are (their meaning, their identity,
their power of action, etc.). This “raw material” is part of what in the theory of
objectification is termed semiotic systems of cultural significations (SSCS). SSCS
are dynamic symbolic superstructures (Radford 2008a) that include cultural con-
ceptions about the world and the individuals. They comprise (a) ideas about things
in the world (e.g., the nature of mathematical objects and their way of existing),
(b) ideas about truth (e.g., how truth is and can be established), and (c) ideas about
the individuals. SSCS are full of tensions, as are the activities from which they
emanate, and have a normative function (which may be explicit, or implicit, or
partially implicit).

Clearly, the relationship between the cultural “raw material” included in the
SSCS and the concrete individuals cannot be seen as a logical, or causal, or
mechanical relationship. This is so because the account that I am sketching here
adopts a Spinozist ontological nature about humans according to which humans are
unavoidably and profoundly affected by their context (Spinoza 1989). But they are
affected in a reflexive manner. What emerges from this affection bears the imprint of
the culture, but it is always an entity in flux impossible to anticipate and predict.
The relationship between the cultural “raw material” included in the SSCS and the
concrete individuals is in fact dialectical. It is a dialectical relationship between
what I mean by “Being” and “subjectivities.”
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The adjective “dialectical” does not refer here to a simple reciprocal influence
between two given entities—in this case Being and subjectivity. Although, in usual
parlance ‘reciprocal influence’ is a common meaning of dialectic and its adjective
dialectical, I consider the relationship between Being and subjectivity along the
lines of dialectical materialism. In the naïve use of dialectics, the entities in rela-
tionship appear as already formed. In Hegel’s dialectic, which is at the basis of
Marx’s dialectical materialism, in contrast, the relation is one of transformation.
The transformation of something dynamic, general, and virtual into something
concrete that affirms its source and at the same time negates it. In his
Phenomenology of Spirit, Hegel considers the example of a bud: “The bud disap-
pears in the bursting-forth of the blossom, and one might say that the former is
refuted by the latter” (Hegel 1977, p. 2). The bud is sublated in the blossom, and as
such the blossom affirms the bud. But at the same time, the blossom (which is the
transformation of the bud) refutes or negates the bud, as it does not coincide with it.
It is something else, yet something that could only come to life through the
movement and transformation of the bud. The key idea in the Hegelian conception
of dialectic is movement. “It is of the highest importance,” says Hegel, “to interpret
the dialectical [moment] properly, and to [re]cognise it. It is in general the principle
of all motion, of all life” (Hegel 1991, p. 128).

In the Hegelian train of thought, metaphorically speaking, it might be useful to
consider Being as something like the bud—something out of which subjectivities
emerge. Each subjectivity is different from other subjectivities (as blossoms are
never identical to each other), yet all subjectivities are the transformation of
something (i.e., Being) that is never fully given, but always in the process of
change, something indefinite, potential.

Being, I suggest, is a general, cultural, dynamic (that is, always changing)
non-metaphysical, ontological category. It is constituted of historically coded forms
of conceptions about the individuals and the ways in which individuals are called to
present themselves to the world and to interact with other individuals. More pre-
cisely, Being is constituted of cultural ways of living (i.e., be-ing) in the world:
ways of conceiving of oneself and of being conceived, ways of positioning oneself
and of being positioned, and forms of self and otherness (i.e., relationships with
oneself and others). In this account, Being is potentiality (what Aristotle called
dύmali1, dunamis); that is, something whose mode of existence is not actual but
potential. What is actual is subjectivity.

Subjectivity is a process: the always ongoing instantiation or materialization of
Being. This unachievable and always ongoing instantiation is a unique, concrete
subject (a subjectivity), whose specificity results from the fact that it is a reflexive
sentient entity always in a process of be-com-ing: an unfinished and unending
project of life. Or to say it in terms of the ideas presented in the introduction, a
subjectivity is a sign perpetually coming into life, a sign that agentically appears
and co-produces in the social world through the materialization of the
cultural-historical possibilities available to it (Radford 2008a). In this coproduction,
the individual as subjectivity becomes aware and conscious of itself and from there
can project and present herself to herself and others in new ways.
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Subjectivities coproduce themselves not in contemplation but in the course of a
process whose name is human activity. Following dialectical materialism, human
activity is not a mere set of actions: activity is a system (Leont’ev 2009, p. 84) in
constant development, incessantly affecting the individuals participating in the
activity and at the same time affected by those individuals. We can ask: What is the
nature of the human activity that, at school, produces teachers and students? What is
its specificity? These questions orient the discussion of the classroom example that I
discuss in the next section.

2.4 The Classroom Constitution of Mathematical
Subjectivities

The example that I discuss comes from a pre-school classroom of combined
pre-kindergarten and kindergarten children (4–6 years old). The content of my
example is mathematics, which occupies an extremely important part of the Ontario
pre-school curriculum. Naturally, the emphasized presence of mathematics at the
pre-school level is coherent with what the children will find later on in primary and
junior and senior high school: a curriculum formed around the axis of mathematics
and language. Since the dawn of the 20th century, mathematics came to occupy a
privileged position in the school curriculum of those countries that saw in indus-
trialization the path towards modern society. Mathematics became the ally and
support of the new capitalist forms of production. Many early 20th century peda-
gogues understood civilization as synonymous with industry (Radford 2004). To a
large extent, the main problem of 20th century educational reform was the problem
of massive schooling to train the young in the participation and development of a
technological society. One century later, things have not changed much. Capitalism
has not vanished. It has become trans-national, diversified, and globalized. It is
hence not surprising that the preschoolers I see entering the school every morning
start the day with activities around counting. If the school has to produce consumers
and technologically oriented minds, counting has to be the starting point.

At first sight, counting may seem to be a natural activity: the same activity
regardless of place and time. On a closer look, however, as anthropological and
ethnomathematical research shows, not all cultures have counted in the same way
and not all cultures have counted the same things (e.g., Lancy 1983). Counting can
be better conceptualized as a culturally codified numerosity-oriented way of
thinking and acting to make sense of the world (Radford 2008b). Classroom activity
is an attempt to provoke the encounter of children with a specific culturally con-
stituted form of thinking about numbers, figures, chance, information, etc. Rather
than natural and conceptually neutral, the form of thinking favored in the Ontario
and in other curricula around the world conveys a specific worldview. In the case of
arithmetic and numerical literacy (or numeratie, as it is sometimes called), this
worldview entails positions about what counts as counted, and operates within a
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particular rationality (e.g., how things should be counted) thereby creating a
specific regime of truth. The worldview, its rationality, and concomitant regime of
truth are all central elements of the semiotic systems of cultural significations that
organize the school as a social institution and sanction the kind of knowledge to
which students are exposed. To avoid believing that cultural mathematical forms of
thinking are purely conceptual and to better grasp their economical-political sub-
stratum, it is worth recalling the political struggle between merchants and the feudal
aristocracy in 13th century Florence about the legitimate way to count—with
Arabian numerals or counters—and the prohibition issued by the Guild of the
Money Changers against the use of Arabian numerals (Struik 1968). And all this
would have very little bearing on our discussion were it not for the formidable fact
that subjectivities are not merely produced as a by-product of learning: on the
contrary, what is learned and how it is learned are the threads out of which sub-
jectivities are made. From the theoretical perspective that I am sketching here, it
would be a mistake to conceive of the child as already equipped with her pro-
clivities, tastes, and personality—as idealist and rationalist pedagogies do. The
child is an individual in an unending process of becoming dialectically entangled
with what she learns and how she learns it.

To sustain the previous ideas, I discuss a classroom activity in the rest of the
chapter. The activity is about an arithmetic game played between two children. The
object of the activity, as discussed with the teacher and our research team, was to
offer the children an occasion to become acquainted with cultural forms of counting
and thinking about numbers as targeted by the curriculum. A plastic sheet contained
two rows made up of 10 squares with space enough for the children to place a small
plastic bear in each (see Fig. 2.1, pic 2 below). One child received 10 bears of one
colour, and the other child received 10 bears of another colour. They received one
dice. I focus here on the second part of the game. In the second part of the game, the
children started with empty rows. The rules were as follows: taking turns, each
child had to place on her/his row the number of bears that corresponded to the
number shown by the dice after the child rolled the dice. The winner is the child
who fills her/his row first. To fill the row, the child has to roll the dice and obtain the
exact number of points on the dice as the number of spaces left on her/his row. To
demonstrate the rules, the teacher played a game with a child in front of the class.
Then, the class was divided into groups of two.

Pic 1 Pic 2 Pic 3 Pic 4

Fig. 2.1 Pic 1–3: Jack and Carl discuss the game. Pic 4: The teacher and the children
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In terms of the mathematical notions involved, the students had to deal with:
(a) producing a numerosity (the points shown by the dice); (b) counting the
numerosity (quantity) either perceptually or with their fingers and/or words;
(c) determining the number; (d) choosing a quantity of bears that corresponds to the
number; (e) and placing the bears on the row and determining whether or not the
game has been finished. In terms of the social dimension of the game, the game
required the students to subject themselves to the rules of the game, to articulate
their actions with those of the other child, and to pay attention to the various phases
of the game. Here is an account of the game played between Carl and Jack.

Jack rolls the dice and gets 6. He says “six!” and places six bears on his row, one
bear at a time while counting aloud “1, 2, 3, 4, 5, 6.” Carl closely follows Jack’s
actions; he counts and says “six!” He waits for Jack to finish. Then he says “OK.
My turn, my turn!” Jack responds “OK. I’ll just put this [the dice] there for a, for
now” and places the dice close to Carl’s row. Carl takes the dice, rolls it, and says
“Oh! 2!” He takes one bear at a time and places them on his row, while counting
aloud “1, 2.” Jack follows Carl’s actions, counting closely. Jack seems to have
forgotten how many bears are already on his row. He takes three bears from his row
and counts those that remain, pointing to them successively, and says “1, 2, 3.”
Then, he proceeds to put back those that he just removed. As he puts them back one
after the other, he says “4, 5, 6.” The page moves a bit; the bears move from their
square and now appear not properly placed. Several are on the same square. In the
meantime, Carl moves the dice close to Jack’s row and says “Ok, it’s your go.”

Up to this point, the children follow the rules of the game. Following the rules, I
want to suggest, is an important moment in the children’s process of subjectifica-
tion; that is, in the process through which they co-produce themselves as subjects of
mathematics and subjects of education, more generally. The children enact the
game’s rules, which means that they have to subject themselves to the same regime
of truth: they have to count following a same culturally and historically constituted
way of counting that, despite the presence of the bears, the dice, etc., targets an
abstract form of arithmetic thinking that will be required in the abstract commercial
exchange network that the children will find in society. The children also enact a
culturally and historically constituted form of living in the world that expresses
itself in the forms of collaboration (e.g., turn taking) and social behavior.

However, by following the rules the children are not merely materializing a
human form of living in the world or practicing a theoretical way of counting. They
are doing much more than that. They are positioning themselves in a social world
where their actions, regardless of their difference and their polyglossic nature, are
recognized as legitimate. The apparently unimportant attention that Carl pays to
Jack’s actions when Jack rolls the dice, obtains 6, picks up 6 bears and places them
on his row serves indeed to legitimize Jack’s deeds. Legitimation is a joint
endeavor, not a solitary one. It is a social concept. It requires cooperation. The
children’s cooperation, as it will turn out later, is still very fragile.

To enter the social world, the children also have to control themselves. In our
video, we see that they wait impatiently for the other player to finish placing his
bears. As Vygotsky noted, “A very young child tends to gratify his desires
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immediately. Any delay in fulfilling them is hard for him and is acceptable only
within certain narrow limits” (1967, p. 7). This is why, Vygotsky contends, it is a
mistake to conceive of the child “as a theoretical being” (p. 7) moving emotionless
from one cognitive stage to another.

Let me continue with my account of the game. Jack rolls the dice again. This
time the upper face shows two points. Jack is not happy with the result, picks up the
dice again, puts it in his hands, shakes his hands vigorously, and lets the dice fall.
He utters “5!” Satisfied with the result, he starts adding bears while counting “1, 2,
3, 4.” He runs out of bears. Carl has been looking at what Jack does, apparently
without fully understanding Jack’s actions. Carl does not seem perturbed by the fact
that Jack has ignored the first result (the dice showing 2 points). At this moment a
child from another group calls the teacher and Carl’s attention moves to that
group. In the meantime, Jack is busy reordering his bears on his row. Thirteen
seconds later, Carl’s attention comes back to Jack. Jack is still reordering his bears
on his row. Carl stretches his arm and tries to get the dice, which is in front of Jack.
Jack prevents Carl from taking the dice, and says “So, it’s … wait! Ok, it’s ….”
Carl does not pay attention to Jack and says “Ok my [turn], I …” Jack interrupts
and says “No, wait! Wait! Wait!” After some physical struggle Carl succeeds in
getting the dice. Jack continues “So, it’s 1, 2, 3, 4, 5, 6” and keeps on placing and
counting bears: “1, 2, 3, 4.” Carl is not paying attention to what Jack does. Carl rolls
the dice twice. Jack finishes counting and puts his arms in a victory position. He
utters “I won! I won! I won! I won! I won! I won! Look!” Carl turns the dice in his
hand, and when he finds the 6-point face, he stops and starts counting the points: “1,
2, 3, 4, 5, 6 … 6!” He tries to start putting six bears on his row. Jack puts his arms
on the page covering all the bears to impede Carl from placing his bears. Jack says
“I won! … Me, I won!” Carl moves his body towards the page and in a very
frustrated tone says “Ughhhhhh!” (see Fig. 2.1, pic 1). Jack insists “Me, I won!”
Carl replies “Me is getting mad at you!” Jack responds “Me, I won! Won!” Jack
takes the dice and shakes it vigorously as if to start a new game (see Fig. 2.1, pic 2).
Carl exclaims “No! JACK … Ughhhhhhh! No! This is enough!” He succeeds in
getting the dice. “My was only when [I] have this” (he points to 6 on the dice) “So
my turn.” Jack answers: “No, you didn’t get that! … You did like (he pretends to
hold a dice in his hand and to move it around) flip, flip, flip and then you found 6!
Um, Carl cheated, he does like flip, flip, flip, flip! … (pointing at Carl) Cheater!
Cheater! Cheater! Cheater!” Carl reacts with his body. He comes very close to Jack
as if he is going to hit him (see Fig. 2.1, pic 3).

The game turned very bad. At the beginning of this episode, Carl did not react to
Jack’s rolling the dice again after Jack got the discouraging 2 points. By rolling the
dice twice, Jack transgresses the social dimension of the rule. To some extent, he is
aware of it: when he picks up the dice the second time and shakes his hands
vigorously, there is a sneaky smile on his face, which may mean something like:
“You know, I know that I should not be doing this, but …” Maybe he interprets
Carl’s silence as a kind of complicity and continues playing seriously as if nothing
had happened. Right after, Carl got distracted and his attention moved to another
group. The result is a rupture in the children’s collaboration that was present in the
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early part of this game. The collaboration includes a coordination of actions (e.g.,
taking turns) but also paying attention to what each player does. Part of collabo-
ration is indeed to pay attention to others, even if it is not one’s turn. To maintain
his attention on the game is a tremendous task for Carl who is one year younger
than Jack. In turn, although Jack’s attention is on the dice and his bears, he does not
realize that Carl is not paying attention. Jack is focused on his own actions. When
Carl’s attention comes back to the game, it is focused on taking his turn, regardless
of the position of the game. The regime of truth that holds the children together in
the first part of the game is no longer there. The social and theoretical common
ground embodied in the rules of the game has disappeared. Without a common
ground, the connection between the children is lost. Impulse and desire seem to
drive the children’s deeds. The other has become an impediment to one’s own
actions. Jack disqualifies Carl by treating him as a cheater. Carl, who exhibits a
lesser mastery of the language than Jack, responds with unarticulated phrases and
with frustrating emotions expressed verbally (“Ughhhhhhh!”) and with threatening
body language.

At this point, the teacher (T) comes to see Carl (C) and Jack (J):

T: (She positions herself close to C and talks to him in a calm tone.) Sit down.
J: (Furiously, points at C) Cheater!
C: Me no cheater. (Turns to the teacher.) He does not want to listen to me!
T: (Talks to C in a patient, supportive and comforting tone.) He doesn’t listen to

you? (See Fig. 2.1, Pic 4)
C: No!
T: What are you trying to tell him?
J: (Points at C) He, he cheats!
T: (Talks to J in the same calm tone she talked to C.). OK. Stop saying that.
J: He was doing like (Makes some gestures with his hands.) … and found 6.
T: (Talks to C in a calm tone.) What … what do you want to tell him?
C: Uh…
T: (Talks to both children.) Whose turn is it?
C: Me, me, me rolled like that but he didn’t listen.
T: OK. Roll it [the dice] again. We’ll restart.

At this point, the children started collaborating again. They started taking turns,
paying attention to the other, showing solidarity, putting the bears on their row and
counting aloud. The teacher remained with them for 12 s and left to see another
group. The teacher succeeded in calming both children. Through her second and
third utterance the teacher shows empathy; that is, as the Greek term pátheia
intimates, the acknowledgment of the suffering of the other. Carl responds posi-
tively to the teacher’s empathic attitude. The teacher also politely asks Jack to stop
calling Carl a cheater. Not without effort, Jack acquiesces to the teacher’s request,
controls himself and calms down. The teacher is now in a position to restore the
children’s attention. The children can now move beyond accusatorial body, hand,
and verbal actions and can focus on the game and its rules.
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This episode shows the tensions that underpin the processes of subjectification
out of which subjectivities are being produced. These tensions are not defects of a
task design. Nor do they derive from a pedagogy that has gone wrong. They are part
and parcel of the processes of subjectification and the disclosing of Being. Through
these processes the children encounter forms of Being that have been culturally and
historically constituted. These forms of Being are coded forms about the ways in
which individuals are called to present themselves to the world and to interact with
other individuals. These coded forms are what Hegel (2009) calls generals (as
opposed to singulars). They are archetypes of living in the world and, as arche-
types, they cannot be perceived or sensed directly. For instance, we cannot perceive
or sense fairness as such—as we cannot perceive or sense directly, responsibility as
such. To be sensed, to become objects of consciousness and reflection, to be
idiosyncratically incorporated in the individuals’ own repertoire, these coded forms
of Being (e.g., the fair player and all the social, conceptual, cognitive, and ethical
attributes that come with it, like, in our case, self-control, collaboration, solidarity,
responsibility, sustained attention, theoretical perception, cultural-historical meth-
ods of arithmetic counting) need to appear in the concrete material world of action,
sensation, language, feeling, and thought, where then they can be cognized. These
coded forms of Being appear, in our case, in trying to follow the rules of a game.
They appear first punctually, then in a more generalized way, as the children
co-position themselves in the social world and become conscious of what entails
behaving socially and intellectually in a given culture, and succeed progressively in
incorporating these attributes in their own actions, always in unique and idiosyn-
cratic ways and with unique and idiosyncratic results.

Talking about the development of self-control and voluntary direction of one’s
own actions, Vygotsky (1998) pointed out that they

develop in the process of children’s group games with rules. The child who learns to
conform and coordinate his [sic] actions with the actions of others, who learns to modify
direct impulse and to subordinate his [sic] activity to one rule or another of the game, does
this initially as a member of a small group within the whole group of playing children.
Subordination to the rule, modification of direct impulses, coordination of personal and
group actions initially … is a form of behavior that appears among children and only later
becomes an individual form of behavior of the child himself. (p. 169)

This transformation of self-control and interpersonal coordinated action, however,
does not occur naturally. The classroom activity accomplishes that. It is the
classroom activity that moves Being from its state of generality or potentiality to
actuality through semiosis—i.e., semiotic collective processes of meaning-making.
In this sense, the activity embeds the children and the teacher. But at the same time,
the activity is produced by the deeds of the children and the teacher. This is why,
methodologically speaking, we cannot attend to the participants without attending
to the activity in which they are immersed, and reciprocally, we cannot attend to the
activity without attending to the participants that produce the activity. This is the
dialectic nature of activity and participants through which Being is disclosed. In its
disclosing, the children and the teacher feel and socially experience anger, frus-
tration, empathy, collaboration, responsibility, solidarity, etc.
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These phylogenetically constituted attributes of Being become crucial elements
of the always evolving Semiotic Systems of Cultural Significations that subsume
the classroom, the school, and the educational system. These phylogenetically
constituted attributes of Being become pointers of action and be-com-ing. Of
course, such attributes of Being are not encountered, sensed, and experienced
equally by the children. In the course of activity, they are understood (not neces-
sarily at the conceptual level) in varied ways. They occur in an emerging inter-
personal ethical attitude that, in previous work, we have termed togethering; that is
to say, a relational attitude based on a not necessarily explicit “ethical commitment
participants make to engage in and produce activity” (Radford and Roth 2011,
p. 227). And as we have seen, the encounter with the aforementioned attributes of
Being is deeply entangled with the manner in which the teacher interacts with the
students. The teacher draws on developed features of Being that, in the course of
classroom activity, come to interact with the children’s emerging conceptual and
emotional understanding of the situation. As Vygotsky (1989) once noticed, cul-
tural forms of knowing and Being (voluntary attention, arithmetic thinking, forms
of human collaboration and ethical dispositions) do not result from mere interac-
tion. Contrary to other living species, humans are not pure biotypes. Instead, human
cultural forms of knowing and Being result from the interaction between phylogeny
(that is, the evolutionary development of a cultural group) and ontogeny (that is, the
life-span development of individuals) in human activity (Moretti and Radford
2016).

2.5 Concluding Remarks

This chapter has been an attempt at investigating the production of subjectivities in
the classroom. To do so, I resorted to semiotics, which is usually understood as a
discipline dealing with the production of signs and their meanings. In the intro-
duction I suggested considering signs in a more dynamic way and submitted that
individuals can also be considered as signs. As a result, from this perspective,
semiotics also deals with the manner in which individuals are signified and signify
themselves. The key idea behind this theoretical stance is to conceive of the indi-
viduals as entities in the making who come to agentically position themselves—and
are positioned by their actions and discourse—in differential, polyglossic, and
ideological manners. While difference and polyglossia operate as centrifugal forces,
ideology operates centripetally. I called these entities in the making subjectivities.
They are co-produced in activity-bound processes of subjectification dialectically
entangled with semiotic systems of cultural significations. These systems offer an
ubiquitous symbolic superstructure to the individuals’ actions and reflections. They
include the ontological category of Being, which I formulated as potential ways of
living in the world and encompassing a sense of ourselves—how we conduct
ourselves in the social world, how we show ourselves to others, and how we are
expected to behave socially and to be recognized by others. Since this sense of
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ourselves is ineluctably embedded in an ethical view, the production of subjec-
tivities is always an ethical act.

These ideas were illustrated through a classroom activity game around counting.
Although games and play in young children have been recently the object of
research in mathematics education (see, e.g., Meaney et al. 2016; van Oers 2013),
my interest focused on the manner in which a counting game opens up space for
children to encounter historically and culturally constituted ways of knowing and
Being—in this case, theoretical counting and living in the world, respectively. More
specifically, the children were exposed to numerosity recognition (arithmetically
interpreting the points on the dice), numbering (naming the numerosity),
numerosity production (choosing a quantity of bears in accordance to the named
numerosity), counting actions (placing the bears on the row), as well as sophisti-
cated forms of cooperation, action coordination, but also empathy, respect, soli-
darity, and responsibility.

The classroom activity game allows us to see some of the dynamics and tensions
that underpin classroom processes of subjectification. The game was based on a rule
that, as all rules, is much more than conceptually following a sequence of
instructions. The rule appears indeed as a social and conceptual structuring element
through which the children become endowed with social generality: they recognize
themselves and are socially recognized as players with the ensuing collective
entailment of actions and expectations. In short, the children become endowed with
a generic element that applies to them, as well as to others or to any player of the
game for that matter. Rules in play (as in life), as well as other more implicit
regulative mechanisms of behaviour, extricate the individual’s experience from its
pure subjective and private significance. They bring experience to a new realm.
They position individuals into a cultural, historical, and social world. This is why it
is a mistake to consider games from an educational viewpoint as mere promoters of
conceptualizations. This is a reductive cognitive view of games.

In the game analysis we saw Carl, despite all his frustration, positively re-
sponding to the call of the teacher. To answer to the call of the other is part of
responsibility. In his book Éthique et infini, Lévinas (1982) notes that responsibility
is “the essential, primary and fundamental structure of subjectivity … It is in ethics,
understood as responsibility, that the very node of the subjective is knotted” (p. 91).
He goes on to say that “[r]esponsibility in fact is not a simple attribute of sub-
jectivity, as if the latter already existed in itself, before the ethical
relationship. Subjectivity is not for itself; it is, once again, initially for another”
(pp. 92–93).

In short, in the example here discussed, the classroom activity opened up a space
for the children in which existential and ethical areas of human life appeared. The
teacher’s intervention brought to the fore, in a decisive manner, forms of living in
the world that restored the flow of the interaction of the children. Her intervention
emphasized an all-encompassing ethical disposition to the other oriented towards a
reciprocated listening that is much more than conceptual and that is also much more
than a mere negotiation of social positions. It was oriented towards a truly human
listening, based on a pre-conceptual, emotional understanding of the misery and
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agony of the other, an emotional understanding through which we recognize our-
selves and the fragility of our human nature. These considerations may lead us to
envision classroom activity in new non-individualist, communitarian based, aes-
thetic forms of human collaboration (Radford 2014) out of which we may be able to
move towards what has been called “the liberation of both the senses and reason
from their present servitude” (Marcuse 2007, p. 227).
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Chapter 3
Birth of Signs: A (Spinozist-Marxian)
Materialist Approach

Wolff-Michael Roth

Abstract The existence of “the sign” generally tends to be taken without ques-
tions. In this study I show that signs are born in and for activity, where they are part
and constitutive of the relation with others. I use a brief case study as the empirical
basis to suggest an approach grounded in cultural-historical and pragmatic
approaches that abandon the notion of signs as mediators and instead focus on the
developing communicative field that is common to the participants in relation.
Abandoning the sign as mediator allows us to pursue studying the lines of
becoming that were so dear to the late Vygotsky, who was in the process of
replacing his earlier mediational approach to the sign by a Spinozist-Marxian
approach.

Keywords Sign � Commodity � Sign vehicle � Materialism � Sensible
Suprasensible

3.1 Introduction: A Cultural-Historical Materialist Take
on the Sign

Sign operations are the result of a complex process of development, in the full sense of the
word. (Vygotsky 1994, p. 151)

Semiotics has gained considerable traction in the field of (mathematics) edu-
cation. Educational semiotics can be defined as the amalgamation of learning theory
and semiotics; it is “a form of inquiry into how humans shape raw sensory infor-
mation into knowledge-based categories through sign interpretation and sign cre-
ation” (Danesi 2010, p. ix, emphasis added). Absent in this definition is the fact that
in fluent practice, signs are not interpreted at all but are read transparently thereby
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giving access to phenomena directly (e.g. Roth 2003). There are thus three possible
areas of investigation constituted by how people relate to the pertinent signs: cre-
ation, transparent reading, and interpretation. Much of mathematics education
research tends to be concerned with the third. This chapter, on the other hand, takes
the creation of signs as its topic, or, more correctly, it is concerned with the birth of
signs in society-specific relations.

An important early articulation of the importance of the sign and its birth in social
relations can be found in the work of the societal-historical psychologist Lev S.
Vygotsky (e.g., 1997). Accordingly, the sign is first a means of and for acting on
others before it is used for acting on the self; it first is a social relation before it exists
for the person (Vygotskij 2005a). Vygotsky uses the birth of the intentional pointing
gesture, an indexical sign, as an example for the birth of the sign generally. Thus, the
process emerges from a child’s failed grasping movement aimed at some object,
which the mother treats as an instruction by handing the object to the child; and the
movement has become a sign when the child actively uses the demonstrative gesture.
Here, the hand and finger movement is bodily and real, therefore the sensible aspect
of the sign is apparent. The suprasensible aspect, its ideality or “meaning” (the hand
is pointing rather than moving arbitrarily) is relational. It arises from the fact that the
movement (i.e., the sign) is a reflection of the mother-child relation. When it has
become a sign, the hand movement has synecdochical function in that it stands for
the relation with an Other as a whole. But prior to having become sign, there already
is a hand movement that is part of a transactional event. Clearly, it is not yet a sign
and thus does not mediate anything. The hand movement is a constitutive part of the
relation; without the movement, the relation does not exist.

The theoretical development of the preceding point goes back to the
cultural-historical analysis of the emergence of (exchange-) value as the
suprasensible side of a sensible commodity (use-value) (Marx and Engels 1962). In
the simplest version of an economic exchange, a commodity obtains its value, short
for “exchange-value,” in terms of the amount (quantity) of another commodity
(e.g., 20 yards linen = 1 frock). In such an exchange, the commodity exists both for
“buyer” and “seller,” as use-value and exchange-value, respectively. Exactly the
same can be shown to be the case in the exchange of words, verbal symbols, or
signs (Roth 2006), or, for that matter, “any combination of such signs and the
syntactical pattern of this combination” (Il’enkov 2012, p. 174). If the word does
not exist for two, there is no exchange at all. The analysis can be taken further. The
same producer may exchange the same amount of linen for other goods, so that its
value comes to be expressed in terms of different quantities of different goods (i.e.,
20 yards linen = 1 frock = 40 lbs. coffee etc.). All of these exchanges occur at
small scales, within groups. This is equivalent to the case where students do
mathematics in small groups. But what they come up with does not have to—and in
many case does not—conform to standard mathematics. Something else has to
happen, which the example of the commodity renders apparent. The general, uni-
versal value form emerges only in exchanges at the level of the society, when the
various commodities are produced for the generalized satisfaction of human needs.
In this case, the value of all commodities is expressed in the same good (e.g.
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1 frock = 20 yards linen; 40 lbs. coffee = 20 yards linen, ¼ wheat = 20 yards linen
etc.). All ideals (universals) of mathematics arise and exist in this latter form
(Il’enkov 2012). Consciousness, thus, is not merely and accidentally social (as any
relation between two people) but always and essentially societal, determined by
“the societal being of man” (Marx and Engels 1978, p. vii). The suprasensible
aspect of the material-sensible commodity, as for the material-sensible sign, simply
is a manifestation of the societal [gesellschaftliche] relation constituted in and by
the (commodity, sign) exchange. That is, the commodity (material sign) is a
synecdoche of the exchange relation, its ideal form (i.e. the exchange-value) being a
transposed and translated manifestation in consciousness of the material exchange
relation.

From this ever-so-brief analysis, we can take three aspects of the birth of signs.
First, there is a relation between two things, which, below, are identified to be the
sensible sign vehicle and suprasensible sign content (mapping onto use-value and
exchange-value, respectively). Second, there is a human relation in which the sign
is exchanged and that is constituted (in part) by the exchange. Third, the peculiarity
of the materialist approach in the Spinozist Marxian tradition lies in the fact that it
takes the first relation also as a reflection of the second (i.e. the relation between
things exchanged, objects or signs, reflects the relation between people). This
cultural-historical materialist framework considerably expands currently available
semiotic studies generally and semiotic studies in mathematics education particu-
larly. Especially in mathematics education, children come to be confronted with
phenomena and sign vehicles that they have not encountered before. Our field
(mathematics education) therefore is an ideal test bed for investigating “the natural
history of the sign” (Vygotsky 1994, p. 151), ranging from birth to becoming and to
the death of the sign.

3.2 The Structuring Work on Which the Birth of Signs Is
Founded

The preceding section exhibits sign use as involving a first relation between sign
vehicle and sign content. Studies in the philosophy of language show that to
interpret any linguistic or other “sign means to define the portion of continuum
which serves as its vehicle in its relationship with the other portions of the con-
tinuum derived from its global segmentation by the content” (Eco 1986, p. 44). The
“continuum,” of course, is material. However, its portions and segmentations are
not given; instead, they are the results of human labor (Jornet and Roth 2015). For
example, in one think-aloud study, which asked practicing PhD biologists to
interpret graphs from an introductory biology text, participants in many instances
failed to give the generally accepted responses (Roth and Bowen 2003). While
gazing at a figure plate—in which a birthrate (b(n) * −n2) and death rate graph
(d(n) * n) intersect at two points—to make a statement about what happened to
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the population n, one scientist said that she was looking at the slopes of the lines.
A standard reading of the graph, however, requires looking at the values of the
functions b(n) and d(n). On the same task, only 1 out of 17 biologists correctly
replied to the question at which point the increase in the population size was largest
—which is neither at the highest point of the birthrate graph nor at the point where
the difference between birth and death rate is largest; instead, it is largest where the
function (b(n) – d(n)) � n is maximized. Thus, most of the scientists’ failures in
interpreting the graph in the standard way can be traced to the non-standard
structuring of the material display. Simultaneously, many participating scientists
did not uncover the second part of the underlying sign relation, that is, they did not
identify the content of the graph (i.e. what it was intended to be about).

This phenomenon can be understood if we think about the sign in the way Eco
suggests: it consists of a material configuration that comes to stand out against
everything else that configures the ground. There are two types of work required in
the production and use (interpretation) of signs (Fig. 3.1) (Jornet and Roth 2015).
First, each portion (signifier) is the result of a structuration of matter yielding form
—e.g., something in the world needs to be perceived as some thing that has form
(percept). Second, any sign is the result of the relation between two structured
portions, each of which constitutes a signifier (segmentation of the continuum).
Because these are separated by an ontological gap, relating percept and signifier or
two signifiers requires gap-crossing work. In other words, there is a transactional
relation between the two, each being integral to the definition of the other. Take
Vygotsky’s pointing example. To know that a hand movement constitutes an act of
pointing requires the presence of an object pointed to. There may be two cases of
trouble. If there is an intended pointing movement but no effect on the part of the
intended recipient, we may hear, “Can you look over there!” In the reverse case, we
may hear, “Are you trying to show me something?” or “What are you trying to
show me?”

In the case of the scientists discussed above, their first type of problems arose
when the form they perceived in the population graph plate was not the one they
needed to perceive in the standard approach; and they were hampered in making the
connections to the natural phenomena that the graphs are taken to stand for. Their
work is to be theorized less as a process of sensory cognizing (Danesi 2010) and
more in terms of a phenomenology of movement that does not initially need to or
require units of knowledge, schema, and the likes (Vygotskij 2005a). In the

Fig. 3.1 Segmentations of
materials, such as percept and
signifier, have to be produced
before gap-crossing work can
link them up
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following, I focus on how a new sign—a percept–signifier relation—is born in
exploratory activity and then I provide a societal-historical account, which also
leads us to abandon the idea of sign mediation. Vygotsky already moved in this
direction, for during the last period of his work, he “came to understand that notions
he had been using so far, such as ‘sign mediation’ or ‘functional system,’ could not
fully explain the whole complexity of human consciousness” (Zavershneva 2014,
p. 74).

3.3 The Genetic Origin of Signs

3.3.1 Case Study from an Elementary Mathematics
Classroom

With the following lesson fragment from a second-grade mathematics classroom I
exemplify and theorize the dawning of signs in human activity. The episode sali-
ently exhibits (a) the birth of a first sign vehicle–sign content relation and, as if in
slow motion, (b) the eventual death of the first relation and the birth of a second
one. These events unfold as part of a second development: the emergence of a
vehicle–content relation that has common currency within a group of students.
Easily missed is the third aspect of signs: that the relation between vehicle and
content also reflects the social relation. Only the second aspect tends to be studied
in mathematics education research under such topic titles as “social construction”
and “negotiation” of “meaning” and “socio-mathematical norms.” The case study
presented here, however, highlights all three aspects.

In the episode, the children have been asked to model a mystery object hidden in
a shoebox (one portion of the continuum serving as the sign content) using plas-
ticine (the second portion of the continuum serving as the sign vehicle). They are
allowed only to reach into the shoebox through a hole—covered by a baffle so they
cannot see the mystery object—and feel it. All three girls (Jane, Melissa, Sylvia),
seen in that videotape in turn, repeatedly reach into the shoebox, apparently feeling
out the hidden object, and then begin to shape the mass of plasticine that they each
previously received for the purpose of the task. The task, therefore, is a completely
material equivalent of situations where there is a (material) sign vehicle but the sign
content is ideal (i.e. “meaning”), and, therefore, inherently inaccessible (which
leads Lacan 1966, to a critique of purely ideal “meaning”). It is a situation where,
“in order to become an object’s (word’s) sign, the stimulus [plasticine model] finds
support in properties of the designated [mystery] object itself” (Vygotsky 1994,
p. 151, content in square brackets added). The teacher eventually comes to the table
where the children are working and groups together two of the plasticine shapes
(made by Jane and Sylvia) while pointing out that these are similar; and they are
marked to be different from the shape of the third model (Melissa’s), which is kept
apart. The girls are asked to settle on one shape (model) because there is only one

3 Birth of Signs: A (Spinozist-Marxian) Materialist Approach 41



mystery object and there cannot therefore be different shapes modeling it. There is a
long debate because the models of different group members vary significantly (cube
vs. slab).

Melissa first shapes her plasticine into a cubical form. She claims the mystery
object to be a cube because it has the same three sides. While speaking, she uses her
thumb and index finger configured into a caliper and holds it to three different
orthogonally positioned edges of her plasticine shape (Fig. 3.2a). But her peers
challenge this statement, therefore treating it as a claim. Over the course of the
16-minute episode, Melissa will have reached into the shoebox eight times, feeling
(transitive) the object for a total of more than 3 min. As part of the debate, Sylvia
repeatedly instructs Melissa in what the mystery object feels like (intransitive)—i.e.
flat as if two palms rubbed together—and how to take the mystery object between
index finger and thumb to feel (in/transitive) its thinness (Fig. 3.2b). But Melissa
maintains that she feels three equal sides, which is well represented in the plasticine
cube she has formed. At one point, Melissa has her right hand in the shoebox and
the left hand on her model (as in Fig. 3.2c) and, based on this situation, continues to
maintain that there is a cube inside the shoebox.

Jane then shows Melissa a test: one hand apparently feels the mystery object
while the other simultaneously rotates and feels the plasticine model. Melissa
eventually accepts the invitation to do likewise. The video shows her with the right
hand in the shoebox while gazing intently at the left hand, which repeatedly and
slowly feels (transitive) Jane’s plasticine model and turns it over (Fig. 3.2c). After
completing four feeling/turning cycles, Melissa looks up, puckers her lips, grabs her
plasticine cube and begins to reshape it into a flat rectangular prism. What has been
a very limited, local, and individual sign—the relation between the plasticine cube

Fig. 3.2 Images from an event in which a sign is born. a Melissa shows why the hidden object is
and feels like a cube. b Sylvia configures her hand/s to show why the object should be a flat slab.
c By means of touch, Melissa directly compares the hidden object with a cube
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and the mystery object—has died before it ever could become exchange currency in
and constituent of the relations involving the three girls.

Here we observe how both sides of a sign relation come into being as a result of
the structuring and restructuring work, and how they are related through the bodily
work of a child. While the children are reaching into the box and feeling the object,
what initially only is an obstacle opposing touch eventually comes to be felt (in-
transitive) as a particular form: from touching emerges a percept or worldly matter
takes form (i.e., “percept”). Based on their respective percepts, each girl then shapes
a piece of plasticine, Melissa, based on prior experiences, calling hers “a cube,”
whereas Jane and Sylvia do not have a name but are shaping the plasticine into a
form that “feels” the same as the mystery object. That is, they use another part of
the material continuum (plasticine), to which they give shape through molding so
that it may serve as a sign vehicle for the mystery object (sign content). The
relationship between the two is based on the similarity between the feel of the
object (signified) and that of the plasticine serving as a signifier (Fig. 3.1). In this
effort, the children are engaged in semiotic processes involving physical materials
(mystery object, plasticine) that parallel other processes involving images.

3.3.2 The Societal Nature of the Phenomenon: A Historical
Connection

The preceding episode should not be reduced to little girls’ play. Instead, we
observe here a societal phenomenon that evidences itself in many different guises.
Sometimes the staff of the same social phenomenon—the birth between a natural
phenomenon and a (mathematical) model—may be mature scientists. For example,
in the 19th century, physicists were debating whether “light” (sign content) was a
“wave” or a “particle” (sign vehicle) and, therefore, what the appropriate mathe-
matical model was. Although the physicists agreed to be looking at the same
phenomenon, light (corresponding to the mystery object), what they “understood”
light to be, its (invisible) nature, was related to the model. They later realized that
“light” is neither particle nor wave—how light manifests itself depends on the
observation situation (operation). In the debate between two different symbol
systems for describing quantum mechanical phenomena, there existed two models
(sign vehicles), Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics.
These two, later were shown to be equivalent in the works of Dirac and von
Neumann (like the teacher grouping of Jane’s model and Sylvia’s model). Similarly
in the case of the three girls: It is immediately apparent that all three initial models
would have been appropriate if the topic of investigation had been topology (they
all have the same Euler number n = 2).
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3.4 The Sign in Relation, the Sign as Relation

The case study exhibits the birth (and death) of sign vehicle–sign content relations.
The description shows that even in the case of a material rather than ideal sign
content, differences and disagreements may exist. This is consistent with obser-
vations in controlled studies showing that in teacher demonstrations, what students
see—i.e. the sign content that results from their structuring work—may differ (Roth
et al. 1997). This is significant in a discipline such as mathematics education, where
students are shown demonstrations (e.g. proofs) or engage in hands-on investiga-
tions (e.g., Dienes blocks, Cuisenaire rods) and where they are to learn disciplinary
practices and facts through sensual experiences. Such disciplinary practices are not
simply “copied” by observing others. Instead, they always require students to act so
that they may discover these practices in their own actions, much in the way that the
child learning to point discovered this pointing in its own failed acts (Vygotskij
2005a). Considerable work is involved in relating the two portions of the contin-
uum, some students establishing a relation whereas (many) others may fail.

The very notion of the sign implies that it is a possibility for two people in a
verbal exchange; an object, a sign or word, cannot exist for one person only
(Feuerbach 1846). This is immediately apparent when we consider the analogy with
the commodity in an economic exchange relation: if there is no one commodity that
changes hands, and therefore is common to two persons, there is no exchange.
When a sign appears to exist for one person only—e.g. the proverbial knot in the
handkerchief as reminder for something—then (a) it inherently could exist for
another person and (b) it exists for that one person as if it were an Other within the
self (Mikhailov 2001; Vygotskij 2005b). The sign thus emerges as a relation where
one person acts on another, and only subsequently serves as a means to act upon
oneself. Melissa’s offer to take the cubical shape as the sign vehicle for the mystery
object (sign content) is modeled on all other experiences with signs and social
relations. That is, a sign exists only as a commodity in verbal exchanges between
two or more people, where it has use- and exchange-value (expressed by another
commodity, sign). As Marx showed, the relation between people in the exchange
comes to be grafted onto the relation between things; and that relation then is
reduced to constitute the exchange-value of one of these things. The suprasensible
aspect of the commodity (sign)—i.e. the “pointing” function of a hand movement—
is a reflection of an earlier, real relation between two people (mother and child). In
other words, “the thing that is expressed in [the objective ideal form], ‘represented’
by it, is a definite societal [obščestvennoe] relationship between people which in
their eyes assumes the fantastic form of a relationship between things” (Il’enkov
2012, p. 176). As a result, a sign, as any higher psychological function, initially did
not simply exist in a relation with another person but more importantly was a social
relation first; and, once it has been fused into one, the psychological can at any time
be unfolded into the relation between two people (Vygotskij 2005a). Thus, all three
girls articulate for others with their plasticine what they feel when touching the
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mystery object. But initially, the three models differ. No model therefore obtains the
status of a commodity exchangeable for the mystery object.

In that episode, a crucial turning point in the events arises from the exchange
with the teacher, who requests that the girls arrive at one and the same model
(vehicle, signifier) because there is only one mystery object (content, signified). It is
an explicit request to establish one rather than multiple sign relations and, therefore,
to establish a situation where there is one model to be used by all in and as their
communicative exchange. In this specific case, the nature of the tasks requires the
establishment of an iconic relation, which means that the children have to come to
agree on what can be felt in the box. But this is precisely where they initially
disagree. Nobody can make Melissa change what she feels (intransitively); the
results of her feeling (transitive) have to come to feel different. This is not easy, in
the way it would not be easy to change into feeling happy over the comment of
another when we initially felt hurt by it. In the episode, concordance of the (in-
transitive) feelings in the left and right hands is established through multiple tries of
simultaneously feeling both parts of the continuum, one within the box, the other
outside.

In this, the exchange with a teacher is crucial, as it is in many cases in mathe-
matics education. This is so because when a teacher already expresses standard
mathematical ideals in her behavior, these can be unfolded again into joint behavior
(Vygotskij 2005a). There is a “renewed division into two of what had been fused
into one” (p. 1023). The constraint requested by the teacher to have but one model
constitutes a nudge towards the production of one model that is common to all, at
least within the group, so that it can then be brought up for more general discussion
at the whole-class level. In this, then, the possibility for a trajectory for local
exchange-value of the model to a universal value is opened up. When everything is
said and done—when the whole-class discussion begins, and especially after the
girls have presented their work—we will have witnessed not just the birth of the
relationship between the model (sign vehicle) and mystery object (sign content) and
not just the birth of an agreement about a common model to be used in conver-
sations about the mystery object. Instead, we observe how the social relations
become absorbed into the material relation between things. The sign—the relation
between vehicle and content—has “swallowed” one of its parents, the social rela-
tion, thereby mystifying its own nature. The sign, like any other material thing,
“once it appears as commodity, it transforms itself into a sensible-suprasensible
thing” (Marx and Engels 1962, p. 85). It “not only stands with its feet on the
ground,” that is, has material character, “but also stands on its head,” that is, has
ideal character (p. 85). In the Spinozist-Marxian analysis, the sign form no longer is
mystical and mysterious. This is so because the sign form appears to have
“meaning” as a “natural property” when in fact the suprasensible character of the
sign merely is a reflection of societal (i.e. universal) relations that exist as societal
relation of material things (e.g. sign vehicles).

The task of the three girls also presupposes the intelligibility and therefore
societal nature of the condition: only one model (sign vehicle, signifier) can exist
when there is only one object (sign content, signified). In the lesson fragment, the
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teacher’s intervention directs the children towards establishing a single sign rela-
tion. The specific sign relations that are to emerge for school students—e.g., in
mathematics lessons—already exist for practitioners in the field of study (e.g.,
mathematics). These practitioners, including mathematicians, are embedded in
material cultures and act/reason in ways that are universally recognizably mathe-
matical. Whereas the children might come up with all sorts of relations—for
example, the three girls might have ended up retaining all three models or they
might have retained the cube as their sign vehicle—the presence of the teacher
affords a universally valid and used relation to re/emerge as and in the children’s
relation to each other. The task of the teacher is to assist students in gaining entry to
the field of mathematics by creating conditions that allow for the rebirth of sign
relations that already exist for others in the society. That is, her presence affords the
re/birth of the universal in the labor of these children. In the episode, we do in fact
see the foundations of a mathematical culture: all three children engage proof
procedures (providing reasons for their models). We also observe that the children
(Jane, Sylvia) themselves evolve an educational strategy for stimulating a process
that allows a peer (Melissa) to perceive (feel) the mystery object differently and,
therefore, to establish a new form of sign relation.

Some semiotics scholars focus on relationships not merely between materials but
more importantly between some material and a non-material mental entity, a
“concept,” “meaning,” or “construction.” From the perspective of a concrete human
psychology, this is not very useful—not in the least because humans engaged in
communication always lack the second part of a sign relation when mathematical
universals are involved (Roth 2016). A pragmatic take on the sign explicitly rejects
the mediational function for accessing some “meaning” and consider only its use
(Dewey and Bentley 1999; Wittgenstein 1997). The sign then is a manifestation of
the very societal relation of which it is an integral part and that it contributes to
constituting. The three girls are seen in the process of establishing that part of the
sign relation that would stand for the (mystery) object of interest in their future
relations and communicative exchanges. If the task had continued in the future,
what would have emerged as the signifier (sign vehicle) could have been used to
make present the mystery object even when it was no longer available. In use, the
sign never is disconnected from its material and social basis, even and precisely
when the sound-word is involved; and it is never disconnected from the soci(et)al
relation that it has come to stand for. This is important for appropriately responding
to the statement “cube,” which might be raising a question concerning the nature of
thing involved, a descriptive statement, or a request for some cubical object (de-
pending on the intonation). That is, not some “meaning” of “cube” matters pri-
marily but the function of its use. In the absence of accounting for the sound, verbal
intercourse is incomprehensible; not accounting for the sensible material basis of
the word is a fundamental shortcoming (Vygotskij 2005b).

Thematerialist approach to the sign offered here therefore allows us to overcome an
often-observed dichotomy between body and mind. Signs are not merely “‘repre-
sentational glue’ that interconnects [children’s] body, their mind, and the world
around them in a holistic fashion” (Danesi 2010, p. ix–x). Instead, they are concrete

46 W.-M. Roth



(always and necessarily partial) manifestations of a child-acting-with-others-in-
environment unit that has practical, intellectual, and affective dimensions (Dewey
2008a; Vygotskij 2001). In use, thematerial sign vehicle is ameans of affecting others
first, and subsequently a means of affecting oneself as an Other. The effect on others
initially is not intended. Instead, a sign (e.g. sound-word) emerges in and, more
importantly, as a social relation when others treat it in a certain way (Vygotskij
2005a). Everything required in learning and development occurs out in the open and
no recourse to inner (invisible) mental processes is necessary: everything that is taken
to be internal in psychological functions is necessarily external. This is why we can
research learning and development anthropologically: by investigating what appears
in the public sphere. This does not mean that there is nothing happening in the mind;
instead, it means that anything relevant is public and researchable as such. Similarly,
the signifier (sign vehicle) to be used in the lesson fragment arises from the exchanges
and the level of approval or disapproval different proposed sign relations receive (e.g.,
the girls’ debate about the appropriatemodel). The ultimate sign relation therefore also
reflects the relation between people and the function within and constitutive of this
relation. Vygotsky’s concrete human psychology takes all higher psychological
functions to be social relations with others first before they become relations of the
person with herself. Even writing personal notes was a relation with others first, now
directed to and being for the person as “‘the Other’within” (Mikhailov 2001). Viewed
from the late Vygotskian Spinozist-Marxian perspective, the sound- (ink-) word has
use- and exchange-value, which manifests itself in the differences of (mostly inac-
cessible) intent and observable effect on others.

3.5 On the Possibility of Abandoning the Idea of Sign
Mediation

The soul knows no mediator. (Mikhailov 2006, p. 36)

Most scholars will easily accept—and hold up Vygotsky’s work to support their
position—that the sign functions as a mediator making possible the relation
between two or more people or assisting a person to access memory (Middleton and
Brown 2005). However, the late Vygotsky had abandoned this, his earlier approach
and was beginning to work out a Spinozist-Marxian position according to which
there is only one substance (Mikhailov 2006). Because there is only one substance,
there cannot be mediators because everything already is part of everything else.
This is a point that Vygotsky was taking up from the materialist, Spinozist
philosopher L. Feuerbach (1846), who inspired Marx and his analysis provided
above. Feuerbach states: “only that exists, which is for me and the other at the same
time, wherein I and the other agree, what is not only mine—what is general
[allgemein = mine of all]” (p. 308). As the case of the commodity in economic
exchanges clearly exemplifies, it does not mediate the exchange relation but in fact
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constitutes the relation. There is no exchange relation if the commodity does not
change hands, resting for an instant in the hands of seller and buyer.

The idea of the sign as taking a mediator position already has been critiqued
within American pragmatist philosophy. From a pragmatist transactional perspec-
tive, the often-invoked triangular relation between sign (i.e., representamen in
Peirce’s triad), referent, and interpretant is a false and misleading appropriation of
Peirce’s work on the sign (Dewey and Bentley 1999). Instead, signs testify to the
mutual implication of one in the other in the course of historically situated practical,
“socio-cultural” activity, where word and sign each have their histories (Dewey
2008b). The environment, including language, is a “medium or milieu, in the sense
in which a medium is intermediate in the execution or carrying out of human
activities, as well as being the channel through which they move and the vehicle by
which they go on” (p. 185). Instead of writing about medium, those pursuing the
path taken by the late Vygotsky and like-minded Russian scholars write about a
communicative field—variously referred to as semantic field [semantičeskoe pole]
(El’koninova 2008; Mikhailov 2001), sense-giving field [smyslovoe pole] (El’konin
1994), or imaging field [pole izobraženija] (Bakhtin 1975)—that has changed
because something in the visible environment writ large has been changed through
accentuation. The signs (models) make visible, allow to be seen, in and as com-
munication, characteristic features of the mystery object. This idea of language
(sign) as the “accented visible, different from the visible … where something is
made manifest and something, on the contrary, is covered over, as if withdrawn”
(El’konin 1994, p. 23) is one of the central ideas in the notes of the late Vygotsky
(Mikhailov 2001). The analogy between a communicative field and a force field in
physics may help. Like a physicist’s heavenly bodies, which produce the gravita-
tional field within which they move and that acts upon them, humans and their
world constitute and relate through a communicative field that is common to them.
The force field is thus not external, between, and separating the entities.

As noted above in reference to Feuerbach, Marx, and Vygotsky, the thing,
commodity, and word is impossible for one but is a reality for two persons. In the
case of the word (language), this is immediately apparent from the following
revised transcription, where what Sylvia (turn 2) and Jane (turn 3) say only makes
sense when we also consider, as transcribed, what Melissa has said before (turn 1).

1 M: ((says )) feel it eh? I have felt it’s a cu:be, HU:::::ge

2 S: ((hears)) feel it eh? I have felt it’s a cu:be, HU:::::ge no it’s not a cube 

3 J: ((hears)) feel it eh? I have felt it’s a cu:be, HU:::::ge  i didn’t feel a cube

Only because what Melissa says is a reality also for Sylvia and Jane does the
saying of the latter constitute a continuation of the talk. That “feel it eh? I have felt
it’s a cube, HU:::::ge” is the result of and constitutes their common communicative
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(semantic) field: it is not a mediator. The field is constituted by and constitutes the
relation. Each turn pair, therefore, has both a sociological dimension cutting across
speakers and a psychological dimension that exists in the unfolding of speech and
hearing (Roth 2014). Of course, in Jane’s response, we should also have included
the import of the statement “no its not a cube” that had come from Sylvia’s lips, and
which, in Jane’s statement “I didn’t feel a cube” finds further (empirical) support.

It has been noted that the materialist analysis of the commodity has a direct
equivalence in the materialist analysis of the sign (Roth 2006). Thus, the sensible
sound-word (sign) has (suprasensible) exchange-value for the speaker and
use-value for the recipient. These exist not inherently in the sign, that is, these are
not properties that inhere in the sign. Instead, both are tied to events. It appears
obvious that exchange-value is tied to exchange and does not exist otherwise;
something that is not exchanged has no value given in terms of another thing.
Furthermore, “use-value is actualized only in use or consumption” (Marx and
Engels 1962, p. 50). We cannot consider “the sign” as a Kantian “thing in itself.” In
the transcription, the exchange event exists across two turns, two phrases or
statements. The first phrase simultaneously has exchange-value (Melissa) and
use-value (Sylvia, Jane); the two reply phrases (at the ends of turn 2 and turn 3) also
have exchange value (Sylvia, Jane) and use-value (Melissa). Incidentally, the
Russian term značenie, generally translated as “meaning,” also translates “value”
and “magnitude”; in the materialist approach of the Spinozist-Marxist tradition, it
should be read and heard as “function and rôle” (Il’enkov 2012, p. 178).

The traditional view of the sign as standing between the subject and her world is
a structural (logical) perspective that lists elements of an event and connects them.
Unsurprisingly, when there are two people, the sound-words seem to be between
and connecting them. From this perspective, therefore, the word (sign) plays the
role of an intermediary—expressed in the well-known triangle of Vygotsky’s earlier
work that makes thematic that a direct connection between two people (subject1 and
subject2) is impossible thus requiring something else connecting them. In the
Spinozist-Marxian materialist approach, commodity and verbal exchange is viewed
as an event that has a dynamic, developmental direction running transversally to the
opposition of two self-contained individuals. Those interested in development and
becoming focus on continued change. Thus, there are lines of becoming. Whereas
the consideration of a word to be said to another focuses on the logical relations
between speaker, listener, and word (language), lines of becoming focus our
attention on (a) change occurring in participants and language while talk is
occurring (Bakhtin 1975); (b) how thought, language, and situation are developing
during speech activity (Vygotskij 2005b); and (c) how maker, materials, and arti-
facts are changing in the productive process (Ingold 2011). Thus, the three girls and
the materials they use and work and their English language are changing while the
lesson fragment is unfolding, whatever the individual intentions of the participants.
This is so, for example, because in actively attending to what Melissa is in the
process of saying (turn 1), Sylvia and Jane are affected, that is, they are changed.
Moreover, because their response—the diastatic event encompassing actively
receiving and replying—is already under way, so is their thinking. An event
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invisible to others and the self (Vygotskij 2005b), thinking unfolds and therefore
changes the person. Not only the participants are changing, but also the material
forms (here the plasticine). The children thus are changing physically (and pre-
sumedly physiologically) as well as psychologically and sociologically.

The radical difference of this approach is apparent from the analogy with a river
(Deleuze and Guattari 1980; Ingold 2011). The transitive subject–object or subject–
subject connection mediated by a sign is like the relation between two opposite
points of a river linked (mediated) by the bridge (sign, tool) (Fig. 3.3a). However,
the flow of the river is perpendicular; it is intransitive, continuing despite the
theorists’ inclinations to focus on the transitive relations between opposites. In
being part of the field, all parts of activity are thought historically, as ever becoming
and ever changing even after the mutually implicating encounter that leaves its
traces in all of them (Fig. 3.3b). The Spinozist-Marxian approach is designed to
understand phenomena culturally and historically. The present study makes the-
matic the entire life cycle of the sign, from its birth to its universal use.

3.6 Implications for Theorizing the Sign

The societal-historical approach to the sign that the late Vygotsky started has
considerable implications for educational practice and research. In traditional
cognitive scientific and constructivist theory, there are two problems with signs.
The first concerns the relationship between thought and things in the world (how
are thoughts related to material things?); the second pertains to the question of
intersubjective agreement (e.g. “What is the ‘meaning’ of a sign vehicle?”).

Taking up a late Vygotskian, Spinozist-Marxian agenda on the sign allows us to
see both questions as artifacts of theory and method. Vygotsky may indeed be the
most important forerunner of educational semiotics, for he recognized that signs are
manifestations of societal relations, embedded in dynamical historical and cultural
relations. In this approach, the suprasensible moment of the sign is not some purely
ideal “meaning,” “socially constructed” and internalized by learners. Instead, the
suprasensible—značenie = value, function (“meaning”)—moment is a reflection of
the original, constitutive relation with another person. The higher, supersensible

Fig. 3.3 a Traditional transitive subject–object and subject–subject relations require mediation (a
bridge) to be linked. b Lines of becoming are intransitive, running transversally and constituting a
field
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function of the word was a social relation first and later appears as reflection of the
relation in consciousness, where it is attributed to the natural property of it (i.e.
“meaning” as natural property of the word).

In his late work, Vygotsky drew radical implications for his method.
Accordingly, the sign in itself cannot be the unit of analysis; instead, the sign is
only a manifestation of a larger unit that has to have all the characteristics of human
society, societal relations, which constitute the very possibility of human sign
forms. This unit, as is characteristic for educational semiotics, integrates humans
and their environment and manifests itself in practical, intellectual, and affective
ways. Because all that matters is the use of inherently material sign vehicles,
humans become literate sign users by participating with others in societal activity
where signs (language) also are part; one may say that persons become signs
themselves (Fig. 3.3b). We no longer need to ponder the “meaning” of a sign—one
of the mediating third parties that pragmatic philosophers (e.g. Dewey and Bentley
1999; Wittgenstein 1997) explicitly reject as useful to theorizing—because the sign
always will be an integral part of some irreducible whole: a means of acting upon
others or the self. As one Spinozist-Marxian philosopher suggests, “the ideal form
of a thing is a form of societal-human life-activity, which exists not in that
life-activity, but, namely, as a form of the external thing, which represents, reflects,
another thing” (Il’enkov 2012, p. 184). In fact, ideality only exists in the continuous
transformation of the two, “forms of activity and forms of things in their dialecti-
cally contradictory mutual transformations” (p. 192).

Educational practitioners following this approach might set up classroom con-
texts that afford the birth of (inherently shared) signs for communicative purposes.
This is important because the birth and becoming of signs, as described and the-
orized here, is future oriented, irreducible to direct instruction or to the models of
unidirectional transmission of factual knowledge. Students in mathematics, for
example, may then be involved in producing and changing signs and sign relations
while part of dialogical relations involving others (peers, teacher).

3.7 Conclusion

For the late Vygotsky, the Spinozist-Marxian, materialist logic implicit in Fig. 3.3b
integrates the method of the sciences, nature, and philosophy. There is only one
substance; and it manifests itself materially, biologically, and culturally.
Materialism of the Spinozist-Marxian type is the only non-reductive human
endeavor because it develops categories, the classical domain of philosophy, and
their testing and further refinement in the same object of inquiry (Il’enkov 1960).
Without doubt, Vygotsky, if he lived today, would have said that educational
semiotics is nothing other than the ultimate science—and in that science there is no
place for mediating thirds because the historical culture of mankind always and
already is immediately given to all the participants in a communicative field
(Il’enkov 2012). To grasp the idea of a field, an analogy with classical physics is
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offered above, where the relationship between two entities—two masses, two
charges—is conceptualized not in terms of a third thing but in terms of a force field.
Both entities constitute the field and, in turn, the field shapes their movements. The
resulting field is common to the all entities in and constitutive of the field
(Fig. 3.3b), but the effects on each are different. The relationships are dynamic—as
exemplified in the relation of heavenly body pairs, such as sun–earth or earth–
moon. We may usefully conceive of human relations in a similar way, shaping and
being shaped by the exchange of signs, each of which is reflected in consciousness.
As a result, “consciousness is reflected in the word like the sun is reflected in a
droplet of water” and “the word … is related to consciousness like a living cell is
related to an organism″ (Vygotskij 2005a, p. 1018).
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Chapter 4
Relating Computational Cartesian Graphs
to a Real Motion: An Analysis of High
School Students’ Activity

Ulises Salinas-Hernández and Isaias Miranda

Abstract In this chapter we apply the recent findings of the Theory of
Objectification (TO) to analyze grade 12 students’ processes of interpretation of
Cartesian graphs that are displayed by software—that manages real time video and
reproduces it frame by frame in a computer—and are related to an experiment of a
free falling tennis ball’s motion across an inclined plane. We specifically are
interested in analyzing how students’ understanding of the mathematical relation-
ships of the physical variables (space and time) precedes students’ understanding of
how real motion occurs. Our data analysis shows that students firstly associated the
Cartesian graphs with the linear trajectory of the motion; secondly, with the
researcher’s intervention, students focused their attention on the software to deal
with the shape of the Cartesian graph and the physical phenomena; thirdly, by
simulating the experiment with artifacts and gestures, they established a functional
relationship between the spatial (vertical and horizontal) and time variables. By
doing so, they were able to describe the trajectory of the tennis ball in terms of
various mathematical relations (vertical position and time, horizontal position and
time, vertical position and horizontal position). We conclude that the opportunity
the students have to manipulate (more or less on a whim) the software, is what
affords students’ processes of interpretation of a specific characteristic.
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4.1 Introduction

The description of objects’ motion may be one of the oldest intellectual activities in
human history. In his Physics, Aristotle himself reports the methods used by nat-
uralist philosophers who had preceded him in order to describe the nature of
motion. These methods have changed over time: For example, while Aristotle’s
method consisted in describing in prose the space traveled by an object in a
determined amount of time, the method commonly described in current science and
mathematics textbooks consists in using both algebraic expressions—as functions
of time—and space-time Cartesian graphs. However, what remains unchanged in
the dialog—in the sense given by Bakhtin (1981) to this term—established by
different scholars in different historical epochs, is the necessity of paying attention
to the relationship between two variables (for instance, the relationship between the
horizontal space traveled by an object during a certain amount of time).

With the introduction of technology into teaching/learning environments, efforts
have been made to document how students make sense of motion (Burke 2010;
Speiser et al. 2003). Some researchers have noted that students’ success in under-
standing the nature of motion is influenced by the use of educational computer
programs for plotting functions on position-time Cartesian graphs and of computer
simulations for depicting data in these types of graph (Cicero and Spagnolo 2009;
Miranda et al. 2007; Nemirovsky et al. 1998; Tao and Gunstone 1999; Thornton and
Sokoloff 1990). Science and mathematics educators have mainly analyzed how this
influence occurs by paying attention to the way (a) students progressively appro-
priate the technology so that they change their understanding of Cartesian graphs
(Doerr and Zangor 2000; Goos et al. 2003), (b) technology takes part in students’
making sense of mathematical symbols (Nemirovsky 1994; Urban-Woldron 2015),
and (c) students deal with the discordance between what they predict and what
computers display (Monaghan and Clement 1999, 2000). In these studies, a variety
of theoretical approaches have implicitly or explicitly been used to analyze the role
of technology in students’ learning. For instance, while Monaghan and Clement
(1999) used Clement’s (1994) cognitive model to claim that computational images
trigger students’ mental simulations so that students are able to use them in
non-technology problem solving situations, Doerr and Zangor (2000) and Goos et al.
(2003) respectively used social (Lave and Wenger 1991) and sociocultural
(Vygotsky 1978) theoretical approaches to go into details about the students’ pro-
cesses of appropriating technological devices in teaching and learning interactions.

Our study takes a somewhat different theoretical approach in order to contribute
to the discussion pertaining to students’ interpretation of Cartesian graphs that are
displayed by graphing software. This approach is Radford’s (2014a) Theory of
Objectification (TO). Specifically, we use Radford’s current considerations
regarding the mediated role of activity—in the sense given by Leont’ev (1978) to
this term—in students’ mathematical knowledge. In this approach, students become
aware of the meaning of the mathematical objects by means of their activity (in
which the use of artifacts and signs are included). By applying this theoretical
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approach, our study may shed some light on clarifying how students’ process of
graph interpretation evolves. We believe it is possible to answer two questions
previous researches have not tackled in regard to technology-enriched motion
problems: In what way do students’ understanding of the relationship between the
variables involved in computational Cartesian graphs precede students’ under-
standing of the characteristics of real motion? Given the fact that a motion of an
object often occurs in a certain way and not in another (for instance, a ball released
from a high position always falls), how do students modify—with the use of
software—their interpretation of computational Cartesian graphs to comprehend
real motion?

4.2 Theoretical Framework

The key premise of the TO lies in the following assumption:

[T]hat the mathematics the students encounter in the school is a mathematics with a long
history, shaped by individuals, cultures and institutions. Within this context, objectification
refers to the social processes through which students become progressively conversant with
cultural mathematical ideas and modes of thinking. (Radford 2009, p. 467)

Based on Hegel’s (1977) dialectical approach and on Leont’ev’s (1978) theory of
activity, in the TO mathematics learning, as the previous quotation highlights, is an
active and creative process that slowly takes place when students seek to understand
the meaning of mathematical objects. In other words, the learning of mathematical
objects is the process of making-sense of the cultural forms of thinking and
understanding the world around us (Radford 2015a). The Cartesian graph, for
instance, is included in that cultural form of understanding the motion of objects. As
we highlighted in the introduction of this chapter, students do not learn the
Aristotelian explanation about how objects move, but the current production of
graphing motion included in the textbooks and shown in computational programs.
Learning then takes place within a sociocultural context mediated by signs and
artifacts, as Radford (2009) assures us based on his early findings.

However, in his current research, Radford (2014c) proposes that signs (verbal or
gestural) and artifacts should be considered not as mediators but as a constitutive
part of the activity—as this term is conceived in Leont’ev’s (1978) theory.
Resonating with the TO, students’ interpretation of Cartesian graphs produced by
graphing software is in line with what Roth and Lee (2003) also noticed regarding
the interpretation of unfamiliar graphs made by scientists:

[A]lthough [the Cartesian graph] is given materially in an instant, it is not apperceived in its
detail in the same instantaneous way. The elements of the graph are not given to [students]
once-and-for-all at the beginning, but emerge into their consciousness in the course of their
interpretation. (p. 285)

Taking into account the TO, the previous quotation can be reformulated as follows:
it is the activity that mediates the knowledge of the meaning of Cartesian graphs.
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Since the concepts of knowledge and activity play an important role in our analysis,
let us briefly describe how they relate to each other in the TO. Such description will
show, at the same time, how this relationship serves as a category to analyze
students’ process of interpretation of Cartesian graphs.

According to the TO, knowledge is not an entity that can be directly observed or
transmitted. Following Hegel’s philosophy, in the TO knowledge is a process; it
“has a genesis and a movement” (Radford 2009, p. 468); that is, it evolves. This
means that knowledge cannot be constructed. Due to this ever-changing charac-
teristic, knowledge does not exist in actuality; that is, it is not something that is
given and therefore able to be observed. On the contrary, in accordance with
Aristotle’s (trans. 2004: 1019a 15) definition of potentiality, in the TO knowledge is
something that does not occur yet, but is in the process of occurring. In other words,
by not being able to be transmitted, knowledge is pure possibility; that is, “it can
only become an object of thought and interpretation through specific problem-
posing and problem-solving activities” (Radford 2015b, p. 136). In the research
problem of this chapter, the knowledge of the characteristics of real motion
becomes an object of thought through the way students interpret the Cartesian
graphs produced by computational software.

Thus, according to the TO, it is in the specific problem-solving activities that
knowledge is an actuality. Here is where the concept of activity plays an important
role in the TO. Keeping the mediated characteristic of this concept, as Leont’ev
(1978) himself proposed it, Radford’s TO assumes that it is precisely individuals’
activity that mediates knowledge and makes it to be concrete (Radford 2013). This
assertion means that, since not all individuals’ activities are equal to one another,
different individuals made knowledge concrete in different ways. In saying “indi-
viduals’ activity,” we emphasize, as the TO does, that activity unfolds through all
individuals that are presented with a specific context (e.g., classroom context) and
through all material and non-material objects that these individuals use. The activity
then mediates specific knowledge. In our study, students’ activity may be observed
when they try to explain a real motion with their interpretation of the computational
Cartesian graphs. The explanation resulting from this interpretation would be
specific knowledge of how to associate real motion with Cartesian graphs displayed
by software. Other students, by means of their activity, would make knowledge
concrete differently.

How students’ knowledge of computational Cartesian graphs is related to the
students’ knowledge of the characteristics of real motion, and how students’ activity
in a graphing software enriched-environment is developed, are the subjects of the
next sections of this chapter.
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4.3 Method

This is a qualitative research study conducted in a high-school physics laboratory
class. The teacher and 11 students (16–18 years old) of this class were videotaped
during five work sessions of two hours each (once per week). The students were
freely grouped in teams of 3–4 participants. We designed five tasks. Some tasks
were solved in more than one session. Once the data collection was finished, we
analyzed the questionnaires and videos of each session.

Previous to the data collection phase, we taught students how to use the
AviMeca software, which had been installed on all computers in the laboratory.
This software is able to manage real time video data and to reproduce it frame by
frame. With this characteristic, students were able to put points on a moving object.
It displays an xy Cartesian coordinate system that it is possible to move all over the
computer screen. AviMeca also displays, in a three-column table, the values of time
during the motion and values of position. Students then were able to copy this table
into an Excel worksheet and were able to produce three different Cartesian graphs
with three function tables: x-y, x-t and y-t With the four different orientations of the
x-y Cartesian coordinate system (axes) (see Fig. 4.1, right), the AviMeca software
allows students to obtain upwards concave and downwards concave curves for one
motion.

For the purpose of this chapter, the data analysis comes from the answers to the
first task by a team of 3 students (S1, S2 and S3). The students had to do the
following steps to complete the task: (a) set up the inclined plane and place it at
1.10 m above ground level (see Fig. 4.2, left); (b) one teammate must drop a tennis
ball from the highest point of the inclined plane; meanwhile, another teammate
should video record the movement of the moving object; (c) with the aid of the
AviMeca software, copy the three-column table into an Excel worksheet and plot

Fig. 4.1 Left. Screenshot of what the AviMeca software shows once it runs a video. At the same
time, students can see one frame of the video and the three columns shown at the far right of the
screenshot. Right. Screenshot of the Cartesian axes and their orientations as suggested by
AviMeca. The arrows in the buttons indicate the positive way in which the software considers the
values of the spatial positions
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the vertical y-t function table to obtain a y-t Cartesian graph of the motion;
(d) describe the motion of the tennis ball by using this Cartesian graph.

4.4 Data Analysis

In data analysis we fuse students’ evolution of their interpretation of the Cartesian
graphs displayed by the AviMeca software and students’ activity that mediates their
knowledge of the meaning of these graphs in the context of a real free fall motion.
We divided students’ activity into five excerpts. Every excerpt has the intention of
showing a specific part of the process of the students’ graph production and
interpretation. Altogether, the five excerpts illustrate how students’ activity was
developed during their intention specifically to accomplish step (d).

The analysis starts right after the students completed steps (a) and (b) and before
starting step (c).

Excerpt 1. Students’ spontaneous prediction and their interpretation of linear
trajectory as a Cartesian graph

This excerpt shows how, after having recorded the motion of the tennis ball and
before using the software, S3 conjectures that the form of the graph must be a
straight line (L1). However, when plotting the values in the y-t function tables, the
software did not confirm this conjecture (L2).

L1 S3: [Talking to the researcher while the other teammates are setting up the
software] The most general [graph] we can obtain is a straight line, right?
[…] Because it is an inclined plane (…) and we unite two points [he refers
to the points the software places when clicking on the tennis ball during the
frame-by-frame reproduction of the video] and having two points is a
straight line to the nearest point. Well, that’s my theory. [Working with the
software and looking at the screen] I thought that it was a straight line
[referring to the graph obtained in Fig. 4.2, left]

L2 S2: Me too!
L3 S1: Well, it is the straight line [referring to the trajectory of the tennis ball

during its free-falling motion], but why does it come out like that? [Points
at the Cartesian graph obtained in Fig. 4.2, left].

L4 S3: But there, you don’t see the [inaudible] in the graph [the student does not
see the straight line in the graph].

Fig. 4.2 Left. Screenshot of a student releasing the tennis ball. Center. Screenshot of the
coordinate axes the students chose. Right. Screenshot of the Cartesian graph students obtained
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S3 spontaneously predicted the shape of the Cartesian graph the software was
about to depict (L1). Although this prediction was not part of what students were
required to do, it was indeed part of the students’ activity. By predicting the shape
of the graph, they started the process of graph interpretation. But S3’s prediction
was not yet a description of the relationship between the two spatial (x and y)
variables. The sentence “the most general [thing] we can obtain is a straight line”
(L1) indicates that S3 was only connecting the points of each frame without making
a relationship between the x and y variables. At this moment of the activity, the
graph they expected (predicting graph) was in fact a copy of the phenomenon they
observed and not the representation of the mathematical relationships between y
and time. The knowledge about this mathematical relationship was still a mere
possibility (Radford 2014b). It was through the comparison between their pre-
dicting graph and the computational Cartesian graph that this knowledge became an
object of thought. In other words, the act of comparing between what they expected
and what they really saw was the problem-solving activity the students created in
order for the Cartesian graph to become an object of thought. We can notice that,
although the students completed the step c—with the aid of the AviMeca software,
copied the three-column table into an Excel worksheet and plotted the vertical y-t
function table to obtain a y-t Cartesian graph of the motion—of the task, the
relationship between the two variables was not yet an object of thought. The
students needed more actions (talking to each other, interacting with the software,
etc.) to become aware that the reason for the difference between the graphs lay in
the coordinate axes they chose (see Fig. 4.2, center). Certainly, one of those actions
could not be to plot every ordered pair of the y-t function table in the coordinate
plane to picture the quadratic function shown in Fig. 4.2 (right). The software
performed this action by means of its computational algorithms (and they were not
shown to the students): there is specific knowledge that the software hides from the
students. However, this hidden knowledge does not have to become an object of
thought, for the goal of the activity was not to describe the computational algo-
rithms that created the y-t Cartesian graph but to explain the tennis ball’s motion by
using this graph (step d). In fact, during the students’ activity, the computational
software performed some actions (for example, to determine the Cartesian graph
according to the orientation of the coordinate axes) so that the students did not have
to. The computational graph of the Fig. 4.2 (right) is then a concrete part of the
knowledge of relating the vertical position of the tennis ball to the time taken during
its fall; that is, it is only one of many possible Cartesian graphs that can be depicted
by the software.

To sum up, this excerpt is characterized by the conflict between students’
spontaneous interpretation, and the graph obtained by the software. What emerged,
then, was the necessity to develop some actions to uncover the reasons of the
disparities among the graphs.

During the rest of the session, in order to match the predicting graph to the
computational graph, the team manipulated the Cartesian coordinate buttons of the
software by placing the origin (point of intersection of the coordinate axes; see
Fig. 4.2, center) in different locations on the screen but without changing the

4 Relating Computational Cartesian Graphs to a Real Motion … 61



direction of the axes; in fact, the students used only the first button (from left to
right) of those available (Fig. 4.2, center). Therefore, the graphs the team obtained
still had the same concavity as the quadratic function. In order to obtain a different
function, the students had to become aware of the characteristics of the axes of the
software as well as of the place they would choose to put the origin of the axes.

Excerpt 2. Students’ manipulation of the software and their interpretation of
the y-t Cartesian graph

In the next session, after reviewing the graphs obtained by the team, the researcher
(the first author of this paper) asked the students to find out whether it was possible
to observe a concave upwards graph by choosing another axis. In his question, the
researcher referred to these axes as the reference systems. Thus, the researcher not
only added the concept of reference system to the students’ language but also
encouraged the students to focus their attention on a new way of understanding the
graph as the relationship between variables. At the beginning, this relationship was
vague, as seen in the following excerpt.

L5 S1: [After manipulating the first two buttons (from left to right) of the Fig. 4.1] It
is just that we will never get an upward curve if we only change the ref-
erence system. It is illogical because our ball will always go down.

L6 Researcher: You say that the graph will never go up because the ball always
goes down.

L7 S1: As long as we keep changing the reference system, the reference system will
give us the position of our graph; but it [the graph in Fig. 4.2, right] will
always be a curve.

L8 Researcher: Downward curve?
L9 S1: Yeah.

Although the researcher did not define the concept of reference system, the
students knew that the location of the axes modified the vertex of the parabola
shown in Fig. 4.2 (right) but not its concavity. In fact, the concavity downward of
the graph is associated with the free falling motion of the ball (L5). Once again, at
this moment of students’ activity, the tennis ball’s motion is associated with its
trajectory and not with a relationship between its vertical position and time vari-
ables. Although the students have plotted the values of the y-t table function
obtained by the software, they have not become aware that what they have really
been doing is to modify the orientation of the axes. They have not yet objectified
that one of these axes is the vertical position variable and the other the time
variable.

After his intervention, the researcher decided to stop asking the team, for he saw
S1 manipulating the software on his own. In order to unveil the meaning of the axes
of the software in the context of this task, S1 did not chose the y-t function table as
he did previously. He selected the x-t function table instead. Then, he chose the first
button of the axes (from left to right) shown in Fig. 4.1 (right); that is, the same
axes he chose at the beginning of the activity: up and right (positive) directions of
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the axes. By doing so, he observed the software displaying an upward concave
parabola that contrasted with the downward concave parabola they saw in L1.

The relevance of the excerpt 2 in students’ activity lies in that the researcher’s
intervention was an action that served to reorient the students’ attention towards the
mathematical variables and its connection with the phenomenon. This situation
highlights the fact that, in addition to the artifacts and signs, all the individuals
present in the activity contribute to unfolding it.

Knowing the rapidly graphing process of the software, S1 preferred manipulating
the buttons of the axes rather than depicting a point-to-point graph using the values of
the function tables. The action of manipulating the buttons mediated the hidden
knowledge of the software in regard to what it actually does when plotting the values
of function tables. The knowledge about the mathematical characteristics of the tennis
ball’s motion acquired cultural determinations due to the fact that S1 decided to
operate the buttons of the axes. We can claim that students, along with S1, are in the
middle of the process of becoming aware of the functional relationships of the vari-
ables of the Cartesian graph. This process kept on developing in the following excerpt.

Excerpt 3. Students’ identification of the x, y variables and their interpretation
of the meaning of the coordinate axes

L10 S1: Look, if we plotted the time with respect to the variable x, we won’t get the
same as if we plotted the time with respect to variable y, because when we
plot this [referring to time] with respect to x, it will be the curved line that
is the trajectory. But, if it is this [referring to time] with variable y …

L11 S2: Let’s see. Do it.
L12 S1: It will be the acceleration that is given by a curve. It’s all calculation (…)

Oh! It changes there [referring to the concavity of the parabola; see
Fig. 4.3, right], but it is because we have to take the x variable.

In this excerpt, for the first time in the activity, the students incorporated the
words x and y into the conversation and identified them as the variables of the
coordinate axes of the software. Contrary to excerpts 1 and 2, in which the students
struggled with the discordance between the trajectory of the motion of the tennis
ball and the Cartesian graph of the software, in excerpt 3 the focus of the con-
versation was on the kind of variables that were represented in the axes. It is at this
moment of the activity that the students started analyzing the Cartesian graph under
the consideration that there should be a relationship between two variables and not
under the sensorial perception of the real motion.

Unlike at the beginning of the team’s activity, when the y-t Cartesian graph
displayed in the computer screen turned out to be contrary to S3 and his teammates’
expectations, in L10 S1 recognized that the x-t function table corresponded to the
upward concave parabola shown by the software (see Fig. 4.3, right). The mathe-
matical relationship between a spatial variable (in this case, horizontal position: x)
and time has now become an object of students’ thought. S1 is even able to
synchronize the orientations of the axes with the concavity of the graph. In other
words, S1 associated the vertical and horizontal axes with the time variable. More
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specifically, S1 was able to interpret the horizontal axis as the time and the vertical
and horizontal axes as the positions of the ball. With these actions, the students
have started developing the hidden knowledge of the software; they have started
expressing the real motion of the tennis ball in terms of mathematical relationships,
which is a cultural way of describing the phenomenon of motion.

It is worth noting that S2’s expression: “Let’s see. Do it” (L11), encouraged S1
to materialize what he (S1) had just said in L11. These two lines, L10 and L11,
exemplified how knowledge, as possibility, is instantiated through activity. S1’s
supposition in L10 suggested how the knowledge of the variables involved in the
parabola of Fig. 4.3 (left) would change if the y values were replaced by the x
values. If S1 had not interacted with the software, this knowledge would have been
a mere potentiality. Here is where S2’s exhortation helps this knowledge to be
concrete. Once again, by plotting the x-t function table, what S1 did was to show a
particular instance of the knowledge of interpretation of Cartesian graphs, as
accepted by professional scientists.

Summing up, the excerpt 3 shows the implications of the researcher’s inter-
vention made in the previous excerpt. Here, S1 took the initiative with the intention
of obtaining an upward curve by choosing variables from the function tables. By
doing so, he made the artifact relevant in the development of the activity.

Excerpt 4. Students’ representation of the real motion and their mathematical
interpretation of the Cartesian graph

After obtaining the upward concave graph, S1 conveyed his ideas regarding the
meaning of the space-time relationship of the tennis ball’s motion.

Fig. 4.3 Screenshots of the S1’s selection of the x-t function table (left) and the graph obtained
(right)
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L13 S1: I know why! Draw this: At the moment the ball moves down the inclined
plane, it is like this [represents the inclined plane using a pen; see Fig. 4.4,
photo 1]. Then, imagine that the reference system goes from this point
[pointed at the place where the origin of the reference system would be
located; see Fig. 4.4, photo 2]. This is y and this is x; they are the axes
[identifies the coordinate axes in his representation, by pointing at the
place where the pen is lying].

L14 S2: Yes.
L15 S1: And the ball is here. Then, in t equals zero, the y is at its maximum level

[points at the highest vertical position of the ball across the inclined plane,
see Fig. 4.4, photo 3], at its maximum point. And when time starts run-
ning, I mean, when we let the ball go, it will move [represents the motion
of the ball; see Fig. 4.4, photo 4]. And at the moment it reaches, let’s say,
t equals ten [points at the lowest vertical position of the ball across the
inclined plane]… y is going to be equals to zero. Why? Because it is on an
inclined plane, I mean it was falling. But x was increasing [points at where
the x values increases] because the trajectory of the ball was forward,
inclined. Then, that’s why the graph goes up or down. And if it’s con-
sidered with respect to y, the graph will always go downwards, because the
ball is decaying [moving downwards].

L16 S2: [At the same time] It is also considered with respect to x.
L17 S1: But, if it is considered with respect to x, what it’s going to do is to increase

exponentially.

The expression “I know why!” uttered by S1 reveals an understanding of what, up
until this moment of the activity, had not been objectified: the functional rela-
tionship between variables. Although S1 added the term reference system to his
explanation, he did not focus his attention on the meaning of this term; he rather
paid attention to the mathematical representation of the Cartesian graph and its
relation to the real motion of the tennis ball (L13). The meanings of both the
reference system and the orientation of the axes, shown in the buttons of the
software, acquired concrete determination through S1’s gestures. The sentence
“This is y and this is x” and the gestures that accompanied it, are altogether part of
S1’s actions through which he materialized the explanation of the motion from a

Fig. 4.4 From left to right, S1: uses a pen to represent the inclined plane (photo 1); points, with
his right index finger, at the place where the origin of the reference system should be (photo 2);
points at the place where the tennis ball started rolling (photo 3); moves his index finger along the
pen, as representing the tennis ball’s motion (photo 4)
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mathematical point of view. Through gestures, S1 made visible not only the
mathematical variables involved in the motion but also the relationship between
them and the inclined plane (see Arzarello et al.’s 2009 study for more information
about the role of gestures in students’ processes of learning). More specifically,
through his gestures, S1 reproduced the experiment of the inclined plane and added
to his actions the vertical position vs. time and horizontal position vs. time rela-
tionships. First, the student used the pen to represent the inclined plane (Fig. 4.4,
photo 1). By doing so, S1 transferred a digital image of the inclined plane into the
real world. But he did not only constrain his actions in representing the inclined
plane with a pen, he also started gesturing the mathematical relationship between
spatial variables and time. In fact, S1 separated, through gestures and words, the
horizontal motion of the ball from the vertical one, and related these two motions
with time: On the one hand, he analyzed what would happen with two specific
vertical positions (the y in S1’s intervention) of the ball as time goes on (see the
beginning of S1’s intervention in L13 and the Fig. 4.4, photos 3 and 4); on the other
hand, he analyzed what would happen with the horizontal position (the x in S1’s
intervention) as time goes on (see the end of S1’s intervention in L13). It is worth
mentioning that S1’s precise words in expressing the mathematical relations
involved in the tennis ball’s motion, and S1’s deictic gestures that further specify
what he had said in his speech, indicate a proficiency in his narrative discourse (see
more details of the role of language proficiency and gestures in the paper by So
et al. 2013). It would not be accurate, however, to claim that S1’s refined expla-
nation in L13 was the final product of his internal cogitation. It was rather part of
the activity that had been developing in the team. S1’s actions obeyed his decisions
to explain to his teammates what he had found when he clicked on the buttons of
the axes. At the same time, while explaining, he forced himself to use the better
words, gestures and even artifacts to make clear his point of view about the
mathematical nature of the motion.

From a TO perspective, S1’s intervention in L13 is an example of what it means
to consider the form in which knowledge is produced. Theoretically speaking, S1’s
explanation refers to the way in which he uses words (such as inclined plane,
position, time, and origin), gestures and artifacts (that is, S1’s actions) that made the
knowledge of describing a motion from a mathematical point of view concrete.
Undoubtedly, the coordination of actions to do certain movements (gestures) had
been developed by S1 during his life; however, it is only within the activity that this
coordination of movements acquires a meaning. For instance, on the one hand,
pointing at the origin of the reference system has a particular meaning: determining
the place from which the vertical and horizontal positions of the tennis ball change
as time passes. On the other hand, using the same finger, S1 pointed at another
concept: the trajectory the object follows across the inclined plane. These gestures
make sense within the specific context of the activity. To sum up, S1’s gestures and
words do not represent only an auxiliary collateral medium of his discourse, but
also the form in which the knowledge of interpreting the real motion is materialized.

The relevance of excerpt 4 is that the activity has evolved with the concomitant
students’ interpretation of the phenomenon, which is now characterized in terms of
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the use of words related to mathematical objects (axes and reference system). This
excerpt highlights that S1’s awareness is perceived through the coordination of his
gestures and language in order to organize his thoughts and to transmit them to his
teammates.

With all the previous actions, the team was ready to take a step forward in its
intention to relate the computational graphs to the real motion. In the next excerpt,
S1 and his teammates went back to the first graph they saw (see Fig. 4.2, right) and
were able to explain it in terms of the relational function of the two spatial variables:
x and y).

Excerpt 5. Students’ explanation of the meaning of the coordinate axes and
their re-interpretation of their initial spontaneous prediction

L18 S1: Let’s do this [highlights the x and y columns shown in the software, see
Fig. 4.5, left]… only these two. If my mental ability is right… this is what
has to come up [At that moment, the graph of the Fig. 4.5 (right) comes up
on the screen] That is the straight line, that is our inclined plane. Then, if
you take the time.

L19 S2: [Interrupting] It is just that here you get the inclined plane because you are
not considering the time.

L20 S1: I only took the x variable and y variable.
L21 S2: [At the same time] You are not considering time. It only gives you the

coordinates you chose.
L22 S1: Yeah, it is only their behavior (…) this is our inclined plane [refers to the

graph obtained]. But, if we consider it with respect to y, we will consider it
as if the height is decreasing.

L23 S2: Yeah, that’s right.
L24 S1: And if we consider it with respect to x, we are going to see the increase of

the horizontal distance there was (…), but if we only have x and y, it is
going to take our coordinate system and it is going to give us an inclined
plane.

L25 S3: The straight line!

Fig. 4.5 Left: screenshot of the x-y function table chosen by S1. Right: the corresponding
computational Cartesian graph of the x-y function table
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Unlike the first excerpt, in which the team saw the software displaying a different
graph (Fig. 4.2, right) from the one S3 had anticipated (L1), in this last excerpt of
students’ activity S1 recognized that that graph was due to the decision of selecting
the table of x and y values. The phenomenon of the free falling motion was at this
moment of the activity signified by a mathematical relationship between physical
variables. S1 did not only trust in his “mental” (as he himself expressed it, L18)
ability to agree with the straight line the computer displayed when he plotted the x
and y values (L18), but also he was able to manipulate, more or less on a whim, the
three variables involved in the phenomenon (vertical and horizontal positions and
time). When S1 said: “I only took the variable x, and the variable y,” he was
conscious that the straight motion of the tennis ball could be mathematically
explained with a straight line because it is able to choose a Cartesian graph that
relates the x variable to the y variable. However, S1 was not the only student who
was aware of the signification of the straight line of the Cartesian graph. S2 (L19
and L21) and S3 (L25) also objectified the mathematical relationship of the vari-
ables and were able to associate it with the real motion of the tennis ball. After all,
S1’s actions were part of a joint activity. The final conclusion made by S1, accepted
by his teammates, condensed all the students’ activity developed during the four
previous excerpts.

In the attempt to summarize excerpt 5, we noticed that all the team members are
aware that (a) his first prediction (made at the beginning of the activity) could be
explained by using the mathematical variables of position (x, y), and (b) time
variable is relevant in the shape of the graph.

To end this analysis, let us summarize the evolution of students’ activity during
all the five excerpts. In the next diagram (Fig. 4.6), each rectangle accentuates the
main activity developed in each excerpt.

4.5 Discussion

In this chapter we analyzed the way grade 12 students became aware of the
meaning of computational Cartesian graphs in relation to the motion of an object
rolling across an inclined plane. This analysis was carried out with the formulations
of the Theory of Objectification in regard to the role of activity in the mathematical
learning process. Our analysis offers an alternative point of view to explain how the
use of technology can be conceptualized as part of students’ activity, in their
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Researcher’s 
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manipulation 

of the software

Chosing 
axes

Gesturing 
and 

uttering  

Using
mathematical 

variables

Fig. 4.6 Evolution of students’ activity

68 U. Salinas-Hernández and I. Miranda



intentions to achieve pedagogical goals. Data analysis suggests that the students’
description of the free falling tennis ball’s motion was preceded by students’
understanding of the mathematical relation of the physical variables (space and
time) involved in the Cartesian graphs the AviMeca software displayed. This
understanding came about through processes involved in different actions. Firstly,
the students expected that the computational Cartesian graph would look like the
tennis ball’s trajectory falling across an inclined plane (Excerpt 1). It was the fact
that the y-t computational Cartesian graph shown in Fig. 4.1 (right) was not similar
to students’ expectations that triggered students’ activity. Secondly, by presuming
to justify that the downward concave graph (Excerpt 2) was due to the
moving-down motion of the tennis ball, S1 decided to plot the x-t function table
displayed by the software. These fortunate actions, along with the manipulation of
the buttons of the axes of the software, made students think of the mathematical
relation between the x and y (spatial) variables and time variables. Thirdly, when
students returned to his first action (Excerpt 5)—when S1 predicted that the values
of the y-t function table would correspond to a straight line (L1)—they had already
understood the mathematical relation of the computational Cartesian graphs. Thus,
at the end of Excerpt 5, the students realized that the linear trajectory of the tennis
ball could be represented as a straight line only if the axes of the Cartesian coor-
dinate system were spatial variables (positions x and y). The process of becoming
aware we have described indicates that the way students understood the physical
characteristics of the free falling motion of the tennis ball in the specific context in
which a computational program is used, was certainly more fortuitous than planned.
This does not mean that if S3 had not both spontaneously predicted the Cartesian
graph at the beginning of team’s activity and S1 deliberately chosen the x-t function
table to obtained an x-t Cartesian graph, students would not have been able to
explain the x-y Cartesian graph as a mathematical relationship between two spatial
variables. What it means is that if S1 had solved the task in a different manner, the
process of students’ comprehension of the tennis ball’s motion would have been
different. It is precisely the opportunities the computational software offers of
manipulating the buttons and the x-y, x-t and y-t function tables that led the students
to a specific comprehension of the meaning of Cartesian graphs. The fact that the
software did some calculations (e.g., plotting the function tables) caused students’
activity to be reorganized in a different manner. It was enough for them to observe
the graph displayed by the software without being concerned about the mathe-
matical algorithms it uses. On the basis of our data analysis, we postulated that
computational devices have some hidden knowledge that students do not neces-
sarily have to become aware of; after all, students’ final intervention in excerpt 5
was not about explaining those algorithms. With the use of the TO, students’ final
intervention can be considered as the final step in which their interpretation
evolved. This is an evolution that found its roots in the way students’ activity also
evolved. The association between students’ evolution of interpretation and students’
evolution of activity we try to convey in this study means that excerpt 5 becomes
fully intelligible if the previous excerpts are considered as the background in which
students’ activity had been developing.
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We believe the TO offers a useful theoretical basis to explore students’ learning
of concepts that are in the border of the mathematics and physics fields. Such is the
case for the concept of reference system. Although it was mentioned by the
researcher in Excerpt 2 and implicitly used by the students during their activity, the
reference system did not become an object of thought in all of the activity of the
students: From the students’ initial point of view, no matter what button is chosen,
the y-t Cartesian graphs are always downward concave curves because the tennis
ball will always move down the inclined plane. Since the concavity of quadratic
functions is related to both the orientation of the coordinate axes and the point
where these axes intersect (the origin), how students’ activity would lead them to
dissociate the mathematical representation from the trajectory of objects’ motion,
using technology to create teaching/learning environment, may need more attention
for mathematics and science educators.
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Chapter 5
Joint Attention in Resolving the Ambiguity
of Different Presentations: A Dual
Eye-Tracking Study
of the Teaching-Learning Process

Anna Shvarts

Abstract This study explores the coordination of several semiotic presentations in
the process of the objectification of Cartesian coordinates by first grade children. By
means of novel dual eye-tracking technology, I investigated the micro-dynamics of
a child’s and her parent’s attentions as they were involved in the teaching-learning
process. The analysis of the synchronized data that were retrieved from two
eye-trackers and from an external video camera showed ambiguity, not only of
verbal terms and visual inscriptions, but also of pointing gestures. It brought out the
joint attention moments as crucial for acquiring the culturally adequate meaning of
the Cartesian plane. The active disclosure of different presentations’ complemen-
tarity determined the moment when the child acquired some meaning, yet not
always the cultural one. The joint attention (or the absence of it) allowed the adult
to keep track of the understanding that was emerging in the child’s mind, to
compare it with her own perception of the cultural representation, and to rectify the
child’s perception.

Keywords Joint attention � Dual eye-tracking � Gestures � Multiple representa-
tions � Mathematics education

5.1 Introduction

One of the most prominent results of mathematics education research during the last
couple of decades is the statement of the multi-representational nature of mathe-
matical concepts and its significance for mathematics understanding (e.g., Duval
2006; Sierpinska 1994). Consequently, a concept in mathematics is not given by its
definition or formal expression but it is determined by many different inscriptions.
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The problem for the learning process is that the inscriptions are external to a
learning person and their signification needs to be acquired in order to contribute to
the mathematical meaning. Being obvious for algebraic equations, this statement
was also shown to be true for visual materials: they are not self-explanatory and
need to be introduced. Otherwise, for example, the canonical graph of a parabola
might be formally associated with the y = x2 equation, without any understanding
that they do not correspond to each other (Aspinwall et al. 1996). Roth (2008)
stresses joint orientation, namely an active attitude from both communicative
partners, which is needed in order to make the meaningful features of visual rep-
resentations salient.

In preparation for discussion of the methodology in the next section of this
chapter, I introduce some material of this research and compare it with the results of
our previous study (Krichevets et al. 2014). The figures represent the paths of
eye-movements while participants were searching for a point with the given
coordinates on the Cartesian plane. There are eye-movements of university students
in Fig. 5.1 and we can see that they gaze along the axes, since it is exactly a
movement along the axes that makes the diagram meaningful. In contrast, Fig. 5.2
represents eye-movements of a first-grade student who has never seen a Cartesian
plane before and he is asked (in the same way as the university students in Fig. 5.1)

Fig. 5.1 Eye movements of the university students while they were searching for a point with
(−4, −4) coordinates
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to find a point with the given coordinates. His eye-movements do not follow the
cultural mathematical sense of the diagram: he moves from one point to another,
searching for an appropriate one between them. This simple example shows the
ambiguity of the same inscription, which looks differently for the participants with
different mathematical backgrounds. Both perceptions are appropriate and mean-
ingful for the one who makes them: they suit the task to find a point, but somehow
we, being the bearers of cultural educated perception, attribute the correct per-
ception of the diagram to the paths of eye-movements in Fig. 5.1. The key question
for educational science is the transformation of a student’s perception from Fig. 5.2
to Fig. 5.1. How does this external inscription come to signify mathematical
meaning for children during the learning process?

According to Vygotsky, the greatest distinctiveness of a child’s development in
comparison with any natural evolutional processes is the pre-existence of “ideal
forms” or “final” forms (Vygotsky 1934/2001), which are special cultural ways of
how to perceive reality and to perform actions that surround a child in her social
environment. These “ideal forms” of knowledge or of ‘how-to-do’ abilities co-exist
with “initial forms” of children’s mental functions and interact with them. This

Fig. 5.2 Eye movements of a first grade student while he was searching for a point with (−2, −4)
coordinates
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pre-existence of ideal form works like a ‘short-cut’ in development: a child does not
need to discover all cultural achievements on her own, but can acquire cultural
forms (and theoretical perception in particular) at first in “a form of collective
behavior of a child, forms of collaboration with others” (ibid, p. 90), and then these
forms are transformed into individual functions. Although Vygotsky himself pays
significant attention to the verbal components of internalization, embodied inter-
action and joint attention are logical continuations of his ideas concerning shared
activity, as it is a necessary step in the internalization of ‘ideal forms’ (Krichevets
2014).

The introduction of a new mathematics concept cannot start from the signs
(formulas, diagrams, etc.) themselves. Some culturally organized activity with the
diagram is needed to determine the correct perception of diagrams. Following
Marx, Radford (2010) refers to an eye as a theoretician: perception should function
in a special enculturated way in order to perceive a diagram correctly. Radford
supposes that this theoretical perception is formed during shared activity between
the teacher and the students: following gestures, verbal explanations, prosody and
other semiotic registers all together, the student is able to objectify the meaning of
the diagrams and the other presentations and to establish the cultural way to per-
ceive them. One of the ways to theorize this connection between representations is
the “semiotic node”, namely “pieces of the students’ semiotic activity where action,
gesture, and word work together to achieve knowledge objectification” (Radford
et al. 2003, p. 56).

Radford (2008) points to the etymology of the phrase to acquire, which means to
seek, as an important metaphor for the objectification of cultural meaning and the
creative character of this process. I would add that this search for a new object as it
emerges from different presentations is determined by a motivational aspect of the
child’s activity, since the object/motive may be defined as a need that has found the
object which can fulfill this need (Leont’ev 1978; Roth and Radford 2011).

Further analysis confirms that the relation between different presentations is not
set and these relations “involve transactional coordination work; this work pro-
duces the social relation between actors and, simultaneously, the sign relation
between multiple forms of presentation” (Jornet and Roth 2015, p. 381). This
transaction is a very first moment when visual or other materials become mean-
ingful for a student by means of joint action, thus appearing to be presentation of
mathematical meaning. Further, as the students discuss this first experience, they
refer to some inscriptions as the re-presentations of the experience that they lived
through. I point to the opposite process: at the moment of teaching intervention, the
visual, verbal, gestural re-presentations (for an adult) become all together the
presentations for a student. I claim that it is joint attention that plays a significant
part in this transformation of perception processes and determines the interrelations
of different presentations as meaning emerges for the student.
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5.2 Joint Attention and Meaning of a Presentation

Joint attention is a specific situation when two people are focused on the same
object and they are both aware of each other’s focus of attention. Developmental
psychology has distinguished joint attention between a child and an adult as an
important mechanism that allows transfer of the cultural meaning during language
acquisition (e.g., Tomasello and Farrar 1986). Unfortunately it has been rarely
studied in educational research and I know only a couple of mentions of this
phenomenon in mathematics education papers. Roth (2008) touches on joint
attention as a part of joint orientation. Seeger (2008) emphasizes the role of shared
intentionality and joint attention in acquiring meaning of the representations
through social practices. At the same time, I suppose that joint attention is exactly a
situation in which cultural perception is forming and mathematical objects are being
shaped and then become referenced through a semiotic vehicle. The purpose of the
inquiry reported in this chapter is to disclose the micro-mechanisms involved in
how joint attention is forming, and how students are getting to perceive Cartesian
coordinates in a cultural way when they are involved in shared actions of solving
tasks.

From the point of view of Radford’s objectification theory, I would say that a
moment of joint attention is precisely the moment when an adult manages to guide
the child’s attention in a proper cultural way. But the situation is more complicated,
since an adult does not just expose her “ideal form”, her cultural way of perception
(which is usually very quick and unarticulated (Krichevets et al. 2014)), but she
unfolds a special cultural practice in front of a student in accordance with the
student’s needs. In research on language acquisition it is known that referencing a
jointly attended object is effective in the case in which an adult follows the child’s
attention instead of guiding the child and forcing her to attend to another object
(Tomasello and Farrar 1986). I suppose that this principle can be applied to
mathematics education in such a way that a teacher might not only guide but also
follow the student’s attention and thus she might adjust her explanations—the
unfolding cultural practice—in accordance with the child’s focus of interest or/and
the child’s own strategies.

Developing the subtlety of joint attention further, I would like to stress the
enactivist and phenomenological approaches in joint attention research. Joint
attention is defined as a state in which two people attend to the same object and they
are both aware of the fact that the other attends to the same object. However the role
of awareness might be different. Gallagher (2011) brings an example of a football
player who does not reflect on the others players’ mental states and on the objects of
their interest, but rather considers the football field together with its significance for
his movements and sees intentions and dispositions of the other players directly
from their gestures and movements without minding their minds. Hutto (2011)
claims a possibility of joint attention without any “mind minding,” which means to
have a common object of focus without having any representation of another one’s
mind, but just getting involved in shared activity. It seems that a student discloses
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the mathematical objects in the same way: she does not try to guess what the teacher
is attending to, but rather immediately takes into account the teacher’s verbal and
gestural expressions and constitutes meaning from them. Without mediation by any
representation of another one’s mind, this immediate reaction, which enactivism
claims, turns analysis of shared activity towards the neurophenomenological notion
of “extended body” (Froese and Fuchs 2012) that is expressed in the ability of
humans to synchronize patterns of their behavior with others by the rhythms and
dynamics of these patterns.

In some other cases a focus of attention might be noticed and taken into account
in further shared actions. This pole of being aware of another person’s focus versus
merely being involved in common activity, I consider as helpful for understanding
the structure of joint attention during the learning process, along with the opposition
of following versus guiding the attention of a student.

This study is dedicated to the microanalysis of visual joint attention, as it can be
accessed through dual eye-tracking technology, which allows the researcher to
follow the eye-movements of two communicative partners while they are
addressing the same diagram.

5.3 Eye-Tracking in Educational Research

The traditional way to study perception in a multi-representational situation is a
detailed qualitative analysis of video records and audio waveforms of students’ and
teachers’ behavior, which allow the researcher to retrieve synchronized data of
gestures, verbal protocols and track intonations (e.g., Radford 2010; Roth 2008).
My aim was to delve more deeply into individual processes of perception of each
participant during the processes of teaching and learning as they develop through
shared activity that unfolds by unification of a few representations. Thus I invoked
eye-tracking technology. Eye-tracking technology allows the following of direction
of an individual gaze; it is widely used in analysis of expert-novice differences of
perception (for a review, see Gegenfurtner et al. 2011) and it becomes increasingly
widespread in the investigations of learning processes (e.g., van Gog and Scheiter
2010). Some eye-tracking research studies in mathematics education are devoted to
the investigation of one semiotic representation, such as diagrams (Epelboim and
Suppes 2001), or texts (Peters 2010), or equations (Chesney et al. 2013). In other
cases an analysis of eye-movements among formulas, texts and pictures was con-
ducted (San Diego et al. 2006; Andrá 2009, 2015). Most of these papers include
only analysis of eye-tracking data. An exception is the paper by San Diego et al.
(2006), in which eye-movements were analyzed together with sketching and a
verbal protocol of the student.

Concerning the transformation of the perceptive processes, it has been shown
that perception of novices differs from experts’ perception in many domains
(Gegenfurtner et al. 2011), including mathematics (Andrá et al. 2015; Epelboim and
Suppes 2001; Krichevets et al. 2014). The prominent result is experts’ ability to

78 A. Shvarts



focus on relevant areas and to ignore what is irrelevant. The educational question is
how teachers may facilitate the transformation of students’ perception to that of the
experts. There is empirical evidence that looking at some particular areas correlates
with more effective learning. Thus, with this result applied to the investigation of
peers’ communication, it has been shown that couples of students who have higher
gaze similarity obtain higher learning outcomes (Belenky et al. 2014; Sharma et al.
2015). Analyzing eye-movements during learning by Massive Open Online
Courses (MOOCs), Sharma and colleagues (Sharma et al. 2014, 2015) introduced a
notion of “with-me-ness,” which means an amount of time that a student attended
such zones of the visual presentation that were associated with the words of the
lecture at that moment. According to the data, the time spent in such areas correlates
with the learning achievements. Remarkably, the correlations are stronger when the
teacher starts from a blank board and writes during the lecture, as opposed to the
teaching from a ready-made presentation. I suppose that writing during a lecture
helps in the achieving of joint attention, since it guides the student’s attention
precisely according to the thought of the teacher.

In the meanwhile, a whole branch of educational research investigates a possi-
bility of artificial guidance of a student’s attention. It appears that direct guiding by
visual cues does not necessarily lead to an improvement of the learning outcome.
Although sometimes visual cues are effective (Rouinfar et al. 2014; Scheiter and
Eitel 2010), in other cases the students did attend to the necessary areas, but there
was no increase in the learning outcome (de Koning et al. 2010). The perceptual
attendance does not mean transfer of the meaning. This phenomenon is also con-
firmed in experiments in which researchers purposed to hint a solution of the task
by modeled eye-movements of experts: the participants would follow an expert way
of perception and would see the solution. But it did not help with logical or
geometrical material (van Gog et al. 2009; van Marlen et al. 2016). The positive
result was achieved in a classification task from zoology that was accompanied by
verbal explanations (Jarodzka et al. 2013).

Why was the guidance of attention by some formal system not effective, espe-
cially in mathematical tasks? Why does it lead to the visits of the essential areas
without understanding of the meaning? In the case of locomotion perception
(Jarodzka et al. 2013), there was no special meaning that needed to be uncovered by
special cultural perceptive actions (like the meaning of the points’ coordinates, for
example). It might be that perceptual strategies of meaning elicitation are individual
and consequently an attraction of the attention by universal cues does not fit
everybody’s understanding process. Empirical evidence of individuality was
brought by an eye-tracking study of the very first embodied abstractions on the way
from natural (uneducated) perception towards theoretical perception in research on
proportional reasoning. The recurrent patterns of eye-movements that emerged
during the experiment and helped to solve the task varied from subject to subject
within the same task (Abrahamson et al. 2016). The challenge for a teacher is to
direct a student towards mathematical meaning, but at the same time to leave space
for the student’s own strategies in perception.
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5.4 Research Questions

The aim of this research is to analyze the micro-mechanisms of transformation of
uneducated perception towards a mathematical one, as this transformation is based
on the unification of a few representations in an ongoing teaching-learning process.
I am focused on joint attention as a phenomenon that hypothetically allows
transferring of cultural meaning from an adult to a child.

What are the micro-mechanisms that allow multiple presentations to coincide in
one objectification? How does visual joint attention appear and what is the role of
joint attention in acquiring mathematical meaning of different presentations,
namely, gestures, verbal explanations, and visual inscriptions? Does a child per-
ceive a visual diagram culturally following the adult’s guidance? Does an adult take
into account the child’s focus of attention in her guidance? The main idea is to
analyze focuses and dynamics of joint attention by means of dual eye-tracking.

5.5 Methodology and Method

5.5.1 Dual Eye-Tracking Technology

In this study I am interested in the exploration of teaching and learning processes in
multi-representational situations, thus I combined eye-tracking data with synchro-
nized verbal protocols, audio waveform and video materials. This technology
allows the researcher to keep all of the advantages of traditional detailed qualitative
analysis of video records and audio waveforms of students’ and teachers’ behavior
(e.g., Radford 2010; Roth 2008), with additional access to the students’ and the
teachers’ perceptual processes.

In dealing with teaching and learning as shared activity, I am particularly
interested in the occurrence of joint attention. For this reason I used dual
eye-tracking technology. This technology includes two eye-trackers and allows the
detection of the moments when gazes of communicative partners are crossed on the
same object. The simplest way to conduct dual eye-tracking is to record
eye-movements of two people while each one is sitting in front of her own monitor
and some synchronized pictures are presented (e.g., Belenky et al. 2014; Guo and
Feng 2013; Sharma et al. 2013). The advantage of this method is precise infor-
mation about the coordinates of the gaze on the screen, thus researchers can directly
overlap two gaze paths and calculate gaze cross-recurrence (Richardson and Dale
2005) or gaze similarity (Sharma et al. 2015), which are similar measures that report
the ratio of time when subjects were looking at the same area. By means of such
data, the importance of gaze overlapping for productive communication between
partners has been shown (Belenky et al. 2014; Sharma et al. 2015). But my aim is to
investigate the communication, which is principally asymmetrical, when one of the
communicative partners holds an “ideal form” (Vygotsky 1934/2001) of cultural
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perception, while the other needs to transform his or her ways of perception. We
need to understand how a teacher manages, by an embodied dialogue including her
gestures, intonations, questions, and verbal explanations, to transfer to the student a
new mathematical way of perceiving. In the case of two separated monitors the
communication is limited to the verbal channel: participants are able to speak and
listen to each other but there is no actual shared space akin to that in a real teaching
process where joint attention is used. Gestures are not recorded and are not analyzed
in this version of dual eye-tracking.

Another approach involves two eye-tracking glasses, which allow freedom of
movement in the shared space (e.g., Yu and Smith 2016). The problem emerges at
the level of data analysis: each eye-movement track is presented within a video
scene involving the particular participant. The most promising way to resolve this
problem is to recognize areas of interest in each participant’s video scene and to
converge the gazes in these areas of interest (Pfeiffer and Renner 2014).
Nevertheless, this process still does not allow the superimposing of one gaze path
on the other.

In this research I introduced two remote eye-trackers, which were calibrated on
the same monitor, so that two participants were sitting shoulder to shoulder while
discussing the same diagram. They also were pointing at the diagram by means of a
thin stick, which allowed natural gesticulation almost without harming the
eye-tracking process. I collected not only eye-movement data, but also video and
audio records of student-teacher interactions. During the analysis I synchronized all
data sources into one video stream, which consisted of a screen record,
eye-movements of a teacher and a student placed on the screen record, and an
external video. There are two main advantages of this technical solution, in which
two participants sit in front of the same monitor: (1) they have a common physical
space and can communicate not only verbally but also by gestures; and (2) the
common monitor allows the production of video of two gazes on the screen for
further qualitative analysis. The second advantage is especially important when we
are investigating an objectification of new mathematical objects in a dynamic scene
and consequently cannot distinguish areas of interest before the analysis. The
novelty concerns both the data analysis and the technical solution for eye-tracking
equipment.

5.5.2 Participants

Five pairs of a parent and a first grade child took part in the research. Despite the
unprofessional character of the parents’ teaching we suppose that it is the best
approach that could be achieved in an eye-tracking laboratory, since we are
investigating one-to-one teaching, which is as unusual for regular teachers as for
ordinary parents. We suppose that exploration of general mechanisms of shared
activity between a parent and a child is helpful in understanding the teaching and
learning process.
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5.5.3 Material

Cartesian coordinates were chosen as appropriate material to study the development
of theoretical perception of the first grades. Children were already freely counting
within 10 but had never met the Cartesian plane. As the experiment showed, each of
them was able to solve the tasks with the parent’s help, and by themselves after the
teaching. So this task could be considered as belonging to the proximal zone of
their development (Vygotsky 2004).

5.5.4 Procedure

The procedure included three stages: a record of the adults’ perception, a record of
the teaching-learning process, a record of the children’s perception. Each stage
included 10 tasks on a number line from 0 to 20 (interfering tasks) and some tasks
on the Cartesian plane (main tasks). Only performance of the main tasks will be
analyzed in the current chapter. In the first and third (testing) stages the tasks on
Cartesian coordinates were as follows. There were 4 points (A, B, C, D) presented
on a diagram of the Cartesian plane, while the coordinates of one of the points were
given in the upper left corner of the screen. The query was to choose the appropriate
point on the plane. During the second (teaching) stage the set of tasks was slightly
different. The first task was the same as one of the tasks in the testing stages and it
was not allowed for the adult to intervene in the child’s process of problem solving.
During the next 13 tasks the adult was free to teach the child. The first 9 tasks had
only one point on the Cartesian plane and the child had to figure out its coordinates:
in the first 4 tasks the point belonged to the first quadrant, while the next 5 tasks had
points in other quadrants. The final 4 tasks had the same structure as the tasks in the
testing stages with 4 points in each task.

5.5.5 Apparatus

For data collection I used an SMI RED eye tracker with sampling frequency of
120 Hz, with participants seated at approximately 40–50 cm distance from the
monitor. The data analysis was conducted by Begaze 3.5. The SMI Observational
Package was used for synchronized external video record and analysis. In the
teaching stage an additional EyeTribe eye tracker with a sampling frequency of
30 Hz was involved in the dual eye-tracking procedure. Our own software was
elaborated to produce video with paths of two eye-movements from two
eye-trackers, which were accompanied by audio waveform.

Thus, my data included four semiotic registers that were involved in
teaching-learning processes and presented in synchronized data of video records
and both participants’ eye-movements:
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(1) a visual inscription of Cartesian coordinates;
(2) verbal communication between the adults and the children;
(3) pointing gestures;
(4) the verbal task that was given in the upper left corner.

5.6 Data Analysis

The design of the research is a mixture of a laboratory experiment and a teaching
experiment, since I capture the natural communication in experimental teaching
settings within the zone of proximal development.Mainly following themethodology
of a Vygotskian semiotic approach (Radford and Sabena 2015), I focus on semiotic
nodes–the segment of the teacher-student shared activity as it involves a system of
different semiotic means. I unpack the dynamics of their appearance, in order to show
how different semiotic components of activity influence the meanings generated by
one another as they emerge in the objectification process. Additionally, in congruence
with my research questions, I analyze eye-movements of a teacher and a child. Taking
into account the possibility of peripheral vision and being aware of the limits of such
operationalization, I consider eye-movements as operationalization of attentional
focus, and overlapping eye-paths as evidence of visual joint attention. In my quali-
tative analysis it is never only overlapping gazes that indicate a joint attention
moment, but congruence of different data sources: a moment was considered as joint
attention when eye-movement data, video and audio records of gestures and con-
versations evidenced that participants are really engaged with the same region of the
visual inscription. While the strict definition of joint attention requires both partici-
pants to be aware of the other’s focus (Tomasello and Farrar 1986), I follow enactivist
and phenomenological approaches to joint attention, in which participants may be
engaged with one object without representing another person’s mind, although they
may be taking it into account as witnessed by their behavior (Gallagher 2011; Hutto
2011). The possibility of theoretical interpretation of joint attention from the point of
view of my research questions, namely the issue of intersubjective sense making
through multimodal shared activity, makes joint attention moments the units of the
analysis (Vygotsky 2004), in accordance with general Vygotskian methodology
where method and theory are joined in revealing a phenomenon as it emerges in a
special situation of provoking development (Radford and Sabena 2015).

In the following, I describe a few short episodes from one of the child-adult
pairs. This pair was selected as one with the most complicated communication, and
with a serious number of misunderstandings. The choice is deliberate, since I
suppose that the unprofessional character of the teacher and the communicative
difficulties bring forward, and let us analyze, processes which are normally very
quick and unarticulated. In each episode I focus on the following aspects, and then
integrate them all together into one system in discussion that summarizes the issues.

(1) Types of semiotic inscriptions (namely a gesture, a verbal term or a visual
inscription);
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(2) An initiative of the child and the adult in the shared activity: who is guiding and
who is following;

(3) Joint attention appearance: how it emerges and how it is related to the child’s
objectification;

(4) A structure of joint attention: are the participants aware of the focus of the other?
(5) An objectification process under the lens of the culture: does the shared activity

lead to the transfer of cultural meaning or not?

5.7 Findings and Discussion

5.7.1 Episode 1. An Ambiguity of Visual and Gestural
Presentations. Part 1

This first episode corresponds to the very beginning of the teaching; it is the first task,
in a series after a few tasks on the number line, in which a child (Kosta) needed to find
the number that corresponds to a point. From the start the adult passes the initiative to
the child, letting him guess what these two lines and a dot might mean.

Adult: What are the coordinates of the point A? What do you think?
Child: Mm-mm, (Fig. 5.31).

Fig. 5.3 The child determines the second coordinate by counting from the point A projection to
the end of the X-axis’s visible part

1These and following figures represent the paths of the eye-movements on the Cartesian coordi-
nates (only the fragments are shown). The red arrows point at the positions of the gazes at these
very moments. The green line represents the eye-movements of the child; the violet line represents
the eye-movements of the adult. The pictures on the left show where the adult was pointing (the
end of the pointing stick is marked by a red circle).
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Child: I think (Fig. 5.4) four… and two! (Fig. 5.5).
Adult: Why [is it] two? Do you count like this? Yes? Four? (She counts as she

makes bow-shaped movements, starting from the point (1, 0) on the X-axis
and following the dashes up to (4, 0), and the child starts counting with her,
Fig. 5.6). One, two, …

Child: Aga [Yes].
Adult: three, four. And up.
Child: And up, (immediately) one. (The adult moves the pointer to zero point and

then she moves the pointer up, using an inaccurate (too long) gesture. The

Fig. 5.4 The child finds the x-coordinate of the point A

Fig. 5.5 The child doubts if he was supposed to use another strategy for the y-coordinate
determination
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child makes the same movement by his gaze, but he stops precisely at the
point (0, 1), Fig. 5.7).

Adult 1: [Therefore] Four, one.

At first, the answer of the child seems to be mistaken to his mother since she
expects the cultural answer (4, 1). Eye-movements of the child reveal that there was
much reason under the wrong answer (Fig. 5.3). He tried to use another strategy
than the cultural one: to count from the projection of the point to the end of the
axis’s visible part (to the arrow). At the same time he is obviously aware that there
might be another strategy since he looks at the y-coordinate of the target point

Fig. 5.6 The child and the adult are counting together along the X-axis

Fig. 5.7 The child and the adult are focused at the projection of the point A to Y-axis
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immediately after the answer (Fig. 5.5). (It needs to be noticed that Fig. 5.5 does
not represent joint attention; both gazes appeared to be at the same place inde-
pendently: the mother was waiting for a correct answer, while the child came there
after his inadequate answer ‘two’.) So his answer is somehow a way to question:
how should I do it, this or that way?

The adult takes initiative as soon as the wrong answer is given; she guides the
child through the correct actions and shows how to count from the zero point. The
ambiguity of the visual inscription, which creates a problem for the child, is
unnoticeable for an adult who does not question the child’s answer and his focus of
attention but just exposes the cultural strategy. The cultural strategy is presented by
a gesture that is too long, and the word ‘up’, which could lead to misunderstanding,
but being interconnected with a dashed structure of Y-axis and corresponding to the
child’s expectations, it is understood correctly. While Jornet and Roth (2015)
describe structuring and relating of presentations as articulated work during the
learning, here we can see the same processes in about 300 ms of interaction.
Moreover these activities cannot be separated and they influence each other: the
gesture was structured in accordance with the dashes on the axis. The adult man-
aged to guide the child’s attention and to form the joint attention, but we need to
take into account, that this guidance was kindly understood in accordance with the
idea that the child already had. The first task was successfully passed, but can we be
sure that the child figured out the cultural way of perceiving the Cartesian coor-
dinates? Let me continue with further material.

5.7.2 Episode 1. An Ambiguity of Visual and Gestural
Presentations. Part 2

The target point of the next task is (2, 3).

Adult: What are the coordinates of the point A? Towards right. Count towards right
(Fig. 5.8).

Child: Three.
Adult: (pointing with the stick at the X-axis) Two! Why [three]? One, two!

(Fig. 5.9)
Child: Yes… But… One, two! But… (he breifly looks back to the Y-axis from the

projection of the point to the arrow).
Adult: Then up!
Child: Two… and… a-a-a…
Adult: (motion of the stick from zero point along the y-axis (Fig. 5.10)) And?

Child and adult (synchronously): Three… (Fig. 5.10).
Adult: So it is two and three.

From the very beginning the child has an idea that he needs to count from the
point’s projection to the arrow, moreover, he chooses the y-axis despite the call to
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“count towards right” that reveals the inefficiency of verbal guidance (Fig. 5.8).
Thus in this case each participant has initiative and the child does not follow the
directions of the adult while the adult does not question or pay attention to the
source of the child’s answers. Then the adult reinforces her guidance by gesture and
the child follows her directions, thereby achieving joint attention (Fig. 5.9), and he
comes to the idea that the x-coordinate needs to be counted first. Does it mean that a
strategy of counting from the zero point is established? Nothing like this! The adult
performs the next gesture–the long arc along the y-axis and the child indeed counts
in a vertical direction, but he sticks to his initial misunderstanding of counting to the
arrow and obviously interprets the gesture as a general direction to count along the

Fig. 5.8 The child determines the y-coordinate by counting from the point A projection to the end
of the Y-axis’s visible part

Fig. 5.9 The adult reminds that one needs to count along the X-axis for the first coordinate
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y-axis, instead of counting from the zero point to the point’s projection (Fig. 5.10).
In comparison with the previous episode, we can see that the same structure of
presentations (the visual inscription and approximate gesture) again leads to some
interpretation; however, this time presentations are structured and related in a wrong
(from cultural point of view) way, although again in accordance with the expec-
tation of the child. This time joint attention was not achieved but, unfortunately, the
answer was correct! (There were three intervals from both directions.) This coin-
cidence of the adult’s and the child’s answers creates a mirage of joint attention, in
which participants suppose that they look at the same object while looking at
different areas, and, consequently, they have a mirage of understanding. In the next
task the child again makes an attempt to count from the point’s projection to the
arrow, but, being interrupted by the adult, agrees to follow the cultural way.

Episode 1 shows the subtlety of guidance, since both the diagram and the
gestures appear to be ambiguous and become meaningful only through congruence
to each other. They form a semiotic node as they are involved in the shared activity
of meaning disclosure or objectification (Radford et al. 2003; Radford and Sabena,
2015). It is important to notice that presentations acquire meaning only after
understanding has happened and, while the diagram of the Cartesian coordinates is
a traditional cultural semiotic means, the gestures unfold only in particular com-
munication. The child’s interpretation is the only act that makes the gestures
meaningful in some intersubjective sense; it transforms them from pre-semiotic to
semiotic means of objectification. The presence of these semiotic and pre-semiotic
means in shared activity does not guarantee that any node and interpretation will
appear. It is the need of the child (Leont’ev 1978; Roth and Radford 2011) to
correlate his strategy with the cultural one, which orients him towards a search for
interpretation of the adult’s too long gestures in their connections with the diagram.
Each time the interpretation corresponds to some anticipation of meaning on the

Fig. 5.10 The adult points along the Y-axis and the child counts from the point A projection to
the arrow
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part of the child, but while in part 1 of Episode 1 there was the culturally correct
interpretation and the successful connection, in part 2 we can claim that there was
just an occasional interpretation and only a mirage of understanding, despite the
feeling of congruency by both the adult and the child. In the next episode I show a
more developed and unfolded search for congruency, which finishes with a coin-
cidence of different presentations that does not correspond to the cultural meaning.

5.7.3 Episode 2. Misunderstanding as an Active
Coordination of Different Presentations

The next episode shows a deliberate search for connection between different pre-
sentations and a crucial role of joint attention in acquiring the cultural meaning.

The task had a target point (−4, 3) and it followed the task of Episode 1.

Adult: Let me remind you, there are minuses here. So it will be minus one, two,
three… (Fig. 5.11) Minus.

Fig. 5.11 The child follows the adult’s gestures and counts along the X-axis. The result of
counting contradicts the adult’s verbal guidance
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Child: Minus… (He looks at the target point (−4, 3), then looks back to the X-axis,
down to the Y-axis, which gave a negative sign in the previous task).

Adult: It will be also by horizontal [axis] but with the sign ‘minus’. Minus… [how
much?]

Child: Minus…
Adult: What is the number by horizontal [axis]?
Child: By horizontal… (He looks again at the negative part of Y-axis and then

somewhere else (Fig. 5.12)).
Adult: The same way, you need to count. Where is the point? (She moves the stick

towards the point and back to the X-axis but the movement itself is directed
along the vertical Y-axis (Fig. 5.13). It appears to be a decisive moment for
the child: he determinedly counts along the Y-axis and finds the answer that
he was searching for (Fig. 5.14)).

Child: By horizontal we have three.
Adult: So… (the adult misses the wrong answer) and by vertical [axis]?
Child: Four. (the child and the adult are focused on the different axes (Fig. 5.15)).

Then the adult understands that there was a misunderstanding and explains
everything from the beginning, this time she is guiding the child’s attention by
gestures.

The explanations in this episode begin from the mother’s initiative and she
guides the child’s attention on the visual inscription by both the gestures and verbal
counting. The x-coordinate of the target point is four, but the adult counts up to

Fig. 5.12 The child searches for x-coordinate that would let him overcome the contradiction
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Fig. 5.13 The child misinterprets the adult’s gesture

Fig. 5.14 The child counts along the wrong axis but finds an answer that is coherent with the
previous verbal guidance
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three and leaves off counting; by an intonation she forces the child to continue on
his own, thus she passes the initiative to the child. Unfortunately the child does not
catch her intonation and the verbal counting sounds counter to the visual inscription
and the pointing gesture, since the pointer is at number 4 (Fig. 5.11). The child
starts to explore the whole scene trying to find a coinciding answer (Figs. 5.12 and
5.13). And suddenly a gesture of the adult helps him to resolve his confusion. The
adult tries to show that he needs to count to the projection of the point on the X-axis
and she makes the vertical move from the point’s projection to the target point and
then back. But Kosta interprets her gesture in a different way, which corresponds to
the previous verbal directions (“One, two, three…”): verbal “three” corresponds to
three intervals along the Y-axis. He starts to count along the Y-axis where the
coordinate is exactly 3 (Fig. 5.14), and this interpretation leads him to balance all
the inscriptions despite the fact that he comes to the wrong answer from the cultural
point of view. At this moment the adult just does not notice the misunderstanding—
she was giving such a full direction that it was hard to expect the wrong answer,
and, despite the absence of joint attention, they move further in coordination. She
directs him this time only verbally (“…by vertical [axis]?”) and the child easily
misinterprets this not very familiar term in accordance with his previous activity.
Only the mismatch in verbal articulation of the second coordinate reveals for the
adult the misunderstanding, which is corrected by the gestures, and the cultural
answer is transferred to the child through the joint attention moment.

Fig. 5.15 The absence of joint attention helps the adult to distinguish misunderstanding between
her and the child
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Thus, a misunderstanding is still a coordination of verbal, gestural and visual
presentations for the child. Joint attention helps the adult to track whether the
coordination of presentations by the child is adequate: supposing that they look at
the same place (Fig. 5.15), she finds out that his answer does not correspond to
what she is looking at, and, consequently, there is a misunderstanding.

The moments of joint attention in these two Episodes 1 and 2 are forced by the
adult’s explanations, which redirect the child from his own strategy, while the child
kindly agrees to follow these explanations. In each case, the joint attention led to the
culturally correct answer, although in some cases (Episode 1 part 2; Episode 2)
there were misunderstandings, which were accompanied by the absence of joint
attention when the coincidence of different presentations corresponded to the
child’s anticipations instead of the cultural perception of the adult. This tension
between guided attention and anticipation of the answer shows the difficulty that is
met in attempts to construct artificial guidance (e.g., de Koning et al. 2010; van
Marlen et al. 2016), especially when we take into account that mathematical visual
inscriptions always need some special work for their important features to become
salient (Roth 2008).

5.7.4 Episode 3. Ambiguity of Verbal Expressions
and a Following Strategy in Joint Attention

The next episode corresponds to the 5th task where the target point (2, −5) has a
negative coordinate for the first time. At the beginning the child starts to read text of
the task (which repeats from task to task without any change) and the mother stops
him.

Adult: [Count] By horizontal. It is the same [task as before]. By horizontal!
Child: One, two, (Fig. 5.16, The adult is waiting at the zero coordinate), three…

(Fig. 5.17, the adult already starts an eye-movement).
Adult: Two!
Child: Four, five (Fig. 5.18, the adult has started the gesture).
Adult: Kosta (pseudonym), here we have the point (Fig. 5.19, directs the pointing

stick at the target point). Chiiik (Fig. 5.20).

This case is symptomatic of how verbal guidance can be inadequate and how
helpful gestures are. The role of joint attention as a way to track misunderstanding
by the child can be seen distinctly.

In this episode the adult tries to transfer the ruling agency to the child since she
has shown the cultural strategy a few times in the previous tasks. She tries to do it
by limitation of her guidance to verbal instructions instead of gestures, so she asks
him to count “by horizontal”. The child starts counting “One, two, three…”. The
correct answer is 2 (the x-coordinate goes first) and the adult recognizes that the
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Fig. 5.16 The child starts counting along the Y-axis instead of the X-axis

Fig. 5.17 The adult notices that the child mixed the axes at the moment when the child does not
stop counting at ‘two’
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child is mistaken already between the words “two” and “three”. She immediately
looks along the Y-axis checking that she understood the child’s mistake in a correct
way. Then she establishes joint attention by pointing to the A and catching the
attention of the child (Fig. 5.19) and then by a gesture shows him that he needs to
count along the X-axis (Fig. 5.20). This time the meaning of her vertical gesture is
different from the previous one: she does not point at the dashes on the axis, but

Fig. 5.18 The adult starts a gesture to correct the child while he is still counting

Fig. 5.19 The adult catches the child’s attention and establishes joint attention
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lines the projection from the target point to the axis. Now the vertical movement
serves the need to count along the horizontal axis and we could expect a difficulty in
interpretation of it. However, this is a rare case in this teaching session when the
adult follows the attention of the child and adjusts her teaching according to it. By
her brief gazes at the point and then to its projection and back to the point
(Fig. 5.19) she finds a way of explaining that is best for the current focus of the
child’s attention, and she develops the communication taking the child’s strategy
and focus into account. Remarkably, as was predicted from the research on infants
(Tomasello and Farrar 1986), this tactic appears to be quite successful despite the
fact that the gesture has a different meaning in drawing projection. The child does
not meet any problem in the interpretation of this gesture as it has developed from
his focus and he immediately follows the adult, thus letting the joint attention and
understanding emerge.

The time that was needed for an adult to distinguished the vertical counting of
the child instead of the horizontal (about 250 mc), and then to elaborate the optimal
strategy of explanation–before the child would finish counting–reveals the strongest
embodied coordination between communicative partners, like the one that football
players live through (Gallagher 2011), or it exemplifies the extended body (Froese
and Fuchs 2012), as the adult adapted her intervention to the child’s activity in the
best possible way.

Fig. 5.20 The adult guides the child’s attention from the point A to its projection on the X-axis
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5.8 Concluding Remarks

As we have seen, different presentations supplement each other and clarify a way to
structure themselves (Jornet and Roth 2015). For example the movement of ges-
tures or lines of the Cartesian plane were structured by the child in accordance with
each other. Thus, there was no meaning, no semiotic means for the child before a
few presentations would merge in one node in order to be objectified as a mean-
ingful piece of shared activity: the gesture was too long to be tied to a dash on the
diagram; the diagram did not tell from where the counting should have been started.
This node of pre-semiotic means does not emerge by chance for a child, but appears
as an answer to the child’s anticipation: the child counts along the Y-axis in
Episode 1 part 1, Figs. 5.5 and 5.7, or counts towards the arrow of the axis in
Episode 1 part 2, Figs. 5.8 and 5.9. In other words a new way of counting is an
object/motive that fulfills a need for a new way of perceiving or for a solution of the
task (Leont’ev 1978). Moreover, there is a strong intention to find this coordination
between different presentations: in the case in which the presentations did not
coincide, the child started an active search for a way to perceive them congruently
(Episode 2, Fig. 5.12). Thus, objectification happens as unification of a few pre-
sentations, independently of the interrelation of emerging understanding to the
cultural meaning. And then it is joint attention that helps to guide the new objec-
tification into a cultural stream. In Episode 1, part 1 (Fig. 5.7) the joint attention
appeared and cultural perception was acquired immediately. In Episode 1, part 2
(Fig. 5.10) on the contrary, there was no joint attention and no cultural perception,
despite the illusion of understanding. In Episodes 2 (Fig. 5.15) and 3 (Fig. 5.17) it
was the absence of joint attention that allowed the misunderstanding to be disclosed
and it was joint attention that finally led to the establishment of cultural perception
of Cartesian coordinates.

How does joint attention form? There are two participants who are actively
engaged with an object in a joint attention situation, but their paths towards joint
attention might be different. In Episode 1, part 1, and in Episode 2, the child was
extensively guided towards joint attention and cultural perception. Then he gave the
culturally correct answer. However, we have seen that verbal guidance [Episode 1,
part 2 (Fig. 5.8) and Episode 3 (Fig. 5.16)] did not lead to the appropriate effect and
needed to be supplemented by gesture. Moreover, even gestures and verbal guid-
ance together could not guarantee that joint attention would appear, as it did not
happen in Episode 1 part 2 and during Episode 2. Thus an adult may guide a child,
but the child might anticipate something different, connect presentations into a
different node than the adult would expect from her side of activity, miss the joint
attention and acquire a different meaning. This phenomenon sheds light on the
difficulties in artificial attention guidance (e.g., de Koning et al. 2010; van Marlen
et al. 2016).

Another way for joint attention to emerge is when an adult follows a child
instead of guiding him (see Episode 3). The adult appeared to be so sensitive to the
child’s answer that she could distinguish a mistake almost immediately and quickly
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find a way to approach this mistake and to form joint attention with the child. She
followed the child’s strategy and continued it; in this case there was no need to
redirect the student’s attention but rather to adjust it. In the episode in question, this
strategy easily led to joint attention and understanding, which corresponds with the
findings of Tomasello and Farrar (1986) that a following strategy is better than a
redirecting strategy in the acquisition of words. This successful interaction was
achieved so quickly and easily and the intervention of the adult was so clearly
spatially incorporated into the way the child started to perceive the diagram, that I
would claim it was immediate coordination of two participants in embodied dia-
logue through their extended bodies (Froese and Fuchs 2012).

Concluding, the system of representations does not exist independently of the
learner and the teacher: any presentation (including a pointing gesture) is highly
ambiguous and understanding appears as an active coordination of a few presen-
tations. Nevertheless the coincidence might lead to misinterpretation, which is still
based on the integration of the presentations by a child and his or her anticipation of
the answer. The absence of joint attention, being noticed in time, is a way to
confront the child’s misunderstanding and the adult’s anticipation of the correct
answer, in order to establish joint attention and resolve this ambiguity of meanings.
In the teaching situation, joint attention might be achieved by an adult’s extensive
guidance or by following a child’s attention and her perceptual strategy. In the
second case, the guidance might be embedded in the child’s strategy; it seems this
way might be preferable for successful communication and, possibly, for the
learning outcome, although it needs further investigation.
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Chapter 6
Attention Catching: Connection the Space
of Joint Action and Togethering

Debbie Stott

Abstract In the context of after school mathematics clubs in South Africa, in this
chapter I seek to gain a firmer and deeper understanding of the theoretical concepts
of ‘space of joint action’ and ‘togethering’. I do this by connecting the notions of
Meira and Lerman’s attention catching and Radford’s moments of poēsis, which are
used as a combined lens to analyse data from two task-based interviews with 9 to
10-year old club learners. Using examples and non-examples, I analysed sustained
sequences of attention catching as observed when participants paid attention to each
other in a mathematical manner to enhance their understanding or sense making.
I argue that the way in which participants take advantage of these sequences has a
bearing on the way in which the space of joint action evolves and how togethering
unfolds. The findings from this chapter contribute to calls for understanding the
special work of mathematics teaching and may be pertinent in both classroom and
out-of-school time contexts in South Africa and beyond.

Keywords Attention catching � Space of joint action � Togethering
Special work of mathematical teaching � Moments of poēsis

6.1 Introduction and Context

In her plenary presentation at the 13th International Congress on Mathematical
Education, Ball (2016) asked, “What is the special work of mathematics teaching?”.
She argued that there is “something to the mathematically interactive, discursive,
and performative work of mathematics teaching that is important to understand”
(p. 24). She concluded by urging the mathematics education community to look at
how mathematical listening, speaking, interacting, acting, fluency, and doing are
part of the work of teaching, and to hear, see, and read students, in “real time.”
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If we are to understand how to hear, see and read students in real time, as Ball
indicates, there is a need to examine every aspect of the mathematical activity from
interaction, discussion and resources. One way to do this is to examine mathe-
matical activity using the idea of semiotic resources that are made up of speech,
hesitations, intonations, gestures, postures, touching and eye contact and so on.
Globally, much work has recently been done on expanding the emerging field of
semiotics in mathematics education (see Presmeg et al. 2016 for a useful summary).

In the South African context, multimodal approaches to research and pedagogy
are increasing as an academic area of study. Archer and Newfield (2014) point out
that with the diversity of language, culture, and ethnicity that characterises South
African educational contexts, a multimodal approach potentially provides a bene-
ficial alternative to “monolingual and logocentric approaches to meaning-making”
(p. 3). Stein and Newfield (2006) argue that in the classroom, a multimodal ped-
agogy can inform a social justice and equity agenda and has the potential to make
classrooms “more democratic, inclusive spaces in which marginalised students’
histories, identities, cultures, languages and discourses can be made visible” (p. 11).
I note a lack of research in the South African context with regard to multimodality
pedagogies in mathematics education, particularly in the field of primary mathe-
matics. This chapter sits in this broader landscape.

Since 2012 I have facilitated many after school mathematics clubs (as examples
of out-of-school time programmes) with children aged between 9 and 12 years old.
This chapter emerges from my longitudinal doctoral study within these clubs,
which I both facilitated and researched. Two such clubs formed the empirical field
for this chapter and were run within the context of the South African Numeracy
Chair (SANC) Project at Rhodes University. This project focuses on a dialectical
relationship between research and development in the field of numeracy education
in South Africa. A key strand of the project’s development work is these after
school mathematics clubs. Graven (2011), at the start of her work as the Chair,
argued that after school mathematics clubs hold the potential to address some of the
challenges young numeracy learners face. The ongoing project clubs are concep-
tualised as communities where sense making, active mathematical engagement and
participation, and mathematical confidence building are foregrounded. Activities in
the clubs are designed for both the recovery and extension of learners (Stott and
Graven 2013).

With this South African context in mind, this chapter is a response to Ball’s call,
specifically regarding hearing, seeing and reading students in real time, and how
this may inform facilitation within such clubs and broader out-of-school time
programmes. To analyse how this occurs during two paired task-based interviews
with 9 and 10 year olds in after school clubs in South Africa, this chapter draws on
the socio-cultural constructs of the space of joint action, togethering, attention
catching and moments of poēsis. Focusing on a single activity from the task-based
interviews, this chapter endeavours to connect the notions of attention catching and
moments of poēsis as a way to make marginalised students’ histories, identities,
cultures, languages and discourses visible and to illuminate and gain a deeper
understanding of how the space of joint action evolves and what it means for
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facilitators with regard to togethering in the context of these clubs and other
out-of-school (OST) spaces.

More precisely, I investigate (1) if the space of joint action evolves by bringing
forth something (sensible mathematics) to the realm of attention (moments of poēsis)
and (2) how the participants take advantage of the moments when attention is caught,
and how they subsequently respond, in order to sustain themathematical engagement,
understanding or sense making. I also consider the usefulness of space of joint action
and togethering constructs as narrative tools in the presentation of data.

6.2 Space of Joint Action and Togethering

Drawing on Leont’ev’s and Vygotsky’s work in connection with knowledge
objectification and consciousness, Radford and Roth (2011) present two concepts
called the space of joint action and togethering. I use these concepts as narrative
tools in the presentation of data for this chapter.

Radford and Roth define the space of joint action as a single teaching and
learning space where interaction between teachers and students is based on an
“evolving, tuning, and reciprocating of the participants’ perspectives, making
thinking a collective phenomenon” (p. 232). Through a “complex sensuous
evolving coordination and tuning of speech, gestures, gaze, and actions, interaction
in a space of joint action” (p. 235) can unfold. In and through joint action and
sense-making, “passages” (Radford 2015, p. 560) will occur in the teacher-student
interactions where students become progressively aware of the cultural-historical or
“ideal forms” of mathematical knowledge. Joint activity is thus an opportunity for
producing and ascertaining that the “ideal form” is reflected similarly in the con-
sciousness of all participants. However, Radford and Roth (2011) caution that the
evolution of a space of joint action does not guarantee a successful outcome in
terms of the participants becoming aware of the ideal form. This is where the
construct of togethering comes into play.

Drawing on the Russian term obuchenie, taken as meaning both teaching and
learning, Radford and Roth point to the importance of the teacher in joint activity
using the concept of togethering. Not to be taken as simply getting together to do
something, the notion of togethering has two key aspects. The first is an ethical
commitment on behalf of the participants to engage in and produce activity.
Secondly, the purpose of that activity is for the teacher to bring the “ideal forms” of
mathematical knowledge into activity by working together with the students,
because the teacher cannot “inject such a structure into the student’s consciousness”
(p. 240), nor can she set knowledge in motion by herself. The purpose of the ideal
object is seen differently by the teacher and the students and may not be clear to the
students at the beginning. The result is that for students, joint action may bring forth
the “ideal form”, whilst joint action for the teacher involves constantly reposi-
tioning the “ideal form” so that it becomes an object of consciousness for the
students.
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Theoretically, these two constructs make sense. However, in several articles,
Radford (2014, 2015) has stressed that the real focus needs to be on understanding
how students become progressively aware of the culturally and historically con-
stituted forms of thinking. In looking at how, this process becomes complex. As
Roth and Radford (2011) point out in quoting Livingstone: “none of the participants
in mathematical activity can see any hidden contents of the minds of others. What
they act upon and react to is what the respective other makes available to them”
(p. 25). So, how does one look for what is made available by the participants from
an analytical perspective? How is the complex coordination of multimodal forms
analytically observed in video data? How are they made observable? This being my
concern, I turned to a construct I worked with in my doctoral study, Meira and
Lerman’s (2009) notion of attention catching.

6.3 Catching Attention and Poēsis

Meira and Lerman (2009) proposed that the emergence of a Zone of Proximal
Development (ZPD) is dependent on whether the participants in a learning activity
catch the attention of the other(s). They argued that when someone or something
captures a student’s attention their subsequent utterances and actions could be
modified, creating a scenario where a ZPD might emerge. In my doctoral work, I
developed this idea to some extent to help make the emergence of a ZPD
observable. Although Meira and Lerman worked with this notion in connection
with the ZPD, in this chapter my aim is to connect it to the concepts of the space of
joint action and togethering.

Immediately one is struck by how this attention catching may differ from
everyday attention catching. The wind blows, the phone rings, something moves–it
catches our attention, but it does not mean that we are making meaning in math-
ematics. Similarly, in educational contexts, events such as a child shouting or
crying, clicking his or her fingers, or dropping a book or a pencil, may not be
related to mathematical sense making. The nature of attention catching proposed by
Meira and Lerman is very specific. It focuses on the moment when attention is
caught during a mathematical activity involving more than one participant. If
attention is caught in the way they suggest, the expectation is that something will be
said or done next that continually works towards mathematical communication or
‘catching each other’s thoughts’. Meira and Lerman indicate that attention catching
directly affects what is subsequently said or done. More specifically, attention is
caught when a participant explains his or her reasoning or talks about mathematical
ideas. In a private conversation with Lerman,1 he spoke further about how, once
such attention is caught, it may or may not be sustained. The idea of sustained

1Steve Lerman was an advisor for my doctoral studies (2012–2014).
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attention catching is an important one for this chapter, as it is a focus point for the
analysis process discussed later.

Attention catching can be initiated by any participant using any semiotic
resource; a child may catch the attention of an adult by asking a question, or an
adult might say something to a child to catch his or her attention, to orient the child
“towards what she wants the child to learn” (Lerman 2001, p. 8). Thus, in Lerman’s
view attention catching gives clues about the nature of communication between
participants in a learning activity and allows us as researchers to make sense of this
communication.

In using the notion of attention catching, I questioned how the participants in a
learning activity take advantage of the moments when attention is caught and how
they respond as a result. This brought me to Radford’s (2015) “moments of poēsis”
construct which provides some clarity as to how this may happen. Radford states
that the process of learning (objectification) entails “moments of poēsis”, which
bring “forth something to the realm of attention and understanding” (p. 551).
Poēsis, Radford (2010) claims, “is a creative moment of disclosure—the event of
thing in consciousness” (p. 3). Poetic moments result from the complex connections
between semiotic means of objectification that accompany and orient the students’
“perceptual, aural, linguistic and imaginative activity” (p. 6). At the time (2010), he
referred to these poetic moments in connection with Vygotsky’s (1978) ZPD.
However, his more recent work frames these moments in the theory of objectifi-
cation within spaces of joint action and togethering (Radford 2015).

Poēsis, which originates from the Ancient Greek poíēsis, meaning production or
composition, can be thought of as the process of making, producing or creating.
Radford’s poēsis highlights the complex notion of creativity, one that has its own
domain in mathematics education research. Creativity for me is the generation of
new and original ideas, but Radford mentions creativity as an ‘event of the thing in
consciousness’. Leikin and Pitta-Pantazi (2013) point to a distinction between
relative and absolute personal creativity in school students, which is useful here.
Relative creativity refers to a student’s own educational history and comparison
with other students and is the ability to “produce mathematical ideas/solutions in a
new situation (to a new mathematical problem that was not learned previously) or to
produce original solutions to previously learned problems” (p. 161). Absolute
creativity, by contrast, is often evaluated by the professional community that
regards it as a meaningful creation from an historical perspective. Thus, I infer that
when Radford refers to moments of poēsis, he is perhaps considering a personal
creative process, where students, in the moment, create mathematically meaningful
new ideas, methods, interpretations, and so on for themselves.

The similarities between the notions of attention catching and moments of poēsis
are noticeable, particularly regarding bringing something to the realm of attention
and understanding. Both notions are focused on learning activity in mathematics
classrooms; both talk of attention and understanding and both were originally
conceived in connection with the Vygotskian ZPD. However, the definition of
attention catching provided above mentions actions but does not specifically state
perceptual, aural, linguistic and imaginative activity, whereas poēsis does. Perhaps,
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more interestingly, poēsis encompasses the idea of personal creativity, where
something is brought into consciousness. Based on these similarities, I hypothesise
that it is possible to link these two notions to create an analytical lens that will
enable examination of how students become progressively aware of the culturally
and historically constituted forms of thinking in the space of joint action.

In this chapter, I use “sensuous multimodal forms” (Radford and Roth 2011,
p. 231) specifically to pay attention to and understand the interactions between
participants in the space of joint action, when mathematical ideas and reasoning are
communicated to each other. In doing so, I aim to clarify and connect the notions of
attention catching and poēsis and hope to unpack how togethering takes place in the
context of the after school mathematics clubs. I approach this by identifying places
in the video data excerpts where sensuous multimodal forms such as hesitations,
intonations, gestures, postures, touching and eye contact connect to sustained
instances where the utterances or actions of one participant affected the other, which
perhaps result in a modification of what was said or done as suggested by Meira and
Lerman (2009). I elaborate on this analytical process and on the idea of sustained
attention catching in the following section.

6.4 Methodological and Analytical Approach

The data presented in this chapter were drawn from two video-recorded task-based
interviews with club learners (aged 9–10 years) who attended South African state
schools and who spoke English as a second or third language. As both club
facilitator and researcher, I conducted the two interviews reported in this chapter,
each of which involved two pairs of female learners. Each interview was about an
hour long and consisted of a range of activities. In the remainder of this chapter, I
use the term facilitator to refer to myself. The unit of analysis is sustained
sequences/moments of attention catching/poēsis as observed through the sensuous
actions of the participants in the space of joint action during a learning activity.

The puzzle in Fig. 6.1 below was one of three activities used in the task-based
interviews. Learners working in pairs, were asked to find the values that related to
each shape to ensure that the row and column numbers would stand true. The ‘ideal
form’ of this activity is to reason deductively and think algebraically. Ideally, by
working through the puzzle, the club learners would begin to understand the need to
work from the general to the specific, narrowing the range of options until they
arrive at a conclusion that will ensure that the numbers they assign to the shapes
will work for all the instances in the puzzle.

108 D. Stott



6.4.1 Connecting Attention Catching and “Moments
of Poēsis” in the Data

As noted, my focus was how to connect and operationalise attention catching and
moments of poēsis for the purposes of analysing how the space of joint action
evolves and what togethering might look like. Using an interpretive analysis
approach, the transcript was initially populated with verbal utterances and then
coded for the range of multimodal forms noted earlier, which connect to the per-
ceptual, aural, linguistic and imaginative activity in moments of poēsis.

The final analytical step involved studying the video for attention catching and
“moments of poēsis”. In doing this I searched for places where there were sustained
sequences of interaction. When participants engage with each other in a meaningful
way, i.e., pay attention to each other in a mathematical manner to enhance their
understanding/sense making or to progressively bring an idea or concept forth into
consciousness, several sequential attention catching moments may occur. This can
be considered as a sustained sequence of attention catching moments. The video
data revealed examples when learners did not pay attention to each other, except for
superficial glancing, where collaboration did not occur and where sharing of
mathematical ideas did not happen. These, I argue would not be considered as
sustained attention catching moments.

Once examples and non-examples of sustained attention catching were located, I
analysed the sensuous multimodal forms to observe what, if anything, was coming
into the realm of attention and more specifically for creative moments, where the
learners created meaningful new ideas, methods, interpretations, and so on for
themselves. Additionally, if utterances or other multimodal actions of one partici-
pant affected the other(s), perhaps resulting in a modification of what was said or
done as suggested by Meira and Lerman (2009), this was shown as an attention

Fig. 6.1 Task-based
interview activity
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catching moment or moment of poēsis. In this way, I brought together the notions
of attention catching and moments of poēsis.

6.5 Data and Analysis

A ‘comic strip’, frame-by-frame representational format (derived from Plowman and
Stephen 2008) is used below to present vignettes from the two interviews. A sequence
of images is accompanied by the time it occurs in the video, learner and facilitator
speech and sensuous actions (gestures, eye contact, movement, body posture, writing,
and so on). The key below indicates the symbols used in the format. In the descriptions
of sensuous modalities, “DAS” refers to myself as facilitator.

The first interview presents examples of sustained attention catching and per-
sonal creative moments, where it gradually comes to one learner’s attention (she
becomes aware) that she can solve the puzzle using mathematics that she already
knows. The second interview presents what I consider to be a counter-example.
That is, there is no sustained attention catching and there is an absence of personal
creative moments.

6.5.1 Interview 1: Examples of Sustained Attention
Catching Moments

As we enter the story, Anathi and Thembela have already spent about 8 minutes
working out the values for the circle (5) and the triangle (8). I have already
explained that all the clubs would be the same value. Both girls were looking at the
second row which has a circle (5), a triangle (8), two clubs (value unknown) and
totals 25. They know that the circle and triangle have a total value of 13 and need to
find the value of the two clubs to get to 25. Anathi breathed in and said to me:
“Ooooh. Eish, hey, hey. You see what I did?” My attention was caught
immediately.

She explained what she did (45:01), tapped the chart, counted on her fingers and
finished off with an excited “Aaah!”. I was further attracted by her excitement and
this determined what I said next. I asked her a question (45:14), introducing the
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mathematical term of “difference”. She reacted to this by looking at me, throwing
back her arms and leaning back in her chair (Fig. 6.2).

Anathi did not verbally respond to my question (Fig. 6.3). Instead, she looked at
the chart and covered her mouth with her hand (45:16). I asked the difference
question again. She sat forward in her chair and wiped her face with her hands.
I encouraged her to count again (45:21).

Her posture, hand gestures and gaze suggest some discomfort on her part,
perhaps she did not know what I meant by ‘difference’. By asking her to count
again I encouraged her to continue trying. This is an example of the two of us
working together in a space of joint action. I understood the term ‘difference’ but
perhaps she did not. We would require togethering on my part and further joint
activity to reconcile those differences. However, I claim that something had been
brought into her realm of attention; attention has been caught through sustained
instances of interaction.

The joint activity had become a space where Anathi and I exposed our ways of
thinking through our speech and other multimodal forms. What is subsequently said
in this space is adjusted so that each participant can understand the other, as is
illustrated below. In other words, what is said and done is modified by attention
catching.

Fig. 6.2 Interview 1 (part one)

Fig. 6.3 Interview 1 (part two)
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The sustained interaction continued here (Fig. 6.4) when I silently mimicked her
actions as she re-counted “13, 14 … 25”. Then she said “Ooooh” (45:25), flung up
her hands, looked at me and said “Yoh, 6” (45:29). I was not sure what she meant
by this so I clarified with “was? She said “12” as she pulled her chair up to the table.
Again, it was unclear what she meant by ‘12’, so I rephrased: “Okay so she counted
up 12 to get to what?” (45:33). Her response was “25”.

Continued interaction signifies that Anathi and I were working (in a space of
joint action) to understand each other. When I said something, it affected what
Anathi and Thembela did next and ensured that mathematical communication was
maintained. Similarly, Anathi’s sensuous actions modified what I said or did next.

Anathi started to write on her paper (Fig. 6.5), but then paused and looked
directly at me (45:38). I asked “Okay, now so what do you think the club is?” She
immediately answered “6”. Thembela, who had up to this point, been leaning back
in her chair and apparently following our interaction, leant into the desk, which
signified for me, her re-engagement and wrote “club = 6” on her paper. Both girls
said “the club is 6”. I asked “why” (45:40). Anathi danced in her chair, clapped her
hands and tapped the chart with confidence and then said “Because half of the
twelve is 6. Oooh”.

Anathi made an expansive hand gesture (Fig. 6.6) as she gave her explanation
about halving (45:45). I pointed to the club on the chart and in a rising intonation,

Fig. 6.4 Interview 1 (part three)

Fig. 6.5 Interview 1 (part four)
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asked the girls to confirm the value of the club (45:49). They both said “6”. In the
last part of the interview (not shown in the sequence above) I asked the girls to
confirm if this value of six would work in another place on the puzzle and together
they worked on completing this last piece of the puzzle.

6.5.1.1 Interview 1: Discussion

The combination of the different kinds of sensuous actions brought into being by
Anathi acted as attention catching moments in various ways. Firstly, my attention
was caught by these actions, which resulted in my responding in a mediational
manner by asking questions and mimicking actions. Secondly, they portrayed
Anathi’s emotions as shown in her sense of excitement as she worked through her
thinking—it is revealed not only by what she says but in her whole being. Her
postural actions (leaning back in the chair, flinging arms in the air), gestures and
making eye contact with me, caught my attention, and togethering continued to take
place between the two of us even though verbal utterances were not always
well-defined.

I argue that through this complex sequence of sensuous actions between myself
and Anathi something is progressively brought to Anathi’s realm of attention and
understanding. Our actions and utterances were modified as a result of those
moments. I submit that this excerpt exemplifies an example of where a space of
joint action evolved, where we worked together so that Anathi became progres-
sively aware of the mathematics in this activity. She may not have realised the ideal
form, but she went some way to drawing on her own mathematical knowledge to
make sense of the puzzle.

Furthermore, I argue, that in the final moments (see Figs. 6.5 and 6.6), Anathi
realised that the 12 needed to be divided into two equal parts to compensate for the
two clubs in the second row, i.e., she had to halve the 12. Her entire being was
invested in this realisation of a mathematical structure (half of 12) and finally
making sense of the value for the club, as evidenced by her dance and other
sensuous actions. Anathi’s enactment of the concept of halving, using a hand
gesture, suggests that the concept may be actualised for her through this multimodal

Fig. 6.6 Interview 1 (part five)
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activity. As Radford (2014) argues, the “sensual and the conceptual become
entangled” (p. 354) in that moment.

This was amoment of poēsis for Anathi—it was her creative moment of discovery.
She was drawing on knowledge that she already had and she was possibly making
sense of it in this context. She had created something meaningful for herself.
Although she would not be able to verbalise it as such, in this moment, she was
perhaps just beginning to understand what it means to use existing mathematical
knowledge to reason deductively, in a culturally and historically constituted way.

This episode is significant as it illustrates how through the sustained nature of the
attention catching moments, Anathi and I took advantage of these moments and
worked together to bring forward our mathematical interpretations and for a
moment of poēsis to take place for Anathi. As the interview illustrates, I realised
that she had arrived at an answer that would work but I invited her to clarify and
think further about her contributions as a way of opening up possibilities for her to
develop a more structured idea of the deductive reasoning required here. I suggest
that this can be thought of as togethering.

Other examples of togethering occur in each part of this interview. Recall that
one aspect of togethering is the constant repositioning of the “ideal form” by the
teacher so that it becomes an object of consciousness for the learners. I am not just
interested in the girls solving this single instance of the puzzle, but also in their
ways of thinking generally about puzzles like this. Thus, rather than simply
accepting the girls’ correct answers and moving on, I attempt to ensure that
repositioning happens, using different approaches. For example, I ask Anathi about
the ‘difference’ between the two numbers as a way of introducing a mathematical
idea, I ask her to redo her counting again in order to help her reach an under-
standing of what she is trying to do, I ask both of them why the club is 6, and I
finally get the girls to ensure that the value of 6 for the club will work in the rest of
the puzzle.

6.5.2 Interview 2: Example of Absence of Sustained
Attention Catching Moments and Poēsis

The extracts that follow are from a different task-based interview in another club in
which myself, Akhona and Kuhle are engaged with the same activity. I include it to
show a contrasting set of interactions between myself and the two girls. The lack of
sustained attention catching moments and in-the-moment responses to those
moments shows that when togethering is absent, no meaningful space of joint
action evolves. It also exemplifies an absence of moments of poēsis.

After approximately one minute of starting the puzzle, the girls find the value of
5 for the circle. They are subsequently unsure about how to go about solving the
next part of the puzzle. Kuhle says, “we don’t know these numbers” pointing to the
other shapes on the chart. They make little progress in solving the puzzle for the
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next three and a half minutes. My role during this time was to guide the girls to find
a way forward without explicitly telling them what to do. Here I have just directed
them towards the total of 26 at the bottom of the fourth column and prompted the
girls to think what the triangles might be if the 2 circles are 5 each. The extract
below begins about 4½ minutes into the task.

Both girls began by pointing to the 26 at the bottom of the fourth column
(Fig. 6.7), perhaps as a way of focusing their attention. Akhona immediately raised
her arms and started to count silently on her fingers. Kuhle saw what she was doing
and copied her. Kuhle voiced her counting from 10 to 20 (4:31).

Kuhle looked at the ceiling, then at me and said “13” (4:45) in a soft voice
(Fig. 6.8). The soft voice may hint at an uncertainty of her answer. I responded with
“Hmmm? 13?” which caused both girls to look at me (4:48). I pointed to the two
triangles in column four (4:53). Akhona’s gaze followed my gesture but Kuhle
continued to look at me with her pen on her chin.

I asked Kuhle to clarify what the triangles were equal to (4:55). She said “13”
again (Fig. 6.9). I wrote down her contribution. I gestured to Akhona, who frowned
at me (5:00). I encouraged her to continue working.

So far, these three parts of this second interview uncover only one moment
where attention is caught (4:48). I asked Kuhle a direct question and she responded.
The question did result however, in a slight modification of what Akhona did. She
stopped her counting, frowned at me and then continued to work on her own.

Fig. 6.7 Interview 2 (part one)

Fig. 6.8 Interview 2 (part two)
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I suggest that it is likely that Akhona’s attention was not sufficiently caught by
anything that Kuhle or I did or said. After this brief attention catching moment,
Akhona worked on her own to find the value for the triangle and after another 2½
minutes, offered the value of 8. We pick up the story at 7 min and 25 s.

I began by indicating Kuhle’s previous answer (7:25) and say to her “Look here.
You put 13. How did you get 13?” (Fig. 6.10). Kuhle leant into the desk (7: 29) and
looked closely at her previous answer. She said “I halved the 26” (7:31) whilst
gesturing and looking over at Akhona’s workings.

I asked her if that would still be her answer now that she had seen the way
Akhona had worked it out (Fig. 6.11). My intention was to reconcile the two
different contributions for the value of the club by trying to reposition the activity
for Kuhle’s sense making. Kuhle responded with a soft “no” (7:42) whilst shaking
her head and continuing to look at her previous answer. Now that it was clear to me
what she had done, I asked again if she would change her previous answer. She
responded with a soft “yes” but did not offer anything further (8:00).

From this point, Kuhle made no further progress on the puzzle. Akhona finished
solving it on her own. Kuhle was silent, looked around the room and played with
her face and mouth. She occasionally glanced at Akhona to see what she was doing
but did not engage with her in any way. In this interview, we see much evidence of
this. Kuhle drew on eye contact (gaze) as well as facial expressions and body
posture as sensuous actions. The nature of these seem to signify a disengagement
from the activity.

Fig. 6.9 Interview 2 (part three)

Fig. 6.10 Interview 2 (part four)
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6.5.2.1 Interview 2: Discussion

The interview reveals evidence of many sensuous actions. However, the absence of
passages of sustained attention catching suggests that Kuhle was not sufficiently
engaged through this activity. Kuhle spoke very softly, responded to my questions
with one word answers and without evidence of re-thinking her answer. Granted,
my questions were not particularly well articulated. Nothing that I said or did
modified what she said or did subsequently, evident in the absence of sustained
attention catching moments. I did not provide further mediation that could have
helped push the mathematical communication forward. Thus, I suggest that atten-
tion was not caught and it seems that nothing came into our realm of attention.
Neither I nor Kuhle took advantage of the moments when attention was caught to
further our engagement or mathematical understanding. I submit that I was
unsuccessful in my attempt to reposition the activity for Kuhle and thus also
unsuccessful in demonstrating togethering. Furthermore, there is little evidence that
I encouraged the girls to work together or to assist in sense making. It is evident that
a space of joint action did not evolve.

Additionally, there does not seem to be any connectedness in the actions, in
other words we did not work together and we did not ‘catch each other’s ideas’ and
build on them. Interaction unfolded in a stilted way, there was not a sense of
“togetherness” (Radford and Roth 2011). I argue that this is because the sensuous
actions do not relate to each other through a sustained attention catching sequence.
Each participant acted on her own, without collaboration. We were simply “doing
things” (Radford 2016, p. 445) and each of us was doing something different. As
noted, when attention is caught in a meaningful or noteworthy manner, modifica-
tion of what is said or done is evident in the subsequent utterances and actions of
the participants. We cannot see this occurring here in a continued manner.

Radford and Roth (2011) talk of the interaction in the space of joint action as one
that evolves and where tuning of perspectives can occur. They argue that the
individuals who participate in activity are different—both cognitively and emo-
tionally. As a result, “ideal forms” are refracted differently in the individual con-
sciousness of the teacher and the students. This is of consequence for the interaction
in this interview. I have suggested that no space of joint action evolved here as
meaningful attention catching did not take place; both learners and I would need to

Fig. 6.11 Interview 2 (part five)
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work together to ensure that the girls become progressively aware of the ideal form
of this activity. This did not happen as there was no tuning of perspectives. It
follows then, per Radford and Roth’s argument, that the ideal form of this activity
(reasoning deductively) may not be reflected (or refracted) similarly in the con-
sciousness of myself, Kuhle or Akhona. I submit that the thinking is not collective
and that by the end of the activity, each participant still had a different idea of the
purpose of the activity: Kuhle’s idea may have been to find the right answer as
quickly as possible, Akhona’s might have been an emerging understanding of how
puzzles like this work through trial and error whilst mine was related to the
emerging deductive reasoning that a puzzle such as this offers.

I therefore maintain that there were no moments of poēsis for the girls; there is no
evidence of creative moments, where they created meaningful new ideas, methods
or interpretations, during the interview.

6.6 Discussion

In pulling together and comparing the data from the two interviews, I have shown
different ways in which attention catching and moments of poēsis come together in
a space of joint action for the learners to progressively become aware of or make
sense of the mathematics at hand. A space of joint action does not arise between the
participants when there is no noteworthy sequence of attention catching moments.
In the latter case, there is some doubt as to whether the encounter with the math-
ematics makes sense to the learners or if realization of the ideal form is possible.
This is borne out by Shvarts (this volume) who argues that joint attention moments
are necessary for learners to acquire the cultural meanings and forms of mathe-
matical concepts.

Radford and Roth (2011) indicate that togethering will unfold in “unforeseeable
ways” (p. 242) and that togethering can only happen through understanding the
learners and their needs. Their point is noteworthy and seems to be borne out by the
data presented here. Both interviews point to togethering unfolding in unforeseeable
ways. In the first interview, in my role as facilitator, I seem to be more in tune with
the learners and their needs. I also seem to be more confident in the way that I
reposition the ideal object of the activity, evident in the way that I frame and ask
questions and offer mediating actions in response to attention catching moments. In
the second interview, my questions are often clumsy and I do not push the com-
munication forward. I infer from these examples that my difficulty is in anticipating
in advance how myself or the girls would interact and respond in the moment.
I cannot pre-plan how I will reposition the ideal form of the activity but I do know
the ideal object of the activity.

What is noticeable, especially in interview one, is that when my attention is
caught by something one of the girls says or does, I offer mediation in some way to
sustain the mathematical engagement, to encourage sense making or to further
mathematical understanding. The interviews reveal that learners seem to respond in
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different ways to this offered mediation, in other words they take advantage of it
differently. They respond directly in a meaningful or noteworthy way by trying to
explain themselves mathematically or by carrying out a mathematical action.
Alternatively, learners respond indirectly, evidenced by listening, making and
maintaining eye contact with another, by nodding and so on. However, these
actions are not active and do not contribute to moving the communication forward.
Finally, learners do not respond at all, thus preventing sequences of sustained
interaction and thus attention catching and moments of poēsis to arise, and this
affects how the space of joint action evolves and how realization of the ideal form
takes place.

Consequently, I offer that a key aspect of the notion of togethering includes a
mindfulness on the part of the facilitator of the direct contributions that the learners
make through all their sensuous actions. Togethering could thus include offering
flexible, timely, in-the-moment responses in both speech and other sensuous forms
to those contributions. Further, being mindful of the way in which learners respond
to the mediation offered brings a consideration of the learners, their needs and
current understandings. These give clues about how to constantly reposition the
activity so that a progressive awareness or grasping of the ideal form is more likely
to take place. Again, Shvarts (this volume) alludes to this idea that a teacher may
follow a student’s attention and subsequently adjust her explanations accordingly to
guide the student towards the culturally accepted practise or ideal form. This idea of
mindfulness and offering in-the-moment responses is not new in mathematics
education (see Alibali et al. 2013; Watson 2007 for example). However, I argue that
it is important to note it is as part of the notion of togethering, as it provides a
tangible way for educators to think about togethering in their practice.

6.7 Synthesis and Concluding Remarks

In concluding, I return to my aims for this chapter and look at each one in turn. My
broader aim was to consider if the theoretical concepts of space of joint action and
togethering could be used as narrative tools for presenting data from a different
context in after school mathematics clubs. I found the constructs to be useful as a
narrative tool for presenting analysis as they provided the theoretical focus and
descriptive language to describe how interaction unfolded and how mathematics
progressively came to the attention of the various participants in the task-based
interviews presented here.

I exemplified how I connected the notions of attention catching and moments of
poēsis through analysis to illuminate and gain a deeper understanding of how the
space of joint action evolves. I provided examples and non-examples from the data
on how the participants take advantage of the moments when attention is caught
and how they subsequently respond to sustain the mathematical engagement,
understanding or sense making. In using the combined lenses of attention catching/
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moments of poēsis, I have expanded on the notion of attention catching proposed
by Meira and Lerman (2009).

I started this chapter with a request from Deborah Ball to understand the special
work of mathematics teaching particularly regarding hearing, seeing and reading
students in real time. The insights I have shown here concerning togethering may
contribute to the body of work on the special work of mathematics teaching both in
classroom and OST time contexts. Additionally, by using these for this analysis, I
profess to having a more concrete understanding of the ways in which a space of
joint action evolves and what togethering looks like from a facilitator’s point of
view. This is important for moving forward in my work with learners in the clubs
who are most often part of the marginalised group noted in the introduction, as I
will be able to apply these findings in that space. Furthermore, I will be able to
communicate these ideas through my work with both in-service educators and OST
facilitators.

In closing, I would like to use this deepened understanding to elaborate on a
‘symphony’ metaphor used by Radford2 (2016) which describes the joint endeavour
carried out by teachers and students to produce “sensible” mathematics. As I
understand it, in this symphony, the conductor (teacher) and musicians (students)
are immersed in the process of making music (coming to know mathematics) based
on the musical work (culturally encoded forms of thinking and doing mathematics).
Neither conductor nor musicians act individually but rather as a seamless whole to
make the music. This is where I extend the metaphor to include the space of joint
action, togethering, attention catching and moments of poēsis. The musical work in
the form of the symphony is the ideal form of the mathematics. The role of the
conductor is to lead the orchestra, to keep a collective focus and to interpret the
music. Similarly, the role of the teacher in the mathematical activity described in
this chapter is to work with the students to keep a focus on and to bring forth the
ideal form of mathematics through togethering. The primary role of the musicians
in the orchestra is to play the music, to engage in the act of making music and to
follow the lead of the conductor. The role of the students is to be guided by the
teacher in coming to know mathematics. The combined work of the conductor and
musicians can be thought of as joint labour in the space of joint action.

How do the conductor and musicians connect and engage? Through their sen-
suous actions and by catching each other’s attention in moments of poēsis. I suggest
that this link between the sensuous actions and attention catching sequences is
essential for progress in the mathematical activity.

2Personal conversation, ICME 13, July 2016.
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Part II
Language and Text Orientations

Introduction: Gert Kadunz

For some twenty years (see Otte, this section), the theory of signs has been known
and used as a valuable tool for planning lessons and for describing and interpreting
students’ activities as well. Among all the research questions arising in this area, the
focus of all of the four chapters in this part is on investigating the relationship
between language and mathematics learning. Each of these chapters presents its
own view on this relationship. However, they all use semiotics as a tool for
investigating mathematics learning from a wide perspective. In this respect, the
texts of Priss, Kadunz and Otte can also be read as papers following ontological
interests, while Morgan’s deliberation also concentrates on the sociopolitical impact
of language on education. Hence semiotics appears as a versatile tool, as a kind of
Swiss knife.

In his considerations, Gert Kadunz discusses the question of the ontological
status of mathematical objects. For this, he investigates the different uses of lan-
guage within mathematics at school and mathematics at the university. The gap
between these uses is rather wide as Kadunz explains, using the example of the
“limit of a sequence” concept. Hence he asks whether the way in which this concept
is applied using lenses of school mathematics could be wrong in the sense of
university mathematics? What can we say about the relationships between the
languages in these two realms? Is mathematics at university a more correct version
of a kind of independent mathematics? One way to answer such a question is to
discuss the problem of translation between languages. However, answers to this
issue can be found among others within the oeuvres of Walter Benjamin and Martin
Heidegger. Both philosophers claim that translation cannot be seen as the trans-
mission of a meaning located behind the text we wish to translate. Kadunz argues
that the relationship between mathematics in school and at university could be seen
similarly, and therefore the assumption of an independently existing mathematics is
neither useful nor necessary. In this respect, the author is in agreement with Ludwig
Wittgenstein and his anti-Platonistic view of mathematics. Kadunz closes his
deliberation with a bridge to Peirce and his semiotics by following Peirce’s idea to



identify “meaning as a translation of one sign into another sign system” (Jakobson
1985, p. 251, cf. Otte 2011, p. 314). This translation, which can be seen as a
transformation of visible signs, too, leads to the conclusion that mathematics in
school and mathematics at university are not two sides of the same coin. On the
contrary, these two parts of mathematics can be seen—metaphorically speaking—
as models for each other.

Candia Morgan’s report provides a semiotic view on learning that does not
concentrate on analysing single students’ or teachers’ activities but also offers views
on mathematical learning within a wider context. Her approach is based on the
social semiotics of Halliday (1978) and his suggestion that all modes of commu-
nication—language too—are functional and not representational. This functional
approach includes the following:

• the field of discourse—the event being spoken about;
• the tenor—who the interlocutors are and what are their relationships to each
other and to the event;

• and the mode of discourse—the role of the text itself within the event (Morgan
this section).

Morgan presents two examples which demonstrate the strength of Halliday’s
social semiotics. First she concentrates on the learning of geometry. Through
analysing the structure of a given text concerning a geometrical problem, Morgan is
able to describe how this text functions in three different aspects: ideationally,
interpersonally and textually.

Her second example uses social semiotics as a tool to investigate patterns within
texts in a context larger than a classroom. With this example, Halliday’s semiotics
appears to be transformed into a kind of political semiotics. In her analysis, Morgan
concentrates on texts in the “official fields of examinations and of school moni-
toring” (Morgan this section) to facilitate the role of such kinds of texts in the
reader’s development of a critical awareness of how mathematics is discussed in a
wider context.

Michael Otte’s paper appears like a flight over relevant statements of philoso-
phers, starting in the seventeenth century with Descartes and ending in the twentieth
century with Quine, Schlick and Chomsky. The aim of this journey lies in the
author’s wish to present a brief outline of a complementary principle between
meaning and reference. What are the reasons why semiotics arouses only a little
interest among mathematics educators and mathematician? We can read the answer
between the author’s lines. It is the misunderstanding of this “complementarity”. To
name only a few of Otte’s examples, there is complementarity between episte-
mologically oriented semiotics (Peirce) and linguistically grounded semiotics (de
Saussure). Further examples are the complementarity of function and metaphor or
of mathematics as a language and as a system of visible signs. Semiotics in the
sense of Peirce appears to be a valuable tool presenting a new view on the learning
of mathematics, since this semiotics is a methodology suitable for investigating
aspects of Otte’s idea of complementarity.

In her deliberations, Uta Priss concentrates on the use of Peirce and some
relevant parts of his semiotics (see also Ludlow, section 3, this volume) and
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investigates the influence of the use of everyday language on the construction and
interpretation of mathematical concepts. Together with Peirce’s semiotics, Priss
uses “Formal Concept Analysis” (Ganter and Wille 1999) to back her claim that the
associative character of everyday language could hinder students in building robust
mathematical concepts. However, the notation of mathematical concepts is not
always complete and unambiguous by itself. Hence, the use of everyday language
to interpret such notations could cause further confusion. The searching for the
meaning of a mathematical concept, as we like to do it with concepts of everyday
language, should be avoided. “One should not ask what a definition means, but
instead what it says” (Priss, this section). In this respect, we should not try to look
behind mathematical concepts but just ask how to use them. Here we find an
anti-Platonistic view on mathematics, which can be found in the other papers of this
section, too.
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Chapter 7
A Matter of Translation

Gert Kadunz

Abstract This chapter concentrates on the often formulated question about the
ontological status of the concepts of mathematics. As an alternative to philosophical
approaches this paper uses arguments from linguistics and semiotics. Through
comparing mathematics in school and mathematics at the university we are con-
fronting the question of how to translate between the two of them. The result of
such deliberations is that at least the assumption of a Platonistic view on mathe-
matical concepts is not fruitful.

Keywords Language � Translation � Ontology � Semiotics

7.1 Introduction

The question of the nature of ‘mathematical objects’ is discussed in the context of
both the philosophy of mathematics (e.g., Shapiro 2000) and within mathematics
education. Several of these texts use semiotic approaches and look for answers by
combining semiotics with sociocultural theories (Radford 2013). Other authors (e.g.
Duval 2006) attempt to describe the meaning and significance of mathematical
objects with recourse to theories from structuralism. My paper takes a different
approach. It focuses on the relationship of mathematical languages, namely, the
languages of school mathematics and of university mathematics. “There is thus a
good correspondence between the types of language employed in school mathe-
matics and research mathematics …” (Ernest 2008, p. 44). This correspondence can
be described by different means. Ernest refers amongst others to proposals of
Halliday (1985) and Rotman (2000). Another way of investigating this relationship
asks whether one of these languages is the ‘correct’ mathematical language and
how a translation between these languages can be done successfully. The theories
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on the issue of translation I use in this text concentrate on Walter Benjamin and
Ludwig Wittgenstein. Both authors suggest that a successful translation does not
need the assumption of an objectively existing mathematical instance.

However, as mathematics is not just a spoken language, it depends heavily on
the written forms. Numerous papers have investigated the use and the importance of
the visible for the learning student and the mathematician as well (e.g., Presmeg
2006). Peirce’s theory of signs offers a successful approach on how to investigate
the importance of the visible, written part of mathematics. Using this semiotic
theory the closing section presents a pragmatic answer to the question of the ‘na-
ture’ of mathematical concepts.

The relation of mathematics at school and mathematics at the university—within
the meaning of a research-based mathematics—has been discussed for more than
100 years, in contrast to the relation between mathematics education1 and mathe-
matics. In the case of mathematics education and mathematics, quite often
methodological, psychological, or pedagogical differences are considered (Presmeg
2014) while in the case of mathematics in school and mathematics at university,
questions relate to the formal correctness of concepts and propositions. In this
regard, Biermann and Jahnke (2014) report Felix Klein’s view of mathematics in
the Prussian secondary schools (Gymnasien) of the 19th century. Klein (2007)
postulated a “double discontinuity”, and wrote as follows:

It is remarkable that this modern development has passed over the schools without having,
for the most part, the slightest effect on the instruction, an evil to which I often alluded. The
teacher manages to get along still with the cumbersome algebraic analysis, in spite of its
difficulties and imperfections, and avoids the smooth infinitesimal calculus …The reason
for this probably lies in the fact that mathematical instruction in the schools and the onward
March of investigation lost all touch with each other after the beginning of the nineteenth
century… I called attention in the preface to this discontinuity, which was of long standing,
and which resisted every reform of the school tradition… In a word, Euler remained the
standard schools. (Klein, p. 155; Biermann and Jahnke 2014, p. 5)

The mentioned “double discontinuity” thus describes both the distance between
inquiring mathematics and school mathematics and the continuation of an—in the
view of Klein—outdated access to topics of calculus.

1The relationship of mathematics and mathematics education was not always stress-free and is still
the subject of a series of lectures and symposia. Just to mention two examples, several texts in
“Mathematics and mathematics education: Searching for common ground” (Fried and Dreyfus
2014) and papers in “Transformation—A fundamental idea of mathematics education” (Rezat et al.
2014) concentrate on this relationship. Both collections, interestingly, emerged as commemorative
books for Theodore Eisenberg and Rudolf Sträßer respectively, two well-known however already
retired researchers in mathematics education.
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7.2 The Question

The above cited references claim a rather wide difference between mathematics as a
science and mathematics in school. Perhaps minor differences can be expected if we
concentrate on those differences that prevail between the content of mathematics
that is taught in school and that which is presented to students of mathematics at the
university during the first semesters. Grosso modo, the topics of school mathe-
matics can be found within the table of contents of university textbooks of math-
ematics. However, has the word mathematics in both cases the same meaning? Or is
the use of the term “same mathematics” misleading in the first place? A possible
difference between mathematics in school and university mathematics—apart from
the variety and width of the content—can become particularly clear in those
chapters that deal with the infinite, in particular in chapters concentrating on
calculus.

Let us take a look at the limit of a (real) number sequence as an essential term of
calculus in school. The presentation of the concept of limit within textbooks used in
schools or books on mathematics education (e.g., Dankwerts and Vogel 2006)
concentrates on activity-oriented contexts and differs from the formal definition.
The understandable reason for this kind of presentation lies in the interests of the
authors to make the limit term easily constructible for learners. This action-oriented
approach is often accompanied by certain verbalizations. Let us take a look at those
verbalizations (Table 7.1).

Often such verbalizations are complemented by visualizations. A look into
schoolbooks2 shows that a special task-based teaching, which can also be seen in
the above verbalizations, appears to be inevitable to introduce the learner to a
successful use of the limit concept. However, Freudenthal (1983) emphasized that
for teaching there is the need to demonstrate the discontinuity between formal
mathematical explanation and illustrative interpretation. Such discontinuities were
already known to mathematicians and philosophers in ancient Greece. Let us
remember Zeno of Elea (480–430 B.C.) a student of Parmenides. Zeno tried to
demonstrate that a premature use of the word infinity could lead to a number of
logical inconsistencies. We all know his arguments, which should show that such
inconsistencies lead to the logical conclusion that there is no movement (Pichot
1995, p. 441).

We emphasize that compared to the learning of the limit in school, mathematics
at university concentrates on a formal logic definition and use of this concept.
Referring to the Archimedean axiom, the limit of a series is presented using the
“epsilon-language” and is practiced by formal examples (e.g., Fritzsche 2005; or
Spivak 2006). As a rule these textbooks renounce the use of verbalizations men-
tioned above, in order to avoid possible misinterpretations (in the sense of the
mathematics at university level). In particular, neither the image of moving

2The question of the equality of 0.9999…. And 1 is a problem often discussed in school. This
example allows one to address a number of properties of the limit of a sequence.
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elements of a sequence nor the talk of elements coming nearer and nearer to the
limit of sequence are applied.

So we have at least two different uses of the word limit. In school mathematics, it
appears descriptive and action-oriented while at the university this word is used in a
strictly formal sense. Is one of them the correct one and the other in a formal sense
wrong? Which meanings can we ascribe to these two different ways of speaking?

As a second example, I refer to the different uses of the word vector. The
question of what a vector is can be upset after the first classes of a course on Linear
Algebra. However, the concise answer that a vector is an element in a vector space
is not suitable for use in schools, where a more geometric view of vectors domi-
nates. Teachers also like to introduce vectors by discussing particular applications,
which allow the representation of contexts from economics and physics. In doing
so, the precise definition of a concept is softened up and the structural mathematics
is removed. Consequently, central concepts of linear algebra such as linear inde-
pendency, dimension, subspace or matrix, to name just a few elementary ones, are
motivated and defined in a geometric or application-based way. Hence, we ask, is
linear algebra in school flawed, since it suffers from a lack of generality?

7.3 A Linguistic View

This question of the ways of speaking—formal logic or action-oriented—offers a
possibility of providing information about the ‘proper’ use. For this purpose it is
useful to turn our attention to the translation between these modes of speech and ask

Table 7.1 Some
verbalizations (Dankwerts
and Vogel 2006, p. 26)

“More or less well done …
To find good verbalizations is an art if we simultaneously have
to observe the formal definition of the limit and the
requirements of teaching. For the fact that the sequence 1/n
converges to 0, many ways of speaking are in use. Here are
some examples.
“1/n comes as close as possible to 0 if n increases.”
“1/n tends to 0 as n approaches infinity.”
“1/n is coming closer to 0 as n increases.”
“1/n is coming closer to 0 without ever reaching it.”
The wordings (1) and (2) are suitable because they reflect the
content of the formal limit definition properly. Variant (3) is
problematic because it does not contain the central aspect of the
definition of the limit: If we follow variant (3) then 1/n is also
coming closer to (−1). In formulation (4)—applied to any
convergent sequence—the distortion of the concept of the limit
of a sequence is clearly visible: Even constant sequences are
convergent.”
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when a translation between languages generally, and particularly between the
mentioned modes of speech in mathematics, is a successful translation.

A first hint to answer this question can be found in the considerations of Walter
Benjamin3 (Benjamin 1977, p. 140) concerning language and language comprehen-
sion. Let us follow Sybille Krämer and her interpretation of Benjamin (Krämer 2008,
p. 41).Krämer reports that Benjamin concentrates in his remarks on the question of how
something is expressed in language.However,we donotwant to respond toBenjamin’s
sometimes dark and hard to understand descriptions of language, but focus on the
message “in a language” as this is relevant to the following considerations. In
Benjamin’s eyes it is fundamental to know “that something is communicated in the
language and not through language” (Krämer 2008, p. 44, my italics).

Benjamin complained that in the conventional view of language, a word com-
municates something that can be found outside the language. In this case language
would be a means between something and the speaker. It is precisely this view of
language that Benjamin wanted to avoid. He holds the view, to emphasize it, that
something is communicated in the language, which means for him as equivalent to,
that something appears or shows itself.

How can we use this view of language to answer our question of translation
between mathematics in school and mathematics at the university? In a conven-
tional approach, we could see this as a task to transfer a text from one language into
another language. The purpose of this transfer would be to obtain the content of the
text. The art of the translator appears in the neutralization of the differences between
the languages involved. If this neutralization would succeed, then this would mean
that we could say the same thing in different ways (Krämer 2008, p. 264). For
Benjamin this is precisely the hallmark of a poor translator. The good translator
does not look for the equality of the meaning located behind the languages but
conversely he ensures deviations in their scope. That is the way differences between
the languages show themselves. “If we translate in this sense then the diversity and
the incommensurability of languages is not covered up but becomes clearer”
(Krämer 2008, p. 265).

A similar picture concerning the question of how translation is possible can be found
in Martin Heidegger’s work. Let us use Krämer’s comments on Heidegger again. For
him translating is an event, which is determined by the distance between languages.
A text from a different language is determined by an irreversible foreignness where the
translator, in doing his or her work, has to dare to leap to the other riverbank. In his
deliberations about the word translation (“Übersetzung” in German), Heidegger con-
centrates on the “Über” (across or over) aspect, meaning thereby not a transfer of sense
which is independent of its linguistic formulation. “In translating the words of
Heraclitus our need is great. Here translation is seen as a translation to the opposite
bank,which is little known and far awayon the other side of a broad, fastmoving river.”
(Heidegger 1979, p. 45; cf., Krämer 2008, p. 176).

3Hannah Arendt edited in 1968 in “Illuminations” a number of Benjamin’s papers on art, literature
and translation.
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We have already observed a similar viewpoint on the relationship between
languages in Walter Benjamin’s work. His approach to our question on the rela-
tionship between school mathematics and mathematics at the university can be
fruitfully applied. For Benjamin, Heidegger’s leap becomes a transposition, a
transformation of one language into another language. For Benjamin, register is the
defining feature of “translatability”, in which commonalities and differences are
noted. In transforming a text, he requires concentration on the individual words and
not on grammar. At the same time it is precisely this focus that determines the
productivity of a good translation through the discussion of a word’s meaning.

Benjamin distinguishes between “what we mean,” which we can also call the
word’s meaning, and the “way in which it is meant.” With regard to “what we
mean”—in Benjamin’s opinion—“bread” and “pain” are the same; whereas with
regard to “the way in which it is meant” the two are different and mean very
different things, embedded in history, culture and everyday use in the English or
French language areas (Krämer 2008, p. 186).

Therefore, we must ask ourselves if the productivity referred to here, which
feeds off the knowledge of numerous differences in the usage of words, is also a
productivity that reveals itself in learning? At the very least, this is true for the
learning of concepts which are transferred from the use case of a teacher into the
use case of the learner. And can we not see the relationship between school
mathematics and mathematics at the university in a similar light as a transformation
of uses, which do not need any of the senses underlying the respective
mathematics?

What does this view of language and of the task of a translator mean for our
question of the possibility of translation between mathematics in school and at the
university? When we first assume that a translation can succeed because both
school mathematics and the university mathematics would correspond to a common
content independent of them, then we would assume that there exists a mathematics
independent of the particular representation. Then we would have a reference for
the correctness of the respective mathematics. But that would mean that the
mathematics taught in school is tainted by errors (see the references above on the
limit of a sequence).

On the other hand if we renounce the assumption of the existence of a universal
mathematics independent of the used signs, social practices and tools, and if we
follow Benjamin’s assertion about the use of language, then the relation of school
mathematics and university mathematics manifests itself in a different light. In this
case we do not have to transfer either the content postulated behind the words of a
text or the mathematics existing behind the visible and audible signs. On the
contrary, we could say that school mathematics and university mathematics each
form something independent, embedded in their own particular social, historical
and formal contexts. A successful translation in the sense of Benjamin would be a
transfer in compliance of this context without assuming the existence of an inde-
pendent mathematics. Such a transformation uses as a tool, among others, the
means of school mathematics or those of the mathematics at university. In terms of
model theory a structure A is interpreted by a structure B (Hodges 1997).
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7.4 A Second Opinion

Abandoning the assumption of an independently existing mathematics is by no
means justified only by the desire for translatability (for an anthropologically based
view see Radford 2008). Let us supplement Benjamin’s proposal, which opened
this model-theoretic perspective, with a second theoretical approach. This approach
also dispenses with the assumption of mathematics existing independently of
human activity and supports a constructive synopsis of school and university
mathematics. It was Ludwig Wittgenstein who took this view of mathematics in his
numerous comments. Let us share the opinion of Wittgenstein using firstly the text
“Mathematics without metaphysics” (Mühlhölzer 1999). In Wittgenstein’s view
mathematics is a form of life, which is grounded in a pragmatic but not
ontological-objective sense. A question presented by Wittgenstein in this context
concentrates on the issue of following rules when doing mathematics. How can one
decide with a rule whether the application of a rule is a correct or incorrect
application of the rule (Mühlhölzer 1999, p. 4)? Wittgenstein replies that a rule
cannot do this on its own, but it is an intersubjectively controlled and accepted
applying of this rule that decides on the validity of its use.

Closely related to the question of following rules is Wittgenstein’s rejection of
truth as an ontological orientation of mathematical activity. On this issue,
Ramharter and Weiberg (2006) submitted a detailed text. They report that
Wittgenstein explained in his book, “Remarks on the foundations of mathematics
(Bemerkungen zu den Grundlagen der Mathematik, BGM)” (Wittgenstein 1988),
alternatives to the claim that truth within mathematics can be ensured ontologically.
As a first alternative, truth could be replaced by utility. Wittgenstein (1991) holds
“that one cannot say that a series of natural numbers—as well as our language—is
true, but they are useful and, above all, they will be used. (BGM I, §4/S. 37ff.)”
(Ramharter and Weiberg 2006, p. 62). Since it makes no sense to look for the
ultimate justifications of language games in general, he concluded that this search
within mathematical language games is futile too.

We note from the indication on “the use” that Wittgenstein has a different
proposal in mind. For him, it is the question itself that he considers to be mis-
leading, as in his view this question cannot be answered meaningfully. So
Wittgenstein renounces the claim of a truth existing behind mathematics by
renouncing this question. As alternatives, Wittgenstein offers studies of function-
alities of mathematical language games. “It is our mistake to look for an explanation
where we should look at the facts as primary phenomena. That means that we
should say this language game is played.” (PU, §654; Ramharter and Weiberg
2006, p. 62).

The idea of the existence of mathematics as an independent entity could also
have originated from a certain experience of mathematics. Wittgenstein examined
in this context the “inexorability of mathematics.” We experience this feeling
clearly, for example, when we try to design or comprehend a mathematical proof. Is
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this relentlessness not an indication of an independent mathematics? As an example
Wittgenstein presents a comparison of usual and unusual measuring instruments:

What would happen then if we reason differently– …? How would we come into conflict
with the truth, if our measuring rods were made from very soft rubber instead of wood and
steel?

– Now, we would not get to know the right measure of the table.
– You mean, we would not receive, or at least not reliably, the measuring value, we

receive with our hard measuring rods.
– This person would be wrong who would have measured the table with the stretchy

graduation and stated, that he would measure 1.80 m following our usual kind of
measuring. But if he says that the table measures 1.80 m according to his method, so
that’s right …

– However, that is not a correct measurement.
– It is similar to our measuring and can meet practical purposes under certain

circumstances.

(BGM 1, §5/S. 38; Ramharter and Weiberg 2006, p. 62)

Hence Wittgenstein emphasizes that it is not the instrument itself that relentlessly
forces us to a certain conclusion, but that we as users opt for a particular purpose.
What does this mean for logical reasoning? We could imagine another kind of
reasoning and also put it into practice, but then we would not use it in mathematics.
Wittgenstein claimed that we would not even name it reasoning. In this sense, the
supposed inexorability that would let us assume an independent mathematics, is
nothing else than the acceptance of a particular practice. This practice is called
mathematical or logical reasoning and there is neither an obligation nor an absolute
necessity that could force us to follow a rule of inference. On the contrary the
acceptance of this kind of reasoning is at the same time the acceptance of partic-
ipation in mathematical activity. This means that we decided voluntarily to par-
ticipate in the mathematical practice and simultaneously we can renounce the
adoption of an independently existing mathematics.

Up to here the deliberations have followed concepts and ideas found within
linguistics or the philosophy of linguistics. However, as already mentioned above,
mathematics is not just a language, as mathematical activities are heavily deter-
mined by the use of visible signs. This assertion is confirmed by numerous papers
from quite different research areas. To name just two, remember for instance
Schmandt-Besserat (1997). In “How Writing Came About” she reports about the
origin of writing in the time of ancient cultures of the Middle East. She claims that
the origin of writing was not to reproduce the spoken, but the need for certainty of
information based on numbers. Likewise, the famous mathematician Polya (2014)
developed numerous suggestions on how to find a solution to mathematical prob-
lems, many of which concentrate on the visual.

For some twenty years now a new approach has been used, alongside psycho-
logical and pedagogical theories, to interpret the activities of students learning
mathematics. This is semiotics, with its different forms, which are leading research
in mathematics education. Among these different forms of semiotics, that of
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Charles S. Peirce has been shown to be a successful tool for investigating the visual
part of mathematics (Hoffmann et al. 2005; Sáenz-Ludlow and Kadunz 2015).
Hence let us concentrate now on semiotics to find a possible answer to the main
question of this paper.

7.5 A Semiotic View

As the final point of the deliberations let us consider briefly the question of the
existence of mathematical objects from a semiotic point of view. It was Jerome
Bruner who in 1969 formulated the question in this context: “What do we say to the
young child, asking if concepts like force or pressure really exist?” (Bruner 1969,
p. 54; cf., Otte 2011, p. 314). One way to respond to Bruner is to focus on the issue
of the construction of meaning of signs in mathematics. Among other approaches,
the already mentioned semiotics of Peirce provides an option. In the words of
Jakobson (1985), “One of the most felicitous, brilliant ideas which general lin-
guistics and semiotics gained from the American thinker is his definition of
meaning as translation of one sign into another system of signs (CP 4.127)”
(Jakobson 1985, p. 251, cf. Otte 2011, p. 314).

Let us note this observation and turn the issue of translation between languages
into an issue of transformation between sign systems. Must we assume the exis-
tence of independent mathematics to speak about this transformation? Let us
accompany Seeger (2011) in his semiotic explanations about the construction of
meaning, where he focuses on the sign oriented discourse between students.4 In
accordance with Benjamin, Seeger (2011) claims, “On the other hand, the use of
discourse is the necessary condition for understanding and manufacturing meaning
—that we do not understand through discourse what is in the real world, but that we
only understand in discourse” (p. 217).

In mathematics, this discourse is primarily determined by activities with the use
of visible signs. The participants in this discourse experience the ‘mathematical
object’ as if it were a kind of trademark of the signs they use successfully—use in
the sense of Wittgenstein. The ontological positions of Peirce and Wittgenstein are
rather different, however, but a connection can be made as the pragmatic maxim can
be seen as a game with signs. This connection is based on action oriented learning
of mathematics. What does this mean? Let us consider Vaihinger (2009/1911) and
his philosophy of “as if” (Seeger 2011) in two statements,

– the educational slogan of “performance before competence … expresses very well that
one has to pretend to know what the new is and how to do it, before the new is at one’s
disposal;

4Significant deliberations on this issue can also be found in the chapter by Sáenz-Ludlow and
Zellweger (2015).
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– in abductive reasoning … and problem solving, the discovery of the new is often
attained if we pretend to know what the next step is. (Seeger 2011, p. 218)

Is it not a triumph, in accordance with the motto “performance before compe-
tence”, if the construction of the meaning of mathematical terms succeeds without
the assumption of the existence of independent mathematics? On the one hand, it is
true that Peirce asserts that the proper use of a sign is the unreachable limit of a
process, yet on the other hand “the relation to practice is providing an interpretation
that allows pretending the final sum total has been reached” (Seeger 2011, p. 219).
In this respect, the assumption of the existence of a mathematical object outside the
world of man seems obsolete.

In conclusion let us refer to Rotman (2000) and his semiotic view of mathe-
matics. In his text Mathematics as sign, Rotman concentrates on mathematics as a
science which is essentially determined by the written (Dörfler 2016). To some
extent the question of translation between languages would for him also be a
question of translating only between the written texts.

Far from being the written traces of a language that merely describes prior mental con-
struction appearing as presemiotic events accessible only to private introspection, signifiers
mark signs that are interpreted in terms of imagined actions which themselves have no
being independent of their invocation in the presence of these very signifiers. In this
dialectic relation between scribbling and thinking, whereby each creates what is necessary
for the other to come into being, persuasion– …–has to be located. (Rotman 2000, p. 29)

This focus on the visible is what brings the science to life when it is used by a
person doing mathematics in his or her social context. Such a context could be
teaching in school but equally activity as a researcher at the university. “Numbers,
then, appear as soon as there is a subject who counts” (Rotman 2000, p. 38). It is the
person doing it who constructs mathematics according to the given needs and with
reference to the prerequisites. It is not necessary to presume an independently
existing mathematics.

7.6 Summary

Our starting point was the question of the relationship between school mathematics
and university mathematics and their conjunction with the means of a translation.
What conditions must be met in order that key terms can be translated? The
question of translation led us to Walter Benjamin and his proposal, that a successful
translator should not seek a meaning behind the language but that all the meaning is
expressed within or inside the language. For our purposes, this means that trans-
lating does not need the assumption of an unalterable absolute and objective
mathematics as the main criterion. The view of mathematics should always be a
view that takes into account the context of mathematics as a human endeavor. This
renunciation, as a consequence of Benjamin’s proposal, is substantially supported
by Ludwig Wittgenstein and his reflections on the foundations of mathematics.
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Abandoning an objective standard—also in the semiotics view—allows us to talk
successfully, for example, about school mathematics in the words of mathematics
taught at university. With Gravemeijer et al. (2000), we could metaphorically say
that the one mathematics is a model for the other mathematics.5
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Chapter 8
Using Social Semiotics to Explore
Institutional Assumptions About
Mathematics Students and Teachers

Candia Morgan

Abstract In this chapter I present some theoretical principles and analytical tools
of social semiotics, discussing how they may contribute to mathematics education
research. Two examples are offered. The first shows how the way an examination
question is written construes the nature of mathematical activity; I consider how this
may function for different students. The second example uses thematic analysis to
look at a corpus of official documents, asking what activities are made available in
these texts for teachers and students.

Keywords Social semiotics � Thematic analysis � Systemic functional linguistics
Official discourse � School mathematics practices

8.1 Introduction

Mathematics education as a field has a wide range of concerns, but most semiotic
research has tended to focus on analyzing students’ mathematical understanding
and its development, including analysis of student-teacher-tool interactions.
Radford’s cultural historical semiotic approach situates sign use and knowledge
production within a cultural context, but research from this perspective also focuses
primarily on teaching and learning processes and interactions, on the nature of
mathematical knowledge and on the development of mathematical thinking (e.g.,
Radford 2003). Less attention has been paid to how a semiotic perspective can
provide insights into the wider context of mathematics education and how this may
affect the experiences of student and teachers.

The teaching and learning interactions of students and teachers take place within
schools and colleges that are themselves situated within local and national educa-
tion systems, national and international policies and discourses about mathematics
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and about teaching, learning, curriculum and assessment. The field of mathematics
education research needs to address all of these sites, seeking to understand the
concerns and practices of all those involved in their various ways with mathematics
education and the relationships between them—while recognizing that it is likely to
be necessary to focus on only a small part of the complex at any one time (Morgan
2014; Valero 2010). In this chapter I hope to contribute to this project of
researching the wider complex of social practices of mathematics education by
discussing a semiotic perspective that offers some theoretical and analytical tools,
and by offering examples of analysis that can provide insight into how teachers and
students of mathematics and the ways they experience mathematics teaching and
learning, may be shaped by the institutional context in which they are situated.

The approach that I am adopting here is founded in social semiotics (Halliday
1978; Hodge and Kress 1988; Morgan 2006). Fundamental to this theoretical
perspective is the principle that language and other modes of communication (in-
cluding visual images, gestures, specialized forms of mathematical notation, etc.)
are functional, not representational. Any socially coherent unit of communication (a
‘text’ that plays a role within a given social practice), whether a linguistic utterance,
a picture, a mime, a research paper, is not assumed to represent any objective
feature of an independently existing ‘real world’ but functions to realize, that is, to
‘make real’ the following: the field of discourse—the event being spoken about; the
tenor—who are the interlocutors and what are their relationships to each other and
to the event; and the mode of discourse—the role of the text itself within the event.
The way we experience the world is thus construed through the use we make of
language and other means of communication (Halliday and Mathiessen 1999). This
use of communication is shaped (though not determined) by the immediate context
in which it takes place (the context of situation) and by the wider social practices,
cultural norms and expectations with which the participants are familiar (the context
of culture). Semiotic analysis that seeks to understand how meanings are formed
thus needs to take these contexts into account.

While social semiotic theory and analytic approaches have been extended to
encompass non-verbal semiotic systems (Jewitt et al. 2016; Kress and Van
Leeuwen 2006), including specialized mathematical systems such as geometric
diagrams (Alshwaikh 2011), algebraic notation and Cartesian graphs (O’Halloran
2005), verbal language still comprises the most sophisticated and differentiated
semiotic resources and it is here that I focus my attention in this chapter. Within
social semiotics, systemic functional linguistics (SFL) has developed descriptors
that enable analysis to distinguish how specific lexicogrammatical characteristics of
texts perform ideational, interpersonal and textual metafunctions, contributing to
realizing the field, tenor and mode of discourse respectively. In this paper, I will
focus primarily on the ideational metafunction, the way that language realizes the
field of discourse. In the context of mathematics education research, analysis of
how communication functions ideationally can address general questions such as
the following: What is mathematics (in the context of the communication that is the
current object of study)? Who or what does mathematics? What do teachers do?
What do students do? (See Morgan 2006). In this chapter, the first example I
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present addresses the first two questions, interrogating the nature of mathematics
and mathematical activity that may be construed by students faced with two slightly
different texts. The second example focuses on the last two questions, considering
how a set of texts current in school mathematics contexts in England creates
possible positions, actions and relationships for teachers and students.

8.2 Example 1: Analyzing the Mathematics in School
Mathematics

In my first example, my focus is on how students may experience and engage in
mathematics itself, illustrating the use of SFL tools to analyze how some small
extracts of school mathematics text function to realize mathematical activity and
considering possible implications for students. Halliday identifies the transitivity
system as a significant contributor to the ideational metafunction, enabling partic-
ipants in communication to construe what is happening and who and what is
involved. In traditional grammar, a verb is termed transitive or intransitive,
depending on whether it can take a grammatical object. Halliday’s transitivity
system extends this notion to encompass all types of relationships among processes
(often expressed as verbs), participants (e.g. subjects and objects of processes) and
circumstances (e.g. the time, manner or place in which a process occurs). SFL
describes in general terms the implications of particular lexicogrammatical choices
within the transitivity system. Thus, taking a mathematical example, we can say that
statements (1) and (2) below construe different versions of the nature and origin of a
geometric figure:

P lies on the line AB andCP is perpendicular to AB: ð1Þ

Aperpendicular dropped fromCmeets AB at P: ð2Þ

Statement (1) draws our attention to the properties of the points and lines and
relations between them, using the atemporal present tense and an attributive rela-
tional process (is perpendicular), whereas in statement (2) the past participle
dropped suggests an action taking place in time, although agency in this action is
obscured (who or what dropped the perpendicular is unknown), and the figure may
be construed as having been constructed rather than simply existing (see Morgan
2016, for a fuller discussion).

Analysis is not, however, a simple matter of reading off ‘the meaning’ or the
specific way the text functions from the lexicogrammar. The descriptions above are
not enough to allow us to draw conclusions about the significance of such differ-
ences for participants in particular practices. For this purpose, it is necessary to take
account of the immediate context of situation within which the texts occur as well
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as the broader cultural context, including the social structures, assumptions, and
values of the broader communities implicated in the practice. In this case, statement
(1) formed part of a question set in a high-stakes examination taken by students in
England at the end of compulsory schooling. Statement (2) is a transformed version
of statement (1), incorporating grammatical forms used in a similar examination
question set in another year.1 Because of their origin in externally set, high-stakes
examinations, these texts may be seen as part of an official mathematical discourse,
likely to influence the forms of mathematics experienced in classrooms. The
original context of situation of these texts and others like them thus included
students’ experience of school mathematics up to the point of examination, the
physical and social environment of the examination room, the linguistic and
mathematical resources brought by students to the examination, etc. The context of
culture would include the following: the roles that such examinations and qualifi-
cations play in individual lives and in the broader society; public and academic
views of the nature of mathematics; and, more generally, the values, norms and
ways of communicating of the students’ communities and of the dominant groups
in national and international society.

These contexts are not homogeneous, nor will all students experience them, and
hence relate to the texts, in similar ways. Given the examination setting, an
important contextual consideration is the extent to which students are likely to be
able to recognize and draw upon their previous mathematical experience in order to
interpret such statements and the examination tasks of which they form part. The
official discourse of education and examination in England and elsewhere also
places value on equality of opportunity—a value that forms part of the context of
culture. It is thus relevant to consider how these statements may function for
different groups. For example, statement (1) has a simpler grammatical structure
than statement (2) (consisting of two simple clauses joined by and rather than
involving a complex nominal group with a dependent clause dropped from C); it
may thus offer fewer linguistic obstacles for students with lower levels of literacy in
English. On the other hand, statement (1) is also consistent with the tendency of
academic mathematical discourse to be impersonal and to deal with the properties
of mathematical objects and the relationships between them rather than on actions,
construing “a world made out of things, rather than the world of happening—events
with things taking part in them—that we were accustomed to” (Halliday 1993,
p. 82). It may thus be less familiar than statement (2) for students whose everyday
ways of communicating focus primarily on people and actions (see, for example,

1The analysis reported in Example 1 was undertaken as part of the project The Evolution of the
Discourse of School Mathematics, funded by the UK Economic and Social Research Council
(grant number ES/1007911/1). This project sought to describe changes over time in the discourse
of school mathematics, seen through the lens of high-stakes examination.
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Lunney-Borden 2011 on the ways of speaking and knowing of indigenous people in
Canada2), and hence harder to engage with in the ways expected by the examiners.

Social semiotics considers language to be a semiotic system encompassing a
‘meaning potential’, that is, the set of ways of experiencing the world that may be
construed through linguistic means. The use of SFL tools not only describes the
lexicogrammatical structure of a given text but also, through analyzing this struc-
ture, enables us to describe how the text functions ideationally, interpersonally and
textually to offer particular forms of experience. In this case, I have identified
differences in the potential of the two short statements to allow readers to construe a
geometric figure either as a set of objects and relationships between them or as the
result of a process of construction. For those of us who have successfully learnt to
participate in specialized mathematical discourse (including teachers, textbook
authors, examiners, test designers), the significance of this distinction may not be
immediately apparent, since, in coming to grips with the object-process duality of
many mathematical constructs, we often fail to recognize it or to appreciate how
novices may experience it in a less unified way. For less experienced students,
however, the differences may have a more significant effect on how they relate to
the mathematical situation and respond to the examination task.

In presenting this small example, I do not seek to make claims about the nature
of school mathematics in general, or even within the English examination system.
Such claims would require analysis of much more substantial samples of text. Nor
do I seek to claim that student readers will necessarily respond to the texts in the
ways suggested—this is also an issue that requires investigation. Rather, the
analysis of the two texts and discussion of how some groups of students may relate
to them has potential to inform the choices made by the authors of examinations,
textbooks and other school mathematics texts.

8.3 Example 2: Official “Good Practice in Mathematics
Teaching”

In my second example I move away from the immediate site of interaction between
student and mathematical text to consider the domain of government and its
interaction with schools and teachers. I illustrate one way in which a social semiotic
orientation can illuminate patterns in larger texts and sets of texts. The example I
discuss is an analysis of a set of five short documents (3–4 pages each) downloaded
from the website of the UK government agency, the Office for Standards in
Education (Ofsted). The page from which they were downloaded was entitled

2Thanks to Beth Herbel-Eisenmann (personal communication) for focusing my attention on lin-
guistic variation as an aspect of context.
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“Ofsted examples of good practice in mathematics teaching”3 and each document
presents a case study, describing the practice of a school or college.

Why are these documents of interest to me as a researcher in mathematics
education? To answer this question, I have to delineate some context, which
includes some key characteristics of the national education system in England and,
in particular, the role that Ofsted plays in regulating schools. Every school and
further education college in receipt of state funding is subject to regular inspection
by Ofsted. The inspection encompasses consideration of national test and exami-
nation results as well as scrutiny of various aspects of management and observation
of teaching and of student behavior. This results in allocation of grades for a
number of aspects, ranging from 1 (outstanding) to 4 (inadequate). A grade of 4 in
one or more aspect can result in ‘special measures’ and re-inspection. Failure to
improve adequately can result in the removal of senior managers and even closure
of the school. Inspection thus has very high stakes for school management. Ofsted
also publishes periodic reports on various aspects of education, providing national
overviews. These include descriptions of what the agency identifies as ‘good
practice’, such as the documents considered here.

As with any high-stakes assessment regime, Ofsted has a strong influence on
practice within many schools, not only dominating management priorities but also
affecting the day-to-day practice of teaching, as the work of teachers and subject
departments is subject to monitoring and regulation by school managers, using
criteria shaped by their perception of what will be valued by Ofsted inspectors. This
institutional environment constitutes part of the context within which the docu-
ments discussed here are located, affecting the ways that potential readers may read
them.

My particular concern is with how these texts function ideationally, that is: What
is the world of “good practice in mathematics teaching” that Ofsted provides for the
reader to construe? As in the previous example, I attend to the transitivity system. In
this case, the particular focus of my analysis is on how teachers and students feature
in this world: the processes in which they are agents or which they are subjected to,
their attributes and the ways they are classified. In this chapter, given the limited
space available, I present only an analysis of teacher and student agency, addressing

3This webpage can be accessed at https://www.gov.uk/government/collections/ofsted-examples-
of-good-practice-in-mathematics-teaching. The documents analyzed here were last accessed and
downloaded on 14 December 2015 but the webpage is regularly updated to provide a recent set of
examples. An attempt to access the documents on 8 March 2016 revealed that two of those
included in the current data set had been removed. Attempts to access the two missing documents
revealed messages to say they had recently been withdrawn. In one case (School L) the withdrawal
was justified because it was over 3 years old. In the other case (School A) it was more strongly
stated that: “This good practice example no longer reflects current government policy”. Accessing
again on 10 February 2017 found only one of the original case studies (School C) together with
two new cases focusing on examples of “family learning”, organised by adult education services,
rather than on school practice.
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the question of what teachers and students do within Ofsted’s world of “good
practice”.

The analysis starts at the level of the clause, identifying in each case who or what
are the actors in what kind of process. This process was supported by use of NVivo,
coding each clause according to agency, identifying whether agency was ascribed
to teachers, to pupils, to the school management or to an inanimate or abstract
construct, or whether agency was obscured, for example by use of the passive
voice. Codes were also allocated to clauses attributing qualities to teachers or to
pupils but analysis of these attributes is beyond the scope of this chapter. All
clauses in which agency was ascribed to teachers or to pupils were extracted in
order to investigate the types of processes and circumstances involved.

In the previous example, analysis of isolated statements was used to highlight
how specific linguistic choices have potential to make differences in the ways that
the world of geometry may be construed. Here, however, my interest is in devel-
oping an understanding of the world of “good practice” that may be construed by
readers of these official texts. In this case, it is necessary to look at patterns that
recur within each text and across the full set of texts. For this, I have adopted a
version of Lemke’s (1983) thematic analysis, simplified to consider only the
transitivity system of actors, processes and circumstances. This form of analysis
identifies common semantic structures through the cohesive devices present in the
text, in order to identify semantic themes that are established by recurrence within
single texts or throughout the whole corpus. A common structure may be detected
not only in the direct repetition of specific actor/process relations but also in lexical
covariation, such as the presence of synonyms, and in grammatical transformations
of similar relationships. In what follows I denote such recurring themes by the use
of capitals, e.g. PUPILS NEED SUPPORT. (Note that these texts tend to use pupil
rather than student. This choice of word suggests that one should construe young
people in accord with their institutional relationships rather than as people who
study.) The identification of such a theme summarizes an Actor-Process-Goal
structure that recurs in a variety of forms. In the set of texts considered here, for
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Fig. 8.1 Summary of recurrent themes relating “pupils” and “support”
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example, the semantically related constructions PUPILS NEED SUPPORT and
PUPILS RECEIVE SUPPORT are found in three of the five texts, both in this form
(Actor-Process-Goal) and in other forms, including:

“Pupils receive the support they need” The nominal group the support they need
transforms the process need so that it qualifies the
object support. This statement thus incorporates
both PUPILS NEED SUPPORT and
PUPILS RECEIVE SUPPORT

“Less able pupils benefit from expert
support for their individual needs”

The process benefit from is considered here to be
semantically related to receive, with the additional
attribution of positive value
The nominal group support for their individual
needs is a grammatical transformation, objectifying
the basic relationship PUPILS NEED SUPPORT.
In this statement, the qualifiers less able and
individual introduce an additional semantic
component, constructing a classification of different
types of pupil

“Pupils receive appropriate support” The qualifier appropriate is considered to be
semantically related to what pupils need

These recurrent semantic themes, summarized at the level of the set of texts, are
shown in Fig. 8.1. The themes may be read directly from the figure:

(SOME) PUPILS NEED SUPPORT
and
(SOME) PUPILS RECEIVE SUPPORT,

noting that the qualification (SOME) does not occur in every instantiation of these
themes.

In the next sections, I present the outcomes of the thematic analysis in order to
describe those parts of the ideational structure of the world of “good practice in
mathematics teaching” in which teachers and pupils are actors.

8.3.1 What Do Teachers Do?

The statements with teachers as agents were scrutinized in order to characterize the
nature of teachers’ role within Ofsted’s construal of “good practice”. In order to
develop a thematic analysis of the nature of teacher activity presented in the texts,
these statements were further categorized as being about teaching (43 statements),
about assessment (20 statements) or involving an activity that was not directly
related to student-teacher interactions (17 statements), including mainly collabo-
rating with colleagues and developing their practice by receiving feedback or
training. In this chapter, I present the analysis of teaching activity. Figure 8.2 shows
the three main types of teaching activity, present in all five case studies.
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As might be anticipated given that PUPILS NEED and RECEIVE SUPPORT (as
identified above), we find a reciprocal thematic structure TEACHERS SUPPORT
PUPILS. Apart from supporting, TEACHERS TEACH both the subject matter and
the pupils, though interestingly they do not appear to teach mathematics TO pupils.
The teachers’ role is perhaps made clearer by the additional thematic structure
TEACHERS SELECT/ USE ACTIVITIES. Having chosen appropriate activities for
their pupils, further actions taken by teachers in the classroom are absent or invisible.

Just two of the school case studies provide more detailed insight into specific
aspects of teaching and how they are valued (Fig. 8.3). In the case of School A,
positive value is ascribed to creativity, as an attribute of both teachers and teaching,
while teachers are also construed as acting directly upon learning, for example,
“making learning outstanding”.

This valuing of creativity is apparent in the School A case study not only in the
way that teacher activity is directly presented in the recurrent semantic theme
TEACHERS USE (CREATIVE/EXCITING) STRATEGIES, but also in other
ways, in particular by contrasting current practice in the school with “traditional
lessons” and “textbook lessons”, and by labeling the lack of prescription in the
school’s scheme of work as “surprisingly informal”. It is worth noting that a more
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Fig. 8.2 Thematic analysis of teaching activity—dominant discourse across all schools
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Fig. 8.3 Additional thematic structure of teaching activity in School A
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recent attempt to access this slightly anomalous case study found that it had been
removed from the Ofsted website with a statement that “This good practice example
no longer reflects current government policy.”

The second case study that provides more details about teaching processes is
School B (Fig. 8.4). In this case, the kind of teaching that is valued is presented
only by contrast with processes presented as negative or inappropriate, for example:

All too often teachers risk intervening and doing the investigation for the children!

We would never stop a child who has an efficient method, but often we find that if a child
has been taught a formal written method at a very early age, it may be at the expense of
their grasp of mental methods.

Interestingly, these negatively valued teaching processes are not contrasted with
positively valued actions of teaching but with processes that are identified (and
positively valued) as forms of assessment: rather than intervening while children
investigate, “[t]eachers are encouraged on these occasions to listen and record.”

8.3.2 What Do Pupils Do?

The processes in which pupils are presented as agents are rather more diverse. To
some extent, this diversity is due to the way the texts ascribe attributes to pupils,
distinguishing them into different groups, which are then ascribed different forms of
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Fig. 8.4 Additional thematic structure of teaching activity at School B
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Fig. 8.5 Thematic structure of pupil achievement—dominant discourse across schools
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agency. In particular, all the case study texts distinguish some pupils as being more
or less “able” or as achieving more or less than their peers. A semantic grouping of
statements involving pupils as actors resulted in four main categories, related to
Support, Achievement, Affective response and Classroom activity. The results of
thematic analysis regarding the category of Support were presented above (Fig. 8.1).
The other three categories are presented below.

8.3.2.1 Achievement

Two ways of conceptualizing pupil achievement are thematized across the set of
texts. On the one hand there is a dynamic process: (SOME) PUPILS MAKE
PROGRESS. From this perspective, pupil achievement is recognized as taking
place over time and measured relative to each individual’s starting point. On the
other hand, the theme (SOME) PUPILS ACHIEVE RESULTS/STANDARDS/
LEVELS measures pupil achievement at a particular point in time against a fixed
standard. The third theme identified in Fig. 8.5 also compares pupil achievement to
a norm but in this case identifies failure rather than achievement: (SOME)
PUPILS UNDERPERFORM.

Many of the occurrences of the themes grouped under this heading are qualified
by an indication that different groups of pupils achieve in different ways or to
different extents. This is consistent with the persistent dominance in the English
education system of assumptions, institutional structures and practices that separate
children according to ‘ability’ (Morgan 2017).

8.3.2.2 Affective Response

All the case studies include statements claiming that pupils have positive affect
towards mathematics or towards their mathematics lessons (Fig. 8.6). In most cases,
this is simply stated as liking or enjoying mathematics, PUPILS ENJOY
MATHEMATICS. In other cases, this enjoyment is attributed to lessons or, in a few
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Fig. 8.6 Thematic structure of pupil affective response—dominant discourse across schools
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cases, specific forms of lesson activity, PUPILS ENJOY LESSONS/ACTIVITIES,
e.g.:

Students enjoy a range of sorting and matching activities, often in pairs or groups that
promote discussion and help to develop their understanding.

A claim linking pupils’ beliefs about mathematics to positive affect is made in
two of the cases, PUPILS APPRECIATE MATHEMATICS. In particular, in
School N, a post-compulsory college catering for young people aged 16-19, this
theme is especially strong, focusing repeatedly on the ‘relevance’ of mathematics,
rather than on pure enjoyment, for example:

They also appreciate the way that numeracy development is made relevant to their main
area of study and to real life.

8.3.2.3 Classroom Activity

As found in the analysis of teacher activity, little detail is generally included about
the ways that students act in classrooms (Fig. 8.7). Two main types of theme are

PUPILS

WORK

USE

IDEAS

METHODS

MATERIALS

LEARN

GRASP IDEAS

BUILD UNDERSTANDING 

Fig. 8.7 Thematic structure of pupil classroom activity—dominant discourse across schools

Fig. 8.8 Additional thematic structure of pupil activity in School A
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identified in relation to classroom activity, each of which appears both in a generic
form and in elaborated forms. On the one hand, PUPILS WORK. Where the nature
of this “work” is elaborated, it involves resources that PUPILS USE …
MATERIALS or previously learnt IDEAS or METHODS. The second type of pupil
classroom activity is learning: PUPILS LEARN. Interestingly, the nature of
learning activity is elaborated by two, slightly different, physical metaphors:
PUPILS GRASP IDEAS and PUPILS BUILD UNDERSTANDING.

Just two of the case studies offer more detailed exemplification of classroom
activity: in School A an extended description is given of a simulation activity
involving pupils in buying, selling and negotiating discounts, while the School B
case study includes reference to one pupil “working on an exercise practicing the
meaning of ‘is equal to’”. While these two examples contribute to how readers
may construe pupils as actors in classrooms, they are very limited and specific,
making it unlikely that a reader could form a general impression of what pupils
do in classrooms in either of these schools. The only more general descriptions of
what pupils do are presented in the negative in the School A case study
(Fig. 8.8). As noted in the analysis of teacher activity discussed above, for
School A, current pupil activity is valued by contrasting it to a supposedly
‘traditional’ practice in which pupils are passive recipients LISTENING or
RESPONDING.

Other references to more specific forms of classroom activity are objectified,
using nouns or nominal groups such as investigation, calculation, problem solving,
discussion, practical activity, structured play, sorting and matching activities. This
objectification obscures the roles that students and teachers may play, providing no
indication of where agency might lie in relation to these types of activity.

8.3.3 Reflecting on the Thematic Analysis of Official
Discourse on Teacher and Pupil Activity

The dominant discourse, present in all five texts, does not problematize or elaborate
the process of teaching. The few examples of classroom activities do not provide
generalizable principles for devising or evaluating further activities. As the thematic
structure offers little description of what is involved in teaching a topic or teaching
students, the texts present a world in which everyone is assumed to know and agree
upon what constitutes ‘teaching’. Given that these texts are labeled as case studies
of good practice, serving as models for development of practice in other schools, it
appears that, in general, teaching is not to be seen as a site for development. This
conclusion, drawn from texts published officially in 2015, is in stark contrast to the
extensive guidance about “good teaching” in official documents published prior to
the election of a new Conservative/Liberal coalition government in 2010 and since
removed from official websites (see Morgan 2009 for an analysis of official dis-
course from the pre-2010 era). Rather than the development of teaching, the case
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studies place emphasis on ‘support’ for pupils. The broader analysis of actors and
processes also identified ‘monitoring’ as a highly valued activity (22 occurrences
across the five texts) to be undertaken by teachers and by school management. It
appears that the policy reflected in this set of texts (accessed in December 2015)
focuses on achievement (and the need to support some pupils to reach required
levels of achievement) and progress (monitored to ensure that it is adequate) rather
than on the processes of teaching that might enable these.

8.4 Implications of a Social Semiotic Approach
to Research

The two examples presented in this chapter have illustrated the application of a
social semiotic approach at two different grain sizes. The first example took single
statements as its unit of analysis, while, in the second example, the unit of analysis
was a corpus of five documents, comprising a total of 18 pages. In both cases, the
analysis addressed how the texts function ideationally: how they realize the world
of geometric objects, or of teachers, pupils and their activities. The starting point in
each case was identification of actors and processes, though these were then
examined using tools appropriate to the scope of the unit of analysis. To compare
the two single statements in example 1, grammatical choices at the level of the
clause were identified, revealing potential differences in the way readers might
construe geometric objects and activity. In contrast, the thematic analysis used in
example 2 worked at the level of the whole set of documents, identifying persistent
patterns of actor-process relationships in order to identify how the activity of
mathematics teachers and their pupils is construed in the discourse of a government
agency. A clause-level analysis similar to that used in example 1 could also be
conducted across a more substantial text or set of texts in order to characterize the
quantitative distribution of particular grammatical choices.

As discussed earlier, taking a social semiotic perspective to analyze communi-
cation entails more than simply applying a set of linguistic tools or techniques. In
order to consider how the communication may shape the ways participants expe-
rience the world, it is also necessary to take account of the context of situation in
which the texts are produced and used and the broader context of culture shared by
the participants in the communication. Of course, not all participants draw on
identical experiences, cultural contexts or discursive resources; alternative inter-
pretations and ways of construing the world are possible. In presenting the exam-
ples in this chapter, I have attempted to give enough of my understanding of these
contexts (as an ‘insider’ in the education system in England) to provide backing for
the interpretations I have made. Responses from colleagues with whom I have
shared these examples provide support for my contention that the interpretations
presented here are convincing to others with knowledge and experience of the
English education system.
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The examples presented in this chapter illustrate some of the power of a social
semiotic orientation to provide insight into those aspects of mathematics education
beyond the immediate context of teaching and learning processes and interactions.
Understanding mathematics education as a complex of social practices situated
within social structures draws attention to a wider range of relevant practices. It also
enables analysis of the meanings that may be construed through texts produced
within a given practice to be informed by knowledge of the contexts within which
they are likely to be read. Focusing on texts produced in the official fields of
examinations and of school monitoring and accountability has enabled identifica-
tion of hegemonic discourses and hence of strong messages about teachers, pupils,
mathematics, teaching and learning that permeate schools in England. Knowledge
gained by this analysis enables critique and provides support for resistance to these
messages. While the analysis reveals how the ‘ideal reader’ addressed by the text
may construe their experience of mathematics education, the ways we experience
the world are not determined by the hegemonic discourse. Our critical awareness of
alternative ways of speaking about mathematics, teaching and learning makes it
possible to challenge the institutional assumptions embodied in such texts and to
change these assumptions by imagining and speaking of other ways of thinking and
being. An important method of critique is to point not only to what is but also to
how it might be different. Here SFL has much to offer as it is predicated on the
notion of language as a system, conceptualizing specific instances of texts as formed
by making (not necessarily deliberate or conscious) choices between paradigmatic
and syntagmatic alternatives in the lexicogrammar, and on the theoretical principle
that these choices affect how texts function in realizing the field, tenor and mode of
discourse. This empowers us to consider, for example, what difference it might
make to students if geometry were presented as actions and their outcomes instead
of as a set of objects and relationships. It enables us to ask what difference it could
make to teachers and students if the messages of the official discourse directed the
attention of school management to, say, the quality of mathematics teaching rather
than (or as well as) the quantity of student achievement.
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Chapter 9
Semiotics, Epistemology, and Mathematics

Michael Otte

Abstract The relationship among language, thought, and knowledge has been
perceived in different ways throughout the history of Western culture. In general,
since the advent of the modern age, mathematical ideas have been considered as
universal, objective and accurate, being detached from the contingencies of lan-
guage and the flaws of communication. However, since the nineteenth century, with
the failure of attempts to establish definitive foundations of mathematics, the advent
of the expansion of education and the consequent view of knowledge as a social
institution, new theoretical perspectives emerged, attributing importance to the
relations and similarities between mathematics and language.

Keywords Semiosis � Peirce � Mathematics � Mathematics education
Complementarity

9.1 Introduction

The main impact of the Scientific Revolution of the 17th century came from a
change in the habits of thought and, in particular, from a campaign for individual
certainty. It was the central problem of Descartes and the general purpose of his
Discourse on Method. “The one activity in the world, which really does concern
Descartes, is thought and the pursuit of truth. Had he composed the Lord’s Prayer, it
would no doubt have contained the invocation ‘and lead us not into error’” (Gellner
1992, p. 7).

Until the Renaissance, all knowledge seemed the result of an interpretation of the
Great Book of the Universe. Then at a certain period in history it happened that
words and things parted ways and direct interpretation of our sense impressions
seemed to become utterly unreliable and the quest for individual certainty became a
fundamental motif of the modern age. It provided impetus for the emergence of
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modern science and was very influential in shaping the debates about the role
mathematics could or should play in science. Interpretation of Nature became
replaced by experimentation and this opened the road towards the application of
mathematical methods in science.

It is a merit of Foucault (1973) to have brought these facts to our attention. At
the beginning of the 17th century,

writing has ceased to be the prose of the world, resemblances and signs have dissolved their
former alliance, similitudes have become deceptive. … Thought ceases to move in the
element of resemblance. Similitude is no longer the form of knowledge, but rather the
occasion of error. … The age of resemblance is drawing to a close. … And just as
interpretation in the sixteenth century … was essentially a knowledge based upon simili-
tude, so the ordering of things by means of signs constitutes all empirical forms of
knowledge as knowledge based upon identity and difference. (pp. 47–51 and pp. 56–57)

For Aristotle, and up to the period we call the Baroque, things had essences; now
words have meanings. Essence is the attribute or set of attributes that make up an
entity, something Leibniz had called the “complete concept of a substance”. And
his Principle of the Identity of Indiscernibles establishes a one-one relation between
concepts (ideas) and objects (substances). Leibniz’s principle expresses the view
that the universe is a system of signs, rather than a set of atoms. In this sense one
might say that the Leibnizian project is situated “at the very heart of Classical
thought” (Foucault 1973, p. 57). Leibniz does not admit atoms, indiscernible
objects. Atoms are like the points of a line or the elements of a set—indistin-
guishable in themselves. In contrast a system of signs is established in terms of
differences. In his fifth letter to Clarke, Leibniz (1956) stated:

I said that in sensible things, two that are indiscernible from each other can never be found;
for instance, two leaves in a garden or two drops of water, perfectly alike are not to be
found. I believe that these general observations in things sensible, hold also in proportion in
things insensible. (p. 61)

“Every thought is a sign. This is the doctrine of Leibniz, Berkeley and the thinkers
of the years around 1700”, wrote Peirce (CP 5.470). The insight that man is
essentially a “symbolic being” slowly and gradually replaced the traditional
Aristotelian characterization of man as a “rational animal”.

And the break that Foucault describes has finally since the 19th century led to a
principle of complementarity of sense and reference. The appearance of this prin-
ciple is due to the fact that science and mathematics became social institutions and
practices whose epistemic subject and theoretical object became social entities.
Sense and reference of symbolic representations are distinguished by their com-
plementary roles in the development of knowledge. We use our language terms
attributively as well as referentially, because an entity is not just the sum of its
attributes and we do in fact encounter things sometimes directly without knowing
much of how to describe them.

At the turn to the 20th century Charles Peirce and Ferdinand de Saussure came
independently forward with the idea of a general theory of signs. Peirce suggested
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to call the new discipline semiotics and Saussure named it semiology. Both aimed at
a general and unified theory of signs that could serve as a method and foundation
for a wide variety of other scientific disciplines.

9.2 What is a Semiotic Framework?

What do people mean when talking about a semiotic framework? A semiotic
framework is essentially a methodological device. Semiotics is a methodology, not
a philosophical doctrine. However, questions of methodology gain continuously in
weight and consume growing parts in all discussions about research and science,
not least because of the omnipresence of scientific technologies in modern society.

Because all thinking occurs in terms of signs, to interpret something just means
to represent it. The essence of something is nothing but the essence of a repre-
sentation of that thing. We can ask neither for the ultimate referent, nor for the
definite meaning of a sign. And therefore the semiosis stretches out in both
directions, towards the object—there is no definite referent—as well as towards the
interpretant—there is no final and definite interpretation either and the interpretant
is just a translation or development of the original sign. Peirce accordingly dis-
tinguishes between two objects of the sign, “the immediate object, or the object as
the sign represents it, from the dynamical object or really efficient but not imme-
diately present object” (CP 8.343). And we should also distinguish between the
immediate and the dynamical interpretant.

It is commonly assumed that signs are instruments invented and used for certain
purposes. But, Peirce introduced the term “semiosis” to challenge such a per-
spective. In other words, there must be some general notion that establishes the
semiotic process, because the sign stands for its object not in all respects, but in
reference “to a sort of Idea, the ground of the representamen” (Peirce, CP 2.228).
And the notion of a general involves the imagination of a continuum of possible
individuals (Peirce, CP 5.102). There are all sorts of humans, good ones and bad
ones. In mathematics and the natural sciences these continua are called “objectual
variables”, that is, incompletely specified objects (Quine 1974, p. 98).

The fundamental triad in Peirce’s semiotics is thus “object—sign—interpretant”
(Peirce CP 8.361). This triad indicates an inherently dynamic sign process that is
not controlled by an external human agent according to his wishes. For example,
the process of communication is not constituted by the encounter of independent
actors, who decide to tell each other whatever comes to their minds. Rather com-
munication is a social system, a system that does not directly interact with the
person’s minds or consciousness and that is not arbitrarily constructed by the
participants. The human agents are subsystems, or rather they have to constitute
themselves as such subsystems of the larger social system of communication. Peirce
uses the phrase “man is a sign” to describe this situation (cf. Radford’s chapter, this
volume). He wrote as follows:
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Man makes the word. … But since man can think only by means of words or other external
symbols, these might turn round and say: ‘You mean nothing which we have not taught
you, and then only so far as you address some word as the interpretant of your thought’. …
The word or sign which man uses is the man himself. For as the fact that every thought is a
sign, taken in conjunction that life is a train of thought, proves that man is a sign. (CP
5.313–314)

Semiotics is not reductionist, it flourishes on differences. The method of semi-
otics is characterized by a kind of structuralist or systems approach whose essential
requirement consists in conceiving of reality in terms of the complementarity of
structure and function. The fallacy of set-theoretical foundationalism in the sense of
Cantor, as endorsed by the New Math consists in the belief that a thing is the sum of
its elements. However, the parts of a system are systems again, and they become
subsystems by the different functions they fulfill within the system. Scientists tell us
that even the nervous cells within a single organ, such as the eye, are specialized:
some cells are sensitive to color, others only to straight direction in the vertical
sense, others in the horizontal, etc.

A system is not just the sum of its parts. It is always more than that, because its
differentiation into parts exists only as a function of the whole. A swan has eyes to
see and a long neck to reach for food into water and has wings to fly, etc. And when
we try drawing a swan, in the end we must not just draw feathers, legs, wings, and a
head, but must draw the Swan!

The system as a whole can constitute itself as a particular system only in dif-
ference and interaction with the environment and by the specific functions it
assumes within a larger system. We seem therefore to run into paradox when trying
to describe the notion of the systems approach:

Any given system can be adequately described provided it is regarded as an element of a
larger system. The problem of presenting a given system as an element of a larger system
can only be solved if this system is described as a system. (Blauberg et al. 1977, p. 270)

The systems approach requires a kind of evolutionary realism in the sense of
Peirce and the paradoxes of the systems approach have to be interpreted as
expressing the contradictoriness of a process evolving in time.

Concentrating on the semiotic nature of thought one might try to understand the
acquisition of knowledge as a socially as well as objectively constrained process.
To this end one should be able to fuse together the two poles of the classical
semiotic heritage, the epistemologically focused tradition that emphasizes the
importance of the indicative sign and the linguistically grounded tradition that
studies the conventional symbol. The semiotics of Charles Peirce, on the one hand,
and the linguistic work of Ferdinand de Saussure, on the other hand, represent these
two different traditions, having developed their mature accomplishments during the
same time period around the turn of the 20th century.

Peirce did emphasize mathematics as a semiotic activity—rather than as a mere
language. Essential to this activity are icons and indices, so called “non-symbolic
thought-signs” (Peirce CP 6.338). Peirce distinguishes them by saying that icons are
“pictures or diagrams or other images such as have to be used to explain the
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meanings of words,” whereas indices have the role of designating objects. These
non-symbolic signs are particularly important with respect to the growth of
knowledge. If all thinking would be conceptual, it would be a mere recognition of
the implicitly already known, in the manner of Plato and all knowledge would
become analytical.

No new knowledge is possible without icons and indices. The famous unknown
“x” of symbolic algebra permits one to make the yet unknown an object of
mathematical activity elaborating its relationships with the known numbers by a
series of diagrams. In mathematical diagrams, be they algebraic or geometrical,
iconicity prevails. Icons are the only type of sign possibly bringing about new
insights. “A great distinguishing property of the icon is that by direct observation of
it other truths … can be discerned than those which suffice to determine its con-
struction” (Peirce CP 2.279). And Peirce saw, “as no one before him had, that
indication (pointing, ostension, deixis) is a mode of signification as indispensable as
it is irreducible” (Seboek 1994, p. 31). Peirce wrote:

one might think, that there would be no use for indices in pure mathematics, dealing, as it
does, with ideal creations, … But the imaginary constructions of the mathematician, and
even dreams, are so far approximate to reality as to have a certain degree of fixity, in
consequence of which they can be recognized and identified as individuals. (Peirce CP
2.305)

The indices occurring in pure mathematics refer to entities or objects that belong to
a model, rather than to “the real world”, that is, they indicate objects in constructed
semantic universes. Think of Descartes’ analogy between arithmetic and geometry
and the introduction of coordinates, which provide a mechanism for introducing the
calculational methods of arithmetic and algebra into geometry. One might, how-
ever, as well interpret this Cartesian analogy as a kind of geometrization of algebra.
It allowed mathematicians, for example, to relate an algebraic formula to a geo-
metric curve, which was of fundamental importance to the mathematization of
physics. “When Descartes discovered analytical geometry… it inaugurated an
uninterrupted series of reciprocal assimilations of branches of mathematics till then
heterogeneous” (Beth and Piaget 1966, pp. 228–229).

Finally one might even see Peirce’s statement that “all mathematical reasoning is
diagrammatic” and “all necessary reasoning is mathematical reasoning, no matter
how simple it may be” (Peirce CP 5.148) as a semiotic version of that analogy
between geometry and algebra. Though Saussure admitted that the sign may have a
referent, he took that to lie beyond the linguist’s purview and in his system there
exist therefore no indexical signs.

Now, Russell (1956) comments on the development of the evolution of the
relations between logic, language and mathematics as follows:

Mathematics and logic, historically speaking, have been entirely distinct studies.
Mathematics has been connected with science, logic with Greek: But both have developed
in modern times: logic has become more mathematical and, mathematics has become more
logical. (p. 194)
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However, the difference between mathematics and language, as Russell sees it,
re-appeared during the 19th century as a difference between two conceptions of
logic (Heijenoort 1967) and of mathematics itself. The advent of pure mathematics
since the beginning of the 19th century was characterized, for example, by the
opposition between two different forms or paradigms: axiomatization versus
arithmetization. Semiotically speaking, the controversy was about what is to be
defined in mathematics: concepts or their extensions. Consider for example the
heated controversy about the foundations of arithmetic of natural numbers between
Dedekind and Peano, on the one side, who wanted to base the concept of number
axiomatically and by ordinal numbers, and Frege, or Russell, on the other side, who
complained that axioms would not define numbers in terms of set-theory, that is, as
objects, rather than concepts.

9.3 The Logic of Linguistic Communication

The logic of human communication and self-understanding is largely intensional.
What matters primarily is meaning or meaningfulness, rather than objective refer-
ence. Perhaps your mother’s birthday coincides with that of Hitler or any other
horrible person. But, when reporting about the birthday celebrations, you surely
would not like to have your story becoming rephrased, by saying, “we were all
happy on Hitler’s birthday”, although such a reformulation would be extensionally
equivalent. Or if a housewife comes back home from shopping and says to her
husband “the shopkeeper told me that you both have birthday together”, then that’s
probably literally untrue, although the shopkeeper and the husband might have been
born on the very same day.

The greater part of people’s conversation is taken up with matters of social
import and common language is heavily oriented towards human cohesion and the
management of social contacts. “We are all social beings and our world is cocooned
in the interests and minutiae of every day social life” (Dunbar 1996, p. 4). In fact, it
is believed today that the development of language owes much to sociocultural
needs and the needs of cooperation. Besides, linguistic description is better suited
for describing familiar situations or objects which people oversee and take in
intuitively and at a glance.

There is a difference here because the growth of mathematical and scientific
knowledge lacks the quasi-automatic character evident in the learning of our mother
tongue. Already Galileo had pointed out the differences and inherent problems. In
Galileo’s “Assayer” (Il Saggiatore) of 1623, the difference is stated by comparing
God’s Word in the Bible, which is adapted to the frame and imagination of the
people, on the one hand, and the Great Book of Nature, on the other hand, which
presents the realities of Nature objectively as they are and without regard to human
interpreters and their desires or preconceptions. Galileo made the point quite clear
against Sarsi:
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I seem to detect in Sarsi a firm belief that, in philosophizing, it is necessary to depend on the
opinions of some famous author …. Perhaps he thinks that philosophy is a book of fiction
written by some man, like the Iliad, or Orlando Furioso—books in which the least
important thing is whether what is written there is true. Mr. Sarsi, this is not how the matter
stands. Philosophy is written in this vast book, which continuously lies upon before our
eyes (I mean the universe). But it cannot be understood unless you have first learned to
understand the language and recognize the characters in which it is written. It is written in
the language of mathematics, and the characters are triangles, circles, and other geometrical
figures. (Wikisource)

Language is not only a means to distinguish men from beasts, but it serves also
to differentiate between cultural sectors and different purposes. Without the math-
ematical symbolism there is no science in the modern understanding. One might be
justified to claim that the “new” algebra of the 16th/17th centuries has been brought
about to a large degree by the opportunities offered by the printing press (Eisenstein
1979). Oral language is an analog system; written language speaks to the eye. It
allows a meta-perspective and is thus capable of stimulating reflection.

The creation of a formal mathematical language was of decisive significance, not
only for the growth of mathematics itself, but also for the constitution of modern
science and technology. The concept of a mathematical function, on which the
notion of natural law is based, “applied to physical phenomena, appeared for the
first time in the literature of mankind in a prescription for gunners in 1546” (Zilsel
2003, p. 110), eighteen years before the birth of Galileo and exactly half a century
before the birth of Descartes.

The prevalence of sense or meaning over reference and truth is often addressed
under the label “functional semantics” What a pity that Galileo did not know this
term! Everybody from booksellers and newspaper agents to real estate firms says
nowadays: “Our goal: Making our customers, clients and their families happy, and
content is our top priority”. “Content” means presenting a picture of life and the
world as it is designed in order to define the image of a company. The product is
placed in a context with which a maximum large target group can identify. It has
nothing to do with content really, it is just functional language. The more content,
the less meaning!

An important starting point for functional semantics is the recognition that
meaning making occurs in specific contexts and that language use is functional
within those contexts (cf. Morgan’s chapter in this volume). Individuals try by what
they say to achieve effects in their social world. But, the most important prerequisite
for learning and knowing is the possibility of simultaneously experiencing a body
of knowledge, as well as its development or application. Strictly speaking, this
possibility is provided by social cooperation only. But, signs and texts serve as
substitutes for direct cooperation. They represent crystallized cooperation. A written
text may serve even as a means of cooperation between my yesterday ego and
myself to-day, by showing me the object of my own writings and thereby helping to
correct the one-sided functional view. One might once more get an idea how
important the printing press has been to the history of mathematics and of
knowledge in general.
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If one believes that communication is constituted by the encounter of inde-
pendent actors who decide to utter their wishes or commands or whatever, rather
than conceiving of communication as a social system, one might also come to
believe that signs are essentially determined by the human subject, being just
functions of their wishes and desires. However, we cannot ‘not communicate’ and
we have no absolute control over what we do communicate in fact. From the
perspective of the individual’s interaction with the world, signs are undoubtedly
essentially determined by their objects, like the smoke that indicates the fire, or the
footprints on the beach that informed Robinson Crusoe of the arrival of another
human being on his lonely island. And even if someone deliberately sets up a fire in
order to give a signal to a partner, he must act according to the laws of nature.

Rhetoric had always conceived of meanings as functional. The sophists in
Plato’s Athens, being masters of rhetoric, boasted themselves of their capacity to
promote any proposition alternatively as either being true or false. “Man is the
measure of all things”, said Protagoras, the most prominent of the sophists. Which
man, one might ask? Now, consider this: Tversky and Kahneman posed the fol-
lowing problem to a sample of doctors:

A new strain of flu is expected to kill 600 people. Two programs to combat the disease have
been proposed. If program A is adopted 200 people will be saved If program B is adopted,
there is one-third probability that 600 people will be saved and a two-third probability that
no people will be saved. Which of the two programs would you favor? (quoted by Pinker
2007, p. 243)

Most of the doctors picked program A, motivated by pragmatic logic and pro-
fessional attitude. But, suppose an analogous case in which you and various
members of your own family were involved in a similarly precarious situation. And
it would fall on your responsibility to choose a way out. We believe that in such a
situation, few people would opt for strategy A. Every person wants to be part of
some greater Being, some universal idea or belief system, some Weltanschauung.
We want to know what it means to be human and we want to know what kind of
obligations result from belonging to the same family, nation or from being human.
The meaning of individual existence is invariably connected to the meaning of life
and history. It follows that one does not require or expect the same kind of behavior
from a scientist, a doctor a politician or a family member! As Michael Ignatieff once
wrote, “It is difference which seems to rule our duties, not identity.… The lives of a
father, a daughter, a son are precious to us; the lives of strangers count for little”
(Ignatieff 1984, p. 29).

Peirce’s so-called Pragmatic Maxim reproduces the inherent dilemma in epis-
temological terms. The original 1878 statement of the Maxim runs as follows:
“Consider what effects, that might conceivably have practical bearings, we conceive
the object of our conception to have. Then, our conception of these effects is the
whole of our conception of the object” (Peirce CP 5.18). Peirce commented on this
about 25 years later, in 1902, in a contribution to Baldwin’s “Dictionary of
Philosophy and Psychology”. The Pragmatic Maxim, there he says,
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might easily be misapplied, … The doctrine appears to assume that the end of man is action
– If it be admitted, on the contrary, that action wants an end, and that end must be
something of a general description, then the spirit of the maxim itself, which is that we must
look to the upshot of our concepts in order rightly to apprehend them, would direct us
towards something different from practical facts, namely, to general ideas, as the true
interpreters of our thought. (CP 5.3)

9.4 Metaphor Revisited

One important consequence of extreme emphasis on specific applications and
pragmatic functionality is the loss of metaphor. What Peirce describes in his maxim
could semiotically be reproduced as the complementarity of function and metaphor.
Metaphor requires a meta-perspective and it serves to generalize. Metaphors are
arguments or even theories in a nutshell, because they connect different conceptual
fields. However, the functional and the metaphorical are not completely indepen-
dent from each other, at least not in our thinking.

Metaphor is the result of the creative capacity to see something as something
else, the complex numbers as elements of vector-space, for example! Or, vice versa,
to introduce algebraic structures into the realm of geometry. Rhetorically, meta-
phors serve to make one see something in a certain light or from a certain per-
spective, that is, to see A as B or even A as A: A = B or A = A!

Because every two entities bear some likeness to each other it seems essential to
consider how to choose the terminus comparandi. Before the modern revolution,
described by Michel Foucault, sensible features of the plants were memorized, from
which one sought to guess their medical effects. Paracelsus (1493–1541), a famous
physician of his time, guessed from the form of a plant its possible healing effects.
The foxglove (Digitalis purpurea), for example, was used to treat heart complaints,
due to the fact that there is a kind of colored heart in its flowers. The walnut was
used, because of its appearance, to treat diseases of the brain, etc. etc. But with the
Scientific Revolution these views changed. Remember Galileo’s famous dictum
that mathematics is the language of science and that the Great Book of nature is
written in a mathematical language.

When I was a mathematics student at the University of Munich, many years ago,
the professor once drew an equilateral triangle on the blackboard and two algebraic
formulae: x2 + y2 + z2 and xy + z and asked where the similarities are. Both for-
mulae appear to be disconnected from the geometrical figure of the triangle, but in
fact the first formula entails great similarity to the equilateral triangle: Both have the
same type of symmetry, both instantiating a full permutation group.

“Colorless green ideas sleep furiously”, is a phrase composed by the great
linguist Noam Chomsky in 1957 as an example of a sentence whose grammar is
correct, but whose meaning seems nonsensical (Chomsky 1957, p. 15). Chomsky’s
sentence may, however, when interpreted metaphorically, appear as a completely
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acceptable phrase within a piece of poetry. And it was accepted as such a piece in a
poetry competition at Stanford in 1985.

The metaphorical is not in the things represented, but is in the representation, or
ultimately, in the complementarity of sense and reference. Metaphors are inten-
sional. When the artist presents Napoleon as Roman emperor the viewer must

perceive the metaphor as an answer to the question why that man has been put by the artist
in those clothes–a different question entirely from that which asks why Napoleon is dressed
that way, the answer to which might not be metaphorical at all. … The locus of the
metaphorical expression is in the representation–in Napoleon–as Roman-emperor–rather
than in the reality represented, namely Napoleon wearing those clothes. (Danto 1981,
p. 171)

As soon as one has realized the possibility of splitting up content into semantics
and syntax one can match them up in more than one way. This is done in science as
frequently as in poetry or art.

Bernhard Riemann (1826–1866), one of the greatest mathematicians of the 19th
century, once wrote a small paper on the “Mechanism of the Ear” (Mechanik des
Ohres), in response to a publication of Hermann Helmholtz. Riemann (1892) wrote
as follows:

The physiology of a sense organ requires … two particular foundations; one psy-
chophysical, that is, the empirical verification of the achievements of the organ, and one
anatomical, that is, the investigation of its structure. … Accordingly, there are two possible
ways of gaining knowledge about the organ’s functions. Either we can proceed from its
construction, or we can begin with what the organ accomplishes and then try and explain
these accomplishments. … Opting for the second possibility one is confronted with three
tasks: 1. The search for an appropriate hypothesis to explain the achievements. 2. To find
out about the sufficiency of the hypothesis for an explanation. 3. The comparison with
experience. … One has to quasi rediscover the instrument and must consider its achieve-
ments as a goal and its creation as a means to this end. However, these achievements and
therefore this goal are given by experience and not subject to speculation. (Riemann 1892,
pp. 338–339)

Riemann does not rule out the structural approach. He wants to emphasize that
structure and function are complementary to each other and this complementarity
becomes effective from an evolutionary perspective. And it leads us to guess the
general laws of nature, which in turn help to construct machines. For example, the
metaphorical equation Heat = Motion is the basis of quite a number of technical
constructions from the locomotive to the ultrasonic cleaner.

In summary we conclude that the complementarity or dynamical interaction
between sense and meaning, or meaning and reference represents the most fruitful
approach to all questions in the field!
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9.5 Why Did Semiotics Arouse no Greater Interest Among
the Communities of Mathematics and Mathematics
Education for so Long?

Mathematics education or didactics is an interdisciplinary enterprise by necessity.
This fact has been widely recognized since the years of the first International
Congresses on Mathematical Education in the 1960s and 70s. But mathematics
education has not been able so far to develop an integrated methodology. Semiotics
might offer opportunities to do better in the future. Deely (1982) wrote as follows:

Whereas the rise of modern science brought about the conditions requiring a new kind of
specialization that gradually has led to an atomization of research and fragmentation of
intellectual community, recognized by all as counterproductive, semiotic can establish new
conditions of a common framework and cross-disciplinary channels of communication that
will restore to the humanities the interdisciplinary possibilities that have withered so
alarmingly when scientific specialization knew no check and alternative. (preface)

And Charles W. Morris, another father figure of modern semiotics wrote, “I share
the view that insight into the nature of signs provides us with an instrument which
improves our understanding of, and effective participation in, the whole of our
contemporary intellectual, cultural, personal, and social problems” (Morris 1938,
Introduction).

The reasons for the lack of interest in semiotics among mathematicians and
mathematics educators, I think, are various and even somewhat contradictory.
Mathematicians are individualists and Platonists. Peirce wrote as follows:

All great mathematicians whom I have happened to know very well were Platonists… I
believe that the great majority of them would regard the formation of such conceptions such
as that of imaginary quantity and that of Riemann surfaces as mathematical achievements,
and that, considering those hypotheses not as mere instruments for investigating real
quantities, but in themselves. They would rank them as having much higher value than
anything in the Arabian nights, for example. Yet why should they do so, if those hypotheses
are pure fictions? There is certainly something to which modern mathematical conceptions
strive to conform, be it no more than an artistic ideal. (ESP2, pp. 51–52)

Any serious research effort needs some objective resistance, some object about
which one wants to find out new truths. Mathematics strives, like every science for
truth. However, were theories identical with their languages there would be no false
theories and no truth. Now mathematicians claim to obtain absolute knowledge and
such a thing seems achievable only with respect to ideal objects (Platonic ideas). In
consequence, Platonism, as well as intuitionism, negate the significance of symbols
and representations. Boutroux (1920), the nephew of Henri Poincare, has expressed
this thought as follows:

The mathematical fact is independent of the logical or algebraic garb under which we seek
to represent it: in fact, the idea we have of it is richer and fuller than all the definitions we
can give, than all the forms or combinations of signs or propositions by which it is possible
for us to express it. (p. 203)
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One might add, however, that the number of different ways of representing that,
which seems to be the same mathematical object, also increased beyond imagina-
tion. Pure mathematics is the child of an explosive growth of mathematical activity
that started around 1800 and that, may be summarily characterized by observing
that for the first time a great number of connections between apparently very
different concepts and theories were discovered.

And it seems reasonable to guess that the ideal of a purely conceptual and
analytical mathematics came from experiencing the advantage offered by a change
of representational modalities, while following the very same ideas.

Mathematics educators, on the contrary, are socially more adjusted and are
constructivists, prone to tinkering. They consider psychology the basic science of
their trade and believe that the arbitrariness of signs makes people the source of
symbols. They want to be masters of the words like Humpty-Dumpty in the story
Through the Looking-Glass of Alice’s travels in Wonderland. Humpty discusses
semantics with Alice!

“I don’t know what you mean by ‘glory’,” Alice said. Humpty-Dumpty smiled contemp-
tuously. “Of course you don’t—till I tell you.” … “When I use a word,” Humpty-Dumpty
said, in a rather scornful tone, “it means just what I choose it to mean—neither more nor
less.” (Carroll 1988, p. 196)

This is indeed the attitude of mathematics teachers and mathematicians. “Stick to
the definitions and do not let your thoughts run around freely”, the professor says in the
classroom. And Leibniz exclaimed: “Calculemus!” Leibniz was an optimist and he
considered calculation to be the key to settling all human conflicts or disagreements.
However, as Lewis Carroll demonstrated in another little piece of dialog, Leibniz’s
dream could come true only if humans were programmable robots.

Achilles had overtaken the Tortoise, and had seated himself comfortably on its back. Well,
now, let’s take a little bit of the argument in that First Proposition of Euclid, said Achilles:
‘(A) Things that are equal to the same are equal to each other’.

(B) The two sides of this Triangle are things that are equal to the same.

(Z) The two sides of this Triangle are equal to each other.

Readers of Euclid will grant, I suppose, said Achilles, that … anyone who accepts A and
B as true, must accept Z as true? … Tortoise: And might there not also be some reader who
would say ‘I accept A and B as true, but I don’t accept the Hypothetical?’ Achilles:
Certainly there might. … Well, now, said the Tortoise, I want you to consider me as a
reader of the second kind, and to force me, logically, to accept Z as true. … ‘I’m to force
you to accept Z, am I?’ Achilles said musingly. (Carroll 1988, pp. 1104–1105)

Achilles has, in fact, no means to make the Tortoise accept this mode of inference,
and in particular to accept Z. The only thing he can do is to write down precisely
this claim as a further request: “(C) If A and B are true, Z must be true.”

Logicians have commented on Carroll’s little piece by saying that one‘s
assumptions must be explicitly augmented by the exact mechanisms by which one is
to deduce consequences from those assumptions. This seems trivial! Remember:
Calculemus! But, what Achilles learns, to his lasting regret, is that formal logic can
never force us to do or to accept anything. Francis Bacon (1561–1626), a protagonist
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of the philosophical revolution that Foucault describes—being a little less optimistic
than Humpty Dumpty and Leibniz–nevertheless, recommended mathematical
interpretation as a means to unravel the meanings of words beyond doubt:

Let us consider the false appearances that are imposed upon us by words. … Although we
think we govern our words, … yet certain it is that words … do shoot back upon the
understanding of the wisest, and mightily entangle and pervert the judgment. So as it is
almost necessary in all controversies and disputations to imitate the wisdom of the math-
ematicians, in setting down in the very beginning the definitions of our words and terms,
that others may know how we accept and understand them. (Bacon 1893, p. 70)

Bacon obviously believed that the mathematical language is capable of pro-
viding precise definitions, though not everybody might find them to his taste. But,
in 1710, George Berkeley had argued convincingly that nobody could give a
definition of the idea of a general triangle. It seems that not even geometry could
define its objects, although they lie open to everybody’s eyes. What does lie before
our eyes, in fact, are continua, that is, incompletely specified universals. And we
pick up a prototype from such a continuum, according to our present purposes.
A general, like the “famous” general triangle, or the apple in a proposition like “an
apple is a fruit”, is a free or objectual variable that can be further specified as need
might be (Quine 1974, p. 98).

The most fundamental aspect of Berkeley’s alternative suggestion is to under-
stand that symbolic representations enable us to make one idea go proxy for many
others by treating it as a representative of a kind (Berkeley 1975, pp. 71–72). We
need not have a definition of the general idea of a triangle, because any proof is
based on some very specific premises, rather than on the intuition of a general idea,
although such an intuition might be at work in stimulating further investigation.
A general triangle is “general” only with respect to a certain purpose and within a
certain context. If the task, for instance, is to prove the theorem that the medians of
a triangle intersect in one point, the triangle, on which the proof is to be based, can
be assumed to be equilateral, without loss of generality, because the theorem in
case is a theorem of affine geometry and any triangle is equivalent to an equilateral
triangle under affine transformations. Equivalence and universality are to be con-
sidered from the point of view of a theory.

And if we concentrate on the mathematical activity of constructing a proof we
are led to conceiving of mathematical concepts in completely functional or
instrumental terms. Moritz Schlick, founder of the Vienna Circle logical empiri-
cists–following Berkeley’s indications—has characterized the situation as a con-
centration on the conceptual function in the context of “intellectual labor.” “There
are no such things as general images. … It was Berkeley who first enunciated this
proposition with full clarity” (Schlick 1985, p. 18).

A mathematical concept is to be defined in operative terms, as Schlick (1985)
continues, having Hilbert’s axiomatization of geometry in mind and observing that
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we employ none of its properties save the property that certain judgements hold with
respect to it. … It follows that for a rigorous science, which engages in series of inferences,
a concept is indeed nothing more than that concerning which certain judgements can be
expressed. Consequently, this is also how the concept is to be defined. (p. 33)

Mathematics seems to become intensional and determined by syntax, a system of
formal deduction and hypothetic-deductive reasoning. What the axioms describe
are concepts or classes of objects, rather than particular objects themselves. Peano’s
axioms do not answer the question “What are numbers, what is the number 1 or 2?
Numbers could be anything, even games (Conway-Numbers, Hackenbusch-Games,
Chessboard-Computer, geometrical Vectors, etc.). And this is what Frege or Russell
complained about. We want our numbers not merely to verify mathematical for-
mulae, like 7 + 5 = 12, they say, “but to apply in the right way to common objects”
(Russell 1956, p. 9). This “right way” requires a model-theoretical investigation,
however, an investigation that has to find out about the equality of two entities of a
model, two Hackenbusch-Games, for example. The basis of mathematical reference
is the verification of A = B. This might not always be a completely simple and
obvious matter. It certainly was not a straightforward and simple idea to think of
calculating with geometrical segments (Descartes) or vectors and functions of
vectors (Grassman) or matrices (Heisenberg).

Mathematics distinguishes itself from logic exactly by the fact that it has objects,
but these objects belong to model worlds, or universes of discourse, which can be
changed if necessity arises. These universes of discourse often are mathematical
themselves. Think of the case of the vector space representation of the imaginary
numbers! They might, however, also arise from pragmatic contexts of human
activity.

And it might have taken time until such hypostatic abstractions as the concept of
number, of energy or of economic value appeared. “It must have required many
ages to discover,” wrote Bertrand Russell, “that a brace of pheasants and a couple of
days were both instances of the number two.” And it is even more interesting to
notice that freeing the number concept of definite reference came along with the
advent of symbolic algebra. Putting A and, say, Two on the same conceptual level
requires to see Two as a concept that no longer intends a definite number of specific
things. Two means “in Vieta … the general concept of twoness in general. … It no
longer means or intends a determinate number of things, but the general
number-character of this one number” (Klein 1985, p. 25).

9.6 Mathematics and Semiotics

The logicist conception of mathematics as endorsed by analytical philosophy
conceives of mathematics as a universal analytical language. Mathematics “is only
a manner of talking about objects, rather than about the objects themselves.” It is
part of the logic and the logic is created only by the language, “namely by the fact
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that the symbolism we use allows to say the very same in different ways”, wrote the
Vienna Circle Mathematician Hans Hahn (1988, p. 57).

The view of mathematics as language has especially been prominent in educa-
tional contexts. As symbolization seems a completely conventional matter, as
Humpty-Dumpty has told us, there are no questions about mathematical objects.
And if some student would pose such questions, it would be difficult to answer in an
acceptable way. So, mathematics education might satisfy itself and attempt to teach
students how to use a coherent system of mathematical reasoning or calculation.
“Mathematics is a language since it provides both a conveyance for and a sub-
stantiation of our thoughts. It is that aspect of mathematics that explains the key role
it plays in modern science” (Effros 1998, p. 132). As a consequence, mathematical
fluency becomes considered most important. And further: “The pedagogical prin-
ciples underlying mathematics instruction,” wrote Effros, “are quite similar to those
used in language instruction” (p. 135).

But neither mathematics nor logic are mere languages. Logic, wrote Peirce, is
just

another name for semiotic, the quasi-necessary doctrine of signs. By describing the doctrine
as quasi-necessary, or formal, I mean that we observe the characters of such signs as we
know, and from such an observation, … we are led to statements … as to what must be the
characters of all signs used … by an intelligence capable of learning by experience. (CP
2.227)

And on some different occasion, but about nearly the same period in his life Peirce
wrote,

The work of the poet or novelist is not so utterly different from that of the scientific man.
The artist introduces a fiction. … The geometer draws a diagram, which if not exactly a
fiction, is at least a creation, and by means of observation of that diagram he is able to
synthesize and show relations between elements which before seemed to have no necessary
connection. (CP 1.383)

Consider geometry. Someone might wonder, for example: Is it possible to turn
around at an arbitrary angle? Is it possible to move at all? Yes of course is it
possible, will be answered! But, Zeno had denied the possibility of motion or
change. And Lewis Carroll had shown that this disbelief cannot be defeated by
linguistic or logical means. One cannot force anyone to see what he does not see,
either, but mathematics at least shows how things are.

Mathematics shows, for example, that the axioms for the Euclidean plane can be
formulated wholly in terms of the group of rigid motions. This is done by framing
some simple concepts—the notion of an involution, for example—and then proving
theorems, such as “every rigid motion of the plane is a composite of involutions.” It
sounds complicated and it would certainly leave us at a loss when attacked
“freehandedly” and without semiotic support. The totality of all possible move-
ments in the plane seems to be a very complicated matter after all. But, after we
have framed the appropriate notions, things seem to clear up.

If we remind ourselves that an involution is either a reflection in some line or a
half-turn about some point, we might even think of the possibility of operating with
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transformations rather than with points or point-sets, which has the advantage that
groups are structured entities while point-sets are not. One might even try and
transform geometrical proofs about points and lines into a system of formulas in
terms of involutions (Reidemeister 1957, p. 100). Or, take the example of the
imaginary numbers, which is perhaps more familiar.

The notion of complex number is an abstraction from possibility inasmuch as it
is possible to extend the basic arithmetical operations to such entities. However, as
long as the imaginary unit had gained admission to arithmetic as merely a calcu-
latory symbol, it produced the some confusion and uneasiness. Only after Gauss
had given a relational interpretation in the frame of the model of the so-called
Gaussian number-plane (as a two-dimensional vector space), it became a legitimate
mathematical object.

The mathematician constructs and manipulates or modifies a diagrammatic
representation of the premises in order to find out that foreign idea—to use Peirce’s
expression—which must be added to the set of explicit premises already available.
Peirce called such kind of reasoning theorematic reasoning. Theorematic reasoning
implies generalization, that is, the introduction of new conceptions or ideal objects,
which are a result of a process called “hypostatic abstraction” (with respect to the
fundamentally important notion of hypostatic abstraction see also CP 4.235, 5.447).

9.7 Conclusion

Our considerations have essentially been stimulated by the following questions:

1. What do people mean when talking about a semiotic framework? And why
should mathematicians and mathematics educators be more interested in the
semiotic framework of Charles S. Peirce (1839–1914), rather than Ferdinand de
Saussure (1857–1913)?

2. Why, did semiotics arouse no greater interest among the communities of
mathematics and mathematics education for so long?

The conclusions that emerged during the discussion of these questions were
already mentioned more or less explicitly in the text. Mathematics, unlike logic,
possesses its own objects. But these objects are elements of a social-communicative
and objective practice and not ideas in a Platonic sky.

Methodologically, a principle of complementarity of meaning and reference
seems to be essential (Otte 2003). This principle can be expressed in many ways,
depending on context, as the complementarity of

Intension and Extension,
Syntax and Semantics,
Tool and Object,
Function and Structure, and
Theory and Model or intended Application.
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Chapter 10
A Semiotic-Conceptual Analysis
of Conceptual Development in Learning
Mathematics

Uta Priss

Abstract This chapter investigates examples of mathematical concepts that stu-
dents find difficult to learn from a semiotic-conceptual perspective. Semiotic and
linguistic features that contribute to the perceived difficulty of mathematical lan-
guage are identified. This chapter suggests that natural language and mathematical
language differ with respect to their semiotic-conceptual structure: while natural
language is interpreted using associative concepts, the meanings of mathematical
concepts are formal and must not be interpreted in an associative manner.

Keywords Semiotic-conceptual analysis � Formal concepts � Associative concepts
Mathematics education

10.1 Introduction

This chapter proposes the use of semiotic-conceptual analysis (SCA) as a means of
investigating why students appear to have difficulties with learning new mathe-
matical concepts. The investigation is aimed at the first two steps in Middendorf
and Pace’s (2004) model for “decoding the disciplines” which are as follows:
identifying particular difficulties that students encounter and comparing how
experts approach these differently from students. The other steps of the model, in
particular the design and evaluation of teaching materials, are not discussed in this
chapter. This chapter suggests that mathematics may be difficult for students
because it uses a language that differs structurally from natural language and
requires a different form of conceptualization.

The investigation was carried out while teaching a class on discrete structures
(DS class) to first year computer science students. Using a flipped classroom
teaching method, the students were reading textbook sections and working on
exercises before each class session. The students submitted answers to exercises
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and also a short summary, reflection and possible questions about the weekly
textbook pages via a Learning Management System (LMS), which enabled the
lecturer to structure the materials discussed in the class sessions as needed. A large
amount of class time was dedicated to group exercises and class discussions
interspersed with short presentations. During the semester, a record was kept of any
concepts from the LMS materials, observations during the class sessions and the
final examination that seemed particularly difficult for the students. This chapter
presents an attempt at structuring and analyzing observations from these data using
SCA as a qualitative research method.

There appears to be an agreement among mathematics educators that mathe-
matics at schools is different from mathematics at universities (e.g., Kadunz 2017).
The didactic literature for school mathematics tends to focus on the children’s first
encounter with core mathematical concepts. At universities students are expected to
use mathematics in a scientific manner that incorporates proofs. Thus students must
transition from a pre-expert mode of using mathematics to an expert mode of
proving mathematics. Moore (1994) suggests a model for analyzing this transition
from school mathematics to using formal proofs at universities. He sees concept use
as a third aspect of mathematical understanding in addition to Vinner and Dreyfus’s
(1989) model of concept definition and concept image. According to his analysis a
correct use and understanding of mathematical definitions is crucial for mathe-
matical proofs. Concept images without an understanding of definitions are insuf-
ficient for comprehending and writing proofs. Some proofs can even be written
without concept images by simply manipulating formal notations. Edwards and
Ward (2004) also analyze the role of mathematical definitions and observe that one
of the problems that students are having is that they are relying on concept images
instead of concept definitions when these two are in conflict. Definitions and proofs
are a form of mathematical discourse carried out in a formal language. In my
observation in the DS class, the students were having frequent problems with the
understanding and use of mathematical language and formal notation in definitions
and proofs. This raises the questions of why this mathematical language is special
compared to other languages and why it is difficult to learn.

SCA was employed as a means for analyzing mathematical language. SCA
provides a mathematical definition of signs and their relationships and a means for
analyzing data that are collected in the context of teaching (Priss 2016). The focus
of SCA is on detecting, visualizing and exploring the implicit structures within a
corpus of recorded signs (such as video-taped utterances or student submitted
exercises or examinations). It is then up to a researcher to draw conclusions from
the data. For example a researcher could be constructing an SCA representation and
then point to an element in this model that in his or her opinion corresponds to a
concept image of a teacher and to another element corresponding to a concept
image of a student. By formally representing the results of an analysis using SCA
for modeling, this analysis becomes transparent and can serve as a basis for dis-
cussion with other researchers. Priss (2016) presents some examples of SCA rep-
resentations of data obtained from the DS class. This chapter does not contain the
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mathematical details of such an analysis but instead focuses on semiotic and lin-
guistic structures that were observed in the collected data.

The next section explains why a semiotic analysis is considered to be suitable in
this context and explains some of the core SCA notions. Section 10.3 defines the
conceptual models that support SCA. Sections 10.4 and 10.5 provide the main
analysis of the examples from the DS class: Sect. 10.4 focuses on the linguistic and
basic semiotic structures and Sect. 10.5 discusses the special nature of concepts
underlying mathematical language.

10.2 Semiotic Analysis

The term “semiotics” has been used in a variety of meanings by different researchers.
In this chapter, semiotics is used in the sense of SCA, which is inspired by Peirce. One
of Peirce’s definitions reads as follows: “A representamen is a subject of a triadic
relation to a second, called its object, for a third, called its interpretant, this triadic
relation being such that the representamen determines its interpretant to stand in the
same triadic relation to the same object for some interpretant” (Peirce 1903,CP1.541).
It is not the aim of this paper to provide a philosophical discussion of this complex
definition. SCA only adapts from Peirce the idea that signs are triadic and that some
sign components determine others. The following description of SCA is adapted from
Priss (2016). In SCA the three sign components are called “representamen”, “deno-
tation” and “interpretation”. In SCA “representamen” refers to the sign vehicle or
physical representation of a sign. Because signs are represented via their represen-
tamens the notions of “sign” and “representamen” may sometimes seem difficult to
separate. In this chapter, “sign” always refers to the triple and “representamen” to the
sign vehicle. It is not clear in Peirce’s definition what precisely is meant by the word
“relation”. In SCA the word “relation” is used in its mathematical sense, whichmeans
that a triple is an instance or element of a relation but not a relation itself. In SCA a sign
is a triple that is an element of a relation called “semiotic relation”. A semiotic relation
is therefore a set of signs.

The notion of “object” is not employed in SCA because it has too many different
connotations in different contexts. SCA uses “denotation” in order to refer to the
meaning of a sign without determining what kind of meaning it is. Peirce’s defi-
nition appears to indicate that an interpretant directly corresponds to a single sign.
In SCA an interpretation is not restricted to one sign and can be a component of
several different signs. An interpretation is a partial function that maps represen-
tamens into denotations. For example, one interpretation could present the view of a
student, another one the view of a teacher. Priss (2015) speculates that Peirce’s
“interpretant” corresponds to a pair consisting of representamen and interpretation
in SCA. Several attempts have been made (for example by Marty 1992) to math-
ematize Peirce’s semiotics. SCA only attempts to mathematize the core definition of
“sign” but not any other aspects of Peirce’s work.
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Semiotics and at least modern linguistics appear to be quite similar and share
many goals, theories and methods. Thus it should be clarified why SCA is called
“semiotic” instead of “linguistic”. Both disciplines investigate sign systems,
structures, meanings and uses. The focus of linguistics appears to be on natural
language, which is in its spoken or written form a linear structure because syntax
and grammar are interpreted as linear structures or as syntax trees, which can be
derived from linear structures. A mathematization of signs as suggested in SCA, on
the contrary, is concerned with sign systems that need not be linear, such as
graphical representations, diagrams and gestures. Although other attempts have
been made to generalize linguistics to non-linear representations, for example by
defining a grammar for graphs (Rozenberg 1997), such approaches do not seem to
be as widely accepted. Thus by emphasizing semiotics over linguistics, SCA is not
restricted to linear models or tree models and can be applied to a wider range of
representations than just natural language.

Mathematical models tend to focus on structural relationships and provide
abstract descriptions that ignore many concrete details. In mathematics only the
explicitly defined relationships are relevant but not any other implicit associations.
SCA provides a mathematical definition of “sign” in addition to a sense of how this
should be used in semiotic applications. The definition of “sign” with respect to
applications in SCA can be formulated as: “a sign is a unit of communication
corresponding to a triple (i, r, d) consisting of an interpretation i, a representamen
r and a denotation d with the condition that i and r together uniquely determine d.”
The following mathematical definition of signs in SCA is more abstract: “For a set
R, a set D and a set I of partial functions from R to D a semiotic relation S is a
relation S � I � R � D. A relation instance (i, r, d) 2 S with i(r) = d is called a
sign.” The sets R, D and I are the (finite) sets of representamens, denotations and
interpretations, respectively. The mathematical definition contains no further con-
straints for R and D other than being sets and lacks any reference to units of
communication whereas the application-oriented definition is less precise with
respect to which sets are involved. Thus, one has to distinguish the mathematical
view of SCA where the notion of “sign” can be applied to any kind of data provided
as sets and an application-oriented view according to which the data should have
some additional features as described below.

From an application-oriented view, representamens are sign vehicles, which can
be simple (such as a word or a graph) or compound (such as a sentence or paragraph
of text). Denotations are any kind of description of meaning. Interpretations rep-
resent different viewpoints (for example a viewpoint of a student or teacher),
contexts or states (in applications of SCA to programming languages). Whether
some item is a representamen, denotation or interpretation is decided by a
researcher who uses SCA in an application. Thus some item can be a representamen
for someone in some context and also a denotation for someone else in some other
context. The dynamics of the mathematical and the application-oriented view can
be different. In mathematics the sets are defined first. In an application it is possible
that signs are first identified as units of communication and it is then decided
which aspects of these units are considered representamens, denotations and
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interpretations. Mathematically, a denotation is an element which is a component of
a sign. In applications, whether something is a denotation can depend on other
intrinsic features. Having these two views is not unique to SCA but affects all
applied mathematics. The two views complement each other and are not contra-
dictory as long as mathematical reasoning is clearly distinguished from
application-oriented reasoning and not inappropriately mixed. This distinction
between two views is similar and related to the two different types of conceptu-
alizations discussed in Sect. 10.5. From a mathematical view, the SCA triple of
representamen, denotation and interpretation can be used to model concept defi-
nition, concept image and concept use. From an application-oriented view both
triples have slightly different meanings. Concept images refer to what people are
thinking when they are conducting or learning mathematics whereas in SCA cog-
nitive aspects need not be directly modeled. The next section discusses conceptual
models that serve as a basis for SCA.

10.3 Conceptual Analysis

Similarly to semiotics, the term “concept” has also been defined in a variety of ways
by different researchers. Formal Concept Analysis (FCA) provides a mathematical
definition of concepts (Ganter and Wille 1999). From an application-oriented view,
concepts are core units for the modeling of thought and linguistic processing. For
example, the meanings of words (or signs in general) can be considered to be
concepts. In FCA, a formal concept is a pair of two sets that uniquely determine
each other (cf. Ganter and Wille 1999, for the exact definition). The two sets are
called extension and intension. From an application-oriented view, an extension is a
set of items that are described by the concepts and an intension is a set of features,
attributes or classes that characterize the items. For example, a concept “bird” has
examples or prototypes of birds in its extension and attributes of birds, such as
“having wings”, in its intension. According to Priss (2002) concepts can be asso-
ciative or formal. A formal concept has necessary and sufficient attributes in its
intension that determine precisely the items in its extension and vice versa as
defined by FCA. Examples are concepts that are defined scientifically, such as
“mammal” or “prime number”. Associative concepts are grounded in the cultural
knowledge and experiences of the person who is using the concepts. Their exten-
sions and intensions are fuzzy and sometimes not very clear at all. For example, it is
difficult to precisely distinguish between a seat, a chair, a bench and a stool or to
determine what is or is not a pet. Natural language concepts tend to be associative.
Even concepts that have a formal scientific definition tend to be used associatively
in natural language as evidenced by the debate about whether a tomato is a fruit or a
vegetable.

Figure 10.1 shows an example of a subconcept–superconcept reltionship.
According to FCA, formal concepts can be structured into a precise hierarchy
because a concept A is a subconcept of a concept B if the extension of A is a subset
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of B’s extension and the intension of B is a subset of A’s intension. In Fig. 10.1 this
is the case because {robin} is a subset of {elephant, catfish, robin} and {animal} is a
subset of {animal, bird}. This relationship corresponds to a mathematical Galois
connection and results in mathematical lattices. The two concepts in Fig. 10.1 form a
two-element lattice. Associative concepts are usually better modeled by networks of
associative relations (similarity, part-whole, cause-effect, attribution and so on).
Because FCA is a mathematical theory, it is a modeling tool that can be applied to
any data of any binary relation. For example, a conceptual hierarchy can be
developed from words and their parts of speech, students and their examination
results, student comments and the time when the comments were made and so on.
Thus as shown in the next example, all parts of a sign, the representamens, deno-
tations and interpretations can also be modeled as formal concepts.

Figure 10.2 shows a conceptual model for parsing and understanding natural
language words using SCA. Comprehending natural language words usually
involves at least two steps that are each modeled as a sign. As a first step a word has
to be recognized within a sentence, processed according to its part of speech and

Fig. 10.1 A subconcept–
superconcept relationship
between two formal concepts

Fig. 10.2 Comprehending natural language words
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potentially be disambiguated. For example, the word “bear” has two distinct
meanings. It could either be a verb or a noun referring to an animal. A second step
is required to assign meaning to a word. The meaning of a word is usually an
associative concept consisting of some intensional features (such as a bear being a
mammal and having legs) and some extensional prototypical or real examples. In
Fig. 10.2 the first step is called “disambiguation” and the second one “interpreta-
tion” according to an application-oriented view. From a mathematical view they are
both interpretations in SCA. The middle concept (bear/noun, animal) is a denotation
of the first sign and a representamen of the second sign.

If the word “bear” is used by a biologist, then the last concept on the right is a
formal concept. If the word is used in natural language then the last concept is most
likely an associative concept (indicated by the dashed line in Fig. 10.2). Its
extension tends to be a fuzzy prototype corresponding to all kinds of bear-like
creatures possibly including teddy bears. Its intension contains prototypical features
that apply to most items in the extension but not necessarily all. The arrows
pointing away from this associative concept are meant to indicate that this concept
is embedded in a network of other concepts and experiences. All the associated
knowledge contributes to arguments and reasoning involving this concept. The
meaning of this concept is not formally defined but is established in its context of
use. Most likely two different speakers will have slightly different associative
concepts for the same word. It should be emphasized that the model in Fig. 10.2 is
meant formally and not cognitively. From a cognitive view the steps are not con-
secutive but instead knowledge about associative concepts influences how words
are disambiguated.

10.4 Reading and Writing Mathematical Language

The use of SCA supports analyses of sign components, which are discussed in this
section, and of conceptualizations of sign components, which are discussed in the
next section. Because interpretations are a component of signs, and interpretations
can include context, a representamen used with the same denotation but in different
contexts might correspond to two different signs (depending on how the interpre-
tations are defined in an application). Thus, equality of signs may not be of interest
in applications. Furthermore, denotations are frequently only similar to each other
but not equal (such as the denotations of “car” and “vehicle”). Representamens as
physical manifestations are also frequently only equivalent to each other but not
equal. For example, two handwritten instances of the same word are never totally
equal. In mathematics, equality is usually evaluated with respect to denotations
while ignoring representamens. For example, “x = 5” is an expression of three
signs with representamens “x”, “=” and “5” where different representamens (“x”
and “5”) have an equal denotation (value 5). Therefore, even though “x” and “5”
are equal as denotations, they are neither equal nor equivalent as representamens.
This results in a whole range of possible relationships between signs some of
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which are mathematically defined in SCA. For example, two signs are strong
synonyms if their denotations are equal, synonyms if their denotations are similar
and polysemous if they are synonyms with equivalent representamens. In this case,
similarity is defined using tolerance relations, that is relations that are reflexive and
symmetric. More details about this can be found in the paper by Priss (2016).
Stating that “signs are synonyms if their denotations are similar” might not seem
different from a usual linguistic definition, but in the case of SCA each of the core
words used in this definition (“sign”, “denotation” and “similar”) has a precise
mathematical meaning. Mathematical language can now be investigated using the
precision provided by SCA.

It should be mentioned that the use of mathematical language has already been
investigated by many other researchers. Schleppegrell (2007) provides an overview
of the linguistic challenges of mathematics and its impact on mathematics educa-
tion. According to Schleppegrell, Halliday coined the notion of a “mathematical
register”, which encompasses meanings and expressions used in mathematical
language. Students need to learn to understand and use this register with its multiple
semiotic features: symbolic notation, written and oral language, visualizations,
specialized vocabulary and grammar, and implicit logical relationships. Some dif-
ferences between mathematical and natural language are not structural but related to
language use and style. For example, a statement such as “a set S of real numbers is
called bounded from above if it contains an upper bound” is typical and acceptable
as mathematical language. But in natural language repeated use of the same word
(“bound”) would be considered poor style. Furthermore non-mathematicians might
consider the definition to be circular whereas mathematicians consider it
non-circular because it defines a property based on the existence of a feature both of
which happen to have a similar name. These are linguistic patterns that students
need to learn or unlearn when they are studying mathematics. SCA is more focused
on structural aspects than on usage, vocabulary, grammar, style and so on. The
remainder of this section investigates four structural aspects (incompleteness, pol-
ysemy, synonymy and iconicity) of mathematical language.

The first example of a structural aspect is incompleteness, which refers to
denotational content and structures that are insufficiently represented by represen-
tamens. One reason for incompleteness is that the foundations of mathematics tend
to be too difficult to be presented to students in school or in the first years of
university. Sets, logic and numbers are often introduced without providing details
of the underlying theories and axioms. An example of incompleteness can be
observed for the equals sign. Prediger (2010) describes an overview of the different
uses of the equals sign. In my opinion they are partly due to incompleteness
because of missing quantifiers. The difference between “a + b = b + a” as a general
equivalence and “a2 + b2 = c2” as a contextually used attribute of triangles would
be obvious if the equations were presented with quantifiers stating explicitly for
which variables they are valid. An example of incompleteness that I encountered in
the DS class referred to the difference between logical Iff (if and only if) and logical
equivalence. Iff can be represented by a simple truth table: p Iff q is true if either
both are true or both are false. Logical equivalence, however, is a semantic concept.
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Two statements are logically equivalent if they have the same truth value in every
model. Because a discussion of model theoretic semantics is too difficult for stu-
dents who have just started to learn logical symbols, the textbook that was used in
the DS class vaguely defined logical equivalence as “something that is only written
when it is always true”. This incompleteness gave rise to confusion that was dif-
ficult to resolve. For example, students asked what the truth table for logical
equivalence looks like. It is unsatisfactory to answer that this is something they will
learn later, in particular because logical equivalence is essential for mathematical
proofs.

The second example is polysemy. The use of mathematical symbols often has
historical reasons resulting in different notations for the same content (synonymy)
and the same symbols having distinct meanings in different contexts (polysemy).
As mentioned above, SCA defines polysemy as equivalent representamens with
similar denotations. Therefore, two signs with the same representamen but slightly
different denotations are polysemous. If the denotations are very different (not
similar) then they would be homographs. An example of polysemy is the equals
sign in the two statements 4 + 1 = 5 and 2 + 2 + 1 = 4 + 1 = 5. In the first
statement, the equals sign can be interpreted as a binary operation resulting in true
or false because 4 + 1 = 5 or = (4 + 1, 5) is true. If the same interpretation was
applied to the second statement, it would result in “true = 5”, which is nonsensical.
In this case the equals sign cannot be read as a binary operation unless it is assumed
to be a case of ellipsis (2 + 2 + 1 = 4 + 1 and 4 + 1 = 5). Otherwise it can only be
read as the basis of an equivalence relation. Other symbols (<, >, <=>, =>, and so
on) also have these two kinds of polysemous uses. Using the decoding model
mentioned in the introduction, it is important for lecturers to decode such hidden
structures in their discipline because while students might struggle with the
ambiguity presented by polysemous signs, lecturers might not even be aware that
there is an ambiguity at all.

Another example of polysemy that I encountered in the DS class was the modulo
operation. The statement “12 mod 5” can be interpreted as an operation (resulting in
2) or as resulting in an equivalence class where 2, 7, 12 and so on are all equivalent.
In the textbook this interpretation was notated using parenthesis (such as “7 = 12
(mod 5)”). One problem with this notation is that it is not symmetric. Furthermore
the textbook also used the notation “(8 + 12) mod 9”. The students found this
confusing. I suspect that the confusion was exacerbated by the fact that the students
did not yet have a solid understanding of equivalence relations and therefore pre-
ferred the interpretation of modulo as an operation. In addition they appeared to rely
more on the notation compared to the lecturer who initially overlooked the textbook
use of parenthesis and interpreted modulo as indicating an equivalence relation
independently of whether the parenthesis were provided or missing.

The third example is strong synonymy, which characterizes signs with equal
denotations. In natural language, weak synonymy tends to be more common than
strong synonymy because words tend to have at least slight differences in meanings
or connotations, such as in the example of “car” and “vehicle”. In mathematics,
however, strong synonymy is very common because there are usually many
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different equal or logically equivalent means for representing any mathematical
denotation. One of the in-class exercises that I used frequently in the DS class was
to ask the students to translate between more verbose mathematical descriptions and
more concise descriptions using formulas. These correspond to different synony-
mous signs with distinct syntactic rules for their representamens that the students
need to learn. For example, Fig. 10.3 shows a concise definition of an inverse
image of a set with respect to a function. Synonymous representations of that
statement are as follows:

1. A more verbose definition: the inverse image of a subset S of the codomain is
the set of all elements of the domain that map to the members of S.

2. A literal reading: the inverse image of a subset M of I is a set of elements x of D
with f of x element of M.

3. A high-level interpretation: although an element of the domain that is mapped
onto an element of the codomain need not be unique, if one considers the set of
all elements of the domain that map to members of a set of the codomain, then
this set is uniquely defined and called the inverse image. Thus if one generalizes
the function from a relation between elements to a function between sets, then
the function can be inverted.

In the DS class students appeared to find it equally difficult to produce a correct
verbose description as to write a formula. In verbose descriptions students often
used inappropriate vocabulary if they had not yet realized that mathematical terms
can only be replaced with strong synonyms (such as “function” instead of “map-
ping”) but not with weak synonyms (such as “function” instead of “relation”).
Students might produce a literal reading, but that does not show that they under-
stood anything other than how to pronounce the formal notation. High-level
interpretations are to be expected only later in the semester and indicate a deeper
level of understanding.

The fourth example is iconicity. SCA defines an icon as a sign where the
representamen and denotation are similar to each other according to some defined
similarity relation. For example, the representamen “3 < 4 < 5” presents a linear
order in an iconic manner because the denotational content of “being larger” is
similar to the representamen structure of “being further to the right”. Difficulties
with statements such as the one in Fig. 10.3 can also be caused by a lack of
iconicity. The sequence in which the statement has to be read is not from left to
right. As indicated by the numbers it has to be read by first selecting a codomain,
then a subset of that codomain, then an element of that set, then considering the
inverse function (or relation) and all the elements that are mapped onto the selected
element and ensuring that these elements are in the domain. The last step is to
assign all of this to the notion “inverse image” that is defined. Figure 10.4 shows a
model for the statement in Fig. 10.3, which is just another representation that is

Fig. 10.3 An example of a
definition
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weakly synonymous and more iconic but potentially less precise. Figure 10.4
shows that although it is not possible to construct an inverse image for individual
elements if a function is not a bijection it is possible to do so for sets via the arrows
in the figure. In order to understand the definition of inverse images one has to
either know the model in Fig. 10.4 or know the sequence in which Fig. 10.3 is read.
The lack of iconicity between the traditional reading sequence from left to right and
the actually required sequence could be an added difficulty for Fig. 10.3. Natural
language provides some means for representing sequences other than recounting
events in the order in which they happen by using conjunctions, pronouns, sub-
clauses and so on. Modern literature and poetry are often considered more difficult
to read because they tend to diverge from the normal sequence. I would argue that
therefore the statement in Fig. 10.3 is at least as difficult to read as modern literature
and poetry.

It should be cautioned that iconicity does not mean that a representamen is
intuitive. In the DS class I noticed that students were using incorrect assumptions
about graphical representations that they were not familiar with. For example I
observed that the students initially tended to interpret graphical representations of
ordered sets (such as Hasse diagrams) as if they were vectors in a coordinate
system. For example, one student tried to determine with a ruler whether two nodes
were at the same level. When the student was told that levels did not matter, she did
seem to change her interpretation of the representation. Thus iconicity can only
function if it is preserved by interpretations and not misinterpreted.

In summary, mathematical notation is not always precise, complete and unam-
biguous. Incompleteness, polysemy and synonymy are potential sources of confusion
for students who are learning new mathematical terminology. A first requirement for
understanding a mathematical representamen is to complete it in the case of incom-
pleteness and to disambiguate it in the case of polysemy. Being able to produce
different synonymous representamens and, in particular, high-level representamens is
an indication of understanding a concept. Using the structures provided by SCA as a
guideline, lecturers can analyze mathematical signs with respect to decoding hidden
difficulties, for example by looking systematically for cases of incompleteness, pol-
ysemy and so on.While iconicity has been investigated by other researchers (Radford
2008) and some of my examples are similar to ones from the literature (e.g., Moore
1994), it would be of interest to conduct a more complete investigation of cases of
polysemy, synonymy, iconicity and so on in a larger mathematical context. In that
case SCA could serve as a guideline for detecting examples instead of being used for
analyzing examples as I have done in this chapter.

Fig. 10.4 A model for
Fig. 10.3
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10.5 The Denotation of Mathematical Concepts

A conjecture of this chapter is that in addition to mathematical language being
incomplete, polysemous, full of synonyms and sometimes lacking iconicity, there is
yet another more significant reason for why mathematics can be difficult to learn. The
conjecture is that there is a semiotic-conceptual difference between natural and
mathematical language. As explained above, Fig. 10.2 shows how natural language
words are disambiguated and interpreted. But according to SCA as shown in
Fig. 10.5, the second sign is missing in the case of mathematical language. A formal
concept of the equivalence class of 12 modulo 5 has a precisely defined meaning that
does not require further interpretation beyond what is defined. The denotations of
mathematical representamens are formal concepts and not associative. They are not
related to items in the external world and associations with external knowledge must
not be used for mathematical reasoning. As soon as a mathematical concept has been
defined everything that is known about the concept can be proven to be true. Anything
that cannot be proven—or cannot yet be proven—is not considered to be part of the
knowledge about the concept and is not admissible to be used in proofs.
A mathematical concept has as its intension exactly those features that can be proven
to be true and in its extension exactly those instances that are proven to have all the
intensional features. All relationships with other concepts can be described using
equivalence relations or implications. What mathematicians think about the concept,
what associative concepts they might still have is irrelevant for the nature of the
concept itself. The selection of topics to be studied in mathematics is socio-culturally
influenced, but once a concept has been defined, its equivalences and implications are
deterministic and not open to further interpretations.

Other sciences also sometimes employ mathematical language and formal
concepts. Abstract concepts that are not formally defined, however, are different
from formal concepts. A concept such as ‘mathematics’ that describes the discipline

Fig. 10.5 Understanding mathematical concepts
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of mathematics is associative and requires a second interpretation because it does
not have a precise definition. Different people have slightly different interpretations
of what it means. It is not possible to discuss the concept ‘mathematics’ without
considering the context in which the word is used.

This conjecture about the difference between mathematical and non-
mathematical language is related to how variables are used differently in mathe-
matics and in programming languages (Priss 2015). Variables in programming
languages are triadic signs because they have a name (representamen) and a value
(denotation), which depends on the state of a running program (where the state
corresponds to an interpretation). Mathematical variables, however, are usually just
placeholders whose value does not change depending on a state. They are not fully
triadic and only need to be disambiguated but not further interpreted. The con-
jecture states that the denotations of mathematical representamens are formal
concepts that are fully specified via their definitions.

While the conjecture is supported by SCA, it is difficult to prove it in general.
There is some evidence provided by the fMRI studies of Amalric and Dehaene
(2016) that show that mathematicians use their brains differently depending on
whether they are evaluating mathematical and non-mathematical statements. This is
consistent with the conjecture that mathematical thinking involves a different form
of conceptualization. The conjecture is also consistent with the analysis of Moore
(1994) and Edwards and Ward (2004) about the importance of definitions and
proofs for mathematics as mentioned in the introduction. SCA provides more depth
to this analysis by highlighting the exact structural difference between natural and
mathematical language as illustrated by Figs. 10.2 and 10.5. Last but not least, the
conjecture serves as a suitable model for explaining some of the observations from
the DS class as described in the remainder of this section.

In my experience students try to associate a concrete example with a concept as
soon as possible and are then confused when they learn that the example is not
identical to the concept. For example, after students learned in the DS class about
the example of a Boolean algebra consisting of True, False and logical operators,
they were very resistant to the idea that power sets are also Boolean algebras. It
seemed that if they had to give up on the idea that Boolean algebras contain the
values True and False, then they were left with a vacuum and a feeling that they no
longer had an understanding at all. In the case of graph theory, students believed
that graphical representation is an essential feature of graphs. If asked what a graph
is they stated that it is something that is graphically represented because that seemed
to be their core associative concept of graphs when in fact it is neither a necessary
nor a sufficient condition. When asked to define a graph, an expert would cite or
rephrase the definition that he or she has learned and would be very careful with
statements that are not closely related to that definition. Students on the contrary
appeared to base their arguments more on their associations and less on the pro-
vided definitions. As another example, students had much more difficulty with the
concept of a ring than with groups or fields because groups are fairly easy to
visualize and the examples of the fields of rational or real numbers are well-known
from school. The examples of rings are not as easy to visualize. Furthermore
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students did not see a purpose in defining a structure (such as a ring) that has
slightly different features than another structure (such as a field) because they did
not see the role of definitions. In fact one student wrote “I don’t understand why…
needs to be defined. I understand how and for what it is used, but not why it needs
to be defined with fixed rules.”

Students also had problems with concepts where all or most of the instances in
the extension appeared trivial. For example, showing that equality is an equivalence
relation was difficult because the proof is almost trivial. Students did not clearly
distinguish between the notions of equality and equivalence and thus did not know
what it was that needed to be proven. In the case of group theory, understanding the
importance of the group closure axiom appeared to be more difficult than the other
axioms because all of the examples that the students were initially shown were
closed. In these cases, formal reasoning based on definitions is straightforward, but
only if one does not think about examples and focuses on applying rules.

If the conjecture is correct then the most significant source of errors for students
who are learning mathematics is that they think they should interpret mathematical
definitions in the same way as natural language words and believe that under-
standing means to generate an associative concept in their minds. I am proposing
that there is a clear transition between non-expert and expert use of mathematics
that occurs at the point when a student realizes that mathematical concepts are
formal–although this does not mean that students consciously reflect on this.
I observed during the DS class examples of students lacking a feeling for the nature
and the limits of mathematical knowledge. They were puzzled when they heard that
for some properties it is not known whether they are true or that no solutions exist
for some problems. It appears that students think that if one has understood a
mathematical concept then one should know everything about the concept and one
should have an intuition for what is true and what is not. This view is in accordance
with associative concepts and in contrast to formal concepts. Understanding a
formal concept means being able to apply and use it correctly and being able to
produce correct synonymous representamens for it. As mentioned before, SCA is
not a cognitive theory. Most likely, expert mathematicians have associative con-
cepts in their minds when they are thinking mathematically, but they know about
the limitations of associations and use exclusively formal concepts in their defini-
tions and proofs.

As mentioned above, mathematical variables are different from programming
language variables. In the DS class I noticed that students focused too much on the
names of variables and literals instead of their positions. For example, in one
exercise students had to determine why a given structure did not fulfill an axiom.
The challenge in this exercise was to discover that certain names were used dif-
ferently than usual (such as 1 representing False) and had their positions switched.
Students found this exercise difficult because they appeared to think that 1 has to
mean True because of some attributes they associate with 1 and True. Presumably
students interpret these representamens to stand for fixed associative concepts,
possibly independently of the context in which they are used. Similarly, some
students appeared to think that ½ always means 0.5 even in modular arithmetics
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groups. Variables and literals are also mathematical representamens, but they are
even more shallow because in many cases they are not introduced via formal
definitions. Instead they are just placeholders, such as x representing certain ele-
ments from a set. Students often associate meaning with the particular name that is
used as a representamen even though all of the names can be changed without any
impact on the mathematical content. For example, students tend to think that if
elements x and y are selected from a set, then x and y must be different because they
are named differently.

In my opinion, fMRI studies similar to the one conducted by Amalric and
Dehaene (2016) might be a suitable means for supporting or rejecting the conjecture
that was put forward in this section. If there is a transition from a pre-expert mode to
an expert mode of mathematical thinking that involves some radically different
manner of thinking and happens at some time while students are at university then
this should be visible in brain scans. It would, however, still not provide insights
into the exact types of conceptualizations that are employed. Further qualitative and
quantitative studies could be designed to collect more data and to focus on a more
specific research question about conceptualizations. Formally, the structures pro-
vided by SCA support the conjecture.

10.6 Conclusion

In summary, this chapter investigates mathematical language with semiotic means
and with reference to conceptual structures. Mathematical language can be
incomplete, polysemous, full of synonyms and lack iconicity. In this chapter, I
conjecture that while the interpretation of natural language representamens results
in associative concepts that link to other associative concepts and experiences, it is a
source of error if students interpret mathematical language in that manner. In
mathematics, definitions and proofs are crucial. One should not ask what a defi-
nition means, but instead what it says. This is because a mathematical definition
specifies a formal concept exactly and without requiring further associations. The
knowledge about a mathematical concept is precisely what can be proven to be
equivalent to or implied by the concept. Understanding a definition involves
translating its content into one or several synonymous representamens. In particular,
graphical representamens are often useful. The translation must neither add nor
delete features that cannot be proven. First year university students tend to think
that understanding means forming associations with concrete and real world
examples. They are not aware of the special role that definitions and proofs play in
university mathematics.

I have not yet attempted to explore specific teaching methods that address these
challenges. As mentioned in the introduction, designing and evaluating specific
teaching methods for materials that the students find difficult are further steps in the
decoding the disciplines model. Possible teaching methods could involve having
students translate between different synonymous representamens, such as between
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formulas, graphical representamens and verbose descriptions. At least in the DS
class, this appeared to be a suitable exercise for practicing the use of mathematical
language and for detecting concepts that the students had not yet understood. It
seems crucial to provide students with a sufficient variety of abstract examples so
that they do not associate concrete and incorrect examples. It might also be helpful
to discuss the special nature of mathematical knowledge with the students so that
they can improve their metacognitive skills with respect to mathematical learning.
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Part III
Peircean Semiotics, Including Semiotic

Chaining and Representations

Introduction: Norma Presmeg

All four chapters in this part address Peircean semiotics, semiotic chaining of
various types, or representations, each in their individual ways. However, the first
two chapters are more theoretical in nature, using empirical work as exemplars to
illustrate theory, whereas the last two have a more empirical purpose, and semiotic
theories serve as lenses in the accomplishment of the research goals.

In Chap. 11, Sáenz-Ludlow provides a masterful summary of some of the key
elements in Peircean semiotics, particularly as they pertain to diagrammatic rea-
soning and iconicity. Following Peirce, diagrams are viewed as icons of possible
relations and diagrammatic reasoning as an inferential process that encompasses
both the nature of diagrams and their transformations. This reasoning is of various
types; it entails chains of interpretants and may be abductive, inductive, or
deductive in nature. Sáenz-Ludlow describes Stjernfelt’s (2007) model of dia-
grammatology, thus linking nicely with Kinach’s Chap. 13 in this part, in which
diagrammatic reasoning is used to conceptualize a new kind of semiotic chaining.

Sáenz-Ludlow invokes Kant’s two sources of representations, namely sensibility
(phenomena—things as they appear) and intelligence (noumena—things as they
are), in order to provide a foundation for Peirce’s perceptual judgments: “all
knowledge is the product of the self-corrective activity of the mind”
(Sáenz-Ludlow). Observation depends on sensible and intellectual intuition, but for
new meanings, collateral knowledge is required.

Sáenz-Ludlow’s chapter is an excellent introduction to the theoretical elements
used and developed in the other three chapters in this part. In Chap. 12, Salazar
bases her theoretical analysis principally on the works of Duval and his Theory of
Registers of Semiotic Representations. Salazar brings the gift of literature from
Spanish, Portuguese, and French sources to English-speaking readers, whose
familiarity with the theories of Duval might otherwise have been confined to his
plenary presentation in the 1999 annual conference of the North American Chapter
of the International Group for the Psychology of Mathematics Education and the



publication that followed (Duval 2002). The three dynamic cognitive activities in
every semiotic representation according to Duval, namely formation, treatment, and
conversion, are linked in Salazar’s account with elements in one of Peirce’s triads,
the classifications of signs according to their internal structure, namely as qualisign,
sinsign, and legisign, respectively. This triad constitutes three elements of the ten
relations that the sign vehicle can take, including the following:

• with its object—icon, index, or symbol;
• with its interpretant—seme, pheme, or argument; and
• in its internal structure—qualisign, sinsign, or legisign. (See Chap. 11)
There is thus good theoretical consonance between Chaps. 11 and 12. However,

as Salazar points out, Duval did not develop his theory for Dynamic Representation
Environments (DREs), and this area is the special contribution of Salazar in
Chap. 12, in which examples from these environments are used to constitute a
figural register.

There is also consonance between Chap. 11 and Kinach’s framework in
Chap. 13, in which she presents a new type of semiotic chaining based on Peirce’s
principles of diagrammatic reasoning and, in particular, the following:

Principle 1: copulating several propositions into one compound proposition;
Principle 2: omitting something from a proposition without introducing error;
Principle 3: inserting something into a proposition without introducing error.

(Peirce 1998, p. 213)
However, Kinach’s chapter has the pragmatic goal of enhancing prospective

teachers’ experiences with visual tasks in mathematics, and semiotic chaining is
used as a tool in this regard. Thus, mathematics teacher preparation is the focus of
the chapter, and theory is presented in a form suitable for the intended audience of
preservice teachers. Also for this purpose, three of Krutetskii’s (1976) series of
tasks are mined as a source of tasks. However, this chapter entails careful analysis
of only one elementary area concept set in an interactive computer environment, a
digital game in five levels.

As in Chap. 13, the goal of Mathews, Venkat, and Askew in Chap. 14 is a
pragmatic one. In view of the complexity involved in the teaching of division in
elementary school, their goal is to elaborate dynamic pathways observed in the
teaching of this topic. Four signification pathways were identified, based on the
analysis of data collected for the first author’s doctoral research. Influenced by
theoretical models in the literature (Walkerdine 1988; Presmeg 1998, 2006; Ernest
2006), various sources addressing difficulties in the teaching and learning of divi-
sion concepts, and the one–many relationship between division operations and
situations (Askew 2015), the authors use enacted semiotic systems related to
division to identify four signification pathways:

• coherent;
• coherent with limitations;
• coherent with instances of ambiguity; and
• mathematically incoherent.
The authors conclude that “Without careful selection of examples, actions,

gestures, and other signs, teachers may produce multiple associations that may lead
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to the endorsement of unintended ways of making sense of division.” Their analysis
contributes to dissemination of knowledge that may help teachers and prospective
teachers to construct more coherent signification pathways.
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Chapter 11
Iconicity and Diagrammatic Reasoning
in Meaning-Making

Adalira Sáenz-Ludlow

Abstract The focus of this chapter is twofold. The first is a semiotic description of
the nature of diagrams. The second is a description of the type of reasoning that the
transformation of diagrams facilitates in the construction of mathematical mean-
ings. I am guided by the Peircean definition of diagrams as icons of possible
relations and his conceptualization of diagrammatic reasoning. When a diagram is
actively and intentionally observed, perceptually and intellectually, a manifold of
structural relations among its parts emerges. Such relations among the parts of the
diagram can potentially unveil the deep structural relations among the parts of the
Object that the icon plays to represent. An Interpreter, who systematically observes
and experiments with diagrams, mathematical or not, also generates evolving chains
of interpretants by means of abductive, inductive and deductive thinking. Using
Stjernfelt’s model of diagrammatic reasoning, which is rooted in Peircean semi-
otics, I illustrate an emergent reasoning process to prove two geometric proposi-
tions that were posed by means of diagrams.

Keywords Triadic sign � Iconicity � Diagram � Diagrammatic reasoning
Proving

11.1 Introduction

Borrowing from Kant and Peirce, I first present a theoretical rationale to justify that
perceptual and logical judgments are not only essential for diagrammatic reasoning
but that they also go hand in hand with the active and passive workings of the mind
in the construction of objects of knowledge. I also justify both why mathematical
diagrams have important iconic characteristics that facilitate the elicitation of
inferential thinking and why they evolve in the mind of the Interpreter to acquire
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symbolic levels that are essential for abstract mathematical thinking. I then present a
rationale to justify that diagrammatic reasoning is essentially an inferential process
and that mathematical diagrams serve as epistemological tools in the
learning-teaching of mathematics. I finally analyze the proofs of two propositions,
posed in the form of geometrical diagrams, using Stjernfelt’s (2007) model for
diagrammatic reasoning. In the conclusion I highlight the importance of diagrams,
diagrammatic reasoning and the interpretation process they entail, for the
learning-teaching of mathematics.

11.2 The Passive-Active Actions of the Mind
in the Construction of Objects of Knowledge

For Kant (1781/2007), the objects of knowledge have two independent sources of
representations, namely, sensibility and intelligence. He calls the first source phe-
nomena or ‘things-as-they-appear’ and the second noumena or ‘things-as-they-are’.
Therefore, an object of knowledge is both sensible and intellectual or rational. It is
sensible insofar as it is the product of the laws of sensibility, and it is intellectual or
rational insofar as it is the product of the laws of intelligence.

Kant also argues that themind can be influenced by a thing or can create an object of
thought.When themind establishes a relationwith a thing, insofar as it is affected by it,
then the mind is passive with respect to that experienced thing. He calls this relation
sensible intuition. In contrast, when the object depends upon the mind, then the mind
is active creating that object. He calls this relation intellectual intuition.

On the one hand, sensible intuition is the receptivity of the person through which
it is possible that his/her power of representation is affected in a certain manner by
the presence of some object of experience. The object of sensibility is the phe-
nomenon. When an object affects the senses directly, it produces a variety of
sensible intuitions—a manifold of sensations and perceptions. This manifold carries
with it two kinds of elements: (i) a subjective or material element (colors, taste,
hardness, etc.), which has no cognitive value; and (ii) a formal or knowledge-giving
element, which is the spatiotemporal organization and ordering of sensations that
facilitates the formation of perceptual judgments (Wolff 1973).

On the other hand, intellectual intuition is the faculty of the person that enables the
representation of things, which cannot act upon the senses by their own character. The
object of intelligence is the intelligible which contains nothing except what must be
known through intelligence—the noumenon.Kant contends that intelligence can have
two uses: the real use and the logical use. The real use generates representations of
objects or relations out of inner resources, thereby giving concepts to the mind. In
contrast, the logical use orders and compares concepts, whatever their origin, in
systems of species and genera according to the laws of logic. Both the real and logical
uses of intelligence require the formation of conceptual judgments to complement and
expand perceptual judgments (Wolff 1973).
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What is a judgment for Kant? It is an act of the intellect in which two ideas,
comprehended as different, are compared for the purpose of ascertaining their
agreement or disagreement (Wolff 1973). Judgments are usually expressed in
propositions composed of subject, copula or linking verb, and predicate.

Borrowing from Kant, Peirce argues that perceptual judgments on the particular
and concrete contain general elements from which one can intuit general patterns,
universal propositions, and principles. Perceptual judgments, he writes, are also
related to the more deliberate and conscious processes of inferential reasoning, and
this reasoning is continuous and carries with it the vital power of self-correction and
refinement (Peirce 1992). That is, for Peirce, all knowledge is the product of the
self-corrective activity of the mind. He also contends that there is nothing in the
intellect that has not been first in the senses (CP 8.738) and that

realities compel us to put some things into very close relation and others less so; but in the
end, it is only the genius of the mind that takes up all those hints of sense, adds immensity
to them, makes them precise, and shows them in an intelligible form of intuitions of space
and time. (CP 1.383)

Both Kant and Peirce contend that observation has epistemological value and
power because it genuinely depends on both sensible and intellectual intuitions.
They argue that observation is tied to judgment, and that judgment is tied to
intentionally planned reasoning. Peirce also contends that any inquiry activity, fully
carried out by a person, is rooted in observation. For example, he writes, when
different people observe a geometric diagram, they are able to see different rela-
tions, some perceived by the senses and some inferred with the aid of collateral
knowledge. He also adds that collateral knowledge is a prerequisite in the appre-
hension and construction of new meanings (Peirce 1998).

Consequently, it can be said that in the observation of geometric diagrams,
sensible and intellectual intuitions, collateral knowledge, perceptual and intellectual
judgments, altogether, trigger abductive, inductive, and deductive inferences. Then
it can also be said that the transformation of a diagram-token (an object of per-
ception) into a diagram-symbol (an object of thought) is the product of the inter-
twined passive-active actions of the mind. Thus, a person’s perceptual and
intellectual judgments with and through diagrams are mediated by both sensible and
intellectual intuitions.

11.3 Diagrams Initially Seen as Sign Vehicles of Iconic
Nature

To say that ‘diagrams are icons’ is a very general and even strange statement when
considered in colloquial speech. Nonetheless, it makes sense in the Peircean
semiotics in which the notion of ‘sign’ is a manifold of elements and relations
among them. Here I use only capital letters for the word SIGN to unambiguously
signify not only its three constituent elements but also the three possible dyadic
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relations among them. The three constituent elements are: the sign vehicle,1 the
interpretant, and the Object. The three dyadic relations are: (1) between the sign
vehicle and the Object it plays to represent; (2) between the sign vehicle and the
interpretant it determines; and (3) between the interpretants generated and the
dynamic object they progressively construct (i.e., an object which approximates the
Object that the sign vehicle purports to represent and which is in a continuous state
of refinement as new and more sophisticated interpretants are gradually generated).
These three relations are not isolated from each other but interdependent on one
another.

It is important to note that the interpretant is not the Interpreter. The interpretant
is the effect of the sign vehicle on the mind of the Interpreter. The Interpreter,
instead, is an agent who takes part in and presumably exerts control over the
process of interpretation. Colapietro (1993) argues that the interpretant is not just
any other result generated by a sign vehicle since this could also produce unrelated
results. For example, he says, a fire indicating the presence of survivors of an
airplane crash might also set a forest ablaze. The forest fire would be an incidental
result but not an interpretant of the sign vehicle calling for help or indicating the
whereabouts of the survivors.

Thus, the interpretant of a sign vehicle depends on what the Interpreter ‘makes of
it’ and it is not just any co-emergent secondary result the sign vehicle might
produce. In fact, the interpretant of a sign vehicle is another sign vehicle which is a
transformation of the former; thus we could also denominate the interpretant as a
sign-interpretant. This transformation enhances the initial sign vehicle and devel-
ops, in the mind of the Interpreter, a dynamic object which is more meaningful and
more closely related to the Object that the initial sign vehicle plays to represent.
Thus the interpretants are the product of acts of interpretation that progressively can
move forward the conceptualization of the hidden Object that the initial sign vehicle
stands to represent. As long as the Interpreter so desires, the interpretants become
more sophisticated and abstract and the process of approximation of the dynamic
object towards the Object continues through the process of interpretation which
could be a never ending process of semiosis for the individual.

1The word SIGN, in capital letters, is used here to refer to the Peircean notion of ‘sign’ defined as a
system constituted by a set of three elements and the dyadic relations among the three elements.
The Peircean triadic notion of ‘sign’ was and continues to be a historically new conceptualization
of ‘sign’ for which he is famously known (see Vasco et al. 2009). In other words, we could
symbolize his triadic notion of ‘sign’ as a system constituted by a set and the relations governing
the elements of the set in the following way:

SIGN = ({sign vehicle, interpretant, Object}, Dyadic relations among the three elements of the
set).

The sign vehicle is only one of the elements of the set that stands as a representation of another
element in the set, namely the Object. Most of the time, Peirce used the word ‘sign’ for sign
vehicle without advising the reader about the use that he meant; the meaning has to be decoded
from the context in which the words were used. However, sometimes he clearly uses the words
sign vehicle and representamen to refer to the representation of the Object.
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For Peirce a sign vehicle is “anything which, being determined by an Object,
determines an interpretation to determination, through it, by the same Object”
(1906, p. 495). He also adds that “a sign [sign vehicle] is not a sign [sign vehicle]
unless it translates into another sign [sign vehicle]” (CP 5.594) and that “a sign
[sign vehicle] is anything which determines something else (its interpretant) to refer
to an object to which itself refers in the same way, the interpretant becoming in turn
a sign [sign vehicle], and so on ad infinitum” (CP 2.303, italics added). He goes
even further to say that the relation between the sign vehicle and its Object could be
of iconic, indexical, or symbolic nature.

When is the relation between a sign vehicle and its Object of iconic nature? The
icon is a sign vehicle determined by its Object by partaking in certain characteristics
of that Object. In other words, the icon is a sign vehicle that bears some sort of
resemblance or similarity to its Object. Peirce subdivides the icons into three types:
diagrams, images, and metaphors. The diagram is characterized by some kind of
similarity with its Object in the sense that it displays somewhat the existing rela-
tions between the parts of the Object in a skeleton-like manner (Stjernfelt 2007). In
contrast, the image represents the Object through simple qualities, and the metaphor
represents the Object through a similarity found in something else.

When is the relation between a sign vehicle and its Object of indexical nature?
The index is a sign vehicle determined by its Object by being in its individual
existence and connected with it. The index has a cause-effect connection to its
Object, and it directs the attention to that Object by blind compulsion that hinges on
association by contiguity (CP 1.558, 1867). An example of an index is the con-
nection between the letter ‘x’ and an unknown variable quantity.

When is the relation between a sign vehicle and its Object of symbolic nature?
The symbol is a sign vehicle determined by its Object by more or less approximate
certainty that it will be interpreted as denoting the Object as a consequence of a
habit. The symbol hinges on intellectual operations, cultural conventions, and habit
(CP 3.419).

Fisch (1986) argues that these three relations between the sign vehicle and its
Object are not independent of each other and that they also evolve in the mind of
the Interpreter. In fact, these relations constitute a nested triad in which the more
complex sign vehicle involves specimens of the simpler ones. In other words,
symbols typically involve indices which, in turn, involve icons. This also means
that icons are incomplete indices which, in turn, are incomplete symbols. This
relation between the sign vehicle and its mathematical Object also depends on what
the Interpreter ‘makes of it’. For example, when a mathematician reads the insti-
tutionalized definition of limit, he can ‘see’ symbols hinting at relations, among
others infinite embedded intervals of real numbers on the x- and y-axis. In contrast,
students can only ‘see’ awkward mathematical marks (iconic sign vehicles with no
clear meaning). Thus the teacher has to guide the evolution of the students’
interpretations of these ‘icons’ so that they can advance their understanding of them
as symbolic sign vehicles that carry with them the rich meanings of the notion of
limit.
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From this categorization of sign vehicles into icons, indices, and symbols, we
learn that different sorts of sign vehicles can represent, in different ways, the Object
that reasoning is concerned with. Now, since reasoning has to make its conclusions
manifest, to oneself and to others, it also has to be concerned with the dynamic
objects of perceptual and rational insights, objects which are evolving in the mind
of the Interpreter. Therefore, reasoning has to be concerned with the interpretation
of sign vehicles and their transformation, through the interpretants, into mental sign
vehicles.

Mathematical diagrams, as icons, implicitly represent the structural features of
the mathematical Object through some kind of similarity. Thought-experimentation
on the diagrams facilitates the perceptual and intellectual progress of such evolution
in the mind of the Interpreter. The Interpreter may see a diagram merely as a
diagram-token (a pure icon), or as a diagram-icon or schema (an icon with indexical
traits), or as a diagram-symbol (an icon with iconic-indexical-symbolic traits).
Then, what type of icon is a diagram for the Interpreter? It depends on what the
Interpreter ‘makes of it.’ This means that it depends both on prior and collateral
knowledge that the Interpreter has and is able to draw into the situation at a
particular point in time, and on his/her own ways of observing and interpreting by
means of perceptual and intellectual judgments. This is also to say that the
Interpreter, in the process of observation and interpretation, simultaneously plays
the perceptual elements in thought and the thought elements in perception in order
to mediate them.

11.4 Mathematical Diagrams Elicit Deductive Reasoning

Peirce (1906) argues that symbols afford the means of thinking about thoughts in
ways in which we could not otherwise think of them; they enable us to create
abstractions, which are the genuine means of discoveries. Knowledge is habit and
symbols rest exclusively on already well preformed habit; thus symbols do not
furnish any self-observation and so they do not enable addition to our knowledge.
On the other hand, indices provide only positive assurance of the reality and
nearness of their Objects. This assurance does not give any insight into the nature of
those Objects. In contrast to symbols and indices, icons partake in the more or less
overt character of their Objects and therefore they do not stand unequivocally for
this or that existing thing. As a consequence, the Object “may be a pure fiction as to
its existence, … but there is one assurance that the icon does afford in the highest
degree; namely, that which is displaced before the mind’s gaze—the Form of the
icon, which is also its Object—must be logically possible” (1906, p. 496).

This is to say that diagrams, being icons, implicitly present by analogy, per-
ception or inference the structural characteristics of the Object that they play to
represent. Therefore, the perceptual and intellectual observation of diagrams, on the
part of the Interpreter, has the potential to bring to the fore possible logical relations
that have the effect of unveiling the structural elements of the Object (the
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object-as-it-is). Mathematical diagrams such as geometric figures, mathematical
formulas and equations, graphs, tables, maps, etc., are essentially icons that also
carry with them potential indexical and symbolic features that can guide perceptual
and intellectual intuitions. These features of diagrams in general, and of mathe-
matical diagrams in particular, pertain to the forms of the relations that structure the
parts of the Object. Peirce also argues that diagrams are necessary for deductive
reasoning; nonetheless, this necessity only means that the conclusion follows from
the premise(s):

Deduction is that mode of reasoning which examines the state of things asserted in the
premises, forms a diagram of that state of things, perceives in the parts of the diagram
relations not explicitly mentioned in the premises, satisfies itself by mental experiments
upon the diagram that these relations will always subsist, or at least would do so in a certain
proportion of cases, and concludes the necessary, or probable truth. (CP 1.66)

Given that diagrams present only a skeleton representation of the relations
among the constituent parts of their Objects, they trigger through observation and
experimentation abductive, inductive and deductive inferential processes.

11.5 Diagrammatic Reasoning as an Inferential Process

Peirce argues that the structure of a diagram has structural similarities with the
abstract and hidden structure of its Object. This similarity warrants that the pur-
poseful observation, perceptual and intellectual, of the structural relations among
the parts of the physical diagram (the phenomenon or the Object-as-it-is-perceived)
will enable thought-experimentation to infer the structural relations among the parts
of the Object (the noumenon or the Object-as-it-is) by means of inferential rea-
soning. Peirce calls this amalgamated thinking process diagrammatic reasoning:

By diagrammatic reasoning, I mean reasoning which constructs a diagram according to a
precept expressed in general terms, performs experiments upon this diagram, notes their
results, assures itself that similar experiments performed upon any diagram constructed
according to the same precept would have the same results, and expresses it in a general
form. (CP 2.96, italics added)

The aim of diagrammatic reasoning is the construction of a mathematical
argument that warrants the abstract structure of the mathematical Object. This
argument is constituted not only by the construction of isolated inferences but also
by the logical and cohesive concatenation of them. Each inference is the result of
evolving related interpretants to form a logical assertion. In contrast, the argument
is the concatenation of logical inferences that lend themselves to form a coherent
chain of mathematical inferences. In this chain, any inference is sustained by prior
ones. The formation of the argument is, for Peirce, the formation of a logical rule
that has coherence and completeness. When Peirce uses the terms logical or logic,
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he means it in the sense of ‘logic’ as the study of thought insofar as it is subject to
self-control with the aim of developing good habits of reasoning.

The mathematical argument, once formed, has to be expressed in complete
sentences or mathematical statements. Each sentence or statement (subject, copula
or verb, and predicate) uses mathematical terms or notations in order to convey a
unit of thought. This is to say that sentences or statements can encode logical
inferences in linguistic and mathematical terms. For a collection of sentences or
statements to constitute a written mathematical argument they have to be combined
and concatenated in a logical and linear manner to unveil the holistic abstract
structure of the mathematical Object.

The analysis of the parts of a diagram, the relations among those parts, and the
synthesis expressed in the argument reflect not only the perceptual elements in
thought and the thought elements in perception but also the audacity of the mind to
bring into play relevant collateral knowledge to aid in the justification of certain
assertions. From this nonlinear activity of the mind, the holistic unity of the
argument emerges out of the formation of a diversity of perceptions and percepts,
perceptual and logical judgments, and conceptions. The differentiation between
perception, percepts, conceptions and concepts will be made in a later section.
Altogether, they come to unveil, in no uncertain terms, the structure of the math-
ematical Object and the validity of the conclusion.

It comes then as no surprise that Peirce appropriates the triad term/noun,
proposition, and argument as the triad that reveals the connection between the sign
vehicle and the nature of the interpretants it produces in the mind of the Interpreter.
Peirce expands the meaning of this triad and he considers it as the triad seme/
possibility/concept/term, pheme/actuality/proposition, and argument. A seme/term
is “anything which serves for any purpose as a substitute for an Object”; it is, after
all, “the Immediate Object of all knowledge and all thought” (1906, pp. 506–507).
The pheme/proposition is “intended to have some sort of compulsive effect on the
Interpreter of it” (ibid.). The argument tends “to act upon the Interpreter through his
own self-control, representing a process of change in thoughts or signs [sign
vehicles], as if to induce this change in the Interpreter” (ibid.).

It will be worthwhile here to summarize that the SIGN, for Peirce, is a triadic
relation between its constitutive elements, namely, the sign vehicle, its Object, and
the interpretant it provokes in the mind of the Interpreter. He unfolds the relation
between the sign vehicle and the Object in the triad (icon, index, symbol); the
relation between the sign vehicle and the interpretant in the triad (seme/term,
pheme/proposition, argument) assigning to the argument a high logical standing;
and the relation between the sign vehicle and its own internal nature in the triad
(qualisign, sinsign, legisign). A qualisign is a quality and it cannot act as a sign
vehicle until it is embodied; however its embodiment has nothing to do with its
character as a sign vehicle. A sinsign (meaning being only once) is an actual
existing thing or event. A legisign is a law; it is not a single object but a general
type. Each legisign signifies through an instance of its application and each instance
is a replica or a sinsign (Peirce 1998).
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Although the latter triad does not have an immediate impact on the main goal of
this paper, the coordination of the above three triads are at the root of Peirce’s
tenfold classification of sign vehicles. They can support a better analysis of dia-
grammatic reasoning in the classroom and a better analysis of the epistemological
process necessary for the learning-teaching of mathematics. In this chapter, I
concentrate on the chains of interpretants that geometric diagrams prompt when
they are intentionally observed and experimented with.

11.6 Mathematical Diagrams as Epistemological Tools

Stjernfelt, a semiotician who has dedicated several books and articles to the analysis
of Peirce’s diagrammatic reasoning, extensively argues about the benefits of his
non-trivial definition of icon. He argues that Peirce’s definition avoids the weakness
of most definitions of iconicity by similarity because of its connection with
observation and thought-experimentation to discover additional pieces of infor-
mation about the Object that the icon stands to represent. Peirce argues that “a great
distinguishing property of the icon is that by direct observation of it other properties
concerning its Object can be discovered than those which suffice to determine its
construction” (CP 2.279, quoted in Stjernfelt 2007, p. 90; italics added).

In other words, diagrams, as icons, afford the formation of perceptions and
conceptions that the grammar and syntax of their construction permit. However,
while physical diagrams remain in the field of the senses, new logical relations
among their parts can possibly emerge by means of imagination, manipulation,
observation, and thought-experimentation. After all, a diagram can be characterized
in one’s mind in a variety of ways, “as a token, as a general sign [sign vehicle], as
definite form of relation, as a sign [sign vehicle] of an order in plurality, i.e., of an
ordered plurality or multitude” (Robin 1967, p. 31).

Peirce argues that “both the iconic diagram and its Initial Symbolic Interpretant
constitute what… Kant calls schema, which is, on one side, an object capable of
being observed while, on the other side, is a General” (1976, p. 316, italics added).
He also argues that more can be learned about the Object of the diagram by the
contemplation of explicit and implicit relations hidden in the physical structure of
the diagram. He also adds that “all necessary reasoning is diagrammatic” and that
“the diagram is an icon of a set of rationally related objects, a schema which
entrains its consequences” (Robin 1967, p. 31). Furthermore, it can be said that
diagrams are epistemological tools for inferential thinking.

Peirce adopts and adapts Kant’s cognitive notion of schema for the inner
workings of the mind of the Interpreter that a geometric diagram can produce, and
gives an operational definition for this cognitive activity. A geometric diagram

is a construction formed according to a precept furnished by the hypotheses; being formed,
the construction is submitted to the scrutiny of observation, and new relations are dis-
covered among its parts, not stated in the precept by which it was formed, and are found, by
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a little experimentation, to be such that they will always be present in such a construction.
(CP 3.560, italics added)

This operational definition of diagram and diagrammatic reasoning entails that once
a geometric diagram is constructed, it can be observed, manipulated physically and
mentally, and transformed through physical and intellectual experimentation. As a
result, what follows is the formation of dynamic interpretants that sooner or later
become logical interpretants. The latter will become logically harmonized to con-
tribute to the formation of chains of inferences that, in time, come to be expressed,
organized and synthesized in coherent and logically coordinated sentences or
mathematical statements. This is to say that the formation of mathematical argu-
ments, geometric or otherwise, is an evolving cognitive process that is by no means
linear but that will be presented as linear in the written argument.

Euclidean geometry is a classic example of physical and intellectual manipu-
lation, and of thought-experimentation that can be performed on geometric dia-
grams. “Euclid first announces, in general terms, the proposition he intends to
prove, and then proceeds to draw a diagram, usually a figure, to exhibit the ante-
cedent condition thereof” (Peirce 1976, p. 317). Peirce’s assertion reminds us of
Polya’s heuristics for solving problems and the formation of the mental schema to
support construction of solutions. This is to say, understanding the problem and
constructing a figure or diagram, devising a plan by means of thought experi-
mentation on the diagram and bringing into play appropriate collateral knowledge,
carrying out the plan within the logic of mathematical systems, and retrospectively
and prospectively reflecting on possibilities for generating new problems or gen-
eralizing the one at hand (Polya 1957).

Nowadays, given the dragging mode of dynamic geometry environments, the
manipulation of geometric figures is expedited, and with it, the observation of
intentional manipulation and planned experimentation. Thus, the observation of
variant and invariant relations among the elements of a geometric figure facilitates
the formation of conjectures as well as their validation. The role of diagrams in
deductive reasoning is well argued by Peirce:

All deductive reasoning, even simple syllogism, involves an element of observation;
deduction consists in constructing an icon or diagram the relations of whose parts shall
present a complete analogy with those of the parts of the object of reasoning; in experi-
menting upon this image in the imagination; and in observing the result so as to discover
unnoticed and hidden relations among the parts. (CP 3.363, italics added)

Netz (2014), who has dedicated himself to studying the evolution of Greek
mathematical thinking, describes the Greeks’ history of reasoning with geometric
diagrams as follows: (a) Greek mathematical diagrams shaped deduction in math-
ematics; (b) mathematical objects were determined through diagrams; (c) letters
inserted in diagrams were indices, not symbols; (d) diagrams are the metonymy of
the propositions; (e) the writing of a proof was preceded by an oral rehearsal. He
then concludes that, in general, the emergence of mathematical thought requires an
inter-subjectively given object.
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All in all, in this and prior sections we have a semiotic and a historical assurance
that mathematical diagrams are tools that mediate deductive thinking. Given that
deductive thinking is a source of knowledge, we can conclude that mathematical
diagrams serve as epistemological tools for the learning-teaching of mathematics.

11.7 Visualization as an Indispensable Element
in Diagrammatic Reasoning

For centuries it has been recognized that sense perception is an essential element of
cognition. Kant (1781/2007) asserted that perception without conception is simply
blind and that conception without perception is merely empty. For him, the thought
elements in perception and the perceptual elements in thought are complementary
and both make human cognition a unitary process that leads the way from the
elementary acquisition of sensory information to the most generic theoretical ideas
(Wolff 1973).

Following Kant, Peirce differentiates between immediate perceptions and per-
cepts. Kant argues that perceptions are the effect of the empirical object
(thing-as-it-appears) upon bodily sense organs and that by subjective association
the mind forms a manifold of perceptions that are coordinated by means of
empirical judgments—this manifold of perceptions is the percept. Percepts need to
be transcended by means of mental operations for a conception to be formed.

The synthetic unity of a manifold, therefore, is the characteristic possessed by a collection
of mental contents by virtue of their having been produced by the imagination in accor-
dance with a single rule. The consciousness of that synthetic unity is the conception of the
rule by which it has been produced. (Wolff 1973, p. 130)

In general, it can be said that percepts are concrete instantiations of the Object
(phenomenon or the Object-as-it-appears) and whose gradual and continuous dif-
ferentiation proceed toward conceptions. Peirce argues that this “continuity is a
special kind of generality among the relation of all of a certain kind of parts of one
whole and that this continuity implies a passage from one percept to a contiguous
conception” (CP 7.535). In fact, this continuity is the essence of the process of
unlimited semiosis which mediates the transformation of perceptions into percepts,
of percepts into conceptions, and of conceptions into concepts or the conceptual
Object (noumenon or the Object-as-it-is).

During the last decades, cognitive scientists, by means of experimentation, have
reinforced the notion that to perceive the external environment “our brain uses
multiple sources of sensory information derived from several different modalities,
including vision, touch and audition. All these sources of information have to be
efficiently merged to form a coherent and robust percept” (Ernst and Bülthoff 2004,
p. 162).

In the classroom, dynamic geometric environments offer not only the visual
modality but also the simultaneous touch modality during the dragging process,
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which is mediated by the mouse or by the touch-pad. The integration of these two
sources of information not only reduces perceptual estimations produced by
paper-pencil drawings of geometric figures but it also enhances the formation of
more reliable perceptions. The transformation of these perceptions entails the for-
mation of percepts and empirical and logical judgments to produce all sorts of
interpretants that sustain the formation of conceptions in the process of reasoning
through diagrams.

During the last decades, there has been a history of research in mathematics
education focusing on visual perception and its close connection with conceptu-
alization. Seminal theoretical works from cognitive scientists were and continue to
be influential in mathematics education. Among some of these works could be
mentioned, with apologies to all who are not mentioned here but who are
nonetheless recognized in our minds, Arheim’s book on Visual thinking (1969),
Johnson-Laird’s book on Mental models (1983), and Davis and Anderson’s (1979)
article on Nonanalytic aspects of mathematics and their implication for research
and education. To place specific emphasis on visual perception, Arheim (1969)
rephrased Kant and wrote, “vision without abstraction is blind and abstraction
without vision is empty” (p. 188).

For a synthesis of research on visualization in the learning and teaching of
mathematics, the reader is referred to Presmeg’s (2006) handbook chapter. In what
follows I present a bird’s eye view of some of the seminal notions that emerged in
the 1980s.

Bishop (1989) proposed two types of ability constructs: integrating figural
information and visual processing. The first is described as the ability to relate to a
particular situation presented in some form of visual representation. The second is
described as the ability to translate abstract relations and non-figural information
into visual terms. The notions of concept definition, concept image, and image
schemata also contributed a good amount of research in mathematics education.
Concept definition refers to the definition institutionalized by the mathematics
community at large (Tall and Vinner 1981). Concept image refers to subjective
construction of meaning that corresponds to the concept definition of institution-
alized mathematics (Arcavi 1999; Tall and Vinner 1981). Image schemata refers to
the individual’s mental constructions connecting those related concept images
subjectively constructed by the individual (Dörfler 1991). Both the concept image
and the image schemata provide a non-verbal, non-propositional component of
cognition that contrasts with the notational and/or verbal descriptions of the concept
definition. These notions, directly or indirectly, somewhat address the abstract and
analytic nature of inferential reasoning (abductive, inductive, and deductive).

Skemp’s (1987) book, The psychology of learning mathematics, also has been
very influential in mathematics education research. Skemp goes beyond the above
mentioned notions when he links perception and symbolic systems (symbolic
mathematical notations or what he calls surface structures) as mediators in the
construction of concepts (or what he calls conceptual structures or deep structures).
His diagram shows this connection (p. 177) (Fig. 11.1). Figure 11.1 is Skemp’s
diagram complemented with other definitions in his book.
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Skemp’s diagram is a clear illustration of Goodman’s (1978) argument in the
introduction to his book, Ways of worldmaking. He writes,

Kant exchanged the structure of the world for the structure of the mind; C.I. Lewis
exchanged the structure of the mind for the structure of the concepts; and this book makes
the argument for the exchange of the structure of the concepts for the structure of the
several symbol systems of the sciences, philosophy, the arts, perception, and everyday
discourse. (p. x)

In summary, all symbolic mathematical notations (surface structures) are
essentially special kinds of diagrams; diagrams with iconic aspects and with the
potential to unveil the indexical and more general symbolic aspects of the mathe-
matical Objects that these diagrams stand to represent. The relations among the
parts of the diagram (as-they-appear-to-the-senses) are physical representations of
possible logical structural relations (as-they-appear-to-the-mind’s eye) among the
parts of the conceptual Object (the-Object-as-it-is). Reasoning through diagrams is
essentially a process of unlimited semiosis, in which the interpretants mediated by
diagrams are inferentially constructed and should also be logically connected to
produce the conceptualization of the deep structure of the conceptual Object or an
acceptable approximation of it. This semiosis is unlimited in the sense that even
when an approximation to the conceptual object has been reached, a better and
more sophisticated approximation could be produced in the future. For the notion
of approximation we refer the reader to the article on inter-intra interpretation
(Sáenz-Ludlow and Zellweger 2016).

Fig. 11.1 Skemp’s connection between perceptions and concepts
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11.8 Stjernfelt Model for Diagrammatic Reasoning

Stjernfelt (2007) captures, in Fig. 11.2, the essence of the process of diagrammatic
reasoning, a process rooted in perceptual and mental activity to produce chains of
inferences. This figure, which is itself a diagram, is a useful tool for thinking about
the processes of proving and problem-solving. It synthesizes a manifold of relations
that integrates the construction of the diagram, the observation of structural rela-
tions among its parts, and the perceptual manipulation and thought-experimentation
to infer new possible relations conducive to the attainment of a logical conclusion
or a solution.

He also describes this process in terms of the transformation of diagrams
co-emerging with the formation of evolving interpretants. In this transformation, the
implicit deep structural aspects of the Object (the Object-as-it-is) can be unveiled
because of their analogy with the relations among the parts of the diagram. This is
to say that, during the process of interpretation, the Interpreter mentally refurbishes
the given or initially constructed diagram (transformand diagram) into more
meaningful diagrams (transformate diagrams). In this process, a given or con-
structed diagram-symbol is interpreted by an Interpreter as a diagram-token and
transformed into a diagram-icon or schema that is transformed again and again until
the structural relations among the parts of the mathematical Object are unveiled by
the Interpreter so as to see it as a diagram-symbol with the deep and hidden
meaning that the initial diagram-symbol played to represent. Each time, new
transformate diagrams reveal more and deeper structural relations among the parts
of the mathematical Object that hinge on mental operations and inferential rea-
soning. It is in this sense that iconic sign vehicles grow into symbolic sign vehicles
in the mind of the Interpreter. Although guided by the initial diagram-symbol, the
Interpreter is giving freedom to think and to be creative within the context of a
particular mathematical situation.

The sequence of interpretants that co-emerge with the transformations of the
initial diagram is summarized by Stjernfelt (2007) using the letters a, b, c, d, e, f, g.
to describe the progressive steps in the development of deeper meanings con-
structed with and through new transformate diagrams.

Fig. 11.2 Diagrammatic reasoning as a process (Stjernfelt 2007)
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a. Symbol (1): Diagram-symbol [i.e., transformand diagram or mathematical
symbol in the mind of the proposer of a problem or proposition].
b. Immediate Iconic Interpretant (b < a): Diagram-token [a rule-bound diagram].
An initial interpretation of the diagram-symbol a.
c. Initial interpretant (b + c < a): The diagram-token is transformed into a
diagram-icon [schema or skeleton relations among the parts of the diagram emerge
in the mind of the Interpreter]. Initial transformate diagram.
d. Middle Interpretant ((b + c) + d < a): A diagram with three sources, a, b, and
c. An emergent symbol-governed diagram equipped with possibilities of transfor-
mation [diagram-symbol, a more advanced transformate diagram with possibilities
of further mental transformations].
e. Eventual, Rational Interpretant: New emergent transformate diagram-symbol.
f. Symbol (2): Concluding transformate diagram-symbol or conclusion.
g. Post-Diagrammatical Interpretant (different from b): This interpretant is an
interpretant of a as well; however, now the diagram-symbol produced is enriched
by the total interpretant of Symbol (1).

It is important to note that transformate diagrams are substantially embedded in
the transformand diagram with all their unveiled significant features. That is, dia-
grammatic reasoning is the mental process of the Interpreter who intentionally
endeavors both in the observation and in the manipulation of an initial diagram
[transformand diagram/symbol (1)]. He first interprets this diagram as a
diagram-token and then progressively enriches it and transforms it into
diagram-icon and diagram-symbol (transformate diagrams). The final
diagram-symbol [transformate diagram/symbol (2)] is the Interpreter’s construction
of the symbolic meaning of the initial diagram-symbol [transformand diagram/
symbol (1)]. This is to say that the Interpreter finally unveils, as best as he/she can,
the structure of the Object that the transformand diagram [symbol (1)] stands for.

It can be said that diagrammatic reasoning is a process by which the Interpreter
intentionally endeavors in a process of inter-intra interpretation (Sáenz-Ludlow and
Zellweger 2016) to enhance both the observation and manipulation of an initially
proposed diagram-symbol in the mind of the proposer but only perceived by the
Interpreter as a diagram-token. The Interpreter then transformes it into a
diagram-icon, which in turn is transformed into a diagram-symbol enriched with
new inferred general relations that contribute to unveil the hidden structural rela-
tions of the mathematical Object implicit in the proposed diagram.

11.9 Examples of Diagrammatic Reasoning

11.9.1 The Five Point Star

The geometric diagram of a five-point star was taken from Nelsen’s (1993) book
Proofs without words (p. 14). This example was modified to ask for the formulation
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of a conjecture with the use of the Geometer’s Sketch Pad (GSP). Below I first
present the transformand diagram and the formulation of the conjecture. Then I
present a sequence of interpretants and transformate diagrams which aided in the
proof (Fig. 11.3).

Given the dragging and measuring modes of the GSP, a conjecture can be
inductively constructed: the sum of the five point-angles of a five-point star is 180°.
A first observation reveals a pentagon with five non-overlapping triangles (here
called point-triangles) formed by the extension of each of its sides. A second
observation reveals implicit overlapping triangles constituted by the pentagon and
two point-triangles. A third observation indicates that there are five overlapping
triangles, each sharing one vertex with the pentagon.

Now it is necessary to bring to the fore some sort of appropriate collateral
knowledge to make some sense of the observation. For example, the measure of the
interior and exterior angles of triangles, the measure of straight angles, the measure of
exterior and interior angles of pentagons, and the measure of vertical angles. The
ensuing mental operations are to inquire about the possible connections among the
collateral knowledge, the point-triangles, and overlapping triangles to prove the
conjecture. Figures 11.4, 11.5 and 11.6 present a sequence of transformate diagrams.

In what follows I describe the sequence of interpretants that enabled transfor-
mations of the given diagram-symbol which was initially interpreted as a
diagram-token.

Immediate interpretant. Visual perception of the five-point star as constituted by
a pentagon and five point-triangles. The Interpreter mentally creates a transformate
diagram-token representing the initial relations among the parts of the given dia-
gram (see Fig. 11.4).

Initial interpretant. The visualization of the five-point star as constituted by a
pentagon with five point-triangles formed by the extension, in both directions, of
each of its sides. The Interpreter transforms the prior diagram-token into a
diagram-icon. The latter indicates new relations and new possibilities for the con-
struction of regular and irregular five-point stars.

Middle interpretant. The visualization of five implicit overlapping triangles:
ΔWJK, ΔZMI, ΔQKL, ΔNIJ, and ΔPLM, each of which shares a vertex (W, Z, Q,
N, or P) with the pentagon and two corresponding vertices of the star. Thus each

m IJK m KLM m JIM m LKJ m LMI m IJK + m KLM + m JIM + m LKJ + m LMI
44.75° 31.99° 32.95° 28.60° 41.71° 180.00°
44.75° 28.19° 38.30° 28.60° 40.16° 180.00°
39.43° 28.19° 39.63° 32.59° 40.16° 180.00°
39.07° 28.19° 46.16° 32.59° 33.98° 180.00°
46.38° 28.19° 41.34° 30.11° 33.98° 180.00°

Conjecture :
The sum of the five point-angles of any five-point star is 180°

1

2

3

4

5

K

L

M

J

I

Fig. 11.3 Transformand diagram and the conjecture
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triangle has already two point-angles of the star that when added give the measure
of an external angle of that particular triangle. The Interpreter transforms the prior
diagram-icon into a diagram-symbol. The latter enables the selection of appropriate
collateral knowledge for the attainment of the proof of the conjecture (see
Fig. 11.5).

Eventual rational interpretant. How are the angles of any point-triangle related
to the angles of overlapping triangles that share a vertex with the pentagon? Focus
on one point-triangle at a time, for example ΔWZL. Which overlapping triangles
will be related to this triangle? To make a decision, it would be useful to consider

5

4

3

2
1

I

J

M

L

K

Fig. 11.4 Point triangles and
pentagon
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I

Fig. 11.5 Two of the five
overlapping triangles: ΔINJ
and ΔIZM
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the vertices W and Z of this triangle because they are also vertices of the pentagon.
This leads one to consider the overlapping triangles ΔJWK and ΔIZM (see
Fig. 11.6).

Consider triangles ΔJWK and ΔIZM
∠LWZ = ∠1 + ∠4 (external angle of ΔJWK)
∠LZW = ∠3 + ∠5 (external angle of ΔIZM)
(∠1 + ∠4) + (∠3 + ∠5) + ∠2 = 180° (the sum of angles of △WZL is 180°).
Since ∠4, ∠1, ∠3, ∠5, ∠2 are the point-angles of the five-point star, they add

up to 180°.
Post-diagrammatical interpretant. The systematic dragging and observation of

the five-point star guided the reasoning to formulate a conjecture about the sum of
its point-angles and its proof. Several questions come to mind. Is this conjecture
true for regular five-point stars? Can this conjecture be proved using the interior and
exterior angles of the pentagon? Can this conjecture be proved using straight
angles? Can the conjecture be generalized for n-point regular and irregular stars?
The answers to these questions are in the positive. Unfortunately, space limitation
does not allow for the presentation of the other proofs and the generalization but the
reader is invited to try them. Nonetheless, the generalization arrived at is that the
sum of the point-angles of any n-point star, regular or irregular, is (n − 4) 180°.

11.9.2 Trigonometric Functions of the Sum and Difference
of Angles

The second example presents a geometric diagram proposed by Nelsen (2000,
pp. 46–47) for proving the six trigonometric identities sin(a + b), cos(a + b), sin

4+ 1

5

4

3

2

1

Q

P

W

Z

N

K

I

J

M

LFig. 11.6 Overlapping
ΔJWK and ΔIZM correlated
to point-triangle WZL
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(a − b), cos(a − b), tan(a + b), and tan(a − b). The diagram proposed is an
ingenious partition of a rectangle into four non-overlapping right-triangles. This
partition is a creative abduction on the part of the proposer of the problem.
Nonetheless, the inferential reasoning that follows from the observation of this
transformand diagram is rooted in overcoded abductions as opposed to genuinely
creative abductions (Sáenz-Ludlow 2016).

The analysis of the diagrammatic reasoning for each proof is presented visually
by a sequence of transformate diagrams (Figs. 11.7 and 11.8) followed by a brief
description of the co-emerging interpretants. The first four proofs are very similar in
nature due to the strategic position of the length 1 for the hypotenuse of the most
interior right-triangle.

Immediate interpretant. Visual perception and collateral knowledge aided the
identification and justification of the positions of the angles a, b, a + b, a − b as
well as the strategic position of b as one of the acute angles of the most interior
right-triangle with hypotenuse of length 1.

Initial interpretant. In Fig. 11.7 the angle a with vertex C repeats with vertex B
due to their perpendicular sides, and the angle (a + b) with vertex C repeats with
vertex A due to their position as alternate interior angles between parallel sides of
the rectangle and the transversal AC. In Fig. 11.8 the angle a with vertex C repeats
with vertex B due to their position as alternate interior angles between parallel sides
of the rectangle and transversal CB, and it also repeats with vertex A due to
perpendicular corresponding sides. Angle (a − b) is directly given because a and b
overlap and a > b. The right-triangle AFC in Figs. 11.8 and 11.9 facilitates the
visual and determination of sine and cosine of (a + b) and (a − b) in terms of
segment-lengths due to the length 1 of the hypotenuse AC of right-triangle AFC.

β

1

cos β

α

sin αcos β+cosαsin β

cos αcos β-sinαsin β

α
sin β

(α+β)
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(α+β)(α+β)

α

α

α
β

1

β

sin β
α

cos(α+β)
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Fig. 11.7 Transformand and transformate diagrams for sin(a + b) and cos(a + b)
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Fig. 11.8 Transformand and transformate diagrams for sin(a − b) and cos(a − b)
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Middle interpretant. The right triangles ADB and CEB with hypotenuses sin b
and cos b, respectively, enable the visual determination of the sine and cosine of
their acute angles. The addition and subtraction of length-segments give the for-
mulas for sin(a + b) and cos(a + b) (Fig. 11.7), and sin(a − b) and cos(a − b)
(Fig. 11.8) from the respective transformate diagrams.

Eventual rational interpretant. By the definition of the sine and cosine functions
of the angle a + b in the right-triangle AFC in Fig. 11.7, we have that sin(a + b)
= sin a cos b + cos a sin b and that cos(a + b) = cos a cos b − sin a sin b.

Also by the definition of the sine and cosine functions of the angle a − b in the
right-triangle AFC in Fig. 11.8, we have that sin(a − b) = sin a cos b − cos a sin
b and cos(a − b) = cos a cos b + sin a sin b.

In the following two figures, Figs. 11.9 and 11.10, I present two sequences of
diagrams to deduce the formulas for tan(a + b) and tan(a − b). The transformand
diagrams (first diagram in each sequence) are the proposer’s creative abductions.
They are essentially the same transformand diagrams as in Figs. 11.7 and 11.8 but
assigning the length 1 to the side CE in Fig. 11.9 or to side BE in Fig. 11.10.
Clearly, the interpretants for these proofs incorporate the immediate and initial
interpretants generated during the first four proofs shown above. Thus, this process
is initiated with middle interpretants.

Middle interpretant. This is a realization that tan(a + b) and tan(a − b) can be
determined from the ratios of the sides of the right-triangle FAC in Figs. 11.9 and
11.10, which have (a + b) and (a − b) as acute angles respectively. Thus, the task
now is to use the trigonometric definitions of tangent and secant to determine the
length of the sides of the other right-triangles ADB and CEB.
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Fig. 11.9 Transformand and transformate diagrams for tan(a + b)
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Fig. 11.10 Transformand and transformate diagrams for tan(a − b)
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Rational interpretant. The lengths of the sides AD, DB, BE and CE of triangles
ADB and CEB in the third transformate diagrams in Figs. 11.9 and 11.10 are the
results of calculations with the definitions of the trigonometric functions. Once they
are performed, the lengths of the sides FA and FC of right-triangle AFC are
determined by simple addition or subtraction of segment-lengths.

Eventual rational interpretant. By the definition of the tangent function in the
right-triangle AFC in Fig. 11.10, we have that tan(a + b) = (tan a + tan b)/
(1 − tan a tan b). Also by the definition of the tangent functions in the right-triangle
AFC in Fig. 11.10, we have that tan(a − b) = (tan a − tan b)/(1 + tan a tan b).

Post-diagrammatical Interpretant. What is the significance of the position of the
length 1 in each of these proofs? Suppose that in Fig. 11.9 we make EB = 1 or
BD = 1 and in Fig. 11.10 we make AD = 1. Will the proof hold? The answer to
this question is in the positive. The reader could make an effort to arrive at the same
formulas for tan(a + b) and tan(a − b) in these cases. These changes are motivated
by the systematic manipulation of the transformand diagram and corresponding
calculations.

11.10 Conclusion

Mathematical diagrams, such as geometric figures, mathematical formulas, equa-
tions and graphs, serve as epistemological tools to mediate not only the formulation
and validation of conjectures but also the conceptualization of well-established
mathematical ideas. The above examples illustrate that a systematic observation of a
transformand diagram assists not only in the visual perception of different relations
among its parts but also in the inference of new relations among them. Some of
these relations are perceived by the senses and still others are inferred with the aid
of perceptual and logical judgments as well as collateral knowledge. Both explicit
and implicit relations embedded in the diagram enable the construction of new
transformate diagrams to make explicit new relations among their parts; relations
that, by analogy, will unveil the structural relations of the mathematical Object that
the initial diagram plays to stand for.

The evolving perceptual and mental transformation of diagrams co-emerges with
the formation of new interpretants in the mind of the Interpreters and with their
progressive inferential reasoning process to reach the desired goal. This means a
progression in the conceptualization of the deep structure of the mathematical
Object that diagrams purport to stand for. It goes without saying that, when working
with diagrams, the interpretants generated by different Interpreters, although they
should be somewhat similar in nature, may have different iconic, indexical, and
symbolic features according to their personal knowledge and level of sophistication
of their mathematical thinking. The wanted outcome is that these interpretants share
a tendency to converge to the desired mathematical Object (Sáenz-Ludlow and
Zellweger 2016). This clearly indicates that teachers need to develop two simul-
taneous and parallel types of awareness: (1) awareness of the teachers’ own
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evolving interpretations of transformate diagram(s) and (2) awareness of the stu-
dents’ interpretations of those diagrams. This double awareness on the part of
teachers will enable the guidance of students by using the students’ current inter-
pretations and understanding. It is in this sense that diagrams serve as tools for
meaning-making—epistemological tools—for teachers and students alike, although
such a meaning could be at different but compatible levels of understanding.
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Chapter 12
Semiotic Representations: A Study
of Dynamic Figural Register

Jesus Victoria Flores Salazar

Abstract The aim of this chapter is to constitute the dynamic figural register. In
order to do this, and based on the theory of Registers of Semiotic Representation
and on the pertinence of the use of a Dynamic Representation Environment
(DRE) for geometry teaching and learning, I revisit the three cognitive activities
essential to every semiotic representation in the sense of Duval, which I call
dynamic formation, dynamic treatment, and dynamic conversion, because it may be
noticed that, when a person interacts with DRE, the three cognitive activities
possess different features than when using pencil and paper.

Keywords Register of semiotic representation � Dynamic figure
Dynamic representation software

12.1 Introduction

This research is based on an issue that remained open in the investigation done by
Salazar (2009), in which the need to configure the dynamic figural register is
explicitly stated in the context of solving tasks involving geometry content in which
one interacts with dynamic representation environments (DREs).

To pick up this issue, I present research related to semiotics, specifically the
semiotics of Peirce, with Duval’s theory of Registers of Semiotic Representation.
I concentrate on geometry teaching, due to the importance of the use of figures, and
on research in which there is evidence of the pertinence of DREs in geometry
teaching and learning.

The research by Dionizio and Bandt (2012) aims at identifying the journey taken
by semiotics in order to position the theory of Registers of Semiotic Representation.
They present the relation between Duval’s theory and aspects of Peirce’s semiotics,
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and they point out that, for Duval, Peirce’s model classifying all types of repre-
sentations is essential in terms of a triadic process of interpretation that leads to
distinguishing several hierarchical levels of signs.

In that sense, the research by Silva (2013) is important because it also relates the
theory of Registers of Semiotic Representation to Peirce’s semiotics, and it shows
the link between their concepts; that is to say, based on the hierarchical model of
signs, she shows that the three cognitive operations essential to configure every
register of semiotic representation—formation, treatment and conversion of an
identifiable representation—are related to three out of the ten classifications of sign
according to Peirce: qualisign, a quality that is a sign; sinsign, a real thing or event
that is a sign; and legisign, a law that is a sign. Regarding mathematics teaching and
learning, she identifies a comparative semiotic model, in which qualisign relates to
the recognition of the characteristics of the given mathematical object in the for-
mation of a representation, sinsign to the treatments in the representations of the
mathematical object, and legisign to the changes made in the representations of the
mathematical object through deductive reasoning.

The use of figures is fundamental in geometry teaching because it allows us to
have access to the represented mathematical objects, infer properties, and solve
problems. Further, as Duval (1995) states, the cognitive activity required in
geometry demands more than other areas of mathematics considering that opera-
tions on figures, and their corresponding discourses, have to be simultaneous.

For these reasons, I looked for research such as that by Pavanello (2004),Marmolejo
and Vega (2005), and Fortuny et al. (2010), which points out the importance of the use
of figures in geometry, considering that they favor the development of the ability to
abstract and generalize, because, froma level inwhich the represented geometricfigures
are recognized (by perception) despite perceiving them all as indivisible, a level is
reached in which the properties of these figures are distinguished so as to establish
relations between them with regard to their properties.

Also, on the one hand, researchers specify that the importance of geometric
figures lies in the fact that they form an essential intuitive support for the devel-
opment of geometric problems, because they allow students to see much more than
what the formulations say; they allow the formulation of propositions and the
heuristic exploration of complex situations. Therefore, it is necessary to differentiate
the ways a figure may be seen, and to select those ways that are pertinent and
powerful to solve the posed geometric problem.

On the other hand, the research by Miskulin et al. (2003) shows, from a semiotic
perspective, the main characteristics and didactic-pedagogical potentialities of
different technological environments used in mathematics teaching in a public
university. They analyzed these environments through the syntheses done by stu-
dents who used them in their classes, and they identified those potentialities.
Another research study I consider important is the one by Mendes (2006), which
presents a semiotic analysis of the game application called Simcity. The way of
playing is subject to the interaction and/or interpretation each player attributes to the
game in a given instant, for which he or she uses different representations. It is
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worth mentioning that, in both studies, it was perceived that the process of semiosis
occurred at every instant during the interactions with the software.

Regarding DREs, the work of Veloso (2000) and Gravina (2001, 2008) points
out that the DRE interactive interface allows the exploration and experimentation of
the represented objects, and the immediate feedback helps students question the
results of their actions/operations and verify the validity of their conjectures. In the
same line of thought, Laborde (2001), Olivero and Robutti (2001), Restrepo (2008)
and Grinkraut (2009) confirm that DREs possess a visual language that stimulates
communication, and their interactivity stimulates students to be interested in the
mathematical content that can be worked on with these environments.

Additionally, Artigue (2002) and Laborde (2005) maintain that, when DREs are
used strategically, they can be really useful for students to justify the results of a
given task, or they can use them as a tool to validate constructions, elaborate
conjectures and inferences related to the properties of the represented mathematical
objects. Further, in the construction of mathematical knowledge with the use of
technology—with dynamic representation software in our case—DREs can facili-
tate the visualization of properties of different represented mathematical objects that
could not be discovered with other resources.

Regarding the dragging function that facilitates the heuristic exploration of the
figures because it allows the simulation of movement that facilitates the change of
position, shape, and measure, Olivero (2003) states that it possesses three essential
functions:

Feedback: Since the student is in control of the constructions he or she performs, dragging
offers a powerful means of feedback that helps the development of strategies to solve a
problem situation […]

Mediator between figure and design: It is given that it allows the invalidation of mistaken
constructions […]

Analysis or search mode: Dragging allows the student to examine his or her construction
and search its invariable properties by exploring the figure. (pp. 56–59)

Likewise, researchers such as Salazar et al. (2012), da Silva and Salazar (2012),
García-Cuéllar (2014), Salazar (2015), Gómez (2015) and Peñaloza (2016) show
that the use of DREs in the processes of geometry teaching favors the interpretation
of the properties that characterize represented geometric figures. This focus on the
interpretation of properties happens because, in the sense of Duval, DREs accelerate
their treatments and articulate their apprehensions. In addition, they invigorate
conversions among different registers of semiotic representation, which confirms
the need to characterize the dynamic figural register.

As a consequence, given the importance of the geometric figures in geometry
teaching and the current benefit provided by the interaction with DREs, it is con-
sidered necessary to research how the figural register is configured when interacting
with these environments.
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Based on the aforementioned issues, in this chapter I aim to answer the following
question: How is the dynamic figural register constituted when interacting with
DREs? Therefore, I first present aspects from the theory of Registers of Semiotic
Representation.

12.2 Registers of Semiotic Representation

Duval (1995) explains that semiotic complexity is behind the difficulties in math-
ematics learning and that the analysis of mathematical productions demands tools
for semiotic analysis adapted to cognitive processes mobilized in every mathe-
matical activity.

Regarding the mathematical activity, this is done necessarily in a context of
representation, since there is no other way to have access to the object but by its
representation. Semiotic representations are generally considered as a means to
externalize mental representations for communication purposes, but they are also
essential for the cognitive activity, since they play a fundamental role in the
development of mental representations, the execution of different cognitive func-
tions, and the production of knowledge.

In addition, all learning is related to the semiosis and noesis processes, where
semiosis is the apprehension or production of a semiotic representation and noesis is
the conceptual apprehension of an object; thus, noesis is inseparable from semiosis.
According to Duval (1993), “they are productions constituted by the use of signs
belonging to a system of representation, which have their own difficulties in
meaning and functioning” (p. 39). Regarding mathematics, semiotic representations
are the ones that allow conceptualization, reasoning and problem solving.

Duval explains that natural language, algebraic, graphic and figural representa-
tions are external, conscious semiotic representations; that is, they are representa-
tions produced by students, which can be executed when doing operations in a
given semiotic system. Duval defines these systems as registers of semiotic rep-
resentation since they allow the three cognitive activities that are essential in every
register: formation, treatment and conversion.

The formation of a representation is constituted by a group of noticeable marks
that can be identified as the representation of something in a given system, such as
the design of a geometric figure, the elaborations of a diagram, etc. that have to
respect certain rules, such as the rules of construction for figures, etc., which play
two roles: on the one hand, these rules ensure the conditions of identification and
recognition of the representation and, on the other hand, they ensure the possibility
of using it for the treatments.

Regarding the treatment, it is “to transform representations according to the only
rules typical of the system so as to obtain other representations that can constitute
knowledge earning in comparison with the initial representations” (Duval 2004,
p. 30). The nature and number of these rules may vary from one system to another;
for example, reconfiguration is a typical treatment of geometric figures, which,
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depending on the problem, requires a specific number of configurations. The
conversion of a representation is the external transformation of a representation into
another representation in another semiotic system. Treatments and conversions are
independent sources of incomprehension or mental block in students. However,
Duval states that conversion is the most decisive transformation for comprehension
in mathematics.

Regarding mathematics, and geometry especially, I know it demands a cognitive
activity more complex than other domains of mathematics because it is necessary to
construct, reason and see figures at the same time, since treatments in the figural
register are simultaneous as there must be coordination between figural treatments
and those of theoretical discourse in natural language. In that sense, figures can be
seen and analyzed based on perception, which allows the distinguishing of their
shape and the recognition of their geometric properties, not only of visually dis-
tinguished shapes, but also based on reproducing or constructing them with tools.

In that sense, Duval (2005) explains that, to be able to do a cognitive analysis of
a figure, figural units must be considered. These figural units are the most basic
shapes into which every figure can be analyzed. For example, they can be 3D
(polyhedra), 2D (polygons), 1D (lines or curves) and 0D (points).

Regarding the construction or reproduction of a figure, Duval states that
manipulative material (pieces of a puzzle, Tangram folding paper, etc.) can be used,
allowing material objects to be manipulated, such as a ruler (calibrated or not), a
compass, a mold, etc., since they allow the construction operation, and software, as
shown in Fig. 12.1.

In addition, heuristically using figures in geometry to solve problems, explain
properties, elaborate conjectures, etc., depends on two operations, namely, the
division of the figure into figural units of the same dimension that rely on per-
ception (operation of reconfiguration), and the dimensional deconstruction of fig-
ures. The significance of the latter resides in the fact that the mathematical way of
seeing figures consists in decomposing them as nD/2D shapes, that is into figural
units of inferior dimension in comparison with the given figure. For example, the
figure of a cube (3D) is decomposed into a configuration of squares (2D figural
units) and the squares are decomposed into lines or line segments (1D figural units).
The lines or segments can be decomposed into points (0D figural units); in relation
to the points, they are visible when they appear as the intersection of 1D figural
units (secant lines or lines that form a corner: vertices, angles, etc.).

In relation to the figural register, Duval (2011) indicates that, from a cognitive
point of view, in mathematics education it should be assumed that geometric figures
form a register of semiotic representations. Likewise, based on the way one ‘sees’ a
figure, Duval explains that it is possible to analyze it cognitively according to its
shape, to the geometric knowledge it activates, and to the tools used for its con-
struction. There are three aspects he considers to be important in analyzing a figure:

• Shape of the figure: based on the perception of the figure, whose contours are
closed and where the figure can be seen as a group by juxtaposition, in which
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there are as many shapes as closed contours; or by superposition, in which there
are less shapes than closed contours.

• Knowledge of the geometric properties of the figure, which must be activated
for their analysis and whose figural units must be considered, or visual variables
which are related to the number of dimensions: 0D (a point), 1D (a line), 2D (a
surface), and qualitative variations of shape, contour, orientation, etc.

• Tools used to represent the figure or to construct it, which may include the
following: manipulative material (pieces of puzzles, Tangram folding paper,
etc.) that allow the manipulation of objects, ruler (calibrated or not), compass,
mold, etc. that allow construction operations, as seen in Fig. 12.1.

Regarding the classification of tools to construct geometric figures, I observe that
Duval does not explore the use of DREs. In that sense, DREs must be considered
because, as we know, they are useful tools for geometry teaching and learning since
they allow the representation of geometric objects and they have been rekindling
interest in studying geometry in the last few decades. Another reason is because,
unlike tools, DREs allow the carrying out of operations of figure construction,
whether by juxtaposition or superposition, which can only be done separately with
the aforementioned tools.

Tools

Theyallow the 
manipulation of 
material objects.

They produce 2D 
shapes

(pieces of puzzles, 
Tangram folding 

paper). 

They produce 1D 
shapes
(tubes).

They allow the 
construction of 
representations 
(operations).

They produce 2D shapes 
(molds, models).

They produce 1D shapes
*without measurement transfer 

(uncalibrated ruler)
*with measurement transfer 
(compass, calibrated ruler)

Fig. 12.1 Classification of tools to construct figures. Source Adapted from Duval (2005, p. 14)
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Also, DREs facilitate seeing the figure geometrically as an assembly of 0D, 1D
or 2D figural units; in other words, an analysis of the figure’s dimensional
deconstruction can be done. In that sense, Mithalal (2011) explains:

Dimensional deconstruction consists in seeing the representation of an object as a set of
figural units linked by geometric properties. This last point is fundamental because it
designates the role of those properties in this process: it is not enough to isolate figural
units; it is also necessary to organize them geometrically. (p. 115)

Therefore, dimensional deconstruction allows the studying of the transformation
of a figure into a different one of the same dimension, and it allows the identifi-
cation of its figural units. Then, it is conjectured that, when DREs are used, the
dimensional deconstruction is accelerated because the student may quickly identify
the figural units of which the figure is composed when using the tools in the
software as well as the dragging function. Likewise, changing the position of the
observer also allows him to identify the figural units of a given figure.

For example, the task I present, adapted from the research by Gómez (2015),
consists in relating the measurement of the area of the FGHE quadrilateral to the
measurement of the area of the new FGG0F0 figure.

To solve it, auxiliary lines are constructed (to deconstruct the figure); that is,
figural units of a smaller dimension are used, namely 1D (lines, circumference
networks) and 0D (points). In addition, the geometric properties used include the
dragging function of DREs, so it is possible to analyze the transformation of the
ABCD quadrilateral (see the left side of Fig. 12.2) into a different figure of the same
dimension (see the right side of Fig. 12.2). Also, when doing these operations, it is
validated that, since F0F ¼ 2EF and F0G0 ¼ FG and since F0F k G0G and
F0G k EH k FG, the new figure formed is a parallelogram FGG0F0 of the 2:1 ratio,
by relating the two measurements of the area.

When figures are constructed in DREs, it is likely that they are cognitively
different than when it is done in a non-dynamic environment, because treatments
are accelerated and the coordination between the figure treatments and the discourse
is different, as the discourse is in the figure.

Fig. 12.2 Dimensional deconstruction
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For these reasons, I point out that these environments make it viable to elaborate
conjectures about the properties of the mathematical objects represented in them,
whether by juxtaposition or superposition.

12.3 Dynamic Figural Register

Since the aim of the research is to identify how the three cognitive activities,
namely, formation, treatment and conversion, occur when working with geometry
content and interacting with DREs, each one of them is presented next with
examples, taking the work of Gómez and Salazar (2016) as reference.

12.3.1 Dynamic Formation

According to Duval (1995), the formation of a semiotic representation consists in
representing a given object in a certain semiotic system; it is essential for this
formation to respect the rules of conformity of the semiotic system used. It is worth
mentioning that these rules of conformity define a system of semiotic representation
and the types of constitutive units of all possible representations. In addition, they
allow the recognition of the representations as representations in a given register.
Regarding the formation in the figural register, it occurs by identifying the figural
units and their combination based on the geometric properties of the figure.

In that sense, Duval (2011) explains that there are several ways to recognize the
shapes or figural units of a figure, though recognizing a shape excludes the pos-
sibility of recognizing others.

That is why, in DREs, forming a semiotic representation, which I call dynamic
formation, at least three different ways to recognize a figure are identified. In the
first one, to identify a geometric object in DREs, a given tool is activated, allowing
the creation of the desired figure. In this case, the student recognizes the charac-
teristics of the object he or she wishes to represent through its figural units.

For example, given the task to create any ABC triangle, it is necessary to
recognize the characteristics of a triangle in order to perform the task. In this
section, the student must activate geometry knowledge. Thus, in Fig. 12.3, I
observe that the polygon tool makes it possible to create the requested figure since it
shows the representation of the object associated with a “key” that allows the
student to directly recognize in the tool the figure requested, which in this case is a
triangle.

In the second way of dynamic formation (see Fig. 12.4), the rules of formation of
semiotic representation also depend on the choice of elemental figural units and
their combination. This sequence occurs because of the conditions of
GeoGebra DRE (advantages and/or limitation of the same environment). In the case
of the previous task, at the perceptive level, variations related to the number of
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dimensions stand out, such as 0 (point), 1 (line/segment) or 2 (surface), and
qualitative variations in shape, orientation, color, etc.

The third means of dynamic formation is the one that refers to a geometric
construction in which properties stay invariant; that is, the variation of the
parameters in Geogebra allows the discovery of invariants and the generalization of
particular cases. For example, in the task to construct an ABCD square, the for-
mation of the square is presented on the left of the DRE and, on the right, the
protocol of construction that allows the showing of 0D and 1D (points and points of
intersection, lines, segments) figural units and 2D units (circumference and poly-
gon) in the construction, as shown in Fig. 12.5.

By using the dragging function, the constructed figure keeps its properties
invariant. In addition, this type of formation allows the observation of the dimen-
sional deconstruction of the figure since lines, segments and points are identified.
Picking up aspects from Peirce’s semiotics and from the theory of Registers of
Semiotic Representation, I observe that the formation of a dynamic semiotic rep-
resentation is related to the qualisign, which is the first classification of signs and
which, in mathematics teaching, is related to the recognition of the characteristics of
the mathematical object.

Fig. 12.3 Dynamic formation–shape 1

Fig. 12.4 Dynamic formation–shape 2
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12.3.2 Dynamic Treatments

According to Duval (2005), treatments are executed in the figure when modifica-
tions are done, for instance: changing its position while preserving the same con-
figuration (change of orientation, translation, figure rotation, length of the sides,
etc.), and decomposing the figure into its figural units, combining these to form
another figure or dividing it into other subfigures that might or might not be
regrouped to form other figures.

I highlight that the treatments are accelerated when two fundamental functions of
DREs are used, which are as follows: direct manipulation, which allows the
changing of position of the figure or the position of the work area; and dragging,
which allows the rapid carrying out of operations related to figure reconfiguration.
This way, the types of figure treatment that I identified in this study are changing the
position of the figure without modifying it by using the function of direct manip-
ulation; changing the length of the sides of the figure by using the dragging function
as well as the homothecy tool, which multiples every distance by the same factor
from a fixed point; and reconfiguring the figure, in which the dragging function is
used as well as other specific tools that depend on the constructed figure.

But I must also point out that these treatments are not necessarily done separately
or in sequence because they can be done simultaneously in DREs. These treatments
possess specific features; in this part, I focus on figure reconfiguration.

Reconfiguring a figure: to do this type of treatment (dividing a figure into other
subfigures), the tools needed are used from DREs, depending on the figure and the
problem to be solved in order to separate, regroup or form another figure from an
initial configuration. In addition, with the dragging function, the heuristic function
of the figure is improved since configurations can be done rapidly and dynamically.

Fig. 12.5 Formation of a square
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To explain this type of treatment when using DREs, a task is presented (see
Fig. 12.6), which was adapted from the research by Gómez (2015), Salazar and
Almouloud (2015), Gómez and Salazar (2016), where GeoGebra DRE was used.

Figure 12.7 shows the file that has to be opened to do the requested activity.
I observe that, when using DREs, the discourse about the activity is different

from that when the same activity is presented without the use of these environ-
ments. In addition, a file is presented in the activity, which is ready for the student
to move the S point and change the position of the EFSH square, through direct
manipulation and dragging, to configure the requested figures.

The following are three possible configurations that can occur when solving the
task with dynamic treatments:

The intersection of the figures represents a square: to get this configuration
and be able to establish the configuration and the requested relation, the student
could use the tools and draw perpendicular lines L1 and L2, which intersect in the E

Open the Activity file. Move the S point in such a way that the intersection of ABCD and 
EFSH squares forms the configuration of a square, a triangle and any quadrilateral, 
and answer: what is the relation between the surface formed by the intersection of the 
squares and the surface of the ABCD square? Justify your answer in GeoGebra.

Fig. 12.6 Task 1

Fig. 12.7 Figure of the task. Source Salazar and Almouloud (2015, p. 933)
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point (see Fig. 12.8), and then move (drag) the S vertex until getting the requested
configuration.

In the previous figure, the EH and EF sides of the EFSH square overlap in L1

and L2, and the square figure is created by overlapping the two 2D figures (two
squares), which creates another figure of equal dimension (EKCJ square). The
student can easily perceive and state that the intersection of the figures represents a
square that coincides with the fourth part of the ABCD square.

On the other hand, in Fig. 12.9, another solution to the configuration of the
square is shown. In this case, the student drew perpendicular lines that cut in the E
center, then he projected the lines on the sides of the ABCD square, and marked the
M and N points of the AB and BC sides respectively (middle points of these sides).
Afterwards, he dragged the S point to the position and verified with the middle
point tool that the intersection of the EF side with the AB side is the M point, and
the intersection of the EH side with the BC side is the N point.

I consider that the student did the dimensional deconstructions of the figure
because he explored the relations between the 0D units (points, points of inter-
section), 1D (lines) and 2D (squares), the group being by superposition.

Fig. 12.8 EKCJ square. Source Salazar and Almouloud (2015, p. 934)
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The intersection of the figures represents a triangle: in this case, the student
may draw the AC and BD diagonals of the ABCD square and, using direct
manipulation, drag the S point until the requested figure is configured.

The position can change then until forming a BEC triangle over the ABCD
square, for example (see Fig. 12.10). In this case, also by grouping and superpo-
sition, it is perceived that the intersection of the figures coincides with the fourth
part of the ABCD square.

The intersection of the figures represents any quadrilateral: when dividing
the ABCD quadrilateral into four congruent regions by the L1 and L2 perpendicular
lines (Fig. 12.11) of the ABCD quadrilateral, with the use of the tools in the
software it is possible to establish a relation between the subfigures that form due to

Fig. 12.9 The square–other solutions. Source Salazar and Almouloud (2015, p. 935)

Fig. 12.10 Another configuration. Source Salazar and Almouloud (2015, p. 936)
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the sequence of subfigures (triangles and squares); that is, the figure is decon-
structed dimensionally since the following examples are identified: 1D figural units
(points of intersection between the L1 and L2 perpendicular lines and the sides of
the ABCD square), and 2D figural units such as triangles in the EKCJ and EKCP
quadrilaterals.

In Fig. 12.11, it can be observed that, when the S vertex is dragged, the regions
formed are easily distinguished, and the relation is identified between the surface of
the ABCD square and the quadrilateral formed with the intersection of the EFSH
square (activation of geometry knowledge, such as the congruence of triangles). In
addition, with the dragging function, the heuristic function of the geometric figure is
improved when using DRE since the student can do reconfigurations dynamically.
Regarding the treatment of a dynamic representation based on the semiotic model
for mathematics teaching and learning, this coincides with sinsign, which is the
third type of Peirce’s signs.

12.3.3 Dynamic Conversion

According to Duval (2011), a conversion constitutes an external transformation of a
representation into another, preserving all of or part of the content of the initial
representation. It demands that the student coordinate representations. In that sense,
conversion requires us to perceive the difference between the content of the rep-
resentation (noesis) and the signifier that represents it (semiosis), and it explains that
if the connection between noesis and semiosis is not established, the conversion
becomes incomprehensible or impossible to do.

Fig. 12.11 Another configuration of any quadrilateral. Source Salazar and Almouloud (2015,
p. 937)
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After the treatments in the DRE are done, the following question is answered:
What is the relation between the surface formed by the intersection of the squares
and the surface of the ABCD square? In natural language, the surface formed by the
intersection of the squares is the fourth part of the surface of the ABCD square.

The register of the figures is finally configured in DREs, which I call: dynamic
figural register since the three cognitive activities that allow the configuration of a
register of semiotic representation are developed.

I highlight that the DRE functions of direct manipulation and dragging facilitate
the development of these cognitive activities. Moreover, they facilitate the pro-
cesses of visualization, in the sense of Duval, of mathematical objects because they
allow the student to treat the figure differently than in other non-dynamic envi-
ronments. Thus they are powerful tools that must be used well in mathematics
classes and when teaching geometry notions in particular.

12.4 Conclusions

The operations that are possible to do in the figure, such as modifying the position
and reconfiguring when using DREs, are countless since the functions of direct
manipulation and dragging allow the acceleration of figural treatments. This
acceleration prompts the student to use geometric properties to construct a given
figure, besides invalidating mistaken constructions and favoring the assimilation of
the invariants related to the represented geometric objects.

The three fundamental cognitive activities required to construct the dynamic
figural register in DREs are done differently than when working in non-dynamic
environments because the functions of direct manipulation and dragging allow the
building of relations between the figural and discursive treatments. In addition,
treatments are accelerated in the dynamic figural register; and figure variations, such
as changing the position of the length of the side of a figure and reconfiguring it,
can be done economically.

Regarding the way to see a figure, in the sense of Duval, DREs allow the
perception of the figure by juxtaposition or superposition, which allow figural
operations (reconfiguration and dimensional deconstruction) to be done by students
differently than when working with other tools.

Moreover, the dragging function, which allows the carrying out of treatments
when using DREs, also serves as a feedback function because, since the student is
‘in control’ of the constructions he does, he can carry out strategies to solve a
problem. It is important to highlight that, when using DREs, the dragging function
allows the position and length of the sides of a figure to be changed simultaneously.
This feature of these environments permits the student to explore the figure inter-
actively and dynamically.

Regarding geometry teaching, I agree with Duval when he states that it is
necessary to pose tasks that allow figure variation, other figures that help ‘see’ the
solution and those that, on the contrary, make it difficult or impossible to see it.
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Afterwards, organize tasks in which dimensional deconstruction is unpredictable,
since this is contrary to perception and immediate recognition of the figural units.
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Chapter 13
Progressive Visualization Tasks
and Semiotic Chaining for Mathematics
Teacher Preparation: Towards
a Conceptual Framework

Barbara M. Kinach

Abstract Visualization plays an important role in mathematics learning, but in the
United States where many prospective teachers (PTs) have few if any experiences
learning mathematics through visualization, mathematics teacher educators are
challenged to design tasks that generate within PTs’ thinking an appreciation for the
role visualization plays in mathematics learning. This chapter examines the affor-
dances of progressive visualization tasks and semiotic chaining for use in mathe-
matics teacher preparation. To the literature on dyadic and nested forms of semiotic
chaining, data analysis in this chapter contributes a new type of semiotic chaining
based on Peirce’s three principles of diagrammatic reasoning.

Keywords Teacher education-preservice � Learning trajectories (Progressions)
Technology

13.1 Why Visualization? … as a Semiotic System? …
for Preservice Mathematics Teachers?

While recognition of visualization and its importance for learning is beginning to
capture the attention of mathematics teachers in the United States, in part due to the
conceptual demands of the national mathematics standards initiative (National
Governors Association 2010), researchers in mathematics education have long
recognized the role visualization plays in mathematics learning. Presmeg’s chapter
on visualization in the Psychology of Mathematics Education Handbook (2006a)
traces the evolution of visualization research beginning with its roots in spatial and
mathematical abilities research (Bishop 1980; Krutetskii 1976) during the period
from 1976 to 2006. These studies have generated broad consensus on a definition of
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visualization. Since 2003 Arcavi’s conceptualization of visualization as “both the
product and the process of creation, interpretation, and reflection upon pictures and
images” (p. 215) has been the prevailing definition in the field. More recently, the
ZDM journal further advanced the field of visualization research by publishing a
special issue on “visualization as an epistemological learning tool” (Rivera et al.
2013; Presmeg 2013). Examining the role of visual tools in mathematics learning,
the ZDM papers range from studies of young students using the number line as a
visual tool to older students comparing graphic representations of a function and its
derivative. Despite researchers’ attention to the role of visualization within school
mathematics, relatively little work has been done on visualization in mathematics
teacher preparation. With one exception, none of the visualization papers discussed
above focus on teacher education.

This chapter aims to close this gap in the literature by taking up the question of
visualization within mathematics teacher preparation. Specifically, the chapter
examines the problem of preparing pre-service teachers (PTs) to teach mathemat-
ical concepts, processes, and relationships through progressive visualization with
visual tools. To do this, for reasons that are described below, the chapter first
defines visualization as a semiotic system. The chapter then employs Peirce’s
theory of signs and Krutetskii’s system of problem types for developing mathe-
matical reasoning to examine the chains of significance in a progressive visual-
ization task from an innovative digital K–8 mathematics curriculum designed to
teach mathematics concepts visually without words. To the literature on dyadic and
nested forms of semiotic chaining (Presmeg 2006b), this analysis contributes a new
type of semiotic chaining based on Peirce’s principles of diagrammatic reasoning.
Semiotic chaining of diagrams is proposed as a visualization-pedagogy for
preparing PTs to foster deep understanding of mathematical notions through design
of progressive visualization tasks that (1) make connections between visual and
symbolic representations of the same mathematical notions and (2) promote
mathematical generalization and abstraction. Semiotic perspectives on mathematics
learning as a sign-interpreting game and on mathematics teaching as the art of
chaining representations to foster generalization of mathematical concepts recom-
mend the study of signs and their interpretation as a central component of math-
ematics teacher preparation (cf., Sáenz-Ludlow, this volume).

13.2 The Problem of Preparing Preservice Mathematics
Teachers to Teach Through Visualization

From my practice as a mathematics teacher educator (MTE) in the mathematics
methods course, I know that many PTs come to their study of mathematics learning
and teaching with few if any experiences learning mathematics through visual-
ization and visual tools (Kinach 2002). It is important, therefore, for MTEs to
determine what types of tasks generate within PTs’ thinking an appreciation for the
role visualization plays in mathematics learning. A deep understanding of how
students learn mathematics can generate such appreciation. For this, representa-
tional theories of mathematics learning are useful. In the methods course, PTs learn
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from these theories that the human mind learns abstract mathematical ideas not by
reflection on mathematical symbols but by generalizing the abstract idea from
multiple concrete representations of it (Dienes 1973). PTs also learn that it is
advisable to sequence representations from concrete to pictorial to abstract, or as
Bruner (1961) proposed—from enactive to iconic to symbolic—to facilitate stu-
dents’ ability to infer an abstract mathematical idea from a series of representations.
Representational theories perturb conceptions of mathematics learning as memo-
rizing rules and direct-instruction conceptions of mathematics teaching, by featur-
ing the interplay between visual representations and inferential reasoning in the
formation of mathematical notions.

Appreciation for the role of visualization in mathematics learning further
develops as PTs internalize the necessity of implementing the mathematics stan-
dards in their future teaching. The Representation Standard from the Principles and
Standards for School Mathematics (National Council of Teachers of Mathematics
2000) recommends that students use and connect representations to communicate
abstract mathematical ideas and translate across representations to solve problems.
The Lesh translation model (Cramer 2003) is a cognitive tool for guiding the design
of learning sequences that build representational fluency across five modes of
representation: manipulatives, pictures, written numerical and algebraic symbols,
verbal symbols, real world contexts (Fig. 13.1). Sequencing representations logi-
cally and visually to facilitate generalization of mathematical ideas is an art that is
challenging for PTs to learn and MTEs to teach.

As researchers increasingly suggest (Presmeg 2006b), thinking of mathematics
semiotically as the study of signs is likely to generate new insight into how students
make sense of mathematics and how teachers ought to sequence the signs of
mathematics for optimal and meaningful learning. It is for this reason that in this
chapter I choose to investigate visualization as a semiotic system by focusing
specifically on semiotic chaining and its affordances for developing an appreciation
for the role of visualization in mathematics learning and the ability to design pro-
gressive visualization tasks that foster mathematical abstraction and generalization.

Fig. 13.1 Lesh translation model
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13.3 Theoretical Framework

13.3.1 Peircean Theory of Signs

Semiotics is the study of signs and how they signify meaning. A semiotic system,
according to Peirce’s triadic theory of signs, consists of three parts: object, sign, and
interpretant. The object is the thing represented; as conceptualized for this chapter
the object is the abstract mathematical idea intended for the student to learn. PTs
learning to use visualization and semiotic principles to foster mathematics learning
might think of the object as the learning goal—the abstract mathematical notion to
be signified through any of the five modes of representation in the Lesh translation
model previously described. The sign in Peirce’s triadic model is the representation
of the object; the sign is the signifier, the vehicle through which the learner comes
to comprehend the object. The sign is also known as the representamen in Peirce’s
theory. The interpretant is the idea about the object that the sign triggers in the
mind of the interpreter (who in this chapter is the pre-service mathematics teacher
or K–12 learner). The interpretant itself can be considered a sign for it represents
the learner’s understanding of the sign/object relation at a particular moment in the
learning process. Once formed, the initial interpretant shapes a learner’s under-
standing of the object providing a cognitive foundation for subsequent
re-interpretation of the sign and formation of an evolved interpretant. This elabo-
ration of Peirce’s theory of signs is based on his definition of sign as “a thing which
serves to convey knowledge of some other thing, which it is said to stand for or
represent. This thing is called the object of the sign; the idea in the mind that the
sign excites, which is a mental sign of the same object, is called an interpretant of
the sign” (Peirce 1998, p. 13).

The above description of Peirce’s theory of signs is, I believe, an accessible
rendering for pre-service teachers. Mathematics teacher educators can employ it,
along with his definition of sign, in the methods course to introduce pre-service
teachers to (1) the role of visualization and representations in mathematics learning
and (2) the practice of scaffolding visual representations to develop students’
understanding of a mathematical concept, procedure, or relation. Peirce’s definition
of sign aligns with the previously discussed representational theories of mathe-
matics learning that PTs study in the methods course. Moreover, his concept of
interpretant is useful for directing teacher candidates’ attention to the sense that
students make of the representations, problems, and other curriculum materials
teachers use to develop understanding of mathematical notions. Students’ inter-
pretations of learning materials are not always those intended by the teacher
(Sáenz-Ludlow, this volume), implying a need for scaffolding learning experiences
to allow for re-interpretation until the desired learning objective approximates the
intended learning goal. This idea of learning as an interpreting game requiring
informative feedback and learner reinterpreting toward the intended learning goal
(Sáenz-Ludlow) is, in my experience as a MTE, an effective counter to beliefs about
mastery learning gleaned from direct-instruction teaching practices.
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Peirce’s theory of signs is, in fact, much more complex than the elaboration
above suggested for PTs. Indeed it is necessary for the semiotic analysis of the
progressive visualization task examined in this chapter to delve more deeply into
Peirce’s triadic theory and to define how I will use his terms. One complexity is his
use of the term sign. In the above definition, he conceptualizes sign as a signifier,
specifically the thing signifying the object. In other instances (e.g., Peirce 1992), he
uses the term sign to refer to the entire triad (object, sign, interpretant) in which case
sign is being used in what may be thought of as both a macro-sense (SIGN) and
micro-sense (sign). To avoid confusion, Peirce scholars tend to substitute the term
sign vehicle for sign when discussing sign in the sense of signifier or representamen
of the object. In this chapter I use the lower-case spelling of the term sign to refer to
the sign in its micro sense as signifier of the object and use the upper-case spelling
of the term SIGN to indicate the entire triad of object-sign(representamen)-inter-
pretant. I employ the terms sign, representamen, sign vehicle, and representation
interchangeably in this chapter for pedagogical reasons, in order to investigate
whether my semiotic analysis of the visualization task is compatible with the Lesh
translation model used in the methods course to motivate teaching mathematics
through representations.

13.3.1.1 Sign as Icon, Index, or Symbol

Analysis of visualization tasks in this chapter also requires note of Peirce’s
three-part categorization of signs as icon, index, or symbol. Icons refer to their
objects by similarity in features, or as Peirce described, icons are “likenesses …
which serve to convey ideas of the things they represent simply by imitating them”
(Peirce 1998, p. 5). Indices, which Peirce also called indications (p. 5), show
something about the object or thing they represent in the sense that, for example,
smoke indicates fire or a highway milepost indicates miles traveled from the origin.
Symbols, having no likeness or natural connection to the object they represent, refer
to the thing by virtue of consensus and use within a community. Words, algebraic
characters, and mathematical symbols such as + or = are examples of symbols. The
meanings of symbols exist by virtue of their common usage within a community of
discourse.

13.3.1.2 Diagrams and Diagrammatic Reasoning

Icons are further categorized by Peirce into images, diagrams, and metaphors.
A diagram as a category of icon is especially relevant for the analysis of visual-
ization tasks in this chapter as these tasks consist almost entirely of iconic diagrams.
According to Peirce, the diagram is a particularly useful kind of icon because it
“suppresses a quantity of details, and so allows the mind more easily to think of the
important features.” For Peirce, this was the “great distinguishing property of this
[type of] icon … that by direct observation of it other truths concerning its object
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can be discovered than those which suffice to determine its construction” (Peirce as
quoted in Stjernfelt 2007, p. 358).

For Peirce all mathematical reasoning is diagrammatic. His conceptualization of
diagrammatic reasoning will be instructive for the task analysis conducted later in
the chapter:

That is, we construct an icon of our hypothetical state of things and proceed to observe it.
This observation leads us to suspect that something is true, which we may or may not be
able to formulate with precision, and we proceed to inquire whether it is true or not. For this
purpose it is necessary to form a plan of investigation and this is the most difficult part of
the whole operation. We not only have to select the features of the diagram which it will be
pertinent to pay attention to, but it is also of great importance to return again and again to
certain features. Otherwise, although our conclusions may be correct they will not be the
particular conclusions at which we are aiming. But the greatest point of art consists in the
introduction of suitable abstractions. By this I mean such a transformation of our diagrams
that characters of one diagram may appear in another as things. A familiar example is where
in analysis we treat operations as themselves the subject of operations. (Peirce 1998,
pp. 212–213)

Given this conceptualization of diagrammatic reasoning, Peirce (pp. 212–213)
identifies three steps for designing such reasoning. I will argue that these steps are
the design principles underlying the visualization task analyzed in this chapter:

1. “copulating separate propositions into one compound proposition”,
2. “omitting something from a proposition without possibility of introducing

error”,
3. “inserting something into a proposition without introducing error”.

13.3.1.3 The Triadic Nature of Interpretant and Object

Just as Peirce categorizes the icon into three types, so he conceives both the
interpretant and object as triadic notions. The triadic nature of each component
within Peirce’s theory of signs is grounded in his conceptualization of the nature of
reality: firstness, secondness, and thirdness. Firstness refers to the initial unreflected
state of things. It is, for example, the first impression learners have when reading a
mathematics problem—the immediate interpretant. Secondness refers to reflections
on the object subsequent to the initial interpretant/impression. Secondness is an
intermediate state between firstness and thirdness. During the problem solving
process, secondness is the dynamic state of a learner’s understanding as it con-
tinuously refines as learners delve deeper into the relationships within a problem
setting. Secondness gives rise to what Peirce called the dynamic interpretant.
Thirdness is the final interpretant, the notion that the sender intended to commu-
nicate. In learning situations, thirdness is the desired learning goal; it is the
taken-as-shared understanding of the object. The above gives rise to three states of
being and experience (ontology and phenomenology) of the interpretant and the
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object: immediate, dynamic, and real. Figure 13.2 (Sáenz-Ludlow and Kadunz
2016) summarizes the relations among object, sign, and interpretant emphasizing
how the sign mediates between the object and the interpretant.

13.3.2 Semiotic Chaining

Semiotics is the study of signs and how they signify meaning. Semiotic chaining, as
used in this chapter, is a process of sign-making involving the artful sequencing of
signs to evolve understanding of an intended learning goal by the designer of the
semiotic chain. Understanding of the intended object develops continually through
a range of experiments on linked representations that manifest the intended qualities
of the object. In mathematics lessons, it is recommended by Bruner and other
representational learning theorists that the designer of the semiotic chain sequence
representations from enactive to iconic to symbolic. Chaining therefore is based on
the assumption that meaning and understanding develop over time, and are not
limited to any one point in time.

Presmeg (2006b) cites two examples of the use of semiotic chains in mathe-
matics teacher education research. Both are rooted in real world contexts.
Adeyemi’s (2004) use of chains with pre-service elementary teachers centers on
linking K–12 students’ activities with the mathematics curriculum while Hall’s
(2000) use of chains with in-service teachers involves use of an everyday activity to

Fig. 13.2 Saenz-Ludlow and Kadunz (2016): Peircean triadic sign model
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motivate a mathematics concept. Specifically, Hall’s teachers evolved the concept
of a batting average through the following semiotic chain:

Baseball game ! hits versus at bats ! success fraction ! batting average (Presmeg
2006b, p. 168). Both semiotic chains are characterized as Peircean nested semiotic chains,
in contrast to Saussurean dyadic chains. The sequence of signifiers (representamen) is such
that each sign (representamen) ‘slides under’ the subsequent signifier, in the sense that each
triad is contained in the next, after the manner of Russian nested dolls (Presmeg 2006b,
p. 165). In this formulation, the new signifier in the chain stands for everything that
precedes it in the chain. The previous signifier, as well as everything that it represents, is
now the new signified. (p. 169)

In contrast, the semiotic chains examined in this chapter employ interactive dia-
grams and Peirce’s three principles of diagrammatic reasoning to foster general-
ization of a mathematics concept.

13.3.3 Krutetskii’s Problem Types and Mathematical
Abilities

Krutetskii’s categorization of problem types and mathematical abilities also informs
my analysis of visualization tasks for this chapter. Of the 26 problem series
Krutetskii created to investigate, assess, and ultimately develop students’ mathe-
matical abilities, three are relevant for my purposes in this chapter: Series V,
Series VII, and Series XVII (Table 13.2). Series V—systems of problems of a single
type (p. 100)—was intended to develop a type of generalization that Krutetskii
called “subsumption under a concept.” This series introduces a new concept and
provides students the opportunity to generalize the new concept from particular
instances of it. The extent of students’ ability to generalize is judged by three
abilities: (1) how well a student can “see a general type in different problems,”
(2) how the student passes from “solving simpler problems to solving more com-
plex ones of the same type,” and (3) how the student can “differentiate problems of
one type from externally similar problems of another type” (Krutetskii 1976,
p. 115). Within Series V, it is possible to abstract, or generalize, specific features
despite external differences among the problems because certain “associations” (to
use Krutetskii’s term) or commonalities exist across the system of problems. For
Krutetskii, these associations are of two types. First, there are characteristics of the
given geometric figure and its elements; and second, there is the recognition that
solving the problem requires an operation or action (Krutetskii 1976, p. 52).

Series VII—systems of problems with graded transformations from concrete to
abstract—was intended to develop perception, specifically the forming of a gen-
eralization. As described by Krutetskii,

this series of problems shows how easily and quickly a pupil can translate the solution of a
problem into a general scheme, how capable he is of transferring from operations with
concrete quantities to operations with conventional symbols that enable him to express
relations between quantities in a general, abstract form. (p. 125)
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The structure and rationale for this problem series is instructive for analyzing how
the visualization task analyzed in this chapter transitions from concrete to abstract
variants through intermediate forms. Specifically, Krutetskii describes this series to
be

A system of ten problems, each of which is gradually transformed from a concrete to an
abstract, general scheme. Each problem has from three to five variants. The first problem
(a) is a problem on a completely clear concrete plan; the last (e) is the same problem
translated onto an abstract, general level. Variants b, c, and d are intermediate representing
gradual translations from a to e, with successive generalizations of increasingly greater
number of elements of the problem. (p. 123)

Series XVII—direct and reverse problems—was intended to investigate the
ability to “restructure the direction of a mental process, to change from a direct to a
reverse train of thought” (Krutetskii 1976, p. 143). Acknowledging that not all
relations are symmetric, Krutetskii separated the question into psychological and
mathematical components. Primary was the question of reversibility. Was the pupil
able, for example, to reverse the logical direction of a problem that asks for the area
measurement of a rectangle given its dimensions to one that asks for the possible
dimensions of a rectangle given its area measurement. Even with non-symmetric
relations such as cats are a subset of mammals, the intention was to test ability to
reverse the train of thought to mammals are a subset of cats. Mathematical accu-
racy, for Series XVII reversibility problems, was a secondary concern.

Table 13.1 summarizes the three Krutetskii problem series pertinent to the
analysis of progressive visualization tasks in this chapter. Each series was designed
to investigate certain mathematical abilities, which for the featured series are:
(1) isolate form from content, (2) abstract from concrete (and I would add digital)
spatial forms, (3) reverse a mental process, and (4) generalize mathematical material
to see what is common in what is externally different (Krutetskii 1976). All but
reversibility of thought (#3) relate to the ability to generalize mathematical objects,
relations, and operations.

Table 13.1 Krutetskii’s problem types and mathematical abilities operating within area of
rectangle visualization task

Krutetskii problem type series Krutetskii
mathematical
ability

Visualization task
relevance

V Systems of problems of a
single type

Generalization
(subsumption
under a concept)

Applies within each game
level 1 through 5

VII Systems of problems of with
graded transformations from
concrete to abstract

Perception
(forming
generalizations)

Applies across levels when
levels are considered a
system of problems

XVII Direct and reverse problems Reversibility of
mental process

Game levels 4–5 reverse
levels 1–2–3
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13.3.4 Visualization Task Context: The Mathematics
Methods Course

In this section, I consider a digital visualization task that I have used with
pre-service elementary teachers in the mathematics methods course. The task is
based on the 5th grade Area of Rectangle game in the Spatial Temporal
Mathematics (ST Math) curriculum. ST Math is a neuroscience-based supple-
mentary mathematics curriculum for grades K through 8 that is available to schools
through the MIND Research Institute (MRI 2014), a former research affiliate of the
University of California at Irvine. This supplementary mathematics program, which
develops mathematics concepts visually without words through interactive, ani-
mated digital game-like mathematics puzzles, mobilizes visual examples, anima-
tions, and informative feedback to facilitate evolution of students’ understanding of
a mathematics concept.

I think of these games as progressive concept visualizations. Since 2013,
through a partnership with MRI, I have been conducting design research in the
methods courses that I teach for elementary PTs to determine a role for this
innovative technology in the preparation of mathematics teachers. Among other
things, I have employed select games to assess PTs’ mathematics content knowl-
edge, develop their ability to write learning objectives, and model Bruner’s rep-
resentational theory of mathematics learning and instructional sequencing
(concrete-pictorial-abstract).

Viewed from a semiotic perspective, the games are concerned with the con-
struction of concept(s) through signs (Kadunz 2016). The signs employed within
the games are collections of Peirce icons, symbols, and indices. Each game includes
interactive iconic diagrams. Experimentation with the diagrams produces infor-
mative visual feedback providing further opportunity to reason with the diagram—
to notice patterns, form inductive hypotheses, and conduct deductive experiments
on the icon diagram—for the purpose of discovering the game’s hidden mathe-
matical learning goal (object). Reasoning elicited by the visual puzzles spans the
reasoning types Peirce examines, from deduction to induction, hypothesis, and
abduction.

Structurally each game design consists of multiple levels. Each level deploys a
Series V Krutetskii system of problems of a similar type whose function it is to
foster generalization of a concept, or what I identify as the Intended Interpretant for
that level. Collectively the SIGNS across game levels form a Series VII Krutetskii
system of problems with graded transformations from concrete to abstract, whose
purpose is to facilitate generalization of the intended object (abstract mathematical
learning goal) from the SIGN sequence. Levels 4 and 5 exemplify Krutetskii
Series XVII direct and reverse problems for assessing ability to change the
direction of a mental process. While it is impossible to depict the interactivity of
these concept visualization games in print format, Fig. 13.3 provides a static visual
overview of one game and its five levels.
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13.3.5 Analysis of Visualization Task

Figure 13.3 depicts the 5-level Area of Rectangle game, a progressive visualization
task I use in the methods course to illustrate learning and teaching mathematics
through visualization and representations. Below I examine the game within and
across levels for chains of significance in search of design principles for a con-
ceptual framework to guide prospective teachers’ creation of progressive visual-
ization tasks (semiotic chains) for the mathematics classroom.

The semiotic object of this ST Math game is area. Area is essentially a geo-
metric concept; it is the two-dimensional (flat) space within a bounded region.
A related concept is area measurement, or the number of square units covering
two-dimensional space. The game relates the spatial concept area to its measure-
ment; this relationship, which is illustrated particularly for a rectangle, applies as
well to other geometric figures that may be regular or irregular.

Level 1. In level 1 of the game, the semiotic object is area of a rectangle. The sign
(representamen), which signifies both the spatial quality of a rectangle’s area and its
measurement, consists of three parts: (a) rectangle icon, subdivided into unit
squares, which initially appears static but breaks apart during the game to confirm
the game player’s area-measurement hypotheses, (b) two linked symbols (the word
area followed by the mathematical equal sign), and (c) 10-by-2 highlightable
interactive rectangular icon with numerical symbol label (index) that automatically
pops up to indicate the number of highlighted squares (Fig. 13.4). To solve the
interactive visual puzzle, which is without verbal directions, learners must click on
various parts of the screen to see what happens. For each click the game generates
visual feedback. Through trial and error guided by this visual feedback, students
infer the level 1 puzzle’s underlying mathematical concept, the intended

Fig. 13.3 A bird’s eye view of the visual flow of the 5-level ST Math Area Game
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interpretant (II1), namely that the interior space of the rectangle is called area and
that its size can be determined by counting the unit squares in the interior of the
rectangle.

Students infer the II1 through noticing what happens to the highlighted unit
squares of the dynamic 10-by-2 rectangle. Once highlighted, a numeral automati-
cally pops up to indicate the quantity of highlighted squares after which the
highlighted squares break up. The game then provides visual feedback to show
whether or not the highlighted squares can be arranged into a shape that is con-
gruent to the interior of the given rectangle. If this occurs, JiJi the penguin avatar
walks across the screen to indicate mathematical success. If not, JiJi’s path will be
blocked and an opportunity to retry the visual puzzle provided.

Another important semiotic feature of level 1, and all levels of the Area of
Rectangle game, is the Krutetskii Series V system of similar problems that comprise
the level. Multiple examples and opportunities for experimentation on the repre-
sentamen (diagrams) are required to generalize the intended game-level concept
(Krutetskii 1976) or interpretant for, as Peirce maintained, with any communication,
inferring the intended interpretant from one example is unlikely as there is always a
certain range of interpretation (Peirce as quoted by Joswick 1996, p. 100). To arrive
at the intended consensus interpretation, the interpreter (or in this case the learner)
requires multiple signs exemplifying the concept (object) with opportunity to
experiment on them in order to experience the concept, reason with it (Joswick
1996, pp. 100–101), and ultimately infer the qualities of the intended object from
the sign (representamen). For example, a common initial interpretation of the sign
in level 1 is that the aim of the visual puzzle is to highlight a shape congruent to the
given rectangle. Through experimentation learners notice however that the high-
lightable squares activate linearly in order from 1 to 10 making it impossible to
highlight a rectangle comprised of three squares in row 1 and three squares directly
above in row 2. Thus, the learners’ initial conjecture must be re-thought and a new
hypothesis formed and tested. Further, as Peirce explains, even if a particular puzzle
were to be solved correctly on the first attempt, it is unlikely that the desired level of
generality for the intended interpretant will be noticed on the first inference (Peirce
1998, p. 212). The series of similar problems at game level 1 (as well as for the
similar problem series at each of the other game levels) therefore provides,
according to Peirce, opportunity for thought to develop about the intended object

Fig. 13.4 Level 1 problem type
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through experimentation on the level 1 sign. This experimentation produces a
sequence of inductions and hypotheses that ultimately yield dynamic interpretants
that tend toward the intended interpretant, that is, the desired ultimate consensual
understanding of the initial intended object.

In sum, the intended interpretant (II1) for game level 1 is the spatial concept of
area of a rectangle, its measurement, and the following inductive argument: If
highlighted squares can be arranged into a shape that is congruent to the interior
space of the rectangle, then the rectangle interior is called the area of the rectangle
and the rectangle’s area measurement can be found by counting the unit squares of
the given subdivided rectangle. This interpretant is a generalization derived from
the series of eight similarly structured problems for which Fig. 13.4 serves as
exemplar. The dimensions of other rectangles in the problem series vary from
3-by-2 to 4-by-3 to 3-by-4 to 5-by-2 to 2-by-4 to 1-by-6 to 2-by-3 to 2-by-5.

Level 2. The semiotic object for game level 2 is the same as for level 1, area of a
rectangle. The sign (representamen) for level 2 is identical to that for level 1 with
the exception that the numerical dimensions of the given rectangular icon are
labeled (Fig. 13.5). Diagrammatically, therefore, the sign for level 1 is a subset of
the sign for level 2. Generalizing from the Krutetskii Series V system of eight
similar problems in level 2, and benefiting from the interpretive lens that the
Intended Interpretant from level 1 (II1) provides, students infer the level 2 puzzle’s
underlying mathematical concept, the intended interpretant (II2): the area, or
interior space of this rectangle, can be measured in one of two ways, either by
counting unit squares of the subdivided rectangle or by multiplying the numerical
linear dimensions of the rectangle. In fact, it is possible that level 2
game-interpreters may solve the visual puzzle but not notice that the product of the
rectangle’s dimensions equals the area measurement of the given rectangle. This
inference, however, will be required for game level 3. Notice here how each level of
the game changes the previous sign to open up a new perspective on the object
(Kadunz 2016, p. 35).

Fig. 13.5 Level 2 problem type
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Level 3. The semiotic object for game level 3 is, again, area of a rectangle. As for
prior game levels, the sign (representamen) for level 3 represents two qualities of
the intended object—its spatial character and its numerical measurement. The sign
for level 3 is nearly identical to that for level 2 with the exception that the given
rectangle is not subdivided into unit squares (Fig. 13.6). The interpreter must either
hypothesize the number of unit squares to highlight (and have this confirmed or
rejected by the interactive puzzle) or recall the relation discovered in level 2 (i.e.,
area measurement of a rectangle can be determined by either counting the unit
squares within the rectangle interior or multiplying the rectangle dimensions). With
the benefit of the intended interpretant from level 2 (II2), a reasonable conjecture for
the area problem in Fig. 13.6 is to highlight 6 unit squares. The game will provide
visual feedback identical to that previously described: highlighted squares will
break apart and either cover (or be shown to not cover) the interior space (area) of
the rectangle. From this experimentation on the level 3 sign/representamen, students
infer the level 3 puzzle’s underlying mathematical concept, the intended interpre-
tant (II3): the area, or interior space of this rectangle, can be measured by mul-
tiplying the numerical linear dimensions of the rectangle.
Level 4. The semiotic object for game level 4 is, as for previous levels, area of a
rectangle. While the component parts of the sign (representamen) for level 4 are
identical to that for levels 1 and 2, their order and relation are reversed (Fig. 13.7).
Whereas levels 1, 2, and 3 posit a rectangle of given magnitude and require
inference of the rectangle’s area measurement, level 4 posits the rectangle area
measurement pictorially as a collection of unit squares and requires creation of a
rectangle whose magnitude equals the given area measurement. Through experi-
mentation on the representamen students infer the level 4 puzzle’s underlying
mathematical concept, the intended interpretant (II4): area of any rectangle equals
the product of its dimensions. For the given area of 6 square units in Fig. 13.7 a
variety of rectangles (1-by-6, 2-by-3, 3-by-2, or 6-by-1) could be drawn on the
interactive digital grid to solve the visual puzzle.

Fig. 13.6 Level 3 problem type

248 B. M. Kinach



Fig. 13.7 Level 4 problem type

Fig. 13.8 Level 5 problem type

Level 5. Level 5 maintains the structure and reversed logic of level 4 but presents
the area measurement of the rectangle numerically (e.g., 6 cm2) instead of as a
picture of unit squares (compare Figs. 13.7 and 13.8). Given the area measurement
of a rectangle numerically, players must manipulate the representamen diagram to
create a partitioned rectangle whose area measurement equals the given measure.
Essentially, therefore, the intended interpretant of level 5 (II5) is the symbolic
formula for area of a rectangle, Area = length times width, or A = L � W.
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13.3.6 Semiotic Chaining Analysis

To determine whether the area of rectangle game is a semiotic chain, I analyzed the
game from a variety of perspectives. First, I examined the representamens across
game levels for a Peircean nested semiotic chain in the sense reported by Presmeg
(2006b) for Adeyemi and Hall. Analysis of the game’s representamen failed to
produce such a chain. Second, I examined the argumentation that produced the
Intended Interpretants for each game level. Finally, I analyzed the game according
to Peirce’s design principles for diagrammatic reasoning sequences.

13.3.6.1 Chaining by Argumentation Through Deductive Inference

Given that the SIGN at each level of the Area of Rectangle game includes repre-
sentamens comprised of iconic diagrams that for Peirce invited deductive reason-
ing, it is a logical move to explore deductive inference as the source of a syllogism
that might yield a semiotic chain within this game. Recalling Peirce’s claims that all
mathematical reasoning is diagrammatic and that reasoning with diagrams has the
power to reveal things hidden from view about the logical structure of the diagram,
about the relationship of its parts to one another, and about the analogical relation of
these parts to the intended object, I examined the argumentation within the game.
Table 13.2 illustrates the results of my analysis also elaborated below.

In the following argument, I define A, B, and C to hold the following meanings:

A = area = rectangle interior space

B = measure(A) = count A’s unit squares

C = measure(A) = multiply dimensions of A

Level 1 diagram implies:

Through diagrammatic reasoning on the level 1 diagram, students discover:

measure(A) = B

Level 2 diagram implies:

Through diagrammatic reasoning, students discover:

measure(A) = B,

measure(A) = C.

Through deductive reasoning, students discover that two things equal to the same thing are
equal to each other, or B = C.

Level 3 diagram implies:

Through diagrammatic reasoning OR through application of relationships learned at level 2,
students discover:

measure(A) = C.
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Table 13.2 Application of Peirce three-step plan for design of diagrammatic chains of significant

Representamen Argumentation Intended interpretant Level

R5

m(A) = C, then create A Given the area of any rectangle
interior as a numerical quantity
of unit squares, a rectangle of
appropriate size can be created
on a dynamic grid either by
recalling from levels 3 or 4 that
the product of the rectangle
dimensions equals the area
measurement or by applying the
area of rectangle formula,
Area = length � width

5

R4

m(A) = B, then create A Given the area of any rectangle
interior as a picture of unit
squares, a rectangle of
appropriate size can be created
on a dynamic grid either by trial
and error or by recalling from
level 3 that the product of the
rectangle dimensions equals the
area measurement

4

R3

m(A) = C
From level 2, we know m
(A) = B and m(A) = C
Since both members of the
conjunction (or copulation per
Peirce, 1998, p. 213) are true,
one of the members of the
conjunction can be dropped
without changing the truth value
of the conjunction from True to
False

Interior rectangle space is called
area; its size is measured by
multiplying dimensions of
rectangle

3

R2

m(A) = B and m(A) = C Interior rectangle space is called
area; its size is measured by
counting unit squares in the
interior of the rectangle; its size
is also measured by multiplying
the dimensions of the rectangle

2

R1

m(A) = B Interior rectangle space is called
area; its size is measured by
counting rectangle unit squares

1

Object: area of
rectangle

A = area = rectangle interior
space
B = measure(A) = count A’s
unit squares
C = measure(A) = multiply
dimensions of A
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Through inductive reasoning conducted on the level 3 system of similar problems, students
discover the formula:

Area measurement of rectangle = length x width.

Level 4 diagram implies:

Through diagrammatic reasoning OR through application of relationships learned at levels
1 and/or 2, students discover:

if B = measure(A), then a rectangle interior (A) of appropriate size can be created to equal
B square units.

Level 5 diagram implies:

Through diagrammatic reasoning OR through application of relationships learned at levels
2 and/or 3, students discover:

if C = measure(A), then a rectangle interior (A) of appropriate size can be created to equal
C square units and the dimensions of this rectangle will be factors of C.

Argued more succinctly, it follows that if the area measurement of the rectangle
subdivided into unit squares equals the number of unit squares covering the rect-
angle interior (II1), and the number of unit squares covering the rectangle interior
equals the product of the rectangle dimensions (II2), then by deductive argument,
the product of a rectangle’s dimensions equals the area measurement of a rectangle
subdivided or not (II3). From an inferential reasoning point of view, the concepts
and relations inferred across levels 1, 2, and 3 form a semiotic chain based on
deductive inference in the sense that the argumentation for level 1 implies the
argumentation for level 2 which in turn implies the argumentation for level 3
because it was already established in level 2. The model of chained inferential
reasoning described above does not extend to levels 4 and 5. I argue, however, that
a semiotic chain based on deductive inference exists across game levels 1–3.

13.3.6.2 Chaining by Design: Peirce’s Three-Step Plan for Chaining
Diagrams

At this point, it would be instructive for the reader to return to Peirce’s description
of diagrammatic reasoning quoted earlier in the chapter. In this passage, he alludes
to the design of chains of signification with diagrams (Peirce 1998):

We not only have to select the features of the diagram which it will be pertinent to pay
attention to, but it is also of great importance to return again and again to certain features.
Otherwise, although our conclusions may be correct they will not be the particular con-
clusions at which we are aiming. But the greatest point of art consists in the introduction of
suitable abstractions. By this I mean such a transformation of our diagrams that characters
of one diagram may appear in another as things. (p. 213)

To create such a sequence of diagrams, Peirce proposes a plan based on three basic
principles of inference: principle 1, “copulating several propositions into one
compound proposition;” principle 2, “omitting something from a proposition
without introducing error;” and principle 3, “inserting something into a proposition
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without introducing error” (Peirce 1998, p. 213). I will argue that these principles
undergird the Area of Rectangle game.

Table 13.2 illustrates application of Peirce’s three principles to the design of
semiotic chains based on diagrammatic reasoning in the representamen and argu-
mentation columns. Beginning with the level 1 diagram (representamen), apply
Peirce’s third principle to yield the diagram (representamen) for level 2. This results in
the addition of numerical dimensions to the level 1 diagramwithout introducing error.
At level 2, experimentation with the diagram produces a diagrammatically reasoned
and previously confirmed (true) proposition m(A) = B along with a newly inferred
true proposition m(A) = C. Following Peirce’s first principle, form these two
propositions into a (true) compound proposition, m(A) = B and m(A) = C, using the
laws of logic for truth tables. Next apply Peirce’s second principle: drop one of the true
propositions (m(A) = B) from the compound statement to infer the true proposition at
level 3, namely m(A) = C: since both members of the conjunction (“copulation” in
Peirce’s terminology) are true, one of the members of the conjunction can be dropped
without changing the truth value of the conjunction from True to False.

13.3.7 Towards a Conceptual Framework for Semiotic
Chaining

Peirce’s three design principles constitute the basis for a conceptual framework of
semiotic chaining grounded in diagrammatic reasoning. The semiotic chain
revealed by the above analysis is an application of Peirce’s design principles for
diagrammatic reasoning. I suggest that the innovative progressive concept visual-
ization task analyzed above exemplifies a new type of semiotic chain that I char-
acterize as a Peircean diagrammatic semiotic chain. As illustrated by the
progressive concept visualization task analyzed in this chapter, the links within
diagrammatic semiotic chains are Peircean iconic diagrams sequenced with the
planned inferential logic of the Peircean design principles for true statements: A, A
and B, B. Also noteworthy in the above analysis is the role that translation of
representations may play in the design of diagrammatic semiotic chains. In this
instance, the insertion without adding error of a numerical representation into a
pictorial one makes application of Peirce’s third principle possible. I suggest the
three Peircean principles of diagrammatic reasoning provide mathematics teacher
preparation with an accessible, conceptually clear visualization-pedagogy for use
with pre-service teachers to guide their planning of progressive visualization tasks
that (1) link visual and symbolic representations of the same mathematical notion
and (2) foster mathematical generalization and abstraction. The diagrammatic
reasoning structure proposed by Peirce, together with the principle of translating
representations, provide the basis for a specialized conceptual framework of
semiotic chaining grounded in Peircean iconic diagrams. Future reflection and
comparative research on the affordances of the three types of semiotic chains—
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dyadic, nested, diagrammatic—will help to close the gap in our understanding of
visualization practices for mathematics teacher preparation.
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Chapter 14
Primary Teachers’ Semiotic Praxis:
Windows into the Handling of Division
Tasks

Corin Mathews, Hamsa Venkat and Mike Askew

Abstract The teaching of division is a complex task: division is difficult to teach in
a connected and coherent way, given the diversity of models of division, and
differences in their associated actions and utterances. This chapter focuses on the
signs produced by teachers in their attempts to explain division. The signs produced
follow from unifications between signifiers and signifieds located within what we
are calling signification pathways. Our focus is on signification pathways that are
co-produced by teachers and learners, and endorsed by the teacher. The data pre-
sented in this chapter exemplify categories within an emerging analytical frame-
work of signification pathways when teaching division, which vary in the coherence
of the signs that are involved. In this chapter we consider the possibilities and
constraints of these signification pathways in relation to the semiotic system related
to division from a mathematical interpretant perspective. The analysis makes visible
limitations, ambiguity and incoherence across the signification pathways. The
conclusion examines how the production of signs and the connection of signs in the
signification pathway may lead to certain meanings about division that the teacher
endorses as valuable in the teaching of division.
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14.1 Introduction

Hoffman (cited in Radford et al. 2008) notes the usefulness of semiotic theory for
focusing on “semiotics praxis”, that is how actors assemble and sequence signs in
teaching and learning. The focus of this chapter is to theorize South African
teachers’ modes of assembling and sequencing signifiers related to division in
mathematics. Division, as international literature suggests, is replete with mathe-
matical and pedagogical complexities. In mathematical terms, at first glance, the
division relation is based on a simple triad of quantities: the dividend, the divisor
and the quotient. But beneath this seeming simplicity lies complexity. The literature
on early number observes that there are two basic phenomenological situations that
lead to the need for division: partitioning, or sharing, situations and quotitioning, or
measuring, situations. In pedagogical terms, complexity relates to a number of
features. Among these are similarities in the phonology of words that may relate to
different dividing actions and diagrammatic forms, and the “one-many” nature of
the relationship between division as a mathematical operation and the situation
types that this operation can index. This already complex picture is further com-
pounded in primary schools in the South African mathematics teaching landscape,
research into which raises concerns about coherence and connections in the pre-
sentation of mathematical ideas (Venkat and Naidoo 2012; Askew et al. 2012). This
complexity suggests that a focus on teachers’ semiotics praxis can provide valuable
insights into teachers’ methods of seeing and working with division.

The use of semiotics in this chapter rests on Peircian theory, contextualized in
the work of Ernest (2006) that focuses on “semiotic systems”. It is also based on
Presmeg’s (1998) approach involving the need to move beyond dyadic attention to
signifier-signified chains and webs to take into account the inclusion of attention to
interpretants. The chapter attends to the meanings of interpretants in two ways:
firstly, by focusing on the logical implications of the semiotic systems—what we
have called “signification pathways” co-produced by teachers and students, and
endorsed by teachers in learning about division. Secondly, the chapter considers the
possibilities and constraints of these signification pathways in relation to the
semiotic system that concerns division from a mathematical interpretant perspec-
tive. In this respect, our interest goes beyond the idiosyncratic sign use of indi-
viduals; rather, we seek to understand patterns and rules of sign use to broaden
teachers’ semiotics practice in developmental ways.

This monograph as a whole is focused on semiotic theories, so first we explain
our use of semiotic approaches. Second, we give a literature overview on division
from a mathematical and a pedagogic perspective. We re-interpret some of this
literature specifically to emphasize the implications for thinking in terms of semi-
otic systems. A short summary of the ways in which problems with coherence have
been presented and analysed in the South African context follows. This is also
re-interpreted in relation to signification pathways and semiotic systems. This scene
setting provides an overview of an emergent framework of signification pathways
that has been developed in the course of the first author’s doctoral study (Mathews
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2016). This framework presents a typology of signification pathways, ranging from
coherence at the upper extreme and errors at the lower extreme, with two interim
pathways of working with signification, which appeared to either limit, or disrupt,
coherence in different ways. We present and discuss this typology with illuminating
examples drawn from the dataset of the first author’s doctoral study.

14.2 Semiotic Systems and Signification Pathways

What it means to learn mathematics is construed in a range of ways in the math-
ematics education literature (Presmeg et al. 2016): as internalization of a
cultural-historical activity (Vygotsky 1979); as appropriation of discursive reper-
toires (Sfard 2008); or as expanding competence and confidence across example
spaces (Watson and Mason 2005). From a semiotic viewpoint, a fundamental idea
involving the learning of mathematics is the appropriation of the sign systems and
meanings associated with mathematics as a discipline. Several writers emphasize
that the mathematical use of symbolism makes the teaching and learning of
mathematics particularly suitable for semiotic analyses (Presmeg et al. 2016). This
literature, and other relatively recent overviews of the history and development of
studies based on semiotic theory in mathematics education, note the disparities in
the approaches to the key sources of semiotic notions—the writings of Saussure,
Peirce, and Vygotsky. This chapter does not re-tread this ground but instead details
the specific antecedents for the approach taken in our study, and explains the
reasons for our choices.

Our reading of semiotic approaches starts from the work of Walkerdine (1988),
which provided the theoretical basis for the data analysis in the first author’s
doctoral study, with data gathered from a series of Grade 3 and 4 lessons based on
division in South African schools. Analysis of this dataset revealed frequent inci-
dences of “slippage” or “ambiguity” in teachers’ handling of key division ideas.
While much writing in the field of semiotics has attended to the ways in which
mathematical ideas are constructed through the coherent assembling and connecting
of signifiers (for instance, Radford 2010), our analysis indicated the need to
understand gaps in the concatenation of signifiers in classroom teaching. Here,
Walkerdine’s excerpts of interactions were particularly illuminating in showing that
interpretations of the associations of signifiers to signifieds varied frequently
between participants in a discourse. While at one level this is simply a re-assertion
of the arbitrary nature of signifiers and associations, for us, Walkerdine’s handling
of empirical data showing that signification chains involved different interpreta-
tions, was useful in our research. Walkerdine (1988) mentions that

semiotics has stressed the productive power of signification, that is, it is the very social
production of relations of signification, which provides the possibility of subjectivity. […]
If material phenomena are only encountered within their insertions into, and signified
within a practice, this articulation is not fixed and immutable; it is slippery and mobile. It
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seems then that signifiers do not cover fixed ‘meanings’ any more than objects have only
one set of physical properties or function. (p. 30)

We initially adopted a similar approach; we tried to trace chains of signification
within transcripts (that included all teacher-learner talk, gestures, artefact use and
inscriptions) created from video-taped lesson observations. We found, however,
that classroom activity and talk were rarely linear in terms of how they proceeded,
that is, it was not the case that a single signified was linearly and tidily elaborated in
classroom discourse to some end-point, prior to attention shifting to a new signified.
Instead, what was common is the phenomenon described by Presmeg (2006) in
which the teacher sometimes stepped “aside” to deal with an element nested within
a task, before returning to deal with the broader signifier. Sometimes the teacher did
not return to the original broader task at all. Presmeg (2006) described the “dyadic
model of chaining” as involving a chaining of signifiers in which the “new signifier
in the chain stands for everything that precedes it in the chain. The previous
signifier, as well as everything that it represents, is now the new signified” (p. 169).

The language of a chain of signification draws one’s attention to a serial for-
mation of signs within a practice. Within the process of forming chains of signi-
fication, initial signs are used in the production of new signs. For Kirshner and
Whitson (1997), the autonomous nature of the signifiers allows for the formation of
a chaining process. This chaining process is seen when the signifying term (signifier
1) in a preceding sign combination comes to serve also as signified term (signified
2) in a succeeding sign combination. In such a “chaining of signifiers” the pre-
ceding signifieds and sign combination are sometimes described as “sliding under”
the succeeding. A chain of signification is dependent on the formation and con-
nection of preceding signs so that signs are interpreted, and therefore provide
meaning. Cobb et al. (1997) present an example of a coherent chain of signification
involving a sequence of signifiers that denote packs of ten candies, beginning with
bars of ten unifix cubes standing in for the outcome of packing ten candies into rolls
of ten candies each. In examining the chain of signification that ensues, Cobb et al.
conclude that “the bars of 10 unifix cubes came to signify at least a numerical
composition of 10 for most of the children. The use of pictured rolls as signifying
numerical composites, indicating the results of the packing activity were now taken
as a given” (p. 183).

In contrast, our early data analysis indicated frequent ‘side-steps’ to new sig-
nified entities (often sub-elements of the initial signified entity) in the South African
context. This led to our use of the notion of “signification pathways” to encompass
episodes in which the teacher would begin an episode with a particular signifier and
then shift focus to new signifiers, sometimes returning to the initial signifier, and
sometimes continuing along the new signifier path.

While we have talked about signifiers as associated with signifieds in the process
of elaborations of their meanings (rather than talking about signifieds that are
elaborated via signifiers), our point of agreement with Presmeg relates to the need
for a nested model containing multiple pathways of signifiers. We also concur with
her approach of attending to meanings within these pathways. Our elaboration is to
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focus on meanings at two levels rather than one. Firstly, we explore the meanings
that can be interpreted as endorsed by the teacher within the signification pathways
associated with particular tasks and across sequences of tasks and lessons.
Secondly, we consider these meanings in relation to the meanings of division that
are advocated in the discourse of the mathematical community.

A further notion that was useful in the operationalization of this approach was
the assertion that signs and sign use can only ever be understood as part of a larger
semiotic system (Ernest 2006). Semiotic systems are described as comprising the
following three components:

(a) There is a set of signs, each of which might possibly be uttered, spoken,
written, drawn, or encoded electronically.

(b) There is a set of rules of sign production, for producing or uttering both atomic
(single) and molecular (compound) signs. These rules concern much more than
the definition and determinants of a well-formed, i.e., grammatically correct,
sign. They also concern the sequencing of signs in conversation, i.e., what sign
utterances may legitimately follow from prior signs in given social contexts. In
mathematics this includes rules that legitimate certain text transformations, e.g.,
“cancelling”, the common divisor of numerator and denominator, in fractions.

(c) There is a set of relationships between the signs and their meanings embodied
in an underlying meaning structure.
(Adapted from Ernest 2006, p. 70)

Our interest was in exploring patterned sign use within lessons to infer the nature
of enacted semiotic systems related to division, and to comment on this enacted
semiotic system in relation to the semiotic systems that are advocated as mathe-
matically and pedagogically useful in the mathematics education literature on
division. Ernest’s notion of semiotic systems takes into account our need to include
atomic and molecular signification chains, as well as a range of signifiers that
include, for us, the different forms stated above, and extend to include gestures and
actions related to division, whose use we observed during lessons, and which have
significance in Arzarello’s (2006) descriptions of semiotic bundles.

14.3 Semiotic Systems Related to Teaching and Learning
Division

The literature on early mathematical learning calls for formal mathematical learning
built on children’s everyday activities and actions involving quantities. Anghileri
(1995b), writing about division, observed that everyday sharing activities provide a
useful basis upon which one key interpretation of division can be constructed.
Division interpreted in this “partitive” way involves one-by-one distributing ges-
tures. Carpenter et al. (1999) note that with extended experiences over time, this
one-by-one distribution comes to be truncated into grouped, that is, non-unit,
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distributing actions. Division though, is not reduceable to sharing situations. In
situations involving division by fractions, such as: ‘How many children can share 6
oranges if each child has half an orange?’—division is amenable to being worked
with as a quotitive interpretation, in which “6 oranges” are measured out using a
“half-orange”. Such situations involve measuring, rather than distributing gestures
(Tirosh and Graeber 1991). This measuring can also be linked to a repeated sub-
tracting of the measuring unit from the dividend. Whilst partitioning can also be
viewed in terms of repeated subtraction of rounds of distribution, language selec-
tions have to be carefully differentiated if sense-making linked to the situation is to
be kept in focus. In quotitioning situations, the subtraction quantity is the size of
each group, or the measuring unit, whereas in partitioning, or sharing, situations the
size of each of group becomes visible only after the distribution of items. At the
heart of this difficulty is what Askew (2015) points to as the one-many nature of the
relationship between symbolic mathematical operations and situations/actions.
A consequence of this one-many structure is that while story situations need sig-
nification pathways that cohere with the situation, or narratives that acknowledge
shifts, in the division model symbolic calculations can be solved using partitive or
quotitive strategies with efficient strategic calculation involving judgements as to
whether it makes more sense to interpret tasks partitively or quotitively, e.g.,
Anghileri’s (1995a, p. 86) tasks: 6000 � 6 and 6000 � 1000. Furthermore,
Anghileri (1995a, p. 86) points to the linguistic variety in division situations, with
overlapping words pointing to different actions; for example, “shared into 3, shared
into 3s, shared by 3, shared with 3” simply generates this language conundrum.

Other important aspects of the semiotic system of division are diagrammatic
representations. Carpenter et al. (1999) present examples of the construction of
“direct models” of partitive and quotitive situations, moving into combinations of
oral skip counting in multiples, coupled with partial diagrams in which aspects of
the situation (iconic images of the number in each group or the number of groups)
and aspects of the count are jotted down. An important and more structured rep-
resentation of division is the array format, consisting of a rectangular arrangement
in which the transformable relationship between partitioning and quotitioning can
start to be explained in ways that are more difficult to achieve in less structured
iconic or indexical grouping diagrams.

The complexities noted above have led to a wide range of suggestions about how
to begin the early teaching of division, and how to support progression and flexi-
bility. Literature in the Realistic Mathematics Education (Gravemeijer 1997) and
Cognitively Guided Instruction (Carpenter et al. 1999) paradigms point to the
usefulness of beginning instruction in the context of real or realistic situations, with
problems that can be modelled with division-related signifiers in the form of ges-
tures, images and symbols. These studies also point to the ways in which pro-
gression occurs through the truncation of signifiers, and moves from concrete
actions on objects to signifiers of these actions. Unit counting strategies give way to
grouped counting strategies, which in turn give way to working with combinations
of known and derived facts, alongside working with properties such as the
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commutativity and distributivity of multiplication, and the inverse relations of
division and multiplication.

Of specific importance to us in the light of the above discussion is the need for
careful signifier choices, assemblies and sequences that support students in making
sense of situations in ways that allow access to increasingly formal, flexible and
efficient ways of working. In relation to Mathews’ (2014) analysis indicating offers
of signifiers in instruction that assumed awareness of unknown quantities, we also
looked, from a mathematical perspective, at coherent signifier productions that
worked from givens to unknowns.

Pedagogic advice in mathematics education is strongly oriented to the need to
ground assemblies of semiotic forms in meaning-making. In the context of two
basic situations—partition and quotation—with distinct associated actions that give
rise to division, this advice can raise tensions that have to be resolved in classroom
working. We use a scenario to illustrate some of these tensions:

A child responds thus to a task asking: “45 carrots are shared among 9 rabbits. How many
carrots would each rabbit get?”

Learner: “I can count in 9s for this. Nine, eighteen, twenty-seven, thirty-six, forty-five”–
opening a finger as each word is said. “It’s 5. The answer is 5 carrots each.”

Teachers: “Yes, that’s correct. Well done”.

Some other children are busy drawing diagrams of carrots and rabbits and distributing them
as this answer is given and accepted.

In this scenario, a sharing situation is presented, and a solution involving
measuring 45 in 9 s is offered and accepted. As the mathematical discussion above
indicates, the solution process is mathematically appropriate, due to the one-many
relationship between division operations and situations, but the teacher does not
draw learners’ attention to an action that is normally associated within a sharing
situation, requiring a little elaboration in the semiotic bundle to explicate it.

The literature points to the importance of incorporating sharing and measuring
tasks in instruction, with signifiers building into both efficiency and properties
related to multiplicative structure over time. As noted, limitations in both tasks and
semiotic bundles can restrict the possibilities for well-grounded learning about
division. Evidence of these limitations shows a range of localized “rules” that
emerge in the pedagogic semiotic system. Tirosh and Graeber (1991) note the
common expression that “division makes smaller”, emanating from restrictions in
tasks in the early grades to positive integer divisors. Allied with this restriction,
Fischbein et al. (1985) point to other rules, such as: the divisor is always less than
the dividend, and the divisor is always a whole number.

Several features emanating from this body of work were useful to our devel-
opment of an emergent analytical framework in the broader study:

• The care needed to develop signification pathways that contain well-connected
sign sequences with the potential to support sense-making;
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• The need to attend to shifts in the interpretation of division in the mid-stream of
working, and whether these shifts are made explicit in aspects of the semiotic
bundle being worked with;

• Rules presented in the course of signification that, while appropriate in the
localized task setting, are stated as though they had a more universal realm of
application;

• The need to examine the range of division tasks presented across lesson
sequences.

Given that our attention in this chapter is on exemplifying key signification
pathways that emerged as a useful typology for considering division teaching, we
focus here on the first three of the above features, with less attention to the last
feature.

14.4 Methodology and Data Sources

The data drawn on for this chapter derive from the doctoral study of the first author,
which explores these issues in the particular context of Grades 3 and 4 division
teaching in three Johannesburg schools, involving six teachers. Given our aim in
this chapter to exemplify and analyse the four signification pathways within the
framework, we draw on data from one Grade 3 teacher in this dataset, whose
episodes (based on data collected in term 2 of 2011) provided ‘telling cases’ of all
the pathways. This teacher, like the others, had over fifteen years’ teaching expe-
rience. She taught in a school located within a previously advantaged community
which continued to attract relatively privileged cohorts of learners. In the broader
study, all the division tasks introduced and explained by each teacher, and the
learners’ responses, were video-taped and transcribed, and included details of all
teacher-learner talk, gestures, artifacts used, and inscriptions.

Data analysis was grounded in parsing lessons into episodes, with an episode
marked as a period in which the teacher did whole class teaching or mat work
(direct teaching of a few learners at a time on a mat) while using the chalkboard,
overhead-projector, flashcards or charts to explain a task or calculation leading to
division. A change in division task also marked a new episode. In some instances,
the new division task would have multiple tasks related to it; episodes also included
instances of the use of multiplication to verify the division number sentence answer.
In other cases, references to prior division tasks or answers were made. Episodes
involving skip counting, whilst not directly division tasks, were included in the
listing of episodes given the usefulness of this fluency for division problem-solving.
Group work (facilitated activities by the teacher) episodes were also left in the
listing for completeness, but not analysed given our focus on whole-class instruc-
tion. The analysis of each episode focused on the signs produced, and the meanings
that could be associated with these signs. The distinguishing and collating of
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episodes led to the identification of four signification pathways: mathematically
coherent, coherent with limitations, coherence with instances of ambiguity, and
mathematically incoherent. These are elaborated in Table 14.1.

14.5 Illustrating and Discussing the Signification
Pathways

The four categories, rather than standing in progression, provide a way of looking at
complexity related to the production of signs. The first signification pathway
emphasizes coherence throughout the episode. In such episodes, teachers produced
signifiers (Sf) in the form of utterances, symbolic number inscriptions, images or

Table 14.1 Four types of signification pathways

Signification pathways

Category Description

Category one
Mathematically coherent

This signification pathway involves associations between
signifiers that are mathematically justifiable at all points within
the episode. Such pathways include instances where a learner
provides an answer immediately to a task as a known fact, and the
answer is then subsequently worked with in a verification process
There is either no shift in the mathematical model worked with, or
the shift is acknowledged in the discourse

Category two
Coherent with limitations

This signification pathway is coherent in terms of the signs
produced. However the signs made are not generally applicable;
instead, the signification pathway is localized and limited to the
format of at least one of the signifiers presented within the
pathway

Category three
Coherent with instances
of ambiguity

This signification pathway involves instances of ambiguity in a
signification pathway which is generally coherent. Ambiguity
within signification pathways relates to one of the following:
∙ No possible signifier at some point
or
an incorrect signifier for a signified
or
no acknowledgement of an incorrect sign,
but
subsequently corrected and filled in; or

∙ A signifier that can be associated with more than one sign or
signified;

∙ A signification pathway with a shift between signifiers with no
acknowledgement of the shift

Category four
Mathematically
incoherent

This signification pathway involves mathematical incoherence.
The incoherence occurs when the teacher’s answer is incorrect or
when a signification pathway involved no possible sign at some
points, with these gaps not subsequently filled in
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written division situations that were, mathematically, coherently able to be asso-
ciated with the signified (Sd), thereby constructing signs (Sg) through these asso-
ciations. In the particular case of division, a category one signification pathway
produces an answer to a division task without disconnection between the signs in
the pathway. For example, if the teacher provided a grouping division situation, the
signifiers/signifieds were consistent with grouping actions where the divisor sig-
nified the number of items in a group.

Category two signification pathways were coherent in that the signs produced
did mathematically link the signifier and the signified. However, a limitation
occurred in that the answer or explanation was localized. An example of such a
limitation is an appearance of the idea that division always makes smaller, as while
this is true for division involving positive integer divisors, it does not generalize to
all cases of division.

The third signification pathway (category three) involved locally coherent
teachers’ explanations containing instances of ambiguity. Three kinds of ambiguity
were seen: in the first, the teacher made no clear links to a possible signified, or an
incorrect or inappropriate signifier for a signified was used or endorsed, or the
teacher accepted or did not acknowledge an incorrect sign. However, in the elab-
oration of the signification pathway the teacher subsequently replaced the erroneous
signifier or provided an appropriate signifier for the signified. For example, within a
signification pathway, a teacher may state that the answer to twelve divided by three
is six, and then later in the pathway, realize the mistake and correct it by providing
the answer of four. The second type of ambiguity occurs when a teacher produces a
signifier that can be associated with more than one signified and hence more than
one sign. For example, in a picture showing two biscuits, the teacher initially treats
the two images as signifying biscuits but subsequently suggests that the two images
signify people. The third ambiguity occurs when a teacher shifts a signifier to being
associated with a different signified, without acknowledging the shift, for example
moving from talking of division as sharing to division as grouping.

The last category of signification pathway is seen when the teacher produces an
incorrect answer or offers no associations for a signified, without subsequently
offering an association or correcting the incorrect answer.

Next, we present empirical episodes and summarized analyses to further
exemplify the signification pathways when teaching division.

14.5.1 A Category One Signification Pathway
(Lesson 3—Episode 4)

The teacher asked the learners to pack out thirteen counters and place them on
their whiteboards. The teacher instructed the learners to group the counters into
‘groups of four’. As she walked between the learners the teacher saw a learner
placing four counters into three groups with one remainder, the teacher circled the
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four counters as a group. The teacher asked the learners to provide a number
sentence and some learners stated “Thirteen divided by three”. Another learner
stated “Thirteen divided by four” and the teacher wrote ‘13 � 4 =’ on the CB.
Above the symbolic inscription ‘4’ she wrote the words ‘in a group’. She completed
the symbolic inscription by inserting ‘3 rem 1’ to 13 � 4 = as the answer. The
teacher reaffirmed that the remainder is the ‘left over’.

Analysis:

Early work in this episode proceeded smoothly with learners able to associate the
instruction to place the counters into groups of four (Sd 1) with appropriate counter
arrangements (Sf 1). When the teacher asked for a number sentence for the
arrangement of the counters (Sf 1), learners provided two number sentences for this:
“thirteen divided by three” (Sf 2a) and “thirteen divided by four” (Sf 2b). The
teacher’s acceptance of the latter, seen in her writing up of “13 � 4=” (Sf 3a) on the
board, linked both the action and product arrangement of packing “thirteen counters
into groups of four” with its verbal (Sf 2b) and symbolic representations (Sf 3a).
She then elaborated on the symbol “4” within the number sentence by associating
this sub-part signifier with the phrase “in a group” that was drawn for the original
signified entity (Sd 1). Returning to the 13 � 4 = number sentence as a whole,
“3 rem 1” was added in as the signifier (Sf 3b) for the outcome of the process of
packing in groups of four. Shifting once again to a part of this signifier—this time,
the “rem 1” portion, she reminded the class orally, that this signified what was ‘left
over’ (see Fig. 14.1).

Mathematically, the instruction to pack counters into groups of four was asso-
ciated with a grouping action. The teacher’s acceptance of the verbal expression
‘thirteen divided by four’ as opposed to ‘thirteen divided by three’ was consistent
with this grouping action. (If instead the teacher had accepted the learners’ offer of
‘thirteen divided by three’ she would have set up a partitive interpretation of
division that could have matched the outcome counter arrangement, but would have
dissociated from the process of its construction if no supplementary discourse was
offered). Of interest here is that while the teacher then emphasised that the divisor
stood for the number of items in a group (Tirosh and Graeber 1991) what is lost is
any discussion of the fact that the divisor ‘may’, rather than ‘must’, stand for the
number of groups. While appropriate for this episode, and leading to a coding of the
episode in category one, the broader lack of engagement of differences in meaning
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of the divisor across episodes produces a separate working with individual exam-
ples that has been noted in broader South African writing (Adler and Venkat 2014;
Venkat and Naidoo 2012). However, all associations made or endorsed in
instruction within the pathway are mathematically consistent with the signifiers and
signifieds in play in this episode.

14.5.2 A Category Two Signification Pathway
(Lesson 2—Episode 1)

The teacher said “today we will solve problems and division of whole 1 and 2 digit
numbers with solutions”. She stated “I’m going to teach you, how to do short
division, using a bracket that you may not have seen before and today we will use
this bracket”. The teacher drew a ‘short division bracket’. Thereafter, she drew the
division symbol on the chalkboard and asked the learners to identify it. She stated
that the “Division symbol and bracket is the same”. The teacher revealed five
flashcards on the chalkboard reading ‘division’, ‘share’, ‘smaller’, ‘less’ and
‘equal sharing’. She finally stated that “Another name for division” (pointing to the
flashcard ‘division’ on the chalkboard) is “Share” (pointing to the flashcard
‘share’ on the chalkboard) and then stated that “The answer will always be smaller
or less” (see Fig. 14.2).

Analysis:

At the beginning of the signification pathway the teacher mentioned that she was
going to teach the learners “short division”. After this, she drew a “short division
bracket” (Sd 1a) and then a symbolic “division symbol” (Sd 1b) on the chalkboard.
She then linked the “short division bracket” and “division symbol” with the
utterance “the division symbol and bracket is the same” (Sf 1). Having the two

Fig. 14.2 Flashcards on the board
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signified inscriptions on the chalkboard, the teacher drew the learners’ attention to
the idea that they signify division. After placing several flashcards on the chalk-
board the teacher pointed to two flashcards with the words “division” (Sd 2a) on the
one and “share” (Sd 2b) on the other. She then linked the flashcards with the
utterance “another name for division is sharing” (Sf 2). The association the teacher
thus established was that division involves sharing. Finally she mentioned that
whether you are dividing or sharing, in division problems “the answers will always
be smaller or less” (see Fig. 14.3).

The first sign that is produced is that the two signifieds, the ‘division bracket’
and ‘division symbol’, both point to the notion of division. The second sign the
teacher endorsed was that the use of division should be seen as sharing. The last
sign endorsed was that “when dividing or sharing division problems the answers
will always be smaller or less.” According to Tirosh and Graeber (1991), in the
context of division the idea that “division makes smaller” emanates from restric-
tions in tasks in the early grades to positive integer divisors. This particular episode
is coherent in that all the signs that were produced emphasized ways in which
division could be expressed. Along the signification pathway the signs are con-
nected to each other in that the teacher shows how the division symbols and actions
are interrelated and transformed within the teacher’s discourse. However, this
episode was categorised within category two due to the signification pathway being
localized by being limited by the final signifier to divisors greater than 1 for answers
to be ‘less and smaller’.

14.5.3 A Category Three Signification Pathway
(Lesson 3—Episode 8)

The teacher placed a transparency on the overhead projector bearing an image of
four squares with two biscuits in each square and one biscuit on the outside of these
squares. The following questions were written beneath the image: [Among] how
many dogs are the biscuits divided? How many biscuits does each dog get? How
many biscuits are there in total? The teacher asked “[Among] how many dogs were
the biscuits divided?” One learner responded stating ‘four’. The teacher asked the
question again and another learner stated ‘two’. The teacher pointed towards the
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two biscuits in the squares. The teacher accepted the learner’s answer of two and
asked: ‘In how many groups have we put them?’ A learner responded ‘four
groups’. The teacher then asked: “Who can give me a number sentence?” One
learner carried out the calculation by counting all the biscuits in the squares and
outside the squares. The teacher, together with the learner, counted in twos and
added one and established that there were nine biscuits altogether. She asked,
“Nine divided by two equals…?”, and accepted the learner’s answer of ‘four, one
remainder’ without referring to the image.

Analysis:

The teacher placed an image of four squares with two dog biscuits in each square with
one dog biscuit on the outside. She posed the question “[Among] how many dogs
were the biscuits divided?” At this point, the teacher drew the learner’s attention to
the idea that the biscuits in the image (Sd 1a) needed to be divided between dogs. The
learners provided two offers—of “four” (Sf 1a) and “two” (Sf 1b) dogs. The teacher
accepted the latter, seen both in her repeating of the learner’s offer of “two” and in
pointing to the two biscuits in each square. She thus associated the image of the two
biscuits in a square with two dogs. The teacher then emphasized that the four squares
signified four groups, before asking for a number sentence. But before the number
sentence was provided the teacher asked the learners to count all the biscuits in the
squares. The teacher used the image of the squares with biscuits inside and outside
(Sd 1a) to make the association that the number sentence was “nine divided by two
equals” (Sf 1c). Immediately, the teacher accepted the learners’ answer of “four, one
remainder” which was added in as a signifier (Sf 1d) for the result of the number
sentence. In the latter utterances then, the teacher signified that the images within and
outside the squares were nine biscuits (see Fig. 14.4).

Askew (2015) mentions that in solving division situations a “one–many” rela-
tionship between a symbolic mathematical operation and situations/actions in
division situations becomes visible. In this episode the “one–many” relationship is
also visible in having one image that can be solved either through a grouping or
sharing interpretation of division. The associations that were produced ensured that
the signified in this case (the images within the squares) were linked to two different
signifiers, “dogs” at one point and “biscuits” later on. While each association in the
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signification pathway could be linked mathematically to the image on the trans-
parency as the outcome of either a sharing or a grouping action, successive sig-
nifiers did not cohere with each other in terms of the story setting. The learners’
offers of “four” and “two” suggested different division actions. The answer “four”
could be interpreted as the result of a sharing action involving four dogs sharing the
biscuits, while the answer “two” pointed towards a grouping action (how many
dogs can get two biscuits each). The teacher’s acceptance of the answer “two”
reinforced (as in previous episodes) that the divisor should be understood as the
number of items in a group and not the number of groups. The association that the
teacher’s words and actions endorsed was that a grouping interpretation of division
needed to be used in order to produce the spoken number sentence (Ernest 2006).
But the image, if linked to a situation of sharing biscuits among dogs, lends itself
more easily to signifying a situation involving four dogs sharing the biscuits and
getting two biscuits each, with one left over. The teacher’s acceptance of two as the
‘number of dogs’ would require a transformation of the image to ‘inscribing’ the
two dogs and seeing one biscuit in each group as going to each dog. The ambiguity
is seen in the teacher producing two signifiers for the images inside the squares—as
‘dogs’ (signifier) and also as ‘biscuits’ (signifier). Within the signification pathway
of this division task different signifiers for the same signified leads to multiple
meanings and associations and possible ambiguity for learners. Therefore, this
episode was placed in category three of the signification pathway framework.

14.5.4 A Category Four Signification Pathway
(Lesson 4—Episode 9)

The teacher placed a transparency with the image of eleven sweets in two circles with
four sweets in each and three sweets on the outside of the circles. The following three
questions were written underneath the circles. [Among] how many people are the
sweets divided? How many sweets does each person get? How many sweets are there
in total? The teacher asked the learners, “Among how many people were the sweets
divided?” She then mentioned, “Ok if we share the following, you see all these
sweets” (the teacher pointed to the sweets on the transparency). The learners replied,
‘Yes madam’. The teacher asked, “How many sweets are there altogether?” The
learners responded ‘eleven’. The teacher proceeded to ask “How many in a group?”
The learners answered ‘four’. She asked, “And how many groups are there?” The
learners replied ‘two’. The teacher asked, “And how many [are] left over?” The
learners answered ‘four’ which she accepted. She then asked the learners to provide
a remainder. The learners replied ‘three’. The teacher accepted the learners’ offer of
‘three’ as the remainder. She then asked them ‘How many sweets are there in total?’
The learners answered ‘eleven’ and she then stated repeated the phrase ‘in total’ and
the learners replied ‘eleven’ which the teacher accepted.
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Analysis:

The teacher placed the transparency on the OHP and proceeded to ask the learners
certain questions. The teacher associated the image (Sd 1) with “eleven sweets” (Sf
1a), “four sweets in a group” (Sf 1b) and “two groups” (Sf 1c) and that the sweets
outside the three circles stand for the remainder (Sf 1d). She then posed two
questions that were drawn from the original signified entity (Sd 1). The associations
that the teacher established were that “two” people (Sf 2a) received “four” sweets
(Sf 2b). The teacher then re-established the associations which she had created in Sf
1d and Sf 1a (see Fig. 14.5).

From the image provided, the teacher established some signs connected to parts
of the image. The initial answer of “two people” each receiving “four sweets”
appears to signify an acceptable answer. However, the teacher creating the asso-
ciation that “three is the remainder” brings into question the acceptance of a pre-
vious association of sweets being divided between “two people”. In other words, if
sweets were shared as mentioned at the beginning of the signification pathway
between two people, a complete sharing out action would have produced an image
of two circles with five sweets in each and one sweet on the outside as opposed to
the image in which each circle has four sweets with three sweets on the outside. The
incoherence is seen in that “two” people, as the signifier (Sf 2a) fits poorly with the
initial image, coupled with the instruction to ‘share … all the sweets’ (Sd1), and
therefore represents an incorrect sign that was established and not subsequently
corrected. Literature suggests that incoherence occurs in the teaching of division
when disconnects occur between mathematical expressions within teacher’s
explanations (Mathews 2014). In this case, the answer does not connect with the
image provided and the episode is placed in category four.

Sd 1: The image of eleven sweets in 
two circles with four sweets in each 

and three sweets on the outside with 
the ques ons and then the teacher  

stated  'Ok if we share the  following, 
you see all these sweets'.

Sd 1a: How 
many sweets?

Sf 1a: Eleven 
sweets  

Sd 2a Among how 
many  people are 
sweets divided?

Sf 2a: Two

Sd 2b: How many  
sweets does each 

one get?
Sf 2b: Four

Sf 2c: Tr accepts 
three as remainder

Sd 1b: How many  in 
a group? Sf 1b: Four

Sd 1c: How 
many groups? Sf 1c: Two

Sf 1d: How many 
le  over?

Sf 1d: 
Three 

Fig. 14.5 Category four signification pathway
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14.6 Implications

The analysis of the episodes highlights the complexity associated with the teaching
of division (Anghileri 1995b). These episodes came to challenge some of the
traditional notions that ‘sharing’ as a division interpretation is preferable over
‘grouping’. The teachers’ attempts at striving for connections among talk, actions,
gestures, images and symbolic inscriptions when teaching division are difficult in
some instances because of the influence of multiple associations that inhibit the
coherent explanation of division (Mathews 2014). In some cases, the explanation of
division is localized (Tirosh and Graeber 1991) but treated within the teacher’s
discourse as generalized. Without careful selection of examples, actions, gestures
and other signs, teachers may produce multiple associations that may lead to the
endorsement of unintended ways of making sense of division. The introduction of
signification pathways within the study of semiotics has introduced the notion that
the initial signifieds are not always used to produce new signifiers. Signification
pathways are co-produced by the teacher and the learners with the teacher
endorsing certain associations and influencing the sequencing of signs (Radford
et al. 2008). A signification pathway allows for the unification of the signifier to the
signified (Walkerdine 1988) in ways that emphasize the complexity of working
within mathematics. However, these signs within the classroom discourse are
dependent on the associations that are endorsed (Ernest 2006) by the teacher, which
provides new insight into how coherence within division can be reimagined.
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Part IV
Semiotic Resources Including Gesturing

and Tools

Introduction: Michael Roth

In this part, readers find a collection of chapters concerned with semiotic activity in
which gestures and tools are involved and at the center of the analytic process and
results. Neither gestures nor tools are particular to humans. They can be found in
the non-human animal world not only among our closest relatives but also among
birds (the New Caledonian and Hawai’ian crows use tools in multiple steps to get at
food) or dolphins (gestural behavior). Even consciousness (conscious awareness),
at the core of Chap. 18, is not unique to humans, as studies have shown investi-
gating the behavior of dolphins in front of a mirror and that of chimpanzees in the
wild gazing into a still water pool. In humans, all of these forms of activity have
come to be amplified and are the core of the life-sustaining process, which thereby
has shifted from being dominated by biological and environmental processes to
cultural processes. But it is not culture on its own (i.e., “meanings”) that determines
the human life process. Instead, there is a single substance that manifests itself in
biological (body) and cultural ways (thought) in the unity/identity of person and
environment (Vygotskij 2001). All chapters in this section can be read as con-
tributing to this unifying, post-Cartesian idea, even though the authors may not
express it yet in that way.

In Chap. 15, Abtahi investigates how children and an adult relate through verbal
exchange involving the use of common materials to be used in addition of fraction
tasks. In the dialectical materialist approach initially articulated by Marx and Engels
(1978) and subsequently taken up in the works of L. S. Vygotsky and Leont’ev,
these materials therefore do not mediate the activity but constitute the activity as a
different one from that in which the materials are not used (Il’enkov 1977). As
tools, these thus are not outside of the individuals but are deeply integrated in the
new form of activity. They are also integral to what it means to make sense of
mathematical entities. Indeed, the mathematical entities, the sum of fractions—as



elsewhere the graphs that resulted from scientific research—come to be in synec-
dochical relation to the activity as a whole, including the materials and tools
involved (Roth 2014). Abtahi concludes that tools represent object/meaning and
meaning/object relations, which is precisely how de Saussure (1967) defined the
sign: relation between a material signifier and an ideal signified. In light of the
framework articulated in the introduction, “meaning” is nothing other than relation
between people, reflected in the relation between things, attributed to one of the
things, here the object.

Krause and Salle place a concept at the heart of Chap. 16, which, though having
a well-established foundation in the German literature, has no real equivalent in
English: “Grundvorstellung.” The term literally refers to basic or foundational
(“Grund”) Vorstellung, a term that is central to Kant’s critique of reason and that
philosophers tend to translate as “presentation” or “representation.” In fact, Krause
and Salle employ the term in contexts and ways that are not unlike the phe-
nomenological primitives used in Anglo-Saxon cognitive science to understand
how physics students reason in abstract domains (diSessa 1993). Just as the primary
Grundvorstellungen in Chap. 16, the phenomenological primitives are based on
concrete experiences in the everyday world. Although such phenomenological
primitives may be antithetical to mathematical knowing, they are also the condition
thereof, the very ground that enables abstract forms of mathematics (Husserl 1939).
The authors show how hand movements tracing and symbolizing graphs are part of
the sense-making process when an individual is asked to elaborate on a graph. It is
important to note that a finger following a graph does not allow us to characterize it
as a (symbolic) gesture. Instead, the movement is itself part of the event by means
of which the material graph comes to be something perceived and intellected. Hand
movements and eye movements in perception are closely related (see introduction).

Much work in mathematics education is concerned with mathematical thought,
representations, and mathematical conceptions. Knowledge here is treated as a
structure or thing. Recently, there has been a lively debate in Educational Studies in
Mathematics concerning a variety of dynamic approaches to knowing mathematics
(de Freitas and Sinclair 2012; Roth and Maheux 2015). As the verbal forms in the
title “Diagramming and Gesturing during Mathematizing” show, Chap. 17 situates
itself in that debate. Menz and Sinclair begin their chapter by reminding readers of
the critique that has been launched at those semiotic approaches that take signs to be
representations of something else. In the introduction, the authors show that
underlying such treatment of signs is the cultural practice of taking relations
between things and human beings and turning them into attributes of things while
forgetting this historical origin. The authors then articulate a dynamic perspective
on diagramming and gestures, which, as shown in the introductory chapter, are but
two aspects of the human capacity to move. Thus, diagramming may lead to
symbolic hand movements that iconically reproduce perceptual forms in diagrams,
and the diagrams fix previous movements that articulate the perceptual space (Roth
2012). Whereas the authors use the adjective “embodied” to characterize knowing,
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their approach actually is consistent with the monist Spinozist-Marxian approach
that takes the material form and the related ideal form (thought) as manifestations of
the same underlying thinking body. This thinking body itself is inaccessible—
perhaps part of the “virtual” that these authors invoke—but is real only in its
manifestations that inherently belie the essence of their material origin (Il’enkov
1977).

Chapter 18 situates itself in the cultural–historical tradition generally and in the
theory of objectification more specifically. This theory explicates the relation
between ideal forms, on the one hand, and the ways these are expressed or manifest
themselves in concrete entities (Radford 2013). Swidan and Prousak’s work thereby
can be situated, as outlined in the introductory chapter, in the relation of relations of
people and relations of things. In this chapter, the authors investigate how
ninth-grade students working in the Virtual Math Team environment, a tool
enabling computer-supported cooperative work, accomplish tasks designed to
encourage joint engagement. That is, the tool thereby is part of the relation between
things and part of the relation between people. A good deal of the chapter is
concerned with the emergence of conscious awareness. Consciousness, of course, is
nothing other than conscious being, and the being of humans is nothing other than
their life process (Marx and Engels 1978). That life process is social, and con-
sciousness but the expression of relations between people and relations between
things (see introduction). It is therefore without surprise that Swidan and Prusak
notice the emergence of consciousness (awareness) and an objectification of an
ideal relation in things (quadrilaterals).
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Chapter 15
Gradual Change of Perception: Signs,
Tools, and Meaning-Making of Fractions

Yasmine Abtahi

Abstract We do not see a round object with two moving hands; we see a ‘clock’.
In what process do we perceive meanings in our use of tools? In what process do
the immediate physical properties of an object—an object with two hands—become
subordinate and the meaning of the object—a clock—become dominant? The
purpose of this chapter is to engage with these questions through Vygotsky’s view
of gradual perceptual change in the object/meaning. I use Vygotsky’s perspective of
gradual change of perception as an instrument to examine the ways in which
children attach mathematical meanings to their use of different tools to solve
mathematical tasks. I follow my theoretical discussion with a concrete example of
two children’s interactions with a piece of scotch tape and a ruler, as they attempted
to attach fractional meanings to the tools, in order to solve an addition of fractions
problem.

Keywords Signs � Tools � Change in perception � Mathematical meaning-making

15.1 Introduction

The basis for all human higher mental functions (memory, will, and so on) evolves
socially, entailing interaction (Vygotsky 1986, 1989). Such a view of sociality
entails that individual functions stem from forms of collective life. This social
collective mediates all our activities—through tools and signs (Vygotsky 1978).
Marx views man working with tools whereby man uses the physical and
mechanical properties of objects to reach his goals (Marx and Engels 1865). The
Marxian view of tool was then used by Vygotsky as a means of external activity
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(i.e., labor) with which humans influence the environment. Hammers, nails and
chairs are examples of tools. Signs, on the other hand, are means of internal activity
that affect humans internally. Languages, various systems for counting, and alge-
braic symbol systems are examples of signs. With signs and tools being social
means themselves, then higher mental functioning becomes the internalized rela-
tions of social orders (Vygotsky 1986). That is, a higher mental function first exists
as social relation of the child and others, involving signs and tools.

As with any other human actions, children’s learning of mathematical concepts
is also relational and mediated by signs and tools. They are mediated in the sense
that instead of acting directly, in unmediated ways in the mathematical world,
children’s actions are indirect and mediated by tools and signs. How do signs and
tools mediate children’s learning? In children’s interactions with the tools, how are
tools perceived, how are signs tied to the tools and consequently how are tools
being used in the solving of mathematical tasks? Here, I outline a view with which I
looked at children’s interactions with the tools. More specifically, I focus on how
children perceived the physical properties of (mathematical) tools, attached signs to
their use of tools and gradually made meaning of the mathematical concept in
relation to the tools and to the task of the adding two fractions. My rationale for the
focus on the concept of fractions is twofold. First, fractions are amongst the most
challenging concepts to teach and learn in elementary school mathematics (Steffe
and Olive 2010). Lamon (2007) noted that fractions are one of the topics in ele-
mentary school mathematics that are among “the most difficult to teach, the most
mathematically complex, the most cognitively challenging, and the most essential
to success in higher mathematics and science” (p. 23). My second reason is that as a
learner of mathematics, it was very hard for me to understand the details of the why
and how of adding of two fractions. Only later, as a teacher of mathematics, some
of the steps made more sense to me.

In the following, I begin with an overview of Vygotsky’s view of gradual
perceptual change. Then, I turn to a concrete example of two grade 7 children
working with a variety of common tools to add two fractions. Then, I relate chil-
dren’s gradual perceptual change to the learning of the mathematical concept of
fractions.

15.2 Objects then Meanings

Mathematics reveals itself in the way “painters come to see, when they step back,
what they have made visible/revealed in and through their paintings” (Roth and
Maheux 2015). In their work Roth and Maheux argued for a mathematics that is not
available to be apprehended. For such mathematics to be comprehended it requires
what they called “radical creativity” (p. 222). I built on their argument to look at a
process within which children bring forth—make visible—the mathematics that is
invisible to them as they interact with (mathematical) tools. I describe a mathe-
matical tool as any tool-like object whose mathematical affordances are perceived
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by the child who is using it to solve a mathematical task, for example, a piece of
paper, an apple, or fraction circles.

While a child uses a tool, there is a system of relation between the physical
properties and characteristics of the tool and the perception of how the child sees
those properties as useful to solve a mathematical task. I refer to the characteristics
of the tools as their physical properties such as rigidity, shape, and sharpness.
Similarly, I use the term “perception” to refer to the aspects of a child’s thinking
that contribute to the kinds of interaction that happen. For example, a paper clip can
become a mathematical tool only if a child who is using it, for example, to do a
non-standard measurement, perceives its ‘measuring’ affordance. Now, the ques-
tions that I ask are as follows: How do children make visible the mathematics that is
invisible in the paper clip? And in what process do children’s perception of a paper
clip as a “bent piece of wire” that possibly holds paper, change to a “measuring
device” that could measure a side of a table?

A particular feature of human perception is what Vygotsky referred to as the
perception of real objects (Vygotsky 1978). This involves the perception of not
only colors and shapes but also of meaning; we do not see a round object with two
hands, we see a ‘clock’. The attachment of meaning to an object (not seeing an
object with two moving hands but seeing a ‘clock’) is a process that develops
through the use of signs and symbols in our interactions with the objects (tools).
Vygotsky elaborated the discussion of ‘children’s perception’ through what he
referred to as the object/meaning ratio. Using the object/meaning ratio, Vygotsky
explained children’s perceptual development.

In short, he argued that at the beginning of a child’s encounter with an object,
his/her perception could be expressed figuratively as a ratio in which the numerator
is the object and the meaning is denominator—object/meaning. This means that for
a young child the object is dominant and the meaning of the object is subordinate.
At this stage, the physical properties of things play an important role in the child’s
interaction with them. For instance, a stick can be a horse in child’s play, because it
looks like a horse, but a box of matches cannot be a horse, because it does not look
like a horse. It is only later, when the child can make use of signs and symbols in
her/his interaction with the objects, that the meaning becomes the central point and
objects are moved from being dominant to being subordinate, thus giving rise to the
meaning/object ratio. At this stage Vygotsky noted that, for example, to show a
location of a horse on a map a child could put a box of matches down and say: ‘This
is a horse’. The perception of the child can now be figuratively expressed as a
meaning/object. This figure of perception in which the meaning dominates is the
result of tying signs to the tools; the box of matches is a symbol (sign) to present the
horse.

Vygotsky borrowed his notion of “ratio” in the object/meaning ratio from others
who have used the same notion to express relationships and concepts (e.g., Eco
1986). Although, I believe Vygotsky’ notion of the object/meaning ratio has a
direct implication in mathematics teaching and learning with tools, I refine the
language of Vygotsky’s object/meaning ratio. I use object/meaning as an intention
to represent object-then-meaning, that is when the properties of the tool are
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dominant to possible mathematical meanings; and similarly I take meaning/object
to express meaning-then-object. Such refinement of discourse emphasizes not only
the expression of interrelationship but also the signifying process—within which,
over time, a child makes visible for himself or herself possible mathematical
meaning in tools.

Before moving on, I clarify how I conceptualize the process of meaning making.
According to Vygotsky (1986), meaning making is exercised, developed, and
enhanced, in the collective. It is formed in a collective in the form of relations
among children, adults and tools. That is, meanings become visible in a relation
between a child and a tool. In such a relation, the tool not only stands for itself, it
also becomes a symbol of something else (a clock, or mathematical symbol);
carrying the meaning of a clock or possible mathematical meaning.

Provided that a child is interacting with a (mathematical) tool to solve a math-
ematical task, at the initial stage of the child’s encounter with the mathematical tool,
the child may not necessarily perceive any mathematical meaning in his/her
working with the tool. As this stage, his/her perception can be presented by the
object/meaning; that is, when the physical properties of the object, as a thing that
affords some actions, is dominant and the possible mathematical meaning is not yet
formed for the child. This is what I call object-then-meaning (object/meaning). This
figure of perception expresses how the child perceives the different properties of the
tool (i.e., the meaning of the tool as an object in relation to the task at hand) as well
as how the child perceives possible mathematics represented by the tool (i.e., the
mathematical meaning). At this stage, the tool is dominant and meaning(s)—as an
object or its mathematical meaning—is subordinate. Hence, this is the stage at
which the physical properties of the mathematical tool play an important role in
relation to the child’s interaction with them, both to perceive the affordances pro-
vided by the tool and to perceive any mathematics represented by the tool. For
example, in fraction circles, the relationship between the sizes of the pieces plays an
important role in how the child perceives the affordances of the fraction circles and
in relation to making sense of the concept of fractions. The physical properties of
fraction circles could be perceived as useful for making castles. This implies that
meanings (mathematical or otherwise) are brought forth only in relation, by the
child, through interactions, while thinking about or working on a mathematical task.

To make mathematical meaning in the interaction with the tool, that is, for a tool
to be used as a symbol (a sign) for a mathematical concept, the child needs to
increasingly tie signs to their use of the tool. Children do this by talking about what
they do, talking about the tasks, drawing, and/or using mathematical symbols. By
attaching mathematical signs to their interaction with the tools, the child perceives
the tool (object-then-meaning) as a mathematical tool (meaning-then-object). For
example, this is when a child calls a half-sized-circle in the fraction circle a “1/2.”
For this child the wooden (or plastic) piece is not just a cut circle—it means “half,”
in relation to both the full size of the circle and to the child’s perception of such
half-ness (Fig. 15.1).
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It is in the gradual process of inverting the object/meaning to a meaning/object,
that children grasp the interrelationship between the physical structure of mathe-
matical tools and the meaning of the mathematical concepts that they are intended
to represent. I emphasize the word “gradual” because it is often difficult for children
to grasp the relationship between tools and the mathematical concepts (e.g.,
Rabardel and Samucay 2001).

In this chapter, I open up a discussion to show how converting the object/
meaning to meaning/object provides the children with the possibility of attaching
mathematical meaning to the tools, as they talk, work and act to make the invisible
mathematics more visible. Such attachment of mathematical meaning to the tool is a
result of the relation and interaction of the child and the tool. A different child might
perceive a different mathematical meaning in the same tool. As I explore examples
of children’s interaction with the tool, I discuss how this attachment, in turn, will
afford the children the possibility of becoming acquainted with the newer form of
action, reflection and expression, in relation to the tools and to the mathematical
concept of the addition of fractions.

Now, to make my points more tangible, I turn to an example. This example is a
fragment of a larger data set I collected from a private school in Ottawa, Canada,
where 13 children, 12–13 years old, in teams of two, interacted with different tools
to solve a series of addition of fractions problems, in different ways. The tools
included fractions strips, Cuisenaire Rods, rulers, ribbons, adhesive tape and pieces
of paper and cardboard. Children’s interactions with the tools were video recorded
and transcribed for further analysis. To look at children’s interaction with the tools,
I made two categories: (1) What children said; and (2) What children did [which
were typed in brackets and in italics respectively]. For further clarity, I included
screen shots of children’s actions. In what follows, I do not display the findings of
my study. Instead, through an entire sequence of activities in which two children
were intended to use common materials such as tape and ribbons to solve 1/8 + 2/7,
I propose to think about how children’s perceptions of the objects gradually
changed so as to be able to attach mathematical meaning to the tools and to think
about or to solve the task. Hence, I discuss a possible application of the theoretical
notions of object/meaning.

Fig. 15.1 Fraction circle and
“half”
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15.3 J and S’s Interaction with a Ruler and a Piece
of Tape

In this episode, I gave J and S a wide variety of common materials such as different
forms of tape, ribbons, different kinds of paper (graph paper, transparent paper,
poster board) from which they needed to select elements and devise what could be
perceived as tools for doing the addition tasks provided.

The series of events set out below, shows how S and J perceived the physical
properties of a piece of a scotch tape and a ruler, as well as their own previous
knowing of fractions, to attach mathematical meaning of addition of fractions to the
tools and to solve the task. At first, when J and S started working with the tools, the
physical properties of the tools played an important role in their interaction with the
tools (Fig. 15.2).

At the beginning stage of this process, the physical properties of the tools played
an important role in how J and S perceived the objects. For example, they stated
that the red masking tape does not show the marked colors well. Instead they picked
a transparent piece of scotch tape. At this stage, I say that the children’s perception
can be shown figuratively as object/meaning. S and J perceived different physical
properties (the colors and their show-ability) of the tools to start attaching mathe-
matical symbols to the tools. In order to think about adding the two fractions of 1/8
and 2/7, they tied mathematical signs to their interactions with the tools, as S
explained that they could: “[…] do the eight […] draw sevenths […] then we can
color in the eights and the sevenths then we’ll see how much that takes.” The

Fig. 15.2 Physical tools and properties
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children’s interaction with the tools also provided them the possibility of
expressing, acting and reflecting about the addition of fractions in a newer form.
That is, to color the tape and “see how much that takes.”

Over the timespan of a few minutes, the children, unsure of how they could think
about adding 1/8 and 2/7, using the piece of scotch tape as a symbol, expressed a
series of questions. The following are some of these questions:

01:22 J: make it a 1 cm each?

01:45 J: so what should the whole be?

02:27 S: how long is this?

Using the physical properties of a ruler as well as her own mathematical
knowing, S explained that 24 is the right length to represent the whole unit. She
spoke as follows (Fig. 15.3):

In this part of the interactions, children used the physical properties and the
pieces of tape to form the mathematical meaning of “whole unit” in their interaction
with the pieces of tape. At this stage the properties of the tape were subordinate and
the meaning of “whole” was becoming dominant as the children talked about and
thought about fractions in their interactions with the tool. At this point, for the
children, this piece of tape was a sign/symbol for 24. At this stage, the children’s
perception can be figuratively expressed as meaning/object. That is to them, the
piece of tape is a symbol of one whole.

As the interaction unfolded, the children attempted to attach mathematical
meanings of 1/8 and 2/7 to the pieces of tape, as they measured, marked, and
colored the tape. The following excerpt of transcript shows how they tied signs to
the tool, by talking about fractions and acting, as they used the tool to work on the
task.

Fig. 15.3 Physical properties and mathematical knowing
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J: [every 3 cm puts a dot on the tape]

S: like that… [she extends the dots to a full line]

S: then the seventh… can 24 be divided into seven?

[4 seconds pause]

S: I am pretty sure it’s decimal …

S: [they worked out 24 divided by 7 on a piece of paper and got 3.4 for an answer]
we will put three point four [S marks with the green marker] … so this is the seventh like
that… oh God this is going to be difficult.

In this part of the interaction the children were attempting to invert the object/
meaning to the meaning/object by attaching mathematical meanings of 1/7 and 1/8
to the tape, using the ruler. Making a line of 1/8ths was relatively easy, as they
marked the tape every 3 cm.

Yet, the interaction became complex as they attempted to attach the meaning of
1/7 to a whole unit that was 24 cm long, as they asked: “can 24 be divided into
seven?” On a separate piece of paper, they calculated 24 divided by seven, to be
able to attach a mathematical meaning of 1/7 to the tape. By tying the mathematical
symbol of 3.4 to the piece of tape, S created an artifact that meant 1/7 to her, she
said: “we will put three point four… so this is the seventh like that.” Yet, she found
making sevenths to be a difficulty task, if the whole unit is 24 cm; she exclaimed:
“oh God this is going to be difficult.” And S continued marking the tape, every
3.4 cm.

Again, at this stage, children’s interactions with the tools provided them with the
means to express fractions in a different form. In her relation with the tape and
mathematics, for S, a seventh, was a point that was 3.4 cm away from the beginning
of the tape as she said: “we will put three point four [S marks with the green
marker]”.

By marking the tape every 3 cm and every 3.4 cm, S and J made a line segment
of 1/7 and a line segment of 1/8. Later, they colored 1 section of 1/8 segment and 2
pieces of 1/7. Now, to the children the artifact that was displayed before them was
not mere tape on a piece of paper. By inverting the object/meaning to meaning/
object, the children attached the mathematical meaning of a whole, a 1/7 and a 1/8
to the piece of tape (Fig. 15.4).

In the interactions that follow, I show how S and J used the artifact that they
created to think about adding 1/8 and 2/7. A tension arose, as S was not sure how to

Fig. 15.4 The artifact created
meaning for 1/7 and 1/8
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proceed, but J was able to perceive the properties of the tool, in relation to adding
two fractions. The following excerpt of transcript shows S and J’s conversation:

S: So that we can see how far it is…

J: Wait

S: this is not going to work

J: this is three this is a 3 cm [pointing to the first colored part], and this is six point eight

[3 sec pause]

S: I think it… might not work this way… I don’t

[3 sec pause].

In this interaction, the physical properties of the created tool were not perceived
by S, in such a way as to help her form the mathematical meaning of the addition of
fractions to the tool. It was not easy for S to invert the object/meaning to meaning/
object, as shown by utterances such as: “this is not going to work” or “might not
work this way… I don’t.”. In contrast, J was able to perceive properties of the
created tool to attach mathematical meaning of the addition of fractions to the
created tool. She started by attaching mathematical signs to her interaction with the
tool, as she said: “this is three… this is a three centimeter [pointing to the first
colored section of the 1/8 line], and this is six point eight [pointing to the first
colored section of 1/7 line].”

After a pause of 3 s, S asked J: “What did you just do?”. The interactions that
followed show how S and J attached the mathematical meaning of 2/7 + 1/8 to the
artifact they created and how they solved the task. The following piece of transcript
show this interaction:

S: what did you just do?

J: I added these two together [pointing to the coloured parts of the tape that showed 2/7 and
1/8] … nine point eight

S: nine point eight …

[2 sec pause]

S: what is it in fractions? that is what we need to know… out of ten…or…

J: wait.. this is out of twenty four so… nine point eight but you cannot have decimals in
fractions

S: You can you can

J: oh okay
so I guess it is nine point eight out of twenty four.

This part of the interaction shows how J and S’s perception of the object
gradually changed to perceiving the properties of the artifact to solve 2/7 + 1/8.
Again, at the beginning of this interaction, the children used the physical properties
of the artifact to think about the task at hand, as J, pointing to the coloured parts of
the tape that showed 2/7 and 1/8, stated: “I added these two together … nine point
eight”. Here the interaction reached a point of tension. S’s not-so-clear perception
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made her doubt the usefulness of what J had perceived; using her previous knowing
of fractions; S expected a fractional amount as a solution for the addition of two
fractions, so she asked: “What is it in fractions? That is what we need to know…
out of ten…or…”.

J perceived the physical properties of the object and stated that since the length
of the whole tape is 24 cm, so the answer might be nine point eight out of twenty
four, as evidenced by her words: “This is out of twenty four so… nine point eight”.
The second tension was reached here, as J doubted the possibility of having a
decimal in fractions. S considered it to be possible, so their answer was 1/8 + 2/
7 = 9.8/24

The interaction of J and S with the created artifact indicated the existence of a
complex relationship between the mathematical knowing of the children on the one
hand, and their perceptions (and the changes in their perceptions) of the mathe-
matical affordances of the created artifact on the other hand. These knowing(s) and
perception(s) were mediated by gradual changes in their perceptions from object/
meaning to meaning/object over and over again.

Such changes in the perceptions of the children in relation to a piece of tape, afforded
them a newer way of reflecting on and expressing the addition of two fractions. Hence

2=7þ 1=8

¼ 9:8=24

It was the interrelationships among the sizes of the parts within the artifact that
guided them through this newer form of reflecting, talking and acting. Even though
it was not entirely clear for S, J perceived the relationship between the size of the
entire tape (24 cm) and the sizes of the colored pieces (3 cm + 3.4 cm + 3.4 cm) as
constituting feedback from the created artifact that was useful for solving the task.
In this case 2/7 + 1/8 was not 23/56, as it would be according to the children’s
previously known steps of adding two fractions, that is:

1=8þ 2=7

¼ 7=56þ 16=56

¼ 23=56

Instead 1/8 + 2/7 = 9.8/24 (= 23/56), because the children have colored 1 part
of 3 cm and two parts of 3.4 cm from an entire tape which was 24 cm. Therefore:

1=8 ¼ 3cm

2=7 ¼ 3:4 cmþ 3:4 cm ¼ 6:8 cm

The whole tape was 24 cm:Hence:

1=8þ 2=7 ¼ ð3þ 3:4þ 3:4Þ=24
¼ 9:8=24
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This new approach to reflecting and expressing the addition of two fractions
emerged as the children participated in interaction with the tools and their created
artifacts, along the way.

15.4 Discussion

Through the example of J and S in interaction with the tools, in this chapter I
utilized Vygotsky’s view of perception of real objects (Vygotsky 1978) to sys-
tematically examine and make sense of children’s change of perception and
meaning making, as they worked with mathematical tools to think about and/or
work on 1/8 + 2/7. As I mentioned, Vygotsky elaborated on the discussion of
‘children’s perception’ through what he referred to as the object/meaning. He also
saw meaning-making as being formed in collective relationships. In the
step-by-step analysis of S and J’s interaction with a piece of tape and a ruler, I
showed that the children constantly interacted with the mathematical tools to think
about adding two fractions. Following Vygotsky’s notion of the object/meaning, I
noted that, during the initial stages of their encounter with a mathematical tool, the
girls’ perception of the tool could be presented using the ratio of object/meaning.
This figure of perception represents how the children perceived the physical
properties of the tools—that is, the meaning of the tools as objects, respective to the
task at hand. At this stage, the tools and their physical properties were dominant and
their meanings—as an object or as the mathematical meaning—were subordinate.
That is, a tool can be represented by object/meaning.

Tool then meaning as
object

meaning

Hence, this is the stage when the physical properties of the mathematical tools
(e.g., the 1 cm-increment of the line segments on the ruler) played an important role
in the children’s interaction with them, both to perceive the affordances provided by
the tools and to form their mathematical meaning(s). In order to invert this ratio—
that is, in order for the tools to be used as a symbol (a sign) for a mathematical
concept—the children needed increasingly to tie the signs to their use of the tool.
I also illustrated that in the analysis the children at times were able to use the
physical properties of the tools and their own knowing of fractions to grow and
form mathematical meanings for the tools. Hence they accomplished the inversion
of object/meaning to meaning/object, where the mathematical meaning was dom-
inant and the physical properties of the tools were subordinate.

Meaning then tool as
meaning
object
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Meaning was formed in relation to the girls’ interaction with the tool as the
children increasingly tied signs to their use of the tool. The children did this by
talking about what they did, talking about the tasks, and using mathematical
symbols. It is in the gradual relational process of inverting the object/meaning to a
meaning/object that children grasp the interrelationship between the affordances of
mathematical tools and the meaning of the mathematical concepts that they are
intended to represent.

Throughout my analysis of J and S’s interaction with the tools, I tried to
highlight that the processes of perceiving affordances of the tools and forming
meaning in relation to interactions with the tools were complex and gradual, and
highly related to the knowing of the child and properties of the tools. What I wrote
about in terms of the gradual change of the perception of children as they interacted
with tools, and the complicity of such perceptual change in the children’s learning
of fractions is grounded in the work of many scholars. The effectiveness of
mathematical tools has been conceptualized from a variety of angles, including their
role in the following: in fostering children’s mathematical learning; in reconstruc-
tion of mathematical tasks; and in promoting communication and social interactions
(Cramer and Henry 2002; Misquitta 2011; Mendiburo and Hasselbring 2011;
DeCastro 2008; Mills 2011).

Although mathematical tools are conceptualized as being useful in mathematics
classrooms, they have strengths and limitations (Pirie and Kieren 1994; Pimm
2002). At times, in their interactions with the mathematical tools, children
encounter difficulties in grasping the relationship between mathematical tools and
the mathematical meanings that they are intended to represent (Norman 1993;
McNeil and Uttal 2009). McNeil and Fyfe (2012) provided an account of the
difficulties children experience in grasping the relationship between mathematical
tools and the mathematical concepts that they are intended to represent. They
explained that the principle of the dual-representation hypothesis is that any con-
crete symbol (e.g., a mathematical tool) “can be thought of in two different ways:
(a) as an object in its own right and (b) as a representation of something else”
(p. 43). That is, the usefulness (or lack of it) of a mathematical tool depends not
only on its physical properties and affordances, but also on the child’s perceptions
while interacting with the tool. A tool that is perceived to be useful for a child in
working on/solving a mathematical task might not be perceived as useful for
another child or for the same child in another task.

My discussion in this chapter supports and extends the work and findings of
other scholars as regards how mathematical meanings are not represented by the
tool; rather, different children perceived different mathematical meanings while
using the same tool to work on the same task (e.g., Pimm 2002). I further provided
a rational basis on which to examine how children form and advance (different)
mathematical meanings in their interactions with tools. With respect to the theo-
retical notion of the inversion of the object/meaning ratio into the meaning/object
ratio, I showed how different children perceived the affordances of the tools dif-
ferently through the use of physical properties of the tools and how, based on their
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perception of the affordances, they constructed different mathematical meanings in
relation to the tools and in relation to the task of adding two fractions.

Another point I pursued here is that in children’s interactions with the tools, the
children’s gradual changes of perception provided the children with newer forms of
expression, reflection and action; by uttering statements such as: “See how much
that takes”, or “We will put three point four… so this is the seventh.” In the
interactions of the children with the tape, it is important to acknowledge that there is
nothing inherently ‘2/7’ about the tape. Rather, it was through a process—doing
things with the tape and ruler and thinking about fractions—that the children, at one
point, perceived some ‘2/7-ness’ in the tape. As I explained in detail above, at the
point at which the children first perceived 1/7 in the tape, that piece of tape ceased
to be a mere piece of plastic suitable for sticking things together, but henceforth was
‘1/7’. Seeing a 1/7-ness of the tape accordingly changed what the children did with
the tape (their actions) and what they said (their expressions and reflections). These
new forms of expression and action were made possible as the children interacted
with the tape and attached mathematical meaning to their interaction with the tape.
Now, following Roth and Radford’s (2010) conceptualization of learning (i.e., a
social and sign-mediated process of becoming acquainted with historical and cul-
tural forms of expression, action and reflection), I could refer to what happened here
as ‘learning’. Looking at the example above, I say, S and J learnt that 2/7 + 1/8 is
not only 16/56 + 7/56 = 23/56 but also (3 + 6.8)/24 = 9.8/24.

What I would like to propose is that, in the process of perceiving, the children
also become acquainted with new forms of expression, reflection and action. The
process of perceiving could be looked at as one within which a child starts by
seeing the physical properties of the artifact (as an object of its own), gradually
perceives its affordances in relation to the task, and then attaches a mathematical
meaning to the use of the artifact. Hence, much like learning, the process of per-
ceiving is also a complex and gradual process within which newer forms of
expression, reflection and action become available to the children.
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Chapter 16
On the Role of Gestures for the Descriptive
Analysis of ‘Grundvorstellungen’: A Case
of Linear Functions

Christina M. Krause and Alexander Salle

Abstract In a German tradition, the concept of ‘Grundvorstellungen’
(GV) concerns mental models that carry the meaning of mathematical concepts or
procedures. While research on these GVs is mostly based on the analysis of verbal
utterances or written products, we turn towards an embodied approach and inves-
tigate the question of how gestures can take part in revealing the activation of
students’ GVs, focusing on the specific case of linear functions. In the presented
empirical study, we found that gestures are used not only to specify deictic terms,
but that they can also reveal a link between a mathematical idea and its
non-mathematical grounding as it becomes explicit in speech. How gestures might
contribute not only to the descriptive analysis of GVs, but also to the mathematical
learning process, is discussed against the background of re-analyzing selected
results within two different semiotic approaches.

Keywords Grundvorstellungen � GV � Gestures � Semiotics � Linear functions

16.1 Introduction

‘Grundvorstellungen’ (GV) are mental models that carry “the meaning of mathe-
matical concepts or procedures” (vom Hofe et al. 2005, p. 68). By activating GVs,
students are able to manipulate and translate between various mathematical rep-
resentations, as well as to model real processes with mathematical objects and
operations (vom Hofe and Blum 2016).
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Different aspects of GVs make them applicable for normative and descriptive
analyses: “The normative aspect of GVs works as an educational guideline [and]
describes possible interpretations of [the] mathematical core” (vom Hofe and Blum
2016, p. 232, emphasis in the original) of concepts or operations, whereas “the
descriptive aspect allows mental representations of students to be characterized”
(vom Hofe and Blum 2016). While students in primary school mainly develop GVs
that are “based in concrete actions with real objects” (primary GVs), more abstract
and complex mathematical concepts require the formation of GVs that are based on
“imagined actions dealing with mathematical objects” (secondary GVs) (vom Hofe
and Blum 2016, p. 234). Concerning this distinction, vom Hofe and Blum state
more precisely:

Primary GVs are based in concrete actions with real objects. The corresponding concepts
can be, so to speak, semi-isomorphically represented by real objects and actions, for
instance by joining or dividing real sets of things. Primary GVs for this reason possess a
representational character.

Secondary GVs are based on mathematical operations with symbolic objects. Constituents
of the corresponding mathematical structures are not real actions, but rather imagined
actions dealing with mathematical objects and means of representing these objects, such as
number lines, terms, and function graphs. Secondary GVs for this reason are said to have a
symbolic character. (p. 234, emphases in the original)

The development of suitable GVs of both kinds is essential for further mathe-
matical understanding and competencies (vom Hofe and Blum 2016).

To reconstruct students’ GVs, empirical investigations often use interviews that
almost exclusively investigate speech (e.g. Wartha 2007; Stölting 2008; Schüler
and Rösken-Winter 2014). Non-verbal modalities are seldom treated explicitly for
analysis except for unsystematic clarifications of deictic terms. However, research
on thinking and interacting has shown that multiple modalities, especially gestures,
have great influence on the development of mental models as well as on the
communication and the expression of such models (Edwards et al. 2014).

16.2 Gestures

When cognitive processes are regarded as embodied, “bodily modalities [are]
integral components of mathematical thinking, teaching and learning”
(Moore-Russo et al. 2014, p. 4). With this understanding of cognition and the
assumption that mathematics is originated from physical experience, gesture
becomes “a key element in communication and conceptualization” (Radford et al.
2009, p. 93).

Research on gesture has shown that the body and gestures take part in learning
mathematics in social interaction (Arzarello et al. 2009; Dreyfus et al. 2014; Krause
2016) as well as in individual learning (Alibali and Goldin-Meadow 1993; Alibali
and diRusso 1999; Goldin-Meadow et al. 2009). In social settings, students use
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gestures to support argumentation and reasoning, to explain mathematical concepts
to each other, and for common explorations of problems (e.g., Yoon et al. 2011;
Chen and Herbst 2013). In individual learning and instruction, gesture plays an
important role for the understanding of mathematical concepts and instructions
(Broaders et al. 2007; Goldin-Meadow 2010; Krause and Salle 2016). Important
cognitive functions of gesture are specified and synthesized by the
Gesture-for-Conceptualization-hypothesis by Kita et al. (2017): “Gesture activates,
manipulates, packages and explores spatio-motoric representations for the purposes
of speaking and thinking”.

For the analysis of empirical data, we consider “idiosyncratic spontaneous
movement[s] of the hands and arms accompanying speech” (McNeill 1992, p. 37),
which have an expressional rather than a practical purpose (Kendon 2004). The
stroke of a gesture, the actual movement, can also be preceded or followed by a
holding of the gesture. Stroke and pre- and/or poststroke holds together are called a
gesture phrase, the part of a gesture meaningfully assigned to one part of the
corresponding spoken utterance (Kendon 2004).

Perceiving a gesture as meaningfully assigned to a spoken utterance comes along
with the assumption that gesture and speech are co-expressive, they reveal “dif-
ferent sides of a single underlying mental process” (McNeill 1992, p. 1).
Furthermore, McNeill claims that “speech and gesture must cooperate to express
the person’s meaning” (McNeill 1992, p. 11), “each can include something that the
other leaves out” (p. 79). McNeill describes the relationship between gesture (im-
agery) and (spoken) language as “dialectic of unlike cognitive modes” (McNeill
2002, p. 7), being “key to the evocation, organization, and ultimate execution of
meaningful actions shaped to take linguistic form in discourse” (p. 7).

The evocation concerns the idea of the growth point (GP) as “the theoretical
starting point, in a microgenetic sense, of a speech-gesture combination—“growth”
in the sense that it is the seed out of which speech and gesture grows” (McNeill,
cited in Montredon et al. 2008, p. 173), or, in more simple terms, “a specific starting
point for a thought” (McNeill 2002, p. 20). A growth point can be revealed in the
first occurrence of a gesture, referring to a feature that can be traced as recurring in
the following discourse. If this feature recurs in other gestures, it gives rise to what
McNeill calls a catchment (McNeill et al. 2001; McNeill 2002).

A catchment is recognized when one or more gesture features recur in at least
two (not necessarily consecutive) gestures. The logic is that the recurrence of an
image in the speaker’s thinking will generate recurrent gesture features. Recurrent
images suggest a common discourse theme. In other words, a discourse theme will
produce gestures with recurring features. These gesture features can be detected.
Then, working backwards, the recurring features offer clues to the cohesive linkages
in the text with which it co-occurs. A catchment is a kind of thread of visuospatial
imagery that runs through a discourse to reveal the larger discourse units that
emerge out of otherwise separate parts (McNeill 2002, pp. 26–27).

While the growth point marks the emergence of a significant differentiation
arising within a certain context, catchments allow the identification of ideas that are
related in context and provide “a gesture-based window into discourse-cohesion”
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(McNeill 2002, p. 27). Catchments therefore concern the abovementioned organi-
zation of meaningful actions within the gesture-language-dialectic. The ultimate
execution reveals itself in the verbal manifestation of the idea–or thought–that has
been evoked and organized by means of gesture imagery; this process is recognized
when the growth point is unpacked, in terms of the dialectic of gesture and imagery.

16.3 Semiotic Perspectives on Gesture

The gestures we are considering can be perceived as signs with respect to two
different semiotic traditions—those of Vygotsky and Peirce.

Following Vygotsky, gestures as signs may function as psychological tools, “as
external or material means of regulation and self-control” (Presmeg et al. 2016,
p. 11). In that regard, they can “act as an instrument of psychological activity in a
manner analogous to the role of a tool in labor” (Vygotsky 1978/1931, p. 52) and
may therefore have influence on the formation and activation of the GVs as mental
models. The main difference between signs—and therefore also gestures—as
psychological tools and technical tools is described by Vygotsky (1978/1931,
p. 55), and also in the following:

[T]he most essential feature distinguishing the psychological tool from the technical tool is
that it directs the mind and behavior whereas the technical tool, which is also inserted as an
intermediate link between human activity and the external object, is directed toward pro-
ducing one or another set of changes in the object itself. The psychological tool changes
nothing in the object. It is a means of influencing oneself (or another)—of influencing the
mind or behavior; it is not a means of influencing an object. Therefore, an instrumental act
results in activation in relation to oneself, not in relation to an object. (Vygotsky 1981,
p. 140)

Presmeg et al. (2016) deduce further that “by becoming included in the chil-
dren’s activities, they [the signs] alter the way children come to know about the
world and about themselves” (p. 11, italics in the original). They can work as
semiotic mediators in the process of internalizing, “the internal reconstruction of an
external operation” (Vygotsky 1978/1931, p. 56).

Within the framework of Vygotsky, McNeill (2002) considers a growth point to
be a psychological unit, “the smallest component that retains the property of being a
whole” (p. 14). It needs, however, to be seen against the background of a context
from which it differentiates in an instance of instability, provoking “cognitive
movement that seeks repose in the form of intuitively complete linguistic form”
(p. 21). Within the gesture-speech dialectic model, the growth point as psycho-
logical unit already contains the seed for a thought that, however, does not come
into existence as such until it is expressed in words (McNeill 2002, p. 14, referring
to Vygotsky 1986), in other word, until the growth point is unpacked. A catchment
can then contribute to the elaboration of the thought emanating from the initial seed:
“A key process is the generation of new meanings during the unpacking process”
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(McNeill 2002, p. 33), this new meaning possibly arising from incorporating
contexts in a catchment, traceable through the use of recurring gestures.

In contrast to Vygotsky, Peirce integrates a representational view of signs. For
him, a “sign, or representamen, is something which stands to somebody for
something in some respect or capacity” (Peirce CP, 2.228). A sign can thus be
considered everything that is somehow interpreted by somebody in a certain way.
While being interpreted, it “creates in the mind of that person an equivalent sign or
perhaps a more developed sign. That sign which it creates I call the interpretant of
the first sign” (CP, 2.228). Furthermore, “the sign stands for something, its object”
(CP, 2.228), represented in the interpretant as interpreting the sign against a certain
background and evoking the interpretant thereby. The sign can thereby be seen as
bound in a triadic relationship with its object and its interpretant (Fig. 16.1).

This interpretant, as a new sign—being external or internal—stands again for the
object and creates a new interpretant, this process—called semiosis—potentially
going on ad infinitum. Two kinds of objects can be distinguished; the “immediate
object” (Hoffmann 2005, p. 51) represented by a sign in its relationship with the
interpretant, and the “dynamic object” (p. 51) as it stands in the hypothetical end of
the infinite process of semiosis. Hookway (1985) explains the difference between
the immediate and the dynamic object as “two answers to the question: what object
does this sign refer to? One [the immediate object] is the answer that could be given
when the sign was used; and the other one [the dynamic object] we could give when
our scientific knowledge is complete” (p. 139). Obviously, the dynamic object is
not reachable, it moreover represents the ideal, “complete” forming of the object.
Within this semiotic perspective, we hypothesize on the students’ GVs by inter-
preting the students’ utterances as signs, reconstructing the immediate mathematical
objects from these utterances.

Based on Bikner-Ahsbahs (2006) work, Krause (2016) used a similar approach
to reconstruct the development of mathematical objects within social processes of
constructing mathematical knowledge (pp. 58–67). Focusing on the interplay
between gesture, speech and inscription in collaborative processes of learning
mathematics, she widened the idea of the sign as an utterance to understand it in a
multimodal way, as a “semiotic composition”, in which different semiotic resources
may play together (Fig. 16.2).

Fig. 16.1 A Peircean understanding of signs as a triadic relation between representamen (R),
object (O), and interpretant (I) (Krause 2016, p. 20)
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16.4 Research Interest

Although the co-expressivity of speech and gesture might be considered implicitly
when reconstructing the activation of GV, there has not yet been a systematic
integration of gestures in previous analytical approaches. Therefore, this chapter
aims at investigating the role of co-speech gestures for descriptive analyses of GVs,
focusing on the field of linear functions.

Furthermore, we look beyond the analytical contribution of gestures, aiming at
getting more profound insights into the role of gestures for the individual con-
struction of GVs. For this purpose, we discuss the results in the light of the two
different semiotic approaches, those of both Vygotsky and Peirce, exploring the
influences of gestures on the formation of mental models.

16.5 Methods of the Study

Data were gathered by videotaping German grade 9 students solving the following
task, dealing with mobile phone contracts. Further, an interviewer asked questions
about their solutions. The first part of the task provides a function in tabular form
(Fig. 16.3) and is phrased as follows:

The following table presents the conditions of two mobile phone contracts. The charges are
invoiced per hour. A friend of yours needs advice which contract he should choose. Give
him reasons to choose one over the other.

Fig. 16.2 Multimodal sign shaped by the synchronous relationship between the three semiotic
sets speech, gesture, and inscription. The “semiotic composition” forms the representamen of the
multimodal sign (Krause 2016, p. 50)
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For the second part of the task, a graphical representation is given (Fig. 16.4).
Based on these data, two offers for contracts should be formulated:

Fig. 16.4 Coordinate system with graphs, given for the second part of the task

Fig. 16.3 Table with information about mobile phone contracts
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Here you see two alternate contracts. How could the corresponding offers be
formulated?

The task has been designed to prompt the activation of three GVs that are
characteristic for working with real linear (as well as other elementary) functions
(Stölting 2008; Vollrath 1989).

Idea of static mapping: This GV takes into view how x- and y-values are assigned to each
other (e.g. well-definedness of a function). It relies on local features of the underlying
function.

Idea of varying quantities: This GV describes the dependencies of changes of the ordinate
and the abscissa. Basic ideas of different behaviors of functions when “co-varying” their x-
and y-values allow learners to describe “what happens, when x increases …”. This GV also
relies on local features of the underlying function.

Idea of function as an object: This GV regards functions as a whole. Local features from i)
and ii) are encapsulated in an object with global features that can be manipulated further.
(Dubinsky and Harel 1992)

The analysis was conducted directly from the video data. It was gesture-driven,
that is the video was stopped when a gesture occurred. The gestures were inter-
preted within developing semiotic bundles (Arzarello 2006), taking into account the
gestures’ relationships to other signs that are used simultaneously or earlier in the
interview. Speech, as is the case in most conventionalized modes of expression,
provides the context in which the gesture is interpreted, possibly referring to an
inscription. Furthermore, the gesture may also be reminiscent of other signs by
evoking an iconic similarity. That way, they may become associated with an
inscription or a formerly used gesture (Krause 2016).

The interpretation of a gesture within the semiotic bundle is used to decide
whether and in which way it may refer to a GV. For the purpose of this study, only
those scenes are relevant in which gesture plays a part in revealing the activation of
a GV. These scenes were transcribed, taking into account verbal and non-verbal
modes of expression. For integrating gestures’ co-timing to speech, we use square
brackets with parentheses, nested to indicate when several gesture phrases are
linked in movement.

16.6 Results: The Case of Victor

In order to solve the first task, Victor created a coordinate system and inserted linear
graphs for each of the two contracts. Asked for his final advice, he stated the
following.

Scene “In the long run”

01 V That it, well, [pays off, so these are the two equations] (first, points at the
first and then to the second graph),

02 so, if one browses less than nine hours, one should rather choose the [second
one] (points at the third column of the table),
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03 so, chooses the online-pro contract, if one, well, a bit longer, then [the
e-online] (points at the second column of the table).

04 because [it then, well, [in the long run]], (first, places his pen at the
intersection point of the two graphs, then moves as shown in Fig. 16.5) is
more reasonable

In his statement, Victor distinguishes between the two contracts: Up to nine
hours, he prefers the “Online pro”-offer (02); when browsing “a bit longer”, he
would choose “e-online” (03). While formulating his answer, his pointing gestures
directed to the graphs and the columns of the table illustrate what he refers to in his
speech (01-03). In line 04, he justifies his choice of “e-online” for “the long run”
while performing a more complex gesture. His verbal utterances do not hint at
activated GVs. Victor formulates his statement in the real-life context in which the
task is set, rather than connected to the mathematics he used to solve the task.
However, his gesture contributes to the analysis in two ways:

First, he points with his pen to the intersection of the two graphs he has drawn
(first stroke). This links his words “it then, well,” to the graphical representation of
the linear function by indicating the changing condition in the point of intersection.
Then, co-timed to the words “in the long run”, he moves his pen along an imaginary
prolongation of the graph he has labeled with “e-Online” (second stroke). His
gestures give hints for two possible interpretations as based on the graphical rep-
resentation: Victor visually links the contract “e-online” with the object of the graph
and identifies the core, global features important for the comparison of the two
offers as they become visible in the graphical representation—the linear course of
the graphs “in the long run”. At the same time, these words and the moving pen
give rise to the interpretation that Victor focuses on the interdependence of abscissa
and ordinate.

It is the gesture that reveals (a) that he is working out his idea based on the
graphical representation, and (b) that his activity is related to the whole graph as
object and the variation of quantities “in the long run” revealing possible activations
of the idea of function as an object and/or the idea of varying quantities.

Fig. 16.5 Starting point and movement of Victor’s gesture in line 4 as embedded within the
coordinate system
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Scene “Straight line”
Victor is now working on the second task and tries to formulate an advertising

offer for a contract depicted by a graph. He concentrates on the lower graph, that
consists of two linear parts (in the following we refer to these parts as f1(x) = 1.5x,
with x 2 [0, 6] and f2(x) = 0.5x + 6, with x > 6) meeting at P(6, 9) (see Fig. 16.4).

11 V And, concerning the second, [one can see that the (moves his index finger
along the x-axis between the values x = 4 and x = 10 back and forth
(Fig. 16.6), then points at the value x = 6)

12 [first six hours], ehm (positions his hand onto the graph, places his thumb
near the origin and his index finger near the kink of the graph)

13 [are more expensive], [but if one, a bit longer, that means after six hours, it
always gets more (retained his hand posture unchanged and moves it above
the right half of the coordinate system, then positions it onto the graph with
this thumb located near the kink and the index finger at the right end of the
graph (Fig. 16.7), then moving his hand a little to the right along the graph),

14 [then it gets cheaper]]]
15 I How does one know that?
16 V Ehm, [here, because of this (sets his index finger onto the kink) [kink

(moves his index finger to the right along the graph and then back to the
kink)

17 I Okay.]
18 V [straight line]] (taps two times on the kink, then moves his index finger to

the right along the graph; see Fig. 16.8)
19 Well this means, [[at first, here the first six hours (grabs his triangle ruler,

moves one of its tips along the first part of the graph between origin and
kink)

20 I Mmh.
21 V The line, it runs steeper here]
22 I Mmh.

Fig. 16.6 Tracing along the x-axis (line 11)
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23 V (moves the tip of the triangle ruler along the graph between the kink to the
right) [than this one]]

In lines 11–14, Victor interprets the lower graph and its characteristics with
regard to the given situation, clarifying that by tracing along the x-axis (11, see
Fig. 16.6). Following this, he points at the x-axis beneath the kink at P(6, 9) and
claims that the “first six hours” (12) “are more expensive” with respect to “after six
hours”, where “it always gets more, then it gets cheaper” (13–14). There are several
ways of interpreting his statement with respect to the observation he expresses in
the context of the tasks:

The average costs per hour—with regard to all passed hours—decrease over time (for x = 8
the average costs per hour are f(8)/8 = 1.25 €).

Fig. 16.7 “Grabbing” the segment with the “D-gesture” (Sabena 2007): thumb and index finger
positions as if holding a little stick (12–13)

Fig. 16.8 Tracing a “straight line” (18)

16 On the Role of Gestures for the Descriptive Analysis … 303



In comparison to a contract with costs calculated by f1(x) also for x > 6, the actual costs
decrease. That is, the difference f1(x) – f2(x) grows with increasing x starting from x = 6.

The smaller slope of f2(x) means that the costs for every added hour are smaller than the
costs for every added hour of the first six hours.

Victor considers two aspects in the course of formulating an answer to the
interviewer’s question “How does one know that?” (15): first the kink (16), and
later the slopes of the two linear segments (18–23). Both reasons support the third
interpretation as the most likely interpretation of the first four lines.

The first part of his answer solely consists of “because of this kink” (16), giving
no further explanation why this justifies his claim made in lines 11–14. However,
he seemingly wants to extend his approach: When the interviewer takes the turn
with an “okay,” which may be understood as her being satisfied with his answer,
Victor interrupts with mentioning a “straight line” (18).

This interjection reveals the value of considering gestures in the analysis not
only for the identification of possibly activated GVs, but also for the interpretation
of the verbal utterance more generally: In the original video, Victor says “gerade”
(18). The translation of this word heavily influences the interpretation of this
passage, so we list different possibilities to give the reader a chance to reconstruct
the interaction. Possible English translations, that make sense in the context, are:
“even” (a property of numbers), “just” (in the temporal sense of now), “just” (in the
sense of exactly), “straight” (as an adjective), and “straight line” (as a noun). The
interpretation of “gerade” as “straight line” as the favored reading is mainly based
on Victor’s gestures within the specific context: His index finger moves along the
straight linear graph (see Fig. 16.8, right) already while uttering “kink”. The
movement thus seems to extend the aforementioned reference to the kink visually,
reflecting a growth point of the idea that started to be formed verbally—the idea of
formulating the justification using the slope as characteristic of the function seen as
straight line.

This idea becomes more and more elaborated in the following lines (19–23),
when Victor reformulates his answer given in lines 11–14 in terms of comparing the
slopes of “the lines”. Being verbally imprecise, the reference to the graphs of f1 and
f2 becomes clarified by his co-timed indication of the linear segments using the tip
of the triangle ruler. By this means, he anchors the reference to the two functions in
the graphical representation.

An analysis of the verbal statements gives hints of GVs. In lines 13–14, the
passage “but if one, a bit longer, that means after six hours, it always gets more,
then it gets cheaper” reflects an idea of varying quantities (change of ordinate with a
changing abscissa). During the identification of the kink (16), Victor may refer to
the idea of static mapping, but in the verbal transcript of this scene, no other hints
could be found that confirm this interpretation. His following explanation (19–23)
is seen as referring to the idea of function as an object (considering characterizing
global features of the function), especially the comparison of the slopes, by which
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he relates two features of the functions to justify his statement. It seems as if Victor
draws on different GVs and does not commit to only one.

Taking into account gestures allowed us to identify (i) additional GVs with
respect to those identified from the verbal expression and to identify (ii) GVs prior
to being expressed verbally:

(i) In lines 11–14, Victor starts a first approach to interpret the graph. While his
verbal utterance refers only to the idea of varying quantities (13/14, see above) his
gestures reveal aspects of the idea of static mapping and the idea of function as an
object. First, he points at (6, 0) and identifies this abscissa as important—matching
his words “first six hours”. While the verbal utterance refers to an interval, the
gesture indicates the specific point on the x-axis that marks the end of this interval.
Right then, Victor “grabs” the segment f1 with thumb and index finger (Fig. 16.7,
center), the hand being shaped similarly to what Sabena (2007) called the
D-gesture, which emerged in the activity on slopes in the context of derivatives
(Sabena 2007, pp. 187–188). While he formulates the change of the costs (“[but if
one, a bit longer, that means after six hours, [it always gets more, then it gets
cheaper]]”, 13/14), he retains his hand posture but changes the location, first
“grasping” f2 with the D-gesture before slightly moving his hand to the right, along
and beyond the graphical representation of the straight line.

The first occurrence of the D-gesture in line 12 reveals the growth point in which
the idea emerges of considering the slope of the function as a novel aspect,
important towards the solving of the task. This aspect becomes further elaborated in
lines 13 and 14: when “grasping” the two segments, first f1 and then f2, Victor
supports his verbally uttered idea visually by comparing the two functions by
means of the global property of their slopes. With this, he treats the respective
functions as objects. While his verbal expression in lines 12–14 refers merely to the
context of the task—using formulations like “more expensive” or “it gets
cheaper”—the gestures anticipate the justification as grounded in properties of the
functions to the spoken utterance in lines 19–21, now also referring to the steepness
of the line in words.

A catchment becomes recognizable in the recurring D-gesture in lines 12–14,
reflecting the recurrence of the property of slope of the functions. In this, the slope
of f1–the graph corresponding to “the first six hours” (12)—becomes then linked to
the one of f2 (“then”, line 14) by comparing the steepness of the corresponding
segments of the graph. The recurrence of the gesture marks the recurring reference
to the slope and therefore reveals the graphical comparison of the two-line seg-
ments. The global property of the functions, their slopes, and therefore the acti-
vation of the idea of function as an object, becomes then explicated in speech; the
growth point is unpacked.

In addition, his slight hand movement to the right may support the idea of
varying quantities as reflected in speech. It may indicate that he is aware of the
function not ending where the graphical representation ends, but that “it gets
cheaper” also beyond. This movement could be a reaction to the right open interval

16 On the Role of Gestures for the Descriptive Analysis … 305



and the resulting impossibility of covering the second part of the graph.
Consequently, Victor indicates the continuation (and “extends” his grasping) with
this movement. Expressing two ideas in one gesture phrase, the gesture reveals the
intertwining of the two ideas of function as an object and varying quantities.

(ii) When the interviewer asks for further explanation (15), Victor mentions the
kink as reason for his further observations. As has been described before, he traces
along the second part of the graph, namely f2, giving a preview of his upcoming
verbal reference to a “straight line” (18).

So, grasping the segments by means of the D-gesture in lines 12–14 and tracing
along the straight line in 16 anticipate Victor’s justification in lines 19–23, in which
the idea of the function as an object becomes verbalized by specifying his further
statements. Speech and gesture together now reveal more precisely that in his
justification, he considers the whole graph as consisting of two subgraphs and the
different slopes (“the line runs steeper”) of the segments as the crucial reason.

From the verbal statements, two kinds of GVs of functions can be perceived,
namely, the idea of varying quantities and the idea of function as an object.
However, integrating gestures additionally reveals that the idea of function as an
object is continually present throughout the whole second scene, as it is manifested
in Victor’s gestures in anticipation of being expressed in his verbal utterance.
Additionally, the idea of function as static mapping can be identified clearly.

16.7 Gestures’ Contribution to the Analysis of GVs

Our analyses of GVs show that gestures do not merely complement speech to
clarify deictic terms—as we described in the literature review—but enrich verbal
expressions with aspects of the mathematical content and ideas substantially.

• Gestures can reveal GVs that cannot be captured verbally at a given time but in
which further statements may be grounded: Considering a student’s gestures
may thus indicate a GV that may still be “under construction” in the student’s
mind.

• In addition to that, GVs can be identified prior to their verbal expression, which
could also be interpreted as a preview of GV under construction.

Thus, gestures can provide significant indications of GVs. A systematic inte-
gration of gestures into descriptive analyses of GVs gives a much deeper insight
into the ideas of the students. However, beyond the identification and analysis of
mental models, gesture may also have influence on the formation of such models.
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16.8 Forming Mental Models by Gesturing: Re-analyses
of the Data Within Semiotic Perspectives

We now adopt the two semiotic perspectives on gestures discussed in the theoretical
background, in order to hypothesize on their contribution to the formation of GVs,
reanalyzing the scenes already introduced. In the following, we outline how these
two perspectives can be adopted, in the context of analyzing Victor’s GVs of linear
functions as they manifest themselves in the solving processes. As we show, the
questions arising within these two frameworks differ with respect to the functions of
gestures focused on—a cognitive one on the Vygotskian side and a representative
one on the Peircean side.

16.8.1 The Vygotskian Perspective

Encountering Victor’s gesture use from a semiotic perspective in the light of
Vygotsky raises the questions of how the gestures he uses while solving the task
may “influence his mind or behavior”, and how they contribute to the formation of
GVs by “altering the way he comes to know about the world.” Therefore, we ask,
what are the functions of Victor’s gestures as semiotic mediators, as “means of
regulation and self-control” (Presmeg et al. 2016, p. 11) while solving the task?

Looking at the first scene analyzed above (“In the long run”), we can see how
Victor’s gestures interact with his verbal utterance, grounding his main argument of
the function’s behavior “in the long run” in the graphical representation. He
coordinates gesture, speech, and inscription to regulate his explanation by altering
the graphical representation ephemerally in the gestural extension. Gesture and
inscription therefore interact by suggesting the extension of the given graphical
representation, which can be seen in light of a GV that is mainly anchored in the
graphical representation—the function as an object.

In the second scene (“Straight line”), Victor develops the D-gesture as tool to
“grasp” the line segments and distinguish the two separate parts of the graph, f1(x)
and f2(x) while verbally referring to two different time intervals, the “first six
hours” and “after six hours”. As in the first example, his gestures ground his
explanation—related to the real-world context given by the task—in the graphical
representation of the function. The use of the gesture may take part in internalizing
the function as an object, constituted of two parts. The fact that the second interval
is half-bounded, right-open, may cause him to alter the use of his gesture as a
psychological tool, causing the slight movement to the left and suggesting the idea
of varying quantities as secondary GV in the imagined action on the representation
of the function. Being asked for an explanation (line 15), Victor lets go of the
D-gesture that might have helped him in regulating the coordination between the
real-world context in which two time intervals are distinguished and the line seg-
ments as graphical representation that relate these intervals to the effective costs.

16 On the Role of Gestures for the Descriptive Analysis … 307



His following explanation refers almost exclusively to the graphical representation
in words as well as in gestures.

However, this is the moment when the growth point laid out in line 12, iden-
tifiable in the first occurrence of the D-gesture, is unpacked and the idea of the
function as object comes into existence within the Vygotskian perspective. From
this growth point, the seed of the idea of function as an object is developed further
in the catchment, comparing the idea graphically to combine the two contexts in the
gesture-speech dialectic. The graphical representation (imagery/gesture) becomes
combined with the everyday formulation in the context of the task in the
co-expressive speech. Therefore, the process of unpacking the growth point leads
from a justification within the everyday context of the task to grasping the math-
ematical idea of the function as an object.

In the analysis of both scenes, the gestures act concretely within the coordinate
system and thereby suggest a potential operation with the graph as object. The
performance of the gesture may reveal a pre-stage of the “imagined actions dealing
with mathematical objects” (vom Hofe and Blum 2016, p. 234), still being
accomplished as actual action. By this, the gestures bridge between primary and
secondary GVs; between the activation of a GV as based in the concrete action and
a GV based on mathematical operations with symbolic objects.

16.8.2 The Peircean Perspective

In our case, the social interaction is of a different kind than that described earlier in
this chapter, when disclosing the theoretical underpinnings, since it is not primarily
an interaction between peers. The knowledge does not develop in the interaction
between the participants but in the interaction with oneself and with the signs given
by the task. The solving process, as it becomes traceable in the multimodal signs he
uses in his explanation, can be seen as an interaction with himself. Assuming this,
the signs he used may also be interpreted by him, influencing the shaping of the
immediate mathematical object, and may evoke again an interpretant as multimodal
sign. Thereby, interpreting his own gestures may give new ideas in an instance of
“creating potential mathematics” in an external way (Krause 2016). Reconstructing
Victor’s solving process within this framework may help identify such instances.
Therefore, we ask how Victor’s gestures—as interacting with the inscriptions—
may take part in his process of solving the task. In the following, we approach this
question by interpreting the gestures analyzed in the first part of this chapter in a
new light.

The two scenes presented—“In the long run” and “Straight line”—provide very
limited access to Victor’s process of solving the task, especially as the first scene
concerns a fully elaborated explanation rather than the solving process itself.
Performing many gestures on level 1—pointing to the graphs while mentioning
“these are the two equations” (line 1), to the respective columns of the table while
verbally referring to the two contracts (lines 2 and 3)—Victor links the different
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modes of representing the linear functions. However, these gestures have a com-
municative function and add to his explanation rather than “creating something
new.”

In the second scene, Victor uses the D-gesture on level 2 above the diagram,
creating meaning in the distinction of the two parts (lines 12 and 13) and by slightly
extending the second interval to the left (line 13). The gesture might add to pro-
viding visual access to the property of the slope in general in a growth point of the
idea (12), which might then foster the idea of comparing the slope of the two-line
segments. In this graphical comparison he then grounds his argument uttered ver-
bally in the second part of the scene when the growth point is unpacked.

However, these examples give no rich data source for investigating how gestures
as signs in the sense of Peirce may be involved in forming mental models in the
sense of the concept of GVs, carrying “the meaning of mathematical concepts or
procedures” (vom Hofe et al. 2005, p. 68). For the purpose of analyzing the
Peircean perspective, one might need to take a closer look at the gestures as they are
used in earlier stages of the solving process, when the task and the mathematical
representations given within are encountered. This, however, goes beyond the
capacity and the data of this paper, in which the semiotic perspective involves the
goal of seeing the already presented scenes in a semiotic light.

16.8.3 Summary and Discussion: Semiotic Perspectives
on Victor’s Learning Process

The two frameworks set the stage for investigating two different functions of the
gestures with respect to GVs of linear functions. On the one hand (Vygotsky), the
gestures mediate between the task with its representations and the learner and may
contribute in establishing GVs. On the other hand (Peirce), the focus is set on
gestures’ contribution to represent the mathematical object and through this, give
new ideas about the object by becoming interpreted as a sign.

This dual semiotic approach is meant to go beyond looking at gestures from an
outside perspective, as was adopted in the first part of the chapter where we
reconstructed the GVs and the solving process as they become revealed in gestures.
It moreover tries to look at gestures’ contribution “from the inside” by recon-
structing how gestures take part in the process of solving the task and forming GVs
in doing so.

The main outcome of seeing gestures as semiotic mediators that may “alter the
way one comes to know about the world” (Presmeg et al. 2016, p. 11) concerned
the suggestion of a secondary GV by initiating imagined actions with the graphical
representation of the mathematical function, such as extending it to the right-hand
side in the first scene or grasping the line segments in the second scene. This might
help regulate the coordination between the real world context referred to verbally
and the graphical representation of the mathematical object.
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However, the gestures used by Victor in these two scenes seem not to provide
much potential to promote the solving process through representing as signs in a
Peircean sense, “standing to Victor for something in some respect or capacity,” The
choice of the scenes was gesture-driven so that scenes with communicational
character—that is, scenes in which students have been asked to explain their
solution—probably involve more gestures. In these explanatory situations the
solving process might already be well advanced so that to investigate the question
developed within a Peircean approach, scenes from an earlier point in the solving
process might be more fruitful.

The analyses also show that the gestures of interest differ depending on the
underlying concept of signs, and, respectively, the questions arising within the
different frameworks. A look back on the one gesture that was considered in both
analyses—the D-gesture—provides a starting point for that consideration in the
growth point of the thought. The gesture may help the student in coordinating the
situation as described in the task with the graphical representation, and in that
regard, it may fulfill a cognitive function as semiotic mediator. But it also brings to
the fore aspects of the linear function so that it accomplishes a representational
function. By interpreting the gesture in its interplay with inscription as sign, new
ideas about the linear function—the steepness of the line segments—can be
derived.

In a similar context, Hoffmann and Roth (2007) refer to this duality as a
“complementarity of the two sign functions” (p. 1), drawing on the claim made by
Seeger (2005) to “find and define perspectives, that build on the complementarity of
these two paradigms” (p. 73). They develop a model that “can describe how both
these functions can be fulfilled, a model which emphasizes that ‘collateral
knowledge’ is necessary both to interpret signs and to use signs to generate
knowledge, that is to distinguish objects, to structure our experiences, to organize
interaction, and so on” (Hoffmann and Roth 2007, p. 20). With collateral knowl-
edge, they refer to “those forms of knowledge that remain hidden though being an
essential condition for focusing on something” (p. 7, italics in the original), leaning
on Peirce (CP 8.183, 6.338, 8.314). From their analysis of a collaborative learning
process they assume that a “‘dialectical’ relation” (p. 20) between the two functions
of a sign—representational and epistemological, or cognitive in our case—is
required in learning.

In our example, this might concern the use of the gesture to distinguish the two
line segments representing different conditions in the contract and the simultaneous
representation of the slope as distinguishing feature in the gesture. So in this case,
the collateral knowledge concerns an activation of the idea of function as an object.
To regard GVs as collateral knowledge and thus to see GVs as “glue” between the
different sign functions is one approach for an integration of gestures and GVs with
regard to the mathematical learning process.
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16.9 Conclusions

In this chapter, we have seen how gestures can take part in researchers gaining a
broader picture of the activation of GVs, by integrating gestures in the descriptive
analysis. It is also apparent that they contribute to a more thorough understanding of
how gestures as signs may be implicated in the formation of GVs when completing
a task.

In that regard, this chapter can be seen as subdivided into two parts, providing
descriptive and explanatory approaches respectively. Both parts together show the
surplus information that can be gained from considering not only what becomes
explicated verbally, but what can be learned from considering that “speech and
gesture must cooperate to express the person’s meaning” (McNeill 1992, p. 11)
where “each can include something that the other leaves out” (p. 79). We thereby
claim to open not only researchers’ ears, but also their eyes, in order to understand
better how students conceptualize mathematical ideas, using gestures as a window
to apprehend mathematical GVs.

Acknowledgements We thank Saskia Wetter for the provision of videos gathered in the course of
her Bachelor’s project.
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Chapter 17
Diagramming and Gesturing During
Mathematizing: Kinesthetic and Haptic
Interactions Support Mathematical
Ideation

Petra Menz and Nathalie Sinclair

Abstract We focus on the role of diagramming and gesturing in mathematical
practice. In most discussions of diagramming in mathematics, including mathematics
education research, diagrams are seen as representations of mathematical objects and
relations. This view was challenged by the philosopher and historian of mathematics,
Gilles Châtelet, who argued that diagramming is a material practice of mathematical
invention. His arguments are based on analyses of historical examples of diagrams
associated with newmathematical ideas. Guided by his approach, we study the actual
diagramming practices of mathematicians, as they work on unsolved problems. By
doing so, we aim to identify the various roles that diagrams might play in mathe-
matical invention aswell as thematerial nature of diagramming practice.We hope that
a more nuanced understanding of diagramming within mathematical practice will
contribute to research on promoting and supporting student diagramming.

Keywords Diagram � Gestures � Materialism � Mathematical practice
Mathematical invention

17.1 Introduction

Diagramming is considered by many to be an essential strategy in mathematical
problem solving (Grawemeyer and Cox 2008; Novick 2004; Stylianou and Silver
2004) as well as an essential component of mathematical discourse (O’Halloran
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2005, 2011). In mathematics education research, many have used Peirce’s semiotics
to study the functioning of diagrams either as a special category of icons or in each
of the iconic, indexical and symbolic registers (see Hoffmann 2006).

A critique of the semiotic approach to the study of diagrams relates to their
assumed status as representations, either of mathematical objects/relations or as
conceptions already formed through mental activity (de Freitas 2012). As repre-
sentations, they can only be seen as copies of ideal mathematical entities—often
flawed and misleading. Rotman (2005) has argued that such a view ignores the
material, embodied nature of mathematical diagramming: instead of seeing them as
mere representations, we could focus on “the physical activities themselves, the
moving around, visualizing, talking, and gesturing involved in learning and com-
municating the subject” (p. 34).

In otherwords, the actual drawing of the line on a page thatwill produce a circle, is not
just a representation of a geometric object, but also a mark-producing gesture in which
the continuous application of lead on paper is led by the hand and guided by the eyes.

Gestures and diagrams have each received increased attention in mathematics
education, especially within the recent emergence of embodied and semiotic per-
spectives. Châtelet’s (2000) work, however, seeks to show, through examples from
the history of mathematics, how gestures and diagrams play a pivotal role in
mathematical invention. He wants to show how formal mathematics can be seen as
continuously emerging from the material mobility of the human body. Diagrams are
essential clues for him, since they provide traces of the moving hand, while also
enabling—on the surface of the paper—the exploring and creating of new objects
and dimensions. Châtelet thus brings together two hitherto-distinct areas of research
—on gestures and diagrams, respectively—in pursuing his non-representational,
non-dualistic account of mathematical thinking.

Our own material approach to semiotics also draws on Peirce, but with a par-
ticular focus on the index. The drawing of a circle can be seen as an icon, which
operates according to likeness and resemblance between signifier and signified.
Seen as an icon, however, it becomes a representation of a Platonic object (the
circle) that is simply being copied, more or less faithfully. But what if we think of
the drawing as an index, which has a more material link between signifier and
signified? Indeed, unlike icons and symbols, indexical signs are bound to the
context in important ways, as they “show something about things, on account of
their being physically connected with them” (Peirce 1998, p. 5). The canonical
example used by Peirce is that of smoke billowing from a chimney, which indicates
that there is a fire in the fireplace so that the smoke indexes the fire. An index
“refers to its object not so much because of any similarity or analogy with it, (…)
because it is in dynamical (including spatial) connection both with the individual
object, on the one hand, and with the senses or memory of the person for whom it
serves as a sign, on the other” (Peirce 1932, 2.305). The gesturing hand that leaves a
trace of congealed wax can therefore be seen as indexing a circle, producing a
temporal and spatial record of circle-making. The circle drawing can thus be seen as
an indexical sign that refers to the prior movement of the pencil. As Sinclair and de
Freitas (2014) have argued,
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This latter indexical dimension is usually not emphasized in the semiotic study of math-
ematical meaning making, since we tend to focus on the completed trace and dislocate it
from the labour that produced it. Such habits of focus have resulted in our neglect of how
the activity of the body and various other material encounters factor in mathematical
activity. (p. 356)

Since Châtelet’s work was based on historical examples, he only had access to
diagrams that have been completed and conserved, and not to actual making of the
diagram, a process that would have a particular rhythm, weight, order and tempo
that could help provide insight into the inventive process. In this chapter, we study
the live process of mathematical diagramming. We aim first to corroborate
Châtelet’s claims in the context of contemporary mathematical practice. We further
aim to better understand the embodied, material aspects of mathematical dia-
gramming. In particular, we are interested in how diagrams, if not assumed to be
mere representations, can be seen as indexical signs producing mathematical
concepts.

In the next section, we provide a brief overview of Châtelet’s work, which is
central to our own approach. We also summarise other work in mathematics edu-
cation that has adopted this approach. Where relevant, we connect to similar
research on diagrams and, especially, gestures.

17.2 Châtelet on Diagramming and Gesturing

Through this flexible view offiguring and defiguring, Châtelet brings new ideas to the
study of gestures, diagrams and mathematics. By analyzing historical manuscripts of
famous mathematicians such as Oresme, Leibniz and Hamilton and without access to
video-recordings of these mathematicians’ mathematizing, Châtelet traces their
thoughts and actions from their writing and their diagramming. His fundamental
insight is that the virtual is evoked in historical mathematical inventions through
diagramming experiments whose sources can be traced to mobile gestural acts. The
virtual is that which is latent in the diagramming, but ontologically new. In this way,
Châtelet challenges the disembodied, abstract conceptualization of mathematics. The
key ideas of his theory are that (1) the diagram is never really fixed–it is erased, drawn
over, reassembled, or redrawn—as it hovers between the actual and the virtual;
(2) there is amutual interaction between gestures and diagram; and (3) it is through the
material interaction with the diagram that a person understands or invents mathe-
matics. As Roth and Maheux (2015) point out, “the virtual cannot be grasped but is
that which allows grasping to occur” (p. 236).

The crux of Châtelet’s study is his revelation of how the virtual is evoked in
historical mathematical inventions “through diagramming experiments whose
sources Châtelet can trace to mobile gestural acts” (Sinclair and de Freitas 2014,
p. 563). This trace of the gesture, which lingers in the creation of new mathematics,
provokes and challenges the abstract nature that has come to be associated with
mathematics.
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Although the main focus of this chapter will be on diagramming, in light of the
gestural nature of the production of diagramming coupled with the tight interplay
hypothesized by Châtelet, it is worth examining how Châtelet’s conception of
gesture fits within the existing landscape, which we do in the following subsection.

17.2.1 Situating Châtelet’s Conception of Gestures

The last two decades have been fertile ground for the study of gestures in mathe-
matics from the anthropological (Rotman 2012), cognitive scientific (Lakoff and
Núñez 2000), educational (Krummheuer 2013; Radford 2001), psycholinguistic
(Levelt 1989; McNeill 1992, 2008), sociological (Greiffenhagen 2014), and
philosophical (Châtelet 2000) points of view. The predominant line of research in
gesture studies, especially within the Anglophone literature, focuses on movements
of the body (especially the hand) and their interactions with speech in communi-
cation. For example, one of the groundbreaking studies in gesture theory asserts that
“in a nutshell, […] gestures are an integral part of language as much as are words,
phrases, and sentences–gesture and language are one system” (McNeill 1992, p. 2,
emphasis in original). Drawing on Peirce’s semiotics, this theory identified cate-
gories of gestures (iconic, metaphoric, deictic and beat) that distinguish different
relationships between gesture and speech.

This type of gesture research emphasizes gesture as part of “the human capacity
for language” and the study of gesture as “language in action” (Rossini 2012). In
coding gesture only in terms of linguistic potential, such research can overlook the
physicality of the hand movements of gestures. As Streeck (2009) indicates, “it is
common to treat gesture as a medium of expression, which meets both informa-
tional and pragmatic or social-interactional needs, but whose ‘manuality’ is acci-
dental and irrelevant” (p. 39). To counter this neglect, Streeck defines gesture: “[…]
not as a code or symbolic system or (part of) language, but as a constantly evolving
set of largely improvised, heterogeneous, partly conventional, partly idiosyncratic,
and partly culture-specific, partly universal practices of using the hand to produce
situated understanding” (p. 5).

With this definition, Streeck studies gestures for how they are “communicative
action of the hands” (p. 4) and thus examines gesture for how it couples with and
intervenes in the material world in non-representational ways, which is consistent
with the approach of Châtelet. Indeed, for Streeck, distinctions between hand
movements ‘in the air’ and hand movements ‘on the page’ become fuzzy. And it is
in this fuzziness, that Châtelet can dwell on the back and forth interplay between
gestures giving rise to diagrams that give rise to gestures.

In line with a French tradition of inquiry into gestures (by philosophers of
mathematics such as Cavaillès, Desanti, Longo and Alunni, Châtelet sees the
gesture as a tool for non-analytic reasoning (Maddalena 2015). Châtelet not only
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notices the gesture and its link to the diagram, but he also interprets gesture as even
more than a visible, non-verbal, bodily action that carries meaning; indeed, a
gesture is the articulation between the virtual and the actual and as such is
immediate and embodied. It is in this regard that a gesture is inseparable from
where it came from and what it creates. This view led Châtelet to question the
boundary between physics and mathematics that Aristotle drew with his interpre-
tation that physics represents applications “that exist in Nature [… and are] mobile”
whereas mathematics represents abstraction “which exists only by proxy through
the wit” and is “immobile” (Châtelet 2000, p. 17).

Our own research investigates the gesture/diagram coupling in mathematical
practice, where it should be possible to study the various hand movements—be they
in the air or on the blackboard—made by mathematicians as they work on solving
mathematical problems. Our goal is to better understand the material nature of their
diagramming practices.

17.3 Methodology

The first author was given the opportunity to participate in a series of research
meetings that a group of mathematicians had organized in order to pursue joint
work on a particular problem. These meetings struck us as fortuitous settings for
studying diagramming practices, since the discussion amongst the mathematicians
would help us understand the evolution of their work without having to constantly
prod them for explanation, as might be the case for a mathematician working on a
problem alone. The research subjects in this study comprise three male, Caucasian,
research mathematicians in the field of Topological Graph Theory from two
prominent North American universities (see Menz 2015 for details of the full
study).

The three mathematicians, referred to as Fred, Colin and Victor, met nine times
over a period of three months to study the class of 2-regular directed graphs and
how they embed in different surfaces. The mathematicians’ goal was to compile a
list of obstructions for the projective plane in particular, although other surfaces
such as the torus and Klein bottle were also explored at times, and to classify these
obstructions for 2-regular directed graphs. All research meetings took place in one
university’s mathematics seminar room, equipped with blackboards on which all
diagrams of this study were drawn. The mathematicians never all sat at the tables in
the room together; at least one of them was always standing, close to the black-
board. The first author was present in order to video-record these nine research
meetings that varied in length from one to two hours; to capture digital still images
of diagrams by the participants using a second camera; and to make field notes
during the meeting that attended both to the mathematics that developed during the
meeting and to observations regarding diagramming and gesturing.

Based on these observations and multiple viewings of the recorded research
meetings, we looked for all diagramming events; an event is regarded to be when a
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diagram is produced, enhanced, contemplated, referred to, changed or erased. In
order to get an overall sense of the frequency and intensity of diagramming, we
identified periods of time that contained at least one diagrammatic event. These
diagrammatic events were viewed several times in order to describe the mathe-
matics that was occurring, to track who was doing the talking, to identify the overall
body language associated with the diagramming, to record spoken phrases, and to
label the apparent mood. These descriptions enabled us to identify, more holisti-
cally, the different roles that the diagram played during the mathematizing.

Over the course of the 12 h of video-recordings, a total of 122 time intervals
were selected for further analysis varying in length from approximately thirty
seconds to approximately six minutes, containing a total of 128 distinct diagram-
ming events. For each of these time intervals, we produced a transcript of the event
as well as the accompanying gestures (in the air as well as on the blackboard). Our
goal was to see whether we could identify different functions that the diagramming
played over time, as the mathematicians worked on their problem, and whether
some functions were more prevalent than others.

In the first section below, we analyze two different time intervals in order to
highlight the material interactions at play, particularly the hand movements that
preceded, accompanied and followed diagramming. In the following section, we
look across the data set in order to propose different types of diagramming events
that occurred, with a view to investigating how the diagramming event enabled
invention, comprehension and communication.

17.4 Diagramming Matters

In his analysis, Châtelet focused on particular diagrams that he argued were
instances of inventive mathematics and from which he hypothesized the significant
role of gestures. In our analysis of the 122 time intervals and the 128 diagrams, we
study not only the production of drawings on the blackboard, but also their evo-
lution over the course of time—that is, we focus on the entire life-cycle of dia-
grams. In doing so, we were able to identify diverse types of diagramming events
that occurred—not just the initial production of a diagram through the movement of
the chalk on the blackboard, but also subsequent additions and deletions, as well as
repetitions of drawings that had been made before. A glimpse into the whole
process reveals how diagrams come into being and are engaged with.

Every time a mathematician makes chalk marks on the blackboard that are not
writings a diagram emerges. This diagram can consist of anything from just a few
strokes, to elaborate, colorful drawings. Once the diagramming mathematician steps
or turns away from the diagram, the episode diagram-is-emerging is concluded and
the episode diagram-is-present begins. If a mathematician adds to or erases from
the original diagram, the emergence of another diagram is signaled. Five settings
are identified when the episode diagram-is-emerging comes about: (1) the mathe-
matician diagrams from scratch during his exploration, which is especially
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noticeable during sustained high diagramming activity such as in research meetings
3, 5 and 9; (2) the mathematician adds to or erases from an existing diagram, which
alters the original diagram; (3) the mathematician re-figures a diagram by tracing
the edges and vertices of an existing diagram (usually a graph), which occurred
every time the mathematicians tried to find out if a given graph on the blackboard
embeds in some surface; (4) the mathematician draws a known diagram by
retrieving it from memory; and (5) the mathematician is directed to draw a diagram
by another mathematician.

Once a diagram has emerged, it is present on the blackboard, regardless of
whether any of the mathematicians engage with or refer to it and no matter for how
long a time period. When and how a diagram emerges and becomes present is of
specific interest as it reveals how the diagram is interacted with from that moment
onwards. In particular, the regularly occurring emergence as described in
(3) throughout the nine research meetings provides evidence that the re-figuring of
diagrams is a crucial element leading to mathematical inventions. In the following
example, we describe an instance of (3) in more detail.

17.4.1 Re-figuring Diagrams

Through exploration of the edges and vertices of one 2-regular orientation of C2
6

(later termed reversed planar octahedron), the three mathematicians had discovered
an embedding of this particular octahedron in the torus. But they wanted to know if
this embedding was unique and how C2

6 could embed, more generally, in a surface
of Euler characteristic zero. For this, they needed to understand how the faces of the
embedding were connected to the edges of the original graph, which they referred
to as identifying closed walks.

The four diagrams in Fig. 17.1 were produced at different times during the
research meetings. In some ways, they look ‘the same’ and could thus be consid-
ered representations of—or icons of—an embedding of an octahedron on the torus.
Such an interpretation would ignore the actions with the hands that produces these
diagrams, indexical actions that—as we show—include the mix of improvisation,
heterogeneity, idiosyncrasy, and partly conventional, culturally specific, and uni-
versal practices evoked earlier by Streeck.

Fred began by drawing the reversed planar octahedron with yellow chalk on the
blackboard from memory (they had worked on it in research meeting 2), but seemed
to be stuck finding the faces of the embedding. He stood back from the blackboard,
looking at it intently. Then Colin joined Fred at the blackboard and asked, “May I
please destroy this picture?” to which Fred replied “Oh, sure.” Colin took the red
chalk and drew lines on top of some of the yellow edges. He also added some new
arrows, some going in directions opposite to the yellow ones. The direction of the
lines/arrows corresponded to closed walks (see Fig. 17.1a). The fact that Colin
re-drew the lines, right on top of the other lines, shows that the ‘walks’ were just

17 Diagramming and Gesturing During Mathematizing … 321



that, movements of the hands along the edges of the graphs, movements that started
and stopped at the same place—actual closed walks. Had they been mere repre-
sentations of a closed walk, Colin would have not re-drawn the lines; it would have
been enough to change the arrows.

All the while, Fred was several times tracing through the diagram with a cupped
right hand (see Fig. 17.2a), which he placed over each of the faces in the diagram as
if his hand was mimicking the perimeter of the faces. During the times when he
uttered “red, yellow”, he alternately moved his index and middle fingers up and
down while at the same time moving his hand successively from face to face. Both
of these are interesting gestures, as they not only embody the alternation between
edge colorings and thereby virtually assemble the faces that the diagram holds, but
the gestures also underline the content of Fred’s utterances, which is a general-
ization of the process of finding the faces.

Colin returned to his seat and a discussion about the closed walks ensued,
followed by silence. During this time, Fred labelled the vertices of the red/yellow

(a): red lines on yellow ones (b): squiggly and dashed lines

(c): labels and thickening lines (d): Victor’s incorrect attempt 
at embedding

Fig. 17.1 a–d Different drawings of an octahedron on a torus
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diagram and softly traced through the edges with red chalk, which can be seen in
Fig. 17.1c. It was not enough for him to see what was on the blackboard. Instead,
he drew the lines again, his hand performing a walk along the graph. The repetition,
by different mathematicians and then by the same mathematician, turns one
idiosyncratic choreography of the hand into a convention and forges the closed
walk on the imagined surface into an object. This is not done through abstraction,
but through ritual action.

In the meantime, at the very beginning of Colin and Fred’s exploration at the
blackboard, Victor got up saying “I can’t see it”, but instead of joining Fred and
Colin, he quietly drew his own version of the embedding on the blackboard (see
Fig. 17.1d) until both Colin and Fred had stepped far away from their diagram.
Next, Fred uttered “So that’s (.) what am I doing? How did I get such funny
numbers? (.) No, but that’s perfect. That’s, that’s an embedding on the torus”,
during which time he stepped closer to the diagram and touch-pointed it. This
statement raised Victor’s interest, who stopped drawing and turned to Colin and
Fred’s diagram and stepped closer. Then, all the mathematicians stared at this
diagram for several seconds (see Fig. 17.2b). Fred emphatically repeated “That’s an
embedding on the torus.” Colin replied “Uh, so you have six vertices, twelve” and
paused, so Fred finished with “Yah! Uh, uh, six vertices, twelve edges and six
faces.” Then Colin responded “Six faces is the torus, yah, yah”, and Victor chimed
in with “Yah, yah, that’s what I was doing” and walked to his diagram. The next
few minutes, the three mathematicians discussed their findings. Victor wanted to
know which polygonal faces Colin and Fred used, both of whom responded by
describing and counting the types of polygonal faces while touch-pointing them in
the diagram.

During this episode, the diagramming, gesturing, positioning of the bodies, and
verbalizing were entwined acts, which culminated in the three expert mathemati-
cians forming a shared understanding of their discovery of the funny octahedron’s
embedding in the torus.

Next, Fred stated “I am curious how much symmetry of this you can keep when
you take this funny embedding of the thing on the torus” and began to redraw the

(a): Fred cupping his hand over 
faces

(b): Mathematicians stare at diagram shown in 
Figure 17.1a for several seconds

Fig. 17.2 a, b Mathematicians interacting with diagram
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embedding of the funny octahedron in the torus, which took him about two minutes
to do. He used Fig. 17.1a to trace along the edges, which guided him in drawing the
faces in his new version of the torus embedding using the same yellow and red
chalk coloring (see Fig. 17.3). These diagrams were drawn by the mathematicians
in order to understand the mathematical structure of the funny octahedron on the
torus. It was necessary for Fred to trace along the edges and pause at the vertices of
the diagram shown in Fig. 17.1a in order to produce a new version of the same
graph. In Châtelet’s terms, the constant back and forth between Figs. 17.1a and
17.3 helps actualize the virtual structure through this re-figuring.

Now that the mathematicians had discovered the embedding of C2
6 in the torus,

they wanted to know if this embedding is unique and how C2
6 can embed generally

in a surface of Euler characteristic zero. For this, they needed to understand how the
faces of the embedding are connected to the edges of the original graph, which they
referred to as closed walks. Fred noticed that “also around each, around each red
edge you see a directed four cycle just taking those two faces”, and half a minute
later he stated “So if we say we have only quadrangles [sic], maybe we can work
out, uh, what the possibilities are.” Colin responded with “So we can try using no
triangles, uh, uh, and then there would be only squares.” During this utterance,
Victor walked to the blackboard and joined Fred there tracing and touch-pointing at
the diagram in Fig. 17.1a while exploring the connection between the edges and
faces. After about a minute, Fred exclaimed: “Wait! I don’t understand. Are you
taking, are you taking these two?” A silence of 11 s ensued, then Colin again came
up to the blackboard and picked up the white chalk. He covered some of the edges
of the reversed planar octahedron with squiggly and dashed lines (see Fig. 17.1b).
Again, Fred walked up to the diagram and this time used the index finger of his
right hand to trace over Colin’s added lines (see Fig. 17.4a). This is a literal sense in
which Colin’s gesture/drawing gave rise to a new gesture by Fred, which
re-produced the closed path, thus re-figuring the diagram yet again.

Another 10 min passed, during which time Fred and Colin explored the parity of
the closed walks in the reversed planar octahedron. They did this by referring to
their two diagrams (Fig. 17.1a, b), pointing to them, tracing over them and touching

Fig. 17.3 Re-figuring
Fig. 17.1a
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the edges and vertices. Then Fred indicated that he finally understood how to argue
that the embedding is unique and turned to the diagram drawn in red and yellow.
First he traced through the edges (see Fig. 17.4b) and then added thin and thick
white lines. He then exclaimed, “Let me make a total mess of this” (producing
Fig. 17.1c). Afterwards, Colin traced through the edges of this diagram with his
index finger to identify closed walks (see Fig. 17.4c), while both he and Fred
verbalized their satisfaction with their argument.

During all this time, the third mathematician, Victor, joined the discussion at
times, but also explored the graph on his own on paper. However, his diagramming
was ignored by the other two mathematicians. At the very end, Victor was asked by
Colin “Is that clear (.) so (.) Victor?’, to which Victor readily responded “yeah” and
nodded his head in agreement.

Far from being fixed representations of mathematical objects or relations, the
diagrams shown in Fig. 17.1—despite their static nature on the page—unfolded
over time, changing and growing with added marks, traces and touches. The
continuous lines made in both red and yellow chalk involved quite different hand
movements than the dashed, squiggly and thick lines that were piled on top of the
original, thin lines—resulting in a layering of new closed walks that were some-
times tentative, and sometimes needing to be insisted upon. The smudges of chalk
and finger prints on the blackboard within Fred’s diagram (see Fig. 17.1c) were
evidence of the erasing and touching of edges and faces, thereby speaking of the
intimate engagement with the objects and relations that were coming into being.

Interestingly, all three diagrams by each of the mathematicians (see Fig. 17.1a,
b, d) were drawn with the same orientation, which was not the case in previous and
a subsequent explorations of the mathematicians. Their diagrams also display
rotational symmetry with a 120-degree angle of rotation. While Fred and Colin’s
diagrams are based on an existing representation of the funny octahedron, albeit in
the projective plane, Victor’s diagram does not resemble any previous represen-
tation of the funny octahedron and employs only one color, although two edges
stand out more because he draws over them so often when he is explaining his
method to the mathematicians. At a fleeting glance, one can argue that these are still
the same diagrams, by just morphing the curved edges of Fig. 17.1a into straight
lines and rotating the entire diagram by a 180-degree angle of rotation through the

Fig. 17.4 a–c Examples of diagram-is-emerging

17 Diagramming and Gesturing During Mathematizing … 325



center. Yet, Victor’s explanations, which he offers a little while later, elucidate that
he is using the idea of Venn diagrams to represent the inner triangle, outer triangle,
hexagon and the three quadrilaterals of the embedding. When Fred and Colin are
curious how the faces align, they almost immediately discover that Victor’s dia-
gram is actually an embedding of the funny octahedron in the Klein bottle rather
than the torus. Furthermore, Fred’s diagram had vertices labelled and edges ori-
ented, Colin’s diagram was void of any labels and orientation, and Victor’s diagram
had only the orientation of edges. Therefore, the diagrams by the three mathe-
maticians provided further evidence of how uniquely virtual gestures are actualized.
However, these personal actualizations are also indicative of a common ground
among the mathematicians to realize the possible mathematics, as was discovered
here.

In the above example, which occurred over a period of about thirty minutes, the
diagram is being brought into being, which Menz (2015) refers to as the manu-
facturing phase. The diagram is present, available both to the mathematician who
has drawn it, as well as to his colleagues. This manufacturing phase is one of
intense material interaction, but once the diagram is on the blackboard, as when
Fig. 17.1a was made, additional material interactions can occur, as in the
re-drawing, tracing and touching that was seen above. These interactions serve the
purpose of bringing relations and objects into being; providing a site for repeated
gestures that can eventually become captured into, in this case, a closed walk;
highlighting, bracketing or connecting certain objects and relations for further
attention. Each of these actions further shapes the diagram, as it shapes the math-
ematicians’ reasoning.

In the next example, we analyze a similar situation in terms of the material
interaction, but where the diagram plays a different function than the ones described
above.

17.4.2 Example 2: The Diagram Reveals

During meeting 2, the mathematicians were exploring the embedding of an
unknown graph and were expecting the faces of the embedding to consist of four
3-cycles and two 4-cycles. Fred was working at the blackboard and attempting to
find these particular cycles. Fred spent about four minutes standing in front of the
blackboard, most often with his arms crossed, but several times stepping forward to
draw or gesture. The first time, he approached the board, saying “I can go here
(tapping on top left vertex, then following arc to top right vertex), here (tapping
second vertex, then following an arc to bottom vertex) here” (see Fig. 17.5a). The
three instances of “here” were accompanied by the three sounds of taps on the
board. No new lines were drawn, but his arms remade the circuit.

A couple of minutes later, standing back from the board, his right hand made
quicker and smaller scale, in-the-air movements, that involved more turning of the
hand than translating of the hand along lines. Then he approached the board and
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drew a label on the top line (see Fig. 17.5b). He then made several more small,
quick in-the-air hand gestures, paused and then erased several of the arrows on the
lines with his fingers. This was followed by yet more small, quick gestures and then
he started to draw new arcs wrapping around the vertices of the graph. After
drawing the arcs, his right hand, which was holding the chalk, traced out yet
another circuit, this time returning to a larger gesture. He then stood back (see
Fig. 17.5c) and came forward several times, then approached the board and moved
his chalk in the air, drawing virtual lines close to the surface of the blackboard.
After drawing a few more arcs on the board, he stepped away from the blackboard
and exclaimed, “Oh! It’s not three, three, three, three, four, four. It’s five threes and
a five.”

There were three types of gestures that occurred in this four-minute interval: the
large arm movements that created a virtual circuit and were close to the board; the
smaller hand movements that were further from the board but also created virtual
circuits; and, the curved hand movements that left a trace on the blackboard around
the vertices of the graph. These all followed, evidently, the creating of the actual
graph (drawing) on the blackboard, as well as the re-drawing of the graph that we
discussed earlier. The drawing, re-drawing and large gesturing involve the same
movements of the arm, all at the scale of the graph, with the large gesturing being
evidence of Châtelet’s sprouting of gestures from diagrams, gestures that begin to
actualize a cycle. In the shift from large to small gestures, from arms to hands, the
process of actualization continued, now turning a longer traversing of the graph into
a quick, settled cycle. The last gestures, which left their traces on the board, carved
out the corners of the cycles, inscribing the turns of the wrist that featured in the
small gestures—and in this sense, the resulting drawing captures the gesture, as
Châtelet theorized.

It is tempting to say that the diagram, as a representation of the embedding,
contains the structure required to reveal everything about its cycles. But this would
ignore the extended labor involved in drawing and re-drawing edges, in gesturing
across from vertex to vertex, as the embedding takes shape, and embedding that is
presumed to have a certain property. It is not a question of inferring something from
a given diagram since the diagram is being shaped along with the realization of the
cycles.

Fig. 17.5 Mathematician tracing edges (a), drawing over edges (b), and staring at diagram (c)
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17.5 Characterizing Diagramming Practice Over Time

Therewere 179 distinct diagrams recordedwith the picture camera during the research
meetings; however, this number does not include the erased and drawn-over diagrams
that were not captured but that are recorded on the videos of the research meetings.
Very rarely, a mathematician would place just a few chalk marks on the blackboard
and immediately erase them, which occurred at most once in each research meeting.
Furthermore, during sustained high diagramming activity such as in research meet-
ings 3, 5 and 9, for every two diagrams of which a digital photo was taken, another
diagram was either drawn over or partly erased. Since there is no clear demarcation
between the beginning and ending of diagramming, there was a fine balance between
getting the data and not disturbing the meeting. Based on the viewing of the video
recordings by the first author, there are an estimated twenty diagrams that are recorded
only on video and not as digital photographs. Therefore, there are about 200 diagrams
drawn during the nine research meetings.

By looking at each one of the diagramming intervals, we were able to identify
different functions of interactions between mathematician and diagram in inventive
mathematical processes, which are captured in the life-cycle of Fig. 17.6. We were
interested in doing this in part because Châtelet provided little insight into how the
diagramming process evolved from suggestedmovements of the hand tomore refined,
shared and dependable diagrams that could appear as part of the formal mathematical
discourse. We propose that the diagram life-cycle is divided into three phases, which
concern themselves with (1) how the mathematician brings the diagram into being–
manufacturing phase; (2) what the relationship is between the diagram and the
mathematician–communication phase; and (3) how the mathematician resolves, in
simplistic terms, whether the diagram stays or not–dénouement phase.

Fig. 17.6 Episodes, phases and their relationships in the life-cycle of a diagram
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In each phase, so-called episodes describe a particular function of interaction
between diagram and mathematician. The term episode is chosen because it alludes
to both a period of time and a side-story being told. The analysis shows that
throughout the life-cycle of a diagram, from its creation to its ‘establishment’ or
‘obliteration’, there are eleven distinct diagram episodes: emerging, present, un-
supportive, disruptive, supportive, pulling, central, discarded, obliterated, absent
or established (see Menz 2015 for descriptions and examples of each). It is
important to point out that not all of these episodes need to occur in the life-cycle of
a particular diagram, except for diagram-is-emerging followed by
diagram-is-present, since its occurrence is dependent on the relationship the
mathematician has with the diagram.

As indicated in the methodology section, 122 time intervals of interest for further
analysis were selected, which contain a total of 128 diagrams. Only the first
occurrence of a diagram was counted. In other words, if a diagram in a particular
time interval had already been counted in any of the previous time intervals, then
this diagram was not counted again. This means that of the estimated total of 200
diagrams, the data analysis contains 64% of the diagrams. Since each diagram was
identified with an episode, we were able to conduct a quantitative analysis of the
eleven diagram episodes, the result of which is shown in Fig. 17.7. Even though
only 94 out of the 128 diagrams are shown to emerge in the selection of 122 time
intervals, the episode diagram-is-emerging is still regarded to be 100% of the total
number of diagrams, because every one of these diagrams was created by the
mathematicians at some point during the nine research meetings. Once a diagram
has emerged, however sketchily or incompletely drawn, it is present on the
blackboard, no matter for how short or long a time period. Therefore, the episode
diagram-is-present also occurs as 100% of the total number of diagrams. The
remaining nine types of diagram episodes were counted and their percentage was
calculated compared to the 128 total diagrams. Every so often, more than one
episode in the life-span of a diagram was identified, and therefore, the percentages
in Fig. 17.7 for the bottom nine types of episodes do not add up to 100%.

The two most common of the nine episode types from the communication and
dénouement phases are diagram-is-supportive and diagram-is-central at 37 and
38%, respectively. This does not come as a surprise, because the diagram is chosen
by the mathematicians in order to explore the mathematics of their research. In
other words, a diagram is the quintessential playground, where a mathematician’s
intuition and experience shape the mathematics that is under exploration, since “one
is infused with the gesture before knowing it” (Châtelet 2000, p. 10). This becomes
even more evident in the mathematicians who gestured a diagram during speech
before the chalk marks created it on the blackboard. It is in the same sense that de
Freitas and Sinclair (2012) emphasize that “[the potential] marks that which is latent
or ready in a body. In the case of the diagram, the potential is the virtual motion or
mobility that is presupposed in an apparently static figure—and that was central to
its creation in the first place” (p. 139). Perhaps this also explains why the episode
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diagram-is-unsupportive is the least common type of episode with only a 5%
occurrence. The mathematician’s physical and mathematical intuition shapes his
gestures that actualize the diagram, thereby realizing the mathematics that is pos-
sible rather than the mathematics that is not.

17.6 Discussion

One might see the discovery of uniqueness (for the embedding of the reversed
planar octahedron in the torus using a parity argument of closed walks) as some
kind of mental process, and as such an abstraction that does not partake of the
physical world. However, the data we have presented and analyzed contrast this
point of view and provide evidence that the mathematical result derives from an
embodied, material engagement with diagrams. The diagrams involve material
objects (e.g., edges, vertices, graphs, embeddings) and relationships (e.g., closed
walks) that are made by the hand in time, manipulated and experimented with, and
actualized through gestures and drawings. The two mathematicians’ abundant
production of material, indexical signs on the blackboard, their subsequent direct
and intimate engagement with these marks, and the prolific gestures that accompany
speech and hint at the mathematical entities that are being explored through the
diagram are all evidence that the diagram is not merely a representation of a known
object, nor merely a fixed platform on which to experiment. The diagram is the
mathematical becoming.

Fig. 17.7 Quantitative analysis of diagram episodes
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Furthermore, we argue that the diagram is given a voice through the virtual and
physical gestures of the mathematician, which speaks not only to the gesturing
mathematician but all of its participating onlookers such as the third mathematician
Victor. Considering all the episodes that are possible in the life-cycle of a diagram,
the diagram is more than what it depicts: it constantly reassembles itself for the
mathematician as he engages with the diagram virtually through gestures (e.g.,
points, traces, stares) or physically (e.g., adds, erases, draws over). Through the
lenses of anthropology, archaeology, art and architecture, Ingold (2013) offers the
following insight from his study of drawings: “The drawing that tells is not an
image, nor is it the expression of an image; it is the trace of a gesture. […] Thus the
drawing is not the visible shadow of a mental event; it is a process of thinking, not
the projection of thought” (p. 128, emphasis in original). Ingold’s conclusion
equally serves this study of mathematical drawings, because ultimately, the diagram
tells the story of how innovative mathematics comes into being.

Researchers such as Kita (2000), Krummheuer (2013), Lakoff and Núñez
(2000), McNeill (2008) and Radford (2001) agree that gestures make thought
visible. What is new in recent studies on gestures and thought “is the effort to
identify causal and measureable relations and interactions between bodily behavior
and hypothesized internal processes and to explain these within embracing and
detailed theories of kinetic, communicative, cognitive, and symbolic systems”
(Streeck 2009, p. 172). As exemplified above, in the culture of mathematical
research in Topological Graph Theory, gestures play a vital role in that they not
only support communication among the mathematicians, but also kinesthetic and
haptic experience with the diagram and the mathematical meaning that the diagram
holds; and thereby they support each mathematician in his ideational realm.

Aside from Châtelet’s diagrammatical studies that cover Algebraic Manifolds,
Calculus, Complex Numbers, Coordinate Geometry, Geometry, Infinite Sequences
and Series, Ordinary Differential Equations, Partial Differential Equations,
Symmetry, Classical Mechanics, Electricity, Magnetism, Quantum Mechanics and
Relativity Theory, there are other studies that similarly investigate diagramming,
gesturing and mathematizing. The sociologist Christian Greiffenhagen (2014) uses
one mathematical lecture in Mathematical Logic as a paradigmatic example “to
extend the ‘material turn’ to an instance of abstract thought” (p. 21). In his analysis,
he similarly observes gestures of pointing and of mathematical entities during
utterances and notes that while logicians are “predominately [sic] concerned with
symbolic writing [diagrams] are nevertheless a crucial aspect of some parts of their
practice” (p. 23). Barany and MacKenzie (2014) studied the activities of mathe-
maticians engaged in partial differential equations and related topics while working
on the blackboard. They draw awareness to the gesture space between the black-
board and the mathematician that lends itself to exhibit intuition, invention and
discovery: “In the pregnant space between chalk and slate there reposes a germ of
the bursts of inspiration, triumphs of logic, and leaps of intuition that dominate
mind centered accounts of mathematics” (pp. 10–11). We cannot say with certainty
that every mathematical field is prone to so much diagramming and gesturing as
witnessed in Topological Graph Theory through the research meetings.
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Nonetheless, the findings suggest that awareness needs to be raised to the acts of
diagramming in particular as indexical signs of engaging with and creating
mathematics.

Lastly, we want to discuss some possible implications of these findings for the
teaching and learning at all levels of acquiring mathematics. In their creative phase
the mathematicians needed to see and feel objects and their relationships in order to
gain an understanding about them or to explore how they could be altered or newly
positioned to extract new insights in their field. How do we, as teachers in general
and at all levels, allow our students to see and feel in the classroom or the office?
How prevalent is the use of regurgitated visual products in order to explain, for
example, what a parabola looks like instead of what a parabola is? How often do we
create an environment that places each student in the position of a mathematician,
where the student explores the relationship between input x and output x2 + c,
perhaps dynamically using geometry software, or drawing by hand the locus of
points such that the distance to a given focus equals the distance to a given
directrix? These are all environments, where the student is bound to point, touch,
hold, trace, add and delete, which may lead to further material engagement with the
curve and the curving that is the parabola.

17.7 Conclusion

While Châtelet only hints at the whole process of diagramming during mathe-
matical invention, the analysis of the 122 time intervals and the 128 diagrams
allows a glimpse into the whole process and reveals how diagrams—seen from a
material semiotic perspective—come into being and are engaged with. These
findings enrich Châtelet’s theories by being able to identify the different functions
of interactions between mathematician and diagram in inventive mathematical
processes. The explications of the two episodes above reveal that diagramming
during mathematizing is a ritual kind of practice (done over and over again) that
offers a physical arena for experimentation. We suggest that the life-cycle functions
may also offer fruitful avenues for helping students incorporate diagramming into
their own mathematical problem solving, if only by seeing how drawing lines on
paper might initiate new gestures and new ideas.
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Chapter 18
Objectifying the Inclusion
Relationship of Quadrilaterals
in a Synchronic-Interactive
and Collaborative Computer
Supported Environment

Osama Swidan and Naomi Prusak

Abstract This study aims at understanding the role of synchronous collaborative
computer supported environments in objectifying the inclusion relationships of
quadrilaterals. We choose the inclusion relationships of quadrilaterals since, on one
hand, this topic has the potential for promoting the development of geometrical
thinking, and on the other hand, several studies have clearly shown that a great
number of students have problems with learning this complicated concept. The
study reports on six ninth grade students working with the Virtual Math Team
environment (VMT) while coping with three tasks that were meticulously designed
to motivate collaboration among them. The study is guided by the theory of
knowledge objectification and the data were analyzed using the semiotic tools of
attention and awareness. The analysis of the data suggests that the students
objectified the inclusion relationships of quadrilaterals. The study shed light on the
nature of the social interactions between the students and the technological artifact
during the objectification processes. Insights for re-designing the learning tasks and
for further research were also drawn.
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18.1 Introduction

The promotion of collaborative learning has become a central educational goal in
the last decade. It was found that problem solving and concept learning may be
enhanced by the use of cooperative groups. Collaborative settings in which argu-
mentation is fostered may promote conceptual learning (Schwarz 2009). However,
this potentiality is rarely realized. As noted by Webb (1995), arranging students in
small groups rarely leads them to collaborate, even when students are given scripts
or instructions in advance for collaborating. Indeed, teachers also need to structure
tasks to support collaboration (e.g., Mercer 1996). Design principles such as the
creation of socio-cognitive conflict, or the administration of complex tasks that
demand coordination of action may encourage collaboration in certain cases. Yet,
even when appropriate conditions are created to trigger collaboration, students have
difficulties in maintaining it in the end. In this situation, scientists have created a
new field—Computer-Supported Collaborative Learning (CSCL), in which tech-
nological tools are designed for affording productive collaboration in group-work
(Stahl 2013). The present chapter presents a study in which a CSCL environment
was used to foster the learning of a challenging idea in geometry, namely, the
inclusion relationships of quadrilaterals.

Several studies have clearly shown that many students have problems with the
inclusion relationships of quadrilaterals (e.g., Fujita and Jones 2007). The term
inclusion relationship means here the classification of a set of concepts in such a
manner that the more particular concepts form subsets of the more general concepts.
The inclusion relationship of quadrilaterals helps in promoting the development of
geometrical thinking (Fujita and Jones 2007). According to De Villiers (1994) there
are some important functions of this inclusion relationship: (a) It simplifies the
deductive systematization and derivation of the properties of more special concepts;
(b) It often provides a useful conceptual schema during problem solving; and (c) It
sometimes suggests alternative definitions and new propositions. For example, to
justify why a square is a kite, learners need to be able to examine its properties. The
fact that a square has more properties than a kite should not impinge on the right
answer, but in everyday reasoning, it does: children find it difficult to distinguish
between critical and non-critical properties (Erez and Yerushalmy 2006). Several
researchers observed that dynamic geometry software offers great potential for
conceptually enabling many children to see and accept the possibility of hierar-
chical inclusions; for example, letting them drag the vertices of a dynamic paral-
lelogram to transform it into a rectangle, a rhombus or a square (Fujita and Jones
2007). Dynamic geometry tools enable the testing of hypotheses and the manipu-
lating of geometrical objects. Indeed, through the dragging action, students often
switch back and forth from examples of figures to concepts and this move might
push students from material manipulations to high-level reasoning (Hanna 2000).

Our general assumption was that collaboration supported by dedicated tools and
peer interaction would entail a shift from reasoning based on perceptual objects that
appear on the screen to reasoning moved by logical necessity, ultimately leading to
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proving, thereby providing the possibility of facilitating the objectification of the
inclusion relationship of quadrilaterals. The aim of the research was to better
understand the role of synchronous collaborative computer supported environments
in students becoming fully aware of the inclusion relationship of quadrilaterals. To
shed light on the effectiveness of the suggested learning environment, we used
semiotic lenses in analyzing the development of students’ understanding of the
inclusion relationship through peer interactions. By this means, in this chapter we
address the question of how middle school students become aware of the inclusion
relationship of quadrilaterals in a synchronous collaborative computer supported
environments.

18.2 Theoretical Perspective

The theory of knowledge objectification, which guided the present study, considers
learning as a process of objectification (Radford 2003). In other words, learning is a
matter of actively endowing with meaning the conceptual objects (e.g., inclusion
relationship of quadrilaterals) made available by artifacts. Objectification as a
theoretical tool enables a thorough analysis of the interaction between conceptual
objects deployed in the artifact and the subjective meanings of the students.

The theory of objectification considers thinking to be a mediated reflection in
accordance with the form or mode of activity of individuals (Radford 2008).
Radford uses the term “mediating” to refer to the role played by artifacts in carrying
out social practices and considered artifacts as constitutive and consubstantial parts
of thinking. He maintained that we think with and through cultural artifacts, which
are essential sources of learning, and shape our thinking. Artifacts are carriers of the
historical knowledge that has been produced through the activities of the last
generations. Therefore, social practices are not limited to the interactions between
people in a learning setting but also include the interactions conducted with the
cultural artifact. For Radford, reflection means a dialectical movement between a
historically and culturally constituted reality and individuals who refract and
modify it according to their subjective interpretations, actions, and feelings. In the
mediated reflection process of learning, the semiotic means are considered funda-
mental constituents of thinking because they mediate the social activity, and bind
the individual to the historical and cultural dimension of the mathematical object.
Bartolini Bussi and Mariotti (2008) argued that the relation between the artifact and
the accomplishment of a task is expressed by signs such as gestures, speech, and
drawings. Arzarello et al. (2009) broadened the range of signs relevant in the
teaching-learning process to include words, gestures, glances, drawings,
extra-linguistic modes of expression, and technological artifacts. In agreement with
Radford (2008), Arzarello et al. (2009) and Mariotti (2009) considered these
semiotic means to be crucial in learning processes because of the role they play in
the meaning coming to life. Learning as objectification requires making use of
different semiotic means such as words, symbols, actions with the artifact, rhythmic
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speech, and gestures available in the universe of the discourse (Radford 2003).
Radford referred to this process as a “semiotic means of objectification.”

From a pragmatic point of view, Radford suggests a semiotic tool to analyze
educational mathematical activities in the classroom. The basic components of the
semiotic tool are the students’ attention and awareness of the mathematical object.
Varieties of semiotic means of objectification that have a representational function
attract the students’ attention to mathematical objects. Furthermore, the properties
of the artifact can help students to attend to the mathematical objects related to the
activity under consideration. Through paying attention to the necessary aspects of
the mathematical phenomenon and using various semiotic means of objectification,
students become aware of the attributes of mathematical objects within that phe-
nomenon. By being aware, students attain objectification of the mathematical
objects, which then become apparent to them through various devices and signs
(Roth 2015).

It has been suggested that in order to boost learning processes through tech-
nological tools, a series of learning tasks should be given to students with the aim of
achieving a specific learning objective. In the theory of knowledge objectification,
learning tasks are means for achieving the type of praxis cogitans1 or cultural
reflection (Radford 2008). The character of the tasks can encourage students to
actively engage with and explore the mathematical relationships contained in the
artifact and to become aware of these relationships. In addition, tasks have a
mediating role between the artifacts, the signs that emerge as a result of using the
artifact, and the mathematics culture.

Being in a problem solving situation and thinking mathematically require the
students to reflect on the task. The process of reflection facilitates the students’
awareness of their own solution processes and methods. Students who are
encouraged to offer explanations for their reasoning and are motivated to reflect on
it, will eventually come to understand that such processes are intrinsic to learning
by doing mathematics (Schoenfeld 1994). Tasks that are good candidates for
considering and learning about mathematical relationships provide challenges to
students, encourage argumentation processes, and provide social interactions
between learners (Andriessen and Schwarz 2009). To design tasks that encourage
productive argumentation and rich social interaction, scholars (e.g., Prusak et al.
2012) proposed several factors to be considered: (a) the creation of collaborative
situations; (b) the design of activities that allow for the establishment of
socio-cognitive conflict; and (c) the provision of tools for checking hypotheses.

Based on the aforementioned principles, we designed the research experiment
activity presented in the next section. We used the task design principles to design
the three tasks that invite the students to engage in the process of objectifying the
hierarchical inclusion relationship of quadrilaterals.

1The Latin term, cogitans, means thinking. Radford uses the term praxis cogitans to stress the idea
that the way we think is a form of cultural practice.
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18.3 The Research Design Experiment

18.3.1 The Synchronic-Interactive and Collaborative
Artifact

To fulfill our research aim we used a Computer-Supported Collaborative learning
(CSCL) environment that used technological tools designed for affording produc-
tive collaboration in group-work. We designed the research experiment in a way
that allows students to engage in productive dyadic argumentation. The CSCL tool
we chose was Virtual Math Teams (VMT). The Virtual Math Teams is a mathe-
matics forum that includes a GeoGebra applet (Fig. 18.1) shared by all participants,
and offers them the opportunity to collaborate on geometrical tasks (Stahl 2013).

The VMT interface includes two spaces:

(a) A drawing space in which small groups of students can share their mathe-
matical explorations and co-construct geometric figures online. When one of
the participants drags or constructs a geometrical figure, all the others can see
the changes of the figure. Only one student can interact with the figure at a
given moment, by taking control of manipulations.

(b) A text chat window, where students write their ideas and share them with their
peer. In this way, students can scroll up and down to return to previous con-
versations (Fig. 18.1).

Fig. 18.1 VMT interface
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18.3.2 The Participants

The participants in this research were six ninth-grade students. All participants were
high achievers in mathematics and studied mathematics at the highest level in their
schools. At the time the meetings took place, the students had already learned
geometrical basic concepts, such as special lines of triangles, congruency of tri-
angles and the properties of different quadrilaterals. The students were familiar with
the dynamic geometry environment (DGE), which was part of their previous study
of geometry within the framework of the formal school curriculum. They were
familiar with using congruence theorems and were able to write and prove ele-
mentary theorems, based on the use of congruence theorems. The students studied
Euclidian geometry from a textbook that is available for middle school students in
Israel. Generally, the textbooks contain a brief theoretical discussion of the concept
and provide exercises to apply the concepts and strategies to solve geometrical
problems.

18.3.3 The Tasks

The design of the tasks relied on the theory of knowledge objectification and the
design principles aforementioned. Accordingly, we designed an inquiry activity that
consists of a sequence of three tasks. We designed the tasks to invite the students to
engage in a problem-solving situation and to explore the mathematical structure of
the inclusion relationship of quadrilaterals contained in the artifact. The aim in the
first task was to provide a situation in which two properties of the diagonals are
given and yet these properties are not sufficient for generating a specific type of
quadrilateral. We assumed that the student would hypothesize that the quadrilateral
should be either a kite or a rhombus, and the dragging option of the dynamic
geometry (DGE) software would generate a situation of conflict between their
expectation and the outcomes. We assumed that this situation of conflict would
stimulate the need for proving. In each of the three tasks, students were asked to go
through similar phases: (a) to find individually a solution and write it in the chat
room; (b) to work collaboratively in the VMT room in dyads or triads and to try to
reach a consensus concerning the solution; (c) to check conjectures through the
DGE software. In the cases in which a wrong conjecture was drawn, students were
asked to raise a new conjecture and to recheck it with the DG tools; (d) to prove and
draw conclusions. In the second and the third parts of each task, the properties of
the diagonals were changed in a way illustrating the hierarchical inclusion rela-
tionship of quadrilaterals. The aims in the second and third tasks were as follows:
(i) to realize that the properties of the diagonals are sufficient for generating a
specific quadrilateral; (ii) to realize that when dragging and exploring, the shape of
the quadrilateral might change, but some of its properties remain constant the very
properties that characterize the type of quadrilateral; (iii) to construct hierarchical
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inclusion relations in the family of quadrilaterals (see Fig. 18.2). For each task, we
designed an applet in such a way that the two segments given fulfill the require-
ments of the task.

18.3.4 Data Analysis

We analyzed the data using the pragmatic point of view of the theory of knowledge
objectification in order to fulfill the research aim. The theoretical assumption of the
theory of knowledge objectification is that through the process of becoming aware

Fig. 18.2 The tasks and instructions given to the students
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of mathematical relationships, students mobilize multi-modal actions (e.g. gestur-
ing, speaking, writing, drawing, etc.), through which mathematical meanings are
formed. We examined the ways in which dyads and triads used
synchronic-interactive and collaborative artifacts in the process of objectification of
the inclusion relationship of quadrilaterals. We used the basic components of the
semiotic tool, namely, the students’ progressive attention and different stages of
awareness of the mathematical object, as suggested by Radford (2003) and Roth
(2015), to analyze the dynamic development of the inclusion relationship.

We analyzed the data in two phases. In the first phase, we read the transcripts to
detect the focuses of objectification of the inclusion relationship of quadrilaterals.
Focuses of objectification were defined as segments of discourse in which the
students sought to discover possible relationships between the quadrilaterals and to
come up with conjectures about the inclusion relationship of quadrilaterals. In the
second phase, we wrote descriptions of each student’s work, drawing special
attention to the semiotic means used by the students and the interactions between
the students themselves and the artifacts. In this phase, we also analysed the
becoming aware movement of the inclusion relationship. Doing so, we used the
three dimensions of becoming aware suggested by (Roth 2015), namely, being
unaware, latent awareness, and full awareness. We said that the students are being
unaware if the students did not pay attention to the conceptual object that is dis-
played in the artifact. We said that the students have latent awareness of the
inclusion relationship when they declare the existence of an inclusion relationship
of quadrilaterals. Declarations about the existence of inclusion relationships of the
quadrilaterals tended to be based on visual and experimental considerations. For
example, when students observed a square while dragging a family of rectangles
and declared that a square is a special case of a rectangle, we said that the students
had latent awareness of an inclusion relationship. Justifications and interpretations
based on taking into account the common properties of the shapes and considering
the deductive reasoning of what students had noticed were defined as full aware-
ness. For example, we said that students became fully aware of an inclusion rela-
tionship between a square and a rectangle when they justified this phenomenon by
explaining that the diagonals of squares have the same properties as rectangles, i.e.,
diagonals are congruent and they bisect each other.

18.4 Findings

In the first task, the students were asked to explore for which quadrilaterals,
diagonals are equal and perpendicular.
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18.4.1 Latent Awareness of the Relationship Between
the Diagonals and the Quadrilaterals

1. Neta Drags
point D

2. Avia I think it is a kite or a rhombus, but I am not sure about the
difference between them.

3. Neta It seems to be a rhombus, since the diagonals are perpendicular
and congruent.

4. Avia Drags
point D

5. Neta In a kite the diagonals are not congruent

This excerpt (Fig. 18.3) illustrates the being unaware phase of the inclusion
relationship between quadrilaterals. Although the excerpt does not include an
indication of using an inclusion relationship, it still considers an important phase in
objectifying the inclusion relationship. This excerpt demonstrates the process of
latent awareness of the relationship between the diagonals and the quadrilateral.
Neta’s utterances [2] and [3] suggest that they are not yet fully aware of the
relationship between the diagonals and the quadrilaterals. Their subjective meaning
is partially fitting the mathematical meaning of the relationship between the diag-
onals and quadrilaterals. In other words, the rhombus’s diagonals are not always
congruent, and the kite’s diagonals might be congruent.

Furthermore, the dragging action afforded the mediation and reflection processes
in the course of becoming aware of relationships between the diagonals and the
quadrilaterals. The social practices resulting from the dragging tool were charac-
terized by Avia raising a conjecture [2] regarding the type of quadrilateral, and her
partner elaborating the conjecture [3]. Dragging the quadrilateral allowed the stu-
dents to see different objects on the screen. This aspect encouraged discussion
between the students, which afforded the students latent awareness of the inclusion
relationship, as the next excerpt illustrates.

Fig. 18.3 I Neta drags point D and produces a kite; II Neta drags point D and produces a
rhombus; III Avia drags point D and maintains a rhombus
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18.4.2 Latent Awareness of the Inclusion Relationship
Between Kite and Rhombus

It seems that Avia was not fully convinced by Neta’s determination that the
quadrilateral is a rhombus. So Avia dragged point D once, and then point B. Her
action dragging point B suggests that Avia was looking for new type of quadri-
laterals, other than rhombuses and kites (Fig. 18.4).

6. Avia Drags point D and
then point B.

7. Avia It is a rhombus …

8. Avia But in a rhombus, the sides must be congruent. Are
they?

9. Neta Yeah, so we must prove it.

10. Avia Drags point B

11. Neta It may be a kite.

12. Avia Drags point B

13. Avia It also could be a square. Although sometimes when
you drag it. It does not maintain as a square …

14. Neta So, it is not a square.

15. Avia It is a kite or a rhombus.

16. Neta It is a kite since rhombus is a special case of kite

This except illustrates the processes that allowed the students to achieve latent
awareness of the inclusion relationship between rhombus and kite, as suggested by
utterance [16]. At this phase the students just became latently aware of the inclusion
relation but not fully aware of it, as evidenced by the students mentioning the
inclusion relationship without discussing the connections between the two
quadrilaterals and their diagonals.

The process of becoming latently aware of the inclusion relationship was a
complex one and included iterative engagement with the artifact, raising conjec-
tures, refuting them, and becoming aware of the invariant aspect within the artifact.
The dragging action played a central role in the dialectical movement between the

Fig. 18.4 I Avia drags point D and produces rhombus; II then Avia drags point B and produces a
quadrilateral which is not rhombus; III Avia drags point B and produces a kite; IV Avia drags
point B and produces a square
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subjective meaning of the students and endowing it with the mathematical meaning
of the inclusion relationship. This dialectical movement afforded the students to
become aware latently of the inclusion relationship. In addition, the social practices
that emerged throughout this phase of learning also afforded them to attain this
latent awareness. The social practices are characterized by a chain of processes:
dragging the quadrilateral; raising a conjecture; challenging the conjecture; raising a
new conjecture. Looking for the quadrilateral whose diagonals are perpendicular
and congruent through this chain of processes, engaged the students in producing
various shapes of kites. One of these kites was a rhombus. All of these processes led
the students to the latent awareness of the inclusion relationship between kites and
rhombuses.

To summarize this phase of the learning, the dragging tools and the shared
screen allowed the students to become latently aware of the inclusion relationship in
the case of kites and rhombuses. The interaction between the students in the chat
window allowed them to become aware of the congruence between the quadrilat-
eral’s properties and the invariant aspects that were kept in the figure. Yet, at this
phase, the students did not become fully aware of the inclusion relationship
between the quadrilaterals. It is worth noticing that the correct answer for this task
is: a “no-name” quadrilateral.

18.4.3 Deductive Reasoning as a Bridge for Becoming Fully
Aware of the Inclusion Relationship

In the second task, the students were asked to explore the nature of the quadrilateral
whose diagonals are perpendicular and one of them bisects the other (Fig. 18.5).
The expected answer is a kite. The students conjectured that the quadrilateral that
satisfies the task requirements is a kite (the right answer).

Fig. 18.5 I The figure that appears on the screen; II Avia Drags point D; III Avia drags point C;
IV Avia drags point D
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17 Avia I think it is a kite

18. Neta I also think it is a kite.

19. Avia Drags point D, then Point C,
and finally again point D
(Fig. 18.5)

20. Neta Okay! Avia we need to prove it.

21. Avia It is because the two diagonals are
perpendicular, and two sides are congruent.

22. Neta The sides’ length is not given in the task.
You must prove that they are congruent.

23. Avia But it is given that one diagonal bisect the
other.

24. Neta So…

25. Neta BE is a height in the triangle ABC

26. Avia We must prove that there are pairs of
congruent triangles

27. Neta BE is a median since it split AC into two
equal segments. Therefore, triangle ABC is
an isosceles triangle because the height
coincides with the median.

This excerpt illustrates one aspect in the process of becoming fully aware of the
inclusion relationship between quadrilaterals, namely, deductive justification of the
observed phenomenon. The social practices identified in this excerpt are generally
similar to those revealed in the excerpt aforementioned. However the chain of the
social practices in this excerpt is characterized by raising the same conjecture by the
two students, verifying the conjecture perceptually by producing various shapes of
quadrilaterals, and most importantly—the transition from the experimental aspect to
deductive justification. Also in this excerpt, the dragging actions, in regard to the
social practices, played a central role in the process of verifying the conjecture,
namely the dragging action allowed the students to produce several figures that
satisfied the quadrilateral they conjectured.

Being aware of the necessity for a deductive proof was invited by the task’s
design, which explicitly asked for that. However, the transition towards the
deductive justification was not smooth. It continued to include perceptual aspects
observed on the screen. Students seemed to depend on these in the deductive
processes. Due to the awareness of one of the students and the collaboration created
between them, the students shifted their reasoning from what was given as data in
the task to what should be proved deductively.

To summarize this stage of learning, indeed the students were not engaged in an
inclusion relationship between quadrilaterals in this task but the current task
allowed them to become aware of the need to prove a statement in a deductive way
as a vehicle for being convinced for its truth. It seems that this stage of learning
bridged the objectification of the inclusion relationships, as we show in the next
excerpt.
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18.4.4 Objectifying the Inclusion Relation in Quadrilaterals

In task 3, the students were asked to explore the nature of the quadrilateral whose
diagonals bisect each other and are perpendicular (Fig. 18.6). It is noteworthy that
the conditions in task 3 include the properties given in task 2, and one more
condition was added—the diagonals bisect each other. We expected that the stu-
dents would notice this fact, and would assume that the quadrilateral is a ‘special’
kite with an additional condition.

28. Avia The two segments are bisecting each
other, so it is a parallelogram.

29. Neta It is a rhombus. In the parallelogram,
the diagonals are not perpendicular.

30. Avia Drags point B, then drags point A,
adds the sides of the quadrilateral,
and again drags point A (Fig. 18.6)

31. Avia It is a rhombus. It is a specific kind of
kite. Kite which is a rhombus. We
need to prove that all the triangles are
congruent.

32. Neta We can prove that the triangles BEC,
BEA, AED, and DEC are congruent.
By using the theorem S.A.S. All of
them are given.

By adding one more property (bisect each other) to the two properties given in
task 2 (one diagonal bisects the other and they are perpendicular), we intended to
invite students to pay attention to the fact that the new obtained quadrilateral first of
all should be a kite, and then as a result of having one more property it should
become a regular kind of a kite. In fact, one of the students claimed that the
quadrilateral is a parallelogram [28]. This claim might be the result of the great
significance given to the theorem in traditional geometry lessons, in which they did
not use dynamic technology or inquiry based learning. Although students partially

Fig. 18.6 I The figure that appears on the screen; II Avia Drags point B; III Avia drags point A;
IV Avia adds the segments of the quadrilateral and drags point D
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accepted that the solution to task 3 was a parallelogram, this answer caused a
conflict between the students. This conflict suggested that the students, at this phase
of the learning process, had not fully become aware of the inclusion relationship
between quadrilaterals [28–29].

At the end of the activity the researcher, who was virtually present in the VMT
with the students, asked the students to summarize their learning activity.

33. Mediator Could you explain how the properties change in the tasks and how this
change is reflected in the quadrilateral’s type?

34. Avia If the diagonals bisect each other and are perpendicular, the quadrilateral
will be a rhombus.

35. Neta She is asking about all the tasks and not only about the last one. Anyway,
in each task, one new property is added, thus the new quadrilateral we get
is a specific kind of the latter.

36 Mediator Neta! Could you please explain in more detail what you mean?

37. Avia In the second task, the diagonals are perpendicular and one of them bisects
the other. In this case, the quadrilateral was a kite. In the following task,
one property was added. It was still a kite but a specific kind of kite,
rhombus. Because the properties of the kite were kept.

Later the mediator again asked the students: What are the properties of the
diagonals you should add to the last task (in which the answer was a rhombus) in
order to get a square?

38. Avia The diagonals should be congruent.

39. Neta Yes, I agree with Avia, because a quadrilateral whose diagonals bisect each
other and are perpendicular, is a rhombus. When we add a new property to
these properties, it will remain a rhombus but of special kind. A rhombus
that has one of its angles 90° is a square.

40. Mediator How do you know that the angle is 90°?

41. Avia If a median of a triangle is equal to half of the base, the triangle must be a
right triangle.

This excerpt illustrates the processes of becoming fully aware of the inclusion
relationship between kites, rhombuses, and squares [37, 39]. In [33] the intervention
of the mediator introduced a new social practice when she asked the students how
the change in the diagonals’ properties may affect the shape of the quadrilateral.
The mediator’s question was creative in a manner that boosted the students’
awareness of the inclusion relationship of quadrilaterals. Furthermore, the media-
tor’s questions not only prompted the becoming aware process but these questions
also promoted deductive reasoning, which is a central issue in learning geometry.
However, from the mediator’s intervention and the students’ responses, we could
learn that the students were in the zone of proximal development (Vygotsky 1980).
Therefore, we assume that, in order to reach a better objectification of the inclusion
relationship, students should engage in additional tasks, that emphasis various
inclusion relationships. This could be done, for example, starting with diagonals
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bisecting each other (a parallelogram), then diagonals congruent and bisecting each
other (a rectangle), and finally bisecting each other, congruent, and perpendicular (a
square).

18.5 Final Remarks

The aim of this study was to explore the role of synchronous collaborative computer
supported environments and the role of task design for affording collaboration and
leading to the objectification of the inclusion relationships of quadrilaterals. The
findings of the study confirm that the design partially supported the objectification
of inclusion relationships of quadrilaterals. Indications of this objectification can be
found in the first and the third tasks. It seems that looking for a quadrilateral with
the properties given in task 1 lines [6–16]: the diagonals are perpendicular and
congruent), afforded the students paying attention to the inclusion
relationship. Possibly through the dragging actions, students were prompted to
examine special cases (such as a kite, a rhombus, a square) of a general case (the
‘no name’ quadrilateral), emphasizing the inclusion relationships of quadrilaterals.
These findings are consistent with the conclusion drawn by Fujita and Jones (2007),
who observed that dynamic geometry software enables many students to see and
accept the possibility of inclusion relationships among different types of quadri-
laterals. Additional indications for objectifying the inclusion relationships were
found in task 3 (in lines [35–37] and [38–41]). In this case the students became fully
aware of the inclusion relationships by considering how the addition of one
property affected the newly obtained quadrilateral, especially when the students
explicitly articulated that the rhombus is a special case of a kite. Moreover, they
summarized their insights into the inclusion relationship when they said: “In the
second task the quadrilateral was a kite. In the third task, one property was added. It
remained a kite but a specific kind of a kite, a rhombus. Because the properties of
the kite were kept.”

Although in the course of performing the second task, the students’ discourse did
not refer directly to the inclusion relationship, it facilitated them in becoming aware
of the need of using deductive reasoning. Through mediated reflected use of the
artifact, the students became aware of the distinction between data displayed on the
screen and data given in the task [20–22]. Following Radford (2008) who claimed
that learning is more than endowing a conceptual object with meaning, we suggest
that learning is a matter of becoming part of the mini-culture we helped to establish.
We conclude that engaging in task 2 contributed to the process of introducing
deductive reasoning as a part of the students’ culture in this environment.

As the data analysis suggests, the objectification of the inclusion relationship
among quadrilaterals was achieved in the context of rich social interactions between
the students themselves as well as the interaction with the VMT software. Each
student took into consideration the actions and the claims of her peer. In addition,
we observed dynamic changes in students’ insights that emerged in the course of
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the social interaction. These interactions were both dialogical and dialectical. They
were dialogical when each student co-elaborated the other’s articulation towards the
emergence of new ideas. They were dialectical when students challenged each
other. These two types of interaction contributed to the objectification of the
inclusion relationships. It appears that the Virtual Math Team environment and the
designed tasks afforded these two kinds of interactions.

The analysis of becoming aware allows the exploration of the role of the
environment and the tasks’ design in suggesting alternative definitions and
propositions concerning quadrilaterals. The analysis reveals the use of words that
indicate the utilization of terms that are typical in inclusion relationships. The use of
these terms indicates a shift in thinking from a quadrilateral to its properties, to
thinking from properties to types of quadrilaterals. This shift evidences a higher
level of thinking.

In this chapter we demonstrate the use of the objectification theory as a
methodology for examining the meaning making processes of a complicated geo-
metrical concept in a computer supported collaborative learning environment.
Using the objectification theory as a methodology required the elaboration of the
term awareness to include levels of awareness: being unaware, latent awareness and
full awareness. In addition we presented in the paper a practical definition for these
levels. The use of the three levels and their definition is a contribution for applying
the objectification theory analytically.

Using a semiotic framework, this study also contributes to better understanding
the role of collaborative and dynamic geometrical environments in learning com-
plex mathematical concepts. Compared with the traditional use of DGE, this
environment offers new affordances as well as some constraints. For example the
shared drawing space in which small groups of students can share their mathe-
matical explorations and co-construct geometric figures online, and the text chat
window, where students write their ideas and share them with their peers, afford the
students a collaborative situation. This environment influences the type of semiotic
means that were generated during the experiment. It encourages the student to argue
and develop shared ideas using the applet as a tool for checking assumptions. The
fact that students were not able to communicate verbally or to gesture freely are
limitations that we took upon ourselves in choosing this environment. We assumed
that these limitations would allow us to concentrate on precise semiotic analysis.

The present case study provides empirical evidence for the efficiency of syn-
chronous collaborative computer supported environments in objectifying the
inclusion relationship of quadrilaterals. Further studies should be conducted to
better understand the role of CSCL environments in objectifying the inclusion
relationship of quadrilaterals, and to report on new challenges that emerge as a
result of utilizing this environment. However, since VMT relies on GeoGebra, we
anticipate that the structure of this research might serve other mathematics educa-
tion researchers in the investigation of the learning of other mathematical concepts.
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Chapter 19
Discussion and Conclusions

Norma Presmeg, Luis Radford, Wolff-Michael Roth and Gert Kadunz

Abstract After an introductory section that addresses the nature of semiotics, the
editors discuss themes that highlight issues that have arisen from and that illustrate
what has been accomplished in the varied chapters of this monograph. The final
section provides some suggestions, based on these issues, for further research on the
various threads that pertain to the potential significance of semiotics in mathematics
education. The editors believe that there is room for both theoretical development
and further empirical studies designed in resonance with these theories, in order to
address the full potential of semiotics in areas of research that have not yet received
widespread attention.
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19.1 The Nature of Semiotics Revisited

Dictionaries—because they provide definitions according to common usage—do
not always address the latest theoretical developments in thinking about terms, such
as those relevant to semiotics, that are the concern of researchers in fields that
address human knowledge and its implications for education. This is so particularly
in mathematics education, which is the field of this monograph. Nevertheless, some
aspects of dictionary definitions address the core of certain words. For example,
here are some definitions that are pertinent:

sign (noun): any indicative or significant object or event; a symbol; token (Funk and
Wagnall).
represent (transitive verb): to bring before the mind (Webster); to serve as the
symbol, expression, or designation of; to set forth a likeness or image of (Funk and
Wagnall).
representation (noun): the act of representing, or the state of being represented; the
stage or process of mental conservation that consists in the presenting to itself by
the mind of objects previously known (Funk and Wagnall).
mediate (transitive verb): to be the means of (Webster); to serve as the medium for
effecting (a result) or conveying (an object, information, etc.); to occur or be in an
intermediate relation or position (Funk and Wagnall).

Semiotics is the science of signs; it is clear that the nature of a sign is that it
stands for some entity, and that this representation is the essence of the term.

Now, based on the writings of Peirce (1931–1958), the sign frequently is described
as the triadic relationship among sign vehicle, object, and interpretant (e.g., Presmeg
2002; Sáenz-Ludlow and Kadunz 2016a; Sáenz-Ludlow and Presmeg 2006).
However, there are also powerful voices that express different opinions. Some
philosophers suggest that Peirce never thought about the sign in the triangle that
Ogden and Richards later used, charging it with introducing a dualism of mind and
world (Dewey and Bentley 1949/1999). Some semioticians, too, consider the trian-
gular diagram over-simplified, though giving it some credit when theorizing the
production of signs (Eco 1976). The triad could imply an interpreted iconic likeness of
sign vehicle to its object, in which case the relationship could involve an image, a
diagram, or ametaphor (Kinach, Chap. 13). But the triad could also imply something
of the order of indexicality. As Menz and Sinclair point out (Chap. 17), during cre-
ativemathematizingwith diagrams the signifying relationship appears to be indexical,
something of a pointing or indicative nature. Although philosophers hoped that
objective expressions—all those built on “the principles, theorems, proofs, and the-
ories of the ‘abstract sciences’” (Husserl 1913b, p. 81)—and subjective–indexical
expressions could be distinguished, some social scientists later noted the indexical
properties of all forms of signs (Garfinkel 1967). Pragmatic philosophers thus
encourage us to investigate signs (language) in actual use rather than trying to figure
out some unchanging structural relation, such as that between sign (signifier) and
meaning (Dewey and Bentley 1999/1949; Wittgenstein 1997/1953).
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Along this pragmatic line of thought, it is worth recalling that Peirce (1992, 1998)
was one of the first semioticians to insist on the advantage of thinking of semiotics as
a process. Although his work starts with the triadic definition of a sign, the force of
his approach is the continuous relationship between a sign and a new sign, a process
that goes from signs to signs. What this view means is that a sign is not a static entity;
it is rather an entity that is part of a chain. If the defining feature of a sign is that it
stands for some entity, and representation is the essence of the term, we need to
understand this representation not in terms of a mapping but in a fluid and dynamic
manner. The focus shifts from object-representation to representing, something that
using a more modern terminology we may call signifying. In this view signs are
dynamic entities arising according to specific forms of signifying.

As some of the dictionary definitions hint, the something or entity indicated by a
sign vehicle may have a variety of characteristics, including those of a purely ideal
nature. The nature of the object to which a sign refers often changes from one
semiotic approach to another. For example, in semiology, the signifier–signified
relationship such as between the word “tree” and the image of a tree is psychological
(de Saussure 1967). In other approaches, this entity, which is not necessarily a
physical object, is assumed to have ontological presence irrespective of human
observation. Other semioticians and philosopher-anthropologists have defined the
sign as a relation between two parts of the material continuum, each being shaped in
its own way (Eco 1984; Latour 1993). All in all, the important aspect for under-
standing human behavior through semiotic lenses is the manner in which the dif-
ferent parts come to be made to correspond and thus how such things as diverse as a
mathematical equation or function come to be related to the functioning of a winch,
pulley, or table of paired data. And as we have seen, the question of how signs
signify as well as the question of the nature of the object the sign stands for are two
questions that receive different answers in the varied range of semiotic approaches.

Several of the chapters in this book grapple with the ontological question of how
and what signs signify. In line with other authors, Morgan (Chap. 8) and Otte
(Chap. 9) eschew the Platonic approach to mathematical objects. In his chapter,
Otte provides useful instances of the complementarity of sense and reference, and of
structure and function. He points out that man is a symbolic being, and that every
thought is a sign. Similarly, Kadunz (Chap. 7) points out that the translational
approach to semiotics that he espouses does not need the assumption of “an
objectively existing mathematical instance.” In Chap. 12, Salazar reminds the
reader that semiosis—an action that Peirce understands as the irreducible relation of
three subjects, such as sign vehicle, object, and interpretant (Eco 1976)—and noesis
—intentionally oriented thinking (Husserl 1913a)—are inseparable. The represen-
tational correlate of semiosis is production, the purpose of noesis (e.g. judging) is
the conceptual apprehension of an object and its correlate (outcome) is the noema
(what is judged).

It is a welcome development that non-representational theories that take into
account the sociocultural nature of human signification (see especially the chapters
in Parts I and IV of the book), or the richness of linguistics in this regard (Part II),
are being promulgated in many of the chapters. They shift the attention from a static
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view of representation to a dynamic view of sign production and meaning-making.
Based on work in mathematics education and the social studies of sciences, some
educational scholars have suggested conceptualizing what tend to be called math-
ematical representations in terms of the concept of inscriptions, which orients
investigators to the use of diagrams, graphs, equations, and other forms of math-
ematical expression (Roth and McGinn 1998; Presmeg 2006a). The shift goes
hence from the diagram per se and what it may signify to the use of the diagram and
the broad spectrum of signifying possibilities that arise in using it in activity.

A contentious point is the role in semiotic processes of artifacts and cultural
devices, which traditionally have been conceptualized as mediators of teachers’ and
students’ activity (see, e.g., Bartolini-Bussi and Mariotti 2008). Roth and Jornet
(2017) contend that there is no necessity to invoke the concept of mediation,
particularly in cultural historical approaches to cognition and learning. Resorting to
a materialist viewpoint, Radford (2015) has suggested that signs and artifacts be
understood as part of the teachers’ and students’ activity and as the material fabric
of thinking. In this view, signs and artifacts do not mediate activity: they are key
components of it in that they contribute to configure, organize and re-organize
classroom activity and teachers’ and students’ thinking.

The various chapters in this book suggest that, in the complexity of human
teaching and learning, there are a variety of questions that arise, and thus it is
appropriate to endorse theories that are appropriate to the questions and issues: no
single theory can take into account the need for different grain sizes in data analysis
(see Chap. 16, in which Vygotskian and Peircean theories are applied in analysis of
the same data set), or the affordances offered by different conceptual frameworks
that are suitable for the multitude of empirical research questions that concern
mathematics education (e.g., Chap. 10, Semiotic Conceptual Analysis; or Chap. 12,
Dynamic Figural Register).

In the following section, we select some of the specific threads that arise in the
chapters of this monograph, and discuss these with a view to highlighting what has
been accomplished to date. The final section takes the discussion further, pointing out
possible future directions for theory and empirical research, and identifying lacunae in
current research foci that might profitably be addressed using semiotics as a lens.

19.2 What Has Been Accomplished?

The following subsections address specific threads from the chapters.

19.2.1 Theoretical Developments

In recent years, semiotics has undergone a series of developments that resonate with
developments in other areas of inquiry in the social sciences. Such developments
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have led to revisiting the concept of knowledge and knowing and the role that signs
play therein. It is in this context that there has been a shift of paradigms. In the first
paradigm individuals were conceived of as producing ideas in their minds as they
acted in the world. Signs in this paradigm were the conduits in which thought was
cast. Actions, words and semiotic activity in general were explained in terms of
ideas that justified the actions, the words, and the symbols to which individuals
resorted in their endeavors.

In the second paradigm, ideas are conceived of as not necessarily prior to action
and semiotic activity. Actions and semiotic activity are fused in the processes out of
which individuals achieve deeper forms of reflective awareness, and their ideas
become clearer through more and more sophisticated expression. In this paradigm,
signs, tools, and thought are entangled. As a result, the semiotic lenses to under-
stand and provide accounts of teaching and learning include signs and tools. The
tool is not independent of cognition and learning, just as cognition and learning are
not independent of the tool. Both are integral and irreducible parts of the same
category. Any behavior we may analyze, therefore, has aspects of both. As the
research on aptitude has shown, understanding the role of personal characteristics in
the behavior requires knowing environmental characteristics, and understanding the
role of the environmental characteristics in performance requires knowing the rel-
evant personal characteristics (Snow 1992). In this paradigm, in considering the
role of technology, we may be wise not to give special status to computing or other
more recent forms (e.g. virtual reality) to be theorized differently from other things
that are part of, determining and being determined by, current activity. Just as
GeoGebra (Salazar, Chap. 12) or Virtual Math Teams (Swidan and Prusak,
Chap. 18) do, pencils, diagrams (Menz and Sinclair, Chap. 17), rulers, slide rules,
Dienes blocks, and natural or formal languages (e.g. C++) may (but do not have to)
have a function in activity and change the task from activities in which they are not
present. In this context, human behavior appears as the result of the irreducible
characteristics of the person–environment unity/identity. These remarks are not
intended to diminish the investigation of tools and technology. On the contrary, we
believe that it is useful to investigate cognitive and semiotic systems in which
different types of technology are an integral part. For one thing, this investigation
provides our community with materials for theorizing these systems. But also it can
help us understand the deep relationships between tools, signs, and thought.

In the second paradigm, the question of the social is reformulated in new terms.
In the first paradigm—a paradigm that was informed to a great extent by idealist
and subjectivist understandings of knowledge and knowing—the social is not
foregrounded; a discrete set of individuals coordinate actions in order to accomplish
something. In the second paradigm, an individual’s action is transindividual as it
occurs with others (present or virtually present through language or social context).
Knowing appears here as something that is social in nature through and through. In
this line of thought, cultural-historical perspectives have emphasized the relation
between teacher and student as something deeply social and as an extremely
important root of cognition. For cultural-historical theorists, the relation between
the teacher and the student is cognitively important because it is the higher
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psychological function that can later be found in the behavior of the student
(Vygotsky 1989; Vygotskij 2001). The relation is important here because, as
Vygotsky describes, what has become one in the behavior of the teacher now is
unfolded across the relation and the two persons involved. It is the “experimental
unfolding of a higher process (voluntary attention) into a small drama” (p. 58).
Thus, when Stott (Chap. 5) writes about space of joint attention, then this “space”
includes the relation between student and teacher. This relation is not something
abstract. Indeed, the word or any other form of sign involved in the teacher-student
interaction is an essential part of the relation. The same happens in the mathematical
game that kindergarten students play (Radford, Chap. 2). The space of joint action
is a space where an understanding of the mathematical rule is disclosed through
verbal and embodied forms of social relations.

The social relations that are encompassed in classroom interaction have been
conceptualized in the theory of objectification as one of the two main lines or axes
around which classroom activity is organized. Social relations are defined as part of
the forms of human cooperation that underlie all activity. In the aforementioned
first paradigm (the idealist-subjectivist one), forms of human cooperation often
appear through utilitarian lenses: individuals exchange ideas in accordance with a
logic of self-interest. “Classroom communication is good if the student learns more
than he or she would if working alone. This is still the ‘me-perspective’: I am
willing to transact with you if, at the end, my wealth (here knowledge) increases”
(Radford 2012, p. 109). The second paradigm makes room to envision social
relations and, more generally, classroom forms of human cooperation in a different
way. The theory of objectification makes here a contribution in terms of delineating
a communitarian ethic that, through pedagogical action, emphasizes a sense of the
social as embodied in solidarity, answerability, and responsibility, moving away
from individualist forms of human cooperation fostered by neoliberal conceptions
of the school (Radford 2014). The question, however, is not merely to come and be
able to participate in certain forms of non-alienating activity. The question is that
the activity that individuals produce is the same one that produces them. The result
of this dialectic movement, which appears in particular in Chap. 2, is a function of
the activity’s forms of human cooperation to which the pedagogical project resorts
(either implicitly or explicitly).

The other line or axis around which classroom activity is organized in the theory
of objectification is the one of the modes of knowledge production. They include the
technological or material dimension (tools, signs, diagrams, etc.) and the various
savoir-faire through which individuals produce their means of subsistence and
fulfill their needs. Strictly speaking, the forms of human cooperation and the modes
of knowledge production do not emerge in situ, that is in the classroom, as
something out of the blue. They have been produced and refined in the course of
historical and cultural developments. It is these historical and cultural dimensions
that the concept of semiotic systems of cultural signification try to capture. Human
activity unfolds, indeed, (often implicitly) organized by a fluid and ever-changing
super-symbolic structure from which individuals draw ideas of right and wrong
both in their dealings with what is to be known and in their dealings with others.
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Since both dealings involve language, symbols, and material culture, the result is
that signs (and semiotics) are not the repository and conveyers of ideas (as idealism
suggested), nor are they the mere channels out of which ideas and knowledge are
formed. Inescapably, signs and semiotics appear as imbued in an ethical and
political view. There is always an ethical and a political stance behind knowing and
becoming. In this line of thought, the question is not about representing knowledge,
but how we come to signify through signs. That is, how we signify things in the
world and how we come to signify ourselves and are signified by others through the
activities in which we engage.

19.2.2 Methodological Concerns

The question of grain size needed in different research designs is one that is salient
in some of the chapters but latently present in all. Krause and Salle (Chap. 16), in
their investigation of gestures and their role in the formation of Grundvorstellungen
(GV, “mental models that carry the meaning of mathematical concepts or proce-
dures”), use lenses of both Vygotskian and Peircean semiotics in their analysis.
Vygotskian theory proved to be more suitable for the grain size of their research
data: in this theory, gestures bridged between primary and secondary GVs, whereas
in Peircean theory it appeared that signs led to the shaping of the immediate
mathematical task, but the given data were insufficient to answer the question of
how gestures led to the solving of the problem. According to the authors, a broader
view encompassing scenes from an earlier point in the research might have been
helpful in the Peircean approach.

The issue of grain size appears also in Morgan’s use of systemic functional
linguistics (SFL, Chap. 8) to explore social semiotic issues. However, the theo-
retical stance of SFL and associated methodology, adapted to different grain sizes,
proved to be suitable both for the institutional assumptions involved in the
fine-grained analysis of how an examination question is written, and in Morgan’s
second, society-level, focus involving a thematic analysis of official documents.

Another issue addressed in some chapters is methodology used in research that
aims at the constitution of typologies. In the chapters of both Salazar (Chap. 12,
constitution of the dynamic figural register, using Duval’s theory) and Mathews
et al. (Chap. 14, signification pathways, based on Peirce’s semiotics), a fine-grained
analysis of theoretical positions (Chap. 12) or qualitative empirical data in a nat-
uralistic study (Chap. 14) resulted in typologies that move the field forward.
However, in the case of the study by Mathews et al., the semiotic chaining
framework that was a starting point for the methodology required modification and
greater specification before it became useful for the research purpose. In the study
by Kinach (Chap. 13) involving primary school teacher preparation, the semiotic
chaining model broke down, in the sense that it could be applied only to the first
three of five phases in an interactive computer game developed for the research
purpose.
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It is clear in all the chapters of this monograph that research purposes determine
the nature of the methodologies used, based on appropriate theoretical considera-
tions. However, it is noteworthy that with the exception of Chap. 17 (Menz and
Sinclair), none of the chapters use quantitative analysis of data sets, or psychometric
designs that require the use of statistics. It remains an open question whether
research designs that require such methods are useful in research on semiotics in
mathematics education. It is possible that qualitative research designs are more
suited to the issues pertinent to semiosis in mathematics education, in which
paradigm cases (of individuals or groups) are likely to shed light on questions of
teaching and learning, even when sociocultural lenses are applied. Even Menz and
Sinclair’s chapter is based largely on the paradigm case of three research mathe-
maticians. It is clear that issues of “joint attention” (Shvarts, Chap. 5), “together-
ing” and “moments of poēsis” (Stott, Chap. 5) and many of the issues investigated
and reported in other chapters, are more amenable to qualitative rather than
quantitative research methodologies, notwithstanding the current trend for mixed
methods to be used in mathematics education research (Bikner-Ahsbahs et al.
2015).

The traditional question of grain size obtains—or should obtain—a new sense
within cultural-historical theories (e.g., Chaps. 2–6). This is so because the mini-
mum unit of analysis, as made explicit in cultural-historical activity theory, is
societal activity. This unit is based on the recognition that what characterizes
humans as distinct from other animals are the specific relations that constitute
society. Cultural-historical psychologists thus consider personality to be the
ensemble of societal relations (Leont’ev 1978; Vygotsky 1989). As a result, every
analysis of a relation between two people also makes for an investigation of society;
every analysis of societal relations also constitutes an investigation in available
psychological functions and personality traits (Roth 2012a). The issue is particu-
larly important in the case of the birth of signs (Chap. 3, Roth). Whereas signs may
be created by individuals, they inherently have social character. But they may not
be universal but be characteristic only of a group; but universality is a suprasensible
(ideal) potential of anything material exchanged (Marx and Engels 1962, 1978), a
point taken up in Chap. 3 (Roth). Thus, if investigators adhere to the
cultural-historical approach, they (have to) accept the inherently social, thus shared
and societal nature of the investigated phenomena—though, admittedly, investi-
gators may fail to point out or exhibit this feature. For example, Salinas-Hernández
and Miranda (Chap. 4) conduct their investigation in a 12th-grade physics course.
But what the students generally say and do, or any particular student specifically, is
not an individual construction. This is so because their talk is designed for others,
using a language that they have learned from others, and which, in their talk, returns
to the other. Whatever students say, thus, is a reflection of the culture, a mirror of
society, a microcosm thereof (e.g., Zeyer and Roth 2009).

A very different approach to method arises when research focuses on the ways in
which phenomena come about—i.e. the work in which the birth of a sign is founded
(see Roth, Chap. 3)—rather than the outcomes of this work. The distinction maps
on to that made above between noesis, an event, and noema, its outcome. Chapter 3
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exhibits the work children do to assist each other in making some aspect visible
(perceivable), whether this is an aspect of the hidden object or the different shapes
they make from plasticine. It has been pointed out that research using formal
methods (such as psychometric analysis)—specified in the methods sections of
research reports—focuses on the identification of noema, social or material things,
whereas ethnomethodology focuses on the work that real people do to constitute
and make visible the situationally relevant social and material things (Garfinkel
1996). Formal methodologies include quantitative (mathematical, experimental)
studies as well as some qualitative (interpretive) studies (Bikner-Ahsbahs et al.
2015), and these differ incommensurably from ethnomethodology and other natu-
ralistic methodologies that investigate the methods the people themselves employ to
make and make visible social and material things (i.e. the noema). In this light,
naturalistic studies appear to be particularly suited to empirical research on semiotic
issues—and indeed, many of the empirical studies described in chapters in this
book fall into this genre.

19.2.3 The Role of the Teacher

The role of the teacher is one of the elements that has been recently under intense
discussion in mathematics education research. There seems to be a need to
reconceptualize this role in teaching and learning. In the chapters included in this
book, the role of the teacher takes various forms.

In Chap. 2 (Radford), it is the sensitive intervention of the teacher that breaks the
impasse between Carl and Jack in the dice game and allows them to move forward.
Rather than facilitator, the teacher actively participates in the creation of a social
space where the rule of the game regains focus. Carl’s and Jack’s interaction
becomes again reorganized by the rule. This reorganization makes room for the
unfolding of a cultural form of intersubjectivity in which individuals take positions
and answer, in a responsible manner, to each other. The teacher plays a prepon-
derant role here in order to make sure that the students’ answers are coherent with
the operating semiotic systems of cultural signification (Radford 2008; see also
Chap. 2) that convey ideas (mostly implicitly) about how individuals should
behave. And as we saw, the joint creation of the social space by the teacher and the
students, where the rule can be again attended to, occurs in difficult moments that
are full of tensions and emotions—tensions and emotions of which the teacher is,
like the students, a part. In Chap. 3 (Roth), the teacher points out to Melissa, Jane,
and Sylvia that there is one object in the shoebox, and therefore the group should
decide on one plasticine model for this object: Melissa’s cube model dies in favor of
the flatter rectangular model of Jane and Sylvia, in an example of the gap-crossing
needed to reconcile two structured portions of the continuum.

In Chap. 4 (Salinas and Miranda), there is a hint from the researcher, but it is the
interactive technology that stands in lieu of the teacher in the students’ processes of
objectification dealing with the meanings of Cartesian graphs. The interaction with
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the technology enables the students to check their predictions using the software.
The students’ description of the motion of a tennis ball down an inclined plane was
preceded by their understanding of the mathematical relations of physical variables
of space and time in the graphs; this understanding evolved as the students for-
mulated new hypotheses and interpreted the software outcomes. The teacher
appears here as a kind of virtual entity whose contours change as the students ask
questions and the software provides answers.

In the dual eye-tracking synchronized research of Shvarts (Chap. 5), the role of
the parent is crucial in establishing the joint attention with the child that enables the
child to apprehend the cultural way of using coordinates on a Cartesian plane.
Indeed, phylogenetically speaking, the higher psychological function of attention is
the result of a lengthy culturally and historically evolved way of attending things,
which is materialized here through the concrete relations with other people, gen-
erally a parent. Ontogenetically speaking, the birth of the capacity to orient to the
same objects and to signal whether joint attention has been achieved lies early in the
life of a child (Vygotsky 1997), exemplified in a recent analysis of reading mul-
timodal texts involving a mother and her one-year-old boy (Roth 2016). Shvarts
gives examples both of the ambiguity of visual and gestural presentations (and
verbal terms) that cause misunderstanding, and in a nice contrast, the seamless joint
attention that results from the adult’s sensitivity to the child’s anticipations, as the
parent followed the child’s attention, in an outcome that was satisfying to both of
them. Finally, resonating with Shvarts’s study, in Chap. 5 Stott gives examples in
an after-school program, of the importance of the role of the facilitator in estab-
lishing the space of joint action, and togethering, that are necessary for cultural
meanings. In Stott’s first example, this space of joint action with Anathi and
Thembela leads to the cultural meanings that are the goal of the activity; in the
second example, with Akhona and Kuhle, the facilitator does not succeed in
intervening in attention catching, and the absence of togethering prevents the
moment of poēsis that is apparent in the first example.

All five of these chapters highlight the indispensable role of the teacher or
surrogate teacher and the various forms this role takes, depending on the activity,
the object of the activity and the tools and artifacts involved in the classroom
activity.

19.2.4 The Affordances of Interactive Technology

In several of the chapters, interactive computer software plays a pivotal role in
accomplishing the goals of the research. For instance, GeoGebra is an essential tool
in both Chap. 12 (Salazar) and Chap. 18 (Swidan and Prusak). It has been shown
empirically for some time now that the affordances of such software (compared
with paper-and-pencil methods) change the processes of learning mathematics quite
radically (e.g., Yu 2004, using a conceptual framework based on semiotics).
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In the case of Salazar’s research, which employs the theoretical formulations of
Duval concerning formation, treatment and conversion of semiotic registers, the use
of a dynamic representation environment such as that provided by GeoGebra is
essential. Duval did not take into account the differences that the use of computer
software introduced in examining formation, treatment, and conversion. Thus
Salazar’s examination of the dynamic figural register in such an environment,
highlighting the reconfiguration of quadrilaterals to study their area, moves this
field forward both theoretically and empirically. Indeed, from a cultural-historical
perspective, Salazar and Duval are investigating different phenomena, different
forms of activity, for as soon as a tool is introduced into a person–environment unit,
then cognition, consciousness, sense, and the related affects change. As research on
the relation between cognition, technology, and work shows, even a minor variation
in a tool—such as a 5-centimeter displacement of a dial in an airline cockpit—
changes the cognitive system as a whole (e.g., Soo et al. 2016).

Swidan and Prusak’s research (Chap. 18) is also concerned with the study of
quadrilaterals, but from the viewpoint of the inherent inclusion relationships in a
hierarchy of quadrilaterals. The new field of Computer-Supported Collaborative
Learning (CSCL) is central in their research methods, because the aim of their study
was to investigate the role of CSCL in the processes of students becoming fully
aware (as the final stage of a triad of processes, starting with unawareness, followed
by latent awareness) of selected inclusion relationships of quadrilaterals. They
concluded that the research design (partially) supported the objectification of these
relationships. The authors note that the computer environment was limiting in that it
did not provide access to certain kinds of data: the students could not gesture or
communicate verbally (or at least the researchers did not have access to these data
sources) in this environment, in which communication was in a chat room with
written explanations.

In the case of Kinach’s research (Chap. 13), an “area game” designed for
prospective elementary school teachers also invoked the affordances of technology:
the design was intended to provide the prospective teachers with an introduction to
semiotic chaining in the Peircean framework, as a basis for their pedagogy, as they
worked through five levels of the children’s game. In practice, the chaining broke
down after level three; but nevertheless the research provided access to Peirce’s
three principles of diagrammatic reasoning, and highlighted some of Krutetskii’s
(1976) problem types.

Technology was also an essential component of Shvarts’s (Chap. 5) method-
ology. In this case, two synchronized eye-trackers and an external video camera
enabled the researcher to capture the gazes, gestures (with a thin stick pointed at the
computer screen), and verbal interactions of mother and child as both looked at the
same computer screen and engaged with tasks involving Cartesian coordinates of
points. The power of this methodology was illustrated in the micro-mechanisms that
were identified in the processes of joint attention, and objectification of the
canonical way of working with such coordinates.
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19.2.5 Research on Diagramming

Although diagrams enter into the mathematical components of data sources of
several chapters in this monograph, there are two chapters (Chap. 11,
Sáenz-Ludlow; and Chap. 17, Menz and Sinclair) that engage with processes of
diagramming specifically, using different theoretical lenses and investigating dif-
ferent issues. Sáenz-Ludlow’s chapter, on Iconicity and diagrammatic reasoning in
meaning making, is largely theoretical in nature, based on Peirce’s (1931–1958)
semiotics, and provides two convincing examples of the power of diagrammatic
reasoning. Sáenz-Ludlow highlights Peirce’s definition of a diagram as an “icon of
possible relationships.” For Peirce, all knowledge is the product of the
self-corrective activity of the human mind, and diagrammatic reasoning is an
inferential process that addresses the relationships among sign vehicles, their
interpretants, and the interpreted objects in question. Sáenz-Ludlow explores the
three triads at the root of the ten-fold classification of sign vehicles and their
relationships according to Peirce. Mathematical diagrams are considered to be
epistemological tools for inferential thinking: dynamic interpretants give way to
logical interpretants, which in turn lead to chains of inferences. Cultural-historical
scholars point out that the diagrams are not merely tools in but constitutive of
thinking in the same way as words and thinking are integral parts of the same
communicative activity, thinking and speaking being two dynamic processes that
are flexibly related (Vygotsky 1987). Thought completes itself in the word, which,
as part of the material reality, determines further thinking. The same is the case for
all forms of signs, including the relationship between diagrams and reasoning:
reasoning becomes what it is in the diagram, and diagrams determine the situa-
tionally appropriate reasoning. This general relationship between signs and rea-
soning, paired with Sáenz-Ludlow’s concrete analyses, help us better understand
how initial transformand diagrams give way to more meaningful and useful
transformate diagrams in the processes of diagrammatic reasoning.
Sáenz-Ludlow’s analyses also show specific ways in which visualization is indis-
pensable in the process. In this complex theoretical formulation, diagrams have the
potential to have both iconic and indexical properties (and symbolic, metaphoric
and metonymic ones too, Presmeg 1992).

In a different theoretical formulation, in their chapter on Diagramming and
gesturing during mathematizing, Menz and Sinclair challenge the traditional for-
mulation of diagrams as representations of mathematical objects and relations.
Peirce (1992, 1998) was one of the first semioticians to conceive of semiotics in a
dynamic way. He called attention to the role of diagrams in processes of inference
and abduction. For Peirce a diagram is made up of signs (indexical and others) that
serve to emphasize relations that come to mind in the investigation of a problem.
For Peirce a diagram is first of all a kind of iconic sign, not in virtue of a resem-
blance with something but in virtue of the relationships that it brings to the fore—
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e.g., he argued that algebraic formulas are icons. Focusing on the context of
mathematical invention, Menz and Sinclair emphasize the indexical nature of
diagrams. They base their arguments on the writings of Châtelet, who, as a result of
his deep investigation of the thinking of great mathematicians according to the
records that they left, described diagramming as a material practice of mathematical
invention. Metz and Sinclair illustrate this theoretical formulation convincingly in
the case of three research mathematicians, Fred, Colin, and Victor, working col-
laboratively on problems of Topological Graph Theory. About 200 diagrams were
identified during nine meetings of the mathematicians. The life-cycles of the dia-
grams were analyzed according to three phases, namely, manufacturing, commu-
nicating, and a final phase of dénouement. From their data, the authors identified
five elements in the life-cycles of the mathematicians’ diagrams: firstly, the diagram
is emerging (“is born,” as Roth, Chap. 3, might say); then a mathematician adds to
or erases from an existing diagram; next, the diagram is refigured by tracing edges
and vertices; the fourth element is a mathematician drawing a known diagram by
retrieving it from memory; finally, a mathematician might be directed to draw a
diagram by his colleague.1 Although the indexical nature of these diagrams is clear
from this data set, the diagrams might also be considered to have iconic properties.
For instance, in the case of the diagram drawn from memory, memory must not be
thought of in terms of representations, but in terms of the movements or actions
themselves that have become habitual. The movements producing mathematical
diagrams and those gesturing over and about the diagrams produced before or as a
result are the same—as shown in a semiotic study of lecturing with graphs in
university physics courses (Roth 2012b). Iconicity appears here not as a property of
the sign itself but rather as a property of its production: “as the projection of an
earlier experience onto a new one” (Radford 2008, p. 94)—something that makes
this experience at the same time old and new, “similar and different” (p. 94), as in
the various hand movements and the ensuing figures inscribed on the blackboard.

More generally, because the emergent and evolving meaning of signs changes
continuously as semiotic activity unfolds, the nature of signs moves constantly
around from being indexes, to being icons, and to being symbols; in fact, signs can
be more than indexes, or icons, or symbols only; signs can be one, two or three
things all at the same time. However, it is worth remembering that there are many
roles of diagrams in the teaching and learning of mathematics. One open question is
the influence of prototypical images on students’ and mathematicians’ thinking in
all areas of mathematics (e.g., prototypical images of octahedron and torus in Menz
and Sinclair’s study, or triangles and pentagons in Sáenz-Ludlow’s), both as
affordances and as constraints (Presmeg 1992, 2006a).

1See also Roth (2015) where the continued changes in thinking and writing of mathematical graphs
and equations, associated with continued erasure and rewriting, are theorized in the field as the
birth of understanding arising from the excess of graphical movements.
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19.2.6 Types of Signification

In view of the rich variety of theories of signification offered in the chapters in this
monograph, in this sectionwe honor the view that there are different types of ways that
signs may signify. Just as mental imagery may signify in different ways in mathe-
matical activity (Presmeg 1997, 1998, 2006b), the signs identified in the chapters of
this book have different contexts, purposes, and roles in mathematics education. As in
Shakespeare’s words, “A tale told by an idiot, Full of sound and fury, Signifying
nothing” (Macbeth, Act 5, scene 5), for some students mathematics may have no
personal signification, despite its sound and fury. Signification implies meaning.

The meaning of activities for the learning of mathematics is a relevant topic in
mathematics education at least since Jean Piaget (e.g., Piaget and Inhelder 2013/
1958): numerous researchers have presented texts on research questions in this area
(Boaler 2002; Wittmann 1995). Semiotics offers several other views on mathe-
matical activities. In the Peircean tradition, besides diagrammatic reasoning (see
Sáenz-Ludlow, Chap. 11), which focuses on Peirce’s use of signs, the pragmatic
maxim introduced by Peirce in (1878) and slightly changed by William James
(1907) is a relevant theoretical principle to explain the meaning of concepts in
common usage and in mathematics in particular (Sáenz-Ludlow and Kadunz
2016b). Concentrating on the pragmatic maxim also builds a bridge to the ideas of
Ludwig Wittgenstein (see Kadunz, Chap. 7), another philosopher widely known
but rarely used in mathematics education (Dörfler 2016). On the one hand
Wittgenstein cannot be seen as a semiotician. On the other hand we can find
numerous hints in his posthumously published book On Certainty (1975/1969) very
similar to the pragmatic maxim. Boncompagni (2016) stated the pragmatic maxim
as follows:

Roughly, it is the connection between the meaning of a conception and its practical effects,
thanks to which we can claim to know something completely only insofar as we know its
effects in factual and/or behavioural terms. (p. 140)

Peirce sees action not as a concept to be studied in detail, but as a tool to
interpret various different situations. For him, action is a part of a life practice, a
behavior (habit), which is controlled by action and shows itself at the same time.
What is the meaning of this maxim for learning mathematics? If we follow Peirce, it
is a tool to achieve clarity about ideas and concepts, including those that determine
mathematics. It is remarkable that, in Peirce’s view, “One of the goals is to illustrate
that certain hypotheses or concepts do not bear any cognitive content at all”
(Hookway 2012, in Boncampagni 2016, p. 43). The pragmatic view focuses mainly
on the outcome of activities. Peirce’s definition of meaning is “translation of one
sign into another system of signs” (CP4.127). This definition resonates with Eco’s
(1984) characterization of semiosis as one segmentation of the material continuum
in relation to another segmentation.

Although they espouse different traditions, Kadunz (Chap. 7) and Roth (Chap. 3)
both recognize the principle of a field transverse to the flow of ideas, as in the

366 N. Presmeg et al.



metaphor of a river. Roth, in the tradition of the later Vygotsky, calls it a commu-
nicative field. Kadunz points out that the German word for translation, Übersetzung,
implies a leaping across: a good translator “leaps to the other river bank” (Chap. 7).
As in the pragmatic maxim, use is another focus in the worldview of Kadunz that has
resonance in Roth’s chapter, in which sign vehicles are adumbrated in terms of the
buying and selling of commodities: the buyer is interested in the use-value; the seller
in the exchange value. A human relation is involved. The transaction is
future-oriented (as in the pragmatic maxim): use matters. Roth writes of “lines of
becoming” (Chap. 3). Two questions are involved in the foregoing, as it relates to
mathematics education: (a) What is signified? (b) How is it signified?

Some indication of an answer to these questions is given by Krause and Salle
(Chap. 16). In their use of a framework of Grundvorstellungen, “mental models
that carry the meaning of mathematical concepts and procedures,” they invoke
theories of both Vygotsky and Peirce. What is signified by Victor’s coordination of
gestures, speech, and inscriptions is indicated in his mental models that proceed
from an initial “growth point” to a “catchment” (a confluence of growth points) that
leads him to the idea of function as object, in the context of linear equations and
mobile telephone contracts. Thus function as object is what is signified by this
catchment. How it is signified, using a Peircean frame, was not able to be identified
with the dataset that they presented. It would require data from an earlier point in
time.

Thus there are many aspects that concern signification in the teaching and
learning of mathematics. The use-value may be identified in mental models. But in
the learning processes involved, “individuals come to position themselves in dif-
ferential, polyglossic, and ideological ways” (Radford, Chap. 2). Otte, too, writes
that “man is a symbolic being” (Chap. 9), characterizing semiosis as meaningful-
ness, not objective reference. What is signified, according to Radford, is unique-
ness, being in flux, shaped by a common cultural ground of ideology, leading to a
student as a “continuous, moving sign in the making” (Chap. 2). Then the student is
the sign. Radford’s (2008) theory of objectification, involving semiotic systems of
cultural signification (SSCS), is used in the empirical research reported in several of
the chapters of this monograph (Salinas-Hernandez and Miranda, Chap. 4; Shvarts,
Chap. 5; and others more implicitly). SSCS and the identity of a student in flux are
not incompatible with Sáenz-Ludlow’s Peircean analysis (Chap. 11) of dynamic,
continuous sign-building in diagrammatic reasoning. The focus is on Peircean
chains that “stretch out in both directions” (Otte, Chap. 9) without limit. The
Peircean analysis may be better suited to hinting at the details of how the signifi-
cation proceeds, but the SSCS view is better able to capture the mathematical
identity in flux, of a student learning in a cultural context, with all the emotions and
affect that belong to this process. It is not only a question of the grain of the
research; Shvarts’s study, for example, is extremely fine-grained—and provides a
detailed account of how a case of objectification of a cultural view of Cartesian
coordinates takes place through joint attention (see also Stott, Chap. 6). It is also a
question of the focus, in view of the conceptual framework of the research, which
enables and constrains the research questions. Perhaps Otte’s (Chap. 9) principle of
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complementarity is a useful one to adopt in the context of theories that inform a
particular research question. Salazar (Chap. 12) successfully integrates Peirce’s
qualisign, sinsign, and logisign with Duval’s registers of formation, treatment, and
conversion respectively, in her configuration of the dynamic figural register in a
GeoGebra environment. European researchers have been leaders in the “network-
ing” of theories that together can provide a broader picture of a phenomenon
(Bikner-Ahsbahs et al. 2015).

19.3 Suggestions for Future Research on Topics
Concerning Semiotics in Mathematics Education

Whether or not a principle of complementarity of theoretical positions is embraced,
the foregoing issues, and the rich variety of theoretical positions on semiosis
adopted in the chapters of this monograph, suggest further research in a broad array
of different areas.

Firstly, is there scope for more system-wide research involving semiotics in
mathematics education? Morgan’s research (Chap. 8) indicates that indeed that is
the case. Using social semiotics and systemic functional linguistics, she addresses
three questions: (a) What is mathematics? (b) Who or what does mathematics? and
(c) What do teachers and students do? Both her examples are fine-grained in their
analysis, but they manifest the versatility of ways that system-wide issues may be
addresses through these lenses. Examination of the wording of past national
mathematics examination questions highlights the subtlety of messages signified, in
characterizing what mathematics is and who should do it (the first two research
questions). In the second example (question 3), official government documents are
analyzed to decode what is considered “good practice” in teaching mathematics—
agency, performance, support, etc. are all key words that signify a view of teaching
that is rewarded by the system. This kind of study addresses both kinds of research,
namely, descriptive-analytic (what is), and normative (what could be different).

With a different focus, there is much scope for further investigation of Radford’s
question (Chap. 2), What is the nature of the human activity that, at school, pro-
duces teachers and students? His research, based on the classroom constitution of
mathematical subjectivities, suggests that what is learned, and how it is learned, are
the “threads out of which subjectivities are made,” involving togethering (Radford
and Roth 2011). Specifically, Roth (Chap. 3) indicates three possible areas of
investigations of signification in this regard: (a) creation of signs; (b) transparent
reading of signs; and (c) interpretation of signs. Roth has addressed all three of
these foci in his writings, but Chap. 3 is devoted to the first, the birth of signs.
Chapters 4, 5, and 6 are all involved in examining the micro-mechanisms that
address the mathematical subjectivities of students in processes of learning, and the
field is ripe for more research in this area. There is also scope for further research on
attention and awareness in progressive objectification as characterized by Swidan
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and Prusak (Chap. 18), who introduced in their research Roth’s (2015) three-fold
distinction of being unaware, being latently aware, and culminating in full
awareness.

There are several theoretical formulations in the chapters of this monograph that
could fruitfully be put to the test as lenses in contexts other than those described. One
such formulation is that of Menz and Sinclair (Chap. 17), using Châtelet’s theory in
research on diagrammatic reasoning in the creation of new mathematics by three
research mathematicians. Since Châtelet’s theory was founded on the written work
of famous research mathematicians, it would be interesting to investigate the scope
of his theory in the classroom teaching and learning of mathematics at all levels. Are
the five steps in the life-cycle of diagrams, which Menz and Sinclair identified,
replicable in other contexts? Sáenz-Ludlow’s research (Chap. 11) also concerns
diagrammatic reasoning, but within a Peircean framework: there is much scope for
the further investigation of the usefulness of transformate diagrams in teaching and
learning geometry. Further theoretical formulations that might be tested as lenses in
different contexts are as follows: Peirce’s three-step plan for chaining diagrams
(Kinach, Chap. 13), the Dynamic Figural Register (Salazar, Chap. 12), the typology
of Signification Pathways, co-produced by teachers and learners (Mathews, Venkat,
and Askew, Chap. 14), and Vygotsky’s view of gradual perceptual change in the
Object-Meaning Ratio (Abtahi, Chap. 15).

Finally, because linguistics addresses a large area of semiotic expression, there is
need for further research that involves elements of translation in mathematics
education (Kadunz, Chap. 7). Kadunz asks what conditions must be met in order
that key terms can be translated? This is still a focal question that might be
addressed using Semiotic-Conceptual Analysis (Priss, Chap. 10), the framework
that Priss used in investigating why formal language is difficult for students to learn.
The conceptual lens of SCA introduces the fine grain of four structural aspects in
questions of language: incompleteness, polysemy, synonymy, and iconicity.

It is clear from the rich diversity of theoretical formulations, and the numerous
issues still pertinent to semiosis in mathematics education, that signification will
remain an important aspect of research in this field.
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