
Multi-level Access in Searchable Symmetric
Encryption

James Alderman, Keith M. Martin, and Sarah Louise Renwick(B)

Information Security Group, Royal Holloway,
University of London, Egham, Surrey TW20 0EX, UK

{James.Alderman,SarahLouise.Renwick.2012}@live.rhul.ac.uk,
Keith.Martin@rhul.ac.uk

Abstract. Remote storage delivers a cost effective solution for data stor-
age. If data is of a sensitive nature, it should be encrypted prior to out-
sourcing to ensure confidentiality; however, searching then becomes chal-
lenging. Searchable encryption is a well-studied solution to this problem.
Many schemes only consider the scenario where users can search over the
entirety of the encrypted data. In practice, sensitive data is likely to be
classified according to an access control policy and different users should
have different access rights. It is unlikely that all users have unrestricted
access to the entire data set. Current schemes that consider multi-level
access to searchable encryption are predominantly based on asymmet-
ric primitives. We investigate symmetric solutions to multi-level access
in searchable encryption where users have different access privileges to
portions of the encrypted data and are not permitted to search over, or
learn information about, data for which they are not authorised.

1 Introduction

Searchable encryption (SE) enables a user to search over encrypted data that
has been outsourced to a remote server. In some schemes [4,5,9,18–20], the data
owner may authorise multiple users to make search queries—in such cases, a
querier is either authorised to search over the entirety of the data or not at
all, in which case (ideally) no information about the outsourced data should be
revealed. In practice, the access control requirements of outsourced data sets are
likely to be more fine-grained than this binary ‘all or nothing’ approach; hence
existing schemes do not suffice.

We study the problem of enforcing a multi-level access control policy (MLA)
in the context of searchable symmetric encryption (SSE). As a notable example
of this form of data classification, the UK government uses three levels of data
classification: official, secret and top secret [16]. In our model, a user with ‘secret’

J. Alderman—Supported by the European Commission under project H2020-644024
“CLARUS” and acknowledges support from BAE Systems Advanced Technology
Centre.
S.L. Renwick—Supported by Thales UK and EPSRC under a CASE Award.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 35–52, 2017.
https://doi.org/10.1007/978-3-319-70278-0_3

36 J. Alderman et al.

clearance should be unable to learn any information about data items classified
as ‘top secret’, such as whether they contain searched keywords or not. This is
an example of an information flow policy with a total order of security labels [2].

More precisely, consider a (possibly large) data set which is to be outsourced
to an external storage provider, which could be outside of the data owner’s
trusted zone. Although the provider has a business incentive to provide a stor-
age and search service to the client (and to any other users authorised by the
data owner), the provider may attempt to learn information about the sensitive
data stored; in short, the storage provider may be honest-but-curious. Hence, the
data must be encrypted prior to outsourcing, and the search procedure should
not reveal unintended information to the storage provider or to other unautho-
rised entities. Each data item within the data set may be associated with some
keywords, over which searches may be performed. Furthermore, each data item
may differ in sensitivity and have different access control requirements. The data
owner may authorise additional users to search the data set and, again, each user
may have different access control clearance and therefore be able to access or
search different sets of data items. Let us define a set of security labels L, which
forms a totally ordered set (L,�) to reflect the inheritance of access rights. Each
user u and data item d is assigned one of these labels, denoted λ(u) and λ(d)
respectively. A user u may search a data item d if and only if λ(u) � λ(d).

Public-key encryption (PKE), especially functional encryption, has previ-
ously been used to achieve MLA in SE [3,11,15,21]. In general, PKE is compu-
tationally more intensive than symmetric key encryption (SKE), perhaps making
SKE more suitable for practical systems. The enforcement of MLA policies in
symmetric SE has, up to now, remained relatively unexplored. Kissel and Wang
[14] presented a SKE-based scheme in which users are divided into groups that
each have a specified dictionary of keywords they may search over. These groups
are arranged hierarchically so that each group may also search for all keywords
in dictionaries assigned to groups at lower levels in the hierarchy. Although this
scheme presents a form of hierarchical access in SSE, users may still search over
the entire data set. In most access control scenarios, we are concerned with
protecting a data item (i.e. the complete content of a data item), not just a
single keyword describing the data item. Furthermore, it may be difficult to
correctly administer an access control policy expressed only in terms of autho-
rised keywords; data items may gain their classification level due to semantic
meaning regarding their contents (for example, the subject to which they per-
tain), which may not trivially be captured through the associated keywords.
For example, consider two data items containing information about company
spending: one providing a public report of company-wide spending, whilst the
other pertains specifically to the research department. Whilst both items may be
labelled by a keyword such as ‘finance’, detailed knowledge of research spend-
ing may be deemed more sensitive than a generalised report. Simply autho-
rising users to search for keywords, such as ‘finance’, does not suffice in this
instance as not all users that can search the public report should also be able
to view the specific report. The access control policy in this case must be man-

Multi-level Access in Searchable Symmetric Encryption 37

aged carefully—perhaps additional, more granular, keywords must be defined
e.g. ‘finance-public’ (leading to an increase in the size of the searchable encryp-
tion index and a subsequent loss of efficiency) or a (less efficient) SE scheme
that supports ‘conjunctive keyword-only access control’ would be required such
that one can be authorised to search for (‘finance’ AND ‘public’) and only data
items with both keywords would be returned. In this work, we consider the prob-
lem of fine-grained classification of data items directly and gain a more efficient
solution.

In this work, we consider Multi-level Searchable Symmetric Encryption
(MLSSE). We begin in Sect. 2 by reviewing background material, before defining
our system and security models in Sects. 3.1 and 3.2. In Sect. 3.3, we introduce
our instantiation based on the constructions of [9,13], and then show, in Sect. 3.5,
how to extend our construction to support a dynamic data set using techniques
from [13]. Section 3.6 discusses the efficiency of our scheme. The full security
proofs of our constructions are omitted but are available in the full version of
our paper [1].

2 Background

We aim to enforce information flow policies within searchable encryption, which
encompass a wide range of access control policies that are of practical interest,
including the Bell-LaPadula model, temporal, role-based and attribute-based
access control [8].

Definition 1. An information flow policy is a tuple P = ((L,≤),U ,D, λ), where
(L,≤) is a partially ordered set (poset)1 of security labels, U is a set of users,
D is a set of objects (data items), and λ : U ∪ D → L is a function mapping
users and objects to security labels in L. We say that u ∈ U is authorised to read
(search) an object d ∈ D if λ(d) � λ(u).

In this paper, we will focus on the case where (L,≤) is a total order (chain)
giving a simple hierarchy of security levels and, without loss of generality, we
assume that each user and object is assigned to at most one security label. Given
a set X, we denote the power set of X, comprising all combinations of elements
in X, by 2X . Throughout this paper we refer to ‘security levels’ and ‘security
labels’ as access levels.

Definition 2. A Multi-User Searchable Symmetric Encryption (MSSE) scheme
is a set of six polynomial time algorithms defined as follows:

– KO
$← MSSE.KeyGen(1k): A probabilistic algorithm run by the data owner

that takes a security parameter k ∈ N and outputs a secret key KO.

1 A poset is a set of labels L and a binary order relation � on L such that for all x, y
and z ∈ L, x � x (reflexivity), if x � y and y � x then x = y (antisymmetry), and
if x � y and y � z then x � z (transitivity). If x � y then we may write y � x.

38 J. Alderman et al.

– (ID, stO, stS) $← MSSE.BuildIndex(KO,D,G): A probabilistic algorithm run
by the data owner that takes a set of data items D, a set of authorized users
G and the secret key KO. It outputs an index ID, and server and owner states
stS and stO.

– Ku
$← MSSE.AddUser(u,KO, stO): A probabilistic algorithm run by the data

owner that takes the identity, u, of a user to be enrolled in the system along
with the owner’s secret key and state. It outputs a secret key for the new
user Ku.

– Tω ← MSSE.Query(ω,Ku)2: A deterministic algorithm run by a user that
takes a keyword ω and the user’s secret key, and outputs a search token.

– Rω ← MSSE.Search(Tω, ID, stS): A deterministic algorithm run by the server
that takes as input a search token, an encrypted index and the server state,
and outputs a set Rω of identifiers of data items containing ω.

– (stO, stS) $← MSSE.Revoke(u,KO, stO): A probabilistic algorithm run by the
data owner that takes a user identity of a user to be revoked along with the
data owner’s secret key and state. It outputs new server and owner states.

For a data set D and keyword ω ∈ Δ (where Δ is a dictionary of possible
keywords), let us denote by Dω the expected results of searching for ω in D
(in the plain); informally we say that an MSSE scheme is correct if it also
produces the output Dω. More formally, a MSSE scheme MSSE is correct if
for all k ∈ N, for all KO output by MSSE.KeyGen(1k), for all D ∈ 2Δ, for all
G ∈ 2U , for all (ID, stO, stS) output by MSSE.BuildIndex(KO,G,D), for all ω in
Δ: Search(MSSE.Query(Ku, ω), ID, stS) = Dω.

Definition 3. A Broadcast encryption (BE) scheme is a set of four polyno-
mial time algorithms as follows, where U is the user space of all possible user
identities:

– (PP,KBE)
$←BE.Keygen(1k): A probabilistic algorithm that takes a security

parameter k outputs public parameters PP and a master secret key KBE.
– C

$←BE.Enc(M,G): A probabilistic algorithm that takes a plaintext M , a set
of users G ∈ U authorized to decrypt and produces a ciphertext C.

– Ku
$← BE.Add(KBE, u): A probabilistic algorithm that takes as input the mas-

ter secret key KBE and a user identifier u ∈ U , and outputs a user key Ku.
– (M or ⊥) ←BE.Dec(C,Ku): A deterministic algorithm that takes a cipher-

text C and a secret key Ku and outputs either a plaintext M or a failure
symbol ⊥.

BE is correct if ∀k ∈ N, for all PP and KBE output by BE.KeyGen(1k,m),
for all M in the plaintext space, all sets of users G ∈ U , every Ku output by
BE.Add(u,KBE) and all C output by BE.Enc(M,G) where u ∈ G we have: M ←
BE.Dec(C,Ku).

2 This algorithm is sometimes referred to as MSSE.Trapdoor in the literature, however
to maintain consistent notation throughout this paper we refer to it as MSSE.Query.

Multi-level Access in Searchable Symmetric Encryption 39

3 Multi-level Access in Searchable Symmetric Encrytion

A MLSSE scheme permits searching over encrypted data in the symmetric key
setting for multiple users that have varying access rights to the set of data items.
The access levels are hierarchical (totally ordered), meaning a user may search
all data items at their own access level as well as all data items that are classified
at lower access levels.

3.1 System Model

Consider a data owner O, a server S, and a set of m data users U={u1, ..., um}.
The data owner possesses a set of data items D={d1, ..., dn} which they wish to
encrypt and outsource to S whilst authorising other users to search over some
data items within D. Each data item di ∈ D is associated with an identifier iddi

.
To enable searching over the encrypted data, O must upload some encrypted

metadata to the server. It first defines a dictionary of keywords, denoted Δ =
{ω1, ..., ω|Δ|}, and assigns a set δdi

⊆ Δ of keywords to each data item di ∈ D.
We refer to the set of keywords for all data items as δD = (δd1 , ..., δdn

). The data
owner then produces an encrypted index ID based on δD, over which searches
will be performed.

O also defines an information flow policy P with a labelling function λ map-
ping each user ui ∈ U and data item dj ∈ D to an access level, denoted λ(ui) and
λ(dj) respectively, in the totally ordered set L = {a1, ..., al}. Access control in
our model is enforced at data item level—users are restricted in the data items
that they may search, not the keywords they may search for [14]. A user with
access level λ(ui) is authorised to search a data item with classification λ(dj) if
and only if λ(dj) ≤ λ(ui). To search for a keyword ω ∈ Δ, a user ui (with access
level λ(ui)) generates a search query Tω,λ(ui). Let Dω be the set of identifiers of
all data items assigned the keyword ω, and denote by Dω,λ(ui) ⊆ Dω the search
results that user ui is authorised to view; in other words, the set of identifiers of
all data items iddj

assigned ω where λ(dj) ≤ λ(ui).
To add and revoke users, we use broadcast encryption (BE) (Definition 3) as

per [9]; a user may only produce a valid search query if they are authorized in
the BE scheme.

To ease notation, we define the tuple di
aug = (di, idi, δdi

, λ(di)) to completely
describe a data item di ∈ D (being the data itself, the identifier, the associated
keywords and the security classification). We denote the information regarding
all data items by Daug = {d1

aug, ..., dn
aug}.

We present a structure only MLSSE system—we only consider the data struc-
ture (index) and do not encrypt the data items themselves; data items may be
encrypted separately and retrieved based on the search results, which comprise a
set of data item identifiers that fulfil the query. We permit data items to be of any
format and the sets of keywords can be arbitrarily chosen from the dictionary—
they may not necessarily correspond to the actual content of the data, but could
be descriptive attributes of the data item. This may help minimise the risk of a

40 J. Alderman et al.

statistical attack on the index as the frequency of a certain word in a document
is not necessarily reflected in the set of keywords chosen to index the data item.

Definition 4. A Multi-level Searchable Symmetric Encryption Scheme
(MLSSE) scheme consists of six algorithms defined as follows:

– (KO, kS , PP) $← KeyGen(1k, S,P): A probabilistic algorithm run by the data
owner O that takes the security parameter k, policy P and the server identity
S, and outputs O’s secret key KO, a server key kS and public parameters PP .

– ID
$← BuildIndex(Daug,KO, PP): A probabilistic algorithm run by O. It takes

the description of the data set Daug and O’s secret key, and outputs the
index ID.

– (Ku, PP) $← AddUser(u, λ(u),KO, PP): A probabilistic algorithm run by O
to enrol a new user into the system. It takes the new user’s identity u and
access level λ(u), and O’s key, and outputs a secret key for the new user.

– Tω,λ(u) ← Query(ω,Ku): A deterministic algorithm run by a user with access
level λ(u) to generate a search query. It takes as input a keyword ω ∈ Δ and
the user’s secret key and outputs a search query Tω,λ(u).

– Rω,λ(u) ← Search(Tω,λ(u), ID, kS): A deterministic algorithm run by S to
search the index for data items containing a keyword ω. It takes a search
query and the index, and returns the search results Rω,λ(ui), comprising either
a set Dω,λ(u) of identifiers of data items dj containing ω such that for all
λ(dj) ≤ λ(u) (where λ(u) is the access level of the user that submitted the
search query), or a failure symbol ⊥.

– (KO, PP) $← RevokeUser(u,KO, PP): A probabilistic algorithm run by O to
revoke a user from the system. It takes the user’s id, the data owner’s and
server’s secret keys, and outputs updated owner and server keys.

An MLSSE scheme is correct if for all k ∈ N, for all KO, kS output by
KeyGen(1k, S,P), for all Daug, for all ID output by Buildindex(Daug,KO, PP),
for all ω ∈ Δ, for all u ∈ U , for all Ku output by AddUser(u, λ(u),KO, PP),
Search(Query(ω,Ku), ID, kS) = Dω,λ(u).

3.2 Security Model

A secure MLSSE scheme would, ideally, reveal no information regarding the data
set D to the server (i.e. a curious server cannot learn information about the data
it stores) and reveal no information to users regarding data items that they are
not authorised to search. However, most SSE schemes leak additional information
to gain efficiency. For example, the search results {Rω1,λ(u), ...,Rωp,λ(u)} for a
set of queries {Tω1,λ(u), ..., Tωp,λ(u)} could be revealed. This is referred to as the
access pattern (Definition 5) and defines the link between a search query and the
search results it produces; it may be thought of as a database where each row
stores a search query and a corresponding set of identifiers of data items that
satisfies the search query.

Multi-level Access in Searchable Symmetric Encryption 41

Most efficient SSE schemes also leak the search pattern (Definition 6), which
reveals the set of search queries made to the server. In most single-user SSE
schemes [6,7,9,10,12,13], search queries are formed deterministically; the server
can therefore ascertain whether a search query has been made previously.

Definition 5. For a sequence of q search queries Ω = {Tω1,λ(u1), ..., Tωq,λ(uq)}
where for 1 ≤ i, j ≤ q: ωi and ωj or λ(ui) and λ(uj) are not necessarily distinct
for i
= j, the access pattern is defined as:

AP (ID, Ω) = {(Tω1,λ(u1),Rω1,λ(u1)), ..., (Tωq ,λ(uq),Rωq,λ(uq))}.

Definition 6. For a sequence of q search queries Ω = {Tω1,λ(u1), ..., Tωq,λ(uq)}
where for 1 ≤ i, j ≤ q: ωi and ωj or λ(ui) and λ(uj) are not necessarily distinct
for i
= j, the search pattern is defined as a q × q symmetric binary matrix
SP (ID, Ω) such that for 1 ≤ i, j ≤ q:

SP (ID, Ω)i,j = 1 ⇐⇒ Tωi,λ(ui) = Tωj ,λ(uj).

Intuitively, the search pattern reveals when the ith and jth queries are the same,
which happens when queries are issued for the same keyword by users with the
same access level.

Definition 7. For an index ID we define the setup leakage LSetup(ID) to be
all the information that is leaked by the index ID.

Definition 8. For an index ID and set of q search queries Ω =
(Tω1,λ(u), ..., Tωq,λ(u)) we define the query leakage LQuery(ID, Ω) to be all the
information leaked by evaluating the queries in Ω on the index ID.

We now formalise the notions of security we require in MLSSE. We use cryp-
tographic games to formalize our notions of security. For each game, a challenger
C instantiates a probabilistic polynomial time (PPT) adversary A whose inputs
are chosen to reflect the information available to a realistic adversary. Our notion
of adaptive security is based on that of IND-CKA2 presented in [9]. In the fol-
lowing we represent the dictionary of keywords as Δ, λ defines the mapping
function as described in Sect. 3.

Multi-level Access. Our first security notion, in Game 1.1, is that of multi-
level access which requires that a user, u, cannot receive search results or learn
information relating to data items di such that λ(u) < λ(di). More specifically, a
server colluding with several users cannot learn anything about the index beyond
the specified leakage according to the corrupt users’ access rights.

We define a maximal query leakage with access level λmax on ID to be
LQuery(ID, {Tωi,λmax

}ωi∈Δ)—this is the leakage resulting from every possible
keyword search with the maximal access level available, in Game 1.1 we denote
this as Lmax(ID).

The challenger sets up the system, including instantiating several global vari-
ables (which the challenger can use in the main game and in oracle functions, but

42 J. Alderman et al.

which the adversary cannot see): L is a list of users that have been corrupted,
λmax is the maximal access level of any corrupted user, and chall is a Boolean
flag to show whether the challenge parameters have been generated yet. The
adversary is given the security parameter, access control policy, server key and
the public parameters, as well as providing access to the following oracles.

The AddUser oracle allows the adversary to enrol a user into the system,
and the adversary corrupts this user by receiving the user key. If the challenge
has not yet been generated, then the challenger adds the requested user to the
list L of corrupted users, checks if the maximal access level of corrupted users
needs updating, and runs the AddUser algorithm. Otherwise, if the challenge has
been generated, the above procedure is carried out only if the maximal query
leakage for the new user’s access level is equal on both challenge data sets—that
is, providing the user key for the queried user cannot allow the adversary to
trivially distinguish the two data sets.

The RevokeUser oracle first checks that the requested user has indeed been
added previously. If so, it removes the user identity from L and checks whether
the maximal access level needs changing. It returns the server key resulting from
running the RevokeUser algorithm.

The BuildIndex oracle simply runs BuildIndex and returns the output to
the adversary.

After a polynomial number of queries, the adversary outputs two data sets
which must have identical maximal query leakages for the maximal access level
of any corrupted user. The adversary cannot choose data sets where a user that
it has corrupted could make any query that legitimately distinguishes the data
sets since this would count as a trivial win. Whilst this may appear to be a strong
assumption, we believe it to be the minimal assumption necessary to avoid trivial
wins in the multi-user setting. The main issue is that in the multi-user setting
it is necessary to consider the server colluding with a set of users (but not the
data owner); as such, the adversary is able to perform the roles of the server
and of an authorised user, and therefore may produce arbitrary search queries
and perform searches themselves. Thus, the challenger in the game is unable
to monitor which searches have been performed and hence cannot determine
whether the query leakages of the actual queries on both data sets are equal,
and instead must rely on the stronger assumption that no possible authorised
search query can distinguish the data sets. Note that Van Rompay et al. [17]
deal with the multi-user case without this assumption since they deal with single
word indexes and have a proxy through which all queries are made.

The challenger sets the challenge flag to true and chooses a random bit b
which determines the data set used to form an index. The adversary is given
the index and oracle access as described in Game 1.1 and must determine which
data set was used.

Definition 9 (Multi-level Access). Let ML be a multi-level searchable symmet-
ric encryption scheme where k ∈ N is the security parameter, P is an informa-
tion flow policy, S is the identity of the server and A a PPT adversary. The
advantage of A is:

Multi-level Access in Searchable Symmetric Encryption 43

AdvMLA
A (ML, 1k,P) = |Pr[ExpMLA

A [ML, 1k, S,P] = 1] − 1
2
|.

We say that ML is (LSetup,LQuery)-secure against adaptive chosen keyword
attacks in the sense of Game 1.1 if for all A, all k ∈ N, all S and all P,
AdvMLA

A (ML, 1κ, S,P) ≤ negl(k) for a negligible function negl.

Revocation Security. In MLSSE, as with other multi-user SSE schemes, we
need to consider user revocation to remove a user’s ability to submit valid search
queries to the server, and hence receive search results. We capture this in Game
1.2. The adversary is given the public parameters and selects a data set (along
with associated access levels, keywords and identifiers). The challenger then cre-
ates the index. The adversary is given access to a set of oracles that perform the
AddUser(·, λ(·),KO, PP), Search(·, ID, kS) and RevokeUser(·,KO, PP) functions,
where the parameters represented by · are provided by the adversary, and the
adversary is given the resulting user keys and search results. Once the adversary
has completed his queries, the challenger revokes all users that were queried to
the AddUser oracle but were not subsequently queried to the RevokeUser oracle
(i.e. all users for which the adversary holds a valid user key). The adversary
must then produce a search query T which, when used as input to the Search
algorithm, does not produce ⊥ i.e. the adversary must produce a valid search
query even though it does not hold a non-revoked key.

Definition 10 (Revocation). Let ML be a multi-level searchable symmetric
encryption scheme where k ∈ N is the security parameter, S the server iden-
tity, P is an information flow policy and A a PPT adversary. We define the
advantage of A in Game 1.2 as:

AdvRevoke
A (ML, 1κ, S,P) = |P[ExpRevoke

A [ML, 1κ, S,P] = 1] − 1
2
|.

We say that ML achieves revocation if for all A, all k ∈ N, all S and all P,

AdvRevoke
A (ML, 1κ, S,P) ≤ negl(k).

44 J. Alderman et al.

3.3 Construction

Our construction MLSSE is an adaptation of the scheme of Kamara et al. [13],
which is based on the construction of the influential inverted index scheme SSE-1
by Curtmola et al. [9].

Informally, MLSSE scheme uses an array A of linked lists, along with a look-
up table T to index the encrypted data. This produces a sequential search that
lends itself well to the hierarchical access rights on the data items that we require.
For each keyword ωi ∈ Δ, we define a list Lωi

which stores the identifiers for
all data items containing that keyword and is ordered according to the access
level of the data items—data items with the highest classification are placed at
the beginning of the list, and those with the lowest classification at the end.
Each list Lωi

is encrypted and stored in A as a linked list. During the search
phase the look-up table T is used to point the server to the correct node in the
array depending on the information in the search query i.e. which keyword was
searched for and what access rights the user that submitted the search query
has. This node is decrypted using information in the search query and the node
itself, revealing the address of the next node in the linked list. The server may
continue to decrypt all other relevant nodes in the linked list, obtaining the set
of search results relevant to the user’s searched keyword and access level.

The key difference between our scheme and that of [13] is that, rather than
pointing to the beginning of each linked list, the entry in T will point to the
appropriate position within the linked list according to the access rights of the
querier (recall that the list is ordered by access levels). Since it is not possible

Multi-level Access in Searchable Symmetric Encryption 45

to move backwards through the encrypted lists, the only search results available
are those contained beyond this point in this list—that is, identifiers for those
documents containing the keyword and whose classification is at most that of
the querier, as required by the information flow policy.

Let BE be an IND-CPA secure broadcast encryption scheme. We define the
following pseudorandom functions (PRFs):

F : {0, 1}k × {0, 1}∗ → {0, 1}k,

G : {0, 1}k × {0, 1}∗ → {0, 1}∗,

P : {0, 1}k × {0, 1}∗ → {0, 1}k,

H : {0, 1}∗ × {0, 1}k → {0, 1}∗,

and a pseudorandom permutation (PRP):

φ : {0, 1}k × {0, 1}∗ × {0, 1}k × {0, 1}k → {0, 1}k × {0, 1}∗ × {0, 1}k,

A is a |Δ|×|L| array and T is a dictionary of size |Δ| · |L|. We denote the address
of a node N in A as addrA(N).

Let λ map users and data items to their relevant access levels as described
in Sect. 3.1. We define a function γ which outputs three ordered lists Lωi

,Xωi

and Nωi
given the set of identifiers Daug and the array A. We refer to the nth

item in a list Lωi
as Li[n]. The list Lωi

contains identifiers of data items in Dωi

ordered from the identifiers with the highest to the lowest access levels, the list
Nωi

contains the addresses of |Lωi
| nodes chosen randomly from A and the list

Xωi
contains the indices of the identifiers in Lωi

where each access level starts
i.e. if we have an ordered list of identifiers Lωi

= (id1, id2, id3, id4, id5) where:

a1 = λ(id1) = λ(id2) = λ(id3) > λ(id4) = λ(id5) = a3.

We have that Xωi
[3] = 4, which says that the list of nodes with access level at

most a3 starts at the fourth entry in Lωi
. There is an entry per each access level

in Xωi
, even if two access levels have the same starting point in Lωi

; from the
example above we can see that Xωi

[2] = Xωi
[3] = 4. If an access level is not

authorised to view any data items in Dωi
then the entry corresponding to that

access level (as well as the entries corresponding to all access levels below it) in
Xωi

is set to ⊥. An identifier of a data item di ∈ Dωi
will inherit the access level

label of the respective data item, i.e. λ(iddi
) = λ(di).

The KeyGen algorithm initialises the system and generates the keys KO, kS ,
along with the public parameters, PP. The key KO includes the secret key
for the BE scheme and the sets of |L| keys for each pseudo-random function:
F,G and P and the key for the pseudo-random permutation φ (referred to as
the data owner’s state, stO). The server is enrolled as a user and its secret key
is also generated (although it does not receive the necessary keys to form search
queries). PP includes the information flow policy P, the authorized user group
G, the server state stS (which is an encryption of the owner state generated using
BE) and the public parameters for BE, PPBE.

46 J. Alderman et al.

The BuildIndex algorithm initializes a set free which consists of all nodes in
the array A. BuildIndex considers each keyword contained in the dataset in turn.
For each keyword ωi, the function γ generates Lωi

,Xωi
and Nωi

. The free list is
then updated according to which nodes have been chosen by γ. The nodes in
the array that form the linked lists consist of the identifier from Lωi

of a data
item containing ωi, the address in the array of the next node in the linked list,
the key used to decrypt the following node in the linked list and a random bit
string ri ∈ {0, 1}k. The identifier, address of the next node and the key used to
decrypt the following node in the linked list are XORed with the output of a
PRF H in order to encrypt this information. For the first node in the linked list
he input of H is the decryption key for the current node (which corresponds to
an access level and keyword and forms part of the search query) along with ri),
hence the information stored in the node can only be decrypted by the server
if the server has a search query generated by a user who is authorized to view
the data item whose identifier is stored at that node. The decryption key for all
subsequent nodes is contained in the previous node of the linked list. BuildIndex
then proceeds to create the look-up table T. Unlike prior schemes [9], each user
may have a different access level and thus the starting points for search results
within the linked lists may vary; a search query made by a user with a higher
access level should traverse more of the list than that of a user with lower access
rights (the user is authorised to search more data items). Table T has an entry
for each access level/keyword pair containing the address of a node in A, which
is the node in the linked list Lωi

from which the user with a specified access level
is authorised to decrypt. If an access level is not authorised to view any part of
the linked list then the value in T is set to ⊥. Finally the index ID = (A,T) is
returned.

The AddUser algorithm grants a user u the ability to search the index at a
specific access level. The user is added to the set G of authorized users and a BE
key, ku, is derived for the new user. The new user is given ku and the secret keys
associated with their access level kλ(u),1, kλ(u),2 and kλ(u),3 and PP is updated.

The RevokeUser algorithm revokes a user’s search privileges. A new value for
stO is selected and the user is removed from G. This value is encrypted using
BE to form the new server state stS . The updated versions of KO and PP are
ouput.

The Query algorithm generates a search query for a user u to search for a
keyword w. The user first attempts to decrypt the current server state stS using
their secret key ku; we denote the output of the decryption by st′O. Note that if u
is not authorised then decryption will return ⊥, if this is the case Query outputs
⊥. The query itself comprises three parts. The first is the output of the PRF F
applied to the keyword ω, keyed with the secret key for F associated with the
user’s access level kλ(u),1. This part of the query is used to locate the relevant
entry in T. The second part is the output of the PRF G applied to the keyword
ω and is used to mask the entry in T in order to locate the user’s relevant the
starting position in the linked list corresponding to ω in A. The third part is
the output of the PRF P applied to the keyword ω, which is used to decrypt

Multi-level Access in Searchable Symmetric Encryption 47

the first relevant node in A according to the user’s access level. The PRP φ is
applied to the search query, using st′O as the key.

The Search algorithm finds data item identifiers associated with the searched
keyword from the subset of data item identifiers the user is authorized to search.
The server decrypts stS and applies the inverse of the PRP φ to the query it
received; it parses the result as (τ1, τ2, τ3). The server then looks up entry T[τ1]
and if that entry is not equal to ⊥, the server XORs the value with τ2 and parses
the resulting value as y. The server looks up the node at A[y], parses the entry
as (z1, z2), and decrypts it by XORing z1 with the output of H (which takes as
input τ3 along with z2).

The server is able to sequentially decrypt the rest of the list stored in A until
they reach a node where the address stored in that node for the next item in the
linked list is 0.

3.4 Security

In MLSSE search queries for the same keyword that are produced by users with
different access levels are indistinguishable from one another. That is, a search
query for a keyword ω from a user ui with access level λ(ui) is indistinguishable
from a search query for ω from a user uj with access level λ(uj) for λ(ui)
= λ(uj).
This means that from the queries alone an adversary is unable to deduce how
many times a certain keyword has been searched for overall, it can only deduce
how many times the same keyword has been searched for within each access
level. This information leakage is less than that of standard single or multi user
SSE schemes such as [6,7,9,10,12,13].

In terms of access pattern we also reduce the amount of information leakage
compared with standard single user or multi-user SSE schemes. In particular we
do not reveal whether a data item contains the keyword ωi associated with a
search query unless the access level of that data item is less than or equal to
that of the user ui that generated the search query, meaning that an adversary
cannot see a full set of search results.

However when a search query is paired with the search results it generates
(the access pattern, Definition 5) then an adversary may be able to correlate
which search queries are for the same keyword by looking at the intersections of
the search results. For example if one set of search results is a subset of another
set of search results then this may imply that the two search queries used to
generate these results are for the same keyword. An adversary may eventually
be able to build up a complete set of search results for a particular keyword,
which is equivalent to the leakage produced by a search query in a single user
SSE scheme. The server does not know, however, how many access levels there
are altogether so a server would need to receive all possible search queries before
it can ascertain whether or not a set of search results for a particular keyword
is complete or not.

The hierarchal relationships between the data item identifiers i.e. which iden-
tifiers represent data items at higher access level than others could also be leaked
in the same way. If an adversary has ascertained that two sets of search results

48 J. Alderman et al.

Rω,ai
⊂ Rω,aj

represent searches for the same keyword ω, then an adversary will
be able to conclude that identifiers in the set Rω,aj

\Rω,ai
are at a higher access

level than those in Rω,ai
. We note that unless the search results are padded in

some way this leakage is inevitable. Padding search results is not standard in
SSE schemes as it requires post-processing of the search results by the user hence
we do not pad the search results in our system model in order to maintain an
efficient scheme.

From this we can see that initially our scheme leaks less information about
the search pattern and access pattern than a single user SSE scheme, however
over time as more queries are generated the information leakage tends to that of
a single user SSE scheme. The information leakage relating to a keyword ω i.e.
the access patterns for search queries corresponding to ω only reaches that of a
single user SSE scheme once a search query has been generated at each possible
access level, our leakage remains lower up until this point.

As a search query for a keyword and access level pair is created deterministi-
cally we can think of the search query as a codeword for the combination of that
keyword and access level. The index usually reveals these codewords as a search
is carried out by matching search queries to relevant codewords in the index. A
codeword for keyword ω at access level a is denoted id(ω, a).

We give the specific leakage functions to precisely capture the leakage in
MLSSE, where Ω is a set of queries from users in the system that have been
evaluated on the encrypted index by the server:

1. LSetup(ID) = (|A|, |T|, [id(ω, a)]ω∈Δ,i∈[|L|])
2. LQuery(ID, Ω) = (AP (ID, Ω), SP (ID, Ω), [id(ω, a)]∀Tω,a∈Ω , Ω)

Theorem 1. Given an IND-CPA secure broadcast encryption scheme BE, a
pseudo-random permutation φ, and pseudorandom functions F,G, P,H. Let
MLSSE be the searchable symmetric encryption scheme with multi-level access
defined in Fig. 1. Then MLSSE is (LSetup,LQuery)-secure in the sense of multi-
level access and revocation.

We provide the intuitions of our security proofs here and refer the reader to
the full online version of the paper for the full security proofs [1].

Multi-level access: To show multi-level access we reduce the security to that of
the IND-CPA security of a symmetric encryption scheme which encrypts plain-
texts by XORing them with the output of a PRF. We assume the possibility of
a adversary A that is able to break the multi-level security of our scheme then
we construct a second adversary A’ that is able to use A as a subroutine in
order to break the IND-CPA security of the symmetric encryption scheme with
non-negligible probability.

Revocation: In this proof we show that if we assume an adversary A with non-
negligible advantage δ in Game 1.2 then A can be used as a subroutine by an
adversary ABE to break the security of an IND-CPA secure broadcast encryption
scheme BE.

Multi-level Access in Searchable Symmetric Encryption 49

Fig. 1. The MLSSE construction

3.5 Achieving Dynamicity

We can extend MLSSE to support multi-level access on a dynamic data
set by adding two new data structures to the index: a deletion table
(Td) and a deletion array (Ad). There are also four additional algorithms:
AddToken,Add,DeleteToken,Delete. Array Ad stores a list of nodes for each data
item which point to nodes in A that would need to be removed if the corre-
sponding data item was deleted. This means that every node in A will have a
corresponding node in Ad, which is called its dual node. Td is a table with an
entry for each data item which points to the start of the corresponding linked
list in Ad, given a valid delete token for that data item. In addition to these two
new structures the index consists of a search array As and a search table Ts (as
in the original construction) and a free list that keeps track of all the unused
space in As.

In the dynamic scheme searching for a keyword is done similarly to the static
construction in Sect. 3.3 and follows the concept of linked lists presented by [9].

To add a data item to the index, changes need to be made to Td,As and
Ad. The data owner creates an add token using AddToken and sends this to the

50 J. Alderman et al.

server. The server then determines the free space available in As using the free
list and adds the relevant information to the free nodes and updates the free
list. When adding a new data item the relevant nodes cannot be added to the
end of each linked list; instead we have to insert in the appropriate place in the
linked list according to the access level of the new data item. Information in the
add token will allow the server to locate the correct point at which to insert the
nodes in each linked list, so instead of the entry in Ts just pointing to the end
node of each linked list this is altered so that it points to the correct node in
the linked list according to the access level of the new data item. The respective
predecessor of each new node is modified to point to the new node instead of its
previous ancestor.

In order to remove a data item, a deletion token is created which allows the
server to locate and delete the correct entries in Td. This, in turn, allows the
server to locate and delete the correct entries in As. Some nodes will need to be
updated in As (as some of the linked lists will have nodes which point to nodes
that have been deleted) and this is done using homomorphic encryption.

3.6 Efficiency

In this section we discuss the efficiency of our multi-user, multi-level construction
compared with the single-user construction of [13]. As our scheme is static and
the scheme of [13] is dynamic, we ignore the structures and algorithms in [13]
that apply to the dynamicity, such as the deletion table, the deletion array and
algorithms AddToken,Add, DeleteToken,Delete.

The index is composed of a look-up table and a search array. No changes are
made to the search array that effect the time needed to generate it or the search
time, but the look-up table needs to be augmented by a factor of |L|; this will
require more space on the server but does not effect the search time. The size
of our index is O(Δ · |L| + n) whereas the size of the index in the single user
scheme is O(Δ + n).

There search time of our scheme is O(|Dω,a|) where Dω,a is the set of data
item identifiers satisfying the search query Tω,a. This is equivalent to the search
time of [13], however in our scheme the size of Dω,a is likely to be smaller,
depending on the access level of the user who generated the search query.

The amount of computation required to generate the search queries as well
as the size of the search queries is the same in both schemes, they are both
constructed by evaluating three PRFs.

We note that in terms of efficiency our construction is very similar to that of
[13]. This is also true for the dynamic version of our construction.

4 Conclusion

We have defined a new system, security models and a construction for symmetric
solutions to searching on encrypted data in the multi-level setting. Users may
search for keywords within a set of encrypted data items, restricting the search to

Multi-level Access in Searchable Symmetric Encryption 51

data items they are authorised to view only. Future work will focus on increasing
the range of query types beyond that of single keyword equality search and to
expand the access control policies to arbitrary information flow policies.

References

1. Alderman, J., Martin, K.M., Renwick, S.L.: Multi-level access in searchable sym-
metric encryption. IACR Cryptology ePrint Archive, Report 2017/211 (2017)

2. Bell, E., La Padula, L.: Secure computer system: unified exposition and multics
interpretation. Technical report, Mitre Corporation (1976)

3. Benaloh, J., Chase, M., Horvitz, E., Lauter, K.E.: Patient controlled encryption:
ensuring privacy of electronic medical records. In: Proceedings of the First ACM
Cloud Computing Security Workshop, CCSW 2009, pp. 103–114. ACM (2009)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

5. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: Jonker, W., Petković,
M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006).
https://doi.org/10.1007/11844662 6

6. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

7. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

8. Crampton, J.: Cryptographic enforcement of role-based access control. In: Degano,
P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 191–205.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19751-2 13

9. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006, pp.
79–88. ACM (2006)

10. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, Report 2003/216
(2003)

11. Kaci, A., Bouabana-Tebibel, T., Challal, Z.: Access control aware search on the
cloud computing. In: 2014 International Conference on Advances in Computing,
Communications and Informatics, ICACCI 2014, pp. 1258–1264. IEEE (2014)

12. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

13. Kamara, S., Papamonthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: The ACM Conference on Computer and Communications Security, CCS
2012, pp. 965–976. ACM (2012)

14. Kissel, Z.A., Wang, J.: Verifiable symmetric searchable encryption for multiple
groups of users. In: Proceedings of the 2013 International Conference on Security
and Management, pp. 179–185. CSREA Press (2013)

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/11844662_6
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-642-19751-2_13
https://doi.org/10.1007/978-3-642-39884-1_22

52 J. Alderman et al.

15. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted
data in cloud computing. In: 2011 International Conference on Distributed Com-
puting Systems, ICDCS, pp. 383–392. IEEE Computer Society (2011)

16. Cabinet Office: Goverment security classifications. Technical report (2013)
17. Van Rompay, C., Molva, R., Önen, M.: Multi-user searchable encryption in the

cloud. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 299–316.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 17

18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE (2000)

19. Sun, W.,Yu, S., Lou, W.: Protecting your right: attribute-based keyword search
with fine-grained owner-enforced search authorization in the cloud. In: 2014 IEEE
Conference on Computer Communications, INFOCOM 2014, pp. 226–234. IEEE
(2014)

20. Sun, W., Yu, S., Lou, W., Hou, T., Li, H.: Protecting your right: verifiable attribute-
based keyword search with fine-grainedowner-enforced search authorization in the
cloud. IEEE Trans. Parallel Distrib. Syst. 27(4), 1187–1198 (2016)

21. Yang, Y.: Attribute-based data retrieval with semantic keyword search for e-health
cloud. J. Cloud Comput.: Adv. Syst. Appl. 4, 10 (2015)

https://doi.org/10.1007/978-3-319-23318-5_17

	Multi-level Access in Searchable Symmetric Encryption
	1 Introduction
	2 Background
	3 Multi-level Access in Searchable Symmetric Encrytion
	3.1 System Model
	3.2 Security Model
	3.3 Construction
	3.4 Security
	3.5 Achieving Dynamicity
	3.6 Efficiency

	4 Conclusion
	References

