
Michael Brenner · Kurt Rohloff
Joseph Bonneau · Andrew Miller
Peter Y.A. Ryan · Vanessa Teague
Andrea Bracciali · Massimiliano Sala
Federico Pintore · Markus Jakobsson (Eds.)

 123

LN
CS

 1
03

23

FC 2017 International Workshops
WAHC, BITCOIN, VOTING, WTSC, and TA
Sliema, Malta, April 7, 2017, Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 10323

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Michael Brenner • Kurt Rohloff
Joseph Bonneau • Andrew Miller
Peter Y.A. Ryan • Vanessa Teague
Andrea Bracciali • Massimiliano Sala
Federico Pintore • Markus Jakobsson (Eds.)

Financial Cryptography
and Data Security
FC 2017 International Workshops
WAHC, BITCOIN, VOTING, WTSC, and TA
Sliema, Malta, April 7, 2017
Revised Selected Papers

123

Editors
Michael Brenner
Leibniz Universität Hannover
Hannover
Germany

Kurt Rohloff
New Jersey Institute of Technology
Newark, NJ
USA

Joseph Bonneau
New York University
New York, NY
USA

Andrew Miller
University of Illinois at Urbana-Champaign
Urbana, IL
USA

Peter Y.A. Ryan
University of Luxembourg
Luxembourg
Luxembourg

Vanessa Teague
University of Melbourne
Parkville, VIC
Australia

Andrea Bracciali
University of Stirling
Stirling
UK

Massimiliano Sala
University of Trento
Trento
Italy

Federico Pintore
University of Trento
Trento
Italy

Markus Jakobsson
Agari Inc.
San Mateo, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-70277-3 ISBN 978-3-319-70278-0 (eBook)
https://doi.org/10.1007/978-3-319-70278-0

Library of Congress Control Number: 2017959723

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-2690-7340
http://orcid.org/0000-0003-0389-5092
http://orcid.org/0000-0003-1451-9260
http://orcid.org/0000-0002-7266-5146
http://orcid.org/0000-0002-7985-3131

Preface

WAHC 2017: 5th Workshop on Encrypted Computing
and Applied Homomorphic Cryptography

The hype over the cloud and recent disclosures show there is demand for secure and
practical computing technologies. The WAHC workshop addresses the challenge in
safely outsourcing data processing onto remote computing resources by protecting
programs and data even during processing. This allows users to outsource computation
over confidential information independently from the trustworthiness or the security
level of the remote delegate. The workshop serviced these research needs by collecting
and bringing together some of the top researchers and practitioners from academia,
government, and industry to present, discuss, and share the latest progress in the field
relevant to real-world problems with practical approaches and solutions. The workshop
was uniformly attended by academia, government, and industry, with participants from
previous years with experience in the domain and new attendees contributing and
learning from the community for the first time. Specific encrypted computing tech-
nologies focused on homomorphic encryption and secure multiparty computation. The
technologies and techniques discussed in this workshop are key to extending quality of
implementation and the range of applications that can be securely and practically
outsourced. Presentations and discussion at the workshop were of the high quality and
deep insights we have come to expect from our community. Topics of conversation
included insights and lessons learned from experience implementing encrypted com-
puting schemes and experience reports on applying these technologies. Special thanks
to the invited speakers: Kim Laine from Microsoft Research and Yuriy Polyakov from
the New Jersey Institute of Technology, who shared their experiences implementing
open-source homomorphic encryption libraries. The workshop received 19 submis-
sions. All contained unique and interesting results. Each was reviewed by at least three
Program Committee members. While all the papers were of high quality, only seven
papers were accepted to the workshop. We thank the authors for all submissions, the
members of the Program Committee for their effort, the workshop participants for
attending, and the FC organizers for supporting us.

April 2017 Michael Brenner
Kurt Rohloff

WAHC 2017 Program Committee

Dan Bogdanov Cybernetica, Estonia
Zvika Brakerski Weizmann Institute, Israel
David Cash Rutgers, USA
Hao Chen Microsoft Research, USA
Rosario Gennaro CUNY, USA
Seung Geol Choi US Naval Academy, USA
David Cousins BBN, USA
Marten van Dijk UConn, USA
Dario Fiore IMDEA, Spain
Sergey Gorbunov University of Waterloo, USA
Debayan Gupta MIT, USA
Vlad Kolesnikov Bell Labs, USA
Kim Laine Microsoft Research, USA
Tencrède Lepoint SRI International, USA
Pascal Paillier CryptoExperts, France
Benny Pinkas Bar-Ilan University, Israel
Erkay Savas Sabancı University, Turkey
Berk Sunar WPI, USA
Mehdi Tibouchi NTT, Japan
Fre Vercauteren KU Leuven, Belgium
Adrian Waller Thales, UK

VI WAHC 2017: 5th Workshop on Encrypted Computing

BITCOIN 2017: 4th Workshop on Bitcoin
and Blockchain Research

The past year leading up to the 4th Bitcoin and Blockchain Workshop in 2017 has seen
a continued booming trend: increased adoption and development in cryptocurrencies
like Bitcoin, Ethereum, Zcash, and many more, as well as investment in blockchain -
related technologies from industry broadly. Cryptocurrency and blockchain technology
are emerging as a significant and productive research topic in computer security.

Much like the price of Bitcoin and the market capitalization of the cryptocurrency
ecosystem, our workshop has also grown year by year. This year we received a record
number of submissions (38), and after our peer-review process we accepted a record
number of papers (14), and yet increased in selectivity (37% acceptance rate). We were
very happy to convene an outstanding Program Committee (listed here) comprising not
just leading academics, but also top PhD students and prominent developers.

From our strong technical program emerged several themes of focus, including
privacy analysis and privacy-preserving enhancements; smart contract scripting
functionality and applications in both Bitcoin and Ethereum; game theoretic analysis
of consensus protocols; and scalability improvements for cryptocurrency transactions.
We note also that our host conference accepted five papers on blockchain technology to
its main track, and also featured a keynote talk on a new cryptocurrency protocol from
Turing Award winner Silvio Micali. A new workshop dedicated to smart contract
security hosted in parallel also featured 11 talks and a keynote from Vitalik Buterin.

We would like to thank our Program Committee for the hard work they put into
producing high-quality and useful reviews, and the authors and speakers for
contributing to our program. We especially thank Nicolas Christin for once again
hosting the conference management server, and the organizers and sponsors of
Financial Cryptography for guiding us through a successful event.

April 2017 Andrew Miller
Joseph Bonneau

BITCOIN 2017 Program Committee

Elli Androulaki IBM Zürich, Switzerland
Foteini Baldimtsi George Mason University, USA
Iddo Bentov Cornell University, USA
Rainer Böhme University of Innsbruck, Austria
Melissa Chase Microsoft Research, USA
Nicolas Christin Carnegie Mellon University, USA
Jeremy Clark Concordia University, Canada
George Danezis University College London, UK
Christian Decker Blockstream, USA
Tadge Dryja MIT Digital Currency Initiative
Ittay Eyal Cornell University, USA
Bryan Ford EPFL, Switzerland
Juan Garay Yahoo! Research, USA
Christina Garman Johns Hopkins University, USA
Arthur Gervais ETH Zürich, Switzerland
Garrick Hilemen University of Cambridge, UK
Ethan Heilman Boston University, USA
Ari Juels Cornell Tech, USA
Stefan Dziembowski University of Warsaw, Poland
Aniket Kate Purdue University, USA
Ian Miers Johns Hopkins University, USA
Patrick McCorry Newcastle University, UK
Malte Möser Princeton University, USA
Andrew Poelstra Blockstream, USA
Christian Reitwießner Ethereum Foundation, Switzerland
Yonatan Sompolinsky Hebrew University, Israel
Eran Tromer Tel Aviv University, Israel
Peter Van Valkenburgh Coin Center, USA
Luke Valenta University of Pennsylvania, USA
Nathan Wilcox Zcash, USA
Pieter Wuille Blockstream, USA

VIII BITCOIN 2017: 4th Workshop on Bitcoin and Blockchain Research

VOTING 2017: Second Workshop on Advances
in Secure Electronic Voting Schemes

Voting 2017 was the second of what looks like turning into an ongoing series of
workshops on verifiable voting systems associated with Financial Crypto.

Voting 2017 occurred at a time of hightened global interest in election security.
Attacks, attributed to Russia, deliberately interfered with the politics of the US
presidential election. Much remains murky about what exactly occurred, but it is clear
that hackers breached the Democratic campaign system and selectively leaked material.
It is also clear that various registration systems were hacked, although the resulting
damage is unclear.

In the wake of this, many European countries discontinued Internet voting or
electronic counting plans over fears that their elections would also be targeted.

In France we witnessed similar attempts to meddle with the democratic process,
although in this case the Kremlin’s favored candidate did not carry the day.
Interestingly in this case it appears that the Macron team were forewarned and detected
the attempted meddling, and indeed staged some counter-meddling of their own:
injecting fake items for the hackers to uncover.

The most interesting statement about US election security came from Former CIA
Acting Director Michael Morell, who said of Russian interference: “They tried, and
they were not successful, but they still tried, to get access to voting machines and vote
counting software, to play with the results.”

This raises the obvious question, “How does he know they were not successful?”
This is what Voting 2017 was about: the quest to design election systems that

produce evidence of an accurate election result, or a clear indication of a problem.
We began with an inspiring keynote by Prof. Philip Stark from The University of

California at Berkeley, who explained that the absence of meaningful post-election
audits implies that we will never know who truly deserved to be elected US president in
2016. Efforts to perform recounts in Pennsylvania, Michigan, and Wisconsin were
thwarted by either technical obstacles, e.g., absence of a paper audit trail, or legal, e.g.,
judges using absurd “Catch 22” style arguments that to justify a recount required
evidence of fraud. He explained how routine post-election risk-limiting audits would
allow us to be confident, every election, that the result was correct.

In “BatchVote: Voting Rules Designed for Auditability,” Perumal, Rivest, and
Stark investigated voting schemes that were designed for efficient auditability.
First-past-the-post elections (the most common style in the USA) are very easy to audit,
but can suffer from the spoiler effect and other distortions. Other, more expressive,
voting systems such as IRV and STV are very difficult to audit, or even to find the
winning margin for. This paper considers both democratic qualities and ease of
auditing to design voting systems that meet both criteria.

In “Existential Assertions for Voting Protocols,” by Ramanujam, Sundararajan, and
Suresh, a new type of formal verification of e-voting protocols is introduced. The

term-based model of e-voting protocols is replaced with assertions, e.g., signatures or
zero-knowledge proofs are replaced with assertions idealizing their desired behavior.
This firstly makes the model quite intuitive to read, but more importantly allows us to
model how the adversary can logically infer based on the assertions he has seen, and
capture if this gives new attacks. The main novelty from the authors is an existential
quantifier that allows the authors to give an equivalence-based notion of privacy in
e-voting protocols and check privacy for FOO and Helios 2.0.

In “A Roadmap to Fully Homomorphic Elections,” Gjøsteen and Strand describe
how to use fully homomorphic encryption to provide universal verifiability while
protecting privacy for Norway’s complex ballots. Norway’s current system requires the
verification process to be restricted to a few auditors due to privacy concerns. The main
challenge is that a Norwegian ballot has so many possible values that a voter may choose
to identify herself by choosing a unique vote. If individual votes are exposed, this can
result in bribery or coercion. Fully homomorphic encryption would allow for universal
verification, although at present it is not fast enough to run on real elections.

The next paper considers the voter’s end of verifiable Internet voting. In “Using
Selene to Verify Your Vote in JCJ,” Rial, Iovino, Roenne, and Ryan describe how the
transparent voter verification techniques of the Selene scheme can be combined with the
rather strong coercion resistance mechanisms of JCJ (Juels, Catalano, and Jakobsson).

In “Enabling Vote Delegation for Boardroom Voting,” Kulyk, Neumann, Marky,
and Volkamer consider the privacy and verifiability of vote delegation, in which a voter
may choose to nominate someone else to determine his vote. In their setting there are a
relatively small number of voters, who all participate actively in the protocol.
We had a valuable tutorial on complex proofs for mixnet verification. Haenni, Locher,
Koenig, and Dubuis wrote “Pseudocode Algorithms for Verifiable Re-encryption
Mixnets” to explain to a general audience how these sophisticated proofs work and
facilitate implementations.

Finally, Yang and Clark described a new protocol for “Practical Governmental
Voting with Unconditional Integrity and Privacy.” This scheme (probably inevitably)
has to sacrifice universal verifiability, but it represents an interesting part of the solution
space that deserves exploration, and may be appropriate for some elections.

The threat of electoral fraud is not new, and is not going away. Introducing
computers expands the opportunity, possibly allowing for very large scale fraud from
all over the world. We hope this volume has contributed to a global effort to ensure that
our voting systems are robust, privacy-preserving, and not trusted until they provide
meaningful evidence of having produced an accurate election result.

We would like to thank the Program Committee for their hard work and careful
reviews of the papers.

April 2017 Peter Y.A. Ryan
Vanessa Teague

X VOTING 2017: Second Workshop on Advances in Secure Electronic Voting Schemes

VOTING 2017 Program Committee

Roberto Araujo Universidade Federal do Pará (UFPA), Brazil
Jeremy Clark Concordia University, Canada
Chris Culnane University of Melbourne, Australia
Jeremy Epstein SRI International, USA
Aleksander Essex Western University, Canada
David Galindo University of Birmingham, UK
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Rajeev Gore The Australian National University, Australia
Jens Groth University College London, UK
Rolf Haenni Bern University of Applied Sciences, Switzerland
Reto Koenig Berne University of Applied Sciences, Switzerland
Steve Kremer Inria Nancy - Grand Est, France
Olivier Pereira Universite catholique de Louvain, Belgium
Ron Rivest MIT, USA
Peter Roenne SnT, University of Luxembourg, Luxembourg
Alon Rosen IDC Herzliya, Israel
Mark Ryan University of Birmingham, UK
Steve Schneider University of Surrey, UK
Berry Schoenmakers Eindhoven University of Technology,

The Netherlands
Carsten Schuermann IT University of Copenhagen, Denmark
Philip Stark University of California, Berkeley, USA
Melanie Volkamer Karlstad University, Sweden
Poorvi Vora The George Washington University, USA

VOTING 2017: Second Workshop on Advances in Secure Electronic Voting Schemes XI

WTSC 2017: First Workshop on Trusted Smart Contracts

These proceedings collect the papers and posters accepted at the First Workshop on
Trusted Smart Contracts (WTSC 2017) associated to the Financial Cryptography and
Data Security 2017 (FC 2017) conference held in Malta in April 2017.

WTSC 2017 focused on smart contracts, i.e., self-enforcing agreements in the form
of executable programs and other decentralized applications that are deployed to and
run on top of blockchains. These technologies introduce a novel programming
framework and execution environment, which, together with the supporting blockchain
technologies, carry unanswered and challenging research questions. Multidisciplinary
and multifactorial aspects affect correctness, safety, privacy, authentication, efficiency,
sustainability, resilience, and trust in smart contracts and decentralized applications.

WTSC 2017 aimed to address the scientific foundations of Trusted Smart Contract
engineering, i.e., the development of contracts that enjoy some verifiable “correctness”
properties, and to discuss open problems, proposed solutions, and the vision on future
developments among a research community that is growing around these themes and
brings together users, practitioners, industry, institutions, and academia. This was
reflected in the Program Committee of this first edition of WTSC, comprising members
from companies, universities, and research institutions from 11 countries worldwide,
who kindly accepted to support the event. The association with FC 2017 provided an
ideal context for our workshop to be run in. WTSC 2017 was partially supported by the
University of Stirling, UK, the University of Trento, Italy, and FC 2017 IFCA-ICRA.
This first edition of WTSC 2017 received 19 submissions by about 50 authors, of
which nine were accepted after peer review as full papers and three as posters, and have
been collected in the present volume. These analyzed the current state of the art,
addressed aspects of privacy, models for contract composition and concurrency,
incentives and penalties, taxonomies of smart contract applications, legal implications
of smart contracts, theorem-proving-based verification for smart contracts, decentral-
ized markets, and smart-contract-based consensus protocols.

WTSC 2017 also enjoyed Vitalik Buterin (Ethereum Foundation) as keynote
speaker. Vitalik, a prominent contributor to the world of smart contracts, gave a talk on
the challenging topic of the cryptoeconomics of smart contracts.

April 2017 Andrea Bracciali
Federico Pintore

Massimiliano Sala

WTSC 2017 Program Committee

Massimo Bartoletti University of Cagliari, Italy
Andrea Bracciali University of Stirling, UK (Chair)
Eimear Byrne University College Dublin, Ireland
Martin Chapman King’s College London, UK
Tiziana Cimoli University of Cagliari, Italy
Nicola Dimitri University of Siena, Italy
Stuart Fraser Wallet.Services, UK
Laetitia Gauvin ISI Foundation, Italy
Davide Grossi University of Liverpool, UK
Iain Henderson Jlink Lab, UK
Yoichi Hirai Ethereum DEV, Germany
Camilla Hollanti Aalto University, Finland
Ioannis Kounelis Joint Research Centre, European Commission
Loi Luu National University of Singapore
Michele Marchesi University of Cagliari, Italy
Peter McBurney King’s College London, UK
Neil Mclaren Avaloq Innovation Ltd, UK
Philippe Meyer Avaloq Innovation Ltd, UK
Mihail Mihaylov Vrije Universiteit Brussel, Belgium
Sead Muftic KTH Royal Institute of Technology, Sweden
Igor Nai Fovino Joint Research Centre, European Commission
Daniela Paolotti ISI Foundation, Italy
Federico Pintore University of Trento, Italy
Massimiliano Sala University of Trento, Italy (Chair)
Ilya Sergey University College London, UK
Jason Teutsch University of Chicago, USA
Roberto Tonelli University of Cagliari, Italy
Yaron Velner Hebrew University, Israel
Luca Vigano King’s College London, UK

XIV WTSC 2017: First Workshop on Trusted Smart Contracts

TA 2017: First Workshop on Targeted Attacks

A targeted attack is one in which contextual information about the intended victim is
used to configure the attack; for example, a spear phishing attack is targeted, while a
typical spam blast is not. Targeting is performed in order to maximize yield and
minimize detection. Being able to assess the yield of attacks enables efforts to predict
the likely growth of these attacks, as soaring profits fuel more attacks. Similarly, it is
important to understand how targeted attacks avoid detection in order to improve
detection methods.

It is commonly believed that targeted attacks are enabled by data from account
compromises, breaches, and public resources, but the risk associated with various types
of data is poorly understood. It is also important to better understand new methods or
communication media used for targeted attacks, and how attackers tailor targeted
attacks to the media and to their goals whether this is to distribute malware, obtain data,
or coerce a user to perform an action.

Targeted Attacks 2017 was the first workshop addressing this threat. Its success
rested both on the insightful submissions we received and the excellent Program
Committee that guided the selection.

April 2017 Markus Jakobsson

TA 2017 Program Committee

David Maimon UMD
Damon McCoy NYU
Angela Sasse UCL
Hossein Siadati NYU
Elaine Shi Cornell
Gianluca Stringhini UCL
Gary Warner PhishMe
Moti Yung Snap

XVI TA 2017: First Workshop on Targeted Attacks

Blockchain and Smart Contract Mechanism
Design Challenges

(WTSC17 Keynote Talk)

Vitalik Buterin
Ethereum Foundation

Abstract. Arguably, the true genius behind the success of Bitcoin,
Ethereum and similar systems was not the specific design of their
blockchain, or their use of algorithms that resemble forms of distributed
consensus in order to maintain security; rather, it is the innovation of
cryptoeconomics - the art of combining cryptographic techniques and
economic incentives defined and administered inside a protocol in order to
encourage users to (correctly) participate in certain roles in the protocol, and
thereby preserve and maintain certain desired properties of the protocol.
I describe the key ideas in the abstract, then apply them to Bitcoin proof of
work, the Schellingcoin oracle, Casper, as well as describing several key
open problems in blockchain-based system design.

Contents

Encrypted Computing and Applied Homomorphic Cryptography

Simple Encrypted Arithmetic Library - SEAL v2.1 3
Hao Chen, Kim Laine, and Rachel Player

Towards Privacy-Preserving Multi-party Bartering. 19
Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

Multi-level Access in Searchable Symmetric Encryption 35
James Alderman, Keith M. Martin, and Sarah Louise Renwick

Privacy-Preserving Computations of Predictive Medical Models
with Minimax Approximation and Non-Adjacent Form 53

Jung Hee Cheon, Jinhyuck Jeong, Joohee Lee, and Keewoo Lee

Private Outsourced Kriging Interpolation . 75
James Alderman, Benjamin R. Curtis, Oriol Farràs, Keith M. Martin,
and Jordi Ribes-González

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration. . . 91
Joël Cathébras, Alexandre Carbon, Renaud Sirdey,
and Nicolas Ventroux

Controlled Homomorphic Encryption: Definition and Construction 107
Yvo Desmedt, Vincenzo Iovino, Giuseppe Persiano, and Ivan Visconti

Bitcoin and Blockchain Research

ValueShuffle: Mixing Confidential Transactions for Comprehensive
Transaction Privacy in Bitcoin . 133

Tim Ruffing and Pedro Moreno-Sanchez

Could Network Information Facilitate Address Clustering in Bitcoin? 155
Till Neudecker and Hannes Hartenstein

Switch Commitments: A Safety Switch for Confidential Transactions 170
Tim Ruffing and Giulio Malavolta

(Short Paper) PieceWork: Generalized Outsourcing Control
for Proofs of Work . 182

Philip Daian, Ittay Eyal, Ari Juels, and Emin Gün Sirer

http://dx.doi.org/10.1007/978-3-319-70278-0_1
http://dx.doi.org/10.1007/978-3-319-70278-0_2
http://dx.doi.org/10.1007/978-3-319-70278-0_3
http://dx.doi.org/10.1007/978-3-319-70278-0_4
http://dx.doi.org/10.1007/978-3-319-70278-0_4
http://dx.doi.org/10.1007/978-3-319-70278-0_5
http://dx.doi.org/10.1007/978-3-319-70278-0_6
http://dx.doi.org/10.1007/978-3-319-70278-0_7
http://dx.doi.org/10.1007/978-3-319-70278-0_8
http://dx.doi.org/10.1007/978-3-319-70278-0_8
http://dx.doi.org/10.1007/978-3-319-70278-0_9
http://dx.doi.org/10.1007/978-3-319-70278-0_10
http://dx.doi.org/10.1007/978-3-319-70278-0_11
http://dx.doi.org/10.1007/978-3-319-70278-0_11

Enhancing Bitcoin Transactions with Covenants . 191
Russell O’Connor and Marta Piekarska

Decentralized Prediction Market Without Arbiters . 199
Iddo Bentov, Alex Mizrahi, and Meni Rosenfeld

An Analysis of Bitcoin OP_RETURN Metadata . 218
Massimo Bartoletti and Livio Pompianu

Constant-Deposit Multiparty Lotteries on Bitcoin . 231
Massimo Bartoletti and Roberto Zunino

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph . . . 248
Stephen Ranshous, Cliff A. Joslyn, Sean Kreyling, Kathleen Nowak,
Nagiza F. Samatova, Curtis L. West, and Samuel Winters

Incentivizing Blockchain Forks via Whale Transactions 264
Kevin Liao and Jonathan Katz

Mixing Coins of Different Quality: A Game-Theoretic Approach 280
Svetlana Abramova, Pascal Schöttle, and Rainer Böhme

Smart Contracts Make Bitcoin Mining Pools Vulnerable 298
Yaron Velner, Jason Teutsch, and Loi Luu

BatchVote: Voting Rules Designed for Auditability 317
Ronald L. Rivest, Philip B. Stark, and Zara Perumal

Advances in Secure Electronic Voting Schemes

Existential Assertions for Voting Protocols . 337
R. Ramanujam, Vaishnavi Sundararajan, and S.P. Suresh

Marked Mix-Nets . 353
Olivier Pereira and Ronald L. Rivest

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 370
Rolf Haenni, Philipp Locher, Reto Koenig, and Eric Dubuis

Using Selene to Verify Your Vote in JCJ. 385
Vincenzo Iovino, Alfredo Rial, Peter B. Rønne, and Peter Y.A. Ryan

A Roadmap to Fully Homomorphic Elections: Stronger Security,
Better Verifiability . 404

Kristian Gjøsteen and Martin Strand

Enabling Vote Delegation for Boardroom Voting . 419
Oksana Kulyk, Stephan Neumann, Karola Marky, and Melanie Volkamer

XX Contents

http://dx.doi.org/10.1007/978-3-319-70278-0_12
http://dx.doi.org/10.1007/978-3-319-70278-0_13
http://dx.doi.org/10.1007/978-3-319-70278-0_14
http://dx.doi.org/10.1007/978-3-319-70278-0_15
http://dx.doi.org/10.1007/978-3-319-70278-0_16
http://dx.doi.org/10.1007/978-3-319-70278-0_17
http://dx.doi.org/10.1007/978-3-319-70278-0_18
http://dx.doi.org/10.1007/978-3-319-70278-0_19
http://dx.doi.org/10.1007/978-3-319-70278-0_20
http://dx.doi.org/10.1007/978-3-319-70278-0_21
http://dx.doi.org/10.1007/978-3-319-70278-0_22
http://dx.doi.org/10.1007/978-3-319-70278-0_23
http://dx.doi.org/10.1007/978-3-319-70278-0_24
http://dx.doi.org/10.1007/978-3-319-70278-0_25
http://dx.doi.org/10.1007/978-3-319-70278-0_25
http://dx.doi.org/10.1007/978-3-319-70278-0_26

Practical Governmental Voting with Unconditional Integrity and Privacy 434
Nan Yang and Jeremy Clark

Trusted Smart Contracts

Findel: Secure Derivative Contracts for Ethereum . 453
Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov

Decentralized Execution of Smart Contracts: Agent Model Perspective
and Its Implications . 468

Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi

A Concurrent Perspective on Smart Contracts . 478
Ilya Sergey and Aquinas Hobor

An Empirical Analysis of Smart Contracts: Platforms, Applications,
and Design Patterns. 494

Massimo Bartoletti and Livio Pompianu

Trust in Smart Contracts is a Process, As Well . 510
Firas Al Khalil, Tom Butler, Leona O’Brien, and Marcello Ceci

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 520
Yoichi Hirai

SmartCast: An Incentive Compatible Consensus Protocol Using Smart
Contracts . 536

Abhiram Kothapalli, Andrew Miller, and Nikita Borisov

On the Feasibility of Decentralized Derivatives Markets. 553
Shayan Eskandari, Jeremy Clark, Vignesh Sundaresan, and Moe Adham

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 568
Massimo Bartoletti, Stefano Lande, and Alessandro Sebastian Podda

Targeted Attacks

X-Platform Phishing: Abusing Trust for Targeted Attacks Short Paper 587
Hossein Siadati, Toan Nguyen, and Nasir Memon

What to Phish in a Subject? . 597
Ana Ferreira and Rui Chilro

Unpacking Spear Phishing Susceptibility . 610
Zinaida Benenson, Freya Gassmann, and Robert Landwirth

Contents XXI

http://dx.doi.org/10.1007/978-3-319-70278-0_27
http://dx.doi.org/10.1007/978-3-319-70278-0_28
http://dx.doi.org/10.1007/978-3-319-70278-0_29
http://dx.doi.org/10.1007/978-3-319-70278-0_29
http://dx.doi.org/10.1007/978-3-319-70278-0_30
http://dx.doi.org/10.1007/978-3-319-70278-0_31
http://dx.doi.org/10.1007/978-3-319-70278-0_31
http://dx.doi.org/10.1007/978-3-319-70278-0_32
http://dx.doi.org/10.1007/978-3-319-70278-0_33
http://dx.doi.org/10.1007/978-3-319-70278-0_34
http://dx.doi.org/10.1007/978-3-319-70278-0_34
http://dx.doi.org/10.1007/978-3-319-70278-0_35
http://dx.doi.org/10.1007/978-3-319-70278-0_36
http://dx.doi.org/10.1007/978-3-319-70278-0_37
http://dx.doi.org/10.1007/978-3-319-70278-0_38
http://dx.doi.org/10.1007/978-3-319-70278-0_39

Poster Papers

Scripting Smart Contracts for Distributed Ledger Technology 631
Pablo Lamela Seijas, Simon Thompson, and Darryl McAdams

ZeroTrade: Privacy Respecting Assets Trading System Based
on Public Ledger . 633

Lei Xu, Lin Chen, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi

Author Index . 635

XXII Contents

Encrypted Computing and Applied
Homomorphic Cryptography

Simple Encrypted Arithmetic Library - SEAL
v2.1

Hao Chen1(B), Kim Laine1, and Rachel Player2

1 Microsoft Research, New York, USA
haoche@microsoft.com , kim.laine@microsoft.com
2 Royal Holloway, University of London, London, UK

rachel.player.2013@live.rhul.ac.uk

Abstract. Achieving fully homomorphic encryption was a longstanding
open problem in cryptography until it was resolved by Gentry in 2009.
Soon after, several homomorphic encryption schemes were proposed. The
early homomorphic encryption schemes were extremely impractical, but
recently new implementations, new data encoding techniques, and a bet-
ter understanding of the applications have started to change the situa-
tion. In this paper we introduce the most recent version (v2.1) of Sim-
ple Encrypted Arithmetic Library - SEAL, a homomorphic encryption
library developed by Microsoft Research, and describe some of its core
functionality.

1 Introduction

In many traditional encryption schemes (e.g. RSA, ElGamal, Paillier) the plain-
text and ciphertext spaces have a tremendous amount of algebraic structure,
but the encryption and decryption functions either do not respect the algebraic
structure at all, or respect only a part of it. Many schemes, such as ElGamal
(resp. e.g. Paillier), are multiplicatively homomorphic (resp. additively homo-
morphic), but this restriction to one single algebraic operation is a very strong
one, and the most interesting applications would instead require a ring structure
between the plaintext and ciphertext spaces to be preserved by encryption and
decryption. The first such encryption scheme was presented by Craig Gentry in
his famous work [21], and since then researchers have introduced a number of
new and more efficient fully homomorphic encryption schemes.

The early homomorphic encryption schemes were extremely impractical,
but recently new implementations, new data encoding techniques, and a bet-
ter understanding of the applications have started to change the situation. In
2015 we released the Simple Encrypted Arithmetic Library - SEAL [19] with the
goal of providing a well-engineered and documented homomorphic encryption
library, with no external dependencies, that would be equally easy to use both
by experts and by non-experts with little or no cryptographic background.

R. Player—Much of this work was done during an internship at Microsoft Research,
Redmond.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 3–18, 2017.
https://doi.org/10.1007/978-3-319-70278-0_1

4 H. Chen et al.

SEAL is written in C++11, and contains a .NET wrapper library for the
public API. It comes with example projects demonstrating key features, written
both in C++ and in C#. SEAL compiles and is tested on modern versions of
Visual Studio and GCC. In this paper we introduce the most recent version,
SEAL v2.1, and describe some of its core functionality. The library is publicly
available at http://sealcrypto.codeplex.com and is licensed under the Microsoft
Research License Agreement.

1.1 Related Work

A number of other libraries implementing homomorphic encryption exist, e.g.
HElib [2] and Λ ◦ λ [18]. The FV scheme has been implemented in [1,9], both
of which use the ideal lattice library NFLlib [30]. Perhaps the most compara-
ble work to SEAL is the C++ library HElib [2] which implements the BGV
homomorphic encryption scheme [12].

A comparison of popular homomorphic encryption schemes, including BGV
and FV, was presented by Costache and Smart in [14]. An comparison of the
implementations, respectively, of BGV as in HElib and of FV as in SEAL would
be very interesting, but appears challenging. One reason for this is that the
documentation available for HElib [23–25] does not in general make clear how to
select optimal parameters for performance, and in [25, Appendix A] it is noted
‘[t]he BGV implementation in HElib relies on a myriad of parameters ... it takes
some experimentation to set them all so as to get a working implementation
with good performance’. On the other hand, we know better how to select good
parameters for performance for SEAL (see Sect. 4 below). Such a comparison is
therefore deferred to future work.

2 Notation

We use �·�, �·�, and �·� to denote rounding down, up, and to the nearest integer,
respectively. When these operations are applied to a polynomial, we mean per-
forming the corresponding operation to each coefficient separately. The norm ‖·‖
always denotes the infinity norm. We denote the reduction of an integer mod-
ulo t by [·]t. This operation can also be applied to polynomials, in which case
it is applied to every integer coefficient separately. The reductions are always
done into the symmetric interval [−t/2, t/2). loga denotes the base-a logarithm,
and log always denotes the base-2 logarithm. Table 1 below lists commonly used
parameters, and in some cases their corresponding names in SEAL.

3 Implementing the Fan-Vercauteren Scheme

In this section we present our implementation of the Fan-Vercauteren (FV)
scheme [20].

As described in [20], the FV scheme consists of the following algorithms:
SecretKeyGen, PublicKeyGen, EvaluateKeyGen, Encrypt, Decrypt, Add, Mul,
and Relin (version 1). In SEAL we generalize the scheme a little bit, as will be
discussed below.

http://sealcrypto.codeplex.com

Simple Encrypted Arithmetic Library - SEAL v2.1 5

Table 1. Notation used throughout this document.

Parameter Description Name in SEAL

q Modulus in the ciphertext
space (coefficient modulus)

coeff_modulus

t Modulus in the plaintext
space (plaintext modulus)

plain_modulus

n A power of 2

xn + 1 The polynomial modulus
which specifies the ring R

poly_modulus

R The ring Z[x]/(xn + 1)

Ra The ring Za[x]/(xn + 1)

w A base into which ciphertext
elements are decomposed
during relinearization

log w decomposition_bit_count

� There are
� + 1 = �logw q� + 1
elements in each component
of each evaluation key

δ Expansion factor in the ring R
(δ ≤ n)

Δ Quotient on division of
q by t, or �q/t�

rt(q) Remainder on division of
q by t, i.e. q = Δt + rt(q),
where 0 ≤ rt(q) < t

χ Error distribution (a truncated
discrete Gaussian distribution)

σ Standard deviation of χ noise_standard_deviation

B Bound on the distribution χ noise_max_deviation

3.1 Plaintext Space and Encodings

In FV the plaintext space is the polynomial quotient ring Rt = Zt[x]/(xn + 1).
The homomorphic addition and multiplication operations on ciphertexts (that
will be described later) will carry through the encryption to addition and multi-
plications operations in Rt. Plaintext polynomials are represented by instances
of the BigPoly class in SEAL. In order to encrypt integers or rational numbers,
one needs to encode them into elements of Rt. SEAL provides a few different
encoders for this purpose (see Sect. 5).

6 H. Chen et al.

3.2 Ciphertext Space

Ciphertexts in FV are vectors of polynomials in Rq. These vectors contain at
least two polynomials, but grow in size in homomorphic multiplication opera-
tions, unless relinearization is performed. Homomorphic additions are performed
by computing a component-wise sum of these vectors; homomorphic multiplica-
tions are slightly more complicated and will be described below. Ciphertexts are
represented by instances of the BigPolyArray class in SEAL.

Textbook-FV only allows ciphertexts of size 2, resulting in minor changes to
the homomorphic operations compared to their original description in [20]. We
will describe below the algorithms that are implemented in SEAL.

3.3 Encryption and Decryption

Ciphertexts in SEAL are encrypted exactly as described in [20]. A SEAL cipher-
text ct = (c0, . . . , ck) is decrypted by computing

[⌊
t

q
[ct(s)]q

⌉]
t

=
[⌊

t

q

[
c0 + · · · + cksk

]
q

⌉]
t

.

Encryption are decryption are implemented in SEAL by the Encryptor and
Decryptor classes, respectively.

3.4 Addition

Suppose two SEAL ciphertexts ct1 = (c0, . . . , cj) and ct2 = (d0, . . . dk) encrypt
plaintext polynomials m1 and m2, respectively. Suppose WLOG j ≤ k. Then

ctadd = ([c0 + d0]q, . . . , [cj + dj]q, dj+1, . . . , dk)

encrypts [m1 + m2]t.
In SEAL homomorphic addition is implemented as Evaluator::add. Simi-

larly, homomorphic subtraction is implemented as Evaluator::sub.

3.5 Multiplication

Let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two SEAL ciphertexts of
sizes j + 1 and k + 1, respectively. The output of Mul(ct1, ct2) is a ciphertext
ctmult = (C0, C1, . . . , Cj+k) of size j + k + 1. The polynomials Cm ∈ Rq are
computed as

Cm =

[⌊
t

q

(∑
r+s=m

crds

)⌉]

q

.

In SEAL we define the function Mul (or rather family of functions) to mean
this generalization of the Textbook-FV multiplication operation (without relin-
earization). It is implemented as Evaluator::multiply.

Simple Encrypted Arithmetic Library - SEAL v2.1 7

Algorithms for Polynomial Multiplication. Multiplication of polynomials
in Z[x]/(xn + 1) is the most computationally expensive part of Mul, which in
SEAL we implement using Nussbaumer convolution [16]. Note that here polyno-
mial multiplication needs to be performed with integer coefficients, whereas in
other homomorphic operations it is done modulo q, which is significantly easier,
and can always be done more efficiently using the Number Theoretic Transform
(NTT).

It is also possible to implement a Karatsuba-like trick to reduce the number
of calls to Nussbaumer convolution, reducing the number of polynomial multipli-
cations to multiply two ciphertexts of sizes k1 and k2 from k1k2 to ck1k2, where
c ∈ (0, 1) is some constant depending on k1 and k2. For example, if k1 = k2 = 2,
then c = 3/4, which is currently the only case implemented in SEAL.

3.6 Relinearization

The goal of relinearization is to decrease the size of the ciphertext back to
(at least) 2 after it has been increased by multiplications as was described in
Sect. 3.5. In other words, given a size k + 1 ciphertext (c0, . . . , ck) that can be
decrypted as was shown in Sect. 3.3, relinearization is supposed to produce a
ciphertext (c′

0, . . . , c
′
k−1) of size k, or—when applied repeatedly—of any size at

least 2, that can be decrypted using a smaller degree decryption function to yield
the same result. This conversion will require a so-called evaluation key (or keys)
to be given to the evaluator, as we will explain below.

Let w denote a power of 2, and let � + 1 = �logw q� + 1 denote the number
of terms in the decomposition into base w of an integer in base q. We will also
decompose polynomials in Rq into base-w components coefficient-wise, resulting
in � + 1 polynomials. Now consider the EvaluateKeyGen (version 1) algorithm

in [20], which for every i ∈ {0, . . . , �} samples ai
$← Rq, ei ← χ, and outputs the

vector

evk2 =
[(

[−(a0s + e0) + w0s2]q, a0

)
, . . . ,

(
[−(a�s + e�) + w�s2]q, a�

)]
.

In SEAL we generalize this to j-power evaluation keys by sampling several ai

and ei as above, and setting instead

evkj =
[(

[−(a0s + e0) + w0sj]q, a0

)
, . . . ,

(
[−(a�s + e�) + w�sj]q, a�

)]
.

Suppose we have a set of evaluation keys evk2, . . . , evkk. Then relinearization
converts (c0, c1, . . . , ck) into (c′

0, c
′
1, . . . , c

′
k−1), where

c′
0 = c0 +

�∑
i=0

evkk[i][0]c(i)k , c′
1 = c1 +

�∑
i=0

evkk[i][1]c(i)k ,

and c′
j = cj for 2 ≤ j ≤ k − 1.

Note that in order to generate evaluation keys access to the secret key is
needed. This means that the owner of the secret key must generate an appro-
priate number of evaluation keys and share them with the evaluating party in

8 H. Chen et al.

advance of the relinearization computation, which further means that the eval-
uating party needs to inform the owner of the secret key beforehand whether or
not they intend to relinearize, and if so, by how many steps. Note that if they
choose to relinearize after every multiplication, only evk2 will be needed. SEAL
implements the above operation as Evaluator::relinearize.

3.7 Other Homomorphic Operations

In addition to the operations described above, SEAL implements a few
other useful operations, such as negation (Evaluator::negate), multipli-
cation by a plaintext polynomial (Evaluator::multiply_plain), addition
(Evaluator::add_plain) and subtraction (Evaluator::sub_plain) of a
plaintext polynomial, noise-optimal product of several ciphertexts
(Evaluator::multiply_many), exponentiation with relinearization at every step
(Evaluator:exponentiate), and a sum of several ciphertexts (Evaluator::
add_many).

SEAL has a fast algorithm for computing the product of a ciphertext with
itself. The difference is only in computational complexity, and the noise growth
behavior is the same as in calling Evaluator::multiply with a repeated input
parameter. This is implemented as Evaluator::square.

3.8 Key Distribution

In Textbook-FV the secret key is a polynomial sampled uniformly from R2, i.e.
it is a polynomial with coefficients in {0, 1}. In SEAL we instead sample the key
uniformly from R3, i.e. we use coefficients {−1, 0, 1}.

4 Encryption Parameters

Everything in SEAL starts with the construction of an instance of a container
that holds the encryption parameters (EncryptionParameters). These parame-
ters are:

• poly_modulus: a polynomial xn + 1;
• coeff_modulus: an integer modulus q;
• plain_modulus: an integer modulus t;
• noise_standard_deviation: a standard deviation σ;
• noise_max_deviation: a bound for the error distribution B;
• decomposition_bit_count: the logarithm log w of w (Sect. 3.6);
• random_generator: a source of randomness.

Some of these parameters are optional, e.g. if the user does not specify σ or
B they will be set to default values. If the the decomposition bit count is not set
(to a non-zero value), SEAL will assume that no relinearization is going to be
performed, and prevents the creation of any evaluation keys. If no randomness
source is given, SEAL will automatically use std::random_device.

Simple Encrypted Arithmetic Library - SEAL v2.1 9

In this section we will describe the encryption parameters and their impact
on performance. We will discuss security in Sect. 7. In Sect. 4.4 we will dis-
cuss the automatic parameter selection tools in SEAL, which can assist the
user in determining (close to) optimal encryption parameters for many types of
computations.

4.1 Default Values

The constructor of EncryptionParameters sets the values for σ and B by default
to the ones returned by the static functions

ChooserEvaluator::default_noise_standard_deviation(), and
ChooserEvaluator::default_noise_max_deviation() .

Currently these default values are set to 3.19 and 15.95, respectively. As we
also mentioned above, unless they want to use relinearization, the user does not
need to set decomposition_bit_count . By default the constructor will set its
value to zero, which will prevent the construction of evaluation keys.

SEAL comes with a list of pairs (n, q) that are returned by the static function

ChooserEvaluator::default_parameter_options()

as a keyed list (std::map). The default (n, q) pairs are presented in Table 2.

Table 2. Default pairs (n, q).

n q

1024 235 − 214 + 211 + 1

2048 260 − 214 + 1

4096 2116 − 218 + 1

8192 2226 − 226 + 1

16384 2435 − 233 + 1

4.2 Polynomial Modulus

The polynomial modulus (poly_modulus) is required to be a polynomial of the
form xn + 1, where n is a power of 2. This is both for security and performance
reasons (see Sect. 7).

Using a larger n decreases performance. On the other hand, it allows for a
larger q to be used without decreasing the security level, which in turn increases
the noise ceiling and thus allows for larger t to be used. A large value of t allows
the scheme to support larger integer arithmetic. When CRT batching is used
(Sect. 5.3), a larger n will allow for more elements of Zt to be batched into one
plaintext.

10 H. Chen et al.

4.3 Coefficient Modulus and Plaintext Modulus

Suppose the polynomial modulus is held fixed. Then the choice of the coefficient
modulus q affects two things: the upper bound on the inherent noise that a
ciphertext can contain1 (see Sect. 6), and the security level2 (see Sect. 7.2 and
references therein).

In principle we can take q to be any integer, but taking q to be of special
form provides performance benefits. First, if q is of the form 2A − B, where B
is an integer of small absolute value, then modular reduction modulo q can be
sped up, yielding overall better performance.

Second, if q is a prime with 2n|(q−1), then SEAL can use the Number Theo-
retic Transform (NTT) for polynomial multiplications, resulting in huge perfor-
mance benefits in encryption, relinearization and decryption. SEAL uses David
Harvey’s algorithm for NTT, as described in [26], which additionally requires
that 4q ≤ β, where β denotes the word size of q:

β = 264�log(q)/64� .

Third, if t|(q − 1) (i.e. rt(q) = 1), then the noise growth properties are
improved in certain homomorphic operations (recall Table 3).

The default parameters in Table 2 satisfy all of these guidelines. They are
prime numbers of the form 2A − B where B is much smaller than 2A. They are
congruent to 1 modulo 2n, and not too close to the word size boundary. Finally,
rt(q) = 1 for t that are reasonably large powers of 2, for example the default
parameters for n = 4096 provide good performance when t is a power of 2 up to
218.

We note that when using CRT batching (see Sect. 5.3) it will not be possible
to have t be a power of 2, as t needs to instead be a prime of a particular form.
In this case the user can try to choose the entire triple (n, q, t) simultaneously, so
that t = 1 (mod 2n) and q satisfies as many of the good properties listed above
as possible.

4.4 Automatic Parameter Selection

To assist the user in choosing parameters for a specific computation, SEAL pro-
vides an automatic parameter selection tool. It consists of two parts: a Simulator
component that simulates noise growth in homomorphic operations using the
estimates of Table 3, and a Chooser component, which estimates the growth
of the coefficients in the underlying plaintext polynomials, and uses Simulator
to simulate noise growth. Chooser also provides tools for computing an opti-
mized parameter set once it knows what kind of computation the user wishes to
perform.

1 Bigger q means higher noise bound (good).
2 Bigger q means lower security (bad).

Simple Encrypted Arithmetic Library - SEAL v2.1 11

5 Encoding

One of the most important aspects in making homomorphic encryption practical
and useful is in using an appropriate encoder for the task at hand. Recall that
plaintext elements in the FV scheme are polynomials in Rt. In typical appli-
cations of homomorphic encryption, the user would instead want to perform
computations on integers or rational numbers. Encoders are responsible for con-
verting the user’s inputs to polynomials in Rt by applying an encoding map. In
order for the operations on ciphertexts to reflect the operations on the inputs,
the encoding and decoding maps need to respect addition and multiplication.

5.1 Integer Encoder

In SEAL the integer encoder is used to encode integers into plaintext polynomi-
als. Despite its name, the integer encoder is really a family of encoders, one for
each integer base β ≥ 2.

When β = 2, the idea of the integer encoder is to encode an integer a in the
range [−(2n − 1), 2n − 1] as follows. It forms the (upto n-bit) binary expansion
of |a|, say an−1 . . . a1a0, and outputs the polynomial

IntegerEncode(a, β = 2) = sign(a) · (
an−1x

n−1 + . . . + a1x + a0

)
.

Decoding (IntegerDecode) amounts to evaluating a plaintext polynomial at
x = 2. It is clear that in good conditions (see below) the integer encoder respects
addition and multiplication:

IntegerDecode [IntegerEncode(a) + IntegerEncode(b)] = a + b ,

IntegerDecode [IntegerEncode(a) · IntegerEncode(b)] = ab .

When β is set to some integer larger than 2, instead of a binary expansion
(as was done in the example above) a base-β expansion is used. SEAL uses a
balanced base-β representation to keep the absolute values of the coefficients as
small as possible [19].

Note that the infinity norm of a freshly encoded plaintext polynomial is
bounded by β/2, and the degree of the polynomial encoding a is bounded by
�logβ(|a|)�. However, as homomorphic operations are performed on the encryp-
tions, the infinity norm and degree will both grow. When the degree becomes
greater than or equal to n, or the infinity norm greater than t/2, the polynomial
will “wrap around” in Rt, yielding an incorrect result. In order to get the cor-
rect result, one needs to choose n and t to accommodate the largest plaintext
polynomial appearing during the computation. For a very nice estimate on how
large n and t need to be, we refer the reader to [15].

The integer encoder is available in SEAL through the IntegerEncoder class.
Its constructor will require both the plain_modulus and the base β as parame-
ters. If no base is given, the default value β = 2 is used.

12 H. Chen et al.

5.2 Fractional Encoder

There are several ways for encoding rational numbers in SEAL. One way is to
simply scale all rational numbers to integers, encode them using the integer
encoder described above, and record the scaling factor in the clear as a part of
the ciphertext. We then need to keep track of the scaling during computations,
which results in some inefficiency. Here we describe what we call the fractional
encoder, which has the benefit of automatically keeping track of the scaling. Just
like the integer encoder, the fractional encoder is really a family of encoders,
parametrized by an integer base β ≥ 2. The function of this base is exactly
the same as in the integer encoder, and we will only explain how the fractional
encoder works when β = 2.

Consider the rational number 5.8125, with the finite binary expansion

5.875 = 22 + 20 + 2−1 + 2−2 + 2−4 .

First we take the integer part and encode it as usual with the integer encoder,
obtaining the polynomial IntegerEncode(5, β = 2) = x2 + 1. Then we take the
fractional part, add n (degree of the polynomial modulus) to each exponent, and
convert it into a polynomial by changing the base 2 into the variable x. Finally we
flip the signs of each of the terms, in this case obtaining −xn−1 − xn−2 − xn−4.
This defines FracEncode(r, β = 2) for rational numbers r ∈ [0, 1). For any
rational number r with a finite binary expansion, we set

FracEncode(r, β = 2) = sign(r)· [IntegerEncode(�|r|�, β = 2)
+FracEncode({|r|} , β = 2)] ,

where the fractional part is denoted by {·}. Concluding our example,
FracEncode(5.8125, β = 2) yields the polynomial −xn−1 −xn−2 −xn−4 +x2 +1.
Decoding works by reversing the steps described above. It is easy to see that
FracEncode respects both addition and multiplication [19].

The fractional encoder is implemented by the class FractionalEncoder. Its
constructor will take as parameters the plain_modulus, the base β, and positive
integers nf and ni with nf + ni ≤ n, which describe how many coefficients are
reserved for the fractional and integer parts, respectively.3 If no base is given,
the default value β = 2 is used.

Comparing the Two Fractional Encoding Approaches. The scale-to-
integer technique mentioned above, and our fractional encoder, have similar
performance and limitations, but are not equivalent. In some cases the fractional
encoder is strictly better.

For example, suppose the homomorphic operations result in some cancel-
lations in the underlying plaintext. Since the level of a scaled encoder never

3 More precisely, nf describes how many coefficients are used when truncating possibly
infinite base-β expansions of rational numbers.

Simple Encrypted Arithmetic Library - SEAL v2.1 13

drops, it does not recognize this cancellation, and once the level reaches its max-
imum (n coefficients), decoding will fail. For the fractional encoder, however,
cancellations take care of themselves, permitting potentially more homomor-
phic operations. As a concrete example, consider n = 8, base β = 2, and the
computation (12 · 0.25)3. With the scale-to-integer technique, a rational number
a/2i is encoded as (p(x), i), where p(x) is an integer encoding of a. Hence, the
inputs are encoded as (x3 + x2, 0), and (0, 2). The result of the computation is
(3x7 + x6 − x − 3, 6), which does not decode to the correct result since the first
entry wrapped around xn + 1. On the other hand, with the fractional encoder,
the two inputs are encoded as x3 + x2 and −x6, and the resulting plaintext
polynomial is equal to (x + 1)3, which decodes correctly.

Remark 1. In [15] the authors claimed that the two fractional encoding methods
above are equivalent, by claiming the existence of an isomorphism between the
underlying rings. We would like to point out that their object R1 does not
satisfy the distribution law, hence is not a ring. This was likely an innocent typo
(indeed, with a sign mistake fixed R1 does become a ring), but even then the
map φ : R1 → R2 in their paper is only a surjective homomorphism, and not
injective, due to the fact that encoding is not unique: e.g. (xi, i) encodes the
integer 1 for all i.

5.3 CRT Batching

The CRT (Chinese Remainder Theorem) batching technique allows upto n inte-
gers modulo t to be packed into one plaintext polynomial, and operating on
those integers in a SIMD (Single Instruction, Multiple Data) manner. For more
details and applications we refer the reader to [11,19,34].

Batching provides the maximal number of plaintext slots when the plaintext
modulus t is chosen to be a prime number and congruent to 1 (mod 2n), which
we assume to be the case. Then there exists (see e.g. [19]) a ring isomorphism
Decompose : Rt → ∏n−1

i=0 Zt, whose inverse we denote by Compose. In SEAL,
Compose and Decompose are computed using a negacyclic variant of the Number
Theoretic Transform (NTT).

When used correctly, batching can provide an enormous performance
improvement over the other encoders. Note, however, that for computations on
encrypted integers rather than on integers modulo t one needs to ensure that
the values in the individual slots never wrap around t during the computation.

SEAL provides all of the batching-related tools in the PolyCRTBuilder class.

6 Inherent Noise

Definition 1 (Inherent noise). Let ct = (c0, c1, . . . , ck) be a ciphertext
encrypting the message m ∈ Rt. Its inherent noise is the unique polynomial
v ∈ R with smallest infinity norm such that

ct(s) = c0 + c1s + · · · + cksk = Δm + v + aq

for some polynomial a.

14 H. Chen et al.

It is proved in [20], that the function (or family of functions) Decrypt, as pre-
sented in Sect. 3.3, correctly decrypts a ciphertext as long as the inherent noise
satisfies ‖v‖ < Δ/2.

6.1 Overview of Noise Growth

We present in Table 3 probabilistic estimates of noise growth in some of the
most common homomorphic operations. Even though these are estimates, they
are simple and work well in practice. For input ciphertexts cti we denote their
respective inherent noises by vi. When there is a single encrypted input ct we
denote its inherent noise by v.

Table 3. Noise estimates for homomorphic operations in SEAL.

Operation Input description Estimated output noise

Encrypt Plaintext m ∈ Rt 2B
√

2n/3

Negate Ciphertext ct ‖v‖
Add/Sub Ciphertexts ct1 and ct2 ‖v1‖ + ‖v2‖ + rt(q)

AddPlain/ Ciphertext ct and ‖v‖ + rt(q)

SubPlain plaintext m

MultiplyPlain Ciphertext ct and N‖m‖ (‖v‖ + rt(q)/2)

plaintext m with N

non-zero coefficients

Multiply Ciphertexts ct1 and ct2 t (‖v1‖ + ‖v2‖ + rt(q))

(with integer encoders) of sizes j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉j1+j2−1

2j1+j2

Multiply Ciphertexts ct1 and ct2 nt (‖v1‖ + ‖v2‖ + rt(q))

(with of sizes j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉j1+j2−1

2j1+j2

PolyCRTBuilder)

Square Ciphertext ct of size j Same as Multiply(ct, ct)

Relinearize Ciphertext ct of size K ‖v‖
and target size L < K +(K − L)

√
nB(� + 1)w

6.2 Maximal Levels for Default Parameters

In Table 4 we give the maximal supported levels for various power-of-2 plaintext
moduli, only taking the noise growth into account. The coefficient moduli are
chosen to be the defaults, given in Table 2. We chose to use a uniformly random
polynomial in Rt as the plaintext.

Simple Encrypted Arithmetic Library - SEAL v2.1 15

Table 4. Maximal levels for different choices of polynomial modulus and plaintext
modulus.

n log2 q log2 t Max. level

210 35 6 1

211 60 7 2

16 1

212 116 1 6

8 4

20 2

213 226 8 8

20 5

30 3

214 435 8 15

32 7

64 4

7 Security of FV

7.1 Ring-Learning with Errors

The security of the FV encryption scheme is based on the apparent hardness of
the famous Ring-Learning with Errors (RLWE) problem [29]. Each RLWE sam-
ple can be used to extract n Learning with Errors (LWE) samples [27,32]. The
concrete hardness depends on the parameters n, q, and the standard deviation
of the error distribution σ.

7.2 Security of the Default Parameters in SEAL v2.1

We now give an estimate of the security of the default parameters in SEAL
v2.1 based on the LWE estimator of [7].4 The estimator takes as input an LWE
instance given by a dimension n, a modulus q, and a relative error α =

√
2πσ/q.

For various attacks it returns estimates for the number of bit operations, memory,
and number of samples required to break the LWE instance. In Table 5 we give
the expected number of bit operations required to attack the LWE instances
induced by the SEAL v2.1 default parameters, assuming that the attacker has
as many samples, and as much memory, as they would require. Recall from
Sect. 4.1 that in SEAL the default standard deviation is σ = 3.19, so we always
have αq = σ

√
2π ≈ 8, and we use α = 8/q. We use the default n and q as

presented in Table 2.
Recently, Albrecht [3] described new attacks on LWE instances where the

secret is very small, and presented estimates of the cost of these attacks on

4 We used the version available on February 23rd, 2017 (commit d70e1e9).

16 H. Chen et al.

Table 5. Estimates of log of the bit operations required to perform the above named
attacks on the SEAL v2.1 default parameters. The symbol ‘—’ denotes that the esti-
mator did not return a result.

n q α small sis bkw sis dec Kannan

1024 235 − 214 + 211 + 1 8/q 97.6 237.4 126.5 116.1 116.6

2048 260 − 214 + 1 8/q 115.1 391.2 136.2 129.0 129.5

4096 2116 − 218 + 1 8/q 119.1 615.3 132.7 128.2 129.2

8192 2226 − 226 + 1 8/q 123.1 1168.6 132.2 — 131.1

16384 2435 − 233 + 1 8/q 130.5 1783.5 134.4 — 135.9

the default parameters used in SEAL v2.0. Estimates for cost of the attacks
described in [3] have been included into the LWE estimator of [7]. In Table 5 we
have included the attack presented in [3, Sects. 3 and 4], labelled ‘small sis’, which
performs best against the SEAL v2.1 parameters. To label the other attacks we
follow the notation of [7]: ‘bkw’ denotes a variant [22] of the BKW attack [5,10],
‘sis’ denotes a distinguishing attack as described in [31]; ‘dec’ denotes a decoding
attack as described in e.g. [28]; ‘kannan’ denotes the attack described in [6]. The
estimator was not run for Arora-Ge type attacks [4,8] or for meet-in-the-middle
type attacks, since these are both expected to be very costly.

Remark 2. At the time of writing this, determining the concrete hardness of
parametrizations of (R)LWE is an active area of research (see e.g. [7,13,17]),
and no standardized (R)LWE parameter sets exist. Therefore, when using SEAL
or any other implementation of (R)LWE-based cryptography, we strongly rec-
ommend the user to consult experts in the security of (R)LWE when choosing
which parameters to use.

References

1. FV-NFLlib. https://github.com/CryptoExperts/FV-NFLlib. Accessed 17 Feb
2017

2. HElib. https://github.com/shaih/HElib. Accessed 21 Nov 2016
3. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter

choices in HElib and SEAL. Cryptology ePrint Archive, Report 2017/047 (2017).
http://eprint.iacr.org/2017/047

4. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems. IACR Cryptology ePrint Archive 2014:1018 (2014)

5. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

6. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE
by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013.
LNCS, vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12160-4 18

7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

https://github.com/CryptoExperts/FV-NFLlib
https://github.com/shaih/HElib
http://eprint.iacr.org/2017/047
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-12160-4_18

Simple Encrypted Arithmetic Library - SEAL v2.1 17

8. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

9. Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Report
2016/510 (2016). http://eprint.iacr.org/2016/510

10. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

11. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homo-
morphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36362-7 1

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, pp. 309–325. ACM (2012)

13. Buchmann, J.A., Büscher, N., Göpfert, F., Katzenbeisser, S., Krämer, J., Miccian-
cio, D., Siim, S., van Vredendaal, C., Walter, M.: Creating cryptographic challenges
using multi-party computation: the LWE challenge. In: Emura, K., Hanaoka, G.,
Zhang, R. (eds.) Proceedings of the 3rd ACM International Workshop on ASIA
Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May 30–June 03,
2016, pp. 11–20. ACM (2016)

14. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. [33], pp. 325–340

15. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
schemes. Technical report, Cryptology ePrint Archive, Report 2016/250 (2016).
http://eprint.iacr.org/2016/250

16. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, vol.
182. Springer Science and Business Media, Heidelberg (2006). https://doi.org/10.
1007/0-387-28979-8

17. Crockett, E., Peikert, C.: Challenges for ring-LWE. Cryptology ePrint Archive,
Report 2016/782 (2016). http://eprint.iacr.org/2016/782

18. Crockett, E., Peikert, C.: Λoλ: functional lattice cryptography. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016, pp. 993–1005. ACM (2016)

19. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Werns-
ing, J.: Manual for using homomorphic encryption for bioinformatics. Techni-
cal report, Microsoft Research (2015). http://research.microsoft.com/apps/pubs/
default.aspx?id=258435

20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178
(2009)

22. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice
codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 2

23. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library (2013). http://people.csail.mit.edu/shaih/pubs/he-library.pdf

24. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

https://doi.org/10.1007/978-3-642-22006-7_34
http://eprint.iacr.org/2016/510
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
http://eprint.iacr.org/2016/250
https://doi.org/10.1007/0-387-28979-8
https://doi.org/10.1007/0-387-28979-8
http://eprint.iacr.org/2016/782
http://research.microsoft.com/apps/pubs/default.aspx?id=258435
http://research.microsoft.com/apps/pubs/default.aspx?id=258435
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-47989-6_2
http://people.csail.mit.edu/shaih/pubs/he-library.pdf
https://doi.org/10.1007/978-3-662-44371-2_31

18 H. Chen et al.

25. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

26. Harvey, D.: Faster arithmetic for number-theoretic transforms. J. Symb. Comput.
60, 113–119 (2014)

27. Lepoint, T., Naehrig, M.: A Comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 20

28. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

30. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako [33], pp. 341–356

31. Micciancio, D., Regev, O.: Post-quantum cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Lattice-based Cryptography. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-540-88702-7 5

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
84–93. ACM (2005)

33. Sako, K. (ed.): CT-RSA 2016. LNCS, vol. 9610. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29485-8

34. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014)

https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-319-29485-8
https://doi.org/10.1007/978-3-319-29485-8

Towards Privacy-Preserving Multi-party
Bartering

Stefan Wüller1(B), Ulrike Meyer1, and Susanne Wetzel2

1 RWTH Aachen University, Aachen, Germany
{wueller,meyer}@itsec.rwth-aachen.de

2 Stevens Institute of Technology, Hoboken, NJ, USA
swetzel@stevens.edu

Abstract. Both B2B bartering as well as bartering between individuals
is increasingly facilitated through online platforms. However, typically
these platforms lack automation and tend to neglect the privacy of their
users by leaking crucial information about trades. It is in this context
that we devise the first privacy-preserving protocol for automatically
determining an actual trade between multiple parties without involving
a trusted third party.

1 Introduction

The Encyclopedia Britannica defines bartering as “the direct exchange of goods
or services—without an intervening medium of exchange or money—either
according to established rates of exchange or by bargaining”. Bartering is con-
sidered to be the oldest form of trading and has been practiced since the early
days of humanity. In this traditional form, bartering typically requires a party to
find a single trade partner that offers what the party demands and at the same
time demands what the party offers. Alternatively, it may try to find a larger
trade cycle in which more than two parties will exchange their goods or services
in a cyclic fashion. While the former may not even exist, the latter is difficult
if not even impossible to find. In any case, the offer and demand of each party
needs to be satisfied simultaneously.

The introduction of currencies resolved these issues to some extent. In par-
ticular, it allows to decouple the search for a trade partner that satisfies a partys
demand from the search for a trade partner that demands what that party offers.
In addition, traditional trading with (cash) currencies guarantees that each party
only learns how much of what it is selling to whom and how much of what it is
buying from whom but nothing about what their trade partners do in return.
Also there is no bank or any other trusted third party directly involved in the
trading, observing who buys what from whom. The importance of these privacy
guarantees offered by cash currencies are widely recognized and have led to the
introduction of many successful digital counterparts (e.g., Bitcoin [11]).

Despite the benefits of using money as a mediator in trading, bartering has
become popular again in recent years. This is due, among other reasons, to the
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 19–34, 2017.
https://doi.org/10.1007/978-3-319-70278-0_2

20 S. Wüller et al.

fact that online bartering platforms greatly facilitate the cumbersome search
for trade partners (e.g., U-Exchange, BarterQuest, or TradeYa). However, these
platforms typically disclose what (and how much) parties seek or offer at least
to the operator of the platform and typically also to other parties even if a trade
between these parties is not possible. Thus the privacy guarantees offered by
traditional bartering (i.e., a party merely learns what it gets and what it gives
away and there is no third party observing the transactions) are lost.

The goal of our work is to follow suit with digital cash and enable electronic
bartering with privacy guarantees equivalent to the guarantees provided by tra-
ditional bartering or trading using (cash) currencies. In our bartering process,
each party specifies a quote defining its offered and desired commodity and the
corresponding quantity ranges. A party keeps its quote private at all times from
all other parties. Upon completion of the privacy-preserving bartering process,
each party learns nothing but its direct trade partners as well as the commodi-
ties and quantities to be sent and received. Thus, for a given set of parties and
their quotes, our bartering process privately determines an actual trade which
includes the actual trade constellation of the parties (i.e., which party trades
with which other party) as well as the actual commodities and quantities to be
traded. The actual trade can be selected based on different selection strategies
including the maximization of the number of parties able to trade. At the core of
our bartering process (designed as a secure multi-party protocol based on homo-
morphic threshold encryption) is a novel protocol that privately determines the
actual trade constellation. This protocol makes use of a novel privacy-preserving
mapping operation that is based on the uniqueness of prime factorization, which
is of independent interest beyond the context of electronic bartering.

Obviously, given their local view of the actual trade constellation, the parties
can negotiate the quantities at which the commodities are to be exchanged
outside of the bartering process described above. Yet, it is important to recognize
that in practice this requires one of the parties to first state its intentions. In
order to compensate for such a disadvantage, a party may elect to lie about
the range it is willing to accept. As a first step to mitigating this problem, we
enable to negotiate the actual quantities in an automatic and unbiased fashion
by randomly sampling out of a private interval (defined by the private limits of
the parties). As such, this approach motivates the parties to privately specify
their true negotiation ranges.

2 Related Work

For the two-party case, secure multi-party computation (SMPC) protocols for
privacy-preserving bartering have been proposed, e.g., in [5,7]. While these two-
party protocols can obviously be used to find pairwise trades in the multi-party
setting with more than two parties as well, they cannot be used to determine
trade cycles between more than two parties. The particular challenge of finding
such cycles in a privacy-preserving way in the SMPC setting has already been
recognized in [6] but has not been addressed so far.

Towards Privacy-Preserving Multi-party Bartering 21

To the best of our knowledge, there is only one approach to privacy-preserving
multi-party bartering that has been proposed in the past [9]: Kannan et al. intro-
duce a protocol where each party holds an indivisible commodity from a publicly
known finite set of commodities as well as a totally ordered preference list over all
commodities in the set. Their goal is then to determine an actual trade between
multiple parties such that the computed commodity allocation is pareto optimal
while the input of each party (commodity and preference list) is kept private.
Specifically, the protocol protects the parties’ input under the notion of mar-
ginal differential privacy [9] which is a relaxation of differential privacy [4]. In
contrast to differential privacy, marginal differential privacy is restricted to an
adversary that has access to the protocol output of only one single party which
corresponds to the assumption that there are no colluding parties participating
in the protocol which try to subvert the privacy of another party. The substantial
difference between the approach from [9] and our approach is that the former one
focalizes on the privacy of the parties’ input after the functionality is computed
while the major goal of our approach is to provide privacy during the compu-
tation of an actual trade. Further differences to our work are that the protocol
from [9] requires a trusted third party in order to determine an actual trade and
that they use a weaker privacy notion that assumes non-colluding parties. In
our approach, an actual trade is computed without the help of a trusted third
party and we allow that all but one colluding parties may be controlled by an
adversary. In addition, our approach supports divisible commodities.

In contrast to e-commerce (and auctions), bartering transactions are not nec-
essarily reduced to money which allows for a richer structure of exchanges [10]:
A trade takes place if the involved parties are satisfied w.r.t. the specification
of their offered and desired commodities and the corresponding quantities. If
the commodities first have to be converted into money (as it is the case for e-
commerce and auctions), the prices of the commodities have to be individually
determined. Consequently, a party desiring a commodity which is more expen-
sive than its offered commodity is not able to barter, although a trade could
have taken place if the commodities were traded directly [10]. Thus, privacy-
preserving protocols for e-commerce scenarios (e.g., [1]) or auctions (e.g., [12])
can not directly be applied to implement privacy-preserving bartering.

3 Preliminaries

By a ←$ A we indicate that a is drawn uniformly at random from A. Nu :=
{1, ..., u} refers to the set of natural numbers less than or equal to u ∈ N. The
set of all prime numbers within an integer interval I is referred to as PI . We
denote the index set of all parties Pi participating in a multi-party protocol as
P: = {1, . . . , ι} where i ∈ P. Furthermore, λ denotes the empty string.

3.1 Threshold Paillier

Our design approach assumes an additively homomorphic cryptosystem which is
semantically secure against chosen-plaintext attacks and provides a (τ, ι) thresh-

22 S. Wüller et al.

old variant, i.e., the decryption key is distributed amongst ι parties such that at
least τ ≤ ι parties have to collaborate in order to decrypt a ciphertext.

In the following, we summarize the (τ, ι) threshold variant of the Paillier cryp-
tosystem [13] from [3] along with the Paillier-related notation used throughout
the paper.

The public key corresponds to an RSA modulus N = p · q of bit length k,
where p, q are safe primes (i.e., there are prime numbers p′ and q′ such that
p = 2p′ + 1 and q = 2q′ + 1) and k refers to the security parameter. The
private key d ∈ Zp′q′Ns with s > 0, s ∈ N satisfying d = 0 mod p′q′ and
d = 1 mod Ns is polynomially shared between P1, . . . , Pι such that at least τ
parties have to cooperate for decryption. The encryption of a message m in the
plaintext space P := ZNs is computed as c = E(m): = (N + 1)mrNs

mod Ns+1

where r ←$ Z
∗
Ns+1 and c is an element in the ciphertext space C := Z

∗
Ns+1 .

Throughout the paper we assume s = 1. We have that the plaintext space P forms
the additive group (ZN ,+), and the ciphertext space C forms the multiplicative
group (Z∗

N2 , ·). For further details we refer to [3].
Let m,m1,m2 ∈ P and κ ∈ N \ {0}. The Paillier ((τ, ι) threshold) cryptosys-

tem provides for homomorphic addition

E(m1) +h E(m2) := E(m1) · E(m2) = E(m1 + m2)

and homomorphic scalar multiplication

E(m) ×h κ := E(m) · E(m) · · · E(m)
︸ ︷︷ ︸

κ times

= E(κ · m).

A ciphertext E(m) can be randomized (or re-randomized) by homomorphi-
cally adding a fresh encryption of zero. For the remaining sections P, C, E(·),
and D(·) refer to the plaintext space, the ciphertext space, the encryption func-
tion, and the decryption function of (τ, ι) threshold Paillier, respectively. Note
that for convenience, we omit the keys from the notation.

3.2 Secure Multi-party Computation

In order to define security comprising privacy and correctness, we have to specify
the capabilities of an adversary under whose presence a protocol has to be secure.
We prove our protocols to be secure in the semi-honest model. A semi-honest
adversary controls a set of corrupted parties which correctly follow the protocol
specification with the exception that each corrupted party keeps record of all
data it generates itself and all messages it receives from other parties.

We assume that the parties communicate over authentic channels, i.e., the
transferred data is resistant to tampering but can be wiretapped.

Let ̂X: = (X1, . . . , Xι) and let F : ({0, 1}∗)ι → ({0, 1}∗)ι, ̂X �→ (F1(̂X), ...,
Fι(̂X)) be a multi-party (|P| = ι ≥ 2) functionality computable in polyno-
mial time where Pi provides input Xi and obtains output Fi(̂X) (i ∈ P).
Let π be an ι-party protocol for computing functionality F . We write IC : =

Towards Privacy-Preserving Multi-party Bartering 23

{i1, ..., iκ} ⊂ P for the index set of 1 ≤ κ < ι corrupted parties controlled by
the adversary. The view of Pi during an execution of π on input ̂X and secu-
rity parameter s is denoted as VIEWπ

i (s, ̂X): = (s,Xi, r̊i,mi,1, ...,mi,n), where
r̊i represents Pi’s internal random tape and mi,j represents the j-th message
Pi received during a protocol execution of π. We write OUTPUTπ(s, ̂X): =
(OUTPUTπ

1 (s, ̂X), . . . ,OUTPUTπ
ι (s, ̂X)) in order to refer to the output of pro-

tocol π on input ̂X and security parameter s. Let ̂XIC
, FIC

(̂X), and VIEWπ
IC

(̂X)
denote the κ-tuples (Xi1 , ...,Xiκ

), (Fi1(̂X), ..., Fiκ
(̂X)), and (IC ,VIEWπ

i1(̂X), ...,
VIEWπ

iκ
(̂X)), respectively.

Definition 1 (Security: Semi-Honest Model, Multi-Party Setting [8]). π
securely computes F if there exists a probabilistic polynomial time algorithm S
such that for every IC it holds that {(S(1s, IC , ̂XIC

, FIC
(̂X)), F(̂X))}

̂X,s and

{(VIEWπ
IC

(̂X, s),OUTPUTπ(s, ̂X))}
̂X,s are computational indistinguishable.

For convenience, we omit s from the remaining considerations. We call S a
simulator and enclose the values it simulates by square brackets 〈·〉 in order to
distinguish between simulated values and those occurring during a protocol run.

In order to facilitate the security proof of a protocol π implementing func-
tionality F where π consists of a finite set of sub-protocols ρ1, . . . , ρn securely
computing functionalities G1, . . . , Gn in the semi-honest model, we can apply the
Modular Composition Theorem [2] which states that if π′ securely computes F
in the semi-honest model where the sub-protocol calls of π are replaced by calls
to a trusted third party computing G1, . . . , Gn, then π securely computes F in
the semi-honest model.

To prove our protocols to be secure in the semi-honest model, we first prove
that {F(̂X)}

̂X

c≡ {OUTPUTπ(̂X)}
̂X . This step is referred to as Correct Output

Distribution (COD). Second, we prove that VIEWπ
IC

can be simulated under
consideration of the given inputs and outputs of all corrupted parties such that
VIEWπ

IC
and the corresponding simulated view are computationally indistin-

guishable, referred to as Correct View Distribution (CVD).
To refer to a concrete functionality or protocol, we use the templates F [affix]

name

and π
[affix]
name where protocol π

[affix]
name is an implementation of functionality F [affix]

name

with name and affix describing the functionality to be computed where the use
of affix is optional. For convenience, we omit name and affix for the case that
the target functionality and protocol is clear from the context. Furthermore, we
write F(X1, . . . , Xι,X) to denote that X is a public input that is known by
all parties. (o) ← F(X) indicates that all parties have common input X and
common output o.

4 Overview

4.1 Bartering Related Terminology

For a set of parties, a trade generically indicates which party receives (or sends)
which quantity of which commodity from (or to) which other party. In this

24 S. Wüller et al.

Table 1. Bartering related acronyms used throughout the paper.

TPT (S) Trade partner tuple (Set) Definition 2 (below Definition 10)

TPC(S) Trade partner constellation (Set) Definition 3 (below Definition 4)

PTPC(S) Potential trade partner constellation (Set) Definition 4 (below Definition 4)

ATPC Actual trade partner constellation Definition 5

AT Actual trade Definition 6

paper, we focus on so-called (1:1) trades with one offered and one desired com-
modity for each party. In such a trade, each party receives some quantity of its
desired commodity from at most one party and sends some quantity of its offered
commodity to at most one other party.

More specifically, we consider a set of ι parties {Pi|i ∈ P} with P: = Nι and
a publicly known finite set C : = {c1, . . . , cn} of divisible commodities. Each party
Pi specifies exactly one quote q(i): = (o(i),d(i)) where o(i) and d(i) is Pi’s offer
and demand, respectively. We model o(i) as a 3-tuple o(i): = (c(i)o , q(i)

o
, q

(i)
o) where

c
(i)
o ∈ C specifies the commodity offered by Pi and q(i)

o
∈ N\{0} (q(i)o ∈ N\{0})

denotes the minimum (maximum) quantity of c
(i)
o offered. Similarly, we model

d(i): = (c(i)d , q
(i)
d , q

(i)
d) with c

(i)
d ∈ C and q

(i)
d , q

(i)
d ∈ N\{0}. With q(i) a party Pi

indicates that it is satisfied with a trade if it receives at least q
(i)
d and at most

q
(i)
d units of commodity c

(i)
d and sends at least q(i)

o
and at most q

(i)
o units of c

(i)
o .

For convenience, we assume that q(i)
o

= 1 and q
(i)
d = ∞. The quantity ranges of

the offered and desired commodities of a party Pi (i ∈ P) are thus defined as
Q

(i)
o : = [1, q(i)o] and Q

(i)
d : = [q(i)d ,∞]. We write q

(i,i′)
c
(i)
o

in order to indicate at which

quantity Pi′ will receive commodity c
(i)
o from Pi (i, i′ ∈ P).

We introduce the following bartering related terms which are summarized in
Table 1 and illustrated in Fig. 1:

Definition 2 (Trade Partner Tuple). A trade partner tuple TPT (i): =(x(i), y(i))
for Pi (i ∈ P) with x(i), y(i) ∈ P\{i} is a 2-tuple which specifies the indices of
the trade partners Px(i) and Py(i) of Pi: Px(i) is the offerer of party Pi, i.e., Pi

receives some quantity of some commodity from Px(i) , while Py(i) is the demander
of Pi, i.e., Pi has to send some quantity of some commodity to Py(i) . If a party Pi

neither sends nor receives any commodity in a trade, i.e., it does not participate,
we write TPT (i) = (0, 0).

Definition 3 (Trade Partner Constellation). A trade partner constellation
TPC: = (TPT (1), TPT (2), ..., TPT (ι)) is an ι-tuple which specifies exactly one
trade partner tuple for each Pi (i ∈ P) and has the following property: for each
trade partner tuple TPT (i) = (x(i), y(i)) it either holds that x(i) = y(i) or it holds
that there exist exactly two distinct entries TPT (i′) and TPT (i′′) with i = i′, i′′

such that TPT (i′) = (y(i), y(i′)) and TPT (i′′) = (x(i′′), x(i)).

Towards Privacy-Preserving Multi-party Bartering 25

Definition 3 ensures that each party that participates as offerer (demander)
in some TPT of a TPC also participates as demander (offerer) either in the
same or in exactly one other TPT of the TPC.

For a fixed context of quotes Q: = {q(1), ...,q(ι)} with q(i) = ((c(i)o , q(i)
o

, q
(i)
o),

(c(i)d , q
(i)
d , q

(i)
d)), a TPC is transformed into a trade partner constellation formula,

written ϕ
Q∼ TPC, such that:

ϕ: =
ι

∧

i=1
(x(i),y(i))�=(0,0)

C(q(i),q(x(i))) ∧ R(q(i),q(x(i))) (1)

with

C(q(a),q(b)): =

{

1 if (q(a),q(b)) ∈ C

0 otherwise
, R(q(a),q(b)): =

{

1 if (q(a),q(b)) ∈ R

0 otherwise

where

C: = {(q(a),q(b))|c(a)d = c(b)o }, R: = {(q(a),q(b))|q(a)
d

≤ q(b)o }.

Evaluating ϕ (for a given context of quotes) denoted as �ϕ� ∈ {0, 1} allows
one to check whether or not there is a trade which all parties Pi (with TPT (i) =
(0, 0)) in the corresponding trade partner constellation are satisfied with. The
trade partner constellations for which this holds for a given context of quotes Q
are referred to as potential trade partner constellations:

Definition 4 (Potential Trade Partner Constellation). For a context of quotes
Q, a trade partner constellation TPC is a potential trade partner constellation
(PTPC), iff ϕ

Q∼ TPC and �ϕ� = 1.

We write TPCS: = {TPC1, . . . , TPCt} for a set of trade partner con-
stellations. Given TPCS and Q, the set of potential trade partner constel-
lations is denoted as PTPCS. Furthermore, given TPCS and Q, we define
Φ: = {ϕj |ϕj

Q∼ TPCj , j ∈ N|TPCS|} and Φsat: = {ϕj |ϕj ∈ Φ, �ϕj� = 1} ⊆ Φ.

Definition 5 (Actual Trade Partner Constellation). An actual trade partner
constellation ATPC is a specific PTPC drawn from PTPCS based on a specified
selection strategy.

For matters of convenience, we first assume that ATPC is drawn uniformly
at random from PTPCS. In Sect. 5.4, we sketch a modification of our proto-
col allowing to select an ATPC maximizing the number of traded commodities
(without reducing the level of privacy). Other optimization criteria can be inte-
grated analogously.

Definition 6 (Actual Trade). An actual trade AT for an ATPC specifies the
actual commodities and actual quantities for the commodities traded between the
parties involved in ATPC.

26 S. Wüller et al.

Fig. 1. Illustration of the bartering related terms and their relations.

Figure 1 illustrates the interdependency of the introduced terms. A trade
partner constellation can be visualized as a directed graph, i.e., a node repre-
sents a party and a directed edge between two nodes represents the exchange
direction of a commodity between two parties. For example, according to the
node labels and the direction of the edges we have that TPC4 in Fig. 1 is equal
to (TPT (1), TPT (2), TPT (3), TPT (4)) = ((3, 2), (1, 3), (2, 1), (0, 0)). A potential
trade partner constellation set is a subset of a given trade partner constellation
set containing those trade partner constellations which form the basis for a trade
all involved parties are satisfied with when taking the given context of quotes
into account. In Fig. 1, we assume a context of quotes such that TPC1 = PTPC1

and TPC4 = PTPC2 are potential trade partner constellations. An actual trade
partner constellation is an element from the set of potential trade partner con-
stellation selected w.r.t. a specific strategy. In Fig. 1, the actual trade partner
constellation is chosen such that it maximizes the number of traded commodi-
ties. The determined actual trade partner constellation is transferred into an
actual trade by selecting the actual quantities of the commodities to be traded.
In Fig. 1, the actual trade indicates that P1 has to send q

(1,2)

c
(1)
o

units of commodity

c
(1)
o to P2, that P2 has to send q

(2,3)

c
(2)
o

units of commodity c
(2)
o to P3, and so on.

4.2 Bartering Process and Intuition

The overall goal of a bartering process between parties P1, ..., Pι with a context
of quotes Q = (q(1), ...,q(ι)) is to determine an actual trade, i.e., one specific
trade with which all parties are satisfied. Our bartering process introduced in
this paper can determine such an actual trade from the set of all possible trade
partner constellations. However, for matters of efficiency, it is also possible to use
a smaller trade partner constellation set, e.g., one which may contain only trade
partner constellations of 5-trade cycles or constellations in which specific parties
get to trade (cf. TPCS in Fig. 1). Upon input of the trade partner constellation

Towards Privacy-Preserving Multi-party Bartering 27

Fig. 2. Illustration of the overall bartering process.

set, the bartering process tries to find an actual trade consistent with the trade
partner constellations in the given trade partner constellation set.

Finding an actual trade first requires the determining of the set of potential
trade constellations, i.e., those trade constellations in the trade partner constel-
lation set for which the commodities and quantities of the involved parties in
their roles of offerer and demander match (Transition 1, Fig. 2). Subsequently,
one of the potential trade constellations is selected as actual trade partner con-
stellation (Transition 2, Fig. 2). This constellation then already indicates which
parties will send (resp., receive) some commodity to (from) which other party
in the (yet to be determined) actual trade. Finally, the parties have the option
to individually engage in a two-party protocol with each one of their trade part-
ners (determined by the actual trade partner constellation) in order to select the
actual quantities for the commodities to be traded (Transition 3, Fig. 2).

In order to implement such a bartering process securely, the input of the par-
ties, i.e., their quotes, have to be kept secret throughout the process. Moreover,
at the end of the process the parties should learn no more than their local view
of the selected actual trade, i.e., their own trade partners and the commodities
and quantities to be traded with them. Our newly developed bartering process
consists of two parts (cf. Fig. 2).

(Part I.) For the first part, we design a secure multi-party protocol πATPC-Sel

that takes a context of private quotes Q as well as a (publicly known) set of trade
partner constellations as input and then performs the following steps: (1) securely
determine the potential trade partner constellation set, (2) securely select an
actual trade partner constellation, and (3) provide each party Pi with (nothing
but) its actual trade partner tuple in the actual trade partner constellation as
output (see Sect. 5.2).

(Part II.) In the second part, we propose the option that each party is
involved in the two-party protocol πRSI for the secure computation of a ran-
dom sub-interval (see Sect. 5.3) with each of its trade partners to automatically
and fairly determine the actual quantities traded.

For a more comprehensive intuition, we refer to the extended version of this
paper [15]. Moreover, the extended version provides an intuition of the novel
privacy-preserving mapping operation based on the uniqueness of prime factor-
ization which is used for πATPC-Sel in order to restrict the output of a party to
its local view.

28 S. Wüller et al.

5 Bartering Process

In the following, we introduce our novel multi-party protocol, πATPC-Sel, for
selecting an actual trade partner constellation from a given public trade part-
ner constellation set and providing each party with its local view of this actual
trade partner constellation as output. We define the underlying functionality
FATPC-Sel followed by a detailed protocol description (Sect. 5.2) using the build-
ing blocks reviewed in Sect. 5.1. Additionally, in Sect. 5.3 we describe how each
party can locally compute their part of the actual trade (i.e., determine the
actual quantities for the commodities to be traded) based on the actual trade
partner constellation, and how the ATPC-selection can be optimized (Sect. 5.4).
In the extended version of this paper [15], we provide an example of how
πATPC-Sel can be used for computing an actual trade from a given trade partner
constellation set.

5.1 Building Blocks

Definition 7 (FOE-TPCF: Oblivious (O) Evaluation (E) of a Trade Partner Con-
stellation Formula (TPCF)). Let Pi hold private input q(i) (i ∈ P) as well as a
public trade partner constellation formula ϕ ∈ Φ. Then, functionality FOE-TPCF

is given by (E(e)) ← FOE-TPCF(q(1), . . . ,q(ι), ϕ) where E(e) is an (ι, ι) threshold
Paillier ciphertext of e = 1 if �ϕ� = 1 and e = 0 otherwise.

Definition 8 (F i∗
CRS-C: Multi-party Conditional (C) Random (R) Selection (S)

with output Check (C)). Let P1, . . . , Pι hold m vectors E(Li) = (E(li,1), . . . ,
E(li,n)) of length n of integers li,j ∈ P (i ∈ Nm, j ∈ Nn) encrypted with
(ι, ι) threshold Paillier. Let E(Li∗) be an encrypted binary indicator vector and
{E(L1), ..., E(Lm)}\{E(Li∗)} be the value vectors with i∗ ∈ Nm. Then, function-
ality F i∗

CRS-C is given by ((E(o1), . . . , E(om))) ← F i∗
CRS-C((E(L1), . . . , E(Lm)))

with E(oi) = Rnd(E(li,j∗)) (i ∈ Nm) where j∗ ←$ {j ∈ Nn : li∗,j = 1} if there
exists at least one j ∈ Nn s.t. li∗,j > 0. Otherwise, F i∗

CRS-C((E(L1), . . . , E(Lm)))
outputs (λ1, . . . , λm) with λ1 = . . . = λm = λ. Note that j∗ is fix for all i ∈ Nm.

Definition 9 (Fω
RSI : Two-party secure computation of a Random (R) Sub-

Interval (SI)). Let P1 hold integer interval I1 and P2 hold integer interval I2 such
that ω ≤ |I1 ∩ I2|. Then, functionality Fω

RSI is given by ([lr, ur]) ← Fω
RSI(I1, I2)

where[lr, ur] is a sub-interval drawn uniformly at random from Io = I1 ∩ I2 s.t.
|[lr, ur]| = ω.

In the extended version of this paper, a novel protocol πOE-TPCF imple-
menting FOE-TPCF is introduced (see Sect. 5 in [15]). A protocol implementing
functionality F i∗

CRS-C is presented in [14] and further improved in [17]. A two-
party protocol implementing functionality Fω

RSI is introduced in [5]. All of these
protocols have been proven secure in the semi-honest model. In this paper, we
exclusively use πi∗

CRS-C for i∗ = 1 and πω
RSI for ω = 0. Consequently, we will

omit these indices in the remainder of this paper.

Towards Privacy-Preserving Multi-party Bartering 29

5.2 Protocol for Selecting an Actual Trade Partner Constellation

Definition 10 (FATPC-Sel: Actual Trade Partner Constellation (ATPC) Selec-
tion (Sel)). Let party Pi hold private input q(i) (i ∈ P). Furthermore, let TPCS
be an arbitrary non-empty set of trade partner constellations which is publicly
known. Then, the functionality FATPC-Sel is defined as

(TPT
(1)
∗ , . . . , TPT

(ι)
∗) if PTPCS = ∅

⊥ otherwise

}

← FATPC-Sel(q(1), . . . ,q(ι), TPCS)

where (TPT
(1)
∗ , . . . , TPT

(ι)
∗): = ATPC ←$ PTPCS ⊆ TPCS.

In the following, TPTS(i) refers to the set of trade partner tuples for Pi

(i ∈ P) w.r.t. TPCS.
In an ideal world where a trusted third party exists, functionality FATPC-Sel

could be computed as follows: Each party Pi (i ∈ P) sends its private input
q(i) to the trusted third party which additionally is given the public set of
trade constellation tuples TPCS. With the knowledge of Q = {q(1), . . . ,q(ι)},
the trusted third party locally computes PTPCS ⊆ TPCS. For the case that
PTPCS = ∅, the trusted third party selects an actual trade partner constel-
lation ATPC = (TPT

(1)
∗ , . . . , TPT

(ι)
∗) uniformly at random from PTPCS and

sends TPT
(i)
∗ = (x(i)

∗ , y
(i)
∗) to Pi. Otherwise, the trusted third party returns ⊥ to

all parties. Note that a (0, 0) output for party Pi indicates that Pi is not involved
in the actual trade partner constellation while ⊥ indicates that there exists no
potential trade constellation in the given TPCS at all.

In the real world, where no trusted party exists, protocol πATPC-Sel (see
Protocol 1) is executed in order to compute functionality FATPC-Sel. Following
the intuition provided in Sect. 4, πATPC-Sel can be split up into the following
phases:

1. Construction Phase: From the public set of trade partner constellations,
TPCS, each party individually constructs the set of formulas Φ such that
at the end of this phase each party holds the same set Φ.

2. Evaluation Phase: Each ϕj ∈ Φ is obliviously evaluated jointly by all parties
Pi (i ∈ P) by calling πOE-TPCF(q(1), . . . ,q(ι), ϕj) such that at the end of
this phase, each party holds a vector E(L) = (E(e1), . . . , E(e|TPCS|)) where
ej = �ϕj� (j ∈ N|TPCS|).

3. Mapping Phase: At the begin of the protocol, each party Pi (i ∈ P) is given
an interval I(i) of positive integers with at least |TPTS(i)| prime numbers
such that for each i, i′ ∈ P (i = i′), I(i) and I(i

′) are pairwise disjoint.
Each party Pi constructs a secret table mapping each element in TPTS(i)

to a unique prime number randomly chosen from I(i). More precisely, each
party Pi keeps a set S(i) of already assigned prime numbers from I(i) which
is initialized with ∅. Pi then maps each trade partner tuple (x(i), y(i)) ∈
TPTS(i) to a prime number p

(i)

(x(i),y(i))
←$ PI(i)\S(i). Subsequently, p(x(i),y(i))

is added to S(i). Once all parties have established their mapping tables, all

30 S. Wüller et al.

Protocol 1. πATPC-Sel for obliviously selecting an actual trade partner con-
stellation.

1 Construction Phase
1.1 Each party Pi (i ∈ P) locally constructs the same set Φ from TPCS.

2 Evaluation Phase
2.1 For each ϕj ∈ Φ:

2.1.1 Each party Pi participates in (E(ej)) ← πOE-TPCF(ϕj)
2.2 Each party Pi sets E(L): = (E(e1), . . . , E(e|TPCS|))

3 Mapping Phase
3.1 Each party Pi:

3.1.1 Set S(i): = ∅
3.1.2 For each (x(i), y(i)) ∈ TPTS(i):

3.1.2.1 Draw a random prime p
(i)

(x(i),y(i))
from PI(i)\S(i)

3.1.2.2 Update S(i) = S(i) ∪ {p
(i)

(x(i),y(i))
}

3.2 Party Pι:

3.2.1 Set u
(ι)
j : = E(p

(ι)

TPT
(ι)
j

) (ϕj
Q∼ TPCj)

3.2.2 Send (u
(ι)
1 , . . . , u

(ι)

|TPCS|) to Pι−1

3.3 Each party Pi′ (from i′ = ι − 1 to 1)

3.3.1 Compute u
(i′)
j : = u

(i′+1)
j ×h p

(i′)
TPT

(i′)
j

+h E(0)

3.3.2 Send (u
(i′)
1 , . . . , u

(i′)
|TPCS|) to Pi′−1

3.4 Party P1:
3.4.1 Set E(L′): = (E(e′

1), . . . , E(e′
|TPCS|)): = (u

(1)
1 , . . . , u

(1)

|TPCS|)
3.4.2 Broadcast E(L′)

4 Selection Phase
4.1 Each party Pi participates in ((c∗

1, c
∗
2)) ← πCRS-C(E(L), E(L′))

4.2 For each party Pi

4.2.1 If c∗
1 = c∗

2 = λ:
4.2.1.1 Skip Steps 5 to 7
4.2.1.2 Each party Pi outputs ⊥

5 Decryption Phase
5.1 All parties jointly compute e∗

2 = D(c∗
2)

6 Reverse Mapping Phase
6.1 Each Party Pi:

6.1.1 For each p
(i)

TPT
(i)
j

∈ S(i)

6.1.1.1 If p
(i)

TPT
(i)
j

divides e∗
2 then TPT

(i)
∗ : = TPT

(i)
j and go to Step 7

7 Output Phase

7.1 Each party Pi outputs TPT
(i)
∗

parties engage in the consecutive computation of an encrypted prime number
product for each ϕj ∈ Φ. Each party Pi contributes a single prime number
p
(i)

TPT
(i)
j

to the encrypted prime number product associated with ϕj ∈ Φ:

Towards Privacy-Preserving Multi-party Bartering 31

First, Pι computes u
(ι)
j = E(p(ι)

TPT
(ι)
j

) (j ∈ N|TPCS|) and sends the result to

Pι−1. Each party Pi′ from i′ = ι − 1 to 1 then computes u
(i′)
j = u

(i′+1)
j ×h

p
TPT

(i′)
j

+hE(0) and sends the results to Pi′−1, except P1 which sets E(L′): =

(E(e′
1), . . . , E(e′

|TPCS|)): = (u(1)
1 , . . . , u

(1)
|TPCS|) and broadcasts E(L′). This

mapping of trade partner constellations to prime number products is one of
the central ideas of this protocol and ensures the security of the protocol.

4. Selection Phase: From the previous phases, each ϕj is associated with two
values E(ej) and E(e′

j) where ej ∈ {0, 1} indicates whether or not ϕj is
satisfied while e′

j is a product of individual prime numbers encoding the trade
partner tuples of each party w.r.t. ϕj . In this phase, the parties now jointly
compute πCRS-C on the common input (E(L), E(L′)) in order to select an
entry of E(L′) associated with a randomly selected ϕj ∈ Φsat for the case
that Φsat = ∅ (i.e., PTPCS = ∅). Otherwise, in the case that Φsat = ∅
(i.e., PTPCS = ∅), the parties learn of this fact. In the former case, πCRS-C

returns a randomly selected pair (c∗
1, c

∗
2) ∈ (E(L), E(L′)) with c∗

1 = E(e∗
1) and

c∗
2 = E(e∗

2). In the latter case where e1 = . . . = e|TPCS| = 0, πCRS-C(L,L′)
returns (c∗

1, c
∗
2) with c∗

1 = c∗
2 = λ which prompts each party Pi to output ⊥ and

to terminate the protocol. The purpose for this approach is to hide the number
of satisfied formulas (for the case that Φsat = ∅) as this could otherwise not
be simulated given the inputs and outputs of the set of corrupted parties.

5. Decryption Phase: Each party learns e∗
2 from jointly decrypting c∗

2 together
with all other parties.

6. Reverse Mapping Phase: Each party Pi checks which prime in S(i) divides e∗
2.

The unique result TPT
(i)
∗ determines Pi’s trade partners w.r.t. ϕ

Q∼ ATPC.
7. Output Phase: Each party Pi outputs TPT

(i)
∗ .

Theorem 1. Let Pi hold q(i) (i ∈ P) and let TPCS be public. Then protocol
πATPC-Sel securely computes functionality FATPC-Sel in the semi-honest model.

Proof (COD). In order to prove COD, we distinguish two cases: (i) TPCS ⊇
PTPCS = ∅ and (ii) TPCS ⊇ PTPCS = ∅. For case (i), the output
of πATPC-Sel is fixed; each party outputs ⊥. For case (ii), we have to show
ATPC = (TPT

(1)
∗ , . . . , TPT

(ι)
∗) is selected uniformly at random from PTPCS.

(i) For the case that TPCS ⊇ PTPCS = ∅, the Evaluation Phase of
πATPC-Sel returns a vector E(L) = (E(e1), . . . , E(e|TPCS|)) where e1 = . . . =
e|TPCS| = 0 since there exists no ϕ ∈ Φ such that �ϕ� = 1. This implies
that in the Selection Phase of πATPC-Sel, πCRS-C(E(L), E(L′)) returns (λ, λ).
Then, each party Pi (i ∈ P) outputs ⊥ and the protocol terminates.

(ii) For the case that TPCS ⊇ PTPCS = ∅, the Evaluation Phase of πATPC-Sel

computes a vector E(L) = (E(e1), . . . , E(e|TPCS|)) with ej = �ϕj� and L
has Hamming weight |Φsat|. πCRS-C(E(L), E(L′)), called in the Selection
Phase of πATPC-Sel, returns (E(e∗

1), E(e∗
2)) for a random j ∈ N|TPCS| such

that e∗
1 = e′

j = �ϕj� = 1 (ϕj ∈ Φsat) and e∗
2 = p

(1)

TPT
(1)
j

· . . . · p
(ι)

TPT
(ι)
j

. After

32 S. Wüller et al.

jointly decrypting E(e∗
2) in the Decryption Phase of πATPC-Sel, each party Pi

obtains e∗
2 and sets its TPT

(i)
∗ : = TPT

(i)
j for p

(i)

TPT
(i)
j

∈ S(i) where p
(i)

TPT
(i)
j

divides e∗
2. Overall, it follows that ATPC ←$ PTPCS ⊆ TPCS.

(CVD). By separating the different phases of Protocol 1, we sketch a simulator S
which outputs a transcript computationally indistinguishable from VIEWπ

IC
(̂X).

A detailed description of S is provided by [15]. Note that the number of messages
a party Pi (i ∈ P) receives when participating in πATPC-Sel depends on the
party’s position in the protocol execution and on whether or not PTPCS = ∅.
By applying the modular composition theorem, it suffices for S to simulate the
output of πOE-TPCF and πCRS-C by means of a trusted third party performing
the computation of FOE-TPCF and FCRS-C, respectively. In the Evaluation Phase
of πATPC-Sel, the joint outputs of the |TPCS| sub-protocol calls of πOE-TPCF are
simulated by setting 〈E(L)〉: = (〈E(e1)〉, . . . , 〈E(e|TPCS|)〉) where 〈E(ej)〉 ←$ C

(j ∈ N|TPCS|). For each Pc (c ∈ IC = {i1, . . . , iκ}), S simulates E(L) as 〈E(L)〉.
The Mapping Phase can be simulated by performing Steps 3.1–3.3 of Protocol
1 for each party Pi (i ∈ P). From the simulated mapping tables, S simulates
(u(i)

1 , . . . , u
(i)
|TPCS|) for Pc′ with c′ ∈ IC\{ι} (cf. Steps 3.2 and 3.3, Protocol 1)

and E(L′) for Pc′′ with c′′ ∈ IC\{1} (cf. Step 3.4, Protocol 1). Furthermore, S
computes 〈e′

j〉 (j ∈ N|TPCS|) from the simulated mapping tables (where one of
these values is used to simulate the Decryption Phase). The simulation of the
Selection Phase depends on whether or not F(̂X) = ⊥. For the case that F(̂X) =
⊥, the output of πCRS-C is simulated by setting 〈c∗

1〉, 〈c∗
2〉 ←$ C. Otherwise,

〈c∗
1〉 = 〈c∗

2〉: = λ. The Decryption Phase is only executed for the case that
F(̂X) = ⊥. The output of the decryption protocol D is simulated by setting

〈e∗
2〉: = 〈e′

j〉 where j ∈ N|TPCS| is chosen such that ϕj
Q∼ TPCj with TPT

(i1)
j =

TPT
(i1)∗ , . . . , TPT

(iκ)
j = TPT

(iκ)∗ . Note that otherwise, 〈e∗
2〉 is not consistent

with F(̂X). Due to the fact that the underlying cryptosystem is semantically
secure, it follows that the simulated view is computationally indistinguishable
from VIEWπ

IC
.

Complexity. Let OOE-TPCF, OCRC-C, and ODec denote the computation, com-
munication, and round complexities of πOE-TPCF, πCRS-C, D(·), respectively,
depending on the context. The computation complexity of πATPC-Sel is domi-
nated by the sub-protocol calls and |TPCS| homomorphic scalar multiplications
and overall is in O(|TPCS| + |TPCS| · OOE-TPCF + OCRC-C + ODec). The com-
munication complexity of πATPC-Sel is in O(ι · |TPCS| + |TPCS| · OOE-TPCF +
OCRC-C + ODec) while the round complexity is in O(ι + |TPCS| · OOE-TPCF +
OCRC-C + ODec).

5.3 Negotiation of Actual Quantities

In order to complete the (privacy-preserving) bartering process, i.e., for each
party to compute its local view of the AT based on the ATPC, each party has

Towards Privacy-Preserving Multi-party Bartering 33

to negotiate the actual quantities of the commodities to be traded with its trade
partner. This can be done either offline without any privacy-preserving protocol
or, e.g., by engaging in the two-party protocol πRSI with each one of its trade
partners. That is for each TPT

(i)
∗ = (x(i)

∗ , y
(i)
∗) = (0, 0), Pi and Py(i) participate

in an execution of (q(i,y
(i))

c
(i)
o

) ← πRSI(Q
(y(i))
d , Q

(i)
o) where q

(i,y(i))

c
(i)
o

indicates the

quantity of c
(i)
o that Pi has to send to Py(i) . Note that q

(i,y(i))

c
(i)
o

is chosen uniformly

at random from Q
(y(i))
d ∩ Q

(i)
o which honors the specified quantity ranges of

the parties without preferring any one of them. Alternatively, to avoid possible
imbalances in regards to quantity selection (for details see [16]), it is possible to

shrink the private overlap interval Q
(y(i))
d ∩Q

(i)
o obliviously around the midpoint

of the interval (using a similar approach to the one described in [16]).

5.4 Optimization of ATPC-Selection

Until now, we assumed that ATPC was drawn uniformly at random from the
set of potential trade partner constellations PTPCS. We now sketch a simple
modification of protocol πATPC-Sel which allows the private selection of an ATPC
with maximum welfare as optimization criteria, where the welfare W(·) of a TPC
is defined as the number of parties actively involved in the trade: W(TPC): =
|{TPT (i) : i ∈ P, TPT (i) ∈ TPC, TPT (i) = (0, 0)}|.

The first step of our protocol modification is to introduce a prioritization of
the TPCs given by TPCS: At the end of the Evaluation Phase (Step 2.2 in Pro-
tocol 1), the parties locally multiply the evaluation result E(ei) with W(TPCi)
(∀i ∈ N|TPCS|) resulting in a vector E(L) = (E(e1) ×h W(TPC1),
. . . , E(e|TPCS|) ×h W(TPC|TPCS|)). The second step of our modification is to
replace the protocol call of πCRS-C (Step 4.1, Protocol 1) by a variant of con-
ditional random selection (also introduced in [14]) which supports an integer
indicator vector instead of just a binary indicator vector (cf. Definition 8). In the
context of Protocol 1, this variant of πCRS-C returns (c∗

1, c
∗
2): = (E(ej∗), E(e′

j∗))
where j∗ ←$ {j ∈ N|TPCS| : ej = max(e1, . . . , e|TPCS|)}.

Similar optimization criteria (e.g., for each TPC given by TPCS a party
individually determines the corresponding utility value and the welfare of a given
TPC corresponds to the sum of utility values over all parties) can be integrated
into protocol πATPC-Sel analogously.

Acknowledgments. This work was supported by DFG Award ME 3704/4-1.

References

1. Aı̈meur, E., Brassard, G., Mani Onana, F.S.: Blind sales in electronic commerce.
In: Proceedings of the 6th International Conference on Electronic Commerce, pp.
148–157. ACM (2004)

2. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

34 S. Wüller et al.

3. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and some applica-
tions of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001.
LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44586-2 9

4. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

5. Förg, F., Mayer, D., Wetzel, S., Wüller, S., Meyer, U.: A secure two-party bartering
protocol using privacy-preserving interval operations. In: 12th Annual International
Conference on Privacy, Security and Trust, pp. 57–66 (2014)

6. Franklin, M., Tsudik, G.: Secure group barter: multi-party fair exchange with semi-
trusted neutral parties. In: Hirchfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 90–
102. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055475

7. Frikken, K., Opyrchal, L.: PBS: private bartering systems. In: Tsudik, G. (ed.) FC
2008. LNCS, vol. 5143, pp. 113–127. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85230-8 9

8. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2009)

9. Kannan, S., Morgenstern, J., Rogers, R., Roth, A.: Private pareto optimal
exchange. In: Proceedings of the Sixteenth ACM Conference on Economics and
Computation, pp. 261–278. ACM (2015)

10. López, N., Núñez, M., Rodŕıguez, I., Rubio, F.: A multi-agent system for e-barter
including transaction and shipping costs. In: Proceedings of the 2003 ACM Sym-
posium on Applied Computing, pp. 587–594. ACM (2003)

11. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
12. Nzouonta, J., Silaghi, M.-C., Yokoo, M.: Secure computation for combinatorial

auctions and market exchanges. In: Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 1398–1399. IEEE
Computer Society (2004)

13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

14. Wüller, S., Meyer, U., Förg, F., Wetzel, S.: Privacy-preserving conditional random
selection (extended version). In: 13th Annual Conference on Privacy, Security and
Trust, pp. 44–53 (2015)

15. Wüller, S., Meyer, U., Wetzel, S.: Towards privacy-preserving multi-party bartering
(extended version). Technical report AIB-2016-10, RWTH Aachen (2016)

16. Wüller, S., Pessin, W., Meyer, U., Wetzel, S.: Privacy-preserving two-party bar-
tering secure against active adversaries. In: 14th Annual Conference on Privacy,
Security and Trust, pp. 229–238 (2016)

17. Wüller, S., Mayer, D., Förg, F., Schüppen, S., Assadsolimani, B., Meyer, U., Wet-
zel, S.: Designing privacy-preserving interval operations based on homomorphic
encryption and secret sharing techniques. J. Comput. Secur. 25(1), 59–81 (2017)

https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/BFb0055475
https://doi.org/10.1007/978-3-540-85230-8_9
https://doi.org/10.1007/978-3-540-85230-8_9
https://doi.org/10.1007/3-540-48910-X_16

Multi-level Access in Searchable Symmetric
Encryption

James Alderman, Keith M. Martin, and Sarah Louise Renwick(B)

Information Security Group, Royal Holloway,
University of London, Egham, Surrey TW20 0EX, UK

{James.Alderman,SarahLouise.Renwick.2012}@live.rhul.ac.uk,
Keith.Martin@rhul.ac.uk

Abstract. Remote storage delivers a cost effective solution for data stor-
age. If data is of a sensitive nature, it should be encrypted prior to out-
sourcing to ensure confidentiality; however, searching then becomes chal-
lenging. Searchable encryption is a well-studied solution to this problem.
Many schemes only consider the scenario where users can search over the
entirety of the encrypted data. In practice, sensitive data is likely to be
classified according to an access control policy and different users should
have different access rights. It is unlikely that all users have unrestricted
access to the entire data set. Current schemes that consider multi-level
access to searchable encryption are predominantly based on asymmet-
ric primitives. We investigate symmetric solutions to multi-level access
in searchable encryption where users have different access privileges to
portions of the encrypted data and are not permitted to search over, or
learn information about, data for which they are not authorised.

1 Introduction

Searchable encryption (SE) enables a user to search over encrypted data that
has been outsourced to a remote server. In some schemes [4,5,9,18–20], the data
owner may authorise multiple users to make search queries—in such cases, a
querier is either authorised to search over the entirety of the data or not at
all, in which case (ideally) no information about the outsourced data should be
revealed. In practice, the access control requirements of outsourced data sets are
likely to be more fine-grained than this binary ‘all or nothing’ approach; hence
existing schemes do not suffice.

We study the problem of enforcing a multi-level access control policy (MLA)
in the context of searchable symmetric encryption (SSE). As a notable example
of this form of data classification, the UK government uses three levels of data
classification: official, secret and top secret [16]. In our model, a user with ‘secret’

J. Alderman—Supported by the European Commission under project H2020-644024
“CLARUS” and acknowledges support from BAE Systems Advanced Technology
Centre.
S.L. Renwick—Supported by Thales UK and EPSRC under a CASE Award.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 35–52, 2017.
https://doi.org/10.1007/978-3-319-70278-0_3

36 J. Alderman et al.

clearance should be unable to learn any information about data items classified
as ‘top secret’, such as whether they contain searched keywords or not. This is
an example of an information flow policy with a total order of security labels [2].

More precisely, consider a (possibly large) data set which is to be outsourced
to an external storage provider, which could be outside of the data owner’s
trusted zone. Although the provider has a business incentive to provide a stor-
age and search service to the client (and to any other users authorised by the
data owner), the provider may attempt to learn information about the sensitive
data stored; in short, the storage provider may be honest-but-curious. Hence, the
data must be encrypted prior to outsourcing, and the search procedure should
not reveal unintended information to the storage provider or to other unautho-
rised entities. Each data item within the data set may be associated with some
keywords, over which searches may be performed. Furthermore, each data item
may differ in sensitivity and have different access control requirements. The data
owner may authorise additional users to search the data set and, again, each user
may have different access control clearance and therefore be able to access or
search different sets of data items. Let us define a set of security labels L, which
forms a totally ordered set (L,�) to reflect the inheritance of access rights. Each
user u and data item d is assigned one of these labels, denoted λ(u) and λ(d)
respectively. A user u may search a data item d if and only if λ(u) � λ(d).

Public-key encryption (PKE), especially functional encryption, has previ-
ously been used to achieve MLA in SE [3,11,15,21]. In general, PKE is compu-
tationally more intensive than symmetric key encryption (SKE), perhaps making
SKE more suitable for practical systems. The enforcement of MLA policies in
symmetric SE has, up to now, remained relatively unexplored. Kissel and Wang
[14] presented a SKE-based scheme in which users are divided into groups that
each have a specified dictionary of keywords they may search over. These groups
are arranged hierarchically so that each group may also search for all keywords
in dictionaries assigned to groups at lower levels in the hierarchy. Although this
scheme presents a form of hierarchical access in SSE, users may still search over
the entire data set. In most access control scenarios, we are concerned with
protecting a data item (i.e. the complete content of a data item), not just a
single keyword describing the data item. Furthermore, it may be difficult to
correctly administer an access control policy expressed only in terms of autho-
rised keywords; data items may gain their classification level due to semantic
meaning regarding their contents (for example, the subject to which they per-
tain), which may not trivially be captured through the associated keywords.
For example, consider two data items containing information about company
spending: one providing a public report of company-wide spending, whilst the
other pertains specifically to the research department. Whilst both items may be
labelled by a keyword such as ‘finance’, detailed knowledge of research spend-
ing may be deemed more sensitive than a generalised report. Simply autho-
rising users to search for keywords, such as ‘finance’, does not suffice in this
instance as not all users that can search the public report should also be able
to view the specific report. The access control policy in this case must be man-

Multi-level Access in Searchable Symmetric Encryption 37

aged carefully—perhaps additional, more granular, keywords must be defined
e.g. ‘finance-public’ (leading to an increase in the size of the searchable encryp-
tion index and a subsequent loss of efficiency) or a (less efficient) SE scheme
that supports ‘conjunctive keyword-only access control’ would be required such
that one can be authorised to search for (‘finance’ AND ‘public’) and only data
items with both keywords would be returned. In this work, we consider the prob-
lem of fine-grained classification of data items directly and gain a more efficient
solution.

In this work, we consider Multi-level Searchable Symmetric Encryption
(MLSSE). We begin in Sect. 2 by reviewing background material, before defining
our system and security models in Sects. 3.1 and 3.2. In Sect. 3.3, we introduce
our instantiation based on the constructions of [9,13], and then show, in Sect. 3.5,
how to extend our construction to support a dynamic data set using techniques
from [13]. Section 3.6 discusses the efficiency of our scheme. The full security
proofs of our constructions are omitted but are available in the full version of
our paper [1].

2 Background

We aim to enforce information flow policies within searchable encryption, which
encompass a wide range of access control policies that are of practical interest,
including the Bell-LaPadula model, temporal, role-based and attribute-based
access control [8].

Definition 1. An information flow policy is a tuple P = ((L,≤),U ,D, λ), where
(L,≤) is a partially ordered set (poset)1 of security labels, U is a set of users,
D is a set of objects (data items), and λ : U ∪ D → L is a function mapping
users and objects to security labels in L. We say that u ∈ U is authorised to read
(search) an object d ∈ D if λ(d) � λ(u).

In this paper, we will focus on the case where (L,≤) is a total order (chain)
giving a simple hierarchy of security levels and, without loss of generality, we
assume that each user and object is assigned to at most one security label. Given
a set X, we denote the power set of X, comprising all combinations of elements
in X, by 2X . Throughout this paper we refer to ‘security levels’ and ‘security
labels’ as access levels.

Definition 2. A Multi-User Searchable Symmetric Encryption (MSSE) scheme
is a set of six polynomial time algorithms defined as follows:

– KO
$← MSSE.KeyGen(1k): A probabilistic algorithm run by the data owner

that takes a security parameter k ∈ N and outputs a secret key KO.

1 A poset is a set of labels L and a binary order relation � on L such that for all x, y
and z ∈ L, x � x (reflexivity), if x � y and y � x then x = y (antisymmetry), and
if x � y and y � z then x � z (transitivity). If x � y then we may write y � x.

38 J. Alderman et al.

– (ID, stO, stS) $← MSSE.BuildIndex(KO,D,G): A probabilistic algorithm run
by the data owner that takes a set of data items D, a set of authorized users
G and the secret key KO. It outputs an index ID, and server and owner states
stS and stO.

– Ku
$← MSSE.AddUser(u,KO, stO): A probabilistic algorithm run by the data

owner that takes the identity, u, of a user to be enrolled in the system along
with the owner’s secret key and state. It outputs a secret key for the new
user Ku.

– Tω ← MSSE.Query(ω,Ku)2: A deterministic algorithm run by a user that
takes a keyword ω and the user’s secret key, and outputs a search token.

– Rω ← MSSE.Search(Tω, ID, stS): A deterministic algorithm run by the server
that takes as input a search token, an encrypted index and the server state,
and outputs a set Rω of identifiers of data items containing ω.

– (stO, stS) $← MSSE.Revoke(u,KO, stO): A probabilistic algorithm run by the
data owner that takes a user identity of a user to be revoked along with the
data owner’s secret key and state. It outputs new server and owner states.

For a data set D and keyword ω ∈ Δ (where Δ is a dictionary of possible
keywords), let us denote by Dω the expected results of searching for ω in D
(in the plain); informally we say that an MSSE scheme is correct if it also
produces the output Dω. More formally, a MSSE scheme MSSE is correct if
for all k ∈ N, for all KO output by MSSE.KeyGen(1k), for all D ∈ 2Δ, for all
G ∈ 2U , for all (ID, stO, stS) output by MSSE.BuildIndex(KO,G,D), for all ω in
Δ: Search(MSSE.Query(Ku, ω), ID, stS) = Dω.

Definition 3. A Broadcast encryption (BE) scheme is a set of four polyno-
mial time algorithms as follows, where U is the user space of all possible user
identities:

– (PP,KBE)
$←BE.Keygen(1k): A probabilistic algorithm that takes a security

parameter k outputs public parameters PP and a master secret key KBE.
– C

$←BE.Enc(M,G): A probabilistic algorithm that takes a plaintext M , a set
of users G ∈ U authorized to decrypt and produces a ciphertext C.

– Ku
$← BE.Add(KBE, u): A probabilistic algorithm that takes as input the mas-

ter secret key KBE and a user identifier u ∈ U , and outputs a user key Ku.
– (M or ⊥) ←BE.Dec(C,Ku): A deterministic algorithm that takes a cipher-

text C and a secret key Ku and outputs either a plaintext M or a failure
symbol ⊥.

BE is correct if ∀k ∈ N, for all PP and KBE output by BE.KeyGen(1k,m),
for all M in the plaintext space, all sets of users G ∈ U , every Ku output by
BE.Add(u,KBE) and all C output by BE.Enc(M,G) where u ∈ G we have: M ←
BE.Dec(C,Ku).

2 This algorithm is sometimes referred to as MSSE.Trapdoor in the literature, however
to maintain consistent notation throughout this paper we refer to it as MSSE.Query.

Multi-level Access in Searchable Symmetric Encryption 39

3 Multi-level Access in Searchable Symmetric Encrytion

A MLSSE scheme permits searching over encrypted data in the symmetric key
setting for multiple users that have varying access rights to the set of data items.
The access levels are hierarchical (totally ordered), meaning a user may search
all data items at their own access level as well as all data items that are classified
at lower access levels.

3.1 System Model

Consider a data owner O, a server S, and a set of m data users U={u1, ..., um}.
The data owner possesses a set of data items D={d1, ..., dn} which they wish to
encrypt and outsource to S whilst authorising other users to search over some
data items within D. Each data item di ∈ D is associated with an identifier iddi

.
To enable searching over the encrypted data, O must upload some encrypted

metadata to the server. It first defines a dictionary of keywords, denoted Δ =
{ω1, ..., ω|Δ|}, and assigns a set δdi

⊆ Δ of keywords to each data item di ∈ D.
We refer to the set of keywords for all data items as δD = (δd1 , ..., δdn

). The data
owner then produces an encrypted index ID based on δD, over which searches
will be performed.

O also defines an information flow policy P with a labelling function λ map-
ping each user ui ∈ U and data item dj ∈ D to an access level, denoted λ(ui) and
λ(dj) respectively, in the totally ordered set L = {a1, ..., al}. Access control in
our model is enforced at data item level—users are restricted in the data items
that they may search, not the keywords they may search for [14]. A user with
access level λ(ui) is authorised to search a data item with classification λ(dj) if
and only if λ(dj) ≤ λ(ui). To search for a keyword ω ∈ Δ, a user ui (with access
level λ(ui)) generates a search query Tω,λ(ui). Let Dω be the set of identifiers of
all data items assigned the keyword ω, and denote by Dω,λ(ui) ⊆ Dω the search
results that user ui is authorised to view; in other words, the set of identifiers of
all data items iddj

assigned ω where λ(dj) ≤ λ(ui).
To add and revoke users, we use broadcast encryption (BE) (Definition 3) as

per [9]; a user may only produce a valid search query if they are authorized in
the BE scheme.

To ease notation, we define the tuple di
aug = (di, idi, δdi

, λ(di)) to completely
describe a data item di ∈ D (being the data itself, the identifier, the associated
keywords and the security classification). We denote the information regarding
all data items by Daug = {d1

aug, ..., dn
aug}.

We present a structure only MLSSE system—we only consider the data struc-
ture (index) and do not encrypt the data items themselves; data items may be
encrypted separately and retrieved based on the search results, which comprise a
set of data item identifiers that fulfil the query. We permit data items to be of any
format and the sets of keywords can be arbitrarily chosen from the dictionary—
they may not necessarily correspond to the actual content of the data, but could
be descriptive attributes of the data item. This may help minimise the risk of a

40 J. Alderman et al.

statistical attack on the index as the frequency of a certain word in a document
is not necessarily reflected in the set of keywords chosen to index the data item.

Definition 4. A Multi-level Searchable Symmetric Encryption Scheme
(MLSSE) scheme consists of six algorithms defined as follows:

– (KO, kS , PP) $← KeyGen(1k, S,P): A probabilistic algorithm run by the data
owner O that takes the security parameter k, policy P and the server identity
S, and outputs O’s secret key KO, a server key kS and public parameters PP .

– ID
$← BuildIndex(Daug,KO, PP): A probabilistic algorithm run by O. It takes

the description of the data set Daug and O’s secret key, and outputs the
index ID.

– (Ku, PP) $← AddUser(u, λ(u),KO, PP): A probabilistic algorithm run by O
to enrol a new user into the system. It takes the new user’s identity u and
access level λ(u), and O’s key, and outputs a secret key for the new user.

– Tω,λ(u) ← Query(ω,Ku): A deterministic algorithm run by a user with access
level λ(u) to generate a search query. It takes as input a keyword ω ∈ Δ and
the user’s secret key and outputs a search query Tω,λ(u).

– Rω,λ(u) ← Search(Tω,λ(u), ID, kS): A deterministic algorithm run by S to
search the index for data items containing a keyword ω. It takes a search
query and the index, and returns the search results Rω,λ(ui), comprising either
a set Dω,λ(u) of identifiers of data items dj containing ω such that for all
λ(dj) ≤ λ(u) (where λ(u) is the access level of the user that submitted the
search query), or a failure symbol ⊥.

– (KO, PP) $← RevokeUser(u,KO, PP): A probabilistic algorithm run by O to
revoke a user from the system. It takes the user’s id, the data owner’s and
server’s secret keys, and outputs updated owner and server keys.

An MLSSE scheme is correct if for all k ∈ N, for all KO, kS output by
KeyGen(1k, S,P), for all Daug, for all ID output by Buildindex(Daug,KO, PP),
for all ω ∈ Δ, for all u ∈ U , for all Ku output by AddUser(u, λ(u),KO, PP),
Search(Query(ω,Ku), ID, kS) = Dω,λ(u).

3.2 Security Model

A secure MLSSE scheme would, ideally, reveal no information regarding the data
set D to the server (i.e. a curious server cannot learn information about the data
it stores) and reveal no information to users regarding data items that they are
not authorised to search. However, most SSE schemes leak additional information
to gain efficiency. For example, the search results {Rω1,λ(u), ...,Rωp,λ(u)} for a
set of queries {Tω1,λ(u), ..., Tωp,λ(u)} could be revealed. This is referred to as the
access pattern (Definition 5) and defines the link between a search query and the
search results it produces; it may be thought of as a database where each row
stores a search query and a corresponding set of identifiers of data items that
satisfies the search query.

Multi-level Access in Searchable Symmetric Encryption 41

Most efficient SSE schemes also leak the search pattern (Definition 6), which
reveals the set of search queries made to the server. In most single-user SSE
schemes [6,7,9,10,12,13], search queries are formed deterministically; the server
can therefore ascertain whether a search query has been made previously.

Definition 5. For a sequence of q search queries Ω = {Tω1,λ(u1), ..., Tωq,λ(uq)}
where for 1 ≤ i, j ≤ q: ωi and ωj or λ(ui) and λ(uj) are not necessarily distinct
for i
= j, the access pattern is defined as:

AP (ID, Ω) = {(Tω1,λ(u1),Rω1,λ(u1)), ..., (Tωq ,λ(uq),Rωq,λ(uq))}.

Definition 6. For a sequence of q search queries Ω = {Tω1,λ(u1), ..., Tωq,λ(uq)}
where for 1 ≤ i, j ≤ q: ωi and ωj or λ(ui) and λ(uj) are not necessarily distinct
for i
= j, the search pattern is defined as a q × q symmetric binary matrix
SP (ID, Ω) such that for 1 ≤ i, j ≤ q:

SP (ID, Ω)i,j = 1 ⇐⇒ Tωi,λ(ui) = Tωj ,λ(uj).

Intuitively, the search pattern reveals when the ith and jth queries are the same,
which happens when queries are issued for the same keyword by users with the
same access level.

Definition 7. For an index ID we define the setup leakage LSetup(ID) to be
all the information that is leaked by the index ID.

Definition 8. For an index ID and set of q search queries Ω =
(Tω1,λ(u), ..., Tωq,λ(u)) we define the query leakage LQuery(ID, Ω) to be all the
information leaked by evaluating the queries in Ω on the index ID.

We now formalise the notions of security we require in MLSSE. We use cryp-
tographic games to formalize our notions of security. For each game, a challenger
C instantiates a probabilistic polynomial time (PPT) adversary A whose inputs
are chosen to reflect the information available to a realistic adversary. Our notion
of adaptive security is based on that of IND-CKA2 presented in [9]. In the fol-
lowing we represent the dictionary of keywords as Δ, λ defines the mapping
function as described in Sect. 3.

Multi-level Access. Our first security notion, in Game 1.1, is that of multi-
level access which requires that a user, u, cannot receive search results or learn
information relating to data items di such that λ(u) < λ(di). More specifically, a
server colluding with several users cannot learn anything about the index beyond
the specified leakage according to the corrupt users’ access rights.

We define a maximal query leakage with access level λmax on ID to be
LQuery(ID, {Tωi,λmax

}ωi∈Δ)—this is the leakage resulting from every possible
keyword search with the maximal access level available, in Game 1.1 we denote
this as Lmax(ID).

The challenger sets up the system, including instantiating several global vari-
ables (which the challenger can use in the main game and in oracle functions, but

42 J. Alderman et al.

which the adversary cannot see): L is a list of users that have been corrupted,
λmax is the maximal access level of any corrupted user, and chall is a Boolean
flag to show whether the challenge parameters have been generated yet. The
adversary is given the security parameter, access control policy, server key and
the public parameters, as well as providing access to the following oracles.

The AddUser oracle allows the adversary to enrol a user into the system,
and the adversary corrupts this user by receiving the user key. If the challenge
has not yet been generated, then the challenger adds the requested user to the
list L of corrupted users, checks if the maximal access level of corrupted users
needs updating, and runs the AddUser algorithm. Otherwise, if the challenge has
been generated, the above procedure is carried out only if the maximal query
leakage for the new user’s access level is equal on both challenge data sets—that
is, providing the user key for the queried user cannot allow the adversary to
trivially distinguish the two data sets.

The RevokeUser oracle first checks that the requested user has indeed been
added previously. If so, it removes the user identity from L and checks whether
the maximal access level needs changing. It returns the server key resulting from
running the RevokeUser algorithm.

The BuildIndex oracle simply runs BuildIndex and returns the output to
the adversary.

After a polynomial number of queries, the adversary outputs two data sets
which must have identical maximal query leakages for the maximal access level
of any corrupted user. The adversary cannot choose data sets where a user that
it has corrupted could make any query that legitimately distinguishes the data
sets since this would count as a trivial win. Whilst this may appear to be a strong
assumption, we believe it to be the minimal assumption necessary to avoid trivial
wins in the multi-user setting. The main issue is that in the multi-user setting
it is necessary to consider the server colluding with a set of users (but not the
data owner); as such, the adversary is able to perform the roles of the server
and of an authorised user, and therefore may produce arbitrary search queries
and perform searches themselves. Thus, the challenger in the game is unable
to monitor which searches have been performed and hence cannot determine
whether the query leakages of the actual queries on both data sets are equal,
and instead must rely on the stronger assumption that no possible authorised
search query can distinguish the data sets. Note that Van Rompay et al. [17]
deal with the multi-user case without this assumption since they deal with single
word indexes and have a proxy through which all queries are made.

The challenger sets the challenge flag to true and chooses a random bit b
which determines the data set used to form an index. The adversary is given
the index and oracle access as described in Game 1.1 and must determine which
data set was used.

Definition 9 (Multi-level Access). Let ML be a multi-level searchable symmet-
ric encryption scheme where k ∈ N is the security parameter, P is an informa-
tion flow policy, S is the identity of the server and A a PPT adversary. The
advantage of A is:

Multi-level Access in Searchable Symmetric Encryption 43

AdvMLA
A (ML, 1k,P) = |Pr[ExpMLA

A [ML, 1k, S,P] = 1] − 1
2
|.

We say that ML is (LSetup,LQuery)-secure against adaptive chosen keyword
attacks in the sense of Game 1.1 if for all A, all k ∈ N, all S and all P,
AdvMLA

A (ML, 1κ, S,P) ≤ negl(k) for a negligible function negl.

Revocation Security. In MLSSE, as with other multi-user SSE schemes, we
need to consider user revocation to remove a user’s ability to submit valid search
queries to the server, and hence receive search results. We capture this in Game
1.2. The adversary is given the public parameters and selects a data set (along
with associated access levels, keywords and identifiers). The challenger then cre-
ates the index. The adversary is given access to a set of oracles that perform the
AddUser(·, λ(·),KO, PP), Search(·, ID, kS) and RevokeUser(·,KO, PP) functions,
where the parameters represented by · are provided by the adversary, and the
adversary is given the resulting user keys and search results. Once the adversary
has completed his queries, the challenger revokes all users that were queried to
the AddUser oracle but were not subsequently queried to the RevokeUser oracle
(i.e. all users for which the adversary holds a valid user key). The adversary
must then produce a search query T which, when used as input to the Search
algorithm, does not produce ⊥ i.e. the adversary must produce a valid search
query even though it does not hold a non-revoked key.

Definition 10 (Revocation). Let ML be a multi-level searchable symmetric
encryption scheme where k ∈ N is the security parameter, S the server iden-
tity, P is an information flow policy and A a PPT adversary. We define the
advantage of A in Game 1.2 as:

AdvRevoke
A (ML, 1κ, S,P) = |P[ExpRevoke

A [ML, 1κ, S,P] = 1] − 1
2
|.

We say that ML achieves revocation if for all A, all k ∈ N, all S and all P,

AdvRevoke
A (ML, 1κ, S,P) ≤ negl(k).

44 J. Alderman et al.

3.3 Construction

Our construction MLSSE is an adaptation of the scheme of Kamara et al. [13],
which is based on the construction of the influential inverted index scheme SSE-1
by Curtmola et al. [9].

Informally, MLSSE scheme uses an array A of linked lists, along with a look-
up table T to index the encrypted data. This produces a sequential search that
lends itself well to the hierarchical access rights on the data items that we require.
For each keyword ωi ∈ Δ, we define a list Lωi

which stores the identifiers for
all data items containing that keyword and is ordered according to the access
level of the data items—data items with the highest classification are placed at
the beginning of the list, and those with the lowest classification at the end.
Each list Lωi

is encrypted and stored in A as a linked list. During the search
phase the look-up table T is used to point the server to the correct node in the
array depending on the information in the search query i.e. which keyword was
searched for and what access rights the user that submitted the search query
has. This node is decrypted using information in the search query and the node
itself, revealing the address of the next node in the linked list. The server may
continue to decrypt all other relevant nodes in the linked list, obtaining the set
of search results relevant to the user’s searched keyword and access level.

The key difference between our scheme and that of [13] is that, rather than
pointing to the beginning of each linked list, the entry in T will point to the
appropriate position within the linked list according to the access rights of the
querier (recall that the list is ordered by access levels). Since it is not possible

Multi-level Access in Searchable Symmetric Encryption 45

to move backwards through the encrypted lists, the only search results available
are those contained beyond this point in this list—that is, identifiers for those
documents containing the keyword and whose classification is at most that of
the querier, as required by the information flow policy.

Let BE be an IND-CPA secure broadcast encryption scheme. We define the
following pseudorandom functions (PRFs):

F : {0, 1}k × {0, 1}∗ → {0, 1}k,

G : {0, 1}k × {0, 1}∗ → {0, 1}∗,

P : {0, 1}k × {0, 1}∗ → {0, 1}k,

H : {0, 1}∗ × {0, 1}k → {0, 1}∗,

and a pseudorandom permutation (PRP):

φ : {0, 1}k × {0, 1}∗ × {0, 1}k × {0, 1}k → {0, 1}k × {0, 1}∗ × {0, 1}k,

A is a |Δ|×|L| array and T is a dictionary of size |Δ| · |L|. We denote the address
of a node N in A as addrA(N).

Let λ map users and data items to their relevant access levels as described
in Sect. 3.1. We define a function γ which outputs three ordered lists Lωi

,Xωi

and Nωi
given the set of identifiers Daug and the array A. We refer to the nth

item in a list Lωi
as Li[n]. The list Lωi

contains identifiers of data items in Dωi

ordered from the identifiers with the highest to the lowest access levels, the list
Nωi

contains the addresses of |Lωi
| nodes chosen randomly from A and the list

Xωi
contains the indices of the identifiers in Lωi

where each access level starts
i.e. if we have an ordered list of identifiers Lωi

= (id1, id2, id3, id4, id5) where:

a1 = λ(id1) = λ(id2) = λ(id3) > λ(id4) = λ(id5) = a3.

We have that Xωi
[3] = 4, which says that the list of nodes with access level at

most a3 starts at the fourth entry in Lωi
. There is an entry per each access level

in Xωi
, even if two access levels have the same starting point in Lωi

; from the
example above we can see that Xωi

[2] = Xωi
[3] = 4. If an access level is not

authorised to view any data items in Dωi
then the entry corresponding to that

access level (as well as the entries corresponding to all access levels below it) in
Xωi

is set to ⊥. An identifier of a data item di ∈ Dωi
will inherit the access level

label of the respective data item, i.e. λ(iddi
) = λ(di).

The KeyGen algorithm initialises the system and generates the keys KO, kS ,
along with the public parameters, PP. The key KO includes the secret key
for the BE scheme and the sets of |L| keys for each pseudo-random function:
F,G and P and the key for the pseudo-random permutation φ (referred to as
the data owner’s state, stO). The server is enrolled as a user and its secret key
is also generated (although it does not receive the necessary keys to form search
queries). PP includes the information flow policy P, the authorized user group
G, the server state stS (which is an encryption of the owner state generated using
BE) and the public parameters for BE, PPBE.

46 J. Alderman et al.

The BuildIndex algorithm initializes a set free which consists of all nodes in
the array A. BuildIndex considers each keyword contained in the dataset in turn.
For each keyword ωi, the function γ generates Lωi

,Xωi
and Nωi

. The free list is
then updated according to which nodes have been chosen by γ. The nodes in
the array that form the linked lists consist of the identifier from Lωi

of a data
item containing ωi, the address in the array of the next node in the linked list,
the key used to decrypt the following node in the linked list and a random bit
string ri ∈ {0, 1}k. The identifier, address of the next node and the key used to
decrypt the following node in the linked list are XORed with the output of a
PRF H in order to encrypt this information. For the first node in the linked list
he input of H is the decryption key for the current node (which corresponds to
an access level and keyword and forms part of the search query) along with ri),
hence the information stored in the node can only be decrypted by the server
if the server has a search query generated by a user who is authorized to view
the data item whose identifier is stored at that node. The decryption key for all
subsequent nodes is contained in the previous node of the linked list. BuildIndex
then proceeds to create the look-up table T. Unlike prior schemes [9], each user
may have a different access level and thus the starting points for search results
within the linked lists may vary; a search query made by a user with a higher
access level should traverse more of the list than that of a user with lower access
rights (the user is authorised to search more data items). Table T has an entry
for each access level/keyword pair containing the address of a node in A, which
is the node in the linked list Lωi

from which the user with a specified access level
is authorised to decrypt. If an access level is not authorised to view any part of
the linked list then the value in T is set to ⊥. Finally the index ID = (A,T) is
returned.

The AddUser algorithm grants a user u the ability to search the index at a
specific access level. The user is added to the set G of authorized users and a BE
key, ku, is derived for the new user. The new user is given ku and the secret keys
associated with their access level kλ(u),1, kλ(u),2 and kλ(u),3 and PP is updated.

The RevokeUser algorithm revokes a user’s search privileges. A new value for
stO is selected and the user is removed from G. This value is encrypted using
BE to form the new server state stS . The updated versions of KO and PP are
ouput.

The Query algorithm generates a search query for a user u to search for a
keyword w. The user first attempts to decrypt the current server state stS using
their secret key ku; we denote the output of the decryption by st′O. Note that if u
is not authorised then decryption will return ⊥, if this is the case Query outputs
⊥. The query itself comprises three parts. The first is the output of the PRF F
applied to the keyword ω, keyed with the secret key for F associated with the
user’s access level kλ(u),1. This part of the query is used to locate the relevant
entry in T. The second part is the output of the PRF G applied to the keyword
ω and is used to mask the entry in T in order to locate the user’s relevant the
starting position in the linked list corresponding to ω in A. The third part is
the output of the PRF P applied to the keyword ω, which is used to decrypt

Multi-level Access in Searchable Symmetric Encryption 47

the first relevant node in A according to the user’s access level. The PRP φ is
applied to the search query, using st′O as the key.

The Search algorithm finds data item identifiers associated with the searched
keyword from the subset of data item identifiers the user is authorized to search.
The server decrypts stS and applies the inverse of the PRP φ to the query it
received; it parses the result as (τ1, τ2, τ3). The server then looks up entry T[τ1]
and if that entry is not equal to ⊥, the server XORs the value with τ2 and parses
the resulting value as y. The server looks up the node at A[y], parses the entry
as (z1, z2), and decrypts it by XORing z1 with the output of H (which takes as
input τ3 along with z2).

The server is able to sequentially decrypt the rest of the list stored in A until
they reach a node where the address stored in that node for the next item in the
linked list is 0.

3.4 Security

In MLSSE search queries for the same keyword that are produced by users with
different access levels are indistinguishable from one another. That is, a search
query for a keyword ω from a user ui with access level λ(ui) is indistinguishable
from a search query for ω from a user uj with access level λ(uj) for λ(ui)
= λ(uj).
This means that from the queries alone an adversary is unable to deduce how
many times a certain keyword has been searched for overall, it can only deduce
how many times the same keyword has been searched for within each access
level. This information leakage is less than that of standard single or multi user
SSE schemes such as [6,7,9,10,12,13].

In terms of access pattern we also reduce the amount of information leakage
compared with standard single user or multi-user SSE schemes. In particular we
do not reveal whether a data item contains the keyword ωi associated with a
search query unless the access level of that data item is less than or equal to
that of the user ui that generated the search query, meaning that an adversary
cannot see a full set of search results.

However when a search query is paired with the search results it generates
(the access pattern, Definition 5) then an adversary may be able to correlate
which search queries are for the same keyword by looking at the intersections of
the search results. For example if one set of search results is a subset of another
set of search results then this may imply that the two search queries used to
generate these results are for the same keyword. An adversary may eventually
be able to build up a complete set of search results for a particular keyword,
which is equivalent to the leakage produced by a search query in a single user
SSE scheme. The server does not know, however, how many access levels there
are altogether so a server would need to receive all possible search queries before
it can ascertain whether or not a set of search results for a particular keyword
is complete or not.

The hierarchal relationships between the data item identifiers i.e. which iden-
tifiers represent data items at higher access level than others could also be leaked
in the same way. If an adversary has ascertained that two sets of search results

48 J. Alderman et al.

Rω,ai
⊂ Rω,aj

represent searches for the same keyword ω, then an adversary will
be able to conclude that identifiers in the set Rω,aj

\Rω,ai
are at a higher access

level than those in Rω,ai
. We note that unless the search results are padded in

some way this leakage is inevitable. Padding search results is not standard in
SSE schemes as it requires post-processing of the search results by the user hence
we do not pad the search results in our system model in order to maintain an
efficient scheme.

From this we can see that initially our scheme leaks less information about
the search pattern and access pattern than a single user SSE scheme, however
over time as more queries are generated the information leakage tends to that of
a single user SSE scheme. The information leakage relating to a keyword ω i.e.
the access patterns for search queries corresponding to ω only reaches that of a
single user SSE scheme once a search query has been generated at each possible
access level, our leakage remains lower up until this point.

As a search query for a keyword and access level pair is created deterministi-
cally we can think of the search query as a codeword for the combination of that
keyword and access level. The index usually reveals these codewords as a search
is carried out by matching search queries to relevant codewords in the index. A
codeword for keyword ω at access level a is denoted id(ω, a).

We give the specific leakage functions to precisely capture the leakage in
MLSSE, where Ω is a set of queries from users in the system that have been
evaluated on the encrypted index by the server:

1. LSetup(ID) = (|A|, |T|, [id(ω, a)]ω∈Δ,i∈[|L|])
2. LQuery(ID, Ω) = (AP (ID, Ω), SP (ID, Ω), [id(ω, a)]∀Tω,a∈Ω , Ω)

Theorem 1. Given an IND-CPA secure broadcast encryption scheme BE, a
pseudo-random permutation φ, and pseudorandom functions F,G, P,H. Let
MLSSE be the searchable symmetric encryption scheme with multi-level access
defined in Fig. 1. Then MLSSE is (LSetup,LQuery)-secure in the sense of multi-
level access and revocation.

We provide the intuitions of our security proofs here and refer the reader to
the full online version of the paper for the full security proofs [1].

Multi-level access: To show multi-level access we reduce the security to that of
the IND-CPA security of a symmetric encryption scheme which encrypts plain-
texts by XORing them with the output of a PRF. We assume the possibility of
a adversary A that is able to break the multi-level security of our scheme then
we construct a second adversary A’ that is able to use A as a subroutine in
order to break the IND-CPA security of the symmetric encryption scheme with
non-negligible probability.

Revocation: In this proof we show that if we assume an adversary A with non-
negligible advantage δ in Game 1.2 then A can be used as a subroutine by an
adversary ABE to break the security of an IND-CPA secure broadcast encryption
scheme BE.

Multi-level Access in Searchable Symmetric Encryption 49

Fig. 1. The MLSSE construction

3.5 Achieving Dynamicity

We can extend MLSSE to support multi-level access on a dynamic data
set by adding two new data structures to the index: a deletion table
(Td) and a deletion array (Ad). There are also four additional algorithms:
AddToken,Add,DeleteToken,Delete. Array Ad stores a list of nodes for each data
item which point to nodes in A that would need to be removed if the corre-
sponding data item was deleted. This means that every node in A will have a
corresponding node in Ad, which is called its dual node. Td is a table with an
entry for each data item which points to the start of the corresponding linked
list in Ad, given a valid delete token for that data item. In addition to these two
new structures the index consists of a search array As and a search table Ts (as
in the original construction) and a free list that keeps track of all the unused
space in As.

In the dynamic scheme searching for a keyword is done similarly to the static
construction in Sect. 3.3 and follows the concept of linked lists presented by [9].

To add a data item to the index, changes need to be made to Td,As and
Ad. The data owner creates an add token using AddToken and sends this to the

50 J. Alderman et al.

server. The server then determines the free space available in As using the free
list and adds the relevant information to the free nodes and updates the free
list. When adding a new data item the relevant nodes cannot be added to the
end of each linked list; instead we have to insert in the appropriate place in the
linked list according to the access level of the new data item. Information in the
add token will allow the server to locate the correct point at which to insert the
nodes in each linked list, so instead of the entry in Ts just pointing to the end
node of each linked list this is altered so that it points to the correct node in
the linked list according to the access level of the new data item. The respective
predecessor of each new node is modified to point to the new node instead of its
previous ancestor.

In order to remove a data item, a deletion token is created which allows the
server to locate and delete the correct entries in Td. This, in turn, allows the
server to locate and delete the correct entries in As. Some nodes will need to be
updated in As (as some of the linked lists will have nodes which point to nodes
that have been deleted) and this is done using homomorphic encryption.

3.6 Efficiency

In this section we discuss the efficiency of our multi-user, multi-level construction
compared with the single-user construction of [13]. As our scheme is static and
the scheme of [13] is dynamic, we ignore the structures and algorithms in [13]
that apply to the dynamicity, such as the deletion table, the deletion array and
algorithms AddToken,Add, DeleteToken,Delete.

The index is composed of a look-up table and a search array. No changes are
made to the search array that effect the time needed to generate it or the search
time, but the look-up table needs to be augmented by a factor of |L|; this will
require more space on the server but does not effect the search time. The size
of our index is O(Δ · |L| + n) whereas the size of the index in the single user
scheme is O(Δ + n).

There search time of our scheme is O(|Dω,a|) where Dω,a is the set of data
item identifiers satisfying the search query Tω,a. This is equivalent to the search
time of [13], however in our scheme the size of Dω,a is likely to be smaller,
depending on the access level of the user who generated the search query.

The amount of computation required to generate the search queries as well
as the size of the search queries is the same in both schemes, they are both
constructed by evaluating three PRFs.

We note that in terms of efficiency our construction is very similar to that of
[13]. This is also true for the dynamic version of our construction.

4 Conclusion

We have defined a new system, security models and a construction for symmetric
solutions to searching on encrypted data in the multi-level setting. Users may
search for keywords within a set of encrypted data items, restricting the search to

Multi-level Access in Searchable Symmetric Encryption 51

data items they are authorised to view only. Future work will focus on increasing
the range of query types beyond that of single keyword equality search and to
expand the access control policies to arbitrary information flow policies.

References

1. Alderman, J., Martin, K.M., Renwick, S.L.: Multi-level access in searchable sym-
metric encryption. IACR Cryptology ePrint Archive, Report 2017/211 (2017)

2. Bell, E., La Padula, L.: Secure computer system: unified exposition and multics
interpretation. Technical report, Mitre Corporation (1976)

3. Benaloh, J., Chase, M., Horvitz, E., Lauter, K.E.: Patient controlled encryption:
ensuring privacy of electronic medical records. In: Proceedings of the First ACM
Cloud Computing Security Workshop, CCSW 2009, pp. 103–114. ACM (2009)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

5. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: Jonker, W., Petković,
M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006).
https://doi.org/10.1007/11844662 6

6. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

7. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

8. Crampton, J.: Cryptographic enforcement of role-based access control. In: Degano,
P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 191–205.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19751-2 13

9. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006, pp.
79–88. ACM (2006)

10. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, Report 2003/216
(2003)

11. Kaci, A., Bouabana-Tebibel, T., Challal, Z.: Access control aware search on the
cloud computing. In: 2014 International Conference on Advances in Computing,
Communications and Informatics, ICACCI 2014, pp. 1258–1264. IEEE (2014)

12. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

13. Kamara, S., Papamonthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: The ACM Conference on Computer and Communications Security, CCS
2012, pp. 965–976. ACM (2012)

14. Kissel, Z.A., Wang, J.: Verifiable symmetric searchable encryption for multiple
groups of users. In: Proceedings of the 2013 International Conference on Security
and Management, pp. 179–185. CSREA Press (2013)

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/11844662_6
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-642-19751-2_13
https://doi.org/10.1007/978-3-642-39884-1_22

52 J. Alderman et al.

15. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted
data in cloud computing. In: 2011 International Conference on Distributed Com-
puting Systems, ICDCS, pp. 383–392. IEEE Computer Society (2011)

16. Cabinet Office: Goverment security classifications. Technical report (2013)
17. Van Rompay, C., Molva, R., Önen, M.: Multi-user searchable encryption in the

cloud. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 299–316.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 17

18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE (2000)

19. Sun, W.,Yu, S., Lou, W.: Protecting your right: attribute-based keyword search
with fine-grained owner-enforced search authorization in the cloud. In: 2014 IEEE
Conference on Computer Communications, INFOCOM 2014, pp. 226–234. IEEE
(2014)

20. Sun, W., Yu, S., Lou, W., Hou, T., Li, H.: Protecting your right: verifiable attribute-
based keyword search with fine-grainedowner-enforced search authorization in the
cloud. IEEE Trans. Parallel Distrib. Syst. 27(4), 1187–1198 (2016)

21. Yang, Y.: Attribute-based data retrieval with semantic keyword search for e-health
cloud. J. Cloud Comput.: Adv. Syst. Appl. 4, 10 (2015)

https://doi.org/10.1007/978-3-319-23318-5_17

Privacy-Preserving Computations of Predictive
Medical Models with Minimax Approximation

and Non-Adjacent Form

Jung Hee Cheon, Jinhyuck Jeong, Joohee Lee, and Keewoo Lee(B)

Seoul National University (SNU), Seoul, Republic of Korea
{jhcheon,wlsyrlekd,skfro6360,activecondor}@snu.ac.kr

Abstract. In 2014, Bos et al. introduced a cloud service scenario to
provide private predictive analyses on encrypted medical data, and gave
a proof of concept implementation by utilizing homomorphic encryption
(HE) scheme. In their implementation, they needed to approximate an
analytic predictive model to a polynomial, using Taylor approximations.
However, their approach could not reach a satisfactory compromise so
that they just restricted the pool of data to guarantee suitable accuracy.
In this paper, we suggest and implement a new efficient approach to pro-
vide the service using minimax approximation and Non-Adjacent Form
(NAF) encoding. With our method, it is possible to remove the limita-
tion of input range and reduce maximum errors, allowing faster analyses
than the previous work. Moreover, we prove that the NAF encoding
allows us to use more efficient parameters than the binary encoding used
in the previous work or balaced base-B encoding. For comparison with
the previous work, we present implementation results using HElib. Our
implementation gives a prediction with 7-bit precision (of maximal error
0.0044) for having a heart attack, and makes the prediction in 0.5 s on a
single laptop. We also implement the private healthcare service analyzing
a Cox Proportional Hazard Model for the first time.

Keywords: Homomorphic encryption · Healthcare · Predictive analy-
sis · Minimax approximation · Non-Adjacent Form · Cloud service

1 Introduction

The cloud computing paradigm provides promising scenarios for user-friendly
healthcare services. Patient-to-Cloud healthcare scenario, which enables patients
to self-check the hazards of having particular diseases, is one of the clear-eyed
scenarios. To protect the crucial medical data, the scenario consists of the fol-
lowing procedures. At first, a user who needs predictive healthcare services feeds
personal device with private health data such as age, sex, and ECG, where
the device here is meant to be a smart device connected to networks via wireless
protocols, e.g. smartphone and smartwatch. The device encrypts the inputs with
the secret key stored in it, and sends them to a cloud server. After receiving the
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 53–74, 2017.
https://doi.org/10.1007/978-3-319-70278-0_4

54 J.H. Cheon et al.

encrypted data from the device, The cloud server calculates an exposure risk
of some disease with a predictive model on the encrypted data and sends the
encrypted result back to the device. Then the device decrypts it with the secret
key, providing an output to the user on its screen (Fig. 1).

Fig. 1. Patient-to-Cloud scenario

In this scenario, standard encryption schemes have a restriction: it is impos-
sible to perform outsourced computational tasks on the encrypted data. To per-
form computations for the encrypted data, the data must be decrypted first
and some information might be leaked to adversaries. For this obstacle, homo-
morphic encryption (HE) can be a solution allowing computations on encrypted
data without decryption process. Thus, a secure cloud service can be realized by
using a secure HE scheme.

Recently, Bos et al. [BLN14] implemented the private healthcare services
using a HE scheme. They implemented a privacy-preserving cloud service pro-
viding the likelihood to have a heart attack based on the predictive model called
Logistic Regression Model (LRM) [Cox58,LRM]. They used a scale-invariant lev-
eled HE scheme which is a practical variant of YASHE [BLLN13] and used Taylor
approximations.1 However, to guarantee the accuracy, the inputs are required to
be close to the expanding point 0 as one can see in Sect. 3.1.

In this paper, we suggest and implement another approach to provide a pri-
vate predictive analysis. We use an optimized polynomial approximation method,
called minimax approximation. That is to say, the minimax approximation is the
optimal approximation in the sense of supremum norm if the range of input val-
ues is a bounded interval. Moreover, we employ the Non-Adjacent Form (NAF)
encoding and present a proof that this gives us more efficient parameters theo-
retically than the binary encoding in [BLN14] or the balanced-base B encoding
used in [DGBL+15,CSVW]. As a result, our method allows removing the lim-
itation of input range, reducing maximum errors on overall input range and

1 Since only integer operations (addition and multiplication) are provided by the HE
scheme, they needed to approximate the model to a polynomial which can be com-
puted only by addition and multiplication.

Privacy-Preserving Computations of Predictive Medical Models 55

providing faster analyses. In our implementation, we use the open library called
HElib [HS13,HS14] based on the leveled HE scheme suggested by Brakerski
et al. [BGV12]. Our implementation results of private predictive analysis com-
pared with the previous result are summarized in the Table 1. Homomorphic
evaluation of desired prediction for having a heart attack based on LRM would
take 0.5 s which is about 50 times faster than the previous result (>30 s) using
YASHE and degree 7 polynomial. We also put the service based on the Cox
Proportional Hazard Model (CPHM) into practice and it permits us to analyze
various diseases such as diabetes. For CPHM, it takes 2.2 s to analyze the risk
of general cardiovascular disease.

Table 1. Summary of our work, where the security parameter λ = 80 (In the case of
[BLN14], it is probably not 80-bit secure against modern attacks [Alb17].)

Predictive model Logistic model Cox model

Approach BLN14 Our Our

HE scheme YASHE BGV&HElib BGV&HElib

Encoding method Binary NAF NAF

Approximation method Taylor Minimax Minimax

Degree of polynomial 7 7 5 7

Range of x [−3.7,2.4] [−3.6,5.7]

Range for maximum error to be 0.01 [−2.1,2.1] [−3.7,2.4] [−3.6,5.7]

Maximum error 1.163 0.0010 0.0044 0.0095

Server time (s) >30 1.8 0.5 2.2

Client time (s) 1.2 0.5 1.1

Organization. In Sect. 2, first we introduce two predictive models, LRM and
CPHM, that we mainly considered. Then we explain how we approximate the
models to polynomials in Sect. 3. In Sect. 4, we present our methods to evalu-
ate the approximation with encrypted input values, using HE scheme. We also
provide our implementation results in the same section.

Notation. Throughout this paper, we use the following notations.

– We use Pn to denote the set of polynomials with real number coefficients of
degree equal or less than n.

– We use C[a, b] to denote the set of continuous functions on [a, b].
– For function f ∈ C[a, b],

‖f‖ := max{|f(x)| : x ∈ [a, b]}.

2 Models for Predictive Analysis in Healthcare Services

Many mathematical models to perform predictive analysis in healthcare have
been suggested and studied for several decades. For example, one can use a

56 J.H. Cheon et al.

statistical technique called regression such as the logistic regression model or
some survival model for some disease such as the Cox proportional hazard
model [Cox92]. In this section, we bring two such predictive models into focus:
the logistic regression model and the Cox proportional hazard model.

2.1 The Logistic Regression Model

The logistic regression model is used to assess severity of a patient or to predict
whether a patient will have a given disease based on observed characteristics
of the patient (e.g. age, sex, body mass index, results of various blood tests,
etc.). For example, Boyd et al. developed the Trauma and Injury Severity Score
(TRISS) method [BTC87], which is widely used to predict mortality in injured
patients. Some works [BRD+00,KEAS00] used this model to predict mortality
in patients with peritonitis, and Blankstein et al. [BWA+05] proposed a pre-
dictor of mortality after certain types of heart surgery. Moreover, Tabaei and
Herman [TH02] provided a method to use the model for a prediction of incident
diabetes. The logistic regression model has been also used to analyze cardiovas-
cular diseases [TCK67,DVP+08,DPMC13,BSJ+05].

To demonstrate logistic regression analysis, previous work [BLN14] used the
following model for men2 [LRM] to predict the possibility to have a heart attack
for an individual. We would also adopt this model for our predictive healthcare
services. The model is precisely described as follows: for given six inputs con-
sisting of observed characteristics of a patient, age (a), systolic blood pressure
(sys), diastolic blood pressure (dia), cholesterol level (chol), height (ht, inches),
and weight (wt, pounds), the model provides the likelihood in an interval [0, 1]
to have a heart attack by calculating

L(x) =
ex

ex + 1
,

where x is the sum of the variables weighted by the logistic regression coefficients
as

x = 0.072 · a + 0.013 · sys − 0.029 · dia + 0.008 · chol − 0.053 · ht + 0.021 · wt.

We note that the range of x in the regression data is the interval
[−3.755, 2.403] [LRM].

2.2 The Cox Proportional Hazard Model

The Cox proportional hazard model suggested by Cox [Cox72] is a well-known
procedure for analyzing the time-to-event curve. This model has been the most
widely used model over many years in medical research because of its applicabil-
ity to a wide variety of types of clinical studies [CO84]. For an application, it pro-
vides a general methodology for the statistical analysis of relationship between

2 Measured 200 male patients, over an observation period which remains unspecific.

Privacy-Preserving Computations of Predictive Medical Models 57

the survival of a patient and several explanatory variables such as age, gender,
weight, height, etc. For example, [AYDA+14] estimated the association between
treatments and the survival times of breast cancer patients using the Cox model.
Moreover, [TS14] also used this model for analyzing the tuberculosis, which is a
chronic infectious disease and mainly caused by mycobacterium tuberculosis.

D’Agostino et al. [DVP+08] provided the following models analyzing the
risk of general cardiovascular disease (CVD), where the population of interest
consists of individuals 30–74 years old and without CVD at the baseline exam-
ination. Precisely, the model is described as follows. This model assesses the
10-year risk of general CVD. There are six predictive variables: age (A), choles-
terol level (Chol), HDL cholesterol level (HDL), systolic blood pressure (SBP),
smoker (S = 1) or not (S = 0), and having diabetes (D = 1) or not (D = 0).
The model is given by3

C(x) = 1 − 0.95012exp(x) for women

where x is computed from the variables as

x = 2.32888 · log(A) + 1.20904 · log(Chol) − 0.70833 · log(HDL)
+2.76157 · log(SBP) + 0.52873 · S + 0.69154 · D − 26.1931.

We set the range of the parameters manually as below. We followed the range
of parameters which was used in the risk score calculator of Framingham Heart
Study website [FHS].

– Age: 30–74
– Cholesterol: 100–405
– HDL: 10–100
– SBP: 90–200

The range of parameters give the range of x defined above, which is the interval
[−3.6, 5.7].

3 Polynomial Approximation of Analytic Functions

In our scenario, two models L(x) and C(x) will be approximated by polyno-
mials, since our HE scheme only allows addition and multiplication of integers.
To measure the reliability of outputs, errors will be computed in the sense of
supremum norm.

In Sect. 3.1, we analyze the approach of [BLN14] which used the Taylor
approximation. Moreover, we assert that using minimax approximation gives
optimal error in Sect. 3.2.

3 C(x) = 1 − 0.88936exp(x−23.9802) for men.

58 J.H. Cheon et al.

3.1 Taylor Approximation in Previous Works

Bos et al. [BLN14] suggested using Taylor approximation for approximating
predictive models to polynomials. For the logistic model L(x) described in the
Sect. 2.1, Bos et al. claimed that truncating Taylor series at point 0 after degree
7 gives roughly 2 digits of accuracy. As they suggested, the approximation is very
accurate near the expanding point 0. However, considering the range of input
described in Sect. 2.1, error may become larger than the claimed accuracy at the
end of the interval.

The graph in Fig. 2 plots logistic function and its Taylor approximation poly-
nomial of degree 7 at point 0, along the range of input. In the graph, the approx-
imation is very accurate near the point 0 but the error grows rapidly at the rear
of the interval. Maximal errors are given at the two endpoints of the interval:
1.16 at the point −3.7 and 0.04 at the point 2.4. The errors are too large to be
ignored, regarding that the result of the prediction model is a probability. To
achieve 2 digits of accuracy, it is required to restrict the original interval to the
interval [−2.1, 2.1] which is quite smaller than the original one.

The Table 2 shows the maximum error in the interval [−3.7, 2.4] between
logistic function and Taylor approximation polynomials for various degrees.4

As the table shows, increasing degree of approximation polynomial does not
guarantee the error to decrease, in the sense of supremum norm. These problems
occur because Taylor approximation is a local approximation rather than an
approximation specialized for the intervals.

Fig. 2. Taylor approximation of L(x)
domain: [−3.7, 2.4]

Fig. 3. Taylor approximation of C(x)
domain: [−3.6, 5.7]

Similar problems occur in the case of Cox model. The graph in Fig. 3 plots
C(x) for women, and its Taylor approximation polynomial of degree 7 at point
0, which is the expanding point that gives minimal maximum error. The graph
is drawn along the range of input described in Sect. 2.1. It can be seen that
4 We only give errors for odd degree polynomials, since in Taylor expansion of logistic

function, constant and odd degree terms only appear. This is because the logistic
function is a odd function up to a constant.

Privacy-Preserving Computations of Predictive Medical Models 59

approximation is very accurate near the expanding point 0.3 but the error grows
rapidly at the rear of the interval as in the case of L(x).

Table 2. Taylor approximation of logistic model

Degree of Taylor polynomial 0 1 3 5 7 9 11 13

Maximum error 0.476 0.449 0.606 0.839 1.163 1.613 2.237 3.103

The Table 3 shows the maximum error in the interval [−3.6, 5.7] between
C(x) and its Taylor approximation polynomials for various degrees. In addition,
we give ideal expanding points for each degree. As the table shows, increasing
degree of approximation polynomial does not guarantee the error to decrease.
The maximum errors are at least larger than 0.2 which is 20%. Regarding that
the result of the prediction model is a probability, the maximum errors are too
large to be practical as the case of the logistic model.

Table 3. Taylor approximation of Cox model

Degree of Taylor
polynomial

1 2 3 4 5 6 7 8 9

Expanding point 4.0 0.2 −1.2 −2.5 −3.6 0.6 0.0 −0.6 −1.2

Maximum error 0.3619 0.2707 0.3209 0.3497 0.4844 0.4910 0.4562 0.5227 0.6050

3.2 Remez Therapy: Adopting Minimax Approximation

In this section, we introduce another polynomial approximation called minimax
approximation and describe how it settles the problems of Taylor approximation.

Minimax Approximation and Remez Algorithm. In this subsection, we
present a brief explanation of minimax approximation and how to find it. For
more details, see [Fra65].

Definition 1. We say that p ∈ Pn is an n-th minimax approximation of f ∈
C[a, b] if

‖f − p‖ = inf{‖f − q‖ : q ∈ Pn}.

The name, minimax approximation, comes from the fact that it minimizes
the maximum error over all q ∈ Pn. For the proof of its existence and uniqueness,
see [Ach13]. Now, we consider a lemma, which is a key idea lying in the Remez
algorithm [Rem34] to find the minimax approximation of a given polynomial.
For the proof of this lemma, see [Ach13].

60 J.H. Cheon et al.

Definition 2. A function f ∈ C[a, b] is said to equioscillate on n points of [a, b]
if there exists n points a ≤ x1 < · · · < xn ≤ b such that

|f(xi)| = ‖f‖, i = 1, · · · , n,

and
f(xi) = −f(xi+1), i = 1, · · · , n − 1.

Lemma 1 [Ach13]. Let f ∈ C[a, b] and p ∈ Pn. Then, p is an n-th minimax
approximation for f on [a, b] if and only if (f − p) equioscillates on n + 2 points
of [a, b].

Now, we briefly describe the Remez algorithm. For given (n + 2) nodes, it
repeats to interpolate given function with oscillating error and update nodes
to make the difference between the maximum error and the oscillating error
smaller. It is known that the Remez algorithm always terminates regardless of
the initial choice of the set of nodes [NP51], and the rate of convergence is
quadratic [Vei60].5 However, it is recommended to use Chebyshev nodes as an
initial choice for making the convergence faster. The Chebyshev nodes of degree
n for the interval [a, b] is defined by

1
2
(a + b) +

1
2
(b − a) cos

(
2k − 1

2n

)
, k = 1, · · · , n.

The reason that the Chebyshev nodes are good for initial choice comes from
the following lemma which implies the polynomial interpolated at Chebyshev
nodes, called Chebyshev approximation, is a near-minimax approximation. For
the proof and detailed discussion, see [Riv90].

Lemma 2 [Riv90]. Let f ∈ C[a, b] and Mf and Cf be the n-th minimax approx-
imation and the n-th Chebyshev approximation of f , repectively. Then, the fol-
lowing inequality holds.

‖f − Cf‖ <

(
2 +

2
π

ln(n + 1)
)

‖f − Mf‖.

How Remez Therapy Works. The minimax approximation resolves prob-
lems of Taylor approximation mentioned in Sect. 3.1. The graph in Fig. 4 plots
logistic function L(x) and its 7-th minimax approximation ML(x) for the inter-
val [−3.8, 2.5]. The approximation is accurate throughout the whole interval and
the error is much smaller than the Taylor approximation.

The Table 4 shows the maximum error between L(x) and the minimax
approximations for various degrees. The even degree coefficient in minimax

5 Let us denote the maximum error between the function and the minimax approxi-
mation by e, and the oscillating error of kth iteration by ek. The rate of convergence
being quadratic means |e − ek| = O(|e − ek+1|2).

Privacy-Preserving Computations of Predictive Medical Models 61

approximation of L(x) for symmetric interval is zero, since the logistic func-
tion is an odd function up to a constant. This makes reducing multiplications
possible in the implementation. In spite that expanding the interval grows the
maximum error, since the multiplication is expensive operation in our scheme
it is worth to expand the interval to a symmetric interval. For this reason, We
also give the errors of minimax polynomials for the interval [−3.8, 3.8] not only
[−3.8, 2.5]. As degree of approximation polynomial increases, the error decreases
and is small enough to be practical at not too high degree approximation.

Fig. 4. Minimax approximation of
L(x)

Fig. 5. Minimax approximation of
C(x)

Table 4. Maximum errors of the minimax and Taylor approximations for LRM

Degree of approximation polynomial 3 5 7 9 11

Max error of minimax on [−3.8, 2.5] 0.0196 0.0039 0.0007 0.0001 0.000

Max error of minimax on [−3.8, 3.8] 0.0198 0.0044 0.0010 0.0002 0.0000

Max error of Taylor 0.606 0.839 1.163 1.613 2.237

The minimax approximation also settles problems of Taylor approximation
for Cox model. The graph in Fig. 5 plots the function C(x) and its minimax
polynomial of degree 7 for the interval [−3.6, 5.7]. In the graph, the approxima-
tion is accurate throughout the whole interval and the error is much smaller than
the Taylor approximation. The Table 5 shows the maximum error in the interval
[−3.6, 5.7] between the function C(x) and the minimax polynomials for various
degrees. It can be seen that, as degree of approximation polynomial increases,
the error decreases and be small enough to be practical at not too high degree
approximation.

62 J.H. Cheon et al.

Table 5. Maximum errors of the minimax and Taylor approximations for CPHM

Degree of approximation polynomial 3 4 5 6 7 8 9

Max error of minimax on [−3.6, 5.7] 0.1030 0.0387 0.0386 0.0227 0.0095 0.0091 0.0053

Max error of Taylor 0.3209 0.3497 0.4844 0.4910 0.4562 0.5227 0.6050

The tables suggest that the maximum errors of minimax approximation are
much smaller than the maximum errors of Taylor approximation, for same degree
of approximation polynomial and also for any observed degree. This allows us to
implement a disease prediction model with a low degree approximation, which
will reduce the number of multiplications in the implementation and make the
implementation faster as a result. We note that this was done without narrowing
the interval as [BLN14] did.

4 Homomorphic Evaluation of Predictive Models

4.1 Practical Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic primitive that enables
homomorphic operations on encrypted data without decryption procedures.
Since Gentry [Gen09a,Gen09b] proposed a blueprint of Fully Homomorphic
Encryption (FHE), a plenty of work arose in this area [VDGHV10,CMNT11,
CNT12,CCK+13,CLT14,CKLY15]. In 2012, Brakerski, Gentry, and Vaikun-
tanathan [BGV12] suggested practical variant of leveled FHE scheme based on
Ring Learning with Errors (RLWE) problem, which can evaluate L-level arith-
metic circuits without bootstrapping. Assembling all of the techniques such as
SIMD techniques for the ciphertext bits in [SV14] and bootstrappings in [HS15]
to the scheme in [BGV12] with reduced error growths [Bra12], IBM researchers
published a software library for HE, which is called HElib [HS13,HS14]. This
library is well known to be efficient enough to serve the homomorphic evalua-
tion of AES [GHS12] or fast fourier transformations [CSVW]. In our approach,
we also used HElib to evaluate the exposure risk of a disease securely with the
predictive models in Sect. 2. We remark that we set our parameters not to run
bootstrapping in the HElib, since it costs a lot.

We briefly explain the leveled homomorphic encryption scheme of depth L
used in HElib here for self-containedness. We set the sequence of moduli for our
homomorphic evaluation of depth L by choosing L small primes p0, p1, · · · , pL−1

and the t-th modulus in the scheme is defined by qt =
∏t

i=0 pt for 0 ≤ t ≤
L − 1. We set the ring Zq as (−q/2, q/2) ∩ Z. Let ΦM (x) be a M -th cyclotomic
polynomial of degree φ(M) = N , A be a polynomial ring divided with an ideal
generated by the cyclotomic polynomial, and Aq = A/qA for some integer q, i.e.
Aq = Z[x]/(ΦM (x), q).

– KeyGen(): Sample s ∈ A2 of low hamming weight, a ← AqL−1 randomly, and
e from a discrete Gaussian distribution in AqL−1 with a standard deviation
σ > 0. A public key would be pk = (a, b = a ·s+2e)qL−1 ∈ A

2
qL−1

and a secret
key is sk = s ∈ AqL−1 .

Privacy-Preserving Computations of Predictive Medical Models 63

– Encpk(m ∈ A2): Choose a small polynomial v with coefficients in {−1, 0, 1}
and sample Gaussian polynomials e0, e1 in the same distribution with that of
KeyGen. Let c0 = b · v + 2e0 + m and c1 = a · v + 2e1, where the calculations
are held in AqL−1 . The ciphertext is c = (

(
c0 c1

)
, L − 1, v) where v is a noise

estimate so that it is polynomial of the value φ(m).
– Decsk(c): For a ciphertext c = (

(
c0 c1

)
, t, v) at level t, setting m′ ← (c0 − s ·

c1)qt , output m′ mod 2.
– Add(c,c’): For two ciphertexts c = (

(
c0 c1

)
, t, v) and c′ = (

(
c′
0 c′

1

)
, t′, v′)

of plaintexts m and m′ respectively, some how matching the level of the
ciphertexts, simply calculate

cadd = (
(
c0 + c′

0 c1 + c′
1

)
, t′′, v + v′),

for the new level t′′.
– Mult(c,c’): Given c = (

(
c0 c1

)
, t, v) and c′ = (

(
c′
0 c′

1

)
, t′, v′) for m and m′

respectively, let (d0, d1, d2) ← (c0 · c′
0, c1 · c′

0 + c0 · c′
1, − c1 · c′

1). Managing the
noise estimate with some techniques and matching the level of the ciphertexts,
the ciphertext corresponding to the message m · m′ is

cmult = SwitchKey((d0, d1, d2), t′′, v · v′)

for the new level t′′, where SwitchKey algorithm here basically switches the
transformed ciphertext to be decrypted with an original secret key so that it
can be decrypted correctly. In this SwitchKey algorithm, there is an usage of
another modulus P which is aimed to boost up the modulus from qt to P · qt

for time and space efficiency. In other words, the largest modulus used in this
library is P · qL−1.

We omit all the important details like noise estimating and modulus switching
techniques here and just look at how the basic functionality works, so for more
details, we recommend to see the Appendix of [GHS09].

4.2 Encoding Strategy

Since the plaintext space of previous homomorphic encryption is a polynomial
ring over Zq, we need encoding and decoding phases for practical use with real
numbers in the real world. Proper encoding strategies are needed to guarantee
correctness of the results and to not harm the performance of the scheme. In
this section, we explain the encoding strategies used in our implementations.
For explanation, we divide our encoding phase into two stages: encoding real
numbers as integers and encoding integers as polynomials.

Encoding Real Numbers as Integers. Encoding real numbers as integers
can be done by the method in [BLN14] as following:

1. For each corresponding factors, give precision by rational numbers where
denominators are power of 10.

64 J.H. Cheon et al.

2. Normalize them into integers by multiplying their denominators.
3. Operate homomorphic computations with scaled integers.
4. After decryption, divide the result with 10n for appropriate n.

Note that, through this encoding technique, some errors might come up from
Step 1 for the real value inputs. Therefore, we should take proper denomina-
tor for input values, which make the error of output sufficiently small. In our
implementations, we take these parameters such that the error generated in the
encoding phase is smaller than the error derived from polynomial approximation.
For more details, see Sect. 4.3.

Encoding Integers as Polynomials: Previous Works and Our App-
roach. Since the plaintext space of BGV scheme is a polynomial ring over Zq, we
need to encode integers as polynomials. Choosing an adequate size of plaintext
space would be important in this step because of the following two reasons: 1.
After some additions and multiplications, coefficients of the polynomials might
be reduced by the modulus q and we cannot decode the polynomial correctly.
Hence, we need a sufficiently large modulus for correctness. 2. However, the per-
formance of HE heavily relies on the size of the plaintexts, and the larger the
modulus of plaintexts, the worse performance becomes. Moreover, some open
source libraries may not support such a large modulus. Especially, HElib only
supports modulus of long integers (i.e. up to 232).

One way to maintain small plaintext modulus is to use Chinese Remainder
Theorem (CRT) to split the data into multiple smaller moduli. However, this
procedure makes the source code more complicated, and since it requires different
keys for different moduli, key management starts to disturb users. Another way
is suggested in [DGBL+15] and also studied in [CSVW], which utilizes balanced
base-B encoding (Bal-B) to make a profit on the size of plaintexts with respect
to those of the usual binary encoding as in [BLN14]. We describe their approach
briefly, and then introduce a new method to achieve better results.

Definition 3. For an odd integer B, the balanced base-B encoding of
an integer n is (n�, · · · , n0)Bal-B, where n =

∑�
i=0 niB

i with ni ∈{−B−1
2 , · · · , 0, · · · , B−1

2

}
.

Definition 4. For non-negative integers d and e, define c(d,e) as ‖(1+x+x2 +
· · · + xd)e‖∞.

Theorem 1 [MR08]. If either e �= 2 or d ∈ {1, 2, 3}, it satisfies

c(d,e) <

√
6

π · e · d · (d + 2)
· (d + 1)e,

and the bound is tight in the sense that

lim
e→∞

√
e · c(d,e)

(d + 1)e
=

√
6

π · e · d · (d + 2)
.

Privacy-Preserving Computations of Predictive Medical Models 65

Definition 5. Let L, D, A be nonnegative integers. For a given circuit of inputs
in [−L,L] which requires depth D for HE and allows A additions per depth, we
define BE(L,D,A) by the greatest lower bound of modulus with respect to L, D,
and A to guarantee correctness for the circuit, where E denotes the method used
for encoding integers to polynomials.

Theorem 2 [CSVW]. Assume there is a circuit we want to compute of depth D
with allowed A additions per depth. If E is standard n-ary encoding or balanced
base-B encoding, following equality holds.

BE(L,D,A) = c(dE ,2D) · m2D

E · 2A(2D+1−2),

where dE is the maximum number of digits of integers in [−L,L] for E and mE
is the maximum value of the coefficient for E.6

Theorem 2 states that the sufficient bound for correctness can be calculated
by the formula, if we are using the standard n-ary encoding or the balanced base-
B encoding. Moreover, together with Theorem1, it can be shown that using bal-
anced base-B encoding decreases the plaintext modulus to achieve correctness by
double exponential factor of depth D, compared to the standard binary encod-
ing. However, we still have a problem even if we use balanced base-3 encoding as
[CSVW] did since the modulus has to be larger than 232 to guarantee correctness
for our models. To improve the result of [CSVW], we suggest using non-adjacent
form (NAF) instead of balanced base-3 form.

Definition 6. The Non-Adjacent Form (NAF) of a integer n is
(n�, · · · , n0)NAF , where n =

∑�
i=0 ni2i with njnj−1 = 0 and nj ∈ {−1, 0, 1}

for all j.

For example, the NAF of 7 is (1, 0, 0,−1)NAF . It is well-known that the
NAF of an integer is unique. The following theorem suggests that using NAF is
beneficial in general. Second equation says that using NAF instead of balanced
base-3 encoding decreases the size of plaintext modulus to achieve correctness
by double exponential factor with respect to the depth D. With NAF, we were
able to use a plaintext modulus smaller than 232 for the predictive models.

Theorem 3. Under the same notations as Theorem2, the followings hold.

– BNAF (L,D,A) = c(dNAF ,2D) · 2A(2D+1−2), dNAF =
[
[log L]+1

2

]

–
BBal-3(L,D,A))
BNAF (L,D,A)

= O((log 4/ log 3)2
D

)

Proof. See AppendixB.

Below, we present the pseudo-code of computing the NAF of an integer. We
note that NAF of an integer can be obtained very efficiently.

6 The detailed formula can be found in [CSVW].

66 J.H. Cheon et al.

Algorithm 1. Non-Adjacent Form
Input: n
Output: m = (fk, · · · , f0)NAF

Set i=0
while n > 0 do

1. if n is odd :
fi ← 2 − (n mod 4)
n ← n − fi

else
fi ← 0

2. n ← n/2
3. i ← i + 1

return m

4.3 Parameter Selection

In this section, we describe the procedure for parameter selection to guaran-
tee security and correctness. At the end of this section we provide the Table 6
consisting of actual parameters we used for implementations.

– Inputs: security parameter λ, predictive model (e.g. L(x) or C(x)), and per-
missible maximum error with respect to the model.

– Output: L, q, M , P and qt for 0 ≤ t ≤ L − 1.

1. Set the degree D of minimax approximation for a desired maximum error. For
our work, it can be done by taking a glance at Tables 4 and 5. For example,
if we are concerning L(x) and want to make maximum error be smaller than
0.01, we choose minimax approximation of degree 5. Note that the maximum
error will become a bit larger than the error by polynomial approximation,
since the error from the encoding process exists.

2. Calculate the suitable input precision R. We need to set the input precision to
encode real numbers as integers as described in Sect. 4.2. The more precise the
inputs become, the larger modulus should be. As a consequence, extravagant
precisions unnecessarily slow down the performance of implementation. Thus
we suggest using similar or a bit smaller maximum error precision for encoding
relative to the error by polynomial approximation. For example, the maximum
error for 5-th minimax approximation of L(x) is 0.0044. To make the error by
encoding to be less than 0.0044, we approximate real value inputs to rationals
getting 2 digits of accuracy below the decimal point.

3. Set the proper plaintext modulus q which guarantees security and correct-
ness. If one uses NAF for encoding, one can choose proper q by using bound
from Theorem 3. However since the bound in Theorem3 is for the general
circuits with certain properties, it may be inefficient. Therefore, we recom-
mend to analyze the circuit with help of the Corollary 1 in AppendixB. In
other words, get a tighter upper bound of maximum coefficient of the results
using the bound of the corollary. Let b be the bit size of the maximum coeffi-
cient of the results. We can use the smaller modulus q than 2b+1, if the error

Privacy-Preserving Computations of Predictive Medical Models 67

generated from reducing by modulus is negligible relative to the error by poly-
nomial approximation. For example, since an upper bound for absolute value
of coefficients after computations is 224, we can use modulus q = 33554467
for 5-th minimax approximation of L(x).

4. Get proper M with security parameter λ, HElib level L, and modulus q. To
obtain the λ-bit security, we set the parameters in HElib so that our scheme is
secure against the dual lattice attack by [Alb17] using the estimator [APS15]7.
After finding a proper M , we can use buildModChain function to set the rest
of the parameters, qi and P . For example, using the estimator we can find
out that, for modulus q = 33554467, level L = 13, and security parameter
λ = 80, it is sufficient to use M = 13217 for 5-th minimax approximation of
L(x).

Table 6. Parameter settings with the security parameter λ = 80. Column D denotes
the degree of minimax approximations, column R denotes the input precision, column
b denotes the bit size of maximum coefficient of outputs, and the value P · qL−1 is the
largest modulus used in the library.

D R b q L log2 qL−1 log2 P M

LRM 5 1 24 33554467 13 27 202 13217

7 2 36 4294967291 17 370 259 17431

9 3 45 4294967291 21 448 276 20191

11 4 49 4294967291 25 539 323 23431

CPHM 4 2 20 1048583 8 194 134 9487

5 2 26 67108879 12 278 192 13483

6 2 31 2147483659 14 324 235 15943

7 3 37 4294967291 16 370 259 17431

8 3 41 4294967291 16 370 259 17431

9 3 47 4294967291 21 448 276 20191

4.4 Implementation Results

We give Table 7 so that one can see our performance at a glance and choose the
parameters for similar applications. The time results are measured by the mean
values of times to compute the wanted output for five independently measured
input values. This implementation was performed on a laptop (Intel Core i5-
3337U at 1.80 GHz). Since the computations, in our scenario, are performed by
cloud server with high performance, one can expect the time results to be much
smaller.

7 https://bitbucket.org/malb/lwe-estimator/src.

https://bitbucket.org/malb/lwe-estimator/src

68 J.H. Cheon et al.

Table 7. Performance result

Logistic model Cox model

Degree of approximation

polynomial

5 7 9 11 4 5 6 7 8 9

Maximum error 0.0044 0.0010 0.0002 0.0000 0.0387 0.0386 0.0227 0.0095 0.0091 0.0053

Encoding & Encryption (ms) 463 1052 1308 1547 333 467 547 1035 1042 1240

Computation (ms) 479 1750 2777 4208 354 708 1099 2188 2630 4209

Decryption & Decoding (ms) 47 114 203 281 32 56 78 110 114 198

5 Conclusion

In this paper, we introduced the minimax approximation method and suggested
it as an option for approximation polynomial of medical analyses with predictive
models. This selection makes the analyses more efficient and accurate than the
case one choose the Taylor approximation method as in [BLN14]. The previous
work [BLN14] choose the Taylor approximation method and YASHE scheme as
their option. On the other hand, we choose the minimax approximation method
and HElib as our option. Additionally, we utilize the Non-Adjacent Form encod-
ing method. As a result, we can evaluate the medical predictive models much
faster than [BLN14] with smaller error as one can see in Table 1. Moreover, with
minimax approximation, one can perform accurate analyses using Cox propor-
tional hazard models which is impossible with Taylor approximation.

Acknowledgement. This work was supported by Institute for Information & commu-
nications Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. B0717-16-0098). The authors would like to thank Yong Soo Song, Kyoohyung Han,
and the anonymous reviewers for valuable comments and suggestions.

A Approximation Polynomials

In this section, we list the approximation polynomials those have been used in
this paper and the implementation.

A.1 Minimax Approximation for Logistic Model

(See Table 8).

Table 8. Coefficients of minimax polynomials for logistic model in [−3.7, 3.7]

Degree 0th term 1st term 3rd term 5th term 7th term 9th term 11th term

3 0.50000 0.21969 −0.0070164

5 0.50000 0.24141 −0.013984 0.00042530

7 0.50000 0.24771 −0.017996 0.0010405 −0.000026488

9 0.50000 0.24941 −0.019789 0.0015352 −0.000076288 0.0000016561

11 0.50000 0.24985 −0.020479 0.0018310 −0.00012735 0.0000054811 −0.00000010362

Privacy-Preserving Computations of Predictive Medical Models 69

A.2 Minimax Approximation for Cox Model

(See Table 9).

Table 9. Coefficients of minimax polynomials for Cox model

Degree 0th term 1st term 2nd term 3rd term 4th term 5th term 6th term 7th term 8th term 9th term

3 3.974e−2 1.409e−1 3.014e−2 −3.882e−3

4 1.348e−2 6.502e−2 5.143e−2 3.997e−3 −1.738e−3

5 1.344e−2 6.457e−2 5.164e−2 4.046e−3 −1.768e−3 3.060e−6

6 3.266e−2 2.553e−2 4.380e−2 1.603e−2 −2.232e−3 −7.269e−4 9.144e−5

7 5.096e−2 3.151e−2 2.118e−2 1.602e−2 1.968e−3 −1.088e−3 −1.068e−4 2.689e−5

8 5.258e−2 3.225e−2 1.828e−2 1.639e−2 2.621e−3 −1.256e−3 −1.326e−4 3.846e−5 −9.284e−7

9 5.511e−2 4.706e−2 1.048e−2 8.302e−3 6.069e−3 −2.761e−4 −6.022e−4 2.624e−5 1.860e−5 −1.754e−6

B Proof of Theorem 3

For p ∈ Z[x], we use ‖p‖∞ to denote the maximum of absolute values of coef-
ficients. We use Z+[x] to denote the set of polynomials with coefficients of
nonnegative integers. Let p ∈ Z+[x] be a polynomial of degree n defined by
p(x) =

∑n
i=0 pix

i. Regarding pj = 0 for all j ≥ n + 1, we define two vector
representations of p as follows:

Rstd(p) := (p0, p1, p2, · · · , pi, · · ·) and Rdec(p) := (p̃0, p̃1, p̃2, · · · , p̃i, · · ·),
where {p̃i} is the rearrangement of {pi} in decreasing order. Rdec(p) is well-
defined since p has only finite number of positive terms. For p, q ∈ Z+[x], define
a equivalence relation ∼ as following.

p ∼ q ⇔ Rdec(p) = Rdec(q)

For any polynomial p(x) =
∑n

i=0 pix
i, we define |p| ∈ Z+[x] by |p|(x) =∑n

i=0 |pi|xi.

Definition 7 (Λ-shaped). For p ∈ Z+[x], we give some new definitions below.

1. p is Λ-shaped if Rstd(p) = (p0, p1, p2, · · ·) satisfies the following condition.
– (bisymmetricity) There exists a ∈ Z ∪ (Z + 1

2) such that p�a+i+ 1
2 � =

p�a−i− 1
2 	 for all i ≤ a − 1

2� and pi = 0 for all i > a − 1
2�.

– (one-peakness) If pi > pi+1 for some i, then pj ≥ pj+1 for all j ≥ i.
2. A polynomial p is potentially Λ-shaped if p ∼ q for some Λ-shaped q with

nonzero constant term. In this case, we denote this q as p̂.

In other words, p ∈ Z+[x] is Λ-shaped if Rstd(p) is bisymmetric after erasing
some zeros at the end of the sequence and has at most one peak. We present a
lemma which asserts that the set of Λ-shaped polynomials in Z+[x] is closed for
multiplication of polynomials as follows.

70 J.H. Cheon et al.

Lemma 3. A finite product of Λ-shaped polynomials is Λ-shaped.

Proof. It is enough to show for products of two Λ-shaped polynomials. For
potentially Λ-shaped polynomials q and r, let Rsym

std (q̂) = (q̂0, q̂1, q̂2, · · · , q̂n) and
Rsym

std (r̂) = (r̂0, r̂1, r̂2, · · · , r̂m) be bisymmetric sequences obtained by erasing
some zeros at the end of Rstd(q̂) and Rstd(r̂) respectively. Then,

Rstd(q̂ · r̂) = (
∑

i+j=0

q̂ir̂j ,
∑

i+j=1

q̂ir̂j , · · · ,
∑

i+j=n+m

q̂ir̂j , 0, · · ·).

The bisymmetricity holds since∑
i+j=k

q̂ir̂j =
∑

i+j=k

q̂n−ir̂m−j =
∑

i+j=n+m−k

q̂ir̂j ,

and the one-peakness comes from
∑

i+j=k

q̂ir̂j ≤
∑

i+j=k

q̂i+1r̂j ≤
∑

i+j=k+1

q̂ir̂j for all k <
n + m

2
.

��
Definition 8. Define a partial order � on Z+[x] as following. For p and q
∈ Z+[x], let Rdec(p) = (p0, p1, p2, · · ·) and Rdec(q) = (q0, q1, q2, · · ·).

p � q ⇐⇒ Rdec(q) majorizes Rdec(p).

⇐⇒
∞∑

i=0

pi =
∞∑

i=0

qi and
k∑

i=0

pi ≤
k∑

i=0

qi for all k ∈ N.

Lemma 4. If q and r are potentially Λ-shaped,

p � q =⇒ pr � q̂r̂.

Sketch of Proof. Let Rstd(p) = (p0, p1, p2, · · ·) and Rstd(q) = (q0, q1, q2, · · ·).
For Rsym

std (q̂) and Rsym
std (r̂), let us recycle the notations used in the proof of the

Lemma 3. It is enough to show the following inequality holds for all t ∈ N and
K ⊂ N ∪ {0} with |K| = t, denoting Kn+m as Z ∩ [n+m−t+1

2 �, �n+m+t
2 �] of t

elements.
∑
k∈K

∑
i+j=k

pirj ≤
∑

k∈Kn+m

∑
i+j=k

q̂ir̂j ,

or equivalently,

∞∑
j=0

⎛
⎝rj

∑
i+j∈K

pi

⎞
⎠ ≤

∞∑
j=0

⎛
⎝r̂j

∑
i+j∈Kn+m

q̂i

⎞
⎠ .

Now the proof is completed by the fact that
(∑

i+j∈Kn+m
q̂i

)
majorizes(∑

i+j∈K pi

)
as sequences with index j, which directly comes from the assump-

tion p � q. ��

Privacy-Preserving Computations of Predictive Medical Models 71

Theorem 4. If pi’s are potentially Λ-shaped,

n∏
i=1

pi �
n∏

i=1

p̂i.

Proof. Suppose the theorem is true when n = k − 1. Then by Lemmas 3 and 4,

k∏
i=1

pi = pk ·
k−1∏
i=1

pi � p̂k ·
k−1∏
i=1

p̂i =
k∏

i=1

p̂i.

When n = 1, it is trivial. By mathematical induction, the theorem is proved. ��
Corollary 1. If pi’s are binary polynomials,

∥∥∥∥∥
n∏

i=1

pi

∥∥∥∥∥
∞

≤
∥∥∥∥∥

n∏
i=1

p̂i

∥∥∥∥∥
∞

.

Proof. Directly follows from Theorem 4 and the fact that every binary polyno-
mial is potentially Λ-shaped. ��
Theorem 5. If a NAF polynomial p lies in Pn, the following inequality holds.
Furthermore, the bound is sharp.

‖pe‖∞ ≤ c([n+1
2],e).

Proof. We have

‖pe‖∞ ≤ ‖|p|e‖∞ ≤ ‖ ˆ|p|e‖∞ ≤ c([n+1
2],e),

where the first inequality follows from the triangle inequality and the second
inequality comes from Corollary 1. The third inequality follows from the defin-
ition of NAF: the number of nonzero terms of NAF polynomial cannot exceed
the half of the number of terms. For sharpness, consider the alternating NAF
which make the equality holds: (1010 · · ·)NAF . ��

Finally we obtain the first equation of Theorems 3 from Theorem 2 and 5. The
second equation is also obtained from simple calculations combining Theorem2
and the first equation.

References

[Ach13] Achieser, N.I.: Theory of Approximation. Courier Corporation, Chelms-
ford (2013)

[Alb17] Albrecht, M.R.: On dual lattice attacks against small-secret LWE and
parameter choices in HElib and SEAL. Cryptology ePrint Archive, Report
2017/047 (2017). http://eprint.iacr.org/2017/047

http://eprint.iacr.org/2017/047

72 J.H. Cheon et al.

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

[AYDA+14] Abadi, A., Yavari, P., Dehghani-Arani, M., Alavi-Majd, H., Ghasemi, E.,
Amanpour, F., Bajdik, C.: Cox models survival analysis based on breast
cancer treatments. Iran. J. Cancer Prev. 7(3), 124 (2014)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference, pp. 309–325. ACM
(2012)

[BLLN13] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for
a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.)
IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45239-0 4

[BLN14] Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on
encrypted medical data. J. Biomed. Inform. 50, 234–243 (2014)

[Bra12] Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32009-5 50

[BRD+00] Biondo, S., Ramos, E., Deiros, M., Ragué, J.M., De Oca, J., Moreno, P.,
Farran, L., Jaurrieta, E.: Prognostic factors for mortality in left colonic
peritonitis: a new scoring system. J. Am. Coll. Surg. 191(6), 635–642
(2000)

[BSJ+05] Boekholdt, S.M., Sacks, F.M., Jukema, J.W., Shepherd, J., Freeman,
D.J., McMahon, A.D., Cambien, F., Nicaud, V., De Grooth, G.J., Tal-
mud, P.J., et al.: Cholesteryl ester transfer protein TaqIB variant, high-
density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of
pravastatin treatment individual patient meta-analysis of 13 677 subjects.
Circulation 111(3), 278–287 (2005)

[BTC87] Boyd, C.R., Tolson, M.A., Copes, W.S.: Evaluating trauma care: the
TRISS method. J. Trauma Acute Care Surg. 27(4), 370–378 (1987)

[BWA+05] Blankstein, R., Ward, R.P., Arnsdorf, M., Jones, B., Lou, Y.-B., Pine,
M.: Female gender is an independent predictor of operative mortality
after coronary artery bypass graft surgery contemporary analysis of 31
midwestern hospitals. Circulation 112(9 suppl), I–323 (2005)

[CCK+13] Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi,
M., Yun, A.: Batch fully homomorphic encryption over the integers.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 20

[CKLY15] Cheon, J.H., Kim, J., Lee, M.S., Yun, A.: CRT-based fully homomorphic
encryption over the integers. Inf. Sci. 310, 149–162 (2015)

[CLT14] Coron, J.-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate
fixes of multilinear maps over the integers. IACR Cryptology ePrint
Archive 2014, p. 975 (2014)

[CMNT11] Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic
encryption over the integers with shorter public keys. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 28

https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-22792-9_28

Privacy-Preserving Computations of Predictive Medical Models 73

[CNT12] Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and
modulus switching for fully homomorphic encryption over the integers.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 446–464. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 27

[CO84] Cox, D.R., Oakes, D.: Analysis of Survival Data, vol. 21. CRC Press,
Boca Raton (1984)

[Cox58] Cox, D.R.: The regression analysis of binary sequences. J. R.
Stat. Soc. Ser. B (Methodol.) 20(2), 215–242 (1958). JSTOR.
www.jstor.org/stable/2983890

[Cox72] Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B 34(2),
187–220 (1972)

[Cox92] Cox, D.R.: Regression models and life-tables. In: Kotz, S., Johnson, N.L.
(eds.) Breakthroughs in Statistics. SSS, pp. 527–541. Springer, New York
(1992). https://doi.org/10.1007/978-1-4612-4380-9 37

[CSVW] Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic
in SHE schemes. Technical report, Cryptology ePrint Archive, Report
2016/250 (2016). http://eprint.iacr.org/2016/250

[DGBL+15] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M.,
Wernsing, J.: Manual for using homomorphic encryption for bioinfor-
matics. Microsoft Research (2015). http://research.microsoft.com/pubs/
258435/ManualHEv2.pdf

[DPMC13] D’Agostino, R.B., Pencina, M.J., Massaro, J.M., Coady, S.: Cardiovascu-
lar disease risk assessment: insights from Framingham. Glob. Heart 8(1),
11–23 (2013)

[DVP+08] D’Agostino, R.B., Vasan, R.S., Pencina, M.J., Wolf, P.A., Cobain, M.,
Massaro, J.M., Kannel, W.B.: General cardiovascular risk profile for use
in primary care the Framingham heart study. Circulation 117(6), 743–
753 (2008)

[FHS] http://www.framinghamheartstudy.org/risk-functions/cardiovascular-
disease/10-year-risk.php

[Fra65] Fraser, W.: A survey of methods of computing minimax and near-
minimax polynomial approximations for functions of a single independent
variable. J. ACM (JACM) 12(3), 295–314 (1965)

[Gen09a] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University (2009). https://crypto.stanford.edu/craig/

[Gen09b] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing-
STOC 2009, pp. 169–169. ACM Press (2009)

[GHS09] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. Cryptology ePrint Archive, Report 2012/099 (2009). https://
eprint.iacr.org/2012/099

[GHS12] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 49

[HS13] Halevi, S., Shoup, V.: Design and implementation of a homomorphic-
encryption library. IBM Research, Manuscript (2013)

[HS14] Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 31

https://doi.org/10.1007/978-3-642-29011-4_27
https://doi.org/10.1007/978-3-642-29011-4_27
https://www.jstor.org/stable/2983890
https://doi.org/10.1007/978-1-4612-4380-9_37
http://eprint.iacr.org/2016/250
http://research.microsoft.com/pubs/258435/ManualHEv2.pdf
http://research.microsoft.com/pubs/258435/ManualHEv2.pdf
http://www.framinghamheartstudy.org/risk-functions/cardiovascular-disease/10-year-risk.php
http://www.framinghamheartstudy.org/risk-functions/cardiovascular-disease/10-year-risk.php
https://crypto.stanford.edu/craig/
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2012/099
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-662-44371-2_31

74 J.H. Cheon et al.

[HS15] Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 25

[KEAS00] Kologlu, M., Elker, D., Altun, H., Sayek, I.: Validation of MPI and PIA
II in two different groups of patients with secondary peritonitis. Hepato-
gastroenterology 48(37), 147–151 (2000)

[LRM] http://www.claudiaflowers.net/rsch8140/logistic regression example.htm
[MR08] Mattner, L., Roos, B.: Maximal probabilities of convolution powers of dis-

crete uniform distributions. Stat. Probab. Lett. 78(17), 2992–2996 (2008)
[NP51] Novodvorskii, E.P., Pinsker, I.S.: The process of equating maxima.

Uspekhi Matematicheskikh Nauk 6(6), 174–181 (1951)
[Rem34] Remez, E.Y.: Sur le calcul effectif des polynomes d’approximation de

tschebyscheff. CR Acad. Sci. Paris 199, 337–340 (1934)
[Riv90] Rivlin, T.-J.: Chebyshev Polynomials. Wiley, New York (1990)
[SV14] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des.

Codes Crypt. 71(1), 57–81 (2014)
[TCK67] Truett, J., Cornfield, J., Kannel, W.: A multivariate analysis of the risk

of coronary heart disease in Framingham. J. Chronic Dis. 20(7), 511–524
(1967)

[TH02] Tabaei, B.P., Herman, W.H.: A multivariate logistic regression equation
to screen for diabetes development and validation. Diab. Care 25(11),
1999–2003 (2002)

[TS14] Tolosie, K., Sharma, M.K.: Application of Cox proportional hazards
model in case of tuberculosis patients in selected Addis Ababa health
centres, Ethiopia. Tuberc. Res. Treat. 2014, 11 p. (2014). https://doi.
org/10.1155/2014/536976. Article ID 536976

[VDGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 2

[Vei60] Veidinger, L.: On the numerical determination of the best approximations
in the Chebyshev sense. Numer. Math. 2(1), 99–105 (1960)

https://doi.org/10.1007/978-3-662-46800-5_25
http://www.claudiaflowers.net/rsch8140/logistic_regression_example.htm
https://doi.org/10.1155/2014/536976
https://doi.org/10.1155/2014/536976
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

Private Outsourced Kriging Interpolation

James Alderman1, Benjamin R. Curtis1(B), Oriol Farràs2, Keith M. Martin1,
and Jordi Ribes-González2

1 Information Security Group, Royal Holloway, University of London, London, UK
{James.Alderman,Benjamin.Curtis.2015,Keith.Martin}@rhul.ac.uk

2 Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
{oriol.farras,jordi.ribes}@urv.cat

Abstract. Kriging is a spatial interpolation algorithm which provides
the best unbiased linear prediction of an observed phenomena by taking a
weighted average of samples within a neighbourhood. It is widely used in
areas such as geo-statistics where, for example, it may be used to predict
the quality of mineral deposits in a location based on previous sample
measurements. Kriging has been identified as a good candidate process to
be outsourced to a cloud service provider, though outsourcing presents an
issue since measurements and predictions may be highly sensitive. We
present a method for the private outsourcing of Kriging interpolation
using a tailored modification of the Kriging algorithm in combination
with homomorphic encryption, allowing crucial information relating to
measurement values to be hidden from the cloud service provider.

1 Introduction

Cost-effective third-party (cloud) service providers facilitate the outsourcing of
large, potentially sensitive, datasets for both storage and processing. In this
paper, we discuss approaches to outsourcing a particular computational process
known as Kriging in an efficient and secure fashion.

Kriging [6,7,9,14] is a well-recognized form of linear interpolation that pre-
dicts the value z∗

0 of some phenomena at an unobserved location (x0, y0) in a
two-dimensional region. The quality of a Kriging prediction relies on some var-
iogram parameters, which reflect the assumption that measurements taken at
nearby locations are more likely to be ‘similar’ than measurements taken far
apart. Such parameters must be carefully selected prior to interpolation. The
prediction is then formed as a weighted sum of prior measurements, where mea-
surements taken close to (x0, y0) are given a greater weight than those far away.
Kriging was designed with geo-statistical applications in mind (e.g. to predict
the best location to mine based on the mineral deposits found at previous bore-
holes within a region), but has also found applications in a variety of settings
including remote sensing, real-estate appraisal and computer simulations.

Kriging has been identified as a good candidate process to be outsourced,
based on the practical and legislative requirements of industrial users (for
instance, [1,2]). Many users may need access to a Kriging prediction service
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 75–90, 2017.
https://doi.org/10.1007/978-3-319-70278-0_5

76 J. Alderman et al.

(indeed legal frameworks may require such data to be shared amongst relevant
authorities [8]). A secured storage server may be preferable to distributing copies
of the entire dataset to each authorised user, especially when datasets are large
and/or user devices are constrained. Further, Kriging might need to be per-
formed over data owned by multiple organizations, with an independent cloud
service provider performing processing duties on behalf of all concerned parties.
Centralized outsourcing also makes sense when remote sensors take frequent
measurements and push the results to a central database.

Consider a client C that owns a Kriging dataset (a set of measurements taken
at various locations) which it wishes to outsource to an honest-but-curious cloud
service provider S. Client C would like to make use of both the storage and
computational power of S to make a Kriging service on its dataset available to
multiple users. Further, other data generating nodes may be authorised by C to
add/remove data (measurements) to/from the outsourced dataset.

A trivial solution consists of encrypting all data using a symmetric encryp-
tion scheme and using the server only for Storage-as-a-Service. To compute a
Kriging prediction, all relevant data is retrieved, decrypted and computed on
locally. Unfortunately, this solution may not be efficient, particularly if client
devices have limited computational power or storage capacity, and require a
high bandwidth during queries. This may be an issue if, for example, a surveyor
in the field requires an on-line Kriging prediction service; mobile data services
may be expensive, intermittently available or slow.

An alternative is to compute the entire Kriging process on encrypted data
by encrypting all data using Fully Homomorphic Encryption (FHE)1. Unfor-
tunately, Kriging involves several computations that are currently challenging
when using FHE, including computing square roots and natural exponentia-
tions. It is possible to outsource the Kriging process and protect all information
using FHE. However this results in prohibitively high encryption and decryp-
tion costs, as well as a large amount of interactivity and local computation,
which may diminish the benefits of cloud computing. Preliminary experiments
using the SEAL library [4] (admittedly without optimization of code or parame-
ter choices) did not yield promising results when computing a Kriging prediction
using a dataset of more than three measurements. Whilst the use of FHE schemes
should be explored further in future work, particularly to reflect advances in FHE
schemes, we show in this work that such schemes are not strictly required in this
setting.

Our proposed solution uses additive homomorphic encryption to outsource
Kriging interpolation efficiently. We make a trade-off by protecting only the
most sensitive parameters. That is, we protect the prior measurement values
in the dataset, the generated Kriging predictions and the variogram parameters
chosen by the client. We do not hide locations (of prior measurements or queries),
noting that prior measurement locations may well be externally observable (e.g.
if measurements come from previous mining operations).

1 In fact, it suffices to consider Somewhat Homomorphic Encryption rather than FHE
as the functionality is fixed and has a reasonably low multiplicative depth.

Private Outsourced Kriging Interpolation 77

Our main contribution is to show that the Kriging process can be adapted
such that the sensitive variogram parameters may be ‘factored out’ from the
online computation by S whilst the remainder of the Kriging computation may
be performed on encrypted measurement values using an additively homomor-
phic encryption scheme. We thus gain a practical, efficient and secure solution
to outsourced, private Kriging. An outline of our protocol is as follows:

1. C uploads an encrypted dataset, comprising n measurements, to S. The cost
of this step is O(n) due to encryption of the measurement values.

2. S prepares the Kriging dataset for future queries. This process comprises
plaintext operations that are also necessary in an unprotected outsourced
Kriging scheme.

3. C makes a query to S requesting a Kriging prediction at a location (x0, y0);
this is done in plaintext with virtually no cost.

4. S computes the interpolation on encrypted measurements. The cost with
respect to an unprotected outsourced Kriging scheme is increased by O(n),
due to operations over encrypted data.

5. C decrypts the result.

Cryptographically-secured Kriging was previously studied in a different set-
ting, where a server owns a dataset and clients may query the dataset at a pre-
viously unsampled location [12]: the queried location and resulting prediction
should be private from the server, whilst the dataset held by the server should
be private from the client. Two solutions are proposed in [12] which, unlike our
solution, support only one variogram model and require high communication
complexity, interactivity and local computation. The first is based on creating
random ‘dummy’ queries to hide the queried location, and using an oblivious
transfer protocol to hide predictions for all but the legitimate query location.
The second solution uses the Paillier encryption scheme in an interactive proto-
col requiring multiple round-trips between client and server. In [13] collaborative
private Kriging was investigated, where users combine their datasets to gain more
accurate Kriging predictions.

The remainder of this paper is structured as follows. In Sect. 2 we describe
the Kriging interpolation process (additional details may be found in Appen-
dix A). In Sect. 3 we define our system model and analyse the required security
properties of each piece of data in our setting. In Sect. 4 we introduce the idea
of a canonical variogram, which we use in our construction to allow the server
to compute a Kriging prediction without relying on the sensitive parameters.
Our construction is given in Sect. 5 and we discuss its performance in Sect. 6.
Finally in Sect. 7 we conclude the article with some final remarks and outline
some potential directions for future work.

2 Kriging Interpolation

This section outlines the background theory of Kriging Interpolation. For more
detail, see AppendixA and [6,7,9,14]. There are many variants of Kriging, but
we focus on the widely used Ordinary Kriging variant.

78 J. Alderman et al.

The Kriging process starts with a set of measurements taken at some loca-
tions in a spatial region, and produces predicted measurements at unsampled
locations. We denote this spatial region by R ⊂ R

2 and denote the locations
of prior measurements by P = (r1, r2, . . . , rn), where each ri = (xi, yi) ∈ R.
The Euclidean distance between two locations ri, rj ∈ R is denoted by d(ri, rj).
We refer to the set of taken measurements by S = (z1, z2, . . . , zn), where zi is
measured at the location ri ∈ P . The Kriging dataset then is the tuple (P, S).

The Kriging process allows a client to query an arbitrary location r0 ∈ R in
order to receive a prediction z∗

0 of the true value z0 that would be measured at
r0. Informally, Kriging consists of three phases:

1. Computing the experimental variogram: one of the underlying assumptions of
the Kriging process is that two measurements of a phenomenon will be similar
if measured in nearby locations. Using the sampled dataset, one can plot
the experimental variogram to show the dependence between measurements
sampled at locations at certain distances h.

2. Fitting a variogram model : unfortunately, the experimental variogram is not
usually sufficient to use in the Kriging prediction directly, since there may
not be sampled data at every required distance. Therefore, one chooses a
parametric variogram model and empirically chooses model parameters to fit
a curve to the points of the experimental variogram.

3. Computing the prediction: using the variogram, one can determine appro-
priate weights for each measurement (based on the distance between each
measurement and the queried location). The Kriging prediction is then com-
puted as a weighted sum of the measured samples.

Let N(h) = {(zi, zj) : d(ri, rj) ∈ (h−Δ,h+Δ)} be the set of all pairs of mea-
surements taken approximately distance h apart2. The experimental variogram
γ∗ plots, for every distance h such that N(h) �= ∅:

γ∗(h) =
1

2N(h)

∑

(zi,zj)∈N(h)

(zi − zj)2.

A suitable variogram function γ : R≥0 → R, in phase 2, must satisfy a set
of conditions [6,7]; the most commonly used models require that γ(0) = 0, that
γ(h) is positive and bounded, and the existence of the limits limh→0+ γ(h) and
limh→∞ γ(h). These models are parametrized by the following three variables:

– The nugget effect η: The limit of γ(h) as h → 0+.
– The sill ν: The limit of γ(h) as h → ∞.
– The range ρ: Controls how fast γ(h) approaches ν as h increases.

Typically, one chooses a variogram model from a set of standard parametric
variogram models, and then fits the model to the experimental variogram by
empirically adjusting the nugget effect, sill and range parameters. A selection of
the most common choices of bounded variogram models are, for h > 0:
2 The approximation tolerance Δ can be increased when the Kriging dataset does not

include enough sample points at a close enough distance.

Private Outsourced Kriging Interpolation 79

– The bounded linear model : γ(h) = ν − (ν − η)
(
1 − h

ρ

)
1(0,ρ)(h).

– The exponential variogram model : γ(h) = ν − (ν − η)e−h/ρ.

– The spherical variogram model : γ(h) = ν − (ν − η)
(
1 − 3h

2ρ + h3

2ρ3

)
1(0,ρ)(h).

– The Gaussian variogram model : γ(h) = ν − (ν − η)e−h2/ρ2
.

where 1I(x) = 1 if x ∈ I, and 1I(x) = 0 otherwise.
Let γ be one of the above variogram models instantiated with empirically

chosen parameters. To construct the best unbiased linear predictor of the phe-
nomenon at a queried location r0 = (x0, y0) ∈ R, we first form the Kriging
matrix K ∈ R

(n+1)×(n+1) with elements:

– Ki,j = γ(d(ri, rj)) for 1 ≤ i, j ≤ n,
– Kn+1,i = Ki,n+1 = 1 for i �= n + 1, and
– Kn+1,n+1 = 0.

Next, define a real vector v ∈ R
n+1 with vi = γ(d(r0, ri)) for 1 ≤ i ≤ n, and

vn+1 = 1. Let λ = (λi)n+1
i=1 satisfy Kλ = v. The (Ordinary) Kriging prediction

z∗
0 of the measured phenomena at the location r0 is computed as the weighted

sum of the sampled measurements, with the weights defined by λ. That is,

z∗
0 =

n∑

i=1

λizi.

The set of linear equations defined by K and v are known as the Normal
Equations. They are derived by imposing that the induced linear predictor is
unbiased (by ensuring that the first n weights sum to one; that is

∑n
i=1 λi = 1)

while minimizing the variance of the induced linear predictor [14].
The resulting minimized variance σ∗2

0 is called the (Ordinary) Kriging vari-
ance, and it is described by the following expression

σ∗2
0 = λn+1 +

n∑

i=1

λiγ(d(r0, ri)).

The Kriging variance allows the construction of confidence intervals for each
prediction and thus describes the error associated to the prediction. For a refer-
ence on the computation of confidence intervals in this context, see [7].

We define a variogram function to be non-degenerate if η �= ν i.e. if γ is
non-constant for h > 0. We restrict our attention to non-degenerate variogram
functions. It is easy to see that using the degenerate variogram (also called
the nugget effect variogram [14]) results in the average Kriging predictor z∗

0 =∑n
i=1 zi/n at all unsampled locations r0 /∈ P , with Kriging variance σ∗2

0 = n+1.

3 Private Outsourced Kriging Interpolation

Consider a system comprising a client C that owns a Kriging dataset (P, S) along
with a choice of variogram γ, a server S that is willing to perform outsourced

80 J. Alderman et al.

Kriging on behalf of the client, and additional users U that are authorised by
C to make Kriging queries to S. Furthermore, there may be additional data
generating nodes (e.g other users or remote sensors etc.) that may update the
outsourced dataset by producing additional measurement data or removing prior
(e.g outdated) measurements. The requirements of each entity are as follows:

– The data owner must choose the variogram to be used and upload a Kriging
dataset, and should be able to update data and request Kriging predictions.

– Data users may request Kriging predictions and update data.
– Data generating nodes should only be able to update data.
– The server should only be able to perform Kriging predictions, and should do

so without learning the data used in the computation. We assume that the
server S is honest-but-curious, i.e. it follows the Kriging protocol (indeed, its
business model may depend on doing so) but may attempt to learn informa-
tion about the outsourced data.

Informally, the protocol runs as follows. The data owner C chooses the vari-
ogram to be used and runs the Outsource algorithm to generate the (protected)
dataset to be sent to the server, as well as ‘keys’ that are issued to authorise enti-
ties to update the outsourced dataset or to perform Kriging queries respectively.
Upon receipt of the protected data, the server may run the Setup algorithm to
process the data and perform any necessary precomputation. After this step, the
system is ready to accept queries. The data owner or an authorised data user (in
possession of the query key) may request a Kriging prediction at a specified loca-
tion by running the Query algorithm to generate a query token Q. This is sent
to the server who runs the Interpolate algorithm using the processed database
to generate an encrypted prediction and an encoding of the Kriging variance
(the estimation of the error in the prediction). An entity authorised to perform
queries may learn the prediction and variance by running the Decrypt algorithm.
To dynamically update the outsourced dataset, an authorised entity (in posses-
sion of the update key) may run the AddRequest algorithm on a specified location
r′ and measurement z′, or the DeleteRequest algorithm on a specified location r.
These algorithms produce an addition token αr′,z′ or deletion token δr respec-
tively that is sent to the server. Upon receipt of such a token, the server may run
the Add or Delete algorithm respectively to update the database accordingly.

For the purposes of this paper, we assume that any user authorised to gen-
erate a Kriging query is also permitted to update the dataset. If this should not
be the case, then the proposed construction can be easily modified to include a
digital signature computed on any addition or deletion token, where the signing
key is contained in the update key (and not the query key). The server should be
trusted to reject any tokens that do not have a valid signature. Then, only users
in possession of the private signature key would be able to update the dataset.

Definition 1. A private outsourced Kriging interpolation scheme comprises the
following algorithms:

– (C,UK,QK) $←− Outsource(1λ, P, S, γ): A probabilistic algorithm run by C
which takes as input a security parameter λ, the Kriging dataset comprising

Private Outsourced Kriging Interpolation 81

measurement locations P and measurement values S, and the chosen vari-
ogram γ. It produces an outsourceable data set C that may be transmitted to
the server, an update key UK that may used to update the outsourced dataset,
and a query key QK which may be used to form Kriging queries.

– DB ← Setup(C): A deterministic algorithm run by S which takes as input the
outsourceable dataset C. This algorithm enables S to perform any necessary
processing that will enable it to compute Kriging predictions, and produces a
processed outsourced dataset DB.

– Q
$←− Query(r0, QK): A probabilistic algorithm run by C or a data user in

U which takes as input a location r0 = (x0, y0) ∈ R for which a Kriging
prediction should be computed, and the query key QK. It produces a query
token Q which is sent to S.

– (Z̃0, σ̃0
∗2) ← Interpolate(Q,DB): A deterministic algorithm run by S that,

given a query token Q and the database DB, returns an encrypted Kriging
interpolation Z̃0 and the partially computed Kriging variance σ̃0

∗2.
– (z∗

0 , σ∗2
0) ← Decrypt(Z̃0, σ̃0

∗2, QK): A deterministic algorithm run by C or
a user in U that takes the Kriging results Z̃0 and σ̃0

∗2 from the server and
the query key QK, and outputs the Kriging prediction z∗

0 and the Kriging
variance σ∗2

0 at the queried location.
– αr′,z′ ← AddRequest(r′, z′, UK): A deterministic algorithm run by C, a data

user in U or a data generating node, which takes a location r′, a measurement
value z′ and the update key UK, and outputs an addition token αr′,z′ .

– DB′ ← Add(DB, αr′,z′,): A deterministic algorithm run by S which takes the
current outsourced database DB and an addition token αr′,z′, and outputs an
updated database DB′ representing the Kriging dataset (P ∪ {r′}, S ∪ {z′}).

– δr ← DeleteRequest(r, UK): A deterministic algorithm run by C, a data user
in U or a data generating node. The algorithm takes as input a location r ∈ P
and the update key UK and outputs a deletion token δr.

– DB′ ← Delete(DB, δr): A deterministic algorithm by the server which takes as
input the current database DB and a deletion token δr and outputs an updated
database DB′ representing the Kriging dataset (P \{r}, S \{zr}) where zr ∈ S
is the measurement corresponding to location r ∈ P in DB.

We now analyse the security requirements of each component within a Krig-
ing system; Table 1 summarizes the analysis:

– The measurement values zi ∈ S are highly sensitive and business-critical and
must be protected at all times.

– In the current work, we consider the coordinates ri ∈ P of previous mea-
surements to not be sensitive. This is reasonable, since in some applications
they may be externally observable, for instance if they are the locations of
previous mining activity.

– The queried location r0 at which a new prediction should be computed may
reveal areas of particular interest to the user. The sensitivity of this relies
on the setting and individual user requirements. However, in practice, Krig-
ing queries are often made at every location within a region to produce a

82 J. Alderman et al.

heat map of a phenomenon, which may limit the sensitivity of individual
query locations. Further, the basic assumption of Kriging is that the qual-
ity of prediction degrades with distance; thus, the best Kriging results will
be obtained when the queried location is broadly within the region of prior
(observed) measurements.

– The computed prediction z∗
0 is highly sensitive as it may form the basis of

future decisions and may be business-critical, and must be protected.
– The choice of variogram model (without the variogram parameters) may

reveal something about the overall trend of the spatial dependencies of the
measurements. We assume that this is not particularly sensitive information.

– The range parameter ρ of the variogram is a constant scaling of the region R
denoting the inter-measurement distance h at which the spatial dependency
becomes negligible. For distances h > ρ, the variogram approaches the vari-
ance of the measurements [14], which is represented by the sill ν.

The nugget effect η reveals the spatial dependency at very small distances.
In this work, we assume that the range is not sensitive (as it merely scales
the region R), but that information revealed by the nugget and sill may be
sensitive. Even in applications where this direct information on the variance
and spatial dependency of measurements is deemed non-sensitive, it may be
the case that the variogram parameters are commercially sensitive. These
parameters must be chosen empirically to best fit the experimental data, a
process which may be time-consuming, and the quality of predictions depends
on how well the variogram matches the experimental variogram.

Table 1. Data protection offered by our private outsourced Kriging scheme.

Data ri zi (x0, y0) z∗
0 γ model ρ ν η

Protection ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

4 Our Techniques

In this section we introduce the main concept used in our construction, namely
the canonical variogram. We then show how to factor out the variogram para-
meters in the Normal equations which, ultimately, allows us to remove these
parameters from the outsourced dataset and use them only to recover the final
prediction on the client side.

The crux of our solution for the private outsourcing of Kriging interpolation
is to observe how the Kriging solution varies according to the variogram nugget
effect η, the sill ν, and range ρ in the non-degenerate case. We define a canonical
variogram for each variogram model by arbitrarily fixing the parameters η =
ρ = 1 and ν = 0, although our results clearly translate to other choices.

Since the Kriging process is inherently linear, we show how to ‘factor out’ the
sensitive parameters η and ν from the variogram to leave just the canonical var-
iogram. Using this result and an additively homomorphic scheme, an untrusted

Private Outsourced Kriging Interpolation 83

server can compute a related Kriging prediction and variance without any knowl-
edge of η, ν and the actual measurements. The variogram parameters can then
be efficiently re-added by the client locally to compute the final prediction.

Definition 2 (Canonical variogram). Let γ(h) be a non-degenerate vari-
ogram function with nugget effect η, sill ν and range ρ. We define its associated
canonical variogram as the function γ̃ : R≥0 → R satisfying γ̃(0) = 0 and

γ̃(h) = − 1
ν − η

γ(ρh) +
ν

ν − η
for h > 0. (1)

Note that for any non-degenerate variogram function coming from the para-
metric variogram models defined in Sect. 2, the canonical variogram depends
only on the considered model itself and not on any parameters.

Now, given a Kriging dataset (P, S) of n measurements, a query position
r0 /∈ P and a variogram function γ with nugget effect η, sill ν and range ρ,
let Kλ = v be the corresponding Normal equations as defined in Sect. 2. Our
main result in this stage is that it suffices to consider a canonical version of the
Normal equations that depends only on the chosen variogram model, as well as
P and the range parameter ρ of γ.

Definition 3. We define the canonical Normal equations as the linear system
obtained from the Normal equations Kλ = v by replacing

– every ri ∈ P by ri/ρ,
– the query position r0 by r0/ρ,
– the variogram γ(h) by the canonical variogram γ̃(h),

and we denote the canonical Normal equations by K̃λ̃ = ṽ.

Note that, since the canonical variogram is parameterless, the canonical Nor-
mal equations involve only the variogram model and the locations in P scaled
by the inverse of the range parameter ρ. We make extensive use of this obser-
vation in our construction. Indeed, this observation allows us to take advantage
of the linearity of the Kriging predictor, in order to protect the measurements
and interpolation value, while hiding the sill and nugget parameters ν, η from
the server by storing them locally.

The solution to the canonical Normal equations can be described as follows:

Proposition 1. Let K,K ′ ∈ R
(n+1)×(n+1) be real matrices, and let v, v′ ∈ R

n+1

be real vectors such that:

– there exist a, b ∈ R such that K ′
i,j = aKi,j + b and v′

i = avi + b for all
1 ≤ i, j ≤ n,

– Ki,n+1 = Kn+1,i = K ′
i,n+1 = K ′

n+1,i = vn+1 = v′
n+1 = 1 for all 1 ≤ i ≤ n,

– Kn+1,n+1 = K ′
n+1,n+1 = 0.

Then, if λ ∈ R
n+1 satisfies Kλ = v, the vector λ′ ∈ R

n+1 defined by

λ′
i = λi for all 1 ≤ i ≤ n,

λ′
n+1 = aλn+1

satisfies K ′λ′ = v′.

84 J. Alderman et al.

Proof. Note that (K ′λ′)i = avi + b
∑n

i=1 λi for 1 ≤ i ≤ n, and (K ′λ′)n+1 = 1.
Since

∑n
i=1 λi = 1 (by the last equation of the system Kλ = v), the result

follows. ��
This result extends an observation by [7], which states that summing a con-

stant to the variogram does not alter the solutions of the Normal equations,
and that such a transformation of the variogram may sometimes be necessary in
order to obtain a numerically stable Kriging prediction.

We apply this proposition to the Normal equations with a = −1/(ν − η) and
b = ν/(ν − η), and consider the canonical Normal equations. By the definitions
of the Kriging prediction and the Kriging variance in Sect. 2, we directly obtain
the following Corollary.

Corollary 1. Let z∗
0 and z̃0

∗ be the Kriging predictions computed from the Nor-
mal and the canonical Normal equations described above, respectively. Denote by
σ∗2
0 and σ̃0

∗2 the Kriging variance associated to each of the predictors. Then

z̃0
∗ = z∗

0 and σ̃0
∗2 = − 1

ν − η
σ∗2
0 +

ν

ν − η
.

Therefore, in case that the employed variogram is non-degenerate, the Krig-
ing prediction is independent of the sill ν and nugget η parameters of the var-
iogram, whilst the range parameter ρ scales positions. We also see that, when
applying a linear transformation to the variogram, the Kriging variance of the
obtained Kriging predictor varies according to the same transformation.

5 Our Construction

We now outline the operation of each of the algorithms in Definition 1. Let H =
(H.Gen,H.Enc,H.Dec) be an IND-CPA-secure additive homomorphic encryption
scheme, such as the Paillier encryption scheme [11]. Then:

– (C,UK,QK) $←− Outsource(1λ, P, S, γ): If γ is a degenerate variogram func-
tion, halt and return ⊥; in this case, our protocol fails. However, if γ is
degenerate, the variogram is constant (the so-called ‘nugget effect model’)
and models a purely random variable with no spatial correlation. Hence it
is particularly easy to compute predictions in this case: the prediction is
z∗
0 =

∑
zi/n for r0 �∈ P and the variance is σ∗2

0 = n + 1.
Otherwise, generate a key-pair for the homomorphic encryption scheme:

(pk, sk) $←− H.Gen(1λ).

Recall that P ⊆ R
2 is the ordered set of locations (ri)n

i=1 and that S ⊆ R

is the ordered set of measurements (zi)n
i=1. Recall also that the variogram γ

comprises three parameters: the nugget η, the sill ν and the range ρ. Let γ̃
be the canonical variogram associated to γ, as defined in Sect. 4. Define

UK = (pk, ρ) and QK = (sk, η, ν, ρ).

Private Outsourced Kriging Interpolation 85

To account for the factor of ρ in the input to γ in Eq. 1, compute

P̃ = ((xi/ρ, yi/ρ))n
i=1.

Finally, encrypt each measurement in S and define the ordered set

Z = (H.Encpk(zi))n
i=1.

Output C = (P̃ ,Z, γ̃), along with UK and QK.
– DB ← Setup(C): Instantiate the matrix K̃ from the canonical Normal equa-

tions using positions in r′
i ∈ P̃ and the canonical variogram function γ̃:

• K̃i,j = γ̃(d(r′
i, r

′
j)) for 1 ≤ i, j ≤ n,

• K̃n+1,i = K̃i,n+1 = 1 for i �= n + 1, and
• K̃n+1,n+1 = 0.

Return DB = (K̃, C).

– Q
$←− Query(r0, QK): Let r0 = (x0, y0) and, recalling that ρ is contained

within QK, return Q = (x0/ρ, y0/ρ).
– (Z̃0, σ̃0

∗2) ← Interpolate(Q,DB): Recall that C = (P̃ ,Z, γ̃). If Q ∈ P̃ , then the
exact measurement is contained in the outsourced dataset and no prediction
is required. Let j be the index such that Q = rj , and return (Zj ,⊥), where
⊥ is a distinguished symbol denoting that the prediction is exact.
Otherwise, compute the vector ṽ from the canonical Normal equations using
the locations r′

i ∈ P̃ , the query position Q and the canonical variogram γ̃:
• vi = γ̃(d(Q, r′

i)) for 1 ≤ i ≤ n, and
• vn+1 = 1.

Compute the solution λ̃ to the canonical Normal equation K̃λ̃ = ṽ; this step
essentially computes the Kriging coefficients λ using the canonical variogram
and the scaled locations without requiring the parameters of the variogram.
Then, using the homomorphic property of the encryption, compute:

Z̃0 =
n∑

i=1

λ̃iZi and σ̃0
∗2 = λ̃n+1 +

n∑

i=1

λ̃iγ̃(Q, r′
i).

Return the encrypted prediction Z̃0 and the partially computed Kriging vari-
ance (error estimation) σ̃0

∗2.
– (z∗

0 , σ∗2
0) ← Decrypt(Z̃0, σ̃0

∗2, QK): First decrypt the Kriging prediction:

z̃0
∗ = H.Decsk(Z̃0),

where sk is contained within QK. Then, if σ̃0
∗2 =⊥, set σ∗2

0 = 0. Else,
compute the Kriging variance

σ∗2
0 = ν − (ν − η)σ̃0

∗2.

This final step essentially adds back in the parameters of the variogram, which
were removed for outsourcing, using the result from Corollary 1.

86 J. Alderman et al.

– αr′,z′ ← AddRequest(r′, z′, UK): Let ra = r′
ρ and compute the ciphertext

Za = H.Encpk(z′),

where ρ and pk are contained within UK. Output the addition token

αr′,z′ = (ra, Za).

– DB′ ← Add(DB, αr′,z′): Recall that αr′,z′ = (ra, Za). Compute the updated
dataset: if ra ∈ P̃ then let j be the index such that rj = ra and modify Zj ∈ Z
to be Za. Otherwise, set C ′ = (P̃ ∪ {ra},Z ∪ {Za}, γ̃). Return the output of
Setup(C ′).

– δr ← DeleteRequest(r, UK): Return δr = r/ρ.
– DB′ ← Delete(DB, δr): If δr /∈ P̃ , return DB as there is nothing to remove.

Otherwise, let j be the index such that r = rj in P̃ . Compute the updated
dataset C ′ = (P̃ \ {rj},Z \ {Zj}, γ̃) and return the output of Setup(C ′).

6 Discussion

The correctness of the scheme is immediate from Corollary 1 as well as the
correctness and homomorphic properties of the encryption scheme H. These
homomorphic properties enable addition and scalar multiplication of cipher-
texts, whilst ensuring that the results decrypt appropriately. Corollary 1 shows
that the Kriging prediction, as well as the Kriging variance, can be computed
by applying a linear transformation to the result computed using the canonical
(parameterless) variogram. Correctness of the updates is apparent because the
addition and deletion tokens format the data in the same way as the original
dataset. Since the server is trusted to act honestly (but curiously), it shall mod-
ify the dataset correctly; the remainder of the update algorithms then simulate
a new setup procedure running Setup on a new Kriging dataset from Outsource.

In terms of security, it is easy to see that the measurement values are always
in encrypted form whilst outsourced, and that the leakage is bounded by the var-
iogram model as well as both the queried and observed locations (scaled by the
inverse of range parameter ρ). Thus, assuming no collusion between the server
and users, the data is confidential from the server. Furthermore, the homomor-
phic and security properties of the encryption scheme permit the computation to
be performed on the measurements whilst they are encrypted; at no point dur-
ing the computation is the data revealed. The security of the encryption scheme
requires each ciphertext to be indistinguishable from a random number, whilst
the final prediction Z̃0 computed by the server comprises a weighted sum of such
pseudorandom numbers. Thus, Z̃0 is a valid ciphertext and is indistinguishable
from random, and hence the server cannot learn the prediction from this value.

It is also clear that neither the variogram parameters η and ν, nor any values
computed from them, are ever revealed to the server. The final parameter of the
variogram, the range ρ, is never explicitly given to the server. However, the server
does learn the coordinates of measurements scaled by ρ. Hence, the range could

Private Outsourced Kriging Interpolation 87

be revealed if the server has existing knowledge of the measurement locations. Of
the three variogram parameters, we believe that the range is the least sensitive—
it reveals how quickly the variogram approaches the sill (i.e the distance at which
the spatial correlation between measurements becomes negligible) but does not
reveal anything relating to the measurement values themselves.

Whilst the queried location is revealed in the plain to the server, we note
that the mechanism of Tugrul and Polat [12] may easily be used to gain a weak
form of secrecy: during the Query algorithm, the party carrying out the query
may choose q − 1 additional locations from the region, and scale each by ρ. The
query token then comprises q scaled locations, randomly permuted. The server
must perform Interpolate for each location, and the client may discard all results
except the one it is interested in. Unlike [12], we do not require an oblivious
transfer protocol since the querier is authorised to learn as many queries on the
dataset as it wishes. However, as in [12], the server may guess the location of
interest with probability 1/q (but cannot learn the prediction at this location).

Data generating nodes cannot learn Kriging predictions as they do not have
the decryption key and H is assumed to be IND-CPA secure.

Regarding the performance evaluation of our scheme, we have implemented
our scheme in Python 3.4.3 using the PHE library [3] to provide the Paillier
encryption scheme. The implementation is intended as a proof of concept to
evaluate the efficiency of the proposed solution. The encryption scheme has not
been further optimised beyond that provided by default in the PHE library,
and does not use the provided countermeasures to avoid leaking the exponent
of floating point numbers. We remark that implementations of Paillier typically
manage issues related to fixed-point arithmetic and overflows in a transparent
manner; it is not the aim of this article to discuss such issues. All code is executed
locally on a t2.micro Amazon EC2 instance with a 2.5 GHz Intel Xeon processor
and 1GB memory running Ubuntu 14.04.4; in practice, one would expect the
server to have a better specification. All timings are averaged over 30 iterations,
each on a new randomly generated dataset.

Figures 1a and b give some simple timing results using our construction;
Fig. 1b shows the per-algorithm costs (excluding the update algorithms). The
cost of the Outsource algorithm dominates all others (due to the cost of n
encryptions); hence, for clarity, Fig. 1a shows the same results with the exclu-
sion of the Outsource algorithm. It can be seen that, with the exception of the
(high) one-time cost of Outsource (which may be amortised over many queries),
the remaining client-side processes are very efficient. The server must perform
quadratic work to perform Setup, but this will be required relatively rarely—
during initial setup and when the outsourced dataset is updated. The online
workload of the client is very low, whilst the server’s online work is linear in the
size of the dataset and greater than the client’s workload (making outsourcing
worthwhile). We believe that these experiments are sufficient to demonstrate
the performance and scalability of our solution; to our knowledge, the range of
the number of measurements is reasonable compared to what may be used in

88 J. Alderman et al.

Fig. 1. Graphs showing the timing costs of each algorithm.

practice—for example, the well-known Meuse dataset [5] (often used to illustrate
the Kriging process) comprises 155 measurements.

7 Conclusion

The Kriging interpolation technique describes the best unbiased linear predic-
tion of an observed phenomena in a geographical region, based on a set of mea-
surements, and it is widely used in a wide range of applications. In this article
we present a construction that allows for Kriging interpolation to be securely
outsourced to a cloud service provider, such that the measurement values and
sensitive variogram parameters are withheld from the server.

The proposed construction may be extended in several ways. For example,
it would be interesting to protect locations. This can be easily achieved if we
increased interactivity, communication complexity and client computation in the
query process. However, if most computations should be done by the server, it
seems necessary to efficiently compute square roots and natural exponentials over
encrypted data which, to the best of our knowledge, remains an open problem.
Finally, although we have focused on Kriging due to its current practical appli-
cations, it would be interesting to consider whether the techniques presented
here could be applied in similar problems such as outsourced polynomial curve
fitting and regression techniques such as linear or generalized least squares.

Acknowledgements. Oriol Farràs and Jordi Ribes-González were supported by the
European Comission through H2020-ICT-2014-1-644024 “CLARUS” and H2020-DS-
2015-1-700540 “CANVAS”, by the Government of Spain through TIN2014-57364-C2-1-
R “SmartGlacis” and TIN2016-80250-R “Sec-MCloud”, by the Government of Catalo-
nia through Grant 2014 SGR 537, and by COST Action IC1306. James Alderman was
supported by the European Comission through H2020-ICT-2014-1-644024 “CLARUS”.
Benjamin R. Curtis was supported by the UK EPSRC through EP/K035584/1 “Centre
for Doctoral Training in Cyber Security at Royal Holloway”.

Private Outsourced Kriging Interpolation 89

A Additional Details on Kriging

In order to apply the Kriging interpolation technique, the observed phenomena
is viewed as a realization of a random field which satisfies certain properties
related to the observed measurements. A random field generalizes the notion of
stochastic process, by allowing the underlying parameter to take values other
than real numbers. In the case of spatial interpolation, a random field Z is
defined as a collection of real-valued random variables {Z(r)}r∈R, all defined in
the same probability space, and indexed by locations r in a fixed region R ⊆ R

2.
Given a set of n samples S taken at positions P , every sample zi ∈ S can

be viewed as a realization of the random variable Z(ri), indexed by the position
ri ∈ P in a random field Z. Given such realizations, a linear predictor Z∗ of the
random field Z is defined as a random field of the form

Z∗(r) = λ0 +
n∑

i=1

λiZ(ri), where λi ∈ R.

We say a linear predictor Z∗ is unbiased if the expectation E(Z(r) − Z∗(r)) = 0
for all r ∈ R. Moreover, we say that a linear predictor Z∗ is best or optimal if,
for every location r ∈ P , it minimizes the prediction variance Var(Z(r)−Z∗(r))
among all unbiased linear predictors.

The Kriging interpolation technique aims to find a best unbiased linear pre-
dictor for the random field Z derived from a Kriging dataset (P, S). In this sense,
note that Kriging deals with the same problem as linear least squares in random
fields. However, in order to derive such a predictor from sampled values, addi-
tional assumptions are usually made on the stationarity of the random field. The
most widely applied Kriging process is Ordinary Kriging. This form of Kriging
stems from two stationarity assumptions. The second-order stationarity assump-
tion states that the first and second-order moments of the random variables in
the random field are shift invariant:

Definition 4. A random field Z parametrized by elements of a region R ⊆ R
2

is defined to be second-order stationary if the following conditions are satisfied:

– The mean E(Z(r)) does not depend on r ∈ R, and
– The covariance Cov(Z(r), Z(r+h)) is a function of only the separating vector

h for every r, r + h ∈ R.

The intrinsic stationarity assumption considers variance of increments
instead of covariance:

Definition 5. A random field Z parametrized by elements of a region R ⊆ R
2

is defined to be intrinsic stationary if the following conditions are satisfied:

– The mean E(Z(r)) does not depend on r ∈ R, and
– The variance of the increments Var(Z(r+h)−Z(r)) is a function of only the

separating vector h for every r, r + h ∈ R.

90 J. Alderman et al.

Second-order stationarity implies intrinsic stationarity [14] and thus we
restrict our attention to the more general intrinsic stationarity assumption. Our
techniques are, however, applicable to Ordinary Kriging in general.

The intrinsic stationarity assumption naturally leads to the notion of theoret-
ical variogram [7,10] which models the spatial dependency between the random
variables Z(r). Given an intrinsic stationary random field Z, the theoretical var-
iogram γ̂ : R → R is defined as the function γ̂(h) = Var(Z(r+h)−Z(r)). Under
the intrinsic assumption, γ̂(h) depends only on the norm of h [14]. Hence, we
may view γ̂ as a function defined over positive real numbers.

References

1. CLARUS: User centered privacy and security in the cloud. http://clarussecure.eu.
Accessed 11 Dec 2016

2. InGeoCloudS: inspired geo-data cloud services. https://www.ingeoclouds.eu/.
Accessed 11 Dec 2016

3. python-paillier: a library for partially homomorphic encryption in python,
Data61|CSIRO. https://github.com/NICTA/python-paillier. Accessed 11 Dec
2016

4. SEAL: Simple encrypted arithmetic library, cryptography research group, microsoft
research. http://sealcrypto.codeplex.com/. Accessed 11 Dec 2016

5. Burrough, P.A., McDonnell, R., McDonnell, R.A., Lloyd, C.D.: Principles of Geo-
graphical Information Systems. Oxford University Press, Oxford (2015)

6. Chilès, J.-P., Delfiner, P.: Multivariate methods. In: Geostatistics: Modeling Spatial
Uncertainty, Second Edn., pp. 299–385 (1999)

7. Cressie, N.: Statistics for spatial data. Terra Nova 4(5), 613–617 (1992)
8. EU Parliament: Directive 2007/2/EC of the European Parliament and of the Coun-

cil of 14 establishing an infrastructure for spatial information in the European
Community (INSPIRE). Off. J. Eur. Union 50(L108) (2007)

9. Krige, D.: A statistical approach to some basic mine valuation problems on the
Witwatersrand. J. South Afr. Inst. Min. Metall. 52(6), 119–139 (1951)

10. Matheron, G.: Traité de géostatistique appliquée. Mémoires du Bureau de
Recherches Géologiques et Minières. Éditions Technip (1962–1963)

11. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

12. Tugrul, B., Polat, H.: Estimating kriging-based predictions with privacy. Int. J.
Innov. Comput. Inf. Control (2013, accepted for publication)

13. Tugrul, B., Polat, H.: Privacy-preserving kriging interpolation on partitioned data.
Knowl.-Based Syst. 62, 38–46 (2014)

14. Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications.
Springer Science & Business Media, Berlin (2013)

http://clarussecure.eu
https://www.ingeoclouds.eu/
https://github.com/NICTA/python-paillier
http://sealcrypto.codeplex.com/
https://doi.org/10.1007/3-540-48910-X_16

An Analysis of FV Parameters Impact Towards
Its Hardware Acceleration

Joël Cathébras(B), Alexandre Carbon, Renaud Sirdey, and Nicolas Ventroux

CEA, LIST, 91191 Gif-sur-Yvette, France
{joel.cathebras,alexandre.carbon,renaud.sirdey,nicolas.ventroux}@cea.fr

Abstract. The development of cloud computing services is restrained
by privacy concerns. Centralized medical services for instance, require
a guarantee of confidentiality when using outsourced computation plat-
forms. Fully Homomorphic Encryption is an intuitive solution to address
such issue, but until 2009, existing schemes were only able to evaluate a
reduced number of operations (Partially Homomorphic Encryption). In
2009, C. Gentry proposed a blueprint to construct FHE schemes from
SHE schemes. However, it was not practical due to the huge data size
overhead and the exponential noise growth of the initial SHE. Since then,
major improvements have been made over SHE schemes and their noise
management, and resulting schemes, like BGV and FV, allow to foresee
small applications.

Besides scheme improvements, new practical approaches were pro-
posed to bring homomorphic encryption closer to practice. The IV -based
stream cipher trans-ciphering approach brought by Canteaut et al. in
2015 reduces the on-line latency of the trans-ciphering process to a simple
homomorphic addition. The homomorphic evaluation of stream ciphers,
that produces the trans-ciphering keystream, could be computed in an
off-line phase, resulting in an almost transparent trans-ciphering process
from the user point of view. This approach combined with hardware
accelerations could bring homomorphic encryption closer to practice.

This paper deals the choice of FV parameters for efficient implemen-
tation of this scheme in the light of related works’ common approaches.
At first sight, using large polynomial degree to reduce the coefficients
size seemed to be advantageous, but further observations contradict it.
Large polynomial degrees imply larger ciphertexts and more complex
implementations, but smaller ones imply more primes to find for CRT
polynomial representation. The result of this preliminary work for the
choice of an adequate hardware target motivates the choice of small
degree polynomials rather than small coefficients for the FV scheme.

Keywords: Homomorphic evaluation · FV parameters · Chinese
Remainder Theorem · Number Theorical Transform

1 Introduction

Privacy is one of the main concerns regarding the development of cloud services
in the context of applications handling sensible data. The data privacy on remote
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 91–106, 2017.
https://doi.org/10.1007/978-3-319-70278-0_6

92 J. Cathébras et al.

servers is guaranteed with standard cryptography. The issue comes up during
the exploitation of these data directly on the outsourced servers. Since 2009 and
the thesis of Gentry [15], the concept of fully homomorphic encryption intro-
duced by Rivest et al. in 1978 [22], is not a conjecture any more. Homomorphic
encryption schemes guarantee the equivalence of an operation between the clear
data and the encrypted data algebraic systems. A fully homomorphic encryption
scheme guarantees that an homomorphic equivalent can be found for any func-
tion considered over the clear data domain. Homomorphic encryption schemes
are emerging along with practical approaches, but the lack of performances of
software implementations makes them difficult to use in real life applications.
Hardware optimizations for efficient homomorphic encryption should then be
explored.

Partial Homomorphic Encryption schemes are able to homomorphically eval-
uate additions (e.g. Paillier) or multiplications (e.g. RSA). Problems arise to
design an homomorphic encryption scheme able to evaluate both additions and
multiplications. Indeed, in homomorphic cryptography a noise is added to the
encrypted data for security reasons (non-deterministic encryption). If it is possi-
ble to construct Somewhat Homomorphic Encryption schemes (that could eval-
uate both additions and multiplications) the added noise results in a large data
size expansion between clear and encrypted data. Moreover, the level of noise
grows with operations in the encrypted domain, and especially with multipli-
cations. At a certain level, the decryption primitive does not retrieve the clear
data correctly.

Gentry’s blueprint to construct FHE schemes is based on the bootstrapping
procedure: an SHE scheme that can homomorphically evaluate its own decryp-
tion circuit and at least an other operation, becomes a FHE scheme. The first
implementations of the bootstrapping procedure were impractical due to the
SHE exponential noise growth, their complex decryption circuit, and their large
data size expansion [12,24]. Numerous works proposed new schemes introducing
different mechanisms from sub-exponential noise growth [4,13] to constant noise
growth [3,11]. Despite the improved performances, the bootstrapping procedure
is still too complex for them to be practical. Nevertheless these new schemes lead
to a compromise: they can evaluate functions with a multiplicative depth under
a practical limit (20 to 30) but become impractical beyond it. The FV [11] and
BGV [13] schemes are the most accepted today.

In 2013, Gentry et al. proposed a new approach revisiting the bootstrapping
procedure to construct FHE schemes [14]. This work is followed by promising
results for fast bootstrapping primitives [7,10]. They open interesting perspec-
tives in the definition of efficient FHE systems.

The important data size expansion inherent to homomorphic encryption
implies, among other things, an overhead problem in communication costs. To
solve this problem, Naehrig et al. [17] proposed a practical approach known as
trans-ciphering: the owner encrypts its data under a standard symmetric encryp-
tion scheme, without data size expansion, and sends them to the server along
with an homomorphic encryption of the symmetric key. Once the server possesses

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration 93

the encrypted data, the decryption function of the symmetric scheme is homo-
morphically evaluated by the FHE, SHE or L-FHE scheme, resulting in homo-
morphic encrypted data. This approach has been improved by Canteaut et al. [5].
They proposed the use of lightweight additive IV-based stream ciphers as the
underlying symmetric schemes. They have shown that using their approach, the
trans-ciphering procedure’s performance is then dependent of an intensive off-
line computation part, reducing the on-line part of trans-ciphering to a simple
homomorphic addition. This approach solves only the upward communication
overhead as the trans-ciphering is a one-way procedure. Still, it improves the
practicability of homomorphic encryption but performances are still not suffi-
cient for software only implementations. For example, it takes ∼35 min on a
mid-end 48-core server to generate 57 homomorphic keystream elements that
could handle up to 7 additional ciphertext multiplication levels [5].

The SHE scheme FV [11] handles polynomials with modular integer coeffi-
cients (500 to 5000 bits) modulo a fixed degree polynomial which is in practice
a cyclotomic polynomial of rather large degree (128 to 32768). Manipulation
of such polynomials is expensive, especially during multiplications. This issue
is already addressed with the hardware optimization of lattice based cryptog-
raphy [21]. The opportunity of lattice-based homomorphic encryption helps to
extend the previous work to the context of homomorphic encryption, and in
particular of homomorphic evaluation [9,19,23].

In lattice-based cryptography, the parameter selection is difficult in practice.
To the best of our knowledge, most of works related to the hardware accelera-
tion of homomorphic primitives tend to select previously used parameter sets.
We assume it is done for comparison purposes, but the choice of parameters
could have a significant impact on the correct exploitation of available hardware
resources. It motivates the work presented in this paper which makes an analysis
of the FV parameters for adequacy of hardware architecture and algorithm.

In this paper, we exploit the distinction between the application parameters
and the implementation parameters of the FV scheme. When the security and
multiplicative depth requirements are fixed (application parameters), we still
have one degree of freedom to choose the cyclotomic polynomial’s degree N
and the size of the modulus q. By examining the algorithms of recent hardware
acceleration work, both these parameters impact the resulting implementation
complexities.

In a first section, the mathematical notations and the FV evaluation primi-
tives are presented. The second section presents the profiling results that moti-
vate focus on polynomial multiplications, and then describes the approaches
proposed in hardware optimization studies to implement efficiently these opera-
tions. The third section derives from the inter-dependency of FV parameters the
impacts of the degree N and the size of the modulus q on the implementation
strategy. Finally, the fourth section concludes this paper.

94 J. Cathébras et al.

2 Preliminaries on the FV Scheme

This section has two objectives, first to get used to the notations, and sec-
ond to make the distinction between a ciphertext multiplication and polynomial
multiplications occurring in ciphertext multiplication and ciphertext relineari-
sation. In a first subsection the mathematical representation used in this paper
are presented, and the second subsection reminds the FV primitives. The third
subsection presents the set of FV parameters that interests us.

2.1 Mathematical Notations

Algebraic Structure: The cyclotomic polynomial of order m is denoted
Φm(X) and φ is the function. Rm = Z[X]/(Φm(X)) refers to the ring of the
polynomial classes of degree less than N = φ(m) with integer coefficients. In
practice, m is selected as power of 2 and it follows that Φm(X) = XN + 1 and
N = m/2.

Elements of the ring Rm are noted in lowercase bold (e.g. a ∈ Rm) and their
coefficients in indexed lowercase (e.g. ai ∀ i ∈ (0, 1, ..., N − 1)). The notation a is
used indifferently for the polynomial or its N -point sequence of coefficients.

For an integer q > 1, Zq is the set of integers [−q/2, q/2). The unique integer
in Zq such that [a]q = a mod q, ∀ a ∈ Z is noted [a]q. By extension, Rm,q is the
set of polynomials in Rm with coefficients in Zq. For a polynomial a ∈ Rm, [a]q
is the polynomial in Rm,q obtained by applying [·]q to all its coefficients. The
notation [a]q is used indifferently for the polynomial or its N -point sequence of
coefficients.

Plaintext and Ciphertext Spaces: The plaintext space of the FV scheme is
defined with respect to an integer t > 1, and it is the set of polynomial in Rm,t

(e.g. t = 2).
The ciphertext space is also defined with respect to an integer q > 1. A

ciphertext is a pair of polynomials in Rm,q. Let c be a ciphertext, its canonical
form is noted c = (c0, c1) ∈ R2

m,q. After multiplications, ciphertexts are in a
non-canonical form that requires a relinearisation procedure. Such ciphertexts
are noted c̃ with c̃ = (c̃0, c̃1, c̃2) ∈ R3

m,q.

2.2 FV Primitives

In the context of stream cipher trans-ciphering, both the off-line part and on-
line part are based on homomorphic evaluations. During the off-line phase, the
homomorphic scheme evaluates the IV-based stream cipher, and during the on-
line phase it evaluates the application required by the user. This paper focuses on
the FV primitives specific to homomorphic evaluation. A complete presentation
of the scheme could be found in the original work [11].

The choice is made to work with the second version of the relinearisation
procedure presented in the original work. This version makes the relinearisation

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration 95

primitive close to the ciphertext multiplication primitive. It is motivated by
the intuition that if a hardware platform computes ciphertext multiplications
efficiently, it conducts also efficient relinearisations.

This relinearisation primitive requires the definition of an integer p > 1
(usually p ≥ q3) and a relinearisation key which is a pair of polynomials in
Rm,p·q. We note rlk = (rlk0, rlk1) ∈ R2

m,p·q the relinearisation key of the FV
instance.

Let a = (a0,a1) ∈ R2
m,q and b = (b0,b1) ∈ R2

m,q be two ciphertexts of
the same FV instance. We note by × (resp. +) the polynomial multiplication
(resp. addition) over Rm. The scalar multiplication is noted · and the scale-and-
center-rounding operation is represented using �S · .� with S the scaling value.
Finally we remind that [.]q reduces all the polynomial coefficients to the interval
[−q/2, q/2).

Figure 1 shows the operation flow of the ciphertext multiplication and
the ciphertext relinearisation described in the original paper of Fan and
Vercauteren [11] (Sect. 4). In practice the FV multiplication is immediately fol-
lowed by a relinearisation in order to always handle canonical ciphertexts. It is
important to note that polynomial arithmetic takes place in Rm and it is not
possible to reduce the coefficients modulo q at will.

a a0 ×
a1 ×

⌊
t
q

· .
⌉

[.]q c̃0

+
⌊

t
q

· .
⌉

[.]q c̃1 c̃

b0 ×
⌊

t
q

· .
⌉

[.]q c̃2

b b1 ×

(a) Ciphertext multiplication

c̃ c̃0

c̃1 + [.]q c0 c

c̃2 ×
⌊

1
p

· .
⌉

+ [.]q c1

evk evk0 ×
⌊

1
p

· .
⌉

evk1

(b) Ciphertext relinearisation

Fig. 1. FV multiplication and relinearisation primitives

96 J. Cathébras et al.

2.3 FV Parameters

In this paper an FV instance is a particular set of FV parameters. Four para-
meters are considered: the security level λ, the multiplicative depth evaluation
capability L, the degree of the cyclotomic polynomial N , and the size of the
ciphertext’s polynomial coefficients Tq. Other parameters are described in the
original work [11].

The particular set of parameters (λ,L,N, Tq) has three degrees of freedom:
it requires three of them to be fixed to derive the fourth. A distinction is made
between the application level parameters (λ,L), and (N,Tq) which are imple-
mentation level parameters.

Both the cyclotomic polynomial degree N and the size of the coefficients
Tq have an impact on handling the polynomials. The purpose of this paper is
to investigate their impact on the hardware optimization strategies explored in
related works.

3 Improving Performances of FV Homomorphic
Evaluation

According to Amdahl’s law, a dedicated hardware solution should cover the most
repetitive and compute intensive operations of an application. The identification
of their critical operations is usually done by profiling. When it is possible, hard-
ware optimizations exploit different levels of parallelism and/or mathematical
simplifications inherent to the underlying algorithms of these operations.

In this section, profiling results of the FV homomorphic evaluation of Triv-
ium from Canteaut et al. [5] are presented. In a second subsection, common
approaches for efficient polynomial multiplications are described, highlighting
the influence of FV parameters.

3.1 FV Homomorphic Evaluation of Trivium

Using a library implementing the FV scheme [6], the experimentation of
Canteaut et al. [5] is reproduced by executing an homomorphic evaluation of
Trivium. The Valgrind tool suite [18] is used to identify the ciphertext multipli-
cation operation as the performance bottleneck of homomorphic evaluation with
more than 99% of the estimated cycles. The results of the profiling are detailed
in Table 1.

The CtxtMult operation is, as explained in the previous section, decomposed
into the actual ciphertext multiplication (30.6 %) and the immediately following
relinearisation (62.8 %). Digging a bit more into these two steps, it appears that
they both rely on the same bottleneck operation, the polynomial multiplications,
realized through FFT convolutions. During the whole evaluation of Trivium-12,
76.1% of the estimated cycles are spent in these convolutions.

The ciphertext relinearisation is twice the computation workload of the
ciphertext multiplication as the relinearisation key is a pair of polynomials with
coefficients four times the size of ciphertext polynomials.

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration 97

Table 1. Profiling results of an homomorphic evaluation of Trivium-12 with the FV
implementation of Canteaut et al. [5]. FV parameters: security 80, multiplicative depth
19, polynomial cyclotomic order 4096 (implies polynomials with 2048 coefficients) mod-
ulus q size 2658-bits. The experiment uses Valgrind 3.10.

HE operation Est. cycles (Million cycles) % Est

HE Trivium 13 337 699 100%

CtxtMult 13 272 536 99.5%

- Relinearise 8 381 331 62.8%

- Multiply 4 085 675 30.6%

- Others 805 530 6.1%

CtxtAdd 50 923 0.4%

Others 14 240 0.1%

This profiling confirms that the critical part of FV homomorphic evaluation
is the ciphertext multiplication and relinearisation. Both rely on polynomial
multiplication, which is also found in lattice-based cryptography.

3.2 Improving Polynomial Multiplications

Polynomial operations are conducted over Rm, it implies that multi-precision
integer operations handle values that could grow up to N ∗ q2 during ciphertext
multiplication and up to N ∗ p ∗ q2 during ciphertext relinearisation. In practice,
two integers Q > N ∗ q2 and K > N ∗ p ∗ q2 are selected, and the polyno-
mial multiplications are conducted over Rm,Q and Rm,K . The size of modulus q
depends on the others FV parameters, but it grows from hundred of bits up to
thousand of bits in some FV instances. To tackle the large integer arithmetic,
the use of RNS arithmetic through the Chinese Remainders Theorem (CRT) is
quite popular for hardware optimisation approaches [8,19,25].

Besides the integer arithmetic, a polynomial multiplication is highly depen-
dent of the degree involved. The naive approach for polynomial multiplication
consists in computing the linear convolution product of its coefficients and has
a complexity in O(N2). To reduce this complexity, the NTT based polynomial
multiplication is widely used in hardware optimization works [19,21]. A recent
work from Migliore et al. [16] proposes the use of the Karatsuba polynomial
multiplication algorithm for small multiplicative depth applications.

Chinese Remainder Theorem: To exploit the parallelism brought by CRT,
the different modulus q, Q and K are constructed as fixed size primes’ products.
The number of primes required for each modulus (lq, lQ and lK) depends on Tq
and the desired size of these primes Tprimes (1). By construction of the modulus
Q and K, TQ = 2 ∗ Tq + log2(N) and TK = 5 ∗ Tq + log2(N).

98 J. Cathébras et al.

lq =
⌈

Tq

Tprimes

⌉
, lQ =

⌈
2 ∗ Tq + log2(N)

Tprimes

⌉
, lK =

⌈
5 ∗ Tq + log2(N)

Tprimes

⌉
. (1)

With a direct application of the CRT, the bijections Rm,Q
∼= (Rm,p0 × ... ×

Rm,plQ−1) and Rm,K
∼= (Rm,p0 × ... × Rm,plK−1) allow the addition of paral-

lelism in the polynomial multiplication. The computational cost of switching the
polynomial representation from Rm,Q (resp. Rm,K) to the residue system repre-
sentation, and vice versa, is not taken into account. A recent work from Bajarad
et al. [2] proposes a variant of the FV scheme in which polynomials stay all along
in Residue Number System representations.

The ciphertext polynomial multiplications are decomposed into lQ (resp. lK)
independent residue polynomial multiplications during ciphertext multiplication
(resp. ciphertext relinearisation). The independence of each residue polynomial
multiplication implies a thread level parallelism that could be exploited through
distributed computation.

Considering a residue polynomial multiplication as a simple hardware block
(BRPM), the latency and the hardware cost of a ciphertext polynomial multipli-
cation block is roughly expressed in function of the number of blocks at disposal
(#BRPM ∈ [1; lQ] (resp. [1; lK])). Equations (2) and (3) express them for a poly-
nomial multiplication during ciphertext multiplications.

LatPolyMult =
⌈

lQ
#BRPM

⌉
∗ LatBRPM (2)

HCostPolyMult = #BRPM ∗ HCostBRPM (3)

As a residue polynomial has the size of its coefficients fixed by Tprimes, the
characteristics of a block BRPM are independent of the parameter Tq. It can
be already pointed out that when exploiting the RNS arithmetic introduced by
the CRT, the parameters Tq and Tprimes determine the thread level parallelism.
The impact of the parameters N and Tprimes on the hardware blocks BRPM are
detailed in the next subsection.

Polynomial Multiplication over Rm,pi : For high degree polynomials, the
NTT-based polynomial multiplication seems to be the most popular approach
for hardware optimizations. It computes the convolution product of the polyno-
mial multiplication through Number Theoretical Transforms (Fourier transform
on finite fields), and the Cooley-Tukey algorithm reduces the NTT complexity
to O(N log(N)). Furthermore, exploiting the negacyclic convolution theorem,
the NTT-based multiplication can directly perform polynomial multiplications
modulo Φm(X) = XN +1, avoiding a non-trivial polynomial modular reduction.
Nevertheless this approach reduces the choice of the primes pi, as the existence
of an N -point NTT over the residue space Zpi

must be guaranteed.
As described in [20], the existence of the N -point NTT over Rm,pi

is condi-
tioned by the existence of a primitive N -root of unity ω over Zpi

. If one wants
to use the negacyclic convolution theorem over Zpi

, he has to find a primitive
2N -root of unity ψ such that ψ2 = ω mod pi. Furthermore, all the elements of

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration 99

Zpi
should be invertible, this property is guaranteed by selecting pi as a prime.

According to [20], all the conditions above are satisfied if a prime pi can be found
such that 2N divides (pi−1). Then it just remains the selection of appropriate ω
and ψ. Efficient prime selection is addressed by the NFLlib developmental team
Aguilar-Melchor et al. [1].

During the computation of a residue polynomial multiplication, two forward
and one backward N -point NTT are computed (O(N log(N)) complexity). The
other operations consist in point-wise coefficient multiplications between N -point
sequences (O(N) complexity). It is then reasonable to focus the hardware opti-
mizations on the NTT. We would like now to observe the impact of N on the
NTT latency and hardware cost.

The implementation of an NTT with respect to a radix-2 basic block BRX2

is now considered. The latency and hardware cost of this block are noted respec-
tively LatBRX2 and HCostBRX2 . An N -point NTT computation, with N a power
of two, is composed of log2(N) iterations of N/2 radix-2 block computations. In
this work, it is assumed that an iteration has to finish before the next one can
start, and that the radix-2 blocks are re-used from one iteration to another. Let
#BRX2 ∈ [1;N/2] be the number of radix-2 blocks available for the computation
of one iteration of an N -point NTT.

LatBNTT =
⌈

N

2 ∗ #BRX2

⌉
∗ log2(N) ∗ LatBRX2(Tprimes) (4)

HCostBNTT = #BRX2 ∗ HCostBRX2(Tprimes) (5)

Now that the impact of N over an NTT computation is known ((4) and (5)),
its influence on latency and hardware cost of a residue polynomial multiplica-
tion must be expressed. It is done by considering that the N extra modular
multiplications required for backward NTT are computed as an N -point wise
multiplication. It is reminded that in the negacyclic convolution approach there
are already four N -point wise modular multiplications to compute [21].

Equations (6) and (7) express the latency and the hardware cost of a residue
polynomial multiplication with respect to an NTT block (BNTT) and a mod-
ular multiplier block (BMM). Let #BMM ∈ [1;N] be the number of modular
multipliers available for an N -point wise multiplication.

LatBRPM = 3 ∗ LatBNTT + 5 ∗
⌈

N

#BMM

⌉
∗ LatBMM(Tprimes) (6)

HCostBRPM = HCostBNTT + #BMM ∗ HCostBMM(Tprimes) (7)

Both the radix-2 and the modular multiplier implementations have their effi-
ciency related to the choice of an efficient modular reduction, but also in the
choice of the Tprimes parameter [1]. From an hardware design point of view,
working with small Tprimes could be interesting to have smaller integer arith-
metic to perform.

100 J. Cathébras et al.

This section has expressed some high level equations that link the FV para-
meters and the hardware optimization choices together. The next one describes
an analysis of the FV parameters and their impact on the hardware optimization
opportunities.

4 FV Parameters and Optimization Opportunities

From an applicative point of view, the security level λ and the multiplicative
depth L are the parameters that determine the FV instance. But when λ and
L are fixed, there is still freedom in the choice of the cyclotomic polynomial
degree N and in the coefficient size Tq of the ciphertext polynomials. As seen in
the previous section, the parameter Tq has an impact on thread parallelism, and
the parameter N has an impact on the residue polynomial multiplication. This
section discusses the impacts of the relation Tq(N) over the hardware optimiza-
tion strategy.

To generate correct sets of FV parameters, a Sage script [6] implementing
the derivation rules from Fan and Vercauteren [11] is used. Some sets of parame-
ters are generated with ranges that one could expect in a stream-cipher trans-
ciphering context with Trivium-12 from Canteaut et al. [5]. The security level is
selected between 80 and 192 and the multiplicative depth is selected between 16
and 32.

4.1 Scalability over Applicative Level Parameters

Figure 2 shows the impact of the security and the multiplicative depth parame-
ters on the relation Tq(N). The first relation Tq(N) displayed is fixed for security
80 and multiplicative depth 16. Figure 2a represents the influence of the security,
and Fig. 2b the multiplicative depth’s influence over this relation. We observe
that high degree cyclotomic polynomials reduce the influences of λ and L over
coefficient sizes.

A direct relation between the latency of a polynomial multiplication during
ciphertext multiplication and the size of the modulus q is expressed in Eqs. (1),
(2) and (3).

LatPolyMult =
⌈

2 ∗ Tq + log2(N)
Tprimes ∗ #BRPM

⌉
∗ LatBRPM (8)

As explained in Sect. 3.2, the latency and the hardware cost of a residue
polynomial multiplication block are only dependent of Tprimes and N . Thus when
Tprimes, N and the hardware target (#BRPM) are fixed, it seems that small
variations of Tq imply small variations of LatPolyMult. Naturally, it depends also
on the constant LatBRPM . An implementation that chooses to handle large N ,
has its latency LatPolyMult less impacted by Tq compare to one that handle
smaller N . However, it is necessary to assess the influence of N over LatBRPM

before concluding that large N reduces application parameter’s influences over
a given implementation.

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration 101

Fig. 2. Influence of λ and L on the relation Tq(N). The size of the modulus q is
expressed in kbits.

4.2 Smaller Ciphertexts

The ciphertext size is a high level indicator for memory requirements (storage
capacity, access latency...) that directly impact performances. Without consider-
ing any parallelism, implementation details or optimized data accesses, a coarse
grain relation could be expressed: the smaller the ciphertexts, the better the
performances.

Figure 3 shows the impact of the security and multiplicative depth on the
ciphertext size, which is directly related to Tq and N , CtxtSize = 2 ∗ (Tq ∗
N). The observation shows that a large degree N increases the influence of
security and multiplicative depth over the size of the ciphertexts. This is mildly
counterintuitive with the influence of N on the size of the modulus q. It seems
now more interesting to select small N , and further discussions confirms it.

4.3 Influence of N on Residue Polynomial Multiplications

The description of the NTT-based polynomial multiplication presents the bot-
tleneck operation as the computation of forward and backward N -point NTT.
Equations (4), (6), (5) and (7) have expressed the latency and the hardware cost
of a residue polynomial multiplication function of the FV parameter N and the
hardware blocks availability #BRX2, #BMM.

LatBRPM = 3 ∗
⌈

N

2 ∗ #BRX2

⌉
∗ log2(N) ∗LatBRX2 +5 ∗

⌈
N

#BMM

⌉
∗LatBMM (9)

HCostBRPM = #BRX2 ∗ HCostBRX2 + #BMM ∗ HCostBMM (10)

Because N is a power of two, selecting larger N has a major impact on the
latency and/or on the hardware implementation cost. In Fig. 4, the theoretical
latency and hardware cost function of N is represented, and this for different

102 J. Cathébras et al.

Fig. 3. Influence of λ and L on the ciphertext’s size, expressed in Mbits.

Fig. 4. Influence of the FV parameter N over the latency and the hardware cost of a
residue polynomial multiplication, with #BMM = 128 and for different #BRX2.

levels of parallelism introduced in a NTT computation. In this representation,
the latency and the hardware cost of the N -point wise multiplications are fixed
by choosing #BMM = 128. The latency (resp. the hardware cost) is expressed as
multiples of LatBRX2 (resp. HCostBRX2). For more simplicity LatBRX2 is consid-
ered equivalent to LatBMM (resp. HCostBRX2 ∼ HCostBMM).

This theoretical experimentation is considered as a best case scenario due to
the approximations made in (4), (5), (6) and (7). Indeed the data dependencies
in the NTT computations, the storage cost of pre-evaluated factors, and the
memory access latencies are not taken into account. In each residue space Rm,pi

,
2N factors have to be pre-computed for an NTT based negacyclic convolution.
Thus doubling N roughly doubles the number of twiddle factors and memory
accesses.

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration 103

As displayed in Fig. 4a and b, and accordingly to Eqs. (9) and (10), choosing
larger N linearly increases the latency of a residue polynomial multiplication.
Similarly, to guarantee a low latency residue polynomial multiplication for any
N , one has to pay an extra hardware cost which linearly increases with N . Nev-
ertheless, N exponentially increases as its value is restricted to be power of two
(to have both batching property [24] and nega-cyclic convolution) and naturally,
the latency and the hardware cost of a residue polynomial multiplication suffer
from this exponentiation.

Considering now that N is fixed, the Eqs. (9) and (10) show that the latency
decreases with larger #BRX2, but the hardware cost similarly increases. his linear
behaviour is also reminiscent with #BRMP in Eqs. (2) and (3).

4.4 Influence of Tq on Parallelism from the CRT

As described in Subsect. 3.2, the CRT parallelism capability is theoretically
enforced by large Tq that increases the number of residue spaces for a fixed
prime size Tprimes. n our context, the considered choices of N , and its impli-
cation on Tq, always enable a valuable acceleration when exploiting the CRT
parallelism.

Two limitations to the hardware optimization at CRT level are identified.
The first one is not considered in this paper and is fixed by the extra computa-
tion added by the switches between the CRT representation of a polynomial and
its standard representation with coefficients over Rm,q. he second is the avail-
ability of residue spaces for a given size Tprimes. Indeed, the use of the CRT is
conditioned by the existence of lK primes of size Tprimes. Moreover, the NTT-
based polynomial multiplication brings an additional condition over the choice
of those primes to guarantee the existence of the 2N -NTT in the residue spaces.

The number of required primes lK is directly dependent of the relation Tq(N)
and the size Tprimes (cf. Eq. 1). The number of primes required to represent a
polynomial in Rm,q using a residue representation is presented in Fig. 5, and this
for different N and size of primes. To conduct the polynomial multiplications over
Rm,Q (resp. Rm,K) with the CRT approach, one has to find roughly lQ ∼ 2 ∗ lq
(resp. lK ∼ 5 ∗ lq) primes.

As introduced in Sect. 3.2, the choice of a small Tprimes is interesting to reduce
the latency and the hardware cost of a modular multiplier block, and has a direct
impact on the efficiency of a residue polynomial multiplication. But according
to the Prime Number Theorem, the number of prime smaller than n is roughly
π(n) ∼ n/ log(n). Finding enough primes with Tprimes ≥ 32, is not an issue, but
considering smaller prime sizes, the number of candidates quickly drops down. The
GMP library is used to find a maximum number of primes that satisfy the NTT
requirement when Tprimes is 16-bits and 24-bits, the results are shown in Table 2.

The comparison of the number of primes found over 16-bits and 24-bits sizes
with the requirements in Fig. 5, shows a limitation in the choice of small Tprimes

to improve the efficiency of basic arithmetic blocks. Nevertheless, as observed
in Fig. 5, and even with large N , lq (and by extension lQ and lK) is still large
enough to exploit the parallelism bring by CRT.

104 J. Cathébras et al.

Fig. 5. Influence of N over lq for Tprimes ∈ (16, 24, 32, 64)-bits. Security is fixed at 80
and multiplicative depth at 18.

Table 2. Number of primes allowing N -point NTT transform over Zpi .

Degree N 128 256 512 1024 2048 4096 8192

16-bits primes 47 24 14 5 3 1 0

24-bits primes 8430 4230 2134 1047 536 260 130

5 Conclusion

In this paper, insights over the choices of FV parameters are provided for effi-
cient hardware resources exploitation for its evaluation primitives. The analysis
was conducted in the context of stream-cipher based trans-ciphering using the
Trivium cipher. This analysis was also based both on CRT and NTT approaches
to conduct the polynomial multiplications over Rm,Q (resp. Rm,K). This choice
was motivated by the existing works on hardware optimization of lattice-based
cryptography.

The distinction between application level parameters (λ,L) and implementa-
tion level parameters (N,Tq) has been expressed. During the analysis some obser-
vations have been brought to help in the choice of appropriate FV implementa-
tion parameters for a flexible and efficient hardware implementation, regarding
the application parameters.

Larger N reduces the impact of security and multiplicative depth over coeffi-
cient’s size but still increases ciphertext’s size. The cyclotomic polynomial degree
N , being a power of two, makes the design of efficient NTT-based polynomial
multiplications difficult with increasing N . Furthermore, the CRT parallelism is
easier to exploit than large polynomial multiplication as explained by Bajard
et al. [2]. It implies that all (N,Tq) are not quite the same for a fixed (λ,L), and
small degree N should be preferred over small coefficient size Tq.

This analysis was a preliminary study for adequacy of hardware architecture
and algorithms underlying the FV evaluations primitives. Despite the motivation
of choosing small N , concrete choice of (N,Tq) still depends on the practical

An Analysis of FV Parameters Impact Towards Its Hardware Acceleration 105

limitations of the targeted hardware, and in particular on the memory access
bandwidth and the available computing resources.

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 20

2. Bajard, J.C., Eynard, J., Hasan, A.M., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23. http://hal.upmc.fr/hal-01371941

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32009-5 50

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE ASFC 2011 (2) (2011)

5. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 313–
333. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 16

6. Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: a compilation chain for privacy pre-
serving applications. In: Proceedings of the 3rd International Workshop on Security
in Cloud Computing. Association for Computing Machinery (ACM) (2015)

7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

8. Dai, W., Doroz, Y., Sunar, B.: Accelerating NTRU based homomorphic encryption
using GPUS. In: 2014 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6. IEEE (2014)

9. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7 11

10. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 24

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, p. 144 (2012)

12. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 9

13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
http://hal.upmc.fr/hal-01371941
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1007/978-3-642-32009-5_49

106 J. Cathébras et al.

14. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

15. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC,
vol. 9, pp. 169–178 (2009)

16. Migliore, V., Real, M.M., Lapotre, V., Tisserand, A., Fontaine, C., Gogniat, G.:
Hardware/software co-design of an accelerator for FV homomorphic encryption
scheme using Karatsuba algorithm. IEEE Trans. Comput. 1 (2016). https://doi.
org/10.1109/TC.2016.2645204

17. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud Computing Security
Workshop, pp. 113–124. ACM (2011)

18. Nethercote, N., Walsh, R., Fitzhardinge, J.: Building workload characterization
tools with valgrind. In: 2006 IEEE International Symposium on Workload Charac-
terization. Institute of Electrical and Electronics Engineers (IEEE), October 2006

19. Öztürk, E., Doröz, Y., Sunar, B., Savas, E.: Accelerating somewhat homomorphic
evaluation using FPGAs. IACR Cryptology ePrint Archive 2015, p. 294 (2015)

20. Pollard, J.M.: The fast fourier transform in a finite field. Math. Comput. 25(114),
365–374 (1971)

21. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 68–85. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43414-7 4

22. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

23. Sinha Roy, S., Järvinen, K., Vercauteren, F., Dimitrov, V., Verbauwhede, I.: Mod-
ular hardware architecture for somewhat homomorphic function evaluation. In:
Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 164–184.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 9

24. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 25

25. Wang, W., Chen, Z., Huang, X.: Accelerating leveled fully homomorphic encryption
using GPU. In: 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 2800–2803. IEEE (2014)

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1109/TC.2016.2645204
https://doi.org/10.1109/TC.2016.2645204
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-662-48324-4_9
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25

Controlled Homomorphic Encryption: Definition
and Construction

Yvo Desmedt1,2, Vincenzo Iovino3(B), Giuseppe Persiano4, and Ivan Visconti5

1 University of Texas at Dallas, Richardson, USA
yvo.desmedt@utdallas.edu

2 University College London, London, UK
3 University of Luxembourg, Luxembourg City, Luxembourg

vinciovino@gmail.com
4 DISA-MIS, University of Salerno, Fisciano, Italy

pino.persiano@unisa.it
5 DIEM, University of Salerno, Fisciano, Italy

visconti@unisa.it

Abstract. Fully Homomorphic Encryption schemes (FHEs) and Func-
tional Encryption schemes (FunctEs) have a tremendousimpact in cryp-
tography both for the natural questions that they address and for the
wide range of applications in which they have been (sometimes critically)
used.

In this work we put forth the notion of a Controllable Homomorphic
Encryption scheme (CHES), a new primitive that includes features of
both FHEs and FunctEs. In a CHES it is possible (similarly to a FHE)
to homomorphically evaluate a ciphertext Ct = Enc(m) and a circuit C
therefore obtaining Enc(C(m)) but only if (similarly to a FunctE) a
token for C has been received from the owner of the secret key.

We discuss difficulties in constructing a CHES and then show a con-
struction based on any FunctE.

As a byproduct our CHES also represents a FunctE supporting
the re-encryption functionality and in that respect improves existing
solutions.

Keywords: Functional encryption · Non-malleability · Fully
homomorphic encryption

1 Introduction

Fully Homomorphic Encryption has received a lot of attention and even was
mentioned in the New York Times. We first briefly argue that in many real life
applications, Fully Homomorphic Encryption is not a very useful primitive. In
particular we look at issues involving financial issues and issues that are money
related.

For privacy reasons many utility bills and bank statements, sent electroni-
cally, are now encrypted. In practice such bills and other documents are based on
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 107–129, 2017.
https://doi.org/10.1007/978-3-319-70278-0_7

108 Y. Desmedt et al.

standard sub-documents that have been carefully checked by the legal depart-
ment of the utility corporation or the bank. The other parts are based on the
amount due, or the transactions made by the bank’s customer. Obviously, very
different type of standard letters, checked by the legal department, are sent to
customers who are not paying their bills, and in the worst case a disconnect
letter is sent.

To maintain privacy as much as possible the original standard letters should
be stored on the corporation’s company under encrypted form. So, it seems that
Fully Homomorphic Encryption is ideally suited to modify the standard letter to
include the name and address of the customer and to also add other encrypted
information, e.g., obtained from an electronic utility meter. We now explain why
this is a bad idea.

Now that Podesta’s (the chairman of the 2016 Hillary Clinton presidential
campaign) e-mails were hacked many people have realized how vulnerable sys-
tems are. Moreover, similar phishing attacks have been used against large cor-
porations. So, in case the computer used to make encrypted utility bills and
bank statements is hacked and Fully Homomorphic Encryption is used, then the
hacker can completely change the letter ! Obviously, the legal department does
not want to have potentially very offensive letters to be produced. In the case of
manual editing of the standard file, digital signature could be used, but if many
parties are authorized, then that would require to keep track of all changes made
and to keep the digital signatures for these intermediately produced messages.
We now briefly motivate our approach.

In our approach, we will avoid the aforementioned use of digital signatures.
Instead, using a new primitive, we will restrict what changes can be made. So, no
hacker, even having full control of the computer, will be able to drastically change
the encrypted document. The worst that can happen is that the wrong (slightly
modified) standard letter will be sent. However, in our system, if the status of
the customer is maintained under encrypted form, it will even be impossible that
the complete wrong standard letter is sent to the customer. Similar protecting
mechanisms can be used such that in case of utility bill, the encrypted data
provided by the meter has to be used.

In this paper we put forth the notion of a controllable homomorphic encryp-
tion scheme (CHES, in short) that blends together the notion of a fully homo-
morphic encryption scheme [15] (FHE, in short) and of a functional encryption
scheme [4,11,17] (FunctE, in short). Specifically, like in a FHE, a CHES-
ciphertext of plaintext m can be homomorphically transformed into a ciphertext
of plaintext C(m), for every efficiently computable function C; on the other hand,
like in a FunctE, the homomorphic transformation can only be efficiently per-
formed by a party that has a special token for function C that is released by
the owner of the master secret key. Except for the token for C, no other secret
information is needed to homomorphically transform a ciphertext according to
function C.

Non-triviality. The following scheme is a straightforward (albeit inefficient)
construction of a CHES derived from any standard public key encryption

Controlled Homomorphic Encryption: Definition and Construction 109

scheme E = (GenKey,Enc,Dec) and any secure signature scheme S =
(SigKeyGen,Sign,Verify). The public key of the CHES consists of a pair (pk, vk)
of a randomly generated public key pk of E and of a randomly generated verifi-
cation key vk of S. To encrypt message m, one simply computes an encryption
of m with respect to key pk. The token for function C is simply a signature
σC of C and to homomorphically transform ciphertext ct0, one simply appends
an encryption ct1 of the pair (C, σC) to ct0. The decryption function takes a
pair of ciphertexts (ct0, ct1), decrypts both and obtains (m,C, σC). If σC is a
correct signature of C, then the decryption function outputs C(m); otherwise,
it outputs ⊥.

There is a clear drawback in the above construction: the size of the ciphertext
depends on the size of the description of the function C. In this paper, to avoid
triviality, we require ciphertext size and decryption time to be upper bounded
by a polynomial of the security parameter and be independent of the function
C. This is the same requirement that makes the construction of a FHE non-
trivial [15].

1.1 Contribution

The contribution of this work consists of the following three steps. We introduce
and define this new primitive, we discuss some interesting applications, and
provide a construction based on any FunctE. Our main result is the above last
step, indeed we will show a general procedure that builds a CHES starting from
a general functional encryption scheme.

Limitations of FunctEs w.r.t. CHESs. At first, one might think that a CHES
is just a special case of a functional encryption scheme: the token to transform
an encryption of m into an encryption of C(m) is simply a token for the func-
tion that first computes C(m) and then re-encrypts the result. Such a direct
construction suffers of two major problems.

Probabilistic and re-encryption functionalities. One first problem posed by this
simple construction is that randomness must be used to construct the resulting
ciphertext and this would require a notion of functional encryption for proba-
bilistic functionalities proposed in two independent works. Alwen et al. [2] put
forward a definition of randomized functional encryption but they are able to
construct it only for very restricted classes of functionalities. In another work,
Goyal et al. [18] propose functional encryption schemes for randomized function-
alities for two different notions of security, both suffering from some limitation.
The first one is simulation-based but stated in the selective model. This is the
best one can hope for simulation-based security since, due to the impossibility
result of Agrawal et al. [1] and Boneh et al. [4], for non-selective security it is
necessary to put a bound on the number of queries the adversary can ask (see
also Gorbunov et al. [17], De Caro et al. [10] and De Caro and Iovino [9]). The
second definition they propose is indistinguishability-based but is affected by

110 Y. Desmedt et al.

the severe problem of forbidding the adversary to ask queries for computation-
ally indistinguishable distributions, thus not providing any guarantee of security
in applications where the server is provided with a token for the re-encryption
function. Therefore, for the scope of our applications the solution of Goyal et al.
is not satisfactory unless one wants to resort to bounded security (i.e., putting a
bound on the number of ciphertexts and tokens generated by the system) that
represents a strong limitation. Instead, our approach does not suffer from this
problem. In fact, we are able to prove the security of our scheme under a notion
of security that (1) is not selective, (2) allows the adversary to ask an unbounded
number of queries and (3) does allow the adversary to request token for the re-
encryption function. We also mention that in the context of verifiable secure
outsourcing of computation, Barbosa and Farshim [3] have studied the concept
Delegatable Homomorphic Encryption (DFE) which is conceptually very similar
to CHES. The security of their construction of a DFE is based on the existence
FunctE that are CCA1 secure and on the existence of an FHE (in contrast,
we only require IndCPA secure FunctE). As a byproduct our CHES offers a
solution to the problem of providing a FunctE supporting the re-encryption
functionality that improves the previous works as discussed above.

Another more serious problem in using functional encryption naively is made
evident by looking at the following example. Suppose an adversary obtains a
token for the increment function C(m) := m+1. Clearly, for every two messages
m1 �= m2 the output range of the evaluation of the token for C are disjoint (as one
contains encryptions of m1 +1 and the other encryptions of m2 +1). This makes
the security requirement of the functional encryption scheme vacuous. Indeed,
security for functional encryption schemes is only with respect to adversaries that
obtain tokens for which the two challenge plaintexts give the same result and,
quite understandably, no guarantees is given for adversaries that have requested
and obtained tokens for which the two challenge plaintexts give different results1.
Therefore, if the token for the innocent looking increment function is released,
all security disappears.

Tricks to construct a CHES. We obtain a CHES by solving the two major
problems of the above direct construction of a CHES from a FunctE. Con-
cerning the first problem, we will make use of pseudorandom functions in order
to provide to the evaluation process a pseudorandom string to be used for re-
encryption. Concerning the second problem, we exploit the fact that even though
the two output ranges are disjoint they are still indistinguishable. Interestingly,
a similar observation could be used for functional encryption in order to have a
relaxed (and therefore easier to achieve) but still fully meaningful definition.

In sums, our construction considers as starting point the problematic con-
struction described above and will leverage on various techniques in order to
obtain the desired security. Our construction is proved secure against an adver-
sary that receives tokens for circuits of his choice after seeing the challenge

1 Here we only consider game-based notions of security as simulation-based ones suffer
of more serious limitations [1,4,9,10,19].

Controlled Homomorphic Encryption: Definition and Construction 111

ciphertext. We leave open the problem of constructing a CHES where the adver-
sary can ask encryption and token queries in any order.

Targeted malleability. In a recent paper, Boneh et al. [5] put forward the notion
of targeted malleability that generalizes the notion of non-malleability [12] by
ensuring that the malleability of an encryption scheme is limited to a set of
legal functions F , specified in the public key. We note that, unlike in CHES,
in targeted malleability the set F of legal functions is specified during the key-
generation phase and then any party can efficiently homomorphically transform
any ciphertext according to any function in F without receiving any secret infor-
mation from the owner of the secret key. Thus the two primitives are quite
different in scope. Boneh et al. [5] show how to transform any FHE scheme
into one that offers targeted malleability based on the existence of succinct
non-interactive arguments that are known to exist under non-falsifiable assump-
tions [20]. We are aware that such assumptions could ease the construction of a
CHES but one of our goals is to avoid them.

We also notice that in their construction [5], ciphertexts obtained through
homomorphic transformations can themselves be transformed again and this
process can be repeated up to a constant number t of times; the value t must
be specified during the generation of the public key that grows with t but the
length of the ciphertexts is independent of t.

In this work, we do not concentrate on this property and give a construction
of CHES in which the mauling procedure can only be applied to ciphertexts
output by the encryption procedure. We mention though (and do not elabo-
rate further) that our construction can be modified so that the homomorphic
transformation procedure can be applied any constant number of times, starting
from a ciphertext generated by the encryption procedure. We stress that in our
case this number does not affect the length of the ciphertexts nor the one of the
public key.

Application scenarios. The notion of a CHES finds natural applications in the
problem of outsourcing computation on private data to an untrusted server.

In the first scenario we consider a user U that has one message m and stores
it in encrypted form Ct on an untrusted server S using a CHES. At some later
point, U wishes to compute value C(m) and sends a CHES token TokC for C
(i.e., the token that when applied on a ciphertext for m returns a ciphertext
for C(m)). The server S applies the token TokC to Ct and returns the resulting
ciphertext to U . If the server S is honest-but-curious, the above scheme guar-
antees that U gets the desired result without revealing anything about m (not
even the value C(m)). The same would work with a FHE. However, a malicious
server S could just pick an arbitrary value, encrypt it using the CHES and then
return the value to U . Against such a dishonest adversary, we can use the stan-
dard trick of adding a MAC as follows. U sends S an encryption Ct of m and of
a random value R (i.e., Ct is an encryption of the concatenation of m and R).
To compute the value C(m), for some circuit C, U picks an arbitrary value x
and generates a token for the circuit that returns an encryption of C(m) and

112 Y. Desmedt et al.

of F (R, x), where F is a pseudo-random family of functions2. In other words,
the token encrypts C(m) and a MAC of the fact that the right token was used
to compute the result. Notice that this simple tweak would not give security
against malicious servers in the above case based on a FHE and this shows that
in some applications CHESs is conceptually stronger than FHEs.

As mentioned before, CHES also represents a FunctE supporting the re-
encryption functionality and in that respect it improves existing solutions as
discussed previously.

2 Definitions

Functional Encryption for Circuits. In this paper we use a special FunctE,
which we call FE4C, that allows to compute any polynomial size circuit (see [13,
17]). Due to space constraints we defer to AppendixA the definition of FE4C
and of its tag-based version and its security notion of IND-CPA Security that
we use in our construction.

3 Controllable Homomorphic Encryption

In this section we define the notion of a Controllable Homomorphic Encryption
Scheme (CHES).

Roughly speaking, in a CHES it is possible to homomorphically create a
string that will be decrypted as C(M) on input a ciphertext for M only if one
holds a special token for the circuit C. Similarly to the compactness requirement
of FHE, we require that the length of the string homomorphically computed be
independent of the circuit.

Definition 1. A Controllable Homomorphic Encryption Scheme (CHES,
in short) is a tuple CHE = (CHE.Setup,CHE.KeyGen,CHE.Enc,CHE.HEval,
CHE.Dec) of efficient algorithms with the following syntax and that enjoys the
following property of correctness.

1. CHE.Setup(1λ, 1n) on input the security parameter λ and length parameter
n, outputs public and master secret keys (Pk,Msk).

2. CHE.KeyGen(Msk, C) on input master secret key Msk for length parameter n
and the description of an n-bit input and n-bit output circuit C, outputs token
TokC for circuit C.

3. CHE.Enc(Pk,M) on input public key Pk with length parameter n and plaintext
M ∈ {0, 1}n, outputs a ciphertext Ct.

4. CHE.HEval(Pk,Ct, Tok) on input public key Pk for length parameter n, a
ciphertext Ct for plaintext M ∈ {0, 1}n and a token Tok for circuit C, outputs
a string Ct′ of size independent of C.

2 The use of a PRF is needed to allow the use of more than one token for the same
ciphertext; otherwise, a simple encryption of C(m) concatenated to R would be
sufficient.

Controlled Homomorphic Encryption: Definition and Construction 113

5. CHE.Dec(Msk,Ct′′) on input the master secret key Msk and a string Ct′′ out-
puts a string M ∈ {0, 1}n ∪ {⊥}.

For the correctness we require that (CHE.Setup,CHE.Enc,CHE.Dec) be an
encryption scheme, and that there exists a negligible function μ such that for all
n = poly(λ), for all n-bit input and n-bit output circuits C, and all plaintexts
M ∈ {0, 1}n it holds that: Pr [CHE.Dec(Msk,HEval(Pk,Ct, TokC)) �= C(M)] ≤
μ(λ), where (Pk,Msk) ← Setup(1λ, 1n), TokC ← KeyGen(Msk, C) and Ct ←
Enc(Pk,M).

Composing tokens. In the definition of a CHES, the output of CHE.HEval is not
required to be a valid ciphertext (that is, an output of CHE.Enc) and correctness
only requires it to be a valid input for CHE.Dec. This means that the security
definition does not necessarily need to tolerate an adversary that receives a token
for a circuit C, an encryption of m and then computes an encryption of Ci(m),
for any i > 0. More in general, the security definition does not have to assume
that an adversary is able to compose tokens.

We would like to point out that it is possible to formally define a CHES so
that tokens could be composed. The requirement then for a successful adversary
would be to output a ciphertext of C(mb) for a circuit C that is not the com-
position of the ones for which she received tokens. However efficiently proving
such a fact could be difficult as it is a co-NP statement.

Along these lines, we point out that the concept of targeted malleability as
implemented in [5] allows composition of homomorphic transformations for a
constant and fixed number of times (this allows to go-around co-NP) using
non-falsifiable knowledge extraction assumptions (these are needed to construct
succinct extractable arguments that are needed for compactness). We finally
point out that our construction can be modified to allow a constant and fixed
number of compositions of homomorphic transformations, even though in the
paper we do not elaborate further.

Given the above subtleties, from now on we consider a ciphertext as the
output of the encryption function. While the output of the evaluation function
is just a string.

3.1 Security of a CHES

As usual in encryption schemes, there are two flavors to measure the security of
a CHES. The most interesting flavor is the non-malleable one, since it captures
the idea of controlling the capability of mauling a ciphertext. We will therefore
continue with the definition of an NM-CPA CHES, and the interested reader can
find in AppendixB the notion of IND-CPA CHES, along with some expected
implications concerning this notion.

NM-CPA security of a CHES scheme. We now consider a security definition
for CHES that is the conceptually equivalent to the notion of NM-CPA security
of plain encryption schemes. We formalize this notion of security for a CHES

114 Y. Desmedt et al.

CHE = (CHE.Setup,CHE.KeyGen,CHE.Enc,CHE.HEval,CHE.Dec) by means of
games CHES-NMCPA-GameCHEb,A , for b = 0, 1, between an adversary A and a
challenger CHE .C.3 The adversary A receives a randomly generated public key
of CHE and can issue two types of queries to CHE .C: encryption queries and
token queries. Below we formalize how queries are answered by CHE .C and the
output of the games.

CHES-NMCPA-GameCHEb,A (λ, n)

Setup. CHE .C computes (Pk,Msk) ← CHE.Setup(1λ, 1n) and runs A on
input Pk.

Token Query. CHE .C replies to a token query for a circuit C by returning
TokC ← CHE.KeyGen(Msk, C).

i-th Encryption Query. CHE .C replies to an encryption query (M i
0,M

i
1)

with M i
0 �= M i

1 and |M i
0| = |M i

1|, by returning Ct ← CHE.Enc(Pk,M i
b).

Output of the Game. Let (j,Ct�, C) be A’s output.
If all the following conditions hold:
1. A did not issue a token query for circuit C ′ that coincides with C on

M j
b .

2. C(M j
0) �= C(M j

1).
3. CHE.Dec(Msk,Ct�) = C(M j

b).
4. Ct� is not a ciphertext obtained as a reply to an encryption query.

then the output is C(M j
b). Otherwise the output of the game is ⊥.

The above definition captures the fact that the adversary manages to pro-
duce (see conditions 3 and 4) a new ciphertext of C(M j

b) (for otherwise, the
adversary could issue encryptions queries for (M0,M1) and for (C(M0), C(M1))
and returns the ciphertext obtained as a reply to this second query; in case
of a single ciphertext query, the adversary could set C equal to the identity
function and return the ciphertext obtained as a reply to the encryption query
(M0,M1)). For this to be a meaningful achievement, it must be that the circuit
C gives different output for the two challenge plaintexts (see condition 2) (for
otherwise, the ciphertext could have been obtained by simply giving in output
C(M j

0) = C(M j
1)). Moreover, it is also required (see condition 1) that the adver-

sary has not asked for a token for a function C ′ for which C(M j
b) = C ′(M j

b)
(for otherwise, the ciphertext could have been obtained by simply applying the
token).

Definition 2. A CHES CHE is a NM-CPA secure CHES if for every PPT
adversary A for all polynomially bounded n = n(λ) we have that the follow-
ing two ensembles are indistinguishable {CHES-NMCPA-GameCHE0,A (λ, n)} and
{CHES-NMCPA-GameCHE1,A (λ, n)}. A CHES CHE is single-message NM-CPA

3 Note that during the course of this work, we often use the term game when we
actually mean a distribution.

Controlled Homomorphic Encryption: Definition and Construction 115

secure if it is NM-CPA secure with respect to all PPT adversaries A that ask
exactly one encryption query.

In AppendixC we show that any single-message NM-CPA-secure CHES is
also NM-CPA-secure.

4 CHES from Functional Encryption

In this section, we describe an NM-CPA CHES CHE = (CHE.Setup,CHE.
KeyGen,CHE.Enc,CHE.HEval,CHE.Dec). We stress that our security proof works
only for an adversary that is required to first ask for an encryption query and
then can ask for tokens.

In the description of CHE, we let FE = (FE.Setup,FE.Enc,FE.KeyGen,
FE.Eval) be an IND-CPA secure non-rerandomizable4 tag-based FE4C. For
a CHES with n-bit plaintexts and security parameter λ, we use an FE for
plaintexts of length n, auxiliary message of length λ + 2. In addition we let
F = {F (·, ·)} be a pseudorandom family of functions F (·, ·) (the first argument
is the seed), and PKE = (Setup,Enc,Dec) be a public-key encryption scheme.

For sake of simplicity, we assume that secret keys of PKE with security para-
meter λ are exactly λ-bit long and that ciphertexts of n-bit messages computed
with respect to public key with security parameter λ have length � = �(λ, n).
Also, not to overburden notation, we assume that the tag space Tλ of FE coin-
cides with the seed space of F and that they both coincide with {0, 1}λ. In
addition, for an n-bit input and n-bit output circuit C, �-bit string s, and public
key FE.Pk of FE, we denote by Cs,FE.Pk the (n+2λ+2)-bit input circuit defined
as follows:

– if t = 0 then C
s,FE.Pk

(M, r, t, sk) = FE.Enc(FE.Pk, (C(M), 0λ,⊥, 0λ);F (r, C)),
– if t = 1 then C

s,FE.Pk
(M, r, t, sk) = Dec(sk, s),

– if t = ⊥ then C
s,FE.Pk

(M, r, t, sk) = ⊥,

where M ∈ {0, 1}n, r, sk ∈ {0, 1}λ and t ∈ {0, 1,⊥}.
In what follows, we will drop FE.Pk from C

s,FE.Pk
whenever it is clear from

the context and simply write Cs.
Circuit Cs takes three types of plaintexts: regular plaintexts, corresponding

to t = 0, which are the outputs of the encryption algorithm; mauled plaintexts,
corresponding to t =⊥, which are outputs of the application of a token; trapdoor
plaintexts, corresponding to t = 1, which are used only in the proof. For cipher-
texts carrying regular plaintexts, the circuit Cs outputs a ciphertext for C(m)
and this captures the correct application (through the CHE.HEval algorithm)
of a token for circuit C to an encrypted message. Notice that in this case the
resulting ciphertext carries a mauled plaintext. For ciphertexts carrying mauled
plaintexts, the circuit Cs outputs ⊥ and this captures the (incorrect) application
of a token to an already mauled message. For ciphertexts carrying a trapdoor
4 In the proof, we give details of the impact of the transformation of Sect. 2 in case
FE is re-randomizable.

116 Y. Desmedt et al.

plaintexts, Cs outputs a decryption of s with respect to the secret key that is
part of the trapdoor plaintext. In the reduction of an adversary for CHE to an
adversary for FE, trapdoor plaintexts are very useful because they force Cs to
return a value that is independent of the actual input M , and thus can be used
to contradict the security of FE (cfr., discussion in the Introduction). To do so
the value s used in the generation of the tokens must be carefully chosen so to
be indistinguishable from the ones output by algorithm CHE.KeyGen.

Algorithm CHE.Setup(1λ, 1n).
1. Run algorithm FE.Setup on input (1λ, 1n+2λ+2) and obtain (FE.Pk,FE.Msk);
2. run algorithm Setup on input 1λ and obtain (pk′, sk′);
3. set Pk = FE.Pk and Msk = (FE.Pk,FE.Msk, pk′);
4. return (Pk,Msk).

Algorithm CHE.KeyGen(Msk, C).
1. set s = Enc(pk′,FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ))); notice that 0n is the plain-

text, (0λ,⊥) constitute the auxiliary message and 0λ the tag.
2. set Tok = FE.KeyGen(FE.Msk, Cs);
3. return Tok.

Algorithm CHE.Enc(Pk,M).
1. Randomly select tag r ∈ {0, 1}λ;
2. run algorithm Setup on input 1λ and obtain (pk, sk);
3. set Ct = FE.Enc(FE.Pk, (M, r, 0, sk)); notice that M is the plaintext, (0, sk) is

the auxiliary message and r is the tag.
4. return Ct.

Algorithm CHE.HEval(Pk,Ct, Tok) outputs FE.Eval(FE.Pk,Ct, Tok);

Algorithm CHE.Dec(Msk,Ct)
1. Set Tok = FE.KeyGen(FE.Msk, ID) where the circuit ID is defined in the fol-

lowing way: ID(x1, x2, x3, x4) = x1.
2. return FE.Eval(FE.Pk,Ct, Tok).

In our construction we are using the r component of a plaintext both as a tag
and as the seed of the PRF that gives the randomness of the ciphertext resulting
from the application of a token (see the definition of Cs). In case Tλ does not
coincide with the seed space of the PRF then we add another value to be used
as a seed of a PRF.

The correctness of the scheme follows by the correctness of FE and by the
definition of Cs. In the next section we prove the following theorem.

Theorem 1. Under the assumption of the existence of an IND-CPA secure
functional encryption scheme for all circuits (FE4C), there exists a NM-CPA
secure CHES secure against adversaries that ask all encryption queries before
the token queries.

Constructions of FE4C that are secure (according to Definition 4) when the
adversary sees any polynomial number of tokens have recently been given in [6,
13,14,22].

Controlled Homomorphic Encryption: Definition and Construction 117

4.1 Proof on NM-CPA Security

Here we prove the security of our scheme for adversaries that issues all token
queries after the encryption query and issues exactly one encryption query (by
Theorem 5 we get security against multi-message adversaries).

Assume that there exists such an adversary A that breaks the security of
CHE for parameters λ and n; that is, there exists a distinguisher D such that,
denoted by pb(λ, n) the probability that D outputs 1 when its input is sampled
according to CHES-NMCPA-GameCHEb,A (λ, n), p0(λ, n) ≥ p1(λ, n) + μ(λ) for
some non-negligible function μ(·).

Based on A, we build adversary B for FE for security parameter λ and length
parameter n + 2λ + 2. B interacts with challenger FE .C for FE to which B can
issue encryption and token queries and runs internal copies of A and D.

Adversary B tricks adversary A into believing it is interacting with CHE .C
by presenting a view that differs indistinguishably by the one offered by CHE .C
since the challenge ciphertext is trapdoor. Then, from A’s output B manages
to decrypt by obtaining from FE .C a token for a function that is equivalent to
decryption when applied to A’s output but, nonetheless, gives the same value
when applied to a ciphertext for one of the two challenge plaintexts output by
B. This therefore allows B to win in the security game of functional encryption.

Next we formally describe how B, FE .C, D, and A interact.

Setup. FE .C randomly selects b ← {0, 1}, computes (FE.Pk,FE.Sk) ← FE.
Setup(1λ, 1n+2λ+2) and runs B on input FE.Pk.
B computes (pk′, sk′) ← Setup(1λ), sets CHE.Pk = FE.Pk and runs A on input
CHE.Pk.

Encryption query. When A issues an encryption query for the pair of messages
(M0,M1), B proceeds as follows. B selects random r0, r1 ← {0, 1}λ, sets
m0 = (M0, r0, 1, sk′) and m1 = (M1, r1, 1, sk′), and issues encryption query
(m0,m1) to challenger FE .C.
We remind the reader that, for b = 0, 1, Mb is the plaintext, rb is the tag and
(1, sk′) is the auxiliary message.
Challenger FE .C returns Ct = FE.Enc(FE.Pk,mb) and B returns ciphertext
Ct to A.

Token query. When A issues a token query for circuit C, B proceeds as follows.
B sets mC

0 = (C(M0), 0λ,⊥, 0λ) and mC
1 = (C(M1), 0λ,⊥, 0λ), issues encryp-

tion query (mC
0 ,mC

1) to challenger FE .C and receives CtC as a reply.
We remind the reader that, for b = 0, 1, C(Mb) is the plaintext, 0λ is the tag
and (⊥, 0λ) is the auxiliary message.
B then sets s = Enc(pk′,CtC), issues a token query for Cs and receives token
TokC as a reply. B returns TokC to A.

Output. A outputs circuit G and Ct� (claimed to be an encryption of G(Mb)).
Define circuit ˜ID(·, ·, ·, ·) as follows:
− if (M, r) = (M0, r0) or (M, r) = (M1, r1) then ˜ID(M, r, t, sk) = ⊥,
− if t = ⊥ then ˜ID(M, r, t, sk) = ⊥,
− ˜ID(M, r, t, sk) = M otherwise.

118 Y. Desmedt et al.

B issues token query for ˜ID and obtains token TokĨD as a reply from FE .C.
B then computes Out = FE.Eval(FE.Pk,Ct�, TokĨD). If D(Out) = 1 then B
outputs 0 as its guess for b; B outputs 1 otherwise.

This ends the description of B.

Handling re-randomizable FE4C. Before proceeding further, we briefly discuss
the impact on algorithm B of the transformation outlined in Sect. 2 in case the
underlying FE4C FE is re-randomizable. We remind the reader that, in order to
enforce non-rerandomizability, the encryption algorithm is modified by using a
signature verification key as tag and then adding a signature to the ciphertext.
Tokens check that the signature that is part of the ciphertext is correct according
to the verification key in the plaintext. Thus we modify the encryption algorithm
so that one extra slot is used in the plaintext: (M, r, t, sk, vk) where now (M, r)
constitute the plaintext, (t, sk) the auxiliary message, and vk the tag. During the
setup, algorithm B picks a pair (vk′, sgk′) and the verification key vk′ is used as
tag in the ciphertexts returned as replies to encryption queries and the associated
signing key sgk′ is used to sign the ciphertexts. The function ˜ID is then modified
to return ⊥ if (M, r, vk) = (M0, r0, vk

′) or if (M, r, vk) = (M1, r1, vk
′). We omit

further details.
We continue the proof by showing that B is a legitimate adversary for FE.

That is, we need to prove that for all the encryption queries (m0,m1) issued
by B we have that m0 and m1 have the same length; and that, if B has issued
token query for circuit C then for all encryption queries (m0,m1) we have that
C(m0) = C(m1). The first condition is easily seen to be satisfied. Let us verify
that the second condition holds. For each token query for circuit C issued by A, B
issues token query for circuit Cs. B, on the other hand, issues encryption queries
for (M0, r0, 1, sk′) and (M1, r1, 1, sk′) while answering A’s challenge query. In
this case we have Cs(M0, r0, 1,sk′) = Cs(M1, r1, 1,sk′) = Decrypt(s,sk′). B also
issues encryption queries while preparing the answer to A’s token queries. In this
case we have that Cs(C(M0), 0λ,⊥, 0λ) = Cs(C(M1), 0λ,⊥, 0λ) = ⊥. A similar
reasoning holds for the token query for ˜ID issued by B in the output phase.

In the rest of the proof we will show that A’s view in the interaction with B
is indistinguishable from the view of A in CHES-NMCPA-GameCHEb,A (λ, n) (b
is the random bit selected by CHE .C in the Setup phase). We will then prove
that, except with negligible probability, the value x computed by B is the same
as the output of CHES-NMCPA-GameCHEb,A (λ, n) and thus the output of the
distinguisher D can be used to correctly guess b. Specifically, we show that, for
β = 0, 1, the view of A in CHES-NMCPA-GameCHEβ,A is indistinguishable from
the view of A in the interaction with B that is in turn interacting with FE .C
that sets b = β. We do so by considering a sequence of hybrid experiments and
then showing that adjacent hybrid experiments are indistinguishable.

Controlled Homomorphic Encryption: Definition and Construction 119

Hybrid Hβ
0 .

1. Setup. Set (pk, sk) ← Setup(1λ), (pk′, sk′) ← Setup(1λ) and (FE.Pk,FE.Sk) ←
FE.Setup(1λ, 1n+2λ+2). Randomly pick r, r′ ← {0, 1}λ. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), return Ct = FE.Enc(FE.Pk, (Mβ , r, 0, sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Pick random z ∈ {0, 1}λ and set s′ = FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ); z). Set
s = Enc(pk′, s′). Set Tok = FE.KeyGen(FE.Sk, Cs) and return Tok.

For β = 0, 1, the view of A in Hβ
0 is the same as the view of A is

CHES-NMCPA-GameCHEβ,A (λ, n).

Hybrid Hβ
1 . Hybrid Hβ

1 differs from Hβ
0 only in the way value s′ is com-

puted in the reply to token query for circuit C. Specifically, s′ is computed
by using pseudorandom value F (r′, C) instead of truly random value z. The
formal description of Hβ

1 follows.

1. Setup. Set (pk, sk) ← Setup(1λ), (pk′, sk′) ← Setup(1λ) and (FE.Pk,FE.Sk) ←
FE.Setup(1λ, 1n+2λ+2). Randomly pick r, r′ ← {0, 1}λ. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), return Ct = FE.Enc(FE.Pk, (Mβ , r, 0, sk)).

3. Token query. When A issues a token query for circuit C, proceed as fol-
lows. Set s′ = FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ);F (r′, C)). Set s = Enc(pk′, s′)
and return Tok = FE.KeyGen(FE.Sk, Cs).

Next we show that, by the pseudorandomness of F , the views of A in Hβ
0

and Hβ
1 are indistinguishable, for β = 0, 1. We do so by constructing an efficient

simulator algorithm S that interacts with adversary A and has access to an oracle
O that can be either random or pseudorandom. Depending on the nature of O,
S produces A’s view in Hβ

0 or in Hβ
1 . This suffices for proving that Hβ

0 ≈c Hβ
1 .

Next we describe S.

1. Setup. S sets (pk, sk) ← Setup(1λ), (pk′, sk′) ← Setup(1λ) and
(FE.Pk,FE.Sk) ← FE.Setup(1λ, 1n+2λ+2). Then S randomly picks r, r′ ←
{0, 1}λ. Finally, S runs A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), S returns Ct = FE.Enc(FE.Pk, (Mβ , r, 0, sk)).

3. Token query. When A issues a token query for circuit C, S pro-
ceeds as follows. S queries O on C, obtains z and sets s′ =
FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ); z). Finally, S sets s = Enc(pk′, s′) and returns
Tok = FE.KeyGen(FE.Sk, Cs).

120 Y. Desmedt et al.

Suppose the oracle O is in random mode; that is, all queries are answered with
random values. Then it is easy to see that A’s view is exactly the same as in
Hβ

0 . On the other hand, suppose the oracle O is in pseudorandom mode; that
is, O picks a random r′ and, upon receiving C, it replies with F (r′, C). Then it
is easy to see that A’s view is exactly the same as in Hβ

1 .

Hybrid Hβ
2 . Hybrid Hβ

2 differs from Hβ
1 again in the randomness used to compute

the value s′. Specifically, s′ is computed by using as randomness the pseudoran-
dom value F (r, C) instead of F (r′, C). The formal description of Hβ

2 follows.

1. Setup. Set (pk, sk) ← Setup(1λ), (pk′, sk′) ← Setup(1λ) and (FE.Pk,FE.Sk) ←
FE.Setup(1λ, 1n+2λ+2). Randomly pick r, r′ ← {0, 1}λ. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), return Ct = FE.Enc(FE.Pk, (Mβ , r, 0, sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Set s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)). Set s = Enc(pk′, s′) and
return Tok = FE.KeyGen(FE.Sk, Cs).

Next we show that, by the IND-CPA security of encryption scheme Enc, the
views of A in Hβ

1 and Hβ
2 are indistinguishable, for β = 0, 1. We do so by

constructing an IND-CPA adversary S for Enc that uses A as a subroutine and
interacts with a challenger C for Enc. S has the property that if C answers S’s
encryption queries for (s′

0, s
′
1) by encrypting s′

0 then A’s view is exactly the
same as in Hβ

1 ; on the other hand, if C answers encryption queries by encrypting
s′
1 then A’s view is exactly the same as in Hβ

2 . Thus, if the two views can be
distinguished, S can break the IND-CPA security of Enc. Next we describe S.

1. Setup. S receives pk′ from C and sets (pk, sk) ← Setup(1λ). Moreover, S sets
(FE.Pk,FE.Sk) ← FE.Setup(1λ, 1n+2λ+2) and randomly picks r, r′ ← {0, 1}λ.
Finally, S runs A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), S returns Ct = FE.Enc(FE.Pk, (Mβ , r, 0, sk)).

3. Token query. When A issues a token query for circuit C, S pro-
ceeds as follows. S sets s′

0 = FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ);F (r′, C)), s′
1 =

FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)) and issues an encryption query to
C obtaining s. Finally, S returns Tok = FE.KeyGen(FE.Sk, Cs).

Hybrid Hβ
3 . Hybrid Hβ

3 differs from Hβ
2 in the way A’s encryption queries are

answered. Specifically, Ct is a ciphertext of (Mβ , r′, 1, sk′) instead of (Mβ , r, 0, sk).
The formal description of Hβ

3 follows.

1. Setup. Set (pk, sk) ← Setup(1λ), (pk′, sk′) ← Setup(1λ) and (FE.Pk,FE.Sk) ←
FE.Setup(1λ, 1n+2λ+2). Randomly pick r, r′ ← {0, 1}λ. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), return Ct = FE.Enc(FE.Pk, (Mβ , r′, 1, sk′)).

Controlled Homomorphic Encryption: Definition and Construction 121

3. Token query. When A issues a token query for circuit C, proceed as follows.
Set s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)). Set s = Enc(pk′, s′) and
return Tok = FE.KeyGen(FE.Sk, Cs).

Next we show that, by the IND-CPA security of functional encryption scheme
FE, the views of A in Hβ

2 and Hβ
3 are indistinguishable, for β = 0, 1. We do so

by constructing an IND-CPA adversary S for FE that uses A as a subroutine
and interacts with a challenger FE .C for FE. S has the property that if FE .C
answers S’s encryption query for (m′

0,m
′
1) by encrypting m′

0 then A’s view is
exactly the same as in Hβ

2 ; on the other hand, if FE .C answers encryption queries
by encrypting m′

1 then A’s view is exactly the same as in Hβ
3 . Thus, if the two

views can be distinguished, S can break the IND-CPA security of FE. Next we
describe S.

1. Setup. S receives FE.Pk from FE .C and sets (pk, sk) ← Setup(1λ), (pk′, sk′) ←
Setup(1λ). Moreover, S randomly picks r, r′ ← {0, 1}λ and runs A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), S sets

m0 = (Mβ , r, 0, sk) and m1 = (Mβ , r′, 1, sk′)

issues encryption query (m0,m1) to FE .C, obtains Ct and returns it to A.
3. Token query. When A issues a token query for circuit C, S proceeds as fol-

lows. S sets s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)), s = Enc(pk′, s′)
and issues an encryption query to FE .C for a token for circuit Cs. Finally, S
returns the token Tok received from FE .C to A.

Firstly, we verify that S is a legal adversary for IND-CPA of FE. Indeed, S issues
one encryption query for m0 and m1 and for all circuits Cs for which S asks for
a token it holds that

Cs(m0) = Cs(m1) = FE.Enc(FE.Pk, (C(Mβ), 0n,⊥, 0n);F (r, c)).

Clearly, if FE .C returns an encryption of m0 then A’s view is exactly as in
Hβ

2 ; if FE .C returns an encryption of m1 then A’s view is exactly as in Hβ
3 .

Hybrid Hβ
4 . Hybrid Hβ

4 differs from Hβ
3 for the randomness used to compute s′.

Specifically, in Hβ
3 , F (r, C) is used as randomness for computing s′ whereas in

Hβ
4 true randomness is used. The formal description of Hβ

4 follows.

1. Setup. Set (pk, sk) ← Setup(1λ), (pk′, sk′) ← Setup(1λ) and (FE.Pk,FE.Sk) ←
FE.Setup(1λ, 1n+2λ+2). Randomly pick r, r′ ← {0, 1}λ. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages
(M0,M1), return Ct = FE.Enc(FE.Pk, (Mβ , r′, 1, sk′)).

122 Y. Desmedt et al.

3. Token query. When A issues a token query for circuit C, proceed as follows.
Randomly pick z ← {0, 1}λ and set s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ); z).
Set s = Enc(pk′, s′) and return Tok = FE.KeyGen(FE.Sk, Cs).

Notice that, for β = 0, 1, the view of A in Hβ
4 coincides with the view of A

while interacting with B. Moreover, by the pseudorandomness of F , Hβ
3 and Hβ

4

are indistinguishable.
B’s success probability. Finally, we show that the probability that B correctly
guesses b is at least 1/2 + μ(λ) for a non-negligible function μ.

All it is left to show is that the string Out computed by B and then fed as input
to D is indistinguishable from the output of CHES-NMCPA-GameCHEb,A . This is
necessary since B does not have access to Msk and uses a token for function ˜ID
instead. However, observe that ˜ID differs from the decryption function when the
plaintext associated with Ct� is of the form (Mb, rb, t, sk) or (M1−b, r1−b, t, sk) for
some t and sk. In the first case, this means that A has managed to re-randomize
a ciphertext for FE since it has produced a different ciphertext with the same
plaintext Mb and the same tag rb as the plaintext received from the encryption
query. This, by hypothesis, occurs only with negligible probability. For the second
case, observe that r1−b is a random λ-bit string that is independent from A’s view
and thus the probability that A produces a ciphertext carrying r1−b is negligible.
We can thus conclude that the input provided by A to D is indistinguishable
from its input in CHES-NMCPA-Game. Therefore, by the hypothesis on D we
can conclude that B breaks the IND-CPA security of FE.

5 Conclusions and Future Work

In this work we have put forth the notion of a CHES, a new primitive that
includes features of both FHEs and FunctEs. The proposed CHES construc-
tion requires rather strong assumptions. We leave as open problem the possibility
of achieving CHES from weaker assumptions or proving that the existence of
CHES is equivalent to, e.g., iO.

Acknowledgements. Vincenzo Iovino is supported by a FNR CORE grant (no.
FNR11299247) of the Luxembourg National Research Fund. Part of this work was
done while Vincenzo Iovino was at the University of Warsaw and was supported by
the WELCOME/2010-4/2 grant funded within the framework of the EU Innovative
Economy Operational Programme. Ivan Visconti was supported in part by “GNCS -
INdAM” and EU COST Action IC1306.

A Syntax and Security of Functional Encryption for
Circuits

Definition 3 (FE4C: Functional Encryption Scheme for Circuits).
A Functional Encryption scheme for Circuits is a tuple FE =

(FE.Setup,FE.KeyGen,FE.Enc,FE.Eval) of 4 efficient algorithms with the follow-
ing syntax:

Controlled Homomorphic Encryption: Definition and Construction 123

1. FE.Setup(1λ, 1n) outputs public and master secret keys (Pk,Msk) for security
parameter λ and length parameter n.

2. FE.KeyGen(Msk, C), on input a master secret key Msk for length parameter n
and an n-bit input and n-bit output circuit C, outputs token TokC .

3. FE.Enc(Pk,M), on input public key Pk for length parameter n and plaintext
M ∈ {0, 1}n, outputs ciphertext Ct.

4. FE.Eval(Pk,Ct, Tok) outputs B ∈ {0, 1}n ∪ {⊥}.
For the correctness condition we require that for all n-bit input and n-bit out-
put circuits C, all M ∈ {0, 1}n, and for (Pk,Msk) ← Setup(1λ, 1n), Tok ←
KeyGen(Msk, C) and Ct ← Enc(Pk,M), the probability that Eval(Pk,Ct, Tok)
�= C(M) is negligible in λ.

We formalize security for a FE4C FE by means of the following game
FE-IndCPA-Game between a challenger FE .C and an adversary A that can
issue two types of queries to FE .C, encryption queries and token queries. The
definition is essentially the one in [4].

FE-IndCPA-GameFEA(λ, n)

Setup. FE .C generates (Pk,Msk) ←
FE.Setup(1λ, 1n), selects random b ∈ {0, 1}
and runs A on input Pk.

Token Query. FE .C on input an n-bit input n-bit
output circuit C, computes and returns Tok ←
FE.KeyGen(Msk, C).

Encryption Query. FE .C, on input a pair
(m0,m1) of plaintexts, answers by computing
and returning FE.Enc(Pk,mb).

Output of the Game. Let b′ the output of A.
Then the game outputs 1 if and only if
1. b = b′;
2. for all encryption queries (m0,m1), it holds

that m0 and m1 are of the same length;
3. for all token queries C and for all encryp-

tion queries (m0,m1), it holds that C(m0) =
C(m1).

Definition 4. We say that a FE4C FE is IND-CPA secure if for all PPT
adversaries A there exists a negligible function μ such that

Prob[FE-IndCPA-GameFEA (λ) = 1] ≤ 1/2 + μ(λ).

Tag-Based Non-rerandomizable Functional Encryption. In our main construc-
tion we use a special type of FE4C in which ciphertexts cannot be re-
randomized. More precisely, we consider tag-based FE4C in which the encryption

124 Y. Desmedt et al.

algorithm for n-bit plaintext m and security parameter λ takes two extra argu-
ments: a tag τ from the set Tλ of λ-bit tags and an auxiliary message of length
n1. It is easy to see how any FE4C can be modified to accommodate tags and
auxiliary messages at the expenses of increasing the length parameter n. In a
non-rerandomizable tag-based FE4C, given a ciphertext for an adversarially cho-
sen plaintext m and auxiliary message aux and a random tag τ , no adversary can
produce another ciphertext for the same plaintext m and the same tag. Specif-
ically, we consider the following security game between a challenger FE .C and
and adversary A that can issue one single encryption query.

ReRandomTFE
A (λ, n, n1)

Setup. FE .C generates (Pk,Msk) ←
TFE.Setup(1λ, 1n, 1n1) and runs A on input Pk.

Token Query. FE .C on input an (n+n1 +λ)-bit
input (n+n1+λ)-bit output circuit C, computes
and returns Tok ← TFE.KeyGen(Msk, C).

Encryption Query. FE .C, on input plaintext m
and auxiliary message aux, picks a random tag τ
from the set Tλ of tags of length λ and returns
a ciphertext Ct = TFE.Enc(Pk,m, aux, τ) with
tag τ .

Output of the Game. Let Ct� the output of A.
Then the game outputs 1 if and only if
1. Ct� �= Ct;
2. TFE.Dec(Msk,Ct�) = (m′, aux′, τ ′) with

m′ = m and τ = τ ′;

We say that a tag-based FE4C TFE is non-rerandomizable if for all PPT
adversaries A and for n and n1 polynomially bounded in λ there exists a negli-
gible function μ such that

Prob[ReRandomTFE
A (λ, n, n1) = 1] ≤ μ(λ).

It is easy to see that any tag-based FE4C can be transformed into a non-
rerandomizable one by using a secure signature scheme. More precisely, we define
the encryption algorithm TFE.Enc that encrypts plaintext m and aux, to pick
a random pair of (vk, sgk) of verification and signing key for a secure signa-
ture scheme (SigKeyGen,Sign,Verify) and m, aux are encrypted using vk as tag
obtaining Ct. Finally, a signature σCt of Ct is computed using the signing key sgk
and the resulting ciphertext consists of the pair (Ct, σCt). Tokens for function
C on ciphertext (Ct, σCt) first verify σCt and, if successful, proceed to compute
C(m, aux). We observe that A either changes the verification key (and thus
changes the tag) or keeps the same verification key but then it has to sign a new
ciphertext or compute a new signature (which would violate the security of the
signature scheme).

Controlled Homomorphic Encryption: Definition and Construction 125

B IND-CPA CHES

IND-CPA security of a CHESWe formalize the notion of security equivalent to
IND-CPA for a CHES CHE = (CHE.Setup,CHE.KeyGen,CHE.Enc,CHE.HEval,
CHE.Dec) by means of game CHES-IndCPA-Game between an adversary A
and a challenger CHE .C. The adversary A receives a randomly generated public
key of CHE and can issue two types of queries to CHE .C: encryption queries and
token queries. Below we formalize how queries are answered by CHE .C and what
it means for A to win the game.

CHES-IndCPA-GameCHEA (λ, n)

Setup. CHE .C computes (Pk,Msk) ←
CHE.Setup(1λ, 1n), selects a random b ∈ {0, 1}
and runs A on input Pk.

Token Query. CHE .C replies to a token
query for a circuit C by returning TokC ←
CHE.KeyGen(Msk, C).

i-th Encryption Query. CHE .C replies to
encryption query (M i

0,M
i
1) with |M i

0| = |M i
1|,

by returning Ct ← CHE.Enc(Pk,M i
b).

Output of the Game. Let b′ be A’s output.
Return 1 (meaning that A has won) iff b = b′.

Definition 5. A CHES CHE is IND-CPA secure if for every PPT
adversary A, there exists a negligible function μ(·) such that
Pr

[
CHES-IndCPA-GameCHEA (λ, n) = 1

]
≤ 1/2 + μ(λ).

A CHES CHE is single-message IND-CPA secure if it is IND-CPA secure
for all PPT adversaries A asking exactly one encryption query.

B.1 Implications

IND-CPA CHES from LWE Noticing that any fully homomorphic encryption
scheme [16] is also an IND-CPA CHES, we have that the results of [7,8] prove
the following theorem.

Theorem 2. Assuming LWE, there exists an Ind-CPA-secure CHES.

NM-CPA CHES ⇒ IND-CPA CHES Here we show the natural implication
that every NM-CPA CHES is also an IND-CPA CHES.

Theorem 3. Any NM-CPA-secure CHES is also Ind-CPA-secure.

Proof. The proof is by contradiction. Assume there exists a PPT adversary
A Ind-CPA that is able to guess the challenge bit with probability at least
1/2+nneg(λ), for some non-negligible function nneg(·) and consider the following

126 Y. Desmedt et al.

adversary A′. A′ interacts with a challenger for NM-CPA, runs an internal copy
of A and uses the challenger to answer A’s queries. When A outputs b, A′ outputs
with the triple (1, ct∗, C∗), where ct∗ is an encryption of C�(M1

b) and C� is a
circuit that satisfies the condition of the definition. Specifically, C�(m) = m + i
where i is the smallest integer for which C� satisfies the condition of the definition
(that is C�(M1

0) �= C�(M1
1) and none of the tokens asked by A coincides with

C� on messages M1
0 and M1

1). Since the number of token queries is polynomially
bounded, the circuit C� can be efficiently found.

Ind-CPA: single message vs many messages Here we show that in order to
prove the Ind-CPA and NM-CPA security of a construction for a CHES, it is
sufficient to concentrate on the case of an adversary that asks for one encryption
query only. Indeed, we prove that any single-message Ind-CPA-secure CHES is
also Ind-CPA and similarly for NM-CPA security.

Theorem 4. Any single-message Ind-CPA-secure CHES is also Ind-CPA.

Proof. Consider a single-message Ind-CPA CHES CHE and suppose by contra-
diction that there exists an adversary A against its (many-message) Ind-CPA
security that succeeds with probability 1/2 + nneg(λ) for some non-negligible
function nneg(·). We construct an adversary A′ against the single-message Ind-
CPA security of CHE as follows. A′ behaves as a proxy between the challenger
of single-message Ind-CPA and A except for encryption queries and answers.
Specifically, A′ selects a random bit b′ and a random index j′ in {1, . . . , q}, where
q is an upper bound on the number of queries of A and will behave as a proxy
between A and the challenger for all token queries and for j′-th encryption query;
for the remaining encryption queries (M i

0,M
i
1) instead, A′ replies by computing

an encryption of M i
b′ . Finally, A′ outputs the same bit that A outputs.

Observe that the success probability of A is equal to 1/2(S0 + S1), where
we let Sb denote the success probability of A when the challenger chooses bit b.
Therefore we have that 1/2(S0 + S1) ≥ 1/2 + nneg(λ).

Now consider the probability that A outputs the same bit b chosen by the
challenger but in an experiment where for a randomly chosen challenge cipher-
text the value b̄ is used instead of b, and let us denote such a probability by
Tb. Notice that, for b = 0, 1, Tb ≥ Sb − μ(λ) for some negligible function μ, for
otherwise we can trivially break the single-message Ind-CPA security of CHE.

Noticing that with probability 1/2 it holds that b = b′, we have that the
success probability of A′ is S0 + S1 with probability 1/2, and T0 + T1 with
probability 1/2.

Summing up, the success probability of A′ can be computed as follows:
S0+S1+T0+T1

2 ≥ 1/2 + nneg′(λ) for some non-negligible function nneg′.

C Single-Message vs Multi-Message NM-CPA CHES

Theorem 5. Any single-message NM-CPA-secure CHES is also NM-CPA-
secure.

Controlled Homomorphic Encryption: Definition and Construction 127

Proof. Let CHE be a single-message NM-CPA-secure CHES. Assume by con-
tradiction that there exists a successful adversary A for NM-CPA security and
an efficient distinguisher D that distinguishes

CHES-NMCPA-GameCHE0,A (λ, n) and CHES-NMCPA-GameCHE1,A (λ, n).

We now reduce A to an adversary A′ for single-message NM-CPA security of
CHES. The reduction is similar to the one given in [21]. Let q > 1 be an
upper bound on the the number of encryption queries made by A. Consider
the game CHES-NMCPA-GameCHEJ,A (λ, n) indexed by vector J = (b1, . . . , bq)
that specifies that the j-th encryption query is answered by encrypting M j

bj
.

For j = 0, . . . , q, we define vector Jj = (1, . . . , 1, 0, 0, . . . , 0) as the vector
whose first j components are 1 and the remaining components are 0. We can
now run hybrid arguments since CHES-NMCPA-GameCHE0,A (λ, n) corresponds
to CHES-NMCPA-GameCHEJ0,A(λ, n) and

CHES-NMCPA-GameCHE1,A (λ, n) corresponds to CHES-NMCPA-

GameCHEJq,A(λ, n). Since D distinguishes

CHES-NMCPA-GameCHEJ0,A(λ, n) and CHES-NMCPA-GameCHEJq,A(λ, n),

there exists j ∈ {0, . . . , q − 1} such that D distinguishes between

CHES-NMCPA-GameCHEJj ,A(λ, n) and CHES-NMCPA-GameCHEJj+1,A(λ, n).

We can therefore use D along with adversary A to contradict single-message
NM-CPA security of CHE as follows. A′ behaves as proxy between the chal-
lenger and A for the token queries. Instead encryption queries are handled as
follows. A′ selects a random j′ ∈ {0, . . . , q − 1} and forwards to the challenger
the j′-th encryption query (M j′

0 ,M j′
1) received from A, and forwards to A the

corresponding answer received from the challenger. Instead, for all remaining
encryption queries (M i

0,M
i
1), A′ answers on its own by sending an encryption of

M i
1 when i < j′ and of M i

0 when i > j′.
Assume j = j′. Notice that when the challenger encrypts M j

0 , the above
game corresponds to

CHES-NMCPA-GameCHEJj ,A(λ, n)

while when the challenger encrypts M j
1 , the above game corresponds to

CHES-NMCPA-GameCHEJj+1,A(λ, n).

By conditioning on the event that j = j′ we conclude observing that there-
fore D distinguishes CHES-NMCPA-GameCHE0,A′(λ′, n) from CHES-NMCPA-

GameCHE1,A′(λ, n).

128 Y. Desmedt et al.

References

1. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 28

2. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro,
S., Wilson, D.A.: On the relationship between functional encryption, obfus-
cation, and fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013.
LNCS, vol. 8308, pp. 65–84. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-45239-0 5

3. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications
to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 19

4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

5. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: ITCS, pp. 350–366 (2012)

6. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(Standard) LWE. In: FOCS, pp. 97–106 (2011)

9. De Caro, A., Iovino, V.: On the power of rewinding simulators in functional encryp-
tion. Des. Codes Crypt. 84, 1–27 (2016)

10. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 29

11. Desmedt, Y.: Computer security by redefining what a computer is. In: Proceedings
on the 1992–1993 Workshop on New Security Paradigms, NSPW 1992–1993, pp.
160–166. ACM, New York (1993)

12. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd Annual
ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, 6–8
May 1991, pp. 542–552. ACM Press (1991)

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berke-
ley, CA, USA, October 26–29 2013, pp. 40–49. IEEE Computer Society (2013)

14. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–
511. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 18

15. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda, Mary-
land, USA, 31 May–2 June 2009, pp. 169–178. ACM Press (2009)

https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-45239-0_5
https://doi.org/10.1007/978-3-642-45239-0_5
https://doi.org/10.1007/978-3-642-27954-6_19
https://doi.org/10.1007/978-3-642-27954-6_19
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-662-49099-0_18
http://crypto.stanford.edu/craig

Controlled Homomorphic Encryption: Definition and Construction 129

17. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

18. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for ran-
domized functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 325–351. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 13

19. Iovino, V., Żebroski, K.: Simulation-based secure functional encryption in the ran-
dom oracle model. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT
2015. LNCS, vol. 9230, pp. 21–39. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22174-8 2

20. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

21. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 16

22. Waters, B.: A punctured programming approach to adaptively secure func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 33

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-46497-7_13
https://doi.org/10.1007/978-3-662-46497-7_13
https://doi.org/10.1007/978-3-319-22174-8_2
https://doi.org/10.1007/978-3-319-22174-8_2
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

Bitcoin and Blockchain Research

ValueShuffle: Mixing Confidential Transactions
for Comprehensive Transaction Privacy

in Bitcoin

Tim Ruffing1(B) and Pedro Moreno-Sanchez2

1 Saarland University, Saarbrücken, Germany
tim.ruffing@mmci.uni-saarland.de

2 Purdue University, West Lafayette, USA
pmorenos@purdue.edu

Abstract. The public nature of the blockchain has been shown to be a
severe threat for the privacy of Bitcoin users. Even worse, since funds can
be tracked and tainted, no two coins are equal, and fungibility, a funda-
mental property required in every currency, is at risk. With these threats
in mind, several privacy-enhancing technologies have been proposed to
improve transaction privacy in Bitcoin. However, they either require a
deep redesign of the currency, breaking many currently deployed features,
or they address only specific privacy issues and consequently provide only
very limited guarantees when deployed separately.

The goal of this work is to overcome this trade-off. Building on Coin-
Join, we design ValueShuffle, the first coin mixing protocol compatible
with Confidential Transactions, a proposed enhancement to the Bitcoin
protocol to hide payment values in the blockchain. ValueShuffle ensures
the anonymity of mixing participants as well as the confidentiality of
their payment values even against other possibly malicious mixing par-
ticipants. By combining CoinJoin with Confidential Transactions and
additionally Stealth Addresses, ValueShuffle provides comprehensive pri-
vacy (payer anonymity, payee anonymity, and payment value privacy)
without breaking with fundamental design principles or features of the
current Bitcoin system. Assuming that Confidential Transactions will be
integrated in the Bitcoin protocol, ValueShuffle makes it possible to mix
funds of different value as well as to mix and spend funds in the same
transaction, which overcomes the two main limitations of previous coin
mixing protocols.

1 Introduction

In Bitcoin’s initial design, privacy plays only a minor role. The initial perception
of Bitcoin providing some built-in anonymity has been refuted by a vast set of
academic works [2,3,19,24,25,32,37] showing many different privacy weaknesses
with the current Bitcoin protocol. This state of affairs has led to a plethora of
privacy-enhancing technologies [3–5,7,16,17,26,34,35,39,42] aiming at overcom-
ing these shortcomings without breaking with the fundamental design of Bitcoin.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 133–154, 2017.
https://doi.org/10.1007/978-3-319-70278-0_8

134 T. Ruffing and P. Moreno-Sanchez

However, all of these approaches offer only partial solutions, focusing typically
on just one aspect of privacy (payer anonymity, payee anonymity or payment
value privacy). For instance, Confidential Transactions (CT) [22], a proposed
enhancement to the Bitcoin protocol, which is currently evaluated and tested
in the Elements Alpha sidechain [12] and could be implemented in Bitcoin as a
soft-fork, defines a transaction format that ensures payment value privacy in the
blockchain. Stealth Addresses (SA) [38] is a mechanism for payers to generate
unique one-time addresses for improved payee anonymity.

For payer anonymity, the most prevalent approach retaining compatibility
with Bitcoin is coin mixing. In a coin mixing protocol, a group of users exchange
their coins with each other, effectively hiding the relations between funds and
owners. Such functionality can be achieved in practice for example by jointly
generating a multi-input multi-output CoinJoin [21] transaction, which enables
the users to atomically transfer their funds from potentially tainted inputs to
fresh untainted output addresses. Since such a transaction must be signed by
each involved user to be valid, theft of funds can easily be avoided. Additionally,
if users exchange their output accounts by means of an anonymous broadcast
protocol [10,33,34], inputs cannot be linked to outputs even by malicious users
in the mixing, and such malicious users cannot prevent the honest users from
successfully completing the protocol.

To achieve comprehensive privacy, it is necessary to combine all the three
aforementioned partial privacy solutions (CT, SA, and mixing) into one solution,
but this poses a challenge. SA or other means to generate one-time addresses
can be easily combined with coin mixing, but while CT has in fact been designed
with CoinJoin mixing in mind, it is not clear that the trust models of CT and
P2P coin mixing can be made compatible. The design of CT assumes that a
transaction is created by just one user, whereas in P2P coin mixing it is a group
of mutually distrusting users who jointly must create a CoinJoin transaction.
This leads to the following question:

Can we design a P2P coin mixing protocol that enables a group of mutually
distrusting users to create a CoinJoin confidential transaction, without
revealing the relation between inputs and outputs or their payment values
to each other?

1.1 ValueShuffle: Mixing Confidential Transactions

In this work, we answer this question affirmatively. We design ValueShuffle,
the first coin mixing protocol compatible with CT. ValueShuffle is an exten-
sion of the P2P coin mixing protocol CoinShuffle++ [34], which is the result of
instantiating the efficient message mixing protocol DiceMix [34] in the setting
of CoinJoin-based coin mixing. Since ValueShuffle successfully combines coin
mixing, SA and the CT proposal, the resulting currency provides comprehen-
sive privacy, i.e., payer anonymity, payee anonymity and value privacy. Since it
builds upon CoinJoin, ValueShuffle inherits a variety of features crucial to its
practical deployment in the Bitcoin ecosystem, e.g., compatibility with Bitcoin
scripts and compatibility with blockchain pruning.

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 135

Exploiting Synergies. By combining coin mixing with SA and CT, we exploit
important synergies which make P2P coin mixing both more efficient and more
practical, thereby releasing the full potential of coin mixing. We achieve that
goal by overcoming the two main limitations of current coin mixing approaches.

First, all forms of coin mixing have been heavily restricted to mixing funds of
the same value, because otherwise it is trivial for an observer to link inputs and
outputs together just based on their monetary value, independently of how the
mixing is organized. Adding value privacy to coin mixing removes this restriction
entirely but comes with the challenge of proving to the network that no money
is created in the mixing, since payment values are no longer in clear.

Second, current P2P coin mixing protocols [34] suffer from the problem that
users are required to mix their funds (in a CoinJoin transaction) by sending them
to a fresh address of their own first, which removes the trace to the owner. Only
afterwards can users spend the mixed funds to a payee in a second transaction.1

This two-step process renders mixing expensive for users, who pay addi-
tional fees and need to wait longer, and for the entire Bitcoin network, which
has to process essentially twice the amount of transaction data. As a result, pri-
vacy comes at a large expense. This is highly undesirable and creates a conflict
between privacy and efficiency.

In ValueShuffle, instead, we rely on SA and CT to enable users to send their
funds directly to the expected receivers in the CoinJoin transaction, which is
arguably the most desirable mode of use of CoinJoin.

1.2 Features of ValueShuffle

The combination of the three privacy-enhancing technologies ValueShuffle, SA,
and CT achieves the following main features.

Comprehensive Privacy. The combination of technologies provides the privacy
guarantees of interest in Bitcoin. In particular, ValueShuffle ensures that no
attacker observing the blockchain or the network, or even participating in the
protocol, can link inputs and outputs of the CoinJoin transaction created in
an execution of ValueShuffle. That implies that given an output of this trans-
action, the payer’s input address cannot be identified among the honest input
addresses in the mixing (payer anonymity). Additionally, SA provides one-time
addresses for receiving payments, preventing linkage to the intended payee (payee
anonymity), and CT provides value privacy.

Single Transaction. ValueShuffle can be used to transfer funds to payees directly
without any form of premixing as required by current P2P coin mixing solutions,

1 This is due to a fundamental restriction [34] of P2P mixing protocols; they can
only handle freshly generated messages, which can be discarded if the protocol is
disrupted, e.g., Bitcoin addresses of their own generated in the beginning of the
protocol. As a result, paying to a payee directly is not possible, because that would
require using a fixed amount or a fixed address as a message.

136 T. Ruffing and P. Moreno-Sanchez

and without requiring interaction with the payee. As a result, private payments
can be performed with just one single transaction on the blockchain.

DoS Resistance. ValueShuffle succeeds in the presence of denial-of-service
attacks by disruptive users aiming to prevent honest users from completing the
mixing. While disruptive users can delay the protocol, they cannot stop it. Since
ValueShuffle is based on the efficient CoinShuffle++ protocol [34], it terminates
in only 4 + 2f communication rounds in the presence of f disruptive users.

Anonymous Channel Not Strictly Required. For providing unlinkability of inputs
and outputs in a CoinJoin transaction, ValueShuffle does not rely on any external
anonymous channel such as the Tor network [11]. (However, to avoid an observer
being able to link inputs of the CoinJoin transaction with network-level identi-
fiers such as IP addresses, using an external means of anonymous communication
is highly recommended.)

Features Inherited from CoinJoin. Since ValueShuffle is based on the Coin-
Join paradigm, it additionally inherits all of its practical advantages.

Theft Resistance. Since honest users will check the final CoinJoin transaction
before signing it, no money can be stolen from them.

Script Compatibility. While ValueShuffle does not keep the scripts confidential,
it is compatible with transaction outputs that use complex scripts, e.g., advanced
smart contracts, and provides meaningful privacy guarantees for them.

No Overhead for the Network. Unlike ring signatures, as for example deployed in
Monero [28], which require a signature of size proportional to the anonymity set,
our approach—while requiring interaction between users—provides anonymity
without putting an additional burden in terms of blockchain space or verification
time on the Bitcoin network.

Reduced Fees and Space Requirements. Taking this one step further, CoinJoin
makes Bitcoin in fact more efficient, assuming the availability of Schnorr signa-
tures [36], which are planned to be deployed in Bitcoin Core in the future [6].
The introduction of Schnorr signatures will enable aggregate signatures using an
interactive two-round protocol among the users in a CoinJoin [41], reducing the
number of signatures from n to 1, where n is the number of users. This protocol
can easily be integrated in ValueShuffle, and since we can exploit concurrency, the
resulting protocol will have the same number of rounds as the non-interactive
variant (4f + 2). This enhancement greatly reduces the size of transactions,
thereby providing large savings in terms of blockchain space, verification time,
and transaction fees as compared to n individual confidential transactions.

Incentive for Privacy. Due to the reduced fees, users save money by performing
privacy-preserving transactions. This provides an unprecedented incentive for
deployment and use of privacy-enhancing technologies in Bitcoin.

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 137

Compatibility with Pruning. Unlike in Zerocash [4] or Monero [28], using Coin-
Join it can be publicly observed which transaction outputs are unspent. While
this releases some information to the public, it allows pruning spent outputs from
the set of (potentially) unspent transaction outputs. Pruning helps to mitigate
the scaling issues of Bitcoin.

Overlay Design. The unlinkability provided by ValueShuffle through the use of
CoinJoin is built as a separate layer on top of Bitcoin, which avoids additional
complexity and risk in the underlying Bitcoin protocol.

2 Related Work

A variety of privacy solutions have been proposed so far in the literature, based
on different paradigms.

Coin Mixing. CoinShuffle [33] and its successor CoinShuffle++ [34] use P2P mix-
ing to create a CoinJoin [21] transaction. This approach has the advantage that
theft is excluded by the design; however, efforts are required to ensure termina-
tion even with malicious users. ValueShuffle is an extension of CoinShuffle++;
both easily scale up to anonymity sets of moderate size (e.g., 50 users).

Another line of research defines mixing using an intermediary tumbler [7,
16,17,39]. Notably, TumbleBit is the first such protocol that does not require
users to trust in the tumbler for privacy or security of funds. An immediate
advantage of mixing with a tumbler is that it scales better to larger anonymity
sets. For instance, TumbleBit has been tested with an anonymity set of 800
users. However, a normal payment using TumbleBit needs at least two sequential
Bitcoin transactions. ValueShuffle instead needs only one transaction to perform
a payment. To enable more efficient mixing, TumbleBit also supports mixing
based on payment channels with the tumbler.

Xim [5] uses announcements on the blockchain to pool users for mixing,
thereby avoiding that a single party such as the bulletin board in P2P mixing or
the tumbler can deny service to honest users and simplify Sybil attacks reducing
the effective anonymity set of other honest users. However, Xim supports only
two-party mixing, and thus many mixing transactions are required to achieve
even an anonymity set of moderate size.

Apart from their differences in terms of requirements (e.g., number of trans-
actions or trust assumptions), all coin mixing protocols proposed thus far are
not compatible with CT and thus share the common drawback inherent to coin
mixing with plain amounts: payments must transfer the same amount of funds,
as otherwise unlinkability of input and output accounts is trivially broken.

CryptoNote. The CryptoNote [35] design is the closest to our work in terms
of provided privacy guarantees. CryptoNote relies on ring signatures to provide
anonymity for the sender of a transaction. An extension of CryptoNote is fully

138 T. Ruffing and P. Moreno-Sanchez

compatible with CT [27] and has been implemented in the cryptocurrency Mon-
ero [28]. In contrast to ValueShuffle, an online mixing protocol is not required, and
a sufficient anonymity set can be created using funds of users currently offline.

However, CryptoNote’s use of ring signatures comes with two important
drawbacks for scalability. First, CryptoNote essentially performs mixing on the
blockchain and requires each transaction to contain a ring signature of size O(n),
where n is the size of the anonymity set. Storing the ring signatures requires a lot
of precious space in the blockchain, and verifying them puts a large burden on
all nodes in the currency network. In contrast, ValueShuffle performs the actual
mixing off-chain and stores only the result on the blockchain.

Second, CryptoNote is not compatible with pruning, a feature supported,
e.g., by the Bitcoin Core client [29]. Pruning reduces the storage requirements
of nodes drastically by deleting old blocks and spent transactions once verified.
This is impossible in CryptoNote because its use of ring signatures prevents
clients from determining whether an transaction output has been spent and can
be pruned. A CoinJoin-based approach such as ValueShuffle does not have this
problem and is compatible with pruning.

From a high-level point of view, ValueShuffle moves the overhead of providing
payer anonymity from the blockchain and thus the whole Bitcoin network to only
the users actively involved in a single mixing.

Mimblewimble. Mimblewimble [18,31] is a design for a cryptocurrency with
confidential transactions that can be aggregated non-interactively and even
across blocks. This has tremendous benefits for the scalability of the under-
lying blockchain. However, such aggregation alone does not ensure input-output
unlinkability against parties who perform the aggregation, e.g., the miners. Fur-
thermore, Mimblewimble is not compatible with smart contracts due to the lack
of script support. In contrast, ValueShuffle seamlessly supports scripts as cur-
rently implemented in Bitcoin.

Zerocoin and Zerocash. Zerocoin [26] and its follow-up work Zerocash [4], whose
implementation Zcash has recently been deployed, are cryptocurrency protocols
that provide anonymity by design. Although these solutions provide strong pri-
vacy guarantees, it is not clear whether Zcash will see widespread adoption, in
particular given its reliance on a trusted setup and non-falsifiable cryptographic
assumptions [14] due to the use of zkSNARKS. Moreover, since it is not possible
to observe which outputs have been spent already, blockchain pruning is not
possible in Zerocoin and Zerocash.

3 Building Blocks

We describe the three building blocks of ValueShuffle, namely peer-to-peer mix-
ing, Confidential Transactions, and Stealth Addresses.

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 139

3.1 Peer-to-Peer Mixing

A peer-to-peer (P2P) mixing protocol [10,33,34] allows a set of untrusted users
to simultaneously broadcast their messages without requiring any trusted third
party. The protocol ensures sender anonymity, i.e., an attacker controlling the
network and some of the participating users cannot associate a message to its
corresponding honest sender. In this work, we use DiceMix [34] (as in CoinShuf-
fle++), which relies on Dining Cryptographers networks (DC-nets) [9] to achieve
anonymity. Before the DC-net can be run, DiceMix runs a key exchangeto estab-
lish pairwise symmetric keys.

DoS Resistance. Disruptive users, whose goal is to prevent honest users from
mixing, will be exposed and excluded in DiceMix. To this end, users broadcast
the ephemeral secret key used in the key exchange of a failed protocol run. Then
at least one malicious user is identified by replaying the expected computations,
allowing the honest users to start a new run excluding the malicious user.

Eventually only honest users remain, and the protocol terminates.

Freshness of Messages. A P2P mixing protocol requires mixed messages to be
fresh and to have sufficient entropy [34]. Freshness enables the protocol to sacri-
fice anonymity in failed runs in order to identify malicious users. As the messages
will be discarded and no transaction will be performed, this does not hurt pri-
vacy at this point. Freshness is then required to ensure that a message from a
particular user used in a failed run (with sacrificed anonymity) cannot be linked
to a message from the same user used in the final successful run, in which a
transaction will be performed and anonymity must be ensured.

3.2 Confidential Transactions

Confidential Transactions (CT) [15,22] is a cryptographic extension to Bitcoin
that allows a single user to perform a transaction such that none of the monetary
values in the inputs or outputs are revealed, thereby guaranteeing value privacy.
Nevertheless, the balance property, i.e., no new coins are generated in the trans-
action, remains publicly verifiable.

This is mainly achieved by hiding the values using additively homomorphic
commitments, i.e., Com(x, r)⊕Com(x′, r′) = Com(x+x′, r + r′). As an example,
assume a user has an input value x1 and two output values x2 and x3. She can
commit to x1, x2, and x3, as ci ··= Com(xi, ri), where ri is chosen uniformly at
random. Then, she computes rΔ = r1 + r2 − r3 and adds this value in clear to
the transaction. Ignoring fees, a verifier can then verify the balance property by
checking whether c1 ⊕ c2 = c3 ⊕ Com(0,−rΔ).

In fact, the current design of CT avoids adding rΔ explicitly by choosing the
randomness values such that always rΔ = 0. Our description of ValueShuffle is not
compatible with this optimization, because it is not clear how to support it with-
out adding communication rounds to the protocol. In practice, CT uses Pedersen
commitments [30] and range proofs based on borromean ring signatures [23].

140 T. Ruffing and P. Moreno-Sanchez

To ensure that commitments do not contain negative or too-large values that
could overflow, a non-interactive zero-knowledge range proof is added to every
commitment, proving that the value is in a certain range. (Also other components,
e.g., an ephemeral public key, are added. To simplify presentation, we assume
throughout the paper that these other components are part of the range proof.)

Monetary values are in fact represented not as integers but as floating point
numbers with a public exponent, and only the mantissa is hidden in the commit-
ment; this is to support large values efficiently. However, in this work we assume
ordinary integers, i.e., we assume that the exponent is effectively not used (i.e., it
is always 0), which will be necessary to ensure anonymity.

3.3 One-Time Addresses

Users performing transactions via ValueShuffle require a sufficient supply of fresh
unlinkable addresses of the payee. This will make it possible to discard a recipient
address used in a failed run of DiceMix. In this case, a fresh address can be used for
the following run, satisfying the freshness requirement of messages mixed using
DiceMix. (If there are n users in the mixing, DiceMix will require at most n −
1 addresses.) Several methods are available. First, the payee can post a stealth
address, which enables any payer to derive fresh addresses. Second, the payee can
send a BIP32 public key [40] to the payer, which enables the payer to derive fresh
addresses. The necessary derivation index can be derived from public information,
e.g., a hash of the value commitment. Third, the payee can simply send enough
fresh addresses to the payer.

The method based on stealth addresses provides the strongest privacy guar-
antees. A stealth address is a public long-term address of a payee, which enables a
payer to derive an arbitrary number of unlinkable addresses owned by the payee.
A payment using a stealth address does not require any direct communication
between payer and payee, and thus provides strong payer anonymity when used
together with coin mixing: not even the payee can identify the payer, which is a
useful property for anonymous donations, for example.

Nevertheless, ValueShuffle is oblivious of the method to generate fresh
addresses; we only require that the payee has access to some method, and we refer
the reader to the respective descriptions of the individual methods for details.

4 ValueShuffle

In this section, we overview ValueShuffle, the first P2P coin mixing protocol com-
patible with CT. We detail the protocol and the security analysis in Sect. 5.

Bootstrapping and Communication Model. A suitable bootstrapping mechanism
is required for finding users. A malicious bootstrapping mechanism can hinder
payer anonymity, as it can prevent honest users from participating in the protocol.
Although this is a realistic threat, we consider prevention of such attacks orthog-
onal to our work.

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 141

Since ValueShuffle is an extension of CoinShuffle++, which uses DiceMix to
mix Bitcoin addresses of the users, we rely on the same communication model as
CoinShuffle++ and DiceMix. For completeness, we sketch this model here. We
assume that users communicate with each other via a (broadcast) bulletin board,
e.g., an IRC server echoing messages from one user to the others. Moreover, we
assume the bounded synchronous communication setting, where a message from
a user is available to all others at the end of a round and absence of a message from
a user indicates that the user did not send any message. We stress that privacy
is guaranteed even against a fully malicious bulletin board; the bulletin board is
purely a means of communication.

4.1 Security and Privacy Features

ValueShuffle provides the following security and privacy guarantees.

Unlinkability: Given an output and two inputs belonging to honest users in the
CoinJoin transaction created by the protocol, the attacker is not able to tell
which of the two inputs pays to the output.

CT Compatibility: The protocol generates a CoinJoin transaction without
compromising the individual value privacy of honest users provided by CT.

Theft Resistance: Funds of each honest user are either transferred to the payee
as intended or remain with the honest user.

Termination: The protocol terminates for the honest users.

Threat Model. We consider an attacker that controls f malicious users. We do not
put restrictions on f . However, for unlinkability we need f < n−1, where n is the
set of unexcluded users, to ensure there is a meaningful anonymity set.

The attacker additionally controls the bulletin board, which enables him to
block messages from honest users. Only for the termination property, we assume
that the bulletin board is honest, because otherwise, all communication could be
blocked by the attacker and termination is impossible to ensure.

4.2 Challenges and Our Solutions

To combine coin mixing with CT and one-time addresses, we need to overcome
the following challenges. For the sake of explanation, we assume that each user has
only one input and one output in the transaction, and that there is no transaction
fee. The full protocol does not have these limitations.

Basic Design. From a high-level point of view, the users in an execution of Val-
ueShuffle run DiceMix to mix not only their output addresses (as done in Coin-
Shuffle++) but their output triples, i.e., triples consisting of output address (or
script), CT value commitment, and corresponding range proof. If DiceMix runs
successfully, then it will pass a set of anonymized triples to an application-defined
confirmation mechanism, which confirms the result of the mixing. As in CoinShuf-
fle++, the confirmation mechanism in ValueShuffle is the collective signing of the
CoinJoin transaction, either by collecting a plain list of signatures or by perform-
ing an interactive protocol to create an aggregate Schnorr signature [41].

142 T. Ruffing and P. Moreno-Sanchez

Handling Disruption. If a run of DiceMix fails, it must be possible to identify at
least one disruptive user to be excluded in a subsequent run of the protocol. This
will eventually guarantee termination. Crucially, DiceMix requires the confirma-
tion mechanism to output at least one such user if confirmation itself is disrupted.
The confirmation mechanism can assume that the result of the mixing is correct,
i.e., it contains the messages of all honest users. Given that assumption, identifying
a disruptive user is straightforward: a user that refuses to sign the final CoinJoin
transaction, or provides wrong signatures (or wrong partial signatures in the case
of Schnorr aggregate signatures) is obviously disruptive.

Freshness of Mixed Output Triples. Recall that DiceMix requires mixed mes-
sages (i.e., the output triples in our case) to be fresh [34] and have sufficient
entropy to ensure anonymity. This is exactly where we are able to exploit one-
time addresses and CT. In particular, the payer is able to create fresh unlinkable
output triples: We assume that the payer has a method to create fresh unlink-
able output addresses all belonging to same payee, so the address component of
the output triple is fresh. Moreover, the payer uses CT and since the commitment
scheme and the range proof are randomized, the payer is able to generate many
fresh unlinkable value commitments and range proofs. So all three components of
the output triple can be freshly generated.

Only by combining one-time addresses and CT, we are able to guarantee
anonymity if users are mixing and performing actual payments in the same trans-
action. Previous P2P coin mixing protocols such as CoinShuffle++ [34] require
users to mix funds to a fresh output address of their own, because using the fixed
address of the recipient or even using the plain monetary value in the mixing is
not possible if anonymity and termination are desired [34].

Multiple-Payer CT. In the original design of CT, the single payer can easily
craft the randomness for the commitments to input and output values in the
transaction such that anyone can verify its correctness (see Sect. 3.2). However,
in a mixing transaction with several payers, a naive construction of such a ver-
ifiable transaction would require that users reveal to each other the random-
nesses used in the commitments, thereby compromising the hiding property of the
commitments.

To overcome this issue, the users can run a secure sum protocol to jointly com-
pute the sum rΔ of their random values, i.e., rΔ =

∑
i ri − r′

i, where ri denotes
the randomness in the commitment to the input value of user i, and r′

i denotes
the randomness in the commitment to the output value of the same user i. As a
sum, rΔ does not reveal which user contributed which summand to rΔ. Now all
users can add rΔ as an explicit public randomness value to the transaction, and
the overall transaction is valid again, which can be publicly verified by checking
whether

⊕
ci =

⊕
c′
i ⊕ Com(0,−rΔ).

The value rΔ can be obtained with a standard secure sum protocol based on
additive secret sharing, where every user i broadcasts her value ri − r′

i blinded by
multiple pads, each one shared with one other user. The messages from all users

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 143

are then combined so that shared keys cancel out and the sum rΔ is obtained. This
mechanism is in essence equivalent to a DC-net as already used in DiceMix.

Handling Disruption of the Secure Sum Protocol. Malicious users can disrupt not
only the mixing of output triples but also the secure sum protocol by creating an
output value commitment that does not match the value of the input commitment,
which can be detected when creating the CoinJoin transaction.

Similar to sacrificing anonymity in the DC-net used for mixing output triples,
we can sacrifice anonymity in the DC-net used as a secure sum protocol. This
reveals for every user i what she claims is ri − r′

i. Using the verification equa-
tion of CT, all honest users can easily check the balance property of every user i
individually, i.e., check whether user i’s output commitments are consistent with
her input commitments. Note that this approach does not reveal the random val-
ues used for the input commitments or the output commitments of user i, which
would also reveal her intended payment value.

Combining P2P Mixing and Secure Sum. Since both DiceMix and the secure sum
protocol are similar in structure (they both rely on DC-nets after all), we can opti-
mize their combination. First, we can rely on a single key exchange and derive
independent subkeys for the P2P mixing and the secure sum protocol. This means
that if one of the two protocols is aborted, then the other must be aborted as
well, because the same ephemeral secret is used for the key exchange and must
be revealed. This is not a problem because the proper result of one of the two pro-
tocols does not yield a valid mixing transaction, and the users have to restart from
scratch by generating a fresh output triple anyway.

Mixing Long Messages in DiceMix. While DiceMix in its current form is practical
for small messages m (e.g., |m| = 160 bits as used by CoinShuffle++), it is pro-
hibitively slow for messages of the size we require; we need |m| ≈ 20 000 bits to
mix the quite large range proofs necessary in CT. The most expensive computa-
tion step is a polynomial factorization and requires each message to be an element
of a finite field and consequently the finite field must have a size of about 2|m|.

To overcome this issue, we split m into several chunks, i.e., m = m1‖ . . . ‖m�

and mix those chunks in different parallel runs of the essential mixing step in
DiceMix. The challenge that arises is to recombine the messages again, because
the mixing ensures that it is not possible to know which chunks belong together
(i.e., to the same user). Our solution is to prefix every mi for 1 < i ≤ � with

144 T. Ruffing and P. Moreno-Sanchez

F(m1), where F is a collision-resistant hash function, so that every user mixes:
m′

1 = m1 and m′
i = F(m1) ‖mi for 1 < i ≤ �. This arrangement allows for

a trade-off between computation and communication required for mixing: bigger
chunks reduce the number of parallel mixing instances required but demand higher
computation costs for the polynomial factorization.

Supporting Arbitrary Scripts. So far we have discussed only output addresses,
which are essentially hashes, but not about their type. While mixing works fine
with ordinary pay-to-pubkey-hash (P2PKH) hashes, we require pay-to-script-
hash (P2SH) hashes [1]2 to support arbitrary scripts. However, it is not possi-
ble to mix P2PKH and P2SH hashes in the same mixing, because this would
require adding the address type explicitly to the mixing message, which breaks
anonymity: in case of a disruption, it becomes clear which inputs go a P2PKH
address and which inputs go to a P2SH address. To support P2PKH and P2SH
together, we can instead perform P2PKH transactions nested in P2SH.3 For sim-
plicity, we will ignore this issue and assume addresses in the remainder of the
paper.

4.3 Overview of ValueShuffle

We assume that every user i is represented by a triple ini = (ci = Com(xi, ri), πi,
vk i), where ci denotes the commitment to the input value xi using randomness ri,
πi denotes a range proof for ci, and vk i denotes a Bitcoin address owned by the
user i. For ease of explanation, we assume here that every user has only one input
triple and that there are no fees in place.

From a high-level perspective, an execution of ValueShuffle consists of runs,
and each run of ValueShuffle consists of four phases as follows.

1. Output Generation.Every user i locally generates her output triple out i = (c′
i =

Com(x′
i, r

′
i), π

′
i, addr

′
i), where c′

i is a CT-style commitment, π′
i is the corresponding

range proof, and addr ′
i is a fresh one-time address of the receiver. Note that users

can have several output triples (including change outputs), but for simplicity we
restrict our attention to only one output here.

2. Mixing and Secure Sum. Users run in parallel a P2P mixing protocol to mix
their output triples out i and a secure sum protocol to privately compute the sum
rΔ =

∑
i r′

i − ri. Finally, input and output messages can be combined to deter-
ministically form a (still unsigned) CoinJoin transaction by adding the explicit
random value rΔ.

2 In P2PKH, funds are sent to a public key specified by its hash, and the user who
wants to spend the resulting output is responsible for showing the public key. P2SH
is a generalization: In P2SH, funds are sent to a script specified by its hash, and the
user who wants to spend the resulting output is responsible for providing the script.

3 Such nesting has also been proposed in the context of Segregated Witness [20].

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 145

3. Check. Users check validity of the resulting CoinJoin transaction, i.e., they
check whether all range proofs π′

i verify with respect to commitments c′
i, and check

whether the overall balance of the intended transaction is correct, i.e., whether⊕
i ci =

⊕
i c′

i + Com(0,−rΔ). Also, every user verifies that her output triple is
part of the mixing result, i.e., no coins are stolen by the transaction.

4a. Confirm. If all checks pass, the transaction is valid and users are required to
sign it. While every user checked only that her output is present, DiceMix guar-
antees that this suffices to ensure that the outputs of all users are present. Thus
if some honest user reached this point, she can be sure that users refusing to sign
the transaction are disruptive. If this happens, they will be excluded and a new
run of the protocol is started.

4b. Blame. If any of the aforementioned checks fail, a blame phase is performed to
detect at least one malicious user. Every user i broadcasts the secrets she used for
the mixing and secure sum protocols, thereby revealing the value ri − r′

i, which
suffices to check that user i committed the same value in the input and output
addresses (and therefore no coins were created). Now every other user j can recom-
pute the mixing and secure sum steps of user i and detect whether she faithfully
followed the protocol specification. The thereby exposed malicious user is then
excluded from the protocol and a new run is started.

4.4 Performance

To reduce the number of necessary communication rounds, DiceMix is able to start
a subsequent run even if the current run has not yet failed, and thus even if it is
not yet clear who will be the disruptor to be excluded in the subsequent run [34].
ValueShuffle is able to exploit this mechanism as well and as a result, ValueShuffle
terminates in 4+2f rounds in the presence of f disrupting users (instead of 4+4f
rounds without this feature).

5 ValueShuffle: Full Protocol Description

In this section we specify ValueShuffle fully. We start by describing the building
blocks that the protocol relies on.

Digital Signatures. We require a digital signature scheme (KeyGen, Sign, Verify)
unforgeable under chosen-message attacks (UF-CMA). The algorithm KeyGen
returns a private signing key sk and the corresponding public verification key vk .
On input message m, Sign(sk ,m) returns σ, a signature on message m using sign-
ing key sk . The verification algorithm Verify(pk , σ,m) outputs true iff σ is a valid
signature for m under the verification key vk .

146 T. Ruffing and P. Moreno-Sanchez

Non-interactive Key Exchange. We require a non-interactive key exchange
(NIKE) mechanism (NIKE.KeyGen,NIKE.SharedKey) secure in the CKS model [8,
13]. Algorithm NIKE.KeyGen(id) outputs a public key npk and a secret key nsk ,
given a party identifier id . Algorithm NIKE.SharedKey(id1, id2,nsk1,npk2, sid)
outputs a shared key for the two parties and a session id sid , such that for all
session ids sid , all parties id1, id2, and all corresponding key pairs (npk1,nsk1)
and (npk2,nsk2), we have NIKE.SharedKey(id1, id2,nsk1,npk2, sid) =
NIKE.SharedKey(id2, id1,nsk2,npk1, sid). We require an algorithm NIKE.
ValidatePK(npk), which outputs true iff npk is a public key in the output space
of NIKE.KeyGen, and we require an algorithm NIKE.ValidateKeys(npk ,nsk) which
outputs true iff nsk is a secret key for the public key npk .

Static Diffie-Hellman key exchange satisfies these requirements [8], given a
suitable key derivation algorithm such as NIKE.SharedKey(id1, id2, x, gy) ··=
K((gxy, {id1, id2}, sid)) for a hash function K modeled as a random oracle.

Hash Functions. We require hash functions H, G, and F modeled as random ora-
cles.

Confidential Transactions. Confidential Transactions (CT) relies on a non-
interactive commitment scheme (Com,Open), which uses public parameters we
keep implicit, and a range proof (RPCreate,RPVerify). Algorithm Com(m, r) uses
the randomness r ∈ R to output a commitment c of message m. Algorithm
Open(param, c,m, r) returns true iff c is a valid commitment of message m with
randomness r. Informally, a commitment scheme is hiding, i.e., the commitment
c reveals nothing about m; and binding, i.e., no attacker can produce a commit-
ment that it can open to two different messages m′ �= m. CT requires an additively
homomorphic commitment scheme, i.e., there is an efficient operation ⊕ on com-
mitments such that Com(m1, r1) ⊕ Com(m2, r2) = Com(m1 + m2, r1 + r2). In
practice, CT uses Pedersen commitments [30].

In a range proof scheme, the algorithm π ··= RPCreate(m, r) creates a proof π
that c = Com(m, r) is a commitment of a value in a valid range. The algorithm
b ··= RPVerify(π, c) returns true iff π is a valid range proof for c. We refer the reader
to the CT draft [15,22] for details.

Confirmation. The confirmation subprotocol ConfirmTx() uses CoinJoin to
perform the actual mixing. The algorithm CoinJoinTx() creates a CoinJoin trans-
action, and the algorithm Submit(tx , σ[]) submits transaction tx including the cor-
responding signatures σ[] to the Bitcoin network.

Our implementation of ConfirmTx() produces a CoinJoin transaction with
one signature from each user. As noted above, alternative schemes are possible,
e.g., the two-round aggregate Schnorr signature protocol [41] can be used to sign
the transaction if Schnorr signatures will available in Bitcoin. In that case, it is
possible to pre-perform the first round of the two-round protocol (in parallel to
the main part of ValueShuffle), because this round does not depend on the output

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 147

of the mixing, such that ConfirmTx() effectively still takes only one round, and
the full protocol still takes only 4 + 2f rounds.

Conventions and Notation for Pseudocode. We use arrays written as Arr[i], where
i is the index. We denote the full array (all its elements) as Arr[].

Message x is broadcast using “broadcast x”. The command “receive X[p]
from all p ∈ P where X(X[p]) missing C(Poff)” attempts to receive a message
from all users p ∈ P . The first message X[p] from user p that fulfills predicate
X(X[p]) is accepted and stored as X[p]; all further messages from p are ignored.
When a timeout is reached, the command C is executed, which has access to a set
Poff ⊆ P of users that did not send a (valid) message.

Regarding concurrency, a thread that runs a procedure P(args) is started
using “t ··= forkP(args)”, where t is a handle for the thread. A thread t can
either be joined using “r ··= joint t”, where r is its return value, or it can be
aborted using “abort t”. A thread can wait for a notification and receive a value
from another thread using “wait”. The notifying thread uses “notify t of v” to
notify thread t of some value v.

Setup. We assume that funds that should be used as input in ValueShuffle can
only be spent by providing signatures, i.e., they are associated with a verification
key that can also be used in ValueShuffle. Furthermore, for ease of explanation we
assume here that every user has only one input. However, ValueShuffle can easily
be adapted to overcome this restriction: If a user has more than one input, she
can simply sign her messages using all signing keys corresponding to all verifica-
tion keys, and the code for checking the balance can be adapted to consider the
homomorphic combination of several input commitments.

As a result of these assumptions, every user in the beginning knows an unspent
transaction output UTXO[p], its corresponding CT commitment C[p] and verifica-
tion key VK[p] for every other user p.

Furthermore, every user has her corresponding secrets, i.e., the value x and
randomness r such that c = Com(x, r), the secret key sk corresponding to vk , and
every user has a setPayments with recipients and corresponding amounts (includ-
ing a change address if necessary), describing the payments she wants to perform.
We assume that every user wants to perform the same number of payments and
that the transaction fee fee is evenly split among the users.

Full Pseudocode. Here we describe the full protocol in pseudocode. We assume
that the reader is familiar with the details of DiceMix and CoinShuffle++ [34] to
understand the code. For better readability, our essential changes to CoinShuf-
fle++, which result in ValueShuffle, are printed in blue.

148 T. Ruffing and P. Moreno-Sanchez

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 149

150 T. Ruffing and P. Moreno-Sanchez

5.1 Security Analysis

We argue briefly why ValueShuffle achieves the desired security and privacy prop-
erties.

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 151

Unlinkability. Unlinkability follows from sender anonymity in DiceMix [34]:
Whenever some honest user i signs the CoinJoin transaction, the confirmation
phase has been reached. In this case, because output triples are freshly generated
for each run, DiceMix guarantees that the honest users form a proper DC-net. This
in turn ensures that the attacker cannot distinguish whether an output triple of
user i belongs to i or some other honest user j. Note that the relation between user
and output triple can be revealed in the blame phase, but then a CoinJoin trans-
action with the current output triple will never be signed, so it is safe to reveal
the relation. Instead, the output triple will be discarded and a further run will be
started, using a fresh output triple, which is unlinkable to the discarded output
triples. We refer the reader to DiceMix [34] for a detailed discussion. The only
difference from DiceMix is that ValueShuffle runs two proper DC-nets in parallel.

CT Compatibility. ValueShuffle does not impair the privacy guarantees provided
by CT. The only CT secrets belonging to a user i that ValueShuffle uses (and
actually reveals in the blame phase) is her value r − ∑

k r′
k, where k ranges over

her output triples. Since r and all r′
k are random, this sum does not reveal anything

about the individual r and r′
k values and thus does not affect the hiding property

of the input commitment or any of the individual output commitments.

Termination. DiceMix itself provides termination, and we have to argue that our
extensions do not affect this property. This mainly boils down to ensuring that a
malicious user can be detected in each protocol run.

If one of the DC-nets for mixing the output triples is disrupted, then a mali-
cious user will be identified. This follows from the termination of DiceMix and
the observation that each message chunk is unpredictable. If the DC-net for com-
puting rΔ is disrupted, then the blame phase will sacrifice anonymity for this run
(discarding the output triples), and the malicious user will be identified by check-
ing her individual balance property, i.e., whether just her set of inputs and out-
puts are balanced, as done in the blame phase. If a wrong range proof is provided,
then the blame phase will sacrifice anonymity for this run (discarding the output
triples), and the malicious user can be identified by checking who provided the
wrong range proof. In all other cases, the transaction will be valid by construction,
so users refusing to sign it are malicious (or offline) and thus can be excluded from
further runs.

By construction, and since the bulletin board is honest (which we assume for
termination, as otherwise it is impossible to achieve), all honest users agree on the
set of users to exclude and thus on the set of remaining users in the subsequential
run of the protocol. We refer the reader to DiceMix [34] for details of termination.

Theft Resistance. The protocol must ensure that no honest user incurs money loss
(ignoring transaction fees). ValueShuffle ensures theft resistance since the mixing
of output triples and randomness does not involve the transfer of funds. Before the
CoinJoin transaction is formed, every honest user checks that her output address
and the corresponding committed value is included and only then signs the trans-
action. As a CoinJoin transaction becomes valid only when every user has signed

152 T. Ruffing and P. Moreno-Sanchez

the transaction (and thus confirmed that her funds are not stolen), ValueShuffle
provides theft resistance.

Acknowledgements. We thank Pieter Wuille for pointing out a mistake in a preprint,
and we thank the anonymous reviewers for their very helpful comments. This work was
supported by the German Ministry for Education and Research (BMBF) through fund-
ing for the German Universities Excellence Initiative.

References

1. Andresen, G.: Pay to script hash, BIP 16. https://github.com/bitcoin/bips/blob/
master/bip-0016.mediawiki

2. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–
51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 4

3. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better—how to make Bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 29

4. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: decentralized anonymous payments from Bitcoin. In: S&P 2014 (2014)

5. Bissias, G., Ozisik, A.P., Levine, B.N., Liberatore, M.: Sybil-resistant mixing for
Bitcoin. In: WPES 2014 (2014)

6. Bitcoin Core: Segregated witness: the next steps. https://bitcoincore.org/en/2016/
06/24/segwit-next-steps/#schnorr-signatures

7. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin:
anonymity for Bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R.
(eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45472-5 31

8. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
J. Cryptol. 22(4), 470–504 (2009)

9. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

10. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging. In:
CCS 2010 (2010)

11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: USENIX Security 2004 (2004)

12. Elements Project: Alpha sidechain. https://www.elementsproject.org/sidechains/
alpha/

13. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36362-7 17

14. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC 2011 (2011)

15. Gibson, A.: An investigation into Confidential Transactions (2016). http://diyhpl.
us/˜bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20
Transactions%20-%20Adam%20Gibson%20-%202016.pdf

16. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit: an
untrusted Bitcoin-compatible anonymous payment hub. In: NDSS 2017 (2017)

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1007/978-3-642-32946-3_29
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/#schnorr-signatures
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/#schnorr-signatures
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/978-3-662-45472-5_31
https://www.elementsproject.org/sidechains/alpha/
https://www.elementsproject.org/sidechains/alpha/
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf

ValueShuffle: Mixing CT for Comprehensive Transaction Privacy in Bitcoin 153

17. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous
on-blockchain and off-blockchain Bitcoin transactions. In: Clark, J., Meikle-
john, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016.
LNCS, vol. 9604, pp. 43–60. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53357-4 4

18. Jedusor, T.E.: Mimblewimble. https://scalingbitcoin.org/papers/mimblewimble.
txt

19. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin using
P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45472-5 30

20. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer),
BIP 141. https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#
p2wpkh-nested-in-bip16-p2sh

21. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. Post on Bitcoin Forum
(2013). https://bitcointalk.org/index.php?topic=279249

22. Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/∼greg/
confidential values.txt

23. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015). https://github.com/
Blockstream/borromean paper/raw/master/borromean draft 0.01 9ade1e49.pdf

24. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in Bitcoin. In: Brenner, M.,
Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 127–141.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9 10

25. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M.,
Savage, S.: A fistful of bitcoins: characterizing payments among men with no names.
In: IMC 2013 (2013)

26. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from Bitcoin. In: S&P 2013 (2013)

27. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger (2016). http://
www.ledgerjournal.org/ojs/index.php/ledger/article/view/34

28. Noether, S.: Review of CryptoNote white paper. https://downloads.getmonero.org/
whitepaper review.pdf

29. OmegaStarScream: Bitcoin Core & pruning mode. Bitcoin Forum. https://
bitcointalk.org/index.php?topic=1599458.0

30. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

31. Poelstra, A.: Mimblewimble. http://diyhpl.us/∼bryan/papers2/bitcoin/
mimblewimble-andytoshi-INCOMPLETE-DRAFT-2016-10-06-001.pdf

32. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-4139-7 10

33. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized
coin mixing for bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1 20

34. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable Bitcoin
transactions. In: NDSS 2017 (2017)

35. van Saberhagen, N.: CryptoNote (2013). https://cryptonote.org/whitepaper.pdf

https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-662-45472-5_30
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh-nested-in-bip16-p2sh
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh-nested-in-bip16-p2sh
https://bitcointalk.org/index.php?topic=279249
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_9ade1e49.pdf
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_9ade1e49.pdf
https://doi.org/10.1007/978-3-662-48051-9_10
http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/34
http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/34
https://downloads.getmonero.org/whitepaper_review.pdf
https://downloads.getmonero.org/whitepaper_review.pdf
https://bitcointalk.org/index.php?topic=1599458.0
https://bitcointalk.org/index.php?topic=1599458.0
https://doi.org/10.1007/3-540-46766-1_9
http://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble-andytoshi-INCOMPLETE-DRAFT-2016-10-06-001.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble-andytoshi-INCOMPLETE-DRAFT-2016-10-06-001.pdf
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
https://cryptonote.org/whitepaper.pdf

154 T. Ruffing and P. Moreno-Sanchez

36. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

37. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from
the Bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45472-5 29

38. Todd, P.: Stealth addresses. Post on Bitcoin development mailing list. https://www.
mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html

39. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for Bitcoin. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS,
vol. 8976, pp. 112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48051-9 9

40. Wuille, P.: Hierarchical deterministic wallets, BIP 32. https://github.com/bitcoin/
bips/blob/master/bip-0032.mediawiki

41. Wuille, P.: Schnorr-SHA256 module in libsecp256k1. https://github.com/sipa/
secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/
schnorr/schnorr.md

42. Ziegeldorf, J.H., Grossmann, F., Henze, M., Inden, N., Wehrle, K.: CoinParty:
Secure multi-party mixing of bitcoins. In: CODASPY 2015 (2015)

https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1007/978-3-662-45472-5_29
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://doi.org/10.1007/978-3-662-48051-9_9
https://doi.org/10.1007/978-3-662-48051-9_9
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/sipa/secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/schnorr/schnorr.md
https://github.com/sipa/secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/schnorr/schnorr.md
https://github.com/sipa/secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/schnorr/schnorr.md

Could Network Information Facilitate Address
Clustering in Bitcoin?

Till Neudecker(B) and Hannes Hartenstein

Institute of Telematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
{till.neudecker,hannes.hartenstein}@kit.edu

Abstract. Address clustering tries to break the privacy of bitcoin users
by linking all addresses created by an individual user, based on informa-
tion available from the blockchain. As an alternative information source,
observations of the underlying peer-to-peer network have also been used
to attack the privacy of users. In this paper, we assess whether combining
blockchain and network information may facilitate the clustering process.
For this purpose, we apply all applicable clustering heuristics that are
known to us to current blockchain information and associate the resulting
clusters with IP address information extracted from observing the mes-
sage flooding process of the bitcoin network. The results indicate that
only a small share of clusters (less than 8%) were conspicuously associ-
ated with a single IP address. Also, only a small number of IP addresses
showed a conspicuous association with a single cluster.

1 Introduction

The electronic currency system bitcoin [13] allows users to transfer money using
pseudonyms represented by public keys (addresses). As all transactions in bitcoin
are stored in a public blockchain, it is common practice to create new addresses
for each transaction. This aims at ensuring the privacy of participants by making
the linkage of several addresses difficult. Previous research (e.g., [16]), however,
proposed heuristics for the clustering of addresses and showed that it is possible
to link several addresses to one user. It was also shown that it can be possible to
establish a link between one of a user’s addresses and information from additional
sources that reveals the user’s identity. In the worst case, this knowledge can be
used to learn about all financial transactions of an identifiable user.

Before becoming part of the blockchain, transactions are broadcasted through
a public peer-to-peer (P2P) network. By joining and observing that network,
additional information about the issuer of a transaction might be gained. Sev-
eral works indicate that such linking is possible (e.g., [6]). However, with users
using dynamically assigned IP addresses, operating from clients behind NAT
routers or using wallet services, it is not clear whether information obtained by
participating in the network and observing the normal message flow could be
used in deanonymization of bitcoin users.

One fundamental challenge is that neither for a blockchain based clustering
nor for the extracted network based information a ground truth validation can
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 155–169, 2017.
https://doi.org/10.1007/978-3-319-70278-0_9

156 T. Neudecker and H. Hartenstein

User Addresses Association
(Address Clustering)

TX Association
(Network Observation)TXTX

TXTX

PKPK
PKPK

PKPK

IPIP

IPIP

Correlated?

Fig. 1. High-level overview of the used approach: addresses are clustered using known
heuristics; transactions are assigned to IP addresses based on network observations
and to clusters based on their content. We then check whether single clusters are
conspicuously often associated to a single IP address, and whether single IP addresses
are conspicuously often associated to a single cluster.

be performed (with a few exceptions). Therefore, we analyze whether clusters
created using known heuristics are correlated to IP addresses associated to trans-
actions based on network observations (cf. Fig. 1). As both approaches operate
on disjoint data (blockchain vs. network) but aim at indicating the same out-
come (addresses controlled by one user), a correlation would likely mean that
both approaches in fact approximate the desired outcome.

The contributions of this paper are twofold:

– We review all published heuristics known to us and apply them to the current
blockchain state in a comparable and reproducible manner.

– We show that although for the majority of users no correlation between net-
work information and the clustering performed on blockchain data could be
found, a small number of participants exhibit correlations that might make
them susceptible to network based deanonymization attacks.

2 Related Work

The anonymity of users in bitcoin has been analyzed in several ways in the
past. The fact that all transactions are publicly available facilitated clustering
approaches with the goal to group addresses by the controlling user. We will
review all published heuristics known to us in detail in Sect. 4 and briefly sketch
related work here. The first analysis was performed by Reid and Harrigan [16]
and already made use of the most commonly used heuristic. Meiklejohn et al. [10]
proposed additional heuristics based on the behavior of standard clients.

Blockchain information has not only been used for clustering but also for large
scale analysis of the distribution of wealth, common transaction patterns, behav-
ior analysis, etc. [17], and for an evaluation of user privacy [1]. More recently,
Nick was able to use ground truth data of consumer wallets due to a bug in a
client implementation [15]. This work also proposes a heuristic specific to the
behavior of consumers in bitcoin. Reasons for the effectiveness of clustering have
been given by Harrigan et al. [5], e.g., the incremental growth of clusters.

Could Network Information Facilitate Address Clustering in Bitcoin? 157

Network based information has also been used previously. It was shown that
the topology of the bitcoin peer-to-peer network can be inferred by using marker
IP addresses [2], by exploiting flaws in the bitcoin reference client implementa-
tion [12], or by observing the information propagation through the network [14].
Furthermore, the observation of anomalous relaying behavior has been used to
map bitcoin addresses to IP addresses [7]. It was also shown that the creation
time of transactions can be used to infer the user’s time zone [4]. Biryukov and
Pustogarov [3] performed a man in the middle attack on clients using Tor by
becoming the only possible Tor exit node by banning all other exit nodes in the
bitcoin network. This also enabled them to link IP addresses to bitcoin addresses.

3 Fundamentals

The two main data objects in bitcoin are transactions and blocks. Transactions
are used to transfer bitcoins between users. Blocks are created in the process of
mining and contain a set of accepted transactions that the bitcoin network has
agreed on to be valid. We will exclude the details of mining here. Transactions
specify inputs and outputs, i.e., sources and destinations of the money flow. With
the exception of coinbase transactions, inputs refer to an output of another,
previous transaction. These inputs are then spending the output. Obviously, one
output must not be spent more than once.

Transactions: All accepted transactions form the transaction graph. The trans-
action graph is constructed by using all accepted transactions as vertices and
by adding one edge from every output to the input that is spending the output.
The transaction graph is a directed, acyclic, append-only graph, which repre-
sents the current ownership of bitcoins. Intuitively, ownership of bitcoins is the
right to spend them. Technically, ownership of bitcoins equals the possession of
a private key that corresponds to a public key, which is defined in the output of
a transaction. Hence, in order to create a valid transaction, a user must be able
to sign the transaction spending an input using the private key corresponding
to the public key defined in the spent output. The public keys are also called
addresses, as they specify where the money is sent to.

For the definition of the heuristics used in clustering, we will use the following
notation, which loosely follows the notation used in [10]: Let t ∈ T be a transac-
tion. Let P be the set of all addresses specified in all transactions in T . Let the
set inputs(t) ⊆ P include all addresses referenced by the inputs of a transaction
t and the set outputs(t) ⊆ P include all addresses contained in the outputs of a
transaction t. Let oj(t) ∈ outputs(t) be the j-th output (j ≤ |outputs(t)|), and
let ij(t) ∈ inputs(t) be the j-th input (j ≤ |inputs(t)|).

Each user can create a practically unlimited number of distinct public/private
key pairs and use each of them only for one transaction. Hence, each address
can be seen as a pseudonym of the user. The goal of address clustering is to
partition the set of addresses into subsets (clusters), so that each subset contains
the addresses under the control of one user.

158 T. Neudecker and H. Hartenstein

Network Information: After a transaction is created it needs to be broad-
casted through the bitcoin P2P network in order to reach all participants. Espe-
cially miners need to receive the transaction, check its correctness, and include
the transaction in an upcoming block. The bitcoin P2P network currently con-
sists of 4,200–5,700 reachable peers1 and an unknown number of unreachable
peers.

In order to publish a transaction on the network, the user has to either run
one of the reachable peers or connect to one of the reachable peers and trans-
mit the transaction. When a new transaction arrives at a peer, the peer checks
the correctness of the transaction and rebroadcasts the transaction to all of its
neighbors. Therefore, the transaction gets flooded through the whole network.
For rebroadcasting, the bitcoin reference client bitcoind, which is used by the
vast majority of network peers, implements a mechanism called trickling : Trans-
actions are not immediately rebroadcasted to all neighbors, but are randomly
delayed according to a Poisson distribution.

4 Clustering Based on Blockchain Information

Several heuristics for address clustering in bitcoin have been proposed. We will
first briefly describe the general procedure for clustering, which uses one or more
heuristics, and then describe and discuss the used heuristics.

4.1 Clustering Procedure and Heuristics

The clustering procedure computes a partition Π = {C1, C2, ..., Cn} of the set
of all addresses P with C1, ..., Cn denoting the resulting clusters. For this, it
processes all transactions in their temporal sequence. For each transaction t,
all selected heuristics compute a partition Πt = {Π1

t , ...,Πm
t } of all input and

output addresses of t (outputs(t)∪ inputs(t)). This transaction specific partition
Πt encodes which addresses used in the transaction are controlled by one user
(i.e., those addresses being in one Πi

t).
The heuristics are applied in a predefined order, each heuristic further altering

Πt. Πt is then used to update Π: First, all clusters Πi
t are added to P. Then

each added cluster Πi
t is merged with all existing clusters in Π that contain any

of the addresses in Πi
t . This transitively connects all addresses controlled by one

user (according to the applied heuristics).

Heuristic 1 (H1): Multi-Input. If a transaction spends more than one input,
the transaction needs to be signed using the private keys corresponding to the
public keys from all inputs. Assuming that the transaction was created by a

1 According to our measurements (http://dsn.tm.kit.edu/bitcoin), there are ≈4,200
peers reachable via IPv4 and an additional ≈1,500 peers reachable via IPv6. As we
do not know how many peers are dual-stacked (reachable via IPv4 and IPv6), we
cannot directly determine the exact number of reachable peers.

http://dsn.tm.kit.edu/bitcoin

Could Network Information Facilitate Address Clustering in Bitcoin? 159

single user, that user controls all addresses that are input to the transaction.
This heuristic was first used in [10,16].

For a transaction t the partition determined by this heuristic is

Πt = {inputs(t), {o1(t)}, ..., {o|outputs(t)|(t)}}.

This heuristic is always applied first and is used for all our clusterings. This
heuristic only produces false positives (i.e., clustering addresses that are not
controlled by the same user into the same cluster), if the assumptions are not
correct. This can be either the case if users give services access to their pri-
vate key (e.g., Mt.Gox) or if transactions are assembled by multiple users in a
decentralized fashion (e.g., CoinJoin [9]).

Heuristic 2 (H2): Change Address. One output of a transaction can only
be spent in its entirety. Hence, if Alice controls an unspent output worth 2 BTC
and wants to pay Bob 1 BTC, Alice creates a transaction claiming the 2 BTC
as an input with two outputs: One output of 1 BTC to Bob’s address and one
output of 1 BTC to a change address [10] under the control of Alice (assuming
no transaction fees). Since the change address as well as the addresses of the
inputs (cf. H1) are all controlled by Alice, they should be clustered together.
The challenge is to identify which output is the change address and which output
is the address of the payee, which should be in a different cluster. Meiklejohn
et al. [10] proposed the following heuristic to identify the change address: An
output oj(t) is the change address if these four conditions are met:

1. This is the first appearance of the address oj(t).
2. The transaction t is not a coin generation.
3. There is no address within the outputs, which also appears on the input side

(self-change address).
4. Condition 1 is only met for oj(t) and not also for some ok(t) with j �= k.

For a transaction t the partition determined by this heuristic (based on Πt

from H1) is

Πt = {inputs(t) ∪ {oj(t)}, {o1(t)}, ..., {oj−1(t)}, {oj+1(t)}, ..., {o|outputs(t)|(t)}}.

The rationale behind this heuristic is that the standard bitcoin client creates
a new key pair for change addresses and only uses these addresses once when the
received change is spent again. Ancient version of the client used to send change
to an address that was also used as input (self-change address).

Obviously, this heuristic can lead to false positives and false negatives. In a
transaction with two outputs, which have not appeared before, it is not possible
to determine the change address (cond. 4), although there might be one. Also,
a transaction could spend money to two payees without any change and the
heuristic could mistake one of the payees addresses for the change address.

160 T. Neudecker and H. Hartenstein

Heuristic 2 Exceptions. In order to capture changing wallet behavior, two
exceptions to Heuristic 2 have been proposed in [10]. There is no change address
in a transaction t if there is an output that...

– had already received exactly one input (H2a)
– had been used in a self-change transaction before (H2b)

These exceptions captured common behavior in 2013, however, it is not clear
whether the exceptions are useful anymore.

We now define an additional exception to heuristic H2 that makes use of
blockchain information that is newer than the current processed transaction t.
The behavior for change addresses is that they are only used once. In H2 we
demand that, in order to qualify as a change address, an address must not occur
before t. However, with H2c we demand that the address also does not occur in
later transactions (except for one occurrence as an input).

Value Based (HV): Optimal Change. If a transaction has only one output,
whose value is smaller than any of its inputs, this output address is likely the
change address. This heuristic is based on the behavior of bitcoin clients to
minimize the transaction size, i.e., the number of inputs and outputs. If the
change was larger than any input, the input could be omitted and the change
could be reduced by this input. This heuristic was used in [15].

Consumer Based: Redeeming Transaction. Nick [15] proposed a heuristic
that uses properties of the redeeming transaction of a possible change output
(i.e., the transaction with the change output as an input). For a change address
it requires that the redeeming transaction has at most two outputs. The heuristic
was used specifically for clustering consumer wallets that show this characteristic.
As we cannot distinguish between consumer wallets and other wallets, we omit
this heuristic from further analysis.

Cluster Growth (HG). In [5] it has been shown that clusters normally grow
in steady, but small steps. Especially the merger of two already large clusters by
a new transaction is unlikely and might hint at a false positive from one of the
applied heuristics. This observation can be formulated as a heuristic that can
be applied after other heuristics have already established a transaction specific
partition.

HGk: If updating Π with Πt would cause the largest affected partition in
Π to grow by more than a constant number of k addresses, then set

Πt = {{i1(t)}, ..., {i|inputs(t)|}, {o1(t)}, ..., {o|outputs(t)|(t)}}.

Discussion. To our knowledge, we list all heuristics that were published. How-
ever, there is a whole class of heuristics that we barely cover. Most described
heuristics only consider single transactions. However, heuristics could use the

Could Network Information Facilitate Address Clustering in Bitcoin? 161

whole transactions graph and base their decisions on any property derived from
the graph. The consumer based heuristic and the Cluster Growth heuristic use
simple transaction graph information, but much more sophisticated methods,
e.g., facilitating metrics such as connectivity or centrality are possible.

Furthermore, we acknowledge that a lot of manual effort can be put into a
better clustering by carefully inspecting special cases, modeling specific behavior
and manually merging or splitting clusters. For the sake of comparability, we
chose not to do any manual intervention in our clustering process.

4.2 Results

We will now compare the results of the clustering process with different com-
binations of heuristics. The clustering was performed at block 440,349. Using
machines equipped with a Xeon E7-8837 and 512 GB memory, one run of our
implementation2 of the clustering process took about 30 min to complete. Prior
to clustering we generated the transaction graph as a pointer-based data struc-
ture. This data structure is then read to memory by the clustering process, which
is run completely in-memory and requires no further hard disk accesses.

Table 1 lists a comparison of key properties of the resulting clusterings for
the heuristics H1, all discussed variants of H2, HV, and several variants of HG.
Details on the distribution of cluster sizes are given in the Appendix. Applying
only heuristic H1 results in a clustering with 88 m clusters. Additionally applying
H2 causes more clusters to be merged, hence resulting in fewer, but bigger,
clusters. Additionally applying variants of HG, however, causes fewer clusters to
be merged, hence resulting in more, but smaller, clusters.

The different variants of heuristic H2 lead to 46 m to 63 m clusters. The three
exceptions to H2 cause fewer clusters to be merged than by applying H1 and

Table 1. Comparison of all heuristics. Total number of addresses: 196,963,722, total
number of transactions: 172,868,721.

Heuristics # Cluster ∅Size Max size #clusters w/size 1

H1 88m 2.24 12 m 65m

H1+H2 46m 4.25 92 m 29m

H1+H2a 51m 3.89 87 m 32m

H1+H2b 63m 3.10 66 m 40m

H1+H2c 48m 4.13 85 m 30m

H1+HV 72m 2.71 76 m 62m

H1+HG10 146m 1.34 0.1 m 123m

H1+HG100 121m 1.62 0.25 m 97m

H1+HG1000 108m 1.83 1 m 84m

H1+HG10000 104m 1.88 8 m 81m

2 https://github.com/tillneu/bitcoin-clusterer.

https://github.com/tillneu/bitcoin-clusterer

162 T. Neudecker and H. Hartenstein

H2 only. The strongest effect on the resulting clusters has H2b, which reduces
the average cluster size from 4.25 for H2 to 3.1 addresses per cluster for H2b.

The value based heuristic HV has only a small effect on the average cluster
size (grows to 2.71 addresses per cluster) but a large effect on the size of the
largest cluster (from 12 m to 76 m). A possible explanation for the result is that
a disproportionately large share of transactions that originated from that super-
cluster have a combination of input and output values that makes HV applicable
to them, thus merging more addresses into the super-cluster.

A small choice of the parameter k for the heuristic HG causes fewer clusters
to be merged as the threshold is easily exceeded. This causes the average cluster
size to decrease down to 1.34 addresses per cluster for HG10. Notably, there
are only minor changes in the number of clusters with a size of 10 to 100,000
addresses (cf. Appendix). Most likely, transactions that cause a false positive in
H1 are less likely to occur in these medium sized clusters.

In all variants the largest identified cluster contains between 100,000 and
92 m addresses. This cluster contains among others the addresses of the former
exchange Mt.Gox. The existence of this super-cluster was also discussed in [5].
The size of that cluster is substantially increased by application of variants of
H2 and HV, whereas the application of HG can limit the growth of that cluster.

5 Network Information

We will now explain how network based information was acquired and how that
information is compared to the blockchain information based clustering results.
The main idea is to associate IP addresses to transactions based on observations
on the bitcoin P2P network and then use the previously established linking
between clusters and transactions in order to determine the correlation between
clusters and IP addresses.

5.1 Association of Transactions and IP Addresses

In order to observe transactions being flooded through the network, we deployed
two monitor peers that maintain connections to all reachable peers in the net-
work and log for each transaction, when it is received from each peer in the
network. For each transaction there is one peer (originator) which first sent the
transaction to our monitor peer. We want to associate one IP address to each
transaction. However, we cannot conclude that the first peer we received a trans-
action from has really first brought the transaction to the network, nor can we
conclude that the peer generated the transaction. First, the user could connect
to any reachable peer in the network, send the transaction to that peer and leave
the network afterwards. Secondly, due to trickling, the transaction can be sent to
other network peers, which might forward the transaction to our monitor peers
before we receive the transaction from the creating peer. Therefore, we apply
several heuristics that aim at reducing the number of obviously false mappings:

Could Network Information Facilitate Address Clustering in Bitcoin? 163

– If both monitor peers first received a transaction from different peers, we
discard both possible originators.

– If the time difference at which the transaction is received from the originator
by both monitor peers differs by ≥100 ms, the originator is discarded.

– The subsequent receptions of the transaction from other peers must not be
faster than what the speed of light in fiber allows. By using GeoIP services3,
we can approximate the location of the other network peers and establish a
lower bound on the time it takes for a transaction to be transmitted from
the originator to our monitor peer via any other network peer. If we receive
a transaction faster than that lower bound, we discard the originator.

During the monitored period between block 366,000 (2015-07-19) and block
440,349 (2016-11-24), 96,520,958 transactions were added to the blockchain.
For 9,934,056 of these transactions (≈10%), we identified an originator IP
address using the heuristics described above. In total, 79,079 unique IP addresses
appeared as originators. This leads to an average of about 125 transactions per
IP address. However, the number of transactions associated per IP address fol-
lows a heavy tailed distribution. Figure 2 shows the distribution of how many
transactions were associated with each IP address. Most IP addresses were an
originator address only for a small number of transactions. However, two IP
addresses were originators for more than 65,000 transactions. Interestingly, both
of these IP addresses (one of which IPv4 and one IPv6) are in IP ranges assigned
to the same hosting provider.

0

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06

IP
A

d
d
re

ss
C

o
u
n
t

#TX associated with single IP address

Fig. 2. Histogram of the number of unique transactions associated per IP address. Read
as: There are 10,000 IP addresses, each of which are associated to 4 to 8 transactions.

Although we are able to associate IP addresses to transactions, we do not
know whether the mapped IP addresses in fact identify the user that issued the
transaction and simply regard the IP address as a piece of information that might
be linked to the user. In order to analyze that linking, we will now compare the
results from the clustering based on the transaction graph to the collected IP
address information.
3 http://dev.maxmind.com/geoip/.

http://dev.maxmind.com/geoip/

164 T. Neudecker and H. Hartenstein

5.2 Methodology

We will now introduce the notation used for the association of clusters with IP
address information. For the association between transactions and clusters we
use the following notation: Let c(t) describe the cluster that issued a transaction
t according to H1. Let the set of transactions issued by a cluster C be TC :=
{t ∈ T : c(t) = C}. For the association between transactions and IP addresses
as described in Sect. 5.1 we use the following notation: Let A be the set of all
observed IP addresses. Let a(t) ∈ A describe the IP address of the originator (if
any) of a transaction t. Finally, we define the tuple of all IP addresses associated
with a cluster C as AC = (a(t) : t ∈ TC). AC is defined as a tuple because single
IP addresses can occur multiple times in AC and we are interested in that count.

The main question now is whether there is a correlation between clusters and
IP addresses or whether for each transaction the originator is simply a random
IP address. Both, IP addresses and clusters, are nominal variables that cannot
be ranked in any way. Standard statistical methods (e.g., [11]) would suggest to
fill a contingency table with all observed IP addresses as one dimension and all
clusters as the other dimension. Then, for each tuple (IP address, Cluster) the
expected frequency and the observed frequency could be compared. However, a
problem with the data is that the contingency table is very sparsely populated.
In order to perform the chi squared test, no more than 20% of the expected
frequencies should be less than 5 and all individual expected frequencies should
be 1 or greater [18], which is not the case for our data. Even if the frequencies
were sufficient, the large sample size would cause biased results [8].

Therefore, we analyze each cluster C separately in order to see whether the
associated IP addresses AC are independent. The tuple of associated IP addresses
AC can be seen as the result of a random experiment, where for each cluster C
|AC | addresses are chosen according to a probability distribution. If clusters and
IP addresses are independent, the probability to choose an IP address A would
be P (A) = |A|/∑

A′∈A |A′| (with |A| being the total observation count of A,
i.e., the share of an IP address in all observations, cf. Fig. 2).

Again, most statistical tests to check whether the sample AC was chosen
according to P (A) cannot be used due to the low sample sizes and low expected
frequencies. Hence, we limit our analysis to the IP address Â that occurs most
frequently in AC , and its frequency |ÂC |. Under the hypothesis of indepen-
dence, we can calculate the probability of observing any value for |ÂC |. Figure 3
shows the probability distribution Pi(X = |ÂC |) that describes the probability
of observing a specific value for |ÂC |, assuming independence of IP addresses and
clusters. For large values of |AC |, the distribution can be approximated with the
binomial distribution with p being the probability of the most likely IP address
(p ≈ 0.02 for our data). For a cluster C, we reject the independence hypothesis
if the probability of observing the most frequent IP address ÂC at least |ÂC |
times is less than 1%, according to Pi. We then add this cluster to the set of
conspicuous clusters C+ = {C : Pi(X ≥ |ÂC |) < 1%}. The chosen significance
level implies that about 1% of the clusters in C+ actually are not conspicuous.

Could Network Information Facilitate Address Clustering in Bitcoin? 165

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 5 10 15 20 25 30 35 40 45

P
ro

b
a
b
il
it
y

|ÂC |

|AC | = 500
|AC | = 1000

Fig. 3. Probability distribution Pi(X = |ÂC |) for |AC | = 500 and 1,000 transac-
tions, respectively, assuming independence and given the empirical IP address counts
(cf. Fig. 2). Values numerically approximated.

Obviously, in addition to checking for each cluster whether the associated IP
addresses were randomly chosen, we can also check for each IP address whether
the associated clusters are randomly chosen. This analysis has been also per-
formed using the same method as described above for the opposite direction
with TA denoting the set of transactions associated with an IP address A and
A+ the set of conspicuous IP addresses according to the hypothesis testing.

5.3 Results and Discussion

From our data we selected all clusters with at least two IP addresses associ-
ated (|AC | ≥ 2), determined |ÂC | for these clusters, and calculated the set of
conspicuous clusters C+. Table 2 shows the number of clusters with at least
two associated IP addresses (|{C : |AC | ≥ 2}|) and the number of conspicu-
ous clusters |C+| for various heuristics. The number of clusters with at least

Table 2. Comparison of the number of clusters with at least two associated IP
addresses (|{C : |AC | ≥ 2}|) and the number and share of conspicuous clusters (C+),
and the share of conspicuous IP addresses (A+) for various heuristics.

Heuristics |{C : |AC | ≥ 2}| |C+| |C+|
|{C:|AC |≥2}|

|A+|
|{A:|TA|≥2}|

H1 282,950 14,879 5.26% 18.7%

H1+H2 398,802 32,623 8.18% 6.2%

H1+H2a 387,696 32,026 8.26% 6.2%

H1+H2b 456,063 35,138 7.70% 6.5%

H1+H2c 452,189 35,602 7.87% 6.7%

H1+HV 296,132 14,736 4.97% 6.9%

H1+HG10 299,140 15,537 5.19% 16.7%

H1+HG100 300,927 15,755 5.23% 19.6%

H1+HG1000 301,775 16,434 5.45% 20.2%

H1+HG10000 308,900 18,788 6.08% 19.7%

166 T. Neudecker and H. Hartenstein

two associated IP addresses varies between 283k and 456k clusters. Comparing
these numbers to the total number of clusters (cf. Table 1) shows, that only a
small percentage of all clusters has two IP addresses associated, with the highest
percentage for the H1+H2c combination.

The number of clusters |C+| with a too-large |ÂC | varies between 15k and
35k, which corresponds to 5% to 8.3% of the considered clusters. For comparison,
when randomly selecting IP addresses based on their a-priori probability P (a),
the share of conspicuous clusters is around 1%. The results indicate that the
highest correlation between clusters and their associated IP addresses exists,
when clustering using variants of H2. For the value based heuristic, the growth
based heuristic, and the base heuristic H1, fewer conspicuous clusters were found.

Table 2 also shows the share of conspicuous IP addresses A+ among those
IP addresses with at least two associated transactions. The share varies between
6.2% and 20.2% with the smallest percentages for clusterings with variants of
H2. This is caused by the extremely large super cluster that is created by these
heuristics (cf. Table 1): The probability to randomly select that cluster very often
(assuming independence) rises with the number of transactions associated with
that cluster. Therefore, the independence hypothesis gets accepted for more IP
addresses.

Only for a small share of clusters and IP addresses, a correlation between
clusters and network information could be shown. At least for these clusters,
information obtained by observing the network could also be used in a construc-
tive way during the clustering process. For example, the set of candidate clusters
for a transaction could be reduced based on networking information. Also, the
information could be used for tie breaking when having multiple change address
candidates.

For the majority of clusters and IP addresses, we did not observe any corre-
lation to network information. This could mean that there is no correlation, or
that the used method did not reveal a correlation. For example, a more powerful
observer with more monitoring nodes could be able to associate IP addresses to
transactions more precisely. Furthermore, the statistical analysis used here only
reveals certain correlations between a cluster and a single IP address.

6 Conclusion

In this paper we performed address clustering in bitcoin according to published
heuristics, compared the resulting clusters to IP address information obtained
from observations in the bitcoin P2P network, and showed that only a small
share of clusters was conspicuously associated with a single IP address, and that
only a small number of IP addresses showed a conspicuous association with a
single cluster.

Our results indicate that for the vast majority of users network information
cannot facilitate address clustering easily. However, a small number of partici-
pants exhibit correlations that might make them susceptible to network based
deanonymization attacks. A more precise network observation or better cluster-
ing heuristics might reveal further correlations that could not be observed with

Could Network Information Facilitate Address Clustering in Bitcoin? 167

our approach. A next step could be to identify the anomalous behavior that
caused the revealed correlations. Since this would require an in-depth analysis
of single entities on the network, we decided not to carry out such an analy-
sis without ensuring the user’s privacy. We emphasize that for ethical reasons
no further attempt at linking the conspicuous IP addresses or clusters to other
available information was performed.

In future work, a privacy preserving method for identifying the causes of
the correlation should be developed. Such an analysis could point to possible
improvements in the P2P protocol or specific client implementations. Further-
more, the used heuristic for extracting the originator from the network observa-
tion could be improved to consider IP address changes over time or the aggre-
gation of IP addresses by provider or location. Finally, the statistical analysis
might benefit from more advanced methods to establish sharper bounds on pos-
sible correlations.

Acknowledgement. This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the project KASTEL IoE in the Competence
Center for Applied Security Technology (KASTEL). The authors acknowledge the use
of the InstitutsCluster II at the Steinbuch Centre for Computing, and would like to
thank the anonymous reviewers for their valuable comments and suggestions.

Appendix

Figures 4 and 5 show a comparison of the resulting cluster sizes for all discussed
clustering heuristics and various parameterizations of the growth based heuristic
HG. For all heuristics, the cluster sizes roughly follow a power-law distribution.

0

1

10

100

1,000

10,000

100,000

106

107

108

[1-10)

[10-100)

[100-1,000)

[1,000-10,000)

[10,000-100,000)

[100,000-10 6
)

[10 6
-10 7

)

[10 7
-10 8

)

C
lu

st
er

C
o
u
n
t

#Addresses per Cluster

H1
H1+H2
H1+H2a
H1+H2b
H1+H2c

Fig. 4. Histogram of the number of clusters for various sizes (i.e., number of addresses
per cluster).

168 T. Neudecker and H. Hartenstein

0
1

10
100

1,000
10,000

100,000
106
107
108

[1-10)

[10-100)

[100-1,000)

[1,000-10,000)

[10,000-100,000)

[100,000-10 6
)

[10 6
-10 7

)

[10 7
-10 8

)

C
lu

st
er

C
o
u
n
t

#Addresses per Cluster

H1
H1+HG10000

H1+HG1000

H1+HG100

H1+HG10

Fig. 5. Histogram of the number of clusters for various sizes (i.e., number of addresses
per cluster).

References

1. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 4

2. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2014)

3. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. arXiv preprint
arXiv:1410.6079 (2014)

4. DuPont, J., Squicciarini, A.C.: Toward de-anonymizing bitcoin by mapping users
location. In: Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, pp. 139–141. ACM (2015)

5. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address clustering.
arXiv preprint arXiv:1605.06369 (2016)

6. Kaminsky, D.: Black ops of TCP/IP. Black Hat USA (2011)
7. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using

P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45472-5 30

8. Lin, M., Lucas Jr., H.C., Shmueli, G.: Research commentary-too big to fail: large
samples and the p-value problem. Inf. Syst. Res. 24(4), 906–917 (2013)

9. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world (2013). https://
bitcointalk.org/index.php?topic=279249. Accessed 27 Sep 2016

10. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with
no names. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference, pp. 127–140. ACM (2013)

11. Mendenhall, W., Beaver, R.J., Beaver, B.M.: Introduction to Probability and Sta-
tistics. Cengage Learning (2012)

https://doi.org/10.1007/978-3-642-39884-1_4
http://arxiv.org/abs/1410.6079
http://arxiv.org/abs/1605.06369
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-662-45472-5_30
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249

Could Network Information Facilitate Address Clustering in Bitcoin? 169

12. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., Bhattachar-
jee, B.: Discovering Bitcoin’s Public Topology and Influential Nodes (2015)

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, p. 1 (2012), p. 28
(2008)

14. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the
topology of the bitcoin peer-to-peer network. In: 2016 International IEEE Confer-
ence on Advanced and Trusted Computing (ATC), pp. 358–367, July 2016

15. Nick, J.D.: Data-Driven De-Anonymization in Bitcoin. Master’s thesis, ETH-
Zürich (2015)

16. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-4139-7 10

17. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

18. Yates, D., Moore, D., McCabe, G.: The Practice of Statistics. WH Freeman and
Company, New York (1996)

https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-642-39884-1_2

Switch Commitments: A Safety Switch
for Confidential Transactions

Tim Ruffing1(B) and Giulio Malavolta2

1 Saarland University, Saarbrücken, Germany
tim.ruffing@mmci.uni-saarland.de

2 Friedrich-Alexander University, Erlangen-Nürnberg, Germany
malavolta@cs.fau.de

Abstract. Cryptographic agility is the ability to switch to larger crypto-
graphic parameters or different algorithms in the case of security doubts.
This very desirable property of cryptographic systems is inherently dif-
ficult to achieve in cryptocurrencies due to their permanent state in
the blockchain: for example, if it turns out that the employed signature
scheme is insecure, a switch to a different scheme can only protect the
outputs of future transactions but cannot fix transaction outputs already
recorded in the blockchain, exposing owners of the corresponding money
to risk of theft. This situation is even worse with Confidential Trans-
actions, a recent privacy-enhancing proposal to hide transacted mone-
tary amounts in homomorphic commitments. If an attacker manages to
break the computational binding property of a commitment, he can cre-
ate money out of thin air, jeopardizing the security of the entire currency.
The obvious solution is to use statistically or perfectly binding commit-
ment schemes but they come with performance drawbacks due to the
need for less efficient range proofs.

In this paper, our aim is to overcome this dilemma. We introduce
switch commitments, which constitute a cryptographic middle ground
between computationally binding and statistically binding commitments.
The key property of this novel primitive is the possibility to switch exist-
ing commitments, e.g., recorded in the blockchain, from computational
bindingness to statistical bindingness if doubts in the underlying hard-
ness assumption arise. This switch trades off efficiency for security. We
provide a practical and simple construction of switch commitments by
proving that ElGamal commitments with a restricted message space are
secure switch commitments. The combination of switch commitments
and statistically sound range proofs yields an instantiation of Confi-
dential Transactions that can be switched to be resilient against post-
quantum attackers trying to inflate the currency.

1 Introduction

The security of Bitcoin relies on cryptographic hardness assumptions, e.g., the
hardness of computing discrete logarithms on the secp256k1 [3] elliptic curve.
Advances in solving the discrete logarithm problem can lead to uncertainty about
whether currently deployed key sizes or algorithms are still safe.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 170–181, 2017.
https://doi.org/10.1007/978-3-319-70278-0_10

Switch Commitments: A Safety Switch for Confidential Transactions 171

In this situation, the obvious step is to obsolete current parameters, and
switch to larger parameters or even entirely different algorithms in the sys-
tem. Since Bitcoin relies on the hardness of the discrete logarithm problem for
unforgeability of ECDSA signatures, this just ensures security of future transac-
tions but cannot fix already performed transactions: the current unspent trans-
action outputs in the blockchain are still protected by the obsolete cryptographic
parameters.

While this is a very unfortunate situation, because users’ funds are at risk
of theft, it is then the responsibility of users to spend these outputs to fresh
addresses of their own, thereby creating new unspent outputs protected by new
keys and possibly new cryptographic algorithms. (After this step, the attacker
can still break old signing keys. However, then consensus will ensure that the old
outputs are already spent and thus the signing keys are worthless.) To sum up,
individual users may lose their money if they fail to perform this safety measure,
but the security of the Bitcoin system as a whole is unaffected.

However, the situation will be much worse in a cryptocurrency with Confi-
dential Transactions (CT) [6,9]. CT is a privacy-enhancing technology thas has
been proposed as an extension to Bitcoin. The proposal is currently tested and
evaluated in the Elements Alpha sidechain [4]; moreover, it has been successfully
deployed in the cryptocurrency Monero [11].

The purpose of CT is to hide the monetary amounts in transactions by
replacing plain amounts by commitments to the amounts. Since the commit-
ment scheme used is additively homomorphic, the creator of a transaction can
easily prove to the network that a transaction is balanced, i.e., the sum of its out-
puts is not more money than the sum of its inputs. The proof essentially opens
the commitment to the homomorphic sum of the inputs minus the outputs to
zero, which does not reveal the individual monetary amounts of the inputs and
outputs in the transaction. To be sound, a non-interactive zero-knowledge proof
is added to each commitment to show that the committed value is in a certain
range. These so-called range proofs ensure that the computation of the sum does
not overflow.

The current CT proposal relies on Pedersen commitments on an elliptic curve
computed as c = gmhr, where m is the message, r is a random value, and g and
h are public generators of the elliptic curve group. Pedersen commitments are
only computationally binding under the assumption that computing discrete log-
arithms is hard. Thus, if an attacker manages to break one discrete logarithm
with current parameters, the balance property of the currency breaks down with
catastrophic consequences: Knowledge of logg h enables the attacker to open each
of his commitments, no matter what amount it is supposed to commit to, to an
arbitrary amount of money. That is, the attacker can effectively create an arbi-
trary amount of money, limited only by the maximum amount of money that can
be transferred in a transaction. Even worse, this attack will go unnoticed due to
the hiding property of the commitments. As a consequence, if the attacker man-
ages to compute a single discrete logarithm, not only is the individual security
of funds threatened, but the entire currency is doomed.

172 T. Ruffing and G. Malavolta

As a consequence, the situation is much worse with CT than without CT,
when there is doubt in the hardness of the selected parameters. With CT, the
only safe way out is to introduce new parameters or algorithms and force users
to spend unspent transaction outputs using the obsolete parameters before some
hard deadline T . After time T , such obsolete outputs will not be spendable
anymore, i.e., the corresponding funds will expire, effectively destroying money.
This is clearly highly undesirable and it is not clear at all if such a change will
be accepted by miners.

2 Switch Commitments

The obvious way to overcome all of the aforementioned issues is to use a com-
mitment scheme that is statistically binding, i.e., it is binding even for a com-
putationally unrestricted attacker. For instance, just adding gr turns a compu-
tationally binding Pedersen commitment into a statistically binding ElGamal
commitment.1

However, this modification requires efficient range proofs particularly suited
to the new commitment scheme and, as a consequence, precludes the use of the
highly optimized range proofs [8,13] developed for Pedersen commitments.

Instead, we aim for a solution compatible with the efficient range proofs.
Our tool to achieve this goal is a novel security notion between computational
and statistical bindingness. We introduce switch commitments, which are com-
mitments with a partial and a full verification algorithm and special binding
properties as follows.

– The commitment is computationally binding when partially verified.
– The commitment is statistically binding when fully verified.
– The commitment is everlastingly binding. This novel property captures the

essence of switch commitments. It states that if the commitment is created
by a computationally bounded attacker, and can be opened to some message
when partially verified, then later even a computationally unbounded attacker
can open the commitment to a different message when fully verified.

These properties enable verifiers to use the commitment scheme in a compu-
tationally binding or a statistically binding way, depending on the verification
algorithm used. In particular, everlasting bindingness ensures that it is possible
to start with partial verification and then switch to full verification, even for
already existing commitments, e.g., commitments stored in the blockchain.

We prove that an ElGamal commitment (gmhr, gr) with a message space of
polynomial size is a homomorphic switch commitment where the partial verifica-
tion algorithm ignores the element gr and verifies only the Pedersen commitment
gmhr. Since the message space of commitments used in CT is restricted to inte-
gers in a fixed range to avoid overflow anyway, this switch commitment scheme
is an optimal choice if a trade-off between security and performance is desired.
1 The ElGamal commitment is actually even perfectly binding. We stick to the more

general statistical property in this work.

Switch Commitments: A Safety Switch for Confidential Transactions 173

2.1 Usage in Confidential Transactions

A switch commitment scheme can be used in CT as follows: When performing a
transaction now, the network relies only on the partial verification to ensure that
the transaction is balanced, i.e., the transaction does not generate money out of
thin air. In particular, creators of transactions are forced to prove that they can
open the commitments to messages such that no money will be created and the
partial verification algorithm accepts the openings. While this means that the
balance property holds only computationally, it is sufficient to use range proofs
that cover only partial verification, i.e., the creator of the commitment must only
demonstrate that he can open the commitment to a value in range when the
opening is partially verified. Applied to ElGamal commitments, this effectively
means that it suffices for the range proof to cover only the first element, which is
a Pedersen commitment. This is more efficient because the most efficient known
range proofs systems rely on Pedersen commitments.

In the future, if there is serious doubt about the cryptographic strength of the
used commitment scheme or its parameters, a soft-fork can require confidential
transactions created after some time T to be fully verified. Then, creators of
transactions are forced to prove that they can open commitments only to values
such that no money will be created, and that the full verification algorithm will
accept this opening. This means that further transactions are required to provide
proofs of the balance property with respect to full verification. In other words,
no attacker can spend an already existing output with more money than it is
supposed to contain, even if this output was created by the attacker before T
(when the attacker was assumed to be computationally bounded). These proofs
of the balance property require range proofs, which are potentially less efficient
than range proofs which only cover partial verification. As a result, this switch
to different range proofs trades off efficiency for security.

Efficiency Comparison of Known Range Proof Systems. Assume we would like to
prove that the committed value m is in the range [0, bn]. We further assume that
we rely on elliptic curves, so group and field elements are of roughly the same size.
For Pedersen commitments, the smallest known range proof has been proposed
by Back and Maxwell [13] and needs bn+1 elements. For ElGamal commitments,
the smallest known range proof has been proposed by Andreev [1] and needs
(b+1)n+1 elements. Consequently, range proofs for Pedersen commitments are
more efficient.

Soundness of the Range Proofs. All discussed range proofs for ElGamal commit-
ments are constructed using the Fiat-Shamir transform. They are sound even
if the attacker is able to compute discrete logarithms, and a recent result of
Unruh [15] shows that their soundness holds up in a post-quantum world. That
is, an instantiation of CT using ElGamal commitments and one of the aforemen-
tioned range proof systems is secure against post-quantum attackers trying to
break the balance property.

We note that, even though the soundness of the aforementioned proofs is
unconditional in the random oracle model, the soundness only holds against

174 T. Ruffing and G. Malavolta

computationally bounded attackers due to the hash function in the Fiat-Shamir
transform. This means that even the usage of switch commitments in CT can
only protect against further advances in the discrete logarithm problem but
not against a failure of the hash function used in the Fiat-Shamir transform.
Consequently, larger parameters are necessary for the post-quantum soundness
of the range proofs as compared to classical security.

Hidingness of the Commitments. Note that switch commitments can only be
computationally hiding, so the privacy of individual commitments cannot be
guaranteed if we assume that the underlying problem is not hard anymore. How-
ever, giving up privacy is arguably better than putting the security of the entire
currency at risk.

Observe that a soft-fork is a possible way to perform the switch, but it is
not strictly necessary. In the time until the soft-fork is deployed (or if the fork
cannot be agreed upon), recipients could alternatively just force the new rules
by refusing to accept payments via non-statistically secure outputs created after
time T (and any of their child transaction outputs in the transaction graph),
effectively rendering the funds worthless.

3 Preliminaries

In this section we introduce the notation and the cryptographic primitives that
we will use throughout our work. We denote by λ ∈ N the security parameter
and by poly(λ) any function that is bounded by a polynomial in λ. We denote
any function that is negligible in the security parameter with negl(λ). We say
that an algorithm is ppt if its running time is bounded by some function poly(λ).
Given a set S, we denote by x ← S that x is uniformly sampled from S.

3.1 Commitments

A commitment scheme [12] is a two-phase protocol between a sender and a
receiver. In the first phase, the sender commits to a message m with a string
com. In the second phase, the sender reveals the opening information op and
the message m to the receiver, who can check whether com was indeed a valid
commitment on m. All algorithms have access to a public random string crs
generated by a trusted setup party.

A commitment scheme is computationally hiding if commitment itself does
not reveal information about the message to a computationally bounded
attacker.

Definition 1 (Computationally Hiding). A commitment scheme with com-
mitment algorithm Commit is computationally hiding if there exists a negligi-
ble function negl(λ) such that for all ppt attackers A, for a randomly sampled
crs ← Setup(1λ), and for all pairs of messages (m0,m1), we have that

Pr [A(crs, com) = b | b ← {0, 1}; com ← Commit(crs,mb)] ≤ 1
2

+ negl(λ).

Switch Commitments: A Safety Switch for Confidential Transactions 175

A commitment scheme is binding if no sender is able to output openings
(op, op′) for the same commitment com such that they open it to two different
values. We consider binding against computationally bounded and unbounded
attackers.

Definition 2 (Computationally and Statistically Binding). A verification
algorithm Verify is computationally binding if there exists a negligible function
negl(λ) such that for all ppt attackers A and for a randomly sampled crs ←
Setup(1λ), we have that

Pr

⎡
⎣
Verify(crs, com, op,m) = 1

∧ Verify(crs, com, op′,m′) = 1
∧ m �= m′

∣∣∣∣∣∣
(com, op,m, op′,m′) ← A(crs)

⎤
⎦ ≤ negl(λ).

Statistical bindingness is defined identically except that A is computationally
unbounded.

3.2 Hardness Assumptions

Here we formally describe the computational hardness assumptions that we need
for the security of our construction. First, we introduce the discrete logarithm
assumption.

Definition 3 (Discrete Logarithm Assumption). Let G be a multiplicative
cyclic group of order p proportional to the security parameter λ and let g be
a generator of G. We say that the discrete logarithm problem is hard if, for
a random integer x ∈ Zp and for all ppt attackers A, there exists a negligible
function negl(λ) such that

Pr [A(G, g, gx) = x] ≤ negl(λ).

Second, we formalize the computational Diffie-Hellman problem and the
inverse computational Diffie-Hellman problem. These problems are known to
be equivalent [2].

Definition 4 (Computational Diffie-Hellman Assumption). Let G be a
multiplicative cyclic group of order p proportional to the security parameter λ
and let g be a generator of G. We say that the computational Diffie-Hellman
problem is hard if, for two random integers x, y ∈ Zp and for all ppt attackers
A, there exists a negligible function negl(λ) such that

Pr [A(G, g, gx, gy) = gxy] ≤ negl(λ).

Definition 5 (Inverse Computational Diffie-Hellman Assumption). Let
G be a multiplicative cyclic group of order p proportional to the security parameter
λ and let g be a generator of G. We say that the inverse computational Diffie-
Hellman problem is hard if, for a random integer x ∈ Zp and for all ppt attackers
A, there exists a negligible function negl(λ) such that

Pr
[
A(G, g, gx) = gx−1

]
≤ negl(λ),

where x−1 denotes the multiplicative inverse of x.

176 T. Ruffing and G. Malavolta

Finally, we formalize the decisional Diffie-Hellman problem.

Definition 6 (Decisional Diffie-Hellman Assumption). Let G be a multi-
plicative cyclic group of order p proportional to the security parameter λ and let
g be a generator of G. We say that the decisional Diffie-Hellman problem is hard
if, for three random integers x, y, z ∈ Zp and for all ppt attackers A, there exists
a negligible function negl(λ) such that:

Pr

[
A(G, g, gx, gy, h) = b | b ← {0, 1};h =

{
gxy if b = 0
gz if b = 1

]
≤ 1

2
+ negl(λ).

4 Problem Description

The main ingredient of CT [6,9] is homomorphic Pedersen commitments [12].
Given a group G of prime order p, and two generators g and h, a Pedersen
commitment on a message m consists of a single group element computed
as gmhr, for some r ∈ Zp chosen uniformly at random. The opening infor-
mation is the tuple (m, r) and the verifier can check the validity of a given
commitment by simply recomputing it. Commitments are homomorphic due to
gmhr · gm′

hr′
= gm+m′

hr+r′
. It is easy to see that the commitment scheme is

information-theoretically hiding, and that it is computationally binding under
the discrete logarithm assumption.

Loosely speaking, a confidential transaction contains a collection of commit-
ments, whose messages add up to zero, and a publicly verifiable proof that this is
the case, which is essentially just opening of the homomorphic sum commitment
to zero. Additionally, each commitment comes with a range proof that demon-
strates that the committed integer value lies within a certain range [0, d], where
d is some fixed value that determines the maximum number of currency units
allowed in a single transaction output.2 We remark that, for the specific case of
Pedersen commitments, there exist efficient computationally sound range proofs
based on borromean ring signatures [8] and optimizations [13].

4.1 Attacker Model

We consider an attacker whose goal is to break the binding property of a com-
mitment by computing a commitment c over a certain value m for a confidential
transaction and later on perform a transaction opening c to some m′ �= m (or
just proving that he knows how to open c to m′ �= m). Clearly this implies that
the attacker was able to create money if m′ > m.

2 In fact, the value supported by CT is expressed by a floating point number, with
the exponent being public and only the mantissa hidden in the commitment [6,9].
We ignore the public exponent in our description, because it does not affect our
treatment. The valid range of values for the mantissa is [0, 232 − 1], i.e., d = 232 − 1
satoshis (currency units).

Switch Commitments: A Safety Switch for Confidential Transactions 177

If we consider an attacker that is computationally bounded at the time of
the generation of a commitment, but later on unbounded, then it is easy to see
that the current implementation of confidential transactions is no longer secure:
An attacker could honestly compute a commitment to some small value m as
c = gmhr and then later on open it to any value m′ > m by computing x = logg h
and r′ = (m − m′)/x + r. It is easy to see that (m′, r′) is a valid opening for c.

Such a scenario may appear artificial at first glance, but one must consider
that system parameters are chosen based on an estimation of the progress of the
field, and therefore it is possible that unexpected developments of algorithms or
new technologies render current choices for key lengths obsolete. Among others,
the advent of quantum computers would imply an immediate breakdown of all
systems based on discrete logarithm-related assumptions. Therefore we believe
that considering an attacker that is computationally bounded only during the
execution of the protocol constitutes a problem of practical relevance. We note
that a similar model has already been considered for privacy properties in the
context of electronic voting [10], multi-party computation [14], and encryption
in the bounded storage model [7].

4.2 Switch Commitments

Here we extend the notion of a commitment scheme to support the switching
functionality and we formally introduce the security definitions for our primitive.

Definition 7 (Switch Commitment Scheme). A switch commitment
scheme (Commit,Verifypart,Verifyfull) consists of four ppt algorithms as follows:

– crs ← Setup(1λ): Given the security parameter λ, the setup algorithm Setup
outputs a public random string crs.

– (com, op) ← Commit(crs,m): Given the public random string crs, and a mes-
sage m, the commitment algorithm Commit outputs a commitment com and
opening information op.

– b ← Verifypart(crs, com, op,m): Given the public random string crs, a message
m, a commitment com and opening information op, the partial verification
algorithm Verifypart outputs 1 iff op is a valid partial opening for commitment
com on message m.

– b ← Verifyfull(crs, com, op,m): Given the public random string crs, a message
m, a commitment com and opening information op, the full verification algo-
rithm Verifyfull outputs 1 iff op is a valid full opening for commitment com on
message m.

A switch commitment essentially defines two commitment schemes, namely
a scheme with the partial verification algorithm and a scheme with the full
verification algorithm. We require that both schemes fulfill standard security
notions.

Definition 8 (Standard Security Properties). For security of a switch com-
mitment scheme (Setup,Commit,Verifypart,Verifyfull), we require that

178 T. Ruffing and G. Malavolta

– the commitment algorithm Commit is computationally hiding,
– the verification algorithm Verifypart is computationally binding, and
– the verification algorithm Verifyfull is statistically binding.

Following our the attacker model as described in Sect. 4.1, we further require
that even an unbounded attacker cannot open an old commitment (from the
time when the attacker was still bounded) to a different message than it was
created for. The novel security property is crucial for the intended application.
In the following we formally define the notion of everlasting bindingness for a
switch commitment scheme.

Definition 9 (Everlastingly Binding). A switch commitment scheme (Setup,
Commit,Verifypart,Verifyfull) is everlastingly binding if there exists a negligi-
ble function negl(λ) such that for all attackers A = (A0,A1), where A0 is
ppt (and A1 is not computationally bounded), and for a randomly sampled
crs ← Setup(1λ), we have that

Pr

⎡
⎢⎢⎢⎢⎢⎣

Verifypart (crs, com, op,m) = 1
∧ Verifyfull (crs, com, op′,m′) = 1
∧ m �= m′

(com,m, op, state) ← A0(crs);
(m′, op′) ← A1(crs, state)

⎤
⎥⎥⎥⎥⎥⎦

≤ negl(λ).

5 Construction

In the following we describe our construction for a switch commitment scheme
with efficient range proof. Our scheme is essentially a combination of a Pedersen
and ElGamal commitment scheme with restricted message space. The commit-
ment algorithm outputs an ElGamal commitment (gxhr, gr) and the full verifi-
cation algorithm recomputes the commitment to verify it. However, the partial
verification algorithm verifies only the Pedersen commitment gxhr. This makes
it possible to use efficient range proofs optimized for Pedersen commitments.

It is crucial for the security of our construction that the message space is
restricted to a size polynomial in the security parameter and the verification
algorithm rejects messages not in the space. In the proof of everlasting binding-
ness, the reduction guesses a message in a commitment, and thus the reduction
incurs a loss proportional to the size of the message space. Slightly increased
parameters are necessary to compensate for this loss of security.

Note that that the message space of the commitments used in CT is already
is restricted to integers in the range [0, d] for a fixed non-negative integer d that is
a parameter of the system and determines the maximum value of a transaction.

With the application in CT in mind, we describe the scheme for concreteness
with this message space. We however stress that any other restriction of the
message space is possible, as long as the message space has polynomial size in
the security parameter.

Switch Commitments: A Safety Switch for Confidential Transactions 179

– Setup(1λ, d): Initialize a multiplicative cyclic group G of order p, for some
prime p of size proportional to λ. Sample random g and h in G and output
crs = (G, g, h, d).

– Commit(crs,m): Parse crs as (G, g, h, d) and sample r ∈ Zp. Return com =
(gmhr, gr), and op = r.

– Verifypart (crs, com, op,m): Parse crs as (G, g, h, d), com as (c, �), and op as r.
If c = gmhr and m ≤ d, then return 1. Return 0 otherwise.

– Verifyfull (crs, com, op,m): Parse crs as (G, g, h, d), com as (c, �), and op as r. If
c = gmhr, � = gr, and m ≤ d, then return 1. Return 0 otherwise.

Avoiding Trusted Setup. We have chosen a description in the standard model
to stress that the construction does not require random oracles. However, it is
possible to avoid a trusted setup in the random oracle model by setting h = H(g),
for a hash function H. This is essentially what has been proposed in the draft
of CT.

Homomorphic Property. Since the commitment algorithm is identical to the one
of ElGamal commitments, the commitments are homomorphic due to gmhr ·
gm′

hr′
= gm+m′

hr+r′
and gr · gr′

= gr+r′
.

5.1 Security Analysis

Here, we formally argue about the security of the construction described above.

Claim 1 (Standard Security Properties). The construction fulfills the stan-
dard security properties. In particular, commitments are computationally hiding
under the decisional Diffie-Hellman assumption, the commitment scheme with
the partial verification algorithm is computationally binding under the discrete
logarithm assumption, and the scheme with the full verification algorithm is sta-
tistically binding.

Proof. The construction is computationally hiding under the decisional Diffie-
Hellman assumption, because the commitment algorithm is identical to the one
for ElGamal commitments. For binding, recall that ElGamal commitments are
perfectly (and thus statistically) binding, and that Pedersen commitments are
computationally binding under the discrete logarithm assumption. We refer the
reader to ElGamal [5] and Pedersen [12] for detailed discussions. ��
Theorem 2 (Everlastingly Binding). The construction is everlastingly bind-
ing under the computational Diffie-Hellman assumption.

Proof. We prove that the construction is everlastingly binding under the inverse
computational Diffie-Hellman assumption, which is known to be equivalent to
the (standard) computational Diffie-Hellman assumption [2]. Assume towards
contradiction that there exists an attacker (A0,A1) such that A0 is ppt and

180 T. Ruffing and G. Malavolta

Pr

⎡
⎢⎢⎢⎢⎢⎣

Verifypart (crs, com, op,m) = 1
∧ Verifyfull (crs, com, op′,m′) = 1
∧ m �= m′

(com,m, op, state) ← A0(crs);
(m′, op′) ← A1(crs, state)

⎤
⎥⎥⎥⎥⎥⎦

≥ ε(λ).

for some non-negligible function ε(λ). We construct the following reduction R
against the inverse computational Diffie-Hellman assumption.

R(1λ,G, g, h): On input the group description G, the generator g and a random
element h, the reduction sets crs = (G, g, h, d) for a fixed d. Then it runs A0 in
input crs, which outputs (com = (c, �),m = w, op = v), at some point of the
execution. Finally, the reduction samples a random d′ ≤ d and returns to the
challenger

I =
(

�

gv

)(w−d′)−1

.

The reduction is efficient since it only executes A0, which is ppt; note that
the reduction never executes A1. Let us denote w as mpart and v as rpart. By
assumption, A1 will be able to open the commitment to some value mfull such
that mfull �= mpart and mfull ≤ d with probability at least ε(λ). Assume that the
reduction guesses such a value mfull when selecting d′ (note that this happens
with probability at least 1/d); then we have that d′ = mfull. Now we observe that

I =
(

�

gv

)(w−d′)−1

=

(
grfull

grpart

)(mpart−mfull)−1

.

Since gmfull

hrfull

= c (by the winning conditions of the game) or equivalently

grfull

=
(

c

gmfull

)x−1

,

we have

I =

⎛
⎜⎝

(
c

gmfull

)x−1

grpart

⎞
⎟⎠

(mpart−mfull)−1

.

Since also gmpart

hrpart

= c, it holds that

I =

⎛
⎜⎜⎝

(
gmpart

hrpart

gmfull

)x−1

grpart

⎞
⎟⎟⎠

(mpart−mfull)−1

=

⎛
⎜⎜⎝

(
gmpart+xrpart

gmfull

)x−1

grpart

⎞
⎟⎟⎠

(mpart−mfull)−1

=

(
g(m

part−mfull)x−1+rpart

grpart

)(mpart−mfull)−1

= gx−1
.

Switch Commitments: A Safety Switch for Confidential Transactions 181

As argued above, this happens with probability at least ε(λ)
d , which is non-

negligible. This represents a contradiction to the computational inverse Diffie-
Hellman assumption and concludes the proof. ��

Acknowledgements. We thank the anonymous reviewers for their helpful comments
and suggestions. This work was supported by the German Ministry for Education
and Research (BMBF) through funding for the Center for IT-Security, Privacy and
Accountability (CISPA) and the German Universities Excellence Initiative.

References

1. Andreev, O.: Confidential Assets (2017). https://github.com/chain/chain/blob/
confidential-spec/docs/protocol/specifications/ca.md#value-range-proof, http://
www.webcitation.org/6qUEe3dKc

2. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8 28

3. Certicom Research: Sec 1: Elliptic curve cryptography. http://www.secg.org/
download/aid-780/sec1-v2.pdf

4. Elements Project: Alpha sidechain. https://www.elementsproject.org/sidechains/
alpha/

5. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

6. Gibson, A.: An investigation into confidential transactions (2016).
http://diyhpl.us/˜bryan/papers2/bitcoin/An%20investigation%20into%20Confid
ential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf, http://www.
webcitation.org/6qUF8XYmP

7. Harnik, D., Naor, M.: On everlasting security in the hybrid bounded storage model.
In: ICALP 2006 (2006)

8. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015). https://github.com/
Blockstream/borromean paper/raw/master/borromean draft 0.01 9ade1e49.pdf,
http://www.webcitation.org/6qUFVS2Ux

9. Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/∼greg/
confidential values.txt, http://www.webcitation.org/6qUFGwJah

10. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

11. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger (2016). http://
www.ledgerjournal.org/ojs/index.php/ledger/article/view/34

12. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

13. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential
assets. In: BITCOIN 2017. Springer, Cham (2017). https://fc17.ifca.ai/bitcoin/
papers/bitcoin17-final41.pdf

14. Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 380–397. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 22

15. Unruh, D.: Post-quantum security of Fiat-Shamir. Cryptology ePrint Archive,
Report 2017/398 (2017). https://eprint.iacr.org/2017/398

https://github.com/chain/chain/blob/confidential-spec/docs/protocol/specifications/ca.md#value-range-proof
https://github.com/chain/chain/blob/confidential-spec/docs/protocol/specifications/ca.md#value-range-proof
http://www.webcitation.org/6qUEe3dKc
http://www.webcitation.org/6qUEe3dKc
https://doi.org/10.1007/978-3-540-39927-8_28
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
https://www.elementsproject.org/sidechains/alpha/
https://www.elementsproject.org/sidechains/alpha/
https://doi.org/10.1007/3-540-39568-7_2
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf
http://www.webcitation.org/6qUF8XYmP
http://www.webcitation.org/6qUF8XYmP
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_9ade1e49.pdf
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_9ade1e49.pdf
http://www.webcitation.org/6qUFVS2Ux
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://www.webcitation.org/6qUFGwJah
https://doi.org/10.1007/11818175_22
http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/34
http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/34
https://doi.org/10.1007/3-540-46766-1_9
https://fc17.ifca.ai/bitcoin/papers/bitcoin17-final41.pdf
https://fc17.ifca.ai/bitcoin/papers/bitcoin17-final41.pdf
https://doi.org/10.1007/978-3-642-40084-1_22
https://eprint.iacr.org/2017/398

(Short Paper) PieceWork: Generalized
Outsourcing Control for Proofs of Work

Philip Daian1(B), Ittay Eyal1, Ari Juels2, and Emin Gün Sirer1

1 Department of Computer Science, Cornell University, Ithaca, USA
phil@cs.cornell.edu, ittay.eyal@cornell.edu, egs@systems.cs.cornell.edu

2 Jacobs Technion-Cornell Institute, Cornell Tech, New York, USA
juels@cornell.edu

Abstract. Most prominent cryptocurrencies utilize proof of work
(PoW) to secure their operation, yet PoW suffers from two key undesir-
able properties. First, the work done is generally wasted, not useful for
anything but the gleaned security of the cryptocurrency. Second, PoW is
naturally outsourceable, leading to inegalitarian concentration of power
in the hands of few so-called pools that command large portions of the
system’s computation power.

We introduce a general approach to constructing PoW called Piece-
Work that tackles both issues. In essence, PieceWork allows for a con-
figurable fraction of PoW computation to be outsourced to workers. Its
controlled outsourcing allows for reusing the work towards additional
goals such as spam prevention and DoS mitigation, thereby reducing
PoW waste. Meanwhile, PieceWork can be tuned to prevent excessive
outsourcing. Doing so causes pool operation to be significantly more
costly than today. This disincentivizes aggregation of work in mining
pools.

1 Introduction

Distributed cryptocurrencies such as Bitcoin [16] rely on the equivalence “com-
putation = money.” To generate a batch of coins, clients in a distributed cryp-
tocurrency system perform an operation called mining. Mining requires solving
a computationally intensive problem involving repeated cryptographic hashing.
Such problem and its solution is called a Proof of Work (PoW) [9].

As currently designed, nearly all PoWs suffer from one of two drawbacks
(or both, as in Bitcoin). First, due to the computationally intensive nature of
PoWs, miners of popular cryptocurrencies such as Bitcoin and Ethereum require
massive computing hardware and consume natural resources such as electricity.
As mining serves no purpose other than maintaining blockchain security, these
resources are otherwise wasted. Second, the cost advantages of special-purpose
mining equipment and a desire to reduce the variance of mining rewards incen-
tivize the concentration of mining effort in large mining pools. Such concentration
of power in the hands of a small number of entities erodes the egalitarian found-
ing principles of most decentralized cryptocurrencies, starting with Bitcoin.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 182–190, 2017.
https://doi.org/10.1007/978-3-319-70278-0_11

PieceWork: Generalized Outsourcing Control for Proofs of Work 183

There are several proposed solutions to first problem of costly and difficult-
to-repurpose PoWs. Primecoin [12] is an alt-coin in which mining involves dis-
covery of long sequences of prime numbers. The Primecoin PoW achieves a sec-
ondary goal beyond blockchain security, but the economic value of its byproduct
remains unclear. In Permacoin [14], the mining process is replaced by proofs-of-
retrievability [11], which prove that miners are storing a large corpus of data [14].
Permacoin, however, recoups only a small fraction of wasted resource, and does
not recycle computational resources. Indeed, despite such efforts, the Bitcoin
FAQ1 continues to claim that, “To provide security for the Bitcoin network, the
calculations involved need to have some very specific features. These features
are incompatible with leveraging the computation for other purposes”. Note
that this claim is distinct from the marginal cost argument in [21], which claims
any scheme achieving more efficiency than proof of work is impossible for equal
security. This claim is refuted by [6], with further experimentation in PieceWork
and elsewhere serving to validate or refute these opposing hypotheses.

To address the problem of mining centralization, some work has explored
the idea of preventing PoW outsourcing. Examples include Nonoutsourceable
Scratch-Off Puzzles [15], 2 Phase-Proof of Work (2P-PoW) [8], and Sign to
Mine [23]. The idea behind these schemes is to base mining on the use of a
private key that controls mining revenue. Thus outsourcing in, e.g., a mining
pool would expose the outsourcer to theft.

Other areas of work on proof of work outsourcing involve studying solutions
to attacks on outsourcing work proofs. In such attacks, an unscrupulous worker
that finds a full PoW solution might choose not to submit it to the outsourcer,
a problem called withholding. Workers can, in many cases, act in this way to
harm an outsourcer’s overall profit at little to no cost to themselves, as they are
still getting compensated for partial solutions. (Another, blockchain-level form
of this attack is known as the block withholding attack [4,7].)

Our Contribution: PieceWork

We introduce PieceWork, a generalized scheme for restructuring standard hash-
based PoWs that addresses the two drawbacks of existing PoWs described above.
As we explain, PieceWork encompasses a number of existing PoW construction
ideas, particularly from [8,9]. PieceWork decomposes a PoW into two sequential
exponentially distributed computational problems called puzzles. In PieceWork,
a PoW consists of a kin-bit hard inner puzzle and a kout-bit-hard outer puzzle.
We call this modification two-stage hashing [8].

Inner puzzles are outsourceable as small units of work called puzzlets. A miner
can delegate puzzlet-solving safely to other, potentially untrusted workers. Puz-
zlets in PieceWork are also reusable, meaning that they can serve useful goals
beyond blockchain security. These include spam deterrence [1,5], denial-of-service
mitigation [10], MicroMint coin generation [9,20], Tor relay payments [3], and
more. The value of these puzzlets is derived from potential applications, creat-
ing a HashCash-like scheme in which verifiers can simultaneously mint Bitcoin.

1 Referenced 11 Dec. 2016 at https://en.bitcoin.it/wiki/FAQ.

https://en.bitcoin.it/wiki/FAQ

184 P. Daian et al.

Our puzzlets are based on the computation recycling ideas (“breadpudding pro-
tocols”) in [9]. That work predated Bitcoin, though, and thus didn’t address
distributed cryptocurrencies and problems such as withholding [19], a signifi-
cant barrier preventing the reuse of work in PoW currencies today.

In contrast, outer puzzles can be non-outsourceable, i.e., solved safely only by
the miner receiving the mining reward for a given PieceWork PoW. For example,
by leveraging the mechanism 2P-PoW, PieceWork can cause outsourcing of outer
puzzles to result in exposure to theft of mining rewards. Verifiers of the proof of
work must check both inner and outer puzzle solutions.

PieceWork permits tuning of kin and kout, and thus the amount of per-
missible outsourcing in a cryptocurrency. Through gradual adjustments to kin
and kout, PieceWork thus also supports graceful migration from outsourceable to
non-outsourceable work. By inducing changes slightly over time, PieceWork can
enable a mining community to adjust its equipment and organization over time.

In summary, our contributions in introducing PieceWork are as follows:

– Unified PoW outsourcing framework: PieceWork offers a unified PoW con-
struction that incorporates a number of previously proposed ideas on safe
(withholding-resistant) outsourcing, reusable PoW work, tunable outsourc-
ing, and prevention of outsourcing in mining pools. PieceWork adapts these
ideas, some predating Bitcoin, to modern cryptocurrencies and specifies them
precisely, as some proposed ideas include unspecified details.

– PoW reuse: By offering concrete examples of computation reuse in PieceWork,
we show that PoWs can both enforce blockchain security and serve practical
and economically valuable secondary goals—refuting the Bitcoin Wiki claim
to the contrary.

– Novel technical extensions: PieceWork includes novel technical extensions to
previous ideas, including double-harvesting.

2 PieceWork: Two-Stage Hashing, Puzzles, and Puzzlets

We now present details of how existing PoWs are modified in PieceWork.

2.1 Background: Hash-Based PoWs

Most PoWs in distributed cryptocurrencies adhere to the same general structure
as that in Bitcoin, which we focus on for concreteness. Our description here and
of PieceWork thus generalize to other cryptocurrencies (e.g., Ethereum).

The Bitcoin PoWs involves finding a valid solution n to the following prob-
lem:

SHA-2562{v ‖ Bl ‖ MR(TR1, . . . ,TRn) ‖ T ‖ n}
≤ target,

where v is a (software) version number, Bl denotes the last generated block,
TR1, . . . TRn is a set of valid transactions not yet confirmed, MR(x) denotes
the root of the Merkle tree over transactions x, T is the current Unix timestamp,

PieceWork: Generalized Outsourcing Control for Proofs of Work 185

n is a nonce in the space N , and target is a 256-bit value that determines the
difficulty of the mining operation. It is updated according to the generation times
of the last 2016 blocks.

We may abstract away the details of the mining problem by defining

X = v ‖ Bl ‖ MR(TR1, . . . ,TRn) ‖ T.

to be the collection of inputs specific to a block. We let H(·) represent the
hashing operation SHA-2562 and, for brevity, let Z = target.

A Bitcoin mining operation then involves, for block value X, the discovery of
an input (“nonce”) n ∈ N for which H(X,n) ≤ Z. We refer to this hash-inversion
problem as the “Bitcoin puzzle”, designed to achieve several properties essential
to the Bitcoin system described in [14]: predictable effort, fast verification, and
precomputation resistance.

2.2 Basic PieceWork Scheme

PieceWork relies on a hierarchical form of hashing that we call two-stage hashing.
In PieceWork, we partition the hash function H into a pair Fin and Fout of
sequentially composed functions that we refer to as the “inner” and “outer”
puzzles. A global puzzle is then of the following form:

H(X,n) = Fout(X,Fin(X,n; s)).

and is considered valid when the inner and outer puzzles evaluate to below the
respective targets. Here, s is an extra input used for the purposes of puzzlet
recycling and discussed in detail in Sect. 3.

We refer to the inner function as a puzzlet. A valid solution to a puzzlet is a
pair (n, s) that satisfies I = Fin(X,n; s) ≤ Zin.

A solution (n, s) to a puzzlet is also a solution to the global puzzle if it
satisfies the additional condition Fout(X, I) ≤ Zout.

Both Fin and Fout must have the additional desired conditions of being
cheap to compute, with output independently identically distributed across
instances. The former condition allows for the fast verification required in the
global scheme, and the latter allows for an exponential block generation curve
that can be tuned predictably by adjusting the target. In general, we focus on
hash functions or functions that hash the results of a constant-time function to
achieve the latter. This includes the double-SHA256 scheme currently in Bitcoin.

In PieceWork, an outsourcer provides a puzzlet to a worker with a specified
value of s (selection explained in Sect. 3). Thus a puzzlet P takes the form:

P = (X,Zin, s).

The task of the worker is to find an n such that (n, s) solves a puzzlet. The
expected computation of the worker is R/Zin executions of Fin (where R is the
size of the hash function range). The outsourcer can, however, quickly check the
correctness of a solution (n, s) to P . Each solution to P represents one or more
potentially valid preimages for Fout for the outsourcer to try. On average, the

186 P. Daian et al.

outsourcer must try R/Zout inputs to Fout to find a solution to the global puzzle.

Tunability. Tuning inner and outer puzzles to any desired difficulty is straight-
forward. By setting Zin and Zout, an expected number of hash iterations 2kin

and 2kout can be enforced for inner and outer puzzles respectively. Such tunabil-
ity is a feature of 2P-PoW [8], and thus PieceWork can support the migration
from higly outsourceable to outsourcing resistant mining proposed there.

Non-outsourceability of outer puzzles. By choosing Fout appropriately, it
is possible to make outer puzzles non-outsourceable, as outlined in Sect. 3.2.

2.3 Full PieceWork Scheme: Adding Withholding Resistance

Bitcoin puzzles in their current form are in fact already outsourceable. Mining
pools can outsource a block solution puzzles to miners (workers in our scheme),
and reward these miners for partial proofs of work, or solutions to the block
problem that satisfy some weaker target than the global difficulty target.

Block withholding arises when a worker can determine whether her work
constitutes a full PoW solution. In the basic version of PieceWork specified above,
a worker can determine whether puzzlet I represents a global puzzle solution. She
can then choose to withhold it from the outsourcer. A solution to this problem
is to conceal from a worker whether or not her solution to an outsourced puzzle
represents a full PoW solution. In PieceWork, such concealment is possible with
a slight enhancement to the basic PieceWork scheme as follows:

PW (X,n) = Fout(X,Fin(X,n; s, rin), rout), (1)

where rout is a secret value generated by the outsourcer and rin = H(rout) for
some suitable hash function H. Thus a puzzlet takes the form:

P = (X,Zin, s, rin). (2)

Note that the dependence between rin and rout is important: If rin were
selectable by the outsourcer independently of rout, the outsourcer could, for
a single puzzlet solution I, solve for a valid rout, and, with 1/Zout work on
expectation, easily find a global puzzle solution. Lastly, this scheme relies on the
outsourcer compensating workers for only solved puzzlets, procluding “puzzlet
pools” (who could withhold full puzzlet solutions). The variance of workers and
other concrete parameters of this scheme are deferred to future work.

Withholding was called out as urgent on the Bitcoin developer mailing list
in 2015 [19]. The mailing list post on block withholding mentions a “two-stage
target mechanism” that may perhaps resemble our scheme; we were able to
find one public reference to the details such a scheme in [22]. That solution
suffers from potential rounding bias, lacks a full specification, and postdates
a scheme developed by Back to solve similar withholding problems in original
implementations of HashCash [2].

PieceWork: Generalized Outsourcing Control for Proofs of Work 187

3 Applying PieceWork

We now explain how puzzlets in PieceWork can be used to recycle computation.
Then we show how PieceWork may be used to prevent outsourcing.

3.1 Outsourceable Puzzlet Applications

A puzzlet solution has an easily quantifiable expected value for an outsourcer in
PieceWork. Suppose that V is the value generated by a successfully mined block.
Then the expected value of a puzzlet solution is V/Z. Their value is probabilistic,
much like micropayments in [13], but may be made non-probabilistic by an
outsourcer joining a traditional mining pool.

By judicious setting of s, outsourceable puzzlets can be used to perform useful
computations in other domains. Interactive applications with short timeouts are
preferred, allowing for a high probability that a puzzlet will be applicable to the
current latest Bitcoin block. In this section, we describe some sample applications
and effective choices for s that accomplish these goals.

Spam deterrence. Dwork and Naor [5] proposed a scheme in which the sender
of a piece of e-mail attaches the solution to a puzzlet. A receiver only accepts
e-mail with a valid puzzlet solution. Puzzlets are receiver-specific in this scheme,
so a would-be spammer incurs the high cost of solving puzzles for a large number
of receivers. Dwork and Naor’s puzzle construction was complicated, but can be
easily replaced with a hash-based PoW, as in [1].

As a receiver of e-mail cannot easily transmit a newly generated, block-
specific value s to a sender before the sender transmits e-mail, we propose that
s = H(Digest‖Header) for some CRHF H.

DoS deterrence. “Client puzzles” are hash-function inversion puzzles that a
client must solve to receive a resource from a server, such as a TCP or TLS con-
nection [10,18] or DNS query information. This scheme helps deter DoS attacks,
as it would require an attacker to solve many puzzles.

We can set s = H(Client IP‖fresh), with the freshness parameter being a
shared random variable to prevent stale puzzle recycling.

MicroMint. Rivest and Shamir [20] proposed a digital cash system called
MicroMint, in which coins are minted via hash collisions. MicroMint mimics
the economics of a real, physical mint, where there is a high base cost for design
of coinage, the purchase of machinery, etc. The incremental cost of producing
coins, though, is small. Similarly, MicroMint requires many hashes to find the
first coinworthy collision. Subsequent collisions accumulate quickly thereafter.

Jakobsson and Juels [9] showed how the problem of computing a hash image
can be made moderately hard so that the problem serves as a puzzlet. Their
scheme can be easily instantiated in PieceWork. In this case, s is the hash of a
secret minting key and an unique puzzlet index. (See [9] for details; some slight
modifications to the original scheme are required for PieceWork.)

MicroMint outsourcing in PieceWork can be combined with outsourcing for
DoS resistance, i.e., a worker can simultaneously help produce MicroMint coins
and aid in DoS prevention. We call this idea double-harvesting.

188 P. Daian et al.

Tor Relay Payments. Biryukov and Pustogarov [3] proposed mining outsourc-
ing as a means for clients to pay relays in Tor. Their scheme suffers in current
schemes like Bitcoin from the withholding problem, and therefore would benefit
from PieceWork. In one variant, a relay runs its own mining pool. In a second
variant, a relay itself serves as a worker in a mining pool and further outsources
work. This latter application motivates a three-phase variant of PieceWork.

3.2 Non-Outsourceable Puzzlet Applications

An existing approach to outsourcing resistance represented by 2P-PoW and Sign
to Mine, outlined informally in [8,23] respectively, can easily be plugged into
the inner puzzles of PieceWork. These schemes involve puzzles based on the
application of a digital signature, rather than a hash function. The proposal
is that the private key for the puzzle should be identical to that for spending
mining rewards. In our scheme, this would prevent outsourcers from pooling
worker resources. In PieceWork, the outer function may be defined as, e.g.:

Fout = H(SIGprivkey(X,Fin(X,n; s, rin), rout)), (3)

with the inner function representing the standard Bitcoin block solution, option-
ally at a lower reuseable difficulty. There are a few provisos. First, we empha-
size that such nonoutsourceability is heuristic, and not accompanied by formal
guarantees in the sense of “weak” outsourceability in [15]. It is possible in prin-
ciple digital signing can be securely outsourced—meaning that a “helper” can
substantially reduce the computation a signer needs to perform in computing a
signature without the helper learning the private key. In practice, however, there
is no known effective scheme for outsourcing computation in ordinary signature
schemes such as RSA and discrete-log-based schemes, e.g., ECDSA [17]. Thus,
signing-based puzzles may be heuristically assumed to prevent outsourcing.

Second, it has been argued (including in the comments of [8]) that, rather
than disincentivizing large pools, such a scheme could support outsourcing in
which workers place money in escrow that they forfeit should they steal mining
rewards. We omit discussion of this argument here, but note that escrow schemes
are complicated to implement and would disincentivize many workers, given that
escrow amounts would need to match block reward amounts.

4 Conclusion
We have shown that computation in Bitcoin and similar cryptocurrencies need
not be wasted, and outlined how a configurable percentage of this computation
can be repurposed for protection against e-mail spam, denial of service, and other
micropayment-style applications. We have established in PieceWork a framework
for defining our puzzles, and unified 2-Phase-PoW, Sign To Mine, and tunably
outsourceable two-stage puzzles that counter block withholding under a single
model. We hope this will help future efforts in the outsourceable cryptocurrency
computation space more effectively and rigorously define their schemes.

Acknowledgments. This work is funded in part by NSF grants CNS-1330599, CNS-
1514163, CNS-1564102, CNS-1561209, and CNS-1518779, ARO grant W911NF-16-1-
0145, and IC3 sponsorship from Chain, IBM, and Intel.

PieceWork: Generalized Outsourcing Control for Proofs of Work 189

References
1. Back, A.: Hashcash - a denial of service counter-measure. http://www.hashcash.

org/papers/hashcash.pdf (2002)
2. Back, A.: Hashcash-amortizable publicly auditable cost functions. Early draft of

paper (2000)
3. Biryukov, A., Pustogarov, I.: Proof-of-work as anonymous micropayment:

rewarding a Tor relay. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS,
vol. 8975, pp. 445–455. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47854-7 27

4. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in Bitcoin digital currency. arXiv preprint arXiv:1402.1718 (2014)

5. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

6. Ethereum Proof of Stake FAQ (2017). https://github.com/ethereum/wiki/wiki/
Proof-of-Stake-FAQ. Accessed 28 Feb 2017

7. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
pp. 89–103. IEEE (2015)

8. Eyal, I., Sirer, E.G.: How to disincentivize large bitcoin mining pools. http://hack
ingdistributed.com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/
(2014). Accessed 05 Nov 2016

9. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols
(extended abstract). In: Preneel, B. (ed.) Secure Information Networks. ITI-
FIP, vol. 23, pp. 258–272. Springer, Boston, MA (1999). https://doi.org/10.1007/
978-0-387-35568-9 18

10. Juels, A., Brainard, J.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: NDSS, pp. 151–165 (1999)

11. Juels Jr., A., Burton, S.K.: PORs: proofs of retrievability for large files. In: ACM
CCS, pp. 584–597 (2007)

12. King, S.: Primecoin: cryptocurrency with prime number proof-of-work (2013)
13. Micali, S., Rivest, R.L.: Micropayments revisited. In: Preneel, B. (ed.) CT-RSA

2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45760-7 11

14. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin
work for data preservation. In: 2014 IEEE Symposium on Security and Privacy,
pp. 475–490. IEEE (2014)

15. Miller, A., Kosba, A., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 680–691. ACM (2015)

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. (2008). http://
bitcoin.org/bitcoin.pdf

17. Nguyen, P., Stern, J.: The Béguin-Quisquater server-aided RSA protocol from
Crypto’95 is not secure. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 372–379. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-49649-1 29

18. Nygren, E., Erb, S., Biryukov, A., Khovratovic, D.: TLS client puzzles extension.
IETF Internet-Draft (2016). Expires 30 Dec 2016

19. Priest, C.: [bitcoin-dev] we need to fix the block withholding attack. https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012059.html (2015).
Accessed 05 Nov 2016

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://doi.org/10.1007/978-3-662-47854-7_27
https://doi.org/10.1007/978-3-662-47854-7_27
http://arxiv.org/abs/1402.1718
https://doi.org/10.1007/3-540-48071-4_10
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
http://hackingdistributed.com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/
http://hackingdistributed.com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/3-540-45760-7_11
https://doi.org/10.1007/3-540-45760-7_11
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-49649-1_29
https://doi.org/10.1007/3-540-49649-1_29
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012059.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012059.html

190 P. Daian et al.

20. Rivest, R.L., Shamir, A.: PayWord and MicroMint: two simple micropayment
schemes. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 69–87.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62494-5 6

21. Sztorc, P.: Nothing is cheaper than proof of work (2016). http://www.truthcoin.
info/blog/pow-cheapest/. Accessed 01 Nov 2016

22. Todd, P.: Re: [bitcoin-dev] we need to fix the block withholding attack
(2015). https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/
012069.html. Accessed 05 Nov 2016

23. ziftrCOIN: a cryptocurrency to enable commerces. (2014). https://d19y4lldx7po3t.
cloudfront.net/assets/docs/ziftrcoin-whitepaper-120614.pdf. Accessed 05 Nov
2016

https://doi.org/10.1007/3-540-62494-5_6
http://www.truthcoin.info/blog/pow-cheapest/
http://www.truthcoin.info/blog/pow-cheapest/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012069.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012069.html
https://d19y4lldx7po3t.cloudfront.net/assets/docs/ziftrcoin-whitepaper-120614.pdf
https://d19y4lldx7po3t.cloudfront.net/assets/docs/ziftrcoin-whitepaper-120614.pdf

Enhancing Bitcoin Transactions with Covenants

Russell O’Connor(B) and Marta Piekarska

Blockstream, Montréal, Canada
{roconnor,marta}@blockstream.com

Abstract. Covenants are Bitcoin Script programs that restrict how
funds are allowed to be spent. In previous work [9], Möser et al.
implemented covenants with a new Script operation that allows one to
programmatically query the transaction. In this paper, we show that
covenants can be implemented with a new CHECKSIGFROMSTACK oper-
ation that verifies a signature for a message passed as an argument. When
the same public key and signature is used together with CHECKSIG, one
can recover transaction data, which then allows one to enforce a covenant.
To illustrate our technique, we reimplement Möser et al.’s vault construc-
tion for securing funds against key compromise. We use Elements Alpha,
a sidechain whose Script language has the needed operations.

1 Introduction

To spend funds in Bitcoin, one has to provide an input to satisfy a predicate
that is associated with the funds. This predicate is programmed in a language
called Script [11]. A typical predicate requires a digital signature for a public
key that is fixed by the particular program. However, more complex predicates
are possible.

Predicates restrict who is authorized to make a transaction. Recent exten-
sions to the Script language, such as CHECKSEQUENCEVERIFY [3], allow pred-
icates to restrict when a transaction is authorized. However, there is no way to
restrict what transactions are authorized. Once someone has the authorization
to spend funds, they may send the funds anywhere they wish.

A way to limit how funds may be spent, including specifying how much must
be spent and to what addresses, is by the introduction of covenants. Covenants
may be recursive by requiring transactions to be spent to outputs that contain
the same covenant. State can be stored and updated in these scripts allowing
one to build smart contracts that execute a state machine through a series of
transactions.

It is believed that it is impossible to introduce covenants in Bitcoin as Script
does not contain operations that allow reading of the transaction data. The only
way to interact with the transaction data is by use of CHECKSIG that verifies
a digital signature for a message built from the transaction data. Thus, some
have proposed to extend Script to support covenants by adding new operations
to interact directly with the transaction data [9].

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 191–198, 2017.
https://doi.org/10.1007/978-3-319-70278-0_12

192 R. O’Connor and M. Piekarska

This paper introduces a novel approach to the problem. We show that it
is possible to implement covenants in Bitcoin by adding purely computational
operations that do not access the transaction data. Instead, we leverage the
existing CHECKSIG operation to recover the signed message data that is built
from the transaction data. Then it is easy to add conditions that restrict what
transaction data is acceptable for one’s particular covenant.

To illustrate how this works, we implement Möser et al.’s covenant for vault
transactions [9] in Elements Alpha, a Bitcoin sidechain that includes our needed
extensions to Script.

The rest of the paper is organized as follows. In the next section, we introduce
the basics required to understand how covenants work. Next, in Sect. 3, we talk
about the Elements Alpha sidechain that we used for implementation of our
solution. Section 4 describes the covenants and how they work in Elements Alpha.
In Sect. 5, a classical use case is presented: Möser et al.’s vault covenant. Related
work is discussed in Sect. 6, and we conclude in Sect. 7.

2 Background

In this section we discuss how Bitcoin Transactions work and what Script is.

2.1 Bitcoin Transactions

A Bitcoin transaction contains a series of inputs and outputs. The data for each
output contains its Bitcoin value and a predicate written in Script called the
scriptPubKey . The data for each input contains an outpoint , which references
a previous transaction’s output, and a scriptSig , which is the input for that
output’s predicate. The sum of the output values must be equal to no more than
the sum of the values of the outpoints referenced by the inputs. Any difference
between the two sums counts as fee that Bitcoin miners may collect for adding
the transaction to the blockchain.

2.2 Script

Script is a Forth-like, stack based language for defining predicates. Its operations
manipulate a stack of byte arrays. Input for a Script program, the scriptSig, gives
the initial state of the stack. Execution is successful when all of the program’s
operations complete and the resulting stack has a non-zero value on top.

Script is a deliberately limited language; it has conditionals but no looping
(or recursion) operations. This means that the language is not Turing complete.
These limitations facilitate static analysis of its programs. For example, only a
limited number of expensive, digital signature verification operations are allowed
per transaction, and this limit is statically checked by counting the number of
the operations appearing in the program.

The CHECKSIG and CHECKSIGVERIFY operations perform a digital signa-
ture verification of a signed hash. A signed hash is a double SHA-256 hash of

Enhancing Bitcoin Transactions with Covenants 193

signed data generated from the transaction data. The signed data is determined
by a SigHash type which is specified by a byte that is appended to the digital
signature. For the most common SigHash type, SIGHASH ALL, the signed data
consists of the transaction data with the scriptSigs replaced by the byte 0x00.
The exception being the input corresponding program being executed. There the
scriptSig is replaced with the scriptPubKey of its outpoint, which is the script-
PubKey being executed. Later we use this exception to implement recursive
covenants.

Other SigHash types produce variants of this signed data. We will be using
one that allows us to discard all but the first input and output of the transaction
data.

3 Elements Sidechain

Elements Alpha [1] is a fork of the Bitcoin codebase that implements a sidechain
on Bitcoin’s testnet [2]. Instead of mining, a federation of signers produces one
block per minute. Coins are not minted by new blocks; instead they enter the
sidechain through a pegging process. The user sends testnet coins to a multi-
signature scriptPubKey controlled by the federation. Once confirmed, the same
value of coins are unlocked on the Elements Alpha sidechain. Elements Alpha’s
coins can be redeemed on Bitcoin’s testnet later by locking the coins on the
sidechain. Once locked, the federation will release the same value of coins on
Bitcoin’s testnet.

Elements Alpha lets us explore new features for Bitcoin without putting
the main network at risk. For example, Segregated Witness [6,7], Confidential
Transactions [8] as well as the new Script operations were all developed in Ele-
ments Alpha. In particular, the inputs in Element Alpha’s signed data include
their Bitcoin value. We will now show how these new Script operations let us
implement covenants.

4 Covenants in Elements Alpha

New operations in Elements Alpha’s Script include: CHECKSIGFROMSTACK,
CHECKSIGFROMSTACKVERIFY and CAT. Interestingly, the CAT operation used
to exist in Bitcoin Script, but it was disabled [10].

The two CHECKSIGFROMSTACK operations are similar to the CHECKSIG
operations except they perform a digital signature verification of the SHA-
256 hash of a messaged passed on the stack. These operations have several
applications including secure multi-party computation [5]. For the purposes of
covenants, CHECKSIGFROMSTACK is used in conjunction with CHECKSIG to
recover the signed data.

After a successful CHECKSIG operation, the digital signature and public key
together form a commitment to the signed data. If the same public key and sig-
nature are used in a successful CHECKSIGFROMSTACK operation, it provides a
cryptographic guarantee that the message passed to the CHECKSIGFROMSTACK
operation is identical to the signed data.

194 R. O’Connor and M. Piekarska

4.1 Recovering Signed Data

In order to present a clear example of how our solution is realized, let us take
the following stack:

signature
pubkey
message

In the Script program presented in Listing 1.1, the first line duplicates the
signature and public key, and then it appends the byte 0x01 to the end of the
signature, which is the flag for SIGHASH ALL type. In the next line, a CHECK-
SIGVERIFY is executed using the signature and the public key. If it is successful,
it means that the signature and public key form a commitment to the signed data
for the SIGHASH ALL SigHash type. This leaves the original three items on the
stack. Next, the program computes the SHA-256 hash of message data. Finally,
a successful CHECKSIGFROMSTACKVERIFY ensures that the message is identi-
cal to the signed data from the CHECKSIGVERIFY operation on the second line.
This leaves only the message on the stack which has been proven identical to
the signed data.

1 2DUP 1 CAT
2 SWAP CHECKSIGVERIFY
3 2 PICK SHA256
4 ROT CHECKSIGFROMSTACKVERIFY

Listing 1.1. Elements Alpha Script to verify that message is the signed data

Further operations can be added to enforce that the transaction data con-
tained in the signed data satisfies whatever policy the user desires to enforce.

The signed data recovery process only relies on the integrity property of
digital signatures. In essence, we are treating the signature-pubkey pair as a
cryptographic hash of message data. The three inputs, signature, pubkey , and
message, can be provided in the scriptSig by the person creating the transaction.
In the next section, we will show how to apply this technique to build a practical
covenant.

5 The Möser-Eyal-Sirer Vault

In this section, we recreate the Möser-Eyal-Sirer Vault in Elements Alpha. Möser,
Eyal, and Sirer described an implementation of covenants using a new operation,
CHECKOUTPUTVERIFY, that directly verifies if a transaction output matches a
given pattern [9]. Using this operation, they developed covenants to implement
a smart contract for a vault to help secure funds against malicious transfers.

In their scheme, funds held in the vault can only be withdrawn through a two
transaction process. The first transaction’s output has a time-lock. This intro-
duces a fixed delay, called the unvaulting period , before the second transaction
can send the funds to the destination. The purpose of the time-lock is to provide

Enhancing Bitcoin Transactions with Covenants 195

an opportunity for the fund’s owner to detect transfers made by a malicious
party who may have obtained the vault’s private keys. During the unvaulting
period, the user has an option to use a rescue private key, kept offline, to cre-
ate a transaction that overrides the destination address of the withdrawal. This
override starts another unvaulting period, during which further overrides can be
made. This design ensures that even if the malicious party gets the rescue pri-
vate key, they still won’t be able to profit because the owner and the malicious
party end up locked in an endless battle of repeatedly resetting the target script.
Given the no-win scenario, hopefully the malicious party realizes that there is
no point in attacking in the first place.

Our implementation of the vault smart contract is composed of two Script
programs [12]. The first program is the main vault script . It holds funds in
the vault and its covenant forces that the funds are sent to a scriptPubKey
containing a vault loop script, which is the second half of the smart contract.
The vault loop script uses CHECKSEQUENCEVERIFY to enforce the unvaulting
period after which its covenant forces that the funds are sent to a destination
that was set by the main vault script’s input. Alternatively, the vault loop script
allows the funds to be sent, at any time, to another instance of vault loop script
containing a new destination address when authorized by a rescue key. In this
sense, the vault loop script is recursive.

5.1 Main Vault Script

The main vault script reconstructs the signed data from pieces provided by the
scriptSig and from fixed constants. Table 1 summarizes the reconstructed signed
data. The items in italics are provided by the scriptSig while the other items are
fixed by the main vault script. The CHECKSIG/CHECKSIGFROMSTACK tech-
nique described in Sect. 4 verifies that the reconstructed signed data matches
the actual signed data. For the public key, we require either the wallet or rescue
key to be used. This way, the CHECKSIG is used for both covenant enforcement
and verifying the transaction is authorized.

The same value parameter is used in both the input and output of the
signed data to ensure the entire vault’s funds are moved together. We use the
SIGHASH SINGLE type to generate signed data that excludes all but the first
input and first output. This allows other inputs to cover the transaction fees.

Table 1. Summary of recovered signed data for the main vault script. Items in italics
are data provided by the scriptSig input.

input 1 outpoint

value

script main-vault-script

output 1 value

scriptPubKey PUSH target

vault-loop-script

SigHash type SIGHASH SINGLE

196 R. O’Connor and M. Piekarska

The output’s scriptPubKey begins by pushing a target value, and it is fol-
lowed by the vault loop script. The target value is the initial “state” for the vault
loop script. It determines the scriptPubKey of the fund’s destination. The next
section will describe how vault loop script works.

5.2 Vault Loop Script

There are two different ways to redeem the vault loop script. The primary
method is to wait out the unvaulting period and then send the funds to the
target destination. The secondary method is to use the rescue key to send the
funds to another copy of the vault loop script with a new target script.

Table 2 summarizes the standard redemption’s signed data. We allow any
public key to be used for the covenant enforcement because redemption doesn’t
require authorization. Instead, we rely on the covenant to restrict the transac-
tion’s output to the target script that is fixed by the script’s “state”, and we use
a time-lock to enforce the unvaulting period.

At any time, the owner may change the destination of the vault loop by
redeeming it with a rescue transaction that replaces the “state” with a new-
target . Table 3 summarizes the signed data for the rescue transaction. In this
case, we require that the rescue public key is use to enforce covenant as this also
verifies that the transaction is authorized.

Table 2. Summary of signed data
for the standard redemption of
funds for the vault loop script.

input 1 outpoint

value

script PUSH target

vault-loop-script

output 1 value

scriptPubKey target

SigHash type SIGHASH SINGLE

Table 3. Summary of signed data for res-
cue of funds for the vault loop script.

input 1 outpoint

value

script PUSH target

vault-loop-script

output 1 value

scriptPubKey PUSH new-target

vault-loop-script

SigHash type SIGHASH SINGLE

Because the signed data includes the script being executed, we can enforce
the input and output scripts are the same. It is an example of building a recursive
smart contract composed of Scripts, even though the Script language itself does
not allow loops or recursion.

6 Related Work

In this section we compare our solution for covenants with Möser et al.’s solu-
tion [9]. Their solution proposes adding a CHECKOUTPUTVERIFY operation
to Script. Given an output index, a value, and a script pattern, CHECKOUT-
PUTVERIFY verifies that the transaction’s output at the given index has the

Enhancing Bitcoin Transactions with Covenants 197

given value and its scriptPubKey matches the given pattern. Their script pat-
tern relies on a few ad hoc placeholders including PUBKEY, PUBKEYHASH, and
PATTERN. The PUBKEY and PUBKEYHASH placeholders provide places where
“state” variables can be changed. The PATTERN placeholder is replaced with
an instance of the script itself, allowing one to construct recursive covenants
without resorting to building Quines.

Our solution does not require patterns. Using CAT, we can assemble arbitrary
scripts from some parts taken from inputs and other parts that are fixed. Instead
of having a PATTERN placeholder or using Quines, we take advantage of the fact
that the input script is part of the signed data to build recursive covenants. We
can copy only part of the input script to the output script, leaving the rest of
the script to store the updateable “state” of a smart contract.

That said, our solution comes at significant cost. The CHECKSIGFROM-
STACK operation is as expensive as CHECKSIG, which is by far the most expen-
sive operation in the Script language. Also, CHECKOUTPUTVERIFY is designed
to be easily soft-forked in, while our solution depends on CAT, which would
require a new Segregated Witness Script version to enable it.

The next section will discuss how the implications of this work is more about
the inevitability of covenants rather than about our solution being practical.

7 Conclusion

In this paper we presented a way to implement covenants, which can limit
how funds may be spent, including specifying how much must be spent and
to what addresses. To present a specific use case, we implemented the Möser-
Eyal-Sirer vault in Elements Alpha. It would be possible to adapt it to create
vaults and other covenants for similar blockchains. In particular, if CAT and
CHECKSIGFROMSTACKVERIFY were added to Bitcoin’s Script language then
the implementation presented here could be introduced in Bitcoin.

It is important to observe that CAT and CHECKSIGFROMSTACK are pure
functions in the sense that they are functions whose outputs are computable
solely from their stack arguments. This paper demonstrates we can recover the
signed data without the needing operations that access the signed data beyond
the existing CHECKSIG operation. The fact is that the main thing stopping
signed data recovery in Bitcoin’s Script today is that it is infeasible to imple-
ment CHECKSIGFROMSTACK with the existing operations, rather that it being
inexpressible. Any new operations that would make it feasible to implement
CHECKSIGFROMSTACK would enable covenants. For example, adding primi-
tive elliptic curve and finite field operations for the Secp256-k1 curve [4] would
likely be sufficient for implementing CHECKSIGFROMSTACK.

We see that Bitcoin’s CHECKSIG operation fails to abstract away the signed
data, even if abstraction was the intention. Rather than forcing users to go
through an expensive CHECKSIGFROMSTACK to gain access to the transaction
data embedded in the signed data, it would be better and cheaper for everyone
involved to provide operations to directly access the transaction data.

198 R. O’Connor and M. Piekarska

References

1. Back, A.: Announcing sidechain elements: open source code and developer
sidechains for advancing Bitcoin (2015). https://blockstream.com/2015/06/08/
714/

2. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timón, J., Wuille, P.: Enabling Blockchain innovations with pegged
sidechains (2014). https://www.blockstream.com/sidechains.pdf

3. BtcDrak, Friedenbach, M., Lombrozo, E.: BIP112: Checksequenceverify. Bitcoin
Improvement Proposal (2015). https://github.com/bitcoin/bips/blob/master/
bip-0112.mediawiki

4. Certicom Research: Standards for Efficient Cryptography 2: Recommended Elliptic
Curve Domain Parameters. Standard SEC2, Certicom Corp., Mississauga, ON,
USA, September 2000

5. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2016, pp. 418–429. ACM, New York (2016), http://doi.acm.org/10.
1145/2976749.2978424

6. Lombrozo, E., Lau, J., Wuille, P.: BIP141: segregated witness (consensus layer).
Bitcoin Improvement Proposal (2015). https://github.com/bitcoin/bips/blob/
master/bip-0141.mediawiki

7. Lombrozo, E., Wuille, P.: BIP144: segregated witness (peer services). Bitcoin
Improvement Proposal (2016). https://github.com/bitcoin/bips/blob/master/
bip-0144.mediawiki

8. Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/∼greg/
confidential values.txt

9. Möser, M., Eyal, I., Gün Sirer, E.: Bitcoin covenants. In: Clark, J., Meikle-
john, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016.
LNCS, vol. 9604, pp. 126–141. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53357-4 9

10. Nakamoto, S.: Misc changes, August 2010. https://github.com/bitcoin/bitcoin/
commit/4bd188c4383d6e614e18f79dc337fbabe8464c82, https://bitcoin.svn.
sourceforge.net/svnroot/bitcoin/trunk@131

11. Nakamoto, S.: Re: Transactions and Scripts: DUP HASH160 ... EQUALVERIFY
CHECKSIG, June 2010. https://bitcointalk.org/index.php?topic=195.msg1611#
msg1611

12. O’Connor, R.: Covenants in Elements Alpha, November 2016. https://blockstream.
com/2016/11/02/covenants-in-elements-alpha.html

https://blockstream.com/2015/06/08/714/
https://blockstream.com/2015/06/08/714/
https://www.blockstream.com/sidechains.pdf
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
http://doi.acm.org/10.1145/2976749.2978424
http://doi.acm.org/10.1145/2976749.2978424
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1007/978-3-662-53357-4_9
https://github.com/bitcoin/bitcoin/commit/4bd188c4383d6e614e18f79dc337fbabe8464c82
https://github.com/bitcoin/bitcoin/commit/4bd188c4383d6e614e18f79dc337fbabe8464c82
https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@131
https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@131
https://bitcointalk.org/index.php?topic=195.msg1611#msg1611
https://bitcointalk.org/index.php?topic=195.msg1611#msg1611
https://blockstream.com/2016/11/02/covenants-in-elements-alpha.html
https://blockstream.com/2016/11/02/covenants-in-elements-alpha.html

Decentralized Prediction Market Without
Arbiters

Iddo Bentov1(B), Alex Mizrahi2, and Meni Rosenfeld3

1 Cornell University, Ithaca, USA
iddobentov@cornell.edu

2 chromawallet.com, Stockholm, Sweden
alex.mizrahi@gmail.com

3 Israeli Bitcoin Association, Tel Aviv, Israel
meni@bitcoin.org.il

Abstract. We consider a prediction market in which all aspects are
controlled by market forces, in particular the correct outcomes of events
are decided by the market itself rather than by trusted arbiters. This
kind of a decentralized prediction market can sustain betting on events
whose outcome may remain unresolved for a long or even unlimited time
period, and can facilitate trades among participants who are spread
across diverse geographical locations, may wish to remain anonymous
and/or avoid burdensome identification procedures, and are distrustful
of each other. We describe how a cryptocurrency such as Bitcoin can be
enhanced to accommodate a truly decentralized prediction market, by
employing an innovative variant of the Colored Coins concept. We exam-
ine the game-theoretic properties of our design, and offer extensions that
enable other financial instruments as well as real-time exchange.

1 Introduction

A prediction market (PM) enables its participants to continuously place bets on
the outcome of uncertain future events. As the PM is transparent and provides
price discovery, each participant can take into consideration the current market
price for outcomes of events, and attempt to make informed decisions regarding
whether to buy or sell shares in such outcomes. Another use of PMs is in hedging
positions. An individual may buy a prediction not because she believes that the
event will happen, but because it would have a negative effect on her. She thus
reduces her risk by betting on the event, anticorrelating with her current position.
Further, PMs function as a useful forecasting tool even for non-participants,
because predictions that are made when traders risk their own money have
proven to be more accurate than polls and other methods [2].

The decentralized structure of the Bitcoin [17] network implies that its sound-
ness does not require reliance on trusted parties, and that its participants can
operate anonymously [13–16] if they take appropriate precautions. By utilizing
Colored Coins [20] protocols, a decentralized stock exchange and other financial
services can be integrated with Bitcoin. Similarly, “meta”-protocols such as the
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 199–217, 2017.
https://doi.org/10.1007/978-3-319-70278-0_13

200 I. Bentov et al.

Counterparty [11] and Omni [18] layers1 can provide more advanced financial
services. Thus, one may regard it to be of interest to explore whether a decen-
tralized PM can also be deployed on top of Bitcoin.

At first glance, it may seem that a decentralized exchange of assets poses
less of a challenge than a decentralized PM. This is because the relevant aspects
when trading an asset are just whether the issuer of the specific asset is reputable,
and whether the trading platform is secure. Some assets may not require any
reliance on reputation, e.g. an asset that gives ownership rights over a digital art
item (including the right to present it at a gallery), which can then be traded
in an atomic fashion. By contrast, even though a PM only deals with digital
information, a fully decentralized PM requires a broad agreement regarding the
outcomes of events.

Indeed, the work of [7] constructs a PM via a cryptocurrency of the Bitcoin
mold, but it relies on trusted arbiters to decide the correct outcome of events. An
alternative presented in [7] is to let the “miners” who perform the Proof of Work
computations register their votes on the outcomes of events in the blocks that
they solve. However, this alternative raises significant concerns, which stem from
the fact that miners in a decentralized cryptocurrency can operate anonymously.
Consider, for example, an obscure event that is relevant only to a small village.
Some faction of this village can try to bribe miners to vote for their preferred
outcome. Ideally, miners would be disincentivized from voting incorrectly as it
entails the risk of losing the block reward in case their solved block is rejected
by honest miners. For this to happen, honest miners would need to parse every
obscure event description and keep up with the real-world outcomes of such
events, which is impractical. Hence, choosing a trusted entity as arbiter in accord
with hierarchical certification (cf. [7, Sect. 5.3]) is probably a better option for a
PM of this kind.

One may ask why it is of value to decentralize all the aspects of a PM. Some
of the possible reasons are as follows:

– For arbiters, credibility is inversely correlated with susceptibility. An anony-
mous arbiter is probably untrustworthy, while a well-known arbiter can be
pressured by hostile elements to not resolve an event correctly.

– Eliminating the need for arbiters makes it easier to bet on events that extend
over a very long time period (e.g., “Texas will secede from the U.S. before
the year 2030”), or even events with unbounded time (e.g., “The State of
Jefferson will be created out of California and Oregon before Texas secedes
from the U.S.”). It is desirable to let the market assign probabilities to such
outcomes in a continuous fashion while relevant occurrences in the world
unfold, without running the risk that a designated arbiter will not be alive
or no longer be (the only one) in possession of her secret signing key at the
time when the outcome is resolved.

– Anonymous traders may make predictions on interesting events that a tra-
ditional PM does not tend to accommodate. For example, “Street gang #1

1 Each of them reached a market cap greater than $20 million in 2014, see http://
coinmarketcap.com/.

http://coinmarketcap.com/
http://coinmarketcap.com/

Decentralized Prediction Market Without Arbiters 201

will win the turf war in which they swore to expel street gang #2 from region
x before the year 2018”. Market participants might not be able to agree in
advance on a trustworthy arbiter for this event, even though the outcome can
be agreed upon by impartial observers and hence suitable to be decided by a
decentralized PM.

– Reputable arbiters may expect to be compensated for the service that they
provide, in part because they need to take precautions to secure their secret
signing key. This implies that market participants will need to pay fees that
go to the trusted arbiters, on top of the fees that are paid to the miners.

– In case the designated arbiter makes the wrong call for an event resolution,
her decision becomes irreversible according to the protocol rules of a semi-
decentralized PM [7]. Thus, shares of the winning outcome that are still in
circulation are unfortunately worthless. This stands in contrast to a fully
decentralized PM, in which market forces will re-adjust the value of the shares
as the mistaken outcome becomes known.2

These reasons add to the obvious observation that designated arbiters may be
malicious or willing to be bribed. For instance, a corrupt arbiter may stonewall
and refuse to sign the correct resolution of an event until she receives extra
money on the side. The corrupt arbiter may also stock up on cheap shares of an
unlikely outcome, then rule in favor of that outcome and in effect steal money
from other traders.

In Sect. 3 we discuss the conditions under which our fully decentralized PM
scheme is likely to work well, and conditions under which a PM with trusted
arbiters may be more appropriate.

1.1 Prediction Markets with Anonymous Participants

An anonymous marketplace with or without trusted arbiters can facilitate insider
trading and other kinds of fraud that are less probable in non-anonymous setting.

E.g., a goalkeeper can secretly buy shares that predict that her team will lose
a soccer game, then concede goals on purpose and profit. Still, even in a non-
anonymous PM the goalkeeper may ask someone else to buy the shares and later
divvy up the profits between them, hence the issue boils down to the observation
that an anonymous marketplace allows fraudsters to operate with less friction.

Therefore, it is safer to bet on events whose significance is likely greater than
their trade volume, particularly in the case of a PM with anonymous participants.

See for example [9] for further discussion and analysis of outside incentives.

1.2 Related Work

The work of [7] presents a cryptocurrency protocol for a PM that is decentralized
in the sense that anyone can inject liquidity for betting on new or existing events,

2 An example of a mistaken ruling is the 2012 Iowa caucus incident at https://en.
wikipedia.org/wiki/Intrade#Disputes.

https://en.wikipedia.org/wiki/Intrade#Disputes
https://en.wikipedia.org/wiki/Intrade#Disputes

202 I. Bentov et al.

but centralized in the sense that it depends on trusted arbiters to decide the
outcomes of events. Moreover, [7] presents a decentralized matching platform for
PM trading directly on the cryptocurrency network. In AppendixA we outline
how it is also possible to construct a trading platform that is suitable for real-
time trades.

The Truthcoin [22] and Augur [19] projects attempt to build a different vari-
ant of a decentralized PM, where holders of tradeable “reputation” cryptocur-
rency take over the role of trusted arbiters in deciding outcomes of events. This
is done via quite intricate voting methods in which all holders of these reputa-
tion coins may cast their votes for each event resolution, voters who agree with
the majority earn fees, and voters who end up in the minority may suffer a loss.
One aspect that neither Truthcoin nor Augur try to decentralize is the initial
issuance of reputation coins by means of an auction or an IPO (cf. [6, Sect. 4]
and [8, Sect. V.B]). By contrast, in our PM protocol the outcomes of events are
decided by market forces rather than by votes, hence there is no need for an IPO
that would potentially enrich the parties that initiate the PM system.

2 Mechanism

The Colored Coins concept [20] allows Bitcoin to support non-fungible assets
rather than only fungible coins. This means that “tagged” or “colored” coins
can be sent and received on the Bitcoin network. Thus, if Alice has a portfolio
of {(5, red), (6, blue)} coins, she can send (1.9, red) coins to Bob’s address and
have {(3.1, red), (6, blue)} coins remaining.

The PM system that we hereby construct is based on Bitcoin, with all assets
colored according to the fixed form (amount, bet, history). Initially, the system
has uncolored assets (amount,⊥, ∅), that can be used in exactly the same way as
ordinary bitcoins. For example, if Bob has (9,⊥, ∅) coins, he can send (1.2,⊥, ∅)
coins to Alice’s address and have (7.8,⊥, ∅) coins left.

To allow everyone to participate in the PM in a fully decentralized fashion,
we define three types of special transactions, as follows.

Creating a prediction pair. Anyone can execute a special outcome-split trans-
action that transforms her (amount,⊥, history) asset to

{(amount, Yes:eid, history), (amount, No:eid, history)},

where eid is some particular event-id that is derived via

eid = hash(“Textual description of an event”).

We assume that hash() is a cryptographic hash function. These split Yes/No
shares can now be transferred as is the case with colored coins. E.g., Alice may
split (m,⊥, ∅) using event-id eid0, then send (2/3 ·m, Yes:eid0, ∅) shares to Bob,
and remain with {(1/3·m, Yes:eid0, ∅), (m, No:eid0, ∅)} shares in her possession.

Decentralized Prediction Market Without Arbiters 203

Redeeming a prediction pair. Anyone in possession of (amount, Yes:eid, h1)
shares and (amount, No:eid, h2) shares is allowed to execute a special outcome-
combine transaction that transforms these shares to (amount,⊥, h1 ∪ h2).

Hence, no matter what are the current market value of (amount, Yes:eid, ∅)
and (amount, No:eid, ∅) separately, their combination is always worth
(amount,⊥, ∅) ordinary coins.

Forcing an encumbered history. Anyone can execute a special outcome-
force transaction that transforms her (amount, Yes:eid, history) asset to
(amount,⊥, history ∪ {Yes:eid}).

Likewise, anyone can transform her (amount, No:eid, history) asset to
(amount,⊥, history ∪ {No:eid}).

Let us elaborate on these mechanisms by providing several examples. See the
accompanying Fig. 1 for an illustration.

Example of outcome-combine transaction:

(5000,Yes :Obama2012, ∅)

market value ≈ 5000B (e.g., 4995B)

(5000,No :Obama2012, ∅)

market value � 5000B (e.g., 5B)

(5000,⊥, ∅)

Example of outcome-force transaction:

(5000,Yes :Obama2012, history)

market value �≈ 5000B

(5000,⊥, history ∪ {Yes :Obama2012})

Fig. 1. Special transactions for event resolution.

Exemplary scenario 1. During 2011, Alice believes that President Obama
will win the 2012 presidential election. She computes Obama2012=hash(“Barack
Obama will win re-election in 2012”) and executes output-split to transform
(5000,⊥, ∅) ordinary coins that she possesses to

{(5000, Yes:Obama2012, ∅), (5000, No:Obama2012, ∅)}.

Suppose that the market believes that President Obama has 70% probability to
win re-election. Alice trades her (5000, No:Obama2012, ∅) shares for (1500,⊥, ∅)
ordinary coins, since 30/100 · 5000 = 1500. After President Obama wins re-
election, the market price of No:Obama2012 plummets to 0.001 coins per share.

204 I. Bentov et al.

Hence, Alice buys (5000, No:Obama2012, ∅) shares for 5 coins, and then uses the
(5000, Yes:Obama2012, ∅) shares that she kept to execute outcome-combine and
earn 5000 coins back. Alice’s total gain is 1500 − 5 = 1495 coins.

Exemplary scenario 2. During 2011, Alice wishes to risk her entire wealth
of 5000 coins by betting in favor of President Obama’s re-election. The market
assigns 70% probability to this event. Alice trades her (5000,⊥, ∅) coins for
(7142.8, Yes:Obama2012, ∅) shares on the market, since 7142.8 · 70/100 ≈ 5000.
After President Obama wins re-election, the market price of Yes:Obama2012
rises to 0.999 coins per share, hence Alice sells her (7142.8, Yes:Obama2012, ∅)
shares for (7135.7,⊥, ∅) coins. Alice’s total gain is 7135.7 − 5000 = 2135.7 coins.

The difference between scenarios 1 and 2 demonstrates that traders who
provide the initial liquidity to the market need to commit more funds than the
traders who join later, thus it can be reasonable for early traders to expect a
small premium over the market price. This premium can be materialized in the
form of a slightly wider bid-ask spread.

Exemplary scenario 3. During 2011, Alice wishes to bet in favor of Presi-
dent Obama’s re-election, and executes output-split to transform her (1000,⊥, ∅)
coins to (1000, Yes:Obama2012, ∅) shares and (1000, No:Obama2012, ∅) shares.
The market believes that the price of a No:Obama2012 share is 30/100 coins. Hence,
Alice sells her (1000, No:Obama2012, ∅) shares for (300,⊥, ∅) coins. After Presi-
dent Obama wins re-election, Alice wishes to buy (1000, No:Obama2012, ∅) shares
in order to execute outcome-combine, but traders who hold these shares demand
an unreasonable high price of 20/100 coins per No:Obama2012 share. Alice declines
to pay such an excessive price, and instead executes an outcome-force transaction
to transform her (1000, Yes:Obama2012, ∅) shares to (1000,⊥, {Yes:Obama2012})
coins with encumbered history. Thus, Alice presumes that since all reasonable
people should agree that President Obama won in 2012, she will be able to pay
with these encumbered coins at the grocery store, etc. For instance, a store may
accept Alice’s payment of (803,⊥, {Yes:Obama2012}) for an item that normally
costs 800 coins.

As scenario 3 alludes to, the intuitive reason for supporting an outcome-force
operation is that it serves as a deterrent against traders who would demand an
excessive price for their losing shares, by offering an alternative that removes
the dependence on such misbehaving traders. The game-theoretic implications
of outcome-force are examined with more details in Sect. 3. Let us note that
misbehaving traders can pose problems even with a trusted arbiter who may not
decide the outcome until a future date, which implies that unless the traders
who hold the losing shares act reasonably, the winning shares would be neither
interest-baring nor spendable for a possibly long time period (cf. [7, Sect. 4.2]).

It is likely that traders will prefer to buy the losing shares for cheap and exe-
cute outcome-combine to obtain coins with a clean history, rather than execute
outcome-force and encumber the history of their coins, because nobody wants to
run the risk of having unrecognized coins that get declined when they attempt
to make payments. Still, some users of the currency might wish to resort to
reputable oracles to fetch and thereby recognize widely agreed upon versions of

Decentralized Prediction Market Without Arbiters 205

encumbered history. This can be helped via protocol support for hashing event-
ids into a single set-id according to a canonical order, so that a set-id can be
re-hashed into a larger set when its preimage (that consists of event-ids) is given.

Therefore, when the PM functions properly (as in scenarios 1 and 2), the
price of an (1, Yes:eid, ∅) share can be interpreted as the probability that the
market assigns to the event, since the cost of a losing share will be close to 0.

Another question is why it is needed to execute outcome-force instead of
simply keeping the winning shares and using them as currency. The reason is
that such shares would have to be transacted separately rather than joined with
the ordinary coins that the user holds, which entails extra complexity and is
not scalable. Also, such shares cannot be used to place bets on a new event,
unless they first get converted to a usable format via either outcome-force or
outcome-combine.

Finally, let us note that this PM system relies on a softfork (or hardfork if
desired) of the Bitcoin protocol, due to two reasons. First, when colored coins
are implemented as an optional layer on top of Bitcoin, miners are oblivious
to it, and hence there may not be widespread agreement regarding the coloring
rules. Additionally, in optional colored coins layers it is typically the case that
one can always “uncolor” a colored coin, which implies that colored coins that
exist in the Bitcoin system are always worth at least as much as their uncolored
amount. In any case, a protocol fork is needed for a more efficient tagging-based
colored coins support (cf. [5,20]), and our reference colored coins implementation
with split/combine/encumber operations demonstrates that the overhead for a
decentralized PM is minor [10].

3 Analysis

We are interested in analyzing what will be the prediction share price when each
type of share is traded in the open market. We assume that a pair of “+” share
and “−” share can always be exchanged for 1 BTC. In this abstract model, we
further assume that due to agreement about which prediction was correct, a “+”
share will be worth p BTC even if it is never combined with a “−” share, while
a “−” share will be worthless without the possibility to combine it.

The parameter p can be regarded as the probability that the Bitcoin min-
ers and full nodes will form a new consensus rule (by means of a softfork) that
cleanses the encumbered coins corresponding to the prediction, thus transform-
ing them into unencumbered coins. For example, the majority of miners will
probably agree that it is reasonable to cleanse the aforementioned Obama2012
event if many such encumbered coins are in circulation. However, in case the min-
ers are unreasonable an wish to regard another candidate as the winner of the
2012 elections (contrary to what the rest of the population thinks), our analysis
will unfortunately reflect that by assigning the higher value to what ought to
have been “−” shares. Notice that if the event description has some ambiguity,
then even reasonable actors may fail to reach consensus. For example, an unam-
biguous event description for the U.S. presidential election in 2000 could have
been “Al Gore will be inaugurated as the 43rd President of the United States”.

206 I. Bentov et al.

Let us note that there exists a significant difference between letting miners
have the power to vote on outcomes of all events in the blocks that they solve,
and the above possibility of miners reaching consensus to cleanse the shares of
an old event that are still in circulation. The problematic nature of the first
method is discussed in Sect. 1. By contrast, the second method is a deliberate
process that can be done in phases where in an initial phase the miners express
willingness to support the supposedly benign fork, and in a latter phase the fork
becomes operational. This method of deliberation to reach consensus has already
been deployed in Bitcoin several times, in particular for the benevolent P2SH [1]
and CLTV [23] forks. Therefore, in the case of well-known events for which there
is wide agreement on the outcome among the general population, the decision
to cleanse “+” shares can be a suitable candidate for a protocol fork.

It can also be appropriate to regard the probability p as corresponding to
other conditions that are easier to meet, for example that a quorum of reputable
oracles (that payment processors can utilize as in Sect. 2) consider “+” shares to
be indistinguishable from unencumbered coins. The downside of such a condition
is that it relies on a system with some centralized elements, rather than a fully
decentralized system.

Other possibilities include deciding the outcome via an algorithm that was
not yet known at the time when the prediction was made, or via measurements
that rely on physical data and thus cannot be scripted in the cryptocurrency.

Let us stress that the most basic condition is that a user simply consults with
herself before accepting an encumbered coin as payment, since popular event
descriptions (e.g., “Barack Obama will win re-election in 2012”) can be easy
enough to consider. Therefore, p > 0 should hold even without reliance on extra
mechanisms such a miners’ fork or reputable oracles, though such mechanisms
can help in making p larger.

Generally, the parameter p can thus be considered to be the expected price of
a “+” share, where the expectation is taken over all the events that can influence
the worth of the “+” shares.

Hence, this is essentially a situation known in game theory as the “glove
game” [3]. A common method of analyzing cooperative games like this is the
Shapley value [3,21], which essentially gives a stable evaluation of each partici-
pant’s assets. A coalition of k players with a “+” share and � players with a “−”
share has a total value of pk + (1 − p)min(k, �); so if there are m “+” players
and n “−” players, the Shapley value of a “−” player is given by:

v− =
1 − p

(m + n)!

m+n∑

i=1

�i/2�−1∑

j=0

(m + n − i)!(i − 1)!
(

n − 1
j

)(
m

i − j − 1

)
.

And the shapley value of a “+” player is

v+ =
mp − nv− + (1 − p)min(m,n)

m
.

For example, if p = 1/10, m = 30 and n = 25, then v− = 0.670012 and v+ =
0.329988. As we see in this case, “−” shares actually have the higher value,

Decentralized Prediction Market Without Arbiters 207

because the oversupply of “+” shares implies that the holders of those shares
have less bargaining power, and p = 1/10 is too small to compensate for that. By
contrast, p = 3/4,m = 30, n = 25 result in v− = 0.186114 and v+ = 0.813886.

There is an economics phenomenon of destroying assets (often food) in order
to increase the price of the stock that was kept. While counterintuitive, there
are market conditions in which this can actually increase the overall profit. It is
interesting to consider whether a similar phenomenon can happen here. Let us
note that with Bitcoin and similar cryptocurrencies, players can indeed destroy
assets that they control in a publicly verifiable way, by sending an unspent output
to a script that always returns False.

In normal circumstances this should not happen. If a player chooses to “burn”
some of her coins, this will increase the Shapley value of her remaining coins –
but not so much that her total value will increase. This is because the Shapley
value, in a way, considers all possible negotiation tactics of the different players,
and if there was a way to gain from burning coins, it should already be accounted
for in the original Shapley value.

But this can happen in the case of incomplete information and erroneous
assumptions by the players. For example, assume there are 100 “+” shares and
100 “−” shares, with p = 0. Most players assume that there are 200 players
with 1 share each; they base their trading activity on this assumption, and this
results in a market value equal to the Shapley value for this game. However,
unbeknownst to them, there is actually a single player in possession of all 100
“+” shares. If she decides to visibly burn some shares and keep only m, and the
market reacts naively by calculating the Shapley value for a new game with a
reduced number of players, her total value as a function of the coins she keeps
is given in Fig. 2.

We can see that as this player starts burning shares, the rise in the value of
each is steep enough to increase her total value. She will get the optimal value
of 70.5882 if she keeps only 84 shares. Thus, in case this player had less than 84
shares to begin with, it would be disadvantageous for her to burn shares.

Notice that the benefit in burning “+” shares depends on the parameter
p. This can be seen by noting that the value of each “+” share is given by
v+ = p · 1+ (1− p) · s+, where s+ is the Shapley value for a “+” share in a game
with p = 0. To see that the equality holds, consider the event

E+ = {player with “+” completes a pair in a random permutation of players}.

According to the definition of the Shapley value (see also Fig. 3), we have

s+ = Pr(E+)
v+ = Pr(E+) · 1 + (1 − Pr(E+)) · p = p · 1 + (1 − p) · s+.

Therefore, destroying all but x shares implies a revenue of x·(p·1+(1−p)·s+(x)),
i.e., with s+ as a function of x. We can thus see that as p tends towards 1, the
destruction of “+” shares becomes counterproductive.

On the other hand, the decision to burn “−” shares is unaffected by p. The
reason for this is that each “−” share is worth v− = p · 0 + (1 − p) · s−, with

208 I. Bentov et al.

20 40 60 80 100

10

20

30

40

50

60

70

Fig. 2. Total value after the destruction of shares.

“+” “+” “–” “+” “–”

0 0 1 1 2

“+” “+” “–” “+” “+”

p 2p 1 + p 1 + 2p 1 + 3p

Fig. 3. Incremental value of coalitions in glove games with p = 0 and p > 0.

s− being the Shapley value for “−” in a game with p = 0. The rationale for this
equality is the same as in the case of v+ above. As we can thus see, burning all
but x of the “−” shares implies a revenue of x · (1−p) ·s−(x), and the maximum
of this expression does not depend on p.

Figure 4 demonstrates the total value that a player with m shares can obtain
by not revealing that she possesses the entire supply of the “+” shares. Thus,
as in the previous example we assume that there are m individual players who
possess one “−” share each, and a single player with all of the m “+” shares. In
this figure,

m = 100 corresponds to m(p + s+(m)(1 − p)) = 100(p +
1
2
(1 − p) = 50(1 + p),

p = 0 corresponds to Fig. 2,
p = 1 corresponds to m(p + s+(m)(1 − p)) = m,

and all other values in the range p ∈ [0, 1],m ∈ [0, 100] are plotted.
One may ask whether burning fungible coins (e.g., ordinary bitcoins) could

also be profitable for an individual player. Since the value function in this case
is different than in the glove game, the answer is always no. To see this, assume

Decentralized Prediction Market Without Arbiters 209

that there are n coins in total that are worth C/n each. Consider a player who
possesses m coins, hence her total value is m · C/n. In case this player burns x
coins, each coin would now be worth (at most) C

n−x , and the total value of this
player would be m−x

n−x ·C. Since m < n ⇒ m−x
n−x < m

n , it follows that burning
ordinary coins is always unprofitable.

Fig. 4. Total value as a function of p and the m.

It is also appropriate to consider whether a player who possesses a large
amount of “+” shares can gain an advantage by simply announcing that she
controls this entire amount, instead of burning some of her shares. From the
technical aspect, such an announcement can be done in Bitcoin and other cryp-
tocurrencies: the player who possesses this amount of “+” shares can publish
one common message that is signed with all of the secret keys that control these
“+” shares, and thereby prove that these shares have a common owner.

However, due to the fact that the Shapley value takes into account all the
possible strategies of the players, such an announcement would in fact have a
detrimental effect from the point of view of this player.

To demonstrate, let us consider the same setting that Fig. 2 describes. Thus,
we assume that p = 0, that a single player named Alice has all of the 100 “+”
shares, and that the 100 “−” shares are held by 100 individual players. Alice
will earn the value of s+(100) · 100 = 50 if she trades her shares on the open

210 I. Bentov et al.

market. For a comparison between announcement of ownership and burning of
shares, we first note that the diagram in Fig. 5 is commutative, i.e., the state D
can be reached from the initial state A by traversing through either state B or
state C. That is to say, Alice can first burn some amount of shares and then
announce ownership over the remaining shares, or announce ownership over all
of her 100 shares and then burn that same amount of shares, and both cases
will result in the same state. This holds because Alice and the other 100 players
will have the exact same information after Alice carries out these two actions,
hence the resulting Shapley value of “+” and “−” shares will be the same. Next,
note that the transition from state A to state B does not affect Alice’s Shapley
value, because the symmetric glove game with a single player who has all the
“+” shares also gives the values s+ = s− = 1/2. This can be seen for example
by viewing the game as a combination of 100 games where Alice plays against
only one player with a single “−” share in each of these 100 games. In these
games, Alice’s Shapley value is 1/2, and due to linearity of the Shapley value,
it follows that in the original game Alice’s Shapley value is 100 · 1/2 = 50. In
state A, Alice’s Shapley value is also 50, which follows from the definition of the
Shapley value and symmetry. On the other hand, as we have seen in Fig. 2, by
first burning shares (i.e., traversing from state A to state C), Alice can increase
her Shapley value to an optimum of 70.58. Moreover, we note that the edge B →
D only decreases Alice’s Shapley value. This is because the strategies that the
Shapley value takes into account already include the action of burning shares:
if Alice does not settle for the Shapley value and instead defects by burning
shares or performing any other action, then her resulting Shapley value will only
decrease. In summary, the announcement of the A → B edge is ineffective, and
the announcement of the C → D edge is detrimental.

Hence, this reasoning serves as an indication that in our anonymous and
decentralized PM setting, burning shares (by a player with a large enough
amount) is the only action that can potentially be preferable to bargaining in
accordance with the Shapley value.

Let us note that there are also other concepts in analysing cooperative games
with side payments, such as the core [12]. However, the Shapley value represents
an evaluation that is reached from repeated bargaining among the players, as is
indeed the case in an open marketplace, and hence its use is reasonable to in the
context of our analysis.

It is desired that the decentralized PM will operate in a way that is advanta-
geous towards players who made the correct prediction. Given the above analysis,
this becomes more probable in accord with either of the following properties:

1. The parameter p is larger (the closer that p is to 1, the better).
2. The distribution of players who hold “−” shares is more decentralized.

The second property refers to a condition in which there are many players with
a relatively small portion of all the “−” shares, while no single player holds a
relatively very large portion of the “−” shares.

We can thus conclude that betting on popular events such as presidential
elections is more likely to work well in a fully decentralized PM, in comparison

Decentralized Prediction Market Without Arbiters 211

Total value = 50

A

Total value = 50

B
announce

Total value = 70.58

C

burn

Total value ≤ 50

D

burn

announce

Fig. 5. Announcement of ownership vis-a-vis burning of shares.

to betting on obscure events. It may be preferable to use a semi-decentralized
PM with trusted arbiters when betting on events with less popularity, though
Sect. 1.1 should then be taken into account.

4 Extensions

We present here add-ons that complement the core PM mechanism of Sect. 2

4.1 Continuous Outcomes

An event description can specify a non-discrete outcome, for instance e1 = hash
(“The percentage of votes in favor of staying in the European Union in the
referendum in country x on January 1, 2018”). After say 45% voted in favor in
this referendum, the Yes:e1 and No:e1 shares should have a market price of 45

100
and 55

100 coins per share, respectively.
However, if one opts to encumber e.g. 10 shares of Yes:e1 to pay for groceries,

then the merchant would need to recognize that this 10 amount is worth 4.5
unencumbered coins, which requires payment processors of higher complexity.

4.2 Non-binary Outcomes

Section 4.1 can be generalized to a non-binary fixed amount of outcomes, by
extending the protocol to support an outcome-split(N) transaction that utilizes
the extra parameter N to transforms (amount,⊥, history) to

{(amount, 1:eid, history), . . . , (amount, N:eid, history)}.

For instance, Alice can compute e2 = hash(“Percentages for top 24 contestants
in American Idol season 99: 1=band, 2=girl, 3=boy, 4=other”), and invoke
outcome-split(4) to transform her (60,⊥, ∅) coins to

{(60, 1:e2, ∅), (60, 2:e2, ∅), (60, 3:e2, ∅), (60, 4:e2, ∅)}.

212 I. Bentov et al.

Suppose that the market believes that the top 24 will be divided equally between
bands, girls, and boys, and Alice believes that the percentage of bands will be
much greater than 33%. Alice sells on the market (60, 2:e2, ∅) and (60, 3:e2, ∅)
for 1/3 · 60 = 20 coins each. If it later turns out that 50% in the top 24 were
bands, 25% were girls, and 25% were boys, then Alice buys 60 shares of 2:e2
and 3:e2 on the market for 1/4 · 60 = 15 coins each, and executes outcome-
combine(4) together with the (60.1:e2, ∅) and (60, 4:e2, ∅) shares that she kept.
Alice’s profit is 2(20 − 15) = 10 coins.

Suppose instead that no boy has reached the top 24, but holders of 3:e2
shares demand a price significantly greater than 0 for their supposedly worth-
less assets. Alice thus buys (60, 2:e2, ∅) shares, and executes outcome-force
to transform {(60, 1:e2, ∅), (60, 2:e2, ∅), (60, 4:e2, ∅)} to the encumbered coins
(60,⊥, {(1:e2, 2:e2, 4:e2)}), which can be regarded to have the same meaning
as in Sect. 2.

4.3 Capped Contracts for Difference

A contract for difference (CFD) is used for betting on the future value of an asset.
In decentralized setting, if a certain stock is currently valued at say $200, Alice
places a bet that its value in one year will be $290, and the rest of the market
places bets that predict (on average) that its value in one year will be $210, then
Alice should profit in case the stock’s value in a year will be greater than $250,
as 210 + 290−210

2 = 250. This can be thought of as a generalization of Sect. 4.2
in which traders place bets on multiple outcomes {. . . , 199, 200, 201, . . .}, but
it is infeasible to use the mechanisms of Sect. 4.2 because the range of possible
outcomes is continuous and large.

When we consider some CFD of an asset x where x is traded for example on
NYSE, it may make sense to employ the services of NYSE as a trusted arbiter.
However, the centralized nature of this approach carries the same implications as
described in Sect. 1. Consider, for example, a CFD for the BTC/USD exchange
rate according to one or several predefined Bitcoin exchanges. These exchanges
may collapse, or their secret signing keys may leak due to carelessness or malice,
etc. By contrast, a decentralized PM can accommodate a CFD for the fair market
price of BTC/USD in a way that is resilient to such potential hazards.

The basic prediction mechanism of Sect. 2 is already enough to support a
simple capped CFD variant. To demonstrate this, let us use the following event-
id for a capped CFD of an asset x whose price on January 1, 2016 is $30:
e3=hash(“Starting from January 1, 2016, the price of asset x will reach $40
before reaching $20”).

As in the Black-Scholes model [4], by assuming as an approximation that
market movements are caused by a large number of traders which are indepen-
dent and indistinguishable from random, we have that this CFD instrument
behaves locally like Brownian motion and thus its price is linear. That is, the
price that market participants would assign to Yes:e3 shares is c/20− 1, and the
price assigned to No:e3 shares is 2 − c/20, where 20 < c < 40 is the current price
of the asset x. See Fig. 6 for an illustration.

Decentralized Prediction Market Without Arbiters 213

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

Fig. 6. Capped CFD price function.

Let us note that it is possible to define capped variants of other financial
instruments in a similar fashion, e.g., put and call options. In decentralized
setting, all such instruments are inherently capped because one cannot earn
more than the coins that were used to create an asset (see also Sect. 4.4). By
contrast, standard CFDs and put/call options are uncapped.

A significant drawback of capped CFDs of this form is that holders of shares
corresponding to event-id e3 cannot use shares of say e4=hash(“Starting from
January 1, 2016, the price of asset x will reach $50 before reaching $10”) for
outcome-combine operations, which implies that such CFDs will probably not
enjoy a market with high liquidity.

4.4 Vector CFDs

We now define and explore vector CFDs, which can potentially increase the
available market liquidity.

Vector CFDs utilize colored coins of the form (amount, eid, V, J, history),
such that V = (b1, w1, b2, w2, . . . , bk, wk) with

∑k
i=1 wi = 1, and J ∈ {1, 2, . . . , k}.

The eid, V, J, fields generalize the i:eid field of Sect. 4.2. The event-id should
conform with a format of the type eid = hash(baseline assetx), where x specifies
the identity of an asset such that the market participants wish to place bets on
the future price of x.

Variants of the special transactions of the PM system of Sect. 2 are also used
for vector CFDs, as follows.

214 I. Bentov et al.

Injecting liquidity. The special transaction outcome-split allows m ordinary
coins (m,⊥,⊥,⊥, h) to be transformed into k assets {zj = (m, eid, v, j, h)}kj=1,
where v = (b1, w1, b2, w2, . . . , bk, wk) and the constraint

∑
i=1k wi = 1 holds.

Soaking liquidity. The special transaction outcome-combine allows the assets
{(m, eid, vi = (bi,1, wi,1, bi,2, wi,2, . . . , bi,ki

, wi,ki
), ji, hi)}ti=1 to be transformed

to ordinary coins (m,⊥,⊥,⊥,∪t
i=1{hi}), if the constraints s1 = s2 = · · · = st

and
∑

i=1t wi,jibi,ji = s1 hold, where si �
∑

q=1ki wi,qbi,q.

Forcing an encumbered history. This can be supported as in Sect. 4.2, i.e.,
by having weights whose sum is close to 1 and V, J fields that define a sum∑t

i=1 wi,jibi,ji that is close to the market value of x. However, forcing of this kind
would require eid = hash(baseline assetxatdatey), with y specifying a future
date for the target price of x.

The formula for assessing the current market price of an asset z =
(m, eid, v, j, ∅) can be given as

price(z) = m · 1
k − 1

· (1 − dj
s

),

where eid = hash(baseline assetx), c is the current market value of x, v =
(b1, w1, b2, w2, . . . , bk, wk), di = wi · |bi − c|, and s =

∑k
i=1 di.

Notice that after an initial outcome-split of m ordinary coins, it holds that∑k
i=1 price(zi) = m, as it should.
Also note that with this price formula, a fully accurate prediction bi = c

implies earnings of m
k−1 ordinary coins.

Using the same denotations, an alternative price formula can be given as

price′(z) = max(0,m · (1 − (k − 1)
di
s

)).

Here
∑k

i=1 price′(zi) = m only when ∀i : 1 − (k − 1)di

s ≥ 0, because this
formula does not allow the price of an individual share to be negative. This
means that someone who holds a share with 1 − (k − 1)di

s < 0 has made a very
poor bet, but this share is not completely worthless and should be sold on the
market for a low price, as it can facilitate an outcome-combine transaction.

The upside of the price′ formula is that it amplifies the rewards for accurate
predictions. In particular, a fully accurate prediction bi = c results in a maximal
earnings of m ordinary coins. This also serves as a demonstration that vector
CFDs are capped, as it is impossible to earn more than the initial m coins that
were used to create the asset.

In fact, there are infinitely many possible price formulas, since the price is
driven by the market, as opposed to being enforced at the protocol level. Thus,
it is up to the market participants to pick their preferred price as they see fit,
in accordance with the law of supply and demand.

As example, suppose Alice transforms 500 coins to {zj = (500, e5, v, j, ∅)}3j=1

with e5 = hash(baseline asset x) and v = (75, 1/3, 100, 1/3, 125, 1/3). Let us
assume that x is currently valued at $200. Bob predicts that the value of x

Decentralized Prediction Market Without Arbiters 215

will fall dramatically, and buys z1 from Alice for price(z1) = 145.8333 coins.
Later, x falls to $110. Bob sells z1 to Alice for price(z1) = 104.1666 coins. Alice
now executes outcome-combine to recover her 500 coins. Hence, Alice collected
Bob’s loss of 145.8333−104.1666 = 41.666 coins. If x fell further so that its value
was closer to $75 than $125, Bob would have profited.

Now, in case Carol transforms e.g. 400 coins to {z′
j = (400, e5, v′, j, ∅)}4j=1

with v′ = (150, 1/2, 40, 1/4, 50, 1/8, 70, 1/8), these shares can take part in the same
market with Alice and Bob. For instance, if z1 is divided into (100, e5, v, 1, ∅)
and (400, e5, v, 1, ∅), then the latter can be combined with z′

1 to produce 400
ordinary coins.

5 Conclusion

The trust that participants need to extend to different forms of financial services
is a spectrum. For a decentralized currency system such as Bitcoin, one can
argue that little or no trust is needed. Since the financial instruments that are
traded in a prediction market represent only digital information, we motivated
and presented a construction for a decentralized prediction market that requires
essentially the same level of trust as that of Bitcoin. While our construction
readily generalizes to additional financial instruments such as CFDs, other kinds
of financial services may require a higher degree of trust.

A Real-Time Semi-decentralized Order Book

In [7], a fully decentralized order book mechanism is presented. As discussed
in [7, Sect. 6.1], this kind of a decentralized trading platform can work well by
letting miners keep the surplus of the spread. However, it is inherently the case
that decentralized platforms cannot achieve instant trades when responsiveness
to real-time price fluctuations is desired, and that dishonest and self-interested
participants can manipulate the market by placing orders and then reneging
instead of fulfilling them. Therefore, in the case of a highly liquid PM, a fully
decentralized order book might not be the best option for traders.

To complement the construction of [7], we outline an order book mechanism
that is semi-decentralized in the sense that traders rely on a supposedly reputable
trusted third party (TTP) to execute in real-time the orders that they place, and
in case the TTP becomes corrupt they will regain their original assets. That is
to say that a corrupt TTP can prevent trades from taking place, but cannot
steal the traded assets and disappear.

The basic idea is to let traders deposit assets into a multisignature script
that can be spent either by both the trader and the TTP, or by the trader alone
but only after a specified time (cf. [23]). Trades are executed off-chain so that
the TTP co-signs every transaction and can thus disallow double-spending by
malicious traders. Each traded output uses a multisignature script of the above
form, so traders are ultimately in control of their assets. From time to time, the
TTP publishes the state to the decentralized Bitcoin network, in order to make
the off-chain history irreversible.

216 I. Bentov et al.

References

1. Andresen, G.: Pay to Script Hash (2012). https://github.com/bitcoin/bips/blob/
master/bip-0016.mediawiki

2. Arrow, K.J., Forsythe, R., Gorham, M., Hahn, R., Hanson, R., Ledyard, J.O.,
Levmore, S., Litan, R., Milgrom, P., Nelson, F.D., Neumann, G.R., Ottaviani, M.,
Schelling, T.C., Shiller, R.J., Smith, V.L., Snowberg, E., Sunstein, C.R., Tetlock,
P.C., Tetlock, P.E., Varian, H.R., Wolfers, J., Zitzewitz, E.: The promise of pre-
diction markets. Science 320(5878), 877 (2008)

3. Aumann, R.: The Shapley Value. http://www.ma.huji.ac.il/raumann/pdf/
The%20Shapley%20Value.pdf

4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit.
Econ. 81(3), 637–654 (1973)

5. Bentov, I.: The effect of colored coins on Bitcoin security (2015). http://blog.
chromaway.com/2015/11/the-effect-of-colored-coins-on-bitcoin.html

6. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4 10

7. Bonneau, J., Clark, J., Felten, E., Kroll, J., Miller, A., Narayanan, A.: On decen-
tralizing prediction markets and order books. In: 13th Workshop on the Economics
of Information Security (WEIS) (2014)

8. Bonneau, J., Clark, J., Felten, E., Kroll, J., Miller, A., Narayanan, A.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: 36th
IEEE Symposium on Security and Privacy (S&P) (2015)

9. Chen, Y., Gao, X., Goldstein, R., Kash, I.: Market manipulation with outside
incentives. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (2011). https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/
viewFile/3747/3948

10. ColorCoin github repository. https://github.com/baldmaster/ColorCoin/blob/
master/Src/Prediction.hs

11. Counterparty. http://counterparty.io/
12. Gillies, D.: Solutions to general non-zero-sum games. Contrib. Theory Games

4(40), 47–85 (1959)
13. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous

on-blockchain and off-blockchain Bitcoin transactions. In: Clark, J., Meikle-
john, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016.
LNCS, vol. 9604, pp. 43–60. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53357-4 4

14. Heilman, E., Alshenibr, L., Foteini, B., Scafuro, A., Goldberg, S.: TumbleBit: an
untrusted Bitcoin-compatible anonymous payment hub (2016). https://eprint.iacr.
org/2016/575

15. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin
mixing for Bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014 Part II.
LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1 20

16. Kate, A., Moreno-Sanchez, P., Ruffing, T.: P2P mixing and unlinkable Bitcoin
transactions (2016). http://eprint.iacr.org/2016/824

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
http://www.ma.huji.ac.il/raumann/pdf/The%20Shapley%20Value.pdf
http://www.ma.huji.ac.il/raumann/pdf/The%20Shapley%20Value.pdf
http://blog.chromaway.com/2015/11/the-effect-of-colored-coins-on-bitcoin.html
http://blog.chromaway.com/2015/11/the-effect-of-colored-coins-on-bitcoin.html
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3747/3948
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3747/3948
https://github.com/baldmaster/ColorCoin/blob/master/Src/Prediction.hs
https://github.com/baldmaster/ColorCoin/blob/master/Src/Prediction.hs
http://counterparty.io/
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://eprint.iacr.org/2016/575
https://eprint.iacr.org/2016/575
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
http://eprint.iacr.org/2016/824
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Decentralized Prediction Market Without Arbiters 217

18. Omni Layer. http://www.omnilayer.org/
19. Peterson, J., Krug, J.: Augur: a decentralized, open-source platform for prediction

markets 2015. https://arxiv.org/abs/1501.01042
20. Rosenfeld, M.: Colored Coins (2013). https://bitcoil.co.il/files/Colored%20Coins.

pdf, https://bitcoil.co.il/BitcoinX.pdf
21. Shapley, L.: A value for n-person games. Contrib. Theory Games II Ann. Math.

Stud. 2(28), 307–317 (1953)
22. Sztorc, P.: Truthcoin: trustless, decentralized, censorship-proof, incentive-

compatible, scalable cryptocurrency prediction marketplace (2014). http://www.
truthcoin.info/papers/truthcoin-whitepaper.pdf

23. Todd, P.: Checklocktimeverify (2014). https://github.com/bitcoin/bips/blob/
master/bip-0065.mediawiki

http://www.omnilayer.org/
https://arxiv.org/abs/1501.01042
https://bitcoil.co.il/files/Colored%20Coins.pdf
https://bitcoil.co.il/files/Colored%20Coins.pdf
https://bitcoil.co.il/BitcoinX.pdf
http://www.truthcoin.info/papers/truthcoin-whitepaper.pdf
http://www.truthcoin.info/papers/truthcoin-whitepaper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki

An Analysis of Bitcoin OP RETURN Metadata

Massimo Bartoletti(B) and Livio Pompianu

Università degli Studi di Cagliari, Cagliari, Italy
{bart,livio.pompianu}@unica.it

Abstract. The Bitcoin protocol allows to save arbitrary data on the
blockchain through a special instruction of the scripting language, called
OP RETURN. A growing number of protocols exploit this feature to
extend the range of applications of the Bitcoin blockchain beyond trans-
fer of currency. A point of debate in the Bitcoin community is whether
loading data through OP RETURN can negatively affect the perfor-
mance of the Bitcoin network with respect to its primary goal. This
paper is an empirical study of the usage of OP RETURN over the years.
We identify several protocols based on OP RETURN, which we classify
by their application domain. We measure the evolution in time of the
usage of each protocol, the distribution of OP RETURN transactions by
application domain, and their space consumption.

1 Introduction

Bitcoin was the first decentralized digital currency to be created, and now it is
the most widely used, with a market capitalization of ∼20 billions USD1. Tech-
nically, the Bitcoin network is a peer to peer system, where users can securely
transfer currency without the intermediation of a trusted authority. Transactions
of currency are gathered in blocks, that are added to a public data structure
called blockchain. The consensus algorithm of Bitcoin guarantees that, for an
attacker to be able to alter an existing block, she must control the majority of
the computational resources of the network [37]. Hence, attacks aiming at incre-
menting one’s balance, e.g. by deleting transactions that certify payments to
other users, are infeasible in practice. This security property is often rephrased
by saying that the blockchain can be seen as an immutable data structure.

Although the main goal of Bitcoin is to transfer digital currency, the
immutability and openness of its blockchain have inspired the development of
new protocols, which “piggy-back” metadata on transactions in order to imple-
ment a variety of applications beyond cryptocurrency. For instance, some proto-
cols allow to certify the existence of a document (e.g., [21,29,33]), while some oth-
ers allow to track the ownership of a digital or a physical asset (e.g., [16,24,25]).
Many of these protocols save metadata on the blockchain by using an instruction
called OP RETURN, which is part of the Bitcoin scripting language.

A debate about the scalability of Bitcoin has been taking place over the last
few years [2,30,31]. In particular, users argue over whether the blockchain should
1 Source: coinmarketcap.com, accessed on February 28th, 2017.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 218–230, 2017.
https://doi.org/10.1007/978-3-319-70278-0_14

http://coinmarketcap.com

An Analysis of Bitcoin OP RETURN Metadata 219

allow for storing spurious data, not inherent to currency transfers. Although
many recent works analyse the Bitcoin blockchain [35,38,39,41,42], as well as
some services related to OP RETURN [6,22,26,32], many relevant questions are
still open. What is the impact of the data attached to OP RETURN on the size
of the blockchain? Which kinds of blockchain-based applications are exploiting
the OP RETURN instruction, and how?

Contributions. We analyse the usage of OP RETURN throughout the Bitcoin
blockchain, collecting a total of 1,887,708 OP RETURN transactions. We inves-
tigate to which protocols OP RETURN transactions belong, identifying 22 dis-
tinct protocols (associated to 51% of these transactions). We find that 15% of
this total are empty transactions, which attach no metadata to OP RETURN.
By studing the usage of OP RETURN over time, we identify several transaction
peaks related to empty transactions, and we show that they are mainly caused
by stress tests and spam attacks happened in summer 2015. We classify protocols
according to their application domain, and we study the numerical proportion of
these applications. Finally, we measure the size of OP RETURN metadata, and
the proportion between the size of OP RETURN transactions and the overall
size of the transactions in the blockchain. To the best of our knowledge, ours is
the widest investigation about the usage of OP RETURN. All our analyses are
supported by a tool we have developed. The sources of our tool, as well as the
experimental data, are available at [5].

2 Background on Bitcoin

Bitcoin [40] is a decentralized infrastructure to exchange virtual currency—the
bitcoins. The transfers of currency, called transactions, are the basic elements
of the system. The transactions are recorded on a public, append-only data
structure, called blockchain. To illustrate how Bitcoin works, we consider two
transactions T 0 and T 1 of the following form:

T 0

in: · · ·
in-script: · · ·
out-script(T , σ): verk(T , σ)
value: v0

T 1

in: T 0

in-script: sigk(•)
out-script(· · ·): · · ·
value: v1

The transaction T 0 contains a value v0 bitcoins. Anyone can redeem the
amount of bitcoins in T 0 by putting on the blockchain a transaction (e.g., T 1),
whose in field contains the identifier of T 0 (the hash of the whole transaction,
displayed as T 0 in the figure) and whose in-script contains values making the
out-script2 of T 0, a programmable boolean function, evaluate to true. When
this happens, the value of T 0 is transferred to the new transaction T 1, and T 0

becomes unredeemable. A subsequent transaction can then redeem T 1 likewise.

2 in-script/out-script are called scriptPubKey/scriptSig in the Bitcoin wiki.

220 M. Bartoletti and L. Pompianu

In the transaction T 0 above, the out-script just checks the digital signature σ
on the redeeming transaction T w.r.t. a given key k. We denote with verk(T , σ)
the signature verification, and with sigk(•) the signature of the enclosing trans-
action (T 1 in our example), including all the parts of the transaction but its
in-script (obviously, because it contains the signature itself).

Now, assume that T 0 is redeemable on the blockchain when someone tries to
append T 1. The Bitcoin network accepts the redeem if (i) v1 ≤ v0, and (ii) the
out-script of T 0, applied to T 1 and to the signature sigk(•), evaluates true.

The previous example is a special case of a Bitcoin transaction: the general
form is displayed in Fig. 1a. First, there can be multiple inputs and outputs
(denoted with array notation in the figure), and each output has its own out-
script and value. Since each output can be redeemed independently, in fields
must specify which one they are redeeming (T 0[n0] in the figure). A transaction
with multiple inputs redeems all the (outputs of) transactions in its in fields,
providing a suitable in-script for each of them. To be valid, the sum of the values
of all the inputs must be greater or equal to the sum of the values of all outputs.
The Unspent Transaction Output (in short, UTXO) is the set of redeemable
outputs of all transactions included in the blockchain. To be valid, a transaction
must only use elements of the UTXO as inputs.

T

in[0]: T 0[n0]
in-script[0]: · · ·

...

out-script[0](T ′
0,w0): · · ·

value[0]: v0
...

lockTime: s

(a) General form of transactions.

T

in[0]: ...
in-script[0]: ...

...

out-script[0](...): OP RETURN “EWHello!”
value[0]: 0

...

(b) An OP RETURN transaction.

Fig. 1. (a) General form of transactions and (b) An OP RETURN transaction.

In its general form, the out-script is a program in a non Turing-complete
scripting language, which features a limited set of logic, arithmetic, and crypto-
graphic operators. The lockTime field specifies the earliest moment in time when
the transaction can appear on the blockchain.

Writing Metadata in Transactions. Bitcoin transactions do not provide a field
where one can save arbitrary data. Nevertheless, users have devised various cre-
ative ways to encode data in transactions. A first method is to abuse the stan-
dard Pay-to-PubkeyHash script3, which implements the signature verification
verk seen before (actually, the script does not contain the public key k, but its

3 en.bitcoin.it/wiki/Transaction#Pay-to-PubkeyHash.

https://en.bitcoin.it/wiki/Transaction#Pay-to-PubkeyHash

An Analysis of Bitcoin OP RETURN Metadata 221

hash h = H(k)). To make the script evaluate to true, the redeeming transaction
T has to provide the signature σ and a public key k such that H(k) = h and
verk(T , σ). One can store an arbitrary message m (a few bytes long) within the
out-script, by writing m in place of the hash h. Since computing a value k such
that H(k) = m (i.e., a preimage of m) and a signature σ such that verk(T , σ)
are computationally hard operations, outputs crafted in this way are unspend-
able in practice. However, these outputs are not easily distinguishable from the
spendable ones, hence the nodes of the Bitcoin network must keep them in their
UTXO set [3]. Since this set is usually stored in RAM for efficiency concerns
[28], this practice negatively affects the memory consumption of nodes [35].

The OP RETURN instruction allows to save metadata on the blockchain,
as shown in Fig. 1b4. However, unlike Pay-to-PubkeyHash, an out-script con-
taining OP RETURN always evaluates to false, hence the output is provably
unspendable, and its transaction can be safely removed from the UTXO. In this
way, OP RETURN overcomes the UTXO consumption issue highlighted above.
Although the OP RETURN instruction has been part of the scripting language
since the first releases of Bitcoin, originally it was considered non-standard by
nodes, so transactions containing OP RETURN were difficult to reliably get
mined. In March 2014 [12], OP RETURN became standard, meaning that all
nodes started to relay unconfirmed OP RETURN transactions5. The limit for
storing data in an OP RETURN was originally planned to be 80 bytes, but the
first official client supporting the instruction, i.e.the release 0.9.0 [12], allowed
only 40 bytes. This animated a long debate [7,8,17,18]. From the release 0.10.0
[9] nodes could choose whether to accept or not OP RETURN transactions, and
set a maximum for their size. The release 0.11.0 [10] extended the data limit to
80 bytes, and the release 0.12.0 [11] to a maximum of 83 bytes.

3 Methodology for Classifying OP RETURN
Transactions

We discuss our methodology for identifying protocols that use OP RETURN.
We gather all the OP RETURN transactions from the origin block up to the

block number 453,200 (added on 2017/02/15). We end up with a set of 1,887,708
OP RETURN transactions. For each of them, we save the following data in a
database: (i) the hash of the transaction; (ii) the hash of the enclosing block; (iii)
the timestamp of the block; (iv) the metadata attached to the OP RETURN.

Next, we detect to which protocols the OP RETURN transactions belong.
Usually, a protocol is identified by the first few bytes of metadata attached
to the OP RETURN, but the exact number of bytes may vary from protocol to
protocol. Hence, we associate OP RETURN transactions to protocols as follows:
4 Hash: d84f8cf06829c7202038731e5444411adc63a6d4cbf8d4361b86698abad3a68a.
5 Regarding the use of OP RETURN, the release notes of Bitcoin Core version 0.9.0

state that: “This change is not an endorsement of storing data in the blockchain.”
At the same time, some Bitcoin explorers, (e.g. blockchain.info, blockexplorer.com,
smartbit.com) allow to inspect data encoded in OP RETURN scripts.

https://blockchain.info/tx/d84f8cf06829c7202038731e5444411adc63a6d4cbf8d4361b86698abad3a68a
https://blockchain.info/
https://blockexplorer.com/
https://www.smartbit.com.au/

222 M. Bartoletti and L. Pompianu

1. we search the web for known associations between identifiers and protocols;
2. we accordingly classify the OP RETURN transactions that begin with one of

the identifiers obtained at step 1;
3. on the remaining unknown transactions, we perform a frequency analysis of

the first few bytes of metadata, to discover new protocol identifiers.

In more details, in the first step we query Google to obtain public identi-
fier/protocol bindings. For instance, the query “Bitcoin OP RETURN”, returns
∼26,500 results, and we manually inspect the first few pages of them. Note
that a protocol can be associated with more than one identifier (e.g., Stampery,
Blockstore [34], Remembr, CryptoCopyright), or even do not have any iden-
tifier. In this way we obtain 22 protocols associated to 33 identifiers; further,
we find 3 protocols that do not use any identifier (Counterparty, Diploma [19],
Chainpoint [14]).

The second step is performed by our tool: it associates 970,374 transactions
to a protocol (∼51% of the total OP RETURN transactions). The other trans-
actions are classified either as empty or unknown. Empty transactions have no
data attached to the OP RETURN instruction (296,491 transactions, ∼15% of
the total); unknown transactions have no known identifier (620,843 transactions,
∼32% of the total).

The final step analyses unknown transactions, attempting to discover new
protocol identifiers. Since identifiers may have different lengths, we gather the
first D bytes of unknown transactions, for D ranging from 1 to 12, and we per-
form a frequency analysis of these strings. This analysis does not reveal relevant
statistical anomalies (roughly, the strings are uniformly distributed), hence this
step does not yield any new identifier. Algorithm 1 details this search, which is
executed with the following parameters: D = 12, δ = 2, N = 100.

Algorithm 1. Detect protocol identifiers
unknownTx ← set of all unknown transactions
Codes ← ∅
for i ← 1 to D do

H ← new hash table from protocol identifiers to number of occurrences
for all tx ∈ unknownTx do

code ← tx.substring(i) � first i characters of tx
if (H.contains(code)) then

H.code ← H(code)+1 else H.code ← 1
end if

end for
expectedOccurrences ← unknownTx.size() / pow(16,i)
for all h ∈ H do

if (h.occurrences > expectedOccurrences * δ and h.occurrences > N) then
Codes ← Codes ∪ {h.code}

end if
end for

end for
return Codes

An Analysis of Bitcoin OP RETURN Metadata 223

4 Qualitative Analysis of OP RETURN Transactions

We now classify the protocols obtained in Sect. 3, associating each protocol to
a category that describes its intended application domain. To this purpose, we
manually inspect the web pages of each protocol.

Assets gathers protocols that exploit the immutability of the blockchain to
certify ownership, exchange, and eventually the value of real-world assets.
Metadata in transactions are used to specify e.g. the value of the asset, the
amount of the asset transferred, the new owner, etc.

Document notary includes protocols for certifying the ownership and
timestamp of a document. A user can publish the hash of a document in
a transaction, and in this way he can prove its existence and integrity. Simi-
larly, signatures can be used to certify ownership.

Digital arts includes protocols for declaring access right and copy rights on
digital arts files, like e.g. photos or music.

Other includes protocols whose goals differ from the ones above. For instance,
Eternity Wall [20] allows users to store short text messages on the blockchain;
Blockstore [13] is a generic key-value store, on top of which more complex
protocols can be implemented6.

Empty includes protocols that do not attach any data to OP RETURN.
Unknown includes protocols for which we have not been able to detect an

identifier (possibly, because they do not use any).

We report our classification of protocols in the first two columns of Table 1. Due
to the OP RETURN space limit, long pieces of metadata require to be split
in many transactions, and higher fees. Hence, assets protocols usually feature
complex rules, have space-efficient representations of data, and often propose
off-chain solutions [15]. We distinguish document notary protocols from digital
arts protocols for the following reason. Most document notary applications do
not require users to provide their documents to the application, and the main
purpose of the protocol (certifying ownership) can be fulfilled also when the
application is no longer live. Instead, digital arts application usually need to
gather user documents, and require interactions with users, e.g. they often play
the role of broker between producers and consumers.

5 Quantitative Analysis of OP RETURN Transactions

Table 1 shows some statistics about OP RETURN transactions. The first column
indicates the protocol categories, introduced in Sect. 4. The second and third
columns show, respectively, the protocol names and the associated identifiers.
The fourth column shows the date in which the protocol generated the first
transaction. Since transactions do not have a “date” field, we infer dates from

6 Hereafter we aggregate all the protocols built upon Blockstore, by identifying them
with Blockstore itself.

224 M. Bartoletti and L. Pompianu

Table 1. Statistics about OP RETURN protocols.

Category Protocol Identifiers First trans. Tot. trans. Tot. size Avg. size

Assets Colu CC 2015/07/09 237,479 4,290,388 18.0

CoinSpark SPK 2014/07/02 28,026 956,904 34.1

OpenAssets OA 2014/05/03 133,570 1,728,350 12.9

Omni omni 2015/08/10 105,979 2,132,565 20.1

Counterparty N/A N/A N/A N/A N/A

Total - - 505,054 9,108,207 18.0

Document

notary

Factom Factom!!,

FACTOM00, Fa, FA

2014/04/11 74,159 2,966,234 40.0

Stampery S1, S2, S3, S4, S5 2015/03/09 74,249 2,627,540 35.4

Proof of Existence DOCPROOF 2014/04/21 5,262 210,433 40.0

Blocksign BS 2014/08/04 1,460 55,192 37.8

CryptoCopyright CryptoTests-,

CryptoProof-

2014/08/02 46 1,840 40

Stampd STAMPD## 2015/01/03 473 18,867 39.9

BitProof BITPROOF 2015/02/25 758 30,320 40

ProveBit ProveBit 2015/04/05 57 2,280 40

Remembr RMBd, RMBe 2015/08/25 28 1,128 40.3

OriginalMy ORIGMY 2015/07/12 126 4,788 38

LaPreuve LaPreuve 2014/12/07 67 2,623 39.1

Nicosia UNicDC 2014/09/12 20 684 34.2

Chainpoint N/A N/A N/A N/A N/A

Diploma N/A N/A N/A N/A N/A

Total - - 156,705 5,921,929 37.8

Digital arts Monegraph MG 2015/06/28 63,278 2,317,151 36.6

Blockai 0 × 1f00 2015/01/09 527 34,225 64.9

Ascribe ASCRIBE 2014/12/19 40,859 847,641 20.7

Total - - 104,664 3,199,017 30.6

Other Eternity Wall EW 2015/06/24 3,715 160,191 43.1

Blockstore id, 0 × 5888,

0 × 5808

2014/12/10 191,907 5,494,174 28.6

SmartBit SB.D 2015/11/24 8,329 299,844 36

Total - - 203,951 5,954,209 29.2

Empty Total - 2014/03/20 296,491 0 0

Unknown Total - 2014/03/12 620,843 20,023,345 32.3

TOTAL - - 2014/03/12 1,887,708 44,206,707 23.4

the timestamp of the block containing the transaction. The next two columns
count the total number of transactions, and the total size (in bytes) of the
OP RETURN data contained therein. To compute the size we only consider
the metadata, i.e.we do not count neither the OP RETURN instruction nor the
other fields of the transaction. The last column shows the average size of the
transaction metadata.

5.1 Overall Statistics

We detect 1,887,708 OP RETURN transactions, distributed into 98,233 blocks,
by scanning the blockchain until block number 453,200. Overall, OP RETURN
transactions constitute ∼0.96% of the total transactions in the blockchain,
and ∼1.16% of the portion of the blockchain from 2014/03/12 (when the first

https://www.colu.com/
http://coinspark.org/
https://github.com/OpenAssets
http://www.omnilayer.org/
http://counterparty.io/
https://www.factom.com/
https://stampery.com/
https://proofofexistence.com/
https://blocksign.com/
https://crypto-copyright.com/
https://stampd.io/
https://bitproof.io/
https://github.com/thereal1024/ProveBit
https://remembr.io/
https://originalmy.com/
http://lapreuve.eu/explication.html
http://digitalcurrency.unic.ac.cy/free-introductory-mooc/academic-certificates-on-the-blockchain/
http://www.chainpoint.org/
http://diploma.report/
https://monegraph.com/
https://blockai.com/
https://www.ascribe.io
https://eternitywall.it/
https://github.com/blockstack/blockchain-id/wiki/Blockstore
https://www.smartbit.com.au/

An Analysis of Bitcoin OP RETURN Metadata 225

OP RETURN transaction appeared). Although the former measurement con-
siders 7 years of transactions while the latter only considers the last 3 years, we
note that the values are very close. We explain this fact by observing that the
daily number of transactions rapidly increased since July 2014.

5.2 Transaction Peaks

Figures 2a and b display the number of OP RETURN transactions per week,
from 2014/03 (date of the first OP RETURN transaction) to 2017/02 (end of
our extraction). In the graph we note several peaks, that we explain as follows:

0
3
.2

0
1
4

0
9
.2

0
1
4

0
3
.2

0
1
5

0
9
.2

0
1
5

0
2
.2

0
1
6

0
9
.2

0
1
6

0
2
.2

0
1
7

0

1

2

3

4
·104

Time interval

N
u
m
b
e
r
o
f
tr
a
n
sa

c
ti
o
n
s

Assets

Notary

Arts

Other

(a) Categories per week

0
3
.2

0
1
4

0
9
.2

0
1
4

0
3
.2

0
1
5

0
9
.2

0
1
5

0
2
.2

0
1
6

0
9
.2

0
1
6

0
2
.2

0
1
7

0

0.5

1

1.5

·105

Time interval

N
u
m
b
e
r
o
f
tr
a
n
sa

c
ti
o
n
s

Empty

Unknown

All

(b) Transactions peaks

0
3
.2

0
1
4

0
9
.2

0
1
4

0
3
.2

0
1
5

0
9
.2

0
1
5

0
2
.2

0
1
6

0
9
.2

0
1
6

0
2
.2

0
1
7

0

20

40

Time interval

A
v
e
ra

g
e
n
u
m
b
e
r
o
f
b
y
te
s

Avg length

(c) Average data length

0 20 40 60 80
0

1

2

3
·105

Number of bytes

N
u
m
b
e
r
o
f
tr
a
n
sa

c
ti
o
n
s

Length

(d) Data length

Fig. 2. Usage and size of OP RETURN transactions.

1. ∼100,000 transactions from 2015/07/08 to 2015/08/05. This peak is mainly
composed of two different peaks of empty transactions: the july peak (∼36,900
transactions from 2015/07/08 to 2015/07/10) and the august peak (∼29,200
transactions from 2015-08-01 to 2015-08-03). Both peaks seem to be caused
by a spam campaign that resulted in a DoS attack on Bitcoin which happened
in the same period, as reported in [35].

2. ∼300,000 transactions from 2015/09/09 to 2015/09/23. This second peak
is the highest and longest-lasting one. As before, it is mainly caused by
empty transactions (∼223,000), although here we also observe a component of

226 M. Bartoletti and L. Pompianu

unknown and blockstore transactions (∼35,000 each). The work [35] detects
a spike also in this period, precisely around 2015/09/13, where an anony-
mous group performed a stress-test on the network with a money drop. This
involves a public release of private keys, with the aim to cause a big race
which would cause a large number of double-spend transactions.

3. ∼50,000 transactions from 2016/03/02 to 2016/03/09. The last peak is due to
the sum of two different peaks: unknown (about 18,000) and stampery (about
23,000) transactions. We conjecture that this peak is caused by the testing
and bootstrap of protocols.

We observe that the Bitcoin blockchain has also other peaks, not related
to OP RETURN transactions. For instance, starting from the 2015/05/22 and
for a duration of 100 blocks, the Bitcoin network was targeted by a stress test
[4], during which the network was flooded with a huge number of transactions.
Actually, the usage of OP RETURN transactions in the period of this peak does
not seem to diverge from their normal usage.

5.3 Space Consumption

A debated topic in the Bitcoin community is whether it is acceptable or not to
save arbitrary data in the blockchain. The sixth column in Table 1 shows, for
each protocol, the total size of metadata (i.e., not considering the bytes of the
instructions OP RETURN and PUSH DATA). The last row of Table 1 shows
that the total size of metadata is ∼42 MB (in the same date, the size of the
whole blockchain is ∼102 GB). Figure 2c shows the average length of the data
for each week.

Generally, the average length of metadata is less than 40 bytes, despite the
extension to 80 bytes introduced on 2015/07/12. Peaks down on the same period
are related to the empty transactions discussed in Sect. 5.2. Figure 2d represents
the number of transactions with a given data length: also this chart confirms a
small number of transactions that use more than the half of the available space.
Note that the discussed peak appears also in this chart, in correspondence of
the 0 value. From the last column of Table 1 we see that only the size of Blockai
metadata is close to 80 bytes. Several document notary protocols take 40 bytes
on average: this depends from their identifiers, composed of 16 bytes, and from
the size of the hash they save. Generally, document notary protocols carry longer
data than the other protocols.

We now evaluate the minimum space consumption of the OP RETURN
transactions on the whole blockchain. First, we observe that an empty trans-
action with one input and one output has a total size of 156 bytes. From Table 1
we see that OP RETURN transaction carry ∼23.4 bytes of metadata, on aver-
age. Hence, we approximate the average size of OP RETURN transaction as
∼179.4 bytes, and so an approximation of the space consumption of all the
OP RETURN transactions is ∼323 MB.

Finally, we estimate the ratio between the total size of OP RETURN trans-
actions and the size of all the transactions on the blockchain. The block header

An Analysis of Bitcoin OP RETURN Metadata 227

has size 97 bytes at most. Hence, removing the size of the headers of our 453,200
extracted blocks (∼42 MB) from the total size of the blockchain at 2017/02/15,
we obtain ∼102 GB of transactions. From this we conclude that OP RETURN
transactions consume ∼0.3% of the total space on the blockchain.

5.4 Distribution of Protocols by Category

Figure 3 displays how the OP RETURN transactions are distributed in the cate-
gories identified in Sect. 4. We note a relevant component of empty and unknown
transactions. Although assets protocols produce the highest number of transac-
tions, the most numerous category is document notary.

Assets Notary

Digital Arts Other

Empty Unknown

26.7%

8.3%

32.8%

10.8%

15.7%

5.5%

Fig. 3. Distribution of transactions by category.

Figure 2a and the fourth column of Table 1 suggest that, originally, the pro-
tocols using OP RETURN were in the categories assets and notary, while the
other use cases were introduced subsequently (indeed, the other category was
not inhabited before the end of 2014).

Empty transactions use OP RETURN without any data attached, so they
are not associated to any protocol. We evaluate that ∼96% of these transactions
are related to the transaction peaks discussed in Sect. 5.2. Since those peaks
happened in the same period of the stress tests and spam campaign discussed
in [35], we conjecture that empty transactions are related to those events7.

The unknown category contains ∼33% of the OP RETURN transactions. We
identify 3 protocols [14,19,36] that write OP RETURN data only as unknown
transactions. We also identify one protocol [23] that besides using an identifier
for saving document hashes, allows to save text messages without any identifier.

6 Conclusions

Our analysis shows an increasing interest in the OP RETURN instruction. While
in the first year of existence of OP RETURN transactions (from March 2014)
7 To verify this conjecture we would need to compare the transaction identifiers of our

empty transactions with the identifiers of [35], which are not available online.

228 M. Bartoletti and L. Pompianu

only a few hundreds of these transactions were appended per week, their usage
has been steadily increasing since March 2015. In the last weeks of our experi-
ments (February 2017) we counted ∼25,000 new OP RETURN transactions per
week, on average. Overall, we estimate that OP RETURN transactions consti-
tute ∼1% of the transactions in the blockchain, and use ∼0.3% of its space.

Besides using OP RETURN and Pay-to-PubkeyHash as shown in Sect. 2,
there are other techniques to save metadata on the Bitcoin blockchain. With
a slightly different flavour, the “sign-to-contract” and “pay-to-contract” [1,27]
allow to prove that, if a certain transaction is redeemed, then a certain value was
known at the time it was put on the blockchain. A benefit of these techniques is
that they do not affect the size of transactions. Comparing different methods to
store metadata on Bitcoin would be an interesting topic for future research.

Although the official Bitcoin documentation discourages the use of the block-
chain to store arbitrary data8, the trend seems to be a growth in the number
of blockchain-based applications that embed their metadata in OP RETURN
transactions. We think that the main motivation for not using cheaper and
more efficient storage is the perceived sense of security and persistence of the
Bitcoin blockchain. If this trend will be confirmed, the specific needs of these
applications could affect the future evolution of the Bitcoin protocol.

Related Work. Besides ours, other projects aim at analysing metadata in the
Bitcoin blockchain. For instance, blockchainarchaeology.com collects files hid-
den in the blockchain. These files are usually split into several parts, stored
e.g. on different output scripts in a transaction. Various techniques are used to
detect how the files were encoded (e.g. by binary grep on the PNG pattern)
and to reconstruct them. The Bitcoin wiki [6] provides a list of protocols using
OP RETURN, together with their identifiers. Excluding those protocol identi-
fiers that, at time of writing, are not used yet in any OP RETURN transaction,
the collection in [6] is strictly included in ours. The website opreturn.org shows
charts about OP RETURN transactions over time, organised by protocol, and
statistics about their usage on the last week and over the last two years. The web-
site smartbit.com recognises some OP RETURN identifiers and shows related
statistics. Finally, the website kaiko.com sells data about Bitcoin, including data
related to OP RETURN transactions.

Acknowledgments. The authors thank the anonymous reviewers of BITCOIN 2017
for their insightful comments on a preliminary version of this paper. This work is
partially supported by Aut. Reg. of Sardinia P.I.A. 2013 “NOMAD”.

8 The release notes of Bitcoin Core version 0.9.0 state that: “Storing arbitrary data
in the blockchain is still a bad idea; it is less costly and far more efficient to store
non-currency data elsewhere.”.

http://blockchainarchaeology.com
https://github.com/spooktheducks
http://opreturn.org/
https://www.smartbit.com.au/op-returns
https://www.kaiko.com/
http://fc17.ifca.ai/bitcoin/

An Analysis of Bitcoin OP RETURN Metadata 229

References

1. Alternatives to opreturn. http://bitcoin.stackexchange.com/questions/37206/
alternatives-to-op-return-to-store-data-in-bitcoin-blockchain. Accessed 15 Feb
2017

2. Bicoin scalability. https://en.bitcoin.it/wiki/Scalability FAQ. Accessed 15 Dec
2016

3. Bitcoin core dev update 5 transaction fees embedded data. http://www.coindesk.
com/bitcoin-core-dev-update-5-transaction-fees-embedded-data/. Accessed 15
Dec 2016

4. Bitcoin network survives surprise stress test. http://www.coindesk.com/
bitcoin-network-survives-stress-test/. Accessed 15 Dec 2016

5. Bitcoin OPRETURN explorer. https://github.com/BitcoinOpReturn/. Accessed
15 Dec 2016

6. Bitcoin OP RETURN wiki page. https://en.bitcoin.it/wiki/OP RETURN.
Accessed 15 Dec 2016

7. Bitcoin pull request 5075. https://github.com/bitcoin/bitcoin/pull/5075. Accessed
15 Dec 2016

8. Bitcoin pull request 5286. https://github.com/bitcoin/bitcoin/pull/5286. Accessed
15 Dec 2016

9. Bitcoin release 0.10.0. https://bitcoin.org/en/release/v0.10.0. Accessed 15 Dec
2016

10. Bitcoin release 0.11.0. https://bitcoin.org/en/release/v0.11.0. Accessed 15 Dec
2016

11. Bitcoin release 0.12.0. https://bitcoin.org/en/release/v0.12.0. Accessed 15 Dec
2016

12. Bitcoin release 0.9.0. https://bitcoin.org/en/release/v0.9.0. Accessed 15 Dec 2016
13. Blockstore website. https://github.com/blockstack/blockchain-id/wiki/

Blockstore. Accessed 15 Dec 2016
14. Chainpoint website. http://www.chainpoint.org/. Accessed 15 Dec 2016
15. Colu protocol, torrents. https://github.com/Colored-Coins/Colored-Coins-

Protocol-Specification/wiki/Metadata\#torrents. Accessed 15 Dec 2016
16. Colu website. https://www.colu.com/. Accessed 15 Dec 2016
17. Counterparty open letter and plea to the Bitcoin core development team.

http://counterparty.io/news/an-open-letter-and-plea-to-the-bitcoin-core-develop
ment-team/. Accessed 15 Dec 2016

18. Developers battle over bitcoin block chain. http://www.coindesk.com/
developers-battle-bitcoin-block-chain/. Accessed 15 Dec 2016

19. Diploma website. http://diploma.report/. Accessed 15 Dec 2016
20. Eternity wall website. https://eternitywall.it/. Accessed 15 Dec 2016
21. Factom website. https://www.factom.com/. Accessed 15 Dec 2016
22. Kaiko data store. https://www.kaiko.com/. Accessed 15 Dec 2016
23. La preuve website. http://lapreuve.eu/explication.html. Accessed 15 Dec 2016
24. Omni website. http://www.omnilayer.org/. Accessed 15 Dec 2016
25. Open assets website. https://github.com/OpenAssets/. Accessed 15 Dec 2016
26. opreturn.org. http://opreturn.org/. Accessed 15 Dec 2016
27. Pay-to-contract and sign-to-contract. https://bitcointalk.org/index.php?

topic=915828.msg10056796#msg10056796. Accessed 15 Feb 2017
28. Peter Todd delayed txo commitments. https://petertodd.org/2016/

delayed-txo-commitments. Accessed 15 Dec 2016

http://bitcoin.stackexchange.com/questions/37206/alternatives-to-op-return-to-store-data-in-bitcoin-blockchain
http://bitcoin.stackexchange.com/questions/37206/alternatives-to-op-return-to-store-data-in-bitcoin-blockchain
https://en.bitcoin.it/wiki/Scalability_FAQ
http://www.coindesk.com/bitcoin-core-dev-update-5-transaction-fees-embedded-data/
http://www.coindesk.com/bitcoin-core-dev-update-5-transaction-fees-embedded-data/
http://www.coindesk.com/bitcoin-network-survives-stress-test/
http://www.coindesk.com/bitcoin-network-survives-stress-test/
https://github.com/BitcoinOpReturn/
https://en.bitcoin.it/wiki/OP_RETURN
https://github.com/bitcoin/bitcoin/pull/5075
https://github.com/bitcoin/bitcoin/pull/5286
https://bitcoin.org/en/release/v0.10.0
https://bitcoin.org/en/release/v0.11.0
https://bitcoin.org/en/release/v0.12.0
https://bitcoin.org/en/release/v0.9.0
https://github.com/blockstack/blockchain-id/wiki/Blockstore
https://github.com/blockstack/blockchain-id/wiki/Blockstore
http://www.chainpoint.org/
https://github.com/Colored-Coins/Colored-Coins-Protocol-Specification/wiki/Metadata#torrents
https://github.com/Colored-Coins/Colored-Coins-Protocol-Specification/wiki/Metadata#torrents
https://www.colu.com/
http://counterparty.io/news/an-open-letter-and-plea-to-the-bitcoin-core-development-team/
http://counterparty.io/news/an-open-letter-and-plea-to-the-bitcoin-core-development-team/
http://www.coindesk.com/developers-battle-bitcoin-block-chain/
http://www.coindesk.com/developers-battle-bitcoin-block-chain/
http://diploma.report/
https://eternitywall.it/
https://www.factom.com/
https://www.kaiko.com/
http://lapreuve.eu/explication.html
http://www.omnilayer.org/
https://github.com/OpenAssets/
http://opreturn.org/
https://bitcointalk.org/index.php?topic=915828.msg10056796#msg10056796
https://bitcointalk.org/index.php?topic=915828.msg10056796#msg10056796
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments

230 M. Bartoletti and L. Pompianu

29. Proof of existence website. https://proofofexistence.com/. Accessed 15 Dec 2016
30. Scalability debate ever end. https://www.cryptocoinsnews.com/will-bitcoin-scalab

ility-debate-ever-end/. Accessed 30 Nov 2016
31. Scaling debate in Reddit. http://www.coindesk.com/viabtc-ceo-sparks-bitcoin-sca

ling-debate-reddit-ama/. Accessed 15 Dec 2016
32. Smartbit OP RETURN statistics. https://www.smartbit.com.au/op-returns.

Accessed 15 Dec 2016
33. Stampery website. https://stampery.com/. Accessed 15 Dec 2016
34. Ali, M., Nelson, J., Shea, R., Freedman, M.J.: Blockstack: a global naming and

storage system secured by blockchains. In: USENIX Annual Technical Conference
(2016)

35. Baqer, K., Huang, D.Y., McCoy, D., Weaver, N.: Stressing out: Bitcoin “stress
testing”. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M.,
Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 3–18. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53357-4 1

36. Dermody, R., Krellenstein, A., Slama, O., Wagner, E.: Counterparty: protocol spec-
ification (2014). http://counterparty.io/docs/protocol specification/. Accessed 15
Dec 2016

37. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

38. Lischke, M., Fabian, B.: Analyzing the Bitcoin network: the first four years. Future
Internet 8(1), 7 (2016)

39. Möser, M., Böhme, R.: Trends, tips, tolls: a longitudinal study of Bitcoin transac-
tion fees. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015.
LNCS, vol. 8976, pp. 19–33. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48051-9 2

40. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

41. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-4139-7 10

42. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

https://proofofexistence.com/
https://www.cryptocoinsnews.com/will-bitcoin-scalability-debate-ever-end/
https://www.cryptocoinsnews.com/will-bitcoin-scalability-debate-ever-end/
http://www.coindesk.com/viabtc-ceo-sparks-bitcoin-scaling-debate-reddit-ama/
http://www.coindesk.com/viabtc-ceo-sparks-bitcoin-scaling-debate-reddit-ama/
https://www.smartbit.com.au/op-returns
https://stampery.com/
https://doi.org/10.1007/978-3-662-53357-4_1
http://counterparty.io/docs/protocol_specification/
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1007/978-3-662-48051-9_2
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-642-39884-1_2

Constant-Deposit Multiparty
Lotteries on Bitcoin

Massimo Bartoletti1(B) and Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
bart@unica.it

2 Università degli Studi di Trento, Trento, Italy

Abstract. An active research trend is to exploit the consensus mecha-
nism of cryptocurrencies to secure the execution of distributed applica-
tions. In particular, some recent works have proposed fair lotteries which
work on Bitcoin. These protocols, however, require a deposit from each
player which grows quadratically with the number of players. We propose
a fair lottery on Bitcoin which only requires a constant deposit.

1 Introduction

Recent research on blockchain technologies studies how to extend the applica-
tions of cryptocurrencies from simple transfers of money to complex financial
transactions. The goal is to make financial agreements or “smart contracts” [24]
between mutually distrusting participants, and automatically enforce them via
the consensus mechanism of the cryptocurrency, without relying on a trusted
third party. In particular, some works propose to run smart contracts on top
of existing cryptocurrencies (mostly, on Bitcoin). Many of these approaches,
e.g. [1,6,8,16–18], implement fair computations, where a set of players con-
tribute to compute a function without revealing their inputs; fairness, studied
in various forms, guarantees e.g. that any player that aborts after learning the
output pays a penalty to all players that did not learn the output. Other works
implement decentralised authorization systems [10], and contracts which allow
users to make statements, penalising those which make conflicting ones [22].

A particular kind of smart contract is the one which implements a lottery
among a set a players. Intuitively, this is an application where each one of N
players puts their bets in a pot, and a winner—uniformly chosen among the
players—gets the whole pot. Secure protocols for multiparty lotteries on Bitcoin
have been recently proposed by [2,4,5,8]. These protocols enjoy a fairness prop-
erty, which roughly guarantees that: (i) each honest player will have (on average)
a non-negative payoff, even in the presence of adversaries who play against; (ii)
when all the players are honest, the protocol behaves as an ideal lottery: one
player wins the whole pot, while all the others lose their bets.

To obtain the result, these protocols require that, to bet e.g. 1 coin, each
one of the N players must block a deposit of O(N2) coins throughout the whole

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 231–247, 2017.
https://doi.org/10.1007/978-3-319-70278-0_15

232 M. Bartoletti and R. Zunino

protocol1. Since the deposit grows quadratically with N , these protocols are only
practical for a small number of players. In this paper we address this issue.

Contributions. We propose a fair protocol for multiparty lotteries, whose deposit
does not depend on the number N of players. More specifically, our protocol is
fair for any choice of the deposit value (including zero), and for any adversarial
strategy. Furthermore, if the deposit value is positive, an adversary who tries to
attack the protocol with the goal of altering the payoff of honest players, can
only lose money on average. Our protocol is based on a single-elimination tour-
nament, i.e. a tree of N − 1 two-player matches where the loser of each match is
eliminated. Overall, a complete run of the protocol requires O(N) transactions
on-chain and O(log N) time (assuming that the time to put transactions on the
Bitcoin ledger dominates the time required for communications and local com-
putations). Our protocol has been implemented as an Ethereum smart contract;
an implementation on Bitcoin would require a variant of the mechanism for
verifying the signature of transactions, to allow the malleability of input fields.

An extended version of this paper is available online at [7].

2 Statically Signing Chains of Transactions

The current signature mechanism of Bitcoin is known to be unsuitable for signing
chains of transactions before they are put on the ledger2. Consider e.g. two
players, a and b, and three transactions, T0, T1 and T2, made as follows.

– transaction T1 has T0 as input, while T2 has T1 as input: hence the three
transactions form a chain.

– the out-scripts of T0 and T1 require signatures by both players a and b.

The players want to put the chain of transactions on the ledger, assuming that
T0 is already there. Intuitively, the players have two possible ways of proceeding:

dynamic signing: both players sign T1 and put it on the ledger. After that,
they both sign T2 and put it on the ledger.

static signing: a signs both T1 and T2 before these transactions are on the
ledger, and sends her signatures to b. Then, b adds his own signatures, and
puts both T1 and T2, one after the other, on the ledger.

Without the segregated witnesses feature [19], only dynamic signing is fea-
sible. Of course, in static signing, the addition of b’s signature to the in-script
of T1 alters its in-script.3 Note that this will not invalidate a’s signature of T1

(because the signature does not consider the in-script), so T1 can still be put on

1 Concurrently and independently of our work, [20] proposes a lottery protocol for
Bitcoin that requires zero deposit.

2 See https://en.bitcoin.it/wiki/Transaction Malleability.
3 in-script and out-script are respectively referred as scriptPubKey and scriptSig in the

Bitcoin documentation.

https://en.bitcoin.it/wiki/Transaction_Malleability

Constant-Deposit Multiparty Lotteries on Bitcoin 233

the ledger. However, altering the in-script changes the hash of T1, which is used
in T2.in to refer to the previous transaction. Because of this, a’s signature of T2

is no longer valid, hence b can not put T2 on the ledger.
A possible solution to this problem is to allow partial signatures, which

e.g. neglect the in part of transactions, as already done for the in-script part.
Indeed, even if T2.in (i.e., the hash of T1) is modified, the (partial) signature
in T2.in-script is still valid, because it neglects the in part. More in general, we
define below a signature scheme for Bitcoin transactions, allowing users to choose
which parts M of the transaction to include in the signature. In this way, once
the transaction is signed, anyone can modify the parts not in M without invali-
dating the signature. The ability of modifying transactions while preserving their
signatures is called transaction malleability: while in some circumstances it can
cause security vulnerabilities [3], if used in a controlled manner it can extend
the range of applications built upon Bitcoin [1]. Note that the unsigned parts of
a transaction can be freely altered by adversaries; therefore, designing a secure
protocol must take into account for this possibility. E.g., in the previous static
signing example, b can alter T2.in so to refer to some T �= T1 whose out-script
can be satisfied by a’s signature. In this way T becomes unredeemable. To pro-
tect against this attack, a could use a fresh key in T1.out-script, so that nothing
else can be redeemed by her signature.

We anticipate that our lottery protocol does not require the whole flexibility
of the signature mechanism outlined below, but it only relies on the malleability
of the in and in-script fields. While the malleability of in-script is already allowed
by the segregated witnesses release, that of in fields would require support from
the signature verification mechanism (e.g., a new signature flag or opcode).

Signature scheme for transaction malleability. Let

M ⊆ {in[n], in-script[n], value[n], out-script[n], lockTime | n ≥ 0}
and denote with M(T) the bitstring obtained by concatenating the parts of the
transaction T mentioned in M . We then define:

sigM
k (T) = (sigk(M(T)),M) verk(T, (y,M)) = verk(M(T), y)

Hereafter, we use σ as a meta-variable for the partial signatures (sigk(. . .),M),
and σ for arrays of such pairs (we will always use the same convention for arrays).
When k and σ have the same size n, we define:

sigM
k (T) = (sigM

k[0](T), . . . , sigM
k[n−1](T)) verk (T,σ) =

∧
i verk [i](T,σ[i])

Transaction templates. The mechanism shown above allows to statically sign
chains of transactions; further, we can also use it to statically sign chains of
the form T0 T1(y)T2, where the transaction T1(y) depends on a parameter y
such that (i) y is unknown at signing time (it will only be known later on), and
(ii) y only affects those parts of T1(y) not included in the partial signatures.
Under these assumptions, instantiating y in a later moment will not invalidate

234 M. Bartoletti and R. Zunino

any signature. More importantly, while there might be a large number of values
for y (and so, a large number of chains that can be put on the ledger), only one
partial static signature of T1 is needed (as well as for T0 and T2).

Parametric descriptions like the chain above are useful when designing com-
plex protocols, where the actual chain (or graph) of transactions to be put on
the ledger depend on events known after signatures have already been computed.
We now introduce a general notation for expressing transactions with parame-
ters and variants, which hereafter we name transaction templates. Our notation
shows all the possible forms of the malleable transaction parts which are used in
a protocol. Further, we will show how to statically sign such transactions (in all
their forms). We anticipate that, for our lottery protocol, the number of possible
transactions is large, while the number of needed static signatures is small.

Hereafter, we fix M = {value[n], out-script[n], lockTime | n ≥ 0} in our signa-
ture scheme, so making the in and in-script fields malleable.4

t(x)

Variant1 〈y1〉
in[0]: t10(x

1
0)[n

1
0]

in-script[0]: W1
0

...

...
out-script[0](T′

0,w0): OS0
value[0]: v0

...
lockTime: s

The general form of transaction templates t, t′, . . . is
shown on the right. The template t(x) is parametrized
over an array of values x, in a given domain. Further,
for its in and in-script fields, the template describes
a few variants, each of which may take some addi-
tional parameters y. Note that out-scripts may only
refer to the template parameters x, while in and in-
scripts may also refer to their own variant parame-
ters y. Further, the in field refers to another template.
A template t(x) can be instantiated to a transaction
T = t(x).Variant i〈yi〉, by choosing the variant i and
the parameters. Here, T.in is set to any redeemable
transaction on the ledger which is an instantiation of
the template in the in field of t.

The procedure for signing transaction templates is detailed in [7].

3 The Tournament Protocol

We introduce our lottery protocol for N = 2L players; each player is represented
by a bit-string in P = {0, 1}L, ranged over by a, b, We assume that each
player bets 1B in the lottery, and blocks a deposit of dB, for an arbitrary d ≥ 0.
Our protocol is based on a single-elimination tournament, where matches are
organised as a complete binary tree of L levels. The tournament involves N − 1

4 Note that only the transactions related to our protocol need to use this form of mal-
leability. Instead, signers of transactions unrelated to the protocol can simply choose
non-malleable signatures, unless they are prepared to defend against malleability-
related attacks. For instance, if T and T′ are standard transactions on the ledger
with the same out-script, when T is redeemed by T1 with a malleable in field, an
adversary can also make T′ redeemed, by putting on the ledger a copy of T1 where
the in field is changed to point to T′.

Constant-Deposit Multiparty Lotteries on Bitcoin 235

two-player matches: the winners of the matches at level � ∈ 1..L − 1 play at the
next level � − 1; the winner of the match at level 0 wins the whole NB stake.

Let Π = {{0, 1}n | n ≤ L} (i.e., sequences of n bits) be the set of tree paths.
Intuitively, for every path in Π \ P we have a two-player match. For any two
paths π, π′ ∈ Π, we write π 	 π′ when π is a prefix of π′ (� for proper prefixes).

Key pairs and secrets. Our protocol requires players to exchange a certain num-
ber of Bitcoin transactions, together with their signatures. To this purpose, each
player p generates all the following key pairs for every a, b ∈ P and for every π:

Kp(Betp), Kp(Collect), Kp(Init , a)
Kp(Win, π, a), Kp(WinTO , π, a) ε �= π 	 a
Kp(Turn1 , π, a, b), Kp(Turn1TO , π, a, b), Kp(Turn2TO , π, a, b) π � a, b
Kp(Turn2 , π, a) π � a
Kp(Timeout1 , π, a, b), Kp(Timeout2 , π, a, b) π � a, b

The first component in each key pair above (e.g., Collect) is a distinct label. Note
that each player generates O(N2) key pairs. We assume that the private part of
a key pair Kp(· · ·) is kept secret by p, while the public part is communicated to
the other players. For each set of key pairs Kp(X, · · ·), we denote with K(X, · · ·)
the set of key pairs {Kp(X, · · ·) | p ∈ P}. We denote with ε the empty sequence.

The outcome of a match is randomly determined with a “coin toss” protocol,
as in [2]. Intuitively, the players generate two random secrets, and exchange their
hashes; then, they reveal the secrets: the winner is determined by a function of
the two secrets (i.e., the parity of the sum of the lengths of the two secrets).
Since a player may be involved in L distinct matches, we assume that each p
generates L secrets (i.e., long random sequences of bits), one for each π � p. The
secret of p at level π is denoted by sπ

p ; its public hash H(sπ
p) is denoted by hπ

p .

Overview of the protocol. Our protocol uses a number of transactions, the tem-
plates of which are in Fig. 1. The protocol is organised in three phases:

initialization: the players exchange the public data, e.g. the static signatures
and hashed secrets. Then, they collect all the bets, and put on the ledger the
transactions for the leaves of the tournament tree.

execution: this phase is organised in L rounds, one for each level of the tree.
In each round �, exactly 2� two-player matches are played, by the winners of
the previous round. The possible executions of a single round are depicted
in Fig. 3. The winner of the last round collects the whole stake.

garbage collection: this allows players to recover from some potential inter-
ference, to be discussed in the proof of Theorem 5.

We now comment the protocol in Fig. 2. We denote the duration of each round
with τRound = 6 τLedger , following Fig. 3. The transaction templates of Fig. 1
define some timelocks, which depend on a time τ1 (chosen in the initialization
phase), corresponding to the start of the execution phase.

236 M. Bartoletti and R. Zunino

Fig. 1. Transaction templates for the lottery protocol.

Constant-Deposit Multiparty Lotteries on Bitcoin 237

Precondition: for all players p, the ledger contains a transaction Betp with value
(1 + d)B, and redeemable with key Kp(Betp).

Initialization phase:

1. each player p generates all the key pairs and the secrets sπ
p as in Section 3,

and broadcasts to the other players the public keys and hashes hπ
p = H(sπ

p);

2. if hπ
p = hπ′

p′ for some (p, π) �= (p′, π′), the players abort;
3. choose the time τ1 large enough to fall after the initialization phase;
4. each player signs all the transactions templates in Figure 1 except for Init, and

broadcasts the signatures;
5. each player verifies the signatures received by the others; if some signature is

not valid or missing, the player aborts the protocol;
6. each player p signs Init, and sends the signature to the first player;
7. the first player puts the (signed) transaction Init on the ledger;
8. if Init does not appear within one τLedger , then each p redeems Betp and aborts;
9. the players put the signed transactions Win(p, p) on the ledger, for all p ∈ P.

Execution phase:

for each level � = L..1:

for each π such that |π| = � − 1, in parallel, a two-player match is played:

10. let a and b be such that Win(π0, a) and Win(π1, b) are on the ledger;
11. the players put Turn1(π, a, b) on the ledger;
12. player a puts Turn2(π, a, b).Secret〈sπ

a 〉 on the ledger;
13. the players wait until either Turn2(π, a, b) is confirmed, or Timeout1(π, a, b)

is enabled. In the second case, they put Timeout1(π, a, b) on the ledger; once
it is confirmed, they put Win(π, b).Timeout1 〈a〉 on the ledger, and terminate
the match at π;

14. player b computes w = winner(a, b, sπ
a , sπ

b), the winner of the match at π;
– if w = a, player b puts Win(π, a).Turn2fst〈b, sπ

a , sπ
b 〉 on the ledger.

– if w = b, player b puts Win(π, b).Turn2snd〈a, sπ
a , sπ

b 〉 on the ledger.
15. the players wait until either Win(π, c) is confirmed (for some c ∈ {a, b}) , or

Timeout2(π, a, b) is enabled. In the second case, they put Timeout2(π, a, b)
on the ledger; once confirmed, they put Win(π, a).Timeout2 〈b〉 on the ledger.

Garbage collection phase: if there is some unredeemed Win(π, p) with π �= ε,
then the players put CollectOrphanWin(π, p) on the ledger.

Fig. 2. Tournament lottery protocol.

Initialization phase. In step 1, all the players generate the signatures and secrets,
and exchange the related public data. Step 2 is needed to prevent attacks where
a player does not compute a hash from her own secret, but replays the hash of
another player. In step 3 we choose the time τ1 to be large enough so that the
initialization can be completed within τ1. In steps 4–5 the players exchange all
the static signatures needed in the execution phase. Each player p contributes his
own part of the signature, using his own keys Kp(. . .). Steps 6–8 collect the bets
from the transactions Betp in a single transaction Init. If Init is not confirmed

238 M. Bartoletti and R. Zunino

Fig. 3. Graph of the transactions in a tournament round. An edge from transaction T
to T′ means that T′ redeems T. Solid edges mean that any player can redeem; wavy
edges mean that any player can redeem, but only after a timeout. Dashed edges mean
that only the player who knows the secret on the label can redeem.

on the ledger, e.g. because some player has already redeemed his bet, then all
the other players redeem their original bets. In this way, they ensure that Init
can no longer appear on the ledger, hence the protocol is aborted. Step 8 also
prevents an attack where Init is maliciously delayed so to make honest players
lose. Finally, step 9 sets up the first level of the tournament, by splitting the
stake in the Init among all the leaves of the tree, i.e. Win(p, p).

To choose τ1, note that the initialization phase requires:

– at steps 1–6, to generate all the needed O(N3) signatures and NL secrets,
and share the related public parts. This costs O(N3) time.

– at step 7, to put on the ledger the transaction Init. This costs 1 τLedger .
– after that, at step 9, to put all the transactions Win(p, p). This costs 1 τLedger ,

because it can be done in parallel.

Therefore, we choose τ1 such that τ1 ≥ currentTime + O(N3) + 2τLedger .

Execution phase. In this phase, the players play against each other. We recom-
mend the reader to examine Fig. 3 for an overview of how matches are played.
Matches correspond to the nodes of the tournament tree, and so they are indexed
by tree paths π. The match at π involves the winners of the two matches π0 and
π1 of the previous round (i.e., the children of π). These winners are, respectively,
the players a and b in the transactions Win(π0, a) and Win(π1, b) which are on
the ledger at the start of the match (step 10). The goal of steps 10–15 is to put
on the ledger a transaction Win(π,w), where w is the winner at π.

Step 11 starts by redeeming both Win(π0, a) and Win(π1, b) through the
transaction Turn1(π, a, b). Note that any player (not only a and b) can per-
form this step, since everyone has the required signatures. At step 12, player
a is expected to reveal her secret sπ

a ; otherwise, after a certain deadline, the
other players can make a lose. If a chooses to reveal her secret, she must
put on the ledger the transaction Turn2(π, a, b), which redeems Turn1(π, a, b),
through an input script containing sπ

a . Otherwise, after 1τLedger , the timelock on
Timeout1(π, a, b) expires, allowing any other player to put Timeout1(π, a, b) on

Constant-Deposit Multiparty Lotteries on Bitcoin 239

the ledger at step 13. After that, Win(π, b) can be put on the ledger by any player,
so making a lose the match. At step 14, it is the turn of player b to reveal his
secret sπ

b ; otherwise, similarly to the previous steps, the other players can make
b lose after some time. If b chooses to reveal his secret, he must first compute
the winner w of the match—this is possible because b knows both secrets sπ

a and
sπ
b . Then, he must put Win(π,w) on the ledger, which redeems Turn2(π, a, b),

through an input script containing sπ
b . Otherwise, after 1τLedger , the timelock

on Timeout2(π, a, b) expires, allowing any other player to put Timeout2(π, a, b)
on the ledger at step 13. After that, Win(π, a) can be put on the ledger by any
player, so making b lose the match.

After the last round of the execution phase, the tournament protocol is over.
At this point, there is exactly one transaction Win(ε, a) on the ledger, for some a.
This transaction can be redeemed by a at any time, by putting on the ledger a
transaction with in-script sigKa(Collect)(•). Note that only a has the private key
needed for this signature. In this way a can obtain the whole stake of NB.

Garbage collection phase. As discussed in the proof of Theorem 5, a dishonest
player can try to cheat by forging Win transactions. When this happens, some
legit Win transactions are left orphan on the ledger: garbage collection allows
the players who contributed to these transactions to redeem their money back.
In this way the protocol remains secure, as established later on by Theorem5.

4 Security of the Tournament Protocol

We assume that all the algorithms used by the players run in PPTIME with
respect to a security parameter η. A function f : N → R is said to be negligible
iff, for some constant c ∈ N, the inequation |f(η)| ≤ η−c holds asymptotically.
We assume that all the cryptographic primitives (e.g., digital signatures, hash
functions) are secure, up-to a negligible probability of attack.

We assume that Bitcoin works as a robust public transaction ledger, where
every player can append valid transactions (which are confirmed in τLedger),
while invalid transactions cannot appear. Recent results [13] show that, in a
backbone Bitcoin protocol, this assumption holds when the honest miners hold
the majority of the hashing power (despite the negative results in [11]). For
simplicity, we assume that transactions require no fees. All our results hold even
when there is only one honest player.

Basic properties. Consider an arbitrary lottery protocol with N players, where
each player bets a certain amount bet of bitcoins to have the chance to win
N · bet . A run is a pair (β, λ), where β is the state of the blockchain when
the protocol starts, and λ is the timed sequence of public events occurred in
a (possibly partial) protocol execution. The component λ includes, e.g., the
exchanged signatures and the transactions put on the ledger after β. Each player
a uses a strategy Σa to choose which events to perform at any time in a run of the
protocol. Roughly, Σa(1η, β, λ) is a PPTIME algorithm which can observe the

240 M. Bartoletti and R. Zunino

whole past (β, λ), and choose the next moves (not necessarily those prescribed
by the protocol). We further allow Σa to access the local state of a, including
her private information. A strategy Σa is honest when it follows the protocol; a
player is honest when she uses an honest strategy. A run is maximal for a when
she has performed all the enabled actions prescribed by Σa .

We say that a transaction is freely redeemable by a when (i) a can use her
knowledge (including private information) to compute the needed witness, and
(ii) a can freely choose the output script of the redeeming transaction. The
wealth of a after a certain run (β, λ), denoted by wealth(a, β, λ), is the amount
of bitcoins freely redeemable at that time by a, but not by any other player.

Lottery protocols usually require players to block a deposit of bitcoins
throughout their execution (beyond the bet). Technically, we define the deposit
of a as the minimum amount of bitcoins wealth(a, β, ε) − bet such that, starting
from β, a can always perform a maximal run of the protocol (using an honest
strategy), regardless of the behaviour of the other players. Then, we say that a
lottery protocol is d-deposit if d is the maximum of the deposits of all players.
Note that, by definition, it must be d ≥ 0: otherwise, should a lose the lottery,
there would not be enough bitcoins to pay the other players.

The following Theorem 1 states that the tournament protocol requires con-
stant dB deposit; note instead that the protocols in [2,4,5,8] require O(N2)B
deposit.

Theorem 1. The tournament protocol is d-deposit.

Lemma 1. For each level � = L..1 of the execution phase:

1. for every π such that |π| = �, the ledger contains a transaction Win(π, a) with
value (1 + d) 2(L−�)B, for some a;

2. the round starts within time τ1 + (L − �) · τRound .

Theorem 2 exploits Lemma 1 to establish an upper bound to the completion
time of our protocol. Note that a single honest player a is enough to guarantee
termination: indeed, even if the other players do not cooperate, a can always
put all the required transactions on the ledger, after the respective timeouts.

Theorem 2. Assume that at least one player is honest, while the others can be
adversaries with arbitrary strategies. Then:

1. after τ1, either Init is on the ledger, or the protocol is aborted without any
honest players losing their wealth;

2. after Init is on the ledger, a transaction Win(ε, p) is put on the ledger within
6LτLedger , for some p (who is the winner of the lottery).

Payoff distribution. We now quantify the payoff of each player in a single run
of the protocol where all the players are honest. The payoff of a player at a
given point of an execution is the wealth difference between that point and the
beginning of the protocol. Formally, given a run (β, λ) for a, this amounts to:

Φ(a, β, λ) = wealth(a, β, λ) − wealth(a, β, ε)

Constant-Deposit Multiparty Lotteries on Bitcoin 241

Then, Theorem 3 states that, once the Init transaction has been put on the ledger,
there are only two possible outcomes of the protocol: either a player loses 1B
(her bet), or she wins N − 1B (the bets of all the other players).

Theorem 3. If all players are honest, then, for all players a and for all maximal
runs (β, λ) of a such that Init ∈ λ, we have Φ(a, β, λ) ∈ {−1B, N − 1B}.

Theorem 4 below describes the probability distribution of the payoff of an
honest player in contexts where the other players are adversaries. In particular,
we will assume that adversaries follow rational strategies which, on average, will
not make them lose money (but for a negligible amount). In order to define
rational strategies, we introduce an auxiliary notion. Given a set of strategies
Σ for all players and a blockchain state β, we denote with EΦ(a,Σ, β, η) the
expected payoff of a over all the runs (β, λ) which are maximal for each player p
using Σ[p]. Then, we say that player a is rational in Σ iff for all β, there exists
a negligible f such that, for all η, EΦ(a,Σ, β, η) ≥ f(η).

Theorem 4 states that the expected payoff of each player p in a given set of
honest players H is either −1 or N −1 with probabilities, respectively, N−1/N or
1/N, up-to a negligible error. This holds when either all the players are honest
(and the deposit is arbitrary, potentially zero), or the adversaries are rational
and the deposit is greater than zero.

Theorem 4. Let H ⊆ P be a set of players, and let Σ be such that Σ[a] is
honest for all a ∈ H. If (i)H = P, or (ii) d > 0 and Σ[b] is rational for all
b ∈ P \ H, then the payoff of each p ∈ H is distributed as follows, for all β:

Pr(Φ(p, β, λ) = v | Init ∈ λ maximal) =

⎧
⎪⎨

⎪⎩

N−1
N + f1(η) if v = −1

1
N + f2(η) if v = N − 1
f3(η) otherwise

where f1, f2, f3 are negligible functions, and λ is a random variable, sampled so
that (β, λ) is maximal with respect to Σ.

In the presence of adversaries (i.e., H �= P), the hypothesis (ii) is necessary.
Indeed, if adversaries are not rational, they can simply increase the payoff of
honest players by giving them money, or voluntarily losing by timeout. Instead,
if d = 0, a rational adversary can interfere with the protocol and cause the payoff
distribution to differ from the one given by Theorem 4. Remarkably, we will show
in Theorem 5 that even if the adversary can alter the payoff distribution, she can
not diminish the payoff average, which is at least negligible in all cases. Hence,
the protocol is still secure.

Honest strategies are rational. Theorem 5 below establishes that, even in the case
of adversaries with arbitrary strategies, for any value of the deposit (including
zero), our lottery protocol is secure, i.e. a player which follows the protocol does
not lose money, on average.

242 M. Bartoletti and R. Zunino

Theorem 5. Honest strategies are rational in any set of strategies Σ.

Proof (Sketch). Without loss of generality, assume that only one player, say a,
is honest, while the other N − 1 players are adversaries, with arbitrary (not
necessarily rational) strategies Σ. We need to prove that the average payoff of a
is nonnegative, up to a negligible quantity. Before Init is put on the ledger, a can
redeem her bet, so her payoff is zero. Hence, we only need to consider the case
where Init has been put on the ledger. Hereafter, we inductively define proper
transactions as follows: T is proper either if T = Init, or all the inputs of T are
proper. Note that, in a run of the protocol where all the players are honest, all
the transactions put on the ledger are proper.

We start by studying the possible attack strategies, which determine how
adversaries put new transactions on the ledger, and how they redeem existing
transactions. Adversaries can move their wealth through transactions unrelated
to the protocol. Further, they can put on the ledger any transaction obtained
by instantiating some transaction template of the protocol. In doing that, they
can exploit the malleability of in fields, and make them redeem some previous
transaction unrelated to the protocol, consuming part of their wealth in the
process. This results in an improper transaction. Its presence on the ledger is
not a problem per se, unless it can be exploited to interfere with a proper protocol
transaction—e.g., by preventing it to be redeemed, and causing the tournament
behavior to diverge from the protocol. So, we now turn our attention to how
proper transactions can be redeemed.

We first note that each out script of the protocol transactions (except for the
final transactions Win(ε, p) and CollectOrphanWin(π, p)) requires a signature
from every player, including the honest a. Hence, adversaries can only redeem
those transactions through the signatures exchanged during the initialization
phase, i.e. using some instantiation of the protocol templates. Further, every
transaction template uses its own public keys, so when a protocol transaction T
is redeemed by T′, then (exactly) one of the following cases applies:

(a) T is Init and T′ is a leaf Win(p, p), or
(b) T has an outgoing edge to T′, according to Fig. 3, or
(c) T is Win(π, p) with π �= ε, and T′ is CollectOrphanWin(π, p), or
(d) T is a final transaction.

For example, if T is a Turn1, then T′ must provide a signature made with the
keys of Turn1 or Turn1TO. So, as per item (b), T′ can only be redeemed by Turn2
or Timeout1. By the above reasoning, and by carefully inspecting the protocol
(Fig. 2) and the used transactions (Fig. 1), we see that improper transactions can
not interfere with the protocol steps where a proper transaction T is redeemed
by a single-input template instantiation T′. Indeed, when such redemption hap-
pens, T′ must be a proper protocol transaction as well. However, this reasoning
does not extend to the case where the redeeming transaction T′ has multiple
inputs. In our protocol, this is only possible when T′ is a Turn1. Indeed, consider
the case when a proper T0 = Win(0π, b) is on the ledger, as well as a proper
T1 = Win(1π, a). If T0 is redeemed by Turn1 (as per item (b)), however, we have

Constant-Deposit Multiparty Lotteries on Bitcoin 243

no guarantees that such Turn1 is redeeming both T0 and T1—because it is pos-
sible that Turn1 is instead redeeming the proper T0 together with an improper
transaction Win(1π,m), which was forged by the adversaries. When this inter-
ference happens, the protocol continues with an improper Turn1, and T1 is left
on the ledger as an “orphan”. Therefore, player a will not be able to participate
in the current match. Note that, since Turn1 is the only multiple-input protocol
transaction, this interference can only happen at the start of a match. After a
match is started, the honest player a has at least 1/2 probability to win the
match, since a will always respect deadlines (so to avoid losing the match by
timeout), and she chose her secret sa

π in a uniformly random way during initial-
ization. So, either the adversaries lose by timeout, or reveal their secrets and the
match proceeds in a fair way.

We can now estimate the average payoff of the honest player a, by tracking
her composite bet throughout the tournament rounds (i.e., the sum gained by a
so far, that she must invest in further rounds). We start by noting that, at the
beginning of each round, at least one of the following must hold:

1. a has lost a previous match.
2. there is an unspent T = Win(π, a) on the ledger, and the adversaries do not

interfere: hence, T is redeemed by Turn1, and a participates in the match. In
this case, a has at least 1/2 probability to double her composite bet.

3. there is an unspent T = Win(π, a) on the ledger, and the adversaries do
interfere: so, T is not redeemed (unlike its sibling Win), and a cannot par-
ticipate in the match. The transaction T is left “orphan” on the ledger; after
1 τLedger , player a can collect the composite bet she earned so far, by putting
CollectOrphanWin(π, a) on the ledger. In this way a can redeem her current
composite bet.

Since a is honest, she will reveal her secret for a match only after Turn1
has been put on the ledger (i.e., when adversaries can no longer interfere in the
match). Note that the adversaries do not know the match result when they have
to choose whether to interfere or not. Therefore, the whole tournament is similar
to a game where a tosses L fair coins in sequence, doubling up her bet every time
she wins the flip, and losing the whole stake at the first loss. Her opponent can
choose to stop her before any of the coin tosses, but in such case she is allowed to
collect what she won so far. Since this coin game is fair, also the average payoff
of a in the tournament protocol is nonnegative. ��

5 Related Work

Several lottery protocols have been investigated outside the cryptocurrency set-
ting, e.g. by [12,14,15,21,23]. In the last few years, some authors have proposed
protocols that work on Bitcoin or similar cryptocurrencies.

Concurrently and independently of our work, Miller and Bentov [20] proposed
a lottery protocol, that similarly to ours exploits a tournament tree and requires
zero deposit. Two variants of the protocol are presented: the first one only relies

244 M. Bartoletti and R. Zunino

on the SegWit feature [19], while the second one proposes a new signature verifi-
cation opcode, called MULTIINPUT. The first variant requires players to statically
sign a tree of O(2N) transactions. To reduce this overhead, our protocol relies
on a more flexible signature verification scheme, that allows malleability of in
fields, resulting in O(N) transactions. This malleability introduces the interfer-
ence issues discussed in Sect. 4. Such interferences do not make our protocol
insecure, because the average payoff of honest players is non-negative, even for
d = 0 (Theorem 5), thanks to the garbage collection phase. However, such inter-
ferences are still undesirable, because adversaries can prevent honest players from
completing the tournament. The second variant of the protocol in [20] achieves
O(N) transactions and avoids interferences through a “controlled” malleability
of in fields. This is obtained through the new MULTIINPUT opcode, which allows to
malleate in fields (to achieve O(N) transactions), but only within a pre-specified
set (to avoid interferences).

Table 1 summarises the comparison between our protocol and [20] (MB), and
also with the protocols in [2] (ADMM), [8] (BK). We also consider a variant of
ours and [2], called “2 players iterated”, which implement an N -players lottery
by running N−1 instances of a two-players protocol. Similarly to our tournament
protocol, these instances are composed in a tree: only the winners of a level can
play at the next one, and the winner of the root collects all the bets. In the
iterated versions, the initialization phase is performed for every match (using
independent keys/secrets), while in the non-iterated version the initialization is
done only once, at the beginning.

Table 1. Comparison of cryptocurrency-based lottery protocols.

ADMM [2]
N players

ADMM [2]
2 players
iter.

BK [8]
N

players

MB [20]
v1
N players

MB [20] v2
N players

Tournament
N players

Tournament
2 players iter.

Deposit N(N − 1) N O(N2) 0 0 d ≥ 0 d ≥ 0

Completion time 4 τLedger 4 L τLedger O(N) O(L) 4 L τLedger (2 + 6 L) τLedger 7 L τLedger

Off-chain trans O(N2) O(N) — O(2N) O(N2) O(N2) O(N)

On-chain trans O(N) O(N) O(N2) O(N2) O(N) O(N) O(N)

All-or-nothing Yes No Yes Yes Yes Yes, if d > 0 No

Bitcoin features SegWit SegWit
MULTIINPUT

SegWit
in-malleability

SegWit
in-malleability

The first row in Table 1 quantifies the deposit: this is constant (d ≥ 0) in our
protocol, zero in [20], while in the others it grows with the number of players.
More specifically, the deposit is O(N2) in [8] and in the non-iterated version
of [2], while in the iterated version it is N : intuitively, an N -deposit at the last
round is needed to guarantee that the final winner can collect the whole N stake.

The second row quantifies the completion time of the protocol, excluding the
communication and computation time (which is marginal in practice, compared
to the time required to put transactions on the ledger). Only the non-iterated
version of [2] requires constant time; in [8] the time is linear in N , while in the
other protocols the time is proportional to L = log N .

Constant-Deposit Multiparty Lotteries on Bitcoin 245

The number of off-chain and on-chain transactions required by each protocol
is shown in the third and fourth rows. Not that all protocols require a linear
number of on-chain transactions, except for [8] and the first version of [20],
which require O(N2) transactions.

The fifth row describes whether a protocol has an ideal behaviour, where only
one player wins the whole stake, while the others lose their bets. More specifically,
we call a protocol “all-or-nothing” if, assuming rational adversaries, the payoff
of honest players is either −1 or N −1. The iterated versions of the protocols are
not “all-or-nothing”: indeed, a rational adversary can simply stop playing after
winning a match, collecting the partial winnings and making impossible for any
other player to obtain the whole NB stake (hence forcing some honest player to
gain −1 < v < N − 1B). Instead, our (non-iterated) protocol is “all-of-nothing”
when d > 0 (Theorem 4).

The last row describes which Bitcoin features a protocol requires to be actu-
ally implemented. All protocols make use of non-standard transactions, which
are currently handled by a small fraction of the miners. Note that some recent
works [6] address the issue of implementing complex protocols on Bitcoin by
using only standard transactions. Both our protocol and the ones in [8,20] also
rely on the SegWit feature [19]. Additionally, our protocol requires the malleabil-
ity of in-fields, as discussed in Sect. 2, while the second version of the protocol
in [20] requires the MULTIINPUT opcode. This opcode would also allow to avoid
the interferences outlined in the proof of Theorem 5. The protocol in [8] assumes
resilience to malleability attacks, which can be obtained through [19].

The work [16] proposes a general model for secure multiparty computations
on cryptocurrencies, which goes beyond the features provided by Bitcoin. Apply-
ing this model to lotteries, we would obtain a protocol where the deposit grows
linearly in the number of dishonest players. This approach might also allow for
reducing the number of rounds from log N to a constant number.

6 Conclusions

We have presented a lottery protocol based on Bitcoin, where N players can
place a bet, and one of them, uniformly chosen, wins all the bets. Our protocol
is parametric w.r.t. the deposit d ≥ 0 that the players have to block through-
out the protocol. For any value of d, our protocol ensures that honest players
have a negligible average payoff, even in the presence of arbitrary adversaries
(Theorem 5). Further, for d > 0, the payoff is distributed like an ideal lottery
(Theorem 4): that is, the winner gets the sum of all the bets with probability
close to 1/N, while the other players lose their bets with probability close to
N−1/N. This holds unless the adversaries follow strategies which (on average)
make them lose money, and make honest players gain money. According to the
terminology in [2], our protocol implements a fair lottery.

Although our protocol has been crafted for Bitcoin, the underlying ideas can
be used to implement fair lotteries on other frameworks for smart contracts. This
could allow to relax the rationality assumption of Theorem4 when the deposit

246 M. Bartoletti and R. Zunino

is zero. For instance, the implementations in Ethereum [9] of Miller and Bentov5

and of Atzei6 follow the structure of rounds of the tournament protocol.

Acknowledgments. The authors thank Patrick McCorry, Andrew Miller, and Iddo
Bentov for their comments on a preliminary version of this paper. This work is partially
supported by Aut. Reg. of Sardinia P.I.A. 2013 “NOMAD”.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via Bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S&P, pp. 443–458 (2014)

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: On the mal-
leability of Bitcoin transactions. In: Brenner, M., Christin, N., Johnson, B., Rohloff,
K. (eds.) FC 2015. LNCS, vol. 8976, pp. 1–18. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48051-9 1

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016)

5. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin. http://www.cs.technion.
ac.il/∼idddo/cointossBitcoin.pdf (2013)

6. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

7. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. IACR
Cryptology ePrint Archive, 2016/955 (2016). http://eprint.iacr.org/2016/955

8. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

9. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper

10. Crary, K., Sullivan, M.J.: Peer-to-peer affine commitment using Bitcoin. In: ACM
Conference on Programming Language Design and Implementation, pp. 479–488
(2015)

11. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

12. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1 7

13. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol:
analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

5 https://github.com/amiller/zero-collateral-lottery.
6 https://github.com/natzei/constant-deposit-lottery.

https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-662-48051-9_1
https://doi.org/10.1007/978-3-662-48051-9_1
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
https://doi.org/10.1007/978-3-319-45741-3_14
http://eprint.iacr.org/2016/955
https://doi.org/10.1007/978-3-662-44381-1_24
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/3-540-45472-1_7
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://github.com/amiller/zero-collateral-lottery
https://github.com/natzei/constant-deposit-lottery

Constant-Deposit Multiparty Lotteries on Bitcoin 247

14. Goldschlag, D.M., Stubblebine, S.G.: Publicly verifiable lotteries: applications of
delaying functions. In: Hirchfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 214–226.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055485

15. Goldschlag, D.M., Stubblebine, S.G., Syverson, P.F.: Temporarily hidden bit com-
mitment and lottery applications. Int. J. Inf. Secur. 9(1), 33–50 (2010)

16. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

17. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS, pp. 30–41 (2014)

18. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS, pp. 195–206 (2015)

19. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer), BIP 141.
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

20. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum (2014).
http://arxiv.org/abs/1612.05390

21. Rivest, R.L.: Electronic lottery tickets as micropayments. In: Hirschfeld, R. (ed.)
FC 1997. LNCS, vol. 1318, pp. 307–314. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63594-7 87

22. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penalizing equivocation
by loss of Bitcoins. In: ACM CCS, pp. 219–230 (2015)

23. Syverson, P.F.: Weakly secret bit commitment: applications to lotteries and fair
exchange. In: IEEE CSFW, pp. 2–13 (1998)

24. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

https://doi.org/10.1007/BFb0055485
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
http://arxiv.org/abs/1612.05390
https://doi.org/10.1007/3-540-63594-7_87
https://doi.org/10.1007/3-540-63594-7_87

Exchange Pattern Mining in the Bitcoin
Transaction Directed Hypergraph

Stephen Ranshous1(B), Cliff A. Joslyn2, Sean Kreyling2, Kathleen Nowak4,
Nagiza F. Samatova1,3, Curtis L. West2, and Samuel Winters2

1 North Carolina State University, Raleigh, USA
smransho@ncsu.edu, samatova@csc.ncsu.edu

2 Pacific Northwest National Laboratory, Seattle, WA, USA
{cliff.joslyn,sean.kreyling,curtis.west,

samuel.winters}@pnnl.gov
3 Oak Ridge National Laboratory, Oak Ridge, USA

4 Pacific Northwest National Laboratory, Richland, USA
katy.nowak@pnnl.gov

Abstract. Bitcoin exchanges operate between digital and fiat currency
networks, thus providing an opportunity to connect real-world identities
to pseudonymous addresses, an important task for anti-money laundering
efforts. We seek to characterize, understand, and identify patterns cen-
tered around exchanges in the context of a directed hypergraph model
for Bitcoin transactions. We introduce the idea of motifs in directed
hypergraphs, considering a particular 2-motif as a potential laundering
pattern. We identify distinct statistical properties of exchange addresses
related to the acquisition and spending of bitcoin. We then leverage this
to build classification models to learn a set of discriminating features,
and are able to predict if an address is owned by an exchange with
> 80% accuracy using purely structural features of the graph. Applying
this classifier to the 2-motif patterns reveals a preponderance of inter-
exchange activity, while not necessarily significant laundering patterns.

Keywords: Bitcoin · Exchanges · Transaction graph · Directed hyper-
graph · Motif · Classification

1 Introduction

Bitcoin’s decentralization makes it difficult to regulate and investigate by law
enforcement. This represents a vulnerability in government anti-money laun-
dering (AML) efforts [4]. Conventional AML efforts focus on the Know-Your-
Customer (KYC) process, in which banks and other financial services must
verify the identity of their customers, monitor transactions, and report suspi-
cious behavior to government entities. As such, government AML and KYC
efforts utilize perfect knowledge of identity but incomplete knowledge of finan-
cial transactions, which remains in the control of the banks [12,13]. In contrast,
law enforcement generally has no knowledge about bitcoin user identities to use

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 248–263, 2017.
https://doi.org/10.1007/978-3-319-70278-0_16

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 249

in detecting anomalous behavior, but access to the blockchain grants complete
knowledge of transactions. This motivates the desire to detect money laundering
through techniques that do not rely on identity information, such as transaction
or user patterns. In particular, patterns centered around exchanges are impor-
tant, as they provide arguably the most important link between Bitcoin and fiat
currency networks. Moreover, exchanges are navigating evolving legal precedent
to be AML compliant [1,2]. In 2015, FinCEN fined Ripple Labs in the first act of
civil enforcement against a Virtual Currency Exchange for failing to implement
a proper AML program [17].

We model Bitcoin transactions as a directed hypergraph (dirhypergraph),
which naturally represents the multi-way relation between addresses and trans-
actions (Sect. 2). This is distinguished from previous analyses [15,16] which use
graph models with strictly binary edges, whether at the address or tx level.
We define motifs in dirhypergraphs as small sub-graph patterns, and introduce
a small 2-motif involving exchanges which we call “short thick bands” (STB)
as a potential laundering pattern. We identify several patterns in the behavior
of exchange-owned addresses that differ from non-exchange addresses (Sect. 3).
For example, where regular addresses are likely to be sinks [16], simply accu-
mulating bitcoin, exchange addresses typically keep a near-zero balance. Third,
we explore the possibility of applying machine learning techniques to classify
latent attributes of addresses (Sect. 4). In particular, we focus on whether or
not it is possible to predict whether a given address is owned by an exchange
or not, and the role of both labeled and putative exchanges in STB patterns.
Finally, we seek to understand whether the pattern of exchange use in STBs
reveals potential laundering activity, but conclude that what can be identified is
a preponderance of inter-exchange activity.

2 Bitcoin Transaction Motifs in a Directed Hypergraph

Bitcoin transactions have a natural graphical structure, one form of which is shown
on the left of Fig. 1. Vertices are transactions E0, . . . E3, while arcs model inputs
and outputs labeled by the Bitcoin address a1, . . . , a6, weighted by the quantity.
Wenote some common activities such as changemaking and aggregation.Coinbase

Fig. 1. (Left) Bitcoin transactions as a labeled multigraph. (Right) Bitcoin transactions
as a bipartite multigraph. (Color figure online)

250 S. Ranshous et al.

transactions are indicated by the vertex SRC in blue, while unspent transaction
outputs (UTXOs) are combined into a single sink vertex.

But in analytical tasks, such as detecting money laundering, it is perhaps
more important to focus on addresses (arc labels ai) than the transactions Ej .
And while discouraged in Bitcoin, reuse of addresses is legal and somewhat com-
mon. To treat addresses as “first class objects” we create new vertices for each
unique address, producing the bipartite graph structure on the right of Fig. 1.
Square vertices are transactions Ej , while the circles are addresses ai (addresses
currently with an UTXO are red). Input arcs from addresses to transactions
are now distinguishable from output arcs from transactions to addresses, and
address reuse can create looping structures, such as shown in change-making
back into a3 as an output of E2.

We consolidate by combining quantities on multi-arcs, producing the directed
hypergraph [3,5] in Fig. 2. Dirhypergraphs are characterized as directed bipartite
graphs with two kinds of vertices, with connections only between vertices of
different types, but possibly multiple inputs from and outputs to each. For us,
transaction (square) vertices act as directed hyperarcs. Where an arc in a graph
connects a single tail vertex to a single head vertex, hyperarcs connect multiple
input (tail) addresses to multiple output (head) addresses (round vertices).

Fig. 2. Bitcoin transactions as a directed hypergraph.

Hypergraphs and directed hypergraphs are well known in math and computer
science, and can provide significant advantages over regular graphical structures
when data are complex, with multiple inputs and outputs as in our case due
to address reuse. Identifying subgraphs indicating potential laundering suggests
the potential significance of hypergraph motifs. In network analysis, motifs are
small subgraphs which are represented with statistical significance [11]. Our
research group appears to be the first to consider dirhypergraph motifs, which
we generalize directly from graph motifs. Figure 3 shows all the undirected and
directed motifs for two and three edges/arcs. A k-motif is one possible way that
k connected (intersecting) edges can be structured, with a range of possible
numbers of vertices sitting as tails and heads of the k edges.

The simplest dirhypergraph Bitcoin pattern is the 2-motif,1 illustrated on the
left side of Fig. 4 as a dirhypergraph pattern. As in Fig. 2, the two transactions
1 Terminologically, we can call these hypermotifs or hypergraph motifs, but for sim-

plicity here we will just call them motifs.

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 251

Fig. 3. Graph motifs: (Far Left) The single undirected graph 2-motif (above) with its
three directed motifs α, β, and γ (below), including the two isomorphic α, α′ patterns.
(Right) The three undirected 3-motifs and their directed versions.

E1, E2 are square vertices, and addresses circles (circle color will be addressed
below). Note that any particular address can sit on either the tails (inputs) or
heads (outputs) of any transaction, and indeed, more than one transaction.

Fig. 4. A 2-motif in a dirhypergraph: Two transactions E1, E2 with sets of tail and
head vertices T1, H1, T2, H2 respectively. (Left) Generic. (Center) A linear STB. (Right)
A circular STB. (Color figure online)

Formalizing 2-motifs, assume a non-empty finite set of vertices A = {ai}
and two hyperarcs Ej = 〈Tj ,Hj〉, j = 1, 2, with tails and heads Tj ,Hj ⊆ A
(nonempty). The set M = {E1, E2} is a 2-motif if there is at least one pair of tails
and heads in each hyperarc which intersect, that is, if

⋃
X,Y ∈{H,T} X1 ∩ Y2 �= ∅.

The potential intersections are detailed in Table 1. For example, an address sits
on a γ pattern if it is in both T1 (the blue vertices in Fig. 4) and T2 (the green),
that is, in the tails of (inputs to) both transactions (e.g. the lowest left address
in Fig. 4). The analogous graph pattern γ is shown in Fig. 3, with the two edges
pointed outward. Note that in comparison with Fig. 3, here we also allow self-
loops identified in the L1, L2 patterns.

The left of Fig. 5 is an abstraction of a 2-motif, where each circular vertex
represents one of the patterns in Table 1, standing in for the entire set of addresses

252 S. Ranshous et al.

Table 1. Participation of addresses in a 2-motif.

Pattern Condition Description

α H1 ∩ T2 �= ∅ Forward 2-chain

α′ T1 ∩ H2 �= ∅ Reverse 2-chain

β H1 ∩ H2 �= ∅ Inward 2-star

γ T1 ∩ T2 �= ∅ Outward 2-star

L1 T1 ∩ H1 �= ∅ Self-loop on E1

L2 T2 ∩ H2 �= ∅ Self-loop on E2

playing that role.2 The right is the same abstraction, but now with the counts of
the number of addresses in each role for transactions between Jan 12 2015 and
April 21 2015.3

Fig. 5. (Left) Generic 2-motif. (Right) Instantiated with counts for days 2200-2299.

Beyond just identifying dirhypergraph motifs, we are interested in motifs
which may or may not involve certain addresses, in our case, exchanges, and their
distribution within certain kinds of patterns. In Fig. 4, exchanges are shown as
black addresses. A short thick band (STB) is then a pattern where a quantity
of Bitcoin is purchased from fiat currency, held for a while as Bitcoin, and then
converted back to fiat currency. When an STB moves Bitcoin from one exchange
address to a different one, we can call it linear; and when it returns it to the
same exchange address, circular. More specifically, STBs are 2-motifs where:

– Two transactions intersect in an α or α′ chain only;
– An exchange is included in both an input of the first and an output of the

last transaction; but
– No exchange is an intermediate address in the transaction.

2 We include addresses in exactly one intersection, ignoring addresses in only a tail or
head of one of the transactions, and also addresses in more than two intersections.

3 Note the similarities of the counts for α and α′, on the one hand, and L1 and L2,
on the other, due to isomorphism with respect to the ordering of E1 and E2.

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 253

STBs could exist for many reasons, including financial speculation, simple
user convenience, repeated purchases, remuneration, remittance, or fund man-
agement. Our interest is considering the hypothesis that STBs could be used
as a potential laundering pattern. Moreover, we recognize that as a laundering
pattern, it would not be very extensive. In this work we are begining with the
simplest possible such pattern.

To formalize STBs, call a motif “pure” if only one pattern from Table 1 is
present (this is not the case in the left side of Fig. 4), and otherwise “mixed”.
Then denote e(a ∈ A) to mean that a is an exchange, and e(X ⊆ A) to mean
that X has an exchange: ∃a ∈ X, e(a). We then can define an STB as follows.

Definition 1 (STB). A 2-hypermotif M = {E1, E2} is a linear STB if one
and only one of the following holds:

1. It is a pure α 2-motif with e(T1) ∧ e(H2) ∧ ¬e(H1 ∩ T2); or
2. It is a pure α′ 2-motif with e(H1) ∧ e(T2) ∧ ¬e(T1 ∩ H2).

M is a circular STB if one and only one of the following holds:

1. It is a mixed linear α and α′ 2-motif with e(T1 ∩ H2) ∧ ¬e(H1 ∩ T2); or
2. It is a mixed linear α′ and α 2-motif with e(H1 ∩ T2) ∧ ¬e(T1 ∩ H2).

Note that no STB can have a self-loop. But because of the α, α′ isomorphism
noted above, it is sufficient to assume that a linear STB is a pure α pattern, and
a circular STB is a mixed α, α′ pattern, with

e(T1) ∧ e(H2) ∧ ¬e(H1 ∩ T2), e(T1 ∩ H2) ∧ ¬e(H1 ∩ T2)

respectively. Figure 4 shows a linear (center) and circular (right) STB.

3 Descriptive Statistics

Given the nature of exchanges, and their primary function of converting between
bitcoin and other currencies (including fiat and other alt coins), we question
whether exchange addresses exhibit a different type of behavior from address
owned by regular users of the network.

We downloaded the Bitcoin blockchain data using the Bitcoin Core Client,4

and built a custom parser to convert the raw data into the dirhypergraph struc-
ture described in Sect. 2. We used data from the first transaction in the network
up to April 22 2015, encompassing 72.7M unique addresses (vertices), involved in
at least one of 66.3M transactions (hyperarcs) in our dirhypergraph. Addresses
known to be exchanges were drawn from the WalletExplorer listing,5 call these
“labeled”. Some exchanges are associated with several wallets (“current”, “out-
put”, “old”). The full list we use is shown in AppendixA. While labeled addresses

4 https://bitcoin.org/en/download.
5 https://www.walletexplorer.com, accessed January 16 2016.

https://bitcoin.org/en/download
https://www.walletexplorer.com

254 S. Ranshous et al.

are presumed to be actual exchanges, the number of exchange addresses which
are not listed as such is hard to judge for many reasons. At least, the WalletEx-
plorer listings began on April 23 2011, while we know that exchanges have been
around since 2010. Additionally, Mt. Gox, a substantial contributor over that
time, was not included. There are still 2.44M labeled addresses (3.36 % of the
total addresses), and 6.76M transactions involving an exchange (10.2 % of total
transactions). Daily activity is summarized in Fig. 6, with addresses involved in
several transactions in a single day counted once.

Fig. 6. Daily activity in each dirhypergraph.

Since our dirhypergraph presents as a bipartite graph of addresses and trans-
actions, the in-degree of an address is actually the number of transactions on
which an address serves as an output, and vice versa for out-degree. While the in-
and out-degree distributions for both address types follow a power law, with the
distributions having no significant difference using a 2-sample KS test, Table 2
shows several interesting aspects. Where 4.7% of unlabeled addresses are sinks –
simply accumulating bitcoin and never redistributing it, resulting in an out-
degree of zero – this drops to < 0.1% for labeled addresses. Also labeled addresses
are more likely to have equal and positive in- and out-degrees. This behavior for
labeled addresses is consistent with the use and function of exchanges, and for
unlabeled addresses it is consistent with previous results [16], although to a much
lesser extent. We attribute the decline in the proportion of sink addresses to the
general growth of Bitcoin, but more importantly the sustained trading phase [6]
it has been in, dwarfing activity in the initial phase.

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 255

Table 2. Comparing labeled and unlabeled address’ degrees and weights.

Query Labeled Unlabeled

In-degree > 0, out-degree = 0 2, 123 0.087% 3, 297, 725 4.696%

In-degree > 0, out-degree > 0 2, 435, 472 99.91% 66, 914, 170 95.29%

In-degree = out-degree > 0 2, 356, 530 96.67% 64, 305, 459 91.58%

In-weight > 0, out-weight = 0 2, 123 0.087% 3, 297, 195 4.696%

In-weight > 0, out-weight > 0 2, 435, 472 99.91% 66, 914, 166 95.29%

In-weight = out-weight > 0 2, 421, 944 99.35% 65, 658, 855 93.51%

Figure 7 shows the cumulative distribution of weights in bitcoin (BTC), total
on the left and average on the right. Unlabeled addresses have a much better sep-
aration between the in- and out-weight, suggesting that nonexchange addresses
tend to keep a positive balance of bitcoin while exchanges keep zero, or near-
zero, balances. The majority of exchange addresses have both an average and
total transaction weight between 0.01 and 0.1 BTC, shown by the large jump
in the figure. Roughly 50% of labeled addresses sit in this bucket, compared to
about 30% of unlabeled addresses.

(a) (b)

Fig. 7. Cumulative percent of addresses with total (left) or average (right) input and
output weights.

We next examine 2-motifs, STBs, and how exchanges are involved in them. If
there are m transactions in a day, then there are at most

(
m
2

)
possible 2-motifs.

Of our 40.0B 2-motifs, 10.3B are pure linear α or α′ patterns, just 42.4M of which
involve exchanges. 741K of those are STBs, including 727 K linear and 13.4 K
circular. The volume of 2-motifs precludes the opportunity to do a comparison
between STBs and non-STB 2-motifs, so instead we focus on just STBs.

The number and proportion of addresses that are labeled as exchanges on the
inputs and outputs is shown in Fig. 8.6 The number of labeled input addresses
6 Recall that this is at the address level, and each exchange has a set of addresses

they own. The frequency of each exchange (e.g. BTC-e.com) in STBs is shown in
Fig. 10 in the Appendix, and is highly correlated with the number of addresses each
exchange has, see Fig. 11.

256 S. Ranshous et al.

(a) (b)

Fig. 8. Counts (left) and proportions (right) of labeled addresses on the inputs and
outputs of STBs.

ranges from 1 to 635, while output addresses range from 1 to 1937. However,
when the two clear outlier STBs are removed, the max number shrinks to 376.

According to the well known heuristic in Bitcoin to group all addresses
that are inputs into the same transaction as being owned by the same entity
[10,14,16], the expected proportion of labeled inputs should be 1, because if a
single address is labeled, then all others are labeled as a consequence. Orders
of magnitude more STBs do in fact have all inputs labeled, but many do not.
This could be because the WalletExplorer data is incomplete, because it uses
a different method for aggregating exchange wallets, or because they should in
fact not be labeled. Yet, in every STB with multiple labeled input addresses,
every address is owned by the same exchange – that is, every input is from a
single exchange label. Interestingly, this is not the case for outputs of STBs. Of
the 739.8K STBs, 63.4K (8.57%) have multiple exchange labels in the outputs
(“multi-out STBs”), 48.1K (75.9%) of which have exactly two labels. Multiple
exchanges on outputs of a single transaction could be due to mining pool payouts,
but on outputs of STBs it is more likely indicative of inter-exchange activity.

4 Classifying and Labeling Exchange Addresses

While exchange addresses comprise a small percent of the Bitcoin network, they
are of growing importance outside of the Bitcoin world, as they provide poten-
tially the only avenue for connecting real-world people with pseudonymous Bit-
coin addresses. Being able to identify exchanges in the network is then a critical
task, as it enables one to connect transactions or addresses of interest to the
point at which they enter or exit the Bitcoin network.

We can leverage the different characteristics of exchange and non-exchange
addresses to construct a machine learning model to classify an address as an
exchange or not. In these experiments we use data from September 29 2011,
roughly 100 days after exchanges first appear in our data, until April 22 2015.
For every address we extract a set of features that numerically characterizes it,

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 257

e.g. out-degree, total in-weight. Addresses are then assigned a class label cor-
responding to whether or not they are labeled as an exchange. The goal of the
model is to learn a set of features and weights that can accurately discrim-
inate between the two classes. Given the immense class imbalance (far fewer
exchange addresses), we randomly sample an equal number of labeled and unla-
beled addresses for training and testing the model. To account for the random
sampling, 10 independent trials are run, and average results are reported.

Five different classifiers’ results are summarized in Table 3.7 AdaBoost and
random forests perform the best, and are far superior to the remaining three,
both yielding an F1 score of over 0.99. In the case of random forests, on average
only 2,587 out of 972,866 test addresses were incorrectly predicted, falsely classi-
fying 1,190 non-exchanges as exchanges, and 1,397 exchanges as non-exchanges.
Moreover, the incredibly low variance of these models indicates they are much
more robust than the others, performing well across all random samples.

Table 3. Results for exchange address classification. All results shown are mean+-std
over the 10 runs.

Model F1 Recall Precision

Random forest 0.9973 +− (0.0001) 0.9976 +− (0.0001) 0.9971 +− (0.0001)

AdaBoost 0.9944 +− (0.0001) 0.9974 +− (0.0001) 0.9915 +− (0.0003)

Linear SVM 0.8291 +− (0.0833) 0.8396 +− (0.1514) 0.8573 +− (0.1209)

Perceptron 0.2075 +− (0.3029) 0.3034 +− (0.4557) 0.2210 +− (0.2053)

Logistic regression 0.0014 +− (0.0001) 0.0007 +− (0.0001) 0.2755 +− (0.0304)

Equally important, or perhaps even more important, than achieving such a
high accuracy is understanding what it is about exchange addresses that facili-
tates the result. One way to quantify this is looking at the “feature importance”
values that are calculated by the classifier. The top 5 features and their impor-
tance in the random forest model are: (1) # sibling exchanges (0.613); (2) #
successor exchanges (0.184); (3) # predecessor exchanges (0.072); (4) # siblings
total (0.044); (5) total out-weight (0.015).8 It is not surprising that, by far, the
most important feature is the number of exchange siblings. Figure 9a shows the
substantial difference in the distributions for exchange siblings. Again, accord-
ing to the common address group heuristic, if you are siblings with numerous
exchange addresses then it is likely you are also an exchange address. Moreover,
it is likely that you are an exchange address owned by the same exchange that
your siblings are (c.f. Sect. 3). From a network science perspective, homophily
[9] tells us that vertices of one type tend to interact with vertices of the same
type.
7 All experiments were run using Python 2.7 and the scikit-learn and numpy packages.
8 For an address a, siblings are addresses that have been a co-input or co-output,

successors are addresses that have been an output when a was an input, and prede-
cessors are addresses that were an input when a was an output.

258 S. Ranshous et al.

(a) (b)

Fig. 9. Distribution of how many exchange addresses siblings (left) or total siblings
(right) each address has. These distributions were drawn from a random sample of
100 K exchanges and 100K non-exchanges.

Incorporating features related to the exchange labels clearly produces high
quality results. However, it may restrict the capability of our model, failing to
generalize well to new data which is not labeled, or handling incomplete labeling
as we have in our dataset. To test this a second set of experiments is performed,
identical to those described above except all features related to exchange labels
are removed. Table 4 summarizes the new results.

Table 4. Results for exchange vertex classification when features related to exchanges
are removed. All results shown are mean+-std over the 10 runs.

Model F1 Recall Precision

Random forest 0.8200 +− (0.0004) 0.8218 +− (0.0006) 0.8183 +− (0.0004)

AdaBoost 0.7941 +− (0.0012) 0.8264 +− (0.0033) 0.7643 +− (0.0018)

Linear SVM 0.3052 +− (0.2619) 0.3488 +− (0.3775) 0.5179 +− (0.1710)

Perceptron 0.1349 +− (0.2683) 0.1998 +− (0.3989) 0.1849 +− (0.1886)

Logistic regression 0.0014 +− (0.0001) 0.0007 +− (0.0001) 0.3056 +− (0.0266)

Removal of the exchange features has an obvious negative impact on the
accuracy of the classifiers. Random forest F1 score drops to 0.82 (a decrease of
about .18), with the average number of incorrectly classified addresses increasing
from 2587 (0.266%) to 175956 (18.086%). Similar to the runs that included
exchange features, the average variance for the random forest classifier was very
low. With the removal of exchange related features, structural features rose in
importance. The new top 5 features and weights are: (1) # siblings (0.255); (2)
total out-weight (0.232); (3) total in-weight (0.217); (4) # successors (0.092); (5)
predecessors (0.082). The former fourth and fifth ranked features are now the
top two, and in conjunction with the total in-weight represent the majority of the
discriminatory power. The top three now have a very equal share of importance,
indicating that the model relies on information from each of them instead of
a single dominating feature. Figure 9 shows the distribution of the number of

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 259

siblings for both exchange and non-exchange addresses. The distributions for
less than 100 siblings are easily separable, but become much more intertwined
when considering addresses with 100 or more siblings.

As we note in Sect. 3, the list of exchange addresses we have is incomplete.
However, it is impossible to know exactly how incomplete the list is – whether
we have 10% of the exchange addresses or 90%. A natural next question, then,
is to try to classify all of the unlabeled addresses using our models constructed
in the previous experiments.

All unlabeled addresses not used in training the classifiers were run through
both random forest models and predicted as an exchange address or not
(Table 5). The two classifiers yielded drastically different results. Using exchange
label features, a mere 0.28% of the unlabeled addresses were labeled as exchanges.
Conversely, 18.17% of the addresses were labeled as exchanges using the purely
structural features. If instead of omitting the training addresses from the results
we include them, the percent predicted raise to 3.98% and 21.87%. As 3.36% of
the addresses are labeled from our ground truth data, this result is expected.

It is likely that 18% is a much better estimate for the true exchange address
percent than 0.28%. The absence of Mt. Gox (among others) from our label
data, and its historical dominance in Bitcoin, indicates that we are missing a
large number of exchange addresses. Moreover, the extremely high accuracy
combined with the extremely low prediction of unlabeled addresses of the first
model suggests that the first classifier overfit the training data, exploiting the
label features and becoming too reliant. Structural features, which we have per-
fect knowledge of for all addresses, are much more reliable and generalizable.

Table 5. Percent of addresses classified as exchanges.

With label features Without label features

All addresses 3.98% 21.87%

Unlabeled addresses 0.28% 18.17%

Middle addresses 1-out STBs 1.34% 48.35%

Middle addresses multi-out STBs 0.68% 52.09%

Our initial proposition of STBs as a laundering pattern stems from a user
activity view of the network: a user receives bitcoin from an exchange, then
converts it back into fiat currency, with the hope of obfuscating any money trail.
From this perspective, addresses in the middle of an STB – which by definition
cannot be labeled as an exchange – should be less likely to be predicted as an
exchange than a randomly chosen unlabeled address. But (see Table 5) addresses
in the middle of an STB are 2-3x more likely to be classified as an exchange than
an a random unlabeled address. This directly contradicts our hypothesis, and
instead is highly suggestive of lots of inter-exchange activity taking place. Self-
churn [10] i.e. change-making is likely why an exchange address would be in the
middle of what would otherwise be an STB. For example, an exchange E1 sends

260 S. Ranshous et al.

bitcoin to one of its customers, making change for itself with the excess bitcoin
in the transaction, and then another exchange E2 buys bitcoin from E1, creating
a 2-motif with exchanges on the input, middle, and output.

5 Conclusions and Future Work

In this work we make a first attempt at statistical and machine learning
approaches that may be of interest in identifying laundering patterns, latent
attribute classification, and discriminatory analysis. Directed hypergraphs are a
sound model for transactions, and exchanges exhibit several patterns that are
distinct from general address behaviors, as also shown in previous work. Our
machine learning models are capable of labeling addresses as being owned by
exchanges or not with very high accuracy, even when restricted to purely struc-
tural features. STBs are proposed as a potential laundering pattern, and shown
to have a high degree of filtering when compared to the number of general 2-
motifs in the network. Finally, we showed that middle vertices in STBs are much
more likely to be classified as an exchange, indicating that there is a large amount
of inter-exchange activity taking place.

Obvious areas of improvement include a much better label set, including Mt.
Gox and generally being of higher fidelity. Similarly, an obvious area of expan-
sion is to move beyond 2-motifs to 3-motifs, and consider triangular and other
patterns involving three transactions. We have began the mathematical explo-
ration of the 3-motif in directed hypergraphs, and it is somewhat complicated
combinatorially, but manageable. While we use learning to label an address as
an exchange or not, the general tasks of latent attribute learning and discrimi-
natory feature analysis impose no such constraint. A variety of customary labels
may be of interest [10] – “mining pool”, “wallet”, “exchange”, “vendor”, “gam-
bling” – in addition to your own personal labels – “suspicious”, “country X”.
It is also not necessary to constrain the analysis to a single label at a time,
but instead use multi-class classification models to predict from a set of labels.
Moreover, instead of using a supervised learning approach where we assume our
label sets are complete, we could explore methods such as PU Learning [7,8],
which account for imperfect data.

In addition to expanding the possible labels, the structure of interest could be
expanded as well. Instead of looking at single addresses, transactions, or chains of
transactions that form a higher level pattern, could be considered. For example,
Möser et al. [12] show that some mixing services leave a distinct transactional
pattern as a result of their mixing algorithms. Models for identifying similar
patterns could be constructed using the hand curated transactions found in [12].

Acknowledgements. This material is based on work supported in part by the
Department of Energy National Nuclear Security Administration under Award Num-
ber(s) DE-NA0002576. It is also supported in part under the Laboratory Directed
Research and Development Program at the Pacific Northwest National Laboratory, a
multi-program national laboratory operated by Battelle for the U.S. Department of
Energy.

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 261

A Exchanges Used

Fig. 10. Frequency of exchanges in STBs.

B Features Used

An address’ feature matrix is composed of the following features, extracted from
each day of the data and then aggregated. Features prefixed with “*” are those
removed in the second experiment, where exchange label based features are
removed.

1. total bitcoin received – How much BTC the address received from transac-
tion outputs over the full time window.

2. total bitcoin spent – How much BTC the address spent as transaction inputs
over the full time window.

3. bitcoin balance – Total bitcoin received minus total bitcoin spent.
4. num predecessors – How many unique addresses have been an input to

transactions where this address was an output.
5. num transaction outputs – How many times this address has been used in

a transaction output.
6. num successors – How many unique addresses have been an output in

transactions where this address was an input.

262 S. Ranshous et al.

Fig. 11. Relationship between the number of vertices owned by each exchange and the
frequency of that exchange in STBs.

7. num transaction inputs – How many times this address has been used as
a transaction input.

8. num siblings – How many unique addresses have been co-inputs or co-
outputs with this address.

9. *num predecessor exchanges – How many unique exchange addresses have
been an input to transactions where this address was an output.

10. *num successor exchanges – How many unique exchange addresses have
been an output in transactions where this address was an input.

11. *num sibling exchanges – How many unique exchange addresses have been
co-inputs or co-outputs with this address.

12. num gamma patterns – How many times this address is part of a γ pattern.
13. num beta patterns – How many times this address is part of a β pattern.
14. num L1 patterns – How many times this address is part of an L1 pattern.
15. num L2 patterns – How many times this address is part of an L2 pattern.
16. num alpha patterns – How many times this address is part of a α pattern.
17. num alphaprime patterns – How many times this address is part of a α′

pattern.
18. reciprocity – How many of this addresses successors are also predecessors.
19. anti reciprocity – How many of this addresses predecessors are also succes-

sors.

We focused on local features that are fast to compute. Examples of more expen-
sive but potentially very useful features are explained in [13], e.g. peeling chains
or coinbase transactions.

Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph 263

References

1. Anti-money laundering programs for money services businesses, 31 C.F.R.
§1022.210

2. Compliance and exemptions, and summons authority, 31 U.S.C. §5318
3. Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed hypergraphs: problems,

algorithmic results, and a novel decremental approach. ICTCS 2001. LNCS,
vol. 2202, pp. 312–328. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45446-2 20

4. FATF: Virtual currencies key definitions and potential AML/CFT risks. Technical
report (2014)

5. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Dis-
cret. Appl. Math. 42, 177–201 (1993)

6. Kondor, D., Pósfai, M., Csabai, I., Vattay, G.: Do the rich get richer? an empirical
analysis of the bitcoin transaction network. PloS one 9(2), e86197 (2014)

7. Li, X.-L., Liu, B.: Learning from positive and unlabeled examples with different
data distributions. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo,
L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 218–229. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564096 24

8. Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text doc-
uments. In: ICML, vol. 2, pp. 387–394. Citeseer (2002)

9. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. sociol. 27, 415–444 (2001)

10. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140. ACM (2013)

11. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskil, D., Alon, U.: Network
motifs: simlpe building blocks of complex networks. Science 298, 824–827 (2002)

12. Möser, M., Böhme, R., Breuker, D.: An inquiry into money launder tools in the bit-
coin ecosystem. In: eCrime Researchers Summit, 6–24. Springer, Heidelberg (2013)

13. Möser, M., Böhme, R., Breuker, D.: Towards risk scoring of bitcoin transactions. In:
Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp.
16–32. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1 2

14. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin
transaction graph. Future Internet 5(2), 237–250 (2013)

15. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2013)

16. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

17. U.S. Department of the Treasury, FinCEN: FinCEN fines ripple labs Inc.: First
Civil Enforcement Action Against A Virtual Currency Exchanger. May 2015.
https://www.fincen.gov/news/news-releases/fincen-fines-ripple-labs-inc-first-civil-
enforcement-action-against-virtual

https://doi.org/10.1007/3-540-45446-2_20
https://doi.org/10.1007/3-540-45446-2_20
https://doi.org/10.1007/11564096_24
https://doi.org/10.1007/978-3-662-44774-1_2
https://doi.org/10.1007/978-3-642-39884-1_2
https://www.fincen.gov/news/news-releases/fincen-fines-ripple-labs-inc-first-civil-enforcement-action-against-virtual
https://www.fincen.gov/news/news-releases/fincen-fines-ripple-labs-inc-first-civil-enforcement-action-against-virtual

Incentivizing Blockchain Forks via Whale
Transactions

Kevin Liao1(B) and Jonathan Katz2

1 Arizona State University, Chandler, USA
kevinliao@asu.edu

2 University of Maryland, College Park, USA
jkatz@cs.umd.edu

Abstract. Bitcoin’s core innovation is its solution to double-spending,
called Nakamoto consensus. This provides a probabilistic guarantee that
transactions will not be reversed or redirected, presuming that it is
improbable for an attacker to obtain a majority of mining power in
the network. However, this guarantee can be undermined when min-
ers are assumed to be rational, and hence venal. Accordingly, we present
the whale attack, in which a minority attacker increases her chances of
double-spending by incentivizing miners to subvert the consensus proto-
col and to collude via whale transactions, which are bribery transactions
carrying anomalously large fees. We analyze the expected cost to carry
out the attack with success probability 1, and simulate the attack under
realistic system parameters. Our results show that double-spend attacks,
conventionally thought to be impractical for minority attackers, can actu-
ally be financially feasible and worthwhile under the whale attack. Per-
haps more importantly, this work demonstrates that rationality should
not underestimated when evaluating the security of cryptocurrencies.

1 Introduction

Decentralized cryptocurrencies have precipitated considerable interest in recent
years. Bitcoin [1], the first empirical success of its kind, has laid the founda-
tion for subsequent decentralized cryptocurrencies through its innovative solu-
tion to double-spending, a long-standing failure mode of digital currencies that
allows an attacker to spend a given set of coins more than once. This solution,
known as Nakamoto consensus, provides a high assurance that coins will not be
double-spent, barring if an attacker obtains an improbable amount of resources.
However, this tenuous assumption has induced notions of a looming crisis in the
Bitcoin community, which casts serious doubt on the security of cryptocurrencies
as currently prescribed.

In general, the security of a digital currency is congruous with the irreversibil-
ity of its transactions. More concretely, when users send coins to vendors in
exchange for merchandise, vendors expect that once the purchased merchandise
has been disbursed, the transaction will not be reversed or redirected elsewhere.
Double-spending undermines this desideratum, in that if an attacker issues two
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 264–279, 2017.
https://doi.org/10.1007/978-3-319-70278-0_17

Incentivizing Blockchain Forks via Whale Transactions 265

conflicting transactions using the same set of coins, say, one to the vendor and
one to herself, eventually one of these transactions will be invalidated. If the
vendor unknowingly disburses the merchandise, under the impression that it
has been paid for, and the paying transaction is invalidated, then the vendor is
left empty-handed.

In this regard, Nakamoto consensus offers a probabilistic guarantee that a
transaction will not be reversed. The protocol is as follows. Participants in the
Bitcoin network, known as miners, compete to solve a computationally expen-
sive proof-of-work puzzle. The miner who solves this puzzle is permitted to add
a block of newly confirmed transactions to the blockchain, a distributed pub-
lic ledger serializing all transactions ever issued. In remuneration, the miner is
rewarded with newly minted bitcoins and (more importantly for this work), any
embedded transaction fees, which are gratuities left by payers. The new block
and its proof-of-work are then broadcast to the network, and upon verification,
miners will add the block to their corresponding blockchains and repeat the min-
ing process atop their updated ledgers. Since mining is performed concurrently,
it may be the case that conflicting versions of the blockchain form, known as
branches. In the prescribed protocol, miners resolve this by mining on the longest
branch, as measured by the total expense of mining power. During this process,
the shorter branch will be orphaned and any conflicting transactions will be
invalidated.

Although transactions invalidated during branch selection enables the pos-
sibility of double-spending, as transactions gain more confirmations, in other
words, when new blocks are added atop their respective blocks, the probability
that a conflicting longer branch forms decreases exponentially. Thus, a trans-
action with six confirmations is well-accepted by the community to be secure
against double-spending.

The main caveat of this probabilistic guarantee is that it assumes no single
mining entity wields a majority of mining power in the network. Otherwise the
system ceases to be decentralized—a majority miner can unilaterally control the
blockchain and can thus double-spend at will. Bitcoin’s security guarantees have
been proven [2] only in accordance with this assumption, namely that a majority
of miners (as measured by their mining powers) behave honestly by adhering to
the prescribed protocol. The question then arises of whether or not these security
guarantees hold when miners are, instead, assumed to behave rationally, in other
words, they are incentivized by maximizing their profits.

Our Contributions. We consider a minority attacker, henceforth referred to
as Alice, who attempts to double-spend against a vendor, henceforth referred to
as Bob, within a rational network. From a cost perspective, double-spend attacks
require a large proportion of mining power that may be improbable to attain
singly. Auspiciously, Alice can amplify her own mining power by incentivizing
rational miners into subverting the prescribed protocol.

266 K. Liao and J. Katz

Accordingly, we present a bribery attack called the whale attack, which was
inspired by a peculiar (perhaps erroneous) bitcoin transaction,1 in which the
payer issued a transaction carrying an exorbitant transaction fee of 291 bitcoins.
The current recommended transaction fee for a no-delay transaction is 6.0×10−7

bitcoins per byte, so at the current median transaction size of 257 bytes, this
would only amount to a transaction fee of 1.542 × 10−4 bitcoins (from https://
bitcoinfees.21.co, accessed September 1, 2016). We henceforth generalize trans-
actions carrying anomalously large transaction fees as whale transactions, and we
study the implications of these transactions on mining consensus. In particular,
we are interested in the capabilities of whale transactions to incentivize ratio-
nal and transaction-fee sensitive miners into colluding towards a double-spend
attack.

Informally, the whale attack is as follows. To initiate the double-spend, Alice
first mines a block. However, instead of broadcasting it to the network, she
surreptitiously mines atop this block by herself, thereby forming her private
branch. She then uses the same set of bitcoins to pay Bob on the original branch,
while issuing a conflicting transaction to herself on her private branch. Upon
receiving Alice’s transaction, Bob will wait six confirmations, as per conventional
wisdom and for concreteness, before sending the purchased merchandise.

For the attack to succeed, Alice’s private branch must keep up with and
overtake the original branch after at least six confirmations have been reached.
Consider that in a traditional double-spend attack, that is, without bribing other
miners into colluding, the probability that Alice succeeds is quite low since she
wields a minority of mining power in the network. Alternatively, suppose Alice
proceeds as described, but once six confirmations have been reached, if Alice’s
private branch is shorter than the original branch, she publishes her branch to
the network and issues whale transactions, which are redeemable only by mining
on her branch.

Assuming the network is rational, miners will choose to whale mine on Alice’s
branch if doing so is more profitable than honest mining. Whether whale mining
is more profitable depends on the whale transactions’ fees given the risk of mining
on a shorter branch and the forgone block rewards should the attack fail. As more
miners switch to whale mining, the probability that the double-spend succeeds
increases. If a majority of mining power comes to whale mine, then the attack is
guaranteed to succeed. Finally, once Alice’s branch overtakes the original branch
in length, Alice’s transaction to Bob is invalidated, and Bob is left empty-handed.

The main contributions of this work are the following:

1. We introduce and formalize the whale attack, which demonstrates that ratio-
nality should not be underestimated when evaluating the security of cryp-
tocurrencies.

2. We establish informal upper bounds on the expected cost to carry out the
whale attack with success probability 1.

1 cc455ae816e6cdafdb58d54e35d4f46d860047458eacf1c7405dc634631c570d.

https://bitcoinfees.21.co
https://bitcoinfees.21.co

Incentivizing Blockchain Forks via Whale Transactions 267

3. We simulate the whale attack, mirroring the actual Bitcoin network, as a proof
of concept for attack’s feasibility, even when the attacker wields a modest
amount of mining power and capital.

1.1 Related Work

There is a growing body of research examining incentive compatibility in Bitcoin.
A number of recent works study the implications of block withholding, that is,
delaying the broadcast of newly mined blocks. Rosenfeld [3] and Eyal [4] analyze
block withholding attacks, in which an infiltrating miner discards full proofs-of-
work, thereby sabotaging the victim pool’s expected rewards. Eyal and Sirer [5]
develop the selfish mining attack, in which an attacker surreptitiously forks the
blockchain and withholds blocks in attempt to later orphan the original branch,
thereby wasting computations by honest miners. Nayak et al. [6] and Sapirshtein
et al. [7] further analyze and optimize the space of selfish mining strategies.

More closely related to this work are bribery attacks. Bonneau [8] presents
various bribery attacks, in which an attacker temporarily rents mining power
rather than traditionally buying mining hardware. For example, an attacker
pays miners out-of-band, in other words, outside of Bitcoin, to mine on a cho-
sen branch. Alternatively, an attacker sends bribery money to a set of scripted
addresses, located in-band on the attacker’s branch, that can be claimed by
mining the next block(s). Our attack differs from the former, in that whale
transactions are trustless and can be issued anonymously, and compares to the
latter, but instead disburses bribery money through transaction fees, which are
inherent to the protocol.

Teutsch et al. [9] present another bribery attack, in which an attacker casts
proof-of-work puzzles as Ethereum smart contracts, called script puzzles, to serve
as an additional mining revenue source. Thus, rational miners may increase their
profits by apportioning their mining powers between puzzle-solving and Bitcoin
mining, thereby reducing mining power in the Bitcoin network. Our attack differs
from the script puzzle attack, in that miners are purveyed a single source of
revenue, namely the block rewards on the longest branch.

More broadly, there is also a growing interest in the interrelationship between
transaction fees and Bitcoin’s long-term health. Möser and Böhme [10] perform
a longitudinal analysis of transaction fees and examine the externalities that
influence these fees. Kroll et al. [11], Houy [12], and Kaşkaloǧlu [13] consider
the economics of Bitcoin mining and discuss potential changes to transaction
fees and their policies in the long-term. Carlsten et al. [14] develop a new attack
strategy and revisit the selfish mining attack in the context of a transaction-fee
regime.

2 Model

We adapt the model used by Rosenfeld [15] and updated by Sompolinsky and
Zohar [16] to consider double-spending under the whale attack.

268 K. Liao and J. Katz

We assume that the distribution of mining power in the network remains
constant. An attacker Alice controls a fraction α of the mining power, where
α < 0.5, since otherwise she could double-spend by herself at will. The remaining
network consists of k mining entities controlling a fraction β = 1−α of the mining
power. Thus, each mining entity i controls a fraction βi such that

∑k
i=1 βi = β.

Miners mine blocks according to a Poisson process with rate λ, which also
remains constant. Further, the propagation of new blocks to the network is
instantaneous. Thus, the passage of time is a discrete-time process marked by
block creation events on either of the original branch or Alice’s branch. The
reward for mining a block on the original branch is 1; the reward for mining a
block on Alice’s branch is δ +1, where δ is the block reward premium offered by
the whale transaction. Throughout the rest of this paper, when we refer to the
value of whale transactions, we are referring to the transaction fee δ.

Following each block creation event, each mining entity, including Alice,
makes a new rational decision that will be pursued until the next block cre-
ation event. More specifically, Alice makes a rational decision for whether to
continue the attack or reset the attack. Similarly, once whale transactions are
underway, each mining entity i makes a binary rational decision for γi ∈ {0, 1}
of whether to honest mine (γi = 0) or whale mine (γi = 1).

At this point, the remaining network β can be further divided into two parti-
tions: whale miners and honest miners. More formally, a fraction q = α+

∑k
i=1 γi·

βi of the mining power is devoted to whale mining, in other words, extending
Alice’s branch. On the other hand, a fraction p =

∑k
i=1(1 − γi) · βi = 1 − q of

the mining power is devoted to honest mining, in other words, extending the
original branch.

The whale attack is carried out in two phases: the pre-mining phase and the
race phase. An algorithm for the attack is fully specified in Appendix A.

Pre-mining Phase. In this phase, Alice surreptitiously forks the blockchain,
issues a pair of conflicting double-spend transactions (txB to Bob and txA to
herself), and then singly mines on her private branch until txB has reached n
confirmations, at which point Bob will disburse the merchandise. Note that Alice
will neither reveal her private branch nor issue whale transactions before Bob
disburses the merchandise, since either action could dissuade Bob from doing so.

To initiate the attack, while Alice need only mine one block to begin her
private branch, Sompolinsky and Zohar present the pre-mining [16] strategy, by
which Alice could, in theory, mine n + 1 blocks prior to double-spending. Thus,
the attack would succeed with probability 1. Since this may take a long time to
achieve (depending on the desired n), the assumption is that Alice can freely
choose when to purchase merchandise from Bob. While we aver that this is a
plausible assumption in practice, Alice can alternatively pre-mine fewer blocks
to carry out the attack with a lower success probability. Regardless, Sompolinsky
and Zohar also point out that Alice can employ selfish mining strategies [5] to
gain while pre-mining.

Incentivizing Blockchain Forks via Whale Transactions 269

Suppose Alice aims to pre-mine l ∈ N : 1 ≤ l ≤ n + 1 blocks more than the
original branch before issuing txB. Alice embeds txA in the first block she mines
ahead of the original branch, which marks the start of a new “attempt.” In any
attempt, if the original branch overtakes Alice’s branch in length, she accepts
the original branch and resets to a new attempt. Otherwise, if Alice successfully
pre-mines l blocks more than the original branch, she issues txB on the original
branch.

Then, overloading Sompolinsky’s and Zohar’s definition of pre-mining, Alice
also singly mines m blocks on her private branch while waiting for txB to reach
n confirmations. In accordance with Rosenfeld’s analysis [15], the probability for
a given value of m is

P (m) =
(

m + n − 1
m

)

αmβn. (1)

Finally, once Bob disburses the merchandise, Alice publishes her heretofore pri-
vate branch containing m + l pre-mined blocks. If m + l ≤ n, in other words,
Alice’s branch is shorter than the original branch, then the attack transitions to
the race phase.

Race Phase. In this phase, Alice’s branch and the original branch enter into a
race. However, instead of continuing to singly mine on her branch, Alice issues
whale transactions (txW) on her branch, which offer a δ percentage increase
over the normal block reward. Although Alice can choose from several payout
strategies, we assume that she issues a new txW in each block on her branch until
the attack succeeds. This allows for a more consistent proportion of whale mining
power in the network, since mining entities persistently contend for txW fees
throughout the race phase (see Sect. 3 for more details about our assumptions).

The race phase can be modeled as a biased random walk. The initial state is
z = n− (m+ l), where z is the lead of the original branch. In each block creation
step, z increases by 1 with probability p and z decreases by 1 with probability
q, where p and q are the mining powers devoted to honest mining and whale
mining, respectively. Again, in accordance with Rosenfeld’s analysis [15], the
probability that z reaches the absorbing state −1, in other words, Alice’s branch
becomes longer than the original branch, as a function of p, q,and z is

az = min(q/p, 1)max(z+1,0) =

{
1 if z < 0 or q > p

(q/p)z+1 if z ≥ 0 and q ≤ p.
(2)

As z increases, the probability that the attack succeeds decreases and the attack
may become intractable. For this reason, Alice can choose to cut off the attack
when z reaches zlim. This is then analagous to the Gambler’s Ruin problem.

While it would be interesting to analyze the cost of the attack given various
success probabilities, we are more interested in the expected cost to carry out the
whale attack with success probability 1. This allows us to determine if the whale
attack is worthwhile, without having to make any assumptions about Alice’s risk
tolerance or the liquidity of the purhased merchandise should the attack fail.

270 K. Liao and J. Katz

2.1 Assumptions

We make a number of simplifying assumptions and explain their rationales here,
as well as enroute of the analysis (Sect. 3). Granted, these assumptions may
differ in practice and could dramatically change (in most cases reduce) the cost
of the attack. However, we believe that an informal upper bound on the cost of
a successful attack is enough to substantiate whether or not the whale attack
is worthwhile in practice. That being stated, we also leave these assumptions as
points of discussion in Sect. 4.

1. Mining entities consider at least their own mining power and Alice’s mining
power when making rational decisions. We make minimal assumptions about
the sophistication of mining entities in evaluating their profits. We simply
assume that each mining entity considers its own mining power and Alice’s
mining power. This serves to establish an upper bound on the cost, since by
underestimating whale mining power, the cost of the attack is overestimated.
Additionally, this simplifies matters, since if some miner A finds it profitable
to whale mine, then some other miner B might find it profitable to whale
miner under the assumption A whale mines, and so on with the other pools.
Thus, this assumption precludes such a “cascading” effect, which is difficult
to model.

2. Mining entities are not “sticky.” When mining entities mine a whale block,
they will not simply “stick” to whale mining for the remainder of the attack.
Instead, they continue to make new rational decisions following each block
event, without taking into consideration their prior earnings. This memory-
lessness property, again, simplifies matters.

3. Mining entities will choose the more profitable (even marginally) mining strat-
egy. We later determine strict lower bounds for the value of whale transactions
δ that will incentivize some subset of rational pools to whale mine. As long
as δ is marginally sufficient, these pools will choose to whale mine.

4. Whale mining power is kept constant throughout the race phase. Instead of
keeping the values of whale transactions constant throughout the attack, Alice
keeps whale mining power constant by issuing appropriate whale transactions
in each block on her branch. Although alternative strategies exist, such as
keeping δ constant, this strategy allows her to better predict the number of
blocks it will take for the attack to succeed, since the race phase can then be
modeled as a steady state stochastic process.

5. Alice issues whale transactions in every block on her branch until the attack
succeeds. Since mining entities always make new rational decisions following
each block event, Alice issues whale transactions until her branch is longer
than the original branch. This implies that she never cuts off the attack
(zlim = ∞) and that her budget is unbounded. Since this is a strong assump-
tion, we are only interested in scenarios where whale mining power constitutes
a majority of mining power in the network.

Incentivizing Blockchain Forks via Whale Transactions 271

3 Analysis

We now establish informal upper bounds on the expected cost to carry out the
whale attack with success probability 1. Since Alice’s profit is contingent on the
value of the double-spend being greater than the sum of the whale transactions,
the main questions we are trying to answer are “How large do whale transactions
need to be?” and “How many whale transactions are needed?”

3.1 How Large Do Whale Transactions Need to Be?

The first step in evaluating the cost of the whale attack is to determine what
values of whale transactions δ are appropriate for incentivizing a desired propor-
tion of the network to whale mine. To do this, we examine the decision problem
faced by a rational mining entity m.

Suppose m has mining power βm and decides to honest mine (γm = 0).
This means that m receives block rewards only if the whale attack fails.
From Eq. 2, the probability that the whale attack fails is equal to 1 − az =
1 − min(q/p, 1)max(z+1,0). Recall that whale mining power q = α +

∑k
i=1 γi · βi.

Since Alice singly whale mines, q = α. Then, honest mining power p is simply
equal to 1 − q = β. Conditioned on the whale attack failing, m receives block
rewards with probability βm/p. It follows that m’s profit when honest mining is
given by

πm(α, βm, γm = 0, δ = 0, z) =
(1 − az) · βm

p
=

(
1 −

(
α
β

)z+1)
· βm

β
. (3)

On the other hand, suppose m decides to whale mine (γm = 1). This means
that m receives block rewards only if the whale attack succeeds. The probability
that the whale attack succeeds is az = min(q/p, 1)max(z+1,0), where q = α + βm

and p = 1−q = β −βm. Conditioned on the whale attack succeeding, m receives
block rewards with probability βm/q. Recall that the normal block reward is 1
and the whale block reward is δ+1. It follows that m’s profit when whale mining
is given by

πm(α, βm, γm = 1, δ, z) =
az · βm

q
· (δ + 1) =

(
α+βm

β−βm

)z+1

· βm

α + βm
· (δ + 1). (4)

By rationality, m will choose γi ∈ {0, 1} that maximizes its profit πm. Clearly,
as long as πm(α, βm, γm = 1, δ, z) > πm(α, βm, γm = 0, δ = 0, z), in other words,
Eq. 4 is greater than Eq. 3, then m will choose to whale mine. We can then solve
for δ to determine what values of whale transactions make whale mining more
profitable.

δ >

(
1 −

(
α
β

)z+1)

β
· α + βm
(

α+βm

β−βm

)z+1 − 1, (5)

which is equivalent to

272 K. Liao and J. Katz

δ >
Pr[whale attack fails | γm = 0]

Pr[honest block | γm = 0]
· Pr[whale block | γm = 1]
Pr[whale attack succeeds | γm = 1]

− 1.

The table in Appendix B provides values for δ, as functions of α and βm.
We now point out several insights from Eq. 5 and Appendix B. First, we see

that, in terms of cost, larger mining entities are more easily bribed into whale
mining. In fact, as z approaches −1, m may choose to whale mine regardless
of whether or not there are whale transactions on Alice’s branch. An intuitive
explanation for this is that, from m’s perspective in accordance with Assump-
tion 1, it earns a larger proportion of the block rewards on Alice’s branch as long
as honest mining power is greater than whale mining power. Thus, as the whale
attack becomes more likely to succeed, the expected profit in whale mining for
a larger proportion of the block reward becomes greater than that of honest
mining and being left empty-handed should the whale attack succeed.

Second, if we convert Eq. 5 into a function f(α) and we differentiate with
respect to α, we see that f(α) is strictly decreasing in the interval α ∈ [0, 0.5).
This insight is rather straightforward and tells us that increasing Alice’s mining
power α will decrease the cost of the whale attack. Similarly, if we convert Eq. 5
into a function f(βm), and differentiate with respect to βm, we see that f(βm) is
strictly decreasing in the interval βm ∈ [0, 0.5). This means that if whale mining
is profitable for m, then whale mining is profitable for all mining entities with
mining power greater than or equal to βm.

Now, it becomes more clear why Assumption 1 induces an “upper bound” on
the cost. By the latter insights, if it is profitable for m to whale mine, then mining
entities larger than m will also whale mine. From m’s perspective, considering
that larger entities will whale mine has the same effect as if Alice were to increase
her mining power, which we already know decreases δ. Regardless, this does not
affect m’s decision, since whale mining remains the rational strategy.

3.2 How Many Whale Transactions Are Needed?

The next step in evaluating the cost of the whale attack is to determine how
many whale transactions are expected to guarantee that the attack succeeds.
Referring back to our assumptions, Alice will keep whale mining power constant
by issuing appropriate whale transactions δ in each block, and she will continue
doing so until her branch is longer than the original branch. Setting aside the
assumption that Alice never cuts off the attack for a moment (Assumption 5),
the race phase we propose in Sect. 2, in which Alice chooses a finite cutoff for
the attack zlim, is analagous to the Gambler’s Ruin problem.

To recap, the initial state in the race phase is the lead of the original branch
over Alice’s branch z. Then, z decreases by 1 with probability q, which is the
proportion of whale mining power, and increases by 1 with probability p = 1−q,
which is the proportion of honest mining power. Alice’s goal is to reach the
absorbing state z = −1, before reaching the absorbing state z = zlim, at which
point she becomes ruined. Although, if Alice becomes ruined, the only costs
incurred are the forgone block rewards she could have received mining honestly,
not the whale transactions.

Incentivizing Blockchain Forks via Whale Transactions 273

Alternatively, we can define the initial state as zlim and the absorbing states
as 0 and S = zlim + z + 1. Thus, we can calculate the expected number of steps
(block creation events) before we hit an absorbing state using

E(zlim, z) =

{
zlim

1−2q − S
1−2q · (p

q)
zlim−1

(p
q)

S−1
if p �= 0.5

zlim · (z + 1) if p = 0.5.
(6)

Then, extending this back to Assumption 5, which stipulates that Alice never
cuts off the attack until it succeeds, is simple.

lim
zlim→∞ E(zlim, z) =

{
z+1
2q−1 if p �= 0.5
∞ if p = 0.5.

(7)

The expected number of whale transactions is then

lim
zlim→∞ E(zlim, z)

2
+ z + 1, (8)

since Alice only issues whale transactions in blocks on her own branch.
Now that we have established an informal upper bound on appropriate values

for whale transactions and have calculated the number of whale transactions
expected, the ultimate question we are trying to answer is “How much does the
whale attack cost?” Given the complexity of posing an analytical result for this
question, we determine the cost of the attack by simulation. Before we detail our
simulations, here are a number of considerations on the cost of the attack.

First, consider that Alice reclaims her own whale transactions with probabil-
ity α

q , which is reflected in our simulations. Second, to interpret our results, recall
that δ is a lower bound on the value of whale transactions for whale mining to
be more profitable. Thus, the cost of the attack is marginally more than the sum
of the whale transactions in our simulations. Finally, recognize that the whale
attack being profitable is different from it being rational. The whale attack is
rationally worthwhile for Alice only if the difference between the double-spend
txB and the cost of the attack is greater than what Alice would have earned
simply by honest mining. However, do consider that Alice reaps all of the block
rewards from her m + l pre-mined blocks.

3.3 Simulation

We model the snapshot of the Bitcoin network shown in Appendix C and we rep-
resent Alice by the largest pool in the network (α = 0.188). As aforementioned,
we are interested in the expected cost to carry out the attack with success prob-
ability 1, so we only consider cases in which the whale mining power q > 0.5. For
example, we run simulations issuing appropriate δs, such that all pools as large
as BTCC Pool will whale mine, to get q = 0.532. Similarly, we run simulations
issuing appropriate δs, such that pools as large as BW.COM will whale mine,
to get q = 0.670, and so on. The table in Appendix D presents the cost of the
whale attack in terms of δ under different parameters of q and z.

274 K. Liao and J. Katz

4 Discussion

Our simulations return a number of interesting results. Immediately, we can see
the impact that pre-mining has on the cost of the whale attack. As Sompolinsky
and Zohar have mentioned, while the l blocks pre-mined before even issuing txB

may take a long time, as long as Alice controls the timing of the attack and
employs selfish mining strategies, mining these l blocks need not be costly [16].
Then, once txB has been issued, Alice can mine m more blocks on top of the l
guaranteed blocks before txB reaches n confirmations to further reduce costs.

Next, we see that centralization of mining increases the venality of the net-
work. As shown in Sect. 3.1, larger pools are more easily bribed than smaller
pools. In our simulation, the three largest pools, which includes Alice, already
combine for a majority of whale mining power. Since q = 0.532 is only slightly
above a majority, the cost of the attack is exorbitant. However, simply adding
the fourth largest pool for q = 0.670 dramatically reduces the cost of the attack.
Observing the table in Appendix D for z = 6, we see that Alice’s cheapest
option is to aim for q = 0.764. Attempting to bribe the smaller pools, which
would allow z to converge faster, would not be cost efficient. Now, consider if
mining was completely decentralized, and the largest pools wielded less than
0.01 of the mining power—the whale attack would be incredibly costly in our
model.

Finally, consider that Alice only wields α = 0.188 of the mining power in our
simulations. In the past, mining pools have enjoyed much larger shares of mining
power, even exceeding a majority on several occasions. Observing the table in
Appendix B, we can see that a larger attacker could dramatically reduce the cost
of the attack. Thus, we aver that α = 0.188 is modest in comparison, and even
so, the whale attack need not require an intractable amount of capital. Taking
this a step further, our assumptions from Sect. 3, already induce an upper bound
on the cost. We address these assumptions below, and discuss how they might
differ in practice.

Assumption 1. We briefly discussed this in Sect. 3, but a more sophisticated min-
ing entity who considers the decisions of other mining entities could dramatically
lower the necessary δ for whale mining to be rational. In practice, cooperative
mining entities would achieve similar effects, since they could certainly account
for each other’s mining power when evaluating the profits.

Assumption 2. In practice, if a mining entity mines a large whale block, it would
likely be in its best interest to “stick” to whale mining. Consider that it may
even be rational to issue their own smaller whale transactions to ensure the
success of Alice’s branch. From Alice’s perspective, the best case (other than if
she were to reclaim every whale transaction) would be to have different mining
entities each mine a single whale block. If these entities combine for a majority
of whale mining power, it is probable that further whale transactions would not
be needed at all. Our model assumes the worst case, in which some negligibly
sized mining entity miraculously receives 1−α

q of the rewards, thus rendering the
other mining entities “unsticky.”

Incentivizing Blockchain Forks via Whale Transactions 275

Assumption 3. In practice, a marginal profit for whale mining over honest min-
ing may not be sufficient, and we would need to consider the “cost of deviation.”

Assumption 4. In practice, it is not necessary for Alice to keep whale mining
power consistent, especially if Alice does not require that the whale attack suc-
ceed with probability 1. Perhaps if the purchased merchandise is quite liquid,
having the attack fail with nonzero probability would not be a tremendous set-
back.

Assumption 5. As we mentioned before in addressing Assumption 2, there are
cases in which it would not be necessary to issue whale transactions until the
attack is completed. Additionally, Alice might also choose a finite cutoff for zlim,
since continuing the whale attack would not be rational if the attack unluckily
takes longer than expected.

Our work is primarily a proof-of-concept for the whale attack being feasible
for a minority attacker, and we leave open the challenges of modeling the cost
of the attack more precisely and exploring the strategy space when combining
the whale attack with other mining attacks.

5 Conclusion

Cryptocurrencies fail to fit into established theoretical frameworks for secure dis-
tributed systems. Instead, their security relies on the assumption that a majority
of miners, as measured by their computational resources, will behave honestly. In
this regard, researchers have uncovered many deviant mining strategies, which
reveal evident security gaps in a rational setting. In this work, we presented
the whale attack, in which a minority attacker increases her chances of double-
spending by incentivizing rational miners into colluding. Moreover, we demon-
strated that such an attack is feasible, even when the attacker wields a modest
amount of mining power and capital. While Nakamoto consensus has been a
stopgap to the issue of double-spending, we showed that as currently prescribed,
it is by no means a panacea.

Acknowledgments. We thank Elijah Soriah and Andrew Miller for their valuable
feedback, and the faculty and students of the CAAR REU program for the wonder-
ful experience. This work is funded by NSF Research Experience for Undergraduates
(REU) Grant CNS-1560193.

276 K. Liao and J. Katz

A Whale Attack Algorithm

Algorithm 1. Whale Attack
1: procedure Reset
2: original branch ← longest branch
3: Alice branch ← longest branch
4: l count ← 0 � len(Alice branch) − len(original branch).
5: Issue txA on Alice branch.
6: Mine at head of Alice branch.

7: procedure Pre-mine(l, n)
8: Reset
9: while l count < l do

10: new block ← Listen � Listen for block creation event.
11: if new block on Alice branch then
12: l count ← l count + 1
13: else if l count = 0 then � len(Alice branch) < len(original branch).
14: Reset
15: else � len(Alice branch) ≥ len(original branch).
16: l count ← l count − 1

17: Issue txB on original branch.
18: n count ← 0
19: m ← 0

20: while n count < n do
21: new block ← Listen
22: if new block on Alice branch then
23: m ← m + 1
24: else
25: n count ← n count + 1

26: Publish Alice branch.
27: if m + l ≤ n then � len(Alice branch) ≤ len(original branch).
28: Race (n − (m + l))

29: procedure Race(z)
30: Issue new txW on Alice branch.
31: while z > −1 do
32: new block ← Listen
33: if new block on Alice branch then
34: z ← z − 1
35: Issue txW j on Alice branch.
36: else if z = zlim − 1 then � Cut off attack.
37: Reset
38: else
39: z ← z + 1

B Full Table for Sufficient Values of Whale Transactions

See Tables 1, 2 and 3.

Incentivizing Blockchain Forks via Whale Transactions 277

Table 1. The value of δ (whale attack premium) that makes whale mining more
profitable than honest mining, as a function of the lead of the original branch at the
start of the race phase z, Alice’s mining power α (rows), and m’s mining power βm

(columns). For z = 0, δ is always equal to 0.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

z = 6

0.05 47045879.95 503469.42 29624.20 3448.26 574.53 117.91 27.07 6.19 0.93 0

0.10 531439.89 31270.04 3639.89 606.50 124.52 28.63 6.59 1.04 0 0

0.15 33109.34 3854.04 642.23 131.90 30.37 7.04 1.16 0 0 0

0.20 4094.75 682.40 140.20 32.33 7.54 1.29 0 0 0 0

0.25 727.67 149.56 34.54 8.11 1.44 0 0 0 0 0

0.30 159.96 37.00 8.74 1.61 0 0 0 0 0 0

0.35 39.49 9.38 1.78 0 0 0 0 0 0 0

0.40 9.72 1.88 0 0 0 0 0 0 0 0

0.45 1.52 0 0 0 0 0 0 0 0 0

z = 5

0.05 2476097.95 55940.16 5226.98 861.32 190.84 49.96 14.12 3.80 0.58 0

0.10 59047.89 5517.41 909.22 201.50 52.79 14.95 4.06 0.67 0 0

0.15 5841.86 962.74 213.41 55.96 15.89 4.36 0.76 0 0 0

0.20 1022.75 226.76 59.50 16.95 4.69 0.87 0 0 0 0

0.25 241.67 63.47 18.12 5.07 1.00 0 0 0 0 0

0.30 67.74 19.39 5.47 1.13 0 0 0 0 0 0

0.35 20.55 5.84 1.25 0 0 0 0 0 0 0

0.40 5.93 1.28 0 0 0 0 0 0 0 0

0.45 0.91 0 0 0 0 0 0 0 0 0

z = 4

0.05 130319.95 6214.68 921.58 214.58 62.95 20.84 7.14 2.20 0.29 0

0.10 6559.89 972.82 226.55 66.50 22.05 7.59 2.37 0.36 0 0

0.15 1029.95 239.90 70.46 23.41 8.09 2.57 0.44 0 0 0

0.20 254.75 74.86 24.91 8.66 2.79 0.53 0 0 0 0

0.25 79.67 26.55 9.27 3.03 0.63 0 0 0 0 0

0.30 28.21 9.89 3.28 0.73 0 0 0 0 0 0

0.35 10.36 3.46 0.80 0 0 0 0 0 0 0

0.40 3.40 0.78 0 0 0 0 0 0 0 0

0.45 0.41 0 0 0 0 0 0 0 0 0

z = 3

0.05 6857.95 689.63 161.81 52.89 20.32 8.36 3.38 1.13 0.06 0

0.10 727.89 170.83 55.88 21.50 8.88 3.63 1.25 0.12 0 0

0.15 180.79 59.18 22.80 9.45 3.89 1.38 0.18 0 0 0

0.20 62.75 24.21 10.07 4.18 1.52 0.25 0 0 0 0

0.25 25.67 10.71 4.48 1.67 0.32 0 0 0 0 0

0.30 11.28 4.75 1.80 0.39 0 0 0 0 0 0

0.35 4.87 1.85 0.42 0 0 0 0 0 0 0

0.40 1.71 0.34 0 0 0 0 0 0 0 0

0.45 0.01 0 0 0 0 0 0 0 0 0

z = 2

0.05 359.95 75.72 27.73 12.47 6.10 3.01 1.36 0.42 0 0

0.10 79.89 29.29 13.20 6.49 3.23 1.49 0.50 0 0 0

0.15 30.93 13.98 6.90 3.46 1.62 0.58 0 0 0 0

0.20 14.75 7.31 3.69 1.76 0.66 0.01 0 0 0 0

0.25 7.67 3.89 1.88 0.73 0.05 0 0 0 0 0

0.30 4.02 1.95 0.78 0.08 0 0 0 0 0 0

0.35 1.91 0.75 0.07 0 0 0 0 0 0 0

0.40 0.58 0 0 0 0 0 0 0 0 0

0.45 0 0 0 0 0 0 0 0 0 0

z = 1

0.05 17.95 7.50 4.06 2.36 1.36 0.71 0.27 0 0 0

0.10 7.89 4.29 2.51 1.47 0.79 0.32 0 0 0 0

0.15 4.49 2.65 1.56 0.86 0.38 0.03 0 0 0 0

0.20 2.75 1.64 0.91 0.41 0.05 0 0 0 0 0

0.25 1.67 0.94 0.43 0.07 0 0 0 0 0 0

0.30 0.90 0.41 0.05 0 0 0 0 0 0 0

0.35 0.32 0 0 0 0 0 0 0 0 0

0.40 0 0 0 0 0 0 0 0 0 0

0.45 0 0 0 0 0 0 0 0 0 0

278 K. Liao and J. Katz

C Bitcoin Mining Distribution Snapshot

Table 2. Distribution of mining power among the ten largest pools (95% of the net-
work) from July 30-August 2, 2016 (Source: https://blockchain.info/pools).

AntPool F2Pool BTCC Pool BW.COM BitFury

18.8% 18.2% 16.2% 13.8% 9.4%

HaoBTC SlushPool ViaBTC BitClub Net Kano CKPool

6.4% 5.9% 4.4% 3.7% 3.1%

D Simulated Cost of Whale Attack

Table 3. The simulated attack cost (sum of δs) under different parameters of the whale
mining power q and the lead of the original branch at the start of the race phase z.
The values shown are averages across 106 simulations for each pair of q and z.

q 6 5 4 3 2 1 0

0.532 2.93e+23 3.09e+22 8.03e+21 1.10e+22 2.57e+24 2.50e+21 4.40e+20

0.670 999.79 464.74 307.71 267.72 56.09 17.64 3.63

0.764 768.09 291.86 109.89 40.16 12.73 2.48 0

0.828 1265.14 417.85 135.80 42.32 11.60 1.65 0

0.887 1205.00 390.63 123.93 37.23 9.46 1.00 0

0.931 1806.67 540.75 159.34 44.66 10.69 1.12 0

0.968 2178.58 628.13 178.19 48.29 11.23 1.15 0

0.999 2598.64 723.92 198.92 52.33 11.89 1.22 0

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
2. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-

sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

3. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint.
arXiv:1112.4980 (2011)

4. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
pp. 89–103. IEEE (2015)

https://blockchain.info/pools
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arxiv.org/abs/1112.4980

Incentivizing Blockchain Forks via Whale Transactions 279

5. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

6. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

7. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. arXiv preprint. arXiv:1507.06183 (2015)

8. Bonneau, J.: Why buy when you can rent? Bribery attacks on bitcoin-style con-
sensus. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M.,
Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 19–26. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 2

9. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

10. Möser, M., Böhme, R.: Trends, tips, tolls: a longitudinal study of bitcoin transac-
tion fees. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015.
LNCS, vol. 8976, pp. 19–33. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48051-9 2

11. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013. Citeseer (2013)

12. Houy, N.: The economics of bitcoin transaction fees. In: GATE WP, vol. 1407
(2014)

13. Kaskaloglu, K.: Near zero bitcoin transaction fees cannot last forever (2014)
14. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of

bitcoin without the block reward. In: ACM Conference on Computer and Commu-
nications Security (2016)

15. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint.
arXiv:1402.2009 (2014)

16. Sompolinsky, Y., Zohar, A.: Bitcoin’s security model revisited. arXiv preprint.
arXiv:1605.09193 (2016)

https://doi.org/10.1007/978-3-662-45472-5_28
http://arxiv.org/abs/1507.06183
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-54970-4_29
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1007/978-3-662-48051-9_2
http://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1605.09193

Mixing Coins of Different Quality:
A Game-Theoretic Approach

Svetlana Abramova1,2(B), Pascal Schöttle1, and Rainer Böhme1,2

1 University of Innsbruck, Innsbruck, Austria
{svetlana.abramova,pascal.schoettle,rainer.boehme}@uibk.ac.at

2 University of Münster, Münster, Germany

Abstract. Cryptocoins based on public distributed ledgers can differ
in their quality due to different subjective values users assign to coins
depending on the unique transaction history of each coin. We apply game
theory to study how qualitative differentiation between coins will affect
the behavior of users interested in improving their anonymity through
mixing services. We present two stylized models of mixing with perfect
and imperfect information and analyze them for three distinct quality
propagation policies: poison, haircut, and seniority. In the game of per-
fect information, mixing coins of high quality remains feasible under cer-
tain conditions, while imperfect information eventually leads to a mixing
market where only coins of the lowest quality are mixed.

Keywords: Bitcoin · Anonymity · Blacklisting · Policy · Game theory

1 Introduction

While public distributed ledgers serve as an essential backbone of many cryp-
tocurrencies, they inherently act as a source of differentiation of coins by qual-
ity. Indeed, each individual unspent transaction output has its unique history
recorded with cryptographic integrity protection in the public distributed ledger.
Having the entire history publicly available makes cryptocoins non-fungible, that
means distinguishable from each other in terms of the perceived quality. Coins
generated in the genesis block or passed through credible exchanges might be
more attractive to someone over coins whose transaction history contains pat-
terns suggesting dubious activities in the past [17].

The traceability offered by public distributed ledgers has called the
anonymity of financial transactions into question. For example, the most popu-
lar cryptocurrency, Bitcoin, was initially spoken of as a truly anonymous pay-
ment method. However, many studies [4,16,23,24] have shown that the public
blockchain infringes user privacy. In efforts to impede simple blockchain analyses,
privacy-concerned users can cooperate with each other and mix their payments
in a single transaction instead of sending multiple individual transactions. Many
cryptocurrency protocols support such collective transactions, to which we refer
here as mixing transactions. In general, mixing can be thought of as a privacy-
enhancing overlay [15], which makes money flows more difficult to trace [33].
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 280–297, 2017.
https://doi.org/10.1007/978-3-319-70278-0_18

Mixing Coins of Different Quality: A Game-Theoretic Approach 281

If the history of transactions matters to users, mixing coins of good and bad
quality in one single transaction bears the risk that good coins are exchanged
for worse ones. A simple example of this would be a multi-input transaction,
some inputs of which can be traced back to darknet markets or ransomware
payments. Such a transaction may come under scrutiny of law enforcement as a
payment possibly made by or to a criminal. Moreover, in the name of prevent-
ing financial crime, regulators may enforce transaction blacklisting. Although
blacklisting is not explicitly implemented today, its ideas are already present in
the Bitcoin system in various forms. For example, some wallet providers and
exchanges allegedly denied or delayed transactions which tried to spend stolen
funds or could be linked to darknet markets [5,12]. So, blacklists are one possible
source of qualitative differentiation between coins.

Whenever coin quality matters, each downstream transaction must not lead
to the loss of information about the quality of newly generated outputs. Rather,
we must assume that some sort of a quality propagation policy is in place to allow
for situations when coins of different quality are combined in one transaction. If
qualitative differentiation between coins becomes common practice and a specific
policy takes effect, users will always have to account for the risk of receiving coins
of lower quality. As this risk is especially amplified in the context of mixing, it is
of particular interest to analyze how participants of mixing services will behave
in these circumstances. Will they be willing to engage in mixing and, if yes,
under what conditions? Will the market for mixing services persist after all?

Contributions. We apply game theory to study this scenario and formalize the
game of mixing coins of different quality. Besides addressing the quality prop-
agation effect, the model captures two main factors behind users’ intentions to
mix: privacy enhancement and financial compensation. While distinct propaga-
tion policies have been proposed in the literature, they are of limited value to
both practice and research if their system-wide implications are not theoretically
analyzed. To this end, we make several relevant contributions. Specifically, we
devise a variant of the game for each policy and solve it under two regimes of per-
fect and imperfect information. This allows us to discuss the policy implications
from the design perspective of distributed ledger protocols and simultaneously
provide theoretical support for arguments brought into the debate around fun-
gibility and privacy.

The remainder of the paper is organized as follows. Using Bitcoin as a promi-
nent example, we begin with preliminaries on cryptocurrencies, mixing transac-
tions and propagation policies in Sect. 2. Then, in Sects. 3 and 4, we present and
theoretically analyze the game for each introduced policy. The practical impli-
cations are discussed in Sect. 5. We briefly review related work in Sect. 6 and
conclude with limitations and future research in Sect. 7.

2 Preliminaries

We use Bitcoin as running example, noting that the problem definition and
solution approaches generalize to most cryptocurrencies known to date [7].

282 S. Abramova et al.

Bitcoin is a decentralized system that maintains a public, append-only ledger
of confirmed transactions (known as the “blockchain”) through collective efforts
of a peer-to-peer network running a probabilistic consensus protocol [21]. Bitcoin
addresses generated from public keys serve as account identifiers, whereas the
knowledge of private keys indicates ownership of accounts and control over the
coins in them. As no real-world identity is required to generate key pairs, each
user may autonomously create an arbitrary number of Bitcoin addresses.

The blockchain stores a log of all valid transactions ever made in Bitcoin.
A transaction is a digital record that consists of a list of inputs – references to
existing addresses in the blockchain with a positive balance, and a list of outputs
– addresses to which specified numbers of bitcoins are sent. Bitcoin is designed
in a way that the total value of the inputs has to be spent in the outputs of a
transaction. Otherwise, the difference is considered as a fee and paid to special
nodes in the network (miners), who validate transactions and ensure a consistent
and manipulation-resistant state of the blockchain.

2.1 Coin Mixing

A common thread of criticism of Bitcoin is the lack of full anonymity of payments
[16]. With blockchain exploration tools at hand, one can browse through the com-
plete transaction history and trace money flows back to their origins. Further-
more, experimental analyses of the limits of anonymity in Bitcoin [4,16,23,24]
show that some users can be deanoynmized by applying appropriate heuristic
techniques and consulting external information. Once a real name behind an
address is found, the user’s privacy might be jeopardized, as the blockchain
allows a passive observer to look up other linked transactions [6]. Besides avoid-
ing the re-use of public addresses, individuals seeking for greater anonymity may
use available mixing services.

The concept of mixing coins of different users is fairly straightforward. Here,
it refers to combining inputs and outputs of multiple parties in a single trans-
action. The current implementation of the protocol enables to build such col-
laborative transactions as it requires separate signatures for each public key
specified in the transaction’s inputs. With a sufficient number of participants
engaged in a mixing transaction, it becomes harder to trace money flows by
finding the connections between sending and receiving addresses. By extension,
it gets even more difficult if mixing is done repeatedly. Nevertheless, individual
values of inputs and outputs may still reveal enough information for a successful
untangling of the transaction’s inner flows [33].

The idea of and practical need for mixing has given rise to the emergence
of special services and marketplaces designed to match supply and demand of
anonymous transactions [17]. Here, we limit our focus on CoinJoin, as one spe-
cific example present in the Bitcoin system. In its simplest case, a CoinJoin
transaction aggregates two or more inputs from two different users and contains
at least two outputs of equal value. So, a blockchain observer cannot directly
link these two outputs to the sending Bitcoin addresses. The larger the number
of participants, the greater the anonymity of a CoinJoin transaction. However,

Mixing Coins of Different Quality: A Game-Theoretic Approach 283

users interested in anonymity suffer from the necessity of finding other part-
ners who are willing to participate in mixing at the same time. This limitation
explains the presence of special mixing services and platforms [17], where indi-
viduals supply their bitcoins for use in mixing transactions in exchange for a
small mixing fee.

2.2 Sources of Qualitative Differentiation

In addition to applications like colored coins [25] or possible cross-chain mixing
in the future, black- and whitelisting are potential sources of qualitative differen-
tiation between coins. For the sake of intuitive illustration, we nonjudgementally
refer to blacklisting in this paper in order to model coins of different quality.

Although not fully implemented today, potential blacklisting of criminal
transactions as well as the issue of fungibility are subjects of intense interest
and ongoing debates. Since each output has an accessible and cryptographically
verifiable history of ownership, Bitcoin is not fungible. Also, the market partic-
ipants’ convention to treat bitcoins as if they were fungible has been repeatedly
called into question. Statements published on Bitcointalk.org and relevant sub-
reddit threads [5,30] illustrate this point:

“Looking to buy an old 50 BTC block. Where to buy? I’ll pay in bitcoin.
No FIAT/Alt coin. Willing to pay premium.”

blockCollector, Nov 11, 2015
“BitPay is blacklisting certain bitcoins & rejecting customers. I’m certain
others are doing it too. Fungibility is most pressing issue IMO.”

TraderSteve, Sep 25, 2015
These examples support the conjecture underlying this work that coins differ

in their quality. Transaction blacklisting followed by the devaluation of marked
bitcoins has been suggested as a conceivable means of fighting financial crime
[19,20]. In practice, this may be realized by enforcing the centralized actors
(e.g., exchange services or wallet providers) or, alternatively, miners to consult
blacklists and disregard those transactions that try to reclaim funds from crim-
inal proceeds. The notorious story of a recently exploited vulnerability in the
Decentralized Autonomous Organization (DAO), an Ethereum-based program,
has clearly demonstrated the doubtfulness and disagreement in the community
regarding how issues related to illicit use should be resolved and who would bear
the burden of doing it [27].

Several obstacles impede the effectiveness of blacklisting as a policy tool.
First, perpetrators can disguise the origins of money by resending their dirty
coins through as many fake addresses as they need. Therefore, the application of
blacklisting has to propagate through the entire transaction graph, rooted at the
offending transaction. Second, as law enforcement takes time, ordinary users will
inevitably face a risk of receiving allegedly clean coins that might be blacklisted
by authorities later [20]. These facts call for a detailed elaboration of blacklisting
propagation mechanisms and their effects on the ultimate quality of coins. This
is especially crucial in case of multi-input transactions comprising of both high-
and low-quality inputs.

https://bitcointalk.org/

284 S. Abramova et al.

2.3 Quality Propagation Policies

We consider three basic propagation techniques, termed as the poison, haircut
and seniority policies [20], and assume that there is a consensus on one specific
policy, implemented in the client software. To demonstrate the application of a
propagation mechanism in each case, let us use an example of the transaction
graph depicted in Fig. 1. The transaction of interest Z references outputs of the
two preceding transactions X and Y . Suppose, the transaction X is discovered
to be a ransom payment and, consequently, all of its outputs are added to the
blacklist. Under the poison policy, every output of the transaction that has
at least one blacklisted predecessor is invalidated completely. Consequently, all
outputs of Z will be blacklisted.

Transaction X

In1

In2

Out1

Out2

3 BTC

2 BTC

4 BTC

Transaction Y

Out1In1
3 BTC

Transaction Z

In1

In2

Out1

Out2

1

3

2 BTC

2 BTC

Fig. 1. Example of the transaction subgraph in Bitcoin. Gray areas indicate that both
outputs of the transaction X are blacklisted.

The less drastic haircut policy dictates to devalue all outputs of a transac-
tion proportionally to the total amount of blacklisted coins in its inputs. Thus,
each output will contain an identical fraction of blacklisted coins, which is calcu-
lated as the fraction of the collective blacklisted value in the total transaction’s
input. Referring back to our example, both outputs of Z will have a partial
devaluation of their nominal worth (25%, to be precise). As Bitcoin is divisible
down to the smallest unit of one satoshi (worth 10−8 BTC), the haircut policy
requires a special rule regulating blacklisting of minimum values and prevent-
ing money laundering through multiple tiny outputs. Such rule may dictate, for
example, that the blacklisted value is rounded up to the full satoshi. (We ignore
this quantization effect in the rest of this paper.)

Under the seniority policy, the output order and amounts determine how
incoming blacklisted coins will be redistributed. Let us assume for simplicity that
blacklisted coins are propagated in the order of the output list in a transaction
(i.e., from top to bottom). Since the transaction X has one blacklisted input of
the value 1 BTC, its first output of nominal value 2 BTC will be devalued by
half. Similarly to the haircut policy and in contrast to the poison policy, the
seniority regime does not change the total sum of blacklisted coins.

Mixing Coins of Different Quality: A Game-Theoretic Approach 285

3 Model

Of particular interest for our study is to examine for each policy how users behave
if coins of different qualities can hypothetically be mixed in one transaction. For
that, we present two game-theoretic models of mixing, one with perfect and com-
plete information and one with imperfect and complete information. A game of
perfect information assumes that each player is aware of the prior actions chosen
by other players, whereas imperfect information implies uncertainty regarding at
least one move of another player. Complete information means that all players
know all players’ action sets and payoff functions [29, p. 136].

Two rational players A and B consider to transfer coins in a joint mixing
transaction. Player A is a privacy seeker who initiates a mixing transaction,
and B is a privacy provider who helps to establish a (minimum) anonymity set
by participating in this transaction. Each player is endowed with an unlimited
number of coins (i.e., transaction outputs) of different quality q ∈ [0, 1]. Coins
with q = 1 are not on the blacklist and referred to as “good” or “clean” (e.g.,
coins passed through trusted exchanges), whereas coins with q �= 1 are blacklisted
or “bad” coins that can be linked to criminal activities. The term (1 − q) can
be alternatively interpreted as a fraction of the coin that has been devalued
according to the applied policy.

The privacy seeker A desires more anonymity through mixing and pays player
B the mixing fee c � 1 as a reward for joining a transaction. We assume that the
fee for anonymity is payed out within the mixing transaction itself. Besides this
financial compensation, player B also benefits from anonymity, as the mixing
transaction anonymizes the identities of all participants. Player A selects (1+ c)
coins of quality qa, while player B chooses one coin of quality qb. So, the move of
player i is the choice of qi. In addition, the players have the outside strategy not
to engage in mixing at all, as both need to sign a mixing transaction before it
can be broadcasted to the network. Note that we explicitly disregard transaction
fees payed to miners and assume that each player transfers funds to (possibly
multiple) destination addresses under her control. Thus, players A and B own
afterwards funds of 1 and (1 + c) nominal value, respectively. The quality of
these funds may however change once a specific quality propagation policy takes
effect. We use the notation q′

a and q′
b to denote the respective post-transaction

quality factors.
In the presence of qualitative differentiation and everything else being con-

stant, a rational player always tries to maximize her own utility, which corre-
sponds in our setting to the maximization of the value of coins at disposal. The
utility of each player is therefore measured in units of good coins and expressed
by three relevant components: (1) the subjective value of anonymity the player
attributes to a mixing transaction; (2) the post-transaction value of the funds
held by the player; (3) the compensation fee paid by the privacy seeker A to the
privacy provider B. We first define each component and later specify the payoff
function of each player formally.

In reality, the perceived anonymity of an individual mixing transaction
depends on multiple aspects (e.g., the number of participants, the number of

286 S. Abramova et al.

inputs and outputs and their exact quantities, repeated mixing etc.). Since trans-
action parties value anonymity differently and it is not trivial to quantify it, we
express the benefit of (somewhat more) anonymity by a relative unit gain equal
to one good coin. Suppose, without loss of generality,1 that player A gains one
unit of anonymity, whereas player B gains some level τb ∈ [0, 1]. τb = 1 indicates
that both players value anonymity of a mixing transaction equally; τb = 0.5
means that player B values it half as much as player A; τb = 0 means that
player B receives no benefit in terms of improved anonymity from mixing. Note
that the gain in anonymity is discounted by the post-transaction qualities q′

a and
q′
b. There is less value in having bad coins anonymized. Moreover, this avoids

corner cases where players have incentives to mix at the risk of receiving bad
coins.

The post-transaction qualities endogenously follow from the choice variables
qa and qb and the applied quality propagation policy. Unlike the seniority policy,
the poison and haircut policies allow us to formally define q′

a and q′
b as a function

of the pre-transaction quality factors qa and qb. Under the poison policy, all coins
are either good (qi = 1) or bad (qi = 0). Table 1 specifies the values of q′

a and q′
b

for all possible combinations of qa and qb. Under the haircut policy, the levels of
q′
a and q′

b are equal and, besides the choice variables qa and qb, depend on the
parameter c. Since the fee (of quality qa) is transferred in the mixing transaction,
it influences the total transaction amount as well as the total level of blacklisted
coins in the inputs.

Table 1. Post-transaction quality factors

Policy qa qb q′
a q′

b

Poison

1 1 1 1

1 0 0 0

0 1 0 0

0 0 0 0

Haircut qa ∈ [0, 1] qb ∈ [0, 1] qa·(1+c)+qb
2+c

qa·(1+c)+qb
2+c

With regard to the last component of the payoff function, the mixing fee has
to be discounted by qa in the payoff of player A and by q′

b in the payoff of player
B in order to measure its value relatively to one clean coin. Thus, the players’
payoffs πi after successful mixing is given as follows:

πA = 1 · q′
a + 1 · q′

a − c · qa = 2 · q′
a − c · qa; (1)

πB = τb · q′
b + 1 · q′

b + c · q′
b = (τb + 1 + c) · q′

b. (2)

1 Otherwise, switch players A and B.

Mixing Coins of Different Quality: A Game-Theoretic Approach 287

If one of the players disagrees to mix and chooses the outside option, the payoffs
are as follows:

πA⊥ = 1 · qa + c · qa = (1 + c) · qa; (3)
πB⊥ = 1 · qb. (4)

4 Results

We first present the game of perfect and complete information for tractability
and as a benchmark, before we consider the game of imperfect (and complete)
information, in which the players choose coin qualities qi simultaneously.

4.1 Perfect Information: Sequential Game

The model of perfect information assumes qa and qb to be common knowledge.
This means that blacklists have to be public and always up-to-date, e.g., law
enforcement agencies immediately discover and blacklist offending transactions.
With public blacklists, each player can check the quality of the other player’s
coin before signing and broadcasting a mixing transaction to the network.

Figure 2 shows an extensive form of the sequential game by taking the poison
policy as an example. The presented sequence of moves can be extended to the
other two regimes, too, by considering a larger set of actions available to both
players. Player A initiates the game by committing to the quality of her inputs qa
and the fee level c. Being informed about that choice, player B decides whether
to mix with A or not. If B prefers to dismiss, the game is over. Otherwise,
player B chooses the coin of a particular quality qb and notifies A about it.
Player A learns about the choice of B and makes the final move of the game.
Reciprocally, if A rejects to mix with B, both players exit with the payoffs
defined in Eqs. (3) and (4). Otherwise, players form a mixing transaction and
get the payoffs as prescribed by (1) and (2). Under the seniority policy, players
may additionally negotiate the order and amounts of transaction outputs until
they reach a consensus or someone rejects to partner with.

Poison Policy. We apply a backward induction procedure in order to analyze
the game and find subgame perfect Nash equilibria. As the game is of perfect
information, there are seven subgames in total, labeled Γ1 through Γ7 in Fig. 2.
Under backward induction, the subgames Γ4–Γ7 are solved first. In subgame Γ4,
player A agrees to mix the clean coin if c ≤ 0.5 and exits otherwise. In subgame
Γ5, player A always exits due to the undesirable propagation of blacklisting. In
subgames Γ6 and Γ7, player A is indifferent between the two available choices.
Taking the respective equilibrium for each of the subgames Γ4–Γ7 and going
backward in the game tree, we can see that the game has many subgame perfect
Nash equilibria2, all of which contain either the path:

(qa = 1, qb = 1 and mix)
2 Note that the game of perfect information under the poison regime has even more

Nash equilibria. However, these are not subgame perfect.

288 S. Abramova et al.

Player A
Γ1

Player B
Γ2

1
{0,1}

ex
it

Player A
Γ4

1 + c
1

ex
it

2 − c
τb + 1 + c

m
ix

q
b
=

1

Player A
Γ5

1 + c
0

ex
it

−c
0

m
ix

q
b =

0

qa
= 1

Player B
Γ3

0
{0,1}

ex
it

Player A
Γ6

0
1

ex
it

0
0

m
ix

q
b
=

1

Player A
Γ7

0
0

ex
it

0
0

m
ix

q
b =

0

qa =
0

Fig. 2. Poison policy: game of perfect information in extensive form.

if c ≤ 0.5; or otherwise the path:

(qa = 1, qb = 1 and exit).

So, both players mix clean coins if c ≤ 0.5, but player A refuses to pay a too
high fee for anonymity.

Haircut Policy. The haircut policy implies the presence of coins of any quality
in the range of [0, 1]. Player A signs a mixing transaction if the payoff after
mixing πA is greater or equal than the payoff without mixing πA⊥:

2 · qa · (1 + c) + qb
2 + c

− c · qa ≥ (1 + c) · qa,

qa
qb

≤ 2
2 · c2 + 3 · c

, qb �= 0, c �= 0. (5)

Analogously for player B:

(τb + 1 + c) · qa · (1 + c) + qb
2 + c

≥ 1 · qb,

qa
qb

≥ (1 − τb)
(1 + c) · (1 + c + τb)

, qb �= 0. (6)

Players A and B agree to mix with each other if both inequalities (5) and (6)
hold. Figure 3 shows the corresponding game outcomes over the space defined
by the quality ratio qa/qb and the fee c for three distinct values of τb ∈ {0, 0.5, 1}.
Region S1 depicts all combinations of the model parameters which result in
successful mixing for τb = 0, regions S1 ∪ S2 depict the same for τb = 0.5;

Mixing Coins of Different Quality: A Game-Theoretic Approach 289

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

S1

S2

S3

qa < qb

qa = qb

qa > qb

c2c1

Fee c

Q
u
a
li
ty

ra
ti

o
q
a
/q

b

A

B (τb = 1)

B (τb = 0.5)

B (τb = 0)

Fig. 3. Haircut policy: existence of equilibrium solutions in the game of perfect infor-
mation as a function of the fee c and the quality ratio qa/qb for three different values
of τb ∈ [0, 0.5, 1]. (Color figure online)

regions S1 ∪ S2 ∪ S3 apply to τb = 1. In the corner case qb = 0, mixing happens
only if player A wishes to mix a bad coin, too.

If player B values transaction anonymity as much as player A, i.e., τb = 1,
B is willing to partner with A regardless of the fee level c or player A’s coin
quality qa. This is due to the fact that even in the worst possible case for player
B (qa = 0, qb = 1, and c = 0), the degradation in the coin quality (q′

b = 0.5)
is fully compensated by the gain in anonymity τb · q′

b = 0.5. Thus, the space
of successful game outcomes in S1 ∪ S2 ∪ S3 is limited only by inequality (5),
which corresponds to the uppermost line in Fig. 3. Since the payoff of B is directly
proportional to the quality factor of her coin, it is in her best interest to offer
the good coin qb = 1 for mixing. Therefore, the Nash equilibria in case τb = 1
correspond to the set of action profiles {(qa, qb) | 0 < qa ≤ 1, qb = 1}. If player
B values anonymity half as much as player A, i.e., τb = 0.5, her best response
is defined by the dashed (green) line. If A does not offer any fee, B chooses the
coin of quality qb, which is three times higher than qa. If player A wishes to mix
with the coin of higher quality, i.e., qb > 3qa, she has to compensate player B by
offering a strictly positive fee. The exact level of c for a desirable quality ratio
can be derived from inequality (6). If player B does not value the anonymity of
a mixing transaction, i.e., τb = 0, and there is no financial compensation c, she
will supply the coin of the same quality (qa = qb).

In reality, however, the search cost associated with finding another transac-
tion party with exactly the same quality level may be prohibitive. Similarly to
conventional trading and payment markets [9], search frictions can be overcome
by offering compensation to the enabling party with (slightly) better coins. If B
does not have a coin of the required quality and can mix a coin of higher quality
instead, she will agree to participate in the mixing transaction in exchange for a
higher fee. The greater the difference in the quality of the coins of players A and

290 S. Abramova et al.

B, the more A has to pay to B for joining a mixing transaction. This explains
the monotonically decreasing shape of inequality (6) in Fig. 3 when τb < 1.

Seniority Policy. This policy grants users more flexibility in controlling the
effect of blacklisting propagation. Since players know the quality of all inputs,
they can negotiate an internal structure of the mixing transaction until it is
designed in such a way that low-quality fractions of inputs of both players appear
at the beginning of the output list. Player A, as the privacy-seeking party, may
also be willing to list some of her outputs first and sacrifice at the expense of
gained anonymity up to half of the clean portion of her coins. Player B, who
is interested in receiving the financial reward, will demand to list her address
for the incoming fee c at the bottom of the output list. These order constraints
may however leak sufficient information for successful matching of the relations
between inputs and outputs of a mixing transaction. A passive observer of the
blockchain may look up available blacklist data and, knowing the exact trans-
acting amounts, may succeed in deanonymizing the mixing transaction.

The seniority policy can be reduced to the haircut policy if the players agree
to split up blacklisted coins equally by randomly alternating the order of their
outputs for the sake of anonymity. However, the players can be better off in
terms of anonymity while maintaining the quality distribution if they adhere to
one constant value for all (blacklisted and clean) transaction outputs. They can
divide their input funds into multiple outputs of the same amount and randomize
the order of their outputs within the upper subset of blacklisted outputs (the
blacklisted bin) and the lower subset of clean outputs (the clean bin). This way,
the attacker is left with a 50:50% chance of correctly differentiating between the
output of A and the output of B, whereas the players can preserve the original
quality of their funds. The easiest, however impracticable solution would be to
use one satoshi as the size of each output. In order to reduce the number of
outputs by orders of magnitude, the players can express qa and qb as rational
numbers in the standard form and use a reciprocal of the least common divisor
of the denominators as constant value for all outputs.

Let us demonstrate one numerical example with qa = 3/4 and qb = 1/2 (the
mixing fee is disregarded). Following the above logic, each player splits up her
coin into four different outputs of the nominal value 0.25. The blacklisted bin
will consist of one output of player A and two outputs of player B. The clean
bin contains three outputs of player A and two outputs of player B. The order
of the outputs within each bin must be random in order to get anonymity. As
a result, the post-transaction quality factors q′

a and q′
b do not change and the

players still enjoy transaction anonymity. Figure 4 in AppendixA illustrates this
example (along with two other specific cases).

4.2 Imperfect Information: Simultaneous-Move Game

Since law enforcement agencies are unable to detect and mark illegal transactions
in real time, there is always a risk that already confirmed transactions may get

Mixing Coins of Different Quality: A Game-Theoretic Approach 291

blacklisted later. Due to this time delay, users have to deal with the uncertainty
about the quality of inputs when forming and signing a transaction. While they
have more information about the origins and nature of their own coins (compared
to passive observers of the public blockchain), they cannot know for sure qualities
of all other inputs. We model this more realistic case of mixing in a simultaneous-
move game, in which players A and B choose qa and qb simultaneously.

Poison Policy. Since all circulated coins are either good (qi = 1) or bad (qi =
0), players have only two possible strategies, which enables us to represent the
model in normal form (see Table 2). The resulting payoffs are calculated by
substituting the pre- and post-transaction quality factors (given in Table 1) in
the payoff functions (1) and (2).

Table 2. Poison policy: game of imperfect information in normal form

Player B
qb = 1 qb = 0

Player A
qa = 1 2 − c, τb+1+c −c, 0

qa = 0 0, 0 0, 0

The presented model has two pure-strategy Nash equilibria (qa = 1, qb = 1)
and (qa = 0, qb = 0). Note that the latter Nash equilibrium is weak, as player
B gets the same payoff by changing her strategy to qb = 1. Although the action
profile (qa = 0, qb = 0) is a Nash equilibrium, it does not correspond to the social
optimum of the game: the sum of the payoffs of both players reaches its maximum
when (qa = 1, qb = 1). Similarly to Akerlof’s classic market for lemons [3], the
poison policy leads to a market failure because of adverse selection. Without
knowing the true quality of coins, nobody is willing to mix good coins at the
risk of encountering bad coins at least in one input of the mixing transaction.

Haircut Policy. Over time, the haircut policy results in the circulation of
coins of varying qualities. In the absence of an ability to perfectly differentiate
coins by quality, users of mixing services will make decisions based on their
expectations about the average quality of all coins observed in the mixing market.
Substituting qa and qb with the expected average quality q in inequalities (5)
and (6), respectively, the necessary conditions for players A and B to participate
in the mixing transaction are as follows:

qa ≤ 2 · q

2 · c2 + 3 · c
, c �= 0; (7)

qb ≤ (τb + 1 + c)(1 + c)
1 − τb

· q, τb �= 1. (8)

292 S. Abramova et al.

If player B values anonymity highly (τb = 1), the mixing transaction happens
regardless of the expected average quality and the fee level. The more interesting
scenario is, however, when player B is solely motivated by the financial reward
(τb = 0). In this case, inequality (8) takes the form qb ≤ (1 + c)2 · q. If player A
does not pay a fee, player B has no incentive to supply a coin of quality better
than the average quality q. Otherwise, the fee incentivizes the privacy provider
B to offer the coin of marginally higher quality.

It is reasonable to expect that criminals, who know with certainty which
of their funds originate from illicit transactions, may engage in mixing for the
purpose of money laundering. They have an incentive to supply coins of the
worst quality in the hope of getting better ones. As other players can anticipate
this behavior, the expected quality factor declines. This further drives owners of
better coins out of the market and fuels the race to the bottom of q, eventually
leading to the presence of only bad coins in the mixing market. Consequently,
there will be no equilibrium outcome with a strictly positive payoff for both
players, and, given the absence of credible signaling mechanisms, the market for
mixing coins of (marginally) good quality will not exist.

Seniority Policy. Given the uncertainty regarding qi, each player will prefer
her addresses to be included at the bottom of the output list. Since the seniority
policy can be reduced to the haircut regime, the above reasoning and solution
can be applied here, too. Facing the risk of getting coins of worse quality, the
players will prefer to mix rather bad coins than good ones.

It might seem at first glance that the seniority police allows for a modifi-
cation of the model to a signaling game, because the output order can convey
information and it is linked to payoff. In general, signaling games model strategic
settings of incomplete information in which players can observe the actions of
their opponents (signals) to make inferences about hidden information [28]. A
fundamental principle is that signals must be costly to produce, or have costly
consequences. This is what differentiates signals from “cheap talk” and guaran-
tees their reliability. To enable mixing in more situations, players must be able to
signal that they are committed to supply coins of high quality. A corresponding
output order must be more costly to sign for players with bad coins than for
players with good coins. However, as owners of bad coins have, in the strong
sense, nothing to lose, the only possible signal is that of supplying low quality
coins, which unfortunately does not lead to more mixing equilibria.

5 Discussion

This work is an attempt to conceptualize a formal model of the interplay of users
in the presence of qualitative differentiation between cryptocoins. Although we
motivate the game by taking the illustrative example of mixing services and
blacklisting, the model (of imperfect information) can be generalized to a more
common case where an individual user needs to decide whether to combine own
coins of potentially different qualities in one multi-input transaction.

Mixing Coins of Different Quality: A Game-Theoretic Approach 293

The regime of perfect information suggests a sequential game. It is applicable
if blacklists are timely and public. Under these assumptions, mixing services
persist. The poison policy dictates users to mix clean coins (if at all), while the
haircut and seniority policies provides certain conditions under which users are
also willing to mix coins of varying qualities. Moreover, the seniority policy can
(approximately) be reduced to the haircut policy.

The regime of imperfect information suggests a simultaneous-move game. It
leads to the failure of the market for mixing of (marginally) good coins under
the poison policy, and our preliminary results let us conjecture that the outcome
applies to the haircut and seniority policies as well. (We plan to refine the analysis
in a revised version of this work.) With uncertainty about a coin’s quality and
in the presence of criminals interested in using mixers for money laundering,
owners of good coins have no incentive to seek anonymity at the risk of mixing
with bad coins. In this regard, blacklisting can be viewed as an effective economic
mechanism to make mixers less attractive or even to dry them out.

6 Related Work

Our work is related to blacklisting content (or content providers), and therefore
to Internet censorship. It also connects to anonymity online. Both are contentious
topics; the former more than the latter.

Governments, Internet intermediaries, and organizational network adminis-
trators use many kinds of filtering techniques to intentionally limit or block access
to online content, resources, or services [1]. Among them, blacklists of malware-
infected or phishing sites are perhaps the best known and socially most accepted
example. Although many empirical studies exist on the effectiveness, coverage,
and sharing of phishing blacklists [26,31,32], there is a limited number of works
examining them from a formal viewpoint. Edwards et al. [11] present a simple
Markov model to study how malware infections might be contained through
blacklisting, while Hofmeyr et al. [14] model potential policy interventions for
controlling malware. They analyze the trade-off between prevented harm and
collateral damage caused by blocking legitimate traffic.

Blacklisting has been put forward in the context of anonymous communica-
tion systems, such as Tor, JAP, or Mixminion, too. In [13], the authors formally
define anonymous blacklisting systems and specify their security and privacy
features. Such systems should allow users to authenticate anonymously with a
service provider, while enabling the service provider to revoke access from abu-
sive users without knowing their identities.

Decentralized anonymity infrastructures (namely, mix-nets [10]) are also
studied from an economic perspective. Since anonymity can be obtained only
within an anonymity set [22], the authors of [2] explore with a game-theoretic
approach economic incentives of users to participate in message anonymization
services. The also suggest several possible mechanisms to avoid the problem of
public good with free riding.

In the growing literature on cryptocurrencies, the most closely related works
can be classified into those that concern the implications of blacklisting and

294 S. Abramova et al.

transaction risk scoring [20], and those that conduct various kinds of blockchain
analyses in order to examine the (lack of) anonymity in the Bitcoin network
[4,16,18,23,24]. Our paper draws on the ideas initially set out in [20], which dis-
cusses the potential use of blacklisting in Bitcoin and introduces the propagation
policies. It is also inspired by works on the design [8] and use of centralized and
decentralized mixing services [18], as well as efforts to detect and break mixing
schemes [33].

7 Concluding Remarks

This paper tackles the issue of non-fungibility of decentralized currencies and dis-
cusses its potential implications on the behavior of users. Specifically, it proposes
a game-theoretic model of mixing coins of different quality under the regimes
of perfect and imperfect information and analyzes three variants of it, one for
each of three propagation policies. It finds the optimal strategies of players in
the game of perfect information, and confirms that a Nash equilibrium in case
of imperfect information is to mix bad coins only. Although the current opera-
tion of distributed ledgers is closer to the regime of imperfect information, we
can still observe the existence of mixers. This is despite a surge of startups spe-
cializing in blockchain intelligence, allegedly to supply critical intermediaries,
such as exchanges, with private blacklists. We conjecture that this discrepancy
between theory and practice is due to several reasons, chiefly limited scope, lack
of enforcement, or lack of reliability of existing blacklists. Alternative explana-
tions include very high valuations of anonymity by some users, or simply nativity
paired with luck of escaping negative experience.

There are several potential avenues for more rigorous and general models
of mixing. First, the measurement of anonymity needs to be refined by taking
other relevant transaction features into account. Second, the model needs to
generalize to multiple players who choose inputs of arbitrary nominal value, but
are constrained in terms of quality. Third, future research should elaborate more
on market mechanisms for the survival of mixing services, e.g., by designing
possible sanctions for the use of bad coins. The model can also be advanced by
taking miner fees and the size of transactions into account. Finally, future work
could examine whether it is possible to enforce side payments of the mixing fee
without compromising the anonymity of any of the participants, and how this
changes the game and its solutions.

Acknowledgments. The authors are grateful to Daniel G. Arce for his insightful com-
ments on an earlier version of this paper. The authors are responsible for all remaining
errors and omissions. This work was funded by the German Bundesministerium für Bil-
dung und Forschung (BMBF) under grant agreement No. 13N13505 and by Archimedes
Privatstiftung, Innsbruck, Austria.

Mixing Coins of Different Quality: A Game-Theoretic Approach 295

A Appendix

Mixing transaction

In1

In2

Out1

Out2

1

1

A

B

1

1

B

A

(a) qa = qb ∈ {0, 1}

Mixing transaction

In1

In2

Out1

Out2

Out3

Out4

1

1

A

B

1/4

1/4

Blacklisted bin

(q′ = 0)

3/4

3/4

Clean bin

(q′ = 1)

B

A

A

B

(b) qa = qb = 3/4

Mixing transaction

In1

In2

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Out8

1

1

A

B

1/4

1/4 Blacklisted bin

(q′ = 0)

1/4

1/4

1/4

1/4

1/4

1/4

Clean bin

(q′ = 1)

B

A

B

A

B

B

A

A

(c) qa = 3/4, qb = 1/2

Fig. 4. Seniority policy: examples of mixing transactions in the perfect information
regime: (a) shows the case when both coins are either good or bad (2 outputs); (b) –
when both coins are of the same quality q ∈ (0, 1) (4 outputs); (c) – when coins are
of different quality (the number of outputs equals two times the least common divisor
of the denominators of qa and qb expressed as rational numbers). The mixing fee is
disregarded in these examples (c = 0).

References

1. Aceto, G., Pescapé, A.: Internet censorship detection: a survey. Comput. Netw. 83,
381–421 (2015)

2. Acquisti, A., Dingledine, R., Syverson, P.: On the economics of anonymity. In:
Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 84–102. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45126-6 7

https://doi.org/10.1007/978-3-540-45126-6_7

296 S. Abramova et al.

3. Akerlof, G.A.: The market for “Lemon”: quality uncertainty and the market mech-
anism. Q. J. Econ. 84(3), 161–167 (1970)

4. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 4

5. blockCollector: Looking to buy an old 50 BTC block. Where to buy? (2015).
https://www.reddit.com/r/Bitcoin/comments/3sg8vm/looking to buy an old 50
btc block where to buy/. Accessed 14 Nov 2016

6. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology,
and governance. J. Econ. Perspect. 29(2), 213–238 (2015)

7. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for bitcoin and cryptocurrencies. In: Proceed-
ings of IEEE Symposium on Security and Privacy, pp. 104–121 (2015)

8. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 31

9. Chacko, G., Jurek, J., Stafford, E.: The price of immediacy. J. Financ. 63(3),
1253–1290 (2008)

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

11. Edwards, B., Moore, T., Stelle, G., Hofmeyr, S., Forrest, S.: Beyond the blacklist:
modeling malware spread and the effect of interventions. In: Proceedings of 2012
Workshop on New Security Paradigms, pp. 53–66. ACM, New York (2012)

12. ExpertNeeded: Blockchain analysis help needed. Major money laundering case.
(2016). https://bitcointalk.org/index.php?topic=1568048.0/. Accessed 14 Nov
2016

13. Henry, R., Goldberg, I.: Formalizing anonymous blacklisting systems. In: Proceed-
ings of IEEE Symposium on Security and Privacy, pp. 81–95. IEEE Computer
Society, Washington, DC (2011)

14. Hofmeyr, S., Moore, T., Forrest, S., Edwards, B., Stelle, G.: Modeling internet-scale
policies for cleaning up malware. In: Schneier, B. (ed.) Economics of Information
Security and Privacy III. LNCS, pp. 149–170. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-1981-5 7

15. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: Brenner, M.,
Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 127–
141. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9 10

16. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of 2013 Conference on Internet Measurement Conference,
pp. 127–140. ACM, New York (2013)

17. Möser, M., Böhme, R.: Join me on a market for anonymity. In: Proceedings of 15th
Annual Workshop on the Economics of Information Security, Berkeley, CA, USA
(2016)

18. Möser, M., Böhme, R.: Anonymous alone? Measuring bitcoin’s second-generation
anonymization techniques. In: IEEE Security & Privacy on the Blockchain (IEEE
S&B), Paris, France (2017)

19. Möser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in
the bitcoin ecosystem. In: APWG eCrime Researchers Summit (ECRIME), San
Francisco, CA, USA, pp. 1–14 (2013)

https://doi.org/10.1007/978-3-642-39884-1_4
https://www.reddit.com/r/Bitcoin/comments/3sg8vm/looking_to_buy_an_old_50_btc_block_where_to_buy/
https://www.reddit.com/r/Bitcoin/comments/3sg8vm/looking_to_buy_an_old_50_btc_block_where_to_buy/
https://doi.org/10.1007/978-3-662-45472-5_31
https://bitcointalk.org/index.php?topic=1568048.0/
https://doi.org/10.1007/978-1-4614-1981-5_7
https://doi.org/10.1007/978-1-4614-1981-5_7
https://doi.org/10.1007/978-3-662-48051-9_10

Mixing Coins of Different Quality: A Game-Theoretic Approach 297

20. Möser, M., Böhme, R., Breuker, D.: Towards risk scoring of bitcoin transactions. In:
Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp.
16–32. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1 2

21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://www.
bitcoin.org/bitcoin.pdf. Accessed 14 Nov 2016

22. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, unobservability,
pseudonymity, and identity management - a consolidated proposal for ter-
minology, Technical report (2005)

23. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, B.A., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks, pp. 197–223. Springer, New York (2013)

24. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

25. Rosenfeld, M.: Overview of colored coins (2015). https://bitcoil.co.il/BitcoinX.pdf.
Accessed 14 Nov 2016

26. Sheng, S., Wardman, B., Warner, G., Cranor, L.F., Hong, J., Zhang, C.: An empir-
ical analysis of phishing blacklists. In: Proceedings of 6th Conference on Email and
Anti-Spam, CEAS 2009 (2009)

27. Siegel, D.: Understanding the DAO hack for journalists (2016). https://medium.
com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993.
Accessed 14 Nov 2016

28. Spence, M.: Job market signaling. Q. J. Econ. 87(3), 355–374 (1973)
29. Tadelis, S.: Game Theory: An Introduction. Princeton University Press, Princeton

(2013)
30. TraderSteve: Bitpay is blacklisting certain bitcoins & rejecting customers. (2015).

https://www.reddit.com/r/Bitcoin/comments/3mea6b/bitpay is blacklisting
certain bitcoins rejecting/. Accessed 14 Nov 2016

31. Tsalis, N., Virvilis, N., Mylonas, A., Apostolopoulos, T., Gritzalis, D.: Browser
blacklists: the utopia of phishing protection. In: Obaidat, M.S., Holzinger, A.,
Filipe, J. (eds.) ICETE 2014. CCIS, vol. 554, pp. 278–293. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25915-4 15

32. Vasek, M., Weeden, M., Moore, T.: Measuring the impact of sharing abuse data
with web hosting providers. In: Proceedings of 2016 ACM on Workshop on Infor-
mation Sharing and Collaborative Security, WISCS 2016, pp. 71–80. ACM, New
York (2016)

33. Yanovich, Y., Mischenko, P., Ostrovskiy, A.: Shared send untangling in bitcoin.
In: Working Paper, Bitfury Group Limited (2016). http://bitfury.com/content/
5-white-papers-research/bitfury whitepaper shared send untangling in bitcoin 8
24 2016.pdf. Accessed 14 Nov 2016

https://doi.org/10.1007/978-3-662-44774-1_2
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-642-39884-1_2
https://bitcoil.co.il/BitcoinX.pdf
https://medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993
https://medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993
https://www.reddit.com/r/Bitcoin/comments/3mea6b/bitpay_is_blacklisting_certain_bitcoins_rejecting/
https://www.reddit.com/r/Bitcoin/comments/3mea6b/bitpay_is_blacklisting_certain_bitcoins_rejecting/
https://doi.org/10.1007/978-3-319-25915-4_15
http://bitfury.com/content/5-white-papers-research/bitfury_whitepaper_shared_send_untangling_in_bitcoin_8_24_2016.pdf
http://bitfury.com/content/5-white-papers-research/bitfury_whitepaper_shared_send_untangling_in_bitcoin_8_24_2016.pdf
http://bitfury.com/content/5-white-papers-research/bitfury_whitepaper_shared_send_untangling_in_bitcoin_8_24_2016.pdf

Smart Contracts Make Bitcoin Mining
Pools Vulnerable

Yaron Velner1, Jason Teutsch2, and Loi Luu3(B)

1 The Hebrew University of Jerusalem, Jerusalem, Israel
2 TrueBit Foundation, Tel Aviv, Israel

3 School of Computing, National University of Singapore, Singapore, Singapore
loiluu@comp.nus.edu.sg

Abstract. Despite their incentive structure flaws, mining pools account
for more than 95% of Bitcoin’s computation power. This paper intro-
duces an attack against mining pools in which a malicious party pays
pool members to withhold their solutions from their pool operator. We
show that an adversary with a tiny amount of computing power and
capital can execute this attack. Smart contracts enforce the malicious
party’s payments, and therefore miners need neither trust the attacker’s
intentions nor his ability to pay. Assuming pool members are rational,
an adversary with a single mining ASIC can, in theory, destroy all big
mining pools without losing any money (and even make some profit).

1 Introduction

Bitcoin and emerging cryptocurrencies offer trustless platforms for users to trans-
act and run decentralized applications. Each cryptocurrency maintains a peer-
to-peer distributed ledger of prior transactions that records all activities in the
network. Network participants run a consensus protocol called Nakamoto con-
sensus to agree on the state of the ledger [1]. In every epoch, Nakamoto consensus
probabilistically elects a leader who demonstrates a solution to a computational
“proof-of-work” puzzle [1]. The leader proposes and broadcasts a block which
includes set of new transactions to be appended to the ledger. He then receives
a reward (12.5 Bitcoin, or 12, 000 USD as of Jan. 1, 2017) if his block is valid,
or accepted by the network.

Pooled Mining. Finding a valid solution to a Bitcoin proof-of-work puzzle,
or “mining,” is a probabilistic process which requires massive computational
resources. Solo miners with modest computational power experience extremely
high income variance. For example, even a state of the art AntMiner S9 mining
hardware1 mines only one Bitcoin block per year on average. To reduce income
variance, miners often join their computational resources through “mining pools”
and share the corresponding block rewards. In a mining pool, a designated pool

1 https://www.bitmaintech.com/productDetail.htm?pid=0002016052907243375530Dc
JIoK0654.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 298–316, 2017.
https://doi.org/10.1007/978-3-319-70278-0_19

https://www.bitmaintech.com/productDetail.htm?pid=0002016052907243375530DcJIoK0654
https://www.bitmaintech.com/productDetail.htm?pid=0002016052907243375530DcJIoK0654

Smart Contracts Make Bitcoin Mining Pools Vulnerable 299

“operator” distributes share tasks, each which has a positive probability of yield-
ing a valid block. Thus larger pools expect to find blocks more frequently than
smaller ones. When a miner’s submitted solution yields a valid block, the pool
operator submits it to the network, obtains the block reward, and divides it
fairly among all pool members in proportion to their contributed computation
power.

Pools Reward Model Vulnerability. Pools are susceptible to the classical block
withholding attack [2] where a miner sends only partial proof-of-work to the pool
manager and discards full proof-of-work. As the structure of the block header is
determined by the pool operator, an attacker cannot claim the block reward for
himself. On the surface, block withholding attacks might not seem profitable,
however, miners outside the victim pool may benefit from block withholding.
Dropped blocks increase outside miners’ computation power relative to the rest
of the network [3], and in the long run, outside miners will mine more blocks
(see formal analysis in Sect. 3).

The Attack. Smart contracts are unstoppable programs that live on Ethereum’s
blockchain [4] and have their own executable code and internal states, includ-
ing storage for variable values and currency balance. In this paper we intro-
duce smart contracts that reward pool miners who withhold blocks. We analyze
attacks comprised by such smart contracts under the assumption that miners
are rational and aim to maximize their short-term profits (we analyze the min-
ers’ incentives in Sect. 3). We show that when the attack is targeted towards big
mining pools who employ the “pay-per-share” scheme, the attack is profitable
even for an attacker running a single hardware unit. Moreover, such an attacker
could in theory drain all revenue and profit from a big pool. We note that in
practice, pool operators that witness significant decrease in their revenues may
have to close their operations before being drained out of all revenues and profits.
Hence a successful deployment of our attack would undermine the entire pooled
mining model.

The use of smart contracts is crucial in order for the attack to be successful.
Indeed, it is unlikely that miners would collaborate with such an attack unless
their payment is guaranteed. Moreover, rewarding via smart contracts makes it
possible for the attacker to remain anonymous and prevents other parties from
targeting and shutting him down (e.g., with a denial of service attack).

Contributions. The contributions of our paper are as follows:

– We show how to mathematically prove that a block has been withheld
and implement an Ethereum smart contract that rewards block withhold-
ing (Sect. 4).

– We show that, under mild assumptions, the smart contract could be imple-
mented with Bitcoin transactions (AppendixA) and we show how one can use
an Ethereum smart contract to enforce these assumptions (Appendix B). Bit-
coin contracts are more desirable as they save the need to run a full Ethereum
node.

300 Y. Velner et al.

– We show how the attacker can form a pool of block withholders in order to
reduce the withholders variance, and we analyze the incentives for withholders
to withhold a proof of block withholding (Sect. 5).

Comparison with Classical Block Withholding Attacks. Block withholding
attacks have been known almost from the beginning of Bitcoin [2]. In recent
years it has become apparent that miners can profit from mining for two pools
while withholding their full solutions in one of them [3,5,6]. However, the profit
from such an attack is relatively small, and an attacker would have to control
a lot of computation power (e.g., over 1% of Bitcoin’s computation power) in
order to cause significant losses (e.g., over 5% decrease in revenues) for large
pools (e.g., see [3]).

In this work we propose to pay other miners to withhold blocks. In Sect. 3
we show that an attacker with only 0.0000002% of Bitcoin’s computation power
can reduce the revenue of a big pool to zero without any financial losses on his
side. In fact the theoretical outcome of our attack (if miners are fully rational) is
equivalent to a classical block withholding attack in which a miner rents Bitcoin’s
entire hash power and withholds all the blocks that he finds.

Other Cryptocurrencies. In this paper we focus on attacks on Bitcoin mining
pools. Nevertheless, in principle, smart contracts undermine the pooled mining
model of all cryptocurrencies. However some cryptocurrencies, e.g., Ethereum,
might be currently resilient to such an attack due to some technical issues that
we describe in Sect. 4.

2 Background

2.1 Mining and Pool Mining

Bitcoin and popular cryptocurrencies like Ethereum [4] and Zcash [7] maintain a
global ledger between all participants in the networks. The network participants
run a consensus protocol called Nakamoto consensus to reach agreement on the
state of the shared ledger [1]. At a high level, Nakamoto consensus works by
probabilistically electing a leader in every 10 min epoch. The leader will then
propose a set of additions (e.g., transactions) to the ledger; other participants
“apply” these additions after verifying that these changes are valid. Then the
next epoch begins. As of this writing, the election happens via a mining process
in which network participants have to solve computationally hard puzzles (i.e.,
proof-of-work) which probabilistically yields one solution per 10 min (epoch time
in Bitcoin) on average. Technically, network participants, or miners, have to find
a valid nonce satisfying the following condition:

sha256(sha256(Block Template || Nonce)) ≤ D (1)

in which “Block Template” includes the miner’s proposed changes to the ledger,
and D is a global parameter which indicates the difficulty of finding a valid
solution.

Smart Contracts Make Bitcoin Mining Pools Vulnerable 301

Solving a proof-of-work (PoW) puzzle, or finding a valid block, requires an
enormous amount of computation. For example, at the time of writing, D is
a 256-bit integer with approximately 80 leading zero bits. Thus finding a valid
PoW solution requires on average 280 sha256 calculations. A normal workstation
which can perform a million sha256 calculations per second will expect to spend
millions of years to find a PoW solution. Thus, often miners join forces and form
mining pools to solve PoW puzzles together. The idea of pooled mining is to ask
everyone in the pool to find solutions (or shares) to easier PoW puzzles where
each share has some probability of being a valid solution for the main PoW
puzzle. Specifically, pool members find all nonce so that the result of the hash in
Eq. 1 is less than d, where d is much larger than D. A solution of such puzzles is
called a share, and will have a probability D/d being less than D, i.e., being the
valid solution for the main puzzle. For example, if d were set to have 60 leading
zero bits, then a share would have a probability 2−20 of being a valid solution
for the main PoW puzzle.

In pooled mining, a pool operator, or pool manager, keeps track of how many
shares each miner submits. If a share is indeed a valid PoW solution, the pool
operator broadcasts the block to the network and receives a block reward (12.5
bitcoin and the transaction fee as of this writing). This reward is then distributed
to miners in the pools based on their contributions (i.e. number of shares). By
joining pools, miners receive more frequent and stable reward, thus significantly
reducing their income variance compared to mining separately (or solo mining).
Note that in pooled mining, the pool operator prepares the block template in
Eq. 1, so even if a miner broadcasts a valid block himself, the reward still goes
to the pool.

Formal Definitions and Notations. Bitcoin’s block consists of a block header
and a list of transactions2. Table 1 depicts the block header format, which con-
sists of 80 bytes.

Table 1. Header of a Bitcoin block

Field size (bytes) Name Data type

4 version int32 t

32 prev block char[32]

32 merkle root char[32]

4 timestamp uint32 t

4 bits uint32 t

4 nonce uint32 t

A block is said to be a valid extension of the blockchain if (i) its difficulty
matches the network difficulty, i.e., the sha256(sha256(block header)) < D; and
2 https://en.bitcoin.it/wiki/Block hashing algorithm.

https://en.bitcoin.it/wiki/Block_hashing_algorithm

302 Y. Velner et al.

(ii) the previous block hash field in the block header corresponds to a valid block
in the blockchain; and (iii) the transactions of the block are valid. A publicly
known block that is a valid extension but does not reside on the longest chain
is called an orphan block or stale block.

A block is a full solution (or valid solution) if its header matches the difficulty
D. A block is a partial solution if its header matches the difficulty of the pool
share difficulty d. The hash power (or hash rate) of a miner (or a group of miners)
is the relative fraction of computation power he possesses relative to the entire
Bitcoin network.

2.2 Smart Contracts

Bitcoin transactions are deemed valid only if their linked script condition holds.
While Bitcoin scripts have limited expressiveness, emerging cryptocurrencies
support expressive scripts that have enabled the development of a variety of
powerful decentralized applications. Bitcoin’s scripts are stateless, that is, they
do not maintain any internal states, and their behavior depends only on their
input.

The Ethereum cryptocurrency introduced smart contracts in which the con-
tract code is a “Turing-complete” program [8]. In addition to being more expres-
sive, Ethereum smart contracts can also maintain internal states which are
shared among transactions. For example, a smart contract can record the num-
ber of different addresses in all transactions sent to its address. Users interact
with a contract, i.e. modify the contract state, by sending transactions with
payloads (i.e. input data) to the contract address.

3 Block Withholding Incentives

In this section, we analyze the incentives for an attacker to pay pool miners for
dropping blocks. We recall that the actual block is worthless for the attacker,
as the destination of the block rewards is fixed as the pool’s address. Hence
the attacker only benefits from reducing the effective hash rate of the entire
network. In order to maintain a consistent block rate (e.g., one block per 10 min
in Bitcoin), the network periodically adjusts the difficulty of hashing puzzle based
on the number of miners participating. In Bitcoin this adjustment happens once
every 2018 blocks.

To formally analyze the incentives, we denote the fraction of the network’s
hash rate controlled by the attacker as α (0 ≤ α ≤ 1), the block reward by r,
and a miner’s reward for submitting a full solution to the pool by s · r.

We first calculate the attacker’s expected net revenue increase from purchas-
ing β fraction of the blocks. In the absence of an attack, the attacker’s expected
revenue is α · r per block epoch. When β fraction of the network’s valid blocks
are discarded, the attacker’s effective hash rate is a = α/(1 − β), and hence his
expected revenue is a · r. Thus the attacker’s extra revenue from purchasing the
blocks is

Smart Contracts Make Bitcoin Mining Pools Vulnerable 303

a · r − α · r =
αβ · r

1 − β
. (2)

This quantity represents the attacker’s block purchasing budget.
On the other hand, in order to incentivize a pool member to withhold a block,

the attacker would have to offer at least the equivalent of the member’s reward
for finding a full solution. As β fraction the miners do not submit their blocks
to the network, in the long run network difficulty decreases by a multiplicative
factor of (1 − β). Hence per block epoch those miners would collectively expect
to find β/(1 − β) valid blocks and would expect to be paid

β · s · r

1 − β
(3)

for this work by the pool manager. Comparing the quantities (2) and (3), we see
that the attacker and participating pool members both profit when

α > s. (4)

We now analyze the share rewards of miners. The two most popular
share rewards schemes are the pay-per-share (PPS) and pay-per-last-N -shares
(PPLNS) [9]. In addition, some pools offer bonus payments for miners who sub-
mit full solutions.

PPS. In the pay-per-share scheme, every pool miner receives a reward for every
share (whether it constitutes a block or only a partial solution) he submits.
Initially, the miner sets a share difficulty d and receives (r · d)/D reward for
every submitted share, where D is the difficulty level of the Bitcoin network. As
of November 1, 2016,3

D ≥ 253, 618, 246, 641Gig.

A pool member can set his own share difficulty for each of his ASIC hardwares,
however the recommended upper bound is currently d ≤ 4, 096 Gig4,5. Hence,
in PPS

s =
d

D
≈ 2 · 10−8, (5)

and a rational miner would, at the current block reward rate, agree to withhold
his blocks for r · s ≈ (12.5 BTC) · s = 2.5 · 10−7 BTC, which, as of November 1,
2016, is less than 0.02 cents of a USD6. In practice, the attacker likely has to pay
more than 0.02 cents in order to motivate pool members to divert their standing
loyalties away from pool managers and to compensate them for the risk that
the pool manager will run out funds and will not be able to pay them for their

3 https://blockchain.info/charts/difficulty.
4 https://slushpool.com/help/#!/first-aid/troubleshooting.
5 Our analysis is valid even for much larger difficulty levels.
6 http://www.coindesk.com/price/.

https://blockchain.info/charts/difficulty
https://slushpool.com/help/#!/first-aid/troubleshooting
http://www.coindesk.com/price/

304 Y. Velner et al.

previously submitted shares. To aid in overcoming this inertia, we introduce
block withholding pools in Sect. 5. Combining Eqs. (4) and (5) we find that the
attacker could make a profit if his mining power fraction is at least 1/50, 000, 000
of the network (0.000002%). This mining power is currently equivalent to 4 TH/s
mining power, which is obtainable by modern ASICs7. Moreover, a miner with
N ASICs could offer a reward that is N times higher and still make a profit. We
note that all the large mining pools work in the PPS model8. Hence, all of them
are potentially vulnerable to such an attack.

PPLNS. In the pay-per-last-N -shares model, at a high level overview, all miners
share the mining rewards proportionally to their relative hash power. In this
model, block shares and standard shares equally count towards proof-of-work,
however withholding a block would lower the total revenues of the pool and
inevitably also the rewards of the single miner. Hence, the effective block reward
for a pool member is s = γ where γ is the miner’s hash power divided by
the entire pool’s hash power9. Hence, the attacker would profit only if α > γ.
We speculate that in most common cases, γ � 1/50, 000, 000 and thus the
price of the attack is more expensive in the PPLNS model (see Table 2 as an
example). Nevertheless, the attack could still be profitable for big miners who
possess a percent or more of the entire network’s hash power. An instantiation
of our mathematical analysis can be derived from P2Pool’s publicly available
statistics10, which present the hash power of every miner in the pool. Table 2

Table 2. The revenue losses that an attacker can cause a pool while making the attack
profitable for himself. Attacker power is in percentages of the entire Bitcoin network
hash power. Pool loses are in percentages of the total pool revenue. For example, an
attack with 0.1% hash power (i.e., 0.001 fraction of entire Bitcoin’s hash power) can
cause pools’ revenues to decrease by 10%. The results are based on miners’ hash power
distribution in P2Pool. The third column describe the daily costs that an attacker
would have to bare if he also pays for orphan blocks, under the assumption of $12,000
block reward (see Sect. 4.3 for more details).

Attacker hash power Pool revenue loses Orphan blocks daily costs

0.1% 10% $4

2% 22% $80

4% 32% $160

6% 37% $240

13% 70% $520

7 https://www.bitmaintech.com/.
8 https://en.bitcoin.it/wiki/Comparison of mining pools.
9 The miner would also get the standard share reward, however, these are typically

smaller by a factor of over 109.
10 http://p2pool.org/stats/.

https://www.bitmaintech.com/
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
http://p2pool.org/stats/

Smart Contracts Make Bitcoin Mining Pools Vulnerable 305

shows the damages that an attacker could cause P2Pool, under the assumptions
that P2Pool employs a pure PPLNS scheme and its miners are rational.

Finally, some pools try to prevent block withholding by giving special bonuses
for miners who submit full solutions. These rewards must be limited to a few
percent of a block reward, as higher bonuses would significantly increase the
variance of payouts to pool members (e.g., in P2Pool the bonus is 0.5%). If a
pool offers p fraction of a block reward as a special bonus, then s = p · r and
an attack is profitable only if α > p, that is, only if the attacker hash power is
greater than p.

Remark 1. Our calculations hold also in the extreme case where β = 1 − α, i.e.,
when all the network but the attacker are withholding their blocks. However, in
reality, if the attacker managed to attract a non-negligible fraction of miners,
then PPS pools will go bankrupt and PPLNS pools will suffer from massive
abandonment rate, as it would become more profitable to mine solo. Hence, the
plausible outcome of a successful attack is a change in the pool mining model
(i.e., shift towards solo mining or private pools).

4 Proving Block Withholding

The attacker in Sect. 3 pays a withholder to refrain from broadcasting a valid
block to the blockchain. In order to convince the attacker that a block has been
withheld, the withholder has to prove that (i) he found a valid block; and (ii) he
(or his pool operator) did not submit it to the rest of the network. We observe
that even for the task of block verification, namely, to verify that 80 bytes data
consists of a valid block header, one would have to store the entire blockchain
inside a smart contract, and ask for a 1 MB block’s transactions data as a witness
for the validity of the block. This approach is infeasible as in February 2016 it
cost $76,000 to store 1 GB of data on the Ethereum blockchain11 (Bitcoin’s
blockchain size currently exceeds 100 GB12).

Thus, we relax the requirement for block withholding proof and ask for a
proof-of-stale-work. Proof-of stale-work proves that a miner is performing sha256
operations over some data without an intention of submitting full solutions to
the blockchain. When the withholder allocates his mining equipment for stale
work, the effective hash power of the network is reduced (see Sect. 4).

In the next two subsections we present two different approaches for prov-
ing stale work. The non-interactive approach requires only a single submission
from the withholder whereas the interactive approach requires the attacker to
respond to the withholder submission. The non-interactive scheme makes use of
Ethereum’s expressive scripting language. Under the non-interactive scheme the
withholder can, in a single step, submit his proof-of-stale-work to an Ethereum
smart contract and get paid for it in ether without trusting the attacker or vice

11 http://ethereum.stackexchange.com/questions/872/what-is-the-cost-to-store-1kb-
10kb-100kb-worth-of-data-into-the-ethereum-block.

12 https://blockchain.info/charts/blocks-size.

http://ethereum.stackexchange.com/questions/872/what-is-the-cost-to-store-1kb-10kb-100kb-worth-of-data-into-the-ethereum-block
http://ethereum.stackexchange.com/questions/872/what-is-the-cost-to-store-1kb-10kb-100kb-worth-of-data-into-the-ethereum-block
https://blockchain.info/charts/blocks-size

306 Y. Velner et al.

versa. The more complex interactive scheme, while implementable in Bitcoin’s
limited scripting language, leaves the attacker more vulnerable to the withhold-
ers.

In Sect. 4.3 we discuss how to mitigate the submission of orphan blocks.

4.1 Non-interactive Proof

A non-interactive proof-of-stale-work is a tuple (b1, b2, b′
2, b3), where:

– b1, b2, b
′
2, b3 are block headers; and

– b2 and b′
2 both extend b1; and

– b3 extends only b2.

Intuitively, b′
2 is the withheld block, and the fact that b3 extends b2 implies

that b2 is in the blockchain. Formally, in order to prove stale work, we consider
two distinct cases:

– In the first case the miner who found b′
2 never intended to submit it to the

blockchain. In this case, the proof trivially follows.
– In the second case, the miner did submit it to the blockchain. In this case,

the network had no incentive to find an extension for b2 and therefore the
withholder would have to spend effort in computing b3

13. In this case, the
withholder did stale work to find b3, and the proof follows.

While it is possible to implement this scheme as an Ethereum smart contract (see
Fig. 1), one cannot implement it in the current Bitcoin script language as Bit-
coin’s parsing functionality is currently disabled14. Indeed Bitcoin transactions
cannot even extract the previous block hash out of a block header.

Remark 2. It is possible to target the attack towards a specific pool. The block
header contains some information on the destination account of the block reward
and it is possible to extract it if the withholder provides the leftmost branch of
the block transaction Merkle tree. The connection between the account and the
pool operator is typically public information. Hence the attacker could reward
only blocks that are associated with certain accounts.

4.2 Interactive Proof

Let us recall that the header for a valid block, after two composed invocations of
sha256, has many leading zeros. The data B in the first step below corresponds
to a single sha256(b′′) for some valid block header b′′ (i.e., sha256(sha256(b′′))
matches the difficulty level).

13 To prevent cases where it would be profitable to find b3 for the purposes of selfish
mining, we could ask for a chain of blocks that extend b2 rather than only a single
block.

14 https://en.bitcoin.it/wiki/Script.

https://en.bitcoin.it/wiki/Script

Smart Contracts Make Bitcoin Mining Pools Vulnerable 307

Fig. 1. Solidity code that verifies proof-of-stale-work.

– Initially, the withholder submits a 32-byte of data B with sha256(B) that
matches Bitcoin difficulty level (i.e., has enough leading zeros).

– The attacker has time period T to find a block header b′ such that
sha256(b′) = B.

– The attacker pays if and only if he did not find b′ after time period T .

If the valid block b′′ was submitted to the blockchain15, then the attacker could
easily come up with b′ = b′′ say after T = 1 day. Otherwise, finding the pre-image
of sha256 is computationally infeasible, and the attacker would not be able to
find b′ in the time period T .

Formally, we first claim that finding B requires roughly the same amount
of work as finding a valid block header. Indeed, although technically only half
of the sha256 operations are required in order to find B (as in block mining
one would have to compute the sha256 function twice for every candidate byte
stream), we conjecture that using the existing mining ASICs it is faster to find
a block header and take B as its sha256, rather than specifically looking only
for B. Given the claim and the impossibility of finding a sha256 pre-image, it is
straightforward that if the withholder did the stale work, then he will get paid,
and his work was not stale, then he will not get paid.

The interactive scheme requires a script language that can (i) compute
sha256; (ii) make 32-byte integer comparison; and (iii) store state (to store the
withholder submission). Out of the three, only the first is possible with Bitcoin
script language. In AppendixA we show how to perform this scheme over Bit-
coin with several off-chain operations, and in AppendixB we show how to use
Ethereum smart contracts to force correctness of the off-chain operations.

15 We make the assumption that orphan blocks are also publicly visible, e.g.,
see https://blockchain.info/orphaned-blocks.

https://blockchain.info/orphaned-blocks

308 Y. Velner et al.

4.3 Mitigating Orphan Blocks

The approaches in Sects. 4.1 and 4.2 are not resilient against submission of
orphan blocks. Indeed neither protocol can distinguish orphaned blocks from
withheld blocks. In this section we focus on the practical implications (e.g.,
attacker’s losses) that orphan blocks introduce, and suggest practical ways to
mitigate them.

We first focus on the expected losses of the attacker due to orphan blocks.
In the 365 days between March 2016 and March 2017, 129 orphan blocks were
recorded16. Hence, in our analysis we assume 0.35 orphan blocks occur every
day (on average). Hence, ignoring orphan blocks will cost an attacker 0.35sr
per day. The third column in Table 2 illustrates the daily loses of an attacker
who attacks P2Pool. Our analysis suggests that an attacker who could afford to
pay for orphan blocks will bear losses of $4 per day while decreasing the victim
pool’s revenue by 10% (which might be enough to make all miners leave the
pool). However, the costs could rise to $520 per day if the attacker wishes to
reduce the victim pool’s revenue by 70%. In order to evaluate the total costs
of an attack, one would have to speculate on the number of days a pool could
successfully survive such an attack. We leave this empirical evaluation to future
research. We note that in networks with lower block intervals like Ethereum who
operates with the GHOST [10] protocol, the rate of stale blocks is much higher.
However, in Ethereum, stale blocks are rewarded and are also included in the
blockchain (as so called uncle blocks). Hence, for Ethereum, our schemes should
be adjusted to verify that the blockchain does not contain the submitted block
as an uncle block. Finally, we conjecture that Bitcoin’s low orphan block rate
might be the result of a highly centralized miner network, and if the network
were truly decentralized more orphans would occur.

We now suggest practical ways to mitigate the attacker’s losses.
The non-interactive scheme of Sect. 4.1 could reject orphan blocks by requir-

ing that the timestamps of b2 and b′
2 differ by at least one minute. The publicly

available orphaned blocks statistic in17 for the period of January till March 2017
suggests that in practice Sybil blocks (i.e., the orphan block and the accepted
block) timestamp differ by at most 40 s. Hence our restriction will prevent the
submission of orphan blocks but might also deter withholders from withholding
their blocks, as the smart contract will not accept a real block mined in the fol-
lowing minute. For this purpose the attacker should increase the offered reward
sr by a factor of q = e0.1 ≈ 1.105. Now the withholder will receive qsr provided
that no additional block was mined in the following minute (and the probability
that 0 blocks are mined in a single minute is e−0.1), and will receive nothing if
an additional block was mined. Hence, the expected reward is still sr, and our
theoretical mathematical analysis from Sect. 3 still holds. A further empirical
study is needed to evaluate the motivation of big pools to skew their timestamps
as a means to mitigate against this attack and to gauge the withholders’ reaction
to increased reward variance.
16 https://blockchain.info/charts/n-orphaned-blocks?timespan=1year.
17 https://blockchain.info/orphaned-blocks.

https://blockchain.info/charts/n-orphaned-blocks?timespan=1year
https://blockchain.info/orphaned-blocks

Smart Contracts Make Bitcoin Mining Pools Vulnerable 309

The interactive scheme of Sect. 4.2 can mitigate orphaned blocks either by
assuming that the attacker is always aware of orphaned blocks (e.g., via pub-
lic blockchain explorers like blockchain.info or by becoming a peer of all major
pools), or by giving incentives to the rest of the network to report that a submit-
ted block is an orphaned block. The latter solution would require the submitter
to deposit some collateral along with his submission of B. If a preimage of B
is submitted by a peer in the network, then half of the collateral is given to
this peer (and other half is slashed). An empirical experiment is needed to eval-
uate the number of orphaned blocks that are not presented in blockchain.info,
the effect of collateral (and collateral size) on the willingness of withholders to
participate, and peers’ motivation to report preimages.

5 Block Withholders Pool

We discuss two factors that could deter a miner from participating in the with-
holding scheme from Sect. 4.

– Ethical and long-run considerations. Participating as a withholder might vio-
late some agreements with the pool operator. In addition, if such attacks were
to become common, miners might face the risk that all pools would cease to
operate. In the absence of pools, miners’ income variance would become unde-
sirably high.

– Complicated setup for a rare chance to profit. On the one hand, collaborating
with the attacker requires the withholder to install a special patch for his
mining software. On the other hand, a miner could only withhold a block
after he finds at least one valid block, which is not even a once in a lifetime
event for most small miners. Even if the attacker offers high reward, most
small miners would likely not be willing to make the effort and update their
software for an event that is unlikely to happen.

In this section, we describe how to mitigate the second issue by forming a pool of
block withholders, which reduce the variance of the reward and incentives small
miners to participate in the attack. Intuitively, in a withholders pool miners sub-
mit proof-of-work shares to demonstrate their hash power and share attacker
rewards for withholding blocks. The withholders pool distributes block with-
holding rewards among miners in proportion to their relative hash power.

In order to make the scheme profitable, the block withholder pool’s proof-
of-work should correlate with the work the miners do for their legitimate pool
operator. Otherwise the additional proof-of-work would lead to financial losses.
In classical mining pool models, shares must include the pool operator’s data
in order to ensure that profit from valid blocks gets distributed among pool
members. By analogy, in order to ensure fair reward distribution in a withholder
pool, the attacker, who distributes all withholding rewards, must serve as the
operator. To be precise, the attacker should form exactly one withholding pool
and declare that all rewards are routed via that pool. As the attacker may not

310 Y. Velner et al.

be trusted, he should form a smart contract that collects proof-of-work and dis-
tributes the reward once a proof of block withholding is submitted (as described
in Sect. 4).

Ironically, such withholder pool is vulnerable to a block-withholding-
withholding attack, where miners could avoid submitting the withholding proof
to the attacker and instead submit them to their legitimate pool operator. Thus
the attacker’s payments to withholder pool members must suffice not only to
convince miners to install the mining software patch for dropping valid blocks
but must also directly and fairly compensate pool members who actually per-
form withholding. The payment to the member who performs a withholding must
exceed what he would have received for submitting his same share to the legit-
imate pool operator instead. Moreover, the attacker must distribute additional
funds to the remaining pool members via some PPLNS scheme in order to moti-
vate miners to install the software patch which includes instructions for diverting
valid blocks. In short, while running a withholding pool increases chances that
miners will participate in an attack, it also increases the attacker’s execution
costs.

6 Related Work

Recent literature has pointed incentive structure flaws in pooled mining [3,11] as
well as Nakamoto consensus itself [12–14]. In many of these instances, as in this
work, the attacker benefits by withholding publication of a live block. References
[3,5,6] showed that a miner who mines in multiple pools simultaneously and
withholds publication in one of them can, on average, increase his expected net
mining profit while decreasing the revenues of the attacked pool. However, in all
of these works the attacker must have substantial mining power in order to make
a significant attack. For example, a miner who wishes to attack a big pool like
F2Pool (for example), which currently posses 20% for the network hash power18,
should initially possess 6.7% [3] hash power in order to not lose money during the
attack. In our work, in theory, a mining power of 0.000002% is enough to cause
losses to the victim pool. On the other hand, our attack requires cooperation of
other parties and guarantees success only if the other parties are rational with
respect to their short-term revenues.

Recently Luu et al. propose a new efficient decentralized pooled mining pro-
tocol using Ethereum smart contracts [15]. Such a protocol, if deployed at a
cryptocurrency’s protocol level as the network’s only mining pool, could prevent
block withholding attacks against pooled miners.

Teutsch et al. recently proposed to attack blockchain miners by paying
them to use their mining equipment for non-mining purposes (i.e., to solve
non-blockchain PoW puzzles) [14]. Bonneau suggested to bribe miners [16] or
equivalently rent their equipment, and instruct them how to mine. In both of
these options, the attacker benefits by working on a private chain whose length
eventually exceeds the public chain’s length and thus collects all block mining
18 https://en.bitcoin.it/wiki/Comparison of mining pools.

https://en.bitcoin.it/wiki/Comparison_of_mining_pools

Smart Contracts Make Bitcoin Mining Pools Vulnerable 311

rewards for himself. However the initial mining power to make the first such
attack profitable in Bitcoin is 38.2% [14], while the latter attack relies on exotic
rationality assumptions. Our attack is inspired by these attacks as it conceptu-
ally pays pool miners to perform certain work (i.e., stale work). It exploits the
fact that the pool operator pays for most of the miners’ work, and thus we can
construct a profitable attack with very small initial hash power. On the other
hand, the above attacks directly affect the core blockchain protocol and demon-
strate vulnerabilities in Nakamoto consensus itself. Our attack affects only the
pool mining protocol, which is not part of Nakamoto consensus.

Sometimes by sheer luck a miner who controls a significant portion of the
network’s mining power can win two or more blocks in rapid succession. In this
case the miner can, on average, increase his profit by withholding a block as the
basis for a longer private chain and mining on top of it. Just before the public
chain catches up to the private one, the attacker releases his block, making the
private chain both public and valid, and wasting the efforts of other miners who
were mining on top of the former public chain. This attack is known as selfish
mining [12], and has been recently optimized [17] and combined [18] with the
network-layer eclipse attack [19].

Finally, we note that not all exploitable incentive structure flaws found
in Nakamoto consensus necessarily manifest themselves as block withhold-
ing attacks. Miners who benefited from the recent denial-of-service attacks in
Ethereum [20] made use of a “verifier’s dilemma” [13] to waste others’ time,
while publishing their own blocks quickly.

Acknowledgments. We thank our shepherd, Iddo Bentov, for useful discussions and
the anonymous reviewers of an earlier draft of this paper for helpful feedback.

A Bitcoin Implementation

In this section, we refine the interactive protocol from Sect. 4.2 for use in Bitcoin.
The security of our Bitcoin protocol relies on the following two assumptions
which we will later relax in AppendixB:

– The attacker always wants to attack. That is, he is always willing to pay a
predefined amount for a valid proof of block withholding.

– The withholder is willing to withhold the block in return for a Bitcoin zero-
confirmation payment.

The first assumption is reasonable as the attack is profitable. However, it is not
trivial, as malicious parties could dishonestly declare their intentions to make
such an attack but never collaborate with the withholder. Such behavior might be
expected, e.g., by pool operators who wish to undermine trust between attackers
and withholders. The second assumption could be justified as zero confirmation
double spending is not trivial to perform [21]. Our protocol would allow the
withholder to wait for a short period of time before deciding on his actions.
In this period of time the transaction would propagate to the majority of the

312 Y. Velner et al.

network, and the odds for double spending could be evaluated and bounded from
above, e.g., via [22]. If odds are, for example, less than 50%, then it is enough
to double the offered reward in order to incentivize the withholder. In Sect. B
we will introduce Ethereum smart contracts that enforce our assumptions. That
is, the contracts would compensate the withholder (in ether currency) if the
attacker does not collaborate with the protocol or performs double spending.

We are now ready to introduce the protocol.

– Initially, the withholder submits (off-chain) a 32-byte chunk of data b and his
Bitcoin public key.

– The attacker computes sha256(b) and rejects the submission if: (i) the dif-
ficulty level is not sufficient; or (ii) sha256(b) corresponds to a block in the
public blockchain; or (iii) b was already submitted in the past.

– (Otherwise) The attacker signs and sends the withholder a Bitcoin transaction
t such that:

• The attacker can redeem t with an input string b′ that satisfies
sha256(b′) = b.

• The withholder can redeem t after T block epochs (provided that it was
not already redeemed).

– The withholder submits t to the network, waits for it to propagate, withholds
his block, and redeems t after T block epochs.

The correctness of the scheme follows by our two assumptions and by the argu-
ments of the correctness proof of the protocol in Sect. 4.2. We note that in the
last phase of the protocol, the withholder cannot afford to wait for a block con-
firmation. Indeed, a block confirmation occurs only after a new block is mined,
and when this happens the withholder’s block becomes worthless as he can no
longer submit it to his pool operator19.

An implementation of transaction t as a Bitcoin script is illustrated bellow.
Implementation with bitcoin script. Transaction t locking script is:
1 OP_IF
2 OP_HASH256
3
4 OP_EQUALVERIFY
5 <buyer_public_key >
6 OP_ELSE
7 <time_lock > OP_CHECKLOCKTIMEVERIFY OP_DROP
8 <seller_public_key >
9 OP_ENDIF

10 OP_CHECKSIG

The buyer can redeem t with this unlocking script:
1 <signature >
2 <b’>
3 OP_1

The seller can redeem t after sufficient enough time with this unlocking script:
1 <signature >
2 OP_0

19 E.g., see line 110 in https://raw.githubusercontent.com/slush0/stratum-mining/
38637575c8c253aba18f95dffd25c49ca6d0434b/lib/block template.py.

https://raw.githubusercontent.com/slush0/stratum-mining/38637575c8c253aba18f95dffd25c49ca6d0434b/lib/block_template.py
https://raw.githubusercontent.com/slush0/stratum-mining/38637575c8c253aba18f95dffd25c49ca6d0434b/lib/block_template.py

Smart Contracts Make Bitcoin Mining Pools Vulnerable 313

We note that in order to make these transaction standard we use pay to script
hash transactions20.

B Ethereum Contracts as Insurance

In this section, we describe two Ethereum smart contracts that eliminates the
need for the assumptions we made in AppendixA. The contracts provides the
following guarantee:

The withholder is either payed the promised amount in bitcoin or payed
disproportional high value in ether currency.

Such guarantee should mitigate any concern from the withholder side, even if
he has strong preference towards bitcoin payments. Indeed, either he gets payed
with bitcoin or he receive high ether payment that compensates for his bitcoin
preference.

We first describe how to mitigate the assumption that the attacker always
wants to attack, and then describe an Ethereum insurance contract against Bit-
coin double-spending. For the rest of the section we assume that 1,000 ether
(approximately 10, 000 USD as of January 3, 201721) are enough to compensate
for any preference towards Bitcoin payment.

B.1 Forcing the Attacker to Attack

In this section we describe how an Ethereum contract (published by the attacker)
can enforce the attacker to honestly execute his part in the protocol. We recall
that the attacker’s role in the protocol is to publish a signed transaction t when
a valid block withholding witness b is submitted, i.e., when a never before sub-
mitted block header with sufficient difficulty is submitted. The contract has
four functions, namely, depositCollateral, submitWitness, submitTx and
seizeCollateral.

– depositCollateral: in this function the attacker deposits 1,000 ether.
– submitWitness: in this function the withholder submits the witness b and

his Bitcoin public key. The function checks that b was never submitted before
and its difficulty is sufficient (i.e., sha256(b) is small enough), and records the
current time.

– submitTx: in this function the attacker submits a signed transaction t and
the contract verifies that the transaction is properly signed in the format as
described in AppendixA.

– seizeCollateral: in this function the withholder can withdraw the 1, 000
ether if the attacker did not respond in time (or responded with invalid trans-
action).

20 https://en.bitcoin.it/wiki/Pay to script hash.
21 https://www.coingecko.com/en/price charts/ethereum/usd.

https://en.bitcoin.it/wiki/Pay_to_script_hash
https://www.coingecko.com/en/price_charts/ethereum/usd

314 Y. Velner et al.

See Fig. 2 for partial implementation of the contract. Intuitively, this contract
enforces the attacker to post a signed Bitcoin transaction to the Ethereum
blockchain (within a given time period T). Once published, the withholder can
post it to the Bitcoin network and claim his payment in bitcoin currency. If
the attacker decides not to post the transaction, then the withholder collects
the collateral that serves as a compensation for the block withholding and for
getting paid in ether.

Fig. 2. Solidity code that force the attacker to attack.

We note that the contract can serve as an insurance only when the balance
is sufficient (i.e., when a collateral is deposited). Hence, the withholder should
check the balance before participating in the scheme22.

B.2 Insurance Against Double-Spending

In this section, we introduce an Ethereum contract that serves as an insur-
ance against Bitcoin double-spending scenarios. We use it to mitigate the zero-
confirmation assumption for our Bitcoin implementation of the block withhold-
ing attack. The contract provides insurance for up to N simultaneous, double-
spending operations of a single Bitcoin address. Formally, we say that a transac-
tion tx is double-spent by address a if tx is signed by a and there exists another
signed transaction tx′ such that tx and tx′ share at least one common input and
differ by at least one output23.

The contract is illustrated in Fig. 3. In createInsurance function the owner
of the bitcoin account deposits 1,000 ether for every insured double-spending
operation. In the claimCompensation function, the victim submits the wit-
ness for double-spending and unlocking script for the controversial output, as a
22 To mitigate the incentive for the attacker to seize the collaterals and give it to a

Sybil identity, we can change the contract so it would give only half of the collateral
and the other half would be destroyed (e.g., would be sent to address 0x000...000).

23 A naive approach that only search for common inputs and check that tx �= tx′ would
fail due to Bitcoin’s transaction malleability issue [23].

Smart Contracts Make Bitcoin Mining Pools Vulnerable 315

Fig. 3. Insurance for bitcoin double-spending.

witness for being eligible for compensation. To prevent a Sybil attack, where the
owner of the insured account claim N compensation units to himself, we could
halve the compensation and destroy the remaining 500 ether.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). bitcoin.org
2. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. CoRR,

abs/1112.4980 (2011)
3. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power splitting

games in distributed computation: the case of bitcoin pooled mining. In: 2015 IEEE
28th Computer Security Foundations Symposium, pp. 397–411, July 2015

4. Ethereum Foundation: Ethereum’s White paper (2014). https://github.com/
ethereum/wiki/wiki/White-Paper

5. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in bitcoin digital currency. CoRR, abs/1402.1718 (2014)

6. Eyal, I.: The miner’s dilemma. In: SP (2015)
7. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,

M.: Zerocash: decentralized anonymous payments from Bitcoin. In: Proceedings of
2014 IEEE Symposium on Security and Privacy, SP 2014 (2014)

8. Wood, G., Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/paper.pdf

9. Bitcoin Wiki: Pool mining’s payout schemes. https://en.bitcoin.it/wiki/
Comparison of mining pools

10. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Financial Cryptography and Data Security - 19th International Conference, FC
2015, San Juan, Puerto Rico, 26–30 January 2015, Revised Selected Papers, pp.
507–527, 2015

11. Eyal, I.: The miner’s dilemma. In: IEEE Symposium on Security and Privacy (SP
2015), pp. 89–103, May 2015

12. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

13. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS 2015), pp. 706–719. ACM, New York (2015)

https://bitcoin.org/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/paper.pdf
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://doi.org/10.1007/978-3-662-45472-5_28

316 Y. Velner et al.

14. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
To appear in Financial Cryptography and Data Security (FC 2016) (2016)

15. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: Smartpool: practical decentralized
pooled mining. To appear in USENIX Security Symposium (2017)

16. Bonneau, J.: Why buy when you can rent? Bribery attacks on bitcoin-style con-
sensus. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M.,
Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 19–26. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 2

17. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. To appear in Financial Cryptography and Data Security (FC 2016) (2016)

18. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320, March 2016

19. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium (USENIX 2015), pp.
129–144. USENIX Association, Washington, D.C., August 2015

20. https://www.reddit.com/r/ethereum/comments/55xh2w/i thikn the attacker is
this miner today he made/

21. Karame, G., Androulaki, E. and Capkun, S.: Two bitcoins at the price of one?
Double-spending attacks on fast payments in bitcoin. IACR Cryptology ePrint
Archive 2012:248 (2012)

22. blockcypher.com: Confidence factor. http://dev.blockcypher.com/#
confidence-factor

23. Bitcoin Wiki: Transaction malleability. https://en.bitcoin.it/wiki/Transaction
Malleability

https://doi.org/10.1007/978-3-662-53357-4_2
https://www.reddit.com/r/ethereum/comments/55xh2w/i_thikn_the_attacker_is_this_miner_today_he_made/
https://www.reddit.com/r/ethereum/comments/55xh2w/i_thikn_the_attacker_is_this_miner_today_he_made/
http://dev.blockcypher.com/#confidence-factor
http://dev.blockcypher.com/#confidence-factor
https://en.bitcoin.it/wiki/Transaction_Malleability
https://en.bitcoin.it/wiki/Transaction_Malleability

BatchVote: Voting Rules Designed
for Auditability

Ronald L. Rivest1(B), Philip B. Stark2, and Zara Perumal3

1 MIT CSAIL, Cambridge, USA
rivest@mit.edu

2 Department of Statistics, University of California Berkeley, Berkeley, USA
stark@stat.berkeley.edu
3 MIT, Cambridge, USA

zperumal@mit.edu

Abstract. We propose a family of novel social choice functions. Our
goal is to explore social choice functions for which ease of auditing is a
primary design goal, instead of being ignored or left as a puzzle to solve
later.

Our proposal, “BatchVote,” creates a social choice function f from
an arbitrary “inner” social choice function g, such as instant-runoff voting
(IRV), and an integer B, the number of batches.

We aim to preserve flexibility by allowing g to be arbitrary, while
providing the ease of auditing of a plurality election.

To compute the winner of an election of n votes, the social choice
function f partitions the votes into B batches of roughly the same size,
pseudorandomly. The social choice function g is applied to each batch.
The election winner, according to f , is the weighted plurality winner
for the B outcomes, where the weight of each batch is the number of
votes it contains. The social choice function f may be viewed as an
“interpolation” between plurality (which is easily auditable) and g (which
need not be).

Auditing is simple by design: we can view f as being a (weighted)
plurality election by B “supervoters,” where the bth supervoter’s vote is
determined by applying g to the votes in batch b, and the weight of her
vote is the number of votes in her batch. Since plurality elections are
easy to audit, the election output can be audited by checking a random
sample of “supervotes” against the corresponding paper records.

1 Introduction and Motivation

Designing or selecting a social choice function for elections requires making trade-
offs among desirable properties—it is well known that many desirable properties
are incompatible. Ease of auditability does not seem to be among the properties
that have been considered when selecting a social choice function. In this paper
we elevate ease of auditing to be a first-level design criterion, and propose a spe-
cific framework, called BatchVote, for ensuring ease of auditing while blending
in desirable properties from another social choice function.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 317–333, 2017.
https://doi.org/10.1007/978-3-319-70278-0_20

318 R.L. Rivest et al.

The paper is organized as follows: Sect. 2 provides terminology, notation,
and orientation. Then Sect. 3 overviews of the BatchVote method, giving its
design philosophy and major characteristics. Section 4 takes a deeper look at
the properties of BatchVote, and then Sect. 5 shows how a BatchVote election
may be audited with a risk-limiting audit, based on known risk-limiting audit
methods for plurality elections. Simulated auditing results are given in Sect. 6.
Section 7 presents some variants of BatchVote.

2 Preliminaries

Outcomes, Ballots, Votes, Profiles. We assume that the election is designed
to select an outcome from a pre-determined set C of C alternatives (or candi-
dates). Each of n voters casts a single ballot. A ballot may have an arbitrary
format and semantics. The profile of cast ballots is

P = {v1, v2, . . . , vn},

listing the vote vj cast by voter j, for j = 1, . . . , n. The profile is best viewed as
a sequence or a multiset, since it may contain repeated items (identical ballots).
A vote need not be a valid vote (e.g., it might be an undervote or an overvote
according to the inner social choice function; see below).

Social Choice Functions. A voting rule or social choice function g maps
profiles to a single outcome (one of the alternatives). For any profile P , g(P) is
the winner or outcome for the profile P .

We require a social choice function g to be deterministic, so g must break
any ties that occur. We therefore allow g to take a second random input K. Here
K is the seed for a (pseudo-)random number generator used to break ties. Thus
f(P,K) is deterministic. We omit f ’s second argument K when it is understood
from context. We assume that g does not depend on the order of the votes, that
is, g applied to every permutation of P must give the same result c ∈ C.

One may choose a social choice function because of its mathematical prop-
erties. For example, Tideman’s “ranked-pairs method” [25] has many desirable
properties [28], as does the Schulze method [13]. But not all otherwise-desirable
social choice functions are readily auditable. Indeed, for both Tideman’s ranked-
pairs method and Schulze’s method there is no known efficient method for per-
forming a risk-limiting audit.

Post-election Audits. Confidence in an election outcome can be derived from
a post-election audit. We assume that voters cast votes on paper ballots,
and that voters had the opportunity to check that their ballots reflected their
choices before casting the ballots. These paper ballots were scanned and those
data were electronically aggregated to provide the initial or reported outcome
w for the election.

BatchVote: Voting Rules Designed for Auditability 319

The paper ballots represent the “ground truth” for the election; a full and
correct count of the paper ballots should give (essentially by definition) the
actual (or true) outcome t for the election. A “compliance audit” can provide
assurance that the paper trail has integrity (see Benaloh et al. [1], Lindeman and
Stark [8], and Stark and Wagner [15]).

To check the election outcome, rather than recount all the ballots by hand,
it is usually more efficient to audit using a statistical method based on hand
examination of a sample of the paper ballots, a method first proposed by John-
son [6]. Such a statistical (post-election) audit can give statistical assurance
that the reported outcome is indeed equal to the actual outcome, often after
examining only a relatively small sample of the paper ballots. If the reported
outcome is incorrect, the audit may need to examine many ballots, or even all
of them, before concluding that the reported outcome was incorrect.

Stark [16] introduced a particular kind of statistical audit—a risk-limiting
(post-election) audit (or RLA). What distinguishes an RLA is that if the
reported outcome is incorrect, a RLA has a large, pre-specified chance of cor-
recting it. Lindeman and Stark provide a “gentle introduction” to RLAs [8].
Lindeman et al. [7], Norden et al. [10], and the Risk-Limiting Audit Working
Group [2] give general overviews of post-election audits. Stark and Wagner [15]
promulgate “evidence-based elections,” which include not only a risk-limiting
audit but also ensure that the evidence trail has integrity.

A variety of statistical methods for providing RLAs have been devel-
oped [3,5,9,11,12,14,19–22,24]; some of these methods form the foundation of
our approach for auditing BatchVote. There are online tools to help conduct
risk-limiting audits [23].

3 BatchVote

This section gives an overview of the BatchVote design philosophy, gives details
of the method, and provides an analysis of its efficiency.

3.1 Design Philosophy

BatchVote derives a new social choice function f from a pre-existing social choice
function g. Roughly speaking, f divides the n ballots into B “batches,” applies
g to each batch, then defines the overall election outcome as the (weighted)
plurality result of the B batch-level outcomes.

When B is very large, most batches contain at most a single ballot, and f
behaves like plurality voting. But when B is equal to one, f and g are identical.
In between, BatchVote acts like a blend or “interpolation” between plurality and
g. Thus, f(P) is not generally equal to g(P), but f may inherit some desirable
features of g.

For instance, g could be a preferential voting method that allows voters to
express their preferences in more detail than simple plurality voting permits.

320 R.L. Rivest et al.

Preferential voting methods are notoriously difficult to audit [24,29]; for many
preferential voting methods no efficient risk-limiting audit method is known.

But g is, at the top level, just (weighted) plurality, for which efficient risk-
limiting auditing methods are well-known (see, for example [8]).

3.2 The BatchVote Method

BatchVote determines the election outcome as follows, given an “inner social
choice function” g and the set C of candidates.

1. Collect the n cast votes (including invalid votes) and assign each a unique
“ballot ID.”

2. Select λ, the desired average batch size, and calculate the resulting number
of batches B = n/λ.

3. Determine the “random election seed” K, using a public dice-rolling ceremony
or similar means.

4. Distribute votes to batches in a deterministic manner, based on the election
seed and the ballot IDs.

5. Compute the winner of each batch, using the social choice function g.
6. Compute the overall winner using a weighted plurality method to combine

the batch-level outcomes, where the weight of a batch is the number of votes
(including invalid votes) it contains.

Details are given in the following subsections. See Fig. 1 for an illustration.

3.3 Inner Social Choice Function g

BatchVote can use any social choice function as its “inner social choice function”
g; g affects basic properties of the election, such whether ballots allow choices
to be ranked in some way.

BatchVote is most interesting when g has desirable properties from a social
choice perspective, but is difficult to audit for the entire profile of cast ballots.
That includes many preferential voting methods. Applying g to small batches of
votes, then combining the results with (weighted) plurality, may give many of
the benefits of g while being easy to audit.

When BatchVote is used with inner social choice function g, we call
the result “Batchg .” For example, methods BatchApproval, BatchIRV,
BatchRankedPairs, or BatchSchulze are special cases of BatchVote.

3.4 Choosing λ

The average batch size λ is a free parameter of the BatchVote. There is no “right”
choice for λ, but different choices result in different social choice functions f , and
different auditing workloads. We recommend as a default λ = 10C, but other
values might be preferable, depending on how much one wants f to act like g
(choose λ large) or like plurality (choose λ small).

BatchVote: Voting Rules Designed for Auditability 321

n = 15
cast votes

B = 5
batches

g g g g g

batch
outcomes w(1) w(2) w(3) w(4) w(5)

plurality

BatchVote outcome w

Fig. 1. The BatchVote method. The n cast votes are divided pseudorandomly into B
batches. The social choice function g is applied separately to each batch. The overall
BatchVote outcome is the weighted plurality result of the batch outcomes. The weight
of batch b is the number of votes in batch b, including invalid votes.

3.5 Ballot IDs

In BatchVote, each ballot has a unique “ballot ID” that determines which batch
the ballot is placed in. The batch a ballot is placed in does not depend on the
choices made on that ballot, on other ballots, or on the number of ballots cast.

Ballot IDs are assigned by a process that does not know how ballot IDs
will determine which batch a ballot will be in. In BatchVote, this isolation is
accomplished by drawing a random seed K after all of the ballot IDs are assigned.
The seed, together with the ballot IDs, determines the batch assignments.

The ballot IDs may be arbitrary strings of characters; they may be numeric,
alphanumeric, or contain special characters. They may or may not contain infor-
mation about where the paper ballot is located. Each ballot should have a unique
ballot ID.

The ballot ID may be printed on the ballot itself when the ballot is scanned.
Some optical scanners can perform this sort of operation. Some states, such as
Texas, require that each ballot be “numbered.”

322 R.L. Rivest et al.

The database of scanned ballots then contains triples of the form (assuming
a single race):

(ballot-ID,paper-ballot-location,voter-choices).

3.6 Determining the Number B of Batches

The number B of batches is computed as B = N/λ. (We assume for convenience
that no rounding is needed here, and that B is an integer.)

BatchVote requires that B be determined before the random election seed K
is determined, for the same reason that ballot IDs should be determined before
the random election seed is determined: to prevent “gerrymandering.” Once B
is determined, it remains fixed, even if the number of ballots in the election
changes somewhat (e.g. if a box of previously unconsidered ballots is discovered
and approved for inclusion in the tally).

If B is very large (much larger than N), then many batches will be empty,
and most nonempty batches will have size 1. In this case BatchVote reduces to
plurality voting (because the weight of an empty batch is the empty set, however
one defines g applied to an empty vote profile).

We remark that the use of a cryptographic hash function makes it harder
for an adversary who can somehow control the seed (but not the ballots them-
selves) to manipulate the election, in much the same spirit as the suggestions of
Faliszewski et al. [4] on the use of computational complexity to protect elections
from manipulation.

3.7 Random Seed K

BatchVote uses a random “seed” K to help determine which batch a ballot is
placed in. The seed K is also used to help break ties.

The seed K may be determined by a dice-rolling ceremony after all votes
are cast. This gives a result unpredictable to an adversary. The ceremony is
performed after all cast ballots have been collected, to prevent an adversary
from manipulating the ballot IDs.

If K were predictable, an adversary who can assign ballot IDs might be
able to effect the equivalent of “gerrymandering”—giving his own candidate an
advantage in many batches, while the opponent gets an advantage in a few.

Our proposed process of generating a random seed after the votes are
assigned ballot IDs prevents this sort of “gerrymandering.”

3.8 Mapping Ballot IDs to Batches

We propose a method based on the use of a “cryptographic hash function”
(specifically, SHA256) to compute the assignment of ballots to batches.

The batch number is determined by the hash of the random seed K concate-
nated with the ballot ID, modulo B. (The fact that 2256 is not an exact multiple
of B is ignorable here.)

BatchVote: Voting Rules Designed for Auditability 323

This pseudorandom method is effectively indistinguishable from a truly ran-
dom mapping, for someone with a feasible amount of computational power who
doesn’t know the key K. We thus treat this mapping as a random mapping of
ballot IDs to batches.

Appendix A gives details of our proposal.

3.9 Variability of Batch Sizes

The sizes of batches in BatchVote can vary. If we treat the output of the pseudo-
random procedure as independent, identically distributed variables uniformly
distributed on {1, . . . , B}, the sizes {N (b)}B

b=1 of the batches are random vari-
ables with a multinomial joint distribution corresponding to N draws and equal
category probabilities 1/B. The marginal distribution of the number of ballots in
batch b is binomial Bin(N, 1/B); the chance that batch b will contain k ballots
is

(
N
k

)
(1/B)k(1 − 1/B)N−k.

BatchVote accommodates the variability in batch sizes by giving each batch a
weight equal to its size in the final plurality election. Empty batches are ignored.
A ballot in a batch of size k has an effective weight of (1/k) ∗ k = 1: hence, each
voter in the contest has the same effective “weight” in determining the outcome.
BatchVote is somewhat similar to the U.S. Electoral College, where the number
of electoral votes a state gets depends upon that state’s population—although
not in direct proportion.

Section 7 discusses other ways of dividing ballots into batches that we con-
sidered.

3.10 Applying g to Each Batch

The application of social choice function g to each batch is straightforward,
assuming that g is applicable to a batch of any size.

The social choice function g may need to resolve ties. As some batches may
be small, ties may be fairly common. Lack of space precludes giving full details
of our proposal, but, roughly speaking, when g is applied to batch b it is supplied
a “tie-breaking seed” Kb derived pseudorandomly from K and batch index b (for
instance, by hashing the concatenation of K and b).

Appendix B provides a concrete example of how this might be done.

3.11 Efficiency

The time required for BatchVote to compute the election outcome is the time
taken to assign ballots into batches, plus the time taken to compute each batch
outcome using g, plus the time taken to compute the weighted plurality overall
result. Depending on how the work of calculating g scales with the number of
ballots g is applied to, this can be faster or slower than computing g for the
original full ballot profile. We do not expect computing f to be burdensome in
practice.

324 R.L. Rivest et al.

4 Properties

4.1 BatchVote-Specific Properties

Fairness to Voters. Because each batch has weight equal to the number of
votes it contains, BatchVote is fair to voters—each voter is treated equally.
Moreover, every ballot has the same chance of ending up in each batch.

4.2 General Properties

What properties does f inherit from g and from Plurality, since it is a blend of
the two systems?

Clearly, for BatchVote to have some property regardless of the batch size,
both Plurality and g must have that property, since when B is large BatchVote
becomes Plurality, and when B = 1, BatchVote is g. Wikipedia provides a nice
list of voting system properties1.

Unfortunately, Plurality itself has few of those properties. We mention two
properties here.

Ballot Format. Obviously, the ballot format for f is identical to the ballot
format for g.

Monotonicity. A social choice function is monotonic if increasing a voter’s
preference for a candidate can only help that candidate. If g is monotone, then
so is f .

BatchPlurality versus Plurality. BatchPlurality is similar to plurality: there
is a precinct level tabulation and reporting of precinct-level results to a central
tabulation that aggregates those results. However, with BatchPlurality, precincts
do not report the candidate counts, just the winner for the precinct and the
overall number of voters. Thus BatchPlurality is closer to how the Electoral
College works.

5 Auditing

Efficient post-election audits can be derived from Wald’s sequential tests of sta-
tistical hypotheses [26,27].

5.1 Ballot-Polling Audits

The ballot-polling post-election audit studied here is a simple modification of
the ballot-polling audit method introduced by Lindeman et al. [9].

1 https://en.wikipedia.org/wiki/Voting system.

https://en.wikipedia.org/wiki/Voting_system

BatchVote: Voting Rules Designed for Auditability 325

Consider a pair of candidates (w, �) where w is a reported winner and � is a
reported loser. Candidate w really beat candidate � in the batch plurality contest
if

∑
b:t(b)=w N (b) >

∑
b:t(b)=� N (b), i.e., if

pw� ≡
∑

b:t(b)=w N (b)

∑
b:t(b)=w N (b) +

∑
b:t(b)=� N (b)

> 1/2. (1)

Suppose we draw a random batch B such that Pr{B = b} = N (b)/N . Condition
on the event that the true winner of batch B is either w or �. Then the (condi-
tional) probability that the true winner of the batch is w is pw�. Wald’s sequen-
tial probability ratio test [26] can test the hypothesis that pw� ≤ 1/2 against the

alternative that pw� =
∑

b:w(b)=w
N(b)

∑
b:w(b)=w

N(b)+
∑

b:w(b)=�
N(b) , the reported fraction of the

weighted votes for either w or � that are reported votes for w.

5.2 Comparison Audits

This section describes a comparison audit for BatchVote.
We have a weighted plurality contest with B batches (“voters” in the

weighted contest). Batch b contains N (b) ballots. Let N ≡ ∑
b N (b) be the total

number of ballots cast.
Let C denote the set of possible election outcomes. (Here C stands for “candi-

dates,” although an outcome might involve more than one candidate winning).
Let w(b) be the reported outcome (reported winner) for batch b and let t(b)

denote the actual (true) outcome for batch b (the outcome that a manual audit
of the batch would show).

The total reported weighted vote for outcome c is

Rc ≡
∑

b:w(b)=c

N (b). (2)

The reported winner of the contest is w ≡ arg maxc Rc (assuming no ties).
Similarly, the actual (true) winner of the contest is t ≡ arg maxc Ac. The reported
losers are the candidates L ≡ {� ∈ C : � �= w}.

To simplify the notation, define

R(b)
c ≡

{
N (b), if w(b) = c

0, else.
(3)

That is, R
(b)
c is the number of ballots in batch b if batch b was reported to have

voted for outcome c, and is zero if batch b was reported to have voted for any
other outcome. Thus

Rc =
∑

b

R(b)
c . (4)

For � ∈ L, define the reported pairwise margins:

Rw� ≡ Rw − R�. (5)

326 R.L. Rivest et al.

This will be positive for all � ∈ L if and only if w is the reported winner w.
The total actual weighted vote for candidate c is

Ac ≡
∑

b:t(b)=c

N (b). (6)

Define

A(b)
c ≡

{
N (b), if t(b) = c

0, else,
(7)

so
Ac =

∑

b

A(b)
c . (8)

The true winner is w if Aw > A� for all � ∈ L that is, if the actual pairwise
margins

Aw� ≡ Aw − A� > 0, ∀� ∈ L. (9)

We now give a simple auditing procedure based a sufficient condition for the
true winner to be w, couched in terms of a single scalar.

Aw� = Aw − A�

=
∑

b

A(b)
w −

∑

b

A
(b)
�

= Rw� −
∑

b

(
(A(b)

� − A(b)
w) − (R(b)

� − R(b)
w)

)
. (10)

The correct outcome is w if and only if for all � �= w,

Rw� − Aw� =
∑

b

[
(A(b)

� − A(b)
w) − (R(b)

� − R(b)
w)

]
< Rw�. (11)

Define

γ(b) ≡ max
� �=w

(A(b)
� − A

(b)
w) − (R(b)

� − R
(b)
w)

N (b)Rw�
. (12)

If ∑

b

γ(b)N (b) < 1, (13)

then for all � �= w,
∑

b

(A(b)
� − A(b)

w) − (R(b)
� − R(b)

w) < Rw�, (14)

i.e., w is the true winner.
Select a batch B at random, with probability N (b)/N of selecting batch b. If

batch b is selected, it can be tallied by hand, revealing A
(b)
c for all c; then γ(b)

can be calculated. Let X = γB, the value of γ for the randomly selected batch.
Then

IEX =
∑

b

γ(b) Pr{B = b} =
1
N

∑

b

γ(b)N (b). (15)

BatchVote: Voting Rules Designed for Auditability 327

Hence, w is the true winner if IEX < 1/N . A sequential test of the hypothesis
IEX ≥ 1/N can be used to construct a risk-limiting audit with risk limit α:
continue to audit until either that hypothesis is rejected at significance level α
or there has been a full hand count.

5.3 Masking of Errors

In the presence of no errors, the BatchX method can be viewed as paying a
penalty of a factor of λ compared to doing an audit of X on the entire set of
ballots. Of course, this statement only makes sense when there is a know method
to audit X, which is not true for all social choice functions.

A factor that acts in the other direction is that errors (discrepancies discov-
ered between paper ballots and their electronic counterparts) may be masked in
BatchX, as changing a ballot in a batch to its correct value may have no effect
on the batch outcome.

6 Experimental Results

Code implementing BatchAudit is available on GitHub.2 We have experimented
with synthetic data sets and data sets from real elections.3

Figure 2 shows BatchBorda applied to data from the Burlington, Vermont,
2009 Mayoral Race, which had 8980 voters. For λ � 0.8, the BatchBorda and
Borda methods give the same outcome.

Fig. 2. Batch size vs Outcome for BatchBorda for the Burlington, VT, 2009 Mayoral
Race data.

Figure 3 shows BatchRankedPairs applied to data from the Burlington,
Vermont, 2009 Mayoral Race, which had 8980 voters. For λ � 3.74, the
BatchRankedPairs and RankedPairs methods gave the same outcome.

2 The GitHub repo is https://github.com/ron-rivest/2016-batchvote-code. This is cur-
rently private, but will be made public.

3 Real data sets available at: http://rangevoting.org/TidemanData.html.

https://github.com/ron-rivest/2016-batchvote-code
http://rangevoting.org/TidemanData.html

328 R.L. Rivest et al.

Fig. 3. Batch size vs Outcome for BatchRankedPairs for the Burlington, VT, 2009
Mayoral Race data.

Fig. 4. Batch size vs Outcome for BatchIRV for the Burlington, VT, 2009 Mayoral
Race data.

Similar results (with a variety of crossover points) were obtained for other
real data sets).

Figure 4 shows BatchIRV applied to data from the Burlington, VT, 2009
Mayoral Race, which had 8980 voters. F λ � 2.82, the BatchRankedPairs and
RankedPairs methods gave the same outcome.

Similar results (with a variety of crossover points) were obtained for other
real data sets).

We also estimated audit workloads versus λ; see Fig. 5. The number of batches
that need to be examined for a risk limit of α = 0.05 is about 6/m2 for a ballot-
polling audit and about 6/m for a comparison audit, where m is the margin
between the top two candidates. The estimated audit workload is then λ times
larger, since auditing a batch requires looking at about λ ballots. Note that
the workload peaks when the winner changes. Our recommendation for choosing
λ = 10C is an attempt to choose a point a bit to the right of the winner-crossover
peak, if it exists.

BatchVote: Voting Rules Designed for Auditability 329

Fig. 5. Comparison audit workload estimate for BatchRankedPairs for the Burlington,
VT, 2009 Mayoral Race data.

7 Variants

This section describes possible variations of BatchVote.

Replication. One might replicate each ballot T times, for some T > 1, giving
extra flexibility to the process of allocating ballots to batches.

Fixed-Size Batches. We explored a number of ways of forcing every batch to
have very nearly the same size. For example, one could require all batches to
have a fixed size λ (an integer). (Using a replication factor T = λ may help.)
However, no alternative method seemed sufficiently simple and “random”; we
prefer the proposed BatchVote method for its simplicity.

Using Replications and All Subsets of Size λ. BatchVote is sensitive to
the random seed K. For a close election, a different value of K might yield a
different election outcome. This is not surprising, as K controls tie-breaking.

However, K also controls the placement of ballots in batches, and one might
prefer to have a social choice function that is somehow insensitive to the alloca-
tion of ballots to batches.

One could consider all subsets of size λ, and apply plurality to their batch-
level results. However, such an approach is computationally infeasible when N
and B are even modestly large.

MajorityThenBatch or CondorcetThenBatch. First check to see if there
is a majority or Condorcet winner. If so, then proclaim that candidate to be the
winner. Else, proceed with the BatchVote method. (This is a common approach
for forcing a voting system to be Majoritarian or Condorcet.) How to audit such
combined systems is an open question.

330 R.L. Rivest et al.

Write-in Votes. We can treat write-in candidates as regular candidates; deriv-
ing the list of candidates from ballots cast.

Multiple Races. How should one use the BatchVote method when there
are multiple races in an election? In our description so far, we have implic-
itly assumed that there is only one race being audited. See Stark [18,20] and
Benaloh et al. [1] for approaches to auditing multiple contests simultaneously.

Acknowledgments. Ronald L. Rivest gratefully acknowledges support for his work
on this project received from the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement CCF-0939370, and from the
Department of Statistics, University of California, Berkeley, which hosted his sabbatical
visit when this work began.

Appendix A. Possible Details of Batch Assignment
Method

We illustrate the proposed procedure with an example. Suppose the random seed
K is the string of 24 decimal digits

K = 067541877022641091953584

and suppose that a ballot has the 37-character ballot ID

ID = 2016-11-08-maricopa-az-1562-7631-5515.

Then the batch to which this ballot is assigned is starting with the concatenation
of these two strings—that is:

K||ID = 0675418770226410919535842016-11-08-maricopa-az-1562-7631-5515.

Applying SHA256 to this byte string yields the hexadecimal result

db5d8603dcf6e4e122e7b0ff231d4069cb4626f45ab1686cb1b6dd9d424480d9

which, when interpreted as a base-16 integer, yields

99221755554920309225844359348330608520995333449296550547451312649783275192537

(decimal). Finally, we take the result modulo B, the number of batches, and add
one. Suppose B = 10000. Then the batch number for this ballot is

2538 .

Because the result is obtained modulo B, plus one, the batches are numbered 1
to B, inclusive.

BatchVote: Voting Rules Designed for Auditability 331

Appendix B. Guidelines for Breaking Ties

We provide each of the B invocations of g with its own random number seed to
use in tie-breaking. Suppose the overall election-random seed is

067541877022641091953584.

Suppose we wish to provide the 15th invocation of g with its own tie-breaking
seed. Then the tie-breaking seed K(b) provided will be

K(b) = 067541877022641091953584:batch:15.

That is, the overall election seed, followed by “:batch:”, followed by the batch
number b in decimal, for b = 1, 2, . . . , B. This seed can be concatenated with
other values within g to break ties, and then SHA256 may be applied to the
result.

Of course, the specification of g needs to clearly specify how ties are to be
broken, given the tie-breaking seed K(b). (We have, for example, python code
that illustrates this for various social choice functions g.)

Each instance of g receives a different tie-breaking seed K(b), to remove
the possibility of obviously correlated tie-breaking between the various batches.
Although the seeds for different batches are related, they are nonetheless dif-
ferent, and the pseudo-random character of SHA256 makes it computationally
infeasible to find statistical correlations in their tie-breaking use.

Notation

This note summarizes notational conventions we use in this paper.

B Number of batches.
b A particular batch. b = 1, 2, . . . , B.
C The set of candidates.
C Number of candidates (possible election outcomes.
c A particular candidate. (Also w, � sometimes, for winner, loser.)
n Number of cast votes.
T Replication factor; how many times each vote is replicated.
N Number of ballots being tabulated; N = nT .
N (b) Number of ballots in batch b (so

∑
b N (b) = N).

λ Average batch size (λ = N/B).
Rc Total reported tabulation in favor of candidate c. (i.e. electronic tabula-
tion)
Ac Total actual tabulation in favor of candidate c (i.e. paper ballot tabulation)
R

(b)
c Reported tabulation for candidate c in batch b (Either N (b) or 0).

A
(b)
c Actual tabulation for candidate c in batch b. (Either N (b) or 0).

Rw� Reported margin of candidate w over candidate � (Rw� = Rw − R�).
Aw� Actual margin of candidate w over candidate � (Aw� = Aw − A�).

332 R.L. Rivest et al.

R
(b)
w� , A

(b)
w� Margins particularized to batch b.

t(b) True winner of batch b.
w(b) Reported winner of batch b.
K Random number seed for the election.
K(b) Random number seed for batch b.
B A randomly selected batch, with Pr{B = b} = N (b)/N .

References

1. Benaloh, J., Jones, D., Lazarus, E., Lindeman, M., Stark, P.B.: SOBA: secrecy-
preserving observable ballot-level audit. In: Proceedings of 2011 Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 2011),
(2011). http://static.usenix.org/events/evtwote11/tech/final files/Benaloh.pdf

2. Bretschneider, J., Flaherty, S., Goodman, S., Halvorson, M., Johnston, R., Linde-
man, M., Rivest, R.L., Smith, P., Stark, P.B.: Risk-limiting post-election audits:
why and how? (ver. 1.1), October 2012. http://people.csail.mit.edu/rivest/pubs.
html#RLAWG12

3. Checkoway, S., Sarwate, A., Shacham, H.: Single-ballot risk-limiting audits using
convex optimization. In: Jones, D., Quisquater, J.-J., Rescorla, E. (eds.) Proceed-
ings of 2010 EVT/WOTE Conference. USENIX/ACCURATE/IAVoSS, August
2010

4. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using complexity to pro-
tect elections. CACM 53(11), 74–82 (2010)

5. Hall, J.L., Miratrix, L.W., Stark, P.B., Briones, M., Ginnold, E., Oakley, F.,
Peaden, M., Pellerin, G., Stanionis, T., Webber. T.: Implementing risk-limiting
post-election audits in California. In: Proceedings of 2009 Electronic Voting Tech-
nology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 2009, Mon-
treal, Canada). USENIX, August 2009. http://www.usenix.org/event/evtwote09/
tech/full papers/hall.pdf

6. Johnson, K.: Election verification by statistical audit of voter-verified paper ballots.
http://ssrn.com/abstract=640943. Accessed 31 Oct 2004

7. Lindeman, M., Halvorseon, M., Smith, P., Garland, L., Addona, V., McCrea, D.:
Principle and best practices for post-election audits (2008). www.electionaudits.
org/files/best%20practices%20final 0.pdf

8. Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits. IEEE
Secur. Priv. 10, 42–49 (2012)

9. Lindeman, M., Stark, P.B., Yates, V.S.: BRAVO: ballot-polling risk-limiting audits
to verify outcomes. In: Halderman, A., Pereira, O. (eds.) Proceedings of 2012
EVT/WOTE Conference (2012)

10. Norden, L., Burstein, A., Hall, J.L., Chen, M.: Post-election audits: restoring trust
in elections. Technical report, Brennan Center for Justice and Samuelson Law,
Technology & Public Policy Clinic (2007)

11. California Secretary of State. Post-election risk-limiting audit
pilot program (2011–2013). http://www.sos.ca.gov/elections/
voting-systems/oversight/post-election-auditing-regulations-and-reports/
post-election-risk-limiting-audit-pilot-program/

12. Sarwate, A.D., Checkoway, S., Shacham, H.: Risk-limiting audits and the margin
of victory in nonplurality elections. Polit. Policy 3(3), 29–64 (2013)

http://static.usenix.org/events/evtwote11/tech/final_files/Benaloh.pdf
http://people.csail.mit.edu/rivest/pubs.html#RLAWG12
http://people.csail.mit.edu/rivest/pubs.html#RLAWG12
http://www.usenix.org/event/evtwote09/tech/full_papers/hall.pdf
http://www.usenix.org/event/evtwote09/tech/full_papers/hall.pdf
http://ssrn.com/abstract=640943
www.electionaudits.org/files/best%20practices%20final_0.pdf
www.electionaudits.org/files/best%20practices%20final_0.pdf
http://www.sos.ca.gov/elections/voting-systems/oversight/post-election-auditing-regulations-and-reports/post-election-risk-limiting-audit-pilot-program/
http://www.sos.ca.gov/elections/voting-systems/oversight/post-election-auditing-regulations-and-reports/post-election-risk-limiting-audit-pilot-program/
http://www.sos.ca.gov/elections/voting-systems/oversight/post-election-auditing-regulations-and-reports/post-election-risk-limiting-audit-pilot-program/

BatchVote: Voting Rules Designed for Auditability 333

13. Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and
condorcet-consistent single-winner election method. Soc. Choice Welf. 36(2), 267–
303 (2011)

14. Stark, P.B.: Risk-limiting vote-tabulation audits: the importance of cluster size.
Chance 23(3), 9–12 (2010)

15. Stark, P.B., Wagner, D.A.: Evidence-based elections. IEEE Secur. Priv. 10(05),
33–41 (2012)

16. Stark, P.B.: Conservative statistical post-election audits. Ann. Appl. Stat. 2, 550–
581 (2008)

17. Stark, P.B.: A sharper discrepancy measure for post-election audits. Ann. Appl.
Stat. 2, 982–985 (2008)

18. Stark, P.B.: Auditing a collection of races simultaneously (2009). https://arxiv.
org/abs/0905.1422v1

19. Stark, P.B.: CAST: canvass audits by sampling and testing. IEEE Trans. Inf. Foren-
sics Secur. 4(4), 708–717 (2009)

20. Stark, P.B.: Efficient post-election audits of multiple contests: 2009 California
tests. In: 2009 Conference on Empirical Legal Studies (2009). http://ssrn.com/
abstracts=1443314

21. Stark, P.B.: Risk-limiting post-election audits: P-values from common probability
inequalities. IEEE Trans. Inf. Forensics Secur. 4, 1005–1014 (2009)

22. Stark, P.B.: Super-simple simultaneous single-ballot risk-limiting audits. In: Pro-
ceedings of 2010 EVT/WOTE Workshop (2010). http://www.usenix.org/events/
evtwote10/tech/full papers/Stark.pdf

23. Stark, P.B.: Tools for comparison risk-limiting election audits (2015). http://www.
stat.berkeley.edu/∼stark/Vote/auditTools.htm

24. Stark, P.B., Teague, V.: Verifiable European elections: risk-limiting audits for
D’Hondt and its relatives. USENIX J. Elect. Technol. Syst. (JETS) 1(3), 18–39
(2014)

25. Tideman, T.N.: Independence of clones as a criterion for voting rules. Soc. Choice
Welf. 4(3), 185–206 (1987)

26. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

27. Wald, A.: Sequential Analysis. Dover, Mineola (2004)
28. Wikipedia: Voting system. https://en.wikipedia.org/wiki/Voting system
29. Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings

of 13th ACM Conference on Electronic Commerce (EC-2012) (2012)

https://arxiv.org/abs/0905.1422v1
https://arxiv.org/abs/0905.1422v1
http://ssrn.com/abstracts=1443314
http://ssrn.com/abstracts=1443314
http://www.usenix.org/events/evtwote10/tech/full_papers/Stark.pdf
http://www.usenix.org/events/evtwote10/tech/full_papers/Stark.pdf
http://www.stat.berkeley.edu/~stark/Vote/auditTools.htm
http://www.stat.berkeley.edu/~stark/Vote/auditTools.htm
https://en.wikipedia.org/wiki/Voting_system

Advances in Secure Electronic Voting
Schemes

Existential Assertions for Voting Protocols

R. Ramanujam1, Vaishnavi Sundararajan2, and S.P. Suresh2(B)

1 The Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani,
Chennai 600113, Tamil Nadu, India

jam@imsc.res.in
2 Chennai Mathematical Institute and UMI ReLaX, H1, SIPCOT IT Park, Siruseri,

Kelambakkam, Chennai 603103, India
{vaishnavi,spsuresh}@cmi.ac.in

Abstract. In [21], we extended the Dolev-Yao model with assertions.
We build on that work and add existential abstraction to the language,
which allows us to translate common constructs used in voting protocols
into proof properties. We also give an equivalence-based definition of
anonymity in this model, and prove anonymity for the FOO protocol.

1 Anonymity

Formal verification of security protocols often involves the analysis of a property
where the relationship between an agent and a message sent by him/her needs
to be kept secret. This property, called “anonymity”, is a version of the general
unlinkability property, and one of much interest. There can be multiple examples
of such anonymity requirements, including healthcare records, online shopping
history, and movie ratings [20]. Electronic voting protocols are a prime example
of a field where ensuring and verifying anonymity is crucial.

It is interesting to see how protocols are modelled symbolically for the analy-
sis of such properties. In the Dolev-Yao model [10], one often requires special
operators in order to capture certain behaviour. Many voting schemes employ
an operation known as a blind signature [8]. A blind signature is one where
the underlying object can be hidden (via a blinding factor), the now-hidden
object signed, and then the blind removed to have the signature percolate down
to the underlying object. The FOO voting protocol given in [11] crucially uses
blind signatures in order to obtain a signature on an encrypted object. [7] shows
that the derivability problem for protocols involving blind signatures becomes
DEXPTIME-hard. Protocols which do not use blind signatures often use homo-
morphic encryption or mix nets, which also make the modelling and verification
quite complex [17].

We thank the anonymous referees for their helpful comments. We would also like
to thank Prof. Steve Kremer (INRIA Nancy and LORIA) for insights which helped
crystallize some of the main ideas in this paper.
V. Sundararajan—Supported by a TCS Research Fellowship, and partially by a
grant from the Infosys Foundation.
S.P. Suresh—Partially supported by a grant from the Infosys Foundation.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 337–352, 2017.
https://doi.org/10.1007/978-3-319-70278-0_21

338 R. Ramanujam et al.

Note that in most common models, terms are the only objects communicated.
A “certificate” of an agent’s validity – which is an intrinsically different object
from a term containing an agent’s vote, for example – is also modelled as a term
in the term algebra. [4,5], for example, augment the Dolev-Yao term syntax with
an extra primitive ZK (a “zero-knowledge term”), which can be used to create a
term that codes up a zero-knowledge proof. However, no direct logical inference
is possible with these proof terms, and therefore, it is difficult to reason about
what further knowledge agents can obtain using them. In [21], we proposed a
departure from this paradigm, using assertions as a further abstraction that
can be used for modelling protocols. Assertions, which code up certificates and
have a separate proof system, can be sent by agents in addition to terms. The
assertion algebra allows designers to model protocols involving certification in
a more explicatory manner (by maintaining terms and certificates as separate
objects). It also allows analysts to capture any increase in agents’ knowledge
achieved by deduction at the level of certificates.

So what are these assertions and how do they behave? Assertions include
statements about various terms appearing in the protocol. These include
instances of application-specific predicates and equalities between two different
symbolic terms. Assertions can also be combined using the usual propositional
connectives and (∧) and or (∨). They also include a says operator, which works
as an ownership mechanism for assertions, and disallows other agents from for-
warding such an assertion in their own name. Perhaps the most crucial (and
useful) addition to the assertion language here (over the system in [21]) is the
existential quantifier. This allows us to quantify out any term from an assertion,
thereby effectively hiding the actual term about which that assertion is made.
Since existential assertions thus hide the private data used to generate a certifi-
cate, while revealing some partial information, they seem especially useful for
capturing blinding (and similar operations with this goal) in voting protocols.

1.1 Related Work

Research on anonymity has been carried out for many years now. In the applied-
pi calculus, [16] verifies anonymity for the FOO protocol, [2] studies general
unlinkability and shows that this implies anonymity, and [19] provides a model
based on process algebra incorporating aspects of the underlying communication
mechanism (anonymous channels in particular).

There are also many epistemic logic-based approaches. [14] provides a logical
framework built on modal epistemic logic for anonymity in multiagent systems;
[12,22] also define information-hiding properties in terms of agent knowledge; [15]
provides a modular framework that allows one to analyze general unlinkability
properties using function views, along with extensive case studies on anonymity
and privacy.

Theorem provers have also been used to verify anonymity. [6] uses an auto-
matic theorem prover MCMAS for verification; [3] also specifies general unlinka-
bility as an extension to the Inductive Method for security protocol verification
in the theorem prover Isabelle.

Existential Assertions for Voting Protocols 339

In this paper, we extract a logical core of reasoning about certificates, trans-
late the typical constructs used for voting protocols into proof properties, and
employ equivalence-based reasoning for verifying anonymity. We also apply this
technique to model two voting protocols, namely FOO and Helios, and to analyze
anonymity for FOO.

2 Modelling the FOO Protocol

2.1 Introduction to FOO

In [11], the authors introduce the FOO protocol for electronic voting, which
has inspired many subsequent protocols. This protocol uses blinding functions
and bit commitments in order to satisfy many desirable security properties,
including anonymity. The voter V sends to the authority A his name, along with
a blindsigned commitment to the vote v. The authority signs this term, and sends
it back to V . V now unblinds this to obtain a signature on his commitment to
the vote v, and sends that to the collector C. C adds the encrypted vote and V ’s
commitment to the public bulletin board. V then sends to C the random bit r
he used to create the vote commitment, so C can access the vote and update his
tally. The protocol is presented in Fig. 1a (see [11,16] for a detailed explanation).
Sends marked by � are over anonymous channels.

V → A : V, [blind(commit(v, r), b)]V

A → V : [blind(commit(v, r), b)]A

V � C : [commit(v, r)]A

C → : list, [commit(v, r)]A

V → C : r

(a) FOO Protocol with terms.
[x]A denotes x signed by A.

V → A : {v}rA , V says { ∃x, r : {x}r = {v}rA

∧ valid(x) }
A : deny ∃x : voted(V, x)

A : insert voted(V, {v}rA)

A → V : A says

[elg(V) ∧ voted(V, {v}rA)

∧ V says { ∃x, r : {x}r = {v}rA

∧ valid(x) }]

V � C : {v}rC , rC ,

∃X ∃y, s : A says

[elg(X) ∧ voted(X, {y}s)

∧ X says { ∃x, r : {x}r = {y}s

∧ valid(x) }]

∧ y = v

(b) FOO Protocol with assertions.

Fig. 1. FOO protocol: modelling with terms only and with assertions

340 R. Ramanujam et al.

2.2 Modelling FOO with Assertions

In Fig. 1b, we present the FOO protocol as modelled using assertions.
The voter V contacts the authority A with his vote v encrypted using a

random key rA. V also sends a certificate linking his name to his encrypted vote
v. The V says prefix links V to the certificate about v, and thus informs the
authority that V wishes to vote using the valid vote v, the encrypted form of
which has been sent with the certificate. Note that this certificate automatically
rules out replay attacks (of the kind where another agent V ′ copies V ’s published
data off the bulletin board and replays it in her own name).

The authority A checks that the voter V has not voted earlier. If this check
passes, A adds the fact that V has voted with the encrypted term {v}rA

to her
database (so that V cannot vote again in the future) via an insert action. A
then issues a certificate stating that V is a valid voter and wishes to vote with
the encrypted term he sent A earlier, and that V claims that the term encrypted
therein is a valid vote. The voter V now anonymously sends to the counter C
the vote v encrypted in a new random key. This is accompanied by an existential
assertion, which hides the voter’s identity from C, while still convincing C that
A has certified V and the sent vote to be valid.

We need three predicates here – valid, elg, and voted. The first two are
predicates for stating the validity of the vote and the eligibility of the voter,
respectively. The voted predicate is used for linking the voter and the vote.
As we shall see in Sect. 4, we can add such protocol-specific predicates to the
assertion language in order to communicate succinct certificates (for example,
here we use valid(v), instead of providing a disjunction over the finite set of
valid votes for the value of v, which would grow longer as the set of allowable
values grows larger).

3 Modelling Helios 2.0

3.1 Introduction to Helios

[1] introduces the voting scheme called Helios which has the desirable property of
public auditability, i.e., even if Helios is fully corrupt, one can verify the integrity
of an election outsourced to it. Helios provides unconditional integrity as long as
the bulletin board is trustworthy, while privacy is guaranteed if one trusts the
Helios server, which doubles up as election administrator and trustee. The voter
sends his vote to the Ballot Preparation System, which creates an encrypted
ballot, which is then sealed and cast. The voter’s identity and ballot are then
posted on the public bulletin board. On closing the election, Helios removes voter
names, shuffles all ballots, produces a proof of correct shuffling, and posts these
on the board. After allowing some time for auditors to check the shuffling, Helios
decrypts each ballot, produces a proof of correct decryption, and posts the tally
on the bulletin board. Helios crucially uses auditing by various participants in
order to guarantee correctness.

Existential Assertions for Voting Protocols 341

3.2 Helios 2.0

[9] demonstrates an attack on vote privacy in the basic Helios system in [1],
where, by controlling more than half the voters, an adversary can get the com-
promised voters to copy a single (honest) voter’s encrypted ballot off the bulletin
board, and from the tally know whom that voter voted for. Note that this hap-
pens in spite of the Helios system itself being non-corrupt. In order to fix this,
they introduce measures to weed out replayed ballots, and a linking mechanism
between every ballot and the voter whose vote it is supposed to encrypt. They
also replace the shuffling mechanism by a homomorphic encryption operation,
and introduce trustees who are distinct from the election administrator. This
introduces an extra assurance of vote privacy, since a corrupt administrator
needs to corrupt some trustees in order to see a voter’s unencrypted vote.

V → S : v, V says valid(v)
S → V : b, S says {∃v : b = ballot(v) ∧ V says valid(v)}
V → S : cast
S → A : b, S says {∃v : b = ballot(v) ∧ V says valid(v)}

A : deny voted(V)
A : insert voted(V)

A → BB : b, A says S says {∃v : b = ballot(v) ∧ V says valid(v)}
Suppose b1, . . . , bk were the ballots cast and published on the bulletin board.
A → BB : t, A says [∃s : t = ballot(s) ∧

{∃v1, . . . , vk : s = sum(v1, . . . , vk) ∧
k∧

i=1

bi = ballot(vi)}]

Fig. 2. Helios 2.0 protocol with assertions

3.3 Modelling Helios 2.0 with Assertions

The voter first inputs his vote to a script which creates his ballot and sends it
back to him with an assertion stating correctness. The voter can then choose to
cast this vote, at which point the script submits his ballot and the assertion to the
administrator. The administrator publishes the ballot and the assertion on the
bulletin board. After some known deadline, the administrator homomorphically
combines all ballots, and publishes the encrypted tally along with an assertion
stating correctness of the tally. The trustees can then decrypt this tally, and the
administrator publishes the result.

In Fig. 2 we model Helios 2.0 with assertions. We do not include the final
step, where the trustees decrypt the final encrypted tally and publish it onto
the bulletin board. Note that this model, much like the terms-only model in [9],
requires us to add a homomorphic encryption operation to our term algebra.

342 R. Ramanujam et al.

However, we can incorporate the weeding out of replayed ballots and establishing
the link between ballots and voters by the use of assertions alone, instead of
having to send extra terms. Note that in order for an agent V2 to copy V1’s vote
and replay it to A, V2 would need to make an assertion of the form S says {∃v :
b = ballot(v) ∧ V2 says valid(v)}, which would contradict the sending in V1’s
name. Thus we can establish a link between vote and voter, while also disallowing
replays. We merely need to add a homomorphic encryption operation to the
term algebra, since our assertions, as of now, are not capable of capturing this
operation.

4 Assertions: Theory

We fix the following countable sets – a set V of variables, a set Ag of agents,
a set N of nonces, and a set of K of keys. We assume that every k ∈ K
has an inverse key, denoted inv(k). The set of basic terms B is defined to be
Ag ∪ N ∪ K . The set of terms T is given by the following syntax:

t := m | (t1, t2) | {t}k

where m ∈ B ∪ V , and k ∈ K ∪ V . A term with no variables occurring in it is
called a ground term. The system of rules for deriving new ground terms from
old is given in Table 1. The rules are presented in terms of sequents X �dy t
where X is a finite set of ground terms, and t is a ground term.

Table 1. The Dolev-Yao derivation system

4.1 Assertions and Derivations

We now present the formal details of the model with assertions, a version of which
was first proposed in [21]. The set of assertions, A , is given by the following
syntax (fixing a set of variables, and a set of predicates for each arity):

α := t = t′ | α1 ∨ α2 | α1 ∧ α2 | ∃x : α | m says α
| valid(m) | elg(m) | . . . | m sent t | m sent α

Existential Assertions for Voting Protocols 343

where t ∈ T , m ∈ Ag ∪V , and valid and elg are application-specific predicates.
The ellipses signify that one may add more such predicates, depending on the
application requirements (as in the FOO protocol, from Sect. 2.2). A ground
assertion is one with no free variables.

The set of assertions is a positive fragment of existential first-order logic. The
intention is that in addition to ground terms, agents also communicate ground
assertions to each other. Agents are allowed to assert equality of terms, and
basic predicates on terms, as well as disjunctions and conjunctions. They can
also “sign” assertions by use of the says operator. They also have the capability
of existentially abstracting some terms from an assertion, thereby modelling
witness hiding. The sole use of the sent operator is to enable an observer to
record who communicated a term or an assertion.

Table 2. Derivation rules for assertions. In the • rule, xi, yi ∈ V . We assume that
X �dy x and inv(x) = x for all x ∈ V . In the ∃e rule, y �∈ Vars(X, Φ ∪ {β}).

In the course of participating in a protocol, agents accumulate a database
of ground terms and ground assertions communicated to them. The (natural
deduction style) proof system for assertions is presented in Table 2. The rules
are presented in terms of sequents X,Φ � α, where X is a finite set of ground
terms and Φ is a finite set of assertions (which are not necessarily ground).

Equality assertions form a central part of communications between agents.
Note that an agent A can derive t = t only when all basic subterms of t can

344 R. Ramanujam et al.

be derived by A. The recipient of an equality assertion can use the rules pro-
vided in Table 2 to reason further about the terms involved therein. Our rules
for equality are fairly intuitive and reflect basic properties of the pairing and
encryption operations. Equality assertions are most likely to be used in exis-
tentially quantified assertions. Notable among the other rules are saysA, which
allows the possessor of sk(A) to “sign” an assertion in A’s name, and strip, which
allows one to strip the sign in A says α and use α in local reasoning.

These rules allow agents to carry out non-trivial inferences, potentially learn-
ing more than was intended by the protocol. Suppose an agent A has a term
{v}k, which he knows be a nonce encrypted with some key, but whose inverse
he does not have access to. One would presume that A therefore should have
no idea about the value of v. However, it is possible for assertions about {v}k

to reveal more information to A. Suppose A manages to obtain two certificates
∃x, y : {v}k = {x}y ∧ (x = 0∨x = 1) and ∃x, y : {v}k = {x}y ∧ (x = 0∨x = 2).
Let us call these assertions ∃x, y : α(x, y) and ∃x, y : α′(x, y). These two asser-
tions are in A’s database of assertions Φ. Let a, b, a′, b′ be new variables that
do not occur in Φ. Consider Φ ∪ {α(a, b), α′(a′, b′)}. From {v}k = {a}b and
{v}k = {a′}b′ , we get {a}b = {a′}b′ . Since a, a′, b, b′ ∈ V , a = a′ and b = b′

using the • rule from Table 2. From the other parts of α and α′, and using
transitivity, we get a = 0 ∨ a = 1 and a = 0 ∨ a = 2. We use disjunction
elimination to get a = 0. From this we conclude that {v}k = {0}b, and hence
Φ∪{α(a, b), α′(a′, b′)} � ∃y : ({v}k = {0}y). Therefore, using the ∃e rule, we get
Φ � ∃y : ({v}k = {0}y).

[4,5] use ZK terms, which we shall refer to as zkp terms, to encapsulate
assertions about terms appearing in the protocol. Each zkp term proves a formula
involving some private and some public variables. The recipient of a zkp term
is deemed to have knowledge of the terms used in place of the public variables,
but not the private ones. We adopt a similar convention here. For an assertion
α, if an equality of the form t = t′ occurs in it, or if α involves the application
of a predicate to a term t, then α reveals t. However, if a term of the form {v}k,
say, appears in α, then α does not reveal v. We also adopt the convention that
every term revealed by an assertion is sent earlier in the protocol.

4.2 Actions, Roles and Protocols

There are six type of actions – send, anonymous send, receive, confirm, deny,
and insert. Sends, anonymous sends, and receives are of the form +A: (m)(t, α),
+A∗: (m)(t, α) and −A: (t, α) respectively, where A ∈ Ag ∪ {id} (where id is a
dedicated variable that stands for the agent performing the action), m ⊆ V ∪
N ∪ K stands for nonces and keys that are fresh which should be instantiated
with hitherto unused values in each occurrence of this action, t ∈ T and α ∈ A .
The A: confirm α and A: deny α actions allow A to branch on whether or not
he can derive α, while A : insert α allows A to add previously unknown true
assertions into her database. For A ∈ Ag ∪ {id}, an A-action is an action which
involves A. A ground action is one without any variable occurrence. An A-role
is a finite sequence of A-actions. A role is an A-role for some A ∈ Ag ∪ {id}. A
protocol Pr is a finite set of roles.

Existential Assertions for Voting Protocols 345

Given a sequence of actions η = a1 · · · an, we say that the variable x originates
at i if x occurs in ai and does not occur in aj for any j < i. A variable x occurring
in a role η is said to be bound if it originates at i and either ai is a receive action,
or ai = +A: (y)(t, α) is a send action with x ∈ y.

As an example, we show the voter role for the FOO protocol from Sect. 2. In
this role, v and id stand for the vote and voter respectively, while k, k′ are fresh
keys, and auth is a bound variable (since it originates in a receive) which stands
for the authority with whom the voter interacts. The authority and counter roles
can also be extracted from the protocol description in a similar manner.

+id : (k) {v}k, id says {∃x, r : {x}r = {v}k ∧ valid(x)}
−id : auth says [elg(id) ∧ voted(id, {v}k)

∧ id says { ∃x, r : {x}r = {v}k ∧ valid(x) }]
+id∗ : (k′) ({v}k′ , k′),

∃X, y, s : auth says [elg(X) ∧ voted(X, {y}s)
∧ X says {∃x, r : {x}r = {y}s ∧ valid(x)}] ∧ y = v

4.3 Runs of a Protocol

Even though the roles of a protocol mention variables, its runs (or executions)
consist only of ground terms and assertions exchanged in various instances of
the roles. An instance of a role is formally specified by a substitution σ, which
is a partial map from V to the set of all ground terms. We lift σ for terms,
assertions and actions in the standard manner. σ is said to be suitable for an
action a if σ(a) is an action, i.e. a typing discipline is followed. A substitution is
suitable for a role η if it is defined on all free variables of η and suitable for all
actions in η.

A session of a protocol Pr is a sequence of actions of the form σ(η), where
η ∈ Pr and σ is suitable for η.

A run of a protocol is an interleaving of sessions in which each agent can
construct the messages that it communicates. This is formalized by a notion of
knowledge state, which represents all the terms and assertions that each agent
knows. A control state is a record of progress made by an agent in the various
sessions he/she participates in.

A knowledge state ks is a tuple ((XA, ΦA)A∈Ag), where XA (resp. ΦA) is the
set of ground terms (resp. ground assertions) belonging to an agent A. A control
state S is a finite set of sequences of actions. A protocol state is a pair (ks, S)
where ks is a knowledge state and S is a control state.

Definition 1. Let (ks, S) and (ks′, S′) be two states of a protocol Pr, and let b be
a ground action. We say that (ks, S) b−→ (ks′, S′) iff there is a session η = a·η′ ∈ S
and a substitution σ suitable for η′ such that:

– b = σ(a)
– S′ = (S \ {η}) ∪ {σ(η′)}
– ks b−→ ks′ as given in Table 3.

346 R. Ramanujam et al.

In Definition 1, we add σ(η′) rather than η′, in order to update the substitution
associated with the session on executing the action. This update reflects the new
values generated for each fresh nonce variable (in case the action is a send) or the
new bindings for input variables (in case the action is a receive). For instance,
if η = a · η′ where a = −A: ((x, y), α(x, y)) and b = −A: ((t, t′), α(t, t′)), then
σ = [x := t, y := t′]. Any occurrence of x in η′ is bound to t.

Table 3. Enabling conditions for ks
b−→ ks′. For each agent A, (XA, ΦA) and (X ′

A, Φ′
A)

represent A’s knowledge in ks and ks′, respectively. I is the intruder.

Note the crucial difference between the updates for sends and anonymous
sends – in the former, the intruder updates its state with A sent t and A sent α,
whereas in the latter, no sender information is available to any observer (includ-
ing the intruder).

An initial control state of Pr is a finite set of sessions of Pr. In the initial
knowledge state, each agent has her own secret keys and shared keys, all public
keys in her database, and potentially some constants of Pr.

Definition 2. A run of a protocol Pr is (ks0, a1 · · · an) such that ks0 is an initial
knowledge state, and there exist sequences ks1, . . . , ksn and S0, . . . , Sn such that
(ksi−1, Si−1)

ai−→ (ksi, Si) for all i ≤ n.

4.4 Notes on Implementability

A central aspect of this model is that communicated assertions are “believed”
by the recipients. This is reflected in the updates for receive actions. On the
other hand, it is not possible for a malicious agent to inject “falsehoods” into
the system, as evidenced by the enabling conditions which only allow derivable
assertions to be communicated. How might all this be realized in practice?

An implementation is to demand that every communicated assertion be
translated into an appropriate zero knowledge proof. But suppose an agent

Existential Assertions for Voting Protocols 347

receives ZKPs for assertions α and β from A and B, and wishes to send α∧β to
someone else. For this, she should have the capacity to produce a ZKP for α∧β.
This implements the ∧i rule in our system. Clearly this requires some mechanism
for composing ZKPs. Such a system has been studied in [18], which proposes a
logical language close to ours, and also discusses modular construction of ZKPs,
based on the seminal work on composability of ZKPs [13].

However, [18] has some restrictions on the proof rules for which one can
modularly construct ZKPs. For instance, they do not consider disjunction elimi-
nation or existential elimination. Nevertheless, we consider these rules since they
are at the heart of potential attacks (as illustrated by the earlier example). This
situation can be handled formally by making a distinction between rules that
are “safe for composition” and rules that are not. A rule like ∧i is safe for com-
position, for example, whereas ∨e might not be. We then adopt the restriction
that we communicate assertions that are derived using only safe rules. If the
derivation of an assertion necessarily involves unsafe rules, then it cannot be
communicated to another agent, even though this derivation itself is allowed
for local reasoning. In this paper, we therefore consider both local reasoning to
derive more assertions (to gain more knowledge about some secrets, for instance)
as well as deriving communicable assertions.

5 Formalizing Anonymity

Informally, we say that a voting protocol satisfies anonymity if in all executions
of the protocol, no adversary can deduce the connection between a voter and her
vote. One way to formalise it is to consider a run ρ where voter V0 voted 0 and
voter V1 voted 1, and show that there is some run ρ′ where the votes of V0 and
V1 are swapped and every other voter acts the same as in ρ, such that even the
most powerful intruder I (who has access to all keys of the authorities) cannot
distinguish ρ from ρ′. (Note that we stick to this definition as in [16], but this
captures anonymity only under a special class of tally functions.)

Definition 3. Let (ks, ρ) and (ks′, ρ′) be two runs of Pr, where ρ = a1 · · · an and
ρ′ = a′

1 · · · a′
n. Let ti and t′i be the terms communicated in ai and a′

i, respectively.
Let (X,Φ) and (X ′, Φ′) be the knowledge states of I at the end of each run.

We say that (ks, ρ) is I-indistinguishable from (ks′, ρ′) – denoted (ks, ρ) ∼I

(ks′, ρ′) – if for all assertions α(x1, . . . , xk) and all sequences i1 < · · · < ik ≤ n:

X,Φ � α(ti1 , . . . , tik) iff X ′, Φ′ � α(t′i1 , . . . , t
′
ik

).

One can view the parameters x1, . . . , xk occurring in the above definition as
handles, and the mapping from x1, . . . , xk to ti1 , . . . , tik as an active substitution.
Parametrized assertions α(x1, . . . , xk) constitute tests on each run of the proto-
col. Thus the above notion is related to the notion of static equivalence that is
central to protocol modelling in the applied-pi calculus [4,5,16]. Note that the
notion of indistinguishability we use here is trace-based, as that fits naturally

348 R. Ramanujam et al.

with our model. But it is also possible to have a bisimulation-based definition,
and adapt our proof ideas.

Consider a voting protocol Pr with three roles – voter, authority and counter,
and two phases: authorization and voting. For simplicity, we assume that there
are two fixed agents A and C who play the authority and counter role, respec-
tively. If there is only one voter in a run, then obviously his/her vote can be
linked to him/her. If a voter’s vote is counted during the authorization phase,
then we might have a situation where a vote is cast by a voter before anyone else
has been authorized. This again is an easy violation of anonymity. Therefore we
assume that in any run of Pr, there are at least two agents playing the voter
role, and all Vi → A actions precede all Vj → C actions.

Fix voter names V0, V1, and votes v0 and v1. A session η of Pr is said to be
an (i, j)-session if η maps id to Vi and v to vj .

Definition 4. We say that Pr satisfies anonymity if for every initial knowledge
state ks = (X,Φ) such that XA ∪ XC ⊆ XI , and for every run (ks, ρ) which
includes a (0, 0)-session and a (1, 1)-session, there is a run (ks, ρ′) which includes
a (1, 0)-session and a (0, 1)-session such that (ks, ρ) ∼I (ks, ρ′).

Theorem 1. The FOO protocol satisfies anonymity.

Proof. Recall the voter role for FOO from Sect. 4.2. Consider a run (ks, ρ) of
FOO whose initial control state is S ∪ {η0, η1}, where η0 is the (0, 0)-session
and η1 is the (1, 1)-session. Let η2 and η3 be the (0, 1)-session and (1, 0)-session,
respectively. We construct a run ρ′ which includes η2 and η3 such that (ks, ρ) ∼I

(ks, ρ′). The session η0 assigns values p and r to the keys k and k′ from the role
description, while η1 assigns values q and s respectively. For ease of notation, we
denote v0 and v1 by u and v respectively, and d = {u}p and e = {v}q.

Suppose ρ = a1 · · · an. Assume without loss of generality that both sessions η0
and η1 are fully played out in ρ. Also without loss of generality, let i < j < k < l
be indices such that the send actions of η0 are ai and ak, and the send actions
of η1 are aj and al, where

ai = +V0: (p)(d, β(d)) and ak = +V ∗
0 : (r)(({u}r, r), γ(u))

aj = +V1: (q)(e, β(e)) and al = +V ∗
1 : (s)(({v}s, s), γ(v))

We build ρ′ = b1 · · · bn as shown in Fig. 3.
Observe that ρ′ is also a run of FOO starting from the state (ks, S ∪ {η2, η3}),

where η2 contains bi and bl, and η3 contains bj and bk. We crucially use the fact
that we do not fix the instances of the fresh nonces a priori, so we can swap the
action containing p as a fresh nonce with the one containing q as a fresh nonce,
for example.

For any term t (resp. assertion α), we define swp(t) (resp. swp(α)) to be the
result of changing all occurrences of d to e and vice versa. swp is lifted to sets
of terms and assertions as usual.

Let (X,Φ) and (X ′, Φ′) be the knowledge states of I at the end of ρ and
ρ′ respectively. It is evident from the construction of ρ′ that X ′ = swp(X).

Existential Assertions for Voting Protocols 349

ρ a1 . ai . . aj . . ak . . al . an

ρ′ b1 . bi . . bj . . bk . . bl . bn

.

.

.

.

. . . .

Fig. 3. The dashed arrows capture bm = am[d 	→ e, e 	→ d], for all m �∈ {l, k}. For
m ∈ {l, k}, the thick arrows stand for bm = am[V0 	→ V1, V1 	→ V0].

Furthermore, it is easy to see that neither X nor X ′ derive either p or q, and
that X �dy t iff X ′ �dy swp(t).

It can also be seen that Φ′ = swp(Φ), as elaborated below. For every m, if
am communicates α, then bm communicates swp(α). The other formulas added
to Φ are sent assertions. For every action am other than ak and al, the sender
of bm is unchanged from am. Therefore, a sent assertion with the same sender
name would be added to Φ and Φ′. For ak and al, no sent assertions are added
since these are anonymous sends. Therefore, Φ′ = swp(Φ).

We now prove that X,Φ � α(ti1 , . . . , tik) iff X ′, Φ′ � α(t′i1 , . . . , t
′
ik

), for all
assertions α(x1, . . . , xk). It suffices to prove that X,Φ � α iff X ′, Φ′ � swp(α)
for all α. For every ∃ : δ, let yδ be a variable that does not occur in Φ. A set Θ
is said to be closed under witnesses if δ(yδ) ∈ Θ for all ∃y : δ ∈ Θ. Let Π be
the smallest superset of Φ closed under witnesses. We use Π ′ to denote swp(Π).
It can be shown by an analysis of derivations that X,Φ � α iff X,Π �1 α and
X ′, Φ′ � α iff X ′,Π ′ �1 α, where �1 denotes derivability without using the ∃e
rule. Note that both X,Π and X ′,Π ′ are safe for d and e in the following sense.
They do not derive equalities of the form p = t or q = t for any term t, and they
do not derive equalities of the form d = t′ or e = t′ where t′ is a term containing
a non-variable. We now prove the final claim needed for indistinguishability of
ρ and ρ′.

Claim. For any α, X,Π �1 α iff X ′,Π ′ �1 swp(α).

Proof of Claim. We prove the implication from left to right, by induction on
structure of derivations. The other direction holds by symmetry. Suppose π is a
derivation of X,Π � α, with last rule r.

r = ax: Suppose α ∈ Π. It follows that swp(α) ∈ Π ′.
r is equality of encrypted terms: π looks as follows.

π0···
X,Π � s = s′

π1···
X,Π � m = m′

X,Π � {s}m = {s′}m′

Suppose {s}m is either d or e. Then m is either p or q, and this would mean
that p = m′ or q = m′ is derivable, contradicting safety of X,Π. Therefore

350 R. Ramanujam et al.

{s}m is not equal to either d or e. By induction hypothesis, swp(s = s′) is
derivable from X ′,Π ′, and hence swp({s}m = {s′}m′) is also derivable.

r is equality of decrypted terms:] In this case, π is of the following form

π0···
X,Π � {s}m = {s′}m′

π1···
X �dy inv(m)

π2···
X �dy inv(m′)

X,Π � s = s′

By induction hypothesis, it follows that X ′,Π ′ � swp({s}m) = swp({s′}m′).
Observe that neither {s}m nor {s′}m′ is the same as d or e (for otherwise
we would have that X �dy p or X �dy q, which is an impossibility). Thus
any occurrence of d or e in {s}m is inside s, and similarly for {s′}m′ . Thus
swp({s}m) = {swp(s)}m and swp({s′}m′) = {swp(s′)}m′ . Therefore swp(s) =
swp(s′) is also derivable. (inv(m) and inv(m′) are derivable from X ′ since
they are derivable from X and do not mention d or e.)

The rest of the cases are along similar lines or appeal to induction hypothesis.�

6 Conclusion

In this paper, we extended the model of [21] by adding existential assertions to
the language, as a tool to hide private data used to generate certificates. These
assertions are especially useful in coding up constructs that are common to voting
protocols. We showed how to specify protocols in this model, and formalised the
notion of anonymity in terms of indistinguishability. In a non-trivial example of
analysis in our model, we proved anonymity for the FOO protocol.

One way of extending this model is by adding a background theory of uni-
versally quantified sentences. Such a theory is a standard part of many autho-
rization systems. For instance, if an agent A communicates to B the asser-
tion ∃x : voted(V, x) and if the background theory contains the assertion
∀X,x : {voted(X,x) ⇒ elg(X)} then B can conclude elg(V). More detailed
examples are found in [4,18]. It is an important ingredient in many systems, and
we can easily incorporate it in our theoretical model.

Future work includes determining the complexity of this positive fragment of
existential first-order logic, and automating the decision procedure for anonymity
by extending some existing tool like Tamarin. Also, formalizing other security
properties might allow us to prove some previously unknown properties about
common protocols. We would also like to extract a canonical representation in
this model for any protocol expressed in the terms-only formalism and vice versa.

References

1. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of 17th Conference
on Security Symposium (SS 2008), pp. 335–348 (2008)

Existential Assertions for Voting Protocols 351

2. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied Pi calculus. In: 23rd IEEE Computer Security Foun-
dations Symposium, pp. 107–121 (2010)

3. Butin, D., Gray, D., Bella, G.: Towards verifying voter privacy through unlink-
ability. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS 2013. LNCS,
vol. 7781, pp. 91–106. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36563-8 7

4. Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In: Proceedings
of 15th ACM CCS, pp. 357–370 (2008)

5. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied Pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy, pp. 202–215 (2008)

6. Boureanu, I., Jones, A.V., Lomuscio, A.: Automatic verification of epistemic spec-
ifications under convergent equational theories. In: Proceedings of 11th AAMAS,
pp. 1141–1148 (2012)

7. Baskar, A., Ramanujam, R., Suresh, S.P.: A dexptime-complete Dolev-Yao the-
ory with distributive encryption. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010.
LNCS, vol. 6281, pp. 102–113. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15155-2 11

8. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

9. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy.
In: Proceedings of Computer Security Foundations Symposium, pp. 297–311 (2011)

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29, 198–208 (1983)

11. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: International Workshop on the Theory and Application of Crypto-
graphic Techniques, pp. 244–251 (1992)

12. Gray, J.W., Syverson, P.F.: A logical approach to multilevel security of probabilistic
systems. Distrib. Comput. 11, 73–90 (1998)

13. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

14. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. J. Comput. Secur. 13(3), 483–514 (2005)

15. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular
approach. J. Comput. Secur. 12(1), 3–36 (2004)

16. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied Pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 14

17. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational the-
ory of Abelian Groups with distributive encryption. Inf. Comput. 205(4), 581–623
(2007)

18. Maffei, M., Pecina, K., Reinert, M.: Security and privacy by declarative design. In:
IEEE 26th CSF Symposium, pp. 81–96 (2013)

19. Mauw, S., Verschuren, J., de Vink, E.P.: Data anonymity in the FOO voting
scheme. In: Electronic Notes in Theoretical Computer Science, pp. 5–28 (2007)

20. The Netflix Prize. http://www.netflixprize.com/index.html

https://doi.org/10.1007/978-3-642-36563-8_7
https://doi.org/10.1007/978-3-642-36563-8_7
https://doi.org/10.1007/978-3-642-15155-2_11
https://doi.org/10.1007/978-3-642-15155-2_11
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-31987-0_14
http://www.netflixprize.com/index.html

352 R. Ramanujam et al.

21. Ramanujam, R., Sundararajan, V., Suresh, S.P.: Extending Dolev-Yao with asser-
tions. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014. LNCS, vol. 8880, pp.
50–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13841-1 4

22. Syverson, P.F., Stubblebine, S.G.: Group principals and the formalization of
anonymity. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 814–833. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48119-2 45

https://doi.org/10.1007/978-3-319-13841-1_4
https://doi.org/10.1007/3-540-48119-2_45
https://doi.org/10.1007/3-540-48119-2_45

Marked Mix-Nets

Olivier Pereira1(B) and Ronald L. Rivest2

1 UCLouvain, Louvain-la-Neuve, Belgium
olivier.pereira@uclouvain.be
2 MIT, Cambridge, MA, USA

rivest@mit.edu

Abstract. We propose a variant mix-net method, which we call a
“marked mix-net”. Marked mix-nets avoid the extra cost associated with
verifiability (producing a proof of correct mixing operation), while offer-
ing additional assurances about the privacy of the messages, compared
to a non-verifiable mix-net.

With a marked mix-net, each mix-server adds an extra secret mark in
each ciphertext, and the input ciphertexts are made non-malleable but
still re-randomizable (RCCA).

Marked mix-nets appear to be a good fit for the mix-net require-
ments of voting systems that need a mix-net for anonymity but where
correctness is guaranteed through independent mechanisms. Our work
investigates applications to STAR-Vote, but other applications could be
explored, e.g., in Prêt-à-Voter, Selene or Wombat.

1 Introduction

1.1 Mix-Nets

Mix-nets were originally proposed by Chaum [12], then extended and elaborated
by many others: additional details can be found in Adida [2], Sampigethaya and
Poovendran [24], and Wikström [31], for instance. They are a central tool for
anonymizing a set of messages, like votes for instance, by breaking any observable
connection between the messages it receives, and those it outputs.

More precisely, a mix-net server, or mixer, takes a sequence of encrypted
messages and outputs them in permuted order, according a secret permutation
that only it knows (sometimes the message encryption and decryption process
are also included in the mix-net definition). Since the objective is to hide the
permutation, the inputs and outputs to the mix-net must be not only encrypted
somehow, but the outputs should be re-encrypted or encrypted differently than
the inputs, so that the outputs can not be trivially matched with the correspond-
ing inputs. This places additional requirements on the encryption methods used.

A mix-net can be just a single server, or a sequence of k mixers for some
k > 1, each permuting its inputs according to its own secret permutation before
sending its outputs along to be the inputs to the next mixers.

In some cases one may worry about malicious mixers who do not actually
permute their inputs, but perform some other operation instead. For example, in
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 353–369, 2017.
https://doi.org/10.1007/978-3-319-70278-0_22

354 O. Pereira and R. L. Rivest

a voting context, a mixer could replicate some inputs and delete others, causing
a change in the vote tally. Because of the encryption, such manipulations may
be hard or impossible to detect; the only thing an observer can really tell is that
the number of inputs is equal to the number of outputs.

For such applications one may use a verifiable mix-net [4,11,21,23,31]. Here
each mixer produces an additional output, which is often a non-interactive zero-
knowledge (NIZK) proof that it has operated correctly (i.e., that the set of
messages one obtains by decrypting the inputs is the same as the set of messages
one obtains by decrypting the outputs; the mixer only permuting things around).
Anyone can verify the published NIZK proofs from each mixer.

The design of these NIZK proofs considerably improved over the years,
and they certainly are among the most sophisticated cryptographic protocols
deployed in real-world applications: they started to be increasingly used in pri-
vate elections and trialed in public ones [9,14,27,28]. This sophistication also
comes with computational complexity. For instance, Bayer and Groth [4] report
in 2012 timings between 2 and 5 min for two types of state-of-the-art proofs com-
puted for 100,000 ElGamal ciphertexts, computed in an order q subgroup of Z∗

p

where |q| = 160 and |p| = 1024. More recently, the authors of Verificatum report
timings around 12 min for the shuffle of 100,000 ElGamal ciphertexts, again in
an order q subgroup of Z∗

p, but with the more contemporary security parameters
|q| = 3247 and |p| = 3248 [29].

While remarkably efficient, such numbers can become a potential obstacle
when running a large-scale public election. Considering for instance an election
in a mid-size city with 500,000 voters and 100 races that need to be mixed inde-
pendently (in order to avoid pattern attacks), the computation of a proof would
take between 16 and 100 h. In such a context, and given the typical time-frame
of elections, organizers will require each mixer to use several powereful worksta-
tions in order to improve speed and parallelism. But such workstations increase
the management load, the attack surface, and are likely to require IT staff, which
need to be chosen independently for each mixer in order to avoid the creation of
a single point of corruption. Overall, these requirements of hardware and experts
can be expected to create important costs and organizational challenges.

Marked mix-nets aim at offering a considerably faster alternative that would
be useful in some practical settings. Going back to our previous example, the 100
hours required when computing a proof of shuffle modulo a 3248 prime modulus
become an online effort of around 13 min on a single laptop when using our
marked mix-net, while maintaining all previous parallelism possibilities.

This speed improvement comes with a relaxation of the security guarantees
offered by a fully verifiable mix-net.

1. The marked mix-net is only verifiable for privacy/anonymity, but not for
correctness. If the marked mix-net verification procedure succeeds, then the
link between the input and output ciphertexts is broken as soon as one mixer
is honest, and assuming that correctness is verified independently (possibly in
a statistical sense). There is indeed no guarantee that the output ciphertexts
are a permutation of those at the input: a malicious mixer could remove some

Marked Mix-Nets 355

ciphertexts and insert new ciphertexts of his own while remaining undetected
by the statistical correctness test, due to luck.

2. A marked mix-net targets security in front of a covert adversary [3]. This
means that the marked mix-net aims at making any privacy/anonymity vio-
lation likely to be visible to an auditor, and it is the expectation that the
sanctions that would result from any evidence of malicious behavior would
be high enough to deter any such behavior. (Note that organizational mea-
sures can be taken so that a single judge audits the data before they are
released, so that any privacy violation would only be visible to that judge,
and not to the malicious party.)

We believe that these security properties are satisfactory for some applica-
tions, and that the operational simplifications resulting from the lower computa-
tional requirements makes marked mix-net an interesting option for some voting
systems.

1.2 Applications of Marked Mix-Nets

We were motivated to develop a marked mix-net by the need for a suitable mix-
net in the STAR-Vote design [5]. However, other systems, including Selene [22],
Wombat [6], or some variants of Prêt-à-Voter that use a human verifiable paper
audit trail [16] could possibly adopt a marked mix-net as well.

In STAR-Vote, human-readable paper ballots are produced by ballot marking
devices, together with an electronic and encrypted record of the votes. As ballots
are collected, this electronic record is replicated and hash chained in various
ways, in order to improve robustness and reliability. Furthermore, the content of
some hash-chains is included in the voter take-home paper receipts, in order to
support end-to-end verifiability. These features make it quite simple to identify
which voter produced what ciphertext – and this is not meant to be a secret
information.

STAR-Vote is designed to be end-to-end verifiable. Still, it is also designed
to accommodate failures in the end-to-end verification process. For instance, the
cast-as-indended audit process could fail to be performed on election day, or
there might be a soundness issue in the zero-knowledge proofs that are used to
prove the validity of the ballots. Therefore, STAR-Vote also supports an efficient
ballot-level risk-limiting audit (RLA) [7], illustrated in Fig. 1, which proceeds by
comparing paper ballots randomly picked from the urns against electronic ballot
records. In order to perform a matching between electronic and paper ballots,
the encrypted votes need to be decrypted, but they need to be made anonymous
first. STAR-Vote requires the use of a mix-net for that purpose.

The original specification for STAR-Vote indicates that the mix-net should be
verifiable. But is a verifiable mix-net really needed for STAR-Vote? Perhaps not,
as the RLA that it serves compares electronic records against paper records in
order to detect if there is any significant malfeasance that would cause divergence
between these records, and as such would detect a divergence coming from an
incorrect mixing process. So, for integrity purposes, a verifiable mix-net may not
be needed.

356 O. Pereira and R. L. Rivest

Fig. 1. Overview of the preparation of the inputs of the STAR-Vote risk limiting audit.
Voters interact with the software system, which prints paper ballots. After voter verifi-
cation, the paper ballots are placed into an urn. At the end of the election, the software
outputs an anonymized list of plaintext votes. The risk limiting audit compares paper
ballots and electronic ballots, referencing them by their ballot id.

Privacy is a different concern, though: STAR-Vote still relies on the electronic
process, and on the mix-net in particular, to guarantee that the ballots that are
decrypted are anonymous. And the use of a non-verifiable mix-net can raise
important privacy issues. For instance, a corrupted last mixer could ignore the
ciphertexts handed by the penultimate mixer, and mix those that were the input
of the first mixer instead. As a result, this corrupted mixer would be able to
deanonymize all cleartext votes after decryption, and this would be completely
undetectable. Hence the initial recommendation of a verifiable mix in the STAR
paper. But, as explained above, this is not an innocuous choice, both in terms
of computational requirement and organizational complexity for the STAR-Vote
implementers and auditors.

There are other systems that offer similar features, and for which the use of
a marked mix-net could be envisioned.

For example, Wombat [6] is another system that uses both encrypted elec-
tronic records that are mixed, and human-readable paper records that can be
used to verify the electronic tally. As such, using a marked mix-net in Wombat
could increase the speed of the tally, as long as a (ballot polling) risk-limiting
audit process is used to confirm the electronic tally based on the paper ballots.
Note that the security model would be a bit different between Wombat and
STAR-Vote: in STAR-Vote, the mix-net is only a component of the RLA that is
applied on the result of a system that is end-to-end verifiable independently of it;
while in Wombat, the verifiable mix-net is really a component of the end-to-end
verifiability of the system, and moving to a non-fully verifiable mix makes the
verification of the correctness of the election result rely on the RLA. Besides,
the “delayed effect” attack detailed in Sect. 3.3 could apply.

Marked Mix-Nets 357

Another example would be Selene [22], which uses two mix-nets: one for
assigning tracker numbers to voters, and one for making the votes anonymous.
While the use of a marked mix-net seems difficult for the tracker number assign-
ment phase (e.g., duplication may be hard to detect), the use of a marked mix-net
for the vote anonymization phase might be an interesting option. Similar obser-
vations can be made about a variant of Prêt-à-Voter proposed by Lundin and
Ryan [16], that offers a human readable paper trail.

We do not make any claim about the exact consequences of using a marked
mix-net in these systems, and leave these questions open for the moment, while
focusing on STAR-Vote in this paper.

The following sections give details. Section 2 provides some background infor-
mation on ElGamal encryption and an overview of the basic mix-nets techniques.
Section 3 explains the design of our marked mix-net. Section 4 describes the risk-
limiting process of STAR-Vote and how it could be adapted to use our marked
mix-net, and Sect. 5 concludes.

2 Cryptographic Background

For concreteness, we present the new marked mix-net design using a variant of
the ElGamal encryption scheme [15]. Our ideas should be portable to mix-nets
based on other encryption schemes.

2.1 ElGamal Encryption

Assume that G is a group of prime order q, with generator g. The description
of G, including q and g, are public parameters. An ElGamal secret key x is
selected by drawing x uniformly at random from Fq − 0, and the corresponding
public key is computed as y = gx.

The encryption of a message m encoded as an element of G is computed as
E(y,m) = (mgr, yr) for a uniformly random element r from Fq. The decryption
of a ciphertext (a, b) is easy using x: we can indeed define D(x, a, b) = ab−1/x =
a(yr)−1/x = (mgr)(gxr)−1/x = m Note that x is invertible in Fq since x is
nonzero. The security of the ElGamal encryption scheme relies on the hardness
of the Decision Diffie-Hellman problem [8] in the group G.

There are various techniques for mapping bit strings into ElGamal messages
in the group G, but these techniques depend on the choice of G. For the purposes
of this paper, the specifics of this mapping do not matter and, when the context
is clear, we will not make any distinction between m as a sequence of bits and
m’s encoding as an element of G.

ElGamal is (multiplicatively) homomorphic—the (componentwise) product
of ciphertexts is a ciphertext for the product of the messages: E(y,m1) ∗
E(y,m2) = E(y,m1m2). (Technically, the above means equality of sets of cipher-
texts.) Because ElGamal is homomorphic, a ciphertext can be re-randomized
knowing only the public key, by multiplying (componentwise) by an encryption
of 1: E(y,m) ∗ E(y, 1) = E(y,m). Finally, ElGamal encryption is malleable. In

358 O. Pereira and R. L. Rivest

particular, you can multiply the plaintext by a factor of b merely by multiply-
ing one component of the ciphertext by b (b, 1) ∗ E(y,m) = (b, 1) ∗ (mgr, yr) =
((bm)gr, yr) ∈ E(y, bm). We will make an intensive use of these two features in
our marked mix-net. (These features are also present in many other encryption
schemes, but ElGamal is probably the simplest and most common example.)

2.2 Mix-Nets

In re-encryption mix-nets (our focus here), each mixer receives a sequence of n
ciphertexts as input, to which it applies a random permutation, after which it
re-randomizes each ciphertext in order to make ciphertexts unlinkable, and then
outputs the result for the next mixer.

The inputs of a re-encryption mic-net can simply be encrypted with a single
public key y and, as explained above, the mix-servers do not need to know the
corresponding secret key x in order to re-randomize. The outputs of the last
mix-server can be decrypted by a party who knows x. (In some cases, x may
be secret-shared [25] by several parties, and a threshold number of such parties
cooperate to decrypt the mix-net outputs [18].)

Looking at the re-randomization process of ElGamal, we can observe an
interesting feature: the re-randomization is essentially the multiplication of two
ciphertexts that are independent of each other. This means that a mixer can, in
an offline phase, before he sees any ciphertext, compute a collection of encryp-
tions of “1” ∈ G. Then, the online phase can simply consist in ciphertext multi-
plications, which is orders of magnitude faster than computing a ciphertext (the
exact factor being strongly dependent on the choice of G). This is the property
we aim at preserving when designing our marked mix-net. In particular, this
excludes so-called decryption mix-nets, in which each mixer would perform a
partial decryption, as this would cause a latency of at least one modular expo-
nentiation per ciphertext and per mixer.

Notation: We let k denote the number of mix servers. We let mi denote the ith
input message, for 1 ≤ i ≤ n. We let c

(j)
i denote the ith input to the jth mix

server, for 1 ≤ i ≤ n and 1 ≤ j ≤ k, and let ĉ(j)i denote the ith output of the jth
mix server. Since the outputs of server j are the inputs to server j + 1, we have
ĉ
(j)
i = c

(j+1)
i for all i and 1 ≤ j < k. Since there is no server k + 1, the values

{ĉ(k)i } are the mix-net outputs.

3 Marked Mix-Nets

3.1 Privacy Issues with Non-verifiable Mix-Nets

Independently of the integrity properties, the use of the re-encryption mix-net
outlined above raises several privacy concerns.

Marked Mix-Nets 359

Mixer bypassing. First, when using k mixers in order to avoid the need to trust
any particular one, there is no way to be sure that the mixers do not bypass
each other during the mixing process. In particular, Mk could ignore the ĉ

(k−1)
∗

ciphertexts and use the c(1)∗ instead. As a result, Mk alone would be able to choose
the permutation between the c(1)∗ and the ĉ(k)∗ ciphertexts, which is precisely what
the use of k mixers is expected to avoid. And there would be no way to detect
this manipulation.

One way to avoid this would be to require each mixer to apply, to each
ciphertext, a mark that shows that it processed this ciphertext, and that can be
removed after the end of the mixing process.

Ciphertext replication. At the other end of the chain of mixers, M1 could also
violate the privacy of some voters, by exploiting the homomorphic property of
ElGamal. The ciphertexts in c

(1)
∗ can be expected to have a known structure and,

in some cases, they could contain elements that cannot be verified easily, or can-
not be verified at all, like a random padding used in the message encoding. For
instance, in STAR-Vote, each c

(1)
i is actually made of two ElGamal ciphertexts,

one of them encrypting a hash that can only be matched if the corresponding
paper ballot is picked, which is extremely unlikely in a large-scale election. By
relying on this, M1 could target a ciphertext c(1)i by replacing c

(1)
j with a cipher-

text c̄
(1)
j = Enc(y, d) · c(1)i where d is a message carefully crafted by M1 so that

c̄
(1)
j looks like a perfectly plausible ciphertext, but can still be recognized after

decryption of the outputs of Mk by looking for two messages with difference d.
This problem could be avoided by making the ciphertexts somehow non-

malleable, so that any duplication or malicious manipulation of a ciphertext
would become visible at time of audit. This requirement may seem to be contra-
dictory with the requirement of being able to mark ciphertexts (outlined above),
and the reconciliation of these two features is at the core of the design of our
marked mix-net.

3.2 A Marked Mix-Net

Our marked mix-net aims to address these privacy issues (and others, which will
be discussed later). Still, like the original mix-nets, it does not provide any cor-
rectness guarantees: mixers remain able to add or delete ciphertexts during the
mixing process. However, contrary to the original mix-nets, these additions and
deletions must be independent of the honest mix-net inputs, hence preventing
the leakage of information about these inputs.

In order to obtain an extremely fast protocol, we address these issues in a
covert adversary model [3], in which attacks can succeed with non neglible proba-
blity, but will also be detected with a non negligible probability. Our assumption
here (which is in line with the motivation of the covert adversary model) is that
the mixing will be executed by well-defined public parties, and that any cheating
detection would immediately trigger police investigation and important penal-
ties, that would be sufficient to deter any such malicious behavior in the first

360 O. Pereira and R. L. Rivest

place. Aumann and Lindell discuss a strong version of the covert adversary model
in which, when an attack is detected, the adversary does not learn any undue
infrormation (so, it is punished on top of having no benefits from his attack).
Variants of our marked mix-net could offer this flavor of security, e.g., by using
two layers of encryption, but the resulting protocol would be more expensive.

Non-malleability. The resistance to replication attacks suggests the use of an
encryption scheme offering some form of non-malleability property that would
guarantee that any unauthorized ciphertext manipulation would trigger an alert.
However, we still need to be able to re-randomize ciphertexts, in order to be able
to perform the mixing operations.

These properties are reminiscent of the notion of re-randomizable RCCA
encryption, proposed by Canetti et al. [10], which requires the possibility to re-
randomize ciphertexts while preventing any other homomorphic transformation.
RCCA security of course does not prevent a mixer to make exact ballot copies
(possibly re-randomized), and we will need a mechanism in order to detect these.

One efficient solution for building re-randomizable RCCA encryption has
been proposed by Phan and Pointcheval [19], and consists in applying a transfor-
mation, called OAEP 3-Round (OAEP3 for short), to messages before encrypting
them with a probabilistic encryption scheme like ElGamal.

This transformation assumes the availability of 3 independent random ora-
cles, H1, H2 and H3 (in practice, these can be implemented with a single hash
function and 3 distinct prefixes). The OAEP3 transform processes a message m,
represented as a bit-string, using a fresh random bit string r as follows:

s = m ⊕ H1(r) t = r ⊕ H2(s) u = s ⊕ H3(t)

and outputs the pair (t, u).
The OAEP3 transformed message can then be encrypted with ElGamal as

usual, and the resulting scheme is shown to be RCCA secure [19], assuming the
hardness of the gap Diffie-Hellman problem in G [17], a problem that consists in
solving an instance of the computational Diffie-Hellman problem in the presence
of a Decisional Diffie-Hellman oracle. The intuition underlying this result is
common to the OAEP-style transformations: any change into t or u leads to
message changes that are unpredictable without querying the Hi oracles first.
So, a modification of a ciphertext can result in a recognizable modification of
the corresponding plaintext only if this plaintext is known in the first place.

Still, it does not guarantee that mixers operate on the expected ciphertexts
in the first place, without bypassing other mixers. This concern will be addressed
below.

Marking. The mixer bypassing problem discussed above can be solved by requir-
ing all mixers to add a secret mark on each of the ciphertexts that they process,
on top of the OAEP3 transform.

Marked Mix-Nets 361

Concretely, each of the k trustees proceeds as follows:

1. The encryption process is modified by requiring each party willing to submit
an encryption of a message m to the first mixer to encrypt the message
OAEP3(m‖0µ) instead, where µ is a security parameter.

2. Each mixer Mi ∈ {M1, . . . ,Mk} chooses a secret mark ai ∈ Zq, and broad-
casts E(y,OAEP3(ai)). (It may be appropriate to use a key y that is different
of the one used to encrypt the messages.)

3. At mixing time, instead of simply re-randomizing each ciphertext by multiply-
ing it with a ciphertext of the form (gr, yr), each mixer performs multiplica-
tions with ciphertexts of the form (aigr, yr), hence multiplying the encrypted
message by ai.

4. When the whole mixing procedure is complete, the secret marks are
decrypted, and the decrypted outputs of the last mixer are all divided by
the product of all ai’s. It is then verified that the 0µ sequence is present in
all the plaintexts, and that the randomness used in OAEP3 is unique. An
investigation is triggered otherwise.

The 0µ string provides a baseline on top of which all marks are applied. If a
decrypted ciphertexts fails to have been properly marked, there is a probability
2−µ that, after the removal of all expected marks, it would still end with the
0µ sequence. So, in our covert adversary setting, a very short µ may be suffi-
cient, e.g., µ = 1 for having a probability around 1/2 of detecting this kind of
malfeasance.

In a similar way, if an adversary tries to perform a copy of a ciphertext,
possibly rerandomized or modified in some way, the non-malleability property
obtained from OAEP3 will either cause the repetition of the randomness used in
the OAEP3 transform, which we require to be unique, or remove the 0µ string
with noticeable probability, leading to an invalid ciphertext.

Note also that we demand the encrypted marks of the initial broadcasts to
be OAEP3 processed too, essentially to make sure that the encrypted mark that
is broadcast cannot be used by a corrupted mixer to apply another mixer’s mark
(using the homomorphic property of ElGamal encryption for instance).

Thanks to this marking process, any mixer that would try to bypass other
mixers and process ciphertexts that did no go through the expected path will fail
to contain the marks that it should. This will also leave evidences through the
list of ciphertexts, and the cheating mixer can then be identified. The marking
mechanism used here is similar to that used by Chaum in the “dining cryptog-
rapher’s problem” [13]. Here marks are also members of the underlying abelian
group, and can be added or removed from the message in any order.

The resulting marked mix-net is described in Fig. 2.

3.3 Security Analysis

We discuss how our marked mix-net defeats the traditional attacks on mix-
nets, including those discussed in the in-depth review of Adida [2], and leave

362 O. Pereira and R. L. Rivest

Fig. 2. The marked mix-net

a rigorous specification and analysis of the security properties as an important
and non trivial future work, that should be performed before any deployment.

1. Related inputs. In this attack, a corrupted party submits a ciphertext com-
puted as a function of another one, in order to detect a know relation after
decryption and de-anonymize targeted ciphertexts. As usual, we require the
input ciphertexts to be submitted using a submission-secure scheme [30],
which prevents related submissions. Still, if the first mixers are corrupted,
they would be able to remove one ciphertext (or more) and replace it with a
ciphertext related to the one that is targeted. The relation between the two
ciphertexts can be of two types: either a direct (re-encrypted) copy, or an
encryption of a modified ciphertext. Copies would cause the presence of mes-
sages with identical randomness (ri) after decryption. Modifications would,
thanks to the properties of the OAEP3 transform, result in the decryption
of a random message, which would then contain the 0µ message tag with
probability 2−µ and be declared invalid with high probability. Both these
attacks would be detected and investigated, in contradiction with our covert
adversary security model.

2. Attacks based on lack of semantic security. Our ciphertexts remain
standard ElGamal ciphertexts, which prevents any leakage of partial infor-
mation that could be used to track ciphertexts.

3. Attacks based on partial decryption during mixing. Our marked mix-
net only performs decryption after the completion of the mixing, preventing
any coalition of mixers to take advantage of the partial decryption of others.

Marked Mix-Nets 363

4. Mixing cancellation. We prevent mixers from canceling the permutation
applied by other mixers (by mixing their inputs instead of their outputs)
thanks to our marking mechanism: skipping any mixer will cause a missing
mark, which will be spotted at decryption time.

5. Proof wrapping. Some mixes use double encryption layers, which may cause
issues when proofs are provided about the outer layer only (e.g., an adversary
could add a third encryption layer and make proofs about that last one).
OAEP3 can be interpreted as an extra layer in the encryption mechanism.
However, it is designed to prevent malleability, which is the core ingredient
used in wrapping attacks.

6. Subgroup tagging. A corrupted mixer may lift some ciphertexts to another
(possibly larger) group, and use this mechanism to circumvent the guarantees
of semantic security and track a ballot throughout the mixing process. In order
to prevent such attacks, we require the mix verification process to check that
the outputs of each mixer indeed lie in the right group.

7. Delayed effect. Here, a corrupted first mixer uses the time between the
closing of the polling places and the beginning of the mixing to replace some
ciphertexts, possibly with the help of the parties who submitted them. This
may make it possible to change or adapt votes after the closing of the votes,
based on fresh information. Such a strategy would definitely pass our ver-
ification process and is the main reason that makes it non-verifiable in the
traditional sense. Whether it matters is application dependent. In an applica-
tion like STAR-Vote, in which the mixing-process is followed by a risk-limiting
audit against the paper ballots that were submitted before the closing of the
polling places, the RLA guarantees that this kind of attack will be limited to
happen for a very small number of ciphertexts, small enough to make sure
that it has no impact on the election outcome. Besides, any change would
also create discrepancies with the results of the end-to-end verifiable tally.

8. Input guessing. This attack is similar to the previous one but, instead of
colluding with a voter, the adversary (corrupting the first mixer, for instance)
can try to guess someone’s vote (or maybe just verify that a voter followed
instructions) and replace the ciphertexts submitted by the targeted voter
with fresh ciphertexts encrypting the expected vote intent. As before, this
substitution cannot be detected as part of the mixing process. It is also benign
in itself, as long as the adversary has no way to detect whether his guess was
correct or not. This may not be the case however in an application like STAR-
Vote, where the RLA may actually offer evidence of a ballot modification,
which would happen as a the result of a wrong guess. But this communication
channel, which may inform the adversary about the targeted voter intent,
would at the same time offer evidence of malicious behaviour, and this attack
strategy would therefore be excluded by our covert adversary model.

9. Permutation guessing. In another variation of the previous attacks, an
attacker could make a guess on the mapping between an input ciphertext
and an output ciphertext. If the guess is correct, then the division of these
two ciphertexts would provide an encryption of the mark of that mixer, which

364 O. Pereira and R. L. Rivest

could be used to bypass him. However, this attack will be visible in the likely
case of an incorrect guess, and is therefore excluded by the covert adversary
model.

In terms of accountability, the use of a marked mix-net makes investigations
more challenging than in the case of a fully verifiable mix-net: in the fully ver-
ifiable case, it is enough to check all proofs of shuffle and decryption in order
to find out who cheated during the mixing process. A marked mix-net does not
provide such features anymore. However, we require all mixers to keep track
of their secret permutations and reencryption factors until the end of the audit
process (e.g., by storing their random seed). These can be used in order to obtain
the necessary accountability in case of discrepancy happening during decryption
(e.g., the 0µ sequence is missing) or if the RLA detects a problem. A simple
strategy for making mixers accountable would be to ask them to provide their
re-encryption factors related to problematic ciphertexts, proceeding by following
the mixers in backwards order. This is extremely simple but may raise privacy
concerns in some cases. Still, if the penalty of a cheating mixer is high enough,
it is sufficient to deter from any temptation. A privacy-friendly solution would
be, in case of problem, to ask the mixers to produce a traditional ZK proof of
their correct behavior. Again, even if this is not desired due to the computational
burden that it would bring, the perspective that this will happen and result in
cheater detection can be expected to deter mixers from adopting any malicious
behavior. A malicious vote submission device could also submit an invalid ballot
as an input to the mix-net, in order to trigger the full proof process and slow
down the mixing. Whether this is realistic or not is application dependent: bal-
lots submitted to a mix-net are typically identifiable, and this may be enough
to deter anyone from adopting this strategy, which offers fairly low benefits.
Besides, when ballots are encoded by a DRE (as in STAR-Vote for instance),
an invalid ballot also becomes a sign of a serious hacking in the system, which
would trigger deep investigation anyway.

4 STAR-Vote

4.1 STAR-Vote’s Risk Limiting Audit

As explained in Sect. 1.2, our motivation for marked mix-nets comes from the
risk limiting audit process in STAR-Vote. We provide more details about the
process proposed in the original paper, discuss how it can be adapted to use our
marked mix-net, and the benefits that result from it. In order to simplify our
discussion, we only focus on the aspects of STAR-Vote that are relevant to the
RLA.

STAR-Vote ballots are prepared by ballot marking devices (BMD) all inter-
connected, inside each voting office, to a controller and an urn. When a voter
prepares a ballot, two records are produced:

1. A paper record, which contains (among other things) the voter choices in
human readable form, as well as a random, high-entropy, unique ballot id (or

Marked Mix-Nets 365

bid). This bid is printed on the paper, but not otherwise known to the voters,
election officials, or mix servers.

2. An electronic record, which contains (among other things):
– An encryption of the voter choices, under the form of a counter set to “0”

or “1” encrypted for each option that the voter can select. As a Texas
election can contain 100 races, this can make a few hundreds ciphertexts.

– An encryption of H(bid‖r) for each race r to which the voter participates.
So, for each race r included in the ballot, ciphertexts of the form
E(y,H(bid||r)), E(y, v) are produced, in which E(y, v) encrypts the content
of the vote v for race r.

The paper record is placed into an urn, making it human readable but anony-
mous, while the electronic record is fully encrypted but cannot be considered to
be anonymous (including because various logs can make it quite easy to match
the timing at which a ciphertext is produced and the one at which a voter is
seen to produce his ballot).

When the polls are closed, the electronic record is used to compute the
election tally very fast, by decrypting the homomorphic aggregation of the
ciphertexts.

The mix-net permutes the E(y,H(bid||r)), E(y, v) tuples race by race (they
are considered as a single big ciphertext from the mix-net point of view), and
the outputs are then decrypted, revealing the plaintext items H(bid||r), v.

This structure defeats “pattern attacks”, also called “Italian attacks” [20],
since it isn’t obvious from the output which votes are from the same ballot (for
different races) as long as the bid is not known.

The risk-limiting audit examines randomly selected paper ballots one at a
time until enough evidence has been gathered to confirm the nominal (initial,
reported) election outcome, or until all paper ballots have been examined. In the
latter case, a full recount has been performed by the RLA.

When a paper ballot is selected, its bid is read. This allows H(bid||r) to be
recomputed for each race, which allows the appropriate entries to be identified in
the decrypted mix-net output, together with the corresponding vote v. The voter
selections on the paper ballot for each race can then be examined for equality
with the value v.

4.2 Using a Marked Mix-Net

STAR-Vote prescribes the use of a verifiable mix-net, for privacy reasons more
than for verifiability reasons, since the output of the mix-net is already verified
both against the homomorphic tally (at the global level) and through the RLA
(at the ballot level). We suggested above that the use of a marked mix-net could
provide a more efficient and simpler choice.

The specific structure of the messages mixed in STAR-Vote suggests further
tweaks. First we may question the benefits of mixing tuples of ciphertexts instead
of single ciphertext. STAR-Vote has distinct ciphertexts in order to be able to
reuse the ciphertexts used in the homomorphic tally as part of the inputs of the

366 O. Pereira and R. L. Rivest

mix-net, which provides some guarantees of consistency between the inputs of
the mixnet and homomorphic tally. Having two ciphertexts per ballot and per
race however potentially doubles the computational power that is required to
decrypt the outputs of the mix-net, a task that we would like to keep short. The
consistency guarantee may also not be critical since, in case of investigation,
evidence of the discrepancies can still be collected.

The reuse of the ciphertexts produced for the homomorphic tally as inputs
for the mix-net also raises difficulties for our marked mix-net described above,
since plaintexts need to be OAEP3 processed before encryption. We therefore
suggest to modify the STAR-Vote design to have one single ciphertext per ballot
and per race, which can then be conveniently processed through the OAEP3
transform, as specified in Fig. 2.

The use of the OAEP3 transform does not raise any difficulty when the
message space of the encryption scheme is large enough (for instance, when G
is the subgroup of quadratic residues modulo a large p). However, the use of
elliptic curve might raise some difficulties. Indeed, while the OAEP3 expansion
is quite low (it does not require any strong redundancy, like OAEP for instance),
there is still a length increase that comes from the randomness that is added,
and which may look unnecessary in the context of an encryption scheme like
ElGamal, which is already randomized. This randomness is however useful for
at least two reasons: in general, it guarantees the non-malleability, by preventing
an adversary to compute a table of all possible OAEP3 outputs in case of small
message space and, in the context of a mixnet, it prevents the invisible inclusion
in the mixing process of ciphertext copies.

We may however observe that the messages that we need to encrypt all
contain a single unique component that is indistinguishable from a sequence of
random bits: H(bid‖r). We therefore suggest that the inputs of the mixnet could
be computed as: E(y,OAEP3(v‖0µ;H(bid‖r))), where the message part of the
inputs of OAEP3 is v‖0µ and H(bid‖r) is used as fresh randomness. It can be
observed, as did Abe et al. for instance [1], that the OAEP3 transformation does
not guarantee non-malleability with respect to the random part of the OAEP3
inputs (such non-malleability is provided by their OAEP-4X transformation).
However, we really need the non-malleability with respect to the 0µ part, which
is sufficient to detect malicious behaviors. As a result, the message expansion
resulting from the input pre-processing of the marked mix-net is only of µ bits,
where µ can be just a small constant.

The modifications that we propose for the STAR-Vote RLA are summarized
in Fig. 3.

4.3 Benefits of the Approach

The proposed approach considerably simplifies the risk-limiting process from an
algorithmic point of view: it avoids the need to run a full verifiable mixnet for
the sole purpose of the risk-limiting audit.

It also considerably decreases the computational power that is required from
the mixers: their task can now be almost entirely precomputed and, in particular,

Marked Mix-Nets 367

Fig. 3. Proposed changes in the STAR-Vote RLA.

no online modular exponentiation is required. This may enable to close the
election audit process faster, reduce the computing infrastructure costs, and
also reduce the organizational burden.

The latency before the beginning of the paper comparison phase of the RLA
may not change, however: if a covert adversary setting is accepted, the mixers of
the verifiable mix-net may simply shuffle the ciphertexts and pass them along,
which would cost as much as our marked mix-net, and only start computing their
proofs of shuffle after that, knowing that they will eventually need to produce
them for audit. Note that, in a traditional adversary setting, proofs would need
to be provided and verified before the beginning of the decryption phase, and
the strong latency would be back.

5 Conclusions

We have described a new type of mix-net that offers weaker verifiability prop-
erties than a traditional verifiable mix-net, yet preserves privacy even when all
public keys are known and when all but one mix server may act maliciously.

Our marked mix-net is considerably more efficient than a fully verifiable
mix-net in terms of computational load: the online working load of each mixer
is only 2 multiplications per ElGamal ciphertext, while recent proof of shuffle
(e.g., [4,26]) require several online exponentiations per ciphertext. We can then
expect to decrease the computational load by a factor at least 100. We believe
that this is an appealing feature in large scale elections.

We suggest that STAR-Vote, and possibly other voting schemes, need not
use a verifiable mix-net and may use the marked mix-net presented here instead.
However, before any deployment, a rigorous analysis of the security properties
of the marked mix-net would be needed.

Acknowledgement. We thank the anonymous reviewers for their helpful comments
and suggestions.

The first author is grateful to the Belgian Fund for Scientific Research (F.R.S.-
FNRS) for its financial support provided through the the SeVoTe project. The second
author gratefully acknowledges support for his work on this project received from the
Center for Science of Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370, and from the Department of Statistics, Univer-
sity of California, Berkeley, which hosted his sabbatical visit during this work.

368 O. Pereira and R. L. Rivest

References

1. Abe, M., Kiltz, E., Okamoto, T.: Chosen ciphertext security with optimal cipher-
text overhead. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 355–
371. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 22

2. Adida, B.: Advances in cryptographic voting systems. Ph.D. thesis. MIT (2006)
3. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for

realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–
156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 8

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 17

5. Bell, S., Benaloh, J., Byrne, M.D., DeBeauvoir, D., Eakin, B., Fisher, G., Kortum,
P., McBurnett, N., Montoya, J., Parker, M., Pereira, O., Stark, P.B., Wallach,
D.S., Winn, M.: STAR-vote: a secure, transparent, auditable, and reliable voting
system. USENIX J. Election Technol. Syst. (JETS) 1(1), 8 (2013)

6. Ben-Nun, J., Fahri, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A., Wikström,
D.: A new implementation of a dual (paper and cryptographic) voting system. In:
E-VOTE (2012)

7. Benaloh, J., Jones, D., Lazarus, E.L., Lindeman, M., Stark, P.B.: Soba: secrecy-
preserving observable ballot-level audit. In: EVT-WOTE 2011. USENIX (2011)

8. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851

9. Bulens, P., Giry, D., Pereira, O.: Running mixnet-based elections with helios. In:
Shacham, H., Teague, V. (eds.) Electronic Voting Technology Workshop/Workshop
on Trustworthy Elections. USENIX (2011)

10. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

11. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Verifiable elections
that scale for free. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 479–496. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36362-7 29

12. Chaum, D.: Untracable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–90 (1981)

13. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

14. Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vVote: a verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory IT 31(4), 469–472 (1985)

16. Lundin, D., Ryan, P.Y.A.: Human readable paper verification of prêt à voter.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 379–395.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5 25

17. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for
the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44586-2 8

https://doi.org/10.1007/978-3-540-89255-7_22
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-36362-7_29
https://doi.org/10.1007/978-3-642-36362-7_29
https://doi.org/10.1007/978-3-540-88313-5_25
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8

Marked Mix-Nets 369

18. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 47

19. Phan, D.H., Pointcheval, D.: OAEP 3-round:a generic and secure asymmetric
encryption padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
63–77. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 5

20. Popoveniuc, S., Stanton, J.: Undervote and pattern voting: vulnerability and a
mitigation technique. In: Preproceedings of the 2007 IAVoSS Workshop on Trust-
worthy Elections (WOTE 2007) (2007)

21. Ren, J., Wu, J.: Survey on anonymous communications in computer networks.
Comput. Commun. 33(4), 420–431 (2010)

22. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

23. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X 32

24. Sampigethaya, K., Poovendran, R.: A survey on mix networks and their secure
applications. In: Proceedings of IEEE, vol. 94, no. 12, pp. 2142–2181 (2006)

25. Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979)
26. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J.,

Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9 7

27. Tsoukalas, G., Papadimitriou, K., Louridas, P., Tsanakas, P.: From helios to zeus.
USENIX J. Election Technol. Syst. 1(1), 1–17 (2013)

28. Verificatum (2015). http://www.verificatum.org/
29. Verificatum: complexity analysis of the verificatum mix-net vmn version 3.0.2 (July

2016). http://www.verificatum.com/files/complexity-3.0.2.pdf
30. Wikström, D.: Simplified submission of inputs to protocols. In: Ostrovsky, R.,

De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 20

31. Wikström, D.: Electronic election schemes and mix-nets (2015). http://www.csc.
kth.se/∼dog/esearch/

https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/978-3-540-30539-2_5
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-642-12678-9_7
http://www.verificatum.org/
http://www.verificatum.com/files/complexity-3.0.2.pdf
https://doi.org/10.1007/978-3-540-85855-3_20
http://www.csc.kth.se/~dog/esearch/
http://www.csc.kth.se/~dog/esearch/

Pseudo-Code Algorithms for Verifiable
Re-encryption Mix-Nets

Rolf Haenni(B), Philipp Locher, Reto Koenig, and Eric Dubuis

Bern University of Applied Sciences, 2501 Biel, Switzerland
{rolf.haenni,philipp.locher,reto.koenig,eric.dubuis}@bfh.ch

Abstract. Implementing the shuffle proof of a verifiable mix-net is one
of the most challenging tasks in the implementation of an electronic vot-
ing system. For non-specialists, even if they are experienced software
developers, this task is nearly impossible to fulfill without spending an
enormous amount of resources into studying the necessary cryptographic
theory. In this paper, we present one of the existing shuffle proofs in a
condensed form and explain all the necessary technical details in cor-
responding pseudo-code algorithms. The goal of presenting the shuffle
proof in this form is to make it accessible to a broader audience and to
facilitate its implementation by non-specialists.

1 Introduction

Various cryptographic techniques have been developed to guarantee vote pri-
vacy in verifiable electronic voting systems. In practice, processing the list of
encrypted votes through a verifiable re-encryption mix-net has become the dom-
inating approach in the last couple of years. Various systems developed by acad-
emics, practitioners, and vendors are based on this approach, which imitates the
physical process of shaking a ballot box containing real votes on paper. While
shuffling a list of encryptions is a simple process from a cryptographic point
of view, proving that the shuffle has been preformed correctly is a much more
difficult task.

For proving the correctness of a cryptographic shuffle, two provably secure
proof techniques are dominant in the literature [2,8] (other methods exist, but
many of them have been proven insecure). Due to the complexity of the under-
lying cryptography, implementing these techniques is almost impossible for non-
specialists. Given the manifold subtleties and pitfalls that need to be considered
in a cryptographic implementation of such a complexity, even an experienced
software developer with a broad cryptographic background may struggle in get-
ting everything right.

Alternatively, system developers may try to delegate the shuffle proof to an
existing software library, but such libraries are not available in large numbers. To
the best of our knowledge, the only professionally maintained implementation is
the Verificatum Mix-Net (VMN), which exists since 2008 [10,11].1 A few other
1 See http://www.verificatum.com.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 370–384, 2017.
https://doi.org/10.1007/978-3-319-70278-0_23

http://www.verificatum.com

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 371

shuffle proof implementations have been realized, for example as part of the
UniCrypt library [6], but their intended area of application is mainly academic.
In the context of political elections, a practical problem of using third-party
libraries in an actual implementation is the complicated system certification
process, which gets more difficult with every additional dependency. Having the
smallest possible number of dependencies to non-standard libraries may therefore
be a desirable strategy for both system developers and election administrations.

In this paper, we focus on the shuffle proof proposed by Wikström and Tere-
lius [8,9,11]. In their original publications, the proof is split into an offline and
online part and covers options such as restrictions on the set of possible permuta-
tions. Their approach also supports various types of objects to shuffle. Such fea-
tures are interesting from a theoretical point of view, but they are less interesting
for practical applications in the area of electronic elections. Tailored pseudo-code
algorithms for writing a verifier for VMN are given in [11], but algorithms for
generating the proofs are not included in that document.

In this paper, we describe both parts of the shuffle proof in one compact
form, while restricting ourselves to the most common use case of single ElGamal
encryptions. We summarize the cryptographic theory necessary to understand
the core proof mechanisms and provide detailed and comprehensive pseudo-code
algorithms for generating and verifying such proofs. The goal of presenting the
proof in this form is to make it accessible to a broader audience and to facil-
itate its implementation by non-specialists. In this way, we hope to facilitate
the dissemination of shuffle proofs in electronic voting applications. Even with-
out presenting new results, we think this is an important contribution to the
community.

The organization of the paper is as follows. In Sect. 2, we review the crypto-
graphic background that is necessary to understand the summary of Wikström’s
proof mechanisms given in Sect. 3. The pseudo-code algorithms for building a
verifiable ElGamal re-encryption mix-net are presented in Sect. 4. Enough details
are given for a software developer with little cryptographic background to imple-
ment the proof without accomplishing a profound understanding of the underly-
ing mechanisms. Sections 2 and 3 may therefore be skipped by readers focused
in implementing the proof. Section 5 concludes the paper.

2 Cryptographic Background

Let G be a cyclic group of prime order q, for which the decisional Diffie-Hellman
(DDH) assumption is believed to hold. Since q is prime, every x ∈ G \ {1} is a
generator. Any such group would be suitable for Wikström’s shuffle proof, but
here we restrict ourselves to the subgroup Gq = {x2 mod p : 1 ≤ x ≤ p − 1} ⊂
Z

∗
p of quadratic residues modulo a safe prime p = 2q + 1. This is the most

common choice in practice. When working with Gq, the corresponding prime
field Zq = {0, ... , q − 1} of integers modulo q plays an important role to perform
computations in the exponent.

372 R. Haenni et al.

2.1 ElGamal Encryption

An ElGamal enryption scheme is a triple (KeyGen,Enc,Dec) of algorithms, which
operate on groups such as Gq ⊂ Z

∗
p, for which DDH holds [3]. The public para-

meters of an ElGamal encryption scheme over Gq are the primes p and q and
a generator g ∈ Gq \ {1}. A suitable generator can be found by squaring an
arbitrary value x ∈ Z

∗
p \ {1, p − 1}, for example g = 22 = 4 is always a generator

of Gq (except for p = 5).
An ElGamal key pair is a tuple (sk, pk) ← KeyGen(), where sk ∈R Zq is the

randomly chosen private decryption key and pk = gsk ∈ Gq the corresponding
public encryption key. If m ∈ Gq denotes the plaintext to encrypt, then

Encpk(m, r) = (m · pkr, gr) ∈ Gq × Gq

denotes the ElGamal encryption of m with randomization r ∈R Zq. Note that
the bit length of an encryption e ← Encpk(m, r) is twice the bit length of p. For
a given encryption e = (a, b), the plaintext m can be recovered by using the
private decryption key sk to compute

m ← Decsk(e) = a · b−sk.

For any given key pair (sk, pk) ← KeyGen(), it is easy to demonstrate that
Decsk(Encpk(m, r)) = m holds for all m ∈ Gq and r ∈ Zq.

The ElGamal encryption scheme is IND-CPA secure under the DDH assump-
tion and homomorphic with respect to multiplication. Therefore, component-
wise multiplication of two ciphertexts yields an encryption of the product of
respective plaintexts:

Encpk(m1, r1) · Encpk(m2, r2) = Encpk(m1m2, r1 + r2).

In a homomorphic encryption scheme like ElGamal, a given encryption e ←
Encpk(m, r) can be re-encrypted by multiplying e with an encryption of the
neutral element 1. The resulting re-encryption of e,

ReEncpk(e, r′) = e · Encpk(1, r′) = Encpk(m, r + r′),

is clearly an encryption of m with a fresh randomization r + r′.

2.2 Pedersen Commitments

The (extended) Pedersen commitment scheme is based on a cyclic group for
which the discrete logarithm (DL) assumption holds. In this document, we use
the same subgroup Gq ⊂ Z

∗
p of integers modulo p = 2q + 1 as in the ElGamal

encryption scheme. Let g, h1, ... , hN ∈ Gq \{1} be independent generators of Gq,
which means that their relative logarithms are provably not known to anyone.

The Pedersen commitment scheme consists of two deterministic algorithms,
one for computing a commitment

Com(m, r) = gr
N∏

i=1

hmi
i ∈ Gq

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 373

to N messages m = (m1, ... ,mN) ∈ Z
n
q with randomization r ∈R Zq, and one

for checking the validity of c ← Com(m, r) when m and r are revealed (which
we do not require in this paper). In the special case of a single message m, we
write Com(m, r) = grhm using a second generator h independent from g. The
Pedersen commitment scheme is perfectly hiding and computationally binding
under the DL assumption.

In Wikström’s shuffle proof, we also require commitments to permutations
ψ : {1, ... , N} → {1, ... , N}. Let Bψ = (bij)N×N be the permutation matrix of
ψ, which consists of bits

bij =

{
1, if ψ(i) = j,

0, otherwise.

Note that in each row and each column in Bψ, exactly one bit is set to 1. If
bj = (b1,j , ... , bN,j) denotes the j-th column of Bψ, then

Com(bj , rj) = grj

N∏

i=1

h
bij
i = grjhi, for i = ψ−1(j),

is a commitment to bj with randomization rj . By computing such commitments
to all columns, we obtain a permutation commitment

Com(ψ, r) = (Com(b1, r1), ... ,Com(bN , rN))

to ψ with randomizations r = (r1, ... , rN). Note that the size of such a c ←
Com(ψ, r) is O(N).

2.3 Non-interactive Preimage Proofs

Non-interactive zero-knowledge proofs of knowledge are important building
blocks in cryptographic protocol design. In a non-interactive preimage proof

NIZKP [(x) : y = φ(x)]

for a one-way group homomorphism φ : X → Y , the prover proves knowledge of
a secret preimage x = φ−1(y) ∈ X for a public value y ∈ Y without revealing
anything about x [7].

The most common construction of a non-interactive preimage proof results
from combining the so-called Σ-protocol with the Fiat-Shamir heuristic [4]. Gen-
erating a preimage proof (t, s) ← GenProofφ(x, y) for φ consists of picking a
random value w ∈R X and computing a commitment t = φ(w) ∈ Y , a challenge
c = Hash(y, t), and a response s = w + c ·x ∈ X. Verifying a proof includes com-
puting c = Hash(y, t) and checking t = y−c · φ(s). For a given proof π = (t, s),
this process is denoted by b ← CheckProofφ(π, y), where b ∈ {0, 1} indicates if
the proof is valid or not. Clearly, we have

CheckProofφ(GenProofφ(x, y), y) = 1

for all x ∈ X and y = φ(x) ∈ Y . Proofs constructed in this way are perfect
zero-knowledge in the random oracle model, which in practice is approximated
with the use of a collision-resistant hash function.

374 R. Haenni et al.

3 Summary of Wikström’s Shuffle Proof

A cryptographic shuffle of a list e = (e1, ... , eN) of ElGamal encryptions
ei ← Encpk(mi, ri) is another list of ElGamal encryptions e′ = (e′

1, ... , e
′
N),

which contains the same plaintexts mi in permuted order. Such a shuffle can be
generated by selecting a random permutation ψ : {1, ... , N} → {1, ... , N} from
the set ΨN of all such permutations (e.g., using Knuth’s shuffle algorithm [5])
and by computing re-encryptions e′

i ← ReEncpk(ej , r
′
j) for j = ψ(i). We write

e′ ← Shufflepk(e, r′, ψ)

for an algorithm performing this task, where r′ = (r′
1, ... , r

′
N) denotes the ran-

domization used to re-encrypt the input ciphertexts.
Proving the correctness of a cryptographic shuffle can be realized by proving

knowledge of ψ and r′, which generate e′ from e in a cryptographic shuffle:

NIZKP [(ψ, r′) : e′ = Shufflepk(e, r′, ψ)].

Unfortunately, since Shufflepk does not define a homomorphism, we can not
apply the standard technique for preimage proofs. Therefore, the strategy of
what follows is to find an equivalent formulation using a homomorphism.

The shuffle proof according to Wikström and Terelius consists of two parts,
an offline and an online proof. In the offline proof, the prover computes a com-
mitment c ← Com(ψ, r) and proves that c is a commitment to a permutation
matrix. In the online proof, the prover demonstrates that the committed permu-
tation matrix has been used in the shuffle to obtain e′ from e. The two proofs
can be kept separate, but combining them into a single proof results in a slightly
more efficient method. Here, we only present the combined version of the two
proofs and we restrict ourselves to the case of shuffling ElGamal ciphertexts.

From a top-down perspective, Wikström’s shuffle proof can be seen as a two-
layer proof consisting of a top layer responsible for preparatory work such as
computing the commitment c ← Com(ψ, r) and a bottom layer computing a
standard preimage proof.

3.1 Preparatory Work

There are two fundamental ideas behind Wikström’s shuffle proof. The first idea
is based on a simple theorem that states that if Bψ = (bij)N×N is an N -by-N -
matrix over Zq and (x1, ..., xN) a vector of N independent variables, then Bψ

is a permutation matrix if and only if
∑N

j=1 bij = 1, for all i ∈ {1, ... , N}, and
∏N

i=1

∑N
j=1 bijxi =

∏N
i=1 xi. The first condition means that the elements of each

row of Bψ must sum up to one, while the second condition requires that Bψ has
exactly one non-zero element in each row.

Based on this theorem, the general proof strategy is to compute a permuta-
tion commitment c ← Com(ψ, r) and to construct a zero-knowledge argument
that the two conditions of the theorem hold for Bψ. This implies then that c is
a commitment to a permutation matrix without revealing ψ or Bψ.

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 375

For c = (c1, ... , cN), r = (r1, ... , rN), and r̄ =
∑N

j=1 rj , the first condition
leads to the following equality:

N∏

j=1

cj =
N∏

j=1

grj

N∏

i=1

h
bij
i = g

∑N
j=1 rj

N∏

i=1

h
∑N

j=1 bij
i = gr̄

N∏

i=1

hi = Com(1, r̄). (1)

Similarly, for arbitrary values u = (u1, ... , uN) ∈ Z
N
q , u′ = (u′

1, ... , u
′
N) ∈ Z

N
q ,

with u′
i =

∑N
j=1 bijuj = uj for j = ψ(i), and r̃ =

∑N
j=1 rjuj , the second condi-

tion leads to two equalities:

N∏

i=1

u′
i =

N∏

j=1

uj , (2)

N∏

j=1

c
uj

j =
N∏

j=1

(grj

N∏

i=1

h
bij
i)uj = g

∑N
j=1 rjuj

N∏

i=1

h
∑N

j=1 bijuj

i = gr̃
N∏

i=1

h
u′
i

i

=Com(u′, r̃), (3)

By proving that (1), (2), and (3) hold, and from the independence of the genera-
tors, it follows that both conditions of the theorem are true and finally that c is
a commitment to a permutation matrix. In the interactive version of Wikström’s
proof, the prover obtains u = (u1, ... , uN) ∈ Z

N
q in an initial message from the

verifier, but in the non-interactive version we derive these values from the public
inputs, for example by computing ui ← Hash((e, e′, c), i).

The second fundamental idea of Wikström’s proof is based on the homomor-
phic property of the ElGamal encryption scheme and the following observation
for values u and u′ defined in the same way as above:

N∏

i=1

(e′
i)

u′
i =

N∏

j=1

ReEncpk(ej , r
′
j)

uj =
N∏

j=1

ReEncpk(euj

j , r′
juj)

= ReEncpk(
N∏

j=1

e
uj

j ,

N∑

j=1

r′
juj) = Encpk(1, r′) ·

N∏

j=1

e
uj

j , (4)

for r′ =
∑N

j=1 r′
juj . By proving (4), it follows that every e′

i is a re-encryption
of ej for j = ψ(i). This is the desired property of the cryptographic shuffle.
By putting (1) to (4) together, the shuffle proof can therefore be rewritten as
follows:

NIZKP

⎡

⎢⎢⎢⎣(r̄, r̃, r′,u′) :

∏N
j=1 cj = Com(1, r̄)

∧∏N
i=1 u′

i =
∏N

j=1 uj

∧∏N
j=1 c

uj

j = Com(u′, r̃)
∧∏N

i=1(e
′
i)

u′
i = Encpk(1, r′) · ∏N

j=1 e
uj

j

⎤

⎥⎥⎥⎦. (5)

The last step of the preparatory work results from replacing in the above expres-
sion the equality of products,

∏N
i=1 u′

i =
∏N

j=1 uj , by an equivalent expression

376 R. Haenni et al.

based on a chained list ĉ = {ĉ1, ... , ĉN} of Pedersen commitments with different
generators. For ĉ0 = h and random values r̂ = (r̂1, ... , r̂N) ∈ Z

N
q , we define

ĉi = gr̂i ĉ
u′
i

i−1, which leads to ĉN = Com(u, r̂) for u =
∏N

i=1 ui and

r̂ =
N∑

i=1

r̂i

N∏

j=i+1

u′
j .

Applying this replacement leads to the following final result, on which the proof
construction is based:

NIZKP

⎡

⎢⎢⎢⎢⎣
(r̄, r̂, r̃, r′, r̂,u′) :

∏N
j=1 cj = Com(1, r̄)

∧ ĉN = Com(u, r̂) ∧
[∧N

i=1(ĉi = gr̂i ĉ
u′
i

i−1)
]

∧∏N
j=1 c

uj

j = Com(u′, r̃)
∧∏N

i=1(e
′
i)

u′
i = Encpk(1, r′) · ∏N

j=1 e
uj

j

⎤

⎥⎥⎥⎥⎦
. (6)

To summarize the preparatory work for the proof generation, we give a list of
all necessary computations:

– Pick r = (r1, ... , rN)∈R Z
N
q and compute c ← Com(ψ, r).

– For i = 1, ... , N , compute ui ← Hash((e, e′, c), i), let u′
i = uψ(i), pick r̂i ∈R Zq,

and compute ĉi = gr̂i ĉ
u′
i

i−1.
– Let r̂ = (r̂1, ... , r̂N) and ĉ = (ĉ1, ... , ĉN).
– Compute r̄ =

∑N
j=1 rj , r̂ =

∑N
i=1 r̂i

∏N
j=i+1 u′

j , r̃ =
∑N

j=1 rjuj , and r′ =
∑N

j=1 r′
juj .

Note that r̂ can be computed in linear time by generating the values
∏N

j=i+1 u′
j

in an incremental manner by looping backwards over j = N, ... , 1.

3.2 Preimage Proof

By rearranging all public values to the left-hand side and all secret values to the
right-hand side of each equation, we can derive a homomorphic one-way function
from the final expression of the previous subsection. In this way, we obtain the
homomorphic function

φ(x1, x2, x3, x4, x̂,x′)

= (gx1 , gx2 ,Com(x′, x3),ReEncpk(
N∏

i=1

(e′
i)

x′
i ,−x4), (gx̂1 ĉ

x′
1

0 , ... , gx̂N ĉ
x′
N

N−1)), (7)

which maps inputs (x1, x2, x3, x4, x̂,x′) ∈ X of length 2N + 4 into outputs

(y1, y2, y3, y4, ŷ) = φ(x1, x2, x3, x4, x̂,x′) ∈ Y

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 377

of length N + 5, i.e., X = Z
4
q ×Z

N
q ×Z

N
q is the domain and Y = G

3
q ×G

2
q ×G

N
q

the co-domain of φ. Note that we slightly modified the order of the five sub-
functions of φ for better readability. By applying this function to the secret
values (r̄, r̂, r̃, r′, r̂,u′), we get a tuple of public values,

(c̄, ĉ, c̃, e′, ĉ) = (

∏N
j=1 cj

∏N
j=1 hj

,
ĉN

hu
,

N∏

j=1

c
uj

j ,

N∏

j=1

e
uj

j , (ĉ1, ... , ĉN)), (8)

which can be derived from the public values e, e′, c, ĉ, and pk (and from u,
which is derived from e, e′, and c).

To summarize, we have a homomorphic one-way function φ : X → Y , secret
values x = (r̄, r̂, r̃, r′, r̂,u′) ∈ X, and public values y = (c̄, ĉ, c̃, e′, ĉ) = φ(x) ∈ Y .
We can therefore generate a non-interactive preimage proof

NIZKP

⎡

⎢⎣(r̄, r̂, r̃, r′, r̂,u′) :

c̄ = gr̄ ∧ ĉ = gr̂ ∧ c̃ = Com(u′, r̃)
∧ e′ = ReEncpk(

∏N
i=1(e

′
i)

u′
i ,−r′)

∧
[∧N

i=1(ĉi = gr̂i ĉ
u′
i

i−1)
]

⎤

⎥⎦, (9)

using the standard procedure from Sect. 2.3. The result of such a proof gener-
ation, (t, s) ← GenProofφ(x, y), consists of two values t = φ(w) ∈ Y of length
N + 5 and s = ω + c · x ∈ X of length 2N + 4, which we obtain from pick-
ing w ∈R X (of length 2N + 4) and computing c = Hash(y, t). Alternatively,
a different c = Hash(y′, t) could be derived directly from the public values
y′ = (e, e′, c, ĉ, pk), which has the advantage that y = (c̄, ĉ, c̃, e′, ĉ) needs not
to be computed explicitly during the proof generation.

This preimage proof, together with the two lists of commitments c and
ĉ, leads to the desired non-interactive shuffle proof NIZKP [(ψ, r′) : e′ =
Shufflepk(e, r′, ψ)]. We denote the generation and verification of a such proof
π = (t, s, c, ĉ) by

π ← GenProofpk(e, e′, r′, ψ)
b ← CheckProofpk(π, e, e′).

respectively. Corresponding algorithms are depicted in Algorithms 3 and 6. Note
that generating the proof requires 7N+4 and verifying the proof 9N+11 modular
exponentiations in Gq. The proof itself consists of 5N + 9 elements (2N + 4
elements from Zq and 3N + 5 elements from Gq).

4 Pseudo-Code Algorithms

Based on the background information given in the previous two sections, we will
now transform the mathematical description of the proof into detailed pseudo-
code algorithms. This will give us an even closer look at how the shuffle proof
works. Algorithms 1, 3 and 6 are the three main algorithms for performing the

378 R. Haenni et al.

shuffle, generating the proof, and checking the validity of a proof, respectively.
We decided to give almost monolithic descriptions for each of these algorithms
with little dependencies to sub-routines.

There are some public parameters, which we do not pass explicitly as argu-
ments to each algorithm: the prime modulo p of the group Gq ⊂ Z

∗
p, the group

order q = (p − 1)/2, the main independent group generators g and h, and N
other independent generators h1, ... , hN . We do not give algorithms for finding
suitable group parameters or give recommendations about their sizes, we sim-
ply assume that they are publicly known.2 For a deterministic algorithm that
generates an arbitrary number of independent generators, we refer to the NIST
standard FIPS PUB 186-4 [1, Appendix A.2.3]. The deterministic nature of this
algorithm enables the independence of the generators to be publicly verified.

Most numeric calculations in the given algorithms are either performed mod-
ulo p or modulo q. For maximal clarity, we indicate the modulus in each indi-
vidual case. We suppose that efficient algorithms are available for computing
modular exponentiations xy mod p and modular inverses x−1 mod p. Divisions
x/y mod p are handled as xy−1 mod p and exponentiations x−y mod p with neg-
ative exponents as (x−1)y mod p or (xy)−1 mod p. We also assume that readers
are familiar with mathematical notations for sums and products, such that imple-
menting expressions like

∑N
i=1 xi or

∏N
i=1 xi is straightforward.

An important precondition for every algorithm is the validity of the input
parameters, for example that an ElGamal encryption e = (a, b) is an element of
Gq ×Gq or that given input lists are of equal length. We specify all preconditions
for every algorithm, but we do not give explicit code to perform corresponding
checks. However, as many attacks on mix-nets are based on infiltrating invalid
parameters, we stress the importance of conducting such checks in an actual
implementation. For testing group membership x ∈ Gq of quadratic residues
modulo p, we refer to algorithms for computing the Jacobi symbol

(
x
p

)
, for

example in [1, pp. 76–77].
Finally, we assume that efficient and secure algorithms are available for com-

puting cryptographic hash values h ← Hash(x) of arbitrary mathematical objects
and for picking uniform elements r ∈R Zq (or more generally r ∈R [a, b]). Writ-
ing such algorithms is a difficult problem on its own, which we cannot address
here. However, such algorithms are usually available in standard cryptographic
libraries of modern programming languages.

4.1 Generating the Shuffle

The input of a cryptographic shuffle e′ ← Shufflepk(e, r′, ψ) is a list of e =
(e1, ... , eN) encryptions ei, in our case ElGamal encryptions ei = (ai, bi) ∈ G

2
q,

which need to be re-encrypted and permuted. In Algorithm 1, we describe this
procedure, which includes picking a random permutation ψ = (j1, ... , jN) ∈ ΨN

(line 2) and a list r′ = (r′
1, ... , r

′
N) of re-encryption randomizations (line 4). The

re-encryptions are computed in a loop over all input encryptions (lines 3–7) and

2 See https://www.keylength.com for current recommendations.

https://www.keylength.com

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 379

permuted by re-arranging them according to ψ (line 8). The random values ψ
and r′ are returned together with e′, because they are required as secret inputs
to the proof generation.

1 Algorithm: GenShuffle(e, pk)

Input: ElGamal encryptions e = (e1, ... , eN), ei = (ai, bi) ∈ G
2
q

Encryption key pk ∈ Gq

2 ψ ← GenPermutation(N) // ψ = (j1, ... , jN), see Algorithm 4.2
3 for i = 1, ... , N do
4 r′

i ∈R Zq

5 a′
i ← ai pkr′

i mod p

6 b′
i ← bi gr′

i mod p
7 e′

i ← (a′
i, b

′
i)

8 e′ ← (e′
j1 , ... , e′

jN
)

9 r′ ← (r′
1, ... , r

′
N)

10 return (e′, r′, ψ) // e′ ∈ (G2
q)

N , r′ ∈ Z
N
q , ψ ∈ ΨN

Algorithm 1. Generates a random permutation ψ ∈ ΨN and uses it to shuffle a

given list e of ElGamal encryptions into a shuffled list e′.

The above shuffling algorithm calls one sub-routine for generating a random
permutation ψ ∈ ΨN . We present a procedure for this problem in Algorithm
2, which is essentially Knuth’s shuffle algorithm [5, pp. 139–140]. The auxil-
iary variable I is an integer array of size N , which is addressed with indices
i, k ∈ {1, ... , N}. After initializing the array with integers 1, ... , N (line 2),
N swap operations are performed with indices chosen at random (lines 3–6).
Knuth’s algorithm is proven to implement a uniform distribution over all possi-
ble permutations.

4.2 Generating the Shuffle Proof

The mathematical description of the shuffle proof in Sect. 3 is the basis for pro-
cedure shown in Algorithm 3. The core of the algorithm is the preimage proof
specified in (9), which requires some preparatory work. The first preparatory
step is the generation of the permutation commitment c (line 2), which we del-
egate to a separate subroutine. The second preparatory step is the computation
of values u, which are derived from the public inputs e and e′ and the permuta-
tion commitment c, and which are permuted according to ψ into u′ (lines 3–6).
The next preparatory step is the computation of the commitment chain ĉ in a
separate subroutine with c0 = h as initial value (line 7). Finally, the last step
consists in computing the secret inputs r̄, r̂, r̃, and r′ for the preimage proof
(lines 8–14).

380 R. Haenni et al.

1 Algorithm: GenPermutation(N)

Input: Permutation size N ∈ N

2 I ← 〈1, ... , N〉
3 for i = 1, ... , N do
4 k ∈R {i, ... , N}
5 ji ← I[k]
6 I[k] ← I[i]

7 ψ ← (j1, ... , jN)
8 return ψ // ψ ∈ ΨN

Algorithm 2. Generates a random permutation ψ ∈ ΨN following Knuth’s shuffle

algorithm.

The implementation of the preimage proof starts on line 15, where 2N + 4
values wi, ŵi, w

′
i ∈ Zq are selected at random (lines 15–18). They are needed

for the computation of the N + 5 commitments ti, t̂i ∈ Gq (lines 19–25), which
follows the definition of the homomorphic one-way function φ as specified in (7).
The commitments and all public values are then used to compute the challenge c
(lines 26–27), which determines to 2N + 4 responses si, ŝi, s

′
i ∈ Zq (lines 28–33).

The algorithm ends with returning the tuples t and s of all commitments and
responses, respectively, together with the permutation commitment c and the
commitment chain ĉ.

Each of the two auxiliary algorithms called during the proof generation
returns a list of Pedersen commitments. In the case of Algorithm 4, the return
value is actually a commitment to the permutation ψ. The procedure for com-
puting such a permutation commitment is described in Sect. 2.2. The return
value of Algorithm 5 consists of Pedersen commitments that are linked over one
of the two generators. The role of this commitment chain has been discussed in
Sect. 3 and does not require further explanations.

4.3 Verifying the Shuffle Proof

A shuffle proof π = (t, c, c, ĉ) generated by Algorithm 3 consists of the result
(t, s) of the preimage proof and the two lists of commitments c and ĉ obtained
as a result of several preparatory steps. Algorithm 6 shows the necessary steps
of checking the validity of such a proof. The additional input values of this
algorithm are two lists of encryptions e and e′ and the public key pk.

The first preparatory step in the algorithm is the derivation of the values
u from the inputs e, e′, and c (lines 2–3). The second preparatory step is the
computation of the public values c̄, ĉ, c̃, and e′ = (a′, b′) (lines 5–9) according to
their definition given in (8). Nothing else is needed to perform the verification
of the preimage proof (t, s) according to the standard procedure described in
Sect. 2.3. That is, the challenge c can be derived from the public values e, e′,

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 381

1 Algorithm: GenProof(e, e′, r′, ψ, pk)

Input: ElGamal encryptions e = (e1, ... , eN), ei = (ai, bi) ∈ G
2
q

Shuffled ElGamal encryptions e′ = (e′
1, ... , e

′
N), e′

i = (a′
i, b

′
i) ∈ G

2
q

Re-encryption randomizations r′ = (r′
1, ... , r

′
N), r′

i ∈ Zq

Permutation ψ = (j1, ... , jN) ∈ ΨN

Encryption key pk ∈ Gq

2 (c, r) ← GenCommitment(ψ) // c = (c1, ... , cN), r = (r1, ... , rN)
3 for i = 1, ... , N do
4 ui ← Hash((e, e′, c), i)
5 u′

i ← uji

6 u ← (u1, ... , uN), u′ ← (u′
1, ... , u

′
N)

7 (ĉ, r̂) ← GenCommitmentChain(h,u′) // ĉ = (ĉ1, ... , ĉN), r̂ = (r̂1, ... , r̂N)

8 r̄ ←∑N
i=1 ri mod q

9 vN ← 1
10 for i = N − 1, ... , 1 do
11 vi ← u′

i+1vi+1 mod q

12 r̂ ←∑N
i=1 r̂ivi mod q

13 r̃ ←∑N
i=1 riui mod q

14 r′ ←∑N
i=1 r′

iui mod q
15 for i = 1, ... , 4 do
16 ωi ∈R Zq

17 for i = 1, ... , N do
18 ω̂i ∈R Zq, ω′

i ∈R Zq

19 t1 ← gω1 mod p
20 t2 ← gω2 mod p

21 t3 ← gω3
∏N

i=1 h
ω′
i

i mod p

22 (t4,1, t4,2) ← (pk−ω4
∏N

i=1(a
′
i)

ω′
i mod p, g−ω4

∏N
i=1(b

′
i)

ω′
i mod p)

23 ĉ0 ← h
24 for i = 1, ... , N do

25 t̂i ← gω̂i ĉ
ω′
i

i−1 mod p

26 y ← (e, e′, c, ĉ, pk), t ← (t1, t2, t3, (t4,1, t4,2), (t̂1, ... , t̂N))
27 c ← Hash(y, t)
28 s1 ← ω1 + c · r̄ mod q
29 s2 ← ω2 + c · r̂ mod q
30 s3 ← ω3 + c · r̃ mod q
31 s4 ← ω4 + c · r′ mod q
32 for i = 1, ... , N do
33 ŝi ← ω̂i + c · r̂i mod q, s′

i ← ω′
i + c · u′

i mod q

34 s ← (s1, s2, s3, s4, (ŝ1, ... , ŝN), (s′
1, ... , s

′
N))

35 π ← (t, s, c, ĉ)

36 return π // π ∈ (G3
q × G

2
q × G

N
q) × (Z4

q × Z
N
q × Z

N
q) × G

N
q × G

N
q

Algorithm 3. Generates a proof of shuffle for given ElGamal encryptions e and

e′ according to Wikström’s method.

382 R. Haenni et al.

1 Algorithm: GenCommitment(ψ)

Input: Permutation ψ = (j1, ... , jN) ∈ ΨN

2 for i = 1, ... , N do
3 rji ∈R Zq

4 cji ← grji hi mod p

5 c ← (c1, ... , cN)
6 r ← (r1, ... , rN)

7 return (c, r) // c ∈ G
N
q , r ∈ Z

N
q

Algorithm 4. Generates a commitment c = Com(ψ, r) to a permutation ψ by

committing to the columns of the corresponding permutation matrix.

1 Algorithm: GenCommitmentChain(c0,u)

Input: Initial commitment c0 ∈ Gq

Public challenges u = (u1, ... , uN), ui ∈ Zq

2 for i = 1, ... , N do
3 ri ∈R Zq

4 ci ← gricui
i−1 mod p

5 c ← (c1, ... , cN)
6 r ← (r1, ... , rN)

7 return (c, r) // c ∈ G
N
q , r ∈ Z

N
q

Algorithm 5. Generates a commitment chain c0 → c1 → · · · → cN relative to a

list of public challenges u and starting with a given commitment c0.

c, ĉ, and pk (line 11), which then leads to N + 5 values t′i, t̂
′
i ∈ Gq by applying

the one-way function φ to s (lines 12–17). The resulting values are compared to
respective values ti, t̂i ∈ Gq included in the proof, and if all values match, the
proof is valid (line 18).

5 Conclusion

In this paper, we have given a compact summary of Wikström’s shuffle proof and
a detailed description of the proof generation and verification processes in form
of pseudo-code algorithms. The level of detail of these algorithms is such that
even developers with little background in cryptography can implement to proof
by coding carefully line after line. This solves an important problem of system
developers in charge of such an implementation. In the past, many of them have
struggled when facing the complexity of the underlying cryptography. With this
paper at hand, they have now a detailed guideline which they can follow without

Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets 383

1 Algorithm: CheckProof(π, e, e′, pk)

Input: Shuffle proof π = (t, s, c, ĉ), t = (t1, t2, t3, (t4,1, t4,2), (t̂1, ... , t̂N)),
s = (s1, s2, s3, s4, (ŝ1, ... , ŝN), (s′

1, ... , s
′
N)), c = (c1, ... , cN),

ĉ = (ĉ1, ... , ĉN)
ElGamal encryptions e = (e1, ... , eN), ei = (ai, bi) ∈ G

2
q

Shuffled ElGamal encryptions e′ = (e′
1, ... , e

′
N), e′

i = (a′
i, b

′
i) ∈ G

2
q

Encryption key pk ∈ Gq

2 for i = 1, ... , N do
3 ui ← Hash((e, e′, c), i)

4 u ← (u1, ... , uN)

5 c̄ ←∏N
i=1 ci/

∏N
i=1 hi mod p

6 u ←∏N
i=1 ui mod q

7 ĉ ← ĉN/hu mod p

8 c̃ ←∏N
i=1 cui

i mod p

9 (a′, b′) ← (
∏N

i=1 aui
i mod p,

∏N
i=1 bui

i mod p)
10 y ← (e, e′, c, ĉ, pk)
11 c ← Hash(y, t)
12 t′

1 ← c̄−cgs1 mod p
13 t′

2 ← ĉ−cgs2 mod p

14 t′
3 ← c̃−cgs3

∏N
i=1 h

s′
i

i mod p

15 (t′
4,1, t

′
4,2) ← ((a′)−cpk−s4

∏N
i=1(a

′
i)

s′
i mod p, (b′)−cg−s4

∏N
i=1(b

′
i)

s′
i mod p)

16 for i = 1, ... , N do

17 t̂′
i ← ĉ−c

i gŝi ĉ
s′
i

i−1 mod p

18 return

(t1 = t′
1) ∧ (t2 = t′

2) ∧ (t3 = t′
3) ∧ (t4,1 = t′

4,1) ∧ (t4,2 = t′
4,1) ∧

[∧N
i=1(t̂i = t̂′

i)
]

Algorithm 6. Checks the correctness of a shuffle proof π generated by Algorithm

4.3. The public values are the ElGamal encryptions e and e′ and the public

encryption key pk.

fully understanding the theory. We expect that a robust implementation for
someone that starts from scratch will now be possible within a matter of weeks
(instead of months at least).

To verify the above claim, we have given a draft of this paper to an experi-
enced software developer with no special education or experience in implement-
ing cryptographic algorithms. Within approximately four weeks of part-time
work, he managed to produce high-quality Java 8 code of everything that is
needed for building a verifiable mix-net. Based on the precise description of our
paper, he even managed—for a very small group Gq—to calculate a shuffle proof
entirely by hand, and his test suite reaches nearly 100% code coverage. Using the
native GMP library for fast big integer calculations and parallel streams from
Java 8 to exploit the power of all available cores, the performance of his code

384 R. Haenni et al.

is already well-optimized. This work has been conducted in the context of the
CHVote Internet voting project of the State of Geneva in Switzerland. The com-
plete source code is available in a public repository on GitHub.3 We have also
assigned this implementation task to a group of students with little background
knowledge in cryptography and security. This is an ongoing project, we expect
the results in a couple of months in form of a Bachelor thesis. A goal of this
work is to obtain a second independent implementation and to use it for mutual
tests.

By compiling the theory of Wikström’s shuffle proof into a single paper and
by facilitating the implementation of verifiable mix-nets with pseudo-code algo-
rithms, we hope that this paper will help to disperse this technology even further.

Acknowledgments. We thank the anonymous reviewers for their thorough reviews
and appreciate their comments and suggestions.

References

1. Digital signature standard (DSS). FIPS PUB 186–4, National Institute of Stan-
dards and Technology (NIST) (2013)

2. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 17

3. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

4. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

5. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, 3rd edn. Addison Wesley, Boston (1997)

6. Locher, P., Haenni, R.: A lightweight implementation of a shuffle proof for elec-
tronic voting systems. In: Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.)
INFORMATIK 2014, 44. Jahrestagung der Gesellschaft für Informatik, pp. 1391–
1400. No. P-232 in Lecture Notes in Informatics, Stuttgart, Germany (2014)

7. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

8. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12678-9 7

9. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02620-1 28

10. Wikström, D.: User Manual for the Verificatum Mix-Net Version 1.4.0. Verificatum
AB, Stockholm, Sweden (2014)

11. Wikström, D.: How to Implement a Stand-alone Verifier for the Verificatum Mix-
Net: VMN Version 3.0.2. Verificatum AB, Stockholm, Sweden (2016)

3 https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc.

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-02384-2_17
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-02620-1_28
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc

Using Selene to Verify Your Vote in JCJ

Vincenzo Iovino, Alfredo Rial, Peter B. Rønne(B), and Peter Y.A. Ryan

University of Luxembourg, Esch-sur-Alzette, Luxembourg
vinciovino@gmail.com, {alfredo.rial,peter.roenne,peter.ryan}@uni.lu

Abstract. We show how to combine the individual verification mech-
anism of Selene with the coercion-resistant e-voting scheme from Juels,
Catalano and Jakobsson (JCJ). This results in an e-voting scheme which
allows the voter to check directly that her vote is counted as intended,
but still allows her to mitigate coercion.

We also construct variants of the protocol which provide everlasting
privacy or better verifiability. Further, both improvements of JCJ and
Selene are discussed.

1 Introduction

Remote e-voting gives voters the opportunity to conveniently vote from home,
work or even abroad. However, it also presents cryptographers with the difficult
task of integrating both verifiability and privacy properties in a secure, efficient
and usable e-voting protocol. One of the hardest problems of leaving the reas-
suring frame of a voting booth is to protect voters against coercion attempts.
Juels, Catalano and Jakobsson (JCJ) [JCJ05] found a way to provide coercion-
resistance across multiple elections, assuming only a single coercion-free regis-
tration. The registration provides the voters with credentials which they use for
voting. Coerced voters can provide the coercer with a fake credential, and a vote
cast using this will not be counted. The system was later implemented as Civitas
[CCM08].

The JCJ-mechanism might be worrisome to the normal user. Was the cre-
dential entered correctly? Did someone else manage to override my vote? In
the end, it would be reassuring for the voters to be able to directly check that
their votes were counted correctly. However, providing voters with such a ser-
vice endangers the receipt-freeness and coercion-resistance if not done carefully.
Fortunately, Selene [RRI16] provides us with a mechanism for individual tallied-
as-intended verifiability while being able to mitigate the coercion threat. This is
done by giving each vote a unique tracking number, but first revealing this to the
voter after the tally has been published. Unfortunately, Selene was developed for
Helios style protocols, but in this paper we will show that the construction can
also be applied to the coercion-resistant vote casting system from JCJ/Civitas.
Indeed we will consider different variants of JCJ and show how Selene can be
added to JCJ even in the case when we want to provide everlasting privacy via
pseudonyms, or when we offer better verifiability properties. We will also see

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 385–403, 2017.
https://doi.org/10.1007/978-3-319-70278-0_24

386 V. Iovino et al.

how to address the secure platform problem with the extra verifiability gained
from Selene. Along the way we will discuss some problems and solutions of the
JCJ construction with cross-election and dynamic coercion. Further, we will give
a more efficient construction of the zero-knowledge proofs needed in Selene.

1.1 Related Work

Since the seminal paper defining coercion-resistance [JCJ05], there have been
numerous paper analyzing the JCJ protocol and providing alternatives, see e.g.
[NFVK13a] and references therein.

Selene [RRI16] is based on the idea of having trackers for the votes, an idea
already suggested in Schneier’s book [Sch94], which later independently also
appeared in a scheme used for ANR (Agence National de la Recherche) funding
committee meetings. Recently, sElect [KMST16] uses trackers to achieve good
accountability. However, in all of these cases the tracker directly represents a
receipt, whereas Selene mends this by delaying when the voter can obtain the
tracker.

The idea of everlasting privacy goes back to Moran and Naor [MN06] and
have been studied in several works, see e.g. [CPP13] for how to make perfectly
private audit trails in general election schemes, or [ACKR13] for how to do
automated verification of everlasting protocols. Here we focus on pseudonymity
rather than anonymity. However, if we follow JCJ closely, this is the best we can
do since the credentials themselves will be like pseudonyms to a future adversary.

The secure platform problem is one of the main problems in e-voting. One
solution is to use out-of-band channels and code-voting, see [Cha01,RT09]. In
e.g. Helios [Adi08] Benaloh challenges [Ben06] should help to detect malware,
but are unfortunately not often used [KOKV11]. Relying on hardware tokens is
yet another possibility, see [HK14,GRCC15], but is not always unproblematic,
see [KR16].

2 Building Blocks

Our construction uses the following building blocks: a non-interactive zero-
knowledge proof system (NIZK) [BFM88] in the random oracle model [BR93],
the ElGamal public key encryption scheme [Gam85], threshold encryption with
a plaintext equivalence test [JJ00], a verifiable re-encryption mixnet [SK95], the
Pedersen commitment scheme [Ped91], a web bulletin board [HL09], untappable
channels [HH07] and anonymous channels [Fre00].

3 System Model and Setup

We first describe the parties involved in an e-voting scheme.

Voters. The voters Vi (i = 1, . . . , n) register for voting, cast ballots, obtain
trackers and verify the voting results.

Using Selene to Verify Your Vote in JCJ 387

Tally Tellers. The Tally Tellers Tj tally the cast ballots and publish the results.
Registration Tellers. The Registration Tellers RTk register voters.
Tracker Tellers. The Tracker Tellers TTl process trackers. They could be the

same parties as the Tally Tellers or the Registration Tellers, but they are kept
separate here due to the different trust assumptions.

Our e-voting scheme consists of the following phases.

Setup. In the setup phase, the parties generate secret and public keys. Each
voter creates a designated verifier key. The Tally Tellers generate a public key
pkT for a threshold encryption scheme.

Registration. In the registration phase, a voter Vi and the registration tellers
run a protocol. The designated verifier key dvki of Vi and pkT are used as
inputs. As a result of the protocol, the voter obtains a credential Ci. Addi-
tionally, the voter identifier Vi, the key dvki and an encryption of Ci under
pkT are published on the web bulletin board (BB).

Tracker Preparation. In this phase, the Tracker Tellers and the voters run
a protocol. A set of trackers {ni}i=1,...,n, the designated verifier keys of the
voters and pkT are used as inputs. As a result of the protocol, each voter
obtains a Pedersen commitment to its tracker. Additionally, an encryption
under pkT of the tracker associated with a voter Vi is appended to the row
for voter Vi on the BB. In this protocol, the association between trackers and
voters is not revealed to any party.

Vote Casting. In this phase, a voter Vi computes a ballot and publishes it on
the BB. In our construction, the ballot contains an encryption under pkT of
the credential Ci and of the vote votei.

Tallying. In this phase, the Tally Tellers take as input the ballots published on
the BB and run a protocol to output pairs (votea, na), which associate each
valid vote with the tracker of the voter that cast that vote. Those pairs are
published on the BB.

Tracker Retrieval. In this phase, a voter Vi and the tracker tellers run a proto-
col as a result of which Vi learns the tracker n with which it became associated
in the tracker preparation phase.

Once a voter learns her tracker na, the voter can verify on the BB that the pair
(votea, na) is correct.

Setup. Let G be a cyclic group of prime order q and g be a generator of G.
In the setup phase, each voter creates designated verifier key dvki = gxi . The
designated verifier keys are used to provide deniability in the registration phase
in JCJ and the implementation Civitas. We assume that the designated verifier
key system is well setup, which includes that the voters have proven that they
know their secret key. Additionally, we use the same designated verifier key in
the Selene construction as the public key for the ElGamal encryption scheme.
JCJ also suggest an alternative registration with an erasure function. In that
case we need a PKI as in Selene where dvki is the voter’s public key.

388 V. Iovino et al.

The Tally Tellers run the distributed key generation algorithm of the thresh-
old encryption scheme to generate a public key pkT and obtain each a private
share of the secret key.

4 Description of the E-Voting Protocol

In this section, we describe the protocol combining JCJ and Selene in detail.

4.1 Registration

The registration is quite similar to JCJ/Civitas. Each voter has a designated
verifier key dvki. The voter must prove (interactively in ZK) that she knows the
secret key corresponding to dvki over an untappable channel during registration.
This is to prevent a coercer from making a voter register a designated verifier
key for which the secret key is unknown by the voter. For each eligible voter Vi,
each Registration Teller RTj randomly picks Cij ←$ G and publishes {Cij}pkT

on BB in a row marked for voter Vi. As discussed in Sect. 7.1, we could instead
use pseudonyms PVi if everlasting privacy is desired.

For each voter, the encryptions are multiplied together to homomorphically
obtain a single credential Ci. On BB, we now have the following row for each
voter

Vi, dvki, {Cij}pkT
,
∏

j

{Cij}pkT
= {Ci}pkT

Here we deviate from JCJ/Civitas by also including the public key dvki in the
row. This key will be the public key used by the voter in Selene.

The voter now receives the credential shares and designated verifier proofs
from the Registration Tellers

RTi → Vi : Cij , πij

where πij is a designated proof to the key dvki proving that {Cij}pkT
, appearing

on BB, is an encryption of Cij . The voter can now calculate Ci and check the
proofs.

If the voter is coerced, she chooses at random an alternative value C ′
i in

G and shows this to the coercer. The proofs can be faked with her designated
verifier key. It is here of course essential that the voter knows the secret key,
but a coerced voter can even reveal this secret key to the coercer, as long as the
coercer does not cooperate with the registration tellers. It is important that the
coercer is not present by the reception of all Cij ’s.

The credential can be reused for several elections, and could, in principle, be
obtained in booth by the registration authorities.

Using Selene to Verify Your Vote in JCJ 389

4.2 Tracker Preparation

Whereas the previous part was very similar to JCJ/Civitas, we now add the
main ingredient of Selene, namely, the personal voting trackers that each voter
can use to check her tallied vote.

The trackers {ni}i=1,...,n should be a negligible set of Zq (i.e. the chance of
a random element in Zq being a tracker is negligible).

The Tracker Tellers first publish

ni, {gni}pkT

on BB, where the encryption is with trivial randomness. The trackers are sent
through a re-encryption mix and one anonymised tracker is added to each of the
voters’ rows to obtain

Vi, dvki, {Ci}pkT
, {gnπ(i)}pkT

where π is the permutation used for mixing. In the following we will suppress
π for easier notation. Note that, whereas credentials can be used for several
elections, this tracker mixing needs to be renewed for each election.

Further each Tracker Teller TTj randomly chooses rij ←$ Zq for each voter
and publishes

{dvkrij

i }pkT
, {grij }pkT

,Πij

where Πij is a non-interactive zero-knowledge proof that this is done correctly.
The proof is presented in the Selene protocol, see [RRI15], Appendix A. As in
Selene, the terms from each Teller are now homomorphically combined with the
encryption of the tracker, and we obtain a trapdoor commitment to the tracker

{gni}pkT

∏

j

{dvkrij

i }pkT
= {gni dvkri

i }pkT

with ri =
∑

j rij . This is appended to each voter’s row. Finally, the Tally Tellers
decrypt the trapdoor commitment to the tracker, gni dvkri

i , for each voter.

4.3 Vote Casting

Vote casting is done like in JCJ. Here we follow Civitas. If voter Vi wants to vote
“votei”, she anonymously sends to BB

({Ci}pkT
, {votei}pkT

, π)

where π is a zero-knowledge proof that the vote is well-formed together with a
proof that Ci and votei are simultaneously known, which prevents vote copying.
To cast a vote in presence of a coercer, the fake credential given to the coercer
is simply used in place of the real one.

390 V. Iovino et al.

4.4 Improving the Coercion Resistance of JCJ

The JCJ protocol has a tally procedure which leaves room for certain coercion
attacks. Let us first remind ourselves how the tally procedure works. It relies
heavily on the Tally Tellers performing Plaintext Equivalence Tests (PETs) on
the encryption of the credentials, see e.g. [CCM08].

1. Zero-knowledge proofs of the cast ballots are checked, and invalid ballots are
removed.

2. Duplicates, i.e., ballots that use the same credential, are removed according
to the existing vote update policy. This is done using PETs among the cipher-
texts of the credentials in the cast ballots. This means that the coercer cannot
mark the vote with a chosen number of duplicates.

3. The list of ciphertexts of registered credentials is anonymized using a mix-net.
Further, from the list of valid ballots after duplicate removal, we likewise use
a parallel mix-net to anonymize the pairs of ciphertexts of credentials and
votes.

4. Unauthorized votes, i.e., ballots that do not use a registered credential, are
removed by performing PETs of the credentials from the cast votes with the
list of registered credentials.

5. The remaining valid votes can now be decrypted to reveal the tally.

The duplicate removal can in certain quite special situations give the coercer
unwanted information and correspondingly hinders coercion-resistance, as we
will now see. This was discovered, but not analyzed, in [Roe16]. The problem
appears when the coercion happens dynamically or across elections. Consider an
uncoerced voter who has already voted. The coercer now detects this somehow,
say by overhearing this or seeing this in the browsing history of the voter.1 The
coercer can now coerce the voter just before voting ends. The coerced voter now
gives the coercer a fake credential, and they can sit down and cast an, in fact,
invalid vote. However, in the duplicate removal phase, it will then be evident
that the credential was fake, since no duplicates are detected for the fake vote.
To circumvent this, all voters should start by casting fake votes if they want
to be prepared for later coercion threats, which seems pretty complicated. Note
that the protocol in [KHF11] actually does something similar to prevent board
flooding attacks on JCJ, but the cost is a statistical coercion-resistance.

Another case is a voter which was coerced in an earlier election and gave the
coercer a fake credential. At a later election, the coercer can now cast a vote
using this credential and check whether this will have duplicates in the duplicate
removal phase. If this does not happen, the coercer can conclude that either the
credential was fake, or that the voter did not vote in the latter election, which
might be improbable. This means that the coerced voter also needs to cast votes
using the fake credential even at elections after being coerced to be on the safe
side.
1 We can assume that coerced voters are careful to use only devices out of the reach

of the coercer or to delete browsing history, but this is more unlikely for uncoerced
voters.

Using Selene to Verify Your Vote in JCJ 391

Note that it does not help to do a mix before performing the duplicate
elimination since the groups of ballots could still be marked by a certain number
of duplicates.

If vote updating is not intended, we can sidestep the issue by simply dropping
the step of duplicate removal. After anonymizing both the registered credentials
and the cast ballots, PETs are performed for each registered credential against
the cast ballots until the first match comes up. We then pick this as the vote
for the given credential. For the set of cast votes for a given valid credential this
will pick one in the set at random. The method thus reveals a minimum amount
of information, but makes vote updating harder to implement. Further it also
decreases verifiability as discussed below, but Selene helps here.

4.5 Tallying with Selene

Tallying with Selene requires a minor modification. First, all proofs are checked
and invalid votes are discarded. Then all cast pairs

({Ca}pkT
, {votea}pkT

) �→ ({Cπ(a)}pkT
, {voteπ(a)}pkT

)

are re-encryption mixed.
Further the pairs of registered credentials and tracking numbers

({Ci}pkT
, {gni}pkT

) �→ ({Cπ′(i)}pkT
, {gnπ′(i)}pkT

)

from each voter’s column are re-encryption mixed in parallel. From each entry
in this anonymised list of credential-tracker pairs, the Tally Tellers do PETs
against the credentials from the anonymised list of cast votes. The first time we
get a positive match, the corresponding vote is decrypted (verifiably) together
with the corresponding tracker. If wanted, one can also do more elaborate PETs
(like in JCJ-Civitas), first removing all duplicate votes, possibly with some vote
update policy, as explained in Sect. 4.4.

The end result (after taking the discrete log of the trackers) is the Tally
Board of valid vote-tracker pairs (since the set of trackers is small and known,
it is easy to go from gn to n)

(votea, na).

4.6 Tracker Retrieval

Finally, the tracker retrieval happens like in Selene. Each Tracker Teller provides
each voter with their share grij .

TTj → Vi : grij .

This happens according to some random time distribution a suitable time after
the tally has been published, see [RRI16] and via, for the coercer, untappable
channels.

392 V. Iovino et al.

The voter (or rather her device) combines these shares to get gri . Together
with the public trapdoor commitment gni dvkri

i , the term gri forms an ElGamal
encryption of the tracker under the key dvki. The voter can now decrypt and
directly check that her vote appears correctly on the Tally Board.

Trackers can be faked in the case of coercion, just like in Selene. That is, the
voter finds the wanted fake tracker, n∗, on BB for the coercer’s choice of vote
and calculates

(
g−n∗

gni dvkri
i

)x−1
i

as the fake term to give to the coercer instead of gri . Here xi is the secret key
of dvki = gxi .

A potential attack would raise if an adversary, possibly colluding with all the
Tracker Tellers, could make a voter get a fake gri term that the voter decrypts
to a valid tracker different from the true tracker of the voter with non-negligible
probability. In [RRI15] it is proven that this is hard under a standard computa-
tional assumption.

5 More Efficient Zero-Knowledge Proofs in Selene

In the tracker preparation phase, the Tracker Tellers publish

{dvkrij

i }pkT
, {grij }pkT

,Πij

where the zero-knowledge proof was of the correctness of this construction, i.e.
that the two generators are raised to the same known power. However, the term
{grij }pkT

is not really needed. In principle, it could be used for accountability if
the Tracker Teller tries to send a wrong grij to the voter. However, for deniability,
the Tracker Teller sends this term without any proof to the voter. This means
that there is no proof that the Teller sent a wrong message to the voter. Thus
we suggest to only publish

{dvkrij

i }pkT
,Π ′

ij

where Π ′
ij is a shorter zero-knowledge proof, showing that the ciphertext indeed

encrypts the key dvki to a known power. In a long version of this note we present
this proof in details; it consists of 8 group elements in some group of prime order
p and of 6 elements of Z�

p. We also prove in the long version that the adversary,
also in this case, even when colluding with all Tellers, only has a negligible chance
of constructing a fake term grij that makes the voter decrypt to a valid tracker
different from her real tracker.

6 Security Assumptions and Arguments for Security

In this section we will briefly mention the trust assumptions for the voting
authorities and give brief explanations of why the different security properties
hold.

Using Selene to Verify Your Vote in JCJ 393

6.1 Trust Assumptions for the Tellers

– The Registration Tellers are trusted individually for coercion-resistance and
collectively for verifiability. For everlasting privacy via pseudonyms (see
Sect. 7.1) they are individually trusted for everlasting privacy.

– The Tally Tellers are trusted collectively for privacy (and hence coercion-
resistance) and verifiability. A threshold version follows directly. We will here
assume that the verifiable reencryption mixes done in the protocol are per-
formed by the Tally Tellers, and that these are private if at least one Teller
is honest.

– The Tracker Tellers are trusted collectively for privacy. They are trusted indi-
vidually for coercion-resistance since the voter needs to know which grij to
fake for the coercer (like for the Registration Tellers).

6.2 Verifiability

For verifiability, we assume that the voters keep their private designated verifier
keys secret. An adversary colluding with all the Registration Tellers can however
still obtain the credential of a voter, and cast votes on her behalf, violating at
least eligibility verifiability. The same can happen if the adversary and all the
Tally Tellers collude, see also Sect. 7.2 below how to mitigate this risk.

However, if such grand collusion do not happen, the only ballots on BB
with a given voters correct credential are with overwhelming probability cast
by the voter herself. That the correct vote is now chosen in the tally is secured
by checking the zero-knowledge proofs of the verifiable PETs and verifying the
correctness of the mixes. Finally, the actual decryption of the vote can also be
verified.

The correctness of the individual verifiability of the Selene trackers, is very
similar to the original Selene construction. The verification of the first mix of the
trackers ensures that each voter gets a unique tracker, from the set of trackers.
The pairwise mix of registered credentials and trackers, together with verification
of the PETs ensure that this tracker is assigned to the voter’s cast vote. Again,
the correct decryption of the trackers can be verified. That the voters receive
the correct trackers with overwhelming probability is discussed above.

6.3 Vote Privacy

If the Tally Tellers or Tracker Tellers collude they can easily break privacy.
Otherwise privacy of the mixes and encryptions will ensure privacy. In general,
ballot independence is ensured by the construction (at least if we do not do the
duplicate weeding) if we check the proofs of the PETs. This also means that even
if the Registration Tellers collude and can cast valid votes on behalf of voters,
this does not violate privacy.

394 V. Iovino et al.

6.4 Coercion-Resistance and Coercion-Mitigation

Coercion-resistance and, related, receipt-freeness is a harder problem. The point
is that even in the ideal version of the scheme, the voters will know exactly which
vote is theirs in the final tally by checking their unique tracker. This is intended
and gives the voter a reassurance of the correctness of the vote. However, each
voter knowing their unique tracker does constitute a piece of information, not
obtainable in standard voting schemes, and which is not foreseen in standard
definitions of coercion-resistance and receipt-freeness.

Coerced voters however still have good options to mitigate coercion. They
have algorithms to both fake their credential and the term to obtain their tracker
number. The difference to standard coercion-resistance crystallizes when the
voter shows a fake tracking number to the coercer, and it turns out to be the
coercer’s own tracker. This was analyzed in Selene [RRI15] where also several
alternative versions without this drawback were discussed, but at the cost of a
less clear Tally Board.

Another problem comes from a slight lack of coercion-resistance in the JCJ
construction itself, which is then magnified by the addition of individual verifi-
ability. JCJ, and any scheme which has voting authorised by a token which can
be faked and provided to the coercer, is not strictly coercion-resistant at least if
used across multiple elections. The point is that the coercer can cast votes using
the token obtained from the voter for special candidates which are expected to
get a low number of votes. In the extreme case where this candidate does not get
any votes in the election, the coercer knows he was provided with a fake token.
In less extreme cases, the coercer only gains statistical information of the valid-
ity of the token. Used across elections the statistical certainty can be improved.
This is not so different from the coercer actually directly demanding the voter
to vote for the corresponding candidate. However, the point is that the coercer
can choose to follow this strategy completely without the voter’s knowledge and
thus without the voter having the choice to remain undetected by following the
coercer’s wish. The individual verifiability here worsens the situation2 since the
coercer can demand to know which candidate he chose, which the voter should
know via the individual verifiability mechanism (here via the tracking number).
Of course, the voter cannot reply with certainty due to the covert strategy of
the coercer. However we will see in Subsect. 7.4 that we can change the tracker
retrieval mechanism to allow the voter to answer the coercer’s demand with a
valid tracker thus successfully defending against this attack (unless the chosen
candidate did not get any votes, in which case no defense would ever be possible
for the chosen result function).

7 Extensions and Alternative Protocols

7.1 Everlasting Privacy via Pseudonyms

Privacy is easy to break for a future adversary who is able to break the employed
encryption, e.g. because the DDH assumption happens to be broken or simply
2 Thanks to Véronique Cortier for pointing this out.

Using Selene to Verify Your Vote in JCJ 395

by the expected increase in computational power over time. In general, we think
about the future adversary as having unlimited computational power, but only
being active after the election using the data from BB.

A quick and dirty way to obtain everlasting privacy is to use pseudonyms
(see [LHK16] for a more advanced approach to everlasting privacy and coercion-
resistance, however with an efficiency drawback). I.e., instead of labelling the
rows on the bulletin board with the voter IDs, we use pseudonyms. We assume
that only the Registration Tellers and the Tracker Tellers know the relation
between the pseudonyms, designated verifier keys and the actual voter IDs.
Especially, this information will not be public and not available to the future
adversary.

Of course, pseudonyms are not the best way to preserve privacy, especially
across elections. However, they are easy to implement with not too big usability
costs. In particular, the JCJ construction works with credentials, which to the
future adversary are just like pseudonyms labelling the voters, even though they
only appear under encryption. As we show now, we can also use the Selene
mechanism in this case with some modifications.

Registration with Pseudonyms. In the registration phase, we mark the
voter’s row on BB with the pseudonym PVi instead of Vi

PVi, (dvki)sij , {Cij}pkT
,
∏

j

{Cij}pkT
= {Ci}pkT

Note that each Registration Teller also takes the public key of the voter dvki

and raises it to the random power sij before publishing it. For each voter, we
can now collect the terms

PVi, (dvki)si =
∏

j

(dvki)sij ,
∏

j

{Cij}pkT
= {Ci}pkT

,

with si =
∑

j sij . The Registration Tellers now send both the credential shares
Cij , the random exponents rij , the pseudonym and the designated verifier proofs
to the voter

RTi → Vi : Cij , sij , πij , PVi

where πij is a designated proof to the key dvki proving that {Cij}pkT
, appearing

on BB, is an encryption of Cij . The voter checks the proofs and the validity
of the values sij . Further, the voter can now calculate Ci and si. For internal
purposes the voter can update her key to be (dvki)si .

The reason for raising dvki to si is two-fold. The first reason is to blind
the public key from the future adversary. From (dvki)si , it is information-
theoretically impossible to infer dvki. The second reason is to prevent the follow-
ing verifiability attack. Suppose that all registration tellers collude. They could
then point two or more voters to the same pseudonym and credential, which
would only be detected if the attacked voters unlikely compare pseudonyms.

396 V. Iovino et al.

This would only give one vote to the two voters. Note that this verifiability is
outside the scope of the JCJ assumptions, assuming at least one Registration
Teller is honest. However, in [Roe16], it was shown that we can do better (see
also below). However, by knowing the exponentials, the registration tellers would
need to know a discrete logarithm relation between the attacked voters, which is
infeasible by the hardness of the discrete logarithm problem, if we assume that
the PKI has been set up properly.

The remainder of the protocol can now proceed as above with dvki replaced
by (dvki)si . The future adversary will be able to relate a vote to the pseudonym
and (dvki)si , but not directly to the voter. Note that the Tracker Tellers need to
know the relation between pseudonyms and voters to return the random terms
grij to the voters. Like the Registration Tellers they are thus also assumed not
to be colluding with the future adversary. This trust is one of the reasons to
distinguish them from the Tally Tellers.

7.2 Stronger Verifiability

In [Roe16], a version of JCJ-Civitas was presented which has stronger security
guarantees, and only changes the registration and voting procedure slightly. The
main point is that the voters know the discrete logarithm of their credential,
and this can be seen as a secret key. The cast ballots containing the encrypted
credential are basically anonymously signed using this secret key. This prevents
verifiability attacks where either all Tally Tellers or Registration Tellers are
corrupted. In that case, they know the secret credentials, and could cast valid
votes on behalf of any voter. If we use the duplicate removal step, which had slight
coercion-resistance problems, as discussed above, this attack could be detectable
by alert voters. However, even so, it could lead to unsolvable disputes about the
validity of the election, see [Roe16].

Selene can also be added to this version of JCJ just as for standard JCJ.
However, we can also create a new combination of JCJ and Selene where, post-
registration, the voters only have to handle a single key (actually, coerced voters,
of course, also need to handle the fake keys).

The registration works as follows. For a given voter Vi, all Registration Tellers
RTj choose random values cij ∈ Zq and publish {gcij }pkT

on BB. The voter gets
cij from RTj together with a designated zero-knowledge proof to dvki, proving
the correct encryption of gcij .

The ciphertexts of the credential shares can now be multiplied together, but
are further multiplied by {dvki}pkT

, which for verifiability is encrypted with
trivial randomness. Since ElGamal is homomorphic, the final ciphertext is an
encryption of the voter credential Ci = gci := g

∑
j cij+xi . However, in this case

the voter, and only the voter, knows the discrete logarithm, since the Registration
Tellers do not know the secret key of dvki.

In case of coercion, the voter will present the coercer with a random number c′
i

and corresponding group element C ′
i = gc′

i and claim this is the real credential –
just like in JCJ, but now working with the discrete logarithms instead of the
group elements.

Using Selene to Verify Your Vote in JCJ 397

After registration, BB contains

Vi, {Ci}pkT

and the uncoerced voter only needs to store the discrete logarithm of Ci. We do
not demand now Vi to store dvki separately. The Tracker Tellers can mix and
add {gni}pkT

to each voter as above, but the Tracker Tellers can now only work
with {Ci}pkT

. Due to the homomorphic property of ElGamal, this is however
enough. To create the trapdoor commitment, the Tracker Teller TTj randomly
chooses rij ←$ Zq, and publishes for each voter

{Ci}rij

pkT
= {C

rij

i }pkT
,Πij

where again Πij is a NIZKPoK that this is done correctly. We have here chosen
the version without publishing the encryption of grij , however this only changes
for the proof.

Observe that we need a proof that an ElGamal ciphertext is raised to some
known power and this accounts to a proof of knowledge of the randomness r in
a DH-tuple. A NIZKPoK for it can be obtaining by applying the Fiat-Shamir’s
heuristic to the Chaum-Perdersen’s proofs [CP93]. The coercion-resistance of the
public information follows from the DH-assumption observing what follows. Let
us assume for simplicity that there is only one teller. Then, the coercer can see
Cr

i gn
i along with the ciphertext raised to r but not Ci and note also that the

voter does not know r. Thus, under the DH-assumption we can conclude that
this information consists of just random group elements.

By homomorphically multiplying {gni}pkT
with all the {C

rij

i }pkT
, we get the

trapdoor commitment {gniCri
i }pkT

where the trapdoor key now is ci. The Tally
Tellers decrypt these commitments verifiably.

Vote casting follows [Roe16] and works like before. The voter casts

({Ci}pkT
, {votei}pkT

, π)

anonymously to BB. The difference is that the zero-knowledge proof now also
contains a proof of knowledge of the discrete logarithm in the encrypted creden-
tial, i.e. like an anonymous signature.

Tallying is just like before, and retrieving the trackers likewise. However,
for coerced voters, faking the random term grij is now different from standard
Selene. The point is that, whereas in the standard case, the coerced voter will
hand out the real secret key of dvki to the coercer, in this case the coercer will
get a fake key C ′

i = gc′
i . The fake term gri is thus calculated as

(
g−n∗

gniCri
i

)c′−1
i

since, when combining this with the commitment on BB, we get a ciphertext
which decrypts to the wanted tracker n∗ when we decrypt with the fake creden-
tial key given to the coercer. Actually, this construction is mildly better than
standard Selene for coercion. The reason is that, if the coercer somehow man-
ages to see the real term gri , this will decrypt to the voter’s correct tracker in

398 V. Iovino et al.

standard Selene, but here it will decrypt to a random number, since the coercer
is in the possession of a fake key. The voter can thus still claim that something
must have gone wrong, or the system is corrupted, whereas in standard Selene
the chance of this would be negligible. In real life, this is probably not a very
usable defense for coerced voters.

Note that, if Tracker Tellers are corrupted, they can reveal relations on the
credentials between voters from the decrypted commitments, since they know
the random coins used in the commitments. This is however less of a problem
in this version of JCJ since the discrete log of the credential is needed to break
verifiability, and the Tracker Tellers are anyway trusted for coercion-resistance.

7.3 On the Secure Platform Problem

One of the main problems of e-voting is the secure platform problem. Very often
this problem is ignored and the voter’s computing platform is considered safe.
An alternative useful approach is to use an out-of-band channel, e.g. using vote
codes on paper, see e.g. Pretty Good Democracy [RT09].

Instead of resorting to out-of-band channels, one can also try to secure the
device used by the voter, see e.g. [NV12] [NFVK13b] where simple smart cards
are used. These are further used to improve usability for the voter. One drawback
of dedicated hardware might be forced abstention attacks from local coercers,
who simply seize the device from the coerced voter.

Instead, we can try to spread the risk of malware attacks to two independent
devices, assuming that the adversary will not be able to control both. Further,
we keep these devices general, i.e., it could be smartphones or laptops and not
dedicated hardware. Keys could have backups on more devices if the voter is
afraid of forced coercion. Due to the setup with two different credential/keys,
the combination of JCJ and Selene (with two credential/keys) seems ideal for
this task.

Let us assume that the voter has two computing devices D1 and D2. We
store the secret key of the designated verifier key dvki on D2. The voter now
uses device D1 for the registration where the voter gets the credential from
the registration. The credential is then stored on D1, and possibly with secure
backups. Note that, during registration, only the public key dvki is needed, thus
device D2 can be excluded from this process.

A coerced voter can provide fake proofs without using device D1, i.e., by only
using the secret key on device D2. Thus device D2 does not learn the credential.

Vote-casting can be done on device D1 since it holds the credential, but does
not need device D2. Finally, tracker retrieval and vote verification can be done
on D2 without using D1.

In order to perform an undetected change of the vote, an adversary needs to
infect both device D1 to get the correct credential, and device D2 in order to
fake the verification of the final tallied vote with the Selene mechanism. Since
the devices could be very independent, e.g. the check of the final vote could even
be done on some public PC (with a threat of a privacy attack, of course), this
seems to greatly reduce the danger from malware.

Using Selene to Verify Your Vote in JCJ 399

7.4 Using JCJ to Improve Selene

The combination of JCJ and Selene cannot only be used to add extra verifiability
to JCJ, but can also provide a more secure tracker retrieval in Selene. The point
is that the voter can authenticate herself with her credential. We can use this to
make the tracker retrieval active. That is, instead of the Tracker Tellers sending
out the grij terms, with the risk of the coercer intercepting the message, the voter
contacts the Tracker Tellers to obtain the terms. We will here briefly sketch the
idea.

The voters can identify themselves to the Tracker Tellers with a ciphertext
of the credential. Here and in the following such encrypted credentials should
be followed by zero-knowledge proofs of plaintext knowledge of a special form
that makes sure that it is not copied from e.g. already cast election ballots, or
reused for ballots or authentication in later elections. For clarity we will suppress
these proofs in the following. The Tally Tellers can now perform a PET with the
registered credential (while also checking the zero-knowledge proof) to check the
authenticity. After authentication, the terms grij are handed out.

Coerced voters need to have a time window between the publication of the
tally board and the start of the tracker retrieval, where they can upload a fake
grij term to each Tracker Teller. They do this via an anonymous channel

Vi → TTj : Vi, {C1}pkT
, {C2}pkT

, {(grij)fake}pkT
.

The first plaintext is supposed to be the real credential, the second plaintext the
faked credential (different from C1) and the third plaintext is the faked term that
will be shown, when someone with credential C2 tries to retrieve their tracker
share. The Tally Tellers need to be invoked to get this term. The fake term could
also be sent in plain, if the channel is considered untappable for the coercer.

Now, if a coercer tries to retrieve the random term, the voter should have
made a faking request beforehand, and the coercer gets the faked term.

However, we need to be careful since the coercer should not be able to use the
update mechanism to discover that he is in the possession of a faked credential.
We thus proceed as follows. After the time window, each Tracker Teller now has a
database for each voter with rows of faking requests (which might come from the
coercer as well). For understandability, we assume that each voter has maximally
one coercer, and we can then weed this list so that the value of the first credential
C1 can only appear once, copies are removed via PETs. A retrieval request now
takes the form of Vi, {C}pkT

. The Tracker Teller now processes this request
via the following algorithm which has two memory slots. Before beginning, the
ciphertext of the registered credential is loaded to memory slot 1 and the real
value grij is loaded to slot 2. For the given request TTj requests a PET of the
submitted ciphertext with the value in memory slot 1. If the PET is successful,
it hands out the stored value in memory slot 2 and exits the algorithm. If not,
it requests PETs against the database C1s and the value in memory slot 1. If
there is no success, it hands out a random number and exits the algorithm, but
if there is a success it stores the corresponding C2 ciphertext in memory slot 1,
and the fake value in memory slot 2, suppresses the corresponding database row

400 V. Iovino et al.

for the current session and reiterates the algorithm, now essentially acting as if
the fake credential was a real credential, but with the fake value in memory slot
2. The algorithm stops since the database is finite.

The coercer only has a negligible chance of guessing the real credential. Thus
with overwhelming probability, if the coercer asks for tracker retrieval, the algo-
rithm will after its first step simulate that the credential, handed to the coercer
by the voter, is the real one with a corresponding faked term. In this way the
retrieval mechanism will act as if the coercer has a real credential. Note that
timing might be a side channel attack here, so some default delay is required in
the response time.

The advantage of the system is that also coerced voters can safely do verifi-
cation of their votes, the disadvantage is a rather complicated system, and the
voter still needs to be active to fake their trackers.

Another advantage is that the mechanism can also be used to defend against
the attack mentioned in Subsect. 6.4. To do this, the retrieval mechanism also
performs PETs of the registered fake credential (which was given to the coercer)
and the credentials contained in the cast ballots. For a positive PET the cor-
responding vote can be disclosed to the voter, who can then calculate the fake
term. This would require another step to update the fake term. Alternatively,
the voter can even beforehand fake terms for all possible candidates and further
PET checks between the vote cast by the coercer and these faked terms can then
directly update the fake value.

A more careful description of this retrieval mechanism and corresponding
security proofs are postponed for future work.

8 Conclusions and Future Work

We have shown that it is possible to use the Selene mechanism in JCJ, providing
an e-voting protocol where voters can individually check that their vote was
counted as intended, while still preserving a good level of coercion-resistance.
Further, several alternatives were presented providing: better verifiability (while
only handling a single key), everlasting privacy, a more secure tracker retrieval
and better protection against malware on the voters’ computing devices. Also
improvements to Selene, in terms of efficiency, and JCJ, in terms of coercion-
resistance, were presented.

This paper did not provide formal proofs of the security guarantees. These
are currently under consideration for the classical Selene protocol in the UC
framework, and should later be extended to also include this work.

Two main problems of JCJ were not touched upon, namely, efficiency and
usability. Regarding usability, Selene, in some sense is a step backwards. The
users (in the first version of the protocol at least) needs to handle two keys post-
registration. And coerced voter have to careful when they retrieve the trackers.
Further investigations are necessary to determine to which extent this can be
handled by the voter assisting devices, and if the extra clarity and trust given by
the check of the final vote will outweigh this. We however, also plan to increase

Using Selene to Verify Your Vote in JCJ 401

the usability of JCJ in the future by allowing the voters to use short codes.
Finally regarding efficiency, the versions of JCJ presented here still suffer from
the tally time being quadratic in the number of voters, a problem we will also
try to solve in future a work.

Acknowledgements. Vincenzo Iovino is supported by the Luxembourg National
Research Fund (FNR grant no. 7884937). Further, this work is also supported by the
INTER-Sequoia project from the Luxembourg National Research Fund, which is joint
with the ANR project SEQUOIA ANR-14-CE28-0030-01.

References

[ACKR13] Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting
privacy. In: Basin, D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol.
7796, pp. 21–40. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36830-1 2

[Adi08] Adida, B.: Helios: web-based open-audit voting. In: Proceeding of 17th
USENIX Security Symposium, pp. 335–348 (2008)

[Ben06] Benaloh, J.: Simple verifiable elections. In: Wallach, D.S., Rivest, R.L.
(eds.) 2006 USENIX/ACCURATE Electronic Voting Technology Work-
shop, EVT 2006, Vancouver, BC, Canada, 1 August 2006. USENIX Asso-
ciation (2006)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th Annual ACM Symposium on
Theory of Computing, pp. 103–112. ACM Press, May 1988

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed) ACM CCS 1993: 1st Con-
ference on Computer and Communications Security, pp. 62–73. ACM
Press, November 1993

[CCM08] Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: a secure voting system.
In: IEEE Symposium on Security and Privacy (2008)

[Cha01] Chaum, D.: Surevote: technical overview. In: Proceeding of Workshop on
Trustworthy Elections (WOTE 2001) (2001)

[CMR+16] Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff,
K. (eds.): FC 2016. LNCS, vol. 9604. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4

[CP93] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 7

[CPP13] Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot pri-
vacy: do we need to choose? In: Crampton, J., Jajodia, S., Mayes, K.
(eds.) ESORICS 2013. LNCS, vol. 8134, pp. 481–498. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40203-6 27

[Fre00] Freedman, M.J.: Design and analysis of an anonymous communication
channel for the free haven project (2000). http://www.freehaven.net/doc/
comm.ps

[Gam85] El Gamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

https://doi.org/10.1007/978-3-642-36830-1_2
https://doi.org/10.1007/978-3-642-36830-1_2
https://doi.org/10.1007/978-3-662-53357-4
https://doi.org/10.1007/978-3-662-53357-4
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-642-40203-6_27
http://www.freehaven.net/doc/comm.ps
http://www.freehaven.net/doc/comm.ps

402 V. Iovino et al.

[GRCC15] Grewal, G.S., Ryan, M.D., Chen, L., Clarkson, M.R.: Du-vote: remote
electronic voting with untrusted computers. In: Fournet, C., Hicks, M.W.,
Viganò, L. (eds.) IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13–17 July 2015 (2015)

[HH07] Hans, D., Helmut, K.: Intorduction to cryptography-principles and appli-
cations (2007)

[HK14] Haenni, R., Koenig, R.: Voting over the Internet on an insecure platform.
In: Design, Development, and Use of Secure Electronic Voting Systems,
chapter IGI Global, March 2014

[HL09] Heather, J., Lundin, D.: The append-only web bulletin board. In:
Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol.
5491, pp. 242–256. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01465-9 16

[JCJ05] Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elec-
tions. In: Proceedings of the 2005 ACM Workshop on Privacy in the Elec-
tronic Society, WPES 2005, Alexandria, VA, USA, 7 November 2005, pp.
61–70 (2005)

[JJ00] Jakobsson, M., Juels, A.: Mix and match: secure function evaluation
via ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol.
1976, pp. 162–177. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44448-3 13

[KHF11] Koenig, R., Haenni, R., Fischli, S.: Preventing board flooding attacks in
coercion-resistant electronic voting schemes. In: Camenisch, J., Fischer-
Hübner, S., Murayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011.
IAICT, vol. 354, pp. 116–127. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21424-0 10

[KMST16] Küsters, R., Mueller, J., Scapin, E., Truderung, T.: Select: a lightweight
verifiable remote voting system. In: IEEE 29th Computer Security Foun-
dations Symposium, CSF 2016, Lisbon, Portugal, 27 June-1 July 2016,
pp. 341–354. IEEE Computer Society (2016)

[KOKV11] Karayumak, F., Olembo, M.M., Kauer, M., Volkamer, M.: Usability analy-
sis of helios - an open source verifiable remote electronic voting system.
In: Proceeding of Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE 2011) (2011)

[KR16] Kremer, S., Rønne, P.B.: To du or not to du: a security analysis of du-vote.
In: IEEE European Symposium on Security and Privacy, EuroS&P 2016,
Saarbrücken, Germany, 21–24 March 2016, pp. 473–486. IEEE (2016)

[LHK16] Locher, P., Haenni, R., Koenig, R.E.: Coercion-resistant internet vot-
ing with everlasting privacy. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A.,
Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 161–175. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53357-4 11

[MN06] Moran, T., Naor, M.: Receipt-free universally-verifiable voting with
everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol.
4117, pp. 373–392. Springer, Heidelberg (2006). https://doi.org/10.1007/
11818175 22

[NFVK13a] Neumann, S., Feier, C., Volkamer, M., Koenig, R.E.: Towards a practical
JCJ/civitas implementation. IACR Cryptology ePrint Archive 2013, 464
(2013)

https://doi.org/10.1007/978-3-642-01465-9_16
https://doi.org/10.1007/978-3-642-01465-9_16
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/978-3-642-21424-0_10
https://doi.org/10.1007/978-3-642-21424-0_10
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/11818175_22

Using Selene to Verify Your Vote in JCJ 403

[NFVK13b] Neumann, S., Feier, C., Volkamer, M., Koenig, R.E.: Towards A practi-
cal JCJ/civitas implementation. In: Horbach, M. (ed) Informatik 2013,
43. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Informatik
angepasst an Mensch, Organisation und Umwelt, 16–20 September 2013,
Koblenz, Deutschland, vol. 220 of LNI, pp. 804–818. GI (2013)

[NV12] Neumann, S., Volkamer, M.: Civitas and the real world: problems and
solutions from a practical point of view. In: Seventh International Confer-
ence on Availability, Reliability and Security, Prague, ARES 2012, Czech
Republic, 20–24 August 2012, pp. 180–185 (2012)

[Ped91] Pedersen, T.P.: Non-interactive and information-theoretic secure verifi-
able secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 9

[Roe16] Roenne, P.B.: JCJ with improved verifiability guarantees. In: The Inter-
national Conference on Electronic Voting E-Vote-ID 2016, 18–21 October
2016, Lochau/Bregenz, Austria (2016)

[RRI15] Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent
verifiability and coercion-mitigation. IACR Cryptology ePrint Archive,
2015:1105 (2015)

[RRI16] Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent
verifiability and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan,
P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 176–192. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53357-4 12

[RT09] Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B.,
Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS,
vol. 7028, pp. 111–130. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36213-2 15

[Sch94] Schneier, B.: Applied Cryptography (1994)
[SK95] Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guil-

lou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol.
921, pp. 393–403. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-49264-X 32

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/978-3-642-36213-2_15
https://doi.org/10.1007/978-3-642-36213-2_15
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32

A Roadmap to Fully Homomorphic Elections:
Stronger Security, Better Verifiability

Kristian Gjøsteen and Martin Strand(B)

Norwegian University of Science and Technology, Trondheim, Norway
{kristian.gjosteen,martin.strand}@ntnu.no

Abstract. After the trials of remote internet voting for local elections in
2011 and parliamentary elections in 2013, a number of local referendums
has renewed interest in internet voting in Norway.

The voting scheme used in Norway is not quantum-safe and it has
limited voter verifiability. In this case study, we consider how we can
use fully homomorphic encryption to construct a quantum-safe voting
scheme with better voter verifiability.

While fully homomorphic cryptosystems are not efficient enough for
the system we sketch to be implemented and run today, we expect future
improvements in fully homomorphic encryption which may eventually
make these techniques practical.

Keywords: Fully homomorphic encryption · Remote internet voting ·
Quantum-safe

1 Introduction

Norway conducted trials of remote internet voting for the 2011 local elections
and the 2013 parliamentary elections. The government discontinued the trials
in 2014, but a large number of local referendums in 2016 has caused renewed
interest in remote internet voting, especially for less important elections.

There are two issues with the scheme used in 2013 that should be improved.
The scheme is not quantum-safe, and voter verifiability is mostly lacking today,
due to an auditing protocol that can only be run by accredited organisations.
This is a study to see if we can improve on both of these shortcomings con-
currently. There are still some primitives lacking before this roadmap can be
implemented completely.

While it is unclear if a sufficiently large and reliable quantum computer will
ever be built to threaten the security of discrete logarithm-based systems, the
mere possibility that the encryption protecting ballot confidentiality may be
compromised in 10–30 years from now is a serious problem that needs to be
addressed.

Verifiability is difficult in Norway for two reasons. Revoting is used as an
anti-coercion tactic, and Norwegian ballots are sufficiently complicated to allow
Italian attacks, i.e., marking a ballot with a number of insignificant yet unique
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 404–418, 2017.
https://doi.org/10.1007/978-3-319-70278-0_25

A Roadmap to Fully Homomorphic Elections 405

changes. Also, the entire ballot is required for the count, so the election can
not be considered as a collection of independent races. Voter verifiability is in
general not considered to be important by the Norwegian electorate (polls and
other studies generally finds high levels of trust in Norwegian elections [20]), but
even if there is no public demand for voter verifiability, better voter verifiability
than in the 2013 scheme would still be an improvement.

There are many schemes in the literature that achieve better voter verifia-
bility than the 2013 scheme, but in general, these are not quantum-safe and do
not facilitate very complicated ballots. All of the mainstream fully homomorphic
schemes are believed to be quantum-safe.

While the 2013 protocol [14] exploited the multiplicative structure of the
ElGamal scheme, a fully homomorphic scheme can allow us to use both addition
and multiplication. This enables much more flexible computations, which means
that we can arrange the decryption and counting process such that it is more
voter verifiable.

Alternative Approaches. There have been earlier attempts at completing
election tallies while the ballots are still encrypted, but not at this level of com-
plexity. Salamonsen [23] tried to apply Pailler encryption to Norwegian county
elections, possibly the easiest variant, and timed the effort needed to compute
ciphertexts and the necessary zero knowledge proofs, clocking in at between 2
and 5 h of work for the voter. Peeking ahead to Sect. 6.4, we see that our solution
is far more efficient than this.

Benaloh et al. [4] have described how one can use single-operation homomor-
phic encryption to tally a single transferable vote election. However, we tackle a
more intricate problem in this work that cannot be solved with the same tech-
niques. Chilotti et al. [8] have constructed a LWE based voting system in detail,
but assume that their bulletin board is honest. We remove that restriction, and
also get a scheme that can handle more complex (yet compact) ballots.

Contributions. At a theoretical level, we are exploring a possible application of
fully homomorphic encryption. The idea of FHE was first proposed in 1978 [22],
but was first properly realised with Gentry’s breakthrough [12]. There have been
several proposed applications [1,19], but many of those are purely theoretical due
to the tremendous amount of redundant data that would be needed per user.

Next, this is a case study on how FHE could be used to make future Nor-
wegian elections both quantum-safe and more voter verifiable. Our proposed
protocol is borderline practical, at least taking into account the number of zero
knowledge proofs the existing protocol must check, and it can be further opti-
mised by implementation experts. We provide some experimental data to give
a rough estimate of the computation efforts needed. We expect further progress
in fully homomorphic encryption, which means that this protocol can eventually
become practical in the not-too-distant future.

406 K. Gjøsteen and M. Strand

Organisation. The next section provides an introduction to the technical
nature of Norwegian elections, followed by an introduction to lattice cryptogra-
phy and fully homomorphic encryption. In Sect. 4, we briefly recall the modelling
done in previous work. Section 5 partially paves the way for our instantiation of
local elections (Sect. 6) by discussing primitives we are going to need. Finally, we
argue for the security of the protocol in Sect. 7. The formal security modelling
and thus proofs have been omitted in this work due to space limitations.

2 Norwegian Elections

The main idea in this paper is to do most of the ballot processing as computations
on encrypted data. This means that we need to give an arithmetic circuit for
counting. In order for this circuit to make sense, we first need to explain the
mechanics of Norwegian elections in some detail.

In all Norwegian elections, each district elects multiple members roughly as
follows. Parties nominate lists of candidates for each district. The voter chooses
one of these party lists as their ballot. Here we only discuss the details of the
local elections. The full version of the paper will also contain a description of
parliamentary elections and how to handle these with FHE.

Municipal Elections. To vote in a municipal election, the voter must first pick
a party list. Choosing a given party list gives that party a certain number of list
votes. The total number of list votes in a district will determine the number of
members each party gets.

The voter can then give person votes to zero or more candidates on the list.
The number of person votes each candidate gets determines which candidates
are actually elected as members for that party.

The party may also prefer a subset of their candidates. These candidates will
then automatically get an additional number of person votes equal to 25% of
the number of ballots submitted for that party.

The voter can also optionally write in a certain number of candidates from
other party lists. These candidates will then receive person votes. However, writ-
ing in a candidate from a different party list will also transfer a list vote from
the voter’s party of choice to the party that the write-in candidate belongs to.

Consider the example ballot from Fig. 1. If the number of members to be
elected is 29, each submitted ballot will initially give 29 list votes to the indicated
party, in this case the Crypto Party. But on this ballot, the voter has listed four
candidates from other lists, which means that the Crypto Party only gets 25 list
votes, while the Hacker Party (HP) gets two list votes, and the Analyst Party
(AP) and the Eavesdropper Party (EP) gets one list vote each.

When tallying, one first counts the list votes each party gets, and decide how
many representatives each party gets using a modified Sainte-Laguë’s method.
The original Sainte-Laguë’s method is to create a table with one column for
each party, and with each party’s number of list votes written in the first row.
In the ith row, the number from the first row of the same column divided by

A Roadmap to Fully Homomorphic Elections 407

Fig. 1. An example ballot for a local election

2i − 1 is written. The k representatives to be elected are then distributed to the
parties with the k largest numbers. The modification used in Norway is that
the numbers in the first row are divided by 1.4 before distributing candidates, a
modification that slightly favours larger parties.

The next step when tallying is to decide which candidates are actually elected.
To do this, one counts all person votes given by voters (either to a candidate
on the party list, or by writing in a candidate from another party list) and the
person votes resulting from party preference. The candidates are then ranked
according to the number of person votes received. In the event of a tie, the order
of the candidates on the party list is used.

3 Lattices and Fully Homomorphic Encryption

Lattices have long been important in cryptography, both as a tool to attack
systems and as basis for new cryptographic systems. Two recent developments
have made such lattice-based cryptography even more important, namely the
development of fully homomorphic encryption (FHE) and the renewed interest
in quantum-safe cryptographic schemes.

Fully homomorphic encryption is a form of encryption that allows one to
do certain computations on encrypted data. While first defined [22], the first
plausible solution was Gentry’s breakthrough construction [12].

Fully homomorphic encryption allows us to evaluate a function described
by a circuit on a set of encrypted inputs, resulting in an encryption (of size
independent of the number of inputs and the circuit evaluated, called compact)
of the result we would have gotten if we instead just computed the circuit on
(unencrypted) inputs.

Lattice problems such as (ring) learning with errors ((R)LWE) are generally
considered to be hard to solve, even for a large quantum computer.

Lattice cryptography has seen a tremendous development since Regev [21]
found a quantum reduction from the natural lattice problems of finding the
shortest vector (SVP) or finding a short basis of independent vectors (SIVP), to
LWE.

408 K. Gjøsteen and M. Strand

Several authors have used LWE and RLWE to create fully homomorphic
encryption. The main ideas remain the same as in Gentry’s original construction.
The plaintext is masked with inner and outer randomness, where the innermost
one is denoted as noise. One can then typically perform additions and multi-
plications, though sometimes a NAND gate must be used. However, for each
operation, the noise level grows. When it reaches the same size as the outer
randomness, the ciphertext is no longer decryptable. Multiplications are usually
expensive in terms of noise, causing the noise to grow quickly, while additions
are cheap.

The noise problem can sometimes be solved using a technique called boot-
strapping, during which a ciphertext is encrypted again (though this encryption
could be done with no randomness), and the inner encryption is removed by
running the decryption circuit in an encrypted state. One can fine-tune the
parameters such that the resulting ciphertext has a lower noise level than the
original one. However, the bootstrapping process is computationally expensive,
so it is more common to select parameters based on the function one wants to
compute, so as to achieve a designated [multiplicative] depth (so-called levelled
fully homomorphic encryption). Many schemes have also provided solutions for
limiting the noise growth, so that one can avoid bootstrapping further.

FHE has reached a level of maturity where it is practical for some applications
and security levels [10]. We expect performance to increase still further. The BGV
[5] cryptosystem has been implemented by Halevi and Shoup [16], and among
others, Microsoft has also worked with implementations [18].

Formally, a FHE scheme consists of algorithms (Gen, Enc, Eval, Dec). The
unusual member of the set is Eval, which accepts a special evaluation key evk, a
circuit C and a number of ciphertexts c1, . . . cn such that

Dec(sk,Eval(evk, C, c1, . . . , cn)) = C(Dec(sk, c1), . . . ,Dec(sk, cn)).

We will simplify this notation whenever it is convenient, and often just express
the circuit (or function) directly on the ciphertexts, even when we really want
them to be applied to the encrypted data.

The presentation of the circuits in this paper is fairly general, but we have
made sure to only use features supported by the BGV scheme. We refer to the
original publication [5] for the technical details, but quickly introduce some of
the high-level features provided by the scheme.

Plaintext slots. Following an idea of Smart and Vercauteren [25], one can pack
several plaintexts into a single ciphertext and do SIMD operations (single-
instruction multiple-data) on the vector of plaintexts. The advantage is that
one saves space, and that one can perform operations on tuples of data in the
time it would to do it on a single value. All slots must have the same capacity.
The plaintext space of the BGV scheme can thus be set to any space F

n
q� for

some integers q, � and n, where n denotes the number of slots.
Noise management. The authors use a system of modulus reduction for each

multiplication, such that the noise increases slower than it would otherwise

A Roadmap to Fully Homomorphic Elections 409

do. Hence, one can have smaller ciphertexts. The number of times one can
do the modulus reduction decides the maximal multiplicative depth.

Key switching. In addition to reducing the modulus, one can also efficiently
transform ciphertexts from one key to another.

The term fully homomorphic encryption has two meanings, either that the
scheme in question can process any circuits of any depth (typically by using boot-
strapping) or that it can evaluate two operations, in contrast to group homomor-
phic schemes like ElGamal. In principle, we only need a levelled homomorphic
scheme, but will use the word fully to denote the concept.

4 Modelling and Security Requirements

We model our system with the same players that already existed in the Norwe-
gian e-voting project, namely the voter V with her computer and mobile phone,
a ballot box B, a receipt generator R, a decryption service D and an auditor A.
We quickly explain the existing motivation before proceeding. For more details,
see Gjøsteen [14].

Gjøsteen acknowledged that the user may not be in control of her own equip-
ment, for instance due to malware. One should therefore distinguish the voter’s
intention and what the computer actually does. When the ballot box receives an
encrypted ballot from the voter’s computer, it transforms and partially decrypts
the ballot, and forwards it to the receipt generator. Then the transformed bal-
lot is completely decrypted, and the correct receipt code is sent by SMS to the
voter’s mobile phone.

Both the ballot box and the receipt generator give the auditor information
about everything they have seen, so that he can compare and make sure no one of
them is ignoring information seen by the other. Any information dropped by the
ballot box should ideally be detected by the voter, because of a missing receipt.
(The soundness of this protocol is based on an assumption that the phone is
independent of the device used to vote. While this may have been an acceptable
assumption when the system was first introduced, it is less so today. Finding
another solution may be necessary, but is outside the scope of this paper.)

Next consider what happens when the election closes. Then the ballot box
should provide ciphertexts to the decryption service, which outputs the public
result of the election. The auditor verifies that the decryption service got the
right ciphertexts from the ballot box, and that the output was correct.

The security requirements can informally be summarised in the following list.

D-privacy. The decryption service should not be able to correlate its input to
voter identities

B-privacy. The ballot box should not learn anything from the ciphertexts
R-privacy. The receipt generator should not be able to correlate return codes

to what the voter chose
A-privacy. The auditor should not learn anything about how anyone voted

410 K. Gjøsteen and M. Strand

B-integrity. The ballot box must not be able to create a convincing encrypted
ballot such that its decryption is inconsistent with the related information
that is sent to the receipt generator

D-integrity. The decryption service must not be able to alter the election out-
come

We conclude this section with a brief overview of some limitations that any
Norwegian voting system must deal with.

Privacy is important in Norwegian elections. The ballot should obviously be
confidential, but even the list of who voted is considered confidential in Nor-
way. In particular, this means that any voter verifiable scheme that reveals the
identities of the voters is unacceptable in Norway.

A second constraint is coercion resistance. It seems like the main defence
against coercion must be revoting in Norway, and the revoting could possibly
be paper revoting. Paper voting cannot involve any secrets or other material
from previous electronic voting, and a paper ballot should also supercede any
subsequent electronic ballot submission.

Related to coercion resistance, Italian attacks are easy in Norway, since
adding a random set of marks to a ballot will most likely make it unique and
have negligible electoral effect. This means that any public verifiability must
avoid publishing complete ballots. Today, the election authorities publish lists
of vote sums per party and person.

Finally, it seems like electronic voting must coexist with paper voting for the
forseeable future. This means that the electronic count must somehow combine
with the paper count before the final result is declared.

5 Primitives

We assume the existence of several primitives in this work. Some of them have
not been described in the literature yet, and should be considered open, but
feasible problems.

The main primitive we need is an efficient zero knowledge proof or argu-
ment for correct decryption. These are well known for schemes such as ElGamal
[7], but for FHE, they only become efficient when applied to many ciphertexts
concurrently [2,3]. However, much of the work can be done ahead of time, and
the protocol also supports distributed decryption, which will essentially guar-
antee the security of the complete scheme. Note that one possible instantiation
of the following protocol would only require the verifiable decryption of a single
ciphertext. Providing an efficient zero knowledge proof for that case can still be
considered an open problem.

Next, we also need a number of subroutines. Equality checking will be used
throughout the whole routine, and has been provided by Kim et al. [17]. We will
denote it as a function

Eq(a, b) =

{
1 if a = b

0 otherwise.

A Roadmap to Fully Homomorphic Elections 411

The multiplicative depth for equality checking in the BGV scheme is given as
�log(p − 1)�+�log �� where p is the characteristic of the field and � is the order of
the extension. Although this will be a fairly high number, most equality checks
will run in parallell, which will help keep the noise under control.

If we want to implement the whole tallying as operations on encrypted data
(which we do not propose to do) we would also need sorting and division by
rational numbers. Both of these primitives exist. Emmadi et al. [11] analysed
a number of algorithms and concluded that Odd-Even Merge sort would work
best for the Smart-Vercauteren scheme [24]. It is reasonable that some of their
results will apply to the BGV scheme as well. Chung and Kim proposed that
one can use a continued fraction representation of rational numbers to reduce
the storage requirement for rational numbers with a given precision, and also
described how to perform divisions [9]. Cetin et al. [6] have demonstrated that
it is possible to compute fractions and even square roots by applying numerical
methods to the encrypted data.

6 Instantiation

Recall the BGV scheme introduced in Sect. 3. Let m be the number of parties
taking part in the election and n be the total number of candidates from all the
parties. We use the BGV cryptosystem with multiple plaintext slots, and the
goal is to get an encryption of the following tuple for each ballot posted by a
voter.

(p1, . . . , pm, p′
1, . . . , p

′
m, p′′

1 , . . . , p′′
m, c1, . . . , cn) (1)

The tuple requires 3m+n slots. Although they will hold data of different length,
the BGV system requires them to be the same size.

Let v be the maximal number of voters from the voting district, and let k
be the number of candidates. The voter may list up to k/4 candidates from
other lists, which also places an upper bound on how many list votes that may
be transferred from the chosen party to another. The first m slots will hold
the number of times a list is selected, the next section holds the number of
list votes given away, and the final section of m slots holds the number of list
votes received. Finally, the last n items will hold person votes. The upper bound
for the plaintext space is then the maximal number of list votes that can be
transferred, vk/4, and the characteristic of the slots should in principle not be
chosen smaller, although it is very unlikely that one will ever reach this bound.

Remark 1. One can possibly save some storage overhead by using several inde-
pendent ciphertexts instead of larger ciphertexts with slots, or some combina-
tion of slots and separate ciphertexts, so that no slots have higher capacity than
needed.

To vote, the voter must encrypt her ballot with a symmetric scheme, and
attach the key encrypted under the FHE scheme [13]. Assume that the voter
ciphertext encodes the vector

b = (p, s1, . . . , snp
, e1, . . . , en′), (2)

412 K. Gjøsteen and M. Strand

where p is the index of the chosen party list, si is a bit indicating whether
candidate i on the list receives a person vote and e1, . . . , en′ are the indices of
the representatives from different lists that have been written in on this ballot.

Remark 2. It is natural to ask why the voter simply cannot encrypt a vector
of the form (1). The reason is that we want to be able to validate the ballot
efficiently, something which would add considerable extra work if we had to check
ranges for vectors like the one above. Note that we need to check that s1, . . . , snp

are actual bits. One way to do this is to compute the product s(Enc(1) − s) for
each slot, and verify that it decrypts to 0. (There is an obvious weakness to this,
which is that if it does not decrypt to 0, then information will leak. We can
avoid this problem by normalising using the algorithm of Kim et al. [17], which
depends on the Frobenius automorphism x �→ xq. This particular exponentiation
can be done for free in the BGV system. Of course, we may not care about the
privacy of malformed ballots.)

The ballot box should perform a bootstrapping after transforming the cipher-
text to the FHE scheme. This guarantees that the voter cannot introduce too
much noise, which in turn can make the end result impossible to decrypt.

We now explain how to transform a ballot of the form in (2) to the form
of (1). Recall the function Eq that returns 1 whenever the two input values are
equal. Define In(a, S) =

∑
s∈S Eq(a, s), which will return 1 if and only if a is a

member of set the S.
Let {Pi} denote all parties taking part in the election, and let p′′

i be the
number of list votes transferred to party Pi. By abuse of notation, let Pi also
denote the set of indexes for the candidates on the party list of party i. The
number p′′

i of list votes transferred is then easily computed as

p′′
i ← In(e1, Pi) + In(e2, Pi) + · · · + In(en′ , Pi)

Note that each equality and membership check requires some multiplications,
but since they can all be done in parallell, the overall noise remains manageable.

To compute the number p′
i of list votes given away, we need to identify the

right party, and then add the sum of all p′′
i for that ballot,

p′
i ← Eq(i, p) ·

m∑
j=1

p′′
j .

The values pi are easily decided with Eq(i, p).
Finally, compute person votes to candidates from other lists. Let Pj be the

party that the candidate cj belongs to, and recall that p was the party selected
by the voter.

cj ← (1 − Eq(p, Pj)) (Eq(j, e1) + Eq(j, e2) + · · · + Eq(j, en′))

The first factor ensures that the candidates really are from a different list, in
order to avoid a situation where a candidate could get a person vote in two
different ways.

A Roadmap to Fully Homomorphic Elections 413

Remark 3. Note that we do not check for this when we are counting person votes
in and out. The reason is that it does not change the balance, and it should thus
not create any problems for the validity of the ballot or the count in general.
We aim at a forgiving system such that only destructive changes could cause a
ballot to be discarded.

Use a similar technique as above to add the person votes to the candidates
from the list chosen by the voter. One can also convert the whole vector into a
ciphertext, and use SIMD techniques [25] to add them as one. Note, however,
that one should still do basic range checking on the values as described in the
remark above.

Finally, we want to verify that a ballot is valid, by computing the polynomial∏
i≤j

(ei − ej),

which will be zero if and only if one candidate is listed more than once. This
polynomial requires many multiplications, so we propose that the end result is
decrypted publicly, so that the selection bit can be public. One can normalise
any non-zero value to 1.

6.1 Selecting Votes to Be Counted

Since we allow voters to vote multiple times and even override all electronic votes
by voting on paper, we need a way to identify the ballots that should be included
in the final tally, while providing both voter verifiability and coercion resistance.
While in theory it is possible to do everything with FHE, it would probably be
more expensive than anything else in this paper, so we have opted for a more
classical solution, where the ballot box selects the ballots to be counted and uses
a combination of auditing and FHE to prove that its selection is correct.

1. The ballot box stores a secret record (vi, ci, si) for each ballot, where vi is
the voter’s identity, ci is the encrypted vote and si is a sequence number, or
equivalently, a timestamp.

2. When voting closes, for each voter vi that also submitted a paper ballot, the
ballot box adds a triple (vi, ci, si) where ci encodes a blank vote and si is a
sequence number greater than the highest inserted in the ballot box.

3. The ballot box shuffles all identities and sends the list to the auditor.
4. The ballot box publishes a list {(ci, s̃i, ṽ′

i)}, where the tilde indicates that
the value has been encrypted using a FHE scheme and the identities {vi}
have been replaced with pseudonyms {v′

i}. The list is ordered by identity and
sequence number. The end points may still leak secret information, so the list
should be treated as something circular. Concretely, we select a random item
on the list, and move the records following that item to the front of the list
instead.

5. The ballot box sends the randomness used to generate the new ciphertexts
to the auditor for verification.

414 K. Gjøsteen and M. Strand

6. Define a function f by

f(vi, vj , si, sj) =

{
1 if vi �= vj or si < sj ; and
0 otherwise.

The ballot box computes ũi = Eval(evk, f, ṽi, ṽi+1, s̃i, s̃i+1) for all i, and
counting modulo the number of ballots, such that the last item on the list is
compared to the first. The function f can be implemented by combining the
equality checker described above with an inequality function [11].

7. The ballot box multiplies all ũi. This value should later be decrypted. Any
auditing parties should accept that the list is correctly ordered if the product
decrypts to 1.

8. Next define a function g such that g(vi, vj) is 1 if and only if vi �= vj and 0
otherwise. The ballot box computes selection values z̃i = Eval(evk, g, ṽi, ṽi+1),
cycling to the top of the list as above. The list of ciphertexts that should be
counted is {c′

i = z̃ici}.

6.2 Tally

The final tally now becomes trivial. The ballot box simply adds all the encrypted
vectors {c′

i}. We suggest to pass these sums on to the decryption service for
decryption and deciding which candidates are elected based on cleartext vote
counts (number of list votes and number of person votes).

Of course, it is possible to do Sainte-Laguë’s method with encrypted data.
While we do not recommend this, since the paper ballots must also be counted,
we note that it is possible, and simply an engineering problem to analyse the
complexity and then adjust the parameters to allow for the circuit depth. We
note, however, that it may result in even bigger ciphertexts. Possibly the most
interesting challenge would be to handle the precision of the rational numbers
that necessarily would occur, and then handling the sorting.

6.3 Receipts

Sending a receipt to the voter becomes easy when using an FHE scheme. The bal-
lot box homomorphically applies a voter-specific one-way transformation on the
ballot, followed by a key-switch, a feature offered by the BGV cryptosystem. We
do not propose such a function here, other than to state that a light-weight keyed
hash function would do the job nicely. While the main purpose is to facilitate a
greater multiplicative depth, the transformation key can only be built using both
of the secret keys, but it leaks neither. Hence, we can give the transformation
key exclusively to the ballot box (and the auditor), while the receipt generator
is the only party to know the decryption key for the transformed ciphertexts.

After the receipt generator decrypts, it sends an SMS with a value derived
from the transformed ballot, with which the voter can verify that the ballot has
been received correctly. The auditor should be sent a copy of all ciphertexts
received by the receipt code generator.

A Roadmap to Fully Homomorphic Elections 415

Due to the problem of phones being closely linked to the user’s other equip-
ment, the receipt system should as a whole be put under closer scrutiny.

6.4 Parameter Selection

Using the above algorithms, we can estimate the parameters needed for the
protocol. For a conservative estimate, we can look at the numbers for the largest
municipality, Oslo. There are about 500,000 eligible voters, and the last local
election saw 17 different party lists with a total of 659 candidates. The city
council consists of 59 members. This means that the voter can list at most
15 names from other parties on her ballot, so the greatest number we need to
handle is about 7,500,000 ≈ 223. Then equality checks will need a depth 23
circuit. We can now compute how much depth we will need after converting
from the symmetric ciphertext.

– p′′
i can be computed with many equality checks in parallell, but no other

multiplications, hence depth 23. The same holds for pi.
– p′

i is one equality check multiplied with a sum of p′′
i , so we need 24 multi-

plications. The candidate slots are also the result of a multiplication of two
equality checks.

– Computing the validity check requires
(
15
2

)
multiplications. However, they can

be arranged in a tree of depth 7.
– Each value ũi requires an equality check and an inequality check. After that,

all such ciphertexts must be multiplied, which can be done with depth of
approximately 20.

– The selection bit z̃i takes a single comparison, and is multiplied to the rest
of the ballot, adding one level to some of the previous results.

In addition comes the depth required to send the receipt, but that is depen-
dent of the function employed to generate the return codes. Note that those
computations will be in parallell to those above.

Finally, we can conclude that no part of the computation requires a depth
greater than 50.

The number of slots needed in the Oslo case is 3 · 17 + 659 = 710.
We ran the bundled general test program of HElib [15,16] with the above

parameters on a server running Ubuntu 14.04 on Intel Xeon 2.67 GHz proces-
sors with a total of 24 cores and 256 GB of memory. The program ran the key
generation on a single core, and used a maximum of 8 cores for some sample
ciphertext operations. The maximum memory usage was in the order of 20 GB.
The complete process took 4:52 min, with key generation taking about half of
that time. While this order of magnitude is unreasonable for a single voter, it
may be feasible for an election system, as long as the feedback to the voter
is sufficiently quick. Implementing the above algorithms efficiently is an open
problem.

416 K. Gjøsteen and M. Strand

7 Security

A formal security proof along the lines of Gjøsteen [14] is too long for this paper,
and we defer such a proof for a full version of this paper. However, we briefly
discuss the general security properties, and then discuss coercion resistance in
some detail.

The system is not designed to be secure if two or more of the ballot box,
receipt generator, decryptor or auditor are corrupt. However, when at most one
of them is corrupt, encryption and careful use of key-switching ensures that the
receipt generator and the decryptor cannot decrypt public ciphertexts containing
sensitive information (such as ballots and voter identities), ensuring that we have
both R-privacy and D-privacy. (For instance, the published ciphertexts only
contain ballots and pseudonyms, so while a corrupt decryption service could
decrypt them, it would learn nothing about which voters these ballots came
from.) The encryption itself and the general features of the protocol ensure
B-privacy and A-privacy.

Since the computation on encrypted data can be redone by any interested
party using published information, the scheme is trivially almost end-to-end
verifiable, and also has B-integrity. This follows from the correctness of the
selection and counting circuit we have designed, and the correctness of the FHE
scheme in use. An interested voter can verify that the ciphertext she submitted is
listed in the public record and then redo the computation of the counting circuit,
recreating the ciphertexts containing the results. The zero knowledge proofs will
then ensure that the published election results are consistent with the verified
encrypted results. This gives us D-integrity.

The gap in verifiability lies in the selection of votes to be counted, where a
corrupt ballot box may insert fake votes that a corrupt auditor may choose to
ignore. (An honest auditor should either notice that electronic votes lack a valid
digital signature, or that fake paper votes have been inserted.) Even with this
gap, however, our proposal is a significant improvement on previous schemes
used in Norway.

– If the ballot box alters a ballot before forwarding it to the receipt generator,
then the voter should get an incorrect receipt. If the ballot box alters a ballot
after the receipt generator has seen it, the auditor will notice.

– The receipt generator cannot alone compromise the integrity of the election.
Privacy follows from careful use of key-switching and using an appropriate
function to generate receipts with a per-voter key.

– The decryption service must prove correctness of decryption, and the integrity
of the result follows from this proof.

– The cryptosystem ensures that an auditor cannot read any individual votes.

We defend against coercion by letting a voter revote electronically any num-
ber of times, and decreeing that a paper ballot will override any earlier or later
electronic votes. This is within the requirement of the Norwegian Election Act,
which states that “[t]he purpose of this Act is to establish such conditions that

A Roadmap to Fully Homomorphic Elections 417

citizens shall be able to elect their representatives to the Storting, county councils
and municipal councils by means of a secret ballot in free and direct elections.”
[26] Let us now consider how a coercer could be able to succeed.

It is clear that any coercer cooperating with a corrupt ballot box or auditor
will be able to defeat revoting as an anti-coercion strategy. We therefore assume
a coercer that sits next to the voter as she casts her ballot, and assume that
the coercer is also able to record the precise ciphertext, and himself transform
it into the FHE ciphertext ci that will appear in the public records.

If the voter now revotes electronically, and the coercer afterwards returns and
forces her to vote under surveillance again, then the public list of ciphertexts will
reveal that the voter revoted. However, any paper vote will be sorted after the last
electronic vote, so it cannot be discovered by the adversary. Also note that since
the identities are permuted and encrypted, he cannot guarantee that a paper
vote will be sandwiched between an electronic vote and the first vote of someone
of whom he knows the identity, making the paper ballot truly anonymous.

Acknowledgements. The authors wish to thank the anonymous reviewers for con-
structive and useful suggestions.

References

1. Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C.A., Strand,
M.: A guide to fully homomorphic encryption. Cryptology ePrint Archive, Report
2015/1192 (2015). http://eprint.iacr.org/

2. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing for secure mul-
tiparty computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS
2016. LNCS, vol. 9696, pp. 327–345. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39555-5 18

3. Baum, C., Damg̊ard, I., Oechsner, S., Peikert, C.: Efficient commitments and zero-
knowledge protocols from ring-sis with applications to lattice-based threshold cryp-
tosystems. Cryptology ePrint Archive, Report 2016/997 (2016). http://eprint.iacr.
org/2016/997

4. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: coercion-
resistant verifiable tallying for STV voting. IEEE Trans. Inf. Forensics Secur. 4(4),
685–698 (2009)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 18, p. 111 (2011)

6. Cetin, G.S., Doroz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-wise homo-
morphic encryption. Cryptology ePrint Archive, Report 2015/1195 (2015). http://
eprint.iacr.org/2015/1195

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

http://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-39555-5_18
https://doi.org/10.1007/978-3-319-39555-5_18
http://eprint.iacr.org/2016/997
http://eprint.iacr.org/2016/997
http://eprint.iacr.org/2015/1195
http://eprint.iacr.org/2015/1195
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-319-29360-8_16

418 K. Gjøsteen and M. Strand

9. Chung, H.W., Kim, M.: Encoding rational numbers for FHE-based applications.
Cryptology ePrint Archive, Report 2016/344 (2016). http://eprint.iacr.org/

10. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. Technical report, Microsoft Research (2016)

11. Emmadi, N., Gauravaram, P., Narumanchi, H., Syed, H.: Updates on sorting of
fully homomorphic encrypted data. Cryptology ePrint Archive, Report 2015/995
(2015). http://eprint.iacr.org/

12. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

14. Gjøsteen, K.: The Norwegian internet voting protocol. Cryptology ePrint Archive,
Report 2013/473 (2013). http://eprint.iacr.org/

15. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

16. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

17. Kim, M., Lee, H.T., Ling, S., Wang, H.: On the efficiency of FHE-based private
queries. IEEE Trans. Dependable Secur. Comput. PP(99) (2016)

18. Lauter, K.: Practical applications of homomorphic encryption (2015)
19. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be

practical? In: Cachin, C., Ristenpart, T. (eds.) Proceedings of the 3rd ACM Cloud
Computing Security Workshop, CCSW, pp. 113–124. ACM (2011)

20. OSCE Office for Democratic Institutions and Human Rights. Norway, Parliamen-
tary Elections 9 September 2013, Final Report. Technical report, December 2013

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pp. 84–93. ACM (2005)

22. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–179. Academia Press,
Cambridge (1978)

23. Salamonsen, K.: A security analysis of the helios voting protocol and application
to the Norwegian county election (2014)

24. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 25

25. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptography 71(1), 57–81 (2014)

26. Lov om valg til stortinget, fylkesting og kommunestyrer (valgloven). http://
lovdata.no, sep 2002. Translation at https://www.regjeringen.no/globalassets/
upload/KRD/Kampanjer/valgportal/Regelverk/Representation of the People
Act170609.pdf

http://eprint.iacr.org/
http://eprint.iacr.org/
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-32009-5_49
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25
http://lovdata.no
http://lovdata.no
https://www.regjeringen.no/globalassets/upload/KRD/Kampanjer/valgportal/Regelverk/Representation_of_the_People_Act170609.pdf
https://www.regjeringen.no/globalassets/upload/KRD/Kampanjer/valgportal/Regelverk/Representation_of_the_People_Act170609.pdf
https://www.regjeringen.no/globalassets/upload/KRD/Kampanjer/valgportal/Regelverk/Representation_of_the_People_Act170609.pdf

Enabling Vote Delegation for Boardroom Voting

Oksana Kulyk1(B), Stephan Neumann1,
Karola Marky1, and Melanie Volkamer1,2

1 Technische Universität Darmstadt, Darmstadt, Germany
{oksana.kulyk,stephan.neumann,karola.marky,melanie.volkamer}@secuso.org

2 Karlstad University, Karlstad, Sweden

Abstract. A lot of decisions are made during boardroom meetings.
After a discussion, the head of the board often asks for a quick poll.
But what if you cannot join the meeting? So called boardroom voting
schemes have been proposed to conduct the poll over the Internet and
thereby enabling also those who are not present but available online to
participant in the poll. But what if you are not available at this point in
time? For important decisions you may want to delegate your vote to a
present and trusted board member. In this paper, we show how to extend
an existing boardroom voting scheme towards delegation functionality.
The new scheme is evaluated against security requirements determined
for boardroom voting and security requirements tailored to the delega-
tion process.

1 Introduction

Boardroom voting schemes are one of the new research directions in electronic
voting and a number of approaches have been proposed [2,12–14,16,20,27]. Some
of these approaches provide the possibility to participate in the polls remotely.
However, time and geographical restrictions often prevent absent board members
from participating in the poll. Consequently, decisions are often not supported
by a required quorum. For such situation, it is worth considering the possibility
to delegate ones’ vote to a trusted board member that is present, the so-called
proxy.

We extend the boardroom voting approach described in [20] to enable dele-
gation. To do so we introduce so so-called delegation token, that is sent by the
voter who wants to delegate. The rest of the board members get a random value
that is indistinguishable from the authorised delegation token. The authorised
delegation token is also distributed via secret sharing among all the of board
members. In this way, during the voting the board members can validate the
votes cast with an authorised delegation token, without revealing the identity of
the board member who received the authorised delegation token, and thus was
trusted by the voter to cast a delegated ballot on her behalf.

Note that an alternative solution would be to let the voters jointly establish
a a public-key encryption system used in the election before the election, so that
the delegating voters could use it to encrypt their delegation tokens, and the
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 419–433, 2017.
https://doi.org/10.1007/978-3-319-70278-0_26

420 O. Kulyk et al.

majority of present voters could use the corresponding private key in order to
decrypt the data sent within an election. However, our delegated voting scenario
assumes, that all the setup that is required for a specific election occurs within
the meeting, since it is not always practical to demand that the present board
members gather together in advance to conduct election setup before each elec-
tion. Hence, the way for the absent voters to delegate to a trusted board member
of her choice prior to the election is needed, which is achieved by our proposal.
Therefore,

The paper is structured as follows. We describe the requirements on delegated
voting found in the literature in Sect. 2 and the background for our scheme in
Sect. 3. We describe our solution for delegating in boardroom voting setting in
Sect. 4, followed by the security evaluation in Sect. 5. We describe the related
work in Sect. 6 and conclude in Sect. 7.

2 Security Requirements

For the security requirements that are related to direct voting as opposed to
delegating, we rely on the list of security requirements for boardroom voting
given in [20]1.

Voter eligibility. Only the votes from eligible voters, and only one vote from
each voter, should be included in the result.

Vote integrity. Each cast vote (direct or delegated) of an eligible voter should
be correctly included in the tally.

Robustness. After the vote casting has finished, the election result can be com-
puted even in case where some of the scheme components are faulty.

Vote privacy. The voting scheme should not provide any more information that
enables establishing a link between the honest voter2 and her vote (delegated
or direct) aside from the information that would be output by the ideal proxy
boardroom voting scheme.

Fairness. The voting scheme should not reveal partial election results before all
the votes have been cast.

The security requirements on the delegation process are based on the avail-
able literature concerning delegated voting [18,19,30]. Note we provide informal
definitions for these requirements, since no formalization of the requirements on
delegation process either in form of legal or technical definitions exist.

1 As opposed to [20], similar to the proposal in [5] we consider verifiability to be a part
of integrity, and not a separate requirement. We furthermore consider uniqueness a
part of eligibility.

2 We refer to a voter or a proxy as honest if she behaves according to the scheme
specification.

Enabling Vote Delegation for Boardroom Voting 421

Delegation eligibility. Only the delegated ballots on behalf of eligible voters, and
only one delegated ballot per voter, should be included in the tally.

Delegation integrity. No proxy can vote on the voter’s behalf unless authorised
by the voter.

Delegation privacy. The voting scheme should not provide any information to
the public or to the proxies themselves, that identifies whether a particular voter
has delegated to a particular proxy.3. We further require that the voter should
not be able to use her private data from the election to construct the proof for
delegating to a specific proxy herself by divulging this data to an adversary.

Delegation power privacy. The voting scheme should not reveal, how many voters
have delegated to a specific proxy.

3 Background

In this section we describe the background required for our scheme.

3.1 Cryptographic Primitives

The public-key ElGamal cryptosystem [11] is used in our scheme for encrypting
the cast votes and other data that is exchanged during the election.

In order to prove the validity of statements in our scheme without revealing
any information beyond that, zero-knowledge proofs are used. Namely, we will use
the methods described in [6] in order to construct the zero-knowledge proofs of
statements about discrete logarithms. In this, we use the following notation in our
paper: for example, given the public values g, h, y1, y2, the notation PoK{x1, x2 :
y1 = gx1 ∧ y2 = gx2hx1} denotes the proof of knowledge of secret values x1, x2

so that y1 = gx1 and y2 = gx2hx1 holds.
The non-interactive version for zero-knowledge proofs is computed using the

strong Fiat-Shamir heuristic as described in [4] with H as a cryptographic hash
function.

For the delegation process, our scheme relies on distribution of secret delega-
tion tokens among multiple voters, which is done using threshold secret sharing.
This secret can then be reconstructed only if at least the threshold of all the
voters collaborates. A number of proposals have been made for this purpose,
with our scheme relying on a proposal in [26]4.
3 Note, that the relevancy of this requirement might be debated, since in some cases it

is reasonable to assume, that other boardroom members know whom the delegating
voter trusts anyway. Still, we choose to include this requirement for the case, when
the voter does not wish to publicly disclose his support for a particular proxy to
others, or even to the proxy herself.

4 While there are extensions of [26] that ensure verifiability to protect against dishonest
dealers (e.g. [24]), this protection is not required in our scheme, since the dealer has
no incentive to cheat during secret sharing. Hence, for the sake of simplicity we chose
to use a less complex variant.

422 O. Kulyk et al.

Another application of threshold secret sharing techniques in our scheme is
the distributed generation of a public ElGamal key used for encryption within
the election, and a set of private key shares distributed among the voters. The
distributed key generation occurs as described in [23]. The threshold t is being
chosen so that the collaboration of at least t voters is required to reconstruct
the secret key or decrypt a ciphertext. The secret key shares are then used to
distributively decrypt the encrypted data by applying the scheme as described
in [23]. A zero-knowledge proof is used to prove the decryption validity.

In order to commit to a value without revealing it, in our scheme we use
Pedersen commitments [24], that are unconditionally hiding and computation-
ally binding under the assumption that the discrete logarithm is hard in the
chosen group.

In order to anonymize a list of ElGamal ciphertexts by removing the link
between each ciphertext and its sender, a re-encryption mix net scheme is being
applied. The mix net consists of several mix nodes, in which each mix node
shuffles the ciphertexts in turn, and provides the output as an input to the
next mix node. It holds that the ciphertexts are anonymized, as long as at least
one mix node does not reveal its secret values used for shuffling. For the sake
of preventing manipulation (i.e. that no ciphertexts have been replaced during
the shuffling), various methods for proving the validity of the shuffle have been
proposed, such as [3,29].

In order to check, whether two ElGamal ciphertexts e1, e2 encrypt the same
value, without revealing any other information about corresponding plaintexts,
we use the technique described in [15], the plaintext equivalence test (PET),
denoted as PET(e1, e2). This test is distributively performed by the participants
who hold the shares of a secret decryption key and outputs 1 in case e1 and e2
encrypt the same plaintext, or a random value otherwise.

3.2 Boardroom Voting Scheme from [20]

We briefly describe the boardroom voting scheme proposed in [20] and used as
a basis for our proxy boardroom voting extension. The scheme in [20] is based
upon the proposal in [8] and adjusted towards decentralized setting, where the
voters take over the role of the trustees. The election runs as follows.

Setup. Prior to the election, the voters exchange their public signing keys in
order to enable authenticated message exchange. For this purpose they conduct
the decentralized key exchange as described in [22], so that the correctness of
the exchanged keys is established by manual verification of the so-called short
authentication strings via an out-of-band channel (e.g. phone conference or phys-
ical proximity). After exchanging the signing keys, each pair of voters runs the
Diffie-Hellman key [10] exchange in order to establish the symmetric secret keys
for private communication. After the public signing keys and the symmetric
secret keys have been established, the voters run the distributed threshold secret
sharing as described in [23] in order to generate a public election key pk and share
the corresponding private election key sk.

Enabling Vote Delegation for Boardroom Voting 423

Voting. Once the election key has been generated, one voter takes over the role
of the election organizer and initializes the voting. In order to vote, each voter
encrypts her chosen voting option with the public election key pk and broadcasts
it as her ballot to other voters.

Tallying. Once all the ballots have been cast, the voter jointly perform the
tallying. For this, they shuffle the ballots with a verifiable re-encryption mix net
[29], where each voter acts as a mix node. After the shuffling, the voters jointly
run the distributed threshold decryption as described in [23] in order to reveal
the election result.

4 Our Scheme

We are now ready to provide a description of our scheme for proxy voting in
boardroom voting setting. We assume the existence of a trustworthy public-key
infrastructure among all eligible voters, established either via decentralized key
exchange as in [20] or in any other appropriate way5. Furthermore, the PKI
is used to establish private communication channels between the voters, and a
reliable broadcast channel for present voters is established (e.g. via Byzantine
agreement [21]). For the sake of simplicity, we describe the tallying with the
anonymization performed via mix net shuffle. However, the scheme can be easily
modified for supporting homomorphic tallying.

In further descriptions we imply that every message is signed by its sender idi

with a private signing key skidi
. In order to prevent the reuse of old signatures,

the signature should furthermore incorporate timestamps and/or other specific
information about the election.

4.1 Pre-election

A list of all the eligible voters id1, ..., idN is made available 6, with a list of
their public signing keys pkidi

(the corresponding private signing keys skidi
are

possessed only by the voters). Furthermore, each voter broadcasts a pair of keys
(gi, hi) with xi = loggi

hi known only to the voter idi. The list of voters that are
about to be present at the meeting is known in advance, so that the majority of
them are actually present.

4.2 Delegation

The delegation can occur before as well as during the election, prior to the
voting. We define Vd ⊂ {id1, ..., idN} as a set of voters who delegate, and

5 Note that as this PKI can used independently of any specific election, it can be
prepared well in advance and reused subsequently.

6 This list, for example, could be a list of board members who have a right to partic-
ipate in the meeting.

424 O. Kulyk et al.

Vp = {id1, ..., idN} \ Vd as the voters who decide to vote directly (referred to
as present voters, or as proxies).

The threshold t is defined as �Np/2� + 1, with Np = |Vp| as the number
of present voters. If a voter idi ∈ Vd decides to delegate, following steps are
required:

The voter idi selects a random value mi ∈ Zq, which serves as her delegation
token. She then shares gmi

i among present voters as follows:

– Compute the shares of m using Shamirs secret share scheme: select a random
polynomial fi(x) ∈ Zq[x] with degree t − 1 and fi(0) = mi. For each voter
idj ∈ Vp, compute secret share mi,j = fi(j).

– For each voter idj ∈ Vp, furthermore compute commitments ci,j = (c(1)i,j , c
(2)
i,j)

with c
(1)
i,j = g

ri,j

i h
ui,j

i , c
(2)
i,j = g

mi,j

i h
ri,j

i for random ri,j , ui,j ∈ Zq, and a digital
signature on ci,j , si,j = Sign(skidi

, ci,j).
– For each voter idj ∈ Vp, set m′

i,j to mi if the voter idj is chosen as a proxy,
and a random value in Zq otherwise. If the voter does not want to choose a
proxy and wants to abstain instead, she sets m′

i,j to a random value in Zq for
each voter.

The tuple (gmi,j

i ,m′
i,j , si,j , ri,j , ui,j) is being sent to each voter idj ∈ Vp over

a private channel. Note that idj can compute c
(1)
i,j , c

(2)
i,j herself.

4.3 Setup

At this point, any voter idi who delegated her voting right can change her mind
and attend the meeting; in that case, idi is excluded from Vd and added to Vp

prior to voting.
During the election, the distributed threshold secret sharing is being executed

by the present voters idj ∈ Vp to establish the public election key pkv = (gv, hv)
and the corresponding private election key skv with hv = gskvv . At this point the
list of valid voting options is being made available, as V = {v1, ..., vL} ⊂ Z

L
q .

Furthermore, for all the delegating voters idi ∈ Vd an encryption of the
delegation token mi with pkv is jointly calculated, whereby each voter idj ∈ Vp

performs the following steps, given the tuple (gmi,j

i ,m′
i,j , ci,j , ri,j , ui,j) as received

during the delegation:

– Encrypt her share of gmi
i resulting in e

(d)
i,j = Enc(pkv, g

mi,j

i),
– Compute the proof of knowledge χi,j , which is constructed using the technique

in [7] and proves that e
(d)
i,j encrypts the same value that is committed in

ci,j = (c(1)i,j , c
(2)
i,j) (i.e. χi,j = PoK{ri,j , ui,j , r

′
i,j : ai,j = g

r′
i,j

v ∧ bi,j/c
(2)
i,j =

h
r′
i,j

v h
−ri,j

i ∧ c
(1)
i,j = g

ri,j

i h
ui,j

i } for e
(d)
i,j = (ai,j , bi,j)).

– Broadcast the tuple (idi, e
(d)
i,j , ci,j , χi,j).

Enabling Vote Delegation for Boardroom Voting 425

Given that for each i, at least t of the values of e
(d)
i,j with valid proofs, j ∈

Qi ⊂ {1, ..., N}, |Qi| ≥ t are broadcast, these values are combined as

e
(d)
i =

∏

j∈Qi

(e(d)i,j)λi,j

with λi,j :=
∑

k∈Qi,k �=j
j

j−k . The resulting value of e
(d)
i thus corresponds to the

encryption of gmi
i = g

∑
j∈Qi

mi,jλi,j

i with the public signing key pkv.

4.4 Voting

The voters who are present in the meeting (i.e. idj ∈ Vp) cast their ballots
directly by submitting E

(p)
j = Enc(pkv, vj) with vj signifying their choice, and

the accompanying well-formedness proof σj that proves the knowledge of vj and,
in case of anonymization via homomorphic tallying, that vj ∈ V. Furthermore,
for each delegating voter idi ∈ Vd, each present voter idj ∈ Vp calculates a value

ê
(d)
i,j = Enc(pkv, g

m′
i,j

i). Note that ê
(d)
i,j encrypts mi only in case that the voter

idj is in possession of a token mi (i.e. m′
i,j = mi). For the sake of ensuring

soundness, the voter further calculates πi,j as a proof of knowledge of plaintext
discrete logarithm for m′

i,j constructed using the technique described in [7] (i.e.

πi,j = PoK{wi,j ,mi,j : a
(d)
i,j = g

wi,j
v , b

(d)
i,j = g

mi,j

i h
wi,j
v } with ê

(d)
i,j = (a(d)

i,j , b
(d)
i,j)),

calculates E
(d)
i,j as Enc(pkv, v

(d)
i,j) with v

(d)
i,j as her chosen option to cast on behalf

of the delegating voter idi, σi,j as the proof of plaintext knowledge for E
(d)
i,j , and

broadcasts the tuple (ê(d)i,j , E
(d)
i,j , πi,j , σi,j).

4.5 Tallying - Weeding Duplicates and Invalid Delegations

In the next stage, the delegated ballots are jointly processed by the present
voters. First, the delegated ballots with invalid proofs of knowledge πi,j , σi,j

are removed. Then, the vote updating policy is applied. Namely, the given two
ballots cast as direct ballots by the same voter, or two delegated ballots cast
on behalf of the same voter by the same proxy, either all but the last (if vote
updating is allowed) or all by the first (if vote updating is not allowed) cast
ballot are excluded from further processing.

The next step removes the delegated ballots if they have canceled by the
voter, i.e. if the voter cast a direct ballot instead. Namely, out of all the delegated
ballots tuples (ê(d)i,j , E

(d)
i,j , πi,j), the ballots with idi ∈ Vp are removed.

The remaining delegated ballots are being anonymized via verifiable re-
encryption mix net with each present voter acting as a mix node, resulting in
an anonymized list V = {(ê′(d)

i,j , E′(d)
i,j)}idi∈Vd,idj∈Vp

. The values e
(d)
i that encrypt

the voters delegation tokens mi are also processed through the mix net resulting
in an anonymized list V ′ = {e′(d)

i }idi∈Vd
. The next step removes the delegated

ballots cast with an invalid delegation token. For this, the following procedure
is performed for each anonymized tuple (ê′(d)

i,j , E′(d)
i,j) ∈ V :

426 O. Kulyk et al.

– Calculate PET(ê′(d)
i,j , e′(d)

i) for each e′(d)
i ∈ V ′.

– If the PET is positive for some e′(d)
i , add E′(d)

i,j to the list V ′′ for further

tallying and remove e′(d)
i from V ′.

4.6 Tallying - Mixing and Decrypting

After that, the list of ciphertexts {E
(p)
j }idj∈Vp

∪ {E′(d)
i } ∈ V ′′ is being

anonymized with another mix net shuffle. The anonymized result is being
decrypted via distributed decryption.

5 Security

We now conduct an informal security evaluation of the proposed scheme. Namely,
we argue that the security requirements outlined in Sect. 2 are fulfilled under the
following assumptions7:

(A1) Out of Np present voters, at least Np − t+1 are honest and do not divulge
their private information to the adversary.

(A2) The devices of honest voters are trustworthy.
(A3) At least t of present voters are available, capable to communicate with

each other, and produce valid output during the election.
(A4) The PKI is trustworthy.
(A5) The adversary is computationally restricted, the decisional Diffie-Hellman

problem is hard in the selected group, and the signature scheme used in the
PKI is reliable. The random oracle is instantiated by the hash function H.

(A6) No coercion takes place.

We start off with evaluating the security requirement related to direct voting.

Voter eligibility. This requirement is ensured as long as the PKI used to authen-
ticate the voters is trustworthy (A4). Furthermore, the duplicate votes submitted
by voters are removed throughout the tallying phase. Unless the PKI is not trust-
worthy (A4), dishonest voters cannot cast multiple votes. If a voter delegates her
right to vote and additionally casts a vote personally, then the voter’s delegation
is invalidated throughout the tallying phase if the PKI is trustworthy (A4).

Vote integrity. For direct votes, this requirement can be violated by replacing a
cast vote with another ciphertext at the time of vote casting. Alternatively, the
adversary could drop the messages with cast votes from particular voters at vote
casting, thus excluding these votes from the tally. However, given a trustworthy
voting device, such a manipulation will be detected by the voter, since her result
would not fit with the result of other voters (A2). Another way to manipulate
the tally would be to replace the ballots during the shuffling or to produce an

7 Note, that these assumptions are common within e-voting systems, e.g. Helios [1].

Enabling Vote Delegation for Boardroom Voting 427

incorrect decryption result. Both possibilities are prevented by the soundness of
the zero knowledge proofs of shuffle validity and decryption validity (A5).

We now consider the integrity of delegated votes. Note, in case the voter has
delegated her vote to multiple proxies, only a vote from one of them is included
into the tallying. Hence, in this way excluding the votes of other proxies from
being included in the tallying is not considered a violation of delegation integrity
for proxies. Similarly, excluding the votes cast on behalf of dishonest voters does
not violate the requirement.

A dishonest majority of present voters might prevent the delegated ballot
on behalf of the particular voter from being included in the tally by refusing to
publish their values e

(d)
i,j and preventing the reconstruction of e

(d)
i . While this is

prevented by the assumption that more than half of all the present voters are
honest (A5), we still do not consider it to be a violation of vote integrity, since
the misbehaviour of dishonest voters would be detected.

On the other hand, publishing the invalid values e
(d)
i,j , so that the recon-

structed e
(d)
i does not encrypt the value of gmi

i for a valid delegation token mi,
would indeed be a violation of vote integrity, if undetected. However, the sound-
ness of zero-knowledge proof χi,j that accompanies ê

(d)
i,j and the computational

binding property of the commitment ci,j (A5) that holds unless the secret xi

is leaked (A2) ensure, that each e
(d)
i,j encrypts the value g

mi,j

i contained in ci,j .
Since ci,j is signed by the voter (and a lack of a valid signature would be notice-
able to the honest present voters, as well as to the delegating voters who verify
the election data), the unforgeability of the signature (A5) ensures that ci,j was
sent by the voter herself, hence, it contains the valid value of g

mi,j

i . Hence, the
reconstructed value e

(d)
i encrypts the same gmi

i that is shared by the voter idi.
Another way to prevent the delegated votes from an honest proxy to be

included in the tally is to ensure that the result of PET(ê′(d)
i,j , e′(d)

i) outputs some
value other than 1. This is prevented due to the soundness of the zero-knowledge
proofs accompanying the PETs. Furthermore, analogously to the case of direct
ballots, the soundness of zero knowledge proofs regarding shuffle validity and
decryption validity prevent the manipulation of cast ballots (A5).

Robustness. Violating robustness would mean, that either the mixing, the weed-
ing of invalid delegations or the decryption has failed to output a valid output.
This is prevented if at least t present voters are available and provide the required
output during the tallying (A3).

Vote privacy. This requirement is violated if the adversary corrupts voting
devices, which then leak the choices made by the voters. This is prevented as
long as the honest voters’ devices are not compromised (A2). Furthermore, the
voters themselves do not leak the randomness used by encrypting the vote (A2).

Another way to violate vote privacy of honest voters is to decrypt the
encrypted votes prior to their anonymization (i.e. before mixing). This, how-
ever, requires breaking the encryption of the votes (A5), or obtaining at least t
shares of a private election key from the present voters (A1,A2).

428 O. Kulyk et al.

Furthermore, vote privacy can be violated by revealing the secret permutation
used by each voter during the mixing. However, as long as at least one voter keeps
this permutation secret (A1), the permutation between the resulting output and
the input ciphertexts remains secret as well.

Fairness. As the cast ballots are attached to the voter’s identities until the tal-
lying, violating fairness would also imply violating vote privacy. Hence, fairness
is ensured under the same assumptions as vote privacy: namely, that the voting
devices of honest voters are trustworthy (A2), at least Np − t + 1 of Np present
voters are honest (A1), and the underlying encryption cannot be broken (A5).

We further evaluate the security requirements related to delegated voting.

Delegation eligibility. Casting a delegated ballot on behalf of a non-eligible voter
would require forging the signatures on the commitments ci,j sent to the present
voters (prevented by the assumptions (A4) and (A5)). Furthermore, multiple
delegated ballots on behalf of the same voter are dismissed during tallying.

Delegation integrity. One way to violate this requirement would be to cast dele-
gated votes on behalf of non-eligible voters. Given the fact that delegations are
accompanied by signed values ci,j , this attack strategy is prevented unless the
underlying PKI is not trustworthy (A4). Furthermore, reusing old signatures on
ci,j would be prevented, since the election information and the timestamp are
incorporated in the signature.

Another way to violate this requirement for a proxy idj who wants to vote
on behalf of the voter idi without being authorised, is to find out the value
of mi, shared by idi to the present voters during the delegation. This would
require either corrupting the voting device of idi (A2) or eavesdropping on the
communication between idi and a proxy chosen by her (prevented due to private
communication channels, i.e. the trustworthiness of the PKI (A4)). Note that
even if the adversary succeeds in obtaining at least t shares of g

mi,j

i from the
present voters, she would still require to compute the discrete logarithm mi,j

(A5).
Alternatively, an adversary can attempt manipulating the computation of

e
(d)
i , so that it encrypts a plaintext gm′

i chosen by her. As shown in the evaluation
of vote integrity, however, the assumptions (A4, A5) ensure than e

(d)
i encrypts

the same value g
mi,j

i sent by the voter.
Finally, delegation integrity can be violated, if the proxy idj submits a value

ê
(d)
i,j which is accepted during the weeding of invalid delegations. The soundness

of the proof of knowledge of plaintext discrete logarithm πi,j ensures (A5), that
the proxy knows the discrete log mi of the plaintext gmi

i encrypted in ê
(d)
i,j .

As shown above, the assumptions (A4) and (A5) ensure that the reconstructed
values e

(d)
i encrypt the delegation tokens submitted by the voters to their chosen

proxies. The soundness of the proof of shuffle ensures (A5), that the anonymized
encrypted delegation tokens e′(d)

i encrypt the same values as e
(d)
i .

Enabling Vote Delegation for Boardroom Voting 429

Delegation privacy. The delegation privacy requirement would be violated if it
is revealed which proxy possesses the value mi that was shared by the voter idi

among other present voters. This can be achieved either by corrupting the voting
device of idi that stores mi (A2), coercing the present voters into disclosing all
the shares mi,j with the adversary (A6), getting access to at least t shares of gmi

i

(i.e. corrupting at least t present voters (A1), their voting devices (A2) or the
communication channels between the present and the delegated voters (A4)), or
decrypting e

(d)
i and the values of ê

(d)
i,j (i.e. either breaking encryption (A5) or

obtaining at least t shares of a secret key skv by corrupting at least t present
voters (A1) or their voting devices (A2)).

Furthermore, the delegating voter herself cannot construct a proof that she
delegated to a specific proxy, even if she provides all the shares g

mi,j

i and the value
of mi to the adversary. Namely, given that the voter knows the discrete logarithm
xi = loggi

hi, she can provide fake values of g
mi,j

i , mi instead. As such, for every

values mi,j , ri,j and ui,j (thus, for every pair of commitments c
(1)
i,j , c

(2)
i,j) and every

value m′
i,j 	= mi,j the voter can find r′

i,j , u′
i,j so that xiri,j +mi,j = xir

′
i,j +m′

i,j

and xiui,j + ri,j = xiu
′
i,j + r′

i,j (thus, c
(1)
i,j = g

r′
i,j

i h
u′
i,j

i and c
(2)
i,j = g

m′
i,j

i h
r′
i,j

i). She
can then fake the receipt by sending a random value m′

i and a set of shares m′
i,j

that reconstruct to m′
i together with the corresponding values of r′

i,j , u
′
i,j to the

present voter who requests such a receipt. Given t as threshold and Np as the
total amount of present voters among which gmi is shared, the voter would have
to fake at least Np − t + 1 shares mi,j . Hence, as long as at least Np − t + 1
present voters are honest, and that the delegating voter knows the identities of
the honest present voters, the adversary would not be able to distinguish between
the fake values g

mi,j

i , mi that from the real ones.
Note, however, that in case one of the voters idj ∈ Vp (i.e. who received

delegations) is not available in the meeting, our scheme reveals the number of
delegating voters who either abstained (but still participated in the delegation by
issuing invalid delegation tokens m′

i,j 	= mi to all the voters in Vp) or delegated
to idj . We do not consider such a case to be a violation of delegation privacy,
since, as shown above, the scheme does not reveals the identities of the voters
who either issued invalid delegation tokens or delegated to idj and does not
make it possible to tell whether a given voter issued a valid token to idj or not
(under the assumptions (A1, (A2), (A4), (A5), and (A6)). At the same time, in
order to reduce the information leakage in our scheme, we would suggest actively
encouraging that the voters in Vd who decide to abstain still participate in the
delegation phase of the election by issuing invalid delegation tokens m′

i,j 	= mi

to all the voters in Vp. Furthermore, the voters in Vp can be encouraged to re-
delegate by forwarding their delegation token to another trusted present voter,
if they think they would not be able to participate in the meeting.

Delegation power privacy. Given Nd = N − Np delegating voters, each present
voter should posses Nd delegation tokens. Violating delegation power privacy
would mean estimating, possibly with the help of the proxy herself who tries
to prove her delegation power, how many of those tokens are valid. However,

430 O. Kulyk et al.

given that the delegation privacy requirement is fulfilled, a proxy herself does
not know which ones of the delegation tokens she received are valid. Hence, under
the assumptions that at least Np−t+1 of the present voters are honest (A1), the
PKI is trustworthy (A4), the voting devices of the delegating voters and honest
proxies are trustworthy (A2), the voters do not collaborate with the proxy to
prove that they delegated their voting right to her (A6) and the encryption is
not broken (A5), delegation power privacy is ensured.

Note that as already mentioned in the evaluation of delegation privacy, if
a proxy idj ∈ Vp does not participate in the election, our scheme could reveal
the number of voters Nj who either delegated to idj or issued invalid delegation
tokens mi,j to all the proxies. However, since the scheme does not reveal, how
many voters out of Nj abstained, delegation power privacy is not violated, espe-
cially if the voters who want to abstain are encouraged to issue invalid delegation
tokens instead of not participating at all.

6 Related Work

A number of proposals considered decentralised elections, i.e. the boardroom vot-
ing setting. The first proposal was made in [9] using decryption mix net. Several
proposals focused on self-tallying approach, based upon self-dissolving commit-
ments [12–14,16,17,27]. Other approaches to boardroom voting have extended
the decentralised tallying scheme proposed in [8] and partially implemented in
the Helios voting system [1]. The variant of this approach using homomorphic tal-
lying has been proposed in [25], and the variant using mix net and decentralised
PKI establishment has been proposed and implemented in [20]. A boardroom
voting system described and evaluated in [2] implements a boardroom voting
scheme that does not rely on cryptography.

Several schemes with delegated voting functionality have been proposed in
the literature. The proposal by Kulyk et al. [19] addresses coercion resistance
in delegated voting by extending the well-known coercion-resistant JCJ/Civitas
theme for electronic voting towards delegated voting. A further proposal in [18]
extends the Helios voting system with delegated voting functionality. Their app-
roach, however, only allows to delegate after the election setup has been con-
ducted (i.e. after the election key has been generated) which is not suitable to
the boardroom voting setting that we consider in this work. Tchorbadjiiski [28]
introduces hash chains to compute “connected” credentials on the client side
to enable a transitive and revocable delegation process, and the proposal by
Zwattendorfer et al. [30] uses blind signatures to enable delegation privacy.

7 Conclusion

We proposed an electronic voting scheme that facilitates delegated voting in the
boardroom voting setting. The scheme enforces both general security require-
ments on electronic voting, such as vote privacy and integrity of the election,
and security requirements that are specifically tailored to the delegation process.

Enabling Vote Delegation for Boardroom Voting 431

As such, the scheme ensures delegation privacy by hiding the link between the
voter and the identity of her chosen proxy, delegation integrity by ensuring that
a proxy can only cast a ballot on some voter’s behalf if authorised by the voter,
delegation eligibility to ensure that only the delegated ballots on behalf of the
eligible voters are included in the tally and delegation power privacy to ensure,
that the scheme does not reveal how many voters have delegated to a particular
proxy.

In the future, we plan to extend our security evaluation and provide for-
mal security proofs for the proposed delegated boardroom voting scheme. For
this, the formal definitions for security requirements specific to delegated voting
should be established.

Another direction of future work would be to address the attack vectors on
vote secrecy, delegation privacy and delegation power privacy that exploit the
information revealed by the election result. Due to the relatively small num-
ber of voters in boardroom voting, these attacks might have more impact than
they have in large scale elections. Hence, we plan to consider ways to minimize
information revealed by the result during the course of the delegation.

Finally, a direction of future work would be focusing on the efficiency of
the scheme. While the scheme is designed for small-scale elections , it nonethe-
less requires a relatively high level of interaction among the present voters (the
bottleneck being the weeding of invalid delegated ballots during the tallying).
Therefore, methods for improving the efficiency by reducing the required com-
munications and computations are required.

Acknowledgements. This paper has been partially developed within the project (HA
project no. 435/14-25) funded in the framework of Hessen ModellProjekte, financed
with funds of LOEWE –Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomi-
scher Exzellenz, Förderlinie 3: KMU-Verbundvorhaben (State Offensive for the Devel-
opment of Scientific and Economic Excellence). It has also been partially developed
within the project ‘VALID’ - Verifiable Liquid Democracy - which is funded by the
Polyas GmbH. This work has also been supported by the German Federal Ministry of
Education and Research (BMBF) as well as by the Hessen State Ministry for Higher
Education, Research and the Arts within CRISP.

References

1. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of 17th Conference
on Security Symposium, SS 2008, pp. 335–348. USENIX, July 2008

2. Arnaud, M., Cortier, V., Wiedling, C.: Analysis of an electronic boardroom
voting system. In: Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013.
LNCS, vol. 7985, pp. 109–126. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39185-9 7

3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 17

https://doi.org/10.1007/978-3-642-39185-9_7
https://doi.org/10.1007/978-3-642-39185-9_7
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17

432 O. Kulyk et al.

4. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

5. Budurushi, J., Neumann, S., Olembo, M.M., Volkamer, M.: Pretty understandable
democracy-a secure and understandable internet voting scheme. In: Proceedings of
8th International Conference on Availability, Reliability and Security, ARES 2013,
pp. 198–207. IEEE (2013)

6. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

7. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical report, Citeseer (1997)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)

9. DeMillo, R.A., Lynch, N.A., Merritt, M.J.: Cryptographic protocols. In: Proceed-
ings of 14th Annual ACM Symposium on Theory of Computing, STOC 1982, pp.
383–400. ACM (1982)

10. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

12. Giustolisi, R., Iovino, V., Rønne, P.B.: On the possibility of non-interactive e-voting
in the public-key setting. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 193–208. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 13

13. Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broad-
cast. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 90–104. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27809-2 10

14. Hao, F., Ryan, P.Y., Zielinski, P.: Anonymous voting by two-round public discus-
sion. IET Inf. Secur. 4(2), 62–67 (2010)

15. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 13

16. Khader, D., Smyth, B., Ryan, P.Y., Hao, F.: A fair and robust voting system by
broadcast. In: Proceedings of 5th International Conference on Electronic Voting,
EVOTE 2012, vol. 205, pp. 285–299. Gesellschaft für Informatik (2012)

17. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 10

18. Kulyk, O., Marky, K., Neumann, S., Volkamer, M.: Introducing proxy voting to
Helios. In: Proceedings of 11th International Conference on Availability, Reliability
and Security, ARES 2016, pp. 98–106. IEEE, September 2016

19. Kulyk, O., Neumann, S., Marky, K., Budurushi, J., Volkamer, M.: Coercion-
resistant proxy voting. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC 2016.
IAICT, vol. 471, pp. 3–16. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33630-5 1

https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-662-53357-4_13
https://doi.org/10.1007/978-3-540-27809-2_10
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-45664-3_10
https://doi.org/10.1007/978-3-319-33630-5_1
https://doi.org/10.1007/978-3-319-33630-5_1

Enabling Vote Delegation for Boardroom Voting 433

20. Kulyk, O., Neumann, S., Volkamer, M., Feier, C., Koster, T.: Electronic voting
with fully distributed trust and maximized flexibility regarding ballot design. In:
Proceedings of 6th International Conference on Electronic Voting, Verifying the
Vote, EVOTE 2014, pp. 1–10. IEEE (2014)

21. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982). TOPLAS 1982

22. Nguyen, L.H., Roscoe, A.W.: Efficient group authentication protocol based on
human interaction. In: Proceedings of Workshop on Foundation of Computer Secu-
rity and Automated Reasoning Protocol Security Analysis, FCS-ARSPA 2006, pp.
9–33, August 2006

23. Pedersen, T.P.: Distributed provers and verifiable secret sharing based on the dis-
crete logarithm problem. DAIMI Rep. Ser. 21(388) (1992)

24. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

25. Ritter, J.: Decentralized e-voting on android devices using homomorphic tallying.
Master’s thesis, Bern University of Applied Sciences, Biel, Switzerland (2014)

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
27. Szepieniec, A., Preneel, B.: New techniques for electronic voting. JETS 2015:

USENIX J. Elect. Technol. Syst. pp. 46–69 (2015)
28. Tchorbadjiiski, A.: Liquid democracy diploma thesis. RWTH AACHEN University,

Germany (2012)
29. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,

T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12678-9 7

30. Zwattendorfer, B., Hillebold, C., Teufl, P.: Secure and privacy-preserving proxy vot-
ing system. In: Proceedings of IEEE 10th International Conference on e-Business
Engineering, ICEBE 2013, pp. 472–477. IEEE, September 2013

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-642-12678-9_7

Practical Governmental Voting
with Unconditional Integrity and Privacy

Nan Yang and Jeremy Clark(B)

Concordia University, Montreal, Canada
na yan@encs.concordia.ca, j.clark@concordia.ca

Abstract. Throughout the years, many cryptographically verifiable
voting systems have been proposed with a whole spectrum of features
and security assumptions. Where the voter casts an in-person (and pos-
sibly paper) ballot and leaves, as is common in a governmental election,
the majority of the proposals fall in the category of providing uncondi-
tional integrity and computational privacy. A minority of papers have
looked at the inverse scenario: everlasting privacy with computational
integrity. However as far as we know, no paper has succeeded in pro-
viding both unconditional integrity and privacy in this setting—it has
only been explored in boardroom voting schemes where voters partici-
pate in the tallying process. Our paper aims for a two-level contribution:
first, we present a concrete system with these security properties (one
that works as a backend for common ballot styles like Scantegrity II or
Prêt à Voter); and second, we provide some insight into how different
combinations of security assumptions are interdependent.

1 Introduction

An end-to-end verifiable (E2E) voting system uses cryptography to provide a ver-
ifiable tally while maintaining the secrecy of each voter’s ballot. Over decades of
research in this area, one trend to emerge is a move toward real-world voting sys-
tems suitable for common election scenarios, including governmental elections.
For our purposes, we consider a system to be suitable for a governmental election
if it has two properties:

1. Vote-and-go: once a voter has completed and submitted their ballot, they
do not need to be involved in the tallying process.

2. Human-votable: a voter can cast a vote without having to perform any
computations (bare-handed) through a process similar to a traditional (non-
verifiable) voting system, such as DRE or optical scan voting

Many E2E systems are designed within these constraints and some have been
used in governmental elections [6,7]. The governmental setting is contrasted
with other practical settings, such as a boardroom vote, where all voters might
be physically present in the same room with their own trusted computational
devices. This setting is less constrained and allows different cryptographic tech-
niques to be used—e.g., an unconditionally secure multiparty computation.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 434–449, 2017.
https://doi.org/10.1007/978-3-319-70278-0_27

Practical Governmental Voting with Unconditional Integrity and Privacy 435

In the governmental setting, vote-and-go requires a third party election
authority to collect a representation of the voter’s ballot. This representation
is often an encryption or commitment to the voter selections for DRE-based sys-
tems, or for optical scan systems, a paper-based obfuscation (e.g., code substitu-
tion, permutation, split) that is accompanied by some encryption or commitment
value on the ballot or in the backend data. Standard encryption and commit-
ment schemes are not secure against a computationally unbounded adversary.
Such an adversary can either recover the message (Elgamal or Paillier), change
the message (Pedersen commitment) or both (hash-based commitments). When
the message is a vote, this translates into, respectively, breaking election integrity
or ballot secrecy or both.

Computational assumptions underly nearly all real-world cryptographic
applications, whether it is HTTPS, password hashing, or secure messaging. How-
ever the exact assumptions evolve over time as new attacks are found, as do
the security parameters that realize them. An unconditionally secure protocol
alleviates us from monitoring the validity of these assumptions over time and
future-proofs the protocol against new innovations like quantum computing.

2 Prior Work

There are hundreds of papers proposing voting schemes and it is not possible
to review even all the relevant ones. Instead, we have broken the literature into
four broad categories that classify a majority of the proposals. Table 1 provides
a summary of the election integrity and ballot secrecy assumptions for each
cluster.

Distributed EA. Beginning with Cramer et al. [16], many systems homomor-
phically encrypt ballots under a public key that is distributed amongst a set of
trustees forming an election authority (EA). If an unbounded adversary attacks
a transcript of the election, they can learn how every voter voted by break-
ing the encryption key but cannot change the value that is encrypted. Further,
assuming true zero knowledge proofs are used, unbounded adversaries cannot
undetectably change the tally. Note that in practice, many of these systems use
non-interactive zero knowledge proofs based on the Fiat-Shamir heuristic — this
enables an unbounded adversary (whether a voter or a trustee) to lie [21] in a
way that can undetectably change a tally, however this assumption is practi-
cal to avoid [19,26]. If a suitable threshold of trustees are corrupted, they may
recover how each voter voted but they cannot change the tally. A few notable
systems of this type include: MarkPledge [33], Prêt à Voter [12], Voter-initiated
auditing [3], Helios [1], STAR-Vote [2], and vVote [6].

Chaumian. Beginning with Chaum [9], a series of systems also use a distributed
election authority much like above. However these systems add an additional
assumption: trustees can use a special computational device, called a black-
box, to perform computations such that the inputs and intermediate values
are not leaked to any participant. This enables an election system based solely

436 N. Yang and J. Clark

Table 1. A comparison of computational and collusion security assumptions in four
common categories of proposed cryptographic voting systems, plus our own system.
Note: this table does not attempt to capture all desirable features of a voting system.
We acheive the same security assumptions as boardroom voting systems, plus we allow
human-voteable ballots and vote-and-go tallying. The ‘special assumption’ used in
Chaumian systems (and this work) is a blackbox assumption.

on cryptographic commitments and commitment-based cut-and-choose proofs.
Assuming the commitment scheme is perfectly binding, an adversary can break
ballot secrecy by breaking the commitment scheme (if unbounded), corrupt-
ing a sufficient number of trustees to recover the input to the blackbox, or by
breaking the blackbox hardware assumption. However an unbounded adversary
cannot undetectably change the values committed to, all modifications to the
tally are detectable even if made by a fully colluding election authority, and the
soundness of the blackbox computations are verifiable and not assumed to be
done correctly. Notable systems of this type include Punchscan [34], Scantegrity
I/II [10,11], Eperio [18], and Remotegrity [41].

Everlasting Privacy. Beginning with Cramer et al. [15] (and related to ear-
lier work by Chaum [8]), a reasonable observation was made that integrity need
only last the lifetime of the election but ballot secrecy could be relevant for
decades or centuries. It is possible to invert the resistance of a voting scheme to
computationally unbounded adversaries from integrity to privacy. Most modern
work uses perfectly hiding homomorphic commitments in lieu of homomorphic
encryption, however this creates a dilemma: if the random factors of the com-
mitments are unknown, a tally cannot be computed (and if they are known,
then the commitment’s hiding property no longer resists an unbounded adver-
sary). Most systems compromise by using untappable channels to communicate
random factors amongst trustees— thus it does not retain unconditional ballot
secrecy under collusion. Notable systems of this type include Moran-Naor [31],

Practical Governmental Voting with Unconditional Integrity and Privacy 437

split-ballot voting [32], and extensions to distributed EA systems [17]. Recent
work from Locher et al. has examined the removal of the collusion assump-
tion, presenting schemes [27,28] that have everlasting privacy under both an
unbounded and fully colluding EA (with computational integrity).

Boardroom Voting. The term boardroom voting was suggested by Benoloh
and Fisher [4] to categorize systems where voters participate in the tallying
process (i.e., are not vote-and-go). Like the general literature on uncondition-
ally secure protocols, these schemes tend to use multiparty computation based
on verifiable secret sharing. Note that not all boardroom voting schemes are
unconditional—many boardroom systems use computational assumptions to be
more practical [22,25,38,39]. However the ones that are resist unbounded adver-
saries for both integrity and privacy (but collusion between them can break either
property). One way to frame our contribution is porting the security properties
of these systems to a governmental election. This has been explored [5] and
the vote-and-go property is achieved, voters need to perform computations in
the booth (and it is thus not human voteable). One might argue that ThreeBal-
lot [37] is a human-voteable instantiation of secret sharing. Indeed, its properties
are very close to what we want to achieve. Unfortunately ThreeBallot is not fully
private [23].

3 Framing Our Contribution

It has long been asserted within our community that perfect ballot secrecy and
perfect election integrity cannot be simultaneously achieved. This trade-off is
quite true under certain assumptions but it is often repeated as a simple fact
without internalizing the fine print. As it turns out, if you read the fine print,
it is possible to achieve both—indeed many boardroom voting systems already
do. The challenge is achieving these security properties while also allowing the
voter to deposit their ballot with the EA and leave. If the deposited ballot is
an encryption or computational commitment, it must be either computationally
binding or hiding but not both. If the ballot is secret shared to the trustees,
however, it can be perfectly hiding and binding under an assumption about the
number of honest trustees. The immediate difficulty here is that secret sharing
a vote will require a computational device.

This paper is intended as exploratory research to understand better how far
unconditional privacy and integrity can be extended to a practical governmental
voting system. We are not insisting that our system is immediately better than
existing approaches because we require certain trade-offs that might be less
desirable (discussed below). However we think this area deserves exploration.

In our approach, we begin in the Chaumian model. We noted in our literature
review that systems in this model primarily rely on a commitment scheme. As
we discuss in Sect. 4.1, verifiable secret sharing can be used as a perfectly hiding
commitment that is also perfectly binding but only to the participants in the
secret sharing scheme. We take a simple system from this model, Eperio [18],
which is already just a backend tallying system that can interface with a variety

438 N. Yang and J. Clark

of paper ballots (permutation-based ballots like Prêt à Voter and code-based
ballots like Scantegrity), and we replace the commitment scheme with a pro-
tocol based on verifiable secret sharing. We then show that the cut-and-choose
protocols continue to provide election integrity, assuming an honest threshold of
trustees (which is already assumed in computational Eperio for ballot privacy).
The result is an interesting protocol that achieves unconditional privacy and
integrity, plus voters can vote with paper ballots.

Universal verification. We pay a price for unconditional secrecy and privacy,
namely we have to sacrifice universal verification. Chevallier-Mames et al. prove
that achieving unconditional privacy is sufficient to thwart universal verification
(if it is possible for voters to choose to abstain from voting) [13]. Under slightly
different definitions, Vora and Hosp show an impossibility ‘triangle:’ it is only
possible to achieve two of the three properties: perfect integrity, perfect privacy,
and universal verification [24]. They define integrity and privacy in an informa-
tion theoretical sense. We also note that attempts of adding it to the basic prim-
itive we use (VSS) generally has only been achieved with computationally secure
primitives [38,40]. In our protocol, voters can still perform the traditional cast-
as-intended and recorded-as-cast checks but voters have to trust that a threshold
of trustees are honest in reporting that ballots were tallied-as-recorded. It is not
clear this trade-off is worth the gain in security against unbounded adversaries,
but we will say that it is not that different from cryptographic election where
voters defer to others (say each political party) to perform the cryptographic
election audit of the tally. Finally, our approach of using paper ballots does not
preclude traditional risk-limiting manual recounts done in conjunction with the
cryptographic election if the ballots have a cryptographic overlay (as in Scant-
egrity II).

Blackbox assumption. Finally, like Punchscan, Scantegrity and Eperio, we do
make a blackbox assumption that a perfectly private computation can be per-
formed on a tamper-resistant device. Blackboxes are stateless devices without
any non-volatile memory. The simply compute an output from a set of inputs
without revealing any intermediary values in the function. They could be imple-
mented as a hardware circuit, FPGA, or in software in a trusted execution
environment such as Intel TXT (c.f., [30]).

Future work might explore the removal of this assumption, through a dis-
tributed computation, however we rely on it for this initial work in the area.
We do note however that it is not immediately clear that a distributed com-
putation is necessarily better. If an adversary wanted to attack the election by
corrupting computational devices, it seems logical that compromising n devices
is harder than compromising 1—in fact, this reasoning is seductive enough that
the shareholders might use standard computers without extra precautions to
perform their computations. In such case, compromising n devices might be as
easy as compromising one (e.g., through an exploit for a common operating
system) and might indeed be easier if the single blackbox device (it does not
even need to be a full fledged computer) is given a lot of attention in terms of
hardening it against attack.

Practical Governmental Voting with Unconditional Integrity and Privacy 439

Human-voteable and vote-and-go. Some voting schemes require the voter
to participate in some multi-party computation. For example, [5] requires that
voters take their vote and secret-share it with different election authorities. Even
[29], a voting scheme “without cryptography,” requires the voter to perform an
amount of arithmetic which is arguably unreasonable in practice. In contrast, a
human-voteable (also called barehanded [36]) voting scheme is one which does
not require any kind of computational device to vote (such as a trusted com-
puter).1 Vote-and-go refers to the fact that individual voters are not expected
to assist in any kind of post-ballot computations, such as computing the tally.
All major governmental elections today are have both properties. It is difficult
to see how a scheme that does not have both can escape being an impractical
academic exercise. While smartphones are ubiquitous, their use opens up new
attack vectors and is little better than trusting a polling machine or a physical
ballot counted by humans.

4 Protocol Components

4.1 Verifiable Secret-Sharing and Commitment

A (k, n) verifiable secret-sharing (VSS) scheme is a multi-party protocol between
a dealer and n shareholders that consists of two functions 〈Share,Recover〉. When
invoking share, the dealer distributes some secret string x among the shareholders
such that no subset of shareholders less than k can jointly output x and the
dealer proves that each share can be consistently used to reconstruct some secret
without an error. When invoking Recover, k or more shareholders combine their
shares to recover x (if less than k shareholders honestly contribute their shares,
⊥ is recovered instead).

The guarantees of a VSS scheme can be made information-theoretic while
tolerating up to k < n/2 malicious shareholders, assuming the existence of a
broadcast channel. A broadcast channel is already a standard assumption in an
E2E voting scheme. Many VSS schemes exist, each targeting different efficiency
metrics. For our purposes, we assume the use of a standard scheme due to Rabin
and Ben Or [35].

The relationship between a VSS scheme and a commitment function was
explored recently by Garay et al. [20]. They observe that VSS is typically used
a distributed ‘analogue’ to a commitment scheme and prove that VSS realizes
a commitment-like properties. Informally speaking, the two main properties of
bit-commitment are binding and hiding, which respectively mean that the sender
can only open the commitment in one way, and that the receiver is unable to
distinguish between (chosen) committed messages m0 or m1.

The respective properties of VSS which will act as the binding and hiding
conditions are:

1 Note we do not refer to assistive technology (AT) that helps voters with disabilities
cast a vote—for this reason, we dislike the term barehanded. Rather we mean devices
that are trusted to perform a computation for the voter, not navigate an interface.

440 N. Yang and J. Clark

– If no strict majority of shareholder’s shares uniquely defines a secret, then
there will be an abort. In other words, the dealer is unable to either create a
commitment that they cannot open, or a commitment that can be opened in
more than one way.

– No strict minority subset of shareholders can reconstruct the secret, or pre-
vent an honest strict majority from reconstructing the secret. If a secret fails
to be reconstructed, then the faulty shares can be identified. In other words,
no strict minority subset of colluding sShareholders can change an existing
commitment, or prevent the honest shareholders from opening the commit-
ment.

– The secret will only be reconstructed when the majority of honest sharehold-
ers come to an agreement. In contrast to a two-party bit-commitment, the
dealer is not involved in the opening process. Some pre-agreed condition will
trigger the honest shareholders to divulge their shares. In our case, they are
triggered by an auditor.

Concretely, given a (n,k)-VSS scheme, our commitment scheme will consist
of two function 〈Commit,Open〉 realized as follows.

– Commit(x): The dealer takes a secret x and invokes Share(x) with the share-
holders and proves that the shares are consistent. A failure of the secret-
sharing is considered a failure of commitment. If successful, the dealer
announces a commitment identifier id to the shareholders used to identify
the commitment that should be opened. This identity is output as commit-
ment value c (in a standard commitment, c would be functionally dependent
on x).

– Open(c): The auditor sets id = c broadcasts to the shareholders Recover(id).
The honest shareholders follow the protocol to determine if the commitment
should be opened or not. If so, they execute the reconstruct protocol and send
to the auditor their shares, who reconstructs the secret. The honest majority
will identify any dishonest shareholders, whose shares the auditors will ignore.

4.2 Eperio

Our voting protocol is based on the Eperio voting system [18]. Technically Epe-
rio is a backend component that can realizes a variety of voting systems. We
summarize some details of that protocol which we will augment with VSS in
Sect. 5.

Ballots. Eperio can utilize different ballot types. We use a ballot in the style of
Prêt à Voter (see Fig. 1): a permuted list of candidates with a serial number. The
ballot is assumed to be physically unforgeable and is marked by the voter and
split along the dotted line. The candidate ordering is shredded, while the mark
position and serial number is optically scanned and then kept by the voter as a
privacy-preserving receipt. In Fig. 1, we also show a tabular form of the ballot
that is exactly equivalent. This form of the ballot could be printed out and given

Practical Governmental Voting with Unconditional Integrity and Privacy 441

Bob ��
Alice ��
Charlie ��

1234

U M S

1234.01 �� Bob

1234.02 �� Alice

1234.03 �� Charlie

Fig. 1. A Prêt à Voter ballot with 3 candidates. Each ballot has a randomly shuf-
fled order of candidates. Left side: the ballot as received by the voter. Right side: an
equivalent formulation of the same ballot information in tabular form.

to voters, however it would be a poor design relative to the ballot form on the
lefthand side of the figure.

The tabular form of the ballot consists of 3 columns and C rows, where C
is the number of candidates in the election. The first column, which we denote
by U, are Unique IDs which contains a unique ballot identifier and a choice
identifier. In the example ballot of Fig. 1, the ballot number is 1234 and the
suffixes identify each of the C markable positions on ballot 1234. So in this case,
markable position 1234.01 would count for Bob. On a different ballot, say 1235,
position 1235.01 might correspond to a different candidate.

The second column is the Marks List column, which we denote by M. In this
column, the voter places a checkmark at exactly one spot, indicating the row
corresponding to the candidate the voter wishes to vote for. The last column is
the Candidate Selection column, which we will denote by S. This is a list of the
candidates in a randomly permuted (per-ballot) order.

Eperio Tables. An Eperio table is a data structure that encodes the ballot
information. If you were to take every ballot in tabular form, concatenate them
end-to-end, you would end up with the ‘canonical’ Eperio table. This canonical
table is never used directly, but many (e.g., 20) instances of it are created which
are row-wise shuffles the table. In the original Eperio protocol, the U and S
columns are individually encrypted for each instance of an Eperio table prior to
the election to be used in the post-election audit.

Eperio Protocol. Prior to the election, a set of trustees use a blackbox device
(trusted for ballot secrecy but not integrity) to generate a canonical Eperio table
for an election with C candidates and V voters. All randomness used by the
blackbox is deterministically derived from seeds provided by the trustees. The
canonical table will be 3×CV. The canonical table is provided to the printers for
printing the ballots. As in almost all paper-based E2E voting systems, printing
is assumed to be a trustworthy process (at least with respect to ballot secrecy—
a print audit will establish the correctness of the printed ballots but cannot
distinguish between a malicious printer or honest printers being provide the
wrong information to print).

A set of � Eperio tables are generated by applying a random permutation to
the rows of the canonical table by the blackbox. � is a security parameter where

442 N. Yang and J. Clark

an attack that moves a vote from Alice to Bob will be detected (given adequate
receipt checks and print audits) with probability 1− 2−�. The U and S columns
of each Eperio table is publicly committed prior to voting.

During voting, voters may request a ballot to be print audited (we defer to
the paper the discussion of the print audit—we can handle more simply in our
protocol). They then fill out their ballots for their selected candidates and have
the mark position portion of their ballot recorded (they can keep this lefthand
side of the ballot as a receipt). After the election, the trustees input into the
blackbox their random seeds and the scanned ballots (U and M). The blackbox
reconstructs all the tables and asserts an M column for each Eperio table. These
M columns and an assertion of the final tally is published.

After the results have been asserted, a random beacon is used to select an
�-bit string; one bit for each Eperio table. If the bit for a given table is 0, the
blackbox (again reseeded by the trustees) reveals the U column and if it is 1,
it reveals the S column (the M column for each is already public). For each
UM-revealed table, voters can check their receipt and everyone can check for
consistency across each table. For each MS-revealed table, anyone can check
that it matches the asserted tally. The specific reasoning for each of the three
possible audits can be found in [18]. For any particular committed Eperio table,
if only one of these combinations is opened, privacy is preserved.

5 Our Protocol

Our observation is that the encryption in Eperio is used as a commitment
scheme and can be changed to any type of commitments. The authors them-
selves make this observation suggesting that the perfectly-binding commitment
scheme (based on encryption) could be replaced with Pedersen commitments for
everlasting privacy. We observe here that the commitments could be replaced
with a VSS-style commitment to provide unconditional integrity and everlasting
privacy (but sacrificing universal verifiability). Our protocol is given in Fig. 2.

Verification. In our protocol, voters may engage in three checks. The first is
a receipt check, which applies to any tables opened UM. External auditors
may also check with these tables that no ballot is over-voted. The second check
is a print audit, which applies to all rows in each table corresponding to a
print audited ballot opened UMS. The final check is the correctness of the
tally, checked with MS. Note all UM tables are shuffled but otherwise identical
versions of the same data, and likewise with all MS tables. The basic integrity
attack a malicious blackbox can conduct is changing the tally, which constitutes
moving marks in the M. However it must guess which tables will be opened UM
and leave these unmodified (or the moved marks will be detectable via a receipt
check), and guess exactly which tables will be opened MS to move the marks (or
the tally will be unmodified, or inconsistent across tables). The probability of
guessing correctly is 2−� where � is the number of tables. For � = 20 (a parameter
used in Scantegrity for effectively the same purposes), the probability of guessing

Practical Governmental Voting with Unconditional Integrity and Privacy 443

Pre-Casting

1. Voters register with a local election authority. Issues of voter registration fraud
are handled by the EA and are beyond the scope of this work.

2. The EA publishes the number of candidates C and number of ballots to print
(e.g., 2 · V where V is the voting age population and the scalar 2 allows for,
on expectation, one print audit per voter). The EA sets security parameter �.

3. The blackbox uses local randomness to create the canonical Eperio table
(which is provided to the printers) and � permutations of it. It then uses
VSS to commit the permuted tables to the shareholders, cell by cell. Each ta-
ble’s format and index is published. Upon completion, the shareholders purge
the memory of the blackbox.

Vote Casting and Tallying

1. Voters show up and register at the designated voting locations. For each voter,
the EA will give the voter a paper ballot, such as the one in Figure 1, assuming
they have not voted already.

2. The voter may optionally choose to print audit the ballot. The scanner notes
the serial number and its status as audited. The ballot is voided for voting
purposes, and the voter is given the next ballot with the same option to audit
or vote.

3. Once the voter decides to vote, she marks her ballot and destroys the portion
of the ballot containing the candidate ordering. The other portion, containing
the serial number and marked position, is copied by the scanner and the
original is kept by the voter as a privacy-preserving receipt.

4. After the election, the scanners publish what they received: the M column of
the canonical table.

5. A quorum of at least k honest shareholders submit their shares of all tables to
the blackbox, which reconstructs the canonical table (by sorting each Eperio
table and checking for consistency). It also takes as input the scanner data. It
outputs an asserted M column for each of the � tables and an asserted final
tally. The shareholders publish the output and purge the blackbox’s memory.

Audit

1. An unpredictable �-bit value is publicly generated by a beacon (e.g., using
stock prices [14]).

2. For bit i of the beacon value, a quorum of at least k honest shareholders
publish their shares of each cell in the U column in the i-th Eperio table if
the bit is 0, and each cell in the S column if the bit is 1. For print audited
ballots (only), they publish both the U and S cells.

3. The shareholders securely delete all unused shares.

Fig. 2. Our variant of Eperio using VSS.

444 N. Yang and J. Clark

correct is less than a thousandth of a percentage. Importantly, this probability
is independent of the adversary’s computational power.
Discussion: Minimizing blackbox usage. The shareholders in our scheme are
involved in three phases of the protocol: (1) preelection to use the blackbox
to instantiate the election data, (2) after the election to use the blackbox to
assert the mark column for each table, and (3) after the challenge to open up
the data. In original Eperio, the blackbox must be used in all three steps. In our
protocol, (3) can be accomplished by the shareholders directly without requiring
the blackbox. In a variation of our protocol, we could also eliminate the blackbox
from step (2). In step 2, the blackbox is required to permute a list of marks. The
shareholders could do this directly if in step (1), the blackbox gave them each (in
a specified order) a permutation to apply such that the composition of all these
permutations is the permutation that was used. The issue is that this requres
n-out-of-n shareholders in step (2) instead of k (however only k are required in
step 3).2

6 Proof of Security Sketch

In our security proof sketch, we will reduce a breaking of either privacy or
integrity to the breaking of one or more properties of the VSS scheme. We assume
that the blackbox’s computations are unobservable, and that the broadcast and
private channels between shareholders are secure. In practice, these channels
need not introduce extra cryptographic (and hence computational) assumptions,
since they can be implemented as physical channels such as trusted couriers. In
short, breaking either privacy or integrity will imply that strictly more than
half of shareholders are malicious. Put differently, if a majority of shareholders
collude (violating our assumptions), then they can determine how each voter
voted (link ballot IDs to candidates voted for) and can modify the tally to any-
thing they want and have it accepted by the verification step. If the blackbox
assumption fails, the adversary can determine how each voter voted but cannot
undetectably modify the tally.

6.1 Privacy

It was shown in Eperio [18] that violating privacy reduces to a number of assump-
tions including breaking the hiding property of the commitment. Since we effec-
tively only change the commitment scheme, we can ask ourselves: “If a cabal
of malicious shareholders, auditors and voters collude, can they break the hid-
ing property of the VSS-commitment?” Assuming, as always, that the number of
malicious shareholders is a strict minority, the answer to the above question is no.

We do not pursue a full simulation-based proof but we comment that VSS-
commitments have an additional property that should streamline such a proof,
2 Future work might explore the possibility of giving each shareholder a matrix that

interpolates to the correct permutation matrix under the sequential composition of
any k-out-of-n interpolations.

Practical Governmental Voting with Unconditional Integrity and Privacy 445

relative to the computational commitments used in Eperio. As a cut-and-choose
protocol, Eperio faces a standard problem of simulateability: as the challenge
space grows, the ability for the simulator to anticipate the correct challenge
decreases exponentially (if it rewinds the verifier, it must do it an exponentially-
increasing number of times which is not permissible). This can be side-stepped
by, say, letting the simulator program the beacon value (by running it through
a random oracle) or by repeating the protocol with one-bit challenges. In our
case, a VSS-commitment is effectively a trapdoor commitment scheme for any
majority of the shareholders. During the audit phase, the simulator can open a
commitment in such a way that is perfectly consistent with any tally constraints
imposed onto it.

Finally, we must also take care that each random choice (permutation in the
tables) is truly random and not the result of a deterministic random generator
(as in the original Eperio) or else the the permutations will not have a perfectly
uniform distributed (which could be distinguished by an unbounded adversary).
We modify Eperio along these lines—the shareholders do not contribute ran-
domness, rather they remember shares of the randomness used (in the form of
shuffled tables which can be resorted to recover the permutation).

6.2 Integrity

As in Eperio, the integrity of the election is reduced to a number of assumptions
including the binding property of the commitment. We have replaced the com-
mitment used by VSS, and in Sect. 4.1 we have argued that VSS has properties
which corresponds to the binding property of a commitment scheme.

The auditing process remains the same. For each of the permuted Eperio
tables, an auditor will ask the shareholders to open the commitments in such
a way that corresponds to the three audits, as discussed in Sect. 4.2. Assuming
that the number of malicious shareholders are strictly less than half, the VSS
binding property guarantees that they cannot change the commitment that has
been successfully executed.

In fact, let us suppose that the malicious shareholders can arbitrarily control
where the marks go in the permuted Eperio tables. However, since there is at
least one honest shareholder, the malicious shareholders do not know how to
consistently mark the votes. Therefore, with high probability increasing expo-
nentially to one in the number of Eperio tables, either a voter will detect that
his vote is inconsistent with his receipt when the U columns are opened during
the auditing process, or an auditor will discover inconsistencies across different
Eperio tables opened the same way. In either way, the malicious shareholders’
cheating is detected.

7 Conclusion

We present a system, based on Eperio, that offers integrity and ballot secrecy
against computationally unbounded adversaries, regardless of whether such an

446 N. Yang and J. Clark

adversary is a voter, verifier, or election trustee. Further, our system enables
voters to cast paper-based ballots, such as an optical scan ballot overlay as
used in Scantegrity II or a permutation-style optical scan ballot as used in Prêt
à Voter. Once the ballot is cast, the voter may leave and does not have to
participate in tallying the election (in contrast to the other category of systems
providing unconditional security: boardroom voting schemes).

To be even-handed, we point out that our system introduces several draw-
backs. We rely on private and broadcast channels which, in practice, require
computational cryptography, thereby negating information-theoretic security.
We have argued that these channels may be implemented physically as untap-
pable channels and in fact, for elections such as the Scantegrity II municipal
election at Takoma Park, MD, election officials did meet in person in the same
room to set-up the election and to compute the final tally. Like other paper
ballot systems, the physical ballots are assumed to be unforgeable (therefore
malicious voters cannot repudiate a correct audit) and we trust the EAs to not
peek at the printed physical ballots before issuing them to voters (which would
break privacy). Both of these issues could be mitigated to a large extent by using
Scantegrity II ballots, however in Scantegrity II the scanner learns how the vote
was cast (as it is a cryptographic overlay and not a replacement system).

Most importantly in terms of drawbacks, our system removes the ability for
voters to independently verify the election results. They must trust that a major-
ity of shareholders are honest. While we have no data on how many voters do a
full cryptographic check of the election results in a typical E2E-verifiable elec-
tion, we expect that many will already defer to someone else to check (whether
by running their software without validating it or simply believing their asser-
tions). That said, universal verification provides the agility to decide who you
trust after the election and even do it yourself if you do not adequately trust
anyone else who can perform the check. We are not advocating that uncondi-
tional security trumps universal verification, but we believe it is important to
provide viable solutions for both sides of this trade-off. This way, readers can
decide which is most appropriate for their election requirements.

Acknowledgements. We thank Claude Crépeau for helpful insights. We thank the
anonymous reviewers who pointed out relevant work, suggested interesting ideas, and
showed us where our paper needed more clarity. The second author acknowledges fund-
ing for this work from NSERC and FQRNT.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security (2008)
2. Bell, S., Benaloh, J., Byrne, M.D., Debeauvoir, D., Eakin, B., Kortum, P.,

McBurnett, N., Pereira, O., Stark, P.B., Wallach, D.S., Fisher, G., Montoya, J.,
Parker, M., Winn, M.: Star-vote: a secure, transparent, auditable, and reliable
voting system. JETS 1, 8 (2013)

3. Benaloh, J.: Simple verifiable elections. In: EVT (2006)
4. Cohen, J.D., Fisher, M.J.: A robust and verifiable cryptographically secure election

scheme. In: SFCS (1985)

Practical Governmental Voting with Unconditional Integrity and Privacy 447

5. Broadbent, A., Tapp, A.: Information-theoretically secure voting without an honest
majority. In: WOTE (2008)

6. Burton, C., Culnane, C., Schneider, S.: Verifiable electronic voting in practice: the
use of vvote in the victorian state election. In: IEEE Security and Privacy (2016)

7. Carback, R.T., Chaum, D., Clark, J., Conway, J., Essex, A., Hernson, P.S., May-
berry, T., Popoveniuc, S., Rivest, R.L., Shen, E., Sherman, A.T., Vora, P.L.: Scant-
egrity II election at Takoma Park. In: USENIX Security Symposium (2010)

8. Chaum, D.: Elections with unconditionally-secret ballots and disruption equiv-
alent to breaking RSA. In: Barstow, D., et al. (eds.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 177–182. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-45961-8 15

9. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Priv.
2(1), 38–47 (2004)

10. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,
P.Y.A., Shen, E., Sherman, A.T.: Scantegrity II: end-to-end verifiability for optical
scan election systems using invisible ink confirmation codes. In: EVT (2008)

11. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A.T.,
Vora, P.: scantegrity: end-to-end voter verifiable optical-scan voting. IEEE Secur.
Priv. 6(3), 40–46 (2008)

12. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 8

13. Chevallier-Mames, B., Fouque, P.-A., Pointcheval, D., Stern, J., Traoré, J.: On
some incompatible properties of voting schemes. In: Chaum, D., Jakobsson, M.,
Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards
Trustworthy Elections. LNCS, vol. 6000, pp. 191–199. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12980-3 11

14. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In:
EVT/WOTE (2010)

15. Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.: Multi-authority secret-
ballot elections with linear work. In: Maurer, U. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-68339-9 7

16. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-69053-0 9

17. Demirel, D., van de Graaf, J., dos Santos Araujo, R.S.: Improving Helios with
everlasting privacy towards the public. In: EVT/WOTE (2012)

18. Essex, A., Clark, J., Hengartner, U., Adams, C.: Eperio: mitigating technical com-
plexity in cryptographic election verification. In: EVT/WOTE (2010)

19. Gallegos-Garcia, G., Iovino, V., Rial, A., Ronne, P.B., Ryan, P.Y.A.: (Universal)
unconditional verifiability in e-voting without trusted parties. Technical report,
IACR Eprint Report 2016/975 (2016)

20. Garay, J., Givens, C., Ostrovsky, R., Raykov, P.: Broadcast (and round) efficient
verifiable secret sharing. In: ICITS (2014)

https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/978-3-642-12980-3_11
https://doi.org/10.1007/3-540-68339-9_7
https://doi.org/10.1007/3-540-68339-9_7
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9

448 N. Yang and J. Clark

21. Goldwasser, S., Kalaj, Y.: On the (in)security of the Fiat-Shamir paradigm. In:
FOCS (2003)

22. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Christianson,
B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2006. LNCS,
vol. 5087, pp. 202–211. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04904-0 28

23. Henry, K., Stinson, D.R., Sui, J.: The effectiveness of receipt-based attacks on
threeballot. IEEE TIFS 4(4), 699–707 (2009)

24. Hosp, B., Vora, P.L.: An information-theoretic model of voting systems. Math.
Comput. Model. 48, 1628–1645 (2008)

25. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 10

26. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. Technical report 2015/346, IACR Eprint Report (2015)

27. Locher, P., Haenni, R.: Verifiable internet elections with everlasting privacy and
minimal trust. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) VOTELID 2015.
LNCS, vol. 9269, pp. 74–91. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22270-7 5

28. Locher, P., Haenni, R., Koenig, R.E.: Coercion-resistant internet voting with ever-
lasting privacy. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 161–175. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 11

29. Malkhi, D., Margo, O., Pavlov, E.: E-voting without ‘Cryptography’. In: Blaze, M.
(ed.) FC 2002. LNCS, vol. 2357, pp. 1–15. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36504-4 1

30. Mannan, M., Kim, B.H., Ganjali, A., Lie, D.: Unicorn: two-factor attestation for
data security. In: CCS (2011)

31. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In: CRYPTO (2006)

32. Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
In: CCS (2007)

33. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: CCS (2001)
34. Popoveniuc, S., Hosp, B.: An introduction to punchscan. In: WOTE (2006)
35. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with

honest majority. In: Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing, STOC 1989, New York, NY, USA, pp. 73–85. ACM (1989)

36. Riva, B., Ta-Shma, A.: Bare-handed electronic voting with pre-processing. In: Pro-
ceedings of the USENIX Workshop on Accurate Electronic Voting Technology,
EVT 2007, Berkeley, CA, USA, pp. 15–15. USENIX Association (2007)

37. Rivest, R.L., Smith, W.D.: Three voting protocols: threeballot, VAV, and twin. In:
EVT (2007)

38. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its
application to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 148–164. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48405-1 10

39. Schoenmakers, B.: Fully auditable electronic secret-ballot elections. Xootic Mag.
8, 5 (2000)

https://doi.org/10.1007/978-3-642-04904-0_28
https://doi.org/10.1007/978-3-642-04904-0_28
https://doi.org/10.1007/3-540-45664-3_10
https://doi.org/10.1007/978-3-319-22270-7_5
https://doi.org/10.1007/978-3-319-22270-7_5
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/3-540-36504-4_1
https://doi.org/10.1007/3-540-36504-4_1
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-48405-1_10

Practical Governmental Voting with Unconditional Integrity and Privacy 449

40. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68339-9 17

41. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting system.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 441–457. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 28

https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/978-3-642-38980-1_28
https://doi.org/10.1007/978-3-642-38980-1_28

Trusted Smart Contracts

Findel: Secure Derivative Contracts
for Ethereum

Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov(B)

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
alex.biryukov@uni.lu, khovratovich@gmail.com,

sergey.s.tikhomirov@gmail.com

Abstract. Blockchain-based smart contracts are considered a promising
technology for handling financial agreements securely. In order to real-
ize this vision, we need a formal language to unambiguously describe
contract clauses. We introduce Findel – a purely declarative finan-
cial domain-specific language (DSL) well suited for implementation in
blockchain networks. We implement an Ethereum smart contract that
acts as a marketplace for Findel contracts and measure the cost of its
operation. We analyze challenges in modeling financial agreements in
decentralized networks and outline directions for future work (See the
author’s post-print at https://orbilu.uni.lu/handle/10993/30975 and the
related source code at https://github.com/cryptolu/findel).

Keywords: Blockchain · Smart contracts · Financial engineering ·
Domain-specific language

1 Introduction

Financial derivatives – contracts defined in terms of other contracts – play a
major role in modern economy1. Financial industry lacks a universal domain-
specific language. Natural language is unsuitable for expressing contracts due to
its inherent ambiguity. An influential paper [JES00] is one of many attempts to
create a rigorous DSL that would mitigate disputes and stimulate automated
processing of complex derivatives. It leverages ideas from functional program-
ming and uses a succinct set of basic building blocks to express financial agree-
ments. A key feature of this notation is composability: new indefinitely complex
derivatives can be defined based on existing ones. Due to their nested struc-
ture, contracts in this DSL are well-suited for automated processing, including
valuation. The authors do not specify an enforcement mechanism though: exe-
cution is performed by an implicit environment. This work forms the basis for
research [Gai11,Sch14] and commercial [FSNB09,Mor16] projects.

The idea of smart contracts – computer programs for (semi-)automatic
enforcement of agreements – dates back to mid-1990s [Sza97]. Blockchain
networks, notably Ethereum, became the first practical implementation of this
idea and fueled interest in the concept [dC16]. Ethereum is a network of mutually
1 The derivatives market is comparable in size to the world’s GDP. The gross market

value of all outstanding over-the-counter derivatives is $20.7 trillion [Bis16] (2016).
The world GDP in 2015 is $73,9 trillion [Wor16].

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 453–467, 2017.
https://doi.org/10.1007/978-3-319-70278-0_28

https://orbilu.uni.lu/handle/10993/30975
https://github.com/cryptolu/findel

454 A. Biryukov et al.

distrusting nodes, which nevertheless establish consensus on the results of com-
putations without the need of a trusted third party.

An obvious use case for blockchain-based smart contracts is to securely
manage financial agreements. A naive approach to doing so is to encode the
entire logic of an agreement inside a smart contract. Expressing complex clauses
in a general-purpose programming language, like Ethereum’s Solidity, is error-
prone [ABC16,Sir16]. We propose a safer approach that separates the description
of a contract from its execution. A user only defines what a contract is (“I owe
you $10 tomorrow”), not how it is executed (“if the timestamp is greater than
t0, . . . ”). The entire execution logic is implemented inside a smart contract,
which is executed by nodes of a blockchain network. Thus we take the best of
both worlds: unambiguity and composability of a concise declarative DSL, and
trustless execution of blockchain-based smart contracts.

We introduce Findel (Financial Derivatives Language) – a declarative finan-
cial DSL (Sect. 2) capable of expressing most common derivatives (Appendix A).
We implement an Ethereum contract that manages Findel contracts (Sect. 3) and
prove our approach viable in terms of cost (Sect. 4).

2 Findel Contracts Syntax

2.1 Definitions

Definition 1. A Findel contract2 C is a tuple (D, I,O), where D is the
description, I is the issuer, and O is the owner (collectively called parties).

Definition 2. A description of a Findel contract is a tree with basic prim-
itives as leaves and composite primitives as internal nodes. The following
BNF grammar defines primitives:

〈basic〉 ::= Zero | One (〈currency〉)

〈scale〉 ::= Scale (〈number〉 , 〈primitive〉)

〈scaleObs〉 ::= ScaleObs (〈address〉 , 〈primitive〉)

〈give〉 ::= Give (〈primitive〉)

〈and〉 ::= And (〈primitive〉 , 〈primitive〉)

〈or〉 ::= Or (〈primitive〉 , 〈primitive〉)

〈if 〉 ::= If (〈address〉 , 〈primitive〉 , 〈primitive〉)

〈timebound〉 ::= Timebound (〈timestamp〉 , 〈timestamp〉 , 〈primitive〉)

〈composite〉 ::= 〈scale〉 | 〈scaleObs〉 | 〈give〉 | 〈and〉 | 〈or〉 | 〈if 〉 | 〈timebound〉
〈primitive〉 ::= 〈basic〉 | 〈composite〉
2 We may refer to Findel contracts simply as contracts, when the distinction between

them and Ethereum smart contracts is clear from the context.

Findel: Secure Derivative Contracts for Ethereum 455

We distinguish between composite and basic primitives, because the former
contain other primitives as sub-nodes while the latter do not. Currency, number,
address, and timestamp are implementation dependent data types. D and I can
not be modified after a contract is created.

A financial company typically has templates for common contracts. Parties
who wish to sign an agreement write their names on a copy of a template and
sign it, making it unique and legally binding. In our model, Findel contracts
represent signed copies while their descriptions represent blank templates.

Traditional contracts usually contain clauses that regulate sub-ideal situa-
tions, i.e., a breach of contract. Findel does not distinguish between “ideal”
and “sub-ideal” situations. All right and obligations are expressed uniformly.
Section 3.3 discusses issues related to contract enforcement.

Table 1 informally defines the primitives’ execution semantics.

Table 1. Findel contract primitives

Primitive Informal semantics

Basic

Zero Do nothing

One(currency) Transfer 1 unit of currency from the issuer to the owner

Composite

Scale(k, c) Multiply all payments of c by a constant factor k

ScaleObs(addr, c) Multiply all payments of c by a factor obtained from addr

Give(c) Swap parties of c

And(c1, c2) Execute c1 and then execute c2

Or(c1, c2) Give the owner the right to execute either c1 or c2 (not both)

If(addr, c1, c2) If b is true, execute c1, else execute c2, where b is a boolean
value obtained from addr

Timebound(t0, t1, c) Execute c, if the current timestamp is within [t0, t1]

Table 2 illustrates the composability of Findel3.

2.2 Execution Model

Findel contracts have the following lifecycle:

1. The first party issues the contract by specifying D, becoming its issuer. This
is a mere declaration of the issuer’s desire to conclude an agreement and
entails no obligations.

3 INF is a symbol representing infinite time, i.e., t0 < INF for every t0. δ is an
implementation dependent constant intended for handling imperfect precision of
time signal in distributed networks.

456 A. Biryukov et al.

Table 2. Examples of custom Findel contracts

Contract Definition

At(t0, c) Timebound(t0 − δ, t0 + δ, c)

Before(t0, c) Timebound(now, t0, c)

After(t0, c) Timebound(t0, INF, c)

Sell(n, CURR, c) And(Give(Scale(n, One(CURR))), c)

2. The second party joins the contract, becoming its owner. As a result, both
parties accept certain rights and obligations.

3. The contract is executed immediately as follows:
(a) Let the root node of the contract’s description be the current node.
(b) If the current node is either Or or Timebound with t0 > now, postpone

the execution: issue a new Findel contract with the same parties and the
current node as root. The owner can later demand its execution.

(c) Otherwise, execute all sub-nodes recursively4.
(d) Delete the contract.

The execution outcome is fully determined by description D, execution time
t, and external data S retrieved at time t.

2.3 Example

Suppose Alice sells to Bob a zero-coupon (i.e., paying no interest) bond that
pays $11 in one year for $10: s

czcb = And(Give(Scale(10, One(USD))), At(now+1 years, Scale(11, One(USD))))

We now show how czcb is executed step by step.

1. And executes; Bob temporarily owns two new contracts:
Alice’s contracts
Alice’s balance 100
Bob’s contracts Give(Scale(10,One(USD)))

At(now + 1 years,Scale(11,One(USD)))
Bob’s balance 10

2. Give executes; Alice owns a new contract:
Alice’s contracts Scale(10,One(USD))
Alice’s balance 100
Bob’s contracts At(now + 1 years,Scale(11,One(USD)))
Bob’s balance 10

4 In case of Or, execute exactly one of the sub-nodes, according to the owner-submitted
value indicating the choice; delete the other one. It is the only primitive that requires
an additional user-supplied argument for execution.

Findel: Secure Derivative Contracts for Ethereum 457

3. Scaled One transfers $10 go from Bob to Alice:
Alice’s contracts
Alice’s balance 110
Bob’s contracts At(now + 1 years,Scale(11,One(USD)))
Bob’s balance 0

4. In one year Bob claims $11 from Alice:
Alice’s contracts
Alice’s balance 99
Bob’s contracts
Bob’s balance 11

3 Implementation

We develop an Ethereum smart contract, referred to as marketplace, that keeps
track of users’ balances and lets them create, trade, and execute Findel contracts.
The Findel DSL is network-agnostic and can be implemented on top of any
blockchain with sufficient programming capabilities.

3.1 Ethereum Overview

Ethereum is a decentralized smart contracts platform [But14,Woo14]. Ethereum
full nodes store data, perform computations, and maintain consensus about the
state of all accounts using a proof-of-work mechanism similar to that in Bit-
coin. Programs (Ethereum smart contracts) are stored on the blockchain as
Ethereum virtual machine (EVM) bytecode, a Turing-complete language. Pro-
grammers write contracts in high-level languages targeting EVM, most popular
being Solidity and Serpent (we use the former).

A contract can call other contracts’ functions and send them units of Ether
– the Ethereum native cryptocurrency. To launch a particular function of a
contract, a user must send a well-formed transaction to the Ethereum network.

Each EVM operation has a fixed cost in gas. A user pays upfront for the
maximum amount of gas the computation is expected to consume and gets a
partial refund after a successful execution. If an exception (including “out of
gas”) occurs, all changes are reverted, but the gas is not refunded.

3.2 Implementation Details

Users and Balances. We implement the objects defined in Sect. 2.1 with struct
data types Description and Fincontract. We also introduce the User type
that contains the user’s Ethereum address and balances in all supported curren-
cies. Users, descriptions and contracts are stored in their respective mappings (a
generic key-value storage type in Solidity) in the marketplace’s storage.

The ultimate effect of every financial agreement is changing the parties’ bal-
ances (with clauses specifying when and under what conditions it should occur).

458 A. Biryukov et al.

We stick to a naive approach: each user is assigned an array of balances for each
supported currency. Although easily implementable, it introduces a single point
of failure: the marketplace holds users’ deposits.

The only primitive that actually transfers value is One. The enforcePayment
function implements its execution. It subtracts a given amount in a given cur-
rency from the issuer’s balance and adds it to the owner’s balance. Our current
implementation does not enforce any constraints on users’ balances that would
prevent them from building up too much debt.

Ownership Transfer. In addition to issuer and owner (see Definition 1), a
Fincontract contains an auxiliary proposedOwner field. On contract creation,
issuer, owner, and proposedOwner are initialized to msg.sender. To transfer
ownership, the owner sets proposedOwner either to the address of the proposed
new owner or to 0x0. Only the proposed owner can (but does not have to) join
the contract; 0x0 means anyone can do so5.

Data Sources and Gateways. Ethereum contracts are intentionally isolated
from the broader Internet and can not pull data from the Web, as it can not be
consistently replicated [Gre16]. Asynchronous requests usually solve the prob-
lem: a smart contract records an Ethereum event with request parameters prop-
erly encoded. A daemon process at an Ethereum node listens for such events,
parses requests, and sends them to the Web. The responses are then sent to the
requesting smart contract on behalf of an Ethereum account affiliated with the
daemon. The submitted data may be accompanied by a proof of authenticity
(say, digital signature on a pre-approved public key)6.

Financial derivatives often use external data. To prevent a malicious or care-
less user from creating a Findel contract using untrusted sources, we need to
guarantee data authenticity.

Definition 3. A gateway is a smart contract that conforms to the API:

– int getValue() Get the latest observed value7.
– uint getTimestamp() Get the timestamp at which the latest value was

observed.
– bytes getProof() Get the authenticity proof for the latest value.
– update() Update the value.

5 Beware of front-runners: Bob can monitor the network and try to join a contract
as soon as he sees Alice’s attempt to do so. Depending on the network latency and
miner’s behavior, either transaction can be confirmed.

6 BTCRelay is a prominent example: users submit Bitcoin block headers to a smart
contract, which implies their authenticity from the validity of easily verifiable proof-
of-work. After a header is stored on the Ethereum blockchain, users check with a
Merkle proof that the Bitcoin block contains a given transaction.

7 For simplicity, we only consider 256-bit integers as observable values. Boolean values
can be trivially simulated via integers.

Findel: Secure Derivative Contracts for Ethereum 459

A gateway connects to an external data source and stores the latest value
observed along with the time of observation, and, optionally, a cryptographic
proof of authenticity. We do not specify the type of proof a gateway pro-
vides. Possible options include Oraclize [Ora16]/TLSNotary [Tls16] and Reality
Keys [Rea16].

The marketplace queries a gateway at execution time, if necessary. If the value
is fresh and the proof is valid, the execution proceeds, otherwise it is aborted
and all changes are reverted. Since a Findel contract may use multiple gateways,
the owner is advised to update them all shortly before execution.

A possible improvement would be for a gateway to store not only the latest
observed value, but a sequence of historical data. This would allow for more
straightforward modeling of derivatives that depend on multiple data points,
such as barrier options (execute either c1 or c2 depending on whether an observ-
able value touches a pre-defined threshold between acquisition and maturity).

We assume that the original data sources (e.g., feeds of reputable finan-
cial media) are trustworthy. An extra safety catch would be to query multiple
sources, exclude outliers and return an aggregated value. Authenticity of data
sources is guaranteed by a secure connection (e.g., TLS) and the existing PKI
for authentication ([CF14,LC16] propose blockchain-based PKI architectures).

Gateways without publicly available source code should not be trusted.

Execution Implementation. The executeRecursively function implements
the execution logic defined in Sect. 2.2 and returns true if executed completely
(without creating new contracts) and false otherwise. The execution of an
expired contract (t0 < now) returns true unconditionally8 and deletes the con-
tract9. Every step in the life cycle of a Findel contract issues a system-wide
notification (Event), allowing users to keep track of contracts they are inter-
ested in.

Our implementation deviates from the model (Sect. 2.1) in that the execution
of contracts is not guaranteed. Ethereum contracts can not act on their own: the
owner must issue a transaction to trigger execution. The owner may be unable
to do so due to either opportunistic behavior, or technical problems, such as loss
of connectivity or lack of ether. Thus we presume that Findel contracts are not
guaranteed to execute10. We discuss this issue in Sect. 3.3.

We model unbounded Findel contracts (i.e., with INF as the upper time
bound) using a global expiration constant inside the marketplace contract.

8 By definition, an expired contract is equivalent to Zero.
9 An expired contract should also be deleted even if its owner is offline forever. Our

current implementation does not handle the latter case, though it may be consid-
ered an attack vector due to increasing storage usage. A possible approach is for a
marketplace to offer rewards for keeping track of expired contracts and triggering
their deletion.

10 Compare to [JES00]: “If you acquire (c1 or c2) you must immediately acquire either
c1 or c2 (but not both)”. We can not force a user to make this decision.

460 A. Biryukov et al.

Every Findel contract in the Ethereum implementation can only be executed
within expiration time units after creation (e.g., 10 years).

3.3 Possible Improvements

We now discuss the shortcomings of our model and ways to improve it.

Enforcement. As mentioned in Sect. 3.2, Findel contracts are not guaranteed to
execute. At first sight, it is a major problem, as contract must impose obligations
on parties. In traditional finance, a trusted third party and, ultimately, the
state law enforcement are responsible for punishing violators. The closest we
can arguably get to enforcement is a conditional penalty implemented inside a
Findel contract itself.

Assume Alice issues and Bob joins the following contract:

C = Before(t0,Or(Give(One(USD)),Give(One(EUR))))

C obliges Bob to give Alice either $1 or e1 before time t0. If Bob fails to make
a choice on time, Alice does not get the money she was planning to receive11.
To prevent it, Alice attaches a “penalty” clause:

P = After(t0, If(cexecuted,Zero,Scale(2,One(USD))))

cexecuted is the address of a gateway that indicates whether a particular
Findel contract was executed. When Bob joins Cpenalty = And(C,Give(P)),
Alice obtains the right to claim $2 from Bob if he fails to fulfil his obligations.

Note that Cpenalty references Cexecuted, which in turn must be aware of
Cpenalty. Thus the gateway should be either adjustable (with Alice tuning the
gateway with a special transaction) or generic (reports the state of a Findel
contract taking its id as an argument).

Defaulting on Debt. A concise financial DSL does not prevent borrowers from
defaulting on their debt. It is up to a marketplace to solve this problem.

Requiring a 100% guarantee deposit seems safe, but is questionable from an
economical standpoint. People and organizations borrow money to invest it. The
no-arbitrage principle states that there is no guaranteed way to make a profit.
The investor reward, e.g. interest, is the premium for taking the inevitable risk
of business failure. Thus, this approach hardly makes economical sense.

A marketplace can also mimic the fractional reserve banking model by requir-
ing users to always be able to pay at least n% of their debt and punishing viola-
tors (e.g., by withholding their guarantee deposit). It does not solve the problem
of defaults completely though. In legacy finance, users have a fixed government-
issued identity, allowing banks to maintain a common database of their credit

11 In this particular case, an equivalent contract Give(Or(One(USD), One(EUR)))
solves the issue. In more complex cases this is not necessarily the case.

Findel: Secure Derivative Contracts for Ethereum 461

history. In a decentralized setting, users can create a practically indefinite num-
ber of identities. A production-ready marketplace should therefore take measures
to combat Sybil attacks.

Modeling Balances with Tokens. A more refined approach to modeling
users’ balances is to use tokens – a de-facto standard API [Tok16] for implement-
ing transferable units of value in Ethereum. Tokens are primarily used to rep-
resent company shares during so-called initial coin offerings [Ico17]. We assume
that tokens can be freely exchanged to any currency the marketplace operates
with. Given the address T of the Ethereum token contract, any Ethereum con-
tract can query the balance of any user U , and transfer its tokens (if it has any)
to an arbitrary address. Suppose Alice and Bob are token holders. Alice calls a
standard API function approve to allow Bob to withdraw a certain amount of
tokens from her account. Bob later calls transferFrom to transfer the tokens.
The transfer succeeds if Alice has enough funds.

We suggest the following procedure. A Findel contract’s issuer approves the
marketplace with the number of tokens he is potentially liable with. The mar-
ketplace implements enforcePayment by calling transferFrom thus trying to
withdraw tokens from the issuer and send them to the owner. Certainly, for the
execution to complete, the owner must either have enough tokens in the account,
or execute another Findel contract to fill it up. Thus we delegate the banking
functionality to the token smart contract and free the marketplace from holding
and transferring money [Kho16].

Multi-party Contracts. We might want to extend the Findel contracts model
to support more than two parties. An example of a three-party contract is buying
a car with insurance. A user can only buy a car while simultaneously signing
an insurance contract. We can express the two contracts (buyer – car dealer,
buyer – insurance company) in Findel DSL, but executing them atomically is
non-trivial. A possible way would be to use a gateway that keeps track of the
state of Findel contracts. If insuranceSigned indicates whether a user joined the
insurance contract, then buying with insurance looks like this (assuming CAR
is a token representing the ownership over a car):

If(insuranceSigned,And(Give(Scale(P,One(USD)),One(CAR))),Zero)

Local Client. In order to communicate with a Findel marketplace, users need
client-side software. Besides communicating with the Ethereum network, it might
also implement other functions:

– Create and store Findel contracts locally.
– Calculate the current value and other properties of Findel contracts based on

assumptions about external data (e.g., the e/$ exchange rate is between 1.0
and 1.2) or valuation techniques such as the lattice binomial model [CRR79].

462 A. Biryukov et al.

– Keep track of relevant Findel contracts and perform actions depending on
their state (e.g., if c1 gets executed, join c2).

– Store a predefined list of addresses of trusted gateways, similar to a list of
trusted certificate authorities in web browsers.

3.4 Platform Limitations

A Turing-complete programming language does not mean that all a programmer
can think of can be implemented inside an Ethereum contract. Gas costs aside,
the Ethereum network architecture implies certain limitations.

Lack of Precise Clock. Timing is important for almost all financial contracts.
Clock synchronization is a hard problem in decentralized systems, even more so
if participants can profit from manipulating timestamps. Blocks in Ethereum are
produced every 15 s; block timestamps provide causal ordering. Solidity contains
keywords for time units, but timestamps are ultimately controlled by miners.

Imperative Paradigm. Functional programming paradigm is well suited for
developing embedded DSLs [Gib13]. The original papers by Peyton Jones et al.
as well as all existing implementations of their DSL use functional languages
(Haskell [JES00,JE03,vS07], OCaml [Lex00], Scala [Wal12,Cha15]). In contrast,
Solidity and Serpent are imperative. Functional languages for Ethereum are in
a very early stage of development [FpE17].

Underdeveloped Type System. Ethereum supports neither decimal nor
floating-point types12, which often model amounts of money and currency
exchange rates respectively. The only numeric data types in Solidity are integers
of various bit lengths. Moreover, Solidity lacks type parameters, which could be
useful for Gateways (i.e., Gateway<int>).

4 Gas Costs

Every computational step in Ethereum is charged in terms of gas. Despite the
use of expensive permanent storage operations, the cost of running our imple-
mentation is not prohibitively high for a proof-of-concept.

We measure gas costs of managing common Findel contracts as assessed
by the Browser-solidity compiler [Bro16]13 for a marketplace supporting two
currencies (referred to as USD and EUR and not tied to any asset). The difference
between transaction and execution cost is that the former includes the overhead
of creating a transaction (i.e., a call from a client) and the latter does not (i.e., a
call from another contract) [Rev16].

12 A likely rationale: rounding issues break consensus.
13 Solidity version: 0.4.4+commit.4633f3de.Emscripten.clang.

Findel: Secure Derivative Contracts for Ethereum 463

4.1 Setup and Helper Functions

Registering a user implies initializing the user’s balances to zero for all supported
currencies. For testing purposes, we implement a gateway that uses the current
timestamp as data source and calculates a single keccak256 hash as a dummy
authenticity proof (Table 3).

Table 3. Cost of setup and helper functions (in gas units)

Operation Transaction cost Execution cost

Create a marketplace smart contract 2221599 1681095

Register a user 79462 58190

Check user’s balance 47667 26395

Get contract info 24407 959

Get description info 24706 1258

Update a gateway 36922 15650

4.2 Managing Common Derivatives

In our measurements, we omit cases where parties split the execution cost. We
assume that the issuer only pays for contract creation and issuance whereas
the owner pays for the execution. For simple Findel contracts, two Ethereum
transactions (one from each party) represent the whole lifecycle of a Findel
contract. In more complex cases, when a contract executes in multiple steps, we
sum up all costs that the owner bears to execute it completely. We also do not
account for gateway update costs (Table 4).

Table 4. Cost of handling Findel contracts for common derivatives (in gas units)

Operation Create and issue Join and execute

Tx cost Exec cost Tx cost Exec cost

One 184239 177967 58493 93602

Currency exchange (fixed rate) 663149 656877 101878 138430

Currency exchange (market rate) 300842 294570 59822 96196

Zero-coupon bond 373783 367511 143891 201750

Bond with two coupons 939566 933294 346871 477100

European option 519628 513356 278191 411103

Binary option 402359 396087 59826 96204

As of January 2017, the gas cost 10−9 ether per unit [Eth17]; the price of
ether fluctuated around $10 [Wor17]. That brings the cost of a typical Findel
contract operation (105–106 gas units) to 1.8–18 US cent.

464 A. Biryukov et al.

5 Related Work

[Sch13,Hvi10] review financial DSLs and related projects. [STM16,CBB16]
explore approaches to smart contract programming languages.

5.1 Composable Contracts by Peyton Jones et al.

Our work is inspired by the composable contracts as defined in [JE03], from
which we borrow some of our primitives (Zero, One, Scale, And, Or). It turns out
though that this notation is not directly transferable to blockchain environments
(at least to Ethereum) due to the way it formalizes temporal conditions (when,
until). Blockchains differ substantially from traditional centralized marketplaces
in how they model conditions. For this reason we introduced If and Timebound
primitives to express causal and temporal conditions respectively.

5.2 Logic Portfolio Theory by Steffen Schuldenzucker

Steffen Schuldenzucker in [Sch16] proposes an axiomatic approach to proving
no-arbitrage relationships between contracts based on the notation from [JE03].
Using a rigorously defined algebra of contracts, he proves well-known financial
theorems, such as the put-call parity. Formal semantics of Findel can be intro-
duced using a similar approach. This would enable formal verification techniques
that could substantially increase confidence in the safety of our language.

5.3 Preliminary Draft by Nick Szabo

Smart contracts pioneer Nick Szabo in [Sza02] presents “a mini-language” that
can be characterized as a middle ground between programming and legal speak.
The basic building block is a right (e.g., to receive $100 now). Rights are com-
bined using well-defined operators (when, then, also, with – analogous to our
primitives) and performed depending on external events. Parties are assumed
to have a trusted source of real-world information. The language is not purely
declarative: contracts may perform calculations and save values in state vari-
ables, which allows for more flexibility14.

6 Conclusion

Smart contracts in public blockchain networks seem to be a perfect match for
modeling financial agreements. Their unique value proposition is trustless exe-
cution, which reduces counterparty risks. We introduced Findel – a declarative
financial DSL built upon ideas from previous research in financial engineer-
ing. Formalizing contract clauses using Findel makes them unambiguous and

14 Szabo makes a case against state variables in general, stating that “they should be
avoided unless utterly necessary”.

Findel: Secure Derivative Contracts for Ethereum 465

machine-readable. We proved Ethereum to be a suitable platform for trading
and executing Findel contracts.

Nevertheless, the whole smart contract field is still in its infancy. Program-
mers who wish to implement a usable smart contract for handling financial
agreements need to be aware of the forthcoming challenges: from fundamen-
tal limitations of the blockchain network architecture to imperfect development
environment.

A Examples

– A fixed-rate currency exchange: the owner sells e10 for $11.

And(Give(Scale(10,One(EUR))),Scale(11,One(USD))

– A market-rate currency exchange: the owner sells e10 at market rate as
reported by the gateway at addr.

Scale(10,And(Give(One(EUR)), ScaleObs(addr,One(USD))))

– A zero-coupon bond: the owner receives $100 at t0.

Timebound(t0 − δ, t0 + δ,Scale(100,One(USD)))
– A bond with coupons: the owner receives $1000 (face value) in three years

(maturity date) and two coupon payments of $50 at regular intervals before
the maturity date.

And(At(now + 3 years, cface),And(At(now + 1 years, ccpn),At(now + 1 years, ccpn)))

where

cface = Scale(1000,One(USD)), ccpn = Scale(50,One(USD))

– A future (a forward15): parties agree to execute the underlying contract c
at t0.

Timebound(t0 − δ, t0 + δ, c)

– An option: the owner can choose at (European option) or before (American
option) time t0 whether to execute the underlying contract c.

Timebound(t0 − δ, t0 + δ,Or(c,Zero))

Timebound(now, t0 + δ,Or(c,Zero))

– A binary option: the owner receives $10 if a predefined event took place at
t0 and nothing otherwise.

If(addr,Scale(10,One(USD)),Zero)
15 In traditional finance, a future is a standardized contract while a forward is not.

This distinction is not relevant for our model.

466 A. Biryukov et al.

References

[ABC16] Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart
contracts. IACR Cryptol. ePrint Arch. 2016, 1007 (2016)

[Bis16] Statistical release. OTC derivatives statistics at end-june 2016 (2016).
https://www.bis.org/publ/otc hy1611.pdf

[Bro16] Browser-solidity online compiler (2016). https://ethereum.github.io/
browser-solidity/

[But14] A next-generation smart contract and decentralized application platform
(2014). https://github.com/ethereum/wiki/wiki/White-Paper

[CBB16] Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foun-
dations, design landscape and research directions. CoRR, abs/1608.00771
(2016)

[CF14] Yakoubov, S., Fromknecht, C., Velicanu, D.: A decentralized public key
infrastructure with identity retention. Cryptology ePrint Archive, Report
2014/803 (2014). http://eprint.iacr.org/2014/803

[Cha15] Chaudhary, S.: Adventures in financial and software engineering (2015).
https://falconair.github.io/2015/01/30/composingcontracts.html

[CRR79] Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach.
J. Finan. Econ. 7(3), 229–263 (1979)

[dC16] del Castillo, M.: JP Morgan, credit suisse among 8 in latest bank blockchain
test (2016). http://www.coindesk.com/jp-morgan-credit-suisse-among-8-
in-latest-bank-blockchain-test/

[Eth17] Ethstats (2017). https://ethstats.net/
[FpE17] Functional programming for ethereum (2017). https://github.com/

fp-ethereum/fp-ethereum
[FSNB09] Frankau, S., Spinellis, D., Nassuphis, N., Burgard, C.: Commercial uses:

going functional on exotic trades. J. Func. Program. 19(01), 27–45 (2009)
[Gai11] Gaillourdet, J.-M.: A software language approach to derivative contracts in

finance (2011). http://ceur-ws.org/vol-750/yrs06.pdf
[Gib13] Gibbons, J.: Functional programming for domain-specific languages. In:

Zsók, V., Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp.
1–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15940-9 1

[Gre16] Greenspan, G.: Why many smart contract use cases are simply impossible
(2016). http://www.coindesk.com/three-smart-contract-misconceptions/

[Hvi10] Hvitved, T.: A survey of formal languages for contracts. In: Fourth Work-
shop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS 2010), pp. 29–32. Citeseer (2010)

[Ico17] Icos, token sales, crowdsales (2017). https://www.smithandcrown.com/icos/
[JE03] Peyton Jones, S.L., Eber, J.-M.: How to write a financial contract, The Fun

of Programming (2003)
[JES00] Peyton Jones, S.L., Eber, J.-M., Seward, J.: Composing contracts: an adven-

ture in financial engineering, functional pearl. In: ICFP, pp. 280–292. ACM
(2000)

[Kho16] Khovratovich, D.: debt.sol (2016). https://gist.github.com/khovratovich/
45f68082b556b45eb64e8e1c3eb82892

[LC16] Lewison, K., Corella, F.: Backing rich credentials with a blockchain PKI
(2016). https://pomcor.com/techreports/BlockchainPKI.pdf

[Lex00] Ocaml at lexifi (2000). https://www.lexifi.com/blogs/ocaml

https://www.bis.org/publ/otc_hy1611.pdf
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://github.com/ethereum/wiki/wiki/White-Paper
http://eprint.iacr.org/2014/803
https://falconair.github.io/2015/01/30/composingcontracts.html
http://www.coindesk.com/jp-morgan-credit-suisse-among-8-in-latest-bank-blockchain-test/
http://www.coindesk.com/jp-morgan-credit-suisse-among-8-in-latest-bank-blockchain-test/
https://ethstats.net/
https://github.com/fp-ethereum/fp-ethereum
https://github.com/fp-ethereum/fp-ethereum
http://ceur-ws.org/vol-750/yrs06.pdf
https://doi.org/10.1007/978-3-319-15940-9_1
http://www.coindesk.com/three-smart-contract-misconceptions/
https://www.smithandcrown.com/icos/
https://gist.github.com/khovratovich/45f68082b556b45eb64e8e1c3eb82892
https://gist.github.com/khovratovich/45f68082b556b45eb64e8e1c3eb82892
https://pomcor.com/techreports/BlockchainPKI.pdf
https://www.lexifi.com/blogs/ocaml

Findel: Secure Derivative Contracts for Ethereum 467

[Mor16] Mortensen, S.: Universal contracts (2016). https://github.com/corda/
corda/tree/master/experimental/src

[Ora16] Oraclize (2016). http://www.oraclize.it/
[Rea16] Reality keys (2016). https://www.realitykeys.com/
[Rev16] Revere, R.R.: What is the difference between transaction cost and execu-

tion cost in browser solidity? (2016). https://ethereum.stackexchange.com/
q/5812/5113

[Sch13] Schiller, T.: Financial domain-specific language listing (2013). http://www.
dslfin.org/resources.html

[Sch14] Schuldenzucker, S.: Decomposing contracts (2014). http://www.ifi.uzh.ch/
ce/people/schuldenzucker/decomposingcontracts.pdf

[Sch16] Schuldenzucker, S.: An axiomatic framework for no-arbitrage relation-
ships in financial derivatives markets (2016). http://www.ifi.uzh.ch/ce/
publications/LPT.pdf

[Sir16] Gün Sirer, E.: Thoughts on the dao hack (2016). http://hackingdistributed.
com/2016/06/17/thoughts-on-the-dao-hack/

[STM16] Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for
distributed ledger technology. Cryptology ePrint Archive, Report 2016/1156
(2016). http://eprint.iacr.org/2016/1156

[Sza97] Szabo, N.: Formalizing and securing relationships on public networks (1997).
http://journals.uic.edu/ojs/index.php/fm/article/view/548

[Sza02] Szabo, N.: A formal language for analyzing contracts (2002). http://
nakamotoinstitute.org/contract-language/

[Tls16] Tlsnotary (2016). https://tlsnotary.org/
[Tok16] Ethereum improvement proposal: Token standard (2016). https://github.

com/ethereum/EIPs/issues/20
[vS07] van Straaten, A.: Composing contracts (2007). https://web.archive.org/

web/20130814194431/http://contracts.scheming.org
[Wal12] Walton, C.: Scala contracts project (2012). https://github.com/

channingwalton/scala-contracts/wiki
[Woo14] Wood, G.: Ethereum: a secure decentralised generalised transaction ledger

(2014). http://gavwood.com/paper.pdf
[Wor16] Gross domestic product 2015 (2016). http://databank.worldbank.org/data/

download/GDP.pdf
[Wor17] Worldcoinindex (2017). https://www.worldcoinindex.com/coin/ethereum

https://github.com/corda/corda/tree/master/experimental/src
https://github.com/corda/corda/tree/master/experimental/src
http://www.oraclize.it/
https://www.realitykeys.com/
https://ethereum.stackexchange.com/q/5812/5113
https://ethereum.stackexchange.com/q/5812/5113
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.ifi.uzh.ch/ce/people/schuldenzucker/decomposingcontracts.pdf
http://www.ifi.uzh.ch/ce/people/schuldenzucker/decomposingcontracts.pdf
http://www.ifi.uzh.ch/ce/publications/LPT.pdf
http://www.ifi.uzh.ch/ce/publications/LPT.pdf
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://eprint.iacr.org/2016/1156
http://journals.uic.edu/ojs/index.php/fm/article/view/548
http://nakamotoinstitute.org/contract-language/
http://nakamotoinstitute.org/contract-language/
https://tlsnotary.org/
https://github.com/ethereum/EIPs/issues/20
https://github.com/ethereum/EIPs/issues/20
https://web.archive.org/web/20130814194431/http://contracts.scheming.org
https://web.archive.org/web/20130814194431/http://contracts.scheming.org
https://github.com/channingwalton/scala-contracts/wiki
https://github.com/channingwalton/scala-contracts/wiki
http://gavwood.com/paper.pdf
http://databank.worldbank.org/data/download/GDP.pdf
http://databank.worldbank.org/data/download/GDP.pdf
https://www.worldcoinindex.com/coin/ethereum

Decentralized Execution of Smart Contracts:
Agent Model Perspective and Its Implications

Lin Chen(B), Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi

Department of Computer Science, University of Houston, Houston, TX 77004, USA
chenlin198662@gmail.com

Abstract. Smart contracts are one of the most important applications
of the blockchain. Most existing smart contract systems assume that for
executing contract over a network of decentralized nodes, the outcome in
accordance with the majority can be trusted. However, we observe that
users involved with a smart contract may strategically take actions to
manipulate execution of the contract for purpose to increase their own
benefits. We propose an agent model, as the underpinning mechanism
for contract execution over a network of decentralized nodes and public
ledger, to address this problem and discuss the possibility of preventing
users from manipulating smart contract execution by applying principles
of game theory and agent based analysis.

Keywords: Smart contract · Blockchain · Public ledger · Game theory

1 Introduction

In recent years, there have been papers and articles focusing on improving our
understanding of blockchain based crypto-currency using game theory [7,8,16].
The assumption behind these crypto-currency systems, e.g., Bitcoin, is that
participating users are financially driven. If a user has no interest in gain-
ing rewards from the system (e.g., mining, executing contract), he/she has no
incentive of staying in the system. Therefore, users should not be considered as
merely machines that have resources to execute the protocols of such system. By
nature, they are more like players/economic agents who attempt to maximize
their profits through participation. This motivates the use of game theory to
study blockchain-based smart contract and transaction systems. For instance, in
this line of research, a recent paper of Kiayias et al. studies mining as a game
in Bitcoin and analyzes the best strategy for users [7]. However, little research
has been done for understanding the behaviors of smart contract execution over
decentralized blockchain and public ledger under agent based model, which is
the main focus of this paper.

As such, we consider the strategic behavior of users in smart contracts. Briefly
speaking, a smart contract is a computerized transaction protocol that executes
the terms of a contract [19]. It could be viewed as a counterpart to a physical-
world contract in a decentralized system. Like a contract in the physical world,
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 468–477, 2017.
https://doi.org/10.1007/978-3-319-70278-0_29

Decentralized Execution of Smart Contracts 469

a smart contract may specify different conditions and define the payoffs for users
under each condition. The following is a simple example: if a random dice returns
0, then A pays one coin to B; if it returns 1, then B pays A one coin. Though
electronic commerce applications or contracts can be supported using centralized
systems, smart contract mostly relies on decentralized network of participants
where no single participant is necessarily trusted. A hallmark of smart contracts
is that enforcement is achieved through consensus.

A smart contract can involve multiple users/participants and large amounts
of crypto-currency. Thus, it has the potential to be more critical than mining
in pure crypto-currency systems (e.g., Bitcoin), in which only a fixed reward is
paid to successful miners. The amount of crypto-currency involved in a contract
may be many times and significantly higher than the cost of running the contract
itself. Therefore, users involved in a smart contract may strategically take actions
to maximize their own profits, which can cause significant problems and cast
doubt to the fundamental assumption of smart contract execution model based
on consensus or majority accepted outcome.

Considering the example mentioned above, suppose that A represents a set
of users. If the random dice returns 0, A has the incentive of lying and claiming
that it returns 1, and plays strategically according to the protocols of the system.
If the system applies Byzantine agreement protocols or alike to reach consensus,
then A plays as the set of malicious nodes in the Byzantine problem who attempt
to prevent a consensus on 0 (i.e., A tries to impose a consensus on the wrong value
1 or prevent the entire system from reaching a consensus at all). If the system
allows temporary branches and uses the longest chain rule to eventually resolve
branches, then A adds a block containing the wrong value of the dice and tries
to make it into the longest chain. The strategies that A may take are dependent
on the protocols of the system. In this paper, we do not necessarily restrict our
attention to one specific protocol or one specific embodiment of smart contract
system. Therefore we do not specify the actions of A but rather say whether
A lies or not. When we say A lies, we mean A plays strategically to produce
contract execution outcome that favors him/her financially regardless the true
result of the contract. Otherwise, we say A does not lie or A tells the truth -
always producing or accepting the outcome based on truthful execution of the
contract. The goal of this paper is to discuss the possibility and feasible strategies
to prevent users involved in smart contracts from lying or manipulating contract
execution outcome for personal financial gains.

It is worth pointing out that the risk of accepting the rogue outcome of
contract execution increases when a large percentage of nodes of a smart contract
system have direct or indirect financial involvement in a smart contract. Even for
contracts only directly involving few or just two participants, there is a possibility
that a subset of these directly involved participants can manipulate the outcome
by creating dependent contracts that distributes financial rewards to other nodes
of the system if they accept certain contract execution result, a form of bribing
in contract execution and outcome confirmation. There is no trivial solution or
prevention mechanism to this problem. In the worst case, every node may have

470 L. Chen et al.

either direct or indirect conflict of interests in terms of contract execution. In
addition, the anonymous nature of smart contract users/accounts and crypto-
currency wallets make it almost impossible to detect conflict of interests when
comes to contract execution.

Our Contributions. We suggest that participants of a smart contract based
system using blockchain and public ledger be considered as economic agents. As
a consequence, execution of smart contract over a network of untrusted nodes
using blockchain is better to be understood and studied under the framework of
agents with the assumption that their participation is motivated by self-interests
and financial benefits. When participants of a smart contract system (e.g., min-
ers, nodes for executing contracts) are involved in a smart contract, they may
have incentives and engage in negative behaviors (e.g., lying or manipulation)
to maximize their own interests. These include producing or accepting contract
execution outcome that favors themselves by ignoring or discarding results of
truthful execution of the contract. Furthermore, we discuss the feasibility of pre-
venting such behaviors through proper design of smart contract based systems.

We show that, in general, there is no guaranteed way to prevent users from
lying or engaging in bad behaviors in a smart contract system, and there exist
scenarios where lying on outcome of contract execution could be the dominant
strategy for a user (i.e., the user will lie regardless of the actions of other users).
To solve this problem, we introduce payment in the game, that is, we discuss the
scheme that can penalize a node by fining him/her some amount of coins if the
result of a smart contract execution is different from that of the majority. This
is a straightforward approach that works for many problems in game theory.
However, we show that, if all users are not only rational but also fall into a class
called superrationality, then there exist scenarios in which they will always lie
or behave badly regardless of how high the penalty or fine would be.

Our negative results rely heavily on the rationality assumption of the users
and participants of a smart contract system. However, rationality is a debatable
concept in game theory. There exists a line of research focusing on irrational
behaviors of people. It suggests that a person, even with perfect rationality of
himself/herself, might not fully trust the rationality of others. We show that
the problem changes significantly if we assume that users are not fully confident
in the rationality of others. We also characterize the amount of the penalty
that can prevent users from lying on contract execution outcome given that the
users’ belief in the rationality of others is reflected by some known probability
distribution.

The remainder of the paper is organized as follows: In Sect. 2 we give a short
review of smart contract and describe the problem we address in this paper.
Section 3 describes the agent model for smart contract execution over a network
of decentralized participants and the role of penalty. In Sect. 4 we discuss the way
to implement penalty in decentralized smart contract execution environment.
Section 5 discusses related work, and we conclude the paper in Sect. 6.

Decentralized Execution of Smart Contracts 471

2 Smart Contract and Problem Statement

We begin by defining smart contracts. The definition provided by Szabo [18] is:

Definition 1. A smart contract is a set of promises, specified in a digital form,
including protocols within which the parties perform on these promises.

However, this definition potentially covers a broad range of already exist-
ing centralized and client-server based e-commerce systems (e.g., Ebay), which
fundamentally distinguishes from blockchain based smart contracts that rely on
a decentralized network of untrusted nodes/participants and crypto-currency
(e.g., Ethereum [1]). Blockchain can enforce smart contracts in a decentralized
way without assuming any single trusted party. This is especially attractive in
scenarios where users involved in a contract do not necessarily trust each other.
As long as the entire blockchain system is “trusted” as a whole, it is guaranteed
that execution results of a smart contract could be trustworthy. Most of exist-
ing works assume that when the majority of participating nodes in a blockchain
system are honest, the system is trusted.

However, the situation is more complex in reality. Each node of the blockchain
may adopt different action strategies for different smart contracts to maximize
their own interests. This makes smart contract execution process more like an
economic game. We use the definition of a normal form game by Osborne [13]:

Definition 2. A normal form game Γ consists of:

– A finite set N of players (agents).
– A nonempty set Qi of strategies available for each player i ∈ N .
– A preference relation �i on Q = ×j∈NQj for each player i.

We restrict our attention to normal form games in this paper. For simplicity,
when we say a game, we mean a normal form game.

A strategy qi ∈ Qi is called a (weakly) dominant strategy for player i if no
matter what strategies are chosen by other players, choosing qi always gives i
an outcome that is not worse than any other strategy.

The Agent Model for Smart Contract. We consider the following model,
which we call an agent model for smart contracts. There is a smart contract which
involves N users (players). Each user j has a weight wj . The smart contract
specifies a set of possible future states of the system, depending on which each
user either gains or loses coins (crypto-currency). For simplicity we assume that
there are only two possible states S0 and S1. If a state Si occurs (i = 0 or 1),
user j will get zij coins (specifically, if zij < 0, then it means that user j loses −zij
coins). Once the smart contract starts to be executed, the state of the system is
unique and clear to all users/participants, and we call this state as the true state.
In a decentralized system for contract execution and confirmation, however, all
the users shall agree to a certain state based on which the smart contract is
executed; and this state may not necessarily be the true state because of the
agent assumption. We assume that every user will vote for/accept one state, and

472 L. Chen et al.

if users who vote for/accept a certain state Si have a total weight at least αW

where W =
∑N

j=1 wj , then the smart contract will be executed based on the state
Si. We discuss, under the described agent model, the possibility of preventing
users from lying on contract execution outcome by voting for/accepting incorrect
state.

Remark on the Model. A user may have different identities (pseudonyms) in
a public blockchain based smart contract system. For simplicity, in this paper,
we assume that each user owns exactly one identity, whereas identities and users
are used interchangeably. Depending on the protocols used in a blockchain based
contract system, parameters may have different meanings. For example, if the
system uses proof of work and longest chain rule (e.g., Bitcoin), then wj cor-
responds to the computation power of user j, and voting for a state Si means
generating a block that executes the smart contract based on Si (this may yield
a branch, though), and keeping adding blocks to make it into the longest chain.
For ease of presentation, we assume that there are only two possible states S0

and S1. However, our result can be easily extended to the case where there are
more possible states.

3 An Agent Model for Smart Contract Execution
with Penalty

We start with the following simple observation.

Observation 1. In the agent model, voting for the state that the user most
prefers is the dominant strategy.

Consider an arbitrary scenario in which every user votes for S0 or S1. If user j
prefers S1 most and does not vote for S1, then he/she can simply switch and
vote for S1 instead. Switching only decreases the utility of j if originally S1 is
the state based on which the smart contract is executed, and after switching
it becomes S0. However, this is impossible. Hence the observation is true. Note
that if S1 is not the true state, then user j always lies.

A common approach that prevents agents from lying in a game is to introduce
payments. We consider the most straightforward way of adding the payment to
the agent model, that is, if a user votes for a state that is different from the
state based on which the smart contract is executed, he/she will be penalized,
i.e., he/she will be fined a certain amount of coins.

Adding payment might prevent some users from lying on execution outcome.
Specifically, if the number of extra coins that a user gets by outputting wrong
outcome or lying is less than the penalty, he/she may choose to vote for the
true state. However, it is still possible that users are lying no matter how large
the penalty is. Consider the following scenario: The true state is S0. There are
users who strictly prefer S1 than S0. Let U be the set of them and suppose∑

j∈U wj ≥ αW . Focusing on users in U , there are two Nash equilibria, every
user in U voting for S0 or every user in U voting for S1. Consider an arbitrary

Decentralized Execution of Smart Contracts 473

user j ∈ U . When making his/her own decision, user j guess the decisions of
other players. If j is optimistic and assumes every other player in U are voting
for S1, he/she will vote for S1, otherwise if he/she is pessimistic and assumes
every other player in U are voting for S0, he/she will vote for S0. In such a
scenario, users may still lie. Furthermore, we have the following claim.

Theorem 2. In the agent model with penalty, if j is superrational and knows
that

∑
j∈U wj ≥ αW , then no matter how high the penalty is, j will always lie.

We provide the definition of superrationality as follows.

Definition 3 [6]. A player (agent) is called superrational if he/she has perfect
rationality (and thus maximize his/her own utility), assumes that all other play-
ers are superrational, and that a superrational player will always come up with
the same strategy as any other superrational player when facing the same prob-
lem.

We remark that, superrationality is also called renormalized rationality in
literature. According to the definition, if j is superrational, then he/she assumes
that any other user in U would behave in the same way as he/she does, in this
case, he/she will always vote for S1, hence Theorem 2 is true.

Our above arguments show that, in general, introducing payment does not
prevent users from lying. There exist scenarios in which users lie regardless of
how high the penalty is. However, superrationality or rationality may not apply
to real world application scenarios. As we have discussed, the incentive of lying
relies crucially on a user’s belief in certain behaviors of others. Specifically, he/she
believes that other users are all rational. However, rationality itself is one of the
most debatable issues in game theory in the sense that it seems to contradict a
lot of laboratory experiments, which suggests that people often fail to conform to
some of the basic assumptions of rationality. The “Centipede Game”, which was
constructed by Rosenthal [15] in 1982, is one of the most well-known examples
that illustrate such a phenomenon.

The centipede game is carried out between two players, say, A and B in a
fixed number of rounds which is known to both players. Initially both A and B
own 1 coin. At the beginning of round i, let ai and bi be the number of coins
owned by A and B respectively. If i is odd, A makes the decision of yes or no,
otherwise, B makes the decision. If A or B decides on yes, then the game moves
to round i+1, ai+1 = ai+1, bi+1 = bi+1. If A or B decides on no, then the game
stops. If it is A that decides on no (i.e., i is odd), then ai+1 = ai+2, bi+1 = bi−1.
Otherwise it is B that decides on no, then ai+1 = ai − 1, bi+1 = bi + 2.

Assuming that A is rational and he/she believes the rationality of B, then A
will decide on no at round 1 and the centipede game ends at the beginning. The
reasoning is that at the last round regardless of whose turn it is, the decision
will be no. Therefore, at the second to last round the opponent will decide
no to make sure that the number of his/her coins does not decrease. Iteratively
carrying out this argument we get the conclusion. However, this does not coincide
with the experiment results. For example, McKelvey and Palfrey [10] reported

474 L. Chen et al.

that only 15% of the players chose to end the game at the beginning in the
experiments they carried out. That means, in most of these experiments, people
do exhibit behaviors that contradict the traditional rationality assumptions in
game theory. More experimental results and discussions on the centipede game
and irrationality could be found in [11,20].

The experimental results suggest that people often do not have fully trust in
the rationality of the others. Notice that even if player A has perfect rationality,
however, if he/she does not believe in the rationality of B, then A may still
choose to continue the centipede game. Users involved in a smart contract may
encounter a similar situation. Consider user j ∈ U , whether j votes for S1 or not
depends on his/her belief in the other users. Following the studies on irrationality
in centipede game [2], we define the parameter τj(k), which indicates user j’s
belief in a certain behavior of user k, that is, user j believes that with probability
τj(k), user k will vote for S1, and with probability 1 − τj(k), user k will vote for
S0. Based on such assumptions, user j’s decision is based on the following.

For k �= j, we define Xk as a 0-1 random variable such that:

Pr(Xk = 1) = τj(k), P r(Xk = 0) = 1 − τj(k).

Suppose user j votes for S1, then based on j’s belief, the probability that
the smart contract is executed based on S1 is Pr(

∑
k �=j Xk + wj ≥ αW). Let pj

be the penalty if the smart contract is executed based on S0, then the expected
reward of j by lying (voting for S1) is

z1jPr(
∑

k �=j

wjXj ≥ αW − wj) − pj(1 − Pr(
∑

k �=j

Xj ≥ αW − wj))

= (z1j + pj)Pr(
∑

k �=j

wjXj ≥ αW − wj) − pj

The expected reward of j by telling the truth is

z0jPr(
∑

k �=j

wj(1 − Xj) ≥ αW − wj) = z0jPr(
∑

k �=j

wjXj ≤ (1 − α)W)

Therefore, as long as

z0jPr(
∑

k �=j

wjXj ≤ (1 − α)W) ≥ (z1j + pj)Pr(
∑

k �=j

wjXj ≥ αW − wj) − pj ,

is true, the rational user j will not lie. This means, if j does not fully believe in
the rationality of other users, then sufficient penalty can prevent j from lying.
Overall, the following is true:

Theorem 3. In the agent model with penalty, if a user does not fully believe
in the rationality of others, then a sufficient penalty can prevent him/her from
outputting incorrect contract execution outcome or lying.

Decentralized Execution of Smart Contracts 475

4 Implementation of Contract Execution with Penalty

Penalty plays a central role in the agent model of smart contract execution as
shown in the previous section’s analysis. We discuss the enforcement of penalty
in this section.

There are several strategies to eliminate disagreement in blockchain branches.
These strategies are also used to determine smart contract execution results
when there is disagreement. Common rules include longest-chain which is used
by Bitcoin [12], and GHOST which is used by Ethereum [17]. No matter what
strategy is used, we add following functions to support penalty in a decentralized
smart contract system:

– Recording users’ choices. Existing blockchain systems usually records only one
identity for each block and ignores supporters of the block. Recording sup-
porters is necessary for implementing penalty schemes. When a user accepts a
block, he/she should generate a signature of the block and broadcast it to the
network. Therefore, everyone can track users’ choices of the smart contract
execution outcome;

– Distribution of penalty. When a group of users supporting the wrong result
need to be penalized, users supporting the correct result can submit a penalty
request to the blockchain. The collected fine is distributed to them.

5 Related Work

We provide a brief overview on blockchain based smart contract and game theory
studies on these systems.

Ethereum is the most popular smart contract system [1]. It is based on
proof-of-work, but is planning to move to proof-of-stake. Luu et al. proposed
a formal method to analyze Ethereum smart contracts to detect potential
vulnerabilities [9].

The consequence of decentralization is subtle. Garay [5] and Pass et al. [14]
showed that, several important security properties defined in the work of
Nakamoto [12] are true, given the assumption that the majority of mining
power in the Bitcoin system is controlled by the honest miners. Without such an
assumption, however, security is not guaranteed. However, the assumption itself
is questionable. For example, in 2014, the mining pool GHash.io exceeded 50%
of the computational power in Bitcoin [3]. Thus, it becomes important to under-
stand the behavior of users that participate in the system and study mechanisms
that would motivate them to behave in an honest way.

There are a series of studies focusing on game theory aspects of users involved
in mining. From a game theory perspective, Eyal and Sirer [4] showed that even a
majority of honest miners is not enough to guarantee the security of the Bitcoin
protocol. Sapirshtein et al. [16] and Kiayias et al. [7] studies mining as a game
in Bitcoin and analyzes the best strategy of users.

476 L. Chen et al.

6 Conclusion and Future Work

In this paper, we establish an agent based framework to model smart contract
execution over a decentralized network of nodes/participants using blockchain
and public ledger. In contrast to the commonly accepted assumption that smart
contract execution outcome accepted by the majority can be trusted, agent based
model of smart contract execution assumes that nodes may have incentive to
manipulate or lie on outcome of contract execution in return for personal ben-
efits or financial gains even they are not directly involved in a contract. We
observe that users who are directly or indirectly involved in a smart contract
may strategically take actions to manipulate smart contract execution outcome
(e.g., produce or accept outcome that favors their own interests). In accordance
with agent based model, we discuss the possibility of preventing users from
engaging in bad behaviors in terms of contract execution or lying on contract
outcome. We provide negative results for general smart contract execution mod-
els. We also show that if penalty is introduced in contract execution and assume
that users are not fully confident in the rationality of other participants, then
it is plausible to prevent users from lying on outcome or manipulating result of
contract execution. Furthermore, we believe that, irrationality is an important
subject that would contribute to better understanding of user behaviors in a
decentralized cryptocurrency or smart contract system. A systematic investiga-
tion of irrationality in the context of smart contract execution and consensus is
an important open problem. Another interesting open problem is whether it is
possible to use other mechanisms, rather than financial penalty, to prevent users
from lying on contract outcome when it favors them the most.

References

1. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. White Paper (2014)

2. Dunbar, G., Wang, R., Wang, X.: Rationalizing irrational beliefs. Theor. Econ.
Lett. 6(06), 1219 (2016)

3. Duong, T., Fan, L., Zhou, H.S.: 2-hop blockchain: Combining proof-of-work and
proof-of-stake securely (2016)

4. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

5. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

6. Hofstadter, D.R.: Dilemmas for superrational thinkers, leading up to a luring lot-
tery. Sci. Am. 6, 267–275 (1983)

7. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of the 2016 ACM Conference on Economics and Compu-
tation, pp. 365–382. ACM (2016)

https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

Decentralized Execution of Smart Contracts 477

8. Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bit-
coin mining pools: a cooperative game theoretic analysis. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 919–927. International Foundation for Autonomous Agents and Multiagent
Systems (2015)

9. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

10. McKelvey, R.D., Palfrey, T.R.: An experimental study of the centipede game.
Econometrica: J. Econ. Soc. 803–836 (1992)

11. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for extensive form
games. Exp. Econ. 1(1), 9–41 (1998)

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
13. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
14. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchro-

nous networks. IACR Cryptol. ePrint Arch. 2016, 454 (2016)
15. Rosenthal, R.W.: Games of perfect information, predatory pricing and the chain-

store paradox. J. Econ. Theory 25(1), 92–100 (1981)
16. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. arXiv preprint arXiv:1507.06183 (2015)
17. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:

Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

18. Szabo, N.: Formalizing and securing relationships on public networks. First Mon.
2(9) (1997)

19. Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology Behind
Bitcoin is Changing Money, Business, and the World. Penguin, Westminster (2016)

20. Zauner, K.G.: A payoff uncertainty explanation of results in experimental centipede
games. Games Econ. Behav. 26(1), 157–185 (1999)

http://arxiv.org/abs/1507.06183
https://doi.org/10.1007/978-3-662-47854-7_32

A Concurrent Perspective on Smart Contracts

Ilya Sergey1(B) and Aquinas Hobor2

1 University College London, London, UK
i.sergey@ucl.ac.uk

2 Yale-NUS College and School of Computing, National University of Singapore,
Singapore, Singapore

hobor@comp.nus.edu.sg

Abstract. In this paper, we explore remarkable similarities between
multi-transactional behaviors of smart contracts in cryptocurrencies such
as Ethereum and classical problems of shared-memory concurrency. We
examine two real-world examples from the Ethereum blockchain and
analyzing how they are vulnerable to bugs that are closely reminiscent
to those that often occur in traditional concurrent programs. We then
elaborate on the relation between observable contract behaviors and
well-studied concurrency topics, such as atomicity, interference, synchro-
nization, and resource ownership. The described contracts-as-concurrent-
objects analogy provides deeper understanding of potential threats for
smart contracts, indicate better engineering practices, and enable appli-
cations of existing state-of-the-art formal verification techniques.

1 Introduction

Smart contracts are programs that are stored on a blockchain, a distrib-
uted Byzantine-fault-tolerant database. Smart contracts can be triggered by
blockchain transactions and read and write data on their blockchain [38].
Although smart contracts are run and verified in a distributed fashion, their
semantics suggest that one can think of them as of sequential programs, despite
the existence of a number of complex interaction patterns including e.g., reen-
trancy and recursive calls. This mental model simplifies both formal and informal
reasoning about contracts, enabling immediate reuse of existing general-purpose
frameworks for program verification [5,16,31,32] that can be employed to verify
smart contracts written in e.g. Solidity [15] with only minor adjustments.

Although all computations on a blockchain are deterministic,1 a certain
amount non-determinism still occurs due to races between transactions them-
selves (i.e. which transactions are chosen for a given block by the miners).
We will show in that non-determinism can be exploited by adversarial parties
and makes reasoning about contract behavior particularly subtle, reminiscent to
known challenges involved in conventional concurrent programming.

1 This requirement stems from the way the underlying Byzantine distributed ledger
consensus protocol enables all involved parties to agree on transaction outcomes.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 478–493, 2017.
https://doi.org/10.1007/978-3-319-70278-0_30

A Concurrent Perspective on Smart Contracts 479

In this paper we outline a model of smart contracts that emphasizes the
properties of their concurrent executions. Such executions can span multiple
blockchain transactions (within the same block or in multiple blocks) and thereby
violate desired safety properties that cannot be stated using only the contract’s
implementation and local state—precisely what the existing verification method-
ologies focus on [5,32]. To facilitate the reuse of the common programming intu-
ition, we propose the following analogy:

Accounts using smart contracts in a blockchain
are like

threads using concurrent objects in shared memory.

Threads using concurrent objects in shared memory. By concurrent objects
we mean the broad class of data structures that are employed to exchange
data between and manage the interaction of multiple threads (processes)
running concurrently [20]. Typical examples of concurrent objects are locks,
queues, and atomic counters—typically used via popular libraries such as
java.util.concurrent. At runtime, these concurrent objects are allocated in a
block of shared memory that is accessible to the running threads. The behavior
resulting from the threads accessing the objects simultaneously—i.e. interfer-
ence—can be extremely unpredictable and thus extremely difficult to reason
about.

Concurrent objects whose implementation does not utilize proper synchro-
nization (e.g., with locks or barriers) can manifest data races2 under interference
leading to a loss of memory integrity. Even for race-free objects the observed
behavior under interference may be erroneous from the perspective of one or
more clients. For example, a particular thread may not “foresee” the actions
taken by the other threads with a shared object and thus may not expect for
that object to change in all of the ways that it does change under interference.

Accounts using smart contracts in a blockchain. Smart contracts are analogous
to concurrent objects. Instead of residing in a shared memory they live in the
blockchain; instead of being used by threads they are invoked by accounts (users
or other contracts). Like concurrent objects, they have internal mutable state,
manage resources (e.g. funds), and can be accessed by multiple parties both
within a block and in multiple blocks. Unlike traditional concurrent objects, a
smart contract’s methods are atomic due to the transactional model of com-
putation. That is, a single call to a contract (or a chain of calls to a series of
contracts calling each other), is executed sequentially—without interrupts—and
either terminates after successfully updating the blockchain or aborts and rolls
back to its previous configuration before the call.

The notion of “atomicity for free” is deceptive, however, as concurrent behav-
ior can still be observed at the level of the blockchain:

2 That is, unsynchronized concurrent accesses by different threads to a single memory
location when at least one of those accesses is a write.

480 I. Sergey and A. Hobor

– The order of the transactions included to a block is not determined at the
moment of a transaction execution, and, thus, the outcome can largely depend
on the ordering with respect to other transactions [27].

– Several programming tasks require the contract logic to be spread across
several blockchain transactions (e.g., when contracts “communicate” with
the world outside of the blockchain), enabling true concurrent behavior.

– Calling other contracts can be considered to be a kind of cooperative mul-
titasking. By cooperative multitasking we mean that multiple threads can
run but do not get interrupted unless they explicitly “yield”. That is, a call
from contract A to contract B can be considered to be a yield from contract
A’s perspective, with contract B yielding when it returns. The key point for
smart contracts is that contract B can run code that was unantici-
pated by contract A’s designer, which makes the situation much closer
to a concurrent setting than a typical sequential one.3 In particular, contract
B can modify state that contract A may assume is unchanged during the
call. This is the essence of The DAO bug [9], in which contract B made a call
back into contract A to modify A’s local state before returning [27]. However,
reentrancy is not the only way this kind of error can manifest, since:

– It is not difficult to imagine a scenario in which a certain contract is used as a
service for other parties (users and contracts), managing the access to a shared
resource and, in some sense, serving as a concurrent library. As multi-contract
transactions are becoming more ubiquitous, various interference patterns can
be observed and, thus, should be accounted for.

Our goals and motivation. Luckily, the research in concurrent and distributed
programming conducted in the past three decades provides a large body of the-
oretical and applied frameworks to code, specify, reason about, and formally
verify concurrent objects and their implementations. The goal of this paper is
thus twofold. First, we are going to provide a brief overview of some known con-
currency issues that can occur in smart contracts, characterizing the problems
in terms of more traditional concurrency abstractions. Second, we are aiming to
build an intuition for “good” and “bad” contract behaviors that can be identified
and verified/detected correspondingly, using existing formal methods developed
for reasoning about concurrency.

2 Deployed Examples of Concurrentesque Behavior

Here we discuss two contracts that have been deployed on the Ethereum
blockchain that each illustrate different aspects of concurrent-type behavior. The
BlockKing contract, like many others on the Ethereum blockchain today, imple-
ments a simple gambling game [2]. Although BlockKing is not heavily used, we
study it because it showcases a potential use of the Oraclize service [4], which
is a service that allows contracts to communicate with the world outside of the
blockchain and thus invites true concurrency. Since the early adopters of the
3 A better term would be “uncooperative multitasking” under the circumstances.

A Concurrent Perspective on Smart Contracts 481

Oraclize service wrote it as a demonstration of the service and has made its
source code freely available, it is likely that many other contracts that wish to
use Oraclize will mirror it in their implementations.

The second example we discuss is the widely-studied bug in the DAO contract
[1]. The DAO established an owner-managed venture capital fund with more than
18,000 investors; at its height it attracted more than 14% of all Ether coins in
existence at that time. The subsequent attack on it cost investors approximately
3.6 million Ether, which at that time was worth approximately USD 50 million.
The DAO employed what we call “uncooperative multitasking”, in that when
the DAO sent money to a recipient then that recipient was able to run code that
interfered (via reentrancy) with the DAO’s contract state that the DAO assumed
would not change during the call.

2.1 The BlockKing Contract

The gamble in BlockKing works as follows. At any given time there is a designated
“Block King” (initially the writer of the contract). When money is sent to the
contract by a sender s, a random number j is generated between 1 and 9. If the
current block number modulo 10 is equal to j then s becomes the new Block
King. Afterwards, the Block King gets sent a percentage of the money in the
contract (from 50% to 90% depending on various parameters), and the writer of
the contract gets sent the balance.

Generation of good quality random numbers is often difficult in deterministic
systems, especially in a context in which all data is publicly stored—and in which
there are financial incentives for attackers. Accordingly, BlockKing utilizes the
services of a trusted party, Wolfram Alpha, to generate its random numbers
using the Oraclize service. Assuming Oraclize is well-behaved, this strategy for
random number selection should be very difficult for attackers to predict.

The code for BlockKing is 365 lines long, but the lines of particular interest
are given in Fig. 1; line numbers here refer to the actual source code of the
contract as given by Etherscan [2]. The enter function is called when money is
sent to the contract. It sets some contract variables (lines 299–301) and then
sends a query to the Oraclize service (line 303).

The oraclize_query function raises an event visible in the “real world” before
returning to its caller, which then exits (line 304). In the real world the Oraclize
servers monitor the event logs, service the request (in this case by contacting
the Wolfram Alpha web service), and then make a fresh call into the originating
contract at a designated callback point (line 306 in BlockKing). Between the event
and its callback, many things can occur, in the sense that the the blockchain can
advance several blocks between the call to oraclize_query and the resumption
of control at __callback. During this time the state of the blockchain, and even
of the BlockKing contract itself, can have changed drastically. In other words,
this is true concurrent behavior on the blockchain.

What can go wrong? Suppose that multiple gamblers wish to try their luck
in a short period of time (even within the same block). The contract makes no
attempt to track this behavior. Accordingly, each new contestant will overwrite

482 I. Sergey and A. Hobor

Fig. 1. BlockKing code fragments [2].

the previous one’s data (the critical warriorBlock and warrior variables) in lines
299–301. When the callbacks do eventually occur, the last contestant in the batch
will enjoy multiple chances to win the throne curtesy of the earlier contestants in
that batch who payed for the other callbacks! The culprit is lines 339–347 from
the process_payment function, called as the last line of the __callback function
in line 309.

Each time the process_payment function is called the least significant digit of
warriorBlock is computed and stored into the variable singleDigitBlock.4 Each
time the process_payment function is called by __callback he has a new chance
to match the random number in line 339. If the numbers do match, then that
final contestant is crowned on line 345.

2.2 The DAO Contract

The source code for the DAO is 1,239 lines and markedly more complex than
BlockKing [23]. Since much has already been written about this bug (e.g. [9,27]),
we present in Fig. 2 only the key lines. The problem is the order of line 1012,
which (via a series of further function calls) sends Ether to msg.sender, and line
1014, which zeros out the balance of msg.sender’s account.

In a sequential program, reordering two independent operations has no effect
on the ultimate behavior of the program. However, in a concurrent program
4 For reasons that seem rather strange to us, this modulus is computed very ineffi-

ciently in lines 315–338 of the contract, which we elide to save space.

A Concurrent Perspective on Smart Contracts 483

Fig. 2. DAO code fragment [23].

the effect of a sequentially-harmless reorder can have significant effect since the
order in which operations occur can affect how the threads interfere. In the DAO,
sending the Ether in line 1012 “yields” control, in some multitasking sense, to
any arbitrary (and thus potentially malicious) contract located at msg.sender.

Unfortunately, the DAO internal state still indicates that the account is
funded since its account balance has not yet been zeroed out in line 1014. Accord-
ingly, a malicious msg.sender can initiate a second withdrawal by calling back
into the DAO contract, which will in turn send a second payment when control
reaches line 1012 again. In fact, the malicious msg.sender can then initiate a
third, fourth, etc. withdrawal, all of which will result in payment. Only at the
end is his account zeroed out, after being paid many multiples of its original
balance.

Previous analyses of this bug have indicated that the problem is due to
recursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic Updates in Shared-Memory Concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of

484 I. Sergey and A. Hobor

Fig. 3. A concurrent counter (left) and its two-thread client application (right).

thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no
interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,
this is not always the case in the presence of concurrently running thread2, and
not only a and b will be different, the later call to c.set() will also “overwrite”
the result of the earlier one.

A better designed implementation of Counter could have instead provided
an atomic implementation of incr(), implemented via a version of fetch-and-
increment operation [20, §5.6], via explicit locking, or by means of Java’s
synchronized keyword. However, given the only two methods, get and set, the
implementation of Counter has synchronization properties of an atomic register
whose consensus number [20, §5.1] (i.e., the number of concurrent threads that
can unambiguously agree on the outcomes of get and set) is exactly 1. Therefore,
it is fundamentally impossible to implement an atomic incrementation of c by
using only get and set, and without relying on some additional synchronization,
by giving priorities to certain preordained threads.

Perhaps a bit surprisingly, even though the implementation of Counter from
Fig. 3 is not flawed by itself, its weak atomicity properties render it quite use-
less in the presence of an unbounded number of threads, making it virtually
impossible to make any stable (i.e., resilient with respect to concurrent changes)
assumptions about its internal state.

A Concurrent Perspective on Smart Contracts 485

3.2 Atomic Updates in Concurrent Blockchain Transactions

The left part of Fig. 4 shows a smart contract, implemented in Solidity [15], with
functionality and methods reminiscent to those of an atomic concurrent counter.
The function get allows one to query the contract for the current balance, asso-
ciated with some fixed address id, whereas the set function allows one to update
balance with the new balance, taken from the message via msg.value, sending
back the old amount and returning it as a result.

Fig. 4. A counter contract (left) and a synchronizing testAndSet method (right).

Since the bodies of both get and set are going to be executed sequentially in
the course of some transactions, neither there is any need to synchronized them,
nor there is any explicit way to do so in Solidity. However, it is not difficult
to observe that as an implementation of the simplest possible storage (e.g., for
some id-related funds), used by multiple different parties to update it’s balance,
the Counter contract is as useless as its Java counterpart from Fig. 3.

For instance, imagine that two parties, unaware of each other try to incre-
ment the amount, stored by an instance of Counter by a certain value. Since the
contract does not provide a way for them to do it in one operation, they will
have to first query the amount via get and then try to change it via set function,
following the same pattern as the implementation of incr from Fig. 3. Indeed,
both these calls can be accomplished in a single transaction, which would make
the execution sequential. However, because of the limited gas requirement,5 it
is ill-advised to call more than one external contract in the course of execu-
tion. Furthermore, the call to get can be performed by a client, external to the
blockchain, which would mean that the consecutive calls to get and set will end
up in two different transactions. If this is the case, those calls might interfere
with other transactions, launched by multiple parties trying to modify Counter

5 This is a standard way in Ethereum to ensure that execution of a contract terminates:
by supplying it with a limited amount of “gas”, used as a fuel for execution steps.

486 I. Sergey and A. Hobor

at the same time, making us face the familiar problem: the result of calling the
function set cannot be predicted out of the local observations.

The cause of the described problem, both in the shared-memory and
blockchain cases, is the lack of strong synchronization primitives, allowing one
to simultaneously observe and manipulate with the counter in the presence
of concurrent executions. One solution to the problem, which would make it
possible to increment the counter atomically, is to enhance the counter with
the testAndSet function (right part of Fig. 4). This function implements the
check/update logic similar to the compare-and-swap primitive [20, §5.8], (known
as CMPXCHG, on the Intel x86 and Itanium architectures), as a way to implement
synchronization between multiple threads. The consensus number of testAndSet
(and some other similar Read-Modify-Write primitives) is known to be ∞, hence
it is strong enough to allow an arbitrary number of concurrent parties agree on
the outcome of the operation.

Notes on formal reasoning and verification. The modern formal approaches for
runtime concurrency verification, based on exploring dynamic execution traces
and summarizing their properties, provide efficient tools for detecting the viola-
tions of atomicity assumptions, and the lack of synchronization [26]. For instance,
by translating our contract to the corresponding shared-memory concurrent
object, one would be able to use the existing tools to summarize its traces [13],
thus, making it possible to observe undesired interaction patterns.

4 State Ownership and Permission Accounting

A different way to prohibit the unwelcome interference on a contract’s state is
to engineer a tailored permission accounting discipline, controlling the set of
operations allowed for different parties.

Let us first notice that the problems exhibited by the two-thread example
in Fig. 3 and preventing one from asserting anything about its state x could
be avoided if we enforced a restricted access discipline: for instance, by stating
that at any moment at most one thread can query/modify its state. This would
grant the corresponding thread an exclusive ownership [30] over the object, thus,
justifying any assertions made locally from this thread about the object’s state.

The unique ownership is traditionally ensured in Ethereum’s contracts by
disallowing any other party, but a dedicated owner, make critical changes in
the contract state. For instance, Fig. 5 (left) shows an altered version of the
Counter contract, so no other party can interact with it but its “owner”. The
ownership discipline is enforced by Solidity’s mechanism of modifiers, allowing
one to provide custom dynamically checked pre-/postconditions for functions.
In our example, the byOwner modifier will enforce that the functions get and set

will be only invoked on behalf of a fixed party—the owner of the contract.
This is a rather crude solution to the interference problem, as it would mean

to exclude any concurrent interaction at a contract whatsoever. It is quite illu-
minating, though, from a perspective on thinking of contracts as concurrent

A Concurrent Perspective on Smart Contracts 487

Fig. 5. An exclusively-owned (left) and Read/Write-locked (right) contract.

objects, allowing us to immediately apply our analogy: accounts are threads.
Indeed, by imposing a specific ownership discipline on a contract as shown in
Fig. 5 is similar to enhancing its Java counterpart with an explicit check of
Thread.currentThread().getId().

Let us now try to push the analogy between accounts and threads a bit
further by designing a version of a counter with more elaborated access rights.
In particular, we are going to ensure that as long as there are accounts (aka
“threads”) “interested” in having its value immutable (as their internal logic
might rely on its immutability), no other party may be allowed to modify it.
Similarly, if at the moment there is exactly one party that holds a unique per-
mission to modify the counter, no other parties may be allowed to read it. The
solution to this synchronization problem is well-known in a concurrency commu-
nity by the name Read/Write lock [6]. Its implementation requires keeping track
of threads currently reading and writing to the shared object, so a thread should
explicitly acquire the corresponding permission before performing a read/write
operation, and then should release it upon finishing.

The right part of Fig. 5 shows the essential fragments of the Read/Write-
locked contract implementation. The two new fields, readers and writer keep
track of the currently active readers and writers. The new modifiers canRead and
canWrite are to be used for the omitted get and set operations correspondingly.
Finally, acquireReadLock allows its caller to acquire the lock as long as there is
no active writer in the system, by registering it in the readers mapping.

As we can see, the accounts-as-threads is a rather powerful analogy, suggest-
ing a number of solutions to possible synchronization problems that can be taken
verbatime from the concurrency literature. The only drawback of the presented
solution is the fact that it is rather monolithic: the contract now combines the

488 I. Sergey and A. Hobor

functionality of the data structure (i.e., the counter) and that of a synchro-
nization primitive (i.e., a lock). We will discuss possible ways to improve the
modularity of the implementation in Sect. 5.

Notes on formal reasoning and verification. Formal reasoning about permission
accounting and separation of state access is a long studied topic in the shared-
memory concurrency literature (see, e.g., [8] for an overview). Formalisms, such
as Concurrent Separation Logic and [30] Fractional/Counting permissions [6]
provide a flexible way to define the abstract ownership discipline and verify that
a particular implementation follows it faithfully. For instance, our Read/Write
lock contract can be formally proven safe (i.e., prohibiting concurrent write-
modifications) using a formal model of permissions by Bornat et al. [6].

5 Discussion

5.1 Composing the Contracts

The locking contract “pattern”, considered in Sect. 4, has a significant drawback:
its design is non-modular. That is, the locking machinery is implemented by the
contract itself rather than by a third-party library. This is at odds with good
practices of software engineering, in which it is advised to implement synchro-
nization primitives, such as ordinary and reentrant locks, as standalone libraries,
which can be used for managing access client-specific resources.

But once the lock logic is factored out of the contract, the reasoning about
the contract’s behavior becomes significantly more difficult, as, in order to prove
the preservation of its internal invariants, one needs to be aware of the properties
of the extracted locking protocol, such as, e.g., uniqueness of a writer, which are
external to the contract. In other words, verification of a contract can no longer
be conduced in an isolated manner and will require building a model that allows
reasoning about a contract interacting with other, rigorously specified contracts.
The idea of disentangling the logic of contracts is not inherent to our concurrent
view and is paramount in the existing good practices of contract development.
For instance, the same idea is advocated as a way to implement upgradable
contracts in Ethereum through introducing and additional level of indirection
[11]. Having a “contract factory”, implemented as another contract, which can
be invoked by any party, poses verification challenges similar to those of proving
the safety properties of higher-order concurrent object (i.e., an object, that is
manipulating with other objects) [19].

The idea of compositional reasoning and verification of mutually-dependent
and higher-order concurrent objects using concurrency logics has been a sub-
ject of a large research body in the past decade [12,33,34,37]. Most of those
approaches focus on a notion of protocol, serving as an abstract interface of an
object’s behavior in the presence of concurrent updates, while hiding low-level
implementation details (i.e., the actual code). We believe, that by leveraging our
analogy, we will be able to develop a method for modular verification of such
multi-contract interactions.

A Concurrent Perspective on Smart Contracts 489

5.2 Liveness Properties

With the introduction of locks and exclusive access, another concurrency-related
issue arises: reasoning about progress and liveness properties of contract imple-
mentations. For instance, it is not difficult to imagine a situation, in which a par-
ticular account, registered as a “reader” in our example from Fig. 5, might never
release the reader-lock, thus, blocking everyone else from being able to change
the contract’s state in the future. The liveness in this setting would mean that
eventually something good happens, meaning that any party is properly incen-
tivised to release the lock. In a concurrency vocabulary, such an assumption can
be rephrased as fairness of the system scheduler, making it possible to reuse
existing proof methods for modular reasoning about progress [25] and termina-
tion [18] in of single- and multi-contract executions.

6 Related Work

Formal reasoning about smart contracts is an emerging and exciting topic, and
suitable abstractions for describing a contract’s behavior are a subject of active
research. In this section, we relate our observations to the existing results in
formalizing and verifying contract properties, outlining promising areas that
would benefit from our concurrency analogy.

6.1 Verifying Contract Implementations

Since the DAO bug [9], the Ethereum community has been focusing on preventing
similar errors, with the aid of general-purpose tools for program verification.

At the moment, contracts written in Solidity can be annotated with Hoare-
style pre/postconditions and translated down to OCaml code [32], so they
become amenable to verification using the Why3 tool, which uses automation to
discharge the generated verification conditions [16]. This approach is efficient for
verifying basic safety properties of Solidity programs, such as particular variables
always being within certain array index boundaries, and preservation of general
contract invariants (typically stated in a form if linear equations over values of
uint-valued variables) at the method boundaries and before performing external
contract calls—precisely what was violated by the DAO contract.

Bhargavan et al. have recently implemented a translation from a subset of
Solidity (without loops and recursion) [5] into F�—a programming language
and verification framework, based on dependent types [35]. They also provided
a translator from EVM bytecode to F� programs. Both these approaches made
it possible to use F� as a uniform tool for verification of contract properties,
such as invariant preservation and absence of unhandled exceptions, which were
encoded as an effect via F�’s support for indexed Hoare monad [36]. A similar
approach to specify the behavior of contracts and based on dependent types has
been adopted by Pettersson and Edström [31], who implemented a small effect-
based contract DSL as a shallow embedding into Idris [7], with the executable
code extracted to Serpent [14], a Python-style contract language.

490 I. Sergey and A. Hobor

Hirai has recently formalized the entire specification of Ethereum Virtual
Machine [22] in Lem [28] with extraction to the Isabelle/HOL proof assistant,
allowing mechanized verification of contracts, compiled to EVM bytecode, for
a number of safety properties, including assertions on mutable state and the
absence of potential reentrancy. Unlike the previous approaches, Hirai’s formal-
ization does not provide a syntactic way to construct and compose proofs (e.g.,
via a Hoare-style program logics), and all reasoning about contract behavior is
conducted out of the low-level execution semantics [38].

In contrast with these lines of work, which focus predominantly on low-
level safety properties and invariant preservation, our observations hint a more
high-level formalism for capturing the properties of a contract behavior and
its communication patterns with the outside world. In particular, we consider
communicating state-transition systems (STSs) [29] with abstract state as a
suitable formalism for proving, e.g., trace and liveness properties of contract
executions using a toolset of established tools, such as TLA+ [24]. In order
to connect such an abstract representation with low-level contract code, one
will have to prove a refinement [3] between the high-level and the low-level
representations, i.e., between an STS and the code. In some sense, finding a
suitable contract invariant and proving it via Why3 or F� may be considered as
proving a refinement between a one-state transition system, such that the only
state is what is described by the invariant, and an implementation that preserves
it. However, we expect more complicate STSs will be required in order to reason
about contracts with preemptive concurrency.

6.2 Reasoning About Global Contract Properties

The observation about some contracts being prone to unintentional or adver-
sarial misuse due to the interference phenomenon has been made by Luu et al.
[27]. They characterised the problem similar to what’s exhibited by our counter
example in Sect. 3 as transaction-ordering dependency (TOD), which under our
concurrency analogy can be generalized as a problem of unrestricted interference.
The solution to the TOD-problem, suggested by Luu et al., required changing
the semantics of Ethereum transactions, providing a primitive, similar to our
testAndSet from Fig. 4. While the advantage of such an approach is the absence
of the need to modify the already deployed contracts (only the client code inter-
acting with them needs to be changed), it requires all involved users to upgrade
their client-side applications, in order to account for the changes. In essence,
Luu et al.’s solution targets a very specific concurrency pattern: strengthening
synchronization, provided by atomic registers, by adding a blockchain-supported
read-modify-write primitive. Realizing the nature of the problem, hinted by our
analogy, might instead suggest alternative contract-based solutions, such as, e.g.,
engineering a locking proxy contract. The disadvantage of this approach is, how-
ever, the need to foresee this behavior at the moment of designing and deploying
a contract. That said, such an ability to model this behavior is precisely what,
we believe, our analogy enables.

A Concurrent Perspective on Smart Contracts 491

7 Conclusion

We believe that our analogy between smart contracts and concurrent objects can
provide new perspectives, stimulate research, and allow effective reuse of existing
results, tools, and insights for understanding, debugging, and verifying complex
contract behaviors in a distributed ledger. As any analogy, ours should not be
taken verbatim: on the one hand, there are indeed issues in concurrency, which
seem to be hardly observable in contract programming; on the other hand, smart
contract implementers should also be careful about notions that do not have
direct counterparts in the concurrency realm, such as gas-bounded executions
and management of funds.

To conclude, we leave the reader with several speculations, inspired by our
observations, but neither addressed nor disproved:

– A common concurrency challenge in non garbage-collected languages is to
track the uniqueness of heap locations, which can be later reclaimed and
repurposed—an issue dubbed the ABA problem [10]. With the lack of due
caution, the ABA problem may lead to the violation of the object’s state
integrity. Can we imagine a similar scenario in a multi-contract setting?

– Continuing the analogy, if one sees a blockchain as a shared state, then the
mining protocol defines the priorities for scheduling. Can we leverage the
insights from efficient concurrent thread management in order to analyze and
improve the existing distributed ledger implementations?

– Linearizability [21] (aka atomicity) is a standard notion of correctness for
specifying high-level behavior of lock-free concurrent objects. What would
be an equivalent de-facto notion of consistency for composite contracts with
multi-transactional operations, such as BlockKing?

Acknowledgements. Sergey’s research is supported by EPSRC grant EP/
P009271/1. Hobor’s research is funded by Yale-NUS College R-607-265-045-121.

References

1. The DAO. https://en.wikipedia.org/wiki/The DAO (organization)
2. BlockKing contract (2016). https://etherscan.io/address/0x3ad14db4e5a658d8d20

f8836deabe9d5286f79e1
3. Abadi, M., Lamport, L.: The existence of refinement mappings. In: LICS, pp. 165–

175. IEEE Computer Society (1988)
4. Bertani, T.: Oraclize (2016). http://www.oraclize.it
5. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,

Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: short paper. In: PLAS, pp.
91–96. ACM (2016)

6. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL, pp. 259–270. ACM (2005)

7. Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: ICFP, pp. 133–144. ACM (2013)

https://en.wikipedia.org/wiki/The_DAO_(organization)
https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
http://www.oraclize.it

492 I. Sergey and A. Hobor

8. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47–65 (2016)

9. Buterin, V.: Critical update re: DAO vulnerability. https://blog.ethereum.org/
2016/06/17/critical-update-re-dao-vulnerability

10. Dechev, D., Pirkelbauer, P., Stroustrup, B.: Understanding and effectively pre-
venting the ABA problem in descriptor-based lock-free designs. In: ISORC, pp.
185–192. IEEE Computer Society (2010)

11. Dimitrova, E.: Writing upgradable contracts in Solidity. https://blog.colony.io/
writing-upgradeable-contracts-in-solidity-6743f0eecc88. Accessed 3 Feb 2017

12. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.:
Concurrent abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS,
vol. 6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14107-2 24

13. Emmi, M., Enea, C.: Symbolic abstract data type inference. In: POPL, pp. 513–
525. ACM (2016)

14. Ethereum Foundation: The Serpent Contract-Oriented Programming Language.
https://github.com/ethereum/serpent

15. Ethereum Foundation: The Solidity Contract-Oriented Programming Language.
https://github.com/ethereum/solidity

16. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

17. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley, Boston (2006)

18. Gotsman, A., Cook, B., Parkinson, M.J., Vafeiadis, V.: Proving that non-blocking
algorithms don’t block. In: POPL, pp. 16–28. ACM (2009)

19. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: SPAA, pp. 355–364 (2010)

20. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. M. Kaufmann,
Burlington (2008)

21. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12(3), 463–492 (1990)

22. Hirai, Y.: Formalization of Ethereum Virtual Machine in Lem. https://github.com/
pirapira/eth-isabelle. Accessed 3 Feb 2017

23. Jentzsch, C.: The DAO (2016). https://etherscan.io/address/0xffbd72d37d4e7
f64939e70b2988aa8924fde48e3

24. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

25. Liang, H., Feng, X.: A program logic for concurrent objects under fair scheduling.
In: POPL, pp. 385–399. ACM (2016)

26. Lin, Y., Dig, D.: CHECK-THEN-ACT misuse of java concurrent collections. In:
ICST, pp. 164–173. IEEE Computer Society (2013)

27. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: CCS, pp. 254–269. ACM (2016)

28. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. In: ICFP, pp. 175–188. ACM (2014)

29. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8 16

https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
https://blog.colony.io/writing-upgradeable-contracts-in-solidity-6743f0eecc88
https://blog.colony.io/writing-upgradeable-contracts-in-solidity-6743f0eecc88
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://github.com/ethereum/serpent
https://github.com/ethereum/solidity
https://doi.org/10.1007/978-3-642-37036-6_8
https://github.com/pirapira/eth-isabelle
https://github.com/pirapira/eth-isabelle
https://etherscan.io/address/0xffbd72d37d4e7f64939e70b2988aa8924fde48e3
https://etherscan.io/address/0xffbd72d37d4e7f64939e70b2988aa8924fde48e3
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16

A Concurrent Perspective on Smart Contracts 493

30. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comp. Sci.
375(1–3), 271–307 (2007)

31. Pettersson, J., Edström, R.: Safer smart contracts through type-driven develop-
ment. Master’s thesis, Chalmers University of Technology, Department of Com-
puter Science and Engineering, Sweden (2016)

32. Reitwiessner, C.: Formal Verification for Solidity Contracts. https://forum.
ethereum.org/discussion/3779/formal-verification-for-solidity-contracts. Accessed
3 Feb 2017

33. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: PLDI, pp. 77–87. ACM (2015)

34. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation
of concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 169–188. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 11

35. Swamy, N.,Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure dis-
tributed programming with value-dependent types. In: ICFP, pp. 266–278. ACM
(2011)

36. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K., Béguelin,
S.Z.: Dependent types and multi-monadic effects in F∗. In: POPL, pp. 256–270.
ACM (2016)

37. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390. ACM (2013)

38. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/paper.pdf

https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
http://gavwood.com/paper.pdf

An Empirical Analysis of Smart Contracts:
Platforms, Applications, and Design Patterns

Massimo Bartoletti(B) and Livio Pompianu

Università degli Studi di Cagliari, Cagliari, Italy
{bart,livio.pompianu}@unica.it

Abstract. Smart contracts are computer programs that can be consis-
tently executed by a network of mutually distrusting nodes, without the
arbitration of a trusted authority. Because of their resilience to tamper-
ing, smart contracts are appealing in many scenarios, especially in those
which require transfers of money to respect certain agreed rules (like
in financial services and in games). Over the last few years many plat-
forms for smart contracts have been proposed, and some of them have
been actually implemented and used. We study how the notion of smart
contract is interpreted in some of these platforms. Focussing on the two
most widespread ones, Bitcoin and Ethereum, we quantify the usage of
smart contracts in relation to their application domain. We also analyse
the most common programming patterns in Ethereum, where the source
code of smart contracts is available.

1 Introduction

Since the release of Bitcoin in 2009 [40], the idea of exploiting its enabling tech-
nology to develop applications beyond currency has been receiving increasing
attention [26]. In particular, the public and append-only ledger of transaction
(the blockchain) and the decentralized consensus protocol that Bitcoin nodes
use to extend it, have revived Nick Szabo’s idea of smart contracts—i.e. pro-
grams whose correct execution is automatically enforced without relying on
a trusted authority [47]. The archetypal implementation of smart contracts is
Ethereum [28], a platform where they are rendered in a Turing-complete lan-
guage. The consensus protocol of Ethereum ensures that all and only the valid
updates to the contract states are recorded on the blockchain, so ensuring their
correct execution.

Besides Bitcoin and Ethereum, a remarkable number of alternative platforms
have flourished over the last few years, either implementing crypto-currencies
or some forms of smart contracts [1,7,9,30,37]. For instance, the number of
crypto-currencies hosted on coinmarketcap.com has increased from 0 to more
than 600 since 2012; the number of github projects related to blockchains and
smart contracts has reached, respectively, 2, 715 and 445 units (see Fig. 1). In the
meanwhile, ICT companies and some national governments have started dealing
with these topics [41,48], also with significant investments.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 494–509, 2017.
https://doi.org/10.1007/978-3-319-70278-0_31

http://coinmarketcap.com/
http://github.com

An Empirical Analysis of Smart Contracts 495

0
5
.2

0
1
3

1
2
.2

0
1
3

0
6
.2

0
1
4

0
1
.2

0
1
5

0
7
.2

0
1
5

0
1
.2

0
1
6

0
7
.2

0
1
6

0
1
.2

0
1
7

0

200

400

600

Time interval

N
u
m

b
er

o
f
cu

rr
en

ci
es

Crypto-Currencies

0
1
.2

0
1
2

0
7
.2

0
1
2

0
2
.2

0
1
3

0
8
.2

0
1
3

0
3
.2

0
1
4

0
9
.2

0
1
4

0
4
.2

0
1
5

1
1
.2

0
1
5

0
5
.2

0
1
6

1
2
.2

0
1
6

0

50

100

150

200

250

Time interval

N
u
m

b
er

o
f
p
ro

je
ct

s

Blockchain

Smart Contract

Fig. 1. On the left, monthly trend of the number of crypto-Currencies hosted on
coinmarketcap.com. On the right, number of new projects related to blockchains and
smart contracts which are created every month on github.com.

Despite the growing hype on blockchains and smart contracts, the under-
standing of the actual benefits of these technologies, and of their trustworthiness
and security, has still to be assessed. In particular, the consequences of unsafe
design choices for the programming languages for smart contracts can be fatal, as
witnessed by the unfortunate epilogue of the DAO contract [13], a crowdfunding
service plundered of ∼ 50M USD because of a programming error. Since then,
many other vulnerabilities in smart contract have been reported [12,14,18,37].

Understanding how smart contracts are used and how they are implemented
could help designers of smart contract platforms to create new domain-specific
languages (not necessarily Turing complete [27,29,33,42]), which by-design avoid
vulnerabilities as the ones discussed above. Further, this knowledge could help
to improve analysis techniques for smart contracts (like e.g.the ones in [25,37]),
by targeting contracts with specific programming patterns.

Contributions. This paper is a methodic survey on smart contracts, with a
focus on Bitcoin and Ethereum—the two most widespread platforms currently
supporting them. Our main contributions can be summarised as follows:

– in Sect. 2 we examine the Web for news about smart contracts in the period
from June 2013 to September 2016, collecting data about 12 platforms. We
choose from them a sample of 6 platforms which are amenable to analytical
investigation. We analyse and compare several aspects of the platforms in this
sample, mainly concerning their usage, and their support for programming
smart contracts.

– in Sect. 3 we propose a taxonomy of smart contracts, sorting them into cate-
gories which reflect their application domain. We collect from the blockchains
of Bitcoin and Ethereum a sample of 834 smart contracts, which we classify
according to our taxonomy. We then study the usage of smart contracts,
measuring the distribution of their transactions by category. This allows us
to compare the different usage of Bitcoin and Ethereum as platforms for smart
contracts.

http://coinmarketcap.com/
http://github.com

496 M. Bartoletti and L. Pompianu

– Section 4 we consider the source code of the Ethereum contracts in our sam-
ple. We identify 9 common design patterns, and we quantify their usage in
contracts, also in relation to the associated category. Together with the pre-
vious point, ours constitutes the first quantitative investigation on the usage
and programming of smart contract in Ethereum.

All the data collected by our survey are available online at: goo.gl/pOswL8.

2 Platforms for Smart Contracts

In this we analyse various platforms for smart contracts. We start by presenting
the methodology we have followed to choose the candidate platforms Sect. 2.1.
Then we describe the key features of each platform, pinpointing differences and
similarities, and drawing some general statistics Sect. 2.2.

2.1 Methodology

To choose the platforms subject of our study, we have drawn up a candidate
list by examining all the articles of coindesk.com in the “smart contracts” cate-
gory1. Starting from June 2013, when the first article appeared, up to the 15th
of September 2016, 175 articles were published, describing projects, events, com-
panies and technologies related to smart contracts and blockchains. By manually
inspecting all these articles, we have found references to 12 platforms: Bitcoin,
Codius, Counterparty, DAML, Dogeparty, Ethereum, Lisk, Monax, Rootstock,
Symbiont, Stellar, and Tezos.

We have then excluded from our sample the platforms which, at the time
of writing, do not satisfy one of the following criteria: (i) have already been
launched, (ii) are running and supported from a community of developers, and
(iii) are publicly accessible. For the last point we mean that, e.g., it must be
possible to write a contract and test it, or to explore the blockchain through
some tools, or to run a node. We have inspected each of the candidate plat-
forms, examining the related resources available online (e.g., official websites,
white-papers, forum discussions, etc.) After this phase, we have removed 6 plat-
forms from our list: Tezos and Rootstock, as they do not satisfy condition (i);
Codius and Dogeparty, which violate condition (ii), DAML and Symbiont, which
violate (iii). Summing up, we have a sample of 6 platforms: Bitcoin, Ethereum,
Counterparty, Stellar, Monax and Lisk, which we discuss in the following.

2.2 Analysis of Platforms

We now describe the general features of the collected platforms, focussing on:(i)
whether the platform has its own blockchain, or if it just piggy-backs on an
already existing one; (ii) for platforms with a public blockchain, their consensus

1 http://www.coindesk.com/category/technology/smart-contracts-news.

https://goo.gl/pOswL8
http://www.coindesk.com
http://www.coindesk.com/category/technology/smart-contracts-news

An Empirical Analysis of Smart Contracts 497

protocol, and whether the blockchain is public or private to a specific set of
nodes; (iii) the languages used to write smart contracts.

Bitcoin [40] is a platform for transferring digital currency, the bitcoins (BTC).
It has been the first decentralized cryptocurrency to be created, and now is
the one with the largest market capitalization. The platform relies on a public
blockchain to record the complete history of currency transactions. The nodes
of the Bitcoin network use a consensus algorithm based moderately hard “proof-
of-work” puzzles to establish how to append a new block of transactions to the
blockchain. Nodes work in competition to generate the next block of the chain.
The first node that solves the puzzle earns a reward in BTC.

Although the main goal of Bitcoin is to transfer currency, the immutability
and openness of its blockchain have inspired the development of protocols that
implement (limited forms of) smart contracts. Bitcoin features a non-Turing
complete scripting language, which allows to specify under which conditions a
transaction can be redeemed. The scripting language is quite limited, as it only
features some basic arithmetic, logical, and crypto operations (e.g., hashing and
verification of digital signatures). A further limitation to its expressiveness is
the fact that only a small fraction of the nodes of the Bitcoin network processes
transactions whose script is more complex than verifying a signature2.

Ethereum [28] is the second platform for market capitalization, after Bitcoin.
Similarly to Bitcoin, it relies on a public blockchain, with a consensus algorithm
similar to that of Bitcoin3. Ethereum has its own currency, caller ether (ETH).
Smart contracts are written in a stack-based bytecode language [49], which is
Turing-complete, unlike Bitcoin’s. There also exist a few high level languages
(the most prominent being Solidity4), which compile into the bytecode language.
Users create contracts and invoke their functions by sending transactions to the
blockchain, whose effects are validated by the network. Both users and contracts
can store money and send/receive ETH to other contracts or users.

Counterparty [32] is a platform without its own blockchain; rather, it embeds
its data into Bitcoin transactions. While the nodes of the Bitcoin network ignore
the data embedded in these transactions, the nodes of Counterparty recognise
and interpret them. Smart contracts can be written in the same language used
by Ethereum. However, unlike Ethereum, no consensus protocol is used to val-
idate the results of computations5. Counterparty has its own currency, which
can be transferred between users, and be spent for executing contracts. Unlike
Ethereum, nodes do not obtain fees for executing contracts; rather, the fees paid

2 As far as we know, currently only the Eligius mining pool accepts more general
transactions (called non-standard in the Bitcoin community). However, this pool
only mines ∼ 1% of the total mined blocks [20].

3 The consensus mechanism of Ethereum is a variant of the GHOST protocol in [46].
4 Solidity: http://solidity.readthedocs.io/en/develop/index.html.
5 See FAQ: How do Smart Contracts “form a consensus” on Counterparty?

http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-
a-consensus-on-counterparty.

http://solidity.readthedocs.io/en/develop/index.html
http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-a-consensus-on-counterparty
http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-a-consensus-on-counterparty

498 M. Bartoletti and L. Pompianu

by clients are destroyed, and nodes are indirectly rewarded from the inflation of
the currency. This mechanism is called proof-of-burn.

Stellar [10] features a public blockchain with its own cryptocurrency, governed
by a consensus algorithm inspired to federated Byzantine agreement [11]. Basi-
cally, a node agrees on a transaction if the nodes in its neighbourhood (that are
considered more trusted than the others) agree as well. When the transaction
has been accepted by enough nodes of the network, it becomes infeasible for an
attacker to roll it back, and it is considered as confirmed. Compared to proof-of-
work, this protocol consumes far less computing power, since it does not involve
solve cryptographic puzzles. Unlike Ethereum, there is no specific language for
smart contracts; still, it is possible to gather together some transactions (pos-
sibly ordered in a chain) and write them atomically in the blockchain. Since
transactions in a chain can involve different addresses, this feature can be used
to implement basic smart contracts. For instance, assume that a participant A
wants to pay B only if B promises to pay C after receiving the payment from A.
This behaviour can be enforced by putting these transactions in the same chain.
While this specific example can be implemented on Bitcoin as well, Stellar also
allows to batch operations different from payments6, e.g.creating new accounts.
Stellar features special accounts, called multisignature, which can be handled by
several owners. To perform operations on these accounts, a threshold of consen-
sus must be reached among the owners. Transaction chaining and multisignature
accounts can be combined to create more complex contracts.

Monax [8] supports the execution of Ethereum contracts, without having its
own currency. Monax allows users to create private blockchains, and to define
authorisation policies for accessing them. Its consensus protocol7 is organised in
rounds, where a participant proposes a new block of transactions, and the others
vote for it. When a block fails to be approved, the protocol moves to the next
round, where another participant will be in charge of proposing blocks. A block
is confirmed when it is approved by at least 2/3 of the total voting power.

Lisk [6] has its own currency, and a public blockchain with a delegated proof-
of-stake consensus mechanism8. More specifically, 101 active delegates, each
one elected by the stakeholders, have the authority to generate blocks. Stake-
holders can take part to the electoral process, by placing votes for delegates
in their favour, or by becoming candidates themselves. Lisk supports the exe-
cution of Turing-complete smart contracts, written either in JavaScript or in
Node.js. Unlike Ethereum, determinism of executions is not ensured by the lan-
guage: rather, programmers must take care of it, e.g.by not using functions
like Math.random. Although Lisk has a main blockchain, each smart contract
is executed on a separated one. Users can deposit or withdraw currency from a
contract to the main chain, while avoiding double spending. Contract owners can

6 https://www.stellar.org/developers/guides/concepts/operations.html.
7 https://tendermint.com/.
8 https://lisk.io/documentation?i=lisk-handbooks/DelegateHandbook.

https://www.stellar.org/developers/guides/concepts/operations.html
https://tendermint.com/
https://lisk.io/documentation?i=lisk-handbooks/DelegateHandbook

An Empirical Analysis of Smart Contracts 499

customise their blockchain before deploying their contracts, e.g.choosing which
nodes can participate to the consensus mechanism.

Table 1. General statistics of platforms for smart contracts.

Platform Blockchain Contract Language Total Tx Volume Marketcap

Type Size Block int. (K USD) (M USD)

Bitcoin Public 96 GB 10min Bitcoin scripts + signatures 184,045,240 83,178 15,482

Counterparty EVM bytecode 12,170,386 33 4

Ethereum Public 17–60GB 12 s EVM bytecode 14,754,984 10,354 723

Stellar Public ? 3 s Transaction chains + signatures ? 35 17

Monax Private ? Custom EVM bytecode + permissions ? n/a n/a

Lisk Private ? Custom JavaScript ? 45 15

Table 1 summarizes the main features of the analysed platforms. The question
mark in some of the cells indicates that we were unable to retrieve the informa-
tion (e.g., we have not been able to determine the size of Monax blockchains,
since they are private). The first three columns next to the platform name
describe features of the blockchain: whether it is public; its size; the average
time between two consecutive blocks. Note that Bitcoin and Counterparty share
the same cell, since the second platform uses the Bitcoin blockchain. Measuring
the size of the Ethereum blockchain depends on which client and which pruning
mode is used. For instance, using the Geth client, we obtain a measure of 17GB
in “fast sync” mode, and of 60GB in “archive” mode9. In platforms with pri-
vate blockchains, their block interval is custom. The fifth column describes the
support for writing contracts. The sixth column shows the total number of trans-
actions10. The last two columns show the daily volume of currency transfers, and
the market capitalisation of the currency (both in USD, rounded, respectively, to
thousands and millions)11. All values reported on Table 1 are updated to January
1st, 2017.

3 Analysing the Usage of Smart Contracts

In this we analyse the usage of smart contracts, proposing a classification which
reflects their application domain. Then, focussing on Bitcoin and Ethereum, we
quantify the usage of smart contracts in relation to their application domain.
We start by presenting the methodology we have followed to sample and clas-
sify Bitcoin and Ethereum smart contracts (Sect. 3.1). Then, we introduce our
classification and our statistical analysis (Sects. 3.2 and 3.3).

9 https://redd.it/5om2lw.
10 Sources: https://blockchain.info/charts/n-transactions-total (for Bitcoin), https://

blockscan.com (Counterparty), and https://etherscan.io (Ethereum).
11 Market capitalization estimated by http://coinmarketcap.com.

https://github.com/ethereum/go-ethereum/wiki/geth
https://redd.it/5om2lw
https://blockchain.info/charts/n-transactions-total
https://blockscan.com
https://blockscan.com
https://etherscan.io
http://coinmarketcap.com

500 M. Bartoletti and L. Pompianu

3.1 Methodology

We sample contracts from Bitcoin and Ethereum as follows:

– for Ethereum, we collect on January 1st, 2017 all the contracts marked as
“verified” on the blockchain explorer etherscan.io. This means that the con-
tract bytecode stored on the blockchain matches the source code (generally
written in a high level language, such as Solidity) submitted to the explorer.
In this way, we obtain a sample of 811 contracts.

– for Bitcoin, we start by observing that many smart contracts save their meta-
data on the blockchain through the OP RETURN instruction of the Bitcoin
scripting language [1,2,7,23]. We then scan the Bitcoin blockchain on Jan-
uary 1st 2017, searching for transactions that embed in an OP RETURN
some metadata attributable to a Bitcoin smart contract. To this purpose we
use an explorer12 which recognises 23 smart contracts, and extracts all the
transactions related to them.

3.2 A Taxonomy of Smart Contracts

We propose a taxonomy of smart contracts into five categories, which describe
their intended application domain. We then classify the contracts in our sample
according to the taxonomy. To this purpose, for Ethereum contracts we manually
inspect the Solidity source code, while for Bitcoin contracts we search their
web pages and related discussion forums. After this manual investigation, we
distribute all the contracts into the five categories, that we present below.

Financial. Contracts in this category manage, gather, or distribute money as
preeminent feature. Some contracts certify the ownership of a real-world asset,
endorse its value, and keep track of trades (e.g., Colu currently tracks over
50,000 assets on Bitcoin). Other contracts implement crowdfunding services,
gathering money from investors in order to fund projects (the Ethereum
DAO project was the most representative one, until its collapse due to an
attack in June 2016). High-yield investment programs are a type of Ponzi
schemes [22] that collect money from users under the promise that they will
receive back their funds with interest if new investors join the scheme (e.g.,
Government, KingOfTheEtherThrone). Some contracts provide an insurance
on setbacks which are digitally provable (e.g., Etherisc sells insurance poli-
cies for flights; if a flight is delayed or cancelled, one obtains a refund). Other
contracts publish advertisement messages (e.g., PixelMap is inspired to the
Million Dollar Homepage).

Notary. Contracts in this category exploit the immutability of the blockchain to
store some data persistently, and in some cases to certify their ownership and
provenance. Some contracts allow users to write the hash of a document on
the blockchain, so that they can prove document existence and integrity (e.g.,
Proof of Existence). Others allow to declare copyrights on digital arts files,

12 https://github.com/BitcoinOpReturn/OpReturnTool.

https://etherscan.io/contractsVerified
http://coloredcoins.org/explorer/
https://forum.daohub.org/
http://governmental.github.io/GovernMental/
https://www.kingoftheether.com/
https://fdi.etherisc.com/
http://pixelmap.io/
https://en.wikipedia.org/wiki/The_Million_Dollar_Homepage
https://proofofexistence.com/
https://github.com/BitcoinOpReturn/OpReturnTool

An Empirical Analysis of Smart Contracts 501

like photos or music (e.g., Monegraph). Some contracts (e.g., Eternity Wall)
just allow users to write down on the blockchain messages that everyone can
read. Other contracts associate users to addresses (often represented as public
keys), in order to certify their identity (e.g., Physical Address).

Game. This category gathers contracts which implement games of chance
(e.g., LooneyLottery, Dice, Roulette, RockPaperScissors) and games of skill
(e.g., Etherization), as well as some games which mix chance and skill (e.g.,
PRNG challenge pays for the solution of a puzzle).

Wallet. The contracts in this category handle keys, send transactions, manage
money, deploy and watch contracts, in order to simplify the interaction with
the blockchain. Wallets can be managed by one or many owners, in the latter
case requiring multiple authorizations (like, e.g.in Multi-owned).

Library. These contracts implement general-purpose operations (like e.g., math
and string transformations), to be used by other contracts.

3.3 Quantifying the Usage of Smart Contracts by Category

We analyse all the transactions related to the 0 smart contracts in our sample.
Table 2 displays how the transactions are distributed in the categories of Sect. 3.2.
For both Bitcoin and Ethereum, we show the number of detected contracts (third
column), and the total number of transactions (fourth column).

Overall, we have 1,673,271 transactions. Notably, although Bitcoin contracts
are fewer than those running on Ethereum, they have a larger amount of transac-
tions each. A clear example of this is witnessed by the financial category, where

Table 2. Transactions by category.

Category Platform Contracts Transactions

Financial Bitcoin 6 470, 391

Ethereum 373 624, 046

Notary Bitcoin 17 443, 269

Ethereum 79 35, 253

Game Bitcoin 0 0

Ethereum 158 58, 257

Wallet Bitcoin 0 0

Ethereum 17 1, 342

Library Bitcoin 0 0

Ethereum 29 37, 034

Unclassified Bitcoin 0 0

Ethereum 155 3, 679

Total Bitcoin 23 913, 660

Ethereum 811 759, 611

Overall 834 1, 673, 271

https://monegraph.com/
https://eternitywall.it/
https://proofofphysicaladdress.com/
https://etherscan.io/address/0x2ef76694fBfD691141d83F921A5ba710525De9B0#code
https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x18a672e11d637fffadccc99b152f4895da069601#code
https://etherscan.io/address/0x1d77340D3819007BbfD7fdD37C22BD3b5c311350#code
http://www.bspend.com/etherization
https://etherscan.io/address/0x4ed65e408439a7f6459b5cfbd364f373bd6ed5f7#comments
https://etherscan.io/address/0xA2D4035389aae620E36Bd828144b2015564C2702#code

502 M. Bartoletti and L. Pompianu

Financial Notary Wallet Game Library Unclassified

0

20

40

60

80
Bitcoin Ethereum Overall

Fig. 2. Distribution of transactions by category.

6 Bitcoin contracts13 totalize two thirds of the transactions published by the 373
Ethereum contracts in the same category (Fig. 2).

While both Bitcoin and Ethereum are mainly focussed on financial contracts,
we observe major differences about the other categories. For instance, the Bitcoin
contracts in the Notary category14 have an amount of transactions similar to that
of the Financial category, unlike in Ethereum. The second most used category
in Ethereum is Game. Although some games (e.g., lotteries [16,17,19,24] and
poker [36]) which run on Bitcoin have been proposed in the last few years,
the interest on them is still mainly academic, and we have no experimental
evidence that these contracts are used in practice. Instead, the greater flexibility
of the Ethereum programming language simplifies the development of this kind
of contracts (although with some quirks [31] and limitations15).

Note that in some cases there are not enough elements to categorise a con-
tract. This happens e.g., when the contract does not link to the project webpage,
and there are neither comments in online forums nor in the contract sources.

4 Design Patterns for Ethereum Smart Contracts

In this we study design patterns for Ethereum smart contracts. To this pur-
pose, we consider the sample of 811 contracts collected through the methodology
described in Sect. 3. By manually inspecting the Solidity source code of each of
these contracts, we identify some common design patterns. We start in Sect. 4.1
13 Bitcoin financial contracts: Colu, CoinSpark, OpenAssets, Omni, SmartBit, BitPos.
14 Bitcoin notary contracts: Factom, Stampery, Proof of Existence, Blocksign,

Crypto-Copyright, Stampd, BitProof, ProveBit, Remembr, OriginalMy, LaPreuve,
Nicosia, Chainpoint, Diploma, Monegraph, Blockai, Ascribe, Eternity Wall,
Blockstore.

15 Although the Ethereum virtual machine is designed to be Turing-complete, in prac-
tice the limitations on the amount of gas which can be used to invoke contracts also
limit the set of computable functions (e.g., verifying checkmate exceeds the current
gas limits of a transaction [35]).

https://www.colu.com/
http://coinspark.org/
https://github.com/OpenAssets
http://www.omnilayer.org/
https://www.smartbit.com.au/
https://bitpos.me/
https://www.factom.com/
https://stampery.com/
https://proofofexistence.com/
https://blocksign.com/
https://crypto-copyright.com/
https://stampd.io/
https://bitproof.io/
https://github.com/thereal1024/ProveBit
https://remembr.io/
https://originalmy.com/
http://lapreuve.eu/explication.html
http://digitalcurrency.unic.ac.cy/free-introductory-mooc/academic-certificates-on-the-blockchain/
http://www.chainpoint.org/
http://diploma.report/
https://monegraph.com/
https://blockai.com/
https://www.ascribe.io
https://eternitywall.it/
https://github.com/blockstack/blockchain-id/wiki/Blockstore

An Empirical Analysis of Smart Contracts 503

by describing these patterns. Then, in Sect. 4.2 we measure the usage of the
patterns in the various categories of contracts identified in Sect. 3.

4.1 Design Patterns

Token. This pattern is used to distribute some fungible goods (represented by
tokens) to users. Tokens can represent a wide variety of goods, like e.g.coins,
shares, outcomes or tickets, or everything else which is transferable and count-
able. The implications of owning a token depend on the protocol and the
use case for which the token has been issued. Tokens can be used to track
the ownership of physical properties (e.g., gold [3]), or digital ones (e.g.,
cryptocurrency). Some crowdfunding systems issue tokens in exchange for
donations (e.g., the Congress contract). Tokens are also used to regulate user
authorizations and identities. For instance, the DVIP contract specifies rights
and term of services for owners of its tokens. To vote on the poll ETCSurvey,
users must possess a suitable token. Given the popularity of this pattern,
its standardisation has been proposed [5]. Notably, the majority of analysed
Ethereum contracts which issue tokens already adhere to it.

Authorization. This pattern is used to restrict the execution of code according
to the caller address. Majority of the analysed contracts check if the caller
address is that of the contract owner, before performing critical operations
(e.g., sending ether, invoking suicide or selfdestruct). For instance, the owner
of Doubler is authorized to move all funds to a new address at any time
(this may raise some concerns about the trustworthiness of the contract, as
a dishonest owner can easily steal money).
Corporation checks addresses to ensure that every user can vote only once per
poll. CharlyLifeLog uses a white-list of addresses to decide who can withdraw
funds.

Oracle. Some contracts may need to acquire data from outside the blockchain,
e.g.from a website, to determine the winner of a bet. The Ethereum language
does not allow contracts to query external sites: otherwise, the determinism
of computations would be broken, as different nodes could receive different
results for the same query. Oracles are the interface between contracts and
the outside. Technically, they are just contracts, and as such their state can
be updated by sending them transactions. In practice, instead of querying an
external service, a contract queries an oracle; and when the external service
needs to update its data, it sends a suitable transaction to the oracle. Since the
oracle is a contract, it can be queried from other contracts without consistency
issues. One of the most common oracles is Oraclize16: in our sample, it is used
by almost all the contracts which resort to oracles.

Randomness. Dealing with randomness is not a trivial task in Ethereum. Since
contract execution must be deterministic, all the nodes must obtain the same
value when asking for a random number: this struggles with the randomness
requirements wished. To address this issue, several contracts (e.g., Slot) query

16 http://www.oraclize.it/.

https://etherscan.io/address/0xe0b7927c4af23765cb51314a0e0521a9645f0e2a#code
https://etherscan.io/address/0x815a46107e5ee2291a76274dc879ce947a3f0850#code
https://etherscan.io/address/0xfb6916095ca1df60bb79ce92ce3ea74c37c5d359#code
https://etherscan.io/address/0xadc46ff5434910bd17b24ffb429e585223287d7f#code
https://etherscan.io/address/0xdb6d68e1d8c3f69d32e2d83065492e502b4c67ba#code
https://etherscan.io/address/0x3fccb426c33b1ae067115390354b968592348d05#code
https://etherscan.io/address/0x8b4aa759d83ec43efba755fc27923e4a581bccc1#code
https://etherscan.io/address/0xdc84953D7C6448e498Eb3C33ab0F815da5D13999#code
https://etherscan.io/address/0x684282178b1d61164febcf9609ca195bef9a33b5#code
https://etherscan.io/address/0x5A5eFF38DA95b0D58b6C616f2699168B480953C9#code
https://etherscan.io/address/0x76bc9e61a1904b82cbf70d1fd9c0f8a120483bbb#code
http://www.oraclize.it/

504 M. Bartoletti and L. Pompianu

oracles that generate these values off-chain. Others (e.g., Lottery) try to gen-
erate the numbers locally, by using values not predictable a priori, as the
hash of a block not yet created. However, these techniques are not generally
considered secure [18].

Poll. Polls allows users to vote on some question. Often this is a side feature in
a more complex scenario. For instance, in the Dice game, when a certain state
is reached, the owner issues a poll to decide whether an emergency withdrawal
is needed. To determine who can vote and to keep track of the votes, polls
can use tokens, or they can check the voters’ addresses.

Time constraint. Many contracts implement time constraints, e.g.to specify
when an action is permitted. For instance, BirthdayGift allows users to collect
funds, which will be redeemable only after their birthday. In notary contracts,
time constraints are used to prove that a document is owned from a certain
date. In game contracts, e.g.Lottery, time constraints mark the stages of the
game.

Termination. Since the blockchain is immutable, a contract cannot be deleted
when its use has come to an end. Hence, developers must forethink a way
to disable it, so that it is still present but unresponsive. This can be done
manually, by inserting ad-hoc code in the contract, or automatically, calling
selfdestruct or suicide. Usually, only the contract owner is authorized to
terminate a contract (e.g., as in SimpleCoinFlipGame).

Math. Contracts using this pattern encode the logic which guards the execution
of some critical operations. For instance, Badge implements a method named
subtractSafely to avoid subtracting a value from a balance when there are
not enough funds in an account.

Fork check. The Ethereum blockchain has been forked four times, starting
from July 20th, 2016, when a fork was performed to contrast the effect of the
DAO attack [4]. To know whether or not the fork took place, some contracts
inspect the final balance of the DAO. Other contracts use this check to detect
whether they are running on the main chain or on the fork, performing dif-
ferent actions in the two cases. AmIOnTheFork is a library contract that can
be used to distinguish the main chain from the forked one.

4.2 Quantifying the Usage of Design Patterns by Category

We now study how the design patterns identified in Sect. 4.1 are used in smart
contracts. Out of the 811 analysed contracts, 648 use at least one of the 9 patterns
presented, for a grand total of 1427 occurrences of usage.

Table 3 shows the correlation between the usage of design patterns and con-
tract categories, as defined in Sect. 3. A cell at row i and column j shows a
pair of values: the first value is the percentage of contracts of category i that
use the pattern of column j; the second one is the percentage of contracts with
pattern j which belongs to category i. So, for instance, 24% of the contracts in
the financial category use the token pattern, and 51% of all the contracts with
the token pattern are financial ones.

https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x9828f591b21ee4ad4fd803fc7339588cb83a6b84#code
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
https://etherscan.io/address/0xe941e5d4a66123dc74886699544fbbb942f1887a#code
https://etherscan.io/address/0x54bda709fed875224eae569bb6817d96ef7ed9ad#code
https://etherscan.io/address/0x2bd2326c993dfaef84f696526064ff22eba5b362#code

An Empirical Analysis of Smart Contracts 505

Table 3. Relations between design patterns and contract categories. A pair (p, q) at
row i and column j means that p% of the contracts in category i use the pattern of
column j, and q% of contracts with pattern j belong to category i.

Token Auth. Oracle Random. Poll Time Termin. Fork Math None

Financial 24-51 51-39 2-15 1-2 5-29 23-31 14-30 8-69 4-47 29-66

Notary 13-6 52-9 1-2 0-0 8-9 20-6 29-13 0-0 1-3 30-15

Game 3-3 84-27 25-74 72-93 25-57 73-43 21-19 1-3 2-9 1-1

Wallet 18-2 100-3 0-0 0-0 0-0 94-6 100-10 0-0 12-6 0-0

Library 0-0 31-2 0-0 14-3 0-0 24-3 24-4 34-24 21-19 17-3

Unclassified 43-39 66-21 3-9 1-1 3-6 18-10 28-25 28-25 1-5 15-15

Total 21-100 61-100 7-100 15-100 9-100 33-100 22-100 5-100 4-100 20-100

We observe that token, authorization, time constraint, and termination are
generally the most used patterns. Some patterns are spread across several cate-
gories (e.g., termination and time constraint), while others are mainly adopted
only in one. For instance, oracle and randomness patterns are peculiar of game
contracts, while the token pattern is mostly used in financial contracts. Although
math is the less used, it appears in each category. Some contracts do not use any
pattern (29% of financial and 30% of notary); almost all the contracts in game
and wallet categories uses at least one. Further, only 15% of all the unclassified
contracts do no use any pattern at all.

The most frequent patterns in financial contracts are token (24%), authoriza-
tion (51%), and time constraint (23%). Due to the presence of contracts which
implement assets and crowdfunding services, we have that half of contracts using
token and math patterns belong to the financial category. For instance, these
services use token for representing goods or developing polls. Moreover, a great
69% of contracts that use the fork check pattern is financial. This is caused
by the necessity of knowing the branch of the fork before deciding to move
funds. Finally, several financial applications (29%) perform simple operations
(e.g.sending a payment) without using any of our described patterns.

The authorization pattern is used in many notary contracts to ensure that
only the owner of a document can add or modify its data, in order to avoid
tampering. Most gambling games involve players who pay fees to join the game,
and rewards that can be collected by the winner. Authorization pattern is used
to let the owner to be the only one able to redeem participants’ fees or to perform
administrative operations, and to let the winner withdraw his reward. The time
constraint pattern is used to distinguish the different phases of the game. For
instance, within a specific time interval players can join the game and/or bet;
then, bets are over, and the game determines a winner. To choose the winner,
some gambling games resort to random numbers, which are often generated
through an oracle. Indeed, 25% of games use the oracle pattern, and the pattern
itself is used 74% of cases by a game contract. Since all game contracts invoking
an oracle (25%) ask for random values, and since 72% of contracts use the

506 M. Bartoletti and L. Pompianu

random pattern, we can deduce that 47% of them generate random numbers
without resorting to oracles.

Notably, 100% of wallet contracts adopt both authorization and termination
design patterns. A high 94% also uses time constraint. On the contrary, oracle,
poll, and randomness patterns are of little use when developing a wallet, while
math is sometimes used for securing operations on the balance.

5 Conclusions

We have analysed the usage of smart contracts from various perspectives. In
Sect. 2 we have examined a sample of 6 platforms for smart contracts, pinpointing
some crucial technical differences between them. For the two most prominent
platforms—Bitcoin and Ethereum—we have studied a sample of 0 contracts,
categorizing each of them by its application domain, and measuring the relevance
of each of these categories (Sect. 3). The availability of source code for Ethereum
contracts has allowed us to analyse the most common design patterns adopted
when writing smart contracts (Sect. 4).

We believe that this survey may provide valuable information to developers
of new, domain-specific languages for smart contracts. In particular, measuring
what are the most common use cases allows to understand which domains deserve
more investments. Furthermore, our study of the correlation between design
patterns and application domains can be exploited to drive the correct choice of
programming primitives of domain-specific languages for smart contracts.

Due to the mixed flavour of our analysis, which compares different platforms
and studies how smart contracts are interpreted on each them, our work relates
to various topics. The work [38] proposes design patterns for altering and undoing
of smart contracts; so far, our analysis in Sect. 4.2 has not still found instances of
these patterns in Ethereum. Among the works which study blockchain technolo-
gies, [15] compares four blockchains, with a special focus on the Ethereum one;
[45] examines a larger set of blockchains, including also some which does not fit
the criteria we have used in our methodology (e.g., RootStock and Tezos). Many
works on Bitcoin perform empirical analyses of its blockchain. For instance,
[43,44] study users deanonymization, [39] measures transactions fees, and [21]
analyses Denial-of-Service attacks on Bitcoin. The work [34] investigates whether
Bitcoin users are interested more on digital currencies as asset or as currency,
with the aim of detecting the most popular use cases of Bitcoin contracts, sim-
ilarly to what we have done in Sect. 3.3. Our classification of Bitcoin protocols
based on OP RETURN transactions is inspired from [23], which also measures
the space consumption and temporal trend of OP RETURN transactions.

Recently, some authors have started to analyse the security of Ethereum
smart contracts: among these, [18] surveys vulnerabilities and attacks, while [37]
and [25] propose analysis techniques to detect them. Our study on design pat-
terns for Ethereum smart contracts could help to improve these techniques, by
targeting contracts with specific programming patterns.

An Empirical Analysis of Smart Contracts 507

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia project
P.I.A. 2013 “NOMAD”.

References

1. Bitcoin contract. https://en.bitcoin.it/wiki/Contract. Accessed 14 Jan 2017
2. Bitcoin OP RETURN wiki page. https://en.bitcoin.it/wiki/OP RETURN.

Accessed 14 Jan 2017
3. Dgx website. https://www.dgx.io/. Accessed 14 Jan 2017
4. Ethereum hard fork 20 July 2016. https://blog.ethereum.org/2016/07/20/

hard-fork-completed/. Accessed 14 Jan 2017
5. Ethereum request for comment 20. https://github.com/ethereum/wiki/wiki/

Standardized Contract APIs. Accessed 14 Jan 2017
6. Lisk. https://lisk.io/. Accessed 14 Jan 2017
7. Making sense of blockchain smart contracts. http://www.coindesk.com/

making-sense-smart-contracts/. Accessed 14 Jan 2017
8. Monax. https://monax.io/. Accessed 14 Jan 2017
9. Smart contracts: The good, the bad and the lazy. http://www.multichain.com/

blog/2015/11/smart-contracts-good-bad-lazy/. Accessed 14 Jan 2017
10. Stellar. https://www.stellar.org/. Accessed 14 Jan 2017
11. The Stellar consensus protocol. https://www.stellar.org/papers/

stellar-consensus-protocol.pdf. Accessed 14 Jan 2017
12. Thinking about smart contract security. https://blog.ethereum.org/2016/06/19/

thinking-smart-contract-security/. Accessed 14 Jan 2017
13. Understanding the DAO attack. http://www.coindesk.com/

understanding-dao-hack-journalists/. Accessed 14 Jan 2017
14. Another bug in the ens, you can win with an unlimited high bid without pay-

ing for it (2017). https://www.reddit.com/r/ethereum/comments/5zctus/another
bug in the ens you can win with an/. Accessed 17 Mar 2017

15. Anderson, L., Holz, R., Ponomarev, A., Rimba, P., Weber, I.: New kids on the
block: an analysis of modern blockchains. CoRR abs/1606.06530 (2016)

16. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P, pp. 443–458 (2014)

17. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure
ultiparty computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016).
http://doi.acm.org/10.1145/2896386

18. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum
smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS,
vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54455-6 8

19. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin (2013). http://www.cs.
technion.ac.il/∼idddo/cointossBitcoin.pdf

20. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

21. Baqer, K., Huang, D.Y., McCoy, D., Weaver, N.: Stressing out: Bitcoin “stress
testing”. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M.,
Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 3–18. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53357-4 1

https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/OP_RETURN
https://www.dgx.io/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs
https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs
https://lisk.io/
http://www.coindesk.com/making-sense-smart-contracts/
http://www.coindesk.com/making-sense-smart-contracts/
https://monax.io/
http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/
http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/
https://www.stellar.org/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://www.reddit.com/r/ethereum/comments/5zctus/another_bug_in_the_ens_you_can_win_with_an/
https://www.reddit.com/r/ethereum/comments/5zctus/another_bug_in_the_ens_you_can_win_with_an/
http://doi.acm.org/10.1145/2896386
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-662-53357-4_1

508 M. Bartoletti and L. Pompianu

22. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on
Ethereum: identification, analysis, and impact. CoRR abs/1703.03779 (2017).
https://arxiv.org/abs/1703.03779

23. Bartoletti, M., Pompianu, L.: An analysis of Bitcoin OP RETURN metadata.
CoRR abs/1702.01024 (2016). To appear in Bitcoin Workshop 2017. https://arxiv.
org/abs/1702.01024

24. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

25. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Beguelin, S.: For-
mal verification of smart contracts. In: PLAS (2016)

26. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE S
& P, pp. 104–121 (2015)

27. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: an introduction (2016).
http://r3cev.com/s/corda-introductory-whitepaper-final.pdf

28. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper

29. Churyumov, A.: Byteball: a decentralized system for transfer of value (2016).
https://byteball.org/Byteball.pdf

30. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations,
design landscape and research directions. CoRR abs/1608.00771 (2016)

31. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

32. Dermody, R., Krellenstein, A., Slama, O., Wagner, E.: Counterparty: Protocol
specification (2014). http://counterparty.io/docs/protocol specification/. Accessed
14 Jan 2017

33. Frantz, C.K., Nowostawski, M.: From institutions to code: towards automated
generation of smart contracts. In: Workshop on Engineering Collective Adaptive
Systems (eCAS) (2016)

34. Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M.C.: Bitcoin - asset or cur-
rency? revealing users’ hidden intentions. In: European Conference on Information
Systems (ECIS) (2014)

35. Grau, P.: Lessons learned from making a chess game
for Ethereum (2016). https://medium.com/@graycoding/
lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.
fwtdwly6e. Accessed 14 Jan 2017

36. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS, pp. 195–206 (2015)

37. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS (2016). http://eprint.iacr.org/2016/633

38. Marino, B., Juels, A.: Setting standards for altering and undoing smart contracts.
In: Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.)
RuleML 2016. LNCS, vol. 9718, pp. 151–166. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42019-6 10

https://arxiv.org/abs/1703.03779
https://arxiv.org/abs/1702.01024
https://arxiv.org/abs/1702.01024
https://doi.org/10.1007/978-3-662-44381-1_24
http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://byteball.org/Byteball.pdf
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
http://counterparty.io/docs/protocol_specification/
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.fwtdwly6e
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.fwtdwly6e
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.fwtdwly6e
http://eprint.iacr.org/2016/633
https://doi.org/10.1007/978-3-319-42019-6_10
https://doi.org/10.1007/978-3-319-42019-6_10

An Empirical Analysis of Smart Contracts 509

39. Möser, M., Böhme, R.: Trends, tips, tolls: a longitudinal study of Bitcoin transac-
tion fees. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015.
LNCS, vol. 8976, pp. 19–33. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48051-9 2

40. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

41. Nomura Research Institute: Survey on blockchain technologies and related services.
http://www.meti.go.jp/english/press/2016/pdf/0531 01f.pdf

42. Popejoy, S.: The Pact smart contract language (2016). http://kadena.io/pact
43. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Alt-

shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-1-4614-4139-7 10

44. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

45. Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for distributed
ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016). http://
eprint.iacr.org/2016/1156

46. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

47. Szabo, N.: Formalizing and securing relationships on public networks. First
Monday 2(9) (1997). http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/548

48. UK Government Chief Scientific Adviser: Distributed ledger technology:
beyond block chain. https://www.gov.uk/government/uploads/system/uploads/
attachment data/file/492972/gs-16-1-distributed-ledger-technology.pdf

49. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/paper.pdf

https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1007/978-3-662-48051-9_2
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf
http://kadena.io/pact
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-642-39884-1_2
http://eprint.iacr.org/2016/1156
http://eprint.iacr.org/2016/1156
https://doi.org/10.1007/978-3-662-47854-7_32
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
http://gavwood.com/paper.pdf

Trust in Smart Contracts is a Process, As Well

Firas Al Khalil(B), Tom Butler, Leona O’Brien, and Marcello Ceci

Governance, Risk, and Compliance Technology Center, University College Cork,
Cork, Ireland

{firas.alkhalil,tbutler,leona.obrien,marcello.ceci}@ucc.ie

Abstract. Distributed ledger technologies are rising in popularity,
mainly for the host of financial applications they potentially enable,
through smart contracts. Several implementations of distributed ledgers
have been proposed, and different languages for the development of smart
contracts have been suggested. A great deal of attention is given to
the practice of development, i.e. programming, of smart contracts. In
this position paper, we argue that more attention should be given to
the “traditional developers” of contracts, namely the lawyers, and we
propose a list of requirements for a human and machine-readable con-
tract authoring language, friendly to lawyers, serving as a common (and
a specification) language, for programmers, and the parties to a contract.

1 Introduction

The emergence of distributed ledger technology, due to the development of
Bitcoin [22], sparked a lot of interest in different communities: from acad-
emia to industry, and from technological and financial circles to philosophical
ones [24,27].

The amount of enthusiasm generated around distributed ledgers is indicative
of the potentialities that are waiting to be tapped into. What is undeniable,
today, is that the financial industry is paying very close attention to cryptocur-
rencies, especially Bitcoin, but also to other financial applications enabled by
distributed ledgers.

Which brings us to smart contracts, a concept first envisioned by Szabo [29],
as far as 1995 so is claimed, and now believed to be enabled by the advent
of distributed ledgers. Several definitions for smart contracts exist, varying in
their faithfulness to the original concept, and some of them only adding to the
existing confusion surrounding them. We will stand by the original definition
of Szabo: “[s]mart contracts [. . .] facilitate all steps of the contracting process”;
search, negotiation, commitment, performance, and adjudication are all parts of
the contracting process he mentioned [28].

Bitcoin, as a platform, is able to model and execute smart contracts, but with
a lot of restrictions due to its limited scripting language. This limitation, along
with the observation that cryptocurrencies can be viewed as “just another kind
of smart contracts”, led eventually to the development of Ethereum [31]: a decen-
tralised platform where smart contracts are first-class citizens; the distributed
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 510–519, 2017.
https://doi.org/10.1007/978-3-319-70278-0_32

Trust in Smart Contracts is a Process, As Well 511

ledger is equipped with a Turing complete programming language that enables
developers to write “arbitrary” contracts/code. More recently, platforms built
on top of Bitcoin and supporting a Turing complete smart contracts language
were developed (e.g. Rootstock [11]), and maybe more interestingly, platforms
for smart contracts with non Turing complete languages were also developed,
i.e. τ -Chain [6].

It is not a surprise that traditional programmers, if one may call them so,
are unable to carry out “economical thinking” [10]; indeed, they are also, in our
experience, ill-equipped to capture legal or regulatory thinking. The inverse can
be said of subject-matter experts, i.e. business analysts and lawyers; they are
most certainly unable to carry out “computational thinking”.

How to carry out the development of smart contracts in large financial institu-
tions, where, traditionally, contracts are drafted by subject-matter experts? More
importantly, how can we reason on the legality of developed contracts? Either
manually by a lawyer, or automatically using a tool for compliance checking?
A failure to answer these questions inevitably contributes to the scepticism of
the financial industry – which has been put under the microscope by regulators
since 2008 – about the future of smart contracts, and the industry’s reluctance
in adopting it.

In this position paper, we argue that trust in smart contracts, is also a
process; a bridge is needed to connect both sides of the abyss.

The rest of this paper is organised as follows: Sect. 2 shows how diverse is
the scene of distributed ledger technologies; Sect. 3 shows how irreconcilable are
the languages of programmers and subject-matter experts; Sect. 4 develops our
views on how can we build a bridge that enables trust, from an institutional
perspective, in smart contracts; we finally conclude in Sect. 5.

2 On Distributed Ledger Technologies

The introduction of Bitcoin by Satoshi Nakamoto [22] polarised the actors in the
financial industry since the beginning: some were extremely enthusiastic about
it, to the point where they claimed that Bitcoin is the “next big thing”, and
others were extremely sceptical about it.

The innovation of Bitcoin is not limited to the currency; the idea of a shared
ledger itself proved to be very powerful and sprung many platforms rivalling or
even complementing Bitcoin. The interested reader can refer to Tschorsch and
Scheuermann [30] for an excellent technical survey on distributed ledger tech-
nologies. Moreover, a quick look at the currently available platforms inspired by
Bitcoin, gives a good idea on the rising popularity of the technology: for instance,
coinmarketcap.com, a site that tracks market capitalisation of different cryp-
tocurrencies, lists 719 platforms.

Since its inception, Bitcoin provided a stack-based scripting language that
allowed developers to define the conditions to spend Bitcoins (e.g. requiring
multiple signatures), which revived the vision of smart contracts. However, this
scripting language is purposefully not Turing complete, which ultimately means

512 F. Al Khalil et al.

that it is limited in expressivity. In the following, we will take a look at four
different platforms that are meant to overcome Bitcoin’s scripting limitations,
illustrating the different technical choices one can make, regarding the develop-
ment of smart contracts.

The first platform we are going to look at, which is currently almost syn-
onymous to “smart contracts”, is Ethereum [31]. Ethereum was proposed as a
distributed platform independent of – yet very similar to – Bitcoin. To create dis-
tributed trust-less consensus and solve the double-spending problem, Ethereum
uses proof-of-work, just like Bitcoin, however, it provides the Ethereum Virtual
Machine (EVM) that runs a Turing complete stack based language, which opens
the doors to a hypothetically unlimited number of applications. Developers are
not forced to use the EVM’s opcode to write smart contracts. Indeed, they can
use Solidity or Serpent, which are high-level programming languages, similar
to javascript or python, respectively, that can compile to EVM byte code.

The second platform we are going to look at is Nxt1, one of the earliest
smart contract platforms. Unlike Bitcoin and Ethereum, Nxt uses proof-of-stake
to achieve consensus and solve the double-spending problem. Moreover, Nxt
does not provide a scripting language to smart contract developers; instead, it
provides a RESTful API exposing a set of primitive operations (like spending,
storing strings, sending messages, etc.) that developers can invoke.

The third platform we will consider is Rootstock [11]. Unlike Ethereum, and
Nxt, Rootstock was developed to complement Bitcoin (as a sidechain [12]) and
provides its own Turing complete virtual machine (the RVM) to enable smart
contracts.

The fourth and final platform we will examine is τ -Chain [6]. The authors
of this platform argue that Turing completeness is not necessary for distrib-
uted ledgers, because with Turing completeness comes undecidability, i.e. smart
contracts can go in an infinite loop and the network will never be able to pre-
dict this behaviour. Indeed, Ethereum overcomes the problem of undecidability
by forcing the caller of the smart contract to provide gas with the transaction
(bought with ether, Ethereum’s own cryptocurrency); every instruction on the
EVM consumes a predefined amount of gas, and they are non-refundable, i.e. if
the gas is totally consumed and the smart contract didn’t finish execution, the
gas is never returned to the caller.

However, Asor [6] proposes the use of an ontology [2] of rules, along with a
reasoner, to enable computations on the network. Authors of smart contracts
would write them in a totally functional programming language, like Idris [7],
that will be ultimately translated into the ontology. This approach will not
only make computations decidable, but it also allows the assertion of properties
of smart contracts that were impossible with Turing complete languages, e.g.
if the contract connects to the Internet or not, or if the contract fulfils some
interfaces/requirements/etc.

The interested reader can refer to the survey written by Seijas et al. [25]
for more information on scripting languages for distributed ledgers. The

1 https://nxt.org/.

https://nxt.org/

Trust in Smart Contracts is a Process, As Well 513

aforementioned platforms illustrate some of the variations that exist in distrib-
uted ledger technology’s ecosystem. These platforms can differ not only in the
tooling and the language they expose for smart contract development, but also
in the paradigms that govern them. The development of smart contracts thus
requires a deep and serious understanding of the target platform. In the follow-
ing section, we will examine what hinders a fast adoption of such an enabling
technology by the financial industry.

3 Staring into the Abyss

A close inspection of the literature shows that effort is being put in helping devel-
opers author smart contracts, by either developing tools, or creating abstractions.

Recently, Delmolino et al. [10] reported on their experience in teaching smart
contract programming, using Ethereum, to undergraduate students at the Uni-
versity of Maryland. The authors concluded that smart contract programming
requires an “economic thinking” perspective that traditional programmers may
not have acquired. Indeed, students repeatedly made logical errors that ulti-
mately lead to money leaks, failed to use cryptographic primitives to secure the
contracts from attackers, failed to account for the incentives of contract callers,
and even made mistakes directly related to Ethereum.

This observation lead to the development of a Masters thesis by Pettersson
and Edström [23], and their objective was to help said programmers to develop
safer smart contracts. Their aim is to prevent 3 kinds of mistakes contract devel-
opers fall in: unexpected states, failure to use cryptography, and overflowing the
EVM’s stack. They propose to use of a functional programming language, namely
Idris. They developed a code generator that transforms code produced by an
Idris compiler to Serpent code, which can be subsequently compiled into EVM
bytecode.

In a different, yet related work, Luu et al. [21] noted that a class of security-
related bugs in smart contracts are due to the gaps in the understanding of the
distributed semantics of the underlying platform.

Another interesting work is that of Florian et al. [20], who propose the use
of logic-based smart contracts. They showed that this approach can complement
smart contracts written in procedural code, in terms of contract negotiation,
formation, storage/notarizing, enforcement, monitoring and activities related to
dispute resolution.

In a different take, Garćıa-Bañuelos et al. [16] showed how the business
process language BPMN can be mapped into executable smart contracts on the
Ethereum. This development lead Hull et al. [19] to propose a Business Col-
laboration Language (BCL) for shared ledgers. Indeed, this BCL can be thought
of as the equivalent of SQL for relational databases, targeting shared ledgers,
regardless of implementation-specific details.

As far as we know, the only works that consider the issue of authoring smart
contracts from the subject-matter expert’s perspective are those proposed by
Frantz and Nowostawski [14] and Clack et al. [9].

514 F. Al Khalil et al.

Frantz and Nowostawski [14] propose a semi-automated method for the trans-
lation of human readable contracts to smart contracts on Ethereum. The authors
develop a domain specific language for contract modelling, where statements are
rules expressed in English, and that translates into Solidity. However, this
solution is very tied to Ethereum, and it is not clear how extensible or adaptable
it is. Additionally, it doesn’t cover the legal language that a lawyer would be
accustomed to.

Clack et al. [9] rightly identify two semantics of contracts:

Operational semantics: concerned with the execution of the contract on a
specific platform.

Denotational semantics: that capture the “legal meaning” of the contract, as
understood by a lawyer.

The authors envision the use of smart contract templates, based on the idea
of Ricardian Contracts [17,18]. A Ricardian Contract is a digitlly signed triple
〈P,C,M〉, where P is the legal prose, capturing denotational semantics, C is
the platform specific code expressing operational semantics, and M is a map
(key-value pairs) of parameters used in P and C.

While the use of smart contract templates, based on Ricardian Contracts,
looks like a move towards the right direction, we argue that prose should not be
tied to code:

– While the semantics of legal language can be expressed as a set of deontic
defeasible rules, the code is rather procedural. The order of the instructions
in the procedure does not reflect the natural order of the contract clauses
expressed in natural language [20].

– The life-cycle of legal prose is independent from the life-cycle of the code.
For example, a lawyer might describe the terms of a contract in prose and
never come back to it, while a developer will – most likely – iterate through
different implementations (e.g. bug fixes).

– There is not a single smart contract platform, which ultimately means that
different parameters (key-value pairs of M) will be needed for different plat-
forms. For example, several works (e.g. [1,3,32]) describe data feed systems
that enable smart contracts to consume data feeds from outside the distrib-
uted ledger (e.g. a stock market index); while the notion of an external feed
might be familiar to a lawyer, its technical details, thus the choices related to
the adoption of one method over another, and eventually the parametrisation
is definitely out of her/his reach and/or interest.

In the following section, we will identify the key issues, as we see them,
regarding the adoption of smart contracts, and how we envision to solve them.

4 Trusting Smart Contracts

In Sect. 2 we tried to show, through a non-exhaustive list of examples, how dis-
tributed ledgers can differ on a deep technical level, which requires a very inti-
mate technological knowledge by the implementer of the smart contract. After-
wards, we showed, in Sect. 3, how current effort is mostly focused on developing

Trust in Smart Contracts is a Process, As Well 515

technical tools and infrastructure aimed at facilitating the technical implemen-
tation of smart contracts. However, there is a major lacuna in all this: that
is the translation, or mapping, of the contract’s denotational semantics to its
operational semantics.

We share the view of Clack et al. [9] on the separation between operational
and denotational semantics of contracts. In fact, we argue that trust in smart
contracts can only stem from the ability of lawyers in financial institutions to
understand, express, and ultimately validate the denotational semantics of a
contract. However, we disagree on the assumption they make on the languages
expressing these semantics, i.e. any assumption on the correspondence between
a “legal language” and the “technical language” cannot be taken for granted, as
the lawyer cannot predict the behaviour of the code; this is an open question
that deserves further research and validation.

What is missing from all of the described work, is the realisation that the
involvement of a lawyer, especially in the heavily regulated financial industry, in
the authoring of contracts, not only smart contracts, is paramount, for her/his
knowledge on the regulation governing said contracts dictates the denotational
semantics. A lawyers’ knowledge of the explicit and implicit rights and obliga-
tions, counterparties, stakeholders, schedules and penalties, and regulations gov-
erning a financial contract needs to be represented.

Indeed, the financial crisis of 2008 was in part caused by the sub-prime lend-
ing practice that encouraged high credit risk borrowers to take on mortgages
at high interest rates that they had little ability to repay. These debts were
pooled together and engineered to be offered as low risk asset-backed securi-
ties. These were heavily traded because of the perceived low risk while providing
high returns. The housing market in the US slumped setting off a chain reaction
that ultimately meant the mortgage-backed securities became worthless having
direct effect on the capital of the major global banks. Funding dried up and more
importantly, the trust that keeps the financial system performing dissolved. As
a result, regulation in the financial industry has grown exponentially.

There are two scenarios where the lawyer’s involvement is unavoidable:

– When the contract is partly fulfilled through code, because the lawyer can
only validate its textual version [20], i.e. the prose.

– When assessing the compliance of the contract with regulations, from the
point of view of both the legal requirements introduced by the regulation
(e.g. on financial activities, anti-money laundering, or consumer protection),
and of the effects that these regulations automatically bind to the contract
(naturalia negotii [15]).

Therefore, we think that proper authoring of smart contracts should involve
two main agents: the lawyer and the developer. The interaction between both
agents should be governed by a common language. The lawyer authors and
consumes contracts written in that language, while the developer uses it as
a specification guiding her/his implementation. This common language should
have the following properties:

516 F. Al Khalil et al.

– It should not alienate the lawyer, i.e. it should be as close as possible to the
language of contracts s/he is used to.

– It should be expressive enough to allow the authoring of smart and “not-so-
smart” contracts.

– It should be a Controlled Natural Language (CNL) with an unambiguous
grammar. The CNL should be mappable to a logical formalism which will
facilitate compliance checking with existing regulations.

– The concepts and actions described in the contract (i.e. the vocabulary) along
the clauses of the contract (i.e. the rules) should be shareable across the
network, which is important for both discoverability and negotiation – two
defining aspects of smart contracts – by human and autonomous agents.

– It should be able to represent the actions coded in the smart contract [9], the
duties and powers arising from the contract [14], and the meta-rules governing
it (e.g. regulation on financial activities, Anti-Money Laundering or consumer
protection).

In our previous work [8] we describe Mercury, a language to capture regu-
lations for the purpose of compliance checking, alongside a methodology [4] to
capture legal knowledge and translate it to OWL [5]. Mercury is based on the
Semantics for Business Vocabulary and Business Rules [26] (SBVR), but the lan-
guage of smart contracts should not forcibly be based on SBVR, as long as it can
be mapped to a logical formalism, e.g. OWL, where reasoning on compliance is
feasible.

In a recently published technical report, English et al. [13] investigated how
distributed ledger technologies and the Semantic Web can affect one another.
Indeed, the blockchain can provide secure resource identifiers (by ensuring
authenticity, human-readability, and decentralisation), and ontologies can pro-
vide a unified way to understand blockchain concepts between humans, and
exposing blockchain data according to an ontology enables the interlinking with
other linked data and to perform reasoning.

Our proposal improves transparency, which is one of the major luring qual-
ities of distributed ledgers, and a determining factor of the trust-less trust in
the network. But doubt rises when it comes to the trust in the fact that the
contract, as written by the lawyer, was correctly translated into code, i.e. the
trust in the fact operational semantics faithfully represent denotational seman-
tics. One may argue that this trust can be guaranteed if there is a mechanism G
that automatically generates code from prose and/or a mechanism C, potentially
the inverse of G, that proves the correspondence of the code to the prose, but a
closer inspections shows that:

1. There is evidence from the literature that G and C can exist, especially
from [20] and τ -Chain [6]. Indeed, if the vision of τ -Chain is possible, then
there is an opportunity to go directly from denotational to operational seman-
tics using our approach, but this may imply the restriction of said trust to
one specific distributed ledger technology.

Trust in Smart Contracts is a Process, As Well 517

2. It is not really clear, at least for us, if G and C exist for shared ledgers that use
stack-based languages. This is an open question that deserves closer attention,
and can have one of two clear answers:
(a) It is possible, or practically feasible, which is great news for everyone, or
(b) It is impossible, or practically infeasible. Then it is only reasonable to

ask: is the existence of G and C a prerequisite for the establishment of
said trust? We conjecture that it is not, for two reasons:
i. The implementation processes of existing financial contracts in the

form of software is already opaque, especially to the consumer, and
our proposed approach would only facilitate transparency.

ii. Trust can be gained through the establishment of reputation: the
better you are in effectively transforming your specification to code,
the more reputable you are; the more reputable you are, the more
trustworthy you are perceived to be.

5 Conclusion

In this position paper, we expressed our point of view on how trust in smart
contrast, from a financial institution’s point of view, can be enabled. It is true
that cryptographic guarantees are enablers of, and integral to, trust in distrib-
uted ledger technology, but we argue that another kind of trust is needed; one
that is established by a process involving lawyers.

We showed how distributed ledger technologies can vary on a deep technical
level, which led to the development of tools and abstractions to help developers
in programming smart contracts. These developments are essential for the tech-
nological ecosystem, but we show how most of the existing work do not take into
account compliance with existing (and ever growing) regulations.

To that end, we set a list of criteria for a language necessary for the develop-
ment of contracts, executed on the ledger, or not, that is close to the legal prose,
transparent, and rooted in formal logic. We also identify a key research challenge,
which is the ability to translate the aforementioned language to executable code.

References

1. Oraclize: The provably honest oracle service. http://www.oraclize.it/. Accessed 30
Jan 2017

2. OWL 2 Web Ontology Language Document Overview (Second Edition). https://
www.w3.org/TR/2012/REC-owl2-overview-20121211/. Accessed 30 Jan 2017

3. PriceFeed smart contract. http://feed.ether.camp/. Accessed 30 Jan 2017
4. Abi-Lahoud, E., O’Brien, L., Butler, T.: On the road to regulatory ontologies.

In: Casanovas, P., Pagallo, U., Palmirani, M., Sartor, G. (eds.) AICOL -2013.
LNCS, vol. 8929, pp. 188–201. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45960-7 14

5. Al Khalil, F., Ceci, M., Yapa, K., O’Brien, L.: SBVR to OWL 2 mapping in the
domain of legal rules. In: Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P.,
Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 258–266. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42019-6 17

http://www.oraclize.it/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://feed.ether.camp/
https://doi.org/10.1007/978-3-662-45960-7_14
https://doi.org/10.1007/978-3-662-45960-7_14
https://doi.org/10.1007/978-3-319-42019-6_17

518 F. Al Khalil et al.

6. Asor, O.: About Tau-Chain. ArXiv e-prints (February 2015)
7. Brady, E.: Idris, a general-purpose dependently typed programming language:

design and implementation. J. Funct. Program. 23(5), 552–593 (2013)
8. Ceci, M., Al Khalil, F., O’Brien, L.: Making sense of regulations with SBVR. In:

RuleML 2016 Challenge, Doctoral Consortium and Industry Track hosted by the
10th International Web Rule Symposium (RuleML 2016) (2016)

9. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: essential require-
ments and design options. ArXiv e-prints (August 2016). https://arxiv.org/abs/
1608.00771v2

10. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

11. Lerner, S.D.: Rootstock. bitcoin powered smart contracts. white paper (November
2015). https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b
00a1/RootstockWhitePaperv9-Overview.pdf

12. Lerner, S.D.: Drivechains, sidechains, and 2-way hybrid peg designs (January 2016).
https://uploads.strikinglycdn.com/files/27311e59-0832-49b5-ab0e-2b0a73899561/
Drivechains Sidechains and Hybrid 2-way peg Designs R9.pdf

13. English, M., Auer, S., Domingue, J.: Block chain technologies and the semantic
web: a framework for symbiotic development. Technical report, University of Bonn,
Germany (2016)

14. Frantz, C.K., Nowostawski, M.: From institutions to code: towards automated gen-
eration of smart contracts. In: 2016 IEEE 1st International Workshops on Founda-
tions and Applications of Self* Systems (FAS*W), pp. 210–215 (September 2016)

15. Frignani, A.: Some Basic Differences between the Common Law and the
Civil Law Approach. http://www.jus.unitn.it/CARDOZO/Review/Comparative/
Frignani-1997/Washingt.htm (1996). Accessed 02 Feb 2017

16. Garćıa-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution
of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.)
BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65000-5 8

17. Grigg, I.: The Ricardian contract. In: Proceedings of 2004 First IEEE International
Workshop on Electronic Contracting, pp. 25–31 (July 2004)

18. Grigg, I.: On the intersection of Ricardian and Smart Contracts. http://iang.org/
papers/intersection ricardian smart.html (February 2017). Accessed 30 Jan 2017

19. Hull, R., Batra, V.S., Chen, Y.-M., Deutsch, A., Heath III, F.F.T., Vianu, V.:
Towards a shared ledger business collaboration language based on data-aware
processes. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016.
LNCS, vol. 9936, pp. 18–36. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46295-0 2

20. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based
smart contracts for blockchain systems. In: Alferes, J.J.J., Bertossi, L., Governa-
tori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6 11

21. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: CCS 2016 Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 254–269. ACM, New York, NY, USA
(2016). http://doi.acm.org/10.1145/2976749.2978309

https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://uploads.strikinglycdn.com/files/27311e59-0832-49b5-ab0e-2b0a73899561/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://uploads.strikinglycdn.com/files/27311e59-0832-49b5-ab0e-2b0a73899561/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
http://www.jus.unitn.it/CARDOZO/Review/Comparative/Frignani-1997/Washingt.htm
http://www.jus.unitn.it/CARDOZO/Review/Comparative/Frignani-1997/Washingt.htm
https://doi.org/10.1007/978-3-319-65000-5_8
https://doi.org/10.1007/978-3-319-65000-5_8
http://iang.org/papers/intersection_ricardian_smart.html
http://iang.org/papers/intersection_ricardian_smart.html
https://doi.org/10.1007/978-3-319-46295-0_2
https://doi.org/10.1007/978-3-319-46295-0_2
https://doi.org/10.1007/978-3-319-42019-6_11
http://doi.acm.org/10.1145/2976749.2978309

Trust in Smart Contracts is a Process, As Well 519

22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
23. Pettersson, J., Edström, R.: Safer smart contracts through type-driven develop-

ment. Ph.D. thesis, Master’s thesis, Department of CS and E, Chalmers University
of Technology and University of Gothenburg, Sweden (2015)

24. Reijers, W., O’Brolcháin, F., Haynes, P.: Governance in blockchain technologies
and social contract theories. Ledger 1, 134–151 (2016). http://www.ledgerjournal.
org/ojs/index.php/ledger/article/view/62

25. Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for distributed
ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016). http://
eprint.iacr.org/2016/1156

26. Semantics of Business Vocabulary and Business Rules (SBVR) Version 1.3, May
2015. http://www.omg.org/spec/SBVR/1.3/PDF

27. Swan, M.: Blockchain temporality: smart contract time specifiability with block-
time. In: Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.)
RuleML 2016. LNCS, vol. 9718, pp. 184–196. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-42019-6 12

28. Szabo, N.: Formalizing and Securing Relationships on Public Networks. https://
web.archive.org/web/20050217172626/. http://www.firstmonday.dk/ISSUES/
issue2 9/szabo/index.html (1997). Accessed 25 Jan 2017

29. Szabo, N.: The Idea of Smart Contracts. https://web.archive.org/web/
20160831070942/. http://szabo.best.vwh.net/smart contracts idea.html (1997).
Accessed 25 Jan 2017

30. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016).
http://dx.doi.org/10.1109/COMST.2016.2535718

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151 (2014)

32. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-
cated data feed for smart contracts. In: CCS 2016 Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 270–282.
ACM, New York, NY, USA (2016). http://doi.acm.org/10.1145/2976749.2978326

http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/62
http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/62
http://eprint.iacr.org/2016/1156
http://eprint.iacr.org/2016/1156
http://www.omg.org/spec/SBVR/1.3/PDF
https://doi.org/10.1007/978-3-319-42019-6_12
https://doi.org/10.1007/978-3-319-42019-6_12
https://web.archive.org/web/20050217172626/
https://web.archive.org/web/20050217172626/
http://www.firstmonday.dk/ISSUES/issue2_9/szabo/index.html
http://www.firstmonday.dk/ISSUES/issue2_9/szabo/index.html
https://web.archive.org/web/20160831070942/
https://web.archive.org/web/20160831070942/
http://szabo.best.vwh.net/smart_contracts_idea.html
http://dx.doi.org/10.1109/COMST.2016.2535718
http://doi.acm.org/10.1145/2976749.2978326

Defining the Ethereum Virtual Machine
for Interactive Theorem Provers

Yoichi Hirai(B)

Ethereum Foundation, Berlin, Germany
yoichi@ethereum.org

Abstract. Smart contracts in Ethereum are executed by the Ethereum
Virtual Machine (EVM). We defined EVM in Lem, a language that can
be compiled for a few interactive theorem provers. We tested our defini-
tion against a standard test suite for Ethereum implementations. Using
our definition, we proved some safety properties of Ethereum smart con-
tracts in an interactive theorem prover Isabelle/HOL. To our knowledge,
ours is the first formal EVM definition for smart contract verification
that implements all instructions. Our definition can serve as a basis for
further analysis and generation of Ethereum smart contracts.

1 Introduction

Ethereum is a protocol for executing a virtual computer in an open and dis-
tributed manner. This virtual computer is called the Ethereum Virtual Machine
(EVM). The programs on EVM are called Ethereum smart contracts. A deployed
Ethereum smart contract is public under adversarial scrutiny, and the code is not
updatable. Most applications (auctions, prediction markets, identity/reputation
management etc.) involve smart contracts managing funds or authenticating
external entities. In this environment, the code should be trustworthy.

The developers and the users of smart contracts should be able to check the
properties of the smart contracts with widely available proof checkers. Our EVM
definition is written in Lem, which can be translated into popular interactive
theorem provers Coq [1], Isabelle/HOL [19] and HOL4 [23]. We used our EVM
definition and proved safety properties of some smart contracts in Isabelle/HOL.

Our contributions are as follows:

– we gave a formal specification of the interface between a smart contract exe-
cution and the rest of the world (Sect. 4);

– we defined EVM in a way portable to different interactive theorem provers
(Isabelle/HOL and HOL4) and a programming language OCaml, during
which we found some subtle differences between the specification (the Yellow
Paper [26]) and the implementations (Sects. 5 and 6);

– we tested the executable part of our EVM definition against the VM test suite,
which validates existing Ethereum node implementations (Subsect. 5.3); we
found unsearched corner cases in the test suite;

– we used our EVM definition to prove invariants and safety properties of
Ethereum smart contracts (Sect. 7).

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 520–535, 2017.
https://doi.org/10.1007/978-3-319-70278-0_33

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 521

2 Choice of the Goal and the Tool

2.1 Goal: Which Programming Language to Formalize

Considerations Around Solidity. Although ultimately all Ethereum smart
contracts are deployed as EVM bytecode, the bytecode is rarely directly written.
The most popular programming language Solidity [3] has a rich syntax but no
specification. The only definition of Solidity is the Solidity compiler implemen-
tation, which compiles Solidity programs into EVM bytecode.

The Solidity compiler is written in C++. Importing the C++ code in a theorem
prover is nearly impossible because the definition of the whole C++11 language
has not been formalized although some of the hardest aspects of the language
have been addressed: concurrency [6], inheritance [21] etc.

It is feasible to verify a compiler with optimization (e.g. CompCert [14] and
CakeML [13]). Something similar for Solidity would require formalization of both
Solidity and EVM before correctness of the compiler can be stated.

Considerations on EVM. There are drawbacks of verifying EVM bytecode:

– most developers and users do not read EVM bytecode;
– the EVM architecture might become obsolete after the protocol adopts one

of the proposed new architectures (EVM 1.5 that introduces function calls or
EVM 2.0 which is based on WebAssembly [4]).

The first point can be, in the future, mitigated by translating static assertions in
Solidity into EVM bytecode. The second point is, in fact, milder compared with
the fast changes of the Solidity compiler. When the virtual machine architecture
changes, all Ethereum implementations need to implement the change. This
makes EVM change slower than the Solidity compiler.

EVM is an attractive formalization target. It is a stack-machine with a sim-
ple instruction-encoding and fully sequential execution. The simplicity of the
EVM architecture resulted in just over 2,000 lines of formal definition. EVM
has an English specification called the Yellow Paper (Fig. 1) clear enough to
allow multiple implementations to be developed independently1. Also, since any
disagreements among implementations hurt the availability of the network, the
community has implemented test suites to compare EVM implementations. We
use one of these test suites to test our EVM definition.

2.2 Tool: Formalization in Which Language

We intend our EVM definition as a basis for smart contract verification. The
verification should be done in a precise manner. Model checkers are not capable
of doing this because they cannot treat the huge state space: a smart contract can
store up to 2256 256-bit machine words permanently (the resource usage is limited
1 Several entities develop Ethereum clients in Python, C++, Rust, Java, Scala and Go,

and each contains its own EVM implementation.

522 Y. Hirai

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted.

Value Mnemonic δ α Description

0x01 ADD 2 1 Addition operation.
µ′

s[0] ≡ µs[0] + µs[1]

...

0x08 ADDMOD 3 1 Modulo addition operation.

µ′
s[0] ≡

{
fi0 µs[2] = 0

(µs[0] + µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject
to the 2256 modulo.

Fig. 1. A short excerpt from the Yellow Paper [26]. The symbol δ (resp. α) stands
for the number of deleted (resp. added) stack elements. µs[i] is the i-th stack element
before the instruction execution. µ′

s[i] is the i-th stack element afterwards.

only economically). Such big state spaces can better be dealt with interactive
theorem provers. Instead of specifying EVM in one particular theorem prover, we
chose a framework called Lem [16] because definitions in Lem can be translated
into some popular theorem provers: Coq [1], Isabelle/HOL [19] and HOL4 [23].

One potential alternative is the K-Framework [22]. The K-Framework is a
tool specifically engineered for defining programming languages. We chose Lem
and its translation targets for their larger user base2 and their longer history.

3 A Brief Description of the Ethereum Virtual Machine

Some of our design choices and challenges can be described only after an overview
of EVM. We just describe EVM as a state machine that executes programs. We
omit the underlying techniques that support distributed execution.

3.1 States

In EVM, apart from several global parameters, most states are stored in
accounts. EVM has a partial map from addresses (160-bit words) to account
states. An account state contains code, storage, nonce and the balance. The code
is a sequence of bytes. The storage is a mapping from a machine word (an EVM
machine word has 256 bits) to a machine word. The nonce is an ever-increasing
machine word. The balance is also a machine word, representing some transfer-
able value that can be paid as fees to run EVM. When the code is not empty,
the code controls the account; such an account is called a contract. Otherwise,

2 The Coq users’ mailing list has 1,404 subscribers while the K-Framework’s has 127
at the time of writing.

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 523

the account is controlled by the holder of a private key corresponding to the
address; such an account is called an external account. The code, when exists,
encodes a sequence of instructions. Instructions are all encoded in a single byte
except for the PUSH instructions, which contain immediate values.

3.2 State Transitions

An external account can initiate a transaction either by creating a contract or
by calling an account. Once a transaction is initiated, the whole state transition
of EVM is deterministic. We do not describe the contract creation by an external
account because a contract’s state after creation is publically checkable.

Both external accounts and contracts can call an account. When an account
calls an account, the call is accompanied with transferred balance, gas, and data.
The transferred balance is deposited to the called account. The gas regulates the
resource consumption during the call. When the called account is an external
account, a simple balance transfer happens. Otherwise, when the called account
is a contract, after the balance transfer, the called contract’s code is executed.
The code execution can alter the storage of the executing account. The execution
can read all accounts’ balances and codes.

The resource consumption of the code execution is capped by the amount
of gas that the initiating external account pays for. Executing an instruction
consumes some amount of gas. When the gas is exhausted, the execution fails
(out-of-gas failure). Such failures revert all state changes performed during the
current call, except gas consumption.

A contract can call an account by executing the CALL instruction. The ensuing
balance transfer and code execution belong to the same transaction as the calling
code execution. The calling contract can limit the resource consumption in the
called contract by choosing the amount of gas passed on. When the inner call
fails, the side-effects of the inner call is reverted (except gas consumption) but
the side-effects of the outer call remains intact. The outer call is informed of
such a failure through a return value of the CALL instruction.

A transaction belongs to a block. A block is a unit of agreement among
Ethereum nodes. EVM has special instructions that reads the block number and
the cryptographic hash values of some previous blocks. Since a block specifies a
previous block but not a unique successor, blocks in the network form a tree in
general, but, as far as the states of EVM are concerned, only one branch in the
tree matters. Because of this, we can think of EVM as a sequentially executed
machine.

4 Interface of a Contract Invocation

4.1 Boundary Between the System and the Environment

We are interested in propositions of the form: whatever the environment does,
the system responds in a desired manner. Before we try to specify the desired

524 Y. Hirai

behavior, we need to identify the system and the environment. The choice is not
straightforward because multiple parties are involved in EVM.

One way is to say that the system is the contract. In that case, the envi-
ronment contains anything out of EVM and all accounts on EVM except the
contract under verification. In our development, the system is a single contract
invocation, which is even narrower than a single account (Fig. 2(b)). The differ-
ence can be seen in the following scenario. The environment can call into the
contract. The contract can reply by calling an account. The environment can,
depending on the states of accounts that we do not control, call our contract
again. This is called reentrancy. During reentrancy, the storage and the balance
of our contract might change. We chose to model the reentrancy as part of the
environment. We explain this choice in Subsect. 6.3.

System

other
contractour contract

call

call

return

call

return

return

System

other
contractour contract

call

call

call

return

return

return

our contract

(a) (b)

Fig. 2. Different choices of system-environment boundaries during reentrancy. Both
pictures describe the same situation, but have different boundaries between the system
and the environment. (a) When the system is our contract, the reentrant call is a part
of the system. (b) When the system is a single invocation of our contract, the reentrant
call is a part of the environment. Both are sound, but we chose (b) because it matches
the program syntax where CALL instructions are followed by the next operations in the
same message call, not the next operations in the reentrant call.

4.2 Input and Output of a Deployed Ethereum Smart Contract

In Subsect. 4.1, we have set the boundary between the smart contract and the
environment. Next, we identify their interaction. The specification of the inter-
face is particularly important because it can be used to specify higher level
languages for Ethereum smart contracts. Our most concrete contribution is our
EVM definition in Lem, so we show some snippets in this section and explain
the syntax.

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 525

The interaction between the contract and the environment always starts with
the environment’s call into the contract. The environment can call into the con-
tract with the following information:

type call env = 〈|
callenv gaslimit : w256; (∗ the current invocation’s gas limit ∗)
callenv value : w256; (∗ the amount of Eth sent along∗)
callenv data : list byte (; ∗ the data sent along ∗)
callenv caller : address; (∗ the caller’s address ∗)
callenv timestamp : w256; (∗ the timestamp of the current block ∗)
callenv blocknum : w256; (∗ the block number of the current block ∗)
callenv balance : address → w256; (∗ the balances of all accounts. ∗) |〉

The whole syntax defines a record type with seven fields. A value of call env
consists of seven values each accessible under a field name. The field names are
italicized. Each field name is annotated with a type of the associated value. w256

denotes the type of 256-bit machine words and address 160-bit machine words.
list byte is the type of lists of bytes. The arrow type address → w256 is the
type of total functions that take an address and return a w256. This definition
is useful not only for reasoning about EVM bytecodes but also for designing high
level languages that would be compiled into EVM. Ethereum contracts written
in any language needs to take the combination of data above.

The environment can also make a called account return or fail after our con-
tract makes a call. Together, the environment’s possible actions are described
by the following variant type environment action, whose value can be
the label EnvironmentCall together with a value of call env, the label
EnvironmentRet together with a value of return result, or the label
EnvironmentFail. It is automatically understood that values with different
labels are different. This definition describes everything that can happen to an
Ethereum contract. If we have checked these cases, we have enumerated all pos-
sibilities.

type environment action =
| EnvironmentCall of call env (∗ the environment calls the contract ∗)
| EnvironmentRet of return result (∗ the environment returns ∗)
| EnvironmentFail (∗ the environment fails ∗)

We omit the definition of return result and many other symbols. The whole
formalization is publicly available3.

The contract can also make its move: calling another account, making a del-
egate call, creating a contract, failing, destroying itself, or returning. A delegate
call runs a potentially different account’s code on the caller’s account.

3 https://github.com/pirapira/eth-isabelle/tree/wtsc01.

https://github.com/pirapira/eth-isabelle/tree/wtsc01

526 Y. Hirai

type contract action =
| ContractCall of call arguments (∗ calling an account ∗)
| ContractDelegateCall of call arguments (∗ library call ∗)
| ContractCreate of create arguments (∗ deploying a contract ∗)
| ContractFail (∗ failing back to the caller ∗)
| ContractSuicide (∗ destroying itself and returning to the caller ∗)
| ContractReturn of list byte (∗ returning to the caller ∗)

This definition describes everything that an Ethereum contract can do. When a
high level language is designed for Ethereum, it’s desirable that the language can
cause all of these actions. Moreover, since the input-output interface is defined in
an interactive theorem prover, the actions can be universally (∀) or existentially
(∃) quantified in logical formulas that specify Ethereum smart contracts.

5 Formalizing the Deterministic Contract Execution

The Yellow Paper [26] specifies EVM’s behavior uniquely for all possible inputs
(either a contract creation or a message call) coming from external accounts.
After no state transitions, the resulting state is left ambiguous. The original
purpose of such determinism is to prevent the nodes from disagreeing, but the
determinism also simplifies the formalization. We were able to formalize consec-
utive execution of instructions in our contract as a total function that produces a
state. The deterministic definitions of the program semantics occupy 2,000 lines
of Lem code. The determinism also made it straightforward to test this part of
the EVM definition against a standard test suite (Subsect. 5.3)4.

We initially tried to implement EVM available in the latest Ethereum net-
work. During the VM tests we found that EVM should price instructions differ-
ently depending on block numbers, so we modeled this as to pass the tests.

5.1 Defining Execution Contexts

During the formalization, we have identified the runtime state of EVM. While
EVM is executing an account’s code, EVM has access to the stack, the memory,
the memory usage counter, the storage, the program counter, the balances of all
accounts, the caller, the value sent along the current call, the data sent along
the current call, the initial state kept for reverting into, the external account
that originated the transaction, the codes on all addresses, the current block,
the remaining gas, existence of accounts, and the list of touched storage indices.
Everything except the last one is necessary for EVM execution. The last piece
spares enumerating all storage indices while testing. These data are packed into
a record type variable ctx. Moreover, EVM can read the program and the
address of the currently running contract. These data are packed into a record
type constant ctx.
4 If nondeterminism existed in the EVM execution, at least, we would need to choose

a representation of nondeterminism that works both in interactive theorem provers
and in OCaml.

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 527

An instruction can result in the following cases:

type instruction result =
| InstructionContinue of variable ctx (∗ the execution continues. ∗)
| InstructionAnnotationFailure (∗ annotation was false. ∗)
| InstructionToEnvironment of

contract action (∗ the contract’s move ∗)
∗ storage (∗ the new storage content ∗)
∗ (address → w256) (∗ the new balance of all accounts ∗)
∗ list w256 (∗ the list of possibly changed storage indices ∗)
∗ maybe (variable ctx ∗ integer ∗ integer) (∗ continuation ∗)

The asterisk ∗ composes the type of tuples.

5.2 Defining Deterministic Contract Execution

Using the above definitions, we can define a function that operates an instruction
on the execution environments:

val instruction sem : variable ctx → constant ctx → inst →
instruction result

let instruction sem v c inst1 =
subtract gas (meterGas inst1 v c)
(match inst1 with
| Arith ADD → stack 2 1 op v c (fun a b → a + b)
| Arith ADDMOD → stack 3 1 op v c

(fun a b divisor →
(if divisor = 0 then 0
else word256FromInteger ((uint a + uint b) mod (uint divisor))))

...
end)

where meterGas calculates the exact gas consumption of the executed instruc-
tion. We can repeat the semantics of single instructions to define the semantics
of a whole program (JUMP instruction is not special because all instructions,
including JUMP, change the program counter).

The type program result is similar to instruction result. The program
semantics takes artificial step counters that disallow infinite execution because,
in Isabelle/HOL, every function must be provably terminating5. This does not
cause imprecision because any actual execution can be simulated with a suffi-
ciently large step counter value.

val program sem : variable ctx → constant ctx → int → nat →
program result

5 We can guarantee termination by the gas, but the proof is non-trivial (currently 980
lines of Isabelle code).

528 Y. Hirai

During the modeling, we found that the Yellow Paper computes gas differently
from the implementations. The subtlest case was the computation of gas for
memory accesses: when a contract accesses the memory on addresses spanning
from 2256 − 255 to 1, the gas calculation differed in the Yellow Paper and in
implementations. The Yellow Paper used 1 as the maximal touched address while
all checked implementations used 2256 + 1 instead. Since all implementations
agreed, we filed a fix in the Yellow Paper.

5.3 Testing the Deterministic Contract Interpreter

We tested our definition against a test suite called VM tests [2]. The test suite
(together with other test suits) keep different Ethereum implementations con-
formant. We used VM tests to ensure conformance of our EVM definition. Lem
automatically translated the definition into OCaml. The OCaml translation was
then combined with a test case runner we wrote in OCaml (Fig. 3).

Contract
Interpreter

Contract
Interpreter

Contract
Interpreter

Bytecode

Nondeterministic
Environment

Desired
PropertyProof

Test Runner

VM
Test Suite

Other EVM
Implementations

extractextract
validate

Lem Isabelle/HOLOCaml

Fig. 3. Our Lem definition can be extracted into OCaml and Isabelle/HOL. We tested
the OCaml extraction against the standard VM test suite. Using the Isabelle/HOL
extraction, we proved safety properties about some bytecodes. In this figure, the VM
test suite and other EVM implementations are not our contributions.

During the testing, we uncovered problems like:

– wrong word-to-integer conversion during ADDMOD in our EVM definition;
– different endianness between OCaml extraction and Isabelle/HOL extraction,

due to our wrong direction; and
– small mistakes in the Yellow Paper, in most cases about modulo-2256.

The number of successful test cases is 40,619 while no tests fail. We skipped
24 test cases because they involve running multiple contracts, and we chose
to model only a single contract’s execution deterministically. Running these 24
cases would involve major enhancements in our test runner: emulating multiple
instances of our EVM model and communication among them.

In addition, we measured the code coverage of the VM test suite on the
generated OCaml code. We found that DELEGATECALL instruction is never called,
that CALL instruction is never called with insufficient balance to be transferred,

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 529

that some instructions were never called with insufficient stack elements, and
that the gas calculation after the latest changes is not tested. Although recent
protocol changes are often tested in other test suites, the VM test suite can be
complemented with these cases.

6 Formalizing the Nondeterministic Environment

We define the nondeterministic environment as a binary relation between a
prestate of type (account state * program result) and a poststate of type
(account state * variable ctx). This binary relation encodes the environ-
ment’s freedom. The binary relation is parametrized with an invariant (to be
speculated by the verification practitioner) of the contract under verification,
which limits the state changes on the contract during reentrancy. If this limita-
tion makes the same speculated invariant provable, the invariant can be deemed
established following an informal argument given in Subsect. 6.3.

6.1 Implicit Balance Changes

We assume that the balances of accounts change freely while our contract is
not executed. This assumption subsumes the payment for the gas. The storage
of other accounts might change too. However, the balance of our contract is
assumed not to decrease when there are no calls being executed on it6

On the other hand, the balance of our contract might increase when another
account executes SUICIDE instruction, specifying our account as the recipient of
the remaining balance. So the environment can freely increase the balance of our
contract. We are assuming that the balance increase does not overflow (which
seems to hold currently because the total balance of all accounts is below 280

while the balances can be counted up to 2256 − 1).

6.2 Gas Consumption During Calls

When our contract calls an account, the available amount of gas might decrease.
We modeled this as a completely nondeterministic change. This treatment admits
the actual gas decrease as one possibility, and it shortens the proof goals dur-
ing brute-force proving. Without this treatment, during the symbolic execu-
tion described in Sect. 7, we saw the symbolic states grow rapidly because the
remaining gas was represented as a long sequence of subtractions. With the non-
deterministic choice, the remaining gas in the symbolic state is reduced into one
variable after each call.

6 This property can be established only by checking all lines in the Yellow Paper that
changes the balance.

530 Y. Hirai

6.3 Modeling of Reentrancy as an Adversarial Environment’s Step

We have freedom: the nested execution under reentrancy can either be a part
of the system or the environment. The choice influences the proof structure. If
the reentrancy is part of the system, proofs of safety properties need to explore
all possibilities in the nested reentrant calls. If the reentrancy is part of the
environment, the reentrancy is an adversarial step that changes the account
state in some arbitrary ways. We chose the latter way because this matches
better with the syntax of EVM bytecode, and it serves as the first approximation
before building a bigger EVM definition involving call stacks.

We assume that the reentrancy can change the contract’s account state (the
balance and the storage) following a speculated invariant. Using this assumption,
we prove the same invariant on the outer call. If we finish proving this, we can
perform mathematical induction over the number of nesting reentrancy to check
that all message calls keep the invariant. This mathematical induction has not
been formalized in any interactive theorem provers only because substantial
development is required before stating the goal.

6.4 Cleanup of an Account After Self-destruction

When a contract executes SUICIDE instruction, the storage and the code of the
account are cleared not immediately but at the end of a transaction. The timing
of this cleanup is determined by the adversarial environment. However, we know
that the cleanup does not occur while a contract is still running.

7 Example Verification of Smart Contracts

To show the utility of our definitions, we have developed three example proofs
in Isabelle/HOL.

Invariant of a Program that Always Fails. As the shortest example, we prepared
a smart contract that always fails. We proved that the code remains intact
forever; in other words the contract does not execute SUICIDE operations.

Invariant of a Program that Fails on Reentrance. The next example features
reentrancy, which enabled an external account “to put ∼$60M under her con-
trol” [5] during “the DAO” incident, where a coding mistake in a contract allowed
leakage of the fund. We implemented a contract (Fig. 4) that calls an account
but fails on reentrance. We proved that its storage values always stay within the
specified values (Fig. 5) even when reentrant calls are attempted.

Safety Property of a Compiled Program. We proved a safety property of a realis-
tic Ethereum contract with 501 instructions produced by the Solidity compiler.
The safety property states that, if the storage has a flag set, only the owner
recorded in the storage can decrease the balance or change the storage.

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 531

abbreviation fail_on_reentrance_program :: "inst list"

where

"fail_on_reentrance_program ==

Stack (PUSH_N [0]) # Storage SLOAD # Dup 1 # Stack (PUSH_N [2]) #

Pc JUMPI # Stack (PUSH_N [1]) # Arith ADD # Stack (PUSH_N [0]) #

Storage SSTORE # Stack (PUSH_N [0]) # Stack (PUSH_N [0]) #

Stack (PUSH_N [0]) # Stack (PUSH_N [0]) # Stack (PUSH_N [0]) #

Stack (PUSH_N [0xabcdef]) # Stack (PUSH_N [30000]) # Misc CALL #

Arith ISZERO # Stack (PUSH_N [2]) # Pc JUMPI # Stack (PUSH_N [0]) #

Stack (PUSH_N [0]) # Storage SSTORE # Misc STOP # []"

Fig. 4. An Ethereum smart contract that calls an account but fails on reentrancy. The
expression in this figure defines a list of instructions in Isabelle/HOL. See the Yellow
Paper [26] for intuitive descriptions of instructions.

inductive fail_on_reentrance_invariant :: "account_state ⇒ bool"

where

depth_zero:

"account_address st = fail_on_reentrance_address =⇒
account_storage st 0 = 0 =⇒
account_code st = program_of_lst

fail_on_reentrance_program program_content_of_lst =⇒
account_ongoing_calls st = [] =⇒ account_killed st = False =⇒
fail_on_reentrance_invariant st"

| depth_one:

"account_code st = program_of_lst

fail_on_reentrance_program program_content_of_lst =⇒
account_storage st 0 = 1 =⇒
account_address st = fail_on_reentrance_address =⇒
account_ongoing_calls st = [(ve, 0, 0)] =⇒
account_killed st = False =⇒
vctx_pc ve = 28 =⇒ vctx_storage ve 0 = 1 =⇒
vctx_storage_at_call ve 0 = 0 =⇒
fail_on_reentrance_invariant st"

Fig. 5. An invariant of the contract that fails on reentrancy, expressed in Isabelle/HOL.
The whole invariant is a disjunction of two clauses: depth zero holds when the contract
is not running while depth one holds when the contract has called an account.

The proof is a brute-force symbolic execution in Isabelle/HOL. The proof
contains repetitive 5,000 lines. It takes three hours for Isabelle to check the
proof. There is huge room of improvements. Since the contract contains no loops,
it should be possible to automate the whole proof. The proof checking time
would be much shorter with more advanced techniques that appear in the next
section.

532 Y. Hirai

8 Related Work

The idea and the techniques in this paper are not new, except that we apply these
to EVM. Boyer and Yu [9] used a theorem prover Nqthm to model MC68020
processor, and checked correctness of a binary search implementation. Fox [10]
modeled the ARM6 micro-architecture, which is far more complex than EVM, in
HOL and validated it against the instruction set architecture. The deterministic
part of our EVM definition happens to be in the form of functional big-step
semantics [20] although our proof development is not advanced enough to enjoy
its merits. The idea of combining theorem proving and testing is not new either
even in the industry [7].

The literature suggests our future paths as well. Myreen et al. [18] defined
Hoare logic for ARM machine code. Myreen et al. [17] further developed tech-
niques for decompiling machine code with loops into recursive HOL functions.
The approach of Kennedy et al. [11] is to formalize the machine code and then
to build gradually structured programming method in Coq. Alternatively, we
might try to build a higher level language that compiles into EVM. Jinja (Jinja
is not Java) [12] demonstrates language specification and implementation in
Isabelle/HOL. CakeML [13] is a programming language defined in Lem with a
verified compiler into x86-64.

Some automatic analysis tools have been developed for Ethereum smart con-
tracts. Oyente [15] implements abstract interpretation of EVM in Python with
constraint solving using Z3. The tool can automatically detect several classes of
vulnerabilities with false positives. Removing these classes of vulnerabilities does
not guarantee lack of bugs. The tool does not implement all instructions. Bhar-
gavan et al. [8] define translations from a fragment of Solidity and from EVM
into F∗, a functional programming language with a rich type system. They can
detect diversion from certain programming disciplines in Solidity. They can also
estimate an upper bound of gas consumption of an EVM program. They do not
mention testing their translations against implementations7.

9 Challenges and Future Work

Currently, verifying a realistic contract take around three hours on a Lenovo
Ideapad 500S. Most of the time is spent in out-of-gas failures at various points
in the program. One way to improve the situation is to set up a semantics that
squashes all out-of-gas failures as a single case.

Another direction is to make the reasoning compositional. In other words,
we should enable carrying over verification of small program snippets into verifi-
cation of larger programs. This involves developing a syntax for properties (pro-
gram logics) that is robustly concise during the compositional reasoning. Some
program logics for machine code exist: e.g. Tan and Appel [24] and Myreen et
al. [18].
7 One of the authors explained that the work had been done in a hackathon and the

codebase had not been touched since.

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 533

We have not tested the nondeterministic parts of our development. Also
we have not validated our development against the blockchain history of the
Ethereum network. The executable part of our model is considerably smaller
than the whole EVM. If we model the whole EVM, we can try more standard
test suites on our EVM definition. The modelling of the whole EVM would be
the first step towards implementing a reference EVM out of our definitions.

The interactive theorem provers are designed for honest users. When a proof
assistant admits a theorem that looks like falsehood, the proof assistant is called
Pollack-super-inconsistent . Coq and Isabelle are known to be Pollack-super-
inconsistent with auxiliary definitions and notations [25]. When falsehood seems
provable, subtler errors can also creep in. For protecting users from malicious
verification results, we need faithful presentation of the proven properties.

For verifying smart contracts in more human-friendly languages, we can
either formalize existing languages or build a compiler gradually in a theorem
prover. The first approach poses the burden of developing and maintaining an
up-to-date machine-readable definition of the language. The second approach
poses the burden of integration with the ecosystem, where the contracts need to
interface with JavaScript libraries and where developers need to be familiarized.

10 Conclusion

We defined EVM so that interactive theorem provers can reason about Ethereum
smart contracts. Our EVM definition contains all instructions. We used our
EVM definition in Isabelle/HOL and proved safety properties and invariants of
Ethereum contracts in the presence of reentrancy. As a side effect, we discovered
several problems in the specification; we requested eleven fixes to the Yellow
Paper. We found thirteen code paths in our model that the VM test suite did not
touch. We demonstrated formal executable specification is effective for verifying
smart contracts, for testing the specification, and for measuring code coverage
of virtual machine tests. We expect our development to be a basis for more
sophisticated smart contract verification frameworks and for verified compilers
from/to EVM bytecode.

Acknowledgments. We thank Sami Mäkelä for enabling Isabelle and Coq extrac-
tions and finding mistakes in our formalization. We thank Sidney Amani, Christian
Reitwießner and the anonymous referees for their time and valuable comments on this
paper.

References

1. The Coq proof assistant. https://coq.inria.fr/. Accessed 19 Dec 2016
2. Ethereum VM tests. https://github.com/ethereum/tests/tree/develop/VMTests.

Accessed 02 Jan 2017
3. Solidity 0.4.8-develop documentation. https://solidity.readthedocs.io/. Accessed 19

Dec 2016

https://coq.inria.fr/
https://github.com/ethereum/tests/tree/develop/VMTests
https://solidity.readthedocs.io/

534 Y. Hirai

4. WebAssembly. http://webassembly.org/. Accessed 16 Dec 2016
5. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-

tracts. Cryptology ePrint Archive (2016). http://eprint.iacr.org/2016/1007
6. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-

currency. SIGPLAN Not. 46(1), 55–66 (2011)
7. Becker, H., et al.: Combining mechanized proofs and model-based testing in the for-

mal analysis of a hypervisor. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 69–84. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 5

8. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: short paper. In: PLAS 2016,
pp. 91–96. ACM (2016)

9. Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used micro-
processor. J. ACM 43(1), 166–192 (1996)

10. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003).
https://doi.org/10.1007/10930755 2

11. Kennedy, A., Benton, N., Jensen, J.B., Dagand, P.E.: Coq: the world’s best macro
assembler? In: PPDP 2013, pp. 13–24. ACM (2013)

12. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)

13. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL 2014, pp. 179–191. ACM, New York (2014)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

15. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: CCS 2016, pp. 254–269. ACM (2016)

16. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. SIGPLAN Not. 49(9), 175–188 (2014)

17. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic-improved.
FMCAD 2012, 78–81 (2012)

18. Myreen, M.O., Fox, A.C.J., Gordon, M.J.C.: Hoare logic for ARM machine code.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 272–286.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75698-9 18

19. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

20. Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K.: Functional big-step semantics. In:
Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 589–615. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49498-1 23

21. Ramananandro, T., Dos Reis, G., Leroy, X.: Formal verification of object layout
for C++ multiple inheritance. SIGPLAN Not. 46(1), 67–80 (2011)

22. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log.
Algebr. Program. 79(6), 397–434 (2010)

23. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

24. Tan, G., Appel, A.W.: A compositional logic for control flow. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11609773 6

http://webassembly.org/
http://eprint.iacr.org/2016/1007
https://doi.org/10.1007/978-3-319-48989-6_5
https://doi.org/10.1007/978-3-319-48989-6_5
https://doi.org/10.1007/10930755_2
https://doi.org/10.1007/978-3-540-75698-9_18
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/11609773_6

Defining the Ethereum Virtual Machine for Interactive Theorem Provers 535

25. Wiedijk, F.: Pollack-inconsistency. Electron. Notes Theor. Comput. Sci. 285, 85–
100 (2012)

26. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger-EIP-150
revision. http://paper.gavwood.com/. Accessed 19 Dec 2016

http://paper.gavwood.com/

SmartCast: An Incentive Compatible Consensus
Protocol Using Smart Contracts

Abhiram Kothapalli(B), Andrew Miller, and Nikita Borisov

University of Illinois at Urbana-Champaign, Urbana, IL, USA
{kothapa2,soc1024,nikita}@illinois.edu

Abstract. Motivated by the desire for high-throughput public data-
bases (i.e., “blockchains”), we design incentive compatible protocols that
run “off-chain”, but rely on an existing cryptocurrency to implement a
reward and/or punishment mechanism. Our protocols are incentive com-
patible in the sense that behaving honestly is a weak Nash equilibrium,
even in spite of potentially malicious behavior from a small fraction of the
participants (i.e., the BAR model from Clement et al. [7]). To show the
feasibility of our approach, we build a prototype implementation, called
SmartCast, comprising an Ethereum smart contract, and an off-chain
consensus protocol based on Dolev-Strong [10]. SmartCast also includes
a “marketplace” smart contract that randomly assigns workers to proto-
col instances. We evaluate the communication costs of our system, as well
as the “gas” transaction costs that are involved in running the Ethereum
smart contract.

Keywords: Atomic broadcast · TRB · Game theory · Ethereum · Smart
contracts

1 Introduction

Bitcoin and related cryptocurrencies have sparked renewed interest in decentral-
ized consensus protocols, as exemplified by the so-called blockchain technologies.
It turns out that many applications (including complementary currencies, cer-
tificate revocation [6,14], directory authorities for p2p networks like Tor [9]),
benefit from a globally agreed-upon sequence of transactions. Currencies such as
Bitcoin and Ethereum use the proof-of-work mining to distribute the responsi-
bility for maintaining the blockchain integrity to a large collection of parties; the
integration of mining with a financial reward makes this collection difficult to
subvert. However, the global nature of this ledger creates some inherent costs,
both in terms of transaction costs and the agreement latency. An alternative
approach is what has been termed a permissioned ledger, where the role of min-
ers is taken by a trusted coalition of parties, whose motivation to properly follow
the protocol is assumed to come externally.

Several applications of blockchains, however, would benefit from a middle
ground between these two extremes. Loosely defined coalitions, such as food
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 536–552, 2017.
https://doi.org/10.1007/978-3-319-70278-0_34

SmartCast: An Incentive Compatible Consensus Protocol 537

banks, cooperatives, or student organizations, are some times in need of a
blockchain-like ledger for tracking membership benefits or exchanges between
sister organizations; however, they would not have the resources to directly oper-
ate a reliable collection of “miners,” nor, necessarily agree on a set of trusted
parties. At the same time, directly using cryptocurrency for account deposits
might limit their accounting flexibility and incur non-trivial transaction costs.

Our approach creates a system where workers who act to enforce integrity are
financially rewarded for their correct participation in the process, as monitored
by other workers and enforced through an Ethereum smart contract. Our proto-
col draws inspiration from a consensus protocol designed by Clement et al. [7],
where honest participation is shown to be a rational strategy for participants
trying to maximize their utility. Their protocol, however, assumes that workers
derive intrinsic utility from the correct functioning of the protocol and requires
an infinite time horizon; in our scenario, which we believe to be more realistic, we
expect consensus to be enforced by inherently disinterested parties whose only
motivation is financial. This extrinsic reward dramatically simplifies the pro-
tocol design and improves its efficiency. Our protocol requires only occasional
communication with the Ethereum blockchain through the smart contract, thus
minimizing transaction costs.

To design our protocol, we create a generic transform that renders any exist-
ing protocol where communication is the dominant cost incentive-compatible. We
show that, under this transform, honest participation is a weak Nash equilibrium
in a worst-case utility model, which was previously used by Clement et al. [7].

To show the feasiblity of our approach, we build a prototype implementation,
called SmartCast, comprising an Ethereum smart contract and an “off-chain”
consensus protocol (based on the Dolev-Strong [10] broadcast protocol). We
evaluate the communication costs of our system, as well as the “gas” transaction
costs that are involved in running the Ethereum smart contract. We additionally
describe how these protocols can be deployed in practice with random consensus
nodes.

1.1 Related Works

Several previous works have proposed using cryptocurrencies to enforce prop-
erties in off-chain protocols. Bentov and Kumaresan’s protocol [1] guarantees
either a fair output or else financial compensation to each honest party, but
requires significant collateral deposits. In contrast, our weak Nash equilbirium
notion guarantees that parties cannot benefit by deviating. In a separate line
of work, Garay et al. design a general framework to build protocols that are
resilient against rational adversaries [11]. We instead design a protocol trans-
former that can achieve resilience for a certain class of protocols. To the best
of our knowledge, we are the first to harness smart contracts for the purpose of
Byzantine fault tolerance.

538 A. Kothapalli et al.

2 Background and Preliminaries

2.1 Network Model

Our basic computation model is the standard point-to-point network setting
with synchronous authenticated channels. We consider a fixed set of parties N ,
where an individual party is denoted p ∈ N . The protocol proceeds in rounds of
communication, with the exact order of messages in each round may be arbitrary
(i.e., chosen by the adversary). Messages not delivered within the round are
invalid. Each party is associated with a common-knowledge public signing key
to send authenticated messages. Our model accounts for Byzantine failures. The
adversary can choose to corrupt a subset of nodes B ⊂ N , giving them complete
control over these nodes. |B| is bounded by a parameter b.

2.2 Smart Contract Protocols

Public cryptocurrencies [4] (or “blockchain”) systems, such as Bitcoin [17] and
Ethereum [20], provide a decentralized platform for programmable money. These
can be used as general-purpose trusted third parties, but with caveats. For
instance, they can be trusted for correctness, but do not provide any inherent
privacy. For some applications, privacy can be provided by a layer of multi-
party computations and zero-knowledge proofs [1,12]. A second caveat is that
blockchain transactions are expensive (because they are fully replicated through-
out the entire cryptocurrency network), so it typically is not cost-effective to
carry out protocols directly on top of the blockchain.

A protocol in the smart contract model is therefore most effective with two
components: (1) A smart contract program, which receives reports from nodes
about each other, and dispenses rewards at the end; and (2) Local code for each
of the parties to execute, including interactions with the smart contract and
participation in “off-chain” subprotocols. We also assume a rushing adversary,
who can observe the smart contract transactions sent by non-Byzantine parties
before submitting transactions on behalf of the Byzantine parties.

2.3 Utilities in the BAR Model

We adapt the The Byzantine-Altruistic-Rational (BAR) fault tolerance model
from Clement et al. [7] to the smart contract setting. The BAR model is a game-
theoretic layer on top of the standard distributed protocol execution model. That
is, we view the choice of what code to run (i.e., either following the protocol or
deviating in some arbitrary way) as a strategic decision.

We associate each “off-chain” protocol message with a cost to the sender of
that message, determined by the total size of the messages sent. However, we
ignore any other costs of computation, storage, and other resources. We thus
assume that the total utility of each party therefore depends on the monetary
payments disbursed by the smart contract, minus the cost of the messages they

SmartCast: An Incentive Compatible Consensus Protocol 539

send. Since the protocol execution is probabilistic, unless indicated otherwise we
are concerned with the expected utility.

As Clement identifies, in an ordinary protocol (i.e., without the smart con-
tract incentive mechanism in place), parties may be able to profit by deviating
from the protocol—in particular by withholding messages to reduce their costs
(i.e., by acting “lazy”). Thus the high level approach is to punish lazy nodes.

A strategy profile σ defines a program for each party p in N to run. Given a
protocol ρ, we use the symbol ρ to denote the prescribed strategy, in which every
party follows the protocol correctly.

While standard distributed systems models feature a worst-case adversary,
and standard game models feature a set of strategic (i.e., “rational”) players, the
intersection of these has yet to be studied widely. Clement proposes the following
notion of “worst-case utility,” which we also adopt.

Definition 1. Worst-case Utility. The worst case utility ūp(σ) for a rational
player p ∈ N is where p follows strategy σ, every non-Byzantine player in N −
B−{p} follows the prescribed strategy, ρN−B, and the choice of Byzantine players
B and their strategies τ̄B ∈ SB are chosen to minimize the resulting utility up.
This is defined more precisely as:

ūp(σ) � min
B⊂N :|B|≤b

◦ min
τ∈SB

◦ up(ρN−B−{p} + σ + τB) (1)

Our goal is then to show that the prescribed strategy is a worst-case weak
Nash equilibrium, i.e., ūp(ρp) ≥ ūp(σ) for any σ. That is, a rational party cannot
improve their expected utility by following any other deviant protocol σ. This
solution concept could be thought of as modeling paranoid players who think
that other parties (up to b of them colluding) are “out to get them.”

2.4 Synchronous Byzantine Agreement

Alternative definitions of consensus primitives abound in the distributed systems
literature. Perhaps the strongest of these—and the one most naturally suited to
our application scenario—is “atomic broadcast.” This primitive allows any of the
N protocols parties to submit input values, and the parties all reach agreement
on an ordered sequence of values that at least includes the inputs from each
honest party. Atomic broadcast could thus be described as the “blockchain”
primitive in today’s post-Bitcoin parlance.

Below we provide a more formal definition of this primitive, adapted for the
synchronous setting. We assume that each input value is bounded by a maximum
message size C, and that the protocol finally terminates after a maximum number
of rounds r†.

Definition 2. Bounded Atomic Broadcast: Given a set of players N , each
process p in N receives inputs mp,r ∈ {0, 1}C in round r.

– (Termination): after a bounded number of rounds r†, each correct process
terminates.

540 A. Kothapalli et al.

– (Agreement): The sequence of outputs Vp,r in round r by each correct process
p are all identical, i.e. ∀r,∀p, q ∈ N − B.Vp,r = Vq,r.

– (Validity): every input from a correct node (received before r ≤ r†) is included
in Vr† .

Looking ahead, in Sect. 3.4 we implement an atomic broadcast protocol by
composing a simpler primitive, called Terminating Reliable Broadcast (TRB).
In TRB, one of the parties is designated as the leader, and only the leader may
input messages. Thus in TRB there is no need to apply an ordering to messages
from different sources, and if the leader is faulty then the parties may need to
output a default value ⊥.

Definition 3. Terminating Reliable Broadcast Given a set of players N , among
which one, D, is designated the leader and receives an input m ∈ {0, 1}C (i.e.,
within some bounded message size of C bits), a Terminating Reliable Broadcast
protocol must satisfy the following properties:

– (Termination): Every correct process p delivers some value m ∈ {0, 1}C ∪{⊥}
after a bounded time r∗.

– (Agreement): If any correct process delivers m, then all correct processes
deliver m.

– (Validity): If the leader D is correct, then every correct process delivers D’s
input m.

Alternative network models. Although our SmartCast protocol relies on a syn-
chronous network model. This is generally considered a strong assumption. Other
protocols such as PBFT [5] provide security in the more challenging weakly syn-
chronous setting—they meet the lower bound in this model, which is b ≤ N/3.

However, synchrony is an assumption we must take anyway if we rely on a
smart contract system in the style of Bitcoin and Ethereum. It is not clear how
to adapt our protocol to the asynchronous setting, since we would not be able to
detect whether a message was omitted by a party or just delayed in the network.

3 Smart Contracts for Incentive Compatible Protocols

In this section we present our main contribution, a protocol transformer,
SmartBAR(·), which transforms an arbitrary synchronous protocol with costly
communication, π into an incentive compatible protocol SmartBAR(π). As an
application, in Sect. 3.4 we apply this transformation to yield an incentive-
compatible consensus protocol, called SmartCast.

At a high level, SmartBAR(·) adds a smart contract layer to π that implements
a reward/punishment mechanism. In an ordinary protocol (i.e., without this
incentive mechanism in place), parties may be able to profit by deviating from
the protocol—in particular by withholding messages to reduce their costs (i.e.,
by acting “lazy”). To ensure that laziness is not profitable, our protocol enlists
the honest parties to detect lazy nodes and the smart contract to punish them.

SmartCast: An Incentive Compatible Consensus Protocol 541

The transformation works for an arbitrary synchronous protocol π that sat-
isfy the following assumptions. First, each correct party in π terminates after a
bounded number of rounds r∗, for some parameter r∗. Second, the total number
of bits between any pair of parties is bounded by a value M . We call a protocol
that satisfies these an (r∗,M)−bounded synchronous protocol.

Since the transformation runs π in place, any fault tolerance properties of
π still carry over to SmartBAR(π). In particular, if π tolerates b faults, and we
prove that running is a b-worst-case equilibrium, then the security of the overall
protocol security reduces to the assumption of strategic behavior among the
rational remaining parties.

3.1 The Protocol Transformer SmartBAR(·)
The transformed protocol SmartBAR(π) runs π with the following minimal mod-
ifications:

– Modification 1: We impose a predictable communication pattern so that nodes
can detect if another is cutting costs by not forwarding messages. Our pre-
dictable communication pattern requires that in each protocol instance, node
p must send every node q the maximum possible total message size M . If
fewer than M message bits are sent by the end of the protocol, then dummy
messages are sent to make up the difference.

– Modification 2: We impose a penalty on nodes that fail to forward messages,
by implementing the following rules:

• Each node keeps track of the total message bits received from each other
node.

• At the end of the protocol, if fewer than M bits have been received by
p from q, then p sends a report Rp,q = enemy to the smart contract.
Otherwise, if at least M bits have been received, then p sends a report
Rp,q = friend.

• The smart contract waits until the final round of the protocol r∗ to collect
status reports from all nodes p ∈ N . Finally, the smart contract deter-
mines the payout to each party by deducting a penalty of θ (a parameter
discussed shortly) for each enemy report about that party.

Alternative definitions of enemy. Note that we propose a relatively lenient defin-
ition for enemy as a node that does not send at least M bits. This protects honest
nodes with harmless or negligible deviations from being marked as dishonest by
other honest nodes. On the other hand, we can follow a much stricter definition
of enemy by marking nodes that do not send at least M bits, send incorrect bits,
send more than M bits, and so on. This leads to additional protocol security by
barring more forms of misbehavior, but may unnecessarily penalize honest nodes
that perform harmless or negligible deviations.

The entire SmartBAR(·) protocol is defined in Fig. 1. For simplicity, we assume
the smart contract is initialized with an endowment E ≥ N(N − 1) · θ. In
practice, this endowment might be provided by collecting collateral deposits from

542 A. Kothapalli et al.

Fig. 1. Our protocol transformer, Smart(·), which provides incentive-compatibility for
an arbitrary synchronous protocol. Each party pads outgoing messages to the maximum
size, and reports to the smart contract about any “lazy” peers.

the participants or collecting usage fees from users of the system, as described
shortly in Sect. 3.5. We next describe how the parameter θ is determined in order
to satisfy the worst-case equilibrium notion.

SmartCast: An Incentive Compatible Consensus Protocol 543

3.2 Rationality Analysis

We now prove that following the SmartBAR protocol is a worst-case weak Nash
equilibrium.

The utility for party p ∈ N as a function of a strategy vector σ is up(σ) =
benefitsp(σ) − costsp(σ). The overall benefits will be decided by rewardp and
the overall cost is costmsg + costreport. In the following, we use the notation
σN−{p} + σp to denote the union of the strategy vectors σN−{p} + σp.

In order to prove that rational parties gain the highest utility by following
the recommended protocol, we take the following steps:

First we show a lower bound that following the protocol earns p a minimum
utility u∗, regardless of the adversary’s choice of strategies.

Next, we partition the space of alternative strategies into classes based on how
they behave towards honest nodes. We define a simple family of strategies, called
the “indiscriminate” strategies, which act as representatives of these classes. We
can prove that the indiscriminate strategies perform just as well (in the worst-
case) as any other strategy.

Finally, we show how to choose the protocol parameter θ so that u∗ is an
upper bound for the utility of any indiscriminate strategy. The setting of θ
directly determines the overall collateral cost (i.e., the required endowment) for
the protocol.

Lemma 1. Regardless of the strategy τB followed by Byzantine parties, if p
follows ρp, then p obtains at least

ūp(ρ) ≥ u∗

where
u∗ � (N − 1)θ − (N − 1)M − bθ.

Proof. The ideal reward of the protocol is initially set to be (N − 1)θ. The
prescribed strategy sends all possible messages, incurring the maximum message
cost (N − 1)M . Since all the non-Byzantine nodes report p as a friend, the
maximum report cost can be at most bθ, which occurs when all b Byzantine
nodes report enemy.

This bound holds regardless of how the protocol parameter θ is chosen. This
worst-case utility is incurred when the Byzantine parties follow the spiteful strat-
egy.

The indiscriminate strategies, αγ . We next turn towards proving an upper bound
on the utility of deviating from the prescribed strategy ρ.

We first define a family of simple strategies, α, which we call the indiscrimi-
nate strategies. Looking ahead, these strategies will serve as representatives for
a partioning of the overal strategy space. The indiscriminate strategies α by a
fraction 0 ≤ γ ≤ 1, such that αγ misbehaves towards each other node with prob-
ability γ. More precisely, αγ is defined as follows: At the beginning of the game,
for each other party q a coin is flipped with probability γ (for some arbitrary

544 A. Kothapalli et al.

percentage γ). If the coin flip succeeds, then p refuses to send any messages to
q; otherwise p sends messages to q according to the ordinary protocol.

The strategy αγ clearly causes p to incur a message cost of (1 − γ)(N −
1)M . Since this strategy witholds messages from exactly γ(N − 1 − b) honest
uncorrupted parties in expectation, the worst-case expected report cost is (b +
γ(N − 1 − b))θ. We therefore have the following claim:

Claim. The worst-case expected utility for the strategy αγ is

ūp(αγ) = (N − 1)θ − (N − 1)(1 − γ)M − (b + γ(N − 1 − b))θ (2)

The Spiteful Strategy, δ. Following Clement et al. [7], we define a particular
adversarial strategy, called the spiteful strategy, which serves as a worst-case
adversary (as we will see shortly). The spiteful strategy initially behaves accord-
ing to the prescribed strategy, but in the final round it always reports enemy for
player p, causing p to be punished.

If rational party p could determine which nodes were corrupted, then p would
be able to cut his losses by withholding messages from just the nodes in B. The
spiteful strategy, however, blends in with the honest parties. As shown by the
following lemma, this means p can do no better than to withhold messages from
other nodes chosen uniformly at random, as with the indiscriminate strategy
αγ . In the following, we say that player p follows an acceptable message sequence
towards player q if p sends q a total of at least M bits.

Lemma 2. Consider a strategy σγ , such that in an execution with all honest
parties (i.e., with the strategy vector {σγ} + ρN−{p}), party p sends an unac-
ceptable message sequence to exactly γ(N − 1) nodes in expectation. Then the
worst-case utility ū(σγ) is at most ū(αγ).

Proof. Let γq be the probability that σγ sends an unacceptable message sequence
to party q ∈ N − {p} when all parties besides p follow the protocol. By assump-
tion, we know that ∑

q∈N−{p}
γq = γ.

First, note that against the spiteful adversary, p incurs an expected message
cost of at least (1 − γ)(N − 1)M . Next, to bound the report cost, we will choose
B ⊆ N−{p}, with |B| = b, such that we minimize

∑

q∈B
γq. This minimization guar-

antees that p sends an unacceptable message sequence to at least (N − 1 − b)γ
honest nodes in expectation, resulting in an expected report cost of at least
(b + (N − 1 − b)(γ))θ. ��

Note the above proof above holds regardless of whether probabilities γq are
independent.

SmartCast: An Incentive Compatible Consensus Protocol 545

Choosing the parameter θ. We want to choose θ so that deviating from ρ cannot
improve the worst-case expected utility. Starting from Lemma 2, it will suffice if
we can guarantee that ūp(ρ) ≥ ūp(αγ) for all γ. We therefore solve the following:

ūp(ρ) ≥ ūp(αγ) (3)
(N − 1)M + bθ ≤ (N − 1)(1 − γ)M + (b + (N − 1 − b)(γ))θ (4)

θ ≥ N − 1
N − 1 − b

M (5)

Theorem 1. If π is a synchronous protocol that terminates after r∗ rounds and
each party sends a maximum of M message bits to each other party, then the
transformed protocol Smart(π) is a worst-case weak Nash equilibrium.

Proof. When the SmartTRB protocol is instantiated with θ defined as in Eq. 5,
from Lemma 1 we have that the worst-case expected utility when p follows the
protocol ūp(ρ) is at least as good as any indiscriminate strategy ūp(αγ). And
from Lemma 2, we know that the indiscriminate strategies perform as well in
the worst-case as any other strategies.

3.3 Comparison with the BAR Primer [7]

Our protocol and analytical framework is adapted from the bar model of Clement
et al. [7], but with several significant differences.

While Clement’s model requires an infinitely repeated game, our model con-
siders the bounded case. In the infinite settings, rational parties simply play
tit-for-tat, immediately and irrevocably “retaliating” against nodes that misbe-
have, preventing them from all future rewards. In a finite setting, a node could
misbehave in the final round without fear of retaliation.

Additionally Clement’s model assumes that nodes gain a positive utility from
the correction execution of the protocol itself. Alternatively, in our model, nodes
gain a positive utility monetary payments disbursed by the smart contract. We
believe our utility model is more realistic, especially in a marketplace setting
(like that discussed in Sect. 3.5) where the participants in a protocol instance
are randomly assigned from some population of available workers.

Together, these two modelling differences require a significant change to the
protocol and proof. First, while “retaliation” in Clement’s model involves requir-
ing nodes to send expensive “penance” messages (since that is the only way to
inflict a punishment in their model), the smart contract provides a direct alter-
native. Second, in the finite setting we must rule out deviant strategies that
withhold messages in a possibly randomized way, even in the last round, as
though “guessing” at which parties might be corrupted. We overcome this by
introducing a new family of “indiscriminate strategies” that serve as simple rep-
resentatives of the full strategy space. Finally, like Clement, our proof involves
a “spiteful strategy,” that acts as a worst case adversary. However, the “spiteful
strategy” is different in our model: it misbehaves only in the final round, after
it is too late for the victim p to retaliate.

546 A. Kothapalli et al.

3.4 SmartCast: An Incentive Compatible Consensus Protocol

As an application of our general protocol transformation, we now describe how
to apply our SmartBAR(·) transformation to a classic synchronous protocol,
DolevStrong [10], in order to obtain an incentive-compatible off-chain consen-
sus protocol.

The Dolev-Strong protocol for Terminating Reliable Broadcast. The Dolev-
Strong protocol is a classic algorithm for synchronous byzantine agreement using
signatures, that achieves optimal resilience by tolerating N −1. However, it pro-
vides no explicit incentives for participants to follow. As seen in Clements et al.,
individual participants in the protocol can reduce their computational cost by
omitting messages.

The protocol runs for b+1 rounds, where the leader D sends a signed message
containing its input to each of the other nodes in the first round. Each node that
receives the leader’s message in the first round “accepts” the message, and then
appends their own signature and relays the message to every other node. If the
leader fails to send a message to some node p, some other node q will relay the
message to p in any round r, as long as the relay contains at least r signatures.
p will then continue to relay the message. If the leader equivocates, it is possible
that a node accepts two or more distinct values. In this case, a node outputs
⊥, and only relays the first two such values received. In total, each node must
therefore send a maximum of 2N total messages, each containing an input value
and up to b + 1 signatures.

We provide a listing of the Dolev-Strong algorithm in Fig. 2, adapted from
Kumaresan’s thesis [13]. For a proof of security we refer the reader to [10,13].

Fig. 2. Definition of the DolevStrong protocol [10] for Terminating Reliable Broadcast
(adapted from Kumaresan [13])

SmartCast: An Incentive Compatible Consensus Protocol 547

From Reliable Broadcast to Atomic Broadcast. Atomic broadcast further guar-
antees that messages can be committed by any node, not just a leader. In a
synchronous network, atomic broadcast can be easily built from terminating reli-
able broadcast, simply by having nodes take turns becoming leaders. In brief,
each node maintains a buffer of input values that have not been committed yet.
When it is node p’s turn as leader, p broadcasts the set of elements in its buffer.
When each turn ends, the nodes remove any newly committed elements from
their buffers.

3.5 Deploying Consensus Protocols with Smart Contracts

So far, we have discussed protocols assuming a fixed set of parties, with collateral
provided abstractly by a benefactor. We now describe an alternative deployment
scenario where many independent SmartCast instances are run concurrently, and
where the participants in each are randomly drawn from a large population
of potential workers. Our idea is to build a smart contract-based marketplace,
SmartCast-Market, that matches up workers to protocol instances.

A näıve approach might be to allow participants to join a SmartCast
instance a first-come-first-serve basis. This näıve solution would be vulnerable
to Sybil attacks, where malicious nodes join as fast as they can with numerous
pseudonyms, hoping to fill up all of the slots in a protocol and therefore crowd
out honest nodes. Instead, our solution is to allow nodes to join a pool of work-
ers, and to allow task creators to deposit collateral and add to a pool of pending
tasks. Every epoch, workers are assigned to tasks in a randomized batch. This
prevents nodes from gaining too much influence within any particular protocol
instance.

If all participants in an instance follow the protocol, then the total payment
for a task must be P = N(N − 1)θ. In principle, this could be collected from
a combination of up-front payment from the task creator, along with collateral
deposits from the participants themselves.

Since participation is voluntary, we should ensure as a guideline that workers
never lose money by participating in the protocol. Thus if they deposit collateral,
they must get at least that collateral back (in expectation) despite a worst-case
adversary. However, since the parameter θ = N−1

N−1−bM is chosen minimally, in
the worst-case each honest party just breaks even, receiving only (N −1− b)θ in
payment but incurring an equal message cost of (N −1)M . Therefore there is no
opportunity for collateral deposits to contribute to the necessary endowment.

Thus the task creator must pay up-front the maximum payment N(N − 1)θ,
although the maximum total message cost is only N(N − 1)M . Hence, the task
creator potentially pays an overhead of N−1

N−1−b above the raw cost of the resources
used.

4 Implementation and Evaluation

To evaluate the practical limitations of the SmartCast protocol, we develop a
prototype implementation of both the Dolev-Strong consensus algorithm and

548 A. Kothapalli et al.

Fig. 3. Implementation of the Smart contract in Solidity.

an Ethereum smart contract capable of assigning various nodes to arbitrary
consensus tasks.

Our Dolev-Strong implementation is written in Python, using ordinary
threads and TCP sockets, with messages signed using the ed25519 signature
scheme. We evaluated our protocol by running on a network of up to 16 Amazon
EC2 instances. To simulate realistic network delays, we used the Linux traf-
fic control tool to limit bandwidth to 5mbps and impose a 100ms latency per
message.

In the synchronous network model, messages between honest parties are sim-
ply guaranteed to be delivered within a given time bound. However, in reality,
it is necessary to choose this timeout parameter concretely, based on estimates
of network performance and on a tolerance for failure. Too short a timeout, and
messages between otherwise-honest parties may fail to be delivered in time.

In our experiments the payload for each broadcast is a constant size of 1
megabyte (i.e., the size of a Bitcoin block today). We benchmarked the network

SmartCast: An Incentive Compatible Consensus Protocol 549

and computation load by performing several trial computations and measuring
the resulting message delivery time, and then fitting a normal distribution to
the results.

We first analyze the effects of message failure on the individual participants
bottom line. If a node p fails to deliver a message to q in time, then q will
inflict a punishment on p. Since each node is required to send 2 messages, if each
message fails with probability ζ, we expect the expected cost of punishments to
be (N − 1)(1 − (1 − ζ)2). In Fig. 4 we compare the actual punishment incurred
in our experiment with this expected line.

Message delivery failures can also lead to inconsistent outputs. In the worst
case, if the maximum number of b nodes are actively attacking the network, then
even a single failed message among the remaining nodes can lead to inconsistency.
This occurs in the following scenario: suppose b nodes (including the leader) are
corrupted, and send no messages at all until round b (the next-to-last round).
At the beginning of round b, one of the corrupted nodes sends a message to
a single honest node p containing a value v and b signatures. The node p will
accept (and output) the value v, and relay it to the remaining N − 1 − b honest
nodes. If even one of these nodes fails to receive this final-round message, then it
will output an inconsistent value ⊥. Thus given b malicious nodes, and assuming
messages fail independently with probability ζ, the uncorrupted nodes could
output inconsistent values with probability 1 − (1 − N2) probability (these are
plotted in Fig. 5).

Fig. 4. Penalties imposed on nodes vs.
message failure probability.

Fig. 5. Consistency failure vs. message
failure probability (analytic only).

4.1 Ethereum Smart Contract

We implemented the smart contract component of SmartCast in Ethereum’s
Solidity programming language. Our implementation includes:

– A smart contract for collecting reports, and handling payments. The entire
program listing is shown in Fig. 3.

550 A. Kothapalli et al.

– A smart contract implementing the “Marketplace” described in Sect. 3.5.
– A test framework using pyethereum, allowing us to measure the “gas costs”

(i.e., transaction fees) for varying numbers of parties.

The Solidity language syntax resembles Javascript, and the intended effect
of each line should be clear in context (though we imagine readers may be
skeptical of the details, given several recent high-profile failures caused by subtle
Solidity quirks [8,15,16]). Fortunately, the Smart Contract program listing in
3 fairly closely matches the pseudocode in Fig. 1. We explain a few Solidity
idioms that readers are likely to be unfamiliar with. Solidity supports “modifier”
macros, which are convenient for specifying preconditions which must hold before
a function is called (or else they throw an error). Furthermore, although the
pseudocode disburses all rewards immediately upon the deadline, Ethereum does
not directly support time-triggered events, thus the indirect withdraw function
is necessary.

The Marketplace Contract. We also implemented a Solidity version of the “mar-
ketplace” smart contract described in Sect. 3.5. Below we describe its high level
functions. For space, we omit the full Solidity code listing; the full code will be
made available online.

– registerTask: creates a new task, configured with any application-specific
parameters (e.g., description of a validation condition or a list of approved
clients). The task creator must include payment sufficient to pay the workers
for the task.

– registerWorker: allows a worker to sign up, depositing any necessary col-
lateral.

– finalize: shuffles the list of workers and list of tasks, and then assigns work-
ers to tasks until either (a) no tasks are remaining, or (b) not enough workers
are available to fill the remaining task. For each fully-assigned task, spawn a
new instance of the SmartCast contract. Return any deposited collateral to
workers who were not assigned to a task, and refund payment to task creators
whose tasks were not fulfilled.

Our protocol relies on a random beacon; our prototype simply uses
block.blockhash(0) as a source of randomness, although this is known to be
manipulable by miners [3,18].

Ethereum Benchmarks. We tested our smart contract implementation using the
pyethereum.tester framework. Table 1 shows the required gas costs for varying
configurations of our application. We show results for only a few possible config-
urations: we increase the number of parties P , but always fill two tasks with two
workers left over. The finalize method is the most expensive, since it grows
with O(N) when shuffling the list of workers. However, the registerWorker and
registerTask methods are each invoked N times, and thus contribute about
equally to the total.

SmartCast: An Incentive Compatible Consensus Protocol 551

Ethereum imposes a per-block (and hence, per-transaction) gas limit, which
miners can vote to change gradually over time. Although the simulator easily
supports these large transactions, today’s Ethereum blockchain enforces a limit
of approximately 2 million gas units, which the finalize operation busts when
P ≥ 20 (as underlined in Table 1). To avoid this limit, an alternative approach
would be to spread the finalize operation over several contract invocations.
This would require more complicated code, since each invocation would need to
explicitly load and save its internal state. Our application provides a motivation
for higher-level programming abstractions for transactions spanning multiple
blocks.

Table 1. Smart contract gas costs (normalized to dollars, based on current Ethereum
parameters and price (as of Nov 14 2016)). Underlined costs are infeasible, exceeding
Ethereum’s current per-block gas limit.

(N,P,T) registerWorker registerTask finalize Tot

Gas (USD) Gas (USD) Gas (USD) Gas (USD)

(4, 10, 2) 110743 2.7/c 153347 3.8/c 1215702 30.4/c 2614826 65.4/c

(8, 18, 2) 110743 2.7/c 153347 3.8/c 1863111 46.6/c 4234665 $1.05

(16, 34, 2) 110743 2.7/c 153347 3.8/c 2966784 74.0/c 6678740 $1.70

(32, 66, 2) 110743 2.7/c 153347 3.8/c 5271727 $1.32 12047459 $3.01

Alternative implementation in Bitcoin. Our SmartBar protocol could still func-
tion using only Bitcoin’s multi-signature transactions. The parties and the bene-
factor would generate N2 transactions, where each transaction Tp,q rewards θ to
party q conditionally on a signature from p.

5 Conclusion and Future Work

We have adapted the work of Clement et al. [7] to the “smart contract” world,
using cryptocurrencies to provide incentive compatibility for off-chain consensus
protocols. Though we give a specific instantiation based on the Dolev-Strong
protocol for reliable broadcast, our protocol is expressed as a generic transfor-
mation for arbitrary synchronous protocols.

Although the incentive compatibility notion we have adapted from Clement
et al. [7] is described as “worst-case,” modeling arbitrary Byzantine failures,
many plausible attacks yet lie outside this model. In particular, our definition
counterintuitively rules out “bribery” attacks, which are well-known though have
not been observed in practice [2,19]. Notice that the “worst-case” notion is
from the point of view of an individual participant; since accepting a bribe
makes an individual party richer, this is excluded by definition. Additionally,
our utility model assumes unilateral deviation, which rules out collusion attacks.
Incorporating both bribery and collusion into our model remains an important
open problem.

552 A. Kothapalli et al.

References

1. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

2. Bonneau, J.: Why buy when you can rent? Bribery attacks on Bitcoin consensus.
In: Bitcoin Research Workshop (2016)

3. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
Cryptology ePrint Archive, Report 2015/1015 (2015). http://eprint.iacr.org/2015/
1015

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
Research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (2015)

5. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol.
99, pp. 173–186 (1999)

6. Chase, M., Meiklejohn, S.: Transparency overlays and applications. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 168–179. ACM (2016)

7. Clement, A., Li, H., Napper, J., Martin, J.P., Alvisi, L., Dahlin, M.: BAR primer.
In: 2008 IEEE International Conference on Dependable Systems and Networks
With FTCS and DCC (DSN), pp. 287–296. IEEE (2008)

8. Delmolino, K., Arnett, M., Kosba, A.E., Miller, A., Shi, E.: Lessons and insights
from a cryptocurrency lab. In: Bitcoin Research Workshop, Step by Step Towards
Creating a Safe Smart Contract (2016)

9. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, DTIC Document (2004)

10. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

11. Garay, J., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol design:
cryptography against incentive-driven adversaries. Cryptology ePrint Archive,
Report 2013/496 (2013). http://eprint.iacr.org/2013/496

12. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858 (May 2016)

13. Kumaresan, R.: Broadcast and Verifiable Secret Sharing: New Security Models and
Round Optimal Constructions (2012)

14. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. In: Network Working
Group Internet-Draft, v12, work in progress (2013). http://tools.ietf.org/html/
draft-laurie-pki-sunlight-12

15. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

16. Morris, D.Z.: Blockchain-based venture capital fund hacked for $60 million (June
2016). http://fortune.com/2016/06/18/blockchain-vc-fund-hacked/

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

18. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Cryptology
ePrint Archive, Report 2016/370 (2016). http://eprint.iacr.org/2016/370

19. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Bitcoin Research Workshop (2016)

20. Wood, G.: Ethereum: a secure decentralized transaction ledger (2014). http://
gavwood.com/paper.pdf

https://doi.org/10.1007/978-3-662-44381-1_24
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2013/496
http://tools.ietf.org/html/draft-laurie-pki-sunlight-12
http://tools.ietf.org/html/draft-laurie-pki-sunlight-12
http://fortune.com/2016/06/18/blockchain-vc-fund-hacked/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/370
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

On the Feasibility of Decentralized
Derivatives Markets

Shayan Eskandari1, Jeremy Clark2(B), Vignesh Sundaresan1, and Moe Adham1

1 Bitaccess, Ottawa, Canada
2 Concordia University, Montreal, Canada

j.clark@concordia.ca

Abstract. In this paper, we present Velocity, a decentralized market
deployed on Ethereum for trading a custom type of derivative option. To
enable the smart contract to work, we also implement a price fetching
tool called PriceGeth. We present this as a case study, noting challenges
in development of the system that might be of independent interest to
whose working on smart contract implementations. We also apply recent
academic results on the security of the Solidity smart contract language
in validating our code’s security. Finally, we discuss more generally the
use of smart contracts in modelling financial derivatives.

1 Introductory Remarks

The introduction of Bitcoin [9] in 2009 led to a new frontier in decentralizing
technologies, both in finance and elsewhere. Of the many implementations, we
note a few: file systems like The InterPlanetary File System (IPFS) [2], dynamic
name servers like DNSChain [13] and MaidSafe, a fully distributed platform
[6]. For our purposes, the most interesting technology is Ethereum [4,11]—a
decentralized general transaction ledger. Ethereum in simple words is a decen-
tralized computer that can run code, called smart contracts, which enforce the
performance of an agreed upon set of negotiated standards in an automated and
immutable way. Smart contracts can be designed to disintermediate traditional
trusted parties, replacing them with pre-defined logical parameters. The smart
contract concept is not new and was introduced by Szabo in 1997 [10], however
there has not been any real implementation of it until Bitcoin, and then in a
much more flexible and verbose fashion: Ethereum.

Under the umbrella of “fintech”, “blockchain”, and “distributed ledger tech-
nology”, many legacy entities in the financial world (investment banks, security
exchanges, clearinghouses, etc.) have expressed interest (through whitepapers
and commercial partnerships and consortiums) in decentralizing financial mar-
kets. Derivative markets are often cited as a potential target. From the other
end, papers on Ethereum and tutorials on Solidity (a high level programming
language for Ethereum) often use derivatives as an example application. So there
is a degree of consensus that derivatives running on Ethereum is an interesting
application to study, but we are not aware of any public projects to attempt
to build a derivative market in a serious way. This paper is a first step in that
direction.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 553–567, 2017.
https://doi.org/10.1007/978-3-319-70278-0_35

554 S. Eskandari et al.

1.1 Scope and Contributions

A simplification of a derivative is as follows: two parties enter an agreement where
the first stands to profit if a specified security (e.g., stock) appreciates in value
over a specified time-period and the second stands to profit if it falls. Since the
profitability of the agreement is derived directly from the price of the security, it
is called a derivative instrument. The exact operational details that realize this
property differs between types of derivatives. The most common derivative is a
put/call option which gives the second party (called the buyer) the opportunity
(but not obligation) to buy/sell a security at a specified price (strike price) at
(American) or within (European) a specified time (expiration). The buyer pays
the first party (the seller) a flat fee (option price) when purchasing the option.
Derivatives are generally held to hedge risks in price movements or for speculation.

In a decentralized derivative system, a buyer and seller can have fast and
automatic clearing and settlement (straight through processing) of the derivative
without trusting a third party. However the design of a market must consider
the following challenges:

1. Terms of the Contract. The terms of derivative must be expressible in the
smart contract language. In this paper, we write contracts in Solidity for the
Ethereum blockchain which is sufficient for describing the core aspects of the
contract. We present a full implementation stack (from the smart contracts to
a UI) for buying/selling a special type of derivative instrument. We pay special
attention to common security risks in developing Solidity-based contracts.

2. Counterparty Risk. In most derivatives, the seller is obliged to buy/sell
securities upon request of the buyer subject to the terms of the derivative.
A seller might choose to not follow through with her obligations. In a cen-
tralized setting, identity, reputation and legal recourse are used to combat
this. In a decentralized environment, this problem must be addressed. In this
paper (and the reason we position it as a first step), we start with derivatives
that are fully collateralized—meaning the full settlement amount under all
outcomes is capped and this amount is locked to the contract at initiation
time and distributed under the conditions of the contract. This means we do
not implement a traditional put/call option but rather a tweaked version we
describe below. In future work, we will consider counterparty risk broadly
and how mitigating it can be combined with our framework to offer more
traditional derivatives.

3. Price Feed. In a derivative where settlement is fully automated, either the
underlying security (or a token representing it) needs to be on the blockchain
already or the blockchain needs to be able to assign a value to the security—
or more precisely, be fed the price it should use in evaluating the code of the
contract. In practice, an entity feeding prices (or any external information)
into a smart contract is called an oracle. Some related work has examined ora-
cles, and we present our decentralized design in Subsect. 4.2 called PriceGeth,
which we have made freely available.1

1 https://github.com/VelocityMarket/pricegeth.

https://github.com/VelocityMarket/pricegeth

On the Feasibility of Decentralized Derivatives Markets 555

4. Underlying Financial Model. The buyer and seller of a derivative, whether
implicitly or explicitly, must have some sense of what the probabilistic behav-
iour of the underlying security must be to determine the terms of the contract.
This is the purpose of the infamous Nobel-awarded Black-Scholes model for
stock prices—now obsolete but influential for decades. In our system, such a
model is not baked into the functioning of the smart contract but would be
used externally to decide favourable terms before buying/selling derivatives.
For stocks, modern models (like jump-diffusion) might be used. For deriva-
tives on cryptocurrencies or more esoteric securities, models simply do not
exist yet and are an open area of research. Finally, we note that the derivative
ultimately settles in Ether and so inflations/deflation of the currency might
erode an otherwise profitable derivative.

In summary, we limit our contributions to (1) and (3) in this work, but also
propose this fuller landscape as a useful research agenda for future researchers.

2 Related Work

Work on trusted oracles and price feeds, in the Ethereum eco-system, include
TownCrier [12] which acts as an attested bridge (running within an SGX enclave)
between trusted sources of information and the Ethereum blockchain. Oraclizeit2

is another price feed which uses the similar workflow to fetch the requested
information. Our approach differs from these as PriceGeth publishes the data
to the Ethereum blockchain from the trusted source of information and the
historical data is available to all smart contracts, however in comparison with
the other approaches, is limited to only the published data (Price pairs).

Equibit [7] proposes a method to issue, create, disseminate and maintain
equity across a broad base of investors without the need of intermediaries for
record keeping. It is conceivable that derivative smart-contracts could utilize
Equibit equity as payment or settlement method, as opposed to simply using
Bitcoin or Ethereum’s native digital currencies.

Bentov et al. [3] note than an extension to their work on decentralized pre-
diction markets can be a derivative instruments they call a capped contracts for
difference. It is similar to the one implemented in Velocity (their paper is not an
implementation but a study of game theoretic properties).

Recent attacks on smart-contracts, such as TheDAO attack [14] attracted
security researchers to analyze further on this era. Solidity security and survey
of the attacks by Atzei et al. [1] lists some of the known security vulnerabilities
and Luu et al. Developed a tool for static analysis on smart contract codes [8]
which we used.

3 Materials and Methods

Smart Contracts. A contract is a written or spoken agreement between two or
more parties that is intended to be enforceable by law. In a smart contract,
2 http://www.oraclize.it/.

http://www.oraclize.it/

556 S. Eskandari et al.

terms are written in code and executed by machines, removing the human per-
formance component (unless if such a component is specified). We can consider
our main smart contract as a black box: the inputs are investors’ deposited ether
(Ethereum’s cash) and their position on the future price of an asset, either short
or long. The smart contract will retain the deposit in escrow and execute a pay-
out calculation and the payout itself when the expiry date comes. The payout
is in Ether only, no actual shares are exchanged (a contract for difference) and
the maximum payout is capped (limit up/down). Due to the deposit, there is no
counter-party risk however the contract requires a trustworthy price feed and the
investors earn zero interest for the duration of the contract. For this reason, we
consider this a first step toward more flexible arrangements. The contract dis-
intermediates the trusted role of the exchange (or broker for over-the-counter)
and settling/clearing entities.

Types of Options. We implement a non-standard option that is similar to a
collar or hedge wrapper. It is non-standard due to our requirement of escrow-
ing money, which we make to side-step counter-party risk and enable a fully
autonomous and disintermediated contract. The contract collects funds from
the hedgers/speculators who take opposing positions on the future prospects of
an asset: one takes the short position when they believe the underlying asset’s
value will lose value from its current price, and other takes the opposite long
position speculating a rise in the price. In its simplest form, the collar options
pay out $1 for every $1 change in the underlying asset (the payout can be made
dependent on a drift term or even made non-linear). The payout is limited by
the amount of money held in escrow—if the price rises beyond the limit, it is
said to be limit up (or limit down in the opposite case) and the payout will be
fixed (see Fig. 1). This kind of payout capping helps the contract holders stay
immune to systemic risks and extreme jumps.

Development and Deployment. There are a few blockchains that would let us
code an autonomous smart contracts: Ethereum, RSK [15] and more. The deci-
sion to work on Ethereum blockchain rather than others solely came from the

Fig. 1. Our collar-esque option with maximum long payout scenario. K1 is the initial
price, K2 is the price at expiry time and R is the pre-defined collar for payouts

On the Feasibility of Decentralized Derivatives Markets 557

fact that there are more active developers in the community and maturity of the
platform. Even though Ethereum is in early stages, it is more mature than other
smart contract compatible platforms. The programming language used for smart
contract development is Solidity in most of these platforms. All smart contracts
developed and used in this paper has been deployed and tested by our beta
testers on Ethereum testnet. In Ethereum blockchain, transactions and process-
ing power costs some small amount of ether called gas3. For each transaction,
the sender defines the gasLimit and also gasPrice for processing that transaction
and miners decide to include those transactions in the blocks they mine or not.
The concept of gas has many angles to discuss which falls outside of the scope
of this paper. We will discuss some more in Sect. 5.

4 Implementation

We call our platform Velocity. We tried to model the real-life scenario of buying
an options derivatives. Consider the case where Alice goes to a broker and buys
an options contract from Bob. The broker is the one that handles the money
transfer and also execute the options contract at the contract expiry time. Now
our goal is to replace the broker with a smart contract. For the purpose of a proof
of concept, the smart contract will also act as Bob, meaning if Alice buys
a short call option, the Velocity smart contract will put a long call against her
short call. This can be generalized so that other entities can fund the contract
but for the rest of this paper, Velocity acts as a market maker. This might lead
to users gaming the system, however it’s trivial to change the smart contract
to wait for the other opponent to enter the contract. We discuss this more in
Sect. 5.

4.1 Velocity Main Smart Contract

A Velocity smart contract can be used for speculation on the price of any two
assets4, although the Ethereum price is always exposed as the deposits and
the withdrawals are done in ETH5. As for this experiment, we use the price
pair of Bitcoin (XBT/BTC) and Ethereum (ETH). If we used price pairs not
involving ETH, for example the CAD/USD exchange rate, it would suffice to use
two contracts for CAD/ETH and ETH/USD. Or the payout function could be
changed to specify how it relates to numbers it is given. Note that in either case,
the payout will always be in ETH. In its full generality, any number that changes
over time and has a suitable feed (we describe feeds below) can be used: price
(stocks, bonds, commodities, etc.), rate (interest, inflation, population, etc.), or
something else (average global temperature, number of days without rain, etc.).

3 What is gas? http://ethdocs.org/en/latest/contracts-and-transactions/
account-types-gas-and-transactions.html#what-is-gas.

4 or any other events that an options contract can be based on.
5 Ethereum symbol.

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas

558 S. Eskandari et al.

Smart Contract. The way Velocity smart contract is implemented, one party
purchases a contract by sending a nominal amount of ethereum (0.1 ETH) to
the contract’s ethereum address. Once confirmed by the network, the contract
will fetch a starting price from the price feed, PriceGeth, and run for a period of
time to reach the expiry time. The smart contract would put the same amount of
ETH from its pool of funds into escrow for the payout. In the PoC demo, we use
5 ethereum blocks (approximately 1 min) to settle a contract. When the expiry
time reaches, the same party must send another transaction to the contract and
call the settlement function to settle the contract which leads to sending the
payouts by the smart contract. While this experiment was going under beta
testings, we found out that if the user loses the contract, there is no incentive to
call the settle function as it would use up some ETH in gas and would not pay
the user. This would lead stale money held in the escrow of the smart contract.
This made us redesign our settlement functions and write one centralized cron
job script to go through the unsettled contracts once a day and call the settle
function on the ones that have been expired.
modifier checkMargin(uint amount) {

if (amount == (applyLOT(Margin)))
{ _ ;} else {

Error("Invalid Margin!");
immediateRefund();}

}
function goLong() public hasEnoughFunds(msg.value) checkMargin(msg.value)
payable returns(uint) {

lastOptionId = newOption(msg.sender, msg.value, true);
LongOption(lastOptionId, msg.sender, msg.value, block.number);
return lastOptionId;
}

Code 1 : Velocity Main Smart Contract - Long Option Call, The sender
of a transaction to goLong() function has to send exactly the
Margin value and with that he enters the option contract for
Margin value with the smart Contract

Settle Function. exercise() is responsible in settling the options contract and
pay out both parties (see Code 2), in which here is the user and the Velocity smart
contract. Most of the functions are responsible to find the appropriate option
contract and calculate the pay outs. However there are some functions that were
added later on for security measurements, such as isOpen modifier. Modifiers in
Solidity are functions that can check some statements before executing the main
function. The first deployed version of Velocity main contract was vulnerable to
a similar (but not the same) attack as the DAO attack, see Sect. 5. It was pos-
sible for an attacker to call an option contract and upon settling and winning,
keep calling the exercise() function using his OptionId and get more of the same
amount of payout over and over again. The code was patched and a new smart
contract was deployed later in the experiment6. send() is a built-in function in
6 Fix for the multiple payout bug: https://github.com/VelocityMarket/

Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba.

https://github.com/VelocityMarket/Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba
https://github.com/VelocityMarket/Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba

On the Feasibility of Decentralized Derivatives Markets 559

Solidity which handles the sending of funds to other ethereum addresses or con-
tracts. There are known vulnerabilities on how send() function works in solidity
which should be appropriately handled. One can use a smart contract address
as his option payout address which would execute some code upon receiving any
funds and use that code flow to drain the sender’s contract. payAndHandle()
function tried to use the best security practices to prevent such attacks (see
Code 5 for the source code).

modifier isOpen(uint optionId) {if (AllOptions[optionId].closed) throw; _ ;}
function exercise() public {

exercise(findOptionId(msg.sender));
}
function exercise(uint optionId) public isOpen(optionId) returns(bool) {

// REMOVED SOME CODE TO SAVE SPACE, FULL SOURCE CODE ON GITHUB

AllOptions[optionId].closed = true; //before payouts to prevent replay attacks

LockedBalance -= AllOptions[optionId].amount; //release escrow

// Payout calculation

if (pricesToCheck.pricediff >= (int(Margin))) { // Pay Long

//pay long

return payAndHandle(optionId, AllOptions[optionId].Long,
2 * AllOptions[optionId].amount);

}
if ((0 < pricesToCheck.pricediff) && (pricesToCheck.pricediff < (int(Margin)))) {

return (payAndHandle(optionId, AllOptions[optionId].Long,
(AllOptions[optionId].amount + pricesToCheck.priceDiffLOT)) &&

payAndHandle(optionId, AllOptions[optionId].Short,
(AllOptions[optionId].amount - pricesToCheck.priceDiffLOT)));

}
}

Code 2: Settle function of main options contract

Source Code. API documentation for other smart contracts to use the func-
tionality and also Python and NodeJS clients to communicate with the main
smart contract are available on Github7.

4.2 Price Feed

A decentralized Price feed is an essential requirement for having a decentralized
derivative market. There are a few proposals on how to fetch the price in a smart
contract. One is using Smart Contract oracles8, they offer daily updates for the
price using a predefined data source. This was not an option to be used for our
purpose as a daily update is not sufficient for short term derivative markets.
Another option that could be used was Oraclizeit. They way Oraclizeit works
is that the client smart contract, Velocity main contract in our case, sends a
transaction to Oraclizeit smart contract with the required API url and the fields it
needs, sometime after the confirmation by the network, Oraclizeit smart contract
sends a callback transaction to Velocity smart contract with the requested data
(Fig. 2).
7 Simple collared option smart contract: https://github.com/VelocityMarket/

Options-Contract.
8 Data and Payments for your Smart Contracts https://smartcontract.com/.

https://github.com/VelocityMarket/Options-Contract
https://github.com/VelocityMarket/Options-Contract
https://smartcontract.com/

560 S. Eskandari et al.

Fig. 2. Oraclizeit work flow

For the first implementation of Velocity smart contract we used Oraclizeit
method to fetch the price.

As mentioned before, most of the decentralized application infrastructure on
Ethereum blockchain are in Beta state and might not work as intended. This
applies for Oraclizeit, specially as by design they have a central server which can
stop working without any notice or visible signs. The red boxes in Fig. 2 indicates
the centralized parts of the system. As you can see in (code 3), Oraclizeit will
send the price to the callback function at the time of the call and also execute
the exercise() function which is responsible for saving the price and calculating
the payout amounts. This makes the callback function one of the important
functions which should be called at the specific time.

oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS);
//oraclize_setNetwork(2); //

priceUrl = "json(https://www.bitstamp.net/api/v2/ticker/btcusd).last";
function updateBTCUSDFromFeed(uint delay){

oraclize_query(delay, "URL",
priceUrl, 400000);

}
function __callback(bytes32 myid, string result, bytes proof) {

if (msg.sender != oraclize_cbAddress()) throw;
uint BTCUSDFeed;
BTCUSDFeed = parseInt(result, 2);

exercise() // this function exercises the contract to calculate the payouts

}
Code 3 : Implementation of Oraclizeit price feed in Velocity smart contract

In our testing period, we encountered multiple problems with this design:

1. The callback would not happen at all, which would result in an unsettled
options contract. Oraclizeit support team were helpful and fixed this issue
later on.

On the Feasibility of Decentralized Derivatives Markets 561

2. The callback would happen with some delays, which would result in inconsis-
tency in the fetched price with the the options contract expiry date. Decen-
tralized networks have some latency by design, realtime does not really mean
anything in such networks, hence counting on a transaction to happen at a
exact time is not the best solution.

3. The callback would happen with insufficient gas, which would result in the
failure to properly run exercise() function and thus failure to settle the options
contract. Oraclizeit library offers a way to send more gas than needed in case
the callback function needs more gas, however on the time of this experiment
that functionality was not working properly.

PriceGeth. We designed PriceGeth9 to publish (almost) realtime price pairs to
Ethereum blockchain. This is how PriceGeth works (also see Fig. 3):

1. PriceFetcher server is saving an exchange Prices (USDBTC, BTCETH,
BTCETC, BTCDOGE) every 1 s in a database

2. BlockListener is listening on using Geth10 for new blocks
3. When BlockListener sees a new block it fetches the price at the Blocktime

from PriceFetcher Module
4. PriceGeth server sends the data to PriceGeth smart contract (Code 4) and

updates the latest price.

Fig. 3. PriceGeth Work Flow (Color figure online)

PriceGeth smart contract would keep all the historical prices and all would be
available to all smart contracts on Ethereum blockchain for free (no gas needed

9 Price API for Smart-Contracts on Ethereum Blockchain https://github.com/
VelocityMarket/pricegeth.

10 Official Go implementation of the Ethereum protocol https://geth.ethereum.org.

https://github.com/VelocityMarket/pricegeth
https://github.com/VelocityMarket/pricegeth
https://geth.ethereum.org

562 S. Eskandari et al.

to fetch the price). The reason this is almost realtime, goes back to the nature of
blockchains. Time units as in seconds and minutes are not meaningful for most
of the blockchain applications, but the block height can be used as the time
unit, meaning the time of each block is known to all users of the blockchain,
but before a block is published no other time units can be used. This is why
we designed PriceFetcher module to connect to an exchange API and saves the
price pairs every second, to have the price for the previous block time anytime
a new Ethereum block is generated.

struct Feed {
uint USDBTC;
uint40 BTCETH;
uint40 BTCETC;
uint40 BTCDOGE;
uint40 timestamp;
uint blockNumber;

}
mapping (uint => Feed) priceHistory;
function setPrice(uint40 timestamp, uint40 blocknumber, uint USDBTC,
uint40 BTCETH, uint40 BTCETC, uint40 BTCDOGE) ifOwner() {

if (firstBlock == 0) firstBlock = blocknumber;
priceHistory[lastBlock].timestamp = timestamp;
priceHistory[lastBlock].blockNumber = blocknumber;
priceHistory[lastBlock].USDBTC = USDBTC;
priceHistory[lastBlock].BTCETH = BTCETH;
priceHistory[lastBlock].BTCETC = BTCETC;
priceHistory[lastBlock].BTCDOGE = BTCDOGE;
PriceUpdated(timestamp, blocknumber, USDBTC, BTCETH, BTCETC, BTCDOGE);

}
Code 4 : Pricegeth Main Smart contract

PriceGeth is a proof of concept implementation of having a trusted entity
publishing price pairs to the blockchain and we are aware of the implications of
trusting the PriceFetcher not to manipulate the prices. PriceFetcher is the central
point of failure in PriceGeth design and should be addressed in future work.
However after further research, it is almost impossible to have a truly trustless
decentralized price feed unless we have a decentralized exchange infrastructure
on the blockchain. This exchange can be used as the price oracle as the order
books would be stored on the blockchain and hence there is no one single point
of trust. The red boxes in Fig. 3 are indicating the centralized parts of this
implementation. PriceGeth is released as a stand alone smart contract and also a
library to be used in other smart contracts to use the price feed free of charge11.
Another challenge of PriceGeth design is that PricePublisher is paying the gas
for publishing and storing all the price pairs, and as there is no incentive of
doing so, it is not an inefficient way of offering price oracles. PriceGeth can be
implemented in a way that clients should use a token issued to them beforehand
to fetch the price, or require payments to release the price data.

11 PriceGeth Library https://github.com/VelocityMarket/pricegeth.

https://github.com/VelocityMarket/pricegeth

On the Feasibility of Decentralized Derivatives Markets 563

By design PriceGeth operator should not be able to use Velocity options as
he can manipulate the price to game the system.

There is a similar work on price feeds titled Town Crier [12], which uses TLS
security to prove the fact that the data sent to the smart contract is exactly
as the one provided by the API, conceptually similar to Oraclizeit TLSNotary-
proof12. TownCrier uses Intel SGX in their central server which insures the
integrity of hardware used and thus insures no manipulation is done on the
server. Even though one can argue that the data provider is a trusted entity, one
of the goals to have a decentralized application is to have no trusted entity in
the infrastructure and to have a trustless system.

5 Discussion

Security. Smart contracts have introduced some new security concerns to devel-
opers. Notions like gas usage and consensus and most importantly a function that
pays out irreversible money are new to most of the developers hence the ability
to develop a secure smart contract is hard to grasp. One of the visible examples
of security issues is the attack on The DAO, Decentralized Autonomous Organi-
zation13. The goal of the DAO was to remove all the need for any venture capital
intervention or any other third party for fundraising on a new idea or a company
through crowdfunding and giving the investors tokens (shares) of the company.
However due to an issue splitDAO function which was responsible to manage
and fund new child DAOs or projects, an attacker was able to take one third of
the money in the original DAO, worth approximately 86 million USD [16] at the
time of the attack, this vulnerability is dubbed Reentrancy Vulnerability.

Luu et al. [8] developed a symbolic execution tool called “Oyente” to find
potential security bugs, which they proved effective by running on Ethereum
blockchain and successfully identifying The DAO vulnerability. We used this
tool to analyze our code (see Fig. 4).

Another family of vulnerabilities that have caused some of the known attacks
are Mishandled Exceptions, which mostly has caused Denial of Service attacks on
individual smart contracts. In Velocity main contract we used modifier functions
to sanitize the inputs to narrow down the probability of such exceptions. Another
set of attacks Timestamp Dependence and Transaction-Ordering Dependence are
interesting to ponder, however due to the design of Velocity and PriceGeth, they
are not applicable to these smart contracts. As an example, usage of timestamp
was replaced by Ethereum blocknumber and smart contracts time is based on the
block number rather than seconds and minutes. There has been more security
bugs in solidity compiler, a few related bugs were explained in Sect. 4.1.

12 https://docs.oraclize.it/#security-tlsnotary-proof.
13 https://github.com/slockit/DAO.

https://docs.oraclize.it/#security-tlsnotary-proof
https://github.com/slockit/DAO

564 S. Eskandari et al.

Fig. 4. Results of Smart Contract analysis tool called Oyente [12] to find security bugs

function payAndHandle(uint optionId, address addr, uint amount)
private returns (bool success) {

if (addr.send(amount)) {
optionPaid(optionId, addr, amount); //event for successful payment

} else { throw;}
return true;

}
Code 5 : Secure payouts in smart contracts

Gas Sustainability. The concept of gas usage for processing power is not easy
to grasp even for long term developers. People might be familiar with limited
computational or storage resources, but the concept of passing gasLimit to a
function to use to process inputs is a new concept. Each step has its own esti-
mated gas usage, as an example to store a value in a variable, you have to pay
100 Wei14 for each sstore call15. This should be considered that there’s a cap for
gas usage for each transaction and block, thus complex computation should be
split into multiple transactions which makes smart contract design more compli-
cated than they are. Also we should mention that function calls can fail due to
the fact that they run out of gas and they don’t have enough gas to finish their
required computation or storage. This can cause unpredicted behaviour from the
smart contract as there would be broken flows in the code which should have
been handled by the developer. The gas usage could change as there are updates
and security patches to Ethereum protocol, e.g. transaction spam attack16. It
might take multiple implementation of the same function to find an equilibrium
between readability and gas efficiency.

Misuse of the Contract. In the current implementation of Velocity smart
contract, one can call the Long option when he is sure of the price increase

14 Wei: Smallest unit of Ethereum, equevalent to 0.000000000000000001 ETH.
15 put into permanent storage.
16 Long-term gas cost changes for IO-heavy operations to mitigate transaction spam

attacks https://github.com/ethereum/EIPs/issues/150.

https://github.com/ethereum/EIPs/issues/150

On the Feasibility of Decentralized Derivatives Markets 565

between the start time and expiry time and keep on doing this until there is
no money left in the smart contract’s pool of funds. This is because the smart
contract calls the opposite of the incoming option call blindly. However in future
work, there should be market scoring rule which depends on how many short
option calls are placed comparing to the long calls and make it more expensive
to call short when there are more short option calls than long calls.

Collar Option Library. Velocity smart contract can be used as a module in
any other smart contract to handle option calls and execute some functions on
the expiry time. This smart contract was written as a proof of concept and was
released under GPL license17.

6 Future Work

As discussed in Subsect. 4.2, fully decentralized Price feeds and oracles are needed
in order to have a trustless decentralized financial market. This can be done by
having a decentralized exchange to extract prices from using smart contracts.
Even though there has been many price feed methods discussed, none of them
seem to have trustless infrastructure. Smart contracts security is not well prac-
ticed and there are many unknown attack vectors in the eco system, from solidity
compiler security bugs [17] to best practice security implementations [18], there
is work to be done and tests to have a more mature secure eco-system to work
with, Specially if the end goal is to have a decentralized financial application in
place where money is at stake.

As for the options contracts, there should be more research and work on the
payouts to make them smarter. One proposed solution is to have market scoring
rules in place, which means if there are more open short option calls than long
calls, it should get more expensive to call short options and vice-versa. Smart
contracts are unchangeable piece of code that run autonomously, meaning if
there’s a market crash or systematic error, there cannot be anything to do to
suspend the payouts and shut down the application, unless with pre-defined
functions in the smart contract which only the owner can trigger, which would
be a double standard in the trustless eco-system.

7 Conclusion

Even though the idea of having a fully autonomous and decentralized derivative
market is intriguing, the infrastructure to reach this goal is still missing from the
underlying network. As for example, price feed is one of the essentials of such a
market and it should be done in a fully decentralized trustless way to prevent
fraud and market manipulation by the feed provider. All the existing solutions
today, have a central point that can manipulate data, it is either the exchange

17 https://github.com/VelocityMarket/Options-Contract.

https://github.com/VelocityMarket/Options-Contract

566 S. Eskandari et al.

API or the component responsible to publish the price. As discussed before, one
of the only solutions to this problem is to have a fully decentralized exchange on
the network to provide realtime price feed for other smart contracts. There are
some work done on decentralized exchanges [5], although there is no real world
deployment of such a system at the time of writing. Smart contracts are fasci-
nating idea that can revolutionize the technology by removing the middlemen,
however the underlying technology is more on the proof of concept level than
mature enough to be used on the real world scenarios. We should also mention
that the barrier for people to have the relevant crypto-currency to work with
such systems still exists.

A Demo Website (UI) for the Velocity Smart Contract

See Fig. 5.

Fig. 5. Velocity options smart contract demo

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum
smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS,
vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54455-6 8

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8

On the Feasibility of Decentralized Derivatives Markets 567

2. Benet, J.: Ipfs-content addressed, versioned, p2p file system (2014).
arXiv:1407.3561

3. Bentov, I., Mizrahi, A., Rosenfeld, M.: Decentralized prediction market without
arbiters (2017). arXiv:1701.08421

4. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform (2014)

5. Clark, J., Bonneau, J., Felten, E.W., Kroll, J.A., Miller, A., Narayanan, A.: On
decentralizing prediction markets and order books. In: WEIS (2014)

6. Irvine, D.: Maidsafe distributed file system. Technical report, maidsafe.net limited
(2010)

7. Kievit-Kylar, B., Horlacher, C., Godard, M., Saucier, C.: Equibit: a peer-to-peer
electronic equity system (2016). arXiv:1612.06953

8. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
10. Szabo, N.: The idea of smart contracts (1997)
11. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper (2014)
12. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-

cated data feed for smart contracts. In: Proceedings of 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 270–282. ACM (2016)

13. okturtles: A blockchain-based DNS, http server that fixes https security (2014)
14. Finley, K.: A 50 million dollar hack just showed that the DAO was all too human.

Wired (2016)
15. Demian Lerner, S.: Rootstock: bitcoin powered smart contracts. Whitepaper (2015)
16. Daian, P.: Analysis of the DAO exploit. Hacking, Distributed (2016)
17. Reitwiessner, C.: Security alert: solidity variables can be overwritten in storage.

Ethereum Blog (2016)
18. ConsenSys: Ethereum contract security techniques and tips. ConsenSys (2016)

http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1701.08421
http://arxiv.org/abs/1612.06953

A Proof-of-Stake Protocol for Consensus
on Bitcoin Subchains

Massimo Bartoletti(B), Stefano Lande, and Alessandro Sebastian Podda

Università degli Studi di Cagliari, Cagliari, Italy
bart@unica.it

Abstract. Although the transactions on the Bitcoin blockchain have the
main purpose of recording currency transfers, they can also carry a few
bytes of metadata. A sequence of transaction metadata forms a subchain
of the Bitcoin blockchain, and it can be used to store a tamper-proof exe-
cution trace of a smart contract. Except for the trivial case of contracts
which admit any trace, in general there may exist inconsistent subchains
which represent incorrect contract executions. A crucial issue is how to
make it difficult, for an adversary, to subvert the execution of a contract
by making its subchain inconsistent. Existing approaches either postu-
late that subchains are always consistent, or give weak guarantees about
their security (for instance, they are susceptible to Sybil attacks). We
propose a consensus protocol, based on Proof-of-Stake, that incentivizes
nodes to consistently extend the subchain. We empirically evaluate the
security of our protocol, and we show how to exploit it as the basis for
smart contracts on Bitcoin.

1 Introduction

Recently, cryptocurrencies like Bitcoin [26] have pushed forward the concept
of decentralization, by ensuring reliable interactions among mutually distrust-
ing nodes in the presence of a large number of colluding adversaries. These
cryptocurrencies leverage on a public data structure, called blockchain, where
they permanently store all the transactions exchanged by nodes. Adding new
blocks to the blockchain (called mining) requires to solve a moderately difficult
cryptographic puzzle. The first miner who solves the puzzle earns some virtual
currency (some fresh coins for the mined block, and a small fee for each trans-
action included therein). In Bitcoin, miners must invert a hash function whose
complexity is adjusted dynamically in order to make the average time to solve
the puzzle ∼10 min. Instead, removing or modifying existing blocks is computa-
tionally unfeasible: roughly, this would require an adversary with more hashing
power than the rest of all the other nodes. If modifying or removing blocks
were computationally easy, an attacker could perform a double-spending attack
where he pays some amount of coins to a merchant (by publishing a suitable
transaction in the blockchain) and then, after he has received the item he has
paid for, removes the block containing the transaction. According to the folk-
lore, Bitcoin would resist to attacks unless the adversaries control the majority
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 568–584, 2017.
https://doi.org/10.1007/978-3-319-70278-0_36

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 569

of total computing power of the Bitcoin network. Even though some vulnerabil-
ities have been reported in the literature (see Sect. 4), in practice Bitcoin has
worked surprisingly well so far: indeed, the known successful attacks to Bitcoin
are standard hacks or frauds [19], unrelated to the Bitcoin protocol.

The idea of using the Bitcoin blockchain and its consensus protocol as founda-
tions for smart contracts—namely, decentralized applications beyond digital cur-
rency [29]—has been explored by several recent works. For instance, [3,5,7,9,22–
24] propose protocols for secure multiparty computations and fair lotteries; [13]
implements decentralised authorization systems on Bitcoin, [28,30] allow users
to log statements on the blockchain; [10] is a key-value database with get/set
operations; [14] extends Bitcoin with advanced financial operations (like e.g.,
creation of virtual assets, payment of dividends, etc.), by embedding its own
messages in Bitcoin transactions.

Although the Bitcoin blockchain is primarily intended to trade currency, its
protocol allows clients to embed a few extra bytes as metadata in transactions.
Many platforms for smart contracts exploit these metadata to store a persistent,
timestamped and tamper-proof historical record of all their messages [1,6]. Usu-
ally, metadata are stored in OP RETURN transactions [2], making them meaning-
less to the Bitcoin network and unspendable. With this approach, the sequence
of platform-dependent messages forms a subchain, whose content can only be
interpreted by the nodes that execute the platform (we refer to them as meta-
nodes, to distinguish them from Bitcoin nodes). However, since the platform
logic is separated from the Bitcoin logic, a meta-node can append to the sub-
chain transactions with metadata which are meaningless for the platform—or
even inconsistent with the intended execution of the smart contract. As far as
we know, none of the existing platforms use a secure protocol to establish if
their subchain is consistent. This is a serious issue, because it either limits the
expressiveness of the smart contracts supported by these platforms (which must
consider all messages as consistent, so basically losing the notion of state), or
degrades the security of contracts (because adversaries can manage to publish
inconsistent messages, so tampering with the execution of smart contracts).

Contributions. We propose a protocol that allows meta-nodes to maintain a
consistent subchain over the Bitcoin blockchain. Our protocol is based on Proof-
of-Stake [8,21], since extending the subchain must be endorsed with a money
deposit. Intuitively, a meta-node which publishes a consistent message gets back
its deposit once the message is confirmed by the rest of the network. In partic-
ular, our protocol provides an economic incentive to honest meta-nodes, while
disincentivizing the dishonest ones. We empirically validate the security of our
protocol by simulating it in various attack scenarios. Notably, our protocol can
be implemented in Bitcoin by only using the so-called standard transactions1.

1 This is important, because non-standard transactions are discarded by nodes running
the official Bitcoin client.

570 M. Bartoletti et al.

2 Bitcoin and the Blockchain

Bitcoin is a cryptocurrency and a digital open-source payment infrastructure
that has recently reached a market capitalization of almost $30 billions2. The
Bitcoin network is peer-to-peer, not controlled by any central authority [26]. Each
Bitcoin user owns one or more personal wallets, which consist of pairs of asym-
metric cryptographic keys: the public key uniquely identifies the user address,
while the private key is used to authorize payments. Transactions describe trans-
fers of bitcoins (B), and the history of all transactions, which recorded on a pub-
lic, immutable and decentralised data structure called blockchain, determines
how many bitcoins are contained in each address.

To explain how Bitcoin works, we consider two transactions t0 and t1, which
we graphically represent as follows:3

t0
in: · · ·
in-script: · · ·
out-script(t, σ): verk(t, σ)
value: v0

t1
in: t0
in-script: sigk(•)
out-script(· · ·): · · ·
value: v1

The transaction t0 contains v0B, which can be redeemed by putting on the
blockchain a transaction (e.g., t1), whose in field is the cryptographic hash of
the whole t0 (for simplicity, just displayed as t0 in the figure). To redeem t0,
the in-script of t1 must contain values making the out-script of t0 (a boolean
programmable function) evaluate to true. When this happens, the value of t0 is
transferred to the new transaction t1, and t0 is no longer redeemable. Similarly,
a new transaction can then redeem t1 by satisfying its out-script.

In the example displayed above, the out-script of t0 evaluates to true when
receiving a digital signature σ on the redeeming transaction t, with a given key
pair k. We denote with verk(t, σ) the signature verification, and with sigk(•)
the signature of the enclosing transaction (t1 in our example), including all the
parts of the transaction except its in-script.

Now, assume that the blockchain contains t0, not yet redeemed, when some-
one tries to append t1. To validate this operation, the nodes of the Bitcoin
network check that v1 ≤ v0, and then they evaluate the out-script of t0, by
instantiating its formal parameters t and σ, to t1 and to the signature sigk(•),
respectively. The function verk verifies that the signature is correct: therefore,
the out-script succeeds, and t1 redeems t0.

Bitcoin transactions may be more general than the ones illustrated by the
previous example: their general form is displayed in Fig. 1. First, there can be
multiple inputs and outputs (denoted with array notation in the figure). Each
output has an associated out-script and value, and can be redeemed indepen-
dently from others. Consequently, in fields must specify which output they are
2 Source: crypto-currency market capitalizations http://coinmarketcap.com.
3 in-script and out-script are respectively referred as scriptPubKey and scriptSig in the

Bitcoin documentation.

http://coinmarketcap.com

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 571

t

in[0]: t0[out0]
in-script[0]: W 0

...

out-script[0](t′0,w0): S0
value[0]: v0

...

lockTime: n

Fig. 1. General form of transactions.

redeeming (t0[out0] in the figure). Similarly, a transaction with multiple inputs
associates an in-script to each of them. To be valid, the sum of the values of all
the inputs must be greater or equal to the sum of the values of all outputs. In its
general form, the out-script is a program in a (not Turing-complete) scripting lan-
guage, featuring a limited set of logic, arithmetic, and cryptographic operators.
Finally, the lockTime field specifies the earliest moment in time (block number
or Unix timestamp) when the transaction can appear on the blockchain.

The Bitcoin network is populated by a large set nodes, called miners, which
collect transactions from clients, and are in charge of appending the valid ones to
the blockchain. To this purpose, each miner keeps a local copy of the blockchain,
and a set of unconfirmed transactions received by clients, which it groups into
blocks. The goal of miners is to add these blocks to the blockchain, in order to
get a revenue. Appending a new block Bi to the blockchain requires miners to
solve a cryptographic puzzle, which involves the hash h(Bi−1) of block Bi−1,
a sequence of unconfirmed transactions 〈Ti〉i, and some salt R. More precisely,
miners have to find a value of R such h(h(Bi−1)‖〈Ti〉i‖R) < μ, where the value μ
is adjusted dynamically, depending on the current hashing power of the network,
to ensure that the average mining rate is of 1 block every 10 min. The goal of
miners is to win the “lottery” for publishing the next block, i.e. to solve the
cryptopuzzle before the others; when this happens, the miner receives a reward
in newly generated bitcoins, and a small fee for each transaction included in
the mined block. If a miner claims the solution of the current cryptopuzzle,
the others discard their attempts, update their local copies of the blockchain
with the new block Bi, and start mining a new block on top of Bi. In addition,
miners are asked to verify the validity of the transactions in Bi by executing the
associated scripts. Although verifying transactions is not mandatory, miners are
incentivized to do that, because if in any moment a transaction is found invalid,
they lose the fee earned when the transaction was published in the blockchain.

If two or more miners solve a cryptopuzzle simultaneously, they create a fork
in the blockchain (i.e., two or more parallel valid branches). In the presence of
a fork, miners must choose a branch wherein carrying out the mining process;
roughly, this divergence is resolved once one of the branches becomes longer

572 M. Bartoletti et al.

than the others. When this happens, the other branches are discarded, and all
the orphan transactions contained therein are nullified.

Overall, this protocol essentially implements a “Proof-of-Work” system [15].

3 A Protocol for Consensus on Bitcoin Subchains

We define the notions of subchain and consistency in Sect. 3.1. In Sect. 3.2 we
describe our protocol to embed consistent subchains on the Bitcoin blockchain;
we examine some of its properties in Sect. 3.3. Finally, in Sect. 3.4 we show how
to implement our protocol in Bitcoin.

3.1 Subchains and Consistency

We assume a set A,B, . . . of participants, who want to append messages a, b, . . .
to the subchain. A label is a pair containing a participant A and a message a,
written A :a. Subchains are finite sequences of labels, written A1 :a1 · · ·An :an,
which are embedded in the Bitcoin blockchain. The intuition is that A1 has
embedded the message a1 in some transaction t1 of the Bitcoin blockchain, then
A2 has appended some transaction t2 embedding a2, and so on. For a subchain
η, we write η A :a for the subchain obtained by appending A :a to η.

In general, labels can also have side effects on the Bitcoin blockchain: we
represent with A :a(v → B) a label which also transfers vB from A to B . When
this message is on the subchain, it also acts as a standard currency transfer on
the Bitcoin blockchain, which makes vB in a transaction of A redeemable by B .
When the value v is zero or immaterial, we simply write a instead of a(v → B).

A crucial insight is that not all possible sequences of labels are valid sub-
chains: to define the consistent ones, we interpret subchains as traces of Labelled
Transition Systems (LTS). Formally, an LTS is a tuple (Q,L, q0,→), where:

– Q is a set of states (ranged over by q, q′, . . .);
– L is a set of labels (in our case, of the form A :a);
– q0 ∈ Q is the initial state;
– → ⊆ Q × L × Q is a transition relation.

As usual, we write q
A :a−−→ q′ when (q,A : a, q′) ∈ →, and, given a subchain

η = A1 :a1 · · ·An :an, we write q
η−→ q′ whenever there exist q1, . . . , qn such that:

q
A1:a1−−−→ q1

A2:a2−−−→ · · · An:an−−−−→ qn = q′

We require that the relation → is deterministic, i.e. if q
A :a−−→ q′ and q

A :a−−→ q′′,
then it must be q′ = q′′.

The intuition is that the subchain has a state (initially, q0), and each message
updates the state according to the transition relation. More precisely, if the
subchain is in state q, then a message a sent by A makes the state evolve to q′

whenever q
A :a−−→ q′ is a transition in the LTS.

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 573

Note that, for some state q and label A : a, it may happen that no state q′

exists such that q
A :a−−→ q′. In this case, if q is the current state of the subchain, we

want to make hard for a participant (possibly, an adversary trying to tamper with
the subchain) to append such message. Informally, a subchain A1 :a1 · · ·An :an

is consistent if, starting from the initial state q0, it is possible to find states
q1, . . . , qn such that from each qi there is a transition labelled Ai+1 :ai+1 to qi+1.

Definition 1 (Subchain consistency). We say that a subchain η is consistent
whenever there exists q such that q0

η−→ q.

Note that, if a subchain is consistent, then by determinism we have that the
state qn exists and is unique. In other words, a consistent sequence of messages
uniquely identifies the state of the subchain.

Example 1. To illustrate consistency, consider a smart contract FACTORSn which
rewards with 1B each participant who extends the subchain with a new prime
factor of n. The contract accepts two kinds of messages:

– sendp, where p is a natural number;
– payp(1 → A), meaning that A receives a reward for the factor p;

The states of the contract can be represented as sets of triples (A , p, b), where b
is a boolean value indicating whether A has been rewarded for the factor p. The
initial state is ∅. We define the transition relation of FACTORSn as follows:

– S
A :sendp−−−−−→ S′, iff p is a prime factor of n, (B , p, b) �∈ S for any B and b, and

S′ = S ∪ {(A , p, 0)};

– S
F:payp(1→A)−−−−−−−−→ S′, iff (A , p, 0) ∈ S and S′ = (S \ {(A , p, 0)}) ∪ {(A , p, 1)}.

Consider now the following subchains for FACTORS330, where F is the participant
who issues the contract, and M is an adversary:

1. η1 = A :send11 B :send2 F :pay11(1 → A) F :pay2(1 → B)
2. η2 = A :send11 F :pay11(1 → A) M :send11
3. η3 = M :send229 F :pay229(1 → M)
4. η4 = A :send11 F :pay11(1 → M)

The subchain η1 is consistent, because both A and B send new factors and get
their rewards. The subchains η2 and η3 are inconsistent, because 11 sent by M is
not fresh, and 229 is not a factor of 330. Finally, the subchain η4 is inconsistent,
because M gets the reward that should have gone to A . �

Similarly to Bitcoin, we do not aim at guaranteeing that a subchain is always
consistent. Indeed, also in Bitcoin a miner could manage to append a block with
invalid transactions: in this case, as discussed in Sect. 2, the Bitcoin blockchain
forks, and the other miners must choose which branch to follow. However, honest
miners will neglect the branch with invalid transactions, so eventually (since

574 M. Bartoletti et al.

honest miners detain the majority of computational power), that branch will be
abandoned by all miners.

For subchain consistency we adopt a similar notion: we assume that an adver-
sary can append a label A :a such that qn � A :a−−→, so making the subchain incon-
sistent. However, upon receiving such label, honest nodes will discard it. To
formalise their behaviour, we define below a function Γ that, given a subchain η
(possibly inconsistent), filters all the invalid messages. Hence, Γ (η) is a consistent
subchain.

Definition 2 (Branch pruning). We inductively define the endofunction Γ
on subchains as follows, where ε denotes the empty subchain:

Γ (ε) = ε Γ (η A :a) =

{
Γ (η) A :a if∃q, q′ : q0

Γ (η)−−−→ q
A :a−−→ q′

Γ (η) otherwise

In order to model which labels can be appended to the subchain without
breaking its consistency, we introduce below the auxiliary relation |=. Informally,
given a consistent subchain η, the relation η |= A :a holds whenever the subchain
η A :a is still consistent.

Definition 3 (Consistent update). We say that A :a is a consistent update
of a subchain η, denoted with η |= A :a, iff the subchain Γ (η) A : a is consistent.

Example 2. Recall the subchain η2 = A : send11 F : pay11(1 → A) M : send11
from Example 1. We have that B : send2 is a consistent update of η2, because
Γ (η2) B :send2 = A :send11 F :pay11(1 → A) B :send2 is consistent. �

3.2 Description of the Protocol

Assume a network of mutually distrusted nodes N,N′ , . . . , that we call meta-
nodes to distinguish them from the nodes of the Bitcoin network. Meta-nodes
receive messages from participants (also mutually distrusting) which want to
extend the subchain. Our goal is to allow honest participants (i.e., those who
follow the protocol) to perform consistent updates of the subchain, while disin-
centivizing adversaries who attempt to make the subchain inconsistent.

To this purpose, we propose a protocol based on Proof-of-Stake (PoS).
Namely, we rely on the assumption that the overall stake retained by honest
participants is greater than the stake of dishonest ones4. The stake is needed
by meta-nodes, which have to vote for approving messages sent by participants.
These messages are embedded into Bitcoin transactions, which we call update
requests. We denote by UR[A :a] the update request issued by A to append the
message a to the subchain. In order to vote an update request, a meta-node
must invest κB on it, where κ is a constant specified by the protocol. An update
4 Note that a similar hypothesis, but related to computational power rather than stake,

holds in Bitcoin, where honest miners are supposed to control more computational
power than dishonest ones.

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 575

1. Upon receiving an update request UR[A : a], a meta-node checks its consis-
tency, η |= A :a. If so, it votes the request, and adds it to the request pool;

2. when Δ expires, the arbiter signs all the well-formed UR in the request pool;
3. all requests signed by the arbiter are sent to the Bitcoin miners, to be published

on the blockchain. The first to be mined, indicated with URi, is the i-th label
of the subchain.

Fig. 2. Summary of a protocol stage i.

request needs the vote of a single meta-node. The protocol requires meta-nodes
to vote a request UR[A : a] only if A : a is a consistent update of the current
subchain η, i.e. if η |= A : a5. To incentivize meta-nodes to vote their update
requests, participants pay them a fee (smaller than κ), which can be redeemed
by meta-nodes when the update request is appended to the subchain.

We define our protocol in Fig. 2. It is organised in stages. The protocol ensures
that exactly one label A :a is appended to the subchain for each stage i. This is
implemented by appending a corresponding transaction URi[A :a] to the Bitcoin
blockchain. To guarantee its uniqueness, the protocol exploits an arbiter T,
namely a distinguished node of the network which is assumed honest (we discuss
this hypothesis in Sect. 3.3). We now describe the main steps of the protocol.

At step 1 of the stage i of the protocol, a meta-node (say, N) votes an update
request (as detailed in Sect. 3.4). In order to do this, N must confirm a previous
update URj in the subchain, by paying κ B (plus the participant’s fee) to the
meta-node N′ who appended URj to the subchain. To avoid the self-compensation
attack discussed later on in Sect. 3.3, the protocol only allows to confirm one of
the past C updates, where C ≥ 2 is a constant fixed by the protocol (called
checkpoint offset). Summing up, the value j is such that: (i) j < i; (ii) |i − j| <
C; (iii) URj [A : a] is consistent. In this way the protocol incentivizes meta-
nodes to vote consistent updates only, since inconsistent ones are not likely to
be confirmed. If all the last C updates in the subchain are inconsistent, then N
chooses the last one. Then, N adds UR[A : a] to the request pool, i.e. the set of
all voted requests of the current stage (emptied at the beginning of each stage).
This voting step has a fixed duration Δ, specified by the protocol (the choice of
Δ is discussed in Sect. 5).

At step 2, which starts when Δ expires, the arbiter T signs all well-formed
request transactions, i.e., those respecting the format defined in Sect. 3.4.

At step 3, meta-nodes send the requests signed by T to the Bitcoin network.
The mechanism described in Sect. 3.4 ensures that, at each stage i, exactly one
transaction, denoted URi[A : a], is put on the Bitcoin blockchain. When this
happens, the label A :a is appended to the subchain.

5 We assume that all meta-nodes agree on the Bitcoin blockchain; since η is a projec-
tion of the blockchain, they also agree on η.

576 M. Bartoletti et al.

3.3 Basic Properties of the Protocol

We now establish some basic properties of our protocol. Hereafter, we assume
that honest nodes control the majority of the total stake of the network6, here-
after denoted by S. Further, we assume that the overall stake required to vote
pending update requests is greater than the overall stake of honest meta-nodes.

Adversary power. An honest meta-node votes as many requests as is allowed by
its stake. Hence, if its stake is h, it votes h/κ requests per stage. Consequently,
the rest of the network—which may include dishonest meta-nodes not following
the protocol—can vote at most (S − h)/κ requests. Then:

Proposition 1. The probability that an honest meta-node with stake h updates
the subchain is at least h/S at each stage.

Since we assume that honest meta-nodes control the majority of the stake,
Proposition 1 also limits the capabilities of the adversary:

Proposition 2. If the global stake of honest meta-nodes is SH , then dishonest
ones update the subchain with probability at most (S − SH)/S at each stage.

Although inconsistent updates are ignored by honest meta-nodes, their side
effects as standard Bitcoin transactions (i.e. transfers of vB from A to B in
labels A : a(v → B)) cannot be revoked once they are included in the Bitcoin
blockchain. We now show how the incentive system in our protocol reduces the
feasibility of such inconsistent updates.

Assume that an adversary M manages to append 2 updates to the subchain:
an inconsistent update at index j, and a consistent one at index i > j. Since
M does not follow the protocol, she can exploit URi to redeem the κB she put
on URj . Later on, the adversary will be able to redeem the κB she put on URi:
indeed, honest meta-nodes will vote URi, as it is consistent. We call the above
behaviour of M self-compensation attack.

Now, according to Proposition 2, if M has stake m, and the other meta-nodes
are honest, then M has probability at most m/S of extending the subchain in
a given stage of the protocol. Since stages can be seen as independent events,
and since M has to publish at least 2 updates over the most recent checkpoint
to perform the attack, we obtain the following:

Proposition 3. The probability that an adversary with stake m succeeds in a
self-compensation attack is at most:(

C

2

)
· μ2(1 − μ)C−2

where C is the checkpoint offset, and μ = m/S.

6 Under this assumption, meta-nodes can ensure that the arbiter is honest.

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 577

Since the probability to publish inconsistent updates without losing κB grows
with C, it is crucial to keep this value small. For instance, if μ = 0.1 an adversary
could perform the attack with probability bounded by (i) 0.01 if C = 2; (ii) 0.027
if C = 3; (iii) 0.0486 if C = 4.

Observe that if the attack succeeds once, then the attack probability slightly
increases, since the stake m is charged by the client fees of the published updates.
This is not an issue if the fee is small compared to S.

Trustworthiness of the arbiter. Our protocol uses in arbiter T to ensures that
exactly one transaction per stage is appended to the blockchain, as well its choice
is random. In order to simplify the description of the protocol, we have assumed
the arbiter T to behave honestly. However, our arbiter does not play the role of
a trusted authority: indeed, the update requests to be voted are chosen by the
meta-nodes, and once they are added to the request pool, the arbiter is expected
to sign all of them, without taking part on the validation nor in the voting. Since
everyone can inspect the request pool, any misbehaviour of the arbiter can be
detected by the meta-nodes, which can proceed to replace it.

3.4 Implementation in Bitcoin

In this section we show how our protocol can be implemented in Bitcoin. A
label A : a(v → B) at position i of the subchain is implemented as the Bitcoin
transaction URi[A :a(v → B)] in Fig. 3a, with the following outputs:

– the output of index 0 embeds the label A :a. This is implemented through an
unspendable OP RETURN script [6]7.

– the output of index 1 links the transaction to the previous element of the
subchain, pointed by in[2]. This link requires the arbiter signature. Note that,
since all the update requests in the same stage redeem the same output,
exactly one of them can be mined.

– the output of index 2 implements the incentive mechanism. The script rewards
the meta-node N′ which has voted a preceding URj in the subchain. Meta-
node N′ can redeem from this output κB plus the participant’s fee, by pro-
viding his signature.

– the output of index 3 is only relevant for messages a(v → B) where v > 0.
Participant B can redeem vB from this output by providing his signature.

All transactions specify a lockTime n + k, where n is the current Bitcoin
block number, and k is a positive constant. This ensures that a transaction can
be mined only after k blocks. In this way, even if a transaction is signed by the
arbiter and sent to miners before the others, it has the same probability as the
others of being appended to the blockchain.

To initialise the subchain, the arbiter puts the Genesis transaction on the
Bitcoin blockchain. This transaction secures a small fraction of bitcoin, which
7 The OP RETURN instruction allows to save 80 bytes metadata in a transaction; an
out-script containing OP RETURN always evaluates to false, hence it is unspendable.

578 M. Bartoletti et al.

Genesis

in: · · ·
in-script: · · ·
out-script(t, σ): ver T(t, σ)
value: 0.0001

URi[A :a(v → B)]

in[0]: Feei
in-script[0]: sigC(•)
in[1]: Stakei
in-script[0]: sigN(•)
in[2]: Confirmi−1 (at index 1)
in-script[0]: sigT(•)

out-script[0](): OP_RETURN A :a
value[0]: 0
out-script[1](t, σ): ver T(t, σ)
value[1]: 0.0001
out-script[2](t, σ): ver N′(t, σ)
value[2]: κ + fee
out-script[3](t, σ): ver B(t, σ)
value[3]: v

lockTime: n + k

(a) (b)

Fig. 3. In (a), format of Bitcoin transactions used to implement our protocol. In (b),
a subchain maintained through our protocol. Since URi+2 contains an inconsistent
update, the meta-node which voted it is not rewarded.

can be redeemed by UR1 through the arbiter signature. This value is then trans-
ferred to each subsequent update of the subchain (see Fig. 3b). At each protocol
stage, participants send incomplete UR transactions to the network. These trans-
actions contain only in[0] and out[0], specifying the fee and the message for the
subchain (including the value to be transferred). To vote, meta-nodes add in[1],
in[2] and out[2] to these transactions, to, respectively, put the required κ (from
some transaction Stakei), declare they want extend the last published update
Confirmi−1, and specify the previous update to be rewarded. All the in[1] fields
in a stage of the protocol must be different, to prevent attackers to vote more
URs with the same funds.

4 Evaluation of the Protocol

In this section we evaluate the security of our protocol, providing some exper-
imental results. We also investigate how possible attacks to Bitcoin may affect
subchains built on top of its blockchain.

Attack scenario. We assume an adversary who can craft any update (consistent
or not), and controls one meta-node M with stake μS, where μ ∈ [0; 1] and S

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 579

is the total stake of the network8. We suppose that each meta-node can vote as
many update requests as possible, spending all its stake, and that the network
is always saturated with pending updates, which globally amount to the entire
stake of honest meta-nodes9. We also assume that M gets an additional extra
revenue r for each inconsistent update, modelling the case where she manages to
induce a victim to publish an inconsistent payment a(r → M). The goal of M is
to append at least 2 updates to the blockchain (one of which inconsistent) every
C published updates. She can use any possible strategy to achieve this goal.

We simulate the protocol under the attack scenario described above. Each
simulation runs the protocol to generate a subchain with 10, 000 messages, set-
ting the client fee to 0.1κ and the checkpoint offset to 3. To this purpose we use
Desmo-J [18], a discrete event simulator for Java.

Experimental results. Figure 4b measures the attacker revenue as μ increases. In
particular, it shows that if the stake threshold κ is ten times greater than r, M
gains only if she owns at least ∼40% of the global stake (i.e., μ ≥ 0.4). Therefore,
under such assumption about the attacker stake, the security of our protocol is
comparable with that of the Bitcoin Proof-of-Work protocol [17]. Instead, if
κ = r, the attacker needs only ∼15% of the global stake to profit from the
attack. Figure 4a shows that, in the absence of attackers (μ = 0), the revenue of

(a) (b)

Fig. 4. Revenue of honest nodes (a) and of the attacker M (b) for increasing values
of the attacker stake ratio μ. The curves represent different values of r/κ (the ratio
between the attack revenue r, given by inconsistent a(r → M) updates, and the cost
of the vote).

8 Assuming a single adversary is not less general than having many non-colluding
meta-nodes which carry on individual attacks. Indeed, in this setting meta-nodes do
not join their funds to increase the stake ratio μ.

9 Note that saying the update queue is not always saturated is equivalent to model an
adversary with a stronger μ: this because honest meta-nodes cannot spend all their
stake in a single protocol stage, i.e. reducing their actual power. Thus, studying this
particular case will not give any additional contribution to the analysis.

580 M. Bartoletti et al.

honest nodes is essentially the client fee times the number of updates published,
as expected. Further, μ is below the threshold required to perform a profitable
attack, the revenue of honest nodes increases: this happens because inconsistent
updates voted by M reward honest ones, whereas the opposite cannot occur.
Summing up, our protocol is secure only if, for updates on the form a(r → A),
we have that r ≤ κ. Hence, if r is close to 0, the behaving dishonestly is not
economically advantageous.

Security of the underlying Bitcoin blockchain. So far we have only considered
direct attacks to our protocol, assuming the underlying Bitcoin blockchain to
be secure. However, although Bitcoin has been secure in practice till now, some
works have spotted some potential vulnerabilities of its protocol. These vul-
nerabilities could be exploited to execute Sybil attacks [4] and selfish-mining
attacks [16], which might also affect subchains built on top of the Bitcoin
blockchain.

In Sybil attacks on Bitcoin, honest nodes are induced to believe that the
network is populated by many distinct participants, which instead are controlled
by a single malicious entity. This attack is usually exploited to quickly propagate
malicious information on the network, and to disguise honest participants in a
consensus/reputation protocol, e.g. by overwhelming the network with votes
of the adversary. In the selfish-mining attack [16], small groups of colluding
miners manage to obtain a revenue larger than the one of honest miners. More
specifically, when a selfish-mining pool finds a new block, it keeps it hidden to
the rest of the network. In this way, selfish miners gain an advantage over honest
ones in mining the next block. This is equivalent to keep a private fork of the
blockchain, which is only known to the selfish-mining pool. Note that honest
miners still mine on the public branch of the blockchain, and their hash rate
is greater than selfish miners’ one. Since, in the presence of a fork, the Bitcoin
protocol requires to keep mining on the longest chain, selfish miners reveal their
private fork to the network just before being overcome by the honest miners.
Eyal and Sirer in [16] show that, under certain assumptions, this strategy gives
better revenues than honest mining: in the worst scenario (for the adversary),
the attack succeeds if the selfish-mining pool controls at least 1/3 of the total
hashing power. Rational miners are thus incentivized to join the selfish-mining
pool. Once the pool manages to control the majority of the hashing power,
the system loses its decentralized nature. Garay, Kiayias and Leonardos in [17]
essentially confirm these results: considering a core Bitcoin protocol, they prove
that if the hashing power γ of honest miners exceeds the hashing power β of the
adversary pool by a factor λ, then the ratio of adversary blocks in the blockchain
is bounded by 1/λ (which is strictly greater than β). Thus, as β (the adversary
pool size) approaches 1/2, they control the blockchain.

Although these attacks are mainly related to Bitcoin revenues, they can affect
the consistency of any subchain built on top of its blockchain. In particular,
suitably adapted versions of these attacks allow adversaries to cheat meta-nodes
about the current subchain state, forcing them to synchronize their local copy of
the Bitcoin blockchain with invalid forks that will be discarded by the network

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 581

in the future. To protect against such attacks, meta-nodes should consider only
l-confirmed transactions. Namely, if the last published blockchain block is Bn,
they consider only those transactions appearing in blocks Bj with j ≤ n − l.
This means that an attacker would have to mine at least l blocks to force the
revocation of a l-confirmed transaction. Rosenfeld [27] shows that, if an attacker
controls at most the 10% of the network hashing power, l = 6 is sufficient for
reducing the risk of revoking a transaction to less than 0.1%.

5 Discussion

We have proposed a protocol to reach consensus on subchains, i.e. chains of
platform-dependent messages embedded in the Bitcoin blockchain. Our protocol
incentivizes nodes to validate messages before appending them to the subchain,
making economically disadvantageous for an adversary to append inconsistent
messages. To confirm this intuition we have measured the security of our protocol
over different attack scenarios. Our simulations show that, under conservative
assumptions, its security is comparable to that of Bitcoin.

Performance of the protocol. As seen in Sect. 3.2, the protocol runs in periods of
duration Δ. Due to the mechanism for choosing the message to append to the
subchain from the request pool, the protocol can publish at most one transaction
per Bitcoin block. This means that a lower bound for Δ is the Bitcoin block
interval (∼10 min). To monitor the arbiter behaviour throughout protocol stages,
all meta-nodes must share a coherent view of the request pool. Then, Δ needs
to be large enough to let each node synchronize the request pool with the rest of
the network. A possible approach to cope with this issue is to make meta-nodes
broadcast their voted updates, and to keep a list of other ones (considering only
those which satisfy the format of transactions, as in Sect. 3.4). More efficient
approaches could exploit distributed shared memories [12,20].

Overcoming the metadata size limit. As noted in Sect. 3.4, we use OP RETURN

unspendable scripts to embed metadata in Bitcoin transactions. Since Bitcoin
limits the size of such metadata to 80 bytes, this might not be enough to store the
data needed by platforms. To overcome this issue, one can use distributed hash
tables [25] maintained by meta-nodes. In this way, instead of storing full message
data in the blockchain, OP RETURN scripts would contain only the corresponding
message digests. The unique identifier of the Bitcoin transaction can be used as
the key to retrieve the full message data from the hash table.

Smart contracts over subchains. The model of subchains defined in Sect. 3.1,
based on LTSs, can be easily extended to model the computations of smart
contracts over the Bitcoin blockchains. A platform for smart contracts could
exploit our model to represent the state of a contract as the state of the subchain,
and model its possible state updates through the transition relation.

582 M. Bartoletti et al.

Implementing a platform for smart contracts would require a language for
expressing them. To bridge this language with our abstract model, one can pro-
vide the language with an operational semantics, giving rise to an LTS describing
the computations. Note that our assumption to model computations as a single
LTS does not reduce the generality of the system, since a set of LTSs, each one
modelling a contract, can be encoded in one LTS as their parallel composition.
If the language is Turing-complete, an additional problem we would have to
face is the potential non-termination. This issue has been dealt with in different
ways by different platforms. E.g., the approach followed by Ethereum [11] is to
impose a fee for each instruction executed by its virtual machine. If the fee does
not cover the cost of the whole computation, the execution terminates.

A usable platform must also allow to create new contracts at run-time. Since
in our model the LTS representing possible computations is fixed, we would
need a mechanism to “extend” it. To handle the publication of new contracts,
we could modify the protocol so that UR may contain its code, and the unique
identifier of the transaction also identifies the contract. In this extended model,
update requests would also contain the identifier of the contract to be updated,
so that meta-nodes can execute the corresponding code.

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia
grant P.I.A. 2013 “NOMAD”. Alessandro Sebastian Podda gratefully acknowledges
Sardinia Regional Government for the financial support of her PhD scholarship (P.O.R.
Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia,
European Social Fund 2007-2013 - Axis IV Human Resources, Objective l.3, Line of
Activity l.3.1).

References

1. Making sense of blockchain smart contracts. http://www.coindesk.com/
making-sense-smart-contracts/. Accessed 14 Jan 2017

2. opreturn.org. http://opreturn.org/. Accessed 15 Dec 2016
3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party

computations via Bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

4. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On Bitcoin and red balloons. In:
ACM Conference on Electronic Commerce (EC), pp. 56–73 (2012)

5. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

6. Bartoletti, M., Pompianu, L.: An analysis of Bitcoin OP RETURN meta-
data. In: Financial Cryptography Workshops (2017). Also available as CoRR
abs/1702.01024

7. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. In:
Financial Cryptography Workshops (2017). Also available as IACR Cryptology
ePrint Archive 955/2016

http://www.coindesk.com/making-sense-smart-contracts/
http://www.coindesk.com/making-sense-smart-contracts/
http://opreturn.org/
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-319-45741-3_14

A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains 583

8. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4 10

9. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

10. Blockstore: key-value store for name registration and data storage on the Bitcoin
blockchain (2014). https://github.com/blockstack/blockstore

11. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper

12. Cai, M., Chervenak, A., Frank, M.: A peer-to-peer replica location service based
on a distributed hash table. In: ACM/IEEE Conference on High Performance Net-
working and Computing, p. 56. IEEE Computer Society (2004)

13. Crary, K., Sullivan, M.J.: Peer-to-peer affine commitment using Bitcoin. In: ACM
PLDI, pp. 479–488 (2015)

14. Dermody, R., Krellenstein, A., Slama, O., Wagner, E.: CounterParty: protocol
specification (2014). http://counterparty.io/docs/protocol specification/

15. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

16. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

17. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

18. Göbel, J., Joschko, P., Koors, A., Page, B.: The discrete event simulation frame-
work DESMO-J: review, comparison to other frameworks and latest development.
In: European Conference on Modelling and Simulation (ECMS), pp. 100–109. Euro-
pean Council for Modeling and Simulation (2013)

19. Hern, A.: A history of Bitcoin hacks. March 2014. http://www.theguardian.com/
technology/2014/mar/18/history-of-bitcoin-hacks-alternative-currency

20. Iyer, S., Rowstron, A., Druschel, P.: Squirrel: a decentralized peer-to-peer web
cache. In: PODC, pp. 213–222. ACM (2002)

21. Kiayias, A., Konstantinou, I., Russell, A., David, B., Oliynykov, R.: Ouroboros: a
provably secure proof-of-stake blockchain protocol (2016). IACR Cryptology ePrint
Archive, 2016:889

22. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

23. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS, pp. 30–41 (2014)

24. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS, pp. 195–206 (2015)

25. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 5

https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-44381-1_24
https://github.com/blockstack/blockstore
https://github.com/ethereum/wiki/wiki/White-Paper
http://counterparty.io/docs/protocol_specification/
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://www.theguardian.com/technology/2014/mar/18/history-of-bitcoin-hacks-alternative-currency
http://www.theguardian.com/technology/2014/mar/18/history-of-bitcoin-hacks-alternative-currency
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5

584 M. Bartoletti et al.

26. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2018). https://
bitcoin.org/bitcoin.pdf

27. Rosenfeld, M.: Analysis of hashrate-based double spending (2014). CoRR,
abs/1402.2009

28. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penalizing equivocation
by loss of Bitcoins. In: ACM CCS, pp. 219–230 (2015)

29. Szabo, N.: Formalizing and securing relationships on public networks. First Mon-
day, 2(9) (1997)

30. Tomescu, A., Devadas, S.: Catena: efficient non-equivocation via Bitcoin. In: IEEE
Symposium on Security and Privacy (2017)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Targeted Attacks

X-Platform Phishing: Abusing Trust
for Targeted Attacks Short Paper

Hossein Siadati(B), Toan Nguyen, and Nasir Memon

New York University, New York City, USA
{hossein,toan.v.nguyen,memon}@nyu.edu

Abstract. The goal of anti-phishing techniques is to reduce the deliv-
ery rate of phishemails, and anti-phishing training aims to decrease the
phishing click-through rates. This paper presents the X-Platform Phish-
ing Attack, a deceptive phishing attack with an alarmingly high delivery
and click-through rates, and highlights a subclass of phishing attacks that
existing anti-phishing methods do not seem to be able to address. The
main characteristic of this attack is that an attacker is able to embed a
malicious link within a legitimate message generated by service providers
(e.g., Github, Google, Amazon) and sends it using their infrastructure
to his targets. This technique results in the bypassing of existing anti-
phishing filters because it utilizes reputable service providers to generate
seemingly legitimate emails. This also makes it highly likely for the tar-
gets of the attack to click on the phishing link as the email id of a
legitimate provider is being used. An X-Platform Phishing attack can
use email-based messaging and notification mechanisms such as friend
requests, membership invitations, status updates, and customizable gift
cards to embed and deliver phishing links to their targets. We have
tested the delivery and click-through rates of this attack experimen-
tally, based on a customized phishing email tunneled through GitHub’s
pull-request mechanism. We observed that 100% of X-Platform Phish-
ing emails passed the anti-phishing systems and were delivered to the
inbox of the target subjects. All of the participants clicked on phishing
messages, and in some cases, forwarded the message to other project
collaborators who also clicked on the phishing links.

Keywords: Targeted attack · Phishing · Cross-platform attack

1 Introduction

Social engineering has become a core component of cyberattacks with financial
and political incentives. Recent high profile attacks, such as the Target [20] and
Sony [3] attacks used phishing emails to steal credentials of employees to infect
their machines and establish a foothold inside a target network. Business Email
Compromise (BEC) scams use phishing emails to deceive employees of a tar-
get company into transferring money to scammers’ accounts [4]. Political and
celebrity hacks such as recent attacks on the Democratic National Committee
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 587–596, 2017.
https://doi.org/10.1007/978-3-319-70278-0_37

588 H. Siadati et al.

(DNC) [12] have used multistage phishing techniques to access confidential infor-
mation. These phishing attacks focus on social engineering of a certain person
or population and therefore are referred to as targeted attacks.

Advances in techniques for phishing detection impede the delivery of phishing
emails. Security awareness improves the users’ vigilance and therefore decreases
the click-through rate on phishing emails. For example, Sender Policy Framework
(SPF) [10] and DomainKey Identified Mail (DKIM) [1] have made it harder
for the attackers to spoof a sender’s email, and Blacklist of IP addresses has
made it harder to use botnets for sending phishing emails. In addition, content-
based anti-phishing engines combined with other signals have been successful in
stopping large volume of phishing emails. Moreover, companies have invested in
phishing training campaigns, that improve the overall awareness and resilience
of their users. As a result, it is harder to deceive enterprise users. Therefore, it
is natural for attackers to invest in devising new ways for delivering and luring
victims to respond to phishing emails. For security researchers, it is important
to be ahead of the curve, predict potential attacks, and provide required fixes.

This paper describes an advanced form of targeted attack which we call
X-Platform Phishing (XPP)1 that can bypass existing phishing filtering tech-
niques and is able to elicit a high amount of responses from victims. This attack
exploits the email-based messaging and notification mechanism of reputable plat-
forms and leverages the trust of the end-users to the services they use, to deliver
customized phishing messages to a target victim and deceive her/him into click-
ing on the phishing links. Examples of customizable messages sent by platforms
include Github notifications, Google Scholar alerts, LinkedIn friend requests,
Dropbox notifications, and Amazon gift card notifications. These messages are
sent from a fixed email address of a reputable platform or service (e.g., notifica-
tion@[domain name of the service provider]) and therefore are trusted by email
services. Moreover, users have subscribed for the service, trust the emails from
the service provider, and frequently receive and therefore expect to receive such
emails. Consequently, it is very likely for them to read the phishing email and
visit the malicious link.

To demonstrate the possibility of XPP, we ran a pilot study on the Github
platform. We used the pull request functionality of Github to send customized
phishing messages to subjects of our experiment. The results show that 100% of
the subjects clicked on the phishing links. More surprisingly, not only did these
subjects click on the links, they also forwarded the email to their colleagues, who
in turn, fell for the attack.

Existing anti-phishing mechanisms are not able to detect and block this type
of phishing attack. The main reason is that the email filtering mechanisms do not
differentiate between emails from an enterprise and a customized email contain-
ing user messages delivered by an enterprise email address. This is very similar
to X-Site Scripting (XSS) attack where a user-generated input containing a mali-
cious script is allowed to run in the context and origin of the service provider on
a browser. A potential remedy to stop X-Platform Phishing includes sanitizing

1 It is pronounced Cross-Platform Phishing.

X-Platform Phishing: Abusing Trust for Targeted Attacks Short Paper 589

the contents of user messages before embedding them in the emails. Another
possible approach is creating and exchanging a user trust score between service
providers to facilitate the assessment of emails delivered by service providers.

The main contributions of this paper are the introduction of X-Platform
Phishing and preliminary measurement of its delivery and click-through rates.
We also discuss the shortcomings of anti-phishing mechanisms and propose reme-
diation.

2 Background

X-Platform Phishing as described in this paper has the capability of bypassing
existing email filtering mechanisms as well as driving high click-through rates
when customized for specific targets. In this section, we discuss the methods
of phishing email filtering, and characteristics of targeted phishing attacks in
connection with XPP.

2.1 Anti-Phishing Techniques

Unwanted emails initially were used for advertising and later for spreading mal-
ware, phishing, and scamming people [14]. The traditional approach of filtering
unwanted emails rely on blacklisting spamming IP addresses [9]. These lists are
updated quickly with a median of 1.5 h to include new spamming IPs in the
blacklist. Spammers have responded to blacklisting using a “Snowshoe spam”
strategy that spreads the workload of spamming IPs by sending very short bursts
of spam from several IPs [15]. Blacklisting IPs is not effective against XPP since
the emails are originated and sent from IP address of legitimate service providers
such as Github, Amazon, and LinkedIn.

Another approach is content-based spam filtering, that is mostly effective
when the content of spamming messages are distinguishable from normal con-
versational emails due to the usage of words and links [11]. In the XPP, content
of the phishing email is a mix of content from legitimate service provider and a
portion customized by the attacker. This combination of good and bad content
makes the task of classification for text-based classification more challenging.
Moreover, previous work has shown that content-based filtering can be easily
circumvented [13].

Email source authentication is another anti-spam mechanism, which has
reduced the possibility of spoofing dramatically. These mechanisms include
Sender Policy Framework (SPF) [10], DomainKey Identified Mail (DKIM) [1],
and Domain-based Message Authentication, Reporting, and Conformance
(DMARC) [2]. In a XPP attack, phishing email is sent from a reputable ser-
vice provider by all valid signatures and from a legitimate IP address. This
makes it very easy for XPP emails to get delivered into the Inbox of the victims.
Therefore, more advanced tools and techniques are required to detect and block
delivery of XPP.

590 H. Siadati et al.

2.2 Targeted Phishing Attacks

A targeted attack is a form of phishing attacks that includes deceptive messages
and links customized for a high value target (e.g., staff of a financial company, a
politician) in order to increase the yield of the attack response. This method has
been used extensively as a starting point of many high profile attacks. In fact,
Verizon’s Data Breach Investigations Report has listed phishing as the favorite
method used by attackers [17]. Existing targeted attacks usually spoof the email
address of a well-known service providers to appear legitimate. For example, a
phishing email sent to John Podesta [5] spoofed “googlemail.com” domain that
belongs to Google. Spoofing is becoming harder due to the deployment of more
strict email rejection policies by domains. One logical move of the attackers then,
as envisioned in this paper, would be to piggy-back over the trust of messaging
between legitimate service providers to deliver their phishing emails.

In a 2011 report [6], Cisco reported that 70% of users who receive targeted
phishing emails open and read them. In comparison, only 3% for traditional mass
phishing emails are read by users. This shows the comparably higher persuasive-
ness of targeted phishing emails. In that report, however, Cisco has considered
the block rate of both types of phishing attack as 99%, meaning that the major-
ity of the mass as well as targeted phishing emails are blocked by anti-phishing
engines. The attack discussed in this paper proves this otherwise by experiment-
ing a phishing attack that can not be blocked by existing anti-phishing engines
and yields open rate and click-through rate of 100%. This calls for new anti-
phishing approaches.

3 X-Platform Phishing

X-Platform Phishing, analogous to the X-Site Scripting (XSS) attack, exploits
the email-based messaging and notification mechanism of a legitimate service
to deliver phishing messages to target victims. For example, an attacker can
send an electronic gift-card to victim with a customized message that includes
a phishing link. Since the gift-card is sent by the email address of a reputable
service provider (e.g., Amazon, Starbucks), the receiving email domain delivers
it to the Inbox of the target.

Many service providers use email-based messaging and notification mecha-
nisms for different purposes including friend requests (e.g., Linkedin), member-
ship invitations (e.g. Telegram), status updates (e.g., Github pull request, Google
Scholar notification), and Gift Card (e.g., Amazon, Starbucks). These commu-
nications are feasible even between users that do not trust each other. Further,
the messages themselves are customizable by the attackers and the final message
is embedded in a template prepared by the sending service provider.

Users usually respond to benign messages from service providers in a certain
way. For example, users click on “Apply to your Amazon Account” button when
they open an Amazon Gift Card. In the XPP, an attacker customizes the message
in a way that deceives the targeted victim to click on elements they control. The
content of the message sent to victims are highly customizable. The attacker can

X-Platform Phishing: Abusing Trust for Targeted Attacks Short Paper 591

link an HTML tag or an image that loads in the email client of the target. For
example, an attacker may create an “Apply to your Amazon Account” button
inside the message section of the email and link it to a phishing website.

The phishing link bundled in a message sent by a reputable service provider
will be delivered by an email address owned by service provider. This kind of
email addresses is highly trusted and therefore the email will be delivered to the
target’s Inbox. Moreover, users find these messages as routine due to the trust
built over years. The high delivery rate mixed with the trust of users, result in
a very powerful attack. In the rest of this section, we detail use cases of this
attack on users of two well-known platform with big user-bases and potentially
high impact.

Use Case I. Github is a platform for collaborative software development. It
has about 14 million users and more than 35 million repositories [18]. Security
of this platform and its users are very important, specifically because software
bundled and distributed based on Github projects are installed on millions of
devices around the world. For example, half a million servers were identified
to be vulnerable due to Heartbleed [19], a critical security bug discovered in
OpenSSL, which has been developed and maintained on Github. Attackers are
very interested in injecting vulnerabilities in software by compromising platforms
such as Github [16]. Indeed, Free Software Foundation’s repository was under the
control of hackers for more than two months and potentially served backdoored
versions of GNU software to millions of users [7]. Therefore, stealing credentials
of Github developers can be disastrous.

An attacker who targets a developer is able to use XPP to launch a phishing
attack by abusing the pull request on Github. This is because the messages of
such requests are customizable by the person who creates them. An attacker
who uses XPP technique customizes the message in the pull request and adds
malicious content. Upon issuing the pull request, an email containing the mali-
cious message will be delivered via notifications@github.com email address to
the Inbox of target. It should be noted that any Github user can create a pull
request for any public project and mention a specific user as the receiver of the
request. For example, an attacker pulls a request on a project of his target on
Github and provides following message. “I’ve found a critical security vulnerabil-
ity in your project. Detail and a proof-of-concept are provided [link],” in which
link can lead the target to a phishing website that requires Github login creden-
tial to access the proof-of-concept code or to a drive-by-download malware. The
attacker then mentions the target using @ + target’s Github username. After
this pull request is submitted by the attacker, Github will send an email which
contains the message and the link to the target. As shown in our experiment
later, this attack yields very high delivery and click-through rates.

Use Case II. Google Scholar is one of the services provided by Google, spe-
cialized in indexing research publications and scholarly books. The number of
publications indexed by this service is estimated to be 160 million documents as
of May 2014. Millions of researchers from academia and industry use this service
to access scholarly materials. Google indexes material from reputable publishers

592 H. Siadati et al.

as well as open publication websites. Users of Google Scholar can subscribe to
alerts to receive a notification when a new publication of their interest gets
published. Notification emails of this type typically contain links to published
documents or sources of documents. An attacker who targets researchers of spe-
cial interest can create a Google Scholar account and create a fake publication
in the topic of his target’s interest and uploads to a website in his control. Once
he adds this publication to his profile, Google Scholar will index and notify the
interested users via emails. When the targets click on the link in the emails,
they are directed to the attacker’s website where the attacker may present them
with a fake Google Scholar login page which asks the targets to login to view
the document or plant a malicious document (a rouge PDF or DOC file) for
the targets to download. This attack scenario, without doubt, leads to innocent
clicks and resultant compromise.

4 Experiment

To demonstrate the feasibility of launching an XPP attack and measure its
delivery and click-through rate, we ran a pilot study on a small population of
users of the Github platform.

4.1 Attack Setup

The instance of X-Platform Phishing used in our experiment has several steps
as depicted in Fig. 1. We describe each step in this subsection.

Fig. 1. Steps of X-Platform Phishing in our experiment

Attack Account Creation. We created a Github account and set up the profile
of this account to appear as a developer from our institution.

Target Reconnaissance. XPP is a targeted attack meaning that the attacker
uses contextual information about the target to improve yield. For each subject
in this experiment, we found a Github project that she/he had been working
on recently. We adjusted the phishing messages in the context of this project to
make it more likely that the target would respond.

Project Creation. We cloned the active project of each subject, selected in
the step above, and sent phishing messages to the subject by pulling a request
from this project.

Content Customization. The content of a message sent to a Github developer
is customizable. We used Markdown [8] to customize the text, add an image for

X-Platform Phishing: Abusing Trust for Targeted Attacks Short Paper 593

tracking user, and put a click-able hyperlink to the message. One aspect of
customization of the phishing message was to push Github’s default message
down to an invisible area so the subjects do not get distracted. For this, we
added a number of newline tags
 to the end of the phishing message.

Message Delivery. There are several ways to send an email message using
Github. In this experiment, we used Github’s Pull Request (PR) to send phish-
ing messages. A pull request allows a member of a project to receive notification
about changes that other contributors make and want to merge them into the
project source. We created a pull request on projects that we cloned from the sub-
jects in our experiment, customized the message in the pull request using Mark-
down, and mentioned subject’s Github handler2 in the pull request. Github auto-
matically sent the customized phishing message to their email addresses. Other
possible methods of sending messages include adding target users as collaborator
of a project, creating an issue report, or adding comment and mentioning their
Github handler.

4.2 Phishing Message Design

We experimented the effect of two different story lines in the context of
X-Platform Phishing. The first story line was an approaching NSF grant pro-
posal. In this variation, we mentioned victims, who were graduate students, in
a Github project with a message asking them to follow a todo-list regarding a
grant proposal. A snapshot of this attack message is shown in Fig. 2(a). The
second story line was a bug report in which we notified subjects to fix a bug in
their project. A snapshot of this attack is shown in Fig. 2(b).

Fig. 2. The content of the messages in the story lines used in the experiment

4.3 Subject Recruitment

We selected 20 subjects from a convenient pool of students from our institution.
Candidate subjects were selected because they had active Github accounts work-
ing on some projects over the past few months. All these students were graduate

2 A user identifier of users inside Github starting with @.

594 H. Siadati et al.

students, five of which were doctoral and the rest of them were master students.
NSF grant message was used for doctoral students, and bug report message was
used for master students. Subjects were not notified prior to the experiment but
were debriefed and interviewed afterward.

4.4 Collected Data

We collected data about two different aspects of the users response to XPP
namely message delivery and phishing click. To know if a message was delivered,
we added an invisible 1x1 image in the phishing message to notify our server
whenever the message was loaded in a browser or application. A separate project
was created for each subject so a customized link could easily identify the click-
responses of subjects.

4.5 Result

The first scenario (i.e., NSF Grant) yielded 100% message delivery as well as
100% phishing click-through rates. For this case, we added a link to a website in
our control on the description of the Github project page. When a subject clicks
on this link, a request is sent to our website where we log the event (timestamp,
subject ID, etc.). In a real attack, this link might lead to a fake Github login
page or to a drive-by-download malware which may cause harms to the subjects
or victims. We observed that all of the subjects clicked on this link. In one case,
the email was circulated among other members of the projects and we observed
multiple clicks on the link embedded in that project’s description. This was
confirmed later by interviewing the subject.

In the second scenario (i.e., bug fix), we also observed that all subjects opened
the phishing emails and clicked on the phishing links embedded in the emails. In
both scenarios, the victims clicked on the phishing links and visited our Github
profile within an hour since the pull requests were submitted.

5 Discussions, Limitations, and Conclusion

Github is only one example of the platforms that can be misused for launching
XPP attacks. Many other collaborative software development platforms such as
Bitbucket, SourceForge, and Gitlab with millions of users, as well as any other
platforms including LinkedIn, Amazon, Telegram, Google Scholar, Research-
Gate, Academia.edu that have methods for email-based message exchange using
a fixed identity of service provider are susceptible to be used for X-Platform
Phishing attack.

It is challenging for an email platform to verify the legitimacy of user gen-
erated messages sent across platforms using service provider’s email address.
First of all, the messages are sent from a trustworthy domain. In addition, email
services do not have fine grained information about the sender and the context

X-Platform Phishing: Abusing Trust for Targeted Attacks Short Paper 595

of which users communicate on other platforms. Lack of information makes the
usage of user-based trust score for filtering such massages challenging.

Possible countermeasures to XPP attacks include spam filtering mechanisms
that consider trust relations of entities mentioned in delivered messages (e.g.,
handlers in form of @ in the Github pull requests) as a feature in email filtering.
Another approach is extension of email delivery protocols to exchange user trust
scores between sender and receiver domains. Such scores can be incorporated in
the phishing classifiers. Lastly, having a cyberspace resilient to social engineering
is the duty of all parties. All platforms have to employ anti-phishing mechanisms
for both outgoing and incoming messages.

The pilot experiment described in this paper and the reported results are
based on a limited pool of subjects and scenarios. Therefore, more extensive
experiments are required to provide deeper insight about the effect of X-Platform
Phishing, as we plan to explore in future. Designing countermeasures also is a
high priority.

In conclusion, we have identified the possibility of a targeted phishing
attack with potentially high impact in real-world. Success of this attack can
be attributed to the trust between platforms to deliver messages and the trust
of users on messages coming from reputable service providers. Leveraging this
trust, an attacker can achieve high delivery and click-through rates. This calls
for improved methods for detection of targeted phishing emails.

References

1. RFC 6376: DomainKeys Identified Mail (DKIM) Signatures. https://tools.ietf.org/
html/rfc6376. Accessed 20 Dec 2016

2. Domain-based message authentication, reporting, and conformance (DMARC)
(2015). https://tools.ietf.org/html/rfc7489. Accessed 17 Apr 2016

3. Bisson, D.: Sony Hackers Used Phishing Emails to Breach Company Net-
works. https://www.tripwire.com/state-of-security/latest-security-news/
sony-hackers-used-phishing-emails-to-breach-company-networks/. Accessed
20 Dec 2016

4. Krebs, B.: FBI: $1.2B Lost to Business Email Scams. https://krebsonsecurity.com/
2015/08/fbi-1-2b-lost-to-business-email-scams/. Accessed 20 Dec 2016

5. CBS: The phishing email that hacked the account
of John Podesta. http://www.cbsnews.com/news/
the-phishing-email-that-hacked-the-account-of-john-podesta/. Accessed 20
Dec 2016

6. CISCO: Email Attacks: This Time Its Personal. http://www.cisco.com/c/dam/
en/us/products/collateral/security/email-security-appliance/targeted attacks.
pdf. Accessed 20 Dec 2016

7. Geek.com: Major Open Source code repository hacked
for months, says FSF. https://www.geek.com/news/
major-open-source-code-repository-hacked-for-months-says-fsf-551344/. Accessed
20 Dec 2016

8. Github: Mastering Markdown. https://guides.github.com/features/
mastering-markdown/. Accessed 20 Dec 2016

https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc7489
https://www.tripwire.com/state-of-security/latest-security-news/sony-hackers-used-phishing-emails-to-breach-company-networks/
https://www.tripwire.com/state-of-security/latest-security-news/sony-hackers-used-phishing-emails-to-breach-company-networks/
https://krebsonsecurity.com/2015/08/fbi-1-2b-lost-to-business-email-scams/
https://krebsonsecurity.com/2015/08/fbi-1-2b-lost-to-business-email-scams/
http://www.cbsnews.com/news/the-phishing-email-that-hacked-the-account-of-john-podesta/
http://www.cbsnews.com/news/the-phishing-email-that-hacked-the-account-of-john-podesta/
http://www.cisco.com/c/dam/en/us/products/collateral/security/email-security-appliance/targeted_attacks.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/security/email-security-appliance/targeted_attacks.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/security/email-security-appliance/targeted_attacks.pdf
https://www.geek.com/news/major-open-source-code-repository-hacked-for-months-says-fsf-551344/
https://www.geek.com/news/major-open-source-code-repository-hacked-for-months-says-fsf-551344/
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/

596 H. Siadati et al.

9. Jung, J., Sit, E.: An empirical study of spam traffic and the use of DNS black lists.
In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement,
pp. 370–375. ACM (2004)

10. Kitterman, S.: Sender Policy Framework (SPF) for Authorizing Use of Domains
in Email, Version 1. https://tools.ietf.org/html/rfc7208. Accessed 20 Dec 2016

11. Metsis, V., Androutsopoulos, I., Paliouras, G.: Spam filtering with naive bayes-
which naive bayes? In: CEAS, pp. 27–28 (2006)

12. Motherboard: The hack we can’t see: All Signs Point to Russia
Being Behind the DNC Hack. https://motherboard.vice.com/read/
all-signs-point-to-russia-being-behind-the-dnc-hack. Accessed 20 Dec 2016

13. Palka, S., McCoy, D.: Fuzzing e-mail filters with generative grammars and n-gram
analysis. In: 9th USENIX Workshop on Offensive Technologies (WOOT 2015)
(2015)

14. Jakobsson, M.: Traditional countermeasures to unwanted email. In: Jakobsson, M.
(ed.) Understanding Social Engineering Based Scams, pp. 51–62. Springer, New
York (2016). https://doi.org/10.1007/978-1-4939-6457-4 5

15. Symantec: Internet security threat report (ISTR) (2016). https://www.symantec.
com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf. Accessed 20 Dec
2016

16. Torres-Arias, S., Ammula, A.K., Curtmola, R., Cappos, J.: On omitting commits
and committing omissions: preventing git metadata tampering that (re) introduces
software vulnerabilities. In: 25th USENIX Security Symposium, USENIX Security,
vol. 16, pp. 10–12 (2016)

17. Verizon: 2016 Data Breach Investigations Report. http://www.verizonenterprise.
com/resources/reports/rp dbir-2016-executive-summary xg en.pd. Accessed 20
Dec 2016

18. Wikipedia: Github. https://en.wikipedia.org/wiki/Github. Accessed 20 Dec 2016
19. Wikipedia: Half a million widely trusted websites vulnerable to

Heartbleed bug. https://news.netcraft.com/archives/2014/04/08/
half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html.
Accessed 20 Dec 2016

20. ZDNet: Anatomy of the Target data breach. http://www.zdnet.com/article/
anatomy-of-the-target-data-breach-missed-opportunities-and-lessons-learned/.
Accessed 20 Dec 2016

https://tools.ietf.org/html/rfc7208
https://motherboard.vice.com/read/all-signs-point-to-russia-being-behind-the-dnc-hack
https://motherboard.vice.com/read/all-signs-point-to-russia-being-behind-the-dnc-hack
https://doi.org/10.1007/978-1-4939-6457-4_5
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
http://www.verizonenterprise.com/resources/reports/rp_dbir-2016-executive-summary_xg_en.pd
http://www.verizonenterprise.com/resources/reports/rp_dbir-2016-executive-summary_xg_en.pd
https://en.wikipedia.org/wiki/Github
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
http://www.zdnet.com/article/anatomy-of-the-target-data-breach-missed-opportunities-and-lessons-learned/
http://www.zdnet.com/article/anatomy-of-the-target-data-breach-missed-opportunities-and-lessons-learned/

What to Phish in a Subject?

Ana Ferreira1(B) and Rui Chilro2

1 CINTESIS - Center for Health Technologies and Services Research,
Faculty of Medicine, University of Porto, Porto, Portugal

amlaf@med.up.pt
2 Universidade Digital, University of Porto, Porto, Portugal

Abstract. Phishing emails have come to stay. They have evolved and
adapted to become more sophisticated and targeted so to appear more
realistic and, therefore, more effective. But why does a user decide to
open such emails? This paper focuses on the content of subject lines
from phishing emails, a main piece which can trigger the user into decid-
ing whether to (potentially) become a victim. The authors analyzed 788
subject lines from phishing emails collected over a one year period and
found that the most common subject lines pretend to come from govern-
ment or well known organizations and mostly integrate the authority and
distraction principles of persuasion. The majority of subject lines include
targeted keywords/expressions that provide the recipient with a feeling
of social presence that heightens the realization that a message comes
from a trustworthy person. This study shows that a small sentence can
go a long way. An email subject line can include a high persuasive power
to more successfully grab users’ attention and increase the likelihood of
that email being opened and responded to.

1 Introduction

Emails with fraudulent content have been around for a long time but there are
still no effective ways to prevent or even minimize them. Every year, security
reports alert that phishing is very common and a swift and easy way to bypass
security measures within businesses and organizations [1–3]. Phishing emails
can quickly provide attackers with open doors to more dangerous and disruptive
attacks. Phishing has evolved and adapted to better target victims and maximize
its attack success rate [1,2]. This more sophisticated type of phishing (e.g., spear
phishing) has been associated with the largest cyberattacks in recent history. As
such, 84% of the analyzed companies had a spear phishing attack penetrate
their organization security and the average cost of a spear phishing attack is 1.6
million dollars [2]. Moreover, 90% of the detected attacks are performed using
email.

Although there are now more awareness and tools to identify, alert and even
eliminate scam and phishing emails, why and how do users still fall for such
attacks? This report [3] calculated that the median time for the first user of a
phishing campaign to open a malicious email was 1 min and 22 s.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 597–609, 2017.
https://doi.org/10.1007/978-3-319-70278-0_38

598 A. Ferreira and R. Chilro

The first message conveyed by any email, stating its objective, is within
the content of a subject line. This is the first interaction between an email
phisher and his/her victim and the main piece that triggers the user into deciding
whether an email is relevant, should be opened and paid attention to [4]. Once
the action of opening the email is taken, the user is a step closer to becoming a
phishing victim. So phishers can focus on devising directed, objective but incisive
subject lines to increase their degree of persuasiveness and the probability of
being taken seriously [5].

There are some works available that study email header content to better
identify phishing attacks [6,7]. However, those do not typically specify results
for the subject line element and, the analyzed information comprised in an email
header is usually hidden from the user who, without much time in hand, will
only focus on the commonly available information (e.g., the email fields: From,
Subject and Date) to make his/her decision about opening an email.

The authors only found one research work in the literature that concluded
that the level of attention to a phishing email subject line is positively related to
an individual’s likelihood to respond to that email [8]. Such conclusion interferes
with measures to ensure that email users should only allow the text of emails to
be visible and block graphics from automatically being loaded [9]. Even if the
identified elements of emails that have a very high degree of persuasiveness (e.g.,
spelling, design and links [10], or rich content such as logos, graphics and personal
data [9]) are blocked, these can be considered as just a complement of the email
attractiveness. Users first need to peruse email subject lines alone, which do not
include such elements, to decide to open that email and only then see the other
elements it contains. Despite only containing text, the authors believe that email
subject lines can still be cleverly crafted to increase the probability of a user to
open the corresponding email.

This paper focuses on the content of subject lines from phishing emails to inves-
tigate what type and amount of information can be obtained only by looking at
their text. The authors analyzed 788 subject lines from phishing emails, collected
over a one year period, to verify what categories of phishing were used according
to their objective and context, and if it was possible to distinguish targeted and
more personal messages. In addition, subject lines were perused for their persua-
sion content as well as their usage trends over the referred time period.

The next section introduces some background regarding phishing categories
and how principles of persuasion are used within phishing emails. Section 3
describes the analyzed sample and how that analysis was performed while Sect. 4
presents the obtained results. Section 5 presents a discussion of results and the
last section concludes the paper.

2 Background

The authors found various websites that describe the importance of email sub-
ject lines and how they can affect phishing attacks success rate. Some sites even
identify the most used subject lines, which they conclude to be the most danger-
ous [5]. However, the authors could not find scientific evidence of these results

What to Phish in a Subject? 599

in the literature or similar works that studied how the content in a subject line
of a phishing email can affect users’ decision to open that email. The only work
found (and already introduce) concluded that the more email subject lines can
grab users’ attention, the more persuasive power those can have in order to make
email recipients respond to that email [8].

There are, nevertheless, research works that focus on email subject lines to
verify: if they can influence response rates to email invitations to participate
in surveys or interviews [11]; if they can help in the management of complex
collaborative work [12]; or if past subject lines can help predict email opening
rates [4].

Even with not much work available that focus specifically on phishing email
subject lines, the authors believe in the importance of this topic and of further
investigating its contents and to what degree these can be persuasive.

In order to recognize the type of content of email subject lines and what data
phishers are after, there is the need to use a categorization that will allow to
perform that distinction with the least possible ambiguity. The authors decided
to base this categorization in this work [13], which has already made a system-
atization of the various available scam/fraud taxonomies, eliminating this way
some of its repetitions and inconsistencies. Also, the authors of that work con-
sider phishing as one category of the scam taxonomy. In the current paper, the
authors assume that both terms, phishing and scam, are synonyms. When they
mention phishing emails they consider all emails that fraudulently try to collect
users’ personal and/or private information or make them perform some danger-
ous action like clicking on a link or visiting a specific web page. So phishing, in
the present study, is considered a more wide scam term and not a single/separate
scam category.

Figure 1 presents the scam email categorization used for the phishing email
subject lines analysis in this paper [13]. Both categories Authority and Money
Transfer include sub-categories to better describe the type of data asked by the
phishing emails.

The persuasive content that email subject lines may include can be one expla-
nation to the previously posed question (e.g., Why and how do users still fall for
phishing attacks?). When humans interact they influence each other everyday.
This influence can be legitimate but it can also be used as a tool to trick and
manipulate people to perform unwanted actions that can lead to some kind of
loss. Phishing can take advantage of a widely used platform of communication
that reaches almost everybody in the world today: Email Messaging. Since this
tool can simulate human interactions and dialogs, most of the persuasion prin-
ciples that are present in a physical dialog can also be used in the virtual world.
Phishers know this and, purposely or not, use techniques to manipulate and
persuade email users to act as they want.

The current paper focuses on the definition and systematization of the prin-
ciples of persuasion in social engineering described in [14] because it integrates
most relevant works in this field [15–17]. Figure 2 presents the description and
examples of those principles of persuasion.

600 A. Ferreira and R. Chilro

Fig. 1. Scam categories used in the content analysis of phishing email subject lines.

Fig. 2. Principles of persuasion used in the content analysis of phishing email subject
lines.

3 Materials and Methods

The analyzed sample comprises a text file with complete phishing emails aggre-
gated from half-dozen account domains that belonged to one real person, with
the purpose to collect spam email. The emails were manually identified as phish.
Since there are hundreds of emails, the file needed to be processed to verify and
eliminate cascading emails as well as make sure that all subject lines correspond

What to Phish in a Subject? 601

to different email messages. After this trimming, all subject lines were compiled
as one text. The performed analysis included the frequency analysis of most
common words using a free online tool (OUTA) [18]. This utility allows to find
the most frequent phrases and frequencies of words in a text, and non-English
languages are also supported. OUTA counts the number of words, characters,
sentences and syllables and calculates the lexical density (e.g., the number of
lexical words/content divided by the total number of words). An extract of a
small example of an OUTA output can be seen in Fig. 3.

Fig. 3. Example of an output from the online text analyzer tool [18].

The advantage of this type of text analysis is that it is drawn from the text
itself and not from words or terms that we may think could or should appear
in phishing subject lines. This way, we are not prone to miss searching relevant
expressions or words that otherwise could have been missed.

Still, OUTA only provides the most common occurrences of phrases and
not all the possible occurrences, a further manual analysis of the rest of the
subject lines, which occur less frequently and are not contemplated by OUTA,
was processed to make sure that not other relevant data was missed. Moreover,
since OUTA processes phrases with a different number of words, many repeated
phrases can occur with the sub-parts of the same phrase. For example, a 6 word
phrase will be repeated in the 5, 4, 3 and 2 words tables of occurrences. All
repeated phrases were identified and discarded.

After obtaining the final tables of occurrences of the subject lines the authors
associated the corresponding phrases/occurrences with categories and principles
of persuasion as described in Figs. 1 and 2. To do this, the most common phrases
and words (with the highest number of occurrences) were selected and their text
verified, this time manually, to check whether they corresponded to the definition

602 A. Ferreira and R. Chilro

of any of the phishing categories and principles of persuasion. As an example,
the phrase “your account has been limited until we hear” can be easily related to
the Authority Scam Category, most probably in the Bank or Organization sub-
category (second column, first row of Fig. 1). More information to confirm which
of the two, could be easily obtained from other email fields (e.g., From field).
Further, the same phrase is related to the Authority Principle of Persuasion
(first row of Fig. 2) since it includes words to urge for an action from the receiver
in order to unlock the service provided by the responsible or authority in that
context.

Complementing this primary analysis, the content of subject lines can include
secondary principles of persuasion. For the same given example, there is also a
sense of impossibility that may cause the recipient to believe that something
s/he owned was taken without previous warning (e.g., Distraction). The same
subject line includes the principle of Reciprocation by instilling the potential
victim to reply to the email message so that the problem can be resolved.

A different analysis will verify if subject lines include words/phrases that
express targeted actions which are directed to the recipient, making him/her
feel that they are very personal (e.g., using the pronoun “you” and posses-
sive determiner “your”). These words can instill a sense of social presence [19],
heightening the realization that the message is from a reliable human being.
To clarify, the authors consider that email subject lines, independently of the
phishing category, can include targeting content. More about this in Sect. 5.

Finally, the analysis will verify if there are any trends for specific subject
lines per month and/or trimester.

4 Results

The analyzed sample included a total of 788 subject lines. The yearly distribution
of the sample is shown in Fig. 4.

Fig. 4. Sample yearly distribution, with the number of emails, per month.

What to Phish in a Subject? 603

The average number of words per email subject line is 5,4 while the average
number of characters is 37.

After processing the text using OUTA and deleting repeated lines, the most
common phrases within the analyzed subject lines are presented in Table 1. These
correspond to 33% (n = 257) of the total sample.

Table 1. Most common phrases in email subject lines of the analyzed sample. *This
row was translated from German to “Account Activation Notice”.

Email subject lines Occurrences

1. Tax refund notification 48

2. Log in to PayPal to resolve a limitation on your account 22

3. Account status update 19

4. Your account has been limited until we hear from you 19

5. We’re concerned that someone is using your account without your
knowledge

18

6. Recent activity on your account 14

7. Response required 10

8. Your Netflix account requires validation 10

9. Submit your tax refund 9

10. Your AppleID has been suspended [#981317] 9

11. Fraud alert: irregular card activity 9

12. Konto Aktivierungs-Hinweis* 9

13. Please log in to confirm your identity and update your account
information

8

14. Someone is using your account without your knowledge 8

15. Recently, there’s been activity in your account that seems unusual
compared to your normal account activities

7

16. Royal bank of scotland secure notification 7

17. Your Amazon.co.uk account 7

18. Please log in to PayPal to confirm your identity and update your
password and security questions

6

19. Halifax internet banking customer service message 6

20. Important notice/Avis important 6

21. Log in to your account as soon as possible 6

The most common single words in the total sample of the email subject lines
are: your with 383 occurrences; account with 303 occurrences; notification with
88 occurrences; tax with 81 occurrences; update with 70 occurrences; and refund
with 68 occurrences. Moreover, security and alert had 41 occurrences.

Each of the 21 most common email subject lines was associated with the cor-
responding phishing category, main principle of persuasion, secondary principles

http://amazon.co.uk/

604 A. Ferreira and R. Chilro

of persuasion (if available), the identification if the subject line includes tar-
geted, directed or personal words/expressions and the singling out of key-
words and phrases that better express the data upon which the phishers focus
their attacks (Table 2). From these 21 subject lines, 13 (62%) include targeted
words/expressions.

Table 2. Categorisation and analysis of persuasive content in the most common
email subject lines. (PC-Phishing Category; PPP-Primary Principle of Persuasion;
SPP-Secondary Principle of Persuasion; Auth-Authority; Org-Organization; Gov-
Government).

PC PPP SPP Targeted Keywords/Phrases

1 Auth-Gov Auth Distraction - Tax - refund

2 Auth-Org Auth Reciprocation +
Distraction

y Log in - limitation your account

3 Auth-Org Auth - - Account - update

4 Auth-Org Auth Reciprocation +
Distraction

y Your - account - limited until hear from
you

5 Auth-Org Auth Distraction y Concerned - your - account without
your knowledge

6 Auth-Org Auth Distraction y Activity - your - account

7 Auth-Org Auth Reciprocation Response - required

8 Auth-Org Auth Reciprocation y Your - account - requires

9 Auth-Gov Auth Commitment +
Reciprocation

y Submit - your - refund

10 Auth-Org Auth Distraction y Your - apple - suspended

11 Auth-Bank Auth Distraction - Fraud alert - card irregular activity

12 Auth-Bank Auth - - Account - activation

13 Auth-Org Auth Commitment +
Reciprocation

y Log in - confirm - your identity - update
- account

14 Auth-Org Auth Distraction y Using - your - account without your
knowledge

15 Auth-Org Auth Distraction y Activity - your account - unusual

16 Auth-Bank Auth Distraction Secure - notification - bank

17 Auth-Org Auth Distraction y Your - account

18 Auth-Org Auth Commitment +
Reciprocation

y Log in - confirm - your identity - update
- password security

19 Auth-Bank Auth - - Customer - service - banking

20 Auth-Bank Auth Distraction - Important - notice

21 Auth-Org Auth Distraction +
Reciprocation

y Log in - your - account as soon as
possible

The analysis per month was performed from April 2014 until December 2014
since the first three months of the sample (e.g., January 2014, February 2014
and March 2014) had very few emails and the last month (e.g., January 2015)

What to Phish in a Subject? 605

did not include a minimum number of common subject lines (at least 3 repeated
ones) (Fig. 4). There was no linear trend for the most common email subject
lines. Throughout the analyzed year, subject lines had an erratic behavior and
the analysis per month included very small occurrences of all subject lines. These
appear with some frequency one month and then completely disappear for the
next few. With such small number of occurrences it is not possible to show the
trends of subject lines per month or even per trimester. Only the trends for the
most common subject line (e.g., Tax Refund Notification) is presented, though
it also includes two months without any occurrence (Fig. 5).

Fig. 5. Yearly variation of the most common subject line in the sample: Tax refund
notification.

5 Discussion

According to the obtained results, the analyzed sample included, on average,
5 word long email subject lines that contained a wide range of information.
The sample shows that five subject lines are very common but there is a big
variety of lines since the most common one appears only 48 times (6%) in the
universe of 788. However, this was just a preliminary analysis as it is possible to
verify that there are similar (e.g., belong to the same phishing category and
integrate the same principles of persuasion) lines but they are written with
different words or expressions (synonyms) (ex: lines 1 and 9 or lines 5, 6, 14 and
15 of Table 1). A more detailed analysis of the other fields within the email is
required to perform an aggregation of similar subject lines and this will increase
the number of occurrences. Also, it will help verify the many variations of the
same line that are used by phishers and understand if there is any pre-defined
strategy in how they choose them.

In terms of phishing categorization, analyzed subject lines fall in only one
of the presented categories: Authority, with the sub-categories: Organization,
Government and Bank (Table 2). From these, the most frequently used is the

606 A. Ferreira and R. Chilro

Organization, which can be explained by the fact that most devastating and
largest attacks are made within major well known organizations that provide
services to millions of users [2].

Such organizations are very attractive to phishers and that is why these
mostly focus on how quickly can they obtain users’ account information. Phishers
only need to break into one of the accounts with more privileges to reach and
exploit millions of others. The use of email subject lines that implicitly exercise a
sense of authority (with the use of human’s principles of persuasion) by exerting
the fact that access to a user account is limited/blocked can certainly press their
recipients to act as fast as possible to solve this issue.

To increase their odds in Auth-Org category, phishers complement persuasion
with two more principles, e.g., the fact that a limitation or impossibility to use a
service is present can heighten the emotional response by the recipients to focus
only on what they are (supposedly) missing (e.g., the principle of distraction)
as well as urgently take action (as requested by the phisher) to make things
right again (e.g., the principle of reciprocation). The authors believe that the
more principles are present in a subject line the more persuasive it can get
as it includes various types of influence and target a more diversified number
of victims, so exploiting more types of vulnerabilities. For this reason, specific
combinations of principles of persuasion within email subject lines content can
potentially be more dangerous.

A similar discussion can be done for the Auth-Bank’s category, since subject
lines are similar, but only adapted to a specific type of organization (e.g., Banks).

Even though the most common category of phishing emails present in the
sample is Auth-Organization, the most used email subject line (e.g., Tax Refund
Notification) is from another figure of authority, the Government. This can be
explained by the fact that every working citizen has to abide and comply to
the law and pay their taxes. Emails that focus on providing extra refunds on
these matters can generate a high interest in their recipients and have, this
way, a higher persuasive power. For this reason (and besides using the authority
principle), this three word subject line expresses another principle of persuasion,
the principle of distraction. These two principles combined in just three words
is a clever and simple way for phishers to easily target billions of users all over
the world.

The most common words/expressions found in the sample make phishing
emails more targeted and personal. Words such as your and account with a
presence of 50% and 40%, respectively, in the sample, help to set a social presence
context [9,19]. Social presence is the sense of being with another person that
apparently knows you or what you do; or being co-present with others and
thereby overlooking the mediation by the technology (in this case the email
platform). Those most common two words (e.g., your and account) can, almost
by themselves, suggest the phishing category (Auth-Org or Auth-Bank) and
main principle of persuasion (Authority) comprised within a subject line. Those
two words, together with other common words in the sample such as update or
confirm can express the principle of Reciprocation; or together with the words

What to Phish in a Subject? 607

limited or suspended, express the principle of Distraction. This shows that just a
few words (a small sentence) can contain a high persuasive power in themselves.
This confirms the relevance of the presented work and the need to apply further
resources in pursuing this topic.

In addition, in terms of persuasion, all phishing emails have a content of
deception (3rd row, Fig. 2) in them, or they would not be classified as scams.
They pretend to be from reliable sources and try to reach recipients with some-
thing that may be known or familiar to them. However, since all emails have
this principle in the same implicit way, it is not useful in this study in order to
characterize and distinguish email subject lines.

Also to notice that other relevant content can be derived from email subject
lines, so opening the possibility for other types of analysis. Other clues can
be found in the text of subject lines such as ‘Re:’ or ‘Fwd:’. These can give
more information regarding the origin of the email and, together with other
characteristics, provide a more accurate perception of how the email was crafted
and with what purpose. Another important factor is the use of visual clues. The
character ‘!’ is used 56 (7%) times in the sample while subject lines written in
only capital letters appear 72 (9%) times. These features can heighten the sense
of importance and urgency (Distraction) as well as the need for Reciprocation if
that is expressed in the rest of the text, which usually is. Both features are used
in the sample most common subject line (TAX REFUND NOTIFICATION !).
This shows that, in spite of including text only, email subject lines can also cause
a visual impact and, with it, complement the use of principles of persuasion,
potentially increasing the influence these have in the recipients’ decision to open
an email.

Finally, though it was not possible to provide trends for types of email subject
lines over the analyzed period, just by looking at one of the most common sub-
ject lines (Fig. 5) is possible to have an idea of the email traffic variation. There
are periods with a lot of emails while other times they almost do not exist. Other
analysis could be done to verify if the peaks correspond, for instance, to the real
times when tax refund forms need to be submitted or refunds received by tax
payers. If so, it could be possible to automatically predict and identify specific
times for higher floods of certain types of phishing emails. Further, the integra-
tion of data from breaking news or trending headlines can also complement and
help in the identification of trends of phishing themes. Data from current head-
lines that focus on business, big organizations, major events, economic crashes
or any situation that may involve the interest of thousands to millions of users,
may be used by phishers to craft phishing emails specifically targeted to exploit
these issues, while they are trending.

Limitations - the sample size is a limitation of this work since a larger number
of emails could include a more variety of subject lines, from different sources and
complement the obtained results. However, the authors believe that this work
shows a method and a proof of concept that can be reproduced with bigger and
more varied samples. Also, related to this limitation, is the fact that it was not
possible to perform a yearly trend analysis. Still, this can be overcome in future

608 A. Ferreira and R. Chilro

work with the possibility to aggregate lines that are different (use different words
and expressions) but similar in what they transmit and ask from the recipient.

6 Conclusions and Future Work

So, What to phish in a subject? This study shows that a small sentence can go
a long way. With a simple analysis and simple tools, it is possible to extract
diversified and relevant content from only one of the phishing email fields: the
subject line. Small but targeted text sentences, as well as other characteristics
such as punctuation or capitalization, can include a high persuasive power and
can better succeed in grabbing users’ attention to influence them into opening a
phishing email.

The authors believe that it is worth focusing more resources into analyzing
subject lines content using a socio-technical approach. This can help integrating
technical means, with knowledge from human persuasion and human character-
istics that are commonly used within human interactions. This knowledge can
help getting more diverse data more quickly and provide alternative means to
distinguish directed and possibly more dangerous types of phishing.

As future work, the authors plan to collect bigger samples with more het-
erogeneous sources of phishing emails and perform a similar analysis of subject
lines to compare results for different data sources. With a wider data sample,
they plan to test if phishers use data from the daily headlines that affect a large
number of populations in order to craft more targeted phishing or if that is
not used at all. Further complementary studies are needed to verify what princi-
ples and/or combination of principles of persuasion, together with other features
present in subject lines, are more successful in grabbing users’ attention, make
them open more emails and be, potentially, more dangerous. These studies are
very difficult to accomplish due mainly to ethical and legal reasons. Succeeding
in getting authorization to perform ethical attacks without users’ consent is a
problem. Nevertheless, it is possible, with adequate means of monitoring and
auditing, which are (or should be) compulsory security requirements for any
organization, to verify when users open or reply to an email and how long they
take to do this. These log actions can then be associated to the type of email (if
it is a phishing or scam email), what principles of persuasion their subject lines
commonly use and, therefore, which can be more effective and why.

Acknowledgments. The authors would like to thank Professor Richard Clayton for
kindly supplying the sample used in this study.

This work was supported by the project “NORTE-01-0145-FEDER-000016”
(NanoSTIMA) that is financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and
through the European Regional Development Fund (ERDF).

References

1. Symantec: Internet security threat report. Technical report 21, April 2016. https://
www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

What to Phish in a Subject? 609

2. Cloudmark Security Blog: Survey reveals spear phishing as a top security concern
to enterprises (2016)

3. Verizon: 2015 data breach iinvestigation report. Technical report (2015). https://
msisac.cisecurity.org/whitepaper/documents/1.pdf

4. Balakrishnan, R., Parekh, R.: Learning to predict subject-line opens for large-scale
email marketing. In: 2014 IEEE International Conference on Big Data (Big Data),
pp. 579–584, October 2014

5. Olsen, E.: New phishing research: 5 most dangerous email subjects, top 10
hosting countries. Technical report, Websense Security Labs (2013). https://blogs.
forcepoint.com/security-labs/new-phishing-research-5-most-dangerous-email-subj
ects-top-10-hosting-countries-0

6. Hamid, A., Kim, T.-H.: Using feature selection and classification scheme for
automating phishing email detection. Stud. Inf. Control 22(1), 61–70 (2013). ISSN
1220-1766

7. Islam, R., Abawajy, J.: A multi-tier phishing detection and filtering approach. J.
Netw. Comput. Appl. 36(1), 324–335 (2013)

8. Vishwanath, A., Herath, T., Chen, R., Wang, J., Rao, H.R.: Why do people get
phished? Testing individual differences in phishing vulnerability within an inte-
grated, information processing model. Decis. Support Syst. 51(3), 576–586 (2011)

9. Harrison, B., Vishwanath, A., Jie, N., Ragov, R.: Examining the impact of pres-
ence on individual phishing victimization. In: Hawaii International Conference on
System Sciences (2015)

10. Jakobsson, M., Tsow, A., Shah, A., Blevis, E., Lim, Y.-K.: What instills trust?
A qualitative study of phishing. In: Dietrich, S., Dhamija, R. (eds.) FC 2007.
LNCS, vol. 4886, pp. 356–361. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77366-5 32

11. Sappleton, N., Lourenco, F.: Email subject lines and response rates to invitations
to participate in a web survey and a face-to-face interview: the sound of silence.
Int. J. Soc. Res. Methodol. 19(5), 611–622 (2016)

12. Jones, S., Payne, S., Hicks, B., Gopsill, J., Snider, C.: Subject lines as sensors:
co-word analysis of email to support the management of collaborative engineering
work. In: International Conference on Engineering Design 2015 (ICED 2015), July
2015

13. Jakobsson, M.: Understanding Social Engineering Based Scams. Springer, New
York (2016). https://doi.org/10.1007/978-1-4939-6457-4

14. Ferreira, A., Coventry, L., Lenzini, G.: Principles of persuasion in social engi-
neering and their use in phishing. In: Tryfonas, T., Askoxylakis, I. (eds.) HAS
2015. LNCS, vol. 9190, pp. 36–47. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-20376-8 4

15. Cialdini, R.B.: Influence: The Psychology of Persuasion (Revision Edition). Harper
Business (2007)

16. Gragg, D.: A multi-level defense against social engineering. Technical report, SANS
Institute - InfoSec Reading Room (2003)

17. Stajano, F., Wilson, P.: Understanding scam victims: seven principles for systems
security. Commun. ACM 54(3), 70–75 (2011)

18. Online-Utility.org: Text analyzer. https://www.online-utility.org/text/analyzer.jsp
19. Minsky, M.: Telepresence. OMNI Mag. 3, 45–51 (1980)

https://msisac.cisecurity.org/whitepaper/documents/1.pdf
https://msisac.cisecurity.org/whitepaper/documents/1.pdf
https://blogs.forcepoint.com/security-labs/new-phishing-research-5-most-dangerous-email-subjects-top-10-hosting-countries-0
https://blogs.forcepoint.com/security-labs/new-phishing-research-5-most-dangerous-email-subjects-top-10-hosting-countries-0
https://blogs.forcepoint.com/security-labs/new-phishing-research-5-most-dangerous-email-subjects-top-10-hosting-countries-0
https://doi.org/10.1007/978-3-540-77366-5_32
https://doi.org/10.1007/978-3-540-77366-5_32
https://doi.org/10.1007/978-1-4939-6457-4
https://doi.org/10.1007/978-3-319-20376-8_4
https://doi.org/10.1007/978-3-319-20376-8_4
https://www.online-utility.org/text/analyzer.jsp

Unpacking Spear Phishing Susceptibility

Zinaida Benenson1(B), Freya Gassmann2, and Robert Landwirth1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{zinaida.benenson,robert.landwirth}@fau.de

2 Universität des Saarlandes, Saarbrücken, Germany
f.gassmann@mx.uni-saarland.de

Abstract. We report the results of a field experiment where we sent
to over 1200 university students an email or a Facebook message with
a link to (non-existing) party pictures from a non-existing person, and
later asked them about the reasons for their link clicking behavior. We
registered a significant difference in clicking rates: 20% of email versus
42.5% of Facebook recipients clicked. The most frequently reported rea-
son for clicking was curiosity (34%), followed by the explanations that
the message fit recipient’s expectations (27%). Moreover, 16% thought
that they might know the sender. These results show that people’s deci-
sional heuristics are relatively easy to misuse in a targeted attack, making
defense especially challenging.

Keywords: Spear phishing · Facebook · Decisional heuristics

1 Introduction

Phishing attacks that persuade users to click on malicious attachments or links
have become a standard means of gaining an entry point into the systems dur-
ing the APT (Advanced Persistent Threat) attacks and data breaches, and also
have recently caused substantial damage in form of ransomware infections. The
popularity of this attack vector has inspired numerous research efforts on sus-
ceptibility of the users to different targeting techniques and on user education
[16]. Most of this research concentrated on link clicking in emails and submission
of information on phishing webpages.

However, although harvesting users’ login details via phishing websites and
spreading malware through attachments remain important attack vectors, also
just clicking on a link can result in a security incident. For example, according to
two surveys published in 2016, email links leading to infected websites accounted
for around 30% of malware infections in organizations [32,43].

Along with the phishing messages that address general Internet population,
several variants of the so-called spear phishing evolved [10,17,30]. This term
refers to phishing attacks targeted at specific individuals or groups, for example

Targeted Attacks Workshop at Financial Cryptography and Data Security 2017.
c©IFCA.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 610–627, 2017.
https://doi.org/10.1007/978-3-319-70278-0_39

Unpacking Spear Phishing Susceptibility 611

customers of a specific organization (bank, online retailer, telecommunications
company) or employees in a specific department (human resources, account-
ing, customer support). Spear phishing messages can address victims by names,
refer to their immediate interests or job tasks and appear to come from trusted
senders [15,42].

Considering previous research, two areas remain relatively unexplored.
Firstly, different media by which the phishing message could be received, such as
email, Facebook or Twitter, could make a difference in success rates. Although
phishing attacks via Facebook happen in practice [23], the first step towards
direct comparisons of success rates between email and Facebook was made in
our previous study in 2014 [4]. Secondly, researchers rarely directly asked users
to explain the reasons behind their reactions to “suspicious” messages. Although
some small-scale studies with 20 or less participants [6,13] interviewed users to
find out how they would decide in a hypothetical scenario whether an email is
legitimate or not, we are not aware of large-scale behavioral studies on this topic.
In this work, we make the following contributions:

– We show in a between subjects field experiment with 1255 users that receiving
the same message with a “suspicious” link via Facebook or via email leads to
significantly different click rates. Our study partially replicates our previous
study [4] and validates its results.

– We analyze the reasons for clicking and not clicking reported by the partici-
pants in a post-experiment survey and discuss how lessons learned from this
experiment can be applied to a broader range of scenarios involving spear
phishing attacks.

This paper is organized as follows. We present related work in the next
section, and research questions and hypotheses in Sect. 3. We then elaborate on
study method in Sect. 4. We present results of the behavioral field experiment
in Sect. 5 and results of the post-experimental survey in Sect. 6. We discuss our
findings and their implications in Sect. 7 and conclude in Sect. 8.

2 Related Work

Early works in the mid 2000’s investigated the criteria according to which users
categorize incoming emails as genuine messages or scam. Downs et al. [13] used
interviews and role plays to analyze how users classify emails. Jakobsson and
Ratkiewicz conducted so-called “context-aware” experiments in which they used
publicly available data as well as the communication patterns of Ebay users to
increase the plausibility of emails [20]. In another field experiment by Jagatic
et al. [19], sending a phishing email that spoofed a social network friend increased
the success rate from 16% (for emails from unknown senders) to 72%.

The results of these works indicate that users have difficulties in recognizing
malicious emails, and that their corresponding decision criteria do not fit the
problem. Five years later, a phishing study conducted by Blythe et al. [6] came to
the conclusion that users still have the same difficulties, as they consider sender

612 Z. Benenson et al.

address, design and language of an email as criteria for genuineness. They also
cannot interpret technical details such as the composition of links.

Recognition of phishing websites also has been difficult for non-expert users.
Their strategies, first uncovered in 2006 [12], still remained unsuccessful in
2015 [1]. Help provided by technical tools is also limited. Whereas passive
indicators are rarely noticed by the users, active warnings are more often
heeded [14,25,47]. Unfortunately, technical recognition of phishing websites,
which is a precondition for effective warnings, still remains a challenging task.
Most tools appear to have too high false positive and/or false negative detection
rates [24,48].

Considering inability of non-expert users and of technical tools to reli-
ably detect phishing attacks, education and training constitute alternative anti-
phishing measures. Prominent academic tools for supporting anti-phishing user
education and training are “Anti-Phishing Phil” [37] and “PhishGuru” [26].
In a comparative study of both systems [28], their developers found that both
measures reduced the numbers of victims. The ability of non-experts to recog-
nize (mostly non-targeted) phishing emails could be significantly increased from
guessing (approx. 50% detection rates) to detection rates of 75–85%. Detection
rates for users with initially higher expertise could be improved, using different
education techniques, to nearly 100% [9,28,39].

Interestingly, similar educational efforts in a corporate environment proved to
be unexpectedly challenging: majority of the users who clicked on a “suspicious”
link that in reality led to training materials did not read these materials [10,27].
Moreover, although training effects were evident after one week in one study [27],
these effects seemed to be lost after three months in another study [10].

Numerous studies measured factors that influence users’ ability to recognize
phishing emails, such as age, gender and technical background of the recipients,
sender’s gender and familiarity to the recipient, or design, spelling and content
of the message. These measurements were conducted via surveys (e.g., [6,36,45])
or in behavioral studies that simulated phishing attacks (e.g., [10,19,20,28,31]).
For example, emails with logos of the corresponding companies were significantly
more difficult for the users to recognize as phish [6]. Some studies did not find
any correlations between demographic factors and vulnerability for malicious
messages [12,37], whereas others found that younger people (between 18 and 25)
are more vulnerable than the middle-aged, and that women are more susceptible
than men [5,19,36]. However, older adults (especially women) seem to be more
vulnerable than younger adults [31].

Susceptibility of users to phishing attacks on various social media has been
investigated to a lesser degree than susceptibility via email. Some studies consid-
ered acceptance rates of friend requests from strangers or from spoofed acquain-
tances on Facebook and other social networks, and the amount of information
that can be gained from the users via this attack [5,38]. Another interesting
research direction created fake social network profiles and observed which kind
of friend requests they receive [18,40]. An automated infiltration attack built a
network of fake accounts that successfully befriended more than 3000 users [7].

Unpacking Spear Phishing Susceptibility 613

Also leveraging social network information for crafting spear phishing emails
has been investigated [8,19]. A highly sophisticated method of leveraging Twit-
ter for spear phishing was presented at BlackHat USA 2016 [35]. To the best
of our knowledge, our research group conducted the first study that directly
compared phishing susceptibility between email and Facebook [4].

As mentioned previously, although some small-scale studies interviewed users
to find out how they would decide whether an email is legitimate or not [6,13],
we are not aware of large-scale behavioral phishing studies that directly asked
participants for the reasons of their clicking behavior.

Two studies combined a social engineering field experiment with a subsequent
questionnaire similarly to our study. Vidas et al. [44] distributed flyers with
“suspicious” QR-codes in different locations. Users that scanned a QR-code were
taken to a website with a survey that asked them to indicate the main reason for
their scanning action. Tischer et al. [41] distributed “suspicious” USB sticks on
a university campus in a similar fashion. Users that found a stick and inserted it
into a computer were also asked for reasons of their action. We further discuss
their findings in Sect. 7. In contrast to our study, these two studies could only
ask for the reasons of unsafe behavior, as users who behaved securely could not
be reached by their surveys.

3 Research Questions and Hypotheses

The present study is a follow-up to a similar study we conducted in 2014 [4]. We
partially replicate this previous study by considering its research question and
the hypotheses H1–H5 presented below.

Research Question 1: Do people react to a “suspicious” link differently depending
on whether the link was received via Facebook or via email?

Hypotheses: The following factors will be correlated to the higher success rate
of the attack:

– H1: Message reception via Facebook,
– H2: Friend request from the sender,
– H3: Message sent from an open Facebook profile,
– H4: Female gender of the sender,
– H5: Female gender of the recipient.

These hypotheses were grounded in the previous work on demographic char-
acteristics of phishing victims [36] and on social network phishing [5]. In study [4],
none of the hypotheses could be supported. Whereas hypotheses H2-H5 did not
yield any statistically significant results, the effect of Facebook was highly signif-
icant, but reversed: 56% of email recipients, but only 38% of Facebook recipients
clicked on the “suspicious” link. Therefore, we decided to conduct a follow-up
study to validate the findings of the previous study.

Moreover, effect sizes in the statistical analysis in study [4] were small, indi-
cating that some other factors, unrelated to our hypotheses, led to clicking. This
assumption resulted in the second research question for the present study:

614 Z. Benenson et al.

Research Question 2: How do people explain their reasons for clicking or not
clicking on a link?

To answer the above research questions, we designed a field experiment and
a follow-up survey presented below.

4 Method

Win the following we present design of our study. In a nutshell, we conducted
a field experiment where we sent to the participants an email or a personal
Facebook message with a link from a non-existing person, claiming that the link
leads to the pictures from a party. When clicked, the corresponding webpage
showed the “access denied” message. We registered the click rates, and later
sent to the participants a questionnaire that asked about the reasons for their
clicking behavior.

4.1 Ethical Considerations

Jakobsson et al. [20,21] discuss the ethical issues of phishing studies in depth
and arrive at the conclusion that, under certain circumstances, it is ethically per-
missible to conduct phishing studies without participants’ consent and without
debriefing. The above position is controversial, however, as experimenting with
humans without their consent can negatively influence participants. For exam-
ple, one of the first phishing experiments at the Indiana University [19] resulted
in a serious controversy and media outcry as the students found out that they
unwittingly participated in the study [29].

Therefore, we recruited the participants for a “cover story” survey of their
Internet habits in order not to prime them about phishing. To offer an incentive
for participation, we drew ten online shopping vouchers with the value of 10
EUR each. We fully debriefed participants after their participation by sending
to them cumulative anonymized statistics about the study results and explaining
why clicking on a link might result in a security incident. We also provided a
possibility for anonymous study feedback, as well as a contact person for further
questions. Our study plan was approved by the data protection office of the
University of Erlangen-Nuremberg that verified its compliance with the German
data protection laws and ethics.

4.2 Experimental Design

For sending the messages with links we created three email accounts (a male,
a female and an anonymous account with unidentifiable gender) at a popular
German provider, and four Facebook accounts, two male and two female. We
used first names that were most popular in Germany around 1990 (the estimated
years of birth of our participants, university students in their twenties), and the
most popular German surnames, ending up with attacker names such as Sabrina
Müller and Frank Bauer.

Unpacking Spear Phishing Susceptibility 615

One male and one female Facebook account were “closed”, that is, they con-
tained only names and a symbolic male or female profile picture that Facebook
shows by default. Two other profiles were “open”, containing a profile photo,
some other pictures, postings and friends, see Fig. 1.

Fig. 1. Fake Facebook senders in the study: an open profile of Daniel Schäfer and a
closed profile of Tobias Weber.

The field experiment started in the first week of January 2014. The partic-
ipants were sent the following message with an individualized link via email or
as a personal message on Facebook. The link contained an IP address from our
university:

Hey!
The New Year’s Eve party was awesome! Here are the pictures:
http://<IP address>/photocloud/page.php?h=<participant ID>

But please don’t share them with people who have not been there!
See you next time!
<sender’s first name>

When the users clicked on the link, their participant ID (a randomly assigned
7-digit number) was recorded in the database, and the website showed an “access
denied” message.

4.3 Recruitment

The participants for the email-based study were recruited using the internal
student mailing list of our university, whereas the participants for the Facebook-
based study were recruited via the Facebook student groups of several German
universities1.
1 We could not recruit enough Facebook participants at a single university and there-

fore used several universities.

616 Z. Benenson et al.

We had a technical reason for recruiting Facebook participants via a Face-
book group. At the time of the study, there were three folders in Facebook
accounts into which new personal messages could be delivered: “Inbox”, “Oth-
ers” and “Spam”. Users are only notified about new messages that are delivered
into the Inbox. Furthermore, the users could choose between two settings called
“Basic Filtering”, which is the default setting, and “Strict Filtering” for incom-
ing messages. We found out by experiment that users that chose strict filtering
will always receive personal Facebook messages from strangers in the Others
folder. However, if people use basic filtering, a message from a stranger will be
delivered in the Inbox if the receiver and the sender are members of the same
Facebook group. Thus, in order to make our message go to Inbox for as many
participants as possible, we put our fake sender profiles into the Facebook partic-
ipant group. As several potential participants in the Facebook groups explicitly
asked us whether we want their email address as well, and commented that they
are not willing to provide it, we recruited the email participants via email.

Participants were randomly assigned to all other experimental conditions:
gender of the sender on both communication channels, friend request or no friend
request from the sender on Facebook, open or closed sender profile on Facebook.

4.4 Sample Characteristics

We recruited 280 Facebook users (80 male, 200 female) and 975 email users (265
male, 710 female). Groups have a comparable gender structure with 27% and
29% of male participants, respectively.

Table 1. Key demographic facts about the participants. σ denotes standard deviation.

All users Email group Facebook group

Recruited participants 1255 (28% male) 975 (27% male) 280 (29% male)

Survey response rate 57% (22% male) 56% (21% male) 62% (28% male)

Average age (survey) 23.1 (σ = 4.4) 23.2 (σ = 4.1) 22.9 (σ = 5.1)

% of students (survey) 93% 96% 86%

Other demographic characteristics of participants were not collected at the
time of recruitment, but later during the survey. Therefore, these characteristics
are only known for the survey participants. As presented in Table 1, response rate
for the survey was 57%. The differences in response rates between the groups
(56% for email and 62% for Facebook) are not statistically significant (Pearson’s
χ2 = 2.98, p < 0.10). Both groups have a comparable age structure (the dif-
ferences are not statistically significant) and a strong majority of students. The
number of students is significantly higher in the email group, although the effect
is relatively small (χ2(1) = 8.93, p < 0.001, Cramer’s V ϕc = 0.162).

Unpacking Spear Phishing Susceptibility 617

5 Behavioral Clicking Results: Facebook vs. Email

We extracted the behavioral clicking data from the web server logs. During this
process, page requests by bots, such as Facebook or Google, were removed. We
used the same statistical analysis method as in the previous study [4].

The descriptive results and the Pearson chi-squared (χ2) test results with
the effect size reported using Cramer’s V (ϕc) are presented in Table 2. Just
as in the previous study, hypotheses H2–H5 were not supported. However, H1
was supported. Thus, in both studies, the only significant clicking factor is the
communication channel. In our study, 20% of email versus 42.5% of Facebook
users clicked on the link. However, the channel effect in [4] was reversed: 56%
of email users versus 38% of Facebook users clicked. We discuss this difference
further in Sect. 7.

Table 2. Statistics for clicking rates. The only significant factor (p < 0.001) in the
present study is the communication channel (Facebook versus email).

Factor Clicked χ2 df p ϕc

Communication channel Email: 194/975 (20%)
FB: 119/280 (42.5%)

59.365 1 0.000 0.218

Sender’s gender (email) Female: 72/325 (22.1%)
Male: 59/326 (18.1%)
Undefined: 63/324 (19.4%)

1.742 2 0.419 0.042

Sender’s gender (Facebook) Female: 64/140 (45.7%)
Male: 55/140 (39.3%)

1.184 1 0.277 0.065

Receiver’s gender (email) Female: 152/710 (21.4%)
Male: 42/265 (15.8%)

3.742 1 0.053 0.062

Receiver’s gender (Facebook) Female: 86/200 (43.0%)
Male: 33/80 (41.2%)

0.144 1 0.704 0.023

Friend request (FR) from
sender (Facebook)

With FR: 58/120 (48.3%)
no FR: 61/160 (38.1%)

2.924 1 0.087 0.102

Profile information of the
sender (Facebook)

Closed: 64/140 (45.7%)
Open: 55/140 (39.3%)

1.184 1 0.277 0.065

6 Reported Reasons for Clicking Behavior

In the survey, 117 out of 720 participants reported that they clicked, and 502
participants reported that they did not click. These participants were asked in a
subsequent open-ended question to explain in their own words why they clicked
or did not click. The rest of the participants reported that they either could not
remember whether they clicked, or that they did not receive the message.

We analyzed participants’ explanations of their clicking behavior according
to principles of qualitative content analysis [34]. First, two researchers indepen-
dently worked through the responses, identifying relevant topics and labeling
them. These topics and labels were discussed and an initial coding frame was

618 Z. Benenson et al.

designed. This initial coding frame was used in a first trial coding, spanning over
the first one hundred responses, coded independently by both researchers.2 Dur-
ing this process, each researcher took note of occurring coding problems. Post
coding, these problems were discussed and the coding frame and its categories
were revised accordingly. The refined coding frame was used to recode the ini-
tially coded replies and to also code the next hundred replies. This process was
repeated until no more coding frame related problems arose during trial coding.
After that, all data was coded by two independent raters using the final coding
frame. To assess inter-rater reliability, Cohen’s Kappa κ was calculated [11], and
afterwards the cases with conflicting codes were discussed to produce agreement.
During this discussion, full inter-rater agreement could be reached.

Replies of clickers were coded with seven categories. Cohen’s κ for four cat-
egories indicated excellent agreement (over 0.75), while the remaining three
showed good agreement (over 0.6).3 Answers of non-clickers were coded with
20 categories. 19 categories had excellent Cohen’s κ (over 0.75), and the remain-
ing category had a good one (0.62). For interpretation purposes, we clustered
some of these categories into more general categories.

6.1 Reasons for Clicking

The reported reasons for clicking were similar for the email and the Facebook
groups (Table 3). By far the most frequent reason was Curiosity. These partici-
pants explained that they knew that the pictures cannot be for them, but were
interested in the supposedly funny or private content.

Table 3. Categories for the clicking reasons (117 answers). Cohen’s Kappa κ > 0.75
indicates excellent inter-rater agreement, κ > 0.6 means good agreement. Some partic-
ipants reported more than one category.

Category N % κ Explanation

Curiosity 40 34.2 0.91 Curios about the pictures, interested to see their
content

Context 32 27.4 0.82 Reception of the message fits the situation of the
New Year’s Eve celebration

Investigation 21 17.9 0.84 Wish to find out more about the situation that caused
this message

Known sender 19 16.2 0.62 Certainty or assumption that one knows the sender

Technical context 13 11.1 0.9 Technical features (operating system, browser,
antivirus, university’s network) will thwart threats

Fear 8 6.8 0.92 Fear that a stranger may have pictures of the receiver

Automatic 4 3.4 0.71 Clicked without thinking, impulsively

2 As the first question elicited only 117 responses, all these responses were processed
during each coding step.

3 We follow the interpretation of Cohen’s Kappa by Banerjee et al. [3].

Unpacking Spear Phishing Susceptibility 619

The second place was taken by the explanations that the message fits the
Context of the New Year’s Eve celebration, for example P151: “I thought these
were the pictures from the company’s celebration, and all of us have been waiting
for them.” P483 explained: “I did not know many people from the New Year
[. . .] and I thought it was one of them”.

Some participants clicked in the course of an Investigation, as they wanted
to find out more about the situation, and maybe to correct the “mistake”: “I
wanted to see to whom the message was actually addressed and forward it if
possible” (P16). Users also thought that the message is from a Known sender,
so P8 explained: “I thought the message was from a friend whose name is also
Sabrina by chance”. This indicates that choosing most popular German names
was a good strategy for targeting. Interestingly, two users explained that they
thought it was some friend who used a pseudonymous account.

Participants also expressed trust into some technical measures, or in the
ability of the university to protect them, so P711: “I have never received spam
at the university email address before”, or P461: “I knew that my Kaspersky
will protect me”. P490 considered the combination of Mac OS and Firefox “safe
enough” for clicking. Four participants stated that as the IP address belonged
to the university, they considered the link to be safe.

Eight participants said that they were anxious that a stranger might actually
have pictures of them (Fear category), so P32: “Although I felt unsafe, my fear
that a stranger might have my pictures was very strong. There are so many
possibilities nowadays to make photos that one never knows who might have
made them, and under which circumstances”.

Automatic reaction was also reported: “I first clicked on the link and then it
came to me that no person with this name was actually present” (P33).

6.2 Reasons for Not Clicking

The most prominent reason for not clicking was the Unknown sender name
(Table 4). Although unknown sender name is an important indicator of scam
messages, only three users explicitly commented that one cannot fully rely on
it, as dangerous messages can also arrive from known senders.

Many participants indicated that they suspected the link to contain mal-
ware or be fraudulent without explaining how they arrived at this conclusion
(Suspicion of Fraud category). It seems that they relied on their intuition: “I
thought is was a virus” (P137), “Might have been a ‘spy’ link” (P196), “I knew
immediately that this was spam” (P385).

Some people reasoned that the context of the message reception did not
fit. For example, Situation context was an important indicator, where users
explained that no pictures were made at their party, or that they spent the
New Year’s Eve alone. Unfitting Life context means that there are no people or
circumstances in the person’s life that would cause such a message to be sent:
“My friends would not contact me in this way” (P36), “I do not receive this kind
of mails” (P238). Some people also remarked that they never share pictures via
email (or via Facebook), or that they do not use this particular email address

620 Z. Benenson et al.

Table 4. Categories for the reasons not to click (502 answers).

Category N % κ Explanation

Unknown sender 254 50.6 0.90 Sender of the message is unknown

Suspicion of Frauda 250 49.8 0.93 Assumption that the message is fraudulent,

phishing, might contain a virus

Situation contexta 195 38.8 0.96 Reception of the message does not fit the situation
of the New Year’s Eve celebration

Life contexta 58 11.6 0.75 There are no circumstances in the life of the
recipient that would cause such a message

Rule of conduct 47 9.4 0.91 A behavioral rule prohibits clicking on links in such
messages

Privacy 28 5.6 0.93 Private message sent to a wrong person

Message contexta 27 5.4 0.87 Wrong communication channel or email address for
a message like this

Message forma 25 5.0 0.91 Anonymous message, not addressed by name

Link form 20 4 0.93 Link looks suspicious

Bad experience 11 2.2 0.8 Unpleasant experience in a similar situation
aIndicates a merged category. Some participants reported more than one category.

for communication with their friends (category Message context), or that the
message did not address them by name, or was “anonymous” (Message form).

Almost 10% of users said that they acted according to a specific Rule of
conduct, for example they never open emails from unknown senders, or never
click on “such” links. Some users mentioned the “strange” link (it contained a
bare IP address, Link form category), or that they already had an unpleasant
experience with clicking on a link (e.g., the link led to a porn site), or caught a
virus after clicking on a link in a similar situation (Bad experience).

Respecting Privacy of other people was stated as a reason by 5.6% of users,
for example P708 said: “I do not look up a private message that was obviously
not addressed to me”. This reason can be considered as an antipode to the most
frequently stated reason for clicking (curiosity).

7 Discussion

Although this study has some limitations, we think that useful preliminary con-
clusions can be drawn from our study and from its comparison to study [4].
Especially the highly significant difference between the communication channels
and the reasons for clicking provide important insight into targeting strategies,
as we discuss in the following.

7.1 Limitations

Findings of this study have several limitations. Thus, we did not assign the com-
munication channel (Facebook or email) randomly to participants, and moreover,

Unpacking Spear Phishing Susceptibility 621

email and Facebook groups were recruited at different universities. We also had
different sample sizes for email (975) and for Facebook (280). Both user groups
are skewed towards female participants. However, this bias might not be impor-
tant as recipients’ sex did not play any role in our and in the previous study [4].

Furthermore, reported reasons for actions do not always correspond to the
real reasons, as people make many decisions based on intuition or subcon-
sciously [22,46]. Thus, although we now know more about how people reason
about targeted attacks, we might still not be able to predict their behavior. This
should be verified in future studies.

7.2 Facebook versus Email

In the present study, 42.5% of Facebook users, but 20% of email users clicked
on the link. We hoped to find the reasons for this statistically highly significant
difference in the reasons for clicking and not clicking provided by the users.
Surprisingly, reasons did not differ statistically across the platforms, although
a small amount of non-clickers commented that they did not expect this kind
of message to arrive via email, and a small amount of clickers commented that
receiving pictures via Facebook seemed plausible to them.

Several factors might be responsible for susceptibility of Facebook users.
Firstly, social networks such as Facebook or LinkedIn might be considered trust-
worthy by users, as Kirlappos and Sasse indicate [25]. Secondly, the special
characteristics of the Facebook platform, such as informal communication and
easy ways to find the profile of a recent acquaintance, might have made our
message especially plausible there. Thirdly, handling the messages on Facebook
might be different from handling the emails, such that the users scan through
their many notifications very quickly, without paying attention to what they are
actually doing.

7.3 How Powerful is Personalization?

Our previous study [4] provided inspiration for the present study, although we did
not strictly replicate it. As mentioned above, 56% of email participants clicked in
study [4], whereas only 20% of email participants clicked in our study. Clicking
rates on Facebook were comparable: 38% in [4] and 42.5% in the present study.
Due to differences in experimental setup, direct statistical comparison of the two
studies is problematic, and therefore we consider mainly qualitative arguments
in the following.

According to Table 5, Facebook groups in both studies have comparable sizes,
but the email group in our study has significantly more participants. The par-
ticipants in both studies have comparable age and occupation demographics,
but study [4] has significantly more male participants. However, in both stud-
ies, participants’ sex did not correlate to their clicking probability, and therefore,
gender differences of the samples are unlikely to have influenced the differences in
results. Messages sent on both studies were similar, but not identical. Especially,
participants in study [4] were addressed by first name.

622 Z. Benenson et al.

Table 5. Comparison of key features between study [4] and our study.

Study [4] Our study

Time frame Summer 2013 Winter 2013/14

Participants 398 (61% male)
240 Facebook/158 email

1255 (28 % male)
280 Facebook/975 email

Average age 22 (σ = 4.5) 23 (σ = 4.4)

% of students 96% 93%

Message Pictures from party last week Pictures from New Year’s Eve
party (sent on January 7th)

Addressing Hey <receiver’s first name> Hey!

Clicking rates 38% Facebook/56% email 42.5% Facebook/20% email

We hypothesize that addressing by first name plays the most important role
in the differences between two studies in the email clicking rates. Indeed, for
many years, the traditional security advice to consumers had been that legitimate
emails would address them by names, but the scams would not. Recently, this
advice has changed. For example, at the time of writing, the Anti-Phishing
Working Group (APWG) states: “Typically, phisher emails are not personalized,
but they can be” [2]. The 56% clicking rate in study [4] as opposed to 20% clicking
rate in the present study, although the messages were fairly similar, indicates
that personalization is especially important for targeted email-based attacks. On
Facebook, however, addressing by first name does not seem to play an important
role. This could be connected to the difference in user interface, as names of
recipients are clearly visible for the senders, and therefore are not perceived by
the recipients as something that a stranger cannot find out. Moreover, receiving
an informally addressed message via Facebook might be more common than
receiving such a message via email. We note, however, that these assumptions
are not supported by evidence so far and need further investigation.

7.4 Lessons About Targeting and Spear Phishing Susceptibility

Curiosity seems to be a very powerful driver of risky Internet behavior. This
was also noticed in the previous studies: 64% of survey respondents in study
by Vidas et al. [44] scanned “suspicious” QR codes out of curiosity, and 18% of
survey respondents in the study by Tischer et al. [41] plugged in a “suspicious”
USB stick for this reason.4 At the same time, a small amount of participants in
our study was protected from the would-be danger by their lack of curiosity, or
the wish to respect the privacy of the others.

Also the fitting the content and the context of the message to the current life
situation of a person plays an important role. Many people did not click because

4 Both of these studies could not reach participants that behaved in a safe manner,
as they did not have any opportunity to provide them with a survey.

Unpacking Spear Phishing Susceptibility 623

they learned to avoid messages from unknown senders, or with an unexpected
content, as it might give them an unpleasant experience, such as a virus. For
some participants, however, the same heuristic (“does this message fit my current
situation?”) led to the clicks, as they thought that the message might be from a
person from their New Year’s Eve party, or that they might know the sender.

7.5 Defense Against Spear Phishing

Defense against spear phishing and other targeted attacks seems to be especially
challenging because of the ambiguity of the situations that they create, making
the context and content of the message look plausible and legitimate. Because
of this ambiguity, asking people to be permanently vigilant when they process
their messages might have unintended negative consequences.

For example, if a person’s job requires processing a lot of invoices sent via
email, they might click on a ransomware-infected file called “invoice”, as this fits
their job expectations. And if they are taught to be “careful” with invoices, they
might start missing or delaying the real ones, which stands in a direct conflict
with the requirements of their job. Under these circumstances, the employees
are likely to disregard this kind of user education attempts, because the only
way for them to get their job done in time is to process their emails as quickly
as possible, without “wasting” time with extra security checks.

In general, being suspicious of every message that was maybe sent in a hurry
with typos from a mobile device, or is otherwise a bit strange, will deprive people
from (usually reliable) decision heuristics such as “this message fits my current
expectations” or “I know the sender”, making them less efficient in their jobs,
especially if these jobs require processing of a high number of messages.

In security practice, sending fake phishing emails to employees has become a
popular method of assessing their security awareness, with numerous commercial
tools designed for this purpose. However, trying to involve users into perimeter
defense by means of catching them on dangerous actions, such as link clicking in
fake phishing emails, might have unintended negative consequences. For example,
employees of an organization may become disgruntled and unmotivated if they
find out that they are being attacked by their own security staff [33], or start
blaming themselves for inability to make a correct decision in an ambiguous
and difficult situation [10]. Moreover, sending employees messages from spoofed
colleagues, friends and bosses, although might raise their security awareness,
may also seriously hamper their work effectiveness, and also social relationships
within the organization, promoting the atmosphere of distrust.

We note, however, that although our study led us to hypothesize about neg-
ative consequences of the above human-centered defenses against spear phishing
attacks, we do not have enough evidence to support these hypotheses. Thus,
one of the most important directions for future research is development of study
designs and measurement procedures for assessing not only effectiveness of anti-
phishing measures, but also their impact on the work and life environment of
people, and on their psychological well-being.

624 Z. Benenson et al.

8 Conclusion

We conducted a study consisting of a link clicking field experiment on Facebook
and via email, and a follow-up survey that investigated the reasons for clicking
behavior. An important future work question is whether awareness of danger
(“links can lead to infected sites”) helps, and to what extent can people be
expected to act rationally when they feel curiosity, or any other strong emotion.
We think that expecting the full impulse control from the users is unrealistic.

This particular study revealed susceptibilities to scam in some people, and
the reasons behind their susceptibility, but we think that the lesson learned is
broader. By a careful design and timing of a message, it should be possible to
make virtually any person click on a link, as any person will be curious about
something, or interested in some topic, or find themselves in a life situation that
fits the message’s content and context. For example, the message might come
from a known sender, or refer to a previous experience in a plausible way. In
the long run, relying on technical in-depth defense may be a better solution,
and more research and evidence is needed to determine which level of defense
non-expert users are able to achieve through security education and training.

Acknowledgments. We thank Nadina Hintz, Andreas Luder and Gaston Pugliese
for their invaluable help in data gathering and analysis. Zinaida Benenson and Robert
Landwirth were supported by the Bavarian State Ministry of Education, Science and
the Arts within the scope of research association FORSEC (www.bayforsec.de).

References

1. Alsharnouby, M., Alaca, F., Chiasson, S.: Why phishing still works: user strategies
for combating phishing attacks. Int. J. Hum. Comput. Stud. 82, 69–82 (2015)

2. Anti-Phishing Working Group (APWG): How to avoid phishing scams. http://
www.apwg.org/resources/overview/avoid-phishing-scams

3. Banerjee, M., Capozzoli, M., McSweeney, L., Sinha, D.: Beyond kappa: a review
of interrater agreement measures. Can. J. Stat. 27(1), 3–23 (1999)

4. Benenson, Z., Girard, A., Hintz, N., Luder, A.: Susceptibility to URL-based Inter-
net attacks: Facebook vs. email. In: 6th IEEE International Workshop on SEcurity
and SOCial Networking (SESOC), pp. 604–609. IEEE (2014)

5. Bilge, L., Strufe, T., Balzarotti, D., Kirda, E.: All your contacts are belong to us:
automated identity theft attacks an online social networks. In: 18th International
Conference on World Wide Web (2009)

6. Blythe, M., Petrie, H., Clark, J.A.: F for fake: four studies on how we fall for
Phish. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 2011, pp. 3469–3478 (2011)

7. Boshmaf, Y., Muslukhov, I., Beznosov, K., Ripeanu, M.: The socialbot network:
when bots socialize for fame and money. In: Proceedings of the 27th Annual Com-
puter Security Applications Conference, pp. 93–102. ACM (2011)

8. Brown, G., Howe, T., Ihbe, M., Prakash, A., Borders, K.: Social networks and
context-aware spam. In: Proceedings of the 2008 ACM Conference on Computer
Supported Cooperative Work, pp. 403–412. ACM (2008)

www.bayforsec.de
http://www.apwg.org/resources/overview/avoid-phishing-scams
http://www.apwg.org/resources/overview/avoid-phishing-scams

Unpacking Spear Phishing Susceptibility 625

9. Canova, G., Volkamer, M., Bergmann, C., Borza, R., Reinheimer, B., Stock-
hardt, S., Tenberg, R.: Learn to spot phishing URLs with the Android NoPhish
App. In: Bishop, M., Miloslavskaya, N., Theocharidou, M. (eds.) WISE 2015.
IAICT, vol. 453, pp. 87–100. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18500-2 8

10. Caputo, D.D., Pfleeger, S.L., Freeman, J.D., Johnson, M.E.: Going spear phishing:
exploring embedded training and awareness. IEEE Secur. Priv. 12(1), 28–38 (2014)

11. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 36–47 (1960)

12. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp.
581–590 (2006)

13. Downs, J.S., Holbrook, M.B., Cranor, L.F.: Decision strategies and susceptibility
to phishing. In: Proceedings of the Second Symposium on Usable Privacy and
Security, SOUPS 2006, pp. 79–90 (2006)

14. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: an empirical study of
the effectiveness of web browser phishing warnings. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI 2008, pp. 1065–1074
(2008)

15. Goodin, D.: Crypto ransomware targets called by name in spear-phishing blast.
Ars Technica, 4 April 2016

16. Hong, J.: The state of phishing attacks. Commun. ACM 55(1), 74–81 (2012)
17. Infosec Institute: Spear Phishing: Real Life Examples. http://resources.

infosecinstitute.com/spear-phishing-real-life-examples. Accessed Mar 2017
18. Irani, D., Balduzzi, M., Balzarotti, D., Kirda, E., Pu, C.: Reverse social engineer-

ing attacks in online social networks. In: Holz, T., Bos, H. (eds.) DIMVA 2011.
LNCS, vol. 6739, pp. 55–74. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22424-9 4

19. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
mun. ACM 50(10), 94–100 (2007)

20. Jakobsson, M., Ratkiewicz, J.: Designing ethical phishing experiments: a study of
(ROT13) rOnl query features. In: 15th International Conference on World Wide
Web (2006)

21. Jakobsson, M., Johnson, N., Finn, P.: Why and how to perform fraud experiments.
IEEE Secur. Priv. 6(2), 66–68 (2008)

22. Kahneman, D.: Thinking, Fast and Slow. Macmillan, Basingstoke (2011)
23. Kaspersky Lab Exposes Facebook Phishing Attacks: 10,000 Victims in

Two Days June 2016. http://www.kaspersky.com/about/news/virus/2016/
10000-Victims-in-Two-Days

24. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. IEEE
Commun. Surv. Tutor. 15(4), 2091–2121 (2013)

25. Kirlappos, I., Sasse, M.A.: Security education against phishing: a modest proposal
for a major rethink. IEEE Secur. Priv. Mag. 10(2), 24–32 (2012)

26. Kumaraguru, P., Cranshaw, J., Acquisti, A., Cranor, L.F., Hong, J., Blair, M.A.,
Pham, T.: School of Phish: a real-world evaluation of anti-phishing training. In:
Symposium On Usable Privacy and Security (SOUPS) (2009)

27. Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L., Hong, J.: Lessons from a real
world evaluation of anti-phishing training. Anti-Phishing Working Group (2008)

28. Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L.F., Hong, J.: Teaching Johnny
not to fall for phish. ACM Trans. Internet Technol. (TOIT) 10(2), 7 (2010)

https://doi.org/10.1007/978-3-319-18500-2_8
https://doi.org/10.1007/978-3-319-18500-2_8
http://resources.infosecinstitute.com/spear-phishing-real-life-examples
http://resources.infosecinstitute.com/spear-phishing-real-life-examples
https://doi.org/10.1007/978-3-642-22424-9_4
https://doi.org/10.1007/978-3-642-22424-9_4
http://www.kaspersky.com/about/news/virus/2016/10000-Victims-in-Two-Days
http://www.kaspersky.com/about/news/virus/2016/10000-Victims-in-Two-Days

626 Z. Benenson et al.

29. Lenz, R.: In Indiana phishing study, students take the bait. USA Today,
23 July 2007. http://usatoday30.usatoday.com/tech/news/computersecurity/
2007-07-23-phishing-study N.htm

30. Northcutt, S.: Spear Phishing (Methods of Attack Series). https://www.sans.edu/
cyber-research/security-laboratory/article/spear-phish. Accessed Mar 2017

31. Oliveira, D., Rocha, H., Yang, H., Ellis, D., Dommaraju, S., Muradoglu, M., Weir,
D., Soliman, A., Lin, T., Ebner, N.: Dissecting spear phishing emails for older vs
young adults: on the interplay of weapons of influence and life domains in predicting
susceptibility to phishing. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 2017 (2017)

32. Osterman Research Survey: Understanding the Depth of the Global Ransomware
Problem (2016)

33. Sasse, A.: Scaring and bullying people into security won’t work. IEEE Secur. Priv.
13(3), 80–83 (2015)

34. Schreier, M.: Qualitative Content Analysis in Practice. Sage Publications, Thou-
sand Oaks (2012)

35. Seymour, J., Tully, P.: Weaponizing Data Science for Social Engineering: Auto-
mated E2E Spear Phishing on Twitter. Black Hat USA (2016)

36. Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L.F., Downs, J.: Who falls
for phish?: a demographic analysis of phishing susceptibility and effectiveness of
interventions. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 373–382. ACM (2010)

37. Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J.,
Nunge, E.: Anti-phishing phil: the design and evaluation of a game that teaches
people not to fall for phish. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security, SOUPS 2007, pp. 88–99 (2007)

38. Sophos: Facebook users at risk of “rubber duck” identity attack. https://www.
sophos.com/en-us/press-office/press-releases/2009/12/facebook.aspx

39. Stockhardt, S., Reinheimer, B., Volkamer, M., Mayer, P., Kunz, A., Rack, P.,
Lehmann, D.: Teaching phishing-security: which way is best? In: Hoepman, J.-H.,
Katzenbeisser, S. (eds.) SEC 2016. IAICT, vol. 471, pp. 135–149. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33630-5 10

40. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In:
26th Annual Computer Security Applications Conference (2010)

41. Tischer, M., Durumeric, Z., Foster, S., Duan, S., Mori, A., Bursztein, E., Bailey,
M.: Users really do plug in USB drives they find. In: 2016 IEEE Symposium on
Security and Privacy (SP), pp. 306–319. IEEE (2016)

42. Vaas, L.: Beware the latest tax-season spear-phishing scam. https://nakedsecurity.
sophos.com/2017/02/08/beware-the-latest-tax-season-spear-phishing-scam.
Accessed Mar 2017

43. Verizon 2016 Data Breach Investigations Report (2016)
44. Vidas, T., Owusu, E., Wang, S., Zeng, C., Cranor, L.F., Christin, N.: QRishing: the

susceptibility of smartphone users to QR code phishing attacks. In: Adams, A.A.,
Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 52–69. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41320-9 4

45. Vishwanath, A., Herath, T., Chen, R., Wang, J., Rao, H.R.: Why do people get
phished? Testing individual differences in phishing vulnerability within an inte-
grated, information processing model. Decis. Support Syst. 51(3), 576–586 (2011)

46. Wilson, T.D.: Strangers to Ourselves. Harvard University Press, Cambridge (2004)

http://usatoday30.usatoday.com/tech/news/computersecurity/2007-07-23-phishing-study_N.htm
http://usatoday30.usatoday.com/tech/news/computersecurity/2007-07-23-phishing-study_N.htm
https://www.sans.edu/cyber-research/security-laboratory/article/spear-phish
https://www.sans.edu/cyber-research/security-laboratory/article/spear-phish
https://www.sophos.com/en-us/press-office/press-releases/2009/12/facebook.aspx
https://www.sophos.com/en-us/press-office/press-releases/2009/12/facebook.aspx
https://doi.org/10.1007/978-3-319-33630-5_10
https://nakedsecurity.sophos.com/2017/02/08/beware-the-latest-tax-season-spear-phishing-scam
https://nakedsecurity.sophos.com/2017/02/08/beware-the-latest-tax-season-spear-phishing-scam
https://doi.org/10.1007/978-3-642-41320-9_4

Unpacking Spear Phishing Susceptibility 627

47. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phish-
ing attacks? In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 601–610. ACM (2006)

48. Zhang, Y., Egelman, S., Cranor, L., Hong, J.: Phinding phish: evaluating anti-
phishing tools. In: Proceedings of the 14th Annual Network and Distributed System
Security Symposium (NDSS) (2007)

Poster Papers

Scripting Smart Contracts for Distributed
Ledger Technology

Pablo Lamela Seijas1(B), Simon Thompson1, and Darryl McAdams2

1 University of Kent, Canterbury, UK
{pl240,S.J.Thompson}@kent.ac.uk

2 San Francisco, CA, USA
darryl.mcadams@iohk.io

Distributed Ledger Technology (DLT) offers a way of maintaining a synchro-
nised log in a non-centralised, distributed way; notably, this allows the imple-
mentation of cryptocurrencies and, more recently self-enforcing smart contracts.
Bitcoin is the first widely-used implementation of a cryptocurrency but it has
very limited scripting capabilities in practice. Ethereum allows smart contracts
to contain arbitrary time-bounded turing-computable code that is executed and
validated in a virtual machine. Nxt moves scriptability to clients and provides a
delimited functionality through an API.

Because smart contracts can control money and potentially other assets, it
is crucial that they behave as expected, not only in normal conditions, but also
when attacked by malicious agents. In particular, contracts must be reentrant
if they call unknown code, they must gracefully handle all kinds of execeptions,
they must not expect agents to collaborate (in some cases by including rewards
and penalties to deter attacks).

Designers of smart-contract languages and cryptocurrencies may mitigate
the likelihood of errors being made by their users by carefully designing them
to be intuitive, explicit, and by providing well-tested artefacts. Some examples
of effort in this direction include: the use of zero-knowledge proofs for providing
anonymity (see Zerocash); the use of SNARKS to hide private inputs (Hawk
allows to design contracts by separating private and public parts); and allowing
the use and enforcement of higher-level specifications, like the use of polymorphic
types, combinators, finite-state machines (FSMs), or domain specific languages
(DSLs). Additionally, there are many open challenges that are specific to DLT
systems, like the design of ways for amending the rules (see Tezos), the unpre-
dictability of the initial execution state derived from the decentralisation, the
need for a safe source of randomness, the cost of validating the contracts (which
could be mitigated through the use of verifiable computation), the amount of
work required by proof-of-work (see proof-of-stake), and the need to preserve the
delicate equilibrium of incentives that keeps block-chains secure.

In the full paper1, we provide references for all the work mentioned here,
we survey these and other representative examples of the advanced use of

1 Pablo Lamela Seijas, Simon Thompson, and Darryl McAdams. Scripting smart con-
tracts for distributed ledger technology. 2016. URL: https://eprint.iacr.org/2016/
1156.pdf.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 631–632, 2017.
https://doi.org/10.1007/978-3-319-70278-0

https://eprint.iacr.org/2016/1156.pdf
https://eprint.iacr.org/2016/1156.pdf

632 P.L. Seijas et al.

cryptocurrencies and blockchains beyond their basic usage as a payment method,
and we analyse existing scripting solutions, their strengths and weaknesses, and
some existing solutions for known problems with them. Through our work, we
have seen that, while there have been many diverse efforts in different directions,
there are still many open questions, no universal solutions, and lots of room for
future research and experimentation.

ZeroTrade: Privacy Respecting Assets Trading
System Based on Public Ledger

Lei Xu(B), Lin Chen, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi

University of Houston, Houston, TX 77004, USA

Motivation. Public ledger is a decentralized book keeping technology and is
believed to have the potential to revolutionize many areas. Besides handling
crypto-currency, public ledger can be used to tokenize arbitrary assets, and then
support trading of these asset tokens in a decentralized manner. With public
ledger based token trading system, users do not necessarily convert their assets
to currencies, but can exchange assets directly. It also avoids unnecessary trans-
portation as the asset only needs to be physically transferred to its last owner.
Furthermore, utilization of the public ledger does not require that users have to
trust each other in order to trade tokens safely. However, using decentralized pub-
lic ledger for trading asset tokens raises serious privacy concerns. Because token
ownership information is stored on the public ledger and disclosed to the public,
anyone can uncover users trading activities and history. For a token based asset
trading platform, all tokens are unique and transactions are usually two-ways
or multi-ways. In response to these challenges, we propose ZeroTrade, a privacy
respecting heterogeneous assets trading system that leverages various cryptog-
raphy tools to conceal the exchange trace of asset tokens and takes advantage
of public ledger for guaranteeing fairness of asset token exchange.

Solution. ZeroTrade involves trusted hubs that are responsible for converting
assets to tokens and back, where trusted means that hubs will generate/accept
valid tokens, and uses the public ledger to record all token exchange information.
When two or more users want to exchange tokens with each other, each user picks
an agent for the exchange. Asset tokens are first poured into a pool and users
leverage agents to obliviously retrieve tokens from the pool in order to finish
the exchange. The oblivious retrieving process cut off the connection between
the original user and the agent. Therefore, one cannot determine the relationship
between the original users who want to exchange tokens by observing information
recorded on the public ledger.

To implement the design, ZeroTrade leverages different cryptography tools
including zero-knowledge proof and various encryption techniques. Considering
various demands in token trade, ZeroTrade also supports operations like partial
token trade and revocation. A preliminary evaluation of the performance shows
that ZeroTrade only adds limited burden on top of the public ledger. More
detailed information can be found in the full version of the paper.

Conclusion. ZeroTrade provides a privacy friendly platform for asset trading
based on public ledger. For the next step, we plan to implement a fully functional
prototype and considering more complex token trading scenarios.

c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, p. 633, 2017.
https://doi.org/10.1007/978-3-319-70278-0

Author Index

Abramova, Svetlana 280
Adham, Moe 553
Al Khalil, Firas 510
Alderman, James 35, 75

Bartoletti, Massimo 218, 231, 494, 568
Benenson, Zinaida 610
Bentov, Iddo 199
Biryukov, Alex 453
Böhme, Rainer 280
Borisov, Nikita 536
Butler, Tom 510

Carbon, Alexandre 91
Cathébras, Joël 91
Ceci, Marcello 510
Chen, Hao 3
Chen, Lin 468, 633
Cheon, Jung Hee 53
Chilro, Rui 597
Clark, Jeremy 434, 553
Curtis, Benjamin R. 75

Daian, Philip 182
Desmedt, Yvo 107
Dubuis, Eric 370

Eskandari, Shayan 553
Eyal, Ittay 182

Farràs, Oriol 75
Ferreira, Ana 597

Gao, Zhimin 468, 633
Gassmann, Freya 610
Gjøsteen, Kristian 404

Haenni, Rolf 370
Hartenstein, Hannes 155
Hirai, Yoichi 520
Hobor, Aquinas 478

Iovino, Vincenzo 107, 385

Jeong, Jinhyuck 53
Joslyn, Cliff A. 248
Juels, Ari 182

Katz, Jonathan 264
Khovratovich, Dmitry 453
Koenig, Reto 370
Kothapalli, Abhiram 536
Kreyling, Sean 248
Kulyk, Oksana 419

Laine, Kim 3
Lande, Stefano 568
Landwirth, Robert 610
Lee, Joohee 53
Lee, Keewoo 53
Liao, Kevin 264
Locher, Philipp 370
Lu, Yang 468, 633
Luu, Loi 298

Malavolta, Giulio 170
Marky, Karola 419
Martin, Keith M. 35, 75
McAdams Darryl 631
Memon, Nasir 587
Meyer, Ulrike 19
Miller, Andrew 536
Mizrahi, Alex 199
Moreno-Sanchez, Pedro 133

Neudecker, Till 155
Neumann, Stephan 419
Nguyen, Toan 587
Nowak, Kathleen 248

O’Brien, Leona 510
O’Connor, Russell 191

Pereira, Olivier 353
Persiano, Giuseppe 107
Perumal, Zara 317
Piekarska, Marta 191

Player, Rachel 3
Podda, Alessandro Sebastian 568
Pompianu, Livio 218, 494

Ramanujam, R. 337
Ranshous, Stephen 248
Renwick, Sarah Louise 35
Rial, Alfredo 385
Ribes-González, Jordi 75
Rivest, Ronald L. 317, 353
Rønne, Peter B. 385
Rosenfeld, Meni 199
Ruffing, Tim 133, 170
Ryan, Peter Y.A. 385

Samatova, Nagiza F. 248
Schöttle, Pascal 280
Seijas, Pablo Lamela 631
Sergey, Ilya 478
Shah, Nolan 468, 633
Shi, Weidong 468, 633
Siadati, Hossein 587
Sirdey, Renaud 91
Sirer, Emin Gün 182
Stark, Philip B. 317

Strand, Martin 404
Sundararajan, Vaishnavi 337
Sundaresan, Vignesh 553
Suresh, S.P. 337

Teutsch, Jason 298
Thompson, Simon 631
Tikhomirov, Sergei 453

Velner, Yaron 298
Ventroux, Nicolas 91
Visconti, Ivan 107
Volkamer, Melanie 419

West, Curtis L. 248
Wetzel, Susanne 19
Winters, Samuel 248
Wüller, Stefan 19

Xu, Lei 468, 633

Yang, Nan 434

Zunino, Roberto 231

636 Author Index

	Preface WAHC 2017: 5th Workshop on Encrypted Computing and Applied Homomorphic Cryptography
	Sec1

	WAHC 2017 Program Committee
	BITCOIN 2017: 4th Workshop on Bitcoin and Blockchain Research
	VOTING 2017: Second Workshop on Advances in Secure Electronic Voting Schemes
	WTSC 2017: First Workshop on Trusted Smart Contracts
	TA 2017: First Workshop on Targeted Attacks
	Blockchain and Smart Contract Mechanism Design Challenges (WTSC17 Keynote Talk)
	Contents
	Encrypted Computing and Applied Homomorphic Cryptography
	Simple Encrypted Arithmetic Library - SEAL v2.1
	1 Introduction
	1.1 Related Work

	2 Notation
	3 Implementing the Fan-Vercauteren Scheme
	3.1 Plaintext Space and Encodings
	3.2 Ciphertext Space
	3.3 Encryption and Decryption
	3.4 Addition
	3.5 Multiplication
	3.6 Relinearization
	3.7 Other Homomorphic Operations
	3.8 Key Distribution

	4 Encryption Parameters
	4.1 Default Values
	4.2 Polynomial Modulus
	4.3 Coefficient Modulus and Plaintext Modulus
	4.4 Automatic Parameter Selection

	5 Encoding
	5.1 Integer Encoder
	5.2 Fractional Encoder
	5.3 CRT Batching

	6 Inherent Noise
	6.1 Overview of Noise Growth
	6.2 Maximal Levels for Default Parameters

	7 Security of FV
	7.1 Ring-Learning with Errors
	7.2 Security of the Default Parameters in SEAL v2.1

	References

	Towards Privacy-Preserving Multi-party Bartering
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Threshold Paillier
	3.2 Secure Multi-party Computation

	4 Overview
	4.1 Bartering Related Terminology
	4.2 Bartering Process and Intuition

	5 Bartering Process
	5.1 Building Blocks
	5.2 Protocol for Selecting an Actual Trade Partner Constellation
	5.3 Negotiation of Actual Quantities
	5.4 Optimization of ATPC-Selection

	References

	Multi-level Access in Searchable Symmetric Encryption
	1 Introduction
	2 Background
	3 Multi-level Access in Searchable Symmetric Encrytion
	3.1 System Model
	3.2 Security Model
	3.3 Construction
	3.4 Security
	3.5 Achieving Dynamicity
	3.6 Efficiency

	4 Conclusion
	References

	Privacy-Preserving Computations of Predictive Medical Models with Minimax Approximation and Non-Adjacent Form
	1 Introduction
	2 Models for Predictive Analysis in Healthcare Services
	2.1 The Logistic Regression Model
	2.2 The Cox Proportional Hazard Model

	3 Polynomial Approximation of Analytic Functions
	3.1 Taylor Approximation in Previous Works
	3.2 Remez Therapy: Adopting Minimax Approximation

	4 Homomorphic Evaluation of Predictive Models
	4.1 Practical Homomorphic Encryption
	4.2 Encoding Strategy
	4.3 Parameter Selection
	4.4 Implementation Results

	5 Conclusion
	A Approximation Polynomials
	A.1 Minimax Approximation for Logistic Model
	A.2 Minimax Approximation for Cox Model

	B Proof of Theorem 3
	References

	Private Outsourced Kriging Interpolation
	1 Introduction
	2 Kriging Interpolation
	3 Private Outsourced Kriging Interpolation
	4 Our Techniques
	5 Our Construction
	6 Discussion
	7 Conclusion
	A Additional Details on Kriging
	References

	An Analysis of FV Parameters Impact Towards Its Hardware Acceleration
	1 Introduction
	2 Preliminaries on the FV Scheme
	2.1 Mathematical Notations
	2.2 FV Primitives
	2.3 FV Parameters

	3 Improving Performances of FV Homomorphic Evaluation
	3.1 FV Homomorphic Evaluation of Trivium
	3.2 Improving Polynomial Multiplications

	4 FV Parameters and Optimization Opportunities
	4.1 Scalability over Applicative Level Parameters
	4.2 Smaller Ciphertexts
	4.3 Influence of N on Residue Polynomial Multiplications
	4.4 Influence of Tq on Parallelism from the CRT

	5 Conclusion
	References

	Controlled Homomorphic Encryption: Definition and Construction
	1 Introduction
	1.1 Contribution

	2 Definitions
	3 Controllable Homomorphic Encryption
	3.1 Security of a CHES

	4 CHES from Functional Encryption
	4.1 Proof on NM-CPA Security

	5 Conclusions and Future Work
	A Syntax and Security of Functional Encryption for Circuits
	B IND-CPA CHES
	B.1 Implications

	C Single-Message vs Multi-Message NM-CPA CHES
	References

	Bitcoin and Blockchain Research
	ValueShuffle: Mixing Confidential Transactions for Comprehensive Transaction Privacy in Bitcoin
	1 Introduction
	1.1 ValueShuffle: Mixing Confidential Transactions
	1.2 Features of ValueShuffle

	2 Related Work
	3 Building Blocks
	3.1 Peer-to-Peer Mixing
	3.2 Confidential Transactions
	3.3 One-Time Addresses

	4 ValueShuffle
	4.1 Security and Privacy Features
	4.2 Challenges and Our Solutions
	4.3 Overview of ValueShuffle
	4.4 Performance

	5 ValueShuffle: Full Protocol Description
	5.1 Security Analysis

	References

	Could Network Information Facilitate Address Clustering in Bitcoin?
	1 Introduction
	2 Related Work
	3 Fundamentals
	4 Clustering Based on Blockchain Information
	4.1 Clustering Procedure and Heuristics
	4.2 Results

	5 Network Information
	5.1 Association of Transactions and IP Addresses
	5.2 Methodology
	5.3 Results and Discussion

	6 Conclusion
	References

	Switch Commitments: A Safety Switch for Confidential Transactions
	1 Introduction
	2 Switch Commitments
	2.1 Usage in Confidential Transactions

	3 Preliminaries
	3.1 Commitments
	3.2 Hardness Assumptions

	4 Problem Description
	4.1 Attacker Model
	4.2 Switch Commitments

	5 Construction
	5.1 Security Analysis

	References

	(Short Paper) PieceWork: Generalized Outsourcing Control for Proofs of Work
	1 Introduction
	2 PieceWork: Two-Stage Hashing, Puzzles, and Puzzlets
	2.1 Background: Hash-Based PoWs
	2.2 Basic PieceWork Scheme
	2.3 Full PieceWork Scheme: Adding Withholding Resistance

	3 Applying PieceWork
	3.1 Outsourceable Puzzlet Applications
	3.2 Non-Outsourceable Puzzlet Applications

	4 Conclusion
	References

	Enhancing Bitcoin Transactions with Covenants
	1 Introduction
	2 Background
	2.1 Bitcoin Transactions
	2.2 Script

	3 Elements Sidechain
	4 Covenants in Elements Alpha
	4.1 Recovering Signed Data

	5 The Möser-Eyal-Sirer Vault
	5.1 Main Vault Script
	5.2 Vault Loop Script

	6 Related Work
	7 Conclusion
	References

	Decentralized Prediction Market Without Arbiters
	1 Introduction
	1.1 Prediction Markets with Anonymous Participants
	1.2 Related Work

	2 Mechanism
	3 Analysis
	4 Extensions
	4.1 Continuous Outcomes
	4.2 Non-binary Outcomes
	4.3 Capped Contracts for Difference
	4.4 Vector CFDs

	5 Conclusion
	A Real-Time Semi-decentralized Order Book
	References

	An Analysis of Bitcoin OP_RETURN Metadata
	1 Introduction
	2 Background on Bitcoin
	3 Methodology for Classifying OP_RETURN Transactions
	4 Qualitative Analysis of OP_RETURN Transactions
	5 Quantitative Analysis of OP_RETURN Transactions
	5.1 Overall Statistics
	5.2 Transaction Peaks
	5.3 Space Consumption
	5.4 Distribution of Protocols by Category

	6 Conclusions
	References

	Constant-Deposit Multiparty Lotteries on Bitcoin
	1 Introduction
	2 Statically Signing Chains of Transactions
	3 The Tournament Protocol
	4 Security of the Tournament Protocol
	5 Related Work
	6 Conclusions
	References

	Exchange Pattern Mining in the Bitcoin Transaction Directed Hypergraph
	1 Introduction
	2 Bitcoin Transaction Motifs in a Directed Hypergraph
	3 Descriptive Statistics
	4 Classifying and Labeling Exchange Addresses
	5 Conclusions and Future Work
	A Exchanges Used
	B Features Used
	References

	Incentivizing Blockchain Forks via Whale Transactions
	1 Introduction
	1.1 Related Work

	2 Model
	2.1 Assumptions

	3 Analysis
	3.1 How Large Do Whale Transactions Need to Be?
	3.2 How Many Whale Transactions Are Needed?
	3.3 Simulation

	4 Discussion
	5 Conclusion
	A Whale Attack Algorithm
	B Full Table for Sufficient Values of Whale Transactions
	C Bitcoin Mining Distribution Snapshot
	D Simulated Cost of Whale Attack
	References

	Mixing Coins of Different Quality: A Game-Theoretic Approach
	1 Introduction
	2 Preliminaries
	2.1 Coin Mixing
	2.2 Sources of Qualitative Differentiation
	2.3 Quality Propagation Policies

	3 Model
	4 Results
	4.1 Perfect Information: Sequential Game
	4.2 Imperfect Information: Simultaneous-Move Game

	5 Discussion
	6 Related Work
	7 Concluding Remarks
	A Appendix
	References

	Smart Contracts Make Bitcoin Mining Pools Vulnerable
	1 Introduction
	2 Background
	2.1 Mining and Pool Mining
	2.2 Smart Contracts

	3 Block Withholding Incentives
	4 Proving Block Withholding
	4.1 Non-interactive Proof
	4.2 Interactive Proof
	4.3 Mitigating Orphan Blocks

	5 Block Withholders Pool
	6 Related Work
	A Bitcoin Implementation
	B Ethereum Contracts as Insurance
	B.1 Forcing the Attacker to Attack
	B.2 Insurance Against Double-Spending

	References

	BatchVote: Voting Rules Designed for Auditability
	1 Introduction and Motivation
	2 Preliminaries
	3 BatchVote
	3.1 Design Philosophy
	3.2 The BatchVote Method
	3.3 Inner Social Choice Function g
	3.4 Choosing
	3.5 Ballot IDs
	3.6 Determining the Number B of Batches
	3.7 Random Seed K
	3.8 Mapping Ballot IDs to Batches
	3.9 Variability of Batch Sizes
	3.10 Applying g to Each Batch
	3.11 Efficiency

	4 Properties
	4.1 BatchVote-Specific Properties
	4.2 General Properties

	5 Auditing
	5.1 Ballot-Polling Audits
	5.2 Comparison Audits
	5.3 Masking of Errors

	6 Experimental Results
	7 Variants
	References

	Advances in Secure Electronic Voting Schemes
	Existential Assertions for Voting Protocols
	1 Anonymity
	1.1 Related Work

	2 Modelling the FOO Protocol
	2.1 Introduction to FOO
	2.2 Modelling FOO with Assertions

	3 Modelling Helios 2.0
	3.1 Introduction to Helios
	3.2 Helios 2.0
	3.3 Modelling Helios 2.0 with Assertions

	4 Assertions: Theory
	4.1 Assertions and Derivations
	4.2 Actions, Roles and Protocols
	4.3 Runs of a Protocol
	4.4 Notes on Implementability

	5 Formalizing Anonymity
	6 Conclusion
	References

	Marked Mix-Nets
	1 Introduction
	1.1 Mix-Nets
	1.2 Applications of Marked Mix-Nets

	2 Cryptographic Background
	2.1 ElGamal Encryption
	2.2 Mix-Nets

	3 Marked Mix-Nets
	3.1 Privacy Issues with Non-verifiable Mix-Nets
	3.2 A Marked Mix-Net
	3.3 Security Analysis

	4 STAR-Vote
	4.1 STAR-Vote's Risk Limiting Audit
	4.2 Using a Marked Mix-Net
	4.3 Benefits of the Approach

	5 Conclusions
	References

	Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets
	1 Introduction
	2 Cryptographic Background
	2.1 ElGamal Encryption
	2.2 Pedersen Commitments
	2.3 Non-interactive Preimage Proofs

	3 Summary of Wikström's Shuffle Proof
	3.1 Preparatory Work
	3.2 Preimage Proof

	4 Pseudo-Code Algorithms
	4.1 Generating the Shuffle
	4.2 Generating the Shuffle Proof
	4.3 Verifying the Shuffle Proof

	5 Conclusion
	References

	Using Selene to Verify Your Vote in JCJ
	1 Introduction
	1.1 Related Work

	2 Building Blocks
	3 System Model and Setup
	4 Description of the E-Voting Protocol
	4.1 Registration
	4.2 Tracker Preparation
	4.3 Vote Casting
	4.4 Improving the Coercion Resistance of JCJ
	4.5 Tallying with Selene
	4.6 Tracker Retrieval

	5 More Efficient Zero-Knowledge Proofs in Selene
	6 Security Assumptions and Arguments for Security
	6.1 Trust Assumptions for the Tellers
	6.2 Verifiability
	6.3 Vote Privacy
	6.4 Coercion-Resistance and Coercion-Mitigation

	7 Extensions and Alternative Protocols
	7.1 Everlasting Privacy via Pseudonyms
	7.2 Stronger Verifiability
	7.3 On the Secure Platform Problem
	7.4 Using JCJ to Improve Selene

	8 Conclusions and Future Work
	References

	A Roadmap to Fully Homomorphic Elections: Stronger Security, Better Verifiability
	1 Introduction
	2 Norwegian Elections
	3 Lattices and Fully Homomorphic Encryption
	4 Modelling and Security Requirements
	5 Primitives
	6 Instantiation
	6.1 Selecting Votes to Be Counted
	6.2 Tally
	6.3 Receipts
	6.4 Parameter Selection

	7 Security
	References

	Enabling Vote Delegation for Boardroom Voting
	1 Introduction
	2 Security Requirements
	3 Background
	3.1 Cryptographic Primitives
	3.2 Boardroom Voting Scheme from [20]

	4 Our Scheme
	4.1 Pre-election
	4.2 Delegation
	4.3 Setup
	4.4 Voting
	4.5 Tallying - Weeding Duplicates and Invalid Delegations
	4.6 Tallying - Mixing and Decrypting

	5 Security
	6 Related Work
	7 Conclusion
	References

	Practical Governmental Voting with Unconditional Integrity and Privacy
	1 Introduction
	2 Prior Work
	3 Framing Our Contribution
	4 Protocol Components
	4.1 Verifiable Secret-Sharing and Commitment
	4.2 Eperio

	5 Our Protocol
	6 Proof of Security Sketch
	6.1 Privacy
	6.2 Integrity

	7 Conclusion
	References

	Trusted Smart Contracts
	Findel: Secure Derivative Contracts for Ethereum
	1 Introduction
	2 Findel Contracts Syntax
	2.1 Definitions
	2.2 Execution Model
	2.3 Example

	3 Implementation
	3.1 Ethereum Overview
	3.2 Implementation Details
	3.3 Possible Improvements
	3.4 Platform Limitations

	4 Gas Costs
	4.1 Setup and Helper Functions
	4.2 Managing Common Derivatives

	5 Related Work
	5.1 Composable Contracts by Peyton Jones et al.
	5.2 Logic Portfolio Theory by Steffen Schuldenzucker
	5.3 Preliminary Draft by Nick Szabo

	6 Conclusion
	A Examples
	References

	Decentralized Execution of Smart Contracts: Agent Model Perspective and Its Implications
	1 Introduction
	2 Smart Contract and Problem Statement
	3 An Agent Model for Smart Contract Execution with Penalty
	4 Implementation of Contract Execution with Penalty
	5 Related Work
	6 Conclusion and Future Work
	References

	A Concurrent Perspective on Smart Contracts
	1 Introduction
	2 Deployed Examples of Concurrentesque Behavior
	2.1 The BlockKing Contract
	2.2 The DAO Contract

	3 Interference and Synchronization
	3.1 Atomic Updates in Shared-Memory Concurrency
	3.2 Atomic Updates in Concurrent Blockchain Transactions

	4 State Ownership and Permission Accounting
	5 Discussion
	5.1 Composing the Contracts
	5.2 Liveness Properties

	6 Related Work
	6.1 Verifying Contract Implementations
	6.2 Reasoning About Global Contract Properties

	7 Conclusion
	References

	An Empirical Analysis of Smart Contracts: Platforms, Applications, and Design Patterns
	1 Introduction
	2 Platforms for Smart Contracts
	2.1 Methodology
	2.2 Analysis of Platforms

	3 Analysing the Usage of Smart Contracts
	3.1 Methodology
	3.2 A Taxonomy of Smart Contracts
	3.3 Quantifying the Usage of Smart Contracts by Category

	4 Design Patterns for Ethereum Smart Contracts
	4.1 Design Patterns
	4.2 Quantifying the Usage of Design Patterns by Category

	5 Conclusions
	References

	Trust in Smart Contracts is a Process, As Well
	1 Introduction
	2 On Distributed Ledger Technologies
	3 Staring into the Abyss
	4 Trusting Smart Contracts
	5 Conclusion
	References

	Defining the Ethereum Virtual Machine for Interactive Theorem Provers
	1 Introduction
	2 Choice of the Goal and the Tool
	2.1 Goal: Which Programming Language to Formalize
	2.2 Tool: Formalization in Which Language

	3 A Brief Description of the Ethereum Virtual Machine
	3.1 States
	3.2 State Transitions

	4 Interface of a Contract Invocation
	4.1 Boundary Between the System and the Environment
	4.2 Input and Output of a Deployed Ethereum Smart Contract

	5 Formalizing the Deterministic Contract Execution
	5.1 Defining Execution Contexts
	5.2 Defining Deterministic Contract Execution
	5.3 Testing the Deterministic Contract Interpreter

	6 Formalizing the Nondeterministic Environment
	6.1 Implicit Balance Changes
	6.2 Gas Consumption During Calls
	6.3 Modeling of Reentrancy as an Adversarial Environment's Step
	6.4 Cleanup of an Account After Self-destruction

	7 Example Verification of Smart Contracts
	8 Related Work
	9 Challenges and Future Work
	10 Conclusion
	References

	SmartCast: An Incentive Compatible Consensus Protocol Using Smart Contracts
	1 Introduction
	1.1 Related Works

	2 Background and Preliminaries
	2.1 Network Model
	2.2 Smart Contract Protocols
	2.3 Utilities in the BAR Model
	2.4 Synchronous Byzantine Agreement

	3 Smart Contracts for Incentive Compatible Protocols
	3.1 The Protocol Transformer SmartBAR()
	3.2 Rationality Analysis
	3.3 Comparison with the BAR Primer
	3.4 SmartCast: An Incentive Compatible Consensus Protocol
	3.5 Deploying Consensus Protocols with Smart Contracts

	4 Implementation and Evaluation
	4.1 Ethereum Smart Contract

	5 Conclusion and Future Work
	References

	On the Feasibility of Decentralized Derivatives Markets
	1 Introductory Remarks
	1.1 Scope and Contributions

	2 Related Work
	3 Materials and Methods
	4 Implementation
	4.1 Velocity Main Smart Contract
	4.2 Price Feed

	5 Discussion
	6 Future Work
	7 Conclusion
	A Demo Website (UI) for the Velocity Smart Contract
	References

	A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains
	1 Introduction
	2 Bitcoin and the Blockchain
	3 A Protocol for Consensus on Bitcoin Subchains
	3.1 Subchains and Consistency
	3.2 Description of the Protocol
	3.3 Basic Properties of the Protocol
	3.4 Implementation in Bitcoin

	4 Evaluation of the Protocol
	5 Discussion
	References

	Targeted Attacks
	X-Platform Phishing: Abusing Trust for Targeted Attacks Short Paper
	1 Introduction
	2 Background
	2.1 Anti-Phishing Techniques
	2.2 Targeted Phishing Attacks

	3 X-Platform Phishing
	4 Experiment
	4.1 Attack Setup
	4.2 Phishing Message Design
	4.3 Subject Recruitment
	4.4 Collected Data
	4.5 Result

	5 Discussions, Limitations, and Conclusion
	References

	What to Phish in a Subject?
	1 Introduction
	2 Background
	3 Materials and Methods
	4 Results
	5 Discussion
	6 Conclusions and Future Work
	References

	Unpacking Spear Phishing Susceptibility
	1 Introduction
	2 Related Work
	3 Research Questions and Hypotheses
	4 Method
	4.1 Ethical Considerations
	4.2 Experimental Design
	4.3 Recruitment
	4.4 Sample Characteristics

	5 Behavioral Clicking Results: Facebook vs. Email
	6 Reported Reasons for Clicking Behavior
	6.1 Reasons for Clicking
	6.2 Reasons for Not Clicking

	7 Discussion
	7.1 Limitations
	7.2 Facebook versus Email
	7.3 How Powerful is Personalization?
	7.4 Lessons About Targeting and Spear Phishing Susceptibility
	7.5 Defense Against Spear Phishing

	8 Conclusion
	References

	Author Index
	Scripting Smart Contracts for Distributed Ledger Technology
	ZeroTrade: Privacy Respecting Assets Trading System Based on Public Ledger

