
Semantic Facettation in Pharmaceutical
Collections Using Deep Learning for Active

Substance Contextualization

Janus Wawrzinek(&) and Wolf-Tilo Balke

IFIS TU-Braunschweig, Mühlenpfordstrasse 23, 38106 Braunschweig, Germany
{wawrzinek,balke}@ifis.cs.tu-bs.de

Abstract. Alternative access paths to literature beyond mere keyword or bib-
liographic search are a major success factor in today’s digital libraries. Espe-
cially in the sciences, users are in dire need of complex knowledge spaces and
facettations where entities like e.g., chemical substances, genes, or mathematical
formulae may play a central role. However, even for clear-cut entities the
requirements in terms of contextualized similarities or rankings may strongly
differ. In this paper, we show how deep learning techniques used on scientific
corpora lead to a strongly contextualized description of entities. As application
case we take pharmaceutical entities in the form of small molecules and
demonstrate how their learned contexts and profiles reflect their actual use as
well as possible new uses, e.g., for drug design or repurposing. As our evalu-
ation shows, the results gained are quite comparable to expensive manually
maintained classifications in the field. Since our techniques only rely on deep
embeddings of textual documents, our methodology promises to be generaliz-
able to other use cases, too.

Keywords: Digital libraries � Information extraction � Facettation � Deep
learning

1 Introduction

In pharmaceutical digital libraries, (active) substance similarity forms the basis of
various innovative services for information access such as structure search, grouping
and facettation of drugs, suggestion lists and many others. However, what makes a
similarity measure between entities semantically meaningful in a domain? While there
usually is no single universally true answer, there are generally several accepted
methods of determining similarity differing in their complexity, accuracy, and appli-
cability given a task. Yet, from a digital library provider’s perspective, there is another
important distinction between these similarity measures: can the necessary features for
their computation be extracted automatically in a scalable way or are they based on
semantic features that still need expensive manual curation? Given the current
promising developments in automatic information extraction and the indexing chal-
lenges posed by rapidly increasing publication numbers, this is indeed a central
question.
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Consider the example domain of pharmaceutical collections: Here, to compute
active substance similarity two approaches are widely used: on one hand a (sub-)
structural similarity (chemical or molecular similarity), and on the other hand a taxo-
nomical similarity regarding therapeutic uses, etc. (usually curated manually by domain
experts).

For efficiently deriving (sub-)structural similarity between substances, all molec-
ular structures are usually encoded in bit-string fingerprints. To reduce dimensionality
and ease comparison the bits are set with respect to molecular features such as atom
sequences, ring compositions or atom pairs of each molecule. The exact composition of
fingerprints may thus vary depending on the specific use case and research field [1].
However, this does not only result in numerous and different fingerprint types (e.g.
Extended Fingerprint, MACCS, Estate, etc.), but also in different similarity measures
between substances, such as Tanimoto, cosine, dice, etc. In brief, the combination of
fingerprints and similarity measures leads to a wide variety of possible results, and it is
interesting to note that their respectively induced rankings of most similar substances
are usually only weakly, if at all correlated [2]. Moreover, while structural similarity is
extremely useful for screening, it does not capture other important semantic features.

The taxonomical similarity approach to compute active ingredient similarity is
based on mostly manually curated semantic classification systems. Drugs, chemicals, or
in general active ingredients are grouped according to their chemical, therapeutic or
anatomical features. Considering pharmacy, there are a couple of popular classification
systems such as the Medical Subject Headings (MeSH) Trees,1 the Anatomical
Therapeutic Chemical (ATC) Classification System2 or the American Hospital For-
mulary Service (AHFS) Pharmacologic-Therapeutic classification.3 Of course, their
applicability is limited by the actual number of substances indexed: querying Drug-
Bank4 as a relatively complete resource [3], most active ingredients are not classified
by any of the above-mentioned classification systems.

Recently, many research efforts have considered a new way of generating
semantically meaningful similarities for scientific entities: facettation with categories
dynamically created from large document corpora (for a good overview see [4]).
Indeed, the enrichment of entity metadata with information from different sources like
external knowledge bases or focused document collections has been proven extremely
successful in scientific search scenarios, see e.g., [5, 6]. The key to success can be seen
in a contextualization of entities as expressed by their actual use in research, which is in
turn reflected in respective publications. In this paper, we present a novel deep
learning-based technique to contextualize entities. Following our pharmaceutical use
case, we evaluate our method over the PubMed collection and show that the facets
gained from embeddings in high-dimensional document spaces are semantically
meaningful, while measuring similarity regarding different entity aspects. Thus, our
method adds alternative facets statistically justified by a large body of existing research

1 https://www.nlm.nih.gov/mesh/intro_trees.html.
2 https://www.whocc.no/atc_ddd_index/.
3 http://www.ahfsdruginformation.com/ahfs-pharmacologic-therapeutic-classification/.
4 https://www.drugbank.ca/.
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publications, giving users easy access to hidden entity semantics for digital library
searches. Moreover, these facets can be automatically derived without expensive
manual curation.

The paper is organized as follows: Sect. 2 revisits related work. Section 3 details
our method for facettation of drugs, accompanied by an extensive evaluation against
curated classification systems in Sect. 4. We close with conclusions in Sect. 5.

2 Related Work

Capturing semantically meaningful similarities for scientific entities has since long
been an active field of research. Today, most recognized systems are to a large degree
still manually maintained to guarantee usage experience and to provide a reliable
foundation for value adding services and research planning. While the current explo-
sion of scientific results clearly calls for automation, the quality of resources cannot be
compromised, i.e. a high degree of precision has to be maintained. The most prominent
classification systems (later used as ground truth) for pharmaceutical uses are:

• The Anatomical Therapeutic Chemical (ATC) Classification System. ATC subdi-
vides drugs according to their therapeutic uses and chemical features. Maintained
by the World Health Organization (WHO), it is currently the most used drug
classification system and serves as an important source for tasks like e.g., drug
repurposing and drug therapy composition [7].

• The Medical Subject Headings (MeSH). MeSH is a controlled vocabulary and
serves as general classification system for biomedical documents in MEDLINE
maintained by the National Library of Medicine (NLM). MeSH descriptors are
organized in 16 main categories, e.g. category C for diseases and D for drugs,
further divided in finer levels (subgroups) leading to a hierarchical structure.

• The American Hospital Formulary Service (AHFS). AHFS distinguishes drugs
according to their pharmacologic and therapeutic effect with a focus on drug
therapies. Like ATC and MeSH, AHFS shows a hierarchical structure.

Manual drug annotation may yield superior quality, but it is also related with high
costs. Therefore, in recent years many approaches to annotate drugs automatically
have been designed. In general, these approaches rely on a blend of machine learning,
information retrieval, and information extraction techniques. To annotate properties in
pharmaceutical texts reliably, a wide variety of methods has been devised. For instance,
[7] employs support vector machines to predict ATC class labels for yet unclassified
drugs and shows that given rich training sets, document-based classification can
actually outperform classifications performed on chemical structures only. For the same
task, [8] shows the power of text mining to create enriched drug fingerprints and after
some manual curation their subsequent benefit for retrieval. In [9] an approach for the
automatic annotation of biomedical documents with MeSH terms is presented. Dif-
ferent classification systems are compared to reproduce manual MeSH annotations.

With classification accuracies of already around 80%, all of the above
document-based approaches show the benefits and general applicability of text mining
for entity metadata enrichment. Thus, a domain-specific contextualization of entities in
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scientific digital libraries seems appealing. To find central topics in documents two
major approaches have been used: latent semantic analysis (LSA [10]) performs sin-
gular value decompositions over term-document matrices to get topics as linear com-
binations of vocabulary terms. Latent Dirichlet Allocation (LDA [11]) sees documents
as mixtures of different topics, where each term’s generation is attributable to one of the
document’s topics. Since both models show problems in NLP tasks like polysemy
detection or syntactic parsing, recently Word Embeddings [12] quantifying and cate-
gorizing semantic similarities between linguistic items based on their distributional
properties in large samples of language data have been proposed as a powerful deep
learning alternative. Therefore, in the following we will rely on word embeddings as
the state of the art method for entity contextualization and in particular, will use the
Word2vec Skip-Gram model implementation from the open source Deep-Learning-
for-Java5 library.

3 Building New Facets Based on Word Embeddings

The basic idea of our approach is to create a new contextualized facet for entity-based
search in scientific digital libraries: in particular, a selection of closely related entities
with respect to the search entity. For actually building contextualized facets every
corpus of scientific documents can be used, but normally the selection of the document
base for subsequent embedding strictly reflects the type of entities under scrutiny. For
example in the case of pharmaceutical entities such as active ingredients, the National
Library of Medicine’s PubMed collection would be a good candidate.

After the initial crawling step the following process can be roughly divided into
four sub-steps:

1. Preprocessing of crawled documents. After the relevant documents were crawled,
classical IR-style text preprocessing is needed, i.e. stop-word removal and stem-
ming. The preprocessing helps mainly to reduce vocabulary size, which leads to an
improved performance, as well as improved accuracy. Due to their low discrimi-
nating power, all words occurring in more than 50% of the documents are removed.
These are primarily often used words in general texts such as ‘the’ or ‘and’, as well
as terms used frequently within a domain (as expressed by the document base), e.g.,
‘experiment’, ‘molecule’, or ‘cell’ in biology. Stemming further reduces the
vocabulary size by unifying all flections of terms. A variety of stemmers for dif-
ferent applications is readily available.

2. Creating word embeddings for entity contextualization. Currently, word embed-
dings [12] are the state-of-the-art deep learning technique to map terms into a
multi-dimensional space (usually about 200-400 dimensions are created), such that
terms sharing the same context are grouped more closely. According to the dis-
tributional hypothesis, terms sharing the same context in larger samples of language
data quite often, in general also share similar semantics (i.e. have similar meaning).
In this sense, word embeddings group entities sharing the same context and thus

5 https://deeplearning4j.org/.
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collecting the nearest embeddings of some search entity leads to a group of entities
sharing similar semantics.

3. Filtering according to entity types. The computed word embeddings comprise at
this point a large portion of the corpus vocabulary. This means, for each vocabulary
term there is exactly one word vector representation as output of the previous
step. Each vector representation starts with the term followed by individual values
for each dimension. In contrast, classical facets only display information of the
same type, such as publication venues, (co-)authors, or related entities like genes or
enzymes. Thus, for the actual building of facets, we only vector representations of
the same entity type are needed. Here, dictionaries are needed to sort through the
vocabulary for each type of entity separately. The dictionaries either can be directly
gained from domain ontologies, like e.g. MeSH for illnesses, can be identified by
named entity recognizers like e.g., the Open Source Chemistry Analysis Routines
(OSCAR, see [13]) for chemical entities, or can be extracted from open collections
in the domain, like the DrugBank for drugs.

4. Clustering entity vector representations. The last step is preparing the actual
facettation of entities closely related to some search entity. To do this, we first
consolidate the individual document spaces of the filtered entities by multidimen-
sional scaling (reducing its dimensionality to about 100-150). This steep dimen-
sionality reduction removes noise and enables a meaningful subsequent clustering.
We then apply a k-means clustering technique on all representations and decide for
good cluster sizes: in our approach optimal cluster sizes are not decided by a fixed
threshold, but by an analysis of intra-cluster vs. inter-cluster similarity.

While the basic algorithm promises to be applicable for a wide variety of domains,
testing its effectiveness in creating high quality entity facets needs a domain specific
focus. The following section evaluates our approach in a pharmaceutical use case.

4 Evaluation of Entity Contextualization

For the evaluation, we will first describe our pharmaceutical text corpus and basic
experimental set-up decisions. Moreover, we perform a ground truth comparison and
show the meaningfulness of the facets automatically derived by our facettation method:
we compare results with the three established classification systems from Sect. 2.

4.1 Experimental Setup and Algorithm Implementation

Experimental Setup

Evaluation corpus. With more than 27 million document citations, PubMed6 is the
largest and most comprehensive digital library in the biomedical field. However, since
many documents citations do not feature full texts, we relied solely on abstracts for
learning purposes. As an intuition, the number of abstracts matching each

6 https://www.ncbi.nlm.nih.gov/pubmed/.
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pharmaceutical entity under consideration should be ‘high enough’ because with more
training data, contexts that are more accurate can be learned, yet the computational
complexity grows. Thus, we decided to use the 1000 most relevant abstracts for each
entity according to the relevance weighting of PubMed’s search engine.

Query Entities. As query entities for the evaluation, we randomly selected 275 drugs
from the DrugBank7 collection. We ensured that each selected drug featured at least
one class label in ATC, MeSH, or AHFS, and occurred in at least 1000 abstracts on
PubMed. Thus, our final document set for evaluation contained 275.000 abstracts. As
ground truth, all class labels were crawled from both, DrugBank and the MeSH the-
saurus.8 For example, all retrieved classes for the drug ‘Acyclovir’ are shown in
Table 1. Since all classification systems show a too fine-grained hierarchical structure,
we remove all finer levels before assigning the respective class label to each drug. For
example, one of the ATC classes for the drug ‘Acyclovir’ is ‘D06BB53’. The first letter
indicates the anatomical main group, where ‘D’ stands for ‘dermatologicals’. The next
level consists of two digits ‘06’ expressing the therapeutic subgroup ‘antibiotics and
chemotherapeutics for dermatological use’. Each further level classifies the object even
more precisely, until the finest level usually uniquely identifies a drug.

Algorithm implementation and parameter settings

1. Text Preprocessing: Stemming and stop-word removal was performed using a
Lucene9 index. For stemming we used Lucene’s Porter Stemmer implementation.

2. Word Embeddings: After preprocessing, word embeddings were created with
DeepLearning4 J’s Word2Vec10 implementation. To train the neural network, we
used a minimum word frequency of 5 occurrences. We set the word window size to
20 and the layer size to 200 features per word. Training iterations were set to 4. We
tested several settings, but the above-mentioned turned out best for subsequent
clustering.

3. Entity filtering. While Word2Vec generated a comprehensive list of word vector
representations, we subsequently filtered out all vectors not related to any Drug-
Bank entity (resulting in 275 entity-vectors). For corpus consolidation

Table 1. Classes in different classification systems for the drug ‘Acyclovir’

Classification System Assigned Classes

ATC J05AB01, D06BB53, D06BB03, S01AD03
AHFS 08:18.32, 84:04.06
MeSH Trees D03.633.100.759.758.399.454.250

7 https://www.drugbank.ca/.
8 https://meshb.nlm.nih.gov/search.
9 https://lucene.apache.org/.
10 https://deeplearning4j.org/word2vec.
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(dimensionality reduction) after the filtering step, we used a Multidimensional
Scaling (MDS11) technique: we scaled word vector representations from 200 down
to 120 dimensions. The intention of the MDS step was to smooth out possible noise.
Smoothing out noise in high-dimensional representations can have a positive impact
on overall performance [15]. Whereby overall performance means in our case an
improvement in F-score. Compared to unscaled entity-vectors, the MDS step
resulted in an improvement of * 10% in F1-score. In addition, we tested the MDS
with different parameters, with respect to F1-score best results were achieved with a
scaling to 120 dimensions. Surprisingly, an initial layer size setting of 120 features
(for Word2Vec training) did not lead to a similar improvement. Instead the result
was comparable to results achieved with a layer size setting of 200 features but
without an additional MDS step. We conclude that the improvement in F1-score is
the consequence of the MDS step.
For the MDS step, we also experimented with different similarity measures to
calculate the dissimilarity matrix: best results were achieved using cosine similarity
to calculate the matrix.

4. Clustering vector representations. In this step, we clustered the 275 entity vector
representations obtained in the previous filtering step. For the clustering step we
used Apache Commons’ Multi-KMeans12 ++ clusterer. For a fair comparison to
our ground truth, our goal is to choose the class most suitable for a drug as well as
for the entire cluster. Thus, for comparing class labels of entities within a cluster, we
assign the majority class label to each cluster and regard all entities in that cluster
sharing the majority label as true positives. To avoid double counting these true
positives as false positives for additional labels they carry, we strip all remaining
class labels. Entities in a class not sharing the majority class label are false positives
and will be labeled with their respective label that is most frequent in that class.
Again, to avoid double counting all other labels are removed.

4.2 Experimental Evaluation

For the experimental evaluation, we first have to determine what quality criteria a
document-centric contextualization approach should meet to be useful for dynamically
creating entity facets. Since the subsequent facettation will be based on the clusters
generated by our approach (i.e. for each query entity all other entities sharing its cluster
will be presented in the facet), each cluster has to exhibit certain criteria:

• Semantic accuracy: A facet should group entities under some common theme that
seems most suitable with respect to the query entity. This is influenced by the
semantic purity of clusters as well as a good trade-off between precision and recall.
Since higher recall values might produce overly large facets, the emphasis should
rather be on reaching higher precision values.

• Semantic coverage: For a good handling of the subsequent facets, the distribution of
entities over the clusters should be well balanced. Clusterings exhibiting many large

11 http://algo.uni-konstanz.de/software/mdsj/.
12 http://commons.apache.org/proper/commons-math/.
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and/or many small clusters will result in unsatisfactory usage experience in the
respective faceted interface.

• Semantic suitability: The selected entities per facet should be clearly justified by the
underlying document collection. Since there are different document-centered
approaches, a quantitative comparison regarding a ground truth is needed.

Semantic Accuracy of the Facettation: In our first experiment, we test the semantic
accuracy of our facettation, i.e. how well do entities in each cluster reflect a common
topic. Since this is obviously dependent on cluster sizes (smaller clusters inherently
show higher purity) and the respective granularity of the topic (in the sense of semantic
distances), we will vary both, the number of clusters in the clustering procedure and the
granularity of the topics (first level vs. second level accuracy). As ground truth, we use
only the categories given by the largest three pharmaceutical classification systems
ATC, MeSH, and AHFS (see Sect. 2). Please note that this ground truth restriction is
overly strict on document-centered contextualization, since commonly understood
contexts reflected in literature might not be reflected by any of the three systems. Thus,
our experiments can be seen as a worst-case boundary for our approach.

First, we quantify the accuracy in terms of precision/recall and F-measures on the
top categorization level only. We use the standard method for clustering accuracy
described in [14]. Because facets should tend towards higher precision for improved
user experience, we report both, F1- and F0.5-scores. We vary the number of clusters
(k) in our k-means clustering between 10 and 80. Since the randomly chosen query
entities might not be evenly distributed over the respective categories chosen as
majority labels, we compare our approach against a base line of clusters, where items
have been randomly exchanged between clusters. If there would be clearly dominant
categories, such a random baseline would show high accuracies.

Figure 1 shows averaged results of 30 independent runs for each number of
clusters. As could be expected, precision steeply increases for higher numbers of
clusters (i.e. small cluster sizes), whereas recall decreases the more clusters are built.
However, the F-scores show a clear optimum at 25 clusters (F1-score) and 35 clusters
(F0.5-score). Hence, preferring smaller cluster sizes (on average of 8-10 entities per
facet) in stark contrast to the random baseline that always prefers the smallest number
of clusters possible. Moreover, our approach’s F-scores constantly outperform the
baselines with 0.55 (F1-score) and 0.65 (F0.5-score) reaching precisions beyond 80%.
Thus, surprisingly our generalist approach is even comparable in overall accuracy to
approaches specifically designed to predict ATC or MeSH classifications, as reported in
Sect. 2.

We repeated the above experiments for the second layer of granularity in the
classification systems and achieved quite similar results (graphs have been omitted for
space reasons), again clearly outperforming the baseline. Of course, with finer gran-
ularity the relative size of clusters has to be expected to be much lower. However, again
measuring the F0.5-score, we achieved best results with a moderate 97 clusters at an
accuracy level of still 0.61. This is only 4% less, compared to the first level of gran-
ularity. For the F1-score, best results were achieved with 69 clusters at an accuracy
level of 0.55.
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Semantic coverage of the Facettation: To investigate how well the individual
semantics of the different categorization systems are reflected by our contextualized
facets, we show that our facettation is indeed balanced, i.e. it does not generate extreme
distributions in either cluster sizes or majority label provenance. For instance, it would
not be desirable, if our facettation created one single big facet, while the remaining
facets only contain a single entity each. Moreover, the distribution of majority class
label regarding their respective source classification system should be balanced.

Again, we performed experiments on two levels of granularity: top-level and
second level. For the top-level granularity we calculated average cluster sizes for the
sweet spot (i.e. at k = 35 clusters) of our last experiment and show the respective
results as box plots in Fig. 2. As we can clearly see, there are only few larger clusters,
while the majority of clusters features between 3 and 8 entities, with a median of 4.8.
Clusters with sizes smaller than 3 are quite rare. Moreover, it is encouraging to note
that the overall distribution of entities in clusters strongly resembles the distribution
exhibited by the respective classification systems. That means, the cluster sizes decided
by our deep learning-based contextualization are on the correct resolution level, which
together with the high accuracy speaks for a good semantic coverage.

Fig. 1. Comparison of contextualized facettation (red) and random clustering (blue). (Color
figure online)
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On the second level of granularity (see Fig. 3) the medians of the distributions are
noticeably lower, as was to be expected for higher number of clusters (k = 97). Still,
our approach’s distribution again closely resembles the distributions of the respective
classification system. Moreover, in contrast to MeSh and AHFS our approach avoids
empty clusters and shows fewer outliers with large cluster sizes, quite similar to the
ATC classification system.

Looking at the provenance of majority cluster labels we find that on top-level
granularity the majority labels chosen for each cluster on average reflect 60.3% from
ATC classes, 34.3% from MeSh tree classes, and 5.4% from AHFS classes. For second
level granularity, we get 51.8% from ATC, 36.8% from MeSh, and 11.4% from AHFS.
Thus, our contextualization approach does indeed reflect different semantics as given
by the individual, manually created classification systems.

Semantic suitability of the Facettation: In our last experiment, we compare the clus-
tering accuracy of our approach with the accuracy achieved by classical IR techniques
based on term frequencies. Hence, we computed a TF-IDF-weighted vector space
model on all pharmaceutical texts in our selected document corpus for the 275 query
entities, again followed by a k-means clustering step. We then compared the respective
accuracies of the two methods with respect to the three manual classification systems as
ground truth.

In the clustering step for the top-level granularity, also TF-IDF shows highest
accuracy values for a number of 35 clusters and thus seems quite suitable for the task.

Fig. 2. Average cluster sizes on first level granularity for the majority label compared to ATC,
MeSH, and AHFS.
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However, in comparison with a TF-IDF-weighted vector space model, the contextu-
alized facets achieved noticeable improvements with respect to accuracies: the
F0.5-score was on average 30% higher, and the F1-score still 18% higher. In brief, our
deep learning-based approach leads to a much higher precision as compared to classic
IR-style frequency-based approaches.

5 Conclusions and Future Work

In this paper, we presented a novel deep learning-based technique to contextualize
entities for building semantically meaningful facettations in pharmaceutical collections.
In pharmaceutical digital libraries, substance similarity forms the basis for various
innovative services for information access such as finding active ingredients or struc-
ture search. Today, substance similarity is based either on manually curated semantic
classification systems, or on comparisons of the underlying chemical structures. Both
methods are extremely useful, but on the one hand chemical structure approaches do
not capture important semantic features, on the other hand most active ingredients are
not classified by manually curated categorization systems.

We demonstrated in our experiments, that our proposed method for a new
facettation of active ingredients, achieves a high semantic accuracy. Since, on both
levels of granularity, our approach constantly outperforms the baselines as well as
reaches high precisions (beyond 80%). Thus, our facettation method clusters active
ingredients in a meaningful way and therefore elements, contained in the same facet,
share with a high accuracy a similar semantic. Next, we proved the sematic coverage of
the facettation by investigating how well the individual semantics of the different
categorization systems are reflected by our contextualized facets. Here, on both levels

Fig. 3. Average cluster sizes on second level granularity for the majority label compared to
ATC, MeSH, and AHFS.
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of granularity the different majority labels are moderate distributed. Moderate means,
none categorization type dominates the overall facettation. Thus, our contextualization
approach does reflect different semantics as given by the individual, manually curated
categorization systems. This in turn shows that a facet consist of a composition of
different categorization systems, in which the facet elements (active ingredients) share a
similar semantic. In our pharmaceutical case, the facettation can be a suitable alter-
native to expensive as well as in most cases incomplete manually curated categoriza-
tion systems. Moreover, we also demonstrated that our facettation is balanced and does
not generate extreme distributions cluster sizes. Since, small (cluster size < 3) as well
as very large cluster are quite rare. Thus, it reflects a given distribution in respect to the
different categorization systems and therefore facets have a similar size compared to
manually curated categorization system categories. Finally, we tested the semantic
suitability of the facettation by comparing it with classical IR techniques. Our approach
outperformed (up to 30%) TF-IDF-weighted vector space model. Therefore, our deep
learning-based approach is a suitable alternative for classic IR-style frequency-based
approaches.

In addition to the statistical evaluation presented in this paper, we also questioned
domain experts for a first interpretation of our facettation. Surprisingly, they found
hidden semantics for some of the low-accuracy facets. This may indicate that our
facettation technique is able to discover hidden active ingredient contexts. A better
understanding of such hidden contexts would be interesting. Furthermore, labeling of
facets was however not considered in this paper. Such a labeling would prove quite
useful for an interpretation of the individual facets as well as it could lead to a better
understanding with respect to our facettation.
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