
Chapter 9

Bioremediation of Heavy Metals

Anamika Das and Jabez William Osborne

Abstract Human activities and industrial processes have led to worldwide heavy

metal pollution. Several strategies have been developped for metal remediation.

The conventional strategies are expensive, usually low in efficiency and may alter

the soil nature. Here we review bioremediation using plants, microbes, e.g. bacteria,

fungi, and actinobacteria, earthworms, and algae for metal removal.

Bioaugmentation of microbes using plants, earthworms and algae is used to

enhance the bioremediation efficiency. We discuss the importance of

metagenomics, metabolomics and proteomics approach to assess the response of

the living organisms under stress and how they can contribute to the improvement

of the already existing strategies.
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9.1 Introduction

Environmental pollution occurs when the natural environment cannot destroy an

element without creating harm or damage to itself (Wijnhoven et al. 2007). The

elements involved are not produced by nature, and the destroying process can vary

from a few days to thousands of years. Current research has documented elemental

pollutants as “emerging contaminants” (Yu et al. 2014). Intense industrialization,

modern agricultural practices, increased anthropogenic activities, and unauthorized

disposal methods have increased the concentrations of elemental pollutants in the

environment, creating adverse effects to all the living organisms (Wijnhoven et al.

2007). Heavy metals are one of the major pollutants which has been the chief

concern in past decade. They can enter the environment in a single high-level

exposure or the cumulative effect of repeated high or low-level exposures but when

introduced into an environment, it can stay there in toxic form for a long period

of time.

A number of physical, chemical and biological techniques can be used to

remediate metal contaminated soils. Physico-chemical methods are, however, not

appreciated as they generate a large amount of sludge and result in more contam-

ination (Ahluwalia and Goyal 2007). Thus, bioremediation provides the best

answer. Many reports have established the bioremoval of heavy metals by the use

of either plants, earthworms or microbes (Wang et al. 2015; Rodriguez-Campos

et al. 2014; Dharni et al. 2014; Ma et al. 2015). But recent reports have studied the

uptake studies by using more than one living organism and have come out with

more efficient and improved results (Emenike et al. 2016; Wood et al. 2016; Lemtiri

et al. 2016). Thus, they have opened the gate of exploring the more diverse flora and

fauna for achieving the best result in bioremediation. Scientists have also developed

and studied the three main ‘omics’ approach for understanding the response of the

organism under the stressed condition, i.e., metagenomics, metabolomics and

proteomics (Gillan et al. 2015; Tomanek 2014). The integrated ‘omics’ analysis
can be a powerful technique to identify the vast microbial communities which are

unculturable but still possess the ability of bioremediation and the various metab-

olites released under stress along with their function. This approach has brought a

revolution in the field of bioremediation. Figure 9.1 summarizes the bioremediation

technologies described in this review.

This review emphases on the utilization of different tactics of bioremediation

using plants, bacteria (rhizobacteria, actinobacteria), earthworms, algae, fungi and

highlights the advantages of the integrated approach of using multi-biosystem for
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the bioremediation of Heavy metals. To support the statement, many evidence has

been provided representing different case studies along with their mechanism and

limitations. In this context, the scope of ‘omics’ tool to enhance the overall

bioremediation process has also been discussed.

9.2 Heavy Metals

Heavy metals represent a class of metallic element present abundantly in the earth’s
crust (Yu et al. 2014). They are defined as the metals possessing density greater than

5 gm/cm3 (Das et al. 2014). Different from other organic pollutants, heavy metals

are harder to be chemically or biologically degraded. Irrespective of the origin of

the metals in the soil, excessive levels of many metals can result in the deprivation

of soil quality, crop yield and agricultural products and can be significantly haz-

ardous to human, animal and ecosystem health (Das et al. 2014). The metals or

Fig. 9.1 An outline of the remedial strategies applied for bioremoval of heavy metals. The

conventional methods are ineffective or expensive when the concentration of heavy metals is

very low and produces a large amount of derivatives of contaminants. Alternately, biological

methods with the usage of living biosystems has proven efficient in heavy metals bioremediation.

The ‘omics’ approach also enhanced the understanding of the living biosystems under stressed

condition (PGPR Plant growth promoting rhizobacteria)
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metalloids including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead

(Pb), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), and zinc (Zn) can be of

severe threat to human and animal health due to its intensified long-term persistence

in the environment (Gisbert et al. 2003). Toxic heavy metals are also known as

cumulative poison because of it persistence in nature and the ability to get trans-

ferred and accumulated in various tropic levels causing DNA damage and carcino-

genic effects by their mutagenic ability (Knasmüller et al. 1998). Therefore an

alarm has been triggered for the researchers to conserve the environment from toxic

heavy metals. The Agency for Toxic Substances and Disease Registry (ATSDR) in

Atlanta, Georgia, (a part of the U.S. Department of Health and Human Services)

compiled a Priority List called the “Top 20 Hazardous Substances.” The heavy

metals arsenic, lead, mercury, and cadmium appear on this list (ATSDR 2011).

9.3 Conventional Strategies for Detoxification of Heavy

Metals

In order to make the environment healthier, contaminated water bodies and land

need to be remedied to make them free from heavy metals and trace elements.

There are several conventional techniques to remove these heavy metals, including

chemical precipitation, oxidation or reduction, filtration, ion-exchange, reverse

osmosis, membrane technology, evaporation and electrochemical treatment. But

most of these techniques become ineffective when the concentrations of heavy

metals are less than 100 mg/L (Ahluwalia and Goyal 2007). Additionally, physico-

chemical methods are ineffective or expensive. Some of the techniques are men-

tioned in Table 9.1 with their drawbacks.

Biological methods for removal of heavy metals has become an attractive

alternative to physico-chemical methods. Bioremediation has proved to be an

innovative and promising technology available for removal of heavy metals and

recovery of the heavy metals in polluted water and lands.

9.4 Bioremediation of Heavy Metals

According to Environmental Protection Agency (EPA), bioremediation is a tech-

nique that uses naturally occurring organisms to break down hazardous substances

into less toxic or nontoxic substances (Agouborde and Navia 2009). Various living

biosystems can be utilized for the bioremoval of heavy metals. The biomass-based

systems are more satisfactory compared to the conventional treatment methods as it

is cost effective with high efficiency of detoxification of dilute effluents and

reducing the quantity of sludge disposal in the environment. There are many reports

about biodegradation and bioremediation strategies being utilized by bacteria or
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plant species (Wang et al. 2015; Ma et al. 2016; Glick 2010) but so far very few

investigations have been carried out using other living biosystems such as earth-

worms, algae, fungi and their integrated approach.

9.4.1 Phytoremediation of Heavy Metals

The word “phytoremediation” is derived from Greek word phyto (mean plant) and

Latin word Remedium (to remove an evil). Phytoremediation utilizes a variety of

plant processes and the physical characteristics of plants to aid in remediation of

contaminated sites. It is an in situ remediation technology driven by solar energy.

Remediation of metals using plants seems an effective approach in the present

scenario since plants are the primary recipients of heavy metals (Ali et al. 2013;

Table 9.1 Conventional techniques for heavy metals removal and their drawbacks

Technique

Application

to heavy

metal Drawback References

Reverse osmosis- A semi

permeable membrane is used

to separate the heavy metal

at a pressure greater than the

osmotic pressure

Cu2+, Ni2+,

Zn2+
High power consumption

due to the pumping pres-

sures, and the restoration of

the membranes

Fu and Wang

(2011)

Electrodialysis-Ion selec-

tive semi permeable mem-

brane are used to separate

heavy metals by applying

electrical potential between

two electrodes

Cr(III), Cu,

Fe

The separation percentage

decreased with an increasing

flow rate

Sadrzadeh et al.

(2009)

Ultrafiltration- A porous

membrane is used to remove

heavy metals by applying

pressure.

Cd2+, Cu2+,

Ni2+, Pb2+

and Zn2+

If the surfactant and heavy

metals are not disposed of, it

lead to secondary pollution

by generating sludge

Landaburu-

Aguirre et al.

(2009)

Ion exchange- From the

dilute solution containing

heavy metal, the metal ion

gets exchanged to the

exchange resin by the ions

held by electrostatic force

Ce2+, Fe2+

and Pb2+
It can be used only with low

concentrated metal solution

and is highly sensitive with

the pH of the aqueous phase.

Gunatilake

(2015)

Chemical precipitation-

Chemicals react with heavy

metal ions to form insoluble

precipitates

Cu2+, Cd2+

and Pb2+
Generates large volumes of

low density sludge, which

can cause disposal problems

Kongsricharoern

and Polprasert

(1995)

Coagulation- Removal of

heavy metals by charge neu-

tralization of particles

Ni2+ Unable to treat the heavy

metal wastewater

completely

Chang and Wang

(2007)
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Wang et al. 2015). Phytoremediation technique includes processes such as

phytoextraction, phytostabilization, phytovolatilization (Alkorta et al. 2004).

9.4.1.1 Phytoextraction

It is the process of uptake of contaminants from soil or water by plant roots and their

accumulation in biomass, i.e., shoots (Seth 2012). Generally shoot metal concen-

tration and shoot biomass mainly determine a suitable plant species for

phytoextraction of metals. Depending upon these parameters, two different

phytoextraction approaches have been used, i.e., use of hyperaccumulator plants

with relatively low biomass production and use of plants with relatively higher

above ground biomass production but lesser metal accumulation such as Brassica
juncea (Robinson et al. 1998; Ali et al. 2013). A recent report by Ma et al. (2016)

suggested that the highly developed root system of Napier grass makes it an ideal

candidate for phytoextraction process by absorbing, transporting and storing both

contaminants and nutrients into the plant tissue.

9.4.1.2 Phytostabilization

Phytostabilisation is a method where the plants are used to immobilise metals in the

rhizosphere and reduce the above ground wind and water erosion (Gil-Loaiza et al.

2016). There are two main factors which are considered when determining the

aptness of plants with a large biomass for phytostabilisation: root accumulation and

rhizosphere immobilisation (Sun et al. 2016). The plants selected must be able to

develop abundant root systems, and translocate metals from roots to shoots at as

low concentrations as possible (Mendez and Maier 2008). Giant reed (Arundo
donax) and silvergrass (Miscanthus sinensis) genotypes are bioenergy crops well

suited for the phytostabilisation of metal(-loid)-contamination of dry land (Barbosa

et al. 2015). But phytostabilization is not a permanent solution as heavy metals

remains in the soil as it is; only with restricted movement and needs to monitor

regularly.

9.4.1.3 Phytovolatilization

This approach involves conversion of heavy metals into volatile forms by plants

and subsequently released into the atmosphere. This process has been used for

removal of some volatile heavy metals like Hg and Se from polluted soils (Karami

and Shamsuddin 2010). However, this is limited by the fact that it does not remove

the metals completely but rather transfers them from one medium (soil or water) to

another (atmosphere) from which they can re-enter soil and water.
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9.4.1.4 Hyperaccumulator Plants

Recently, removal of heavy metals through hyperaccumulators to degrade the

contaminants, has received wide attention due to its efficacy and cost efficiency

(Ahemad 2014). Hyperaccumulators have been found to exhibit higher heavy metal

tolerance and accumulating abilities compared to other plants (Prasad and Freitas

2003). Many reports are provided for hyperaccumulators being utilized such as

Arabidopsis halleri and Solanum nigrum L. for uptake of Cd (Dahmani-Muller

et al. 2000; Wei et al. 2005), Zea mays for uptake of Pb, Cd and Zn (Meers et al.

2010), Brassica juncea, Astragalus bisulcatus for uptake of Se (Bitther et al. 2012).
However, the disadvantages that limit the use of hyperaccumulators include diffi-

culty in finding heavy metal hyperaccumulators, slow growth and lower biomass

yield. This makes the process quite time-consuming and therefore not feasible for

rapidly contaminated sites or sewage treatments (Xiao et al. 2010).

9.4.1.5 Mechanism of Heavy Metals Phytoremediation

The uptake of heavy metals by plants depends mainly on the bioavailability of the

heavy metals in the soil as well as the plant nutrients. The heavy metals either gets

accumulated in the root tissues or get translocated to the aerial regions of the plants

through xylem vessels by symplastic and/or apoplastic pathways (Sarwar et al.

2016). The tolerance against heavy metals is a prerequisite for phytoremediation

process to minimize the adverse effects on the plants. The tolerance potential of the

plant depends on mechanisms like cell wall metal binding, active transport of metal

ion into the vacuoles, chelation of metal ions with proteins and peptides and

complex formation (Memon and Schroder 2009).

9.4.1.6 Challenges in Phytoremediation

Phytoremediation, no doubt, is an attractive process for heavy metals uptake but the

researchers have confronted several limitations when only plants were used for the

bioremediation (Karami and Shamsuddin 2010; Naees et al. 2011; Ramamurthy and

Memarian 2012) which has been summarized in Fig. 9.2.

9.4.2 Microbial Remediation of Heavy Metals

Microorganisms as metal accumulators possess an inherent novel remediation

property for toxic metals in the soil with increased crop productivity. Many

researchers have studied the close interactions among plants-microorganisms

heavy metals in rhizosphere soils to enhance phytoremediation process (Glick
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2010; Dharni et al. 2014; Ma et al. 2015). Inoculation of plants with selected and

acclimatized microbes (bioaugmentation) has attained prominence for

phytoremediation of metal polluted soils (Lebeau et al. 2008; Glick 2010; Ma

et al. 2011). Some microorganisms live in association with plant roots while others

are free living. A recent report by Abd-Elnaby et al. (2016) identified three marine

Psychrobacter strains which were able to resist and accumulate several metals (Pb2+

, Cu2+ and Cd2+) with variable degrees, depending on bacterial strains and metal ion

species. There are few bacterial species such as Alphaproteobacteria and

P. aeruginosa which are isolated from sponge genera such as Sarcotragus
sp. Suberites clavatus and Crella cyathophora and have been recognized as a source
for secondary metabolites having the potential for heavy metal bioremediation

(Saurav et al. 2016a, b).

9.4.2.1 Endophytic Bacteria

Endophytes mostly lives under the epidermal cells of plant tissues and colonize

(Schulz and Boyle 2006). The extensive co-evolution of plants and endophytes has

developed an intimate ecosystem which helps the plants to survive in stressed

conditions and helps in enhanced bioremoval of Heavy metals (Ryan et al. 2008).

Fig. 9.2 An overview of the common problems faced by the plants in bioremediation. These

limitations inhibit the application of the traditional phytoremediation techniques on large scale

applications. The limitations can be overcome by synergistic integration of the plants with other

living organism for bioremediation by advanced bioremediation research

284 A. Das and J.W. Osborne



Bioaugmentation with such endophytic bacteria can diminish the metal phytotox-

icity and alter the phytoavailability of heavy metals in contaminated soils, making

them ideal for microbial assisted phytoremediation studies (Weyens et al. 2009; Ma

et al. 2011). The hyperaccumulator plants constitute a complex and specialized

endophytic bacterial flora such as Pseudomonas koreensis, Bacillus sp., Rahnella
sp. with high levels of resistance to heavy metals such as Pb, Mn and Cd (Babu et al.

2015; Luo et al. 2012; Yuan et al. 2014).

9.4.2.2 Plant Growth Promoting Rhizobacteria

Plant growth promoting rhizobacteria (PGPR) are a group of microbial community

which can improve the growth of the host plant in heavy metal contaminated soils

by mitigating toxic effects of heavy metals on the plants (Seth 2012). These may be

free- living bacteria, in symbiotic associations, or endophytic bacteria (Glick 2012).

Some important genera of PGP bacteria include Bacillus, Pseudomonas,
Enterobacter, Erwinia, Klebsiella, Flavobacterium and Gluconacetobacter
(Dardanelli et al. 2010; Nadeem et al. 2010). PGPR improve plant growth and

effect heavy metals mobility by atmospheric nitrogen fixation, production of

phytohormones and siderophores and solubilisation of insoluble phosphate (Ullah

et al. 2015). A wide range of PGPR has been identified which aid in uptake of

Heavy metals (Glick 2010). A report by Jing et al. (2014) showed enhanced

accumulation of Cd, Pb, Zn in Brassica napus when inoculated with PGPR strains

such as Enterobacter sp. and Klebsiella sp..

9.4.2.3 Fungi

Fungi have been chiefly ignored as constituents of the host microbiota and their role

in bioremediation (Moyes and Naglik 2012). Fungi have emerged as potential

biocatalysts to access heavy metals and transform them into less toxic compounds.

They possess metal sequestration and chelation systems to increase their tolerance

to heavy metals. Moreover, their high biomass makes them suitable for bioreme-

diation of Heavy metals (Aly et al. 2011). Some fungi such as, Allescheriella sp.,

Stachybotrys sp., Phlebia sp. Pleurotus pulmonarius, have metal binding potential

(D’Annibale et al. 2007). Fungi of the genera Penicillium, Aspergillus and Rhizopus
have been studied extensively as potential microbial agents for the removal of

heavy metals from aqueous solutions (Volesky and Holan 1995; Huang and Huang

1996). Pb (II) contaminated soils can be biodegraded by fungal species like

Aspergillus parasitica and Cephalosporium aphidicola with biosorption process

(Tunali et al. 2006; Akar et al. 2007). Recent reports identifies 20 fangal taxa in

which Alternaria, and Peyronellaea are the dominant genera and shows excellent

uptake of Pb2+ and Zn2+ (Li et al. 2012).
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9.4.2.4 Actinobacteria

Actinobacteria are a group of bacteria which play an important role in recycling

substances, since they are able to metabolize complex organic matter (Kieser et al.

2000). They prove to be an important ecological agent by possessing the ability to

remove Heavy metals (Albarracı́n et al. 2005; Polti et al. 2009). Several reports

signifies Corynebacterium strain tolerant to heavy metals such as Cd(II), Co(II), Cr

(VI), Hg(II), and Ni(II) (Oyetibo et al. 2010). Other reports by Mangold et al.

(2012) demonstrates the strain Acidimicrobium ferrooxidans tolerant to higher

concentrations of Zn(II) and adapting to the adverse environment. Although the

bioremediation skills of the genera such as Streptomyces, Rhodococcus, and

Amycolatopsis were extensively studied but the lack of information to enhance

the bioremediation process of actinobacteria through pathway engineering tech-

niques did not supported their further use (Alvarez et al. 2017).

9.4.2.5 Mechanism of Bioremediation by Microbes

We know microorganisms are omnipresent and reside in heavy metal contaminated

soil. The bioremediation strategy for Heavy metals depends on the active metabo-

lizing capabilities of microorganisms. The microbes mineralize the organic con-

taminants to end-products such as carbon dioxide and water which are used as

substrates for cell growth. The production of degradative enzymes by the microbes

for the target pollutants is one way to resist against Heavy metals. Microbes are

capable of dissolving metals and reducing or oxidizing transition metals. A short

summary of microbial mechanism for Heavy metals tolerance with some examples

are provided in Table 9.2.

9.4.2.6 Challenges in Microbial Bioremediation

The lack of information on the cellular responses of microbes towards utilization

and interaction with trace heavy metal pollutants restricts their successful execution

(Boopathy 2000). Large-scale application of microbes is limited because of their

requirements for extra nutrients which in turn increases the biological oxygen

demand in the waste (Dixit et al. 2015). Few challenges in bioremediation by

microbes has been summarized in Fig. 9.3.

9.4.3 Bioremediation of Heavy Metals Using Earthworms

As one of the most important species in soil fauna, earthworms play a major role in

the functioning of the soil ecosystem (van Gestel et al. 2009). They have been
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described as the soil ecosystem engineers with physical, chemical and biological

effects on plants and the environment (Lavelle et al. 2006). The potential use of

worms in so-called vermiremediation process was recently reviewed (Rodriguez-

Campos et al. 2014). Indeed, earthworms can be exploited in the process of

remediation of contaminated soils due to their ability to enhance the removal of

some heavy metal trace pollutants. Earthworms can survive in heavy-metal con-

taminated soils, can accumulate efficiently high tissue metal concentrations such as

Pb, Cd, and Zn using a variety of sequestration mechanisms (Sinha et al. 2008;

Andre et al. 2009). They may expose to heavy metals through their intestine and

Table 9.2 Summary of microbial bioremediation mechanisms

Microorganisms Mechanism of bioremediation References

Endophytic

bacteria

Bioremoval of Heavy metals in metal amended medium;

Increased biomass, chlorophyll content, nodule number

and metal accumulation

Babu et al.

(2013)

Endophytic

bacteria

Increased root elongation of plant; Reduced metal phyto-

toxicity and increase metal accumulation

Shin et al.

(2012)

Endophytic

bacteria

Improved heavy metal availability in soil, shoot dry bio-

mass and uptake of Heavy metals

Chen et al.

(2014)

PGPR Produce metal chelating agents termed siderophores,

which are able to bind metals and thus enhance their

bioavailability in the rhizosphere through a complexation

reaction

Rajkumar et al.

(2013)

PGPR Decrease the level of ethylene in plants, which increases

plant growth. This attributed to ACC deaminase, which

hydrolyzes ACC, the biosynthetic precursor for ethylene in

plants, into ammonia and α ketobutyrate

Ullah et al.

(2015)

PGPR Phosphate solubilization and nitrogen fixation which affect

heavy metals mobility and availability to the plant

Gadd (2010)

Fungi Extracellular metal sequestration and precipitation, metal

binding to the fungal cell walls, intracellular sequestration

and complexation, compartmentation, and volatilization

Fomina et al.

(2005)

Fungi Fungi can compete with roots and other microorganisms

for water and metal uptake, protect the roots from direct

interaction with the metals and impeded metal transport

through increased soil hydrophobicity

Wenzel (2009)

Fungi Fungal endophytes possess chelation systems to increase

the tolerance of host plants to heavy metals

Aly et al.

(2011)

Actinobacteria Upregulation of genes to antioxidant proteins like super-

oxide dismutase, alkyl hydroperoxide reductase and

mycothiol reductase,

Costa et al.

(2012)

Actinobacteria Use of immobilized microbial cells provides high degra-

dation efficiency and good operational stability

Ahamad and

Kunhi (2011)

Actinobacteria Production of ‘Surface active compounds’ which form

complexes with pollutants attached to soil matrix and

promote their desorption

Shafiei et al.

(2014)

Heavy metals Heavy metals, PGPR Plant Growth Promoting Rhizobacteria, ACC
1-Aminocyclopropane-1-Carboxylate
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skin via alimentary and dermal uptake routes (Homa et al. 2010). There are reports

which indicates that earthworms reduced the concentrations of Cr, Cu, Pb and Zn in

the vermicomposted sludge below the limits set by the USEPA in 60 days

(Contreras-Ramos et al. 2006). Earthworms collected from the roadsides and

mining sites show higher amounts of heavy metals than those from the other sites

and hence can be a ‘bioindicator’ of heavy metal contamination in soil. The choice

of the right species of earthworm and proper selection of earthworm for

vermicomposting is the prime step as it affects the rate of waste stabilization. For

eg. a recent report by Sizmur et al. (2011) showed that Lumbricus terrestris
decreased water soluble Cu and As but increased the solubility of Pb and Zn in

soil but at the same time, Natal-da Luz et al. (2009) did not observed an influence of

Dendrobaena veneta on the solubility of Cr, Cu, Ni, and Zn in soil. A brief report on

successful bioremediation cases of Heavy metals by earthworms is provided in

Table 9.3.

Earthworm, no doubt, is beneficial candidate for bioremediation as they easily

available, easy to handle and to measure the toxic parameters such as growth,

reproduction and biochemical responses but taking into account the indicator role

of earthworms in contaminated environments is a topic of limited practicality.

9.4.3.1 Mechanism of Vermiremediation

Earthworms ingests a large amount of different substrates and thus, concentrates

Heavy metals in their body through their skin and intestine (Mohee and Soobhany

2014). Thus, vermicomposting can be used to breakdown the toxic metals into its

non-toxic forms. Dia et al. (2004) suggested that bioaccumulation of metals in

Fig. 9.3 Limitations of the microbial remediation. It is difficult to maintain the healthy condition

of microbes in contaminated soil throughout as it is exposed to various environmental factors

which inhibit the bacterial growth. Unexpected mutation in microbes can lead to loss of their

enzymatic activity which will affect their heavy metal degrading property
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earthworms is their ability to eliminate the excess of metals. Sizmur and Hodson

(2009) suggested four prime mechanisms of metal bioremoval by earthworms

(Fig. 9.4).

Few reports on mechanism of vermiremediation suggested by various scientists

are given below:

(a) The heavy metal accumulation in the tissue of earthworms is the result of their

detritivorous lifestyle coupled with their highly permeable body walls and

Chloragosomes (phosphate- sulphur rich stuctures) which function as metal

sequestering organelles (Morgan et al. 2002).

(b) Some metals are taken up by earthworms and bound by a protein called

‘metallothioneins (MT)’ which have the capacity to bind metals. Stürzenbaum
et al. (2004) found that Cd detoxification in E. fetida was due to

Table 9.3 A report on bioremoval of heavy metals by earthworms

Earthworm species Heavy metals uptake References

Eisenia andrei Body accumulation factor exceeded 1 only for Cd (17.4

4). BAFs calculated for all analyzed metals can be

ranked as follows: Cd > Cu > Zn > Ni > Cr > Pb

Rorat et al.

(2017)

Eisenia fetida A slight reduction of total Pb in a binary biological

system was observed with an adverse impact of Pb on

the morphological parameters of the earthworms

Liu et al.

(2017)

Eisenia fetida and

Metaphire guillelmi
M. guillelmi accumulated more Cd than E. fetida but at

higher doses of Cd, inverse results were obtained. This

behavioural response indicates higher bioaccumulation

at low-dose exposure and to the lower detoxification

ability of M. guillelmi

Chen et al.

(2017)

Eisenia fetida Co uptake was higher than Hg which proves that Hg is

more toxic to earthworms as it effects coccon produc-

tion, coelomocytes, body weight and length also

Jatwani

et al. (2016)

Eudrilus eugeniae An increased concentration of Cd, Co and Ni were

obtained in the tissue of the earthworms after the

vermicomposting processes which showed that

vermicomposting can efficiently remove heavy metals

Soobhany

et al. (2015)

Metaphire posthuma
and Eisenia fetida

The removal efficiency ofM. posthumawas positive for
Zn but it was negative in E. fetida

Sahariah

et al. (2015)

Eisenia fetida Indicated a reduction in As mobility and bioavailability

in all matured composts and vermicomposts.

Maňáková

et al. (2014)

Lumbricus rubellus The heavy metals Cr, Cd and Pb contained in

vermicompost of sewage sludge were lower than initial

concentrations, with 90–98.7% removal

Azizi et al.

(2013)

Eisenia fetida Cu and Zn appear to be less toxic to earthworms than

Cd and Pb

referring to Cytochrome P450 monooxygenase activity.

Cao et al.

(2012)

Eisenia fetida Bioaccumulation of Cu and Zn within 10 weeks of

experiment

Malley et al.

(2006)

BAF Bioaccumulation factor
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compartmentalization of the metal by binding it to metallothioneins in the form

of Cd-metallothioneins

(c) Wang et al. 2014 studied the relative contribution of the dermal and the gut

exposure route to the uptake of heavy metals in earthworms. Using a modeling

approach, it was estimated that the dermal exposure route accounted for more

than 96% of the total uptake of Cd and Cu in the E. Andrei.
(d) Malonylaldehyde (MDA) is an important indicator of lipid peroxidation whose

level increases reactive oxygen species stress (produced in response to oxida-

tive stress). Sinhorin et al. (2014) measured decreased malonylaldehyde content

in E. fetida under Cd stress which may be one of the mechanism to resist against

heavy metal.

(e) Earthworms either bio-transform’ or ‘biodegrade’ the contaminants rendering

them harmless in their bodies. The process takes place in their gut followed

metabolization, complexation and sequesteration in tissues or vacuoles

(Gu et al. 2016).

(f) The worm’s digestive system is capable of detaching heavy metal ions from the

complex aggregates between these ions and humic substances in the waste as it

rots. Various enzyme-driven process accumulate the metal ions in the worms’
tissues rather than being released back into the environment. The separation of

dead worms from compost is a relatively straight forward process allowing the

heavy metal to be removed from the organic waste (Jatwani et al. 2016).

Fig. 9.4 Principal mechanism of vermiremediation. Vermiremediation is very cost-effective,

environmentally sustainable way to treat heavy metals polluted soil. It lead to significant improve-

ment in the quality of soil
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9.4.3.2 Challenges in Vermiremediation

Although earthworms are capable of accumulating heavy metal from the soil, it is

not considered worldwide as a practical approach of enriching contaminated sludge

or soils since there are evidences which indicates that progressive mineralization

tends to increase the total metal concentration of metals in the substrates (Sizmur

et al. 2011). Moreover, the application of metal-containing vermicomposts, to any

contaminated site will inevitably introduce heavy metal into terrestrial food chain

by earthworms which are significant prey organisms (Roodbergen et al. 2008). The

general concept is that when earthworms are available for their predators with high

concentrations of heavy metals in their tissues, the heavy metal should not get

transfer to higher trophic levels and lead to biomagnification of heavy metal. There

are few reports which exhibits such predator-prey phenomenon along with transfer

of metals in terrestrial and aquatic food chains (DeForest et al. 2007). There are no

recent cases reported on biomagnification of heavy metal from one trophic level to

another via earthworms but that does not mean that the bioaccumulation of heavy

metal by earthworms during vermicomposting, or during field exposure has no

potentially serious ecotoxicological impacts on consumer species since earthworms

can transfer metal fractions both from internal cellular compartments and alimen-

tary canal. Future research is needed to better understand the interaction mechanism

between heavy metal exposure and soil macroorganism in polluted soil.

9.4.4 Bioremediation of Heavy Metals by Algae

Accumulation of heavy metal by algae has received attention only in recent years

because of its potential for application in environmental protection and recovery of

some important metals (Zeraatkar et al. 2016; Malik 2004). The algal biomass may

serve as an ecologically safer, cheaper and efficient means to remove heavy metal

ions from waste water by biosorption process (Pohl and Schimmack 2006). The

metal content of the indigenous algae can be used for biomonitoring metal pollution

in a water body since the amount of metal accumulated by algae is related with the

concentration of metal in water (De Filippis and Pallaghy 1994). The heavy metal

uptake may depend upon the specificity of the algal strain used in the process for

interaction. For eg. Monteiro et al. (2010) investigated removal of Cd ions using

two strains of Desmodesmus pleiomorphus cells and found 25% difference between

them for cadmium biosorption. Romera et al. (2007) introduced brown algae as a

very good candidate for biosorbents of heavy metal ions. Alginate is one of the

main constituents of the cell wall of brown algae and it is well recognized to be

involved in metal accumulation (Davis et al. 2003). The phenomenon of remedia-

tion by algae can be broadly categorized in two different sets. (i) Bioaccumulation

of heavy metal by living cells and biosorption by non-living cells, (ii) Macroalgae

and microalgae.
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9.4.4.1 Live vs. Non-living Biomass for Heavy Metal Biosorption

Heavy metal ions can be removed from wastewaters by either live cells or dead

cells by the usage of inactive biomass. Lamaia et al. (2005) reported the limited

sortion capacity of heavy metal ions by live cells as they were harmed by the

increased heavy metal ions. The live cells are affected by many environmental

factors which influence their sorption capacity. The absorption mechanism of the

live cells are more complex as the intracellular heavy metal uptake occur at the

growth phase where adsorption occurs whereas in dead algal cells, the heavy metal

are absorbed on the surface of the cell and it is an extracellular process (Godlewska-

Zyłkiewicz 2001). The non-living algal biomass is an assemblage of polymers such

as sugars, cellulose, pectins, etc. which are capable of binding heavy metal ions

(Volesky 2007; Arief et al. 2008). Moreover, they do not require a nutrient supply

and therefore can be used for multiple sorption desorption cycles (Areco et al.

2012).

9.4.4.2 Macro Algae vs Micro Algae

The green macroalgae (seaweed) exhibit high affinity for many metal ions (Mani

and Kumar 2014). The adsorption capacity of the macroalgae is directly related to

the alginate content, availability and its specific macromolecular conformation. Lee

and Chang (2011) tested the bioremoval capacity of two macroalgae Spirogyra and
Cladophora for Pb(II) and Cu(II) and found that although the functional groups of

these two genera of algae were similar but the sorption capacity of Spirogyra was

superior to Cladophora.
Microalgae has gained more demand due to the development of innovative

mass-production and more efficient biosorption of heavy metal ions. Minimal

growth requirements (solar light and CO2) make them suitable for bioremediation

of heavy metal. Microalgae have developed an extensive spectrum of mechanisms

(extracellular and intracellular) to cope with heavy metal toxicity (Kumar et al.

2015). Spirulina spp. and Planothidium lanceolatum are reported to remediate Ni

and Zn (Doshi et al. 2008; Sbihi et al. 2012).

9.4.4.3 Mechanism of Algal Bioremediation

The accumulation of heavy metal ions in algae occurs in two phases (Monteiro et al.

2012). The first is a rapid passive biosorption where the metal ions adsorb onto the

cell surface within a short span of time, and the process is metabolism independent.

The second phase is a slower active sorption of heavy metal ions into the cytoplasm

of algal cells. This phase is metabolism-dependent (Talebi et al. 2013).

The biosorption capacity for heavy metal ions has been attributed to presence of

various functional groups on the algal cell surface such as hydroxyl (OH),
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phosphoryl (PO3O2), amino (NH2), carboxyl (COOH), sulphydryl (SH), etc., which

confer negative charge to the cell surface (Kaplan 2013). Since heavy metal ions are

in the cationic form in water, they get adsorbed onto the algal cell surface. The

functional groups are associated with various cell wall components such as pepti-

doglycan, teichoic acids, polysaccharides and proteins which provide metal binding

sites (Kuyucak and Volesky 1988).

Other mechanisms have also been reported like complexation which is important

in metal sorption by algae (Davis et al. 2003). Adhiya et al. (2002) reported that Cd

biosorption to Chlamydomonas reinhardtti involves complexation with carboxylic

groups. Electrostatic attraction and covalent binding, respectively, mediate Ni and

Zn adsorption on Chaetophora elegans (Andrade et al. 2005). Aluminum sorption

onto algal cells involves a different kind of mechanism. Aluminium (Al) ions bind

to biomass in the form of polynuclear Al species and thus prevents other heavy

metal ions from accessing the binding site (Bottero et al. 1980).

9.4.4.4 Challenges in Algal Bioremediation

Use of algae for biosorption of heavy metal ions from wastewaters has shown

promising results but an efficient and commercially viable algal technology still

need to be developed. There is a need to develop a thorough understanding of the

mechanism of metal sorption. Still there are many freshwater and marine algae

which has not been explored for their metal binding capacity. Therefore, screening

of algae is a necessary step for selection of the best algal species with high affinity

for a particular metal. The algal biomass has to be immobilized before passing

wastewater through it. For this purpose, alginate is used which is an expensive

chemical and thus not feasible for metal removal from wastewater always.

Although the use of inactivated algal biomass has been preferred, there are some

limitations to it as well. Dead cells cannot be used where biological alteration in

valency of a metal is sought. Moreover, there is no scope for biosorption improve-

ment through mutant isolation. On the other hand, use of live cells also carries some

demerits. The metal recovery might be limited since it is bound intracellularly and

the metabolic extracellular products may interact with metals and retain them

within the solution. However, to achieve the highest removal efficiency, interaction

between algal strains, dead or live cells and pollutants should be optimized.

9.5 Integrated Approach Using Multi-biosystems

for Remediation of Heavy Metals

There are many cases of heavy metal bioremediation reported using single

biosystem but very few reports on biological approaches using multi-biosystems.

When compared bioremediation strategies applied to polluted soils between
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combined and single process, it can be easily concluded that combined multiple

bioremediation approaches removed much more heavy metal from the soil and

highly efficient hydrophobic than each single process alone.

Bacterial consortia have gained interest of environmentalists where the ultimate

aim of the bacterial mixtures system is to deliver benefits environmental applica-

tions of cleaning up the contaminants (Emenike et al. 2016). Compared with single

strain, the bacterial mixtures showed higher growth rate and a considerably higher

heavy metal bioremediation which might due to higher bacterial cell density at high

levels of heavy metals (Kang et al. 2016).

Phytoremediation alone sometimes may not be sufficient to bring out the best

result and may cause toxic effects to the plants at higher concentrations of heavy

metal. Inoculation of the plant rhizosphere with microorganisms is an established

route to improving phytoextraction efficiency. The plants are benefited from syn-

ergistic effects with rhizobacteria that improve plant growth and metal accumula-

tion, mitigating the toxic effects on plants and increasing their tolerance to heavy

metals (Wood et al. 2016; Sumi et al. 2015). PGPBs-legumes associations represent

an alternative procedure for phytostabilisation of heavy metals polluted soils

mainly generated by industrial and agricultural practices (Hao et al. 2014).

We know microorganisms are responsible for the biodegradation of heavy metal

but the combination of earthworms and microbes have shown better results. Tomar

and Suthar (2011) have reported a successful treatment of waswater by microbial-

earthworm ecofilters as a promising economical process. The concept behind the

approach is that microorganisms perform biochemical degradation of waste mate-

rial while earthworms regulate microbial biomass and activity by directly or/and

indirectly grazing on microorganisms (Liu et al. 2012). Earthworms have a com-

plex digestive system in which the earthworm and microbes in the gut are mutually

benefited from each other and lead to the degradation of ingested contaminants

(Brown et al. 2000). However, it is difficult to differentiate between the metabolism

of earthworms microorganisms which contribute to the bioremediation of heavy

metal.

Algae and bacteria have coexisted ever since the early stages of evolution. They

synergistically affect each other’s physiology and metabolism. Many studies have

dealt with algae-bacteria consortium for metal bioremediation (Boivin et al. 2007).

Higher concentrations of heavy metal can cause toxic effects in algae but the

consortia of algae and bacteria overcomes it and they mutually detoxify and

assimilate metals from metal rich environments.

Generally, fungi are more tolerant to metals than bacteria (Kidd et al. 2009).

They can proficiently explore the soil microbes which are not accessible for plant

roots due to their small diameters. Fungi can compete with roots and other micro-

organisms for water and metal uptake, protect the roots from direct interaction with

the metals and inhibit metal transport through increased soil hydrophobicity (Wen-

zel 2009). The endophytic fungi could increase resistance of the host plant to multi-

metal contamination. They can also reduce the level of growth-inhibiting stress

ethylene within the plants and also provide the plants with iron from the soil. Thus,
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they prove to be a suitable candidate for remediation of heavy metal in combination

with plants with reduced toxicity of plants under stressed condition.

Remediation of contaminated soils using earthworms and plants appears to be

cost-effective and environmentally friendly technology. Wang and Li (2006)

observed higher uptake of heavy metal by plants under earthworm inoculation

which was probably due to the increase in dry matter production stimulated by

earthworms. However, further research is needed to optimize the species combina-

tions for suitable heavy metal uptake. A brief summary of the remediation of the

heavy metal by integrated approach is demonstrated in Table 9.4.

9.6 Metagenomics

To bioremediate the heavy metal contaminated site, various biosystems are used.

But very often, remediation techniques fail because of the difficulty to control and

expand key biodegradative processes from bench to full scale (Fantroussi and

Agathos 2005; Paerl and Steppe 2003). To get better results, a better understanding

of the ecology of microbial communities inhabiting contaminated sites is needed, as

well as of their interactions with the environment (Rittmann et al. 2006). But, the

complete study of the microbial communities of the environment is challenging as

most of them are recalcitrant to conventional cultivation (Stewart 2012). The proper

management of microbial resources needs a comprehensive characterization of

their genetic pool to measure the fate of contaminants and enhance bioremediation

processes (Gillan et al. 2015). The emergence of metagenomics has the potential to

revolutionize the overall bioremediation process as it gives direct access to micro-

bial communities inhabiting polluted environments independently of their

culturability (Bouhajja et al. 2016).

There are few main metagenomic approaches:

9.6.1 Library-Based Targeted Metagenomics

The environmental DNA is isolated from the environmental samples and cloned

inside suitable host (usually Escherichia coli), then the clones of interest are

selected based on their expression of biodegradative functions or sequence homol-

ogy with probes and primers, thus establishing a metagenomic library. As host,

Escherichia coli has been extensively used in metagenomic studies (Gabor et al.

2004) but use of multiple-host systems and broad-host-range vectors can be used to

overcome the limitations of gene expression machinery or toxicity of some gene

products in a single host (Cheng et al. 2014; Ekkers et al. 2012).
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Table 9.4 Some examples of bioremediation of heavy metal by integrated approach

Biosystems

Reports on bioremediation on heavy

metal References

Bacterial consortia- Bacillus sp.,
Lysinibacillus sp. and Rhodococcus
sp

Optimal removal of Pb, Mn and Cu in

leachate-polluted soil of a land fill

environment. Enhanced metabolic

activity due to bioaugmentation of the

microcosm using bacterial inoculums

Emenike et al.

(2016)

Bacterial consortia- Viridibacillus
arenosi B-21, Sporosarcina soli
B-22, Enterobacter cloacae KJ-46,
and E. cloacae KJ-47

Compared with single strain cultures,

the bacterial mixtures demonstrated

greater resistance and efficiency for

the remediation of heavy metals such

as Cd, Pb, Cu

Kang et al.

(2016)

Plant and bacteria-Sedum alfredii and
Burkholderia cepacia

Increase in the plant biomass and

leading to enhanced Zn and Cd

uptake

Li et al. (2007)

Plant and bacteria-Brassica juncea
and Bacillus spp.

Increase in the plant dry weight with

an increase in Cd uptake

Jeong et al.

(2013)

Plant and bacteria-Vicia faba, Lens
culinaris and Sulla coronaria
co-inoculated with Enterobacter clo-
acae, Pseudomonas sp. and Rhizo-
bium sullea

Inoculations decreased heavy metals

(Cu and Pb) availability in the soil

indicating a positive effect of

co-inoculation of legumes by appro-

priate heavy metals resistant bacteria

for the phytostabilisation of mine

tailings

Saadani et al.

(2016)

Plant and bacteria-Lepidium sativum
and Azotobacter

Stimulate the plant growth and

enhance its tolerance to Cr(VI) and

Cd(II), to ultimately provide a reli-

able phytoremediation system.

Sobariu et al.

(2016)

Fungi and plant-Trichoderma
atroviride and Brassica juncea

Significantly alleviates the cellular

toxicity of Cdand Ni from contami-

nated soil

Cao et al.

(2008)

Fungi and plant- Cryptococcus sp.
(yeast), Rhodotorula sp. and
B. chinensis

Fungi helps in plant growth in multi-

metal contaminated soils and give

resistance to Cd, Pb, Zn, and Cu

Deng et al.

(2012) and

Wang et al.

(2013)

Fungi and plant-Microsphaeropsis
sp. and Solanum nigrum

Shows enhanced Cd biosorption

capacity

Xiao et al.

(2010)

Fungi consortia-Mucor sp. and
Fusarium sp.

Increased metal concentrations in the

canola (Cd, Pb, and Zn), elevated the

extractable metal amount, and

increased metal translocation from

roots to shoots

Deng et al.

(2014)

Plant and Earthworm-Vicia faba, Zea
mays, and Eisenia fetida

Earthworms and plants increased the

uptake of metals (Pb, Cd and Zn)

from contaminated soils. The

earthworm-plant-soil interaction

influence both the health of the plant

and the uptake of heavy metals by

plants

Lemtiri et al.

(2016)

(continued)
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9.6.2 Direct Sequencing of Metagenomes

It does not involve a cloning step and has been more often applied to polluted

environments for characterization of the taxonomic and functional composition of

microbial communities and their dynamics. The analysis has focused on 16S rRNA

genes and marker genes of biodegradation.

9.7 Next Generation Sequencing

Next Generation Sequencing (NGS) was introduced in 2005 (Margulies et al.

2005).There has been a remarkable increase in metagenomic studies based on

NGS. It includes immense parallel sequencing of clonally amplified or single

DNA molecules spatially separated in a flow cell (van Dijk et al. 2014).

Lastly, the huge amount of data generated by metagenomic studies is analyzed

using bioinformatic tools to predict the microbial diversity, enhance the discovery

and characterization of unknown bacterial and fungal metabolic pathways involved

in the degradation of hazardous pollutants. Even though metagenomics is having

some technical and computational challenges, the positive claims of it can be used

to efficiently monitor the clean-up process of the environment and mitigate the

effects of the pollutants on the eco-system.

9.8 Metabolomics

The main challenge faced by plants growing under heavy metal stressed condition

is biomass reduction, nutrient deficiency aided with increased toxicity of heavy

metal. Plants are considered to biosynthesize specialized (primary and secondary)

metabolites to adapt to the environmental stresses (Auge et al. 2014).

Table 9.4 (continued)

Biosystems

Reports on bioremediation on heavy

metal References

Plant and Earthworm-Lantana
camara and Pontoscolex corethrurus

Interaction between earthworm and

plant have a positive effect on

Pb-phytoextraction yield and was

significantly correlated with the

increase in total microbial activity

and richness index of the fungal

community

Jusselme et al.

(2015)
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Metabolomics is a newly emerging discipline which can serve to analyze the

whole set of small molecular weight chemical compounds (<1000 Da) in organism

(Ji et al. 2015; Watanabe et al. 2015). It provides a glimpse of dynamic changes in

metabolic pathways in the host plant regulated by microbial population and their

response to highly dynamic environmental conditions in their unique ecological

niches. This field is coupled with functional genomics to understand biochemical

phenotypes across a range of biological systems. Metabolomics measures all

metabolites at a specific time point, reflecting a snapshot of all the regulatory events

responding to the external environmental conditions (Kumar et al. 2016). The

metabolites reflect the true integration of gene regulation and protein expression

incorporating the impact of the environment and other organisms. The metabolites

fate can be employed as bioindicators to monitor the biological effects of the

pollutants on living organism and help in better understanding of the environment

(Tomanek 2014).

Recent developments in analytical instrumentation and bioinformatics tools has

led to evaluate numerous plant metabolites, metabolic changes and finally elucidate

metabolic pathways responsible for heavy metal tolerance to plants (Obata and

Fernie 2012). Current studies are mostly restricted to targeted metabolomics, which

focuses on amino acid and/or lipid metabolism (Kumari et al. 2015; Melo et al.

2015).

9.8.1 Various Metabolomic Platforms to Identify Metabolites

The main strategies engaged to analyse the metabolome of plants include

(i) metabolite profiling; (ii) targeted analysis; and (iii) metabolic fingerprinting

(Hill and Roessner 2013). Metabolite profiling is a semi-quantitative which allows

for detection of a large set of both known and unknown metabolites. Target analysis

is an absolute quantitative approach which detects metabolites involved in a

particular pathway by utilizing specialized protocols and detection techniques.

Finally, metabolic fingerprinting is the highest throughput procedure and generates

fingerprints characterizing a specific metabolic state of a sample by non-specific

and rapid analysis of crude metabolite mixtures.

Without adequate knowledge of the metabolites under stressful conditions, a

targeted metabolomic approach possess a high risk of missing significant changes in

the metabolome. In order to achieve desired results, there is a need to expand

beyond the known targets that can only be accomplished with non-targeted, unbi-

ased metabolomics also known as global metabolomics (Kueger et al. 2012).

Global metabolomics provides a panoramic view covering both primary (including

sugars, amino acids and tricarboxylic acids involved in primary metabolic pro-

cesses such as respiration and photosynthesis) and secondary metabolites (includ-

ing alkaloids, phenolics, steroids, lignins, tannins, etc.) in a single run and has

advantages of uncovering many novel compounds.
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9.8.2 Analytical Platform to Analyze the Metabolites

A range of analytical platforms have been established which includes nuclear

magnetic resonance (NMR), Fourier transform ion cyclotron resonance mass spec-

trometry (FT-ICRMS) and mass spectrometry (MS). MS-based metabolomics

combines chromatographic separation with mass spectra and are available in

multiple forms such as liquid chromatography (LC –MS), gas chromatography

(GC –MS), capillary electrophoresis (CE –MS) and matrix-assisted laser desorp-

tion/ionization (MALDI-MS). However, due to high grade of molecular weight and

structural diversity between primary and secondary metabolites, a single platform is

not sufficient to indentify and quantify the metabolites (Kueger et al. 2012).

Therefore, a combination of different techniques will reveal a vast metabolite

profile. However, investigations have demonstrated 1H NMR as efficient approach

for detection of the metabolites released in responses to metal pollutants whereas,

MS-based analytical approaches are preferred to investigate plant responses to

environmental cues due to its sensitivity to low abundant molecules and the

flexibility for detecting multiple classes of molecules (Hill and Roessner 2013).

9.8.3 Bioinformatics Tools

The vast amount of metabolic data generated need to be archived, managed and

integrated for metabolic analysis. So, various bioinformatics tools are designed for

processing of raw data, mining, statistical analysis, management and mathematical

modelling of metabolomic networks. A range of bioinformatics tools for effective

insilico data pre- processing have been designed for this purpose including Ana-

lyzer Pro, Automated Mass Spectral Deconvolution and Identification system, and

many more (Fukushima and Kusano 2013).

Though metabolomics is a relatively new approach in plant biology, it can be

combined with other ‘omics’ disciplines turning out to be a major tool in revealing

new knowledge on diverse metabolites produced by plants to heavy metal contam-

inants, and also on their metabolomic reprogramming for acclimation to extreme

perturbations.

9.9 Proteomics

It is very important to understand why a particular metal at a certain concentration

can alter from non-toxic to toxic form for other species at a slightly higher

concentration (Ge et al. 2009; Vido et al. 2001). In the past years, substantial

improvements in protein separation and identification techniques have opened the
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application of proteomic methods to answer the biological questions along with

metagenomics and metabolomics methods (Isaacson et al. 2006). The heavy metal

uptake process across a number of unrelated plant species appears to be associated

with proteins involved in energy metabolism, the oxidative stress response and

abiotic and biotic stress (Visioli and Marmiroli 2013). Examining the toxic effects

of heavy metals on protein expression can be useful for gaining insight into the

biomolecular mechanisms of toxicity and for identifying potential candidate metal-

specific protein markers of exposure and response (Luque-Garcia et al. 2011).

Proteomics, an important omic approach facilitates both identification and quanti-

fication of differentially expressed proteins. Moreover, the identification of post-

transcriptionally regulated array of functionally diverse genes playing a key role in

conferring resistance towards stress has also been advanced (Zargar et al. 2017).

Proteomic data supplement the huge genomic and transcriptomic data sets in

providing a clear picture of the process and thus helps in determination of major

genetic determinants of the hyperaccumulation phenomenon (Visioli and

Marmiroli 2013). Research analysis has depicted that proteomics in union with

bioinformatic tools, can facilitate the discovery of new and better biomarkers of

heavy metal toxicity (Zhai et al. 2005).

The current state of knowledge regarding the proteomics of hyperaccumulation

is inadequate to understand the role of the large number of proteins involved and the

level of cross-talk between different pathways (Visioli and Marmiroli 2013). Few

proteomic methodologies appropriate for the identification of key regulators of

hyperaccumulation are as follows.

9.9.1 Gel and Non-gel Approaches

For most of the plant proteomics studies, pre-fractionation of the sample prior to

mass spectometry (MS) analysis is carried out which can be achieved by gel

electrophoresis or by certain gel-free techniques. 2D-Gel electrophoresis (2D-GE)

has become the optimum choice for separating complex protein mixtures with

respect to achievable resolution and reproducibility (Rose et al. 2004). However,

there are certain drawbacks such as limited capacity to fractionate hydrophobic

proteins and glycoproteins successfully, detection of small peptide molecules and

the risk of quantification (Visioli and Marmiroli 2013). Generally, the reproduc-

ibility of LC-based separation is better than that achieved by 2D-GE which is an

important advantage for comparative proteomics (Lambert et al. 2005; Pirondini

et al. 2006). There are various statistical packages which facilitate semi-

quantitative proteomics such as Progenesis (Nonlinear Dynamics), ImageMaster

2D Platinum (Ge Healthcare, Amersham Biosciences) and PDQuest (Bio-Rad).
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9.9.2 Mass Spectometry-Based Quantification

The introduction of MS technology has widely enhanced the throughput of prote-

omic data compared to electrophoretic or chromatographic methods and provides a

more reliable characterization of all the protein species along with identification of

post-translational modifications such as phosphorylation and acetylation, which are

important in cell signalling and various epigenetic phenomena (Bantscheff et al.

2012).

9.10 Conclusion

Heavy metal contamination has taken a serious turn leading to devastating effects

on environment and human health. Compared to the complexity and time con-

sumption involved in the conventional methods for remediation of soil, bioreme-

diation techniques has proven to be the best alternative techniques where in

addition to bioremoval of heavy metal, it also replenishes the site and maintain

the ecological balance of the environment. Plants are the most widely accepted

bio-tool for remediation of soil. But the traditional phytoremediation approaches

are less economical because the hyperaccumulators are generally slow growing and

have less biomass production. Earthworms, being the soil organism, leads to

significant improvement in the quality of soil and assist in heavy metal bioremoval

in their biomass but higher concentrations of heavy metal produce toxic effects in

earthworms. The bioremediation capacity of the algae and fungi have been studied

extensively and has been effective remediators in many cases. Use of microbes has

arisen as the savior for bioremediation. Recently, the integrated approach of using

more than one organism for bioremediation has gained popularity as it helps to

overcome the drawback of a single biosystem. Moreover, the symbiosis relation

between has resulted in high performances such as more metal accumulation, high

biomass production and well adapted to variety of climatic conditions, therefore

driving us towards a sustainable environment. A successful bioremediation strategy

require a detailed understanding of the functioning of degradative microbial com-

munities which is quite a challenge for microbiologists. Thus, metagenomics,

metabolomics and proteomics have come into play and has become the major

tool for identification of all the unexplored microbial communities possessing the

ability to degrade heavy metal and identification of the diverse metabolites pro-

duced by organism to tolerate under stress conditions. Thus, coupling both the

‘omics’will give a comprehensive understanding of the microbial communities and

their biodegradation pathways.

Moreover, in order to achieve even better results for bioremediation, certain

points have to be considered as follows:
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(a) The exploitation of the floral diversity should be extended for obtaining the

effective hyperaccumulator plant which can maintain effective rate of heavy

metal uptake throughout. Prior comprehensive risk assessment studies should

be carried out to protect the local plant diversity.

(b) Studies need to be conducted to have a better understanding of the interactions

between heavy metal, soil, microbe, earthworm and plant roots to comprehend

the fate of metal ions in the soil.

(c) More research is needed to obtain effective and environmentally safe chemicals

which can increase the metal solubility in soil and thus, enhanced the bioavail-

ability of metals to the plant roots.

(d) In spite of all the advances, most of the research is still limited to laboratory

scale studies. Long-term in-situ field trails are actually required for to prove the

efficacy of the strategy in real-contaminated area.

(e) More sophisticated bioinformatics tools should be developed to reconstruct full

length metabolic and catabolic pathways. More studies have to carried out

opting an integrated approach using the ‘omics’ tool together for better insights.
Thus, it can provide a practical implementation of large-scale application of

bioremediation.
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Romera E, González F, Ballester A, Blázquez ML, Mu~noz JA (2007) Comparative study of

biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

Roodbergen M, Klok C, van der Hout A (2008) Transfer of heavy metals in the food chain

earthworm Black-tailed godwit (Limosa limosa): comparison of a polluted and a reference site

in The Netherlands. Sci Total Environ 406(3):407–412

Rorat A, Wloka D, Grobelak A, Grosser A, Sosnecka A, Milczarek M, Jelonek P, Vandenbulcke F,

Kacprzak M (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals

in sewage sludge composting process. J Environ Manag 187:347–353

Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome:

practical approaches, hurdles and experimental tools. Plant J 39:715–733

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent

developments and applications. FEMS Microbiol Lett 278:1–9

Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH (2016) In situ

phytostabilisation capacity of three legumes and their associated Plant Growth Promoting

Bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotox Environ Saf 130:263–269

Sadrzadeh M, Mohammadi T, Ivakpour J, Kasiri N (2009) Neural network modeling of Pb2+

removal from wastewater using electrodialysis. Chem Eng Process 48(8):1371–1381

Sahariah B, Goswami L, Kim KH, Bhattacharyya P, Bhattacharya SS (2015) Metal remediation

and biodegradation potential of earthworm species on municipal solid waste: a parallel analysis

between Metaphire posthuma and Eisenia fetida. Bioresour Technol 180:230–236

Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2016)

Phytoremediation strategies for soils contaminated with heavy metals: modifications and future

perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

Saurav K, Bar-Shalom R, Haber M, Burgsdorf I, Oliviero G, Costantino V, Morgenstern D,

Steindler L (2016a) In search of alternative antibiotic drugs: quorum-quenching activity in

sponges and their bacterial isolates. Front Microbiol 7

Saurav K, Burgsdorf I, Teta R, Esposito G, Bar-Shalom R, Costantino V, Steindler L (2016b)

Isolation of marine Paracoccus sp. Ss63 from the sponge sarcotragus sp. and characterization of

its quorum-sensing chemical-signaling molecules by LC-MS/MS analysis. Isr J Chem 56

(5):330–340

Sbihi K, Cherifi O, El Gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects

of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom
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