
Chapter 3
Stabilization of Time-Delay Systems

This chapter deals with the stabilization of a nominal and uncertain time-delay sys-
tems using state feedback control law. Next, Load-Frequency Control (LFC) of an
interconnected power systems with communication delay based on two different con-
trol configurations (i) pure state feedback (one-term control) and (ii) pure state feed-
back as well as delayed state feedback (two-term control) is considered by exploring
the H∞ performance criterion in the design procedure.

Note that, the stabilization condition for time-delay systems is obtained by directly
extending the results of delay-dependent stability (or robust stability) conditions of
TDS. The results of new stabilization conditions are validated by considering the
numerical examples and compared with existing methods.

3.1 Introduction

As discussed in Chap. 2, the stability analysis of time-delay systems has been pro-
posed for developing delay-dependent results in LMI framework based on LK func-
tional approach with a tighter bounding technique. A significant research attention
has been devoted to the delay-dependent studies owing to the fact that, in the delay-
independent stability notion there is no upper limit to the time-delay, so often results
are regarded as conservative. In true sense an unbounded time-delay is not so realistic
to physical or engineering systems. In sequel, the stabilization (or robust stabiliza-
tion) conditions are derived in a delay-dependent framework.

The earlier results on robust stabilization (and/or stabilization) based on delay-
independent as well as on Ricatti equation approach are recalled [1–4] and [5]. Some
of the results on delay-dependent robust stabilization (and/or stabilization) in an LMI
framework can be found in [6–12], and [13], note that the condition derived in [6] is
based on Lyapunov-Razumikhin approach. In [7, 8] and [13], stabilizing conditions
were derived using LK functional approach adopting first model transformation and
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126 3 Stabilization of Time-Delay Systems

they are expected to give conservative result with or without uncertainties as model
transformation introduces additional dynamics [14] and [15]. The stabilizing condi-
tions obtained in [9, 11, 12] and [10] are all NLMI. In [12], and [9] the non-linear
matrix (NLMI) conditions were solved using cone complementarity linearization
algorithm [16], which is an iterative algorithm, while in [11] and [10] a fixed relax-
ation matrix is introduced to transform NLMI condition to LMI condition. Possibly
it is one of the probable reason for conservativeness in the stabilizing results. The
robust stabilizing (and/or stabilizing) conditions in [14] and [10] have been obtained
for polytopic uncertain systems based on descriptor method.

In this chapter, an improved few significant delay-dependent robust stabilization
(and/or stabilization) conditions for the system (3.1) (and/or (3.6)) in an LMI frame-
work are presented in the form of theorems. The robust stabilization condition of an
uncertain time-delay system (3.1) can be obtained from robust stability conditions by
substituting A = A+ BK , or one can obtain the robust stabilization condition from
the derived stabilization condition depending upon the type of bounding inequalities
to eliminate the uncertain time-varying matrices.

3.2 Problem Statement

Consider an uncertain linear time-delay systems described by the following state
equations

ẋ(t) = [A + �A(t)]x(t) + [Ad + �Ad(t)]x(t − d(t)) + [B + �B(t)]u(t)

(3.1)

x(t) = φ(t), ∀t ∈ [−du, 0], (3.2)

where, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and φ(t)
is the initial condition. The matrices A, Ad , B, C and D are known real constant
matrices of appropriate dimensions which describe the nominal system of (3.1),
and �A(t), �Ad(t) and �B(t) are real matrix function representing time-varying
parameter uncertainties. The delay d(t) is time-varying and satisfies following con-
ditions.

0 ≤ d(t) ≤ du, ḋ(t) ≤ μ < 1 (3.3)

The parametric uncertainties are assumed to be norm bounded type of the form:

�A(t) = Da Fa(t) Ea, �Ad(t) = Dd Fd(t) Ed , �B(t) = Db Fb(t) Eb

(3.4)

where, Fa(t) ∈ Rma×pa , Fb(t) ∈ Rmb×pb and Fd(t) ∈ Rmd×pd are unknown real
time-varying matrices with Lebesgue measurable elements satisfying the conditions:
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‖ Fa(t) ‖ ≤ 1, ‖ Fb(t) ‖ ≤ 1, ‖ Fd(t) ‖ ≤ 1, ∀ t (3.5)

and, Da, Dd , Ea, Eb and Ed are known real constant matrices that characterize how
the uncertain parameters in Fa(t), Fb(t) and Fd(t) enter the nominal system and
input matrices.

If the uncertainties �A(t) = 0,�Ad(t) = 0 and �B(t) = 0, then the uncertain
system (3.1) reduces to nominal time-delay system described as,

ẋ(t) = Ax(t) + Adx(t − d(t)) + Bu(t) (3.6)

Stabilization Given a scalar du > 0, find a control law u(t) = Kx(t) for the
system (3.6) such that the closed loop system is asymptotically stable for any time-
delay d(t) satisfying 0 ≤ d(t) ≤ du. This problem is known in the literature as
stabilization problem.

Robust Stabilization [21] Given a scalar du > 0, find a control law u(t) = Kx(t)
for the system (3.1), such that the closed loop system is asymptotically stable for any
time-delay d(t) satisfying 0 ≤ d(t) ≤ du. This problem is known in the literature
as robust stabilization problem.

3.3 Delay-Dependent Stabilization of Nominal TDS

In this section, some existing state feedback stabilization sufficient conditions for
system (3.6) using LK approach are presented in the form of theorems.

Assumption 3.1 The necessary condition for delay-dependent stabilization is that,
(A + Ad , B) is stabilizable.

Theorem 3.1 (Corollary 3.2 [7]) Consider the system (3.6) with a constant delay
d(t) ≡ d, satisfying the condition 0 ≤ d(t) ≤ du, the system is stabilizable with the
control law u(t) = Y X−1x(t), if there exist matrices X = XT > 0,Y and a scalar
β > 0 such that the following LMI holds:

⎡
⎣
Qc + du Ad AT

d du(AX + BY )T du X AT
d

� −duβ 0
� 0 −du(1 − β)

⎤
⎦ < 0 (3.7)

where, Qc = X (A + Ad)
T + (A + Ad)X + BY + Y T BT .

Remark 3.1 The condition has been derived using first model transformation, hence
the transformed system becomes,

ζ̇ (t) = (A + Ad)ζ(t) − Ad

∫ 0

−d
[Aζ(t + θ) + Adζ(t + θ − d)]dθ

ζ(θ) = ψ(θ), ∀ ∈ [−2d, 0]
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where, ζ(t) is the new state variable of the transformed system. Any solution of the
system (3.6) with d(t) = d and u(t) = 0 is also the solution of the above equation [7].
Thus, the LK function is chosen in accordance with the transformed system which
is of the form,

V (ζ, t) = ζ T (t)Pζ(t) + W (ζ, t)

where, W (ζ, t) = ∫ 0
−d{(1 + α−1)

∫ t
t+θ

‖ Aζ(s) ‖2 ds + ∫ t
t+θ−d ‖ Adζ(s) ‖2 ds}dθ

Finding the time-derivative of V (ζ, t), using bounding lemma (Lemma 2.1) for the
cross terms and Schwartz inequality for quadratic integral terms, and finally using
the change of variables (X = P−1 and β = 1

1+α−1 ) in V̇ (ζ, t) one can obtain the
stabilization condition in (3.7) with the use of Schur-complement.

The stability conditions (2.52) and (2.53) discussed in Theorem 2.5 is extended to
obtain the stabilization condition which is presented below in the form of theorem.

Theorem 3.2 ([9]) If there exist L = LT > 0, M, N , R, V and W = WT > 0
such that following LMI holds:

⎡
⎣

(1, 1) −N + Ad L (1, 3)

� −W duL AT
d

� � −du R

⎤
⎦ < 0 (3.8)

[
M N
� LR−1L

]
≥ 0 (3.9)

Then the system (3.6) with the control law u(t) = V L−1x(t) is asymptotically stable
for any constant time-delay 0 ≤ d(t) ≤ du.

Proof Substituting u(t) = Kx(t) in (3.6) gives closed-loop system,

ẋ(t) = Acx(t) + Adx(t − d(t))

where, Ac = A + BK . One can now replace A in (2.52)1(corresponding stabil-
ity condition) with A + BK , then pre- and post-multiplying (2.52) and (2.53) by
diag{P−1, P−1, Z−1} anddiag{P−1, P−1} respectively and finally applying adopt-
ing following change of variables as indicated below,

L = P−1, M = P−1X P−1, N = P−1Y P−1, R = Z−1, W = P−1QP−1, and V = K P−1

one can obtain the stabilization condition in (3.8) and (3.9) with standard algebraic
manipulations.

Remark 3.2 It can be observed that the resulting condition is not an LMI due to
the presence of the term LR−1L in (3.9), hence it is not possible to solve this con-
dition using any standard solver of LMI toolbox of MATLAB for obtaining delay

1refer sub-section 2.3.2, Theorem 2.5.
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bound du . However, this difficulty can be overcome by substituting R = L in (3.8)
and (3.9) which transforms it to LMI condition, but the estimate of delay bound will
be conservative in this case. To obtain better delay bound estimate cone complemen-
tarity algorithm was introduced in [16] and it is adopted in [9] and [12]. The detailed
discussion on iterative non-linear minimization problem can be found in [9]. In this
theorem the time-delay is assumed to be constant (i.e, d(t) = d in (3.6) which makes
ḋ(t) = μ = 0).

Theorem 3.3 ([10]) The state feedback control law u(t) = Kx(t) asymptotically
stabilizes the system (3.6) for all the delays satisfying the condition (3.3), if there
exist a diagonal matrix ε1 I ∈ Rn×n, such that the following LMIs hold: Q1 =
QT > 0, Q2, Q3, S̄ = S̄T , R̄ = R̄T > 0, Z̄ =

[ ¯Z11 ¯Z12¯ZT
12

¯Z13

]
and Ȳ matrices with

appropriate dimensions, that satisfy the following LMIs,

⎡
⎢⎢⎢⎢⎣

(1, 1) (1, 2) 0 Q1 duQT
2

� (2, 2) Ad(In − ε1)S̄ 0 duQT
3

0 � −(1 − μ)S̄ 0 0
� 0 0 −S̄ 0
� � 0 0 −R̄

⎤
⎥⎥⎥⎥⎦

< 0 (3.10)

⎡
⎣
R̄ 0 R̄ε1AT

d
0 ¯Z11 ¯Z12

� � ¯Z13

⎤
⎦ < 0 (3.11)

where, (1, 1) = Q2 + QT
2 + du Z11,

(1, 2) = Q3 − QT
2 + Q1AT + ε1AT

d + du Z12 + Ȳ T BT ,
(2, 2) = −Q3 − QT

3 + du Z13.

Proof The condition stated above is obtained by extending the stability theorem
in [10], here a brief sketch of the formulation is presented as a part proof, the details
can be found in [10].

Consider the system (3.6) with u(t) = 0 satisfying the condition (3.3). The system
in descriptor form by substituting x(t − d(t)) = x(t)− ∫ t

t−d(t) ẋ(s)ds can be written
as,

ẋ(t) = y(t)

0 = −y(t) + (A + Ad)x(t) − Ad

∫ t

t−d(t)
y(s)ds (3.12)

this can also be expressed as

E ˙̄x(t) =
[
ẋ(t)

0

]

=
[

0 I
(A + Ad) −I

]
x̄(t) −

[
0
Ad

] ∫ t

t−d(t)
y(s)ds (3.13)
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where, x̄(t) = [
xT (t) yT (t)

]T
, E = diag{I, 0}.

Following LK functional is selected for the descriptor system in (3.13),

V (t) = x̄(t)EPx̄(t) +
∫ 0

−du

∫ t

t+θ

yT (s)Ry(s)ds +
∫ t

t−d(t)
xT (s)Sx(s)ds (3.14)

where, P =
[
P1 0
P2 P3

]
, P1 > 0, EP = PT E ≥ 0

Finding the time-derivative of (3.14), one can obtain the following

V̇ (t) = x̄(t){PT

[
0 I

(A + Ad) −I

]
+

[
0 (A + Ad)

T

I −I

]
P}x̄(t)

−2x̄(t)PT

[
0
Ad

] ∫ t

t−d(t)
y(s)ds + du y

T (t)Ry(t)

+xT (t)Sx(t) − (1 − μ)xT (t − d(t))Sx(t − d(t))

−
∫ T

t−d(t)
yT (s)Ry(s)ds (3.15)

Using bounding Lemma 2.3 (Moon’s Bounding Lemma) for the cross term in (3.15),
one can rewrite (3.15) as

V̇ (t) ≤ x̄(t)

{
PT

[
0 I

(A + Ad ) −I

]
+

[
0 (A + Ad )T

I −I

]
P + du Z +

[
S 0
0 du R

]}
x̄(t)

−(1 − μ)xT (t − d(t))Sx(t − d(t)) + 2
∫ t

t−d(t)
yT (s)ds

{
Y −

[
0
Ad

]T
P

}
x̄(t)

(3.16)

To treat the last term of (3.16), substitute
∫ t
t−d(t) ẋ(s)

T ds = {xT (t)− xT (t − d(t))},
applying the bounding Lemma 2.1 and with little algebraic manipulations one can
obtain

2
∫ t

t−d(t)
yT (s)ds

{
Y −

[
0
Ad

]T
P

}
x̄(t) ≤ x̄ T (t)

{
ϒ + {PT

[
0
Ad

]
− Y T }

×[(1 − μ)S]−1{PT
[

0
Ad

]
− Y T }T

}
x̄(t)

+ (1 − μ)xT (t − d(t))Sx(t − d(t))

where, ϒ =
[
Y
0

]
+

[
Y
0

]T

+
[−AT

d P2 + PT
2 Ad −AT

d P3

� 0

]
.

Substituting the RHS of the above inequality in the last term of (3.16) one can obtain
the following:

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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V̇ (t) ≤ x̄(t)

⎡
⎣� PT

[
0
Ad

]
− Y T

� −(1 − μ)S

⎤
⎦ x̄(t) (3.17)

where, � = PT

[
0 I
A −I

]
+

[
0 AT

I −I

]
P + du Z +

[
S 0
0 du R

]
+

[
Y
0

]
+

[
Y
0

]T

,

Z =
[
Z11 Z12

� Z13

]
, and Y = [

Y11 Y12
]
.

If the LMIs,

⎡
⎣� PT

[
0
Ad

]
− Y T

� −(1 − μ)S

⎤
⎦ < 0 and (3.18)

[
R Y
� Z

]
≥ 0 (3.19)

then the system (3.6) with u(t) = 0 is asymptotically stable. The LMI (3.18) is due to
the use of Moons bounding inequality lemma 2.3 for replacing the quadratic integral
term that arises out of derivative of LK functional. Now, replacing the matrix A by
A + BK in the LMI (3.18).

Defining P−1 = Q =
[
Q1 0
Q2 Q3

]
and pre- and post multiply (3.18) by � =

diag{Q, I } and �T respectively, pre- and post multiply (3.19) by diag{R−1, QT }
and diag{R−1, Q} respectively. Choosing following linear changes in variables
QT ZQ = Z̄ , S−1 = S̄, R−1 = R̄ and Ȳ = ε1AT

d [P̄2, P̄3] with ε1 I a block
diagonal matrix. Now, it is now straight forward to obtain the LMI condition in
(3.10) and (3.11), which are the required stabilizing condition for the time-delay
systems (3.6). The state feedback gain is computed by the relation K = Ȳ Q−1

1 .

Remark 3.3 The selection of Ȳ matrix in the stabilization formulation helps to avoid
the NLMI stabilization condition. The stabilization results presented in [12] reveal
the fact that, descriptor system formulation of the problem in this case helped to
obtain better results than that of [9].

The stability condition (2.94)–(2.95) discussed in Theorem 2.12 (for system σ2)
is extended to obtain the stabilization condition which is presented in the form of
theorem below.

Theorem 3.4 (Theorem 2, [12]) Given the scalars du > 0, μ > 0, the system (3.6)
is asymptotically stabilizable with the state-feedback controller, u(t) = Y X−1x(t)
for any time-delay satisfying the condition (3.3) if there exist symmetric positive
matrices P̄, Q̄, R̄, T̄ , Z̄ and matrices Si , (i = 1, ..., 4), Y with appropriate
dimensions satisfying the following, LMI conditions:

P̄ =
[
X P̄12

� P̄22

]
, wi th X > 0 and Q̄ =

[
Q̄11 Q̄12

� Q̄22

]
≥ 0 (3.20)

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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and,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 S̄3 �̄14 du Q̄11 du Q̄12 �̄17 0 μP̄12

� �̄22 −S̄3 �̄24 0 0 X AT
d 0 0

� � −Q̄11 �̄34 0 0 0 P̄T
12 μP̄22

� � � �̄44 0 0 0 0 0
� � � � −Q̄11 −Q̄12 0 du Q̄12 0
� � � � � −Q̄22 0 du Q̄22 0
� � � � � � −Z 0 0
� � � � � � � −X Z−1X 0
� � � � � � � � −μT̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.21)

where, �̄11 = X AT + AX + Y T BT + BY + R̄ + S̄T1 + S̄1, �̄12 = Ad X − S̄T1 + S̄2

�̄14 = P̄12 − S̄T1 + S̄4, �̄17 = X AT + Y T BT , �̄22 = −(1 − μ)R̄ + μT̄ − S̄2 − S̄2

�̄24 = −S̄T2 − S̄4, �̄34 = P̄22 − Q̄12 − S̄T3 �̄44 = −Q̄22 − S̄T4 − S̄4

Proof The stabilization condition (3.21) has been obtained by extending the stability
condition (2.95) stated in Theorem 2.12 of Chap. 2. A brief illustration is given as
a part of proof for this theorem. Starting with the stability condition (2.95) one can
first apply Schur-complement to obtain

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15 �16 μP12

� �22 �23 �24 �25 �26 0
� � −Q11 �34 0 0 μP22

� � � �44 0 0 0
� � � � −Q11 −Q12 0
� � � � � −Q22 0
� � � � � � −μT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.22)

where, �11 = AT P11 + P11A + R + S1 + ST1 ; �12 = P11Ad − ST1 + S2; �13

= AT P12 + S3

�14 = P12 − ST1 + S4; �15 = du(Q11 + AT QT
12); �16 = du(Q12 + AT Q22);

�22 = −(1 − μ)R + μT − ST2 − S2; �23 = AT
d P12 − S3; �24 = −ST2 − S4;

�25 = du AT
d Q

T
12; �26 = du AT

d Q22; �34 = P22 − Q12 − ST3 ; and
�44 = −Q22 − ST4 − S4

Now, Pre- and post-multiplying (3.22) with diag{X, X, X, X, X, X, X}, where
X = P−1

11 and denoting X (.)X = ¯(.), (where (.) indicates any matrix variable) one
can get,

�̄ = �̄0 + �T
1 X

−1�2 + �T
2 X

−1�1 < 0 (3.23)

Using Lemma 2.1 for any positive definite matrix Z , the last two terms of (3.23) can
be bounded with inequality constraints as

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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�T
1 X

−1�2 + �T
2 X

−1�1 ≤ �T
1 Z

−1�1 + �T
2 (X Z−1X)−1�2 (3.24)

where, �1 = [AX, Ad X, 0, 0, 0, 0, 0], �2 = [0, 0, P̄12, 0, du Q̄T
12, du Q̄22, 0],

and

�̄0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 S̄3 �̄14 du Q̄11 du Q̄11 μP̄12

� �̄22 −S̄3 �̄24 0 0 0
� � −Q̄11 �̄34 0 0 μP̄22

� � � �̄44 0 0 0
� � � � −Q̄11 −Q̄12 0
� � � � � −Q̄22 0
� � � � � � −μT̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

The block matrices in �̄0 are expressed as

�̄11 = X AT + AX + R̄ + S̄1 + S̄T1 ; �̄12 = Ad X − S̄T1 + S̄2; �̄14 = P̄12 − S̄T1 + S̄4;
�̄22 = −(1 − μ)R̄ + μT̄ − S̄T2 − S̄2;
�̄24 = −S̄T2 − S̄4; �̄34 = P̄22 − Q̄12 − S̄T3 ; and �44 = −Q̄22 − S̄T4 − S̄4

Substituting (3.24) into (3.23) and replacing A with (A + BK ) and then applying
Schur-complement one can easily obtain the stabilizing condition (3.21).

Remark 3.4 One can observe in the condition (3.21) that, the (8, 8) block (X Z−1X )
is nonlinear, so standard LMI tools cannot be used to solve this matrix inequalities.
Thus cone complementarity algorithm proposed in [16] is used to find the feasible
solution of this problem. This linearization iterative algorithm gives suboptimal value
of the delay upper bound estimate.

The stability conditions (for system σ2 with the condition (2.7)) obtained in (2.85)
discussed in Theorem 2.11 is extended to obtain the stabilization condition that is
presented below in the form of theorem. This stabilization theorem is formulated by
the present author in NLMI framework for the purpose of investigating the effect of
more free weighting matrices on the convergence of cone-complementarity problem
with the use of same number of bounding inequalities.

Theorem 3.5 Given the scalars du > 0, μ > 0, the system (3.6) is asymp-
totically stabilizable with the state-feedback controller, u(t) = SY−1x(t) for any
time-delay satisfying the condition (3.3), if there exist symmetric positive definite
matrices Y, X, QR, any free matrices TR, TS and S with appropriate dimensions
satisfying the following, LMI conditions:

� =

⎡
⎢⎢⎣

�11 �12 �13 TR

� �22 duY AT
d TS

� � −du X 0
� � � −d−1

u Y X−1Y

⎤
⎥⎥⎦ < 0 (3.25)

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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where, �11 = Y AT + AY + BS+ ST BT + TR + T T
R + QR , �12 = AdY − TR + T T

S ,
�13 = du(Y AT + ST BT ), �22 = −TS − T T

S − (1 − μ)QR .

Proof Considering the stability condition (2.85) of Theorem 2.11, using Schur-
complement on it one can write the condition as

� =

⎡
⎢⎢⎣

�11 �12 �13 T1

� �22 du AT
d Q2 T2

� � −duQ2 0
� � � −d−1

u Q2

⎤
⎥⎥⎦ < 0 (3.26)

where, �11 = AT P + PA + T1 + T T
1 + Q1, �12 = PAd − T1 + T T

2 ,
�13 = du AT Q2, �22 = −T2 − T T

2 − (1 − μ)Q1.
Using state-feedback control law u(t) = Kx(t) to the system (3.6) and replace

A matrix by (A + BK ) matrix in (3.26), yields the condition

� =

⎡
⎢⎢⎣

�11 �12 �13 T1

� �22 du AT
d Q2 T2

� � −duQ2 0
� � � −d−1

u Q2

⎤
⎥⎥⎦ < 0 (3.27)

where, �11 = AT P+PA+T1+T T
1 +Q1+PBK+KT BT P , �12 = PAd−T1+T T

2 ,
�13 = du AT Q2 + duK T BT Q2, �22 = −T2 − T T

2 − (1 − μ)Q1.
Pre- and post-multiplying (3.27) by diag{P−1, P−1, Q−1

2 , P−1}, and adopting
following changes in variables,

P−1 = Y, Q−1
2 = X, K P−1 = KY = S, P−1T1P−1 = TR, P−1T2P−1 = TS,

and P−1Q1P−1 = QR , where Y = Y T > 0 and X = XT > 0, and substituting
this change of variables in (3.27) one obtains the LMI condition in (3.25).

Remark 3.5 One can observe in the condition (3.25) that the (4,4) block is not linear
in matrix variable, rather it is a nonlinear, hence the obtained condition is not an LMI
and the standard routine of LMI Toolbox of MAT LAB� [17] cannot be used to
obtain the feasible solution set.

For obtaining feasible solution, one can easily transform this NLMI condition into
an LMI by assuming X = Y , but the stabilizing results will tend to be conservative [9].
An iterative cone-complementarity algorithm in [16] has been used to solve this
NLMI problem which can yield less conservative stabilizing results compared to
that of the former assumption (X = Y ), but the estimate of delay upper bound and
the state feedback gains obtained are suboptimal.

The iterative cone-complementarity for solving the NLMI condition (3.25) is
illustrated in brief below:

Let us fix,

− Y X−1Y ≤ −L . (3.28)

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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Substituting (3.28) in (3.25), one can write

� =

⎡
⎢⎢⎣

�11 �12 �13 TR

� �22 duY AT
d TS

� � −du X 0
� � � −duL

⎤
⎥⎥⎦ < 0. (3.29)

Using Schur-complement to (3.28), one can rewrite

[
L−1 Y−1

Y−1 X−1

]
≥ 0 (3.30)

Now defining, D = L−1, J = Y−1, N = X−1, one can rewrite (3.30) as

[
D J
J N

]
≥ 0 (3.31)

Again, one can have the following valid identities valid, DL = I, JY =
I, N X = I . Thus, in view of the identities defined, one can write it in the form of
matrix inequalities as,

[
L I
� D

]
≥ 0,

[
Y I
� J

]
≥ 0, and

[
X I
� N

]
≥ 0, (3.32)

Now, one can solve (3.25) as a linear minimization problem as:

Minimize Trace (LD + Y J + XN )

subject to. (3.29), (3.31), and (3.32)

This routine is iteratively implemented by incrementing the value of the delay
bound du in small steps and checking the feasible solution of (3.28) at each step, the
algorithm stops at a value of du where the condition (3.28) is not satisfied.

For convenience of the discussion of the main results of this chapter, some pre-
liminaries including few definitions, basic theorems on stabilization of time-delay
systems which are related to the main results are presented in previous sections.

3.4 Main Results on Delay-Dependent Stabilization of
Nominal TDS

The stabilization condition is obtained by directly extending the stability condition
(2.130)–(2.134) discussed in Theorem 2.18.

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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Theorem 3.6 Given a scalar 0 ≤ d(t) ≤ du (where du > 0), the system (3.6)
for 0 < μ < 1 is asymptotically stabilizable with the state-feedback controller,
u(t) = Kx(t) (K = Y Z−1) for any time-delay satisfying the condition (3.3), if
there exist symmetric positive definite matrices P̄, Q̄, R̄, T̄ , and any free matrices
M̄i , L̄ i (i = 1, 2, 3) and Z with appropriate dimensions such that the following
LMIs hold:

P̄ =
[
P̄11 P̄12

� P̄22

]
> 0,

[
Q̄11 0
0 Q̄22

]
> 0

(3.33)

⎡
⎣

�̄ μP̄ du M̄
� −μT̄ 0
� 0 −Q̄22

⎤
⎦ < 0 (3.34)

and,

⎡
⎣

�̄ μP̄ du L̄
� −μT̄ 0
� 0 −Q̄22

⎤
⎦ < 0 (3.35)

where,

�̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 �̄13 �̄14 0 �̄16

� �̄22 �̄23 �̄24 0 �̄26

� � �̄33 0 0 0
� � 0 −Q11 0 P̄T

12
0 0 0 0 −Q11 0
� � 0 � 0 �̄66

⎤
⎥⎥⎥⎥⎥⎥⎦

where, �̄11 =d2
u Q̄11 + AZ + ZT AT + BY + Y T BT + P̄12 + P̄T

12 + R̄1 + R̄2 + du(L̄1 + L̄T
1 )

�̄12 = Ad Z − P̄12 + du(−L̄1 + L̄T
2 + M̄1)

�̄13 = du(L̄T
3 − M̄1), �̄14 = P̄22, �̄16 = P̄11 − Z + αZT AT + αY T BT

�̄22 = −(1 − μ)R̄1 + μT̄ + du(−L̄2 − L̄T
2 + M̄2 + M̄T

2 )

�̄23 = du(−M̄2 + M̄T
3 − L̄T

3 ), �̄24 = −P̄22, �̄26 = αZT AT
d

�̄33 = du(−M̄3 − M̄T
3 ) − R̄2, �̄66 = −α(Z + ZT ) + d2

u Q̄22

and Y = K Z

Proof This is an extension of the stability conditions derived in Theorem 2.18.
Replacing matrix A by Ac = A + BK in the matrix � (see (2.134)) and set the
free variables G1 = G and G2 = αG. In 2.157 the (6,6) block contains −G2 − GT

2
which indicates that for negativity of that block the matrix G2 must be positive defi-
nite, thus in this view for guaranteing the negativity of the LMI here, matrixG2 = αG

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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must also be positive definite which in turns will guarantee the term −α(G + GT )

as negative definite.
Now pre-multiply the matrix� in (2.134) bydiag[G−T , G−T , G−T , G−T , G−T ,

G−T ] and post-multiply by diag[G−1, G−1, G−1, G−1, G−1, G−1] and subse-

quently pre-multiply

[
P11 P12

� P22

]
and

[
Q11 0
0 Q22

]
by diag[G−T , G−T ] and post-

multiply the same matrices by diag[G−1, G−1] one can obtain the LMIs in (3.33)–
(3.35) with the following changes in variables G−1 = Z ,G−1(.)G−1 = ¯(.) and
K Z = Y .

Note that, the stabilizing conditions obtained here are convex combination of LMI
conditions.

To obtain a realizable solution of gain matrix K for a particular delay bound, one
needs to impose constraint on Y and Z matrices that limit the size of the gain matrix
K , and it is expressed as

K = Y Z−1 (3.36)

Imposing constraint on matrix Y in the following form

Y T Y < δ I, δ > 0 (3.37)

or,

[−δ I Y T

Y −I

]
< 0 (3.38)

Similarly imposing constraint on matrix Z−1 in the following form

Z−1 < β I, β > 0 (3.39)

or,

[
β I I
I Z

]
> 0 (3.40)

To find the optimal value of the gain K for a particular delay upper bound du and
α, following minimization problem is considered,

Minimize δ + β

subject to (3.33)–(3.35), (3.38), (3.40), P11 = P11 > 0, Ri > 0, T > 0.

Next the stabilization condition for μ = 0 is obtained from the conditions (3.33)–
(3.35) by substituting μ = 0. The stabilization condition is presented below in the
form of corollary.

http://dx.doi.org/10.1007/978-3-319-70149-3_2
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Fig. 3.1 Numerical implementation of Minimization Problem

Numerical Implementation of the Algorithm: The above minimization algorithm
is solved using the ‘mincx’ solver of the LMI toolbox of MAT LAB� along with
‘fminsearch’ routine to tune the value of parameter α for a particular delay value.
The numerical implementation of the algorithm is presented in the form of flow chart
as shown in Fig. 3.1.

Corollary 3.1 Given du > 0, the system (3.6) for μ = 0 is asymptotically sta-
bilizable with the state-feedback controller, u(t) = Kx(t) (K = Y Z−1) for any
time-delay satisfying the condition (3.3), if there exist symmetric positive definite
matrices P̄, Q̄, R̄, and any free matrices M̄i , L̄ i (i = 1, 2, 3) and Z with appro-
priate dimensions satisfying the following LMI constraints:

P̄ =
[
P̄11 P̄12

� P̄22

]
> 0,

[
Q̄11 0
0 Q̄22

]
> 0 (3.41)

[
�̄ du M̄
� −Q̄22

]
< 0 (3.42)

and,

[
�̄ du L̄
� −Q̄22

]
< 0 (3.43)
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Table 3.1 du and K for Example 3.1 for μ = 0 using LMI framework

Methods du K matri x Remarks

[6] 0.9999 [−0.10452, 749058] –

[18] 1.28 [0, −1209100] –

[10] 1.51 [−293.0350, 1] –

[19] 3.35 [−6.0276, −11.03223] –

[20] 7 [−86.92, −98.21] –

Cor 3.1 7 [−47.6658, −54.6150] α = 4.5203

8 [−75.3591, −83.9332] α = 4.6481

21 103× [−1.8832, −1.9405] α = 11.0893

where, the elements of �̄ matrix is same as defined in the Theorem 3.6.
The proof of this corollary is straight forward and can be obtained from Theo-

rem 3.6 by substituting μ = 0. The solution of the state feedback gain matrix is
obtained in a similar manner using optimization algorithm presented in Theorem 3.6
subject to the constraints (3.41)–(3.43).

Numerical Example 3.1 ([12]) Consider the system (3.6) with the following con-
stant matrices

A =
[

0 0
0 1

]
, Ad =

[−1 −1
0 −0.9

]
, and B =

[
0
1

]

The eigenvalues of the matrix [A + Ad ] is not Hurwitz and hence the open-loop
system is unstable. The proposed stabilization result is compared with the existing
LMI based methods and presented in Table 3.1.

Remark 3.6 As pointed out above that the open-loop system considered in Numerical
Example 3.1 is unstable, but the eigenvalues of closed-loop system (A+BK matrix) is
found to be stable, on the other hand the eigenvalues of (A+BK −Ad ) is not Hurwitz
thus indicating that the closed-loop system is not delay-independently stable [12].

Remark 3.7 For a particular delay value du = 7secs the parameter α is tuned using
‘fminsearch’ to find the optimal value of the gain K as presented in the flowchart
(Fig. 3.1). The variation of parameter α with respect to the control energy (represented
as ‖ K ‖2) is shown in the Fig. 3.2.

Remark 3.8 The controller gain K and the delay upper bound du for the system
described in Example 3.1 using the proposed Corollary 3.1 are presented in Table 3.1.
The effectiveness of the designed state feedback controller is obvious from the values
of du and K compared to the existing methods.
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Table 3.2 du and K for Example 3.1 for μ = 0 using NLMI framework

Methods du K matri x Iterations Decision variables

1.51 [−0.7851, −2.0379] 6

3.0 [−2.7835, −5.0543] 12

[12] 5.0 [−8.5157, −11.9412] 25 9 × n2 + (3 + m) × n

8.0 [−65.4058, −76.7778] 111

1.5 [−0.5382, −1.7503] 9

Theorem 3.5 3.0 [−3.3027, −7.2005] 61 3.5 × n2+(1.5+m)×n

3.5 [−7.3494, −13.5122] 189

n=order of the system, m=no. of inputs

Remark 3.9 Comparison of stabilizing results (du and K ) for Example 3.1 is pre-
sented in Table 3.2. One can observe that the number of decision variables used
in [12] is more than that of Theorem 3.5, more decision variables indicates use of
more free matrices in establishing the stability condition. But, both the methods uses
same number of bounding inequalities for obtaining the LMI condition. In view of
the above reasons, probably the stabilizing condition in [12] acquired enhanced delay
upper bound with sizeable iterations compared to Theorem 3.5. It must be noted here
that, the scope of improvement of Theorem 3.5 is still open in terms of enhancing
the delay bound by introducing more free matrices and its associated state vectors.

Another significant reason for better stabilizing result for μ = 0 in [12] is due to
the use of a matrix variable Q12 (expressing relationship between the state vectors
x(s) and ẋ(s)). This parameter is not used in our stability formulation. The reason
for not using this variable is that it can enhance the result of delay bound only for
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Fig. 3.4 Closed-loop simulation of system in Example 3.1

the case μ = 0 but for other μ values it fails to improve the results and subsequently
incorporates more number of decision variables in the formulation.

The simulation results of the system in Numerical Example 3.1 for constant delay
(i.e, μ = 0), considering du = 8.0 secs. with and without controller are presented in
Fig. 3.3 and Fig. 3.4 respectively. It may be observed that the open-loop time-delay
system response is unstable whereas the closed-loop system response with the state
feedback gain K = [−75.3591, − 83.9332] and du = 8secs stabilizes the unstable
system.
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3.5 Delay-Dependent Robust Stabilization of an Uncertain
TDS

In this section, the robust stabilization problem for uncertain time-delay system
described in (3.1)–(3.2) is considered using state feedback control law (i.e, u(t) =
Kx(t)). The structure of the uncertainty is described in (3.4)–(3.5) and satisfying the
delay and its derivative conditions are mentioned in (3.3). The robust stabilization
conditions for the systems in (3.1)–(3.2) with norm bounded uncertainties can be
found in the literatures [6–10, 12, 21] and [19], whereas the conditions derived for
polytopic uncertainties can be found in [11, 14, 18, 22].

Next, two existing robust stabilization algorithms for an uncertain system in (3.1)
are presented in the form of the theorem, which are significant for developing an
improved stabilization conditions.

The delay-dependent robust stabilization theorem presented below is obtained
from the robust stability conditions (2.211)–(2.212) discussed in Theorem 2.21 under
state feedback control law.

Theorem 3.7 ([9]) If there exist matrices L > 0, M, N , R, V, W > 0 and
positive scalars ε1, ε2, ...., ε6 such that,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y11 −N + Ad L Y13 LET
a + V T ET

b Y15 0 0
� −W duL AT

d 0 0 LET
d du LET

d
� � Y33 0 0 0 0
� 0 0 −ε1 −ε3 0 0
� 0 0 −ε3 −ε2 0 0
0 � 0 0 0 −ε4 −ε6

0 � 0 0 0 −ε6 −ε5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.44)

[
M N
� LR−1L

]
≥ 0 (3.45)

where, Y11 = LAT + AL + BV + V T BT + duM + N + NT + W + ε1DaDT
a + ε4Dd D

T
d

Y13 = du(L AT + V T BT ) + ε3DaDT
a + ε6Dd D

T
d

Y15 = du(LET
a + V T ET

b ); Y33 = −du R + ε2DaDT
a + ε5Dd D

T
d

then the system in (3.1)–(3.2) with the control law u(t) = V L−1x(t) is asymptot-
ically stable for any constant time-delay d satisfying the condition 0 ≤ d ≤ du and
all admissible uncertainties defined in (3.4)–(3.5).

Remark 3.10 The proof of this theorem is straightforward as it is an extension of
the robust stability condition stated in Theorem 2.21 and hence omitted. The derived
condition is a NLMI, it is solved using iterative cone-complementarity algorithm as
discussed in [9]. The nature of time-delay is assumed to be constant.

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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The delay-dependent robust stability condition (2.219)–(2.221) discussed in Theo-
rem 2.23 has been extended for solution of robust stabilization problem using state
feedback control law and is presented below in the form of theorem.

Theorem 3.8 ([12]) Given the scalars du > 0, μ > 0 , system (3.1)–(3.2) is
robustly asymptotically stabilizable with the memoryless state-feedback controller,
u(t) = Y X−1x(t) for any time-delay satisfying (3.3) and for the admissible uncer-
tainties (3.4) satisfying (3.5) if there exist symmetric positive definite matrices
P̄, Q̄, R̄, T̄ , Z̄ matrices S̄i , (i = 1, 2, ..., 4), Y and scalars ε

′
i s(i = 1, .., 4)

satisfying the following LMIs:

P̄ =
[
X P̄12

� P̄22

]
≥ 0, wi th X = XT > 0, P̄12 = P̄T

12,

[
Q̄11 Q̄12

� Q̄22

]
≥ 0

(3.46)

0 >

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 S̄3 �̄14 du Q̄11 du Q̄12 �̄17 0 XET
a

� �̄22 S̄3 �̄24 0 0 X AT
d 0 0

� � −Q̄11 �̄34 0 0 0 P̄12 0
� � � �̄44 0 0 0 0 0
� � � � −Q̄11 −Q̄12 0 du Q̄12 0
� � � � � −Q̄22 0 u Q̄22 0
� � � � � � �̄77 0 0
� � � � � � � −X Z−1X 0
� � � � � � � � −ε1

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

0 Y T ET
b μP̄12

XET
d 0 0

0 0 μP̄22

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

−ε2 0 0
� ε3 0
� � −μT̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.47)

where, �̄11 = X AT + AX + Y T BT + BY + R̄ + S̄T1 + S̄1 + �

�̄12 = Ad X − ST1 + S̄T2 ; �̄14 = P̄12 − S̄T1 + S̄4; �̄17 = X AT + Y T BT + �

�̄22 = −(1 −μ)R̄+μT̄ − ST2 − S̄2; �̄24 = −S̄T2 − S̄4; �̄34 = P̄22 − Q̄12 − ST3

http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
http://dx.doi.org/10.1007/978-3-319-70149-3_2
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�̄44 = −Q̄22 − ST4 − S̄4; �̄77 = −Z̄ +�; � = ε1DaDT
a +ε2DdDT

d +ε3DbDT
b

Proof Replacing A, Ad and B with A(t), Ad(t) and B(t) as defined in (3.4) respec-
tively in the stabilization condition (3.21) of (Theorem 3.4) and then decomposing
the resulting matrix inequality into nominal and uncertain parts which will take the
form:

�̄nom + �̄T
unc + �̄unc < 0 (3.48)

where, �̄unc = D3Fa(t)E3 + D4Fd(t)E4 + D5Fb(t)E5

D3 = [DT
a 0 0 0 0 0 DT

a 0 0]T , D4 = [DT
d 0 0 0 0 0 DT

d 0 0]T ,
D5 = [DT

b 0 0 0 0 0 DT
b 0 0]T , E3 = [EaX 0 0 0 0 0 DT

a 0 0],
E4 = [0 Ed X 0 0 0 0 DT

a 0 0], E5 = [EbY 0 0 0 0 0 DT
a 0 0].

Using Lemma 2.6 on the last two terms of (3.48) and then using Schur-complement
one can get (3.47).

Remark 3.11 If uncertainties are described as Da = Dd = D and Fa(t) = Fd(t) =
F(t) and �B(t) = 0, then the robust stabilizability condition is reduced to following
corollary.

Corollary 3.2 Given the scalars du > 0, μ > 0 ε > 0, system (3.1)–(3.2) is
robustly asymptotically stabilizable with the memoryless state-feedback controller,
u(t) = Y X−1x(t) for any time-delay satisfying (3.3) and for the admissible uncer-
tainties defined above (in Remark 3.11) if there exist symmetric positive definite
matrices P̄, Q̄, R̄, T̄ , Z̄ and any matrices S̄i , (i = 1, 2, ..., 4), Y such that the
condition (3.46) as well as the LMI holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) �̄12 S̄3 �̄14 du Q̄11 du Q̄12 (1, 7) 0 XET
a μP̄12

� �̄22 S̄3 �̄24 0 0 X AT
d 0 XET

d 0
� � −Q̄11 �̄34 0 0 0 P̄12 0 μP̄22

� � � �̄44 0 0 0 0 0 0
� � � � −Q̄11 −Q̄12 0 du Q̄12 0 0
� � � � � −Q̄22 0 du Q̄22 0 0
� � � � � � (7, 7) 0 0 0
� � � � � � � −X Z−1X 0 0
� � � � � � � � −ε 0
� � � � � � � � � −μT̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(3.49)

where, (1, 1) = �̄11|�=0 + εDDT , (1, 7) = �̄17|�=0 + εDDT , (7, 7) = −Z +
εDDT .

Note: Delay-dependent robust stabilization condition for μ = 0 can be obtained
from corollary 3.2 by substituting the value of μ = 0 and T = 0 in (3.49).

http://dx.doi.org/10.1007/978-3-319-70149-3_2
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For better understanding of the main results of this chapter, some basic theorems
on robust stabilization of time-delay systems relevant to the main results are presented
in preceding section.

3.6 Main Results on Delay-dependent Robust Stabilization
of an Uncertain TDS

In this section, two different robust stabilization conditions for an uncertain TDS
(3.1)are derived (i) in a nonlinear matrix inequality (NLMI) framework and (ii) in
a linear matrix inequality (LMI) framework, which are presented in the form of
theorems below. The effectiveness of the proposed stabilization criteria is validated
by comparing the results with existing methods.

Theorem 3.9 ([23]) System (3.1) with the state feedback control law u(t) = Kx(t)
is stabilizable if there exist symmetric positive-definite matrices Y, X, Qr and any
free matrices Tr , Ts and S, positive scalars ε1, ε2, ε3 and du, such that the following
LMI conditions holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 Tr Y ET
a 0 ST ET

b
� M22 M23 Ts 0 Y ET

d 0
� � M33 0 0 0 0
� � � −duY X−1Y 0 0 0
� � � � −ε1 I 0 0
� � � � � −ε2 I 0
� � � � � � −ε3 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.50)

where, M11 = Y AT + AY + BS + ST BT + Tr + T T
r + Qr + �; M12 = AdY + T T

s − Tr
M13 = duY AT + du ST BT + du�; M22 = −Ts − T T

s − (1 − μ)Qr ; M23 = duY AT
d

M33 = −du X + d2
u�; � = ε1DaDT

a + ε2DdDT
d + ε3DbDT

b

Proof Consider an uncertain time-delay system (3.1) satisfying the delay and its
derivative conditions (3.3), to prove the above robust stabilizability condition we
consider following LK functional candidate is considered.

V (t) = V1 + V2 + V3 (3.51)

V1(t) = xT (t)Px(t), P = PT > 0 (3.52)

V2(t) =
∫ t

t−d(t)
xT (s)Q1x(s)d, Q1 = QT

1 > 0 (3.53)

V3(t) =
∫ 0

−du

∫ 0

β

ẋ(t + α)Q2 ẋ(t + α)dαdβ, Q2 = QT
2 > 0 (3.54)
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Finding the time-derivative of (3.53) and substituting the value of ẋ(t) from (3.1)
with u(t) = Kx(t), one can get

V̇1(t) = ξ T (t)

[
�11 �12

� �22

]
ξ(t) (3.55)

where, ξ(t) = [xT (t) xT (t − d(t)]T ; �11 = (A(t) + B(t)K )T P + P(A(t) + B(t)K ) and
�12 , = PAd(t)

The time-derivative of (3.54) and (3.54) are

V̇2(t) ≤ ξ T (t)

[
Q1 0
0 −(1 − μ)Q1

]
ξ(t) (3.56)

and,

V̇3(t) = du ẋ
T (t)Q2 ẋ(t) −

∫ t

t−du

ẋ T (α)Q2 ẋ(α)dα (3.57)

The last integral term of (3.57) is approximated as

−
∫ t

t−du

ẋ T (α)Q2 ẋ(α)dα ≤ −
∫ t

t−d(t)
ẋ T (α)Q2 ẋ(α)dα (3.58)

Using Lemma 2 of [24], (3.58) may be written as

−
∫ t

t−d(t)
ẋ T (α)Q2 ẋ(α)dα ≤ ξT (t)

{[
T1 + T T

1 −T1 + T T
2

� −T2 − T T
2

]
+ du

[
T1

T2

]
Q−1

2

[
T1

T2

]T
}

ξ(t)

(3.59)

Substituting the value of ẋ(t) from (3.1) and applying state feedback control law (i.e.
u(t) = Kx(t)) in the first term of (3.57) and subsequently approximating the integral
term by (3.59), one can obtain after simple algebraic manipulations the following
expression for V̇3(t) as

V̇3(t) = ξ T (t)

{[
ϒ11 ϒ12

� ϒ22

]
+ du

[
T1

T2

]
Q−1

2

[
T1

T2

]T
}

ξ(t) (3.60)

where, ϒ11 = du(A(t) + B(t)K )T Q2(A(t) + B(t)K ) + T1 + T T
1 ;

ϒ22 = du Ad(t)T Q2Ad(t) − T2 − T T
2 ;

ϒ12 = du(A(t) + B(t)K )T Q2Ad(t) − T1 + T T
2 .
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Now, in view of (3.57) and invoking (3.55), (3.56) and (3.60) one obtains

V̇ (t) = V̇1 + V̇2 + V̇3

V̇ (t) = ξ T (t)

{[
�11 �12

� �22

]
+ du

[
T1

T2

]
Q−1

2

[
T1

T2

]T
}

ξ(t) (3.61)

where, �11 = (A(t)+B(t)K )T P+P(A(t)+B(t)K )+du(A(t)+B(t)K )T Q2(A(t)+
B(t)K )

+ T1 + T T
1 + Q1;

�22 = du Ad(t)T Q2Ad(t) − T2 − T T
2 − (1 − μ)Q1;

�12 = PAd(t) + du(A(t) + B(t)K )T Q2Ad(t) − T1 + T T
2 .

Now, for stability V̇ (t) must be less than zero, i.e, the following conditions must
be satisfied

[
�11 �12

� �22

]
+ du

[
T1

T2

]
Q−1

2

[
T1

T2

]T

< 0 (3.62)

Using Schur-complement equation (3.62) can be rewritten as

⎡
⎢⎢⎣

�11 �12 �13 T1

� �22 �23 T2

� � −duQ2 0
� � 0 −d−1

u Q2

⎤
⎥⎥⎦ < 0 (3.63)

where, �11 = (A(t) + B(t)K )T P + P(A(t) + B(t)K ) + T1 + T T
1 + Q1; �12 =

PAd(t) − T1 + T T
2 ;

�13 = du(A(t)+B(t)K )T Q2; �22 = −T2−T T
2 −(1−μ)Q1; �23 = du AT

d Q2.
Pre- and post-multiplying (3.63) by diag{P−1, P−1, Q−1

2 , P−1} and defining
the linear changes in variables as Y = P−1, X = Q−1

2 , KY = S, YT1Y =
Tr , YT2Y = Ts and Y Q1Y = Qr , one obtain,

⎡
⎢⎢⎣
W11 W12 W13 Tr
� W22 duY AT

d (t) Ts
� � −du X 0
� � 0 −d−1

u Y X−1Y

⎤
⎥⎥⎦ < 0 (3.64)

where, W11 = Y AT (t) + A(t)Y + B(t)S + ST BT (t) + Tr + T T
r + Qr ;

W12 = Ad(t)Y − Tr + T T
s ; W13 = duY AT (t) + duST BT (t); W22 = −Ts −

T T
s − (1 − μ)Qr .

The matrices A(t) and Ad(t) in (3.64) are replaced by (A + �A(t) and (Ad +
�Ad(t) with (3.4) and then decomposing the (3.64) as nominal and uncertain parts
as

U + V < 0 (3.65)
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where,

U =

⎡
⎢⎢⎣
U11 U12 U13 Tr
� U22 duY AT

d Ts
� � −du X 0
� � 0 −duY X−1Y

⎤
⎥⎥⎦ ,

V =

⎡
⎢⎢⎣
V11 V12 V13 0
� 0 V23 0
� � 0 0
0 0 0 0

⎤
⎥⎥⎦

U11=YAT + AY + BS + ST BT + Tr + T T
r + Qr ; U12 = AdY − Tr + T T

s ;
U13 = duY AT + duST BT ; U22 = −Ts − T T

s − (1 − μ)Qr ;
V11 =Y ET

a F
T
a DT

a + DaFaEaY + ST ET
b F

T
b DT

b + DbFbEbS;
V12 = Dd Fd EdY ; V13 = du(Y ET

a F
T
a DT

a + ST ET
b F

T
b DT

b ); V23 = duY ET
d F

T
d DT

d

Rearranging (3.65) one may write

U + Ju + J T
u < 0 (3.66)

where,

Ju =

⎡
⎢⎢⎣

Da

0
duDa

0

⎤
⎥⎥⎦ Fa

[
EaY 0 0 0

] +

⎡
⎢⎢⎣

Dd

0
duDd

0

⎤
⎥⎥⎦ Fd

[
0 EdY 0 0

]

+

⎡
⎢⎢⎣

Db

0
duDb

0

⎤
⎥⎥⎦ Fb

[
EbS 0 0 0

]

Applying Lemma 2.6 thrice on (Ju + J T
u ) term of (3.66), eliminates the uncertain

matrices Fa(t), Fb(t) and Fd(t), and one obtains the LMI condition (3.50).

Remark 3.12 If uncertainties are described as Da = Dd = D and Fa(t) = Fd(t) =
F(t) and �B(t) = 0, then the robust stabilizability condition is reduced to following
corollary.

Corollary 3.3 System (3.1) with state feedback control law u(t) = Kx(t) is stabi-
lizable if there exist (a) symmetric positive-definite matrices Y, X, Qr and (b) any
free matrices Tr , Ts and S, positive scalars ε and du, such that the following LMI
conditions holds:

http://dx.doi.org/10.1007/978-3-319-70149-3_2
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⎡
⎢⎢⎢⎢⎣

M̄11 M̄12 M̄13 Y ET
a Tr

� M̄22 duY AT
d Y ET

d Ts
� � M̄33 0 0
� � 0 −ε I 0
� � 0 0 −duY X−1Y

⎤
⎥⎥⎥⎥⎦

< 0 (3.67)

where, M̄11 =Y AT + AY + BS + ST BT + Tr + T T
r + Qr + εDDT ; M̄12 = AdY + T T

s − Tr
M̄13 =duY AT + du ST BT + duεDDT ; M̄22 =−Ts − T T

s − (1 − μ)Qr ;
M̄33 =−du X + d2

u εDDT

Remark 3.13 The Stabilizability conditions in (3.50) and (3.67) are NLMIs due to
the presence of nonlinear term Y X−1Y . In order to solve numerical such NLMIs
cone-complementarity algorithm [16] has been used here.

Next, the step-by-step numerical implementation of cone complementarity algo-
rithm is used to solve this NLMI problem.

Algorithmic Computation:
Let us fix

− Y X−1Y ≤ −L (3.68)

substituting (3.68) in (3.67), one can rewrite

⎡
⎢⎢⎢⎢⎣

M̄11 M̄12 M̄13 Y ET
a Tr

� M̄22 duY AT
d Y ET

d Ts
� � M̄33 0 0
� � 0 −ε 0
� � 0 0 −duL

⎤
⎥⎥⎥⎥⎦

< 0 (3.69)

using Schur-complement to (3.68), one can write

[
L−1 Y−1

Y−1 X−1

]
≥ 0 (3.70)

Now defining, D = L−1, J = Y−1, N = X−1, one can rewrite (3.70) as

[
D J
J N

]
≥ 0 (3.71)

Again, one can have the following valid identities, DL = I, JY = I, N X =
I . Thus, in view of the identities defined, one can write it in the form of matrix
inequalities as

[
L I
� D

]
≥ 0,

[
Y I
� J

]
≥ 0, and

[
X I
� N

]
≥ 0, (3.72)
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As the nonlinear LMI condition in 3.67 cannot be solved as a feasibility problem by
standard routine of LMI toolbox of MATLAB, so the NLMI in (3.67) can be solved
as a cone complementarity problem suggested in [16] which is recast as

Minimize Trace(LD + Y J + XN )
subject to (3.67), (3.71) and (3.71)

Such problems are solved by considering the linear approximation of (Trace LD+
Y J + XN ) in the form Trace (D0L + L0D+ J0Y +Y0 J + N0X + X0N ) at a given
point (D0, L0, J0,Y0, N0, X0) [16]. Note that, (3.72) confronts the exact solution
when these are at the boundary, i.e., the inequalities are rank-deficient. Now we are
ready to present algorithmic steps of the linearization algorithm.

Algorithmic Steps. Step 1: Select initially a small value of delay bound du and set
j = 0.

Step 2: Find a feasible set of (D0, J0, L0, Y0, N0, S0, Tr0, Ts0, X0, Qr0, ε0)

satisfying (3.68), (3.71) and (3.72) with Y > 0 and X > 0.
Step 3: Solve the following LMI optimization problem for the variables (D, J, L ,

Y, N , S, T, T, X, Q, ε)

Minimize Trace (LDj + DL j + Y Jj + JY j + XN j + N X j ) subject to (3.68),
(3.71) and (3.72) with Y > 0 and X > 0. The LMIs are solved using the standard
routines available with LMI toolbox of MATLAB [6].

Set (D j+1 = D, L j+1 = L , Jj+1 = J, Y j+1 = Y, N j+1 = N , X j+1 = X).
Step 4: If L j−1 ≤ Y j X

−1
j Y j is satisfied then increase du by small value and go to

Step 2. If this is condition is not satisfied within a prespecified number of iterations
then stop. Otherwise set j=j+1 and go to step 3.

Fig. 3.5 Flow-chart for
Cone Complementarity
Algorithm
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The above algorithmic steps are presented in the form of flow-chart in Fig. 3.5
for better understanding of the numerical implementation of the algorithm for stabi-
lization problem of time-delay system.

An LMI based robust stabilizing conditions are derived next by extending the
stabilizing conditions obtained in Theorem 3.6 and its associated corollaries.

Theorem 3.10 Given the scalar du > 0, the system (3.1) for 0 < μ < 1 is asymp-
totically robustly stabilizable with the state-feedback controller, u(t) = Y Z−1x(t)
for any time-delay satisfying the condition (3.3) with admissible uncertainties, if
there exist symmetric positive definite matrices P̄, Q̄, R̄, T̄ , and any free matri-
ces M̄i , L̄ i (i = 1, 2, 3), Z and the scalars εi > 0, (i = 1, 2) with appropriate
dimensions satisfying the following LMI constraints:

P̄ =
[
P̄11 P̄12

� P̄22

]
> 0,

[
Q̄11 0
0 Q̄22

]
> 0 (3.73)

⎡
⎢⎢⎢⎢⎣

�̄per μP̃cl ET
1 ET

2 du M̄
� −μT̄ 0 0 0
� 0 −ε1 I 0 0
� 0 0 −ε2 I 0
� 0 0 0 −Q̄22

⎤
⎥⎥⎥⎥⎦

< 0 (3.74)

and,

⎡
⎢⎢⎢⎢⎣

�̄per μP̃cl ET
1 ET

2 du L̄
� −μT̄ 0 0 0
� 0 −ε1 I 0 0
� 0 0 −ε2 I 0
� 0 0 0 −Q̄22

⎤
⎥⎥⎥⎥⎦

< 0 (3.75)

where,

E1 = [
Ea Z 0 0 0 0 0

]

E2 = [
0 Ea Z 0 0 0 0

]

P̃cl = [
P̄T

12 0 0 P̄22 0 0
]T
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�̄per =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 �̄13 �̄14 0 �̄16

� �̄22 �̄23 �̄24 0 �̄26

� � �̄33 0 0 0
� � 0 −Q11 0 P̄T

12
0 0 0 0 −Q11 0
� � 0 � 0 �̄66

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where, �̄11=d2
u Q̄11 + AZ + ZT AT + BY + Y T BT + P̄12 + P̄T

12 + R̄1 + R̄2 + du(L̄1 + L̄T
1 ) + �

�̄12 = Ad Z − P̄12 + du(−L̄1 + L̄T
2 + M̄1)

�̄13 = du(L̄T
3 − M̄1), �̄14 = P̄22, �̄16 = P̄11 − Z + αZT AT + αY T BT + α�

�̄22 = −(1 − μ)R̄1 + μT̄ + du(−L̄2 − L̄T
2 + M̄2 + M̄T

2 )

�̄23 = du(−M̄2 + M̄T
3 − L̄T

3 ), �̄24 = −P̄22, �̄26 = αZT AT
d

�̄33 = du(−M̄3 − M̄T
3 ) − R̄2, �̄66 = −α(Z + ZT ) + d2

u Q̄22 + α2�

� = ε1DaDT
a + ε2Dd DT

d

Proof Replace A and Ad matrices in the �̄ block matrix of the stabilizing condition
(3.34)–(3.35) by A+ DaFaEa and Ad + Dd Fd Ed respectively, this replacement will
give rise to a new matrix of the form,

�̃ = �̄nom + �̄unc (3.76)

where, �̄nom = �̄ and the �̄unc is defined below,

�̄unc =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1, 1) (1, 2) 0 0 0 (1, 6)

� 0 0 0 0 (2, 6)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
� � 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.77)

where, (1, 1)=DaFa(t)Ea Z + (DaFa(t)Ea Z)T , (1, 2) = Dd Fd(t)Ed Z ,
(1, 6) = α(DaFa(t)Ea Z)T , (2, 6) = α(Dd Fd(t)Ed Z)T

Further one can rewrite (3.77) in the form,

�̄unc = � + �T = D1FaE1 + D2Fd E2 + (D1FaE1)
T + (D2Fd E2)

T (3.78)

where,

D1 = [
DT

a 0 0 0 0 αDT
a

]T
, D2 = [

DT
d 0 0 0 0 αDT

d

]T
,

and

E1 = [
Ea Z 0 0 0 0 0

]
, E2 = [

0 Ed Z 0 0 0 0
]
,
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Now using Lemma 3.2 one can write (3.78) as,

� + �T ≤ ε1D1D
T
1 + ET

1 ε−1
1 E1 + ε2D2D

T
2 + ET

2 ε−1
2 E2 (3.79)

Substituting (3.79) in (3.76) one can get following block matrices,

⎡
⎣

�̄per μP̃cl du M̄
� −μT̄ 0
� 0 −Q̄22

⎤
⎦ + ε−1

1 ET
1 E1 + ε−1

2 ET
2 E2 (3.80)

⎡
⎣

�̄per μP̃cl du L̄
� −μT̄ 0
� 0 −Q̄22

⎤
⎦ + ε−1

1 ET
1 E1 + ε−1

2 ET
2 E2 (3.81)

now using Schur-complement twice on the block matrices in (3.80) provides the
robust-stabilizing condition (3.74)–(3.75), rest of the LMIs are same as in stabiliza-
tion theorem as they do not contain any system matrices in it.

To obtain a realizable solution of gain matrix K = Y Z−1 for a particular delay
bound, one can impose constraint on the size of matrix K elements as,

K = Y Z−1 (3.82)

with

Y T Y < δ I, δ > 0 (3.83)

and

Z−1 < β I, β > 0 (3.84)

the above two constraints (3.83) and (3.84) further can be rewritten as

[−δ I Y T

Y −I

]
< 0 (3.85)

and
[

β I I
I Z

]
> 0 (3.86)

To find the value of the gain K for a particular delay upper bound du and α following
minimization problem is proposed:

Minimize δ + β

s.t. (3.73)–(3.75), P11 = P11 > 0, Ri > 0, T > 0 and εi > 0, i = 1, 2
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If Da = Dd = D and Fa(t) = Fd(t) = F(t) then the resulting norm bounded
uncertainties will take the form �A = DFEa and �Ad = DFEd , the robust
stabilizing condition with norm bounded uncertainties for 0 < μ < 1 can be stated
in the form of corollary presented below:

Corollary 3.4 Given the scalars du > 0, the system (3.1) with �B = 0 for
0 < μ < 1 is asymptotically robustly stabilizable with the state-feedback controller
u(t) = Y Z−1x(t) for any time-delay satisfying the condition (3.3) with admissible
uncertainties, if there exist symmetric positive definite matrices P̄, Q̄, R̄, T̄ , and
any free matrices M̄i , L̄ i (i = 1, 2, 3),Z and a scalar ε > 0 with appropriate
dimensions satisfying the following LMI constraints:

P̄ =
[
P̄11 P̄12

� P̄22

]
> 0,

[
Q̄11 0
0 Q̄22

]
> 0 (3.87)

⎡
⎢⎢⎣

�̄per μP̃cl ET du M̄
� −μT̄ 0 0
� 0 −ε I 0
� 0 0 −Q̄22

⎤
⎥⎥⎦ < 0 (3.88)

and,

⎡
⎢⎢⎣

�̄per μP̃cl ET du L̄
� −μT̄ 0 0
� 0 −ε I 0
� 0 0 −Q̄22

⎤
⎥⎥⎦ < 0 (3.89)

where, the elements of �̄per are all same as defined in Theorem 3.10 except the
terms,

�̄11 = d2
u Q̄11 + AZ + ZT AT + BY + Y T BT + P̄12 + P̄T

12 + R̄1 + R̄2

+du(L̄1 + L̄T
1 ) + εDDT

�̄16 = P̄11 − Z + αZT AT + αY T BT + αεDDT

�̄66 = −α(Z + ZT ) + d2
u Q̄22 + α2αεDDT

The proof this corollary is straightforward and can be obtained in a similar manner as
in Theorem 3.10, by replacing A and Ad matrices with A+ DFEa and Ad + DFEd

respectively and along with the choices of the matrix E defined above and the matrix
D as

D = [
D 0 0 0 0 αD

]
.

E = [
Ea Z Ed Z 0 0 0 0

]
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If μ = 0 (delay-derivative) and the uncertainties are as defined in the Corollary 3.4
then one can get robust stabilizing condition directly from Corollary 3.4 by substi-
tuting μ = 0.

Corollary 3.5 Given the scalars du > 0, the system (3.1) with �B = 0 for
0 < μ < 1 is asymptotically robustly stabilizable with the state-feedback controller,
u(t) = Y Z−1x(t) for any time-delay satisfying the condition (3.3) with admissible
uncertainties, if there exist symmetric positive definite matrices P̄, Q̄, R̄, T̄ , and
any free matrices M̄i , L̄ i (i = 1, 2, 3),Z and a positive scalar ε with appropriate
dimensions satisfying the following LMI constraints,

P̄ =
[
P̄11 P̄12

� P̄22

]
> 0,

[
Q̄11 0
0 Q̄22

]
> 0 (3.90)

⎡
⎣

�̄per ET du M̄
� −ε I 0
� 0 −Q̄22

⎤
⎦ < 0 (3.91)

and,

⎡
⎣

�̄per ET du L̄
� −ε I 0
� 0 −Q̄22

⎤
⎦ < 0 (3.92)

where, the elements of �̄per are all same as defined in Theorem 3.10, whereas
following term gets modified in view of the structure of uncertainty assumed for
obtaining this corollary

where, �̄11=d2
u Q̄11 + AZ + ZT AT + BY + Y T BT + P̄12 + P̄T

12 + R̄1 + R̄2

+du(L̄1 + L̄T
1 ) + εDDT

�̄16 = P̄11 − Z + αZT AT + αY T BT + αεDDT

�̄66 = −α(Z + ZT ) + d2
u Q̄22 + α2αεDDT

Remark 3.14 It may be noted that both the corollaries 3.4 and 3.5 are equivalently
same and can be applied for robust stabilization of time-delay systems with admissi-
ble uncertainties (with �B = 0) for 0 ≤ μ ≤ 1. The LMIs (3.88) and (3.89) involved
in corollary 3.4 are replaced by the lower dimensional LMIs (3.91) and (3.92). While
a sequence Schur-complement is employed on them, this indeed requires less number
of LMI variables and in turn improves the upper bound estimate.
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Numerical Example 3.2 [6, 12] Consider an uncertain time-delay system,

ẋ(t) = [A + �A(t)]x(t) + [Ad + �Ad(t)]x(t − d(t) + Bu(t)

where, A =
[

0 0
0 1

]
, Ad =

[−1 −1
0 −0.9

]
, B =

[
0
1

]
,

Da = Dd = D = 0.2I, and Ea = Ed = I

Note: Minimization algorithm as discussed in Theorem 3.10 is considered along
with the delay-dependent robust stabilization conditions obtained in Corollary 3.4
and 3.5 for computing the delay bound du and the stabilizing gain matrix K .

(n= Order of the system and m= number of inputs).
The simulation results of the system considered in Example 3.2 (for a constant

delay, i.e, μ = 0) are obtained by considering the uncertainty matrix as in [12],

F(t) =
[

cos t 0
0 sin t

]

The considered uncertain TDS is found to be unstable under open-loop with
time-delay set to du = 1.3 seconds. Now applying the stabilizing control law with
state feedback gain K = [−1.1923, − 4.1754] and the corresponding du = 1.3
seconds (see Table 3.4), the system responses are shown in the Fig. 3.6 and its
corresponding control input plot is shown in Fig. 3.7. It may be mentioned that,
proposed corollary 3.3 provides less control effort as well as less number of iterations

Table 3.3 du and K for Example 3.2 with μ = 0 via LMI framework

Methods du K matri x Remark

[6] 0.2250 – ‘α’ is not used as parameter

[7] 0.3346 – ‘α’ is not used as parameter

Cor. 3.5 1.3 [−2.4249, −6.2278] α = 1.4119

1.35 [−19.5454, −43.1380] α = 1.3094

1.3544 [−180.4840, −391.5516] α = 1.2432

‘–’ means result is not available in the reference

Table 3.4 du and K for Example 3.1 for μ = 0 via NLMI framework

Methods du K matri x Iterations Decision Variables

Cor. 6 [12] 1.2 [−1.1110, −3.6432] 19 9 × n2 + (4 + m) × n

1.3 [−2.1485, −5.6948] 41

Cor. 3.3 1.2 [−0.7413, −3.0261] 16

1.3 [−1.1923, −4.1754] 24 3.5 × n2 + (2.5 + m) × n

1.4 [−2.7088, −7.5578] 50
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Fig. 3.6 Closed-loop simulation of system in Example 3.2

Fig. 3.7 Control input of system in Example 3.2

are required compared to existing method [12] for the same value of delay upper
bound du = 1.3 secs.

Numerical Example 3.3 Consider an uncertain time-delay system, [6, 12]

ẋ(t) = [A + �A(t)]x(t) + [Ad + �Ad(t)]x(t − d(t) + Bu(t)

where, A =
[

0 0
0 1

]
, Ad =

[−2 −0.5
0 −1

]
, B =

[
0
1

]
,

Da = Dd = D = 0.2I, and Ea = Ed = I

Responses of an uncertain TDS described in Numerical Example 3.3 are obtained
with the following data; Fa(t) = Fd(t) = F(t) = I (as ‖ F(t) ‖≤ 1) and the
time-varying delay of value d(t) = 0.2 + 0.5sin(t) (Fig. 3.8). Under open-loop the
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Fig. 3.8 Time-varying delay considered for Example 3.3
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Fig. 3.9 Open-loop simulation of system in Example 3.3

system response is found to be unstable as shown in the Fig. 3.9, it is stabilized using
K = [−105.4272, −69.6643] for the delay du = 0.7sec, μ = 0s.5 (see Table 3.5).
The closed-loop system response is shown in Fig. 3.10.

Remark 3.15 The robust stabilization results obtained using Corollary 3.3 (in a
NLMI framework) for the systems described in Examples 3.2 and 3.3 are presented
in Tables 3.4 and 3.6 respectively. One can observe from Table 3.5 that proposed sta-
bilizing controllers provide less conservative delay bound du and less control effort
‖ K ‖∞ than those obtained using delay-dependent stabilization criteria with or
without system uncertainties. Furthermore, it can be noted from Table 3.6 that the
proposed stabilizing controller while solved via NLMI framework provides signif-
icant reduction in number of iterations to achieve the same delay bound estimate
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Table 3.5 du and K for Example 3.3 for different μ using LMI framework

Methods du K matri x Remarks

μ = 0

[25] 0.3015 – ‘α’ is not used as parameter

[6] 0.2716 [−8.701 × 10−6,−1.009] ‘α’ is not used as parameter

[10] 0.5865 [−0.3155, −4.4417] ‘α’ is not used as parameter

[14] 0.5500 [−0.0229, −52.8656] ‘α’ is not used as parameter

[19] 0.671 [−8.3397, −11.3527] ‘α’ is not used as parameter

[20] 0.84† [−34.72, −18.41] ‘α’ is not used as parameter

Cor. 3.5 0.7226 [−66.1514, −45.1055] α = 0.7191

0.7229 [−93.6270, 63.0454] α = 0.7138

† The result appears to be erroneous owing to fact that, the reduced order LMI of (30) in [20]

obtained by following the steps of derivation and Remark 3 for dl = 0 and hence may not be

treated as a basis for comparing the results.

Methods du K matri x Remark

μ = 0.5

[10] 0.4960 [−0.34, −5.168] ‘α’ is not used as parameter

[14] 0.489 [−0.2884, −13.8558] ‘α’ is not used as parameter

Cor. 3.4 0.7 [−105.4271, −69.6643] α = 0.6225

0.703 [−182.8925, −117.3064] α = 0.5920
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Fig. 3.10 Closed-loop simulation of system in Example 3.3
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Table 3.6 du and K for Example 3.3 for different μ using NLMI framework

Methods du K matri x Iterations Decision variables

μ = 0

[9] 0.4500 [−4.8122, −7.7129] 99

Cor. 6 [12] 0.6300 [−1.5829, −4.1376] 19 9 × n2 + (4 + m) × n

0.6900 [-23.2572, −26.1488] 192

[26] 0.7226 [−1850, 1256] –

Cor. 3.3 0.7 [−0.4606, −1.6763] 15 3.5×n2+(2.5+m)×n

0.8 [−35.312, −36.7487] 208

Methods du K matri x Iterations Decision variables

μ = 0.5

[26] 0.694 [−137, −99.4] –

Cor. 5 [12] 0.5500 [−1.1095, −3.1773] 54 9.5×n2+(4.5+m)×n

0.6000 [−9.5735, −2.9742] 106

Cor. 3.3 0.6 [−0.7192, −2.1450] 20 3.5×n2+(2.5+m)×n

0.7 [−8.8698, −11.8340] 80

and thus it is computationally more attractive than the existing methods due to the
number of decision variables involved in the derivation is less.

Remark 3.16 One can observe in Table 3.4 and 3.6 that, robust stabilizing condi-
tion in [12] could not achieve better delay bound and realizable gain K compared
to proposed method due to the fact that, (i) the robust controller synthesis in [12]
is carried out using three different bounding inequalities in order to obtain the LMI
condition and (ii) use of more number of decision variables. Thus use of more num-
ber of bounding inequalities as well as decision variables results into conservative
estimate of the delay bound for an uncertain system.

We would also like to mention here that, in [12] on account of the use of Q12

term in the LK function for deriving the stability criterion leads to complicated
robust stabilization condition requiring more bounding inequalities to be used. It is
needless to mention that a better stability analysis may not prove beneficial to obtain
better stabilizing results due to its computational limitations.

Remark 3.17 The robust stabilization results obtained using Corollarys 3.4 and 3.5
(LMI based stabilization conditions) for the systems described in Examples 3.2
and 3.3 are presented in Tables 3.3 and 3.5 respectively. One can observe that the
proposed LMI based controller could compute realizable state feedback gain with an
enhanced delay upper bound compared to the existing results which are mainly due to
(i) solving the proposed LMI conditions along with gain minimization routine [27],
and (ii) use of more free matrices to express the relationship between various state
vectors.
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3.7 State Feedback H∞ Control of TDS

While designing controller, the primary objective is to construct systems with guar-
anteed cost performance measure. A popular performance measure of a stable linear
time-invariant system is the H∞ norm of its transfer function. Reliable control prob-
lems for time-delay systems using LMI technique. The H∞ control theory has gained
significant advances over past few decades [28, 29] and references cited therein.

The problem of H∞ control of linear delay system with delayed state feedback
has become the focus of research just over a decade and has been investigated in
delay-independent framework [30–32] and [33].

Some of the delay-dependent H∞ control of time-delay system with or without
parametric uncertainties can be found in [14, 18, 21, 34–36], and [22]. The work
in [14, 18, 36], and [22] and references cited therein are all based on descriptor
method, while the methods in [21, 34], and [35] are all based on first model trans-
formation and expected to give conservative results due to the presence of additional
dynamics in the model transformation discussed earlier in Chap. 2.

In this chapter, a state feedback H∞ control of a nominal time-delay system is
dealt in presence of disturbance input.

3.7.1 Problem Statement

Consider a general class of linear time-delay systems described by the following
state equations

ẋ(t) = Ax(t) + Adx(t − d(t)) + Dw(t) + Bu(t)

x(t) = φ(t), ∀t ∈ [−du, 0], (3.93)

z(t) = Cx(t) + Fu(t) (3.94)

where, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, w(t) ∈ Rp is
the exogenous disturbance which belongs to L2 [0,∞], z(t) ∈ Rq is the regulated
output, and φ(.) is the initial condition. The matrices A, Ad , B, D, C and F are
known real constant matrices of appropriate dimensions. The delay d(t) is time-
varying and satisfies the condition (3.3).

The state feedback H∞ control problem consists of two parts, (i) firstly, one
develops the condition of H∞ performance analysis for an unforced system (3.93)
with u(t) = 0, such that the said system is stable with disturbance attenuation γ

(where γ > 0 is a scalar) subject to zero initial condition and ‖ z ‖2 < γ ‖ w ‖2

for any non zero exogenous input w(t), and (ii) secondly, the obtained condition in (i)
is further extended to design of a H∞ state feedback control law u(t) = Kx(t) such
that the resultant close-loop system is asymptotically stable and transfer function
from w to z satisfy ‖ Twz ‖∞ < γ . Specifically, the problem of H∞ control can be
defined as given below.

http://dx.doi.org/10.1007/978-3-319-70149-3_2
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State Feedback H-Infinity Control [21] For given scalars du > 0 and γ > 0,
find a state feedback control law u(t) = Kx(t) for the system (3.93)–(3.94) such that
the resulting closed loop system is asymptotically stable and satisfying the distur-
bance attenuation γ for any time-delay d(t) with 0 ≤ d(t) ≤ du. In this case the
system (3.93)–(3.94) is said to be stabilizable with the disturbance attenuation γ .

In [18] and [14] it has been demonstrated that the choice of appropriate LK functional
and selection of suitable bounding technique for approximating the cross terms aris-
ing out of the LK functional derivatives are the two important factors for deriving less
conservative delay bound as well as for achieving the H∞ performance conditions.

3.8 Stabilization of LFC Problem for Time-Delay Power
System Based on H∞ Approach

Load frequency control (LFC) is of importance in electric power system operation
to damp frequency and voltage oscillations originated from load variations of real
and reactive powers. Many control strategies, e.g., Proportional-Integral (PI) control
[37–39], control using state feedback [33, 40–43], variable structure control [44],
adaptive control [45], have been investigated to obtain a suitable LFC strategy. In
view of the structure of existing power system model used for LFC [33, 38, 40–42,
44, 45] and [43], the area control error (ACE) is used as a control input to sup-
press the frequency deviation automatically. In general, the ACE signals are sought
through high speed communication channel and may involve negligible communi-
cation delay. In [38, 42, 46–48], the need for open communication network has been
highlighted that may cause a significant amount of communication delay present in
the ACE signal. However, to the best of our knowledge, there are only few literature
which investigate the LFC design problem considering communication delay in the
ACE signal since such a design has only been considered in [48]. In this section, the
design of LFC problem based on H∞ controller with communication delays in the
ACEs is considered.

The control structures suggested for stability analysis of interconnected power
system are, (i) Decentralized control (ii) Quasi-Decentralized control (iii) Central-
ized Control and (iv) Hierarchial or Multilevel control [41]. Literature reveals that,
the load-frequency control (LFC) of an inter-connected power system with or with-
out time-delays are based on decentralized control structures [38, 40, 43, 48–50]
and references cited therein, which is a network of local controller receiving local
signals at each sub-system and sends control signals to the same subsystem, whereas
a centralized control consists of one controller that uses all systems outputs to gen-
erate each system input, example of one such control structure in power system
is wide-area-measurement-system (WAMS) centralized control [41] and references
cited therein. So, far no works have been reported on application of delay-dependent
H∞ state feedback control using centralized LFC control structure for an intercon-
nected time-delay power system in an LMI frame work, but the delay-independent
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H∞ state feedback control formulation for a linear interconnected time-delay power
system can be found in [48] for LFC problem and in [42] for power system stabilizer
(PSS) control problem. In this thesis an attempt has been made to design a delay-
dependent H∞ state feedback controller using centralized LFC control structure such
that the interconnected power system asymptotically stable and satisfying norm from
exogenous input w(t) to regulated output z(t).

The state-feedback controllers used for LFC may be classified, on the basis of
whether delayed state (in addition to the present state) information have been used or
not in implementing two types of controllers—(a) one-term controller (no delayed
state) and (b) two-term controller (with delayed state) [33, 42, 48]. Note that, the
latter one may yields better performance due to the use of past state information.
However, existing designs of such two-term controllers [33, 42, 48] consider only
delay-independent design technique. Such designs consider the delay at infinity as a
special case of it and yields conservative results. Clearly, the controller performance
may be improved if one considers these delayed states belong to only the recent past
times. This can be reflected in the design if the delay is considered to be limited
and correspondingly delay-dependent design approach is made. Design of a two-
term state feedback LFC for an interconnected power system having two areas is
considered in this thesis. The system model under consideration takes care of the
time-delays in the ACE signals as state delays. With the proper selection of Lyapunov-
Krasovskii functional and use of tighter bounding inequality constraints, the system
under consideration is asymptotically stable while two-term controller is designed
with and without delayed state information via LMI framework with a view to achieve
closed-loop system performance requirements γ .

Let γ > 0 be a given constant, then the system (3.1)–(3.2) is said to be with
H∞ performance index no larger than γ if, the system (3.1) is asymptotically stable
subject to x(0) = 0, then the transfer function matrix satisfies,

‖ Twz( jω) ‖∞ ≤ γ, ∀ω (3.95)

‖ Twz( jω) ‖∞ = ‖ z ‖2

‖ w ‖2
=

√∫ ∞
0 zT (t)z(t)dt

√∫ ∞
0 wT (t)w(t)dt

≤ γ (3.96)

Equation (3.96) is equivalent to
∫ ∞

0 zT (t)z(t)dt ≤ γ 2
∫ ∞

0 wT (t)w(t)dt, ∀ω.

Remark 3.18 Note that, γ is a load disturbance rejection measure of the controller.
Clearly, the system performance is better as γ is smaller and this indicates better
the disturbance rejection. Therefore, for obtaining an optimal H∞ controller one
attempts to minimize the γ in order to have minimal effect of the load variation in
the system performance.
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Table 3.7 Notations used in LFC model with their meanings

Sl. No. Notations Meanings

1 �Pvi Generator Valve position

2 �Pmi Mechanical power output of the generator

3 � fi Frequency deviations

4 �Ei ACE Signals

5 �P12 Tie-line power flow from area 1 to area 2

6 Bi Proportional gain of local PI controller

7 �Pdi Load disturbances

8 Mi Moment of inertia of the generator

9 Di Generator Damping coefficient

10 Tgi Generator time-constant

11 Tchi Turbine time-constant

12 Ri Speed droop

13 Ti Stiffness coefficient

14 ki Integral gain of local PI controller

15 Tpi Power system time-constant

In next following two sections, mathematical model of an interconnected time
delayed LFC system is considered. Next, a two-term controller design criterion is
proposed for the solution of LFC problem with the inequality 3.95 describes restraint
disturbance ability.

3.8.1 Load-Frequency Control (LFC) of Power Systems with
Communication Delay

A two-area interconnected power system model with communication delays is shown
in Fig. 3.11, both the areas are identical in structure but having different generation
capacities. The notations used for the i th area, (i = 1, 2), are given in the following.

Further, di represents communication delays present in the i th-area that arises in
the ACEs due to the time taken in measuring frequency and tie line power flow from
remote terminal units (RTUs) to local control center. Note that, the local controller
is a PI controller that is embedded in the system as an integral part of the model.

The dynamics of the two-area interconnected LFC model with communication
delay is shown in Fig. 3.11 and it may be described in state space form (for i, j = 1, 2
and i 
= j)
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Fig. 3.11 Two-area LFC system

�Ṗmi (t) = �Pvi (t)

Tchi
− �Pmi (t)

Tchi
(3.97)

�Ėi (t) = +ki�Pi j (t) + ki Bi� fi (t) (3.98)

�Ṗi j (t) = 2πTi� fi (t) − 2πTi� f j (t) (3.99)

�Ṗvi (t) = −� fi (t)

RiTgi
− �Pvi (t)

Tgi
− �Ei (t − di )

Tgi
+ ui (t)

Tgi
(3.100)

� ḟi (t) = −Kpi�Pdi (t)

Tpi
− Kpi�Pi j (t)

Tpi
+ Kpi�Pmi (t)

Tpi
− � fi (t)

Tpi
(3.101)

where, �Pi j = −�P ji . Now, defining a state vector as,

[
� f1 �Pm1 �Pv1 �E1 �P12 � f2 �Pm2 �Pv2 �E2

]T

The above equations (3.97)–(3.101) may be represented in a compact form as:

ẋ(t) = Ax(t) +
2∑

i=1

Adi x(t − di (t)) + Bu(t) + Dw(t) (3.102)

z(t) = Cx(t) (3.103)

where, di (t) is a time-varying delay in the model, but in the LFC model it is assumed
to be of constant nature and w(t) = �Pd(t) = [�Pd1, �Pd2]T is a load disturbance
vector and the constant matrices associated with the (3.102) and (3.103) are given
below:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tp1

kp1

Tp1
0 0 − kp1

Tp1
0 0 0 0

0 − 1
Tch1

1
Tch1

0 0 0 0 0 0
− 1

R1Tg1
0 − 1

Tg1
0 0 0 0 0 0

k1B1 0 0 0 k1 0 0 0 0
2πT1 0 0 0 0 −2πT1 0 0 0

0 0 0 0 kp2

Tp2
− 1

Tp2

kp2

Tp2
0 0

0 0 0 0 0 0 − 1
Tch2

1
Tch2

0
0 0 0 0 0 − 1

R2Tg2
0 − 1

Tg2
0

0 0 0 0 −k2 k2B2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ad1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 − 1

Tg1
0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ad2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1

Tg2

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =
⎡
⎢⎣

0 0 1
Tg1

0 0 0 0 0 0

0 0 0 0 0 0 0 1
Tg2

0

⎤
⎥⎦

T

, D =
[− kp1

Tp1
0 0 0 0 0 0 0 0

0 0 0 0 0 − kp2

Tp2
0 0 0

]T

The objective of the control problem for system (3.102) and (3.103) is to design
a suitable control law u(t) such that, the closed-loop system exhibits good load-
disturbance rejection property in the sense that it attains certain H∞ performance,
which will be discussed in succeeding sections on load-frequency controller synthe-
sis.

The detailed discussion on need for evolution of LFC model under dergulated
power market scenario for interconnected power system involving communication
delay can be found in [51].

3.8.2 Existing H∞ Control Design For LFC Model

In this section, the H∞ control design technique (one-term and two-term controller)
of [33] for the solution of LFC problem (subsection (3.8.1)) is presented briefly. It
must be mentioned here that, the H∞ control strategy of [33] has been applied in [48]
and [42] that are designed based on delay-independent stability analysis approach.
The system model in [33] as well as in [42] and [48] considers a single state time-
delay, and it is presented as:
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ẋ(t) = Ax(t) + Adx(t − d) + Bu(t) + Dw(t) (3.104)

y(t) = Cx(t) (3.105)

Two types of control strategies are discussed in [42] for the solutions of PSS and LFC
problems. The structure of both one-term and two-term controllers are described as
One-term:

u(t) = Kx(t) (3.106)

Two-term:

u(t) = Kx(t) + Kdx(t − d) (3.107)

for the solution of H∞ LFC problem satisfying the H∞ performance index no larger
than ‘γ ’.

3.8.2.1 One-Term H∞ Control

Theorem 3.11 [33, 42] and [48] The system described in (3.104) with the control
law (3.106) is asymptotically stable and ‖ Twy ‖≤ γ, γ > 0 for any time-delay d, if
there exist matrices, Y = Y T > 0, Q̄1 = Q̄T

1 > 0, such that the following LMI is
satisfied provided (A, B) is stabilizable,

W =

⎡
⎢⎢⎣
W11 YCT AdY D
� −I 0 0
� 0 −Q̄1 0
� 0 0 −γ 2 I

⎤
⎥⎥⎦ < 0 (3.108)

where, W11 = AY + Y T AT + BS + ST BT + Q̄1. The state feedback controller law
is given by u(t) = Kx(t) with K = SY−1.

3.8.2.2 Two-Term H∞ Control

Theorem 3.12 [33, 42] and [48] The system described in (3.104) with the control
law (3.107) is asymptotically stable and ‖ Twy ‖≤ γ, γ > 0 for any time-delay d, if
there exist matrices, Y = Y T > 0, Q̄1 = Q̄T

1 > 0, positive scalars σ and κ , such
that the following LMI is satisfied provided (A, B) is stabilizable,
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W =

⎡
⎢⎢⎢⎢⎣

W11 σ AdY κBV YCT D
� −Q̄1 0 0 0
� 0 −Q̄1 0
� 0 0 −I 0
� 0 0 0 −γ 2 I

⎤
⎥⎥⎥⎥⎦

< 0 (3.109)

where, W11 = AY + Y T AT + BS + ST BT + Q̄1. The state feedback control law is
given by u(t) = Kx(t) + Kdx(t − d) with K = SY−1, and Kd = VY−1.

3.9 Main Results on H∞ Based LFC of an Interconnected
Time-Delay Power System

In this section, the existing delay-independent one-term as well as two-term con-
trol design techniques discussed above are extended for an interconnected power
system LFC problem having multiple delays (see equations (3.102)–(3.103)). An
improved feedback delay-dependent H∞ two-term controller is proposed for LFC of
an interconnected power systems with the constraint on H∞ performance index ‘γ ’.

3.9.1 One-Term H∞ Control

As pointed out earlier that, the design of one-term controller in [33, 42] and [48] can
be applied to a single time-delay systems (or equivalently to one-area LFC model).
An extension of the result of [42] to LFC problem of an interconnected two-area
power system model (3.102)–(3.103) is presented in the form of following lemma.

Lemma 3.1 The system described in (3.102)–(3.103) with the control law (3.106)
is asymptotically stable and ‖ Twy ‖≤ γ, γ > 0 for any time-delay d, if there exist
matrices, Y = Y T > 0, Q̄i = Q̄T

i > 0, (i = 1, 2), such that the following LMI is
satisfied provided (A, B) is stabilizable

W =

⎡
⎢⎢⎢⎢⎣

W11 YCT Ad1Y Ad2Y D
� −I 0 0 0
� 0 −Q̄1 0 0
� 0 0 −Q̄2 0
� 0 0 0 −γ 2 I

⎤
⎥⎥⎥⎥⎦

< 0 (3.110)

where, W11 = AY + Y T AT + BS + ST BT + ∑2
i=1 Q̄i .

The state feedback control law is given by u(t) = Kx(t) with K = SY−1.

Proof The proof of Lemma 3.1 is straightforward following [42] and hence omitted.
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The result of LMI condition for one-term control in (3.110) can be further extended
for an n-interconnected power systems as,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 YCT Ad1Y Ad2Y ... AdnY D
� −I 0 0 ... 0 0
� 0 −Q̄1 0 ... 0 0
� 0 0 −Q̄2 ... 0 0
.. .. .. .. .. .. ..

� 0 0 0 ... −Q̄n 0
� 0 0 0 ... 0 −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.111)

where, M11 = AY + Y T AT + BS + ST BT + ∑n
i=1 Q̄i

3.9.2 Two-Term H∞ Control

A two-term H∞ controller design using delay-independent analysis for power system
stabilizer (P.S.S) model has been considered in [42]. In this section, the result of [42]
is adopted for solution of time-delay LFC control problem (3.102) and its delay-
independent stabilization is presented below in the form of lemma. However in the
design stage, similar to [42] one can consider the d in (3.107) as d ∈ max[d1, d2].
In the present synthesis, assume d = d2 so the closed loop system (3.102) with the
control law (3.107) becomes

ẋ(t) = Acx(t) + Ad1x(t − d1) + Ad2cx(t − d2) + Dw(t) (3.112)

y(t) = Cx(t) (3.113)

where, Ac = A + BK and Ad2c = Ad2 + BKd .

Lemma 3.2 System (3.112) with the controller (3.107) and assumption d = d2 sat-
isfies the H∞ performance defined in (3.95), if there exist positive definite symmetric
matrices Y, Q̄1, Q̄2 and any matrices S, V , positive scalars σ and κ , such that the
following LMI holds:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 σ Ad1Y σ Ad2Y κBV YCT D
� −Q̄1 0 0 0 0
� 0 −Q̄2 0 0 0
� 0 0 −I 0 0
� 0 0 0 −I 0
� 0 0 0 0 −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (3.114)

where, �11 = AY + Y T AT + BS + ST BT + Q̄1 + Q̄2. The corresponding H∞
two-term controller gains may then be obtained as K = SY−1 and Kd = VY−1.

Remark 3.19 Note that, if d2 → ∞ then feedback delay ‘d’ also tends to infinity and
this situation is equivalent to delay-independent one-term controller design. Hence,



170 3 Stabilization of Time-Delay Systems

at this limiting situation the use of delayed states in feedback term is insignificant.
This fact has been observed by solving two-area LFC problem using LMI (3.114).

The proposed feedback delay-dependent H∞ two-term control strategy in the
form of following theorem is presented, where the two-term control law (3.107) in
the present situation is modified to

u(t) = Kx(t) + Kτ x(t − τ) (3.115)

where, τ is the delay in feedback signal and its upper bound is unknown.

Remark 3.20 Here, τ is a feedback delay involved in the control law, which is not
equal to that of the state delay di (i = 1, 2) available in the system model. In all the
existing H∞ control formulations irrespective of delay-independent analysis [33, 42,
48] or delay-dependent [14, 18, 22] and [21], the delay information used in the LK
functional is the state delay of the system model, whereas in the present synthesis,
the designed controller uses a delayed state information ‘τ ’ in the LK functional
corresponding to the delay-dependent term. The modification of the control law
(3.115) leads to the choice of a new delay-dependent LK functional that avoids the
demerit of the limiting situation (as mentioned in Remark (3.19), thus in practice, it is
suitable for the solution of LFC problem. To the best of the present author knowledge,
the stabilization of two-area LFC problem satisfying H − ∞ performance bound
based on proposed delay-dependent control strategy in LMI framework has not been
reported so far in literature.

Theorem 3.13 The system (3.102)–(3.103) with the controller (3.115) is asymptot-
ically stable and satisfies the H∞ performance (3.95), if there exist positive definite
matrices X, Q̄i (i = 1, 2..4) and matrices S, Y, T̄i (i = 1, 2), V and positive
scalars γ, τ such that the following LMI holds:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 Ad1Y T Ad2Y T �14 �15 T̄1 D YCT

� −Q̄1 0 Y AT
d1 Y AT

d1 0 0 0
� � −Q̄2 Y AT

d2 Y AT
d2 0 0 0

� � � �44 −Y T + V T BT T̄2 D 0
� � � � −Y T − Y + d Q̄4 0 D 0
� � � � � −d−1 Q̄4 0 0
� � � � � 0 −γ 2 I 0
� � � � � 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(3.116)

where, �11 = Y AT + AY + BS + ST BT + Q̄1 + Q̄2 + Q̄3 + T̄1 + T̄ T
1 ,

�14 = BV+Y AT +BS+ST BT −T̄1+T̄ T
2 , �15 = −Y T +X+Y AT +ST BT , and

�44 = BV + V T BT − T̄2 − T̄ T
2 − Q̄3.
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Proof The closed-loop system with the implementable control law (3.115) is
expressed as:

ẋ(t) = Acx(t) + Bτ x(t − τ) + Ad1x(t − d1) + Ad2x(t − d2) + Dw(t)

y(t) = Cx(t) (3.117)

where, Ac = A + BK and Bτ = BKτ .

It is assumed that the pair (A, B) is stabilizable. As the design of H∞ controller is
delay-dependent with respect to feedback delay ‘τ ’ one needs to choose appropriately
LK functional of the form:

V (t) = xT Px(t) +
∫ t

t−d1

xT (s)Q1x(s)ds +
∫ t

t−d2

xT (s)Q2x(s)ds +
∫ t

t−τ
xT (s)Q3x(s)ds

+
∫ 0

−τ

∫ t

t+α
ẋ(s)Q4 ẋ(s)dsdα (3.118)

Finding the time-derivative of (3.118) one can get,

V̇ (t) = xT (t)(Q1 + Q2 + Q3)x(t) − xT (t − d1)Q1x(t − d1) + xT (t − d2)Q2x(t − d2)

−xT (t − τ)Q3x(t − τ) + τ ẋ T (t)Q4 ẋ(t) −
∫ t

t−τ

ẋ T (s)Q4 ẋ(s)ds + 2xT (t)Px(t)

(3.119)

Now, to approximate the quadratic integral term − ∫ t
t−τ

ẋ T (s)Q4 ẋ(s)ds in (3.119)
one can use Lemma 2 of [23] which yields

−
∫ t

t−τ

ẋ T (s)Q4 ẋ(s)ds ≤
[

x(t)
x(t − τ)

]T {[
T1 + T T

1 −T1 + T T
2

� −T2 − T T
2

]
+

τ

[
T1

T2

]
Q−1

4

[
T1

T2

]T
}[

x(t)
x(t − τ)

]
(3.120)

Now, for a free matrix G of appropriate dimension following equality is valid,

0 = 2[xT (t)G + xT (t − τ)G + ẋ T G]
×[−ẋ(t) + Acx(t) + Bτ x(t − τ) + Ad1x(t − d1) + Ad2x(t − d2) + Dw(t)]

(3.121)
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On expansion of (3.121), one can get

ξ T (t)

⎡
⎢⎢⎢⎢⎣

φ11 GAd1 GAd2 φ14 φ15

� 0 0 φ24 φ24

� 0 0 φ34 φ35

� � � φ44 φ45

� � � � φ55

⎤
⎥⎥⎥⎥⎦

ξ(t) + 2ξ T (t)

⎡
⎢⎢⎢⎢⎣

G
0
0
G
G

⎤
⎥⎥⎥⎥⎦
Dw(t) = 0(3.122)

where, ξ(t) = [xT (t), xT (t − d1), xT (t − d2), xT (t − τ), ẋ T (t)]T and

φ11 =GAc + AT
c G

T , φ14 =GBτ + AT
c G

T , φ15 = −G + AT
c G

T ,

φ24 = AT
d1G

T , φ25 = AT
d1G

T , φ34 = AT
d2G

T , φ35 = AT
d2G

T ,

φ44 =GBτ + BT
τ G

T , φ45 = −G + BT
τ G

T , φ55 = −G − GT

Using the bounding Lemma 2.1, one can treat the cross term
2ξ T (t)

[
GT 0 0 GT GT

]T
Dw(t) in (3.122) and rewrite it as

ξT (t)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

φ11 GAd1 GAd2 φ14 φ15

� 0 0 φ24 φ24

� 0 0 φ34 φ35

� � � φ44 φ45

� � � � φ55

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

GD
0
0

GD
GD

⎤
⎥⎥⎥⎥⎦

γ −2

⎡
⎢⎢⎢⎢⎣

GD
0
0

GD
GD

⎤
⎥⎥⎥⎥⎦

T
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

ξ(t) + γ 2wT (t)w(t) = 0

(3.123)

where, γ is any positive scalar quantity. Invoking (3.120) and (3.123) in (3.119), one
can obtain

V̇ (t) ≤ ξ T (t)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

ψ11 GAd1 GAd2 ψ14 ψ15

� 0 0 ψ24 ψ24

� 0 0 ψ34 ψ35

� � � ψ44 ψ45

� � � � ψ55

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

T1

0
0
T2

0

⎤
⎥⎥⎥⎥⎦

τQ−1
4

⎡
⎢⎢⎢⎢⎣

T1

0
0
T2

0

⎤
⎥⎥⎥⎥⎦

T

+

⎡
⎢⎢⎢⎢⎣

GD
0
0

GD
GD

⎤
⎥⎥⎥⎥⎦

γ −2

⎡
⎢⎢⎢⎢⎣

GD
0
0

GD
GD

⎤
⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ξ(t) + γ 2wT (t)w(t) (3.124)

where, ψ11 = φ11 + Q1 + Q2 + Q3 + T1 + T T
1 , ψ14 = φ14 − T1 + T T

2 ,
ψ15 = φ15 + P ,
ψ24 = φ24, ψ25 = φ25, ψ34 = φ34, ψ35 = φ35,
ψ44 = φ44 − Q3 − T2 − T T

2 , ψ45 = φ45, ψ55 = φ55 + τQ4

http://dx.doi.org/10.1007/978-3-319-70149-3_2
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Using Schur-complement one can easily rewrite (3.124) as,

V̇ (t) ≤ ξ T (t)�ξ(t) + γ 2wT (t)w(t)

(3.125)

where, � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 GAd1 GAd2 ψ14 ψ15 T1 GD
� 0 0 ψ24 ψ24 0 0
� 0 0 ψ34 ψ35 0 0
� � � ψ44 ψ45 T2 GD
� � � � ψ55 0 GD
� � � � � −τ−1Q4 0
� � � � � 0 −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

In (3.125), if V̇ (t) is negative definite then it is guaranteed that the system con-
sidered in (3.102) is stabilizable with the control law (3.115). In case of H∞ state
feedback control with x(0) = 0, and additional constraint ‖ z(t) ‖2 ≤ γ ‖ w(t) ‖2,

γ > 0 that describes the restraint disturbance ability must be included in the
delay-dependent stability condition (3.125). One can rewrite (3.125) as,

V̇ (t) + zT (t)z(t) − γ 2wT (t)w(t) ≤ ξ T (t)�ξ(t) + zT (t)z(t) − γ 2wT (t)w(t)

(3.126)

Integrate (3.126) from 0 to ∞ on both the sides, it follows then

∫ ∞

0
{zT (t)z(t) − γ 2wT (t)w(t) + V̇ (t)}dt ≤

∫ ∞

0
{ξ T (t)�ξ(t) + zT (t)z(t)}dt

(3.127)

Substituting z(t) = C x(t) in (3.127), one can rewrite

∫ ∞
0

{zT (t)z(t) − γ 2wT (t)w(t) + V̇ (t)}dt ≤
∫ ∞

0
{xT (t)CTCx(t) + ξT (t)�ξ(t)}dt

(3.128)

After simple algebraic manipulation of (3.128) one can rewrite it as

∫ ∞

0
{zT (t)z(t) − γ 2wT (t)w(t) + V̇ (t)}dt ≤

∫ ∞

0
{ξ T (t)�̄ξ(t)}dt (3.129)

If we define the H∞ performance index as

Jwz =
∫ ∞

0
{zT (t)z(t) − γ 2wT (t)w(t)}dt (3.130)
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thus in view of (3.130) one can write

Jwz ≤
∫ ∞

0
{zT (t)z(t) − γ 2wT (t)w(t) + V̇ (t)}dt (3.131)

Now, in view of (3.131) and (3.129) it is obvious that following is true,

Jwz ≤
∫ ∞

0
{ξ T (t)�̄ξ(t)}dt (3.132)

�̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 + CTC GAd1 GAd2 ψ14 ψ15 T1 GD
� 0 0 ψ24 ψ24 0 0
� 0 0 ψ34 ψ35 0 0
� � � ψ44 ψ45 T2 GD
� � � � ψ55 0 GD
� � � � � −τ−1Q4 0
� � � � � 0 −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.133)

Using Schur-complement one can rewrite (3.133) equivalently as,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 GAd1 GAd2 ψ14 ψ15 T1 GD CT

� 0 0 ψ24 ψ24 0 0 0
� 0 0 ψ34 ψ35 0 0 0
� � � ψ44 ψ45 T2 GD 0
� � � � ψ55 0 GD 0
� � � � � −τ−1Q4 0 0
� � � � � 0 −γ 2 I 0
� � � � � 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.134)

If � < 0 in (3.134), then it guarantees both V̇ (t) < 0 as well as Jwz < 0 thus
satisfying the condition of (3.96). Now, substitute Ac = A + BK and Bτ = BKτ in
(3.133) first, then pre- and post-multiplying (3.133) by {G−1,G−1,G−1,G−1,G−1,

G−1, I, I } and its transpose respectively and adopting following linear changes of
variables,

G−1 =Y , G−T =Y T , G−1KT =Y K T = ST , KG−T = KY T = S,
G−1KT

τ =Y K T
τ = V ,

G−1Q1G−T = Q̄1, G−1Q2G−T = Q̄2, G−1Q3G−T = Q̄3, G−1Q4G−T = Q̄4,

G−1PG−T = X , G−1T1G−T = T̄1, G−1T2G−T = T̄2

After carrying out above linear changes of matrix variables in � matrix, one can
obtain � < 0 in (3.116) which is the required stabilizing condition for the LFC
system. This completes the proof. �
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Remark 3.21 Note that, one may obtain controller gains using K = SY−1 and
Kτ = VY−1 from feasible solution of (3.116) for a specified γ . However, by defining
γ̄ = γ 2 and then obtaining a solution of (3.116) by minimizing γ̄ yields an optimal
controller in the sense that γ gets optimized. But such optimal controllers generally
have high gains and significantly amplify noises causing performance degradation.
However, these high control gains may be reduced if one attempts to obtain a sub-
optimal controller by exploiting the trade-off between the control gains and the H∞
performance index γ . An attempt is made to design such suboptimal controllers
by minimizing the γ as well as restricting the size of the control gains K and Kτ

simultaneously. Such an attempt is not new in literature, for example see [27], where
suboptimal controllers have been obtained to avoid the problem that arises due to
high control gains. For this purpose, note that, computing the control gains K and Kτ

involves the LMI variables S, V and Y . In view of this, one can define the follow-
ing multi-objective optimization algorithm for computing the controller gains and
simultaneously the H∞ performance index γ .

Multi-objective Optimization Algorithm:

Minimize γ̄ + p + s + v

subject to (3.117),

[
s I S
� I

]
,

[
v I V
� I

]
,

[
Y I
� pI

]
≥ 0,

γ̄ > 0, p > 0, s > 0, and v > 0

3.9.3 Simulation Results

To illustrate the effectiveness of the proposed LFC H∞ control problem satisfy-
ing performance index ‘γ ’, the following two-area power system model has been
considered. The area-1 is equivalent to a single generator and area-2 is equivalent
to 4-interconnected generator units as in ([48]). The plant parameters are given as
follows,

Area -1 (Parameters are in p.u):
Tch1 = 0.3 sec, Tg1 = 0.1 sec, R1 = 0.05, D1 = 1, M1 = 10, k1 = 0.5, and

1
Tp1

= D1
M1

, Tp1 = M1
D1

,
kp1

Tp1
= 1

M1
, kp1 = 1

D1
, B1 = 1

R1
+ D1

Area -2 (Parameters are in p.u):
Tch2 = 0.17 sec, Tg2 = 0.4 sec, R2 = 0.05, D2 = 1.5, M2 = 12, k2 = 0.5,

and
Tp2 = M2

D2
,

kp2

Tp2
= 1

M2
, kp2 = 1

D2
, B2 = 4

R2
+ D2

Open-loop simulation: Without control input (i.e, u(t) = 0) the system in (3.102)
with d1 = 0.1 sec and d2 = 0.6 sec is simulated with constant load disturbances of
1 p.u in both the areas. It can be observed that the frequency deviations � f1(t) and
� f2(t) of the system are unstable as shown in the Fig. (3.12). It must be mentioned
here that the PI controllers are inherently involved in the respective areas of the
system model (3.102), (see Fig. 3.11).
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Fig. 3.12 Deviation in frequency for open-loop system

Closed-loop simulation: The designed H∞ controller gains for the LFC problem
are computed by solving the LMI conditions using ‘mincx’ optimization solver of
LMI control toolbox ([17]).

One-term control: Solving the LMI in (3.110), one obtains the γ as 0.4493 and
the corresponding gain matrix K as:

K =
[ −16.3022 −0.3319 −0.0917 −1.5967 −0.1824 0.4176 −0.0224 −0.1252

−0.4749 −0.0208 −0.0099 0.4723 −0.3316 −22.6162 −0.2747 −0.4027

−0.1959
−1.1464

]

Delay-independent two-term control [33, 42]: Solving the LMI in (3.114) with
the choice σ = 1 and κ = 1, the control gains are obtained as:

K = 1 × 105 ×[ −4.0871 −0.0004 0.0004 −0.9696 −0.3088 3.7540 0.0005 −0.0007 −0.9837
4.9949 0.0005 −0.0005 −2.4130 −0.7636 −5.7216 −0.0008 0.0011 −2.3906

]

Kd = [0]2×9, corresponding γ = 8.4336 × 10−4

Remark 3.22 It is mentioned in the Remark 4.4 of [33] that, the direct implemen-
tation of the LMI (59) of Theorem 4.2 for the system considered in (50a) will yield
smisleading result for computing the controller gain associated with the delayed
term due to the fact that (1,1) entry of the LMI (59) does not contain a symmetric
term associated with the variable V which in turn yields V = [0] and consequently
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Kd = VY−1 = [0], this fact can be observed in the result presented above for
delay-independent two-term control.

To overcome this difficulty an iterative optimization procedure has been suggested
in [33] by introducing some additional terms in the (1,1) entry of the LMI condition
(3.114) to minimize the γ . The drawbacks of this iterative algorithm are:

(i) selecting the initial conditions for several scalar tuning parameters involved in
the LMI (like κ and σ )

(ii) selecting the arbitrary initial Y matrix
(ii) selecting predetermined tolerance for ‖ Y ∗ − Y j ‖< δ.

As these selections are arbitrary and has no specific guidelines, so one can conclude
that the accuracy of the solution is not guaranteed immediately from the solution of
this algorithm.

Also the result presented for PSS problem in [42] returned a Kd matrix whose
elements are very small whereas the elements of the K matrix are relatively very large
(of the order of 105), the same trend of the gain matrices are observed in the results
presented above (delay-independent two-term controller) for the LFC problem.

The above drawbacks of the delay-independent two-term controller design have
been eliminated in the proposed delay-dependent two-term control algorithm (i)
introducing an arbitrary finite delay ‘τ ’ in the feedback-loop that consequently avoids
the limiting situation of delay-independent design (i.e, when state delay tends to
infinity the feedback loop is still closed as ‘τ ’ is finite) and (ii) use of modified LMI
conditions are established along with the solution of multi-objective optimization
algorithm.

Proposed delay-dependent two-term control: Delay-dependent two-term H∞
controller gains are obtained by solving the multi-objective optimization algorithm
presented in Theorem 3.13. This yields controller gains as,

K =
[ −57.9577 −1.6131 0.4879 −4.8317 1.1070 33.1766 0.4794 0.3582

−17.2892 0.0140 0.0355 −0.1347 −2.8920 −106.9613 −1.5252 −2.0749

0.3828
−3.7771

]

Kτ =
[

2.0425 −0.0350 −0.0205 0.2533 0.1331 −5.4343 −0.0359 −0.0234
−2.8702 −0.0311 −0.0049 −0.0126 −0.1211 7.1215 0.0383 −0.0666

−0.2004
0.3837

]

The corresponding γ is 4.0124.
Now, simulation results for one-term and delay-dependent two-term controllers

with different load disturbances are compared in terms of performances. First, con-
sidering the unit-step load disturbance, the variations in frequency deviations in both
the areas are shown in Fig. 3.13 whereas the control inputs are presented in Fig. 3.14.
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Fig. 3.13 Deviation in frequency for the closed-loop system for unit-step load disturbance for
feedback delay (τ ) = 0.7 Sec

Fig. 3.14 Control inputs for unit-step load disturbance for feedback delay (τ ) = 0.7 Sec

Next, the simulation results of the closed-loop system for time-varying disturbance
are presented in Figs. 3.15 and 3.16. From these results, it is clear that the transient
response of the proposed delay-dependent two-term controller is superior than the
one-term controller and in both the cases the disturbance rejection capability appears
to be nearly same at the steady-state condition.

Remark 3.23 A linear model of LFC problem for an interconnected power system
with communication delay is considered with zero initial condition for the stabiliza-
tion and disturbance rejection problem. A closed loop simulation study of proposed
two-term controller for the same system under non-zero initial conditions is carried
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Fig. 3.15 Deviation in frequency for the closed-loop system for time-varying load disturbance of
w(t) = sin(2π t) and feedback delay τ = 0.7 Sec

out, the result reveals that there is a tendency for the system to deteriorate the tran-
sient response little bit, but the disturbance rejection capability will not be lost i.e,
the steady state response is similar to that under zero initial condition.

3.10 Conclusions

The first part of this chapter discusses stabilization and robust stabilization of a linear
time-varying delay system with state delay in the feedback control law. Improved
delay-dependent stabilization as well as robust stabilization conditions in an LMI
and NLMI frameworks have been derived for the linear time-delay system. The
proposed delay-dependent LMI based stabilization as well as robust stabilization
conditions are formulated using both convex combination of LMIs and improved
bounding technique along with the multi-objective optimization algorithm to com-
pute the controller gains for a given delay upper bound. On the other hand, the NLMI
based proposed delay-dependent stabilization condition (Theorem 3.5) is formulated
with much lesser decision variables and could not yield delay upper bound estimate
comparable to that of [12] while solving through cone-complementarity algorithm. It
may be emphasized here that the extension of the NLMI stabilization condition (The-
orem 3.5) for an uncertain TDS requires lesser bounding inequalities thus yielding
improved robust stabilization results than that of [12]. Several numerical examples
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are considered to illustrate the effectiveness of the proposed delay-dependent stabi-
lizing conditions to achieve improved delay upper bound and lesser control effort.

The last part of this chapter dealt with H∞ state feedback controller for the solution
of LFC problem of an interconnected power system with communication delays in
an LMI framework. It must be mentioned at this stage that, the existing results of H∞
state feedback controller design are all based on delay-dependent formulation with
delayed states in feedback signals and however, these results have not been utilized
to solve LFC problem yet. The H∞ controller that has been applied so far for an LFC
problem of a multi-area inter-connected power system is delay-independent one with
decentralized control structures having (i) one-term control and (ii) two-term control.
The proposed two-term H∞ controller based on performance index ‘γ ’ is delay-
dependent formulation with respect to the feedback delays and not the state delays
as opposed to other existing delay-dependent H∞ controller designs. Simulation
results of an LFC of a two-area inter-connected power system are presented to show
the effectiveness of (i) the proposed two-term delay-dependent controller over delay-
independent one in terms of the control effort, (ii) implementation of LMI conditions
are less complex computationally compared to the results presented in [33, 42]
and [48] and (iii) the superiority of the proposed two-term controller over one-term
controller under different types of load-disturbances.
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