
A Bayesian Posterior Updating Algorithm
in Reinforcement Learning

Fangzhou Xiong1,2, Zhiyong Liu1,2,3,5(B), Xu Yang1, Biao Sun4, Charles Chiu6,
and Hong Qiao1,2,3,4,5

1 The State Key Lab of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Science, Beijing 100190, China

zhiyong.liu@ia.ac.cn
2 School of Computer and Control, University of Chinese Academy of Sciences

(UCAS), Beijing 100049, China
3 CAS Centre for Excellence in Brain Science and Intelligence Technology (CEBSIT),

Shanghai 200031, China
4 University of Science and Technology Beijing, Beijing 100083, China

5 Cloud Computing Center, Chinese Academy of Sciences, DongGuan 523808,
Guangdong, China

6 School for Higher and Professional Education, Chai Wan, Hong Kong, China

Abstract. Bayesian reinforcement learning (BRL) is an important app-
roach to reinforcement learning (RL) that takes full advantage of meth-
ods from Bayesian inference to incorporate prior information into the
learning process when the agent interacts directly with environment
without depending on exemplary supervision or complete models of the
environment. BRL tackles the problem by expressing prior information in
a probabilistic distribution to quantify the uncertainty, and updates these
distributions when the evidences are collected. However, the expected
total discounted rewards cannot be obtained instantly to maintain these
distributions after each transition the agent executes. In this paper, we
propose a novel idea to adjust immediate rewards slightly in the process
of Bayesian Q-learning updating by introducing a state pool technique
which could improve total rewards that accrue over a period of time when
this pool resets appropriately. We show experimentally on several funda-
mental BRL problems that the proposed method can perform substantial
improvements over other traditional strategies.

Keywords: Bayesian reinforcement learning · Bayesian Q-learning ·
State pool technique

1 Introduction

As a rapidly growing branch in artificial intelligence, RL is a learning problem
where an agent tries to behave optimally when interacting with the environment
so as to finish a task through achieving its goal step by step [1,2]. One of the
major challenges in RL is the trade-off between exploration of untested actions
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part V, LNCS 10638, pp. 418–426, 2017.
https://doi.org/10.1007/978-3-319-70139-4_42



A Bayesian Posterior Updating Algorithm in RL 419

and exploitation of actions that are known to be good. Fortunately, BRL offers
a solution to address this exploration-exploitation problem by maintaining an
explicit distribution over unknown parameters to quantify the uncertainty [3].

Instead of focusing on learning point estimation of the parameters in tra-
ditional RL, BRL tries to transfer prior information encoded relevant domain
knowledge into a form of probabilistic distribution to represent unknown para-
meters. When the agent interacts with the environment, rewards are obtained to
update these distributions. After that, according to the latest distribution the
agent makes a decision by selecting an action to land up in next state [4].

There are several techniques to select an action. Undirected approaches (e.g.
epsilon-greedy exploration and Boltzmann exploration [2]) usually choose random
actions occasionally with no exploration-specific knowledge. Dearden et al. [5]
propose Q-value sampling technique by extending to solve bandit problems to
multi-state RL problems, and use a myopic value of perfect information (VPI )
criterion to offer another policy for action selection. Wang et al. [6] present an
efficient “sparse sampling” technique for Bayes optimal decision. Brafman et al.
[7] propose a R-MAX algorithm to explore under the assumption that unknown
states provide maximal rewards.

In this paper, we mainly concentrate on the problem of how to update the
estimation of distributions over Q-values. Roughly speaking, the agent maintains
these distributions over random variables with a tuple of hyperparameters. Each
action is selected based on prior distributions which are updated by the received
rewards. However, these rewards usually require to be expected and total, which
are totally different from the practical situation where available rewards are
only local and instantaneous after each action execution [5]. In order to tackle
this problem, some sampling techniques are introduced, such as the Thompson
Sampling algorithm [8] which suggests a natural Bayesian approach to sample a
parameter from the posterior.

From the aspect of the immediate reward, the paper proposes a new idea
to refine its effect with almost no change in numerical values, so that the agent
could explore state-action space more deep under the same condition, which
leads to more total discounted rewards. More specifically, we introduce a state
pool which records the “known” and “unknown” states based on whether they
have been visited. In addition, in order to incorporate more state information
between different sequential episodes, we maintain the state pool by resetting it
to a empty collection every few episodes.

2 Background

We consider a basic concept of Markov Decision Processes (MDPs) with infinite
horizon represented by a 5-tuple M = (S,A,P,R, γ), where S is a set of possible
states, A is a set of possible actions, P is a state transition function that captures
the probability of reaching the next state s′ after we select action a at state s
according to the policy π which denotes a mapping from state s to action a, R
is a reward function that maps state-action pairs to a bounded subset of R, and



420 F. Xiong et al.

γ ∈ (0, 1) is the discount factor specifying the effect of the current decision on
the future rewards. The agent’s goal in RL is to maximize the total discounted
reward R by

R =
∞∑

k=0

γkrt+k (1)

where rt is the reward received at time t, and γ ∈ (0, 1) is the discount factor.
The state-action value function Qπ(s, a) = E[Rt|st = s, at = a] is the expected
reward for selecting action a in state s and following policy π.

In this work, we mainly focus on the Bayesian Q-learning (BQL). As for
traditional Q-learning, it works by keeping running estimates that are updated
at each step, i.e., when action a is executed in state s and transferred to next
state s′ with the immediate reward r, the Q-value would be updated following
Q-learning updating rule:

Q̂(s, a) ← (1 − α)Q̂(s, a) + α(r + γ max
a′

Q̂(s′, a′)). (2)

BQL utilizes probability distributions to represent the uncertainty over the
estimated Q-value at each state. The agent executes actions based on these
distributions, and receives rewards to update these priors, which could be con-
sidered as a process of keeping and propagating distributions over Q-values [9].
In order to denote the total discounted reward Rt more explicit, we formally let
Rs,a be a random variable when action a is selected in state s and an optimal
policy π is adopted thereafter. Obviously, we want to learn the value E[Rs,a] to
achieve expected rewards, i.e. optimal state-action function Q∗(s, a) = E[Rs,a].
According to [5], Rs,a can be assumed to have a normal distribution with mean
μs,a and precision τs,a.

For comparisons of subsequent experiments, we consider the same normal-
gamma distribution as prior distribution p(μs,a, τs,a):

p(μs,a, τs,a) ∝ τ
1
2 e− 1

2λτ(μ−μ0)
2
τα−1eβτ (3)

which could be represented by p(μ, τ) ∼ NG(μ0, λ, α, β) with a tuple of hyper-
parameters ρ = 〈μ0, λ, α, β〉. Naturally, we only need to maintain these hyper-
parameters to represent and update the prior distributions of Rs,a.

The policy based on the normal-gamma distribution for action selection we
will adopt is called myopic value of perfect information algorithm (VPI ). The
idea of this policy is to balance the expected rewards from exploration in the
form of improved policies against the expected cost of performing a potential
suboptimal action [5].

Once the policy is executed according to the estimated distributions, the
immediate rewards will be collected to calculate the posterior probability density.
Now we review a updating rule for calculating posterior distribution over Rs,a

called moment updating method (Mom) [5] which will be used in our algorithm.
The Mom method randomly samples values R1

t+1, R2
t+1, . . . , Rn

t+1 from the



A Bayesian Posterior Updating Algorithm in RL 421

prior distribution, and assums these n samples contribute equally to solve two
moments as:

M1 = E[r + γRt+1] = r + γE[Rt+1] (4)

M2 = E[(r + γRt+1)2]

= r2 + 2γrE[Rt+1] + γ2
E[R2

t+1].
(5)

According to the fact that the posterior distribution still is a normal-gamma
distribution. We have p(μ, τ |R1, R2, . . . , Rn) ∼ NG(μ′

0, λ
′, α′, β′) where μ′

0 =
λμ0+nM1

λ+n , λ′ = λ + n, α′ = α + 1
2n, and β′ = β + 1

2n(M2 − M2
1 ) + nλ(M1−μ0)

2

2(λ+n) .

3 The Proposed Method

Given the prior density P (x) and the evidence D collected from the observations
in the process of state transition, the posterior probability density P (x|D) for
model hyperparameters will be updated. Theoretically, we could apply the Bayes
Theorem to solve the posterior distribution:

P (x|D) =
p(D|x)P (x)

p(D)
. (6)

However, this updating is complicated by the fact that the available observa-
tions are local and immediate rewards, whereas the distribution over Q-value
is a distribution over total discounted rewards. Hence we cannot use the Bayes
Theorem directly.

In order to analyze the update for Q-value more conveniently, now we can
rewrite the formula (1) as:

Rt = r + γRt+1 (7)

where Rt is a random variable denoting the total discounted reward from time t
at state s. If the agent follows optimal policy with the best action a thereafter,
then Rt is distributed as Rs,a. Since Q∗(s, a) = E[Rs,a] = μs,a, then the random
variable Rs,a can be utilized to update the posterior probability density. Now
we employ p(μ, τ) to generate samples randomly, which results in a moment
updating for updating the estimate of the Q-value. Nevertheless, the best action
a is not always performed, and there still enjoys a huge potential for improving
effectiveness of updating. The existing updating rule only considers the rewards
corresponded to the second term in the right part of formula (7), thus it is
natural to take the first term into account, i.e., the immediate reward r.

We argue that the immediate reward should be relevant to the state that the
agent resides. Therefore, there are two cases to be dealt with: (a) if the agent
stays at next state s′ that has not been visited before, the immediate reward r is
encouraged to increase so that the posterior probability for executing an action a
will increase, and (b) if s′ has been stepped into previously, r should be reduced



422 F. Xiong et al.

a little contrasted to the normal immediate reward so that the corresponding
probability density for action a will be decreased. Both of cases will lead to
more exploration in the learning process, which is crucial for episode problems
in RL. In principle, the immediate reward should be determined by the obser-
vation after every state transition. Now we actually modify this value only to
assist in updating the posterior probability which benefits for action selection.
Nonetheless, the calculation method for the total discounted reward still adopts
the formula (1).

Specifically, the paper introduces a state pool P to record the “known” and
“unknown” states based on whether they have been visited before so as to mod-
ify the immediate reward. After each distribution updating has finished, the
“unknown” state will be added into the state pool which leads to the updating
for the state pool, and this state becomes the “known” thereafter. Thus we can
rewrite the immediate reward:

rp =
{

r + ε if s′ not in P
r − ε if s′ in P

where r and ε denote the primitive reward and a small positive number, respec-
tively.

Algorithm 1. Bayesian Q-learning with the state pool technique
Require: initial state s ← s0, final state SF ,

episode e ← 0, discounted factor γ,
hyperparameters ρ ← 〈μ0, λ0, α0, β0〉, policy π,
state pool P ← ∅, interval K, small positive number ε.

Ensure: total reward R
1: for step i = 0 to N do
2: Execute action a at state s based on policy π.
3: Generate next state s′ and immediate reward r.
4: Calculate new reward rp:

rp =

{
r + ε if s′ not in P
r − ε if s′ in P

5: Update state pool P : P = P ∪ s′

6: Maintain policy π by updating ρ with Mom
7: if s′ = SF then
8: Calculate Re =

∑
γr, s = s0, e = e + 1

9: if e mod K = 0 then
10: P ← ∅

11: end if
12: else
13: s ← s′

14: end if
15: end for
16: Calculate total reward R =

∑e
j=0 Rj .



A Bayesian Posterior Updating Algorithm in RL 423

Nonetheless, there is a problem that how long we should keep updating for
the state pool. On the one hand, if we reset the state pool at one or more steps in
one episode, there is no need for resetting since the executed action during one
episode would not always behave optimal and it is necessary to bring in more
episodes to support the posterior updating. On the other hand, if the state pool is
reset at the end of total step, repetitive states will be visited continuously which
possibly causes that the state pool can be increased to a full status only after
several episodes, then subsequent updating for state pool has no significance to
conduct. As a consequence of these two aspects, the paper proposes to maintain
the state pool on every K episode by resetting it to a empty collection, which
integrates state information between different sequential episodes and considers
them as a unit with state pool technique to improve total discounted rewards.
Thus, the proposed algorithm is summarized in Algorithm 1.

4 Experimental Illustration

4.1 Experiment Setting

There are 3 different episode experiments [10] conducted to evaluate the proposed
algorithm.

Chain. Figure 1 presents the 5-state “Chain” problem that aims at achieving
as many rewards as possible over fixed steps. Two available actions are labeled
on the arcs followed by the immediate rewards. With probability 0.2, the agent
slips and executes the opposite action. Once the final state 5 is visited, the agent
starts at state 1 again.

1 2 3 4 5a,0 a,0 a,0 a,0 a,10b,2

b,2 b,2 b,2 b,2

Fig. 1. The “Chain” problem.

Loop. Figure 2 illustrates the 9-state “Loop” problem with the purpose of max-
imizing total rewards. Similarly, the arcs are labeled with the actions and asso-
ciated rewards. Performing action a will lead to the traversal of the right loop,
and choosing action b repeatedly causes traversal of left loop. State 0 is set both
for start state and final state. Hence once it is visited, the next state resets to
itself again.

Maze. Figure 3 shows the 264-state “Maze” problem. The reward is measured
by the number of flags collected before the agent reaches the goal. In this figure,
S stands for the start state, G marks the goal, and F illustrates the location of
flag. The agent can move up, down, left and right in the maze except staying at



424 F. Xiong et al.

current state when it hits the wall or moves out of the maze. With probability
0.1, the agent slips and conducts an action that goes in a perpendicular direction.
Once the agent arrives at the goal, it will immediately return to the start.

5
6

7 8

0

4
3

21b,0
b,0

b,0

b,0

a,0
a,0

a,0

a,0

a,b,1

a,b,0

a,b,0

a,b,0

a,b,2

Fig. 2. The “Loop” problem.

S G

F

F

F

Fig. 3. The “Maze” problem.

The algorithms we have utilized are as follows:

ε-greedy. Q-learning with epsilon-greedy exploration policy.
VPI+Mom. Bayesian Q-learning with VPI policy and moment updating.
VPI+SP. Bayesian Q-learning with VPI policy and state pool technique
(SP).

4.2 Experimental Results and Discussion

The experiments are evaluated by accumulated total rewards obtained during
the learning process which comprises 1000 steps for Chain and Loop, and 20000
steps for Maze. Table 1 represents correlative results by running 10 times for
Chain, Loop, and Maze respectively.

Table 1. Results of accumulated rewards with average and standard deviation.

Chain Avg Dev Loop Avg Dev Maze Avg Dev.

ε-greedy 1288.0 46.3 ε-greedy 180.1 8.7 ε-greedy 540.4 105.3

VPI+Mom 1530.4 153.6 VPI+Mom 198.7 0.9 VPI+Mom 153.9 7.3

VPI+SP01 1527.2 96.5 VPI+SP01 272.2 70.0 VPI+SP01 455.9 23.5

VPI+SP 1560.6 52.1 VPI+SP 359.2 18.5 VPI+SP 845.6 45.9
1This mark stands for using state pool technique without reset operation.

The first two experiments are designed to state the significance of existence
for state pool technique so that the subsequent experiment can be performed rea-
sonably to evaluate the improvements for total rewards received. Table 1 presents
the relevant results.

To be specific, in the first experiment of Chain, the agent has doubtlessly
traversed all states when it lands up in final state. There is no need to consider



A Bayesian Posterior Updating Algorithm in RL 425

the exploration about whether the next state is an unknown state since all
states will be labeled as “known” when it arrives at the goal. In addition, to
reset the problem every few episodes is also in vain as the state pool actually is
maintained to make full use of the information about unknown states between
different sequential episodes. Therefore, it turns out that the agent achieves
similar accumulated rewards, i.e., 1530.4 for MVPI+ Mom policy and 1560.6
with proposed technique.

In the second experiment of Loop, even if the start and the goal share the
same state, there are commonly some unexplored states during one episode.
Naturally, it leaves the space for improvement with state pool technique. As the
Table 1 shows, the agent obtains the average reward of 359.2 in 10 runs when
we set interval K = 10, which outperforms than ε-greedy policy and moment
updating rule.

In the last experiment, a maze problem is designed to show that Bayesian
Q-learning with proposed technique outperforms the traditional methods. In the
maze, the agent tries to conduct sufficient exploration to carry 3 flags to the goal,
which pushes it to make more attempts to visit unknown states. Once the agent
has been stuck in a corner of the maze, more steps will be executed. Furthermore,
the prior for each action shares the same distribution at the initialization phase,
thus the agent treats them equally so that it will cost more steps when struggled
with a corner, which tends to achieve less accumulated rewards when given the
same total steps. Therefore, apart from the action, the state information has to
be considered, i.e. the proposed state pool technique. Obviously, the results in
Table 1 testify the effectiveness of the proposed algorithm.

Moreover, in the case of Loop and Maze, if we adopt state pool method
without reset operation, the total discounted reward will be largely affected.
These results manifest that it is crucial to integrate the state information between
sequential episodes by state pool technique with a specific form, such as reset
operation, which can result in more total discounted rewards.

5 Conclusions

In this paper, the proposed state pool technique enables the agent to obtain more
rewards in Bayesian Q-learning domain. It has been evaluated over 3 experiments
that the agent with the proposed technique has a potential ability to update
the posterior distribution by model hyperparameters towards high rewards so
that it will achieve substantial improvements in accumulated rewards. In the
future work, we will pay more attention to bridge the relationship between the
action selections and state information, and hope to make some improvements
for the action initializations by borrowing ideas from previous episodes, thus the
agent will not easily visit useless states when performs some explorations, which
ultimately leads to more accumulated rewards.

Acknowledgments. This work is partly supported by NSFC grants 61375005,
U1613213, 61210009, MOST grants 2015BAK35B00, 2015BAK35B01, Guangdong Sci-
ence and Technology Department grant 2016B090910001.



426 F. Xiong et al.

References

1. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (1998)

3. Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A.: Bayesian reinforcement
learning: a survey. Found. Trends? Mach. Learn. 8(5–6), 359–483 (2015)

4. Vlassis, N., Ghavamzadeh, M., Mannor, S., Poupart, P.: Bayesian reinforcement
learning. Reinforcement Learning 12, 359–386 (2012)

5. Dearden, R., Friedman, N., Russell, S.: Bayesian Q-learning. In: The Association
for the Advancement of Artificial Intelligence, pp. 761–768 (1998)

6. Wang, T., Lizotte, D., Bowling, M., Schuurmans, D.: Bayesian sparse sampling for
on-line reward optimization. In: Proceedings of the 22nd international conference
on Machine learning, pp. 956–963 (2005)

7. Brafman, R.I., Tennenholtz, M.: R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. J. Mach. Learn. Res. 3(Oct), 213–231 (2002)

8. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances
in neural information processing systems, pp. 2249–2257 (2011)

9. Strens, M.: A Bayesian framework for reinforcement learning. In: International
Conference on Machine Learning, pp. 943–950 (2000)

10. Castronovo, M., Ernst, D., Couëtoux, A., Fonteneau, R.: Benchmarking for
Bayesian reinforcement learning. PloS One 11(6), e0157088 (2016)


	A Bayesian Posterior Updating Algorithm in Reinforcement Learning
	1 Introduction
	2 Background
	3 The Proposed Method
	4 Experimental Illustration
	4.1 Experiment Setting
	4.2 Experimental Results and Discussion

	5 Conclusions
	References


